
Jens Weber
Isabelle Perseil (Eds.)

 123

LN
CS

 7
78

9

Second International Symposium, FHIES 2012
Paris, France, August 2012
Revised Selected Papers

Foundations
of Health Information
Engineering and Systems



Lecture Notes in Computer Science 7789
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Jens Weber Isabelle Perseil

Foundations
of Health Information
Engineering and Systems

Second International Symposium, FHIES 2012
Paris, France, August 27-28, 2012
Revised Selected Papers

13



Volume Editor

Jens Weber
University of Victoria
Faculty of Engineering
Department of Computer Science
Victoria, BC V8W 3P6, Canada
E-mail: jens@uvic.ca

Isabelle Perseil
Inserm
101 rue de Tolbiac
75013 Paris, France
E-mail: isabelle.perseil@inserm.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39087-6 e-ISBN 978-3-642-39088-3
DOI 10.1007/978-3-642-39088-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940617

CR Subject Classification (1998): J.3, D.2.4, H.4.1, H.2.7, D.2.11-12, I.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Healthcare is among the top challenges for many countries around the world.
Industrialized nations face rapidly rising expenditures in light of demographic
changes and increasingly expensive and extensive treatment options, while devel-
oping nations struggle to improve accessibility to even the most basic healthcare
services with a minimum infrastructure and resource support. Information and
communication technologies (ICT) are often seen as key enablers for addressing
many of the central challenges of today’s healthcare environments. Software-
intensive devices play an increasingly pivotal role with the potential of making
healthcare more efficient and effective.

While some of the expected benefits of these technologies are starting to ma-
terialize, our reliance on software for performing increasingly critical functions in
healthcare also raises significant risks. Past failures of software-intensive medical
devices and resulting technology-induced adverse events have led to increasing
calls for dependable quality assurance and certification. Regulators have been
mandated to put in place effective certification programs to assure the safety and
effectiveness of software in healthcare. Other regulations pertain to informational
security and privacy of patients and their caregivers.

One difficulty commonly faced by device manufacturers and regulators is
that the foundational body of knowledge for engineering and certifying software-
intensive systems in healthcare is not well established. Compared to other in-
dustries, the healthcare environment poses several unique challenges that cannot
readily be addressed with approaches geared for other critical settings. Moreover,
there is a broad spectrum of different types of critical software devices applied in
healthcare, ranging from implantable devices, diagnostic and treatment devices
at the point of care, to clinical information systems and software-based guideline
and decision support (expert) systems.

The symposium series on the Foundations of Health Information Engineer-
ing and Systems (FHIES) has been created to provide a venue to foster de-
velopment and application of theories and methods that can be foundational
for modelling, constructing, and certifying high-quality software in support of
healthcare. Theories and methods may be adopted and adapted from different
disciplines including but not limited to software engineering, systems engineer-
ing, data engineering, applied mathematics, and psychology.

This volume contains papers from the second symposium in the FHIES series
(FHIES’12), which was held in Paris during August 27–28, 2012, co-located with
the 18th International Symposium on Formal Methods. FHIES’12 specifically
called for four types of submissions

– Research on how computational models, techniques, and tools of analysis and
verification can be applied to problems with software systems in healthcare



VI Preface

– Research on modelling, design, and verification techniques, and innovative
practices of software-based ICT and software-intensive medical devices

– Application and integration of foundational methods from different disci-
plines in engineering and science to software in healthcare

– Foundational research on characterizing and formalizing specific engineering
challenges of ICT-based health service delivery in different settings, including
developed countries as well as the developing world

Out of 26 submitted papers, the Program Committee (PC) selected 12 full papers
and three short papers to be presented at the symposium, following a rigorous
review where each paper was refereed by a minimum of three PC members.
In addition to the paper presentations, the symposium’s program provided for
highly interactive sessions with much opportunity for discussion and feedback.
Two complementary keynotes by Gerry Douglas and Jacques Grassi and two
panel discussions helped to inspire and stimulate the delegates. The authors of
presented papers at FHIES’12 were invited to submit revised, extended versions
of the papers for possible inclusion in this LNCS volume, taking into account
reviewer comments from the pre-symposium review as well as feedback received
at the symposium itself. The submitted papers underwent a second round of
reviews by the PC prior to acceptance and inclusion in this volume. The ac-
cepted papers contain original research results on assuring safety and security in
different types of software-based healthcare devices. They cover different phases
of the software lifecycle, ranging from requirements engineering to model verifi-
cation and system certification. They also report and contrast different national
perspectives on the topic of development, assurance, and regulation of health
software.

We hope that the momentum created during FHIES’12 and the inaugural
FHIES’11 symposium in South Africa will continue to grow and propel the next
symposium, which is planned to be held in Macau in an expanded, three-day
format, hosted by the United Nations University during August 21–23, 2013.

We would like to acknowledge the kind support of the United Nations Uni-
versity’s International Institute for Software Technology (IIST). Thanks to the
General Chairs Zhiming Lui (UNI-IIST) and Alan Wassyng (McSCert), the
Local Organizing Chair Dominique Mery (LORIA), the hard-working members
of the PC and their additional reviewers.

January 2013 Jens Weber



Organization

Program Committee

Syed Aljunid United Nations University - IIGH, Malaysia
Borzoo Bonakdarpour University of Waterloo, Canada
Stephan Bour National Institute of Health, USA
Remy Choquet INSERM, France
Anthony Cleve University of Namur, Belgium
Christel Daniel INSERM, France
François Fages INRIA Rocquencourt, France
Jerome Feret École Normale Supérieure, France
John Fitzgerald Newcastle University, UK
Jean-Louis Giavitto IRCAM, France
Jeremy Gibbons University of Oxford, UK
David Guiraud INRIA, France
John Hatcliff Kansas State University, USA
Mike Hinchey LERO - University of Limerick, Ireland
Jozef Hooman Radboud University Nijmegen,

The Netherlands
Michaela Huhn Technische Universität Clausthal, Germany
Henry Kanoui Ecole Supérieure d’Ingénieurs de Luminy,

France
Brian Larson Kansas State University, USA
Mark Lawford McMaster University, Canada
Insup Lee University of Pennsylvania, USA
Martin Leucker University of Lübeck, Germany
Zhiming Liu United Nations University - IIST
Wendy MacCaull St. Francis Xavier University, Canada
Tom Maibaum McMaster University, Canada
Dominique Mery Université Henri Poincaré Nancy 1, France
Deshen Moodley University of KwaZulu-Natal, South Africa
Jun Pang University of Luxembourg, Luxembourg
Isabelle Perseil INSERM, France
Anders Ravn Aalborg University, Denmark
Ita Richardson LERO - University of Limerick, Ireland
David Robertson University of Edinburgh, UK
Lutz Schröder DFKI Bremen and Universität Bremen,

Germany
Chris Seebregts Medical Research Council, South Africa
Kulwinder Singh University of Calgary, Canada



VIII Organization

Neeraj-Kumar Singh University of York, UK
Oleg Sokolsky University of Pennsylvania, USA
Michel Sorine INRIA, Paris-Rocquencourt, France
Alexandre Sztajnberg UERJ, Brazil
Umit Topaloglu UAMS, USA
Pieter Van Gorp Eindhoven University of Technology,

The Netherlands
Jens Weber University of Victoria, Canada
Jim Woodcock University of York, UK

Additional Reviewers

Chen, Sanjian
Faber, Johannes
Hayman, Jonathan
Ivanov, Radoslav
Jaskolka, Jason
Jiang, Zhihao
Kanaskar, Nitin
Kühn, Franziska

Lee, Insup
Li, Xiaoshan
Meyer, Thomas
Nenov, Yavor
Qamar, Nafees
Roederer, Alex
Schäf, Martin
Wong, Peter



Table of Contents

Modelling and Analysis of Flexible Healthcare Processes Based on
Algebraic and Recursive Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Awatef Hicheur, Amel Ben Dhieb, and Kamel Barkaoui

Verification of Timed Healthcare Workflows Using Component
Timed-Arc Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Cristiano Bertolini, Zhiming Liu, and Jǐŕı Srba

Enhancing Product Line Development by Safety Requirements and
Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Michaela Huhn and Sara Bessling

Defining New Structural and Mobile Support to Improve Hospital
Facilities Access and Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Alessandro Carlini, Pierluigi Dalla Rosa, Bartolomeo Montrucchio,
Ivan Cenci, Francesca Maria Claudio, Giovanni Luongo,
Jacopo Spigaroli, and Giuseppina Gini

Regulated Software Development – An Onerous Transformation . . . . . . . . 72
Oiśın Cawley, Xiaofeng Wang, and Ita Richardson

An Architecture and Reference Implementation of an Open Health
Information Mediator: Enabling Interoperability in the Rwandan
Health Information Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Ryan Crichton, Deshendran Moodley, Anban Pillay,
Richard Gakuba, and Christopher J. Seebregts

OwlOntDB: A Scalable Reasoning System for OWL 2 RL Ontologies
with Large ABoxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Rokan Uddin Faruqui and Wendy MacCaull

Trustworthy Pervasive Healthcare Services via Multiparty Session
Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Anders S. Henriksen, Lasse Nielsen, Thomas T. Hildebrandt,
Nobuko Yoshida, and Fritz Henglein



X Table of Contents

A Grid Based Distributed Cooperative Environment for Health Care
Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Felipe Maia, Rafael Araújo, Luiz Carlos Muniz,
Rayrone Zirtany, Luciano Coutinho,
Samyr Vale, Francisco José Silva,
Pierpaolo Cincilla, Ikram Chabbouh, Sébastien Monnet,
Luciana Arantes, and Marc Shapiro

Closed-Loop Modeling of Cardiac Pacemaker and Heart . . . . . . . . . . . . . . . 151
Dominique Méry and Neeraj Kumar Singh

Model-Based Solution for Controlling Physiology . . . . . . . . . . . . . . . . . . . . . 167
Elthon Oliveira, Leandro Silva, Hyggo Almeida, and
Angelo Perkusich

Automated Reviewing of Healthcare Security Policies . . . . . . . . . . . . . . . . . 176
Nafees Qamar, Johannes Faber, Yves Ledru, and Zhiming Liu

A Formal Diagrammatic Approach to Compensable Workflow
Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Adrian Rutle, Hao Wang, and Wendy MacCaull

Towards Generic MDE Support for Extracting Purpose-Specific
Healthcare Models from Annotated, Unstructured Texts . . . . . . . . . . . . . . 213

Pieter Van Gorp, Irene Vanderfeesten, Willem Dalinghaus,
Josh Mengerink, Bram van der Sanden, and Pieter Kubben

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



 

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 1–18, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Modelling and Analysis of Flexible Healthcare Processes 
Based on Algebraic and Recursive Petri Nets   

Awatef Hicheur1, Amel Ben Dhieb2, and Kamel Barkaoui1 

1 Cedric-Cnam Paris, France  
2 LSITI Enit, Tunis, Tunisia 

{awatef.hicheur,kamel.barkaoui}@cnam.fr 

Abstract. Healthcare involves distributed and interacting processes which have 
to be handled in a flexible way due to the variety of individual patient state of 
health and different kinds of exceptions and deviations that may occur. First, we 
show how recursive and algebraic workflow Nets (RecWF-Nets) are a 
promising formalism for modelling and analysis of flexible medical treatment 
processes where data management and control flow aspects are closely related. 
Secondly, owing to their semantics defined in terms of generalized rewriting 
logic, we show that we can check efficiently generic and medical properties of 
healthcare processes using the Maude LTL model checker. 

Keywords: Workflow technology, Distributed and flexible healthcare 
processes, Recursive and algebraic workflow Nets, LTL Model Checking. 

1 Introduction 

The recent push for healthcare reform has lead healthcare organizations to reengineer 
their processes in order to deliver high quality care while at the same time reducing 
costs and improving their financial assets [6], [10]. For these reasons, the clinical staff 
tries to optimize patient treatment time in any possible way while keeping the same 
quality of service by modelling and automating their healthcare processes. Workflow 
Management Systems (WfMSs) are used in a minority of clinical processes. This is 
due, in particular, to the fact that healthcare processes (or careflows) are highly 
unpredictable and extremely dynamic [4], [10], [15], [20] and therefore this poses 
flexibility requirements on their modelling. Many kinds of exceptions and deviations 
always occur in clinical processes. Moreover, complex, distributed and interacting 
processes, with different level of granularity, are often involved in healthcare. 
Consequently, specifying a real-life healthcare workflow is prone to errors. 
Incorrectly specified healthcare workflows result in erroneous situations, which may 
cause disastrous problems in the clinical organisation where they are deployed or 
more dangerously, on a patient health. Therefore, it is crucial to be able to verify the 
correctness of a workflow definition before it becomes operational by means of 
rigorous analysis techniques. For instance, we need to be able to check that a 
healthcare process always terminates correctly or that contraindications are never 
administrated. In this paper, we show how we can use Recursive Workflows Nets 
(abbreviated RecWF-Nets) [4] to model flexible and distributed healthcare processes, 



2 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

allowing the users to deviate from the pre-modelled process plan during run-time by 
offering other alternatives (i.e. creating, deleting or reordering some sub-processes). 
RecWF-Nets are a sub-class of the Recursive ECATNets [1] which are a special kind 
of high-level algebraic nets offering a practical recursive mechanism for a direct and 
intuitive support of the dynamic creation, suppression and synchronization of 
concurrent processes. Furthermore, we show how to check if defined healthcare 
processes behave correctly before putting them into production. We distinguish two 
types of properties which must be met by healthcare processes: generic properties 
related to their control-flow correctness and domain sensitive (medical) properties 
related to their medical quality and safety requirements [3]. For this purpose, we use 
the MAUDE system [7] (an implementation system of the rewriting logic [5]) as a 
simulation environment for the RecWF-nets specifications. In this framework, the 
LTL (Linear Temporal Logic) Model-Checker tool of MAUDE [24] is used on the 
RecWF-nets prototypes to check their general and medical sensitive properties. The 
rest of the paper is organized as follows: In section 2, we discuss flexibility 
requirements of healthcare workflows. In section 3, we recall the semantics of the 
Recursive Workflow Nets. In section 4, we illustrate the appropriateness of Recursive 
Workflow Nets in the healthcare domain through a simple but significant oncology 
treatment example. In section 5, we show how some properties of healthcare 
processes can be formally verified using the LTL model-checker of the MAUDE 
system. In Section 6, we discuss links to related works. Section 7 concludes this paper 
and provides directions for future studies. 

2 Flexibility Requirements of Healthcare Workflows 

Workflow models such as those conceived by classic WfMSs are a description of a 
process of ideal work generally represented in a rigid way [15], [16], [21]. Such 
representations are not well suited to the reality of organizations where processes are 
often led to deviate from their initial plans like in healthcare organizations. In fact, 
healthcare workflows involve coordination of a heterogeneous set of professionals, 
patients, organizations and sectors and must be able to adapt to inevitable changes of 
treatment processes, organizational rules [13], environmental conditions and patients 
requirements. This can be done by opening alternate execution paths, which may not 
have been foreseen at design-time and not explicitly catered for by the process 
modelling [20], [12]. This fact challenges traditional WfMSs using an imperative 
process modelling language such as Business Process Modelling Notation (BPMN) in 
which the control flow is modelled explicitly. Declarative process languages, 
allowing any flow that fulfils the specified constraints, have been suggested by a 
number of researchers as being more appropriate for representing workflow processes 
requiring a high degree of flexibility [13], [16]. The need for flexible workflow 
systems and the deployment of standard processes (so called “clinical pathways”) [10] 
seem to be crucial to deliver high-quality services and to reduce staff idle time. 

Recently, diverse approaches for enhancing flexibility in workflow processes are 
proposed where this flexibility requirement is interpreted in different manner, 
following its application domain [18], [23]. In [18], a set of five distinct approaches 
are recognized and resumed in the following flexibility patterns: 



 Modelling and Analysis of Flexible Healthcare Processes 3 

 

(1) Flexibility by design involves the introduction of advanced modelling 
constructs into a process model, at design-time, such as cancellation or multiple 
instantiation of sub-processes. 

