
 

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 1–18, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Modelling and Analysis of Flexible Healthcare Processes 
Based on Algebraic and Recursive Petri Nets   

Awatef Hicheur1, Amel Ben Dhieb2, and Kamel Barkaoui1 

1 Cedric-Cnam Paris, France  
2 LSITI Enit, Tunis, Tunisia 

{awatef.hicheur,kamel.barkaoui}@cnam.fr 

Abstract. Healthcare involves distributed and interacting processes which have 
to be handled in a flexible way due to the variety of individual patient state of 
health and different kinds of exceptions and deviations that may occur. First, we 
show how recursive and algebraic workflow Nets (RecWF-Nets) are a 
promising formalism for modelling and analysis of flexible medical treatment 
processes where data management and control flow aspects are closely related. 
Secondly, owing to their semantics defined in terms of generalized rewriting 
logic, we show that we can check efficiently generic and medical properties of 
healthcare processes using the Maude LTL model checker. 

Keywords: Workflow technology, Distributed and flexible healthcare 
processes, Recursive and algebraic workflow Nets, LTL Model Checking. 

1 Introduction 

The recent push for healthcare reform has lead healthcare organizations to reengineer 
their processes in order to deliver high quality care while at the same time reducing 
costs and improving their financial assets [6], [10]. For these reasons, the clinical staff 
tries to optimize patient treatment time in any possible way while keeping the same 
quality of service by modelling and automating their healthcare processes. Workflow 
Management Systems (WfMSs) are used in a minority of clinical processes. This is 
due, in particular, to the fact that healthcare processes (or careflows) are highly 
unpredictable and extremely dynamic [4], [10], [15], [20] and therefore this poses 
flexibility requirements on their modelling. Many kinds of exceptions and deviations 
always occur in clinical processes. Moreover, complex, distributed and interacting 
processes, with different level of granularity, are often involved in healthcare. 
Consequently, specifying a real-life healthcare workflow is prone to errors. 
Incorrectly specified healthcare workflows result in erroneous situations, which may 
cause disastrous problems in the clinical organisation where they are deployed or 
more dangerously, on a patient health. Therefore, it is crucial to be able to verify the 
correctness of a workflow definition before it becomes operational by means of 
rigorous analysis techniques. For instance, we need to be able to check that a 
healthcare process always terminates correctly or that contraindications are never 
administrated. In this paper, we show how we can use Recursive Workflows Nets 
(abbreviated RecWF-Nets) [4] to model flexible and distributed healthcare processes, 



2 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

allowing the users to deviate from the pre-modelled process plan during run-time by 
offering other alternatives (i.e. creating, deleting or reordering some sub-processes). 
RecWF-Nets are a sub-class of the Recursive ECATNets [1] which are a special kind 
of high-level algebraic nets offering a practical recursive mechanism for a direct and 
intuitive support of the dynamic creation, suppression and synchronization of 
concurrent processes. Furthermore, we show how to check if defined healthcare 
processes behave correctly before putting them into production. We distinguish two 
types of properties which must be met by healthcare processes: generic properties 
related to their control-flow correctness and domain sensitive (medical) properties 
related to their medical quality and safety requirements [3]. For this purpose, we use 
the MAUDE system [7] (an implementation system of the rewriting logic [5]) as a 
simulation environment for the RecWF-nets specifications. In this framework, the 
LTL (Linear Temporal Logic) Model-Checker tool of MAUDE [24] is used on the 
RecWF-nets prototypes to check their general and medical sensitive properties. The 
rest of the paper is organized as follows: In section 2, we discuss flexibility 
requirements of healthcare workflows. In section 3, we recall the semantics of the 
Recursive Workflow Nets. In section 4, we illustrate the appropriateness of Recursive 
Workflow Nets in the healthcare domain through a simple but significant oncology 
treatment example. In section 5, we show how some properties of healthcare 
processes can be formally verified using the LTL model-checker of the MAUDE 
system. In Section 6, we discuss links to related works. Section 7 concludes this paper 
and provides directions for future studies. 

2 Flexibility Requirements of Healthcare Workflows 

Workflow models such as those conceived by classic WfMSs are a description of a 
process of ideal work generally represented in a rigid way [15], [16], [21]. Such 
representations are not well suited to the reality of organizations where processes are 
often led to deviate from their initial plans like in healthcare organizations. In fact, 
healthcare workflows involve coordination of a heterogeneous set of professionals, 
patients, organizations and sectors and must be able to adapt to inevitable changes of 
treatment processes, organizational rules [13], environmental conditions and patients 
requirements. This can be done by opening alternate execution paths, which may not 
have been foreseen at design-time and not explicitly catered for by the process 
modelling [20], [12]. This fact challenges traditional WfMSs using an imperative 
process modelling language such as Business Process Modelling Notation (BPMN) in 
which the control flow is modelled explicitly. Declarative process languages, 
allowing any flow that fulfils the specified constraints, have been suggested by a 
number of researchers as being more appropriate for representing workflow processes 
requiring a high degree of flexibility [13], [16]. The need for flexible workflow 
systems and the deployment of standard processes (so called “clinical pathways”) [10] 
seem to be crucial to deliver high-quality services and to reduce staff idle time. 

Recently, diverse approaches for enhancing flexibility in workflow processes are 
proposed where this flexibility requirement is interpreted in different manner, 
following its application domain [18], [23]. In [18], a set of five distinct approaches 
are recognized and resumed in the following flexibility patterns: 



 Modelling and Analysis of Flexible Healthcare Processes 3 

 

(1) Flexibility by design involves the introduction of advanced modelling 
constructs into a process model, at design-time, such as cancellation or multiple 
instantiation of sub-processes. 