(2) Flexibility by underspecification involves the partial definition of a process 
model at design-time where the whole structure of some sub-processes will become 
known only during the execution time by allowing, for example, the late selection or 
the late modelling of process fragments. (3) Flexibility by deviation involves allowing 
process instances to temporarily deviate from their process definition at runtime, for 
example, by bypassing or to undoing some tasks. (4) Flexibility by momentary change 
involves changing the structure of a process instance at runtime (for example, by 
adding or deleting some tasks). (5) Flexibility by permanent change involves 
changing the structure of a process definition at runtime, taking into account the 
impact of these modifications on all its running process instances (migration instances 
problem). Based on this referential, an important question to ask is which kind of 
flexibility is the more adequate for healthcare processes [12], [21], [20]. In this paper, 
we propose a modelling approach for healthcare processes, based on recursive 
workflow nets (RecWF-nets), where we focus on design-time flexibility (by design 
and underspecification). In a first step, these two types of flexibility are sufficient [20] 
to handle with the required exception mechanisms (e.g. interruption of processes) and 
the advanced behaviours (e.g. recursion and multiple instantiation of processes) 
encountered in almost healthcare processes. 

3 Recursive Workflow Nets  

3.1 Recursive ECATNets Review     

Recursive ECATNets (abbreviated RECATNets) [1], [4] are a kind of high level 
algebraic Petri nets combining the expressive power of abstract data types and 
Recursive Petri nets [11]. Each RECATNet is associated to an algebraic specification. 
Each place in such a net is associated to a sort (i.e. a data type of the underlying 
algebraic specification). A place can contains tokens which are multisets of closed 
algebraic terms of the same sort of this place. Moreover, transitions are partitioned 
into two types: abstract transitions and elementary transitions. Each abstract transition 
is associated to a starting marking represented graphically in a frame. 

 

Fig. 1. Transition Types 

In a RECATNet, an arc from an input place p to a transition t (elementary or 
abstract) is labelled by two algebraic expressions IC(p, t) (Input Condition) and DT(p, 
t) (Destroyed Tokens). The expression IC(p, t) specifies the partial condition on the 
marking of the place p for the enabling of t (see table 1). The expression DT(p, t) 

K(telt) ={(tabsj, i), (tabsm, k), …} 



4 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

specifies the multiset of tokens to be removed from the marking of the place p when t 
is fired. Also, each transition t may be labelled by a Boolean expression TC(t) which 
specifies an additional enabling condition on the values taken by contextual variables 
of t (i.e. local variables of the expressions labelling all the input arcs of t). When the 
expression TC(t) is omitted, the default value is the term True.  

Table 1. The different forms of the expression IC(p, t) for a  given transition t 

IC(p, t) Enabling condition 

α0 The marking of the place p must be equal to α 
(e.g. IC(p, t) =  ∅0 means the marking of p must be empty). 

α+ The marking of the place p must include α 
(e.g. IC(p, t) =∅+ means condition is always satisfied). 

α− The marking of the place p must not include α, with α ≠∅. 
α 1 ∧ α 2 Conditions α1 and α2 are both true. 
α 1 ∨ α 2  α1 or α2 is true. 

 
For an elementary transition t, an output arc (t, p′) connecting this transition t to a 

place p′ is labelled by the expression CT(p′, t) (Created Tokens). However, for an 
abstract transition t, an output arc (t, p′) is labelled by the expression < i > ICT(p,′ t, i) 
(Indexed Created Tokens). These two algebraic expressions specify the multiset of 
terms created in the output place p′ when the transition t is fired.      

Note that in a RECATNet, a capacity associated to a place p specifies the number 
of algebraic terms which can be contained in this place for each element of the sort 
associated to p. In the graphical representation of a RECATNet, if IC(p, t) =def DT(p, 
t) on an input arc (p, t) (i.e. IC(p, t) =α+  and DT(p, t)=α), the expression DT(p, t) is 
omitted on this arc. Fig2 illustrates an example of a RECATNet associated to an 
underling algebraic specification SpecRecatnet (described in Fig. 2) and its 
unbounded places are of the sort Data and CoupleData.  
 

 

Fig. 2. A RECATNet example 



 Modelling and Analysis of Flexible Healthcare Processes 5 

 

This net has an abstract transition StartExam (associated to the starting marking 
<ExamStarted,Ex>), five elementary transitions Preparation, ResultOk, Archive, 
ResultNotOk and EmergencyProc and two termination sets ϒ0 and ϒ1.  

On the arc (ProcessStarted, StartExam), IC(ProcessStarted, StartExam) = Ex+ and 
DT(ProcessStarted, StartExam) = Ex, consequently only the expression Ex+ is 
represented in Fig.2. 

Informally, the behaviour of a RECATNet can be explained as follows: First, let us 
note that a particular feature of such net is that there is a clear distinction between the 
firing condition of a given transition t (i.e. condition on the marking of its input place 
p) and the tokens which may be destroyed from this place p during the firing action of 
t (respectively specified via the expression IC(p, t) and DT(p, t)).  

Secondly, a RECATNet generates during its execution a dynamical tree of marked 
threads (i.e. sub-processes with an internal marking describing the tokens distribution 
over their places) called an extended marking, which reflects the global state of such 
net. This latter denotes the fatherhood relation between the generated threads 
(describing the inter-thread calls). Each of these threads has its own execution 
context. All threads of such tree can be executed simultaneously independently from 
each other i.e. a thread can’t access to other threads’ internal states. A step (an event 
occurrence) of a RecWF-net is thus a step of one of its threads. There are three types 
of events in a RECATNet: the firing of an abstract transition, the firing of an 
elementary transition or a cut step execution. 

The evaluation of the firing conditions of a transition t (elementary or abstract) is 
always done under a firing mode (noted sub). A firing mode is derived from a 
consistent substitution of the contextual variables of this transition. A transition t is 
then enabled in a mode sub (we say that t is sub-enabled) if under this particular 
variable’s substitution, (1) the transition condition TC(t) is evaluated to true and (2) 
the evaluation of the input condition IC(p, t) of each input arc (p, t) of this transition t 
is satisfied in the current marking of its input place p and finally (3), the addition of 
the created tokens to each output place of t must not result in exceeding the capacity 
of this place when this capacity is finite. So, if a transition t is sub-enabled in a thread, 
it may fire in this same mode sub. In Fig. 3, we give a firing sequence of the 
RECATNet of Fig.2, where a black node in the depicted tree of threads denotes the 
thread in which the following step is fired. For the sake of clarity, each thread is 
associated to its internal marking, noted in a grey frame. 

 
Fig. 3. Firing Sequence of the RECATNet of Fig. 2 



6 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

Firing of an abstract transition: When a thread of an extended marking fires an 
abstract transition tabs under a firing mode sub, it destroys from each input place p of 
this transition, the multiset of algebraic terms resulting from the evaluation of the 
expression DT(p, tabs) in this mode sub. Simultaneously, it creates a new thread 
(called its child thread and representing a new sub-process) which starts its execution 
with, as an initial marking, the multiset of terms resulting from the evaluation under 
the mode sub of the starting marking associated to tabs. We note that the fatherhood 
relationship between these two threads is memorised in the extended marking (we 
keep track of the name of the abstract transition and the mode of its firing). For 
instance, in Fig.3, the firing of the abstract transition StartExam in the root node of 
the tree, under the mode (Ex = Jhons), generates a new thread with, as a starting 
marking, a term Jhons in the place ExamStarted. 

Execution of a cut step: The family ϒ of final markings associated to a RECATNet is 
indexed by a finite set of items called termination indices (i.e. ϒ = (ϒ 

i)i∈I). For instance, in Fig. 2, the termination indices belong to the set I = {0, 1}. 
When a thread reaches a final marking belonging to a termination set ϒi (with i∈I), 
the two following actions occur simultaneously: (1) this thread terminates and aborts 
its whole descent of threads. (2) Then, it produces (in its father thread) the multiset of 
algebraic terms in the output places of the abstract transition tabs which gave birth to it. 
Such a firing is called a cut step and is noted τi. In this case, the produced terms in 
each output place p′of this abstract transition tabs result from the evaluation of the 
expression ICT(p′, tabs, i) (where <i> is the termination index of the final marking 
reached) under the firing mode in which the transition tabs had fired, giving birth to the 
terminating thread. Therefore, when an abstract transition is fired, the production of 
tokens in the output places of this transition is delayed until its child thread (i.e. the 
thread generated by the firing of this transition) terminates and a cut step is executed 
at this level. Particularly, if a cut step occurs in the root of the tree of threads, it leads 
to the empty tree, noted by ⊥, from which neither transition nor cut step can occur. In 
Fig. 3, the execution of a cut step τ1 aborts the generated thread (i.e. process) where a 
final marking is reached (belonging to the termination set ϒ1), reducing the tree of 
threads to its root process and produces a term (Jhons, Ok) in the place StableResult. 

The produced terms in this place is done using the variable substitution (Ex = 
Jhons), which is the firing mode of the abstract transition StartExam memorised in 
the tree of threads. 

Firing of an elementary transition: The behaviour of an elementary transition telt is 
twofold and depends on a partial function K which associates to it a set of abstract 
transitions to interrupt and for each of these transitions a termination index. In the 
graphical representation of a RECATNet, the name of an elementary transition telt is 
followed by the set K(telt) when this set in non empty (in Fig. 1, K(telt) = {(tabsj, i), (tabsm, 
k), …}). Basically, when a thread of an extended marking fires an elementary 
transition telt under a firing mode sub, the two following actions occur at the same time: 

(1) Update of the internal marking of the thread where telt is fired: for each input 
place p of telt, it removes the multiset of algebraic terms resulting from the evaluation 
of the expression DT(p, telt) in this mode sub and it creates the multiset of algebraic 
terms CT(p′, telt) (evaluated under that same mode sub) in  each output place p′ of telt.  



 Modelling and Analysis of Flexible Healthcare Processes 7 

 

(2) Interruption of the threads generated by the abstract transitions associated to telt: 
if the function K is defined for this elementary transition telt, the firing of this 
transition performs then the appropriate cut step to each sub-tree generated by the 
abstract transitions specified by K. So, all threads which are generated by one of the 
abstract transitions specified by K are aborted and, depending on the termination 
index associated to it, the output tokens of these abstract transitions are produced in 
the thread where the firing takes place. In the RECATNet of Fig 2, the set K 
associated to each elementary transition is empty. Consequently, these two 
elementary transitions update only the internal marking of the thread where they are 
fired. For instance, in the firing sequence of Fig. 3, the firing of the elementary 
transition (under the mode Ex = Jhon) removes the term Jhon for its input place 
ExamStarted and produce a term Jhon in its output place ExamPrep.  

3.2 Recursive Workflow Nets 

The Recursive Workflow Nets (noted RecWF-Net) are a sub-class of the RECATNets 
model, dedicated to the modelling of flexible and distributed workflows. Consequently, 
RecWF-Nets have structural restrictions which reflect the particular concepts of typical 
workflows where there is a well-defined starting point and a well-defined ending point. 
In a RecWF-Net, each connected component (i.e, subnet) is called a workflow 
component which specifies the behaviour of a workflow sub-process. A workflow 
component has one source place (i.e. a place without input transitions) and one sink 
place (i.e. a place without output transitions). Moreover, every place or transition of this 
subnet is on a directed path from its source to its sink place. In practice, a RecWF-net 
describes the composition of workflow sub-processes initialised by a principal (i.e. root) 
process. Let us note that in a RecWF-net, we associate a finite capacity to each place 
connected to an inhibitor arc (i.e. if the input condition on this arc is of the form IC(p,t) 
= α−). Consequently, interesting properties such as accessibility, boundedness and 
finiteness remain decidable for RecWF-nets [14]. For instance, the RECATNet depicted 
in Fig.2 is an example of a RecWF-net. It describes a simplified process for managing a 
set of a patient’s exams.  In this net, we distinguish two workflow components: (1) the 
component delimited by the source place ProcessStarted and the sink place EndProcess 
(representing the root process) and (2) the component having the source place 
ExamStarted and the sink place EndExam.   

In our compositional modelling approach of flexible healthcare processes we 
propose to introduce two types of tasks in RecWF-nets: Elementary tasks (represented 
by elementary transitions) and abstract tasks (represented by abstract transitions). 
The execution of an abstract task dynamically generates a new (lower-level) plan of 
actions in a workflow process. This plan terminates when it reaches a predicated 
termination state (a final marking) or when it is interrupted by an exception 
occurrence in a higher level plan of actions (i.e. by the firing of an elementary 
transition). In these two cases, the whole descent of action plans, generated by it, are 
aborted (i.e. a cut step is executed) and the results are returned to the caller abstract 
task. In fact, a dynamic tree of action plans (with an independent context) describes 
the structure of a workflow process where all plans can be executed simultaneously. 
The root plan of such a tree represents the principal process by which the whole 
specified workflow starts and terminates. 
 



8 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

This ability offers the following advantages: 
 

1) Flexibility in workflow planning and execution at design time is introduced 
naturally. Indeed, RecWF-nets capture the flexibility by design (choice, parallelism, 
recursion, cancellation and multiple instantiation of processes) and the flexibility by 
underspecification (late selection of process component). 

2) Distributed execution of the interacting sub-processes related to healthcare 
process life-cycle (administrative process, lab testing process, radiology process, care 
process…etc.) is faithfully reflected. 

3) Data and knowledge management of healthcare processes can be easily 
integrated in RecWF-nets due to state algebraic description.  

4 Modelling Chemotherapy Treatment Process Using  
RecWF-Nets 

Based on the characteristics of clinical procedures and medical tasks mentioned in 
[15], we illustrate the suitability of RecWF-nets in the modelling of a chemotherapy 
treatment following a breast cancer surgery trough the RecWF-net depicted in Fig.4 
and Fig.5.  

 
Fig. 4. An example of chemotherapy treatment workflow (part 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<ProcessStarted, (PtFile, ListTests)> 

∧<StableState,  exceptionFile)> 

TreatementTerminated 

Admission

       (PtFile, ListTests) 

(PtFile, ListTests)+ 

PatientFirstVisit 

        (PtFile, ListTests) 

ReadyToCancel PatientEntry (1) 

(PtFile, ListTests)+ 

<1>  (PtFile, ListTests ,Stable) ∨ <2>  (PtFile, ListTests,Warning)   

EndTreatement (1) 

 (PtFile, ListTests, Cancelled) 

(PtFile, ListTests, PtState)+ 

 (PtFile, ListTests ,PtState) 

 

   ∅0 

∅0 

  (PtFile, ListTests)+ 

{(StartProcess, 0)} 

EndAdmission 

 (PtFile, ListTests, PtState) 

 (PtFile, ListTests, PtState)+ 

ϒ1 = { M | M(ProcessCompleted) = (PtFile, ListeTests)  

∧  M(warningState) =  ∅    } 

ϒ2 = {M | M(ProcessCompleted) = (PtFile, ListeTests, PtSate) ∧   

M(warningState)   ≠ ∅    } 

ϒ3 = {M |  NbrToken (M(EndLabtest)) = Length (ListTest) } 

 ϒ4 = {M |  M(EndCheckMD) =  (PtFile, ListeTests, DrugsOK)} 

ϒ5 = {M | M(EndCheckMD) =  (PtFile, ListeTests, DrugsNotOK)} 

ϒ6 = {M |  M(Medecine administrated) ≠ ∅  } 

{(Exam, 0), (CheckMedecine, 0) 

,(GiveMedecine, 0) } 

WarningState 

Exception 

(exceptionFile)+ 

Reset 

StableSate

exceptionFile  exceptionFile  

(exceptionFile) 

exceptionFile  

         Warning 

ExcepState 

ϒ0 = ∅      



 Modelling and Analysis of Flexible Healthcare Processes 9 

 

 
Fig. 5. An example of chemotherapy treatment workflow (part 2) 

All the chemotherapy treatment process is based on a flowchart in which basic 
information about the patient is registered in his file (e.g. weight, height, lab results). 
All the places of this RecWF-Net are associated to a sort PatientData. Let us note that 
the initial state of this net is a tree containing a single thread with a token (PtFile, 

 

 

          

          

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PtFile, ListTests) + PtFile, ListTests) + 

           MDAccepted 

<0> (PtFile, ListTests, PtState)

 (PtFile, ListTests)+ 

               (PtFile, ListTests) 
<0> (PtFile, ListTests, PtState)

EndExam 

PtFile, ListTests)+ 

Prescription 

      ProcessStarted 

<3> (PtFile, ListTests)

MedicinePrescripted 

 CheckMedecine 

   <4> (PtFile, ListTests) 

<DoLabTtest, ListTests)> 

 (PtFile, ListTests)+

   GiveMedecine 

   (PtFile, ListTests)+

ExcpetionProcedure 

Reschudeling StopTreatement 

MedicineChecked 

ProcessCompleted 

PtFile, ListTests)+ 

PtFile, ListTests) 

PtFile, ListTests)+ 

<6> (PtFile, ListTests, MD)

< MDpresc, (PtFile, ListTests) 

  < MDTransfered, (PtFile, ListTests, MD)> 
<0>   

(PtFile, ListTests) 

 (PtFile, ListTests,MD)+ 

<5> (PtFile, ListTests) 

           ExceptionOccured 

PrescOk

(PtFile, ListTests,  

DrugsOk) 

MedicineChecked 

CheckMD-Presc 

PtFile, ListTests)+ 

PrescNotOk 

         MDPresc 

PtFile, ListTests) 

Make Preparation 

PtFile, ListTests,  

Drugs NotOK) 

     EndCheckMD 

Medecine administrated 

PatientPrepared 

Preparation 

PtFile, medicine)+ 

GiveMD and  
AdjuvantMD 

MDTransfered 

PtFile, medicine) 

PtFile, medicine)+ 

PtFile, medicine) 

  ExceptionProcessed 

Tail(ListTests) 

DoLabTest 

ListTests+ 

EndLabTes

ListTests 

DoLabTests 

ListTests # ∅ 



10 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

ListTests) in the place PatientFirstVisit (i.e. the starting place of the principal 
admission process). This token represents the file of the patient and the list of tests 
required. A firing sequence of this example is presented in Fig.6 where we note by (t1 

Seq. t2) the sequential firing of transitions t1 and t2. 

 
Fig. 6. Firing sequence of the healthcare RecWF-net of Fig. 4 and Fig. 5 

This healthcare workflow process starts by the firing of the elementary task 
“Admission” (i.e. a new patient is entered to the chemotherapy department). Then the 
abstract task “StartProcess” dynamically creates a new thread in the tree of threads of 
the RecWF-net by calling in parallel two sub-processes: one which gives the steps of 
the treatment (i.e. the subnet with the initial place ProcessStarted) and another one 
which describes an exception detection procedure (i.e. the subnet with the initial place 
StableState).This latter controls tasks execution in the treatment sub-process. The first 
abstract task “Exam” generates a new thread in the tree of threads where some 
laboratory tests are done and printed in a file. This thread completes when all the lab 
tests are done (See the termination state ϒ3). After this step, the elementary task 
“Prescription” of the adequate medicine is executed. Then the abstract task 
“CheckMedicine” is executed, dynamically creating a new thread. 

Through this new thread, a pharmacy controller checks that drugs dose calculated 
by the doctor is matched or not with the patient data file (laboratory tests results, 
measures and adverse effects). The completion of this thread is indicated by a token in 
the place EndCheckMD (See termination states ϒ4 and ϒ5). If the medicine 
prescription is not trusted (ϒ5 is reached), a token is created in the place EndExam 



 Modelling and Analysis of Flexible Healthcare Processes 11 

 

leading to the re-firing of the task “Prescription” allowing the assigned doctor to 
recalculate drug dosages and correct the medicine prescription in the flowchart. If the 
medicine prescription is trusted (ϒ4 is reached), the abstract task “GiveMedicne” is 
fired. In this case, another thread is created in the tree of threads, with the starting 
marking <MDTransfered, (ptFile, ListTests, medicine)>. This new created thread 
completes when the place MedecineAdminstrated is marked (See the final marking 
ϒ6) after what the treatment sub-process completes (the place ProcessCompleted is 
marked). During the processing of the treatment sub-process, if the elementary 
transition “Exception” is fired (i.e. a medical alert is raised and an exception file is 
produced), an interruption is raised and all the sub-processes produced by the abstract 
tasks “Exam”, “CheckMedicine” and “GiveMedcine” are stopped and aborted. Note 
that the elementary transition “Exception” interrupts all the threads generated by 
either the abstract transition “Exam”, “CheckMedicine” or “GiveMedcine” with the 
termination index <0> (i.e. the list of interrupted abstract transitions associated to this 
elementary transition is not empty). In this case, a term is produced in the place 
ExcepState and an exception procedure is lunched. After that, depending on the 
doctor’s decision, the treatment sub-process is stopped or rescheduled. Let us note 
that if the treatment is rescheduled, the exception detection procedure can either be 
reset to a stable state or ends in a warning state. Depending on the exception file 
produced, the treatment subprocess terminates in a stable state or in a warning state 
which has to be watched by future medical procedures (See the termination states ϒ1 

and ϒ2). Finally, at the level of the principal admission process, the doctor supervising 
the patient treatment has the possibility to stop the whole treatment sub-process along 
with the exception detection procedure (i.e. the thread is aborted by the firing of the 
elementary transition “CancelTreatment”) as long as the corresponding treatment is 
not completed. This can happen if the patient decides to leave before the start of the 
treatment or for another very exceptional reason (e.g. the patient dies). The 
elementary transition “CancelTreatment” interrupts the abstract transition 
“StartProcess” with the termination index <0>. When this transition is fired a term 
(ptFile,ListTests, Cancelled) is produced in the place TreatementTerminated but no 
token is produced in the output place of StartProcess (i.e. ICT(StartProcess, 
EndTreatement, 0) =∅). In Fig.6, each firing of an abstract transition leads to the 
creation of a new node in the tree of threads. Also, when a final marking ϒ3 is reached 
in a thread, a cut step τ3 is executed. The firing of the elementary transition 
“Exception” aborts the thread generated by the abstract transition “CheckMedecine”. 
Then, the exception detection procedure is reset to its stable state and the treatment 
sub-process is rescheduled. Moreover, the firing of the elementary transition 
“CancelTreatement” aborts the whole treatment sub-process and the exception 
detection procedure, reducing the tree of threads to its root process with a term 
FileJhons in the place TreatmentTerminated. 

Such a construction adequately describes the flexible and distributed structure of 
healthcare workflows where sub-processes may be created or cancelled dynamically 
(when an exception is raised), leading to rescheduling of some sub-processes. In 
comparison, modelling cancellation of workflow cases with Coloured Petri Nets 
would result in net containing spaghetti-like arcs to remove tokens from all 
combinations of all places [14]. To improve such a modelling, cancellation regions in 
workflows are often implemented by means of Reset Nets [9].  



12 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

 

Fig. 7. Modelling a cancellation region with Reset Nets 

A Reset Net is a Petri Net with special arcs (called reset arcs, represented by a 
double headed arrow), that allow a transition to remove all tokens (independently of 
their number) from its input places when this transition fires. However, the number of 
reset arcs used in such a modelling depends on the number of places in the 
cancellation regions of a workflow process (See Fig. 7). For instance, in Fig. 7, 
transition tr is enabled if and only if there is a token in place pinit. After the firing of tr 
all tokens are removed from the places p1 to pn and a token is produced in pend. 
Modelling the cancellation of sub-processes via cut step executions in RecWF-Nets is 
much more concise because it is independent of the number of places in the aborted 
processes. 

5 Analysis of Healthcare Recursive Workflow Nets 

5.1 Correctness Properties of Healthcare RecWF-Nets 

With regard to the sensitive nature of a clinical workflow, where human lives are at 
stake, it is primordial to determine if such a process, based on its definition, behave 
correctly before its deployment. Testing techniques are not sufficient to prove with 
confidence the absence of errors in careflow definitions. Testing can find errors but it 
cannot prove the absence of errors. Therefore, the verification of critical properties of 
healthcare processes must be done by means of rigorous analysis techniques [3] such 
as model checking. Model checking is an automatic method which determines if a 
specified property (formulated in a suitable temporal logic like the Linear Temporal 
Logic) is satisfied by a description model of a system and its initial state. The model 
checker will either terminate with the answer true, indicating that the model satisfies 
the property, or give a counterexample that shows an execution path in which the 
formula is not satisfied. We distinguish two types of properties in healthcare 
processes: generic properties and medical (domain specific) properties [3]. 
 
Generic properties specify the control-flow correctness requirements which must be 
satisfied by every workflow process, regardless of its application domain. For 
instance, one wants to check (1) if a clinical process can eventually terminate without 
leaving scheduled or uncompleted tasks, (2) if there is a deadlock or (3) if there is a 
task which can never be executed. These questions can be resumed into the soundness 



 Modelling and Analysis of Flexible Healthcare Processes 13 

 

property of a workflow which requires that this latter is always able to terminate 
properly by reaching its final predicted state and every task of such a process can 
potentially happen. The soundness of a RECATNet is based on two criteria 
interpreted on the level of its root process: 
 

1. Proper completion (termination): Starting from an initial extended marking 
reduced to its root node where only the source place of the principal workflow 
component is marked, it is always possible to reach a final extended marking reduced 
to its root node where only the sink place of the principal workflow component is 
marked.  

2. No dead task: In each initially marked workflow component, every transition 
can fire, at least, once.  

 
Medical properties specify medical constraints and recommendations on healthcare 
processes, such as relevant clinical parameters or general safety requirements 
concerning actions of medical staff members [3]. Examples of typical medical 
properties are: “A patient case must be evaluated by a doctor before beginning 
treatment”, “Contraindications are never administrated” or “A nurse administrates 
only the medicines given by a doctor”. 

5.2 RecWF-Net Analysis in the MAUDE System 

Since the RecWF-nets semantics is expressed in terms of the generalised rewriting 
logic [5], [19] each RecWF-net RN is defined as a rewrite theory ℜRN= (ΣRN, ERN, LRN, 
RRN) where the underlying equational theory (ΣRN, ERN) describes the tree structure of 
its extended marking. Moreover, transitions firing or cut step executions of this net 
are formally expressed by labelled rewrite rules of the set R (with L the set of their 
labels). A RecWF-net rewrite rule is of the general form “Th => Th′ if C” which 
means that a fragment of the RecWF-net state fitting pattern Th can change to a new 
local state fitting pattern Th′, concurrently with any other state change, if the 
condition C holds. Consequently, a firing sequence in a RecWF-net is described by a 
sequence of concurrent rewritings in its associated rewrite theory.  

Maude is a high-level language [7] and an efficient system based on rewriting 
logic. The Maude linear temporal logic (LTL) model checker supports on-the-fly 
explicit-state model checking of concurrent systems expressed as rewrite theories 
with performance comparable to that of current tools of that kind, such as SPIN [24]. 
We apply, below, the Maude LTL model checker on recWF-Nets with respect to 
generic and medical properties. 

 
Generic Properties 
1. Proper termination (Prop1): This criterion is expressed in LTL by the following 
formula Prop1: F  FinalState  where the proposition FinalState is valid in extended 
marking Tr if this latter is reduced to its root process with only one token in its sink 
place. The temporal operator F (Eventually) is noted by   , in MAUDE notation.  
2. No dead task (Prop2): We define the parameterised proposition Excu(t) which is 
valid in an extended marking Tr, if this transition t is enabled in its root node. Thus, to 
check that there is no dead transitions (transitions which can’t fire), we express the 



14 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

negation of this criterion as the following LTL formula Prop2: ∨ t∈Tc  (G ￢  
Execu(t)). In this case, such a formula is valid if there is at least one transition is non 
fireable in the root component of a RecWF-net. The temporal operators G (Globally 
or always) and ￢(not) are noted, respectively, by [ ] and ~ in MAUDE notation. In 
the following (see Fig 8), we apply the LTL Model-Checker of MAUDE to check 
these two properties on the RecWF-net of Fig.4&5, taking, as an initial state, an 
extended marking with only a root process and one token (FileJhons) in the source 
place PatientFirstVisit. There, we can see that the first property is valid which means 
the process can always terminate properly. The second property is not valid (a 
counter-example is returned) which means that there is no transition which is not 
fireable in the root process of the healthcare RecWFnet. We deduce from these two 
results, that the healthcare RecWF-net of Fig.4&5 is sound.  

 

 

Fig. 8. Verification of the soundness of the RecWF-net (Fig 4&5)  using Maude LTL model 
checker 

Medical properties. For instance, for the RecWF-Net of Fig.4&5, we use the LTL 
Maude model checker to check the two following domain specific properties (Fig. 9). 
 

1. Prop3: When an exception is raised, the examination, the treatment and the lab 
testing processes are stopped which means that all running subprocesses launched by 
the tasks Exam, CheckMedecine and GiveMedecine are immediately aborted. Such a 
property is expressed by the following LTL formula where the proposition 
RunningSubProcesses is valid in an extended marking if the thread generated by the 
abstract task StarProcess has at least one subprocess.  

G(Enabled(Exception) Next(Fired(Exception)) Next(￢RuningSubProcesses)). 
 

2. Prop4: A medicine is administrated to a patient only if it is prescribed by her/his 
doctor. This property is expressed by the following LTL formula                                        
G(￢(Enabled(Prescription)  Next(Excu(Prescription))) ￢(Excu(GiveMD)) ) 

The temporal operators Next and Leads-to are noted, respectively, by O and |-> in 
MAUDE notation. In Fig. 9, the returned result shows that the properties Prop3 and 
Prop4 are true. Let us not that the property Prop3 shows the particular feature of 

∧ →

∧ 



 Modelling and Analysis of Flexible Healthcare Processes 15 

 

recWF-Nets where elementary transitions have the ability to interrupt all the threads 
generated by several abstract transitions, independently of the number of these 
threads, in one step.                              

 
Fig. 9. Verification of two medical properties (Prop3 and Prop4) of the RecWF-net (Fig 4&5) 
using Maude LTL model checker 

6 Related Works 

Adaptive workflow nets [12] are an instance of the “nets in nets” paradigm, where 
tokens in a (higher-level) net can be nets themselves. Adaptive workflow nets [12], 
like RecWF-nets, can change their execution plans by allowing the modelling of the 
dynamic creation and suppression of processes. However, the advantage of the 
RecWF-nets is that the distributed execution of workflows and their verification by 
model checking are intrinsic via the given rewriting semantics. Also, RecWF-nets are 
more descriptive than Adaptive workflow nets. For instance, in Fig.5, when the 
elementary transition ExceptionProcedure is fired, all the running threads, generated 
by the abstract transitions Exam, CheckMedicine and GiveMedicine are cancelled, 
independently of their number. Then, the tokens produced in the output places of 
these abstract transitions depend on the number of the aborted threads. Let us note 
that the cancellation of these threads and the production of the tokens in the output 
places of these abstract transitions happen in one step. Modelling such a construction 
is not that direct and simple using Adaptive Nets. In [17], YAWL4Healthcare are 
introduced to model flexible healthcare processes. 

YAWL allows a direct modelling of most complex control-flow structures 
involving cancellation, multiple instantiation and advanced synchronization, via its 
predefined constructors. However, the soundness property is not decidable for YAWL 
specifications where cancellation constructors are used, due to the semantics of the 
underlying Reset Nets [9]. Consequently, the decision procedures which are 
developed for the analysis of these YAWL specifications are only partial. In contrast, 
RecWF-nets allow the modelling of cancellation of sub-processes via cut steps 
execution while the soundness property remains decidable if their state space is finite. 



16 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

Finally, BPMN (Business Process Modelling Notation) is widely used to describe the 
behaviour of clinical workflows [22]. BPMN allows to model cancellation region and 
compensation actions in such processes. vBPMN framework is defined in [8] as a 
combination of a BPMN adaptation patterns catalogue and a set of business rules 
which permit to dynamically activate, on the fly, process fragments creating new 
workflow variants when exceptions are encountered. In comparison, our model can 
naturally integrate such a mechanism since its semantics is described in rewriting 
logic. Indeed, organisational rules and medical rules (for instance, bad interactions 
between two types of drugs) can be formally expressed as rewrite rules. 
Consequently, the rewriting logic framework offers a formal unifying framework for 
the RecWF-Nets specifications and the clinical rules (describing general medical 
constraints and recommendations) of the healthcare environment where they are 
deployed. 