(2) Flexibility by underspecification involves the partial definition of a process 
model at design-time where the whole structure of some sub-processes will become 
known only during the execution time by allowing, for example, the late selection or 
the late modelling of process fragments. (3) Flexibility by deviation involves allowing 
process instances to temporarily deviate from their process definition at runtime, for 
example, by bypassing or to undoing some tasks. (4) Flexibility by momentary change 
involves changing the structure of a process instance at runtime (for example, by 
adding or deleting some tasks). (5) Flexibility by permanent change involves 
changing the structure of a process definition at runtime, taking into account the 
impact of these modifications on all its running process instances (migration instances 
problem). Based on this referential, an important question to ask is which kind of 
flexibility is the more adequate for healthcare processes [12], [21], [20]. In this paper, 
we propose a modelling approach for healthcare processes, based on recursive 
workflow nets (RecWF-nets), where we focus on design-time flexibility (by design 
and underspecification). In a first step, these two types of flexibility are sufficient [20] 
to handle with the required exception mechanisms (e.g. interruption of processes) and 
the advanced behaviours (e.g. recursion and multiple instantiation of processes) 
encountered in almost healthcare processes. 

3 Recursive Workflow Nets  

3.1 Recursive ECATNets Review     

Recursive ECATNets (abbreviated RECATNets) [1], [4] are a kind of high level 
algebraic Petri nets combining the expressive power of abstract data types and 
Recursive Petri nets [11]. Each RECATNet is associated to an algebraic specification. 
Each place in such a net is associated to a sort (i.e. a data type of the underlying 
algebraic specification). A place can contains tokens which are multisets of closed 
algebraic terms of the same sort of this place. Moreover, transitions are partitioned 
into two types: abstract transitions and elementary transitions. Each abstract transition 
is associated to a starting marking represented graphically in a frame. 

 

Fig. 1. Transition Types 

In a RECATNet, an arc from an input place p to a transition t (elementary or 
abstract) is labelled by two algebraic expressions IC(p, t) (Input Condition) and DT(p, 
t) (Destroyed Tokens). The expression IC(p, t) specifies the partial condition on the 
marking of the place p for the enabling of t (see table 1). The expression DT(p, t) 

K(telt) ={(tabsj, i), (tabsm, k), …} 



4 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

specifies the multiset of tokens to be removed from the marking of the place p when t 
is fired. Also, each transition t may be labelled by a Boolean expression TC(t) which 
specifies an additional enabling condition on the values taken by contextual variables 
of t (i.e. local variables of the expressions labelling all the input arcs of t). When the 
expression TC(t) is omitted, the default value is the term True.  

Table 1. The different forms of the expression IC(p, t) for a  given transition t 

IC(p, t) Enabling condition 

α0 The marking of the place p must be equal to α 
(e.g. IC(p, t) =  ∅0 means the marking of p must be empty). 

α+ The marking of the place p must include α 
(e.g. IC(p, t) =∅+ means condition is always satisfied). 

α− The marking of the place p must not include α, with α ≠∅. 
α 1 ∧ α 2 Conditions α1 and α2 are both true. 
α 1 ∨ α 2  α1 or α2 is true. 

 
For an elementary transition t, an output arc (t, p′) connecting this transition t to a 

place p′ is labelled by the expression CT(p′, t) (Created Tokens). However, for an 
abstract transition t, an output arc (t, p′) is labelled by the expression < i > ICT(p,′ t, i) 
(Indexed Created Tokens). These two algebraic expressions specify the multiset of 
terms created in the output place p′ when the transition t is fired.      

Note that in a RECATNet, a capacity associated to a place p specifies the number 
of algebraic terms which can be contained in this place for each element of the sort 
associated to p. In the graphical representation of a RECATNet, if IC(p, t) =def DT(p, 
t) on an input arc (p, t) (i.e. IC(p, t) =α+  and DT(p, t)=α), the expression DT(p, t) is 
omitted on this arc. Fig2 illustrates an example of a RECATNet associated to an 
underling algebraic specification SpecRecatnet (described in Fig. 2) and its 
unbounded places are of the sort Data and CoupleData.  
 

 

Fig. 2. A RECATNet example 



 Modelling and Analysis of Flexible Healthcare Processes 5 

 

This net has an abstract transition StartExam (associated to the starting marking 
<ExamStarted,Ex>), five elementary transitions Preparation, ResultOk, Archive, 
ResultNotOk and EmergencyProc and two termination sets ϒ0 and ϒ1.  

On the arc (ProcessStarted, StartExam), IC(ProcessStarted, StartExam) = Ex+ and 
DT(ProcessStarted, StartExam) = Ex, consequently only the expression Ex+ is 
represented in Fig.2. 

Informally, the behaviour of a RECATNet can be explained as follows: First, let us 
note that a particular feature of such net is that there is a clear distinction between the 
firing condition of a given transition t (i.e. condition on the marking of its input place 
p) and the tokens which may be destroyed from this place p during the firing action of 
t (respectively specified via the expression IC(p, t) and DT(p, t)).  

Secondly, a RECATNet generates during its execution a dynamical tree of marked 
threads (i.e. sub-processes with an internal marking describing the tokens distribution 
over their places) called an extended marking, which reflects the global state of such 
net. This latter denotes the fatherhood relation between the generated threads 
(describing the inter-thread calls). Each of these threads has its own execution 
context. All threads of such tree can be executed simultaneously independently from 
each other i.e. a thread can’t access to other threads’ internal states. A step (an event 
occurrence) of a RecWF-net is thus a step of one of its threads. There are three types 
of events in a RECATNet: the firing of an abstract transition, the firing of an 
elementary transition or a cut step execution. 

The evaluation of the firing conditions of a transition t (elementary or abstract) is 
always done under a firing mode (noted sub). A firing mode is derived from a 
consistent substitution of the contextual variables of this transition. A transition t is 
then enabled in a mode sub (we say that t is sub-enabled) if under this particular 
variable’s substitution, (1) the transition condition TC(t) is evaluated to true and (2) 
the evaluation of the input condition IC(p, t) of each input arc (p, t) of this transition t 
is satisfied in the current marking of its input place p and finally (3), the addition of 
the created tokens to each output place of t must not result in exceeding the capacity 
of this place when this capacity is finite. So, if a transition t is sub-enabled in a thread, 
it may fire in this same mode sub. In Fig. 3, we give a firing sequence of the 
RECATNet of Fig.2, where a black node in the depicted tree of threads denotes the 
thread in which the following step is fired. For the sake of clarity, each thread is 
associated to its internal marking, noted in a grey frame. 