7 Conclusion 

In this paper, we show the ability of Recursive Workflow Nets (recWF-nets) for the 
modelling and the formal verification of flexible healthcare workflow processes [1], 
[4]. In future work, we intend to use the temporal extension of recWF-nets, namely, 
the Temporal Recursive Workflow nets (abbreviated T-RecWF-net) [2] for the 
modelling and the analysis of real-life healthcare workflows where temporal 
constraints are preponderant. For instance, it is primordial to specify medical task 
duration, minimal and maximal time between medicine administration, duration of 
blood samples or time-out on medical sub-processes. Consequently, time-constrained 
medical properties in healthcare workflows (e.g. A patient must have been evaluated 
by a doctor within three weeks before beginning chemotherapy) can be evaluated 
using the timed LTL model-Checker of MAUDE [7]. Actually, we are working on the 
implementation of a graphical tool based on rewriting logic (taking MAUDE system 
as an underlying engine) for creating and analysing recWF-nets. This tool allows 
edition (via a graphical editor), simulation and verification of recWF-nets using the 
reachability analysis and the LTL Model checking tools of Maude [24]. Such a tool 
will propose control flow and flexibility patterns to facilitate workflow modelling. 

 
Limitations. Although, recWFnets are suitable to model and to verify both clinical 
processes and medical diagnostic protocols, there remains much more to investigate: 

1). Healthcare processes entail substantial amounts of concurrency, data and 
exception handling which lead to very large state spaces. The next step in our work, is 
to elaborate a more effective analyze procedure for the recWF-nets, to manage the 
state space explosion problem induced by the reachability graph of huge systems. 

In this case, abstraction techniques or hierarchical verification procedures may be 
adopted. Thanks to the reflective capabilities of the rewriting logic, well supported by 
the MAUDE system [7] (i.e. the capability to represent rewrite specifications as 
objects and control their structure and their execution at the meta-level), one can 
define different rewrite strategies to control the rewriting process in recWF-nets. Such 
strategies allow, for instance, to partially explore the reachability graph of a recWF-
net, in an hierarchical manner, for a partial verification of its properties. One can also 



 Modelling and Analysis of Flexible Healthcare Processes 17 

 

specify and implement abstraction strategies to reduce the state space of recWF-nets 
while preserving their interesting properties. In this case these preserved properties 
are verified by exploring the produced abstraction graphs. 
2). reWF-Nets focus on the workflow flexibility requirements which are expressed 
during build-time (flexibility by design and by underspecification) [18]. To extend 
our approach (flexibility by change), we can use rewriting strategies to define different 
structural modification operations on the recWF-Nets specifications to add/change/ 
remove, on the fly, process fragments, places or transitions.  
3). We intend also to extend recWF-nets with shared resource concept allowing us to 
study the efficiency of healthcare workflows taking into account a limited number of 
available resources (medical staff member and materials).  

References 

1. Barkaoui, K., Hicheur, A.: Towards Analysis of Flexible and Collaborative Workflow 
Using Recursive ECATNets. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) 
BPM 2007 Workshops. LNCS, vol. 4928, pp. 232–244. Springer, Heidelberg (2008) 

2. Barkaoui, K., Boucheneb, H., Hicheur, A.: Modelling and Analysis of Time-Constrained 
Flexible Workflows with Time Recursive ECATNets. In: Bruni, R., Wolf, K. (eds.) WS-
FM 2008. LNCS, vol. 5387, pp. 19–36. Springer, Heidelberg (2009) 

3. Bäumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of medical 
guidelines by model checking – a case study. In: Valmari, A. (ed.) SPIN 2006. LNCS, 
vol. 3925, pp. 219–233. Springer, Heidelberg (2006) 

4. Ben Dhieb, A., Barkaoui, K.: On the Modeling of Healthcare Workflows Using Recursive 
ECATNets. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops, Part II. 
LNBIP, vol. 100, pp. 99–107. Springer, Heidelberg (2012) 

5. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. J. Theor. 
Comput. Sci. 360(1-3), 386–414 (2006) 

6. Cardoen, B., Demeulemeester, E., Beliën, J.: Operating room planning and scheduling: A 
literature review. European Journal of Operational Research 201(3), 921–932 (2010) 

7. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, J.: 
Maude Manual (Version 2.3). SRI International and University of Illinois at Urbana-
Champaign (2007), http://maude.cs.uiuc.edu/maude2-manual/  

8. Döhring, M., Zimmermann, B.: vBPMN: Event-Aware Workflow Variants by Weaving 
BPMN2 and Business Rules. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., 
Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp.  
332–341. Springer, Heidelberg (2011) 

9. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and 
undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, 
vol. 1443, pp. 103–115. Springer, Heidelberg (1998) 

10. Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows - The Killer Application for 
Process-oriented Information Systems? In: Proc. BIS 2000, pp. 36–59 (2000) 

11. Haddad, S., Poitrenaud, D.: Recursive Petri nets: Theory and Application to Discrete Event 
Systems. Acta Informatica 40(7-8), 463–508 (2007) 

12. van Hee, K.M., Schonenberg, H., Serebrenik, A., Sidorova, N., van der Werf, J.M.: 
Adaptive Workflows for Healthcare Information Systems. In: ter Hofstede, A., Benatallah, 
B., Paik, H.-Y. (eds.) BPM 2007 Workshops. LNCS, vol. 4928, pp. 359–370. Springer, 
Heidelberg (2008) 



18 A. Hicheur, A. Ben Dhieb, and K. Barkaoui 

 

13. Hildebrandt, T., Rao Mukkamala, R., Slaats, T.: Declarative Modelling and Safe 
Distribution of Healthcare Workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. 
LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012) 

14. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. 
Monographs in Theoretical Computer Science. Springer (1997) 

15. Lenz, R., Reichert, M.U.: IT Support for Healthcare Processes - Premises, Challenges, 
Perspectives. Data & Knowledge Engineering 61(1), 39–58 (2007) 

16. Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From paper based clinical practice 
guidelines to declarative workflow management. In: Ardagna, D., Mecella, M., Yang, J. 
(eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 336–347. Springer, Heidelberg (2009) 

17. Mans, R.S., et al.: Supporting healthcare processes with YAWL4Healthcare. In: Ludwig, 
H., Reijers, H.A. (eds.) Pro: Demo Track of the Nineth Conf. on BPM, pp. 1–6 (2012) 

18. Mulyar, N., Russell, N., Van der Aalst, W.M.P.: Process flexibility patterns. Working 
paper WP 251, Beta Research School (2008) 

19. Meseguer, J.: Rewriting Logic as a Semantic Framework for Concurrency. In: Sassone, V., 
Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 331–372. Springer, Heidelberg 
(1996) 

20. Reijers, H.A., Russell, N., van der Geer, S., Krekels, G.A.M.: Workflow for Healthcare: A 
Methodology for Realizing Flexible Medical Treatment Processes. In: Rinderle-Ma, S., 
Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 593–604. 
Springer, Heidelberg (2010) 

21. Reuter, C., Dadam, P., Rudolph, S., Deiters, W., Trillsch, S.: Guarded Process Spaces 
(GPS): A Navigation System towards Creation and Dynamic Change of Healthcare 
Processes from the End-User’s Perspective. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) 
BPM 2011 Workshops, Part II. LNBIP, vol. 100, pp. 237–248. Springer, Heidelberg 
(2012) 

22. Richard, M., Rogge-Solti, A.: BPMN for Healthcare Processes. In: Eichhorn, D., 
Koschmider, A., Zhang, H. (eds.) 3rd Central-European Workshop on Services and their 
Composition. CEUR Workshop Proceedings, vol. 705, pp. 65–72 (2011) 

23. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features–
enhancing flexibility in process-aware information systems. Data & Knowledge 
Engineering 66(3), 438–466 (2008) 

24. Ekera, S., Meseguer, J., Sridharanarayananb, A.: The Maude LTL Model Checker. In: 
Proc. of Rewriting Logic and Its Applications (WRLA 2002). Electronic Notes in 
Theoretical Computer Science, vol. 71, pp. 162–187 (2002) 

 



Verification of Timed Healthcare Workflows

Using Component Timed-Arc Petri Nets

Cristiano Bertolini1,2, Zhiming Liu2, and Jǐŕı Srba3

1 Federal University of Pernambuco, Brazil
2 UNU-IIST, Macau

3 Aalborg University, Denmark

Abstract. Workflows in modern healthcare systems are becoming in-
creasingly complex and their execution involves concurrency and sharing
of resources. The definition, analysis and management of collaborative
healthcare workflows requires abstract model notations with a precisely
defined semantics and a support for compositional reasoning. We use the
formalism of component-based timed-arc Petri Nets (CTAPN) for modu-
lar modelling of collaborative healthcare workflows and demonstrate how
the model checker TAPAAL supports the verification of their functional
and non-functional requirements. To this end, we use CTAPN to define
the semantics of the healthcare domain specific graphical notation Little-
JIL, extended with timing constrains, and apply it to the case study of
blood transfusion. The value added in general, and to Little-JIL in par-
ticular, is the formal support for modelling, analysis and verification with
the explicit treatment of the timing aspects.

1 Introduction

It is now a global quest to solve the pressing problems of the constantly grow-
ing demand with limited resources in providing people with safer, more ef-
fective, more patient centered, and more timely, efficient and equitable health
systems. The advances in computing and communication technologies provide
the potential for solutions by developing integrated health information systems
(IHIS) aimed at providing effective support to secure sharing of information and
resources across different healthcare settings and collaborative healthcare work-
flows among different care providers. However, the workflows to provide health-
care within an integrated system become more complex than the traditional
sequential processes with standalone systems. Their execution involves concur-
rency and sharing of resources through synchronization and interaction. They are
obviously safety critical, with several non-functional performance prerequisites
including timing requirements on top of the functional requirements. Workflow
definitions, analysis and management need abstract model notations that have a
precisely defined semantics and we need to develop techniques for compositional
design and verification in order to ensure their correctness.

Due to the business models and practice of health organizations and health-
care professionals, hospitals and doctors in particular, a rigorous validation and

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 19–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



20 C. Bertolini, Z. Liu, and J. Srba

automation of the healthcare processes and workflows are often lacking behind.
While formal modelling, validation and automation of general workflows have
been an active area of research (see e.g. [6, 22, 25–28]), there has been less work
done in the area for healthcare workflows [4,14,18,19,21]. In particular, there is so
far only limited effort in the development of healthcare domain specific modelling
notations with tool support for workflows. Such a generally accepted notation
would form an important step towards the application of formal techniques and
tools for modelling and validation in the area of healthcare. According to our
knowledge, one of the few established healthcare-domain modelling notations is
Little-JIL [29]. It is based on a graphical notation jointly developed by experts
in software engineering and healthcare professionals.

There is no formal abstract semantics defined for Little-JIL. Instead, a com-
piler is developed to translate a Little-JIL model into a finite-state machine
(FSM). Simulation of a workflow is done by executing the finite state machine.
and properties of a workflow are specified as a property of the state machine,
instead of its direct formulation in Little-JIL notation, and FSM-based model
checkers can be used for the verification of requirements. The main drawback of
Little-JIL semantics (via its associated FMS formalism) is the lack of hierarchy,
thus there is no support for modular (compositional) modelling and verification.
Furthermore, there is only a limited support for timing in Little-JIL (expressed
via durations) and the timing aspects are not reflected in the FSM semantics.

We propose a new semantical approach for Little-JIL workflows based on
Component Timed-Arc Petri Nets (CTAPNs), a component-based version of
Petri nets where timing information is attached to tokens. A CTAPN sup-
ports modular specification and verification in general and has an efficient model
checker called TAPAAL [9] implementing all the necessary modelling features.
In order to demonstrate the suitability of CTAPN for modelling healthcare
workflows, we relate it to Little-JIL by showing how to translate the Little-JIL
flow primitives into CTAPNs. Our main focus is on the representation of non-
functional requirements, mainly the timing; we deliberately stay on a semi-formal
level in our translations instead of the fully formal technical treatment that has
been already developed for untimed workflows (see e.g. [24] for an overview). We
believe that our presentation style will help to highlight the intuition behind the
translation, focusing mainly on the timing aspects.

The translation that we present reflects the graphical similarity of CTAPN
and Little-JIL notations. CTAPN is a natural choice of our modelling notation
also because Petri nets are among the most popular models of workflows in
general [11] and because of the available tool support. Compared to the tradi-
tional Petri net models of workflows, CTAPNs support a simple and intuitive
representation of continuous timing, that is yet expressive enough for describing
advanced timing constraints used in workflows. We use the workflow of blood
transfusion [8], the benchmarking case study of Little-JIL extended with timing,
to illustrate the applicability of our approach.

Related Work. Modelling of workflows using workflow nets is a classical topic (see
e.g. [24–27]), however, as timing is becoming a safety critical aspect of healthcare



Verification of Timed Healthcare Workflows Using CTAPNs 21

workflows (e.g. blood unit expiration time), extensions of the existing approaches
should be studied. For example in [10, 17] the authors study time constrained
workflow modelling in the formalism of Time Petri Nets (TPN) [20], a different
model than CTAPNs. However, some time requirements like global deadlines, a
feature that can be easily modelled in CTAPNs, have to be precomputed [10] due
to the missing modelling primitives in the TPN model. Other approaches [19,21]
translate timed YAWL workflows into untimed model checkers via the explicit-
time method (clocks are encoded as integers). As advocated by Lamport [16],
such methods can compete with real-time model checkers as long as the constants
used in the models are small. However, this is not always the case for healthcare
workflows—in our case study we used constants of sizes up to 90 and deadlines
above 200 minutes with the average size of nonzero constants being 28 (for
the model with single patient). The advantage of the CTAPN model and its
model checker TAPAAL is that they support real-time verification using the
data structure DBM that is less sensitive to the sizes of the constants [16].

Our earlier work [4] proposes to apply the rCOS model-driven method [7,15]
for modelling healthcare workflows, including the blood transfusion case study
modelled in CSP. No analysis techniques or tool support are studied in [4]. In the
present paper we take the framework one step forward and focus on the modelling
of the process view of the workflow with CTAPN and assess the applicability of
the verification techniques for CTAPN. Another related work [18,23] presents a
different formal approach for modelling and verification of workflows, including
case studies in healthcare. The method and tool is called NOVA. It supports
graphical modelling and implements a translation to DiVinE model checker,
including timing aspects in the form of delays and durations. The approach
considers only discrete time (indirectly simulated in DiVinE) and as remarked
in [18], the required verification time is often unacceptable. State-space reduction
techniques that include timing aspects are currently under investigation.

Finally, we relate our modelling approach to the domain specific language
Little-JIL that already contains a translation into finite-state machines, however,
still without the possibility to verify timing aspects. Citing [8]: “Properties B.9
and B.11 involve real time (e.g. an event needs to happen 15 minutes after
another event). The current version of FLAVERS and PROPEL does not support
real time properties and, thus, we were not able to specify B.9 and B.11 in
PROPEL nor check them with FLAVERS.” To the best of our knowledge, there
is no further published work on tool-supported verification of Little-JIL timing
aspects.

2 Blood Transfusion Case Study and Little-JIL

This section gives an informal introduction to the graphical modelling notation
of Little-JIL. We will use the blood transfusion workflow for illustration and we
start by introducing this case study.



22 C. Bertolini, Z. Liu, and J. Srba

2.1 Blood Transfusion Case Study

We consider the blood transfusion case study from the Little-JIL benchmark [1].
This medical workflow involves a nurse, a doctor, a blood bank and a patient; we
call them the resources [4]. The patient is required to provide his/her personal
details to the nurse. The nurse then carries out the transfusion procedure: (1)
the nurse checks the patient’s consent with the transfusion; (2) the nurse waits
for a doctor to complete the order; (3) the nurse checks the patient’s blood type
and availability of the blood type in the blood bank; at the same time she books
the transfusion room; (4) the blood product is picked up and the transfusion
starts; (5) the nurse monitors every 15 minutes the patient and checks for any
reaction; (5a) if a reaction occurs, the nurse can try to adjust the IV access; (5b)
if there is still a reaction, the nurse must immediately stop the transfusion and
informs the doctor; (6) when the transfusion is finished, the transfusion room is
released and sterilized and (7) the nurse checks out the patient.

These are only the main steps of the workflow; compensations, exception han-
dling and other details including the timing intervals for all tasks are described
in the Little-JIL notation that we shall now introduce.

2.2 Little-JIL

Little-JIL [29] is a visual language used to describe the order and communi-
cation between its steps with a particular focus on healthcare workflows. The
basic building constructs of Little-JIL are shown in Figure 1. The small circles
represent the interface of each activity together with its name and the subactiv-
ities are to be interpreted from left to right. In this short overview we represent
all Little-JIL primitives in their binary form only1 and we focus mainly on the
flow primitives. Full treatment of the syntax can be found in Little-JIL 1.5 lan-
guage report [29]. We equip the Little-JIL constructs with more refined timing
aspects so that the activities have an execution interval, expressing the uncer-
tainty in the exact duration of the activity, and constructs like iteration allow
for time-guarded executions.

A Little-JIL model consists of a finite set of rooted diagrams. Each diagram
is either an atomic activity (see Figure 1(a)) together with a time interval [L,U]
where L is the shortest and U the longest execution time of the activity. Activ-
ities can be also exported (calling subactivities specified in separate Little-JIL
diagrams) as indicated by the arrow on the external activity presented in Fig-
ure 1(b). An activity step can also raise exceptions. In this case a label E:
<exception name> is displayed below the step box like in Figure 1(c). If the
present activity cannot be successfully finished, an exception is raised, the con-
trol flow is interrupted, and the exception is passed to the corresponding excep-
tion handler. The remaining flow primitives are as follows. Figure 1(d) shows
the choice constructor. When the choice is activated only one of the sub-steps is
executed. Figure 1(e) shows the parallel constructor of two steps. In this case all

1 The syntax can be in a straightforward manner extended to multiple subactivites.



Verification of Timed Healthcare Workflows Using CTAPNs 23

A
[L,U ]

(a) Atomic activity

A ↗

(b) External activity

A
[L, U ]

E:name

(c) Exception raising

A
−◦−

A1 A2

(d) Choice activity

A
=

A1 A2

(e) Parallel activity

A
→

A1 A2

(f) Sequential activity

A
×→

A1 A2

(g) Try activity

A

frequency F
time-bound B

+

(h) Iteration activity

A
×

A1 A2

E:name

E:name

(i) Exception handling

Fig. 1. Little-JIL workflow primitives

sub-steps are executed concurrently and the parallel activity terminates as soon
as all its subactivities terminated. Figure 1(f) shows the sequential constructor
of two steps that are executed sequentially from left to right. Figure 1(g) shows
the try constructor that allows to try the sub-steps from left to right until one of
them succeeds and then the try activity terminates too. Figure 1(h) shows the
iteration constructor where the activity A is repeatedly executed every F time
units until its overall duration reaches the bound B. Then the iteration activity
terminates. Figure 1(i) shows the exception constructor. The exception handler
is also a sub-step but it is specified on the right of the step bar and its scope is
for all subactivities, including the exported ones. This is an important feature
of Little-JIL since workflows in general handle many exceptions.

3 Modelling of Little-JIL Workflow in TAPN

We shall now introduce component timed-arc Petri nets (CTAPN) and present
a compositional translation of Little-JIL constructs into the timed nets.

3.1 Introduction to Component Timed-Arc Petri Nets

Petri nets are a graphical formalism for conceptual modelling of distributed
systems. We use a particular real-time extension of Petri nets called Timed-Arc
Petri Nets (TAPN) [5,12] where an age (nonnegative real number) is associated
to every token in the net and input arcs carry time intervals that restrict the
ages of tokens suitable for transition firing.



24 C. Bertolini, Z. Liu, and J. Srba

P0

0

P1

inv: ≤ 5

P2

P3 P4

P5

T1

T2 T3 T4

T5

[0, 5]:1

:1

[5,∞):1

:1

[0, 10]:1

:1

[1, 3] [2, 4]

[3, 5]

Fig. 2. A TAPN Model of a Simple Workflow

We shall first informally introduce the model. A fully formal treatment of
this model can be found e.g. in [13]. Figure 2 shows a simple TAPN model
of a workflow process. The net consists of six places drawn as circles and five
transitions drawn as rectangles. The arrows depict different types of arcs that
connect either places to transitions (input arcs) or transitions to places (output
arcs). The dynamics of the net is described by markings, i.e. distributions of
tokens, each with its own time-stamp (age), in the places of the net. In our
example there is one token of age 0 in place P0. If tokens of suitable ages are
present in all places connected by input arcs to a given transition, the transition
gets enabled and it can fire with the effect of consuming one token of appropriate
age from every input place and producing tokens to all places connected with
the transition via output arcs. Alternatively, the net can perform a delay where
all tokens in the net grow older by a given time delay (real number).

In the extended TAPN model we can identify three types of arcs: normal arcs,
transport arcs and inhibitor arcs. Normal arcs are drawn using a simple arrow
tip. Moreover, normal arcs from places to transitions, like the one from place P2
to transition T 4, carry time intervals restricting the ages of tokens that can be
consumed by these arcs. Output arcs do not have any associated time interval
as the newly produced tokens are by default of age 0. A pair of transitions
with diamond-shaped arrow tips, like e.g. from P0 to T 1 and further to P1,
represent transport arcs where the symbol :1 indicates the pairing of input and
output transport arcs (in principle there may be several pairs of transport arcs
associated with the same transition). The intuition is that once a token is moved
along a pair of transport arcs, its age is preserved and not reset. As the whole
left-side path from P0 to P5 consists of only transport arcs, this allows us to
measure the total running time of the net since its initialization. Finally, the arc
with a circle tip between P3 and T 3 represents an inhibitor arc. A presence of



Verification of Timed Healthcare Workflows Using CTAPNs 25

at least one token in P3 disables the firing of the transition T 3 but if the place
P3 is empty then T 3 is enabled (provided that P2 has at least one token of age
between 1 and 3) and then the inhibitor arc has no effect on its firing. Notice
also that the place P1 contains the age invariant ≤ 5, meaning that only tokens
of age at most 5 are allowed in this place. If there is at least one token of age 5
in P1 then no further delay transitions are possible and the net is forced to fire
some of its currently enabled transitions.

The workflow net can be executed for example as follows. The first task repre-
sented by the transition T 1 can be performed within the first five time units. If
its deadline is missed (which is a valid behaviour of the net) then only time delay
transitions are possible and the token in place P0 is then called dead. Assume that
the first task is executed at say 4.5 time units. Then the token of age 4.5 is moved
from P0 to P1 and a new token of age 0 is produced into P2. Clearly, none of the
transitions is enabled but if we wait 0.5 time units (the maximum allowed time
delay due to the age invariant in P1) then the transition T 2 can fire (simulating
the execution of the second task) and move the token of age 5 from P1 to P3. In
this particular scenario, the age of the token in P2 is now 0.5 and hence no further
transitions are currently enabled. However, after say 1.5 time units, T 4 can fire,
leaving us with one token of age 0 in P4 and one token of age 6.5 in P3. Note that
the workflow has in principle a choice between executing the third or fourth task
(represented by transitions T 3 and T 4), however, in this concrete execution T 3 is
disabled due to the presence of a token in P3. After the delay of another 3 time
units, the last task represented by T 5 can be finally executed, producing a token
of age 9.5 into the final place P5, and the workflow successfully terminates.

During the modelling of larger systems it is often the case that the net becomes
too large to provide an effective overview of the structure of the model. In order
to overcome this problem, we consider a simple component-based extension of
the model. Here we divide the design into a number of smaller components
(essentially workflow patterns) with a clearly defined interface in terms of shared
places and transitions. An example of a Petri net consisting of three components
is given in Figure 3. Here the transition T is shared between the components
C1 and C2 and the place P is shared between C2 and C3. Before the actual
analysis of the component-based model, we create a single net by merging the
shared places and transitions. This is demonstrated in the lower part of Figure 3.

3.2 Translation of Little-JIL Primitives to CTAPN

We shall now present a translation of Little-JIL workflow constructs extended
with explicit timing information into CTAPN. For each Little-JIL activity A
we construct a timed workflow net (see e.g. [10, 17, 24–27]), a special form of a
timed-arc Petri net, where

– there is exactly one input place called startA that has no input arcs, and
– a number of output places including endA and optionally also other places2

for modelling failed executions and exceptions such that all output places
have no outgoing arcs.

2 An extension to the standard workflow nets that only contain one output place.



26 C. Bertolini, Z. Liu, and J. Srba

0

T

[1, 3]

0

PT

[2, 5]

[2, 10]
P

0

[4, 9]

[1, 3]

C1 C2 C3

⇓ net composition

0

T
[1, 3]

0

P
[2, 5]

[2, 10]

0

[4, 9]
[1, 3]

Fig. 3. Components C1, C2 and C3 and the Composed Net

For the external activity call (Figure 1(b)) the input and output places are shared
and the activity is modelled in a separate component. In this way the whole net
is decomposed into several components that are manageable (usually fit on one
screen) and they are composed automatically before the verification of workflow
properties is initiated.

We say that a net is statically sound if all places and transitions are on a path
from the input place to some of the output places. A net is dynamically sound if
during any execution starting with a marking having a token in the input place,
we eventually reach a marking where one of the output places is marked. Note
that a statically sound net is not necessarily dynamically sound. We show how
to automatically verify dynamical soundness in Section 4. Statical soundness is
guaranteed by the compositional construction of the workflow nets.

We say that [L,U ], where L ≤ U , is the execution interval of a timed workflow
net if L is the shortest and U the longest time needed to move a single token
from the input place to some of the output places. Note that if a net is not
dynamically sound, the execution interval is not well defined.

We shall now provide the details of the translation for building statically
sound workflow nets for the Little-JIL constructs.

Atomic Activity. A timed workflow net corresponding to the atomic activ-
ity (Figure 1(a)) is depicted in Figure 4. The presence of the invariant ≤ U
guarantees that the activity is executed no later than U time units since its ini-
tialization and the interval on the arc ensures that this does not happen earlier
than at time L. Hence we get the following property.



Verification of Timed Healthcare Workflows Using CTAPNs 27

startA

inv: ≤ U

endAexecute A
[L,U ]

Fig. 4. Atomic activity

startA

inv: ≤ 0

endA

fork1

fork2

join1

join2

duration

startA1
endA1

inv: ≤ 0

startA2 endA2

inv: ≤ 0

[0, 0]

[0, 0]

[0, 0]

[0,∞)

[0, 0]

[0,∞)

Fig. 5. Alternative activities

Property 1. The execution interval of the net for atomic activity A is [L,U ].

Note that the input and output places are shared so that they can be composed
with other coordinating activities.

Alternative Activities. Figure 5 describes the choice between two alternatives
of the Little-JIL diagram in Figure 1(d). The place duration is used to measure
the current execution time (represented by the age of a token in this place) of the
choice activity. A monitor (see Subsection 3.3) connected to the place duration
can be used to detect a possible deadline violation.

Property 2. Let [L1, U1] and [L2, U2] be the execution intervals of the activ-
ities A1 and A2, respectively. The execution interval of the net for alternative
activities is [min{L1, L2},max{U1, U2}].
Proof. From the initial marking that contains one token in place startA we have
to, without any further delay due to the invariant ≤ 0, fire either the transition
fork1 or fork2. This initiates the subnets for the activity A1 or A2. When these
are finished, again due to the invariants ≤ 0 in places endA1 and endA2 we have
to without any delay fire the transition join1 or join2. The lower and upper
bounds of the execution interval are clearly the minimum and the maximum of
the corresponding bounds for the activities A1 and A2. ��

Parallel Activities. Parallel Little-JIL activities (Figure 1(e)) are modelled by
the net in Figure 6. Here the subnets for the activities A1 and A2 are initiated
concurrently by firing the transition fork. A duration place is added as before for
the monitoring of the total duration of the parallel activities. There is added a
mechanism that ensures that the place endA is marked as soon as both parallel
subtasks terminate.



28 C. Bertolini, Z. Liu, and J. Srba

startA

inv: ≤ 0

endA

fork
finish1

finish2 done1

done2

join1

join2

startA1
endA1

inv: ≤ 0

startA2 endA2

inv: ≤ 0

duration

[0, 0]

[0, 0]

[0, 0]
[0, 0] [0,∞)

[0, 0]

[0,∞)
[0,∞)

[0,∞)

Fig. 6. Parallel activities

Property 3. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for parallel activities
is [max{L1, L2},max{U1, U2}].
Proof. Notice that due to the age invariant ≤ 0 at place startA the two parallel
activities are initiated without any delay. The construction connected to the end
states for the two parallel activities ensures that a join happens as soon as both
parallel activities mark their output places. Assume w.l.o.g. that the first subnet
terminates first and marks the place endA1 . Without further delay (imposed
by the invariant ≤ 0 at place endA1) the transition finish1 must be fired; note
that the transition join1 is not enabled. No other transitions are enabled until
the subnet for A2 terminates by placing a token into the place endA2 . In this
case the transition finish2 is not enabled due the the inhibitor arc and the fact
that done1 already contains a token. Hence, without any further delay, the only
option is to fire the transition join2 and mark the output place of the activity
net for A (and at the same time consume the token from the place duration). ��

Sequential Activities. Figure 7 shows how a diagram A consisting of two
sequential Little-JIL activities A1 and A2 (described in Figure 1(f)) can be
modelled as a timed workflow net. The point is that the first activity is activated
immediately and the age of the token in the place duration1 can be used to
measure the duration of the first activity. When the first activity is finished, the
second activity is initiated without any delay. At the same time the token from
duration1 is moved using the transport arcs to the place duration1+2 and its
age in this place corresponds to the total duration of the first activity plus the
current duration of the second activity. As mentioned before, a monitor can be
attached to this place in order to check for the violation of deadlines.

Property 4. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for sequential activities
is [L1 + L2, U1 + U2].

Proof. Due to the presence of the invariant ≤ 0 in the place startA, the first
activity is initiated without any delay. When it is finished, thanks to the invariant



Verification of Timed Healthcare Workflows Using CTAPNs 29

startA

inv: ≤ 0

start A1 duration1 start A2 duration1+2 finish A2
endA

startA1 endA1

inv: ≤ 0

startA2 endA2

inv: ≤ 0

[0, 0] [0,∞):1 :1

[0, 0]

[0,∞)

[0, 0]

Fig. 7. Sequential activities

startA

inv: ≤ 0

start A1 duration finish A1
endA

finish A2

startA1
endA1

inv: ≤ 0

startA2
endA2

inv: ≤ 0

failA1

inv: ≤ 0

try A2

[0, 0] [0,∞):1 :1

[0, 0] [0, 0]

[0, 0]

[0,∞)

Fig. 8. Try A1 else execute A2

≤ 0 in place endA1 , the second activity is initiated without any delay and because
of the last invariant ≤ 0 at the place endA2 , the whole workflow finishes in the
time corresponding to the sum of the durations of the two activities. ��

Try Activity. In the translation of the try construct (Figure 1(g)) presented
in Figure 8, we first start with the execution of the first activity and if it ends
successfully the whole try activity ends. If the first activity fails, we execute
without any delay the second activity as an alternative. We assume that the net
for the first activity A1 contains a special output place failA1

that gets marked
whenever its execution fails.

Property 5. Let [L1, U1] and [L2, U2] be the execution intervals of the activities
A1 and A2, respectively. The execution interval of the net for try activity is
[L1, U1 + U2].

Proof. Clearly the first activity is called without any delay due to the invariant
≤ 0 at the place startA and within the interval [L1, U1] the first subnet marks
either endA1 or failA1

. In the first case, again without any delay, the place endA

will be marked; in the second case the second activity is initiated without any
delay and the execution of try stops as soon as this activity is finished. Then
clearly the shortest execution time is L1, assuming that the try activity succeeds
on the first subactivity, and the longest one is U1 + U2. ��



30 C. Bertolini, Z. Liu, and J. Srba

startA

inv: ≤ 0

done

initialize

inv: ≤ B
ready

init A1

wait endA

done A1

finish1

finish2

timer

inv: ≤ F

startA1

endA1

inv: ≤ 0

[0, 0]

[0, B]:1 :1

[0, B]:1:1

[F, F ]

[0, 0]

[0, 0]

[B,∞)

[B,B]

[F, F ]

Fig. 9. Time-bounded iteration activity with frequency F and time-bound B

Time-Bounded Iteration. Figure 9 shows a net modelling the time-bounded
iteration Little-JIL primitive from Figure 1(h). The iteration is parameterized
by a frequency F > 0 and a time-bound B ≥ F . This construct is typically
used in healthcare workflows for repeated monitoring of a patient in a precisely
given interval. The net enforces that the activity A1 is initiated every F units
of time (due to the invariant in the place timer) and that the last activation of
A1 happens no later then B time units from the activation of the iteration net.