 
Fig. 3. Firing Sequence of the RECATNet of Fig. 2 



6 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

Firing of an abstract transition: When a thread of an extended marking fires an 
abstract transition tabs under a firing mode sub, it destroys from each input place p of 
this transition, the multiset of algebraic terms resulting from the evaluation of the 
expression DT(p, tabs) in this mode sub. Simultaneously, it creates a new thread 
(called its child thread and representing a new sub-process) which starts its execution 
with, as an initial marking, the multiset of terms resulting from the evaluation under 
the mode sub of the starting marking associated to tabs. We note that the fatherhood 
relationship between these two threads is memorised in the extended marking (we 
keep track of the name of the abstract transition and the mode of its firing). For 
instance, in Fig.3, the firing of the abstract transition StartExam in the root node of 
the tree, under the mode (Ex = Jhons), generates a new thread with, as a starting 
marking, a term Jhons in the place ExamStarted. 

Execution of a cut step: The family ϒ of final markings associated to a RECATNet is 
indexed by a finite set of items called termination indices (i.e. ϒ = (ϒ 

i)i∈I). For instance, in Fig. 2, the termination indices belong to the set I = {0, 1}. 
When a thread reaches a final marking belonging to a termination set ϒi (with i∈I), 
the two following actions occur simultaneously: (1) this thread terminates and aborts 
its whole descent of threads. (2) Then, it produces (in its father thread) the multiset of 
algebraic terms in the output places of the abstract transition tabs which gave birth to it. 
Such a firing is called a cut step and is noted τi. In this case, the produced terms in 
each output place p′of this abstract transition tabs result from the evaluation of the 
expression ICT(p′, tabs, i) (where <i> is the termination index of the final marking 
reached) under the firing mode in which the transition tabs had fired, giving birth to the 
terminating thread. Therefore, when an abstract transition is fired, the production of 
tokens in the output places of this transition is delayed until its child thread (i.e. the 
thread generated by the firing of this transition) terminates and a cut step is executed 
at this level. Particularly, if a cut step occurs in the root of the tree of threads, it leads 
to the empty tree, noted by ⊥, from which neither transition nor cut step can occur. In 
Fig. 3, the execution of a cut step τ1 aborts the generated thread (i.e. process) where a 
final marking is reached (belonging to the termination set ϒ1), reducing the tree of 
threads to its root process and produces a term (Jhons, Ok) in the place StableResult. 

The produced terms in this place is done using the variable substitution (Ex = 
Jhons), which is the firing mode of the abstract transition StartExam memorised in 
the tree of threads. 

Firing of an elementary transition: The behaviour of an elementary transition telt is 
twofold and depends on a partial function K which associates to it a set of abstract 
transitions to interrupt and for each of these transitions a termination index. In the 
graphical representation of a RECATNet, the name of an elementary transition telt is 
followed by the set K(telt) when this set in non empty (in Fig. 1, K(telt) = {(tabsj, i), (tabsm, 
k), …}). Basically, when a thread of an extended marking fires an elementary 
transition telt under a firing mode sub, the two following actions occur at the same time: 

(1) Update of the internal marking of the thread where telt is fired: for each input 
place p of telt, it removes the multiset of algebraic terms resulting from the evaluation 
of the expression DT(p, telt) in this mode sub and it creates the multiset of algebraic 
terms CT(p′, telt) (evaluated under that same mode sub) in  each output place p′ of telt.  



 Modelling and Analysis of Flexible Healthcare Processes 7 

 

(2) Interruption of the threads generated by the abstract transitions associated to telt: 
if the function K is defined for this elementary transition telt, the firing of this 
transition performs then the appropriate cut step to each sub-tree generated by the 
abstract transitions specified by K. So, all threads which are generated by one of the 
abstract transitions specified by K are aborted and, depending on the termination 
index associated to it, the output tokens of these abstract transitions are produced in 
the thread where the firing takes place. In the RECATNet of Fig 2, the set K 
associated to each elementary transition is empty. Consequently, these two 
elementary transitions update only the internal marking of the thread where they are 
fired. For instance, in the firing sequence of Fig. 3, the firing of the elementary 
transition (under the mode Ex = Jhon) removes the term Jhon for its input place 
ExamStarted and produce a term Jhon in its output place ExamPrep.  

3.2 Recursive Workflow Nets 

The Recursive Workflow Nets (noted RecWF-Net) are a sub-class of the RECATNets 
model, dedicated to the modelling of flexible and distributed workflows. Consequently, 
RecWF-Nets have structural restrictions which reflect the particular concepts of typical 
workflows where there is a well-defined starting point and a well-defined ending point. 
In a RecWF-Net, each connected component (i.e, subnet) is called a workflow 
component which specifies the behaviour of a workflow sub-process. A workflow 
component has one source place (i.e. a place without input transitions) and one sink 
place (i.e. a place without output transitions). Moreover, every place or transition of this 
subnet is on a directed path from its source to its sink place. In practice, a RecWF-net 
describes the composition of workflow sub-processes initialised by a principal (i.e. root) 
process. Let us note that in a RecWF-net, we associate a finite capacity to each place 
connected to an inhibitor arc (i.e. if the input condition on this arc is of the form IC(p,t) 
= α−). Consequently, interesting properties such as accessibility, boundedness and 
finiteness remain decidable for RecWF-nets [14]. For instance, the RECATNet depicted 
in Fig.2 is an example of a RecWF-net. It describes a simplified process for managing a 
set of a patient’s exams.  In this net, we distinguish two workflow components: (1) the 
component delimited by the source place ProcessStarted and the sink place EndProcess 
(representing the root process) and (2) the component having the source place 
ExamStarted and the sink place EndExam.   