After initializing the net and placing a token into the place ready and into
the timer, we delay F time units and start the subactivity A1. The token from
the place ready is moved to the place wait while its age is being preserved; at the
same time the age of the token in the timer is reset to zero. Once the activity A1

is finished, we have to fire (with no delay) the transition done A1 and move the
token from wait to ready (unless the iteration is ended by firing finish1). Thanks
to the transport arcs, the age of the token in ready measures the total execution
time of the iteration activity.

The reader may observe that if the duration of the activity A1 is longer than
the frequency F then the token in the place timer will be removed by firing the
transition done and once the place ready gets marked by firing the transition
done A1, the activation of A1 at the frequency F is broken. We can detect such
a situation via monitors.

Property 6. Let [L1, U1] be the execution interval of the activity A1. The exe-
cution interval of the net for iteration activity is [B,max{B, kF +U1}] where k
is the largest integer such that kF ≤ B.

Proof. The lower bound of B time units is easy to prove as the age of the
token that it moved by the transport arcs between the places ready and wait
corresponds to the total duration of the iteration activity. The workflow can be
terminated by firing either the transition finish1 or finish2 and both of them
require a token of age at least B.



Verification of Timed Healthcare Workflows Using CTAPNs 31

For the upper bound, we consider two cases. If U1 > F then during the slowest
execution of A1, the token in the place timer will be consumed and once the place
ready gets marked, we can only wait until the total time reaches B and then fire
the transition finish2. Hence the upper bound in this case is B.

If U1 ≤ F then the transition init A1 will be fired regularly after each F
time units until the age of the token in the places ready or wait reaches the age
B. This means that the last time the transition init A1 can be fired is at the
moment kF where k is the largest integer such that kF ≤ B. After that we wait
for the termination of the execution of A1. In the worst scenario this takes U1

time units, so the total execution time is kF +U1 and if this exceeds the bound
B then we are forced to fire immediately the transition finish1 and the longest
execution time is kF + U1. ��

3.3 Additional Workflow Modelling Features

Exception Handling. We handle the exceptions (Figure 1(i)) in a similar way
as the try construct presented in Figure 8. An atomic subactivity of A1 (here
not necessarily only a part of the sequential composition) can raise an exception
E:name by placing a token into a new output place exceptionname. The exception
should be now caught by the first exception handler that covers its scope. As
the nesting of exceptions in Little-JIL is always finite, we can create more copies
of the place exceptionname, one for each scope of the exception handler. The
scopes are then updated dynamically during the computation of the net. As the
scope information is finite, it is not surprising that we can remember its scope in
this way. Nevertheless it is technically challenging to manually model multiple
nested exceptions. In the case study we therefore used only a single nesting of
exceptions that is easily manageable for a human modeller.

Shared Resources with Timing. Little-JIL provides also a mechanism for ac-
quiring and releasing resources. Resources with exclusive access can be modelled
in Petri nets in the standard way; we add here the additional option to measure
the recovery time that has to pass from the time a resource was released until it
can be acquired by another process. For example in our case study two nurses
need to acquire a room for a transfusion and we have to guarantee exclusive
access to the room. Moreover, after the room is released, some other activity
(e.g. sterilization) must be performed before the room is ready for another pa-
tient. We can model this situation as depicted in Figure 10 via shared transitions
acquire1 and release1 used by the first nurse and acquire2 and release2 used by
the second one. It takes at least minReady and at most maxReady time units to
prepare the room for another patient.

Monitors. We use different types of monitors (small nets attached to the work-
flow) in order to observe executions of events and their temporal dependencies.
Figure 11(a) shows how the execution of the event checkID and beginInfusionOf-
BloodProduce can be registered by adding a component that will via shared
transitions add a token to the place IDchecked resp. infusionStarted each time



32 C. Bertolini, Z. Liu, and J. Srba

room-ready

0

inv: ≤ maxReady

room-not-ready

sterilize

acquire1

release1

acquire2

release2

[0,∞) [0,∞)

[minReady,maxReady]

Fig. 10. Sharing of a resource (transfusion room example)

checkID

IDchecked

beginInfusionOfBloodProduct

infusionStarted

(a) Event registration

duration

inv: ≤ D

timeout

deadlineMissed
[D,D]

(b) Single-activity execution deadline

timer

inv: ≤ D

timeout lateInjection

releaseBloodProduct

beginInfusionOfBloodProduct

[D,D]

[0, D]

(c) Time-bounded response

Fig. 11. Monitors

the corresponding event is executed. Regarding temporal dependencies, observe
that the nets for different Little-JIL primitives have a place (or several places)
called duration. The duration place is marked by a token during the initialization
of the activity and hence the age of the token represents the current execution
time of the activity. We can add a monitor to such a duration place in order
to check for the violation of the execution deadline D. The monitor is depicted
in Figure 11(b) and it is clear that once the execution deadline D is reached,
we are forced to mark the place deadlineMissed. Another type of monitor is
given in Figure 11(c) where we can measure the response time between the
events releaseBloodProduct and beginInfusionOfBloodProduct. Whenever the
event releaseBloodProduct is not within D time units followed by the beginning
of the transfusion, the place lateInjection gets marked.

4 Verification of the Blood Transfusion Case Study

Following the general algorithm presented in Section 3, we translated the blood
transfusion case study described via Little-JIL diagrams into a component timed-
arc Petri net and set up monitors for checking the crucial timing aspects of the



Verification of Timed Healthcare Workflows Using CTAPNs 33

workflow. The full set of Little-JIL diagrams and the manually created CTAPN
models are available at the URL http://www.tapaal.net in the download sec-
tion. For example, for the single-patient model, the composed net consists of 140
places, 98 transitions and 243 arcs.

We used the model checker TAPAAL [9] for the actual editing and verification
of the CTAPN model. The tool offers a user-friendly GUI with the support for
a fully automatic verification of a subset of TCTL that includes the temporal
operators EF ϕ (a marking satisfying the proposition ϕ is reachable), AG ϕ (the
proposition ϕ is satisfied in any reachable marking), EG ϕ (there is a maximal
computation invariantly satisfying ϕ) and AF ϕ (on every maximal computation
ϕ eventually holds). The formula ϕ consists of a boolean combination of atomic
propositions of the form P ≤ n and P ≥ n where P is a place and n is nonneg-
ative integer, expressing the requirement that the number of tokens present in
the place P is at most, resp. at least n.

We shall now present a selection of the verified queries for the blood transfu-
sion case study; a full list of the queries is available within the TAPAAL model.
Here workflow END is the output place of the main workflow net and the other
places are given in Figure 11. The place called duration corresponds to the
overall duration of the whole workflow.

1. AG (infusionStarted=0 or IDchecked>=1) — ID is always checked at
least once before the transfusion starts.

2. EF (workflow END=1 and deadlineMissed=0)— The workflow can termi-
nate within the deadline D (shortest execution time).

3. AG (workflow END=1 or deadlineMissed=0)— In any scenario the work-
flow terminates within the deadline D (longest execution time).

4. AG lateInjection=0—Late injection never happens (the time from picking
up the blood product until the transfusion starts is not more that D time
units; if D = 30 then this is exactly the B.9 property from the benchmark).

5. AF workflow END=1—Any maximal execution eventually reaches a marking
where the whole workflow terminates (dynamical soundness).

Dynamical soundness implies that there are e.g. no deadlocks, no missing ex-
ception handlers and no improper use of the iteration activity. The temporal
operator AF is a liveness operator and its verification is in general more de-
manding than the reachability and safety properties. We were able to positively
verify this property for the whole workflow net in less than 10 second on a stan-
dard laptop; the other queries were positively verified in less than 1 second.3 By
varying the deadline D (declared as a constant in the net) we found out that the
shortest execution time is 6 minutes (if patient disagrees with the transfusion),
the longest execution time is 153 minutes and the longest time from picking up
the blood product until its injection is 22 minutes (and hence the 30 minute
expiration time imposed by B.9 property is met). Among the other properties

3 All experiments were carried out by the native TAPAAL engines without using
translations to UPPAAL timed automata that are also available in the tool.

http://www.tapaal.net


34 C. Bertolini, Z. Liu, and J. Srba

we verified, we can e.g. mention that the shortest time of a successful transfu-
sion is 118 minutes and we also successfully verified the property B.11 of the
benchmark (patient is monitored during the transfusion every 15 minutes).

For two patients that share the same transfusion room, we confirmed in less
than 40 seconds its dynamical soundness and verified that the longest execution
time is 286 minutes. However, we found out that the B.9 property is broken.
The tool provided an error trace showing a concrete execution of the workflow
where the time from picking up the blood product until its injection exceeded 30
minutes. By examining the trace, we could easily find the reason: the pre-infusion
activities allow in parallel to book the transfusion room and pick up the blood
from the blood bank; as we might have to wait for the release of the transfusion
room and its sterilization, the blood product can expire. This hints at the fact
that, for more patients, these two activities have to be ordered sequentially.

A detailed comparison of the explicit state-space (discrete) verification meth-
ods and the DBM-based ones is beyond the scope of this paper but on the blood
transfusion case study we can report that for the reachability properties the
DBM-based methods were faster due to the higher constant sizes, whereas for
liveness properties (dynamic soundness) the explicit methods were in this case
considerably faster. A detailed comparison of the different verification methods
is available in [3].

5 Conclusion

We have presented a general translation of medical healthcare workflows de-
scribed in Little-JIL into component timed-arc Petri nets. As for any other
workflow language, Little-JIL semantics can be conveniently given as a work-
flow Petri net via different constructions already described in the literature or
via a direct translation into finite-state machines. The main contribution of our
work is that we systematically model the real-time aspects of Little-JIL work-
flows and this allows us to use the tool TAPAAL for automatic verification of
not only functional but also non-functional requirements as demonstrated on the
blood transfusion case study.

The translation of the blood transfusion case study was performed manually
but we are currently working on an automated tool for importing Little-JIL
diagrams directly into TAPAAL. Another future research will focus on extending
the property specification language and exploring how the technique will handle
even larger case studies, including the possibility of direct code generation for
automatic workflow coordination. On a different note, integrating human-specific
aspects and ethical issues including security policies (like e.g. in OrBac [2]) into
our approach is another challenge for the future work.

Acknowledgements. The work is partly supported by the projects GAVES,
SAFEHR and EVGUI funded by the Macau Science and Technology Devel-
opment Fund, and by MT-LAB, VKR Centre of Excellence. We thank to the
anonymous reviewers for their detailed comments and suggestions.



Verification of Timed Healthcare Workflows Using CTAPNs 35

References

1. Blood transfusion medical benchmark, https://collab.cs.umass.edu/groups/

laser_library/wiki/daf17/Blood_Transfusion_Medical_Benchmark.html

2. Abou El Kalam, A., Baida, R.E., Balbiani, P., Benferhat, S., Cuppens, F.,
Deswarte, Y., Miège, A., Saurel, C., Trouessin, G.: Organization based access con-
trol. In: Policy 2003 (June 2003)

3. Andersen, M., Gatten Larsen, H., Srba, J., Grund Sørensen, M., Haahr Taankvist,
J.: Verification of liveness properties on closed timed-arc petri nets. In: Kučera, A.,
Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS,
vol. 7721, pp. 69–81. Springer, Heidelberg (2013)

4. Bertolini, C., Schäf, M., Stolz, V.: Towards a Formal Integrated Model of Collab-
orative Healthcare Workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS,
vol. 7151, pp. 57–74. Springer, Heidelberg (2012)

5. Bolognesi, T., Lucidi, F., Trigila, S.: From timed Petri nets to timed LOTOS. In:
10th International Symposium on Protocol Specification, Testing and Verification,
pp. 1–14. North-Holland, Amsterdam (1990)

6. Chen, B., Avrunin, G.S., Henneman, E.A., Clarke, L.A., Osterweil, L.J., Henne-
man, P.L.: Analyzing Medical Processes. In: ICSE 2008, pp. 623–632. ACM, New
York (2008)

7. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in
component-based model-driven design. Sci. Comp. Program. 74(4), 168–196 (2009)

8. Christov, S., Avrunin, G., Clarke, A., Osterweil, L., Henneman, E.: A benchmark
for evaluating software engineering techniques for improving medical processes. In:
Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care,
SEHC 2010, pp. 50–56. ACM, New York (2010)

9. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012)

10. del Foyo, P.M.G., Silva, J.R.: Using time Petri nets for modelling and verification
of timed constrained workflow systems. In: ABCM Symposium Series in Mecha-
tronics, vol. 3, pp. 471–478. ABCM (2008)

11. Grando, M.A., Glasspool, D.W., Fox, J.: Petri Nets as a Formalism for Comparing
Expressiveness of Workflow-Based Clinical Guideline Languages. In: Ardagna, D.,
Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 348–360.
Springer, Heidelberg (2009)

12. Hanisch, H.-M.: Analysis of place/transition nets with timed-arcs and its applica-
tion to batch process control. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS,
vol. 691, pp. 282–299. Springer, Heidelberg (1993)

13. Jacobsen, L., Jacobsen, M., Møller, M.H., Srba, J.: Verification of timed-arc Petri
nets. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić,
M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 46–72. Springer, Heidelberg
(2011)

14. Jensen, K.: Coloured Petri Nets: Basic concepts, analysis methods and practical
use. Springer, Berlin (1996)

15. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: a formal model-driven engineering method
for component-based software. Frontiers of Computer Science in China 6(1), 17–39
(2012)

https://collab.cs.umass.edu/groups/laser_library/wiki/daf17/Blood_Transfusion_Medical_Benchmark.html
https://collab.cs.umass.edu/groups/laser_library/wiki/daf17/Blood_Transfusion_Medical_Benchmark.html


36 C. Bertolini, Z. Liu, and J. Srba

16. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)

17. Ling, S., Schmidt, H.: Time Petri nets for workflow modelling and analysis. In:
IEEE International Conference on Systems, Man and, Cybernetics, vol. 4, pp.
3039–3044. IEEE (2000)

18. MacCaull, W., Rabbi, F.: NOVA Workflow: A Workflow Management Tool Target-
ing Health Services Delivery. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS,
vol. 7151, pp. 75–92. Springer, Heidelberg (2012)

19. Mashiyat, A.S., Rabbi, F., Wang, H., MacCaull, W.: An automated translator for
model checking time constrained workflow systems. In: Kowalewski, S., Roveri, M.
(eds.) FMICS 2010. LNCS, vol. 6371, pp. 99–114. Springer, Heidelberg (2010)

20. Merlin, P., Faber, D.: Recoverability of communication protocols: Implications of
a theoretical study. IEEE Trans. on Communications 24(9), 1036–1043 (1976)

21. Miller, K., MacCaull, W.: Model checking timed properties of healthcare processes.
Journal of Software Maintenance and Evolution: Research and Practice 23(4),
245–260 (2011)

22. OMG. UML extensions for workflow process definition - request for proposal.
OMG-document bom/2000-12-11 (December 2000)

23. Rabbi, F., Mashiyat, A.S., MacCaull, W.: Model checking workflow monitors and
its application to a pain management process. In: Liu, Z., Wassyng, A. (eds.) FHIES
2011. LNCS, vol. 7151, pp. 111–128. Springer, Heidelberg (2012)

24. Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: An
overview. European Journal of Operational Research 134(3), 664–676 (2001)

25. van der Aalst, W.: The application of Petri nets to workflow management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

26. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and
Systems. MIT Press (2002)

27. van der Aalst, W., Weske, M., Wirtz, G.: Advanced topics in workflow management:
Issues, requirements, and solutions. Journal of Integrated and Process Science 7(3),
49–77 (2003)

28. WFMC. Workflow management coalition terminology and glossary (WFMC-TC-
1011). Technical report, Workflow Management Coalition, Brussels (1996)

29. Wise, A.: Little-JIL 1.5 language report (UM-CS-2006-51). Technical report, Uni-
versity of Massachusetts, Amherst, MA (2006)



Enhancing Product Line Development by Safety
Requirements and Verification

Michaela Huhn and Sara Bessling

Department of Informatics, Clausthal University of Technology
Clausthal-Zellerfeld, Germany

{Michaela.Huhn,Sara.Bessling}@tu-clausthal.de

Abstract. In product lines of safety-critical medical devices, the safety require-
ments vary in the same lines as the products. We propose a uniform integration
of safety requirements into a model-driven feature-oriented design methodology
of product lines. We extend the SCADE development framework by a transfor-
mational approach to product line design: both the design modifications and the
adaptation of safety requirements constitute a feature at a certain development
phase. Thus both are described in terms of a model graph transformation. Then
design models and the safety constraints associated to a product result from a se-
quence of feature-specific model transformations applied on a base model. This
builds the basis for systematic and traceable product line verification and safety
assurance. We evaluate our approach on a product line of cardiac pacemakers.