In our compositional modelling approach of flexible healthcare processes we 
propose to introduce two types of tasks in RecWF-nets: Elementary tasks (represented 
by elementary transitions) and abstract tasks (represented by abstract transitions). 
The execution of an abstract task dynamically generates a new (lower-level) plan of 
actions in a workflow process. This plan terminates when it reaches a predicated 
termination state (a final marking) or when it is interrupted by an exception 
occurrence in a higher level plan of actions (i.e. by the firing of an elementary 
transition). In these two cases, the whole descent of action plans, generated by it, are 
aborted (i.e. a cut step is executed) and the results are returned to the caller abstract 
task. In fact, a dynamic tree of action plans (with an independent context) describes 
the structure of a workflow process where all plans can be executed simultaneously. 
The root plan of such a tree represents the principal process by which the whole 
specified workflow starts and terminates. 
 



8 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

This ability offers the following advantages: 
 

1) Flexibility in workflow planning and execution at design time is introduced 
naturally. Indeed, RecWF-nets capture the flexibility by design (choice, parallelism, 
recursion, cancellation and multiple instantiation of processes) and the flexibility by 
underspecification (late selection of process component). 

2) Distributed execution of the interacting sub-processes related to healthcare 
process life-cycle (administrative process, lab testing process, radiology process, care 
process…etc.) is faithfully reflected. 

3) Data and knowledge management of healthcare processes can be easily 
integrated in RecWF-nets due to state algebraic description.  

4 Modelling Chemotherapy Treatment Process Using  
RecWF-Nets 

Based on the characteristics of clinical procedures and medical tasks mentioned in 
[15], we illustrate the suitability of RecWF-nets in the modelling of a chemotherapy 
treatment following a breast cancer surgery trough the RecWF-net depicted in Fig.4 
and Fig.5.  

 
Fig. 4. An example of chemotherapy treatment workflow (part 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<ProcessStarted, (PtFile, ListTests)> 

∧<StableState,  exceptionFile)> 

TreatementTerminated 

Admission

       (PtFile, ListTests) 

(PtFile, ListTests)+ 

PatientFirstVisit 

        (PtFile, ListTests) 

ReadyToCancel PatientEntry (1) 

(PtFile, ListTests)+ 

<1>  (PtFile, ListTests ,Stable) ∨ <2>  (PtFile, ListTests,Warning)   

EndTreatement (1) 

 (PtFile, ListTests, Cancelled) 

(PtFile, ListTests, PtState)+ 

 (PtFile, ListTests ,PtState) 

 

   ∅0 

∅0 

  (PtFile, ListTests)+ 

{(StartProcess, 0)} 

EndAdmission 

 (PtFile, ListTests, PtState) 

 (PtFile, ListTests, PtState)+ 

ϒ1 = { M | M(ProcessCompleted) = (PtFile, ListeTests)  

∧  M(warningState) =  ∅    } 

ϒ2 = {M | M(ProcessCompleted) = (PtFile, ListeTests, PtSate) ∧   

M(warningState)   ≠ ∅    } 

ϒ3 = {M |  NbrToken (M(EndLabtest)) = Length (ListTest) } 

 ϒ4 = {M |  M(EndCheckMD) =  (PtFile, ListeTests, DrugsOK)} 

ϒ5 = {M | M(EndCheckMD) =  (PtFile, ListeTests, DrugsNotOK)} 

ϒ6 = {M |  M(Medecine administrated) ≠ ∅  } 

{(Exam, 0), (CheckMedecine, 0) 

,(GiveMedecine, 0) } 

WarningState 

Exception 

(exceptionFile)+ 

Reset 

StableSate

exceptionFile  exceptionFile  

(exceptionFile) 

exceptionFile  

         Warning 

ExcepState 

ϒ0 = ∅      



 Modelling and Analysis of Flexible Healthcare Processes 9 

 

 
Fig. 5. An example of chemotherapy treatment workflow (part 2) 

All the chemotherapy treatment process is based on a flowchart in which basic 
information about the patient is registered in his file (e.g. weight, height, lab results). 
All the places of this RecWF-Net are associated to a sort PatientData. Let us note that 
the initial state of this net is a tree containing a single thread with a token (PtFile, 

 

 

          

          

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PtFile, ListTests) + PtFile, ListTests) + 

           MDAccepted 

<0> (PtFile, ListTests, PtState)

 (PtFile, ListTests)+ 

               (PtFile, ListTests) 
<0> (PtFile, ListTests, PtState)

EndExam 

PtFile, ListTests)+ 

Prescription 

      ProcessStarted 

<3> (PtFile, ListTests)

MedicinePrescripted 

 CheckMedecine 

   <4> (PtFile, ListTests) 

<DoLabTtest, ListTests)> 

 (PtFile, ListTests)+

   GiveMedecine 

   (PtFile, ListTests)+

ExcpetionProcedure 

Reschudeling StopTreatement 

MedicineChecked 

ProcessCompleted 

PtFile, ListTests)+ 

PtFile, ListTests) 

PtFile, ListTests)+ 

<6> (PtFile, ListTests, MD)

< MDpresc, (PtFile, ListTests) 

  < MDTransfered, (PtFile, ListTests, MD)> 
<0>   

(PtFile, ListTests) 

 (PtFile, ListTests,MD)+ 

<5> (PtFile, ListTests) 

           ExceptionOccured 

PrescOk

(PtFile, ListTests,  

DrugsOk) 

MedicineChecked 

CheckMD-Presc 

PtFile, ListTests)+ 

PrescNotOk 

         MDPresc 

PtFile, ListTests) 

Make Preparation 

PtFile, ListTests,  

Drugs NotOK) 

     EndCheckMD 

Medecine administrated 

PatientPrepared 

Preparation 

PtFile, medicine)+ 

GiveMD and  
AdjuvantMD 

MDTransfered 

PtFile, medicine) 

PtFile, medicine)+ 

PtFile, medicine) 

  ExceptionProcessed 

Tail(ListTests) 

DoLabTest 

ListTests+ 

EndLabTes

ListTests 

DoLabTests 

ListTests # ∅ 



10 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

ListTests) in the place PatientFirstVisit (i.e. the starting place of the principal 
admission process). This token represents the file of the patient and the list of tests 
required. A firing sequence of this example is presented in Fig.6 where we note by (t1 

Seq. t2) the sequential firing of transitions t1 and t2. 