Keywords: Safety analysis, model-driven development, product lines.

1 Introduction

Software product line development addresses the engineering of families of similar
products by means of systematically sharing development artifacts. In case of depend-
able products, safety requirements need to be specified and verified to hold for each
product. Currently, the use of formal approaches to dependable systems product lines is
hampered by (1) rather restrictive formal product building mechanisms and (2) a lack
of support for the specification and verification of product-specific safety constraints
that goes along with the design methodology. Both issues limit applicability of formal
approaches to dependable systems product lines.

Feature models are a popular mean to specify variability in product lines at the prob-
lem space level at which the various stakeholders contribute with their requirements
[20]. Feature models are often modeled as trees expressing a hierarchical decomposi-
tion of the products commonalities and differences along user-tangible product charac-
teristics. A product of the product line is then described as an admissible combination
of features.

In constructive development phases, the variability specification has to be linked
to the artifacts of the solution space. In a model-driven approach to the development
of software product lines, the design for variability and the composition of features
forming a product have to be framed at the level of architectural and behavioral design
models. As theoretically elaborated by Azanza et al. in [3], product generation can be

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 37–54, 2013.
© Springer-Verlag Berlin Heidelberg 2013



38 M. Huhn and S. Bessling

understood as a sequence of endogenous model transformations describing how a base
model is transformed step-by-step into a specific product model. A transformation step
corresponds to the modifications needed to realize a particular feature or feature group.
It is formulated in terms of model deltas or fragments to be replaced. The transformation
source (the base model) and the target (the product) conforms to the same metamodel,
i.e. belong to the same viewpoint in the development process. Due to the flexibility
of possible model transformations such transformational approaches support a broad
variety of feature-specific adaptations [9,10,3] which is in contrast to other approaches
using a single feature composition operator (see [2] for an overview). The Common
Variability Language (CVL) by Haugen et al. [10] provides a tool that implements the
transformational approach for the development of product lines based on EMF models.

One issue that has been addressed in the literature on dependable systems product
lines is the verification of safety requirements common to all products of a product
line as elaborated e.g. by [8,19], or [22] for a pacemaker product line. However, if fea-
tures are considered a first class concept in product line development, their impact on
the safety requirements to hold for its products is evident [15,5]. Thus, we propose to
uniformly extend model transformations for variability design by the specification of
feature-specific safety requirements. This means to consequently apply the principle of
reasoning along a system’s major structuring concepts for product lines also on the
specification of safety requirements and their verification as it is done by architectural
decomposition in traditional system design. Hence, when generating a product accord-
ing to its selected features, the product design model and its safety requirements are
created simultaneously. We demonstrate our approach within the SCADE development
framework for the phases of architectural and functional design. We employ CVL to
implement the model graph transformations for product generation. The case study on
a product line for cardiac pacemakers shows that a transformational approach to prod-
uct generation can deal with the different kinds of modifications needed for different
features. Moreover, the systematic feature-specific fine-grained treatment seems to in-
crease the portion of functionality covered by safety requirements.

The rest of the paper is structured as follows: Sec. 2 introduces SCADE and CVL
which we use as the technical frameworks. In Sec. 3 we introduce the modeling of
variability for architectural design models and model transformations to be applied on
a base model. Moreover, we show that safety requirements can be handled analogously.
Sec. 4 is dedicated to the case study of a pacemaker product line. Sec. 5 concludes.

2 Basics

2.1 Dependable System Modeling Using SCADE

The acronym SCADE stands for Safety-Critical Application Development Environment.
The main objectives of the SCADE Suite are (1) to support systematic, model-based
development of correct software based on formal methods and (2) to cover the whole
development process [7]. The language Scade underlying the tool is data-flow oriented.
Its formal semantics is based on a synchronous model of computation.

SCADE Suite is an integrated development environment that covers many devel-
opment activities of a typical process for safety-critical software: modeling, formal



Enhancing Product Line Development by Safety Requirements and Verification 39

verification using the SAT-based SCADE Design Verifier [1], certified automatic code
generation producing readable and traceable C-code, requirements tracing down to
model elements and code, simulation and testing on the code level and coverage metrics
for the test cases with the Model Test Coverage module. The new version 6.3 of SCADE

Suite integrates the SCADE System Designer that allows specifying the systems archi-
tecture by means of SysML block diagrams. The model entities of the System Designer
project, i.e. blocks and connectors, are transformed into SCADE blocks and correspond-
ing connections automatically.

Here we use SCADE System Designer to model the structural part of the design
models and safety requirements, and SCADE Suite for the behavioral design and re-
quirements modeling.

2.2 Variability Modeling Using CVL

The Common Variability Language (CVL) [10] facilitates the model driven develop-
ment of product lines. CVL supports the specification of product variabilities upon a
domain specific modeling language (DSL) defined by means of the Meta Object Fa-
cility (MOF). CVL separates the user-centric specification of variability, the Feature
Specification Layer (FSL) from the developer-centric variability modeling, the Product
Realization Layer (PRL). The PRL strictly follows a transformational approach.

At the Feature Specification Layer, CVL offers concepts that capture the usual hier-
archical decomposition operators like AND, OR, XOR, Mandatory and Optional Fea-
tures and Cardinalities known from many feature diagram notations (see [20] for an
overview). The PRL associates local model graph transformations to the features de-
scribing how an individual feature is to be implemented in terms of value, reference
and fragment substitutions applied on a base model. In general, a graph-based model
transformation facilitates fine-grained feature-specific substitutions since a graph-based
model transformation consists of an application context, i.e. a fragment to be removed
from the model - called the left hand side of transformation - and the application con-
dition App, and the fragment to be put in instead - called the right hand side of the
transformation. A specific product is specified in the Resolution Model by selecting the
features defining the product. The corresponding model transformation is yield by ex-
ecuting the substitutions associated with the selected features on the domain-specific
base model in a predefined order.

We employ CVL for feature modeling of a pacemaker product line and the transfor-
mational approach for the product line design and the representation of feature-specific
safety requirements.

2.3 Related Work

Numerous approaches deal with variability management in the design space by associ-
ating model (or code) fragments to product features. In order to build a product, a base
model is adapted as prescribed by the model fragments. Thereby ”adaptation” may be
interpreted as adding the fragments to a minimal model, or as subtracting fragments
not needed from a 150 % model, or other kinds of composition, see [2,3] for detailed
surveys. Transformational approaches like e.g. [10,3] describe the model adaptations



40 M. Huhn and S. Bessling

corresponding to each feature in terms of model transformations. Graph transforma-
tional approaches support feature-specific modifications that may refer to a specific
application context. However, these approaches focus on structural design models, but
do not consider behavioral safety requirements and their verification.

Liu et al. [16,15] work on safety analysis and verification techniques dedicated for
product lines. Liu et al. define a flexible, sequential composition on transition systems
which represent the base model’s or a feature’s behavior. They propose a compatible,
automated decomposition of temporal formulae for model checking: At the variation
points, the states at which the system ”traverses” from the behavior of feature A to that
of feature B, proof obligations are calculated for the transition system belonging to the
features entered next. As we do, Liu et al. consider a product line of pacemakers as a
case study. Compared to our synchronous product, the sequential composition is less
flexible as it assumes that exactly one feature is active at any moment. The explicit ref-
erence to features in the safety requirements is another difference to our approach: We
handle the generation of a design model and the related safety requirements uniformly,
hence the safety requirements are specific for a selected feature combination without
explicitly referring to the resulting product.

Classen et al. [6,5] propose feature transition systems as a formal low-level behav-
ioral model that captures all products of a product line by labelling each transition with
a Boolean expression describing for which features this transition may be selected. The
approach focusses on verification and is independent from the design methodology.

Several approaches are on target for formal verification of cardiac pacemakers: Tuan,
Zheng, and Tho [22] give high-level models of several pacemakers in terms of CSP.
They verify five safety properties common to most of them like deadlock freedom, or
upper and lower rate limits. Jiang et al. [14] model a DDD pacemaker with two specific
anti-PMT algorithms in detail. They work with timed automata using UPPAAL in or-
der to verify that the pacemaker reacts correctly in specific situations of tachycardia. A
detailed Event-B modeling of pacemakers can be found in [17]. Refinement is applied
to incrementally add functional and timing properties to the abstract system-level spec-
ification. The properties to be verified address the system architecture, action-reaction
and the timing behavior of several pacemaker variants. Jee et al. [13,12] use UPPAAL
in order to formally develop and verify the software control of pacemakers. Therefore
they have extended UPPAAL by a synthesis to C-Code. In [12], a product-centric assur-
ance case for the pacemakers is investigated which requires a thoughtful combination
of methods and results from safety analysis, design and verification. Liu et al. [15] and
Jee et al. [12] use other formalisms than we do, but the intended seamless integration of
safety analysis, development, and verification is similar to our approach.

3 Adding Variability to Dependable System Development

3.1 The Base Model and Models Deltas

We build our product line models upon an architectural component model represented in
terms of SysML blocks. Due to the SysML Specification [18], blocks are well-suited to
“define a collection of features to describe a system”. We restrict ourselves to a subset
of SysML Block Definition Diagrams (bdd) and Internal Block Diagrams (ibd) as



Enhancing Product Line Development by Safety Requirements and Verification 41

they are supported by SCADE System Designer. A Block Definition Diagram describes
the architectural decomposition into blocks representing (sub)systems to be realized in
software or hardware.

Fig. 1. The ibd for the AAI pacemaker

The Internal Block Diagrams model the parts1 within a block and their interfaces by
typed ports with a direction in or out. Behavior is allocated to parts using SCADE in
the functional design phase. We denote the behavioral model associated with a struc-
tural part A, its SCADE node, by A. Connectors represent the communication either
between internal parts of blocks by linking ports or the in/output of a composite block
by a connection to an external port. Connectors are restricted to compatible interfaces,
i.e. ports with compatible types and matching direction. The block behavior is mod-
eled in SCADE (see Fig. 7 for illustration). Thus, the behavior of a block A is defined
as the synchronous product, denoted Π , of all its sub-blocks at which each connector
from bdd B.outp1 to C.inp2 is interpreted as an additional equation that relates
the output variable outp1 of the behavior associated with B with the input inp2 of C’s
associated block, i.e. B.outp1 = C.inp2. Connectors to the external ports of a block are
handled accordingly. Thus, the behavioral model specified in an ibd A is syntactically
given as

A =∏B partofA
B ⊕Connect EqA (1)

1 As sub-blocks are called in SysML.



42 M. Huhn and S. Bessling

where Connect EqA denotes the set of equations induced by the connectors of A and
⊕ the syntactic addition of these equations to the syntactic behavior representations of
the parts of A. We note that in case blocks are unconnected, the synchronous product
semantically yields parallel composition, in case all outports of a part B1 are connected
to the inports of B2 the synchronous product results in the synchronous, sequential
composition B1;B2.

In order to keep the technical framework simple and compliant to the SCADE ap-
proach, parts will represent two different concepts: (1) the building entities of the prod-
uct line, i.e. the structural design blocks of the base model and the design model deltas
in terms of feature-specific blocks, (2) the safety requirements to be satisfied on the
base model and the feature-specific deltas of the requirements (see Sec. 3.3).

Fig. 1 shows the ibd for an AAI pacemaker: The upper left three parts are design
blocks, the three lower right ones named “SR. . . ” denote AAI’s safety requirements. An
AAI pacemaker senses natural atrial paces and stimulates the atrium only if a natural
pace is missing. The safety requirements are explained in detail in chapter 4.4.

3.2 Managing Variability in the Design Space by Model Transformations

As suggested in [10,3], we consider product generation as the result of a sequence
of model transformations applied on a base model. Each transformation expresses the
design modifications corresponding to a feature or feature group. We formalize graph
transformations on model graphs in the lines of [23] as follows:

Definition 3.1 (Model graph, graph morphism). A model graph G = ⟨N,E,Lab⟩ is
a finite, directed, typed and attributed graph with the following constraints.

– A graph node n ∈ N has an identifier Id, and a type label Tn.
– An edge e ∈ E has an Id and a type label Te. The functions src, tgt ∶ E → N give

its source and target, resp.
– Both nodes and edges may be associated with attributes (represented e.g. as special

graph nodes), with an Id identifier, a type label Ta and a data value (default).
– Lab denotes the labeling of nodes and edges.

Let G,H be two model graphs. In the following we denote the obvious extension of a
set-theoretic operation op to graphs by opg : e.g. the intersection of graph G and H is
defined as ⟨NG ∩NH ,EG ∩EH , Lab⌈NG∩NH ,EG∩EH

⟩ and denoted G ∩g H .
A graph morphism f ∶ G→g H is a structure-preserving (total) function, i.e

srcH ○f⌈EG
= f⌈NG

○ srcG, tgtH ○f⌈EG
= f⌈NG

○ tgtG, and LabH extends f ○LabG.

EMF models and hence the SysML diagrams we use for architectural modeling can be
canonically mapped onto model graphs as explained in [23]: Instances of EMF entities
are mapped to graph nodes with the same name and type. Links between the EMF model
entities are usually non-directed, thus they are mapped on two graph edges between the
corresponding nodes. Attributes are mapped one-to-one.

Definition 3.2 (Transformation rule). A graph transformation rule is a tuple r =
⟨L,R,App⟩ consisting of a left hand side (LHS) graph L, a right hand side (RHS)
graph R, and the application constraint App. The intersection of L and R, i.e. the
graph I = L ∩g R is called the interface of the rule r.



Enhancing Product Line Development by Safety Requirements and Verification 43

The idea of a transformation rule r = ⟨L,R,App⟩ is to replace an occurrence of the
LHS L in G by the RHS R provided the application constraint App is satisfied on G.
Thereby the nodes and edges from L ∖g R will be deleted, those from R ∖g L will be
added and the interface I builds the “glue” which is called boundary declaration in
CVL [10]. We say r is applicable to the host graph G if there exists a graph morphism
called match m ∶ L→g G, such that

– m is an injective graph morphism,
– For all e ∈ EG, src(e) ∈ m(NL ∖ NR) or tgt(e) ∈ m(NL ∖ NR) implies e ∈
m(EL ∖ER) (no dangling edges)

– The predicate App evaluates to true on G.

Let G = ⟨N,E,Lab⟩ be a model graph and r = ⟨L,R,App⟩ be a transformation rule
applicable on G and m a match for the LHS L on G.

Definition 3.3 (Application of a transformation rule). The application of r on G at
the match m is defined using an extension of m to a morphism m′ ∶ L ∪g R →g H such
that H extends G and all nodes and edges from R ∖g L are mapped by m′ to fresh and
distinct elements of H ∖g G and the resulting target graph H is defined by

H = (G ∖g m(L)) ∪g m′(R).

To illustrate the transformations assigned to features we consider the feature Dual P
in Chambers paced (see Fig. 4). Dual P specifies the feature of generating artificial
pulses for both heart chambers. Since we have chosen a single chamber pacemaker,
namely AAI, as the base model, the design model transformation assigned to Dual P
adds a second pulse generation part to the base model as depicted in Fig. 2. The AAI
block forms the graph interface; thus it occurs on the LHS and the RHS.