 
Fig. 6. Firing sequence of the healthcare RecWF-net of Fig. 4 and Fig. 5 

This healthcare workflow process starts by the firing of the elementary task 
“Admission” (i.e. a new patient is entered to the chemotherapy department). Then the 
abstract task “StartProcess” dynamically creates a new thread in the tree of threads of 
the RecWF-net by calling in parallel two sub-processes: one which gives the steps of 
the treatment (i.e. the subnet with the initial place ProcessStarted) and another one 
which describes an exception detection procedure (i.e. the subnet with the initial place 
StableState).This latter controls tasks execution in the treatment sub-process. The first 
abstract task “Exam” generates a new thread in the tree of threads where some 
laboratory tests are done and printed in a file. This thread completes when all the lab 
tests are done (See the termination state ϒ3). After this step, the elementary task 
“Prescription” of the adequate medicine is executed. Then the abstract task 
“CheckMedicine” is executed, dynamically creating a new thread. 

Through this new thread, a pharmacy controller checks that drugs dose calculated 
by the doctor is matched or not with the patient data file (laboratory tests results, 
measures and adverse effects). The completion of this thread is indicated by a token in 
the place EndCheckMD (See termination states ϒ4 and ϒ5). If the medicine 
prescription is not trusted (ϒ5 is reached), a token is created in the place EndExam 



 Modelling and Analysis of Flexible Healthcare Processes 11 

 

leading to the re-firing of the task “Prescription” allowing the assigned doctor to 
recalculate drug dosages and correct the medicine prescription in the flowchart. If the 
medicine prescription is trusted (ϒ4 is reached), the abstract task “GiveMedicne” is 
fired. In this case, another thread is created in the tree of threads, with the starting 
marking <MDTransfered, (ptFile, ListTests, medicine)>. This new created thread 
completes when the place MedecineAdminstrated is marked (See the final marking 
ϒ6) after what the treatment sub-process completes (the place ProcessCompleted is 
marked). During the processing of the treatment sub-process, if the elementary 
transition “Exception” is fired (i.e. a medical alert is raised and an exception file is 
produced), an interruption is raised and all the sub-processes produced by the abstract 
tasks “Exam”, “CheckMedicine” and “GiveMedcine” are stopped and aborted. Note 
that the elementary transition “Exception” interrupts all the threads generated by 
either the abstract transition “Exam”, “CheckMedicine” or “GiveMedcine” with the 
termination index <0> (i.e. the list of interrupted abstract transitions associated to this 
elementary transition is not empty). In this case, a term is produced in the place 
ExcepState and an exception procedure is lunched. After that, depending on the 
doctor’s decision, the treatment sub-process is stopped or rescheduled. Let us note 
that if the treatment is rescheduled, the exception detection procedure can either be 
reset to a stable state or ends in a warning state. Depending on the exception file 
produced, the treatment subprocess terminates in a stable state or in a warning state 
which has to be watched by future medical procedures (See the termination states ϒ1 

and ϒ2). Finally, at the level of the principal admission process, the doctor supervising 
the patient treatment has the possibility to stop the whole treatment sub-process along 
with the exception detection procedure (i.e. the thread is aborted by the firing of the 
elementary transition “CancelTreatment”) as long as the corresponding treatment is 
not completed. This can happen if the patient decides to leave before the start of the 
treatment or for another very exceptional reason (e.g. the patient dies). The 
elementary transition “CancelTreatment” interrupts the abstract transition 
“StartProcess” with the termination index <0>. When this transition is fired a term 
(ptFile,ListTests, Cancelled) is produced in the place TreatementTerminated but no 
token is produced in the output place of StartProcess (i.e. ICT(StartProcess, 
EndTreatement, 0) =∅). In Fig.6, each firing of an abstract transition leads to the 
creation of a new node in the tree of threads. Also, when a final marking ϒ3 is reached 
in a thread, a cut step τ3 is executed. The firing of the elementary transition 
“Exception” aborts the thread generated by the abstract transition “CheckMedecine”. 
Then, the exception detection procedure is reset to its stable state and the treatment 
sub-process is rescheduled. Moreover, the firing of the elementary transition 
“CancelTreatement” aborts the whole treatment sub-process and the exception 
detection procedure, reducing the tree of threads to its root process with a term 
FileJhons in the place TreatmentTerminated. 

Such a construction adequately describes the flexible and distributed structure of 
healthcare workflows where sub-processes may be created or cancelled dynamically 
(when an exception is raised), leading to rescheduling of some sub-processes. In 
comparison, modelling cancellation of workflow cases with Coloured Petri Nets 
would result in net containing spaghetti-like arcs to remove tokens from all 
combinations of all places [14]. To improve such a modelling, cancellation regions in 
workflows are often implemented by means of Reset Nets [9].  



12 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

 

Fig. 7. Modelling a cancellation region with Reset Nets 

A Reset Net is a Petri Net with special arcs (called reset arcs, represented by a 
double headed arrow), that allow a transition to remove all tokens (independently of 
their number) from its input places when this transition fires. However, the number of 
reset arcs used in such a modelling depends on the number of places in the 
cancellation regions of a workflow process (See Fig. 7). For instance, in Fig. 7, 
transition tr is enabled if and only if there is a token in place pinit. After the firing of tr 
all tokens are removed from the places p1 to pn and a token is produced in pend. 
Modelling the cancellation of sub-processes via cut step executions in RecWF-Nets is 
much more concise because it is independent of the number of places in the aborted 
processes. 

5 Analysis of Healthcare Recursive Workflow Nets 

5.1 Correctness Properties of Healthcare RecWF-Nets 

With regard to the sensitive nature of a clinical workflow, where human lives are at 
stake, it is primordial to determine if such a process, based on its definition, behave 
correctly before its deployment. Testing techniques are not sufficient to prove with 
confidence the absence of errors in careflow definitions. Testing can find errors but it 
cannot prove the absence of errors. Therefore, the verification of critical properties of 
healthcare processes must be done by means of rigorous analysis techniques [3] such 
as model checking. Model checking is an automatic method which determines if a 
specified property (formulated in a suitable temporal logic like the Linear Temporal 
Logic) is satisfied by a description model of a system and its initial state. The model 
checker will either terminate with the answer true, indicating that the model satisfies 
the property, or give a counterexample that shows an execution path in which the 
formula is not satisfied. We distinguish two types of properties in healthcare 
processes: generic properties and medical (domain specific) properties [3]. 
 
Generic properties specify the control-flow correctness requirements which must be 
satisfied by every workflow process, regardless of its application domain. For 
instance, one wants to check (1) if a clinical process can eventually terminate without 
leaving scheduled or uncompleted tasks, (2) if there is a deadlock or (3) if there is a 
task which can never be executed. These questions can be resumed into the soundness 



 Modelling and Analysis of Flexible Healthcare Processes 13 

 

property of a workflow which requires that this latter is always able to terminate 
properly by reaching its final predicted state and every task of such a process can 
potentially happen. The soundness of a RECATNet is based on two criteria 
interpreted on the level of its root process: 
 

1. Proper completion (termination): Starting from an initial extended marking 
reduced to its root node where only the source place of the principal workflow 
component is marked, it is always possible to reach a final extended marking reduced 
to its root node where only the sink place of the principal workflow component is 
marked.  

2. No dead task: In each initially marked workflow component, every transition 
can fire, at least, once.  

 
Medical properties specify medical constraints and recommendations on healthcare 
processes, such as relevant clinical parameters or general safety requirements 
concerning actions of medical staff members [3]. Examples of typical medical 
properties are: “A patient case must be evaluated by a doctor before beginning 
treatment”, “Contraindications are never administrated” or “A nurse administrates 
only the medicines given by a doctor”. 

5.2 RecWF-Net Analysis in the MAUDE System 

Since the RecWF-nets semantics is expressed in terms of the generalised rewriting 
logic [5], [19] each RecWF-net RN is defined as a rewrite theory ℜRN= (ΣRN, ERN, LRN, 
RRN) where the underlying equational theory (ΣRN, ERN) describes the tree structure of 
its extended marking. Moreover, transitions firing or cut step executions of this net 
are formally expressed by labelled rewrite rules of the set R (with L the set of their 
labels). A RecWF-net rewrite rule is of the general form “Th => Th′ if C” which 
means that a fragment of the RecWF-net state fitting pattern Th can change to a new 
local state fitting pattern Th′, concurrently with any other state change, if the 
condition C holds. Consequently, a firing sequence in a RecWF-net is described by a 
sequence of concurrent rewritings in its associated rewrite theory.  

Maude is a high-level language [7] and an efficient system based on rewriting 
logic. The Maude linear temporal logic (LTL) model checker supports on-the-fly 
explicit-state model checking of concurrent systems expressed as rewrite theories 
with performance comparable to that of current tools of that kind, such as SPIN [24]. 
We apply, below, the Maude LTL model checker on recWF-Nets with respect to 
generic and medical properties. 

 
Generic Properties 
1. Proper termination (Prop1): This criterion is expressed in LTL by the following 
formula Prop1: F  FinalState  where the proposition FinalState is valid in extended 
marking Tr if this latter is reduced to its root process with only one token in its sink 
place. The temporal operator F (Eventually) is noted by   , in MAUDE notation.  
2. No dead task (Prop2): We define the parameterised proposition Excu(t) which is 
valid in an extended marking Tr, if this transition t is enabled in its root node. Thus, to 
check that there is no dead transitions (transitions which can’t fire), we express the 



14 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

negation of this criterion as the following LTL formula Prop2: ∨ t∈Tc  (G ￢  
Execu(t)). In this case, such a formula is valid if there is at least one transition is non 
fireable in the root component of a RecWF-net. The temporal operators G (Globally 
or always) and ￢(not) are noted, respectively, by [ ] and ~ in MAUDE notation. In 
the following (see Fig 8), we apply the LTL Model-Checker of MAUDE to check 
these two properties on the RecWF-net of Fig.4&5, taking, as an initial state, an 
extended marking with only a root process and one token (FileJhons) in the source 
place PatientFirstVisit. There, we can see that the first property is valid which means 
the process can always terminate properly. The second property is not valid (a 
counter-example is returned) which means that there is no transition which is not 
fireable in the root process of the healthcare RecWFnet. We deduce from these two 
results, that the healthcare RecWF-net of Fig.4&5 is sound.  

 

 

Fig. 8. Verification of the soundness of the RecWF-net (Fig 4&5)  using Maude LTL model 
checker 

Medical properties. For instance, for the RecWF-Net of Fig.4&5, we use the LTL 
Maude model checker to check the two following domain specific properties (Fig. 9). 
 

1. Prop3: When an exception is raised, the examination, the treatment and the lab 
testing processes are stopped which means that all running subprocesses launched by 
the tasks Exam, CheckMedecine and GiveMedecine are immediately aborted. Such a 
property is expressed by the following LTL formula where the proposition 
RunningSubProcesses is valid in an extended marking if the thread generated by the 
abstract task StarProcess has at least one subprocess.  

G(Enabled(Exception) Next(Fired(Exception)) Next(￢RuningSubProcesses)). 
 

2. Prop4: A medicine is administrated to a patient only if it is prescribed by her/his 
doctor. This property is expressed by the following LTL formula                                        
G(￢(Enabled(Prescription)  Next(Excu(Prescription))) ￢(Excu(GiveMD)) ) 

The temporal operators Next and Leads-to are noted, respectively, by O and |-> in 
MAUDE notation. In Fig. 9, the returned result shows that the properties Prop3 and 
Prop4 are true. Let us not that the property Prop3 shows the particular feature of 

∧ →

∧ 



 Modelling and Analysis of Flexible Healthcare Processes 15 

 

recWF-Nets where elementary transitions have the ability to interrupt all the threads 
generated by several abstract transitions, independently of the number of these 
threads, in one step.                              

 
Fig. 9. Verification of two medical properties (Prop3 and Prop4) of the RecWF-net (Fig 4&5) 
using Maude LTL model checker 

6 Related Works 

Adaptive workflow nets [12] are an instance of the “nets in nets” paradigm, where 
tokens in a (higher-level) net can be nets themselves. Adaptive workflow nets [12], 
like RecWF-nets, can change their execution plans by allowing the modelling of the 
dynamic creation and suppression of processes. However, the advantage of the 
RecWF-nets is that the distributed execution of workflows and their verification by 
model checking are intrinsic via the given rewriting semantics. Also, RecWF-nets are 
more descriptive than Adaptive workflow nets. For instance, in Fig.5, when the 
elementary transition ExceptionProcedure is fired, all the running threads, generated 
by the abstract transitions Exam, CheckMedicine and GiveMedicine are cancelled, 
independently of their number. Then, the tokens produced in the output places of 
these abstract transitions depend on the number of the aborted threads. Let us note 
that the cancellation of these threads and the production of the tokens in the output 
places of these abstract transitions happen in one step. Modelling such a construction 
is not that direct and simple using Adaptive Nets. In [17], YAWL4Healthcare are 
introduced to model flexible healthcare processes. 

YAWL allows a direct modelling of most complex control-flow structures 
involving cancellation, multiple instantiation and advanced synchronization, via its 
predefined constructors. However, the soundness property is not decidable for YAWL 
specifications where cancellation constructors are used, due to the semantics of the 
underlying Reset Nets [9]. Consequently, the decision procedures which are 
developed for the analysis of these YAWL specifications are only partial. In contrast, 
RecWF-nets allow the modelling of cancellation of sub-processes via cut steps 
execution while the soundness property remains decidable if their state space is finite. 



16 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

Finally, BPMN (Business Process Modelling Notation) is widely used to describe the 
behaviour of clinical workflows [22]. BPMN allows to model cancellation region and 
compensation actions in such processes. vBPMN framework is defined in [8] as a 
combination of a BPMN adaptation patterns catalogue and a set of business rules 
which permit to dynamically activate, on the fly, process fragments creating new 
workflow variants when exceptions are encountered. In comparison, our model can 
naturally integrate such a mechanism since its semantics is described in rewriting 
logic. Indeed, organisational rules and medical rules (for instance, bad interactions 
between two types of drugs) can be formally expressed as rewrite rules. 
Consequently, the rewriting logic framework offers a formal unifying framework for 
the RecWF-Nets specifications and the clinical rules (describing general medical 
constraints and recommendations) of the healthcare environment where they are 
deployed. 

7 Conclusion 

In this paper, we show the ability of Recursive Workflow Nets (recWF-nets) for the 
modelling and the formal verification of flexible healthcare workflow processes [1], 
[4]. In future work, we intend to use the temporal extension of recWF-nets, namely, 
the Temporal Recursive Workflow nets (abbreviated T-RecWF-net) [2] for the 
modelling and the analysis of real-life healthcare workflows where temporal 
constraints are preponderant. For instance, it is primordial to specify medical task 
duration, minimal and maximal time between medicine administration, duration of 
blood samples or time-out on medical sub-processes. Consequently, time-constrained 
medical properties in healthcare workflows (e.g. A patient must have been evaluated 
by a doctor within three weeks before beginning chemotherapy) can be evaluated 
using the timed LTL model-Checker of MAUDE [7]. Actually, we are working on the 
implementation of a graphical tool based on rewriting logic (taking MAUDE system 
as an underlying engine) for creating and analysing recWF-nets. This tool allows 
edition (via a graphical editor), simulation and verification of recWF-nets using the 
reachability analysis and the LTL Model checking tools of Maude [24]. Such a tool 
will propose control flow and flexibility patterns to facilitate workflow modelling. 

 
Limitations. Although, recWFnets are suitable to model and to verify both clinical 
processes and medical diagnostic protocols, there remains much more to investigate: 

1). Healthcare processes entail substantial amounts of concurrency, data and 
exception handling which lead to very large state spaces. The next step in our work, is 
to elaborate a more effective analyze procedure for the recWF-nets, to manage the 
state space explosion problem induced by the reachability graph of huge systems. 

In this case, abstraction techniques or hierarchical verification procedures may be 
adopted. Thanks to the reflective capabilities of the rewriting logic, well supported by 
the MAUDE system [7] (i.e. the capability to represent rewrite specifications as 
objects and control their structure and their execution at the meta-level), one can 
define different rewrite strategies to control the rewriting process in recWF-nets. Such 
strategies allow, for instance, to partially explore the reachability graph of a recWF-
net, in an hierarchical manner, for a partial verification of its properties. One can also 



 Modelling and Analysis of Flexible Healthcare Processes 17 

 

specify and implement abstraction strategies to reduce the state space of recWF-nets 
while preserving their interesting properties. In this case these preserved properties 
are verified by exploring the produced abstraction graphs. 
2). reWF-Nets focus on the workflow flexibility requirements which are expressed 
during build-time (flexibility by design and by underspecification) [18]. To extend 
our approach (flexibility by change), we can use rewriting strategies to define different 
structural modification operations on the recWF-Nets specifications to add/change/ 
remove, on the fly, process fragments, places or transitions.  
3). We intend also to extend recWF-nets with shared resource concept allowing us to 
study the efficiency of healthcare workflows taking into account a limited number of 
available resources (medical staff member and materials).  

References 

1. Barkaoui, K., Hicheur, A.: Towards Analysis of Flexible and Collaborative Workflow 
Using Recursive ECATNets. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) 
BPM 2007 Workshops. LNCS, vol. 4928, pp. 232–244. Springer, Heidelberg (2008) 

2. Barkaoui, K., Boucheneb, H., Hicheur, A.: Modelling and Analysis of Time-Constrained 
Flexible Workflows with Time Recursive ECATNets. In: Bruni, R., Wolf, K. (eds.) WS-
FM 2008. LNCS, vol. 5387, pp. 19–36. Springer, Heidelberg (2009) 

3. Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of medical 
guidelines by model checking – a case study. In: Valmari, A. (ed.) SPIN 2006. LNCS, 
vol. 3925, pp. 219–233. Springer, Heidelberg (2006) 

4. Ben Dhieb, A., Barkaoui, K.: On the Modeling of Healthcare Workflows Using Recursive 
ECATNets. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops, Part II. 
LNBIP, vol. 100, pp. 99–107. Springer, Heidelberg (2012) 

5. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. J. Theor. 
Comput. Sci. 360(1-3), 386–414 (2006) 

6. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: A 
literature review. European Journal of Operational Research 201(3), 921–932 (2010) 

7. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, J.: 
Maude Manual (Version 2.3). SRI International and University of Illinois at Urbana-
Champaign (2007), http://maude.cs.uiuc.edu/maude2-manual/  

8. Döhring, M., Zimmermann, B.: vBPMN: Event-Aware Workflow Variants by Weaving 
BPMN2 and Business Rules. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., 
Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp.  
332–341. Springer, Heidelberg (2011) 

9. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and 
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, 
vol. 1443, pp. 103–115. Springer, Heidelberg (1998) 

10. Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows - The Killer Application for 
Process-oriented Information Systems? In: Proc. BIS 2000, pp. 36–59 (2000) 

11. Haddad, S., Poitrenaud, D.: Recursive Petri nets: Theory and Application to Discrete Event 
Systems. Acta Informatica 40(7-8), 463–508 (2007) 

12. van Hee, K.M., Schonenberg, H., Serebrenik, A., Sidorova, N., van der Werf, J.M.: 
Adaptive Workflows for Healthcare Information Systems. In: ter Hofstede, A., Benatallah, 
B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 359–370. Springer, 
Heidelberg (2008) 



18 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

13. Hildebrandt, T., Rao Mukkamala, R., Slaats, T.: Declarative Modelling and Safe 
Distribution of Healthcare Workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. 
LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012) 

14. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. 
Monographs in Theoretical Computer Science. Springer (1997) 

15. Lenz, R., Reichert, M.U.: IT Support for Healthcare Processes - Premises, Challenges, 
Perspectives. Data & Knowledge Engineering 61(1), 39–58 (2007) 

16. Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From paper based clinical practice 
guidelines to declarative workflow management. In: Ardagna, D., Mecella, M., Yang, J. 
(eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 336–347. Springer, Heidelberg (2009) 

17. Mans, R.S., et al.: Supporting healthcare processes with YAWL4Healthcare. In: Ludwig, 
H., Reijers, H.A. (eds.) Pro: Demo Track of the Nineth Conf. on BPM, pp. 1–6 (2012) 

18. Mulyar, N., Russell, N., Van der Aalst, W.M.P.: Process flexibility patterns. Working 
paper WP 251, Beta Research School (2008) 

19. Meseguer, J.: Rewriting Logic as a Semantic Framework for Concurrency. In: Sassone, V., 
Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 331–372. Springer, Heidelberg 
(1996) 

20. Reijers, H.A., Russell, N., van der Geer, S., Krekels, G.A.M.: Workflow for Healthcare: A 
Methodology for Realizing Flexible Medical Treatment Processes. In: Rinderle-Ma, S., 
Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 593–604. 
Springer, Heidelberg (2010) 

21. Reuter, C., Dadam, P., Rudolph, S., Deiters, W., Trillsch, S.: Guarded Process Spaces 
(GPS): A Navigation System towards Creation and Dynamic Change of Healthcare 
Processes from the End-User’s Perspective. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) 
BPM 2011 Workshops, Part II. LNBIP, vol. 100, pp. 237–248. Springer, Heidelberg 
(2012) 

22. Richard, M., Rogge-Solti, A.: BPMN for Healthcare Processes. In: Eichhorn, D., 
Koschmider, A., Zhang, H. (eds.) 3rd Central-European Workshop on Services and their 
Composition. CEUR Workshop Proceedings, vol. 705, pp. 65–72 (2011) 

23. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features–
enhancing flexibility in process-aware information systems. Data & Knowledge 
Engineering 66(3), 438–466 (2008) 

24. Ekera, S., Meseguer, J., Sridharanarayananb, A.: The Maude LTL Model Checker. In: 
Proc. of Rewriting Logic and Its Applications (WRLA 2002). Electronic Notes in 
Theoretical Computer Science, vol. 71, pp. 162–187 (2002) 

 


	Modelling and Analysis of Flexible Healthcare Processes Based on Algebraic and Recursive Petri Nets
	1 Introduction
	2 Flexibility Requirements of Healthcare Workflows
	3 Recursive Workflow Nets
	3.1 Recursive ECATNets Review
	3.2 Recursive Workflow Nets

	4 Modelling Chemotherapy Treatment Process UsingRecWF-Nets
	5 Analysis of Healthcare Recursive Workflow Nets
	5.1 Correctness Properties of Healthcare RecWF-Nets
	5.2 RecWF-Net Analysis in the MAUDE System

	6 Related Works
	7 Conclusion
	References