The entities to be added are represented as the RHS of the transformation, for sim-
plicity we have omitted the association start and end attributes at the edges: a Boolean
output Stimulate of the block is added. A new part TPG, which abbreviates
TimePulseGeneration (see Fig. 1), is added with the appropriate in- and outports
Start, Reset, Stimulate, and Timer running. The internal outport
Stimulate is linked to the corresponding outport of the pacemaker Stimulate
via a connector which is remains unnamed in Fig. 2 and the Timer running out-
port is connected to the Start inport of TPG via another unnamed connector (please
compare this to the part in Fig. 1). The edges denote links between associated model
concepts like those between a part and its ports, etc.

If applied, the transformation rule results in a fresh TimePulseGeneration part
with all ports and connections needed. In order to generate the parts of the ibds corre-
sponding to the safety requirements associated with the Dual P feature, the rule has to
be extended accordingly which we leave out for brevity here.

We employ the CVL tool [10] to implement the model transformations for architec-
tural design models specified in SCADE System Designer. CVL provides a mechanism
to specify and execute so-called substitutions on domain-specific MOF-based models.
A substitution consists of (1) the placement fragment which corresponds to the LHS of
a transformation rule, (2) the replacement fragment representing the RHS, and (3) the
boundary declaration that conceptually replaces the interface of the rule.



44 M. Huhn and S. Bessling

LHS RHS

AAI:block

TPG:part

Start:bool inport

Reset:bool inport

Timer running:bool outport

Stimulate:bool outport

:connector

Stimulate:bool outport

:connector

AAI:block

Fig. 2. Model transformation for the design part of the Dual P feature

3.3 A Uniform Enhancement by Safety Requirements

In feature-oriented product line development, safety requirements on a product natu-
rally relate to the functionality that is provided by its features. When looking on all
products in a body, this relation sometimes is expressed by explicit references to fea-
tures in the properties to be verified: e.g. by constraining a safety property by a predicate
indicating the presence of a specific feature as done in [15] or in [5].

We uniformly extend the handling of variability in the design space to the specifica-
tion of safety requirements and verification. Thus we employ the mechanism used for
product generation, namely model transformation, to create the safety requirements that
are specific for the selected features defining the product.

The conceptual precondition is that safety requirements constitute a proper view-
point in the model driven development that is captured in a model. SCADE fulfills this
precondition immediately: In SCADE, a safety requirement is expressed as an observer
node which is syntactically the same as any design node. Semantically, an observer is
an additional node which concurrently monitors the design and checks for safety viola-
tions. Thus, it is handled as yet another block in the synchronous product as defined in
Eq. 1. However, one could argue that separate concepts, namely the architectural design
and the safety requirements, should be expressed using different modeling concepts; for
instance, the SysML requirements and constraint concepts (see [18] Chap. 16) could be
used for safety requirements. To support separate modeling concepts, the modeling fa-
cilities for the base model and the model deltas as well as the model transformation
would have to be extended by a “requirement” metamodel. We avoided this extension
here, because a separated “requirement” metamodel raises technical complexity, but
without any effect on the back-end, the SCADE Suite, which we use for functional de-
sign and verification.

We proceed methodically as follows: First we identify the safety requirements for the
base model (see Fig. 1) which shall cover basic functionality common to all products
of the product line as well as constraints that are specific for the features present in the
base model. Then the adaptations of safety requirements associated with a feature are
described as requirement deltas, i.e. the model transformation to be applied on the base
models is extended to the safety requirements. Product generation, i.e. performing the
sequence of model transformations then yields both, an architectural design model and
observer nodes representing the product’s safety requirements in terms of SysML block
diagrams.



Enhancing Product Line Development by Safety Requirements and Verification 45

In our opinion, adding safety requirements per feature has two main advantages:
First, the set of safety requirements SafeReqF specific for feature F are generated for
each product at which the feature F is present. Thus, in case one of them is violated
due to unwanted feature interaction with other features assigned to a specific product
the violation will be discovered as soon as verification is performed. Second, software
safety requirements are the outcome of software safety analysis. As safety analysis
techniques like FTA (Fault Tree Analysis) or FMEA (Failure Mode and Effect Analysis)
often follow architectural decomposition, a feature-specific procedure appears to be
well-suited for feature-oriented product lines development.

3.4 Behavioral Models and Verification

Variability modeling by model transformations applies to the architectural design phase.
The functional behavior is added for both the design models and the observer nodes
representing the safety requirements in the functional design phase using SCADE.

The semantics of a compound SCADE model is formalized in terms of transition
systems as described in [1]. Thus, the formal behavioral semantics ⟦A⟧ of an ibd A
with the associated SCADE model A is given via Eq. 1 as

⟦A⟧ = ⟦A⟧ = ⟦∏B partofA
B ⊕Connect EqA⟧ = ⟨SA, IA,→A⟩ (2)

where SA is the set of states built from the synchronous product of A’s sub-blocks,
IA ⊆ SA is the set of initial states, and →A⊆ SA × SA is the transition relation. Based
on the transition system semantics, SCADE Design Verifier provides SAT-based model
checking that seamlessly enables to verify reachability properties. When verification is
applied on the behavioral design module A and any observer node A.SR id we yield
that either the safety property expressed by A.SR id holds on all reachable states of ⟦A⟧
or a trace s1, s2, . . . sn is generated from the model checker that witnesses a violation.
Thus, as soon as the functional design is completed and the safety requirements are
specified as observer nodes, the verification of all product-specific safety properties can
be performed.

3.5 Implementation of the Graph Transformational Approach

The graph transformation as it is used here is an endogenous model graph transfor-
mation based on a relatively simple metamodel of SysML block diagrams. Thus, the
application to product lines is straightforward from the theoretical viewpoint and from
the methodological point of view we follow and refine the ideas from [3].

Technically, the handling of SCADE block diagrams raises little additional effort in
CVL, as CVL already provides support for SysML model elements based on EMF.
However, defining the substitutions is technically sophisticated as it requires a very
detailed understanding of the SysML metamodel and the functioning of a CVL substi-
tution on a SysML model instance. Both are presented implicitly only in CVL. Con-
sequently, the ingredients of a substitution, the placement, the replacement and the
boundary elements, are often defined incompletely or ambiguously which leads to man-
ual redefinitions within the substitution that was generated by CVL. The substitution
explicitly describes all modifications that have to be executed in order to generate the



46 M. Huhn and S. Bessling

target model as an instance of the metamodel from the source model, including all
attributes and relations of the model elements used. One may imagine that a manual
reworking of this description becomes laborious.

4 Variability in a Pacemaker Product Line

4.1 The Pacemaker Product Line

Fig. 3. Flowchart of the AAI pacemaker

Industrial pacemakers are categorized by an
international code, the NASPE/BPEG Code
[4]. Its definition enfolds five letters. The first
three letters characterize the main functions
of a pacemaker as the stimulation of the heart,
the detection of natural heart pace and the
response mode to detection. The letters in-
dicate the heart chambers affected by stim-
ulation or detection, resp., i.e. “A” denotes
atrial stimulation, “V” a ventricular one, “D”
is used for dual chamber pacing and “0” in-
dicates none. For the response mode, “0” de-
notes none, “I” the inhibited mode in which
a sensed natural pace inhibits artificial pac-
ing and “T” the triggered mode in which
a sensed natural pace triggers an immedi-
ate artificial pace. The response mode “D”
combines the response modes inhibited and
triggered: A natural atrial pace inhibits an
artificial atrial pace. Moreover, an (artificial
or natural) atrial pace triggers an artificial
ventricular pace at the end of the so-called AV
interval2 (AVI), in case no natural ventricular
pulse is sensed in between.

An AAI pacemaker is a variant that stimulates the atrium, in case no atrial pace is
detected. A base interval (BI), an atrial refractory period (ARP) and a blanking time are
started at every cycle of an AAI pacemaker (as shown in Fig. 3). During the blanking
time, which is an initial part of the refractory period, nothing is sensed at all; during
the ARP natural paces are sensed but not considered in the pacemalder’s decision for
stimulation. After the end of the ARP the pacemaker awaits a natural pace until the end
of the base interval. If and only if no natural pace is sensed until the BI expires the
pacemaker will trigger an atrial stimulation. Then the BI starts anew.

In difference, a DDD pacemaker senses and stimulates both chambers. At the begin-
ning of each cycle a BI for the atrium and a corresponding ARP start in combination
with an AVI for the ventricle. The AVI and the ARP have the same length. During the
AVI the pacemaker awaits a ventricular pace and if this does not occur until the end

2 The AV interval is the maximum time between an atrial pace and a ventricular one.



Enhancing Product Line Development by Safety Requirements and Verification 47

of the AVI, a ventricular stimulation is triggered. After this a ventricular refractory pe-
riod (VRP) starts, as well as a second atrial refractory period called PVARP. ARP and
VRP except PVARP contain a blanking period. The pacemaker then awaits an atrial
pace until the end of the BI. Furthermore a ventricular blanking period starts after each
atrial event and after each ventricular event an atrial blanking period, preventing cross-
sensing. The DDD pacemaker can detect a ventricular extra-systole (VES). A VES is
a natural ventricular pace without a preceding atrial event and needs an exceptional
treatment. This results in a special cycle in which only the base interval and the re-
fractory periods except PVARP start anew. Furthermore, the DDD variant comes with
a hysteresis functionality changing the length of the AV interval after an artificial pace.
The final two letters of NASPE/BPEG Code describe additional features like a possible
rate modulation or multisite stimulation of a heart chamber. For brevity, we will re-
strict the case study to a subset of the three mandatory functional groups mentioned so
far. However, we consider an additional variant of the DDD pacemaker, called DDDR,
that enables rate modulation of pacing. Moreover, the dual pacemakers implement a
so-called hysteresis which adapts the AV interval depending on the kind of ventricular
pace that has been sensed in the previous cycle. Some pacemakers offer functions to
detect and react on sporadic atrial tachycardia, e.g. by showing a behavior similar to
a Wenckebach anomaly. However, we do not consider such functionality here. Mode
switches are ignored as well. All behavioral details and an informal specification of the
safety requirements originate from an industrial specification by Boston Scientific [21].

We use the NASPE/BPEG Code to structure the features of pacemakers as shown in
Fig. 4. The mandatory functionality for stimulation, sensing and the sensing response
mode specify the feature groups on the first layer. At the second layer a single feature
is selected from each group (XOR operator).

4.2 The Pacemaker’s Base Model and Model Deltas

The AAI pacemaker builds our base model. Its ibd is depicted in Fig. 1. The main
design part TimePulseGeneration decides for generating a pulse at the end of the
base interval (BI). The Sensing part filters the signals from the sensor and signals
detection of a natural pace to the other parts.

The Atrial Refractory Period (ARP) part realizes a deactivation of both
stimulation and detection after a natural or artificial pulse. Neither a stimulation nor a
sensing of the heart must occur within the refractory interval as both would be safety-
critical: Sensing shortly after a pulse may lead to misinterpretation, pacing may cause
life-threatening cardiac fibrillation. The other parts in the ibd of AAI represent the
safety requirements for each feature and are explained in Section 4.4.

4.3 Model Transformations for Product Generation

At the product realization layer of CVL, variability is described in terms of transforma-
tions on the base model, notably, the AAI pacemaker. The simpler variant A00 stimu-
lates the heart periodically at the end of the BI without sensing natural paces and without
response mode, which is represented by the features None in the feature groups Sensing
and Sensing response. The corresponding transformations remove the parts Sensing



48 M. Huhn and S. Bessling

Fig. 4. Pacemaker feature diagram as CVL tree

and ARP, as well as the corresponding inputs for sensing, several connections and the
inport “Reset” of the part TimePulseGeneration. The V00 pacemaker is gener-
ated with the same transformations for the feature groups Chambers sensed and Sensing
response as the A00 pacemaker. In the feature group Pacing the feature “Ventricle” is
chosen in which the only transformation is an adaptation of time intervals.

The third pacemaker product considered is the D00 pacemaker using the features
“None” from the feature groups Sensing and Sensing response. The feature “Dual” in
the feature group Pacing leads to a doubling of the TimePulse Generation as well
as of the “Stimulation” output and connects both TimePulse Generation parts in
order to synchronize the atrial and the ventricular pacing.

The VVI pacemaker is nearly identical to the AAI pacemaker. Configuration param-
eters are adopted only in order to build a VVI pacemaker from the AAI base model.

The DDD pacemaker design is derived from the AAI base model by essentially dou-
bling all functions: Furthermore a new block named VES is introduced that handles
extra-ordinary natural pulses of the ventricle. If a VES is sensed, the VES block trig-
gers a reset of the atrial TimePulseGeneration and both RefractoryPeriod
blocks. Moreover, a Hysteresis block and a block for the PVARP timer are added.
The PVARP timer is started after an artificial or natural ventricular pace and serves
as additional block for the atrial sensor lest no misinterpretation of ventricular signals
may occur. For the DDDR pacemaker we assume that rate modulation is based on an



Enhancing Product Line Development by Safety Requirements and Verification 49

activity sensor that measures the ventricular pressure using a piezoelectric crystal and
can be incorporated into the pacing lead. The piezoelectric sensor yields a voltage that
is used as an input by the RateModulation block for altering the base interval
accordingly.

4.4 Variability of Safety Requirements

From the safety analysis we derive several safety requirements for the each variant.
Each safety requirement can be assigned to a specific feature group. The safety require-
ments differ not only with respect to the functionality but we also have variations of the
real-time constants they refer to.

– Safety requirements for Pacing
● At most one pace (PA/PV) Within the base interval (BI) at most one atrial/

ventricular artificial pace occurs3.
● The AV synchrony is respected (PSyn) An artificial ventricular pace is only

triggered if the AV interval (AVI) is expired.
– Safety requirements for Sensing the chambers
● Refractory period (SA/SV) During a refractory period of the atrium/ventricle

neither a pace detection nor a stimulation occurs4.
– Safety requirements for the Response on the sensing
● Strict artificial pacing (R0A/R0V) During the BI, an artificial atrial/ventricular

pace is triggered exactly once.
● The AV synchrony is respected (RSyn) The period between the atrial and ven-

tricular artificial pacing is exactly AVI.
● Natural pace inhibits artificial pace (RIA/RIV) Iff no natural atrial/ventricular

pace is detected within the admissible intervals of the BI, an artificial atrial/
ventricular pace is triggered exactly once.
● AV synchrony and ventricular inhibition (RSynIV) After an atrial pace a natural

ventricular pace is awaited in the interval [0,AVI), in case the natural ventricu-
lar pace is missing, at time AVI an artificial ventricular pace is triggered.
● Response on an ventricular extra-systole (RVES) If a natural ventricular pace

occurs in the interval [AVI +VRP,BI[5 then neither an artificial atrial pace
nor an artificial ventricular pace is triggered from this occurrence t0 on until
time t0 +BI.
● Rate Modulation (RM) Although in the presence of Rate Modulation the actual

BI is always within the limits defined by the Upper (URL) and the Lower Rate
Limit (LRL).

The AAI pacemaker shall satisfy three safety requirements, namely PA, SA and RIA.
These are generated as observer nodes as parts of the base model. The VVI pacemaker
has the requirements PV, SV and RIV. These are identical to the ones from the AAI
pacemaker, except that they refer to the ventricle timing instead of the atrium. The A00

3 The two safety requirements refer to different outports.
4 As the atrial and ventricular refractory periods differ, the time interval in the safety require-

ments have to be adapted accordingly, too.
5 VRP is the time interval of the ventricular refractory period.



50 M. Huhn and S. Bessling

F
ig

.5
.D

et
ai

lo
f

C
V

L
tr

ee
fo

r
D

D
D

(R
)

pa
ce

m
ak

er



Enhancing Product Line Development by Safety Requirements and Verification 51

pacemaker possesses only two safety constraints PA and R0A. They are derived from
PA and RIA, respectively, by eliminating the parts for the natural pacing. The safety
requirements of the V00 pacemaker are PV and R0V, respectively.

The D00 pacemaker stimulates atrium and ventricle. Therefore we need two safety
requirements for each chamber and the strict synchronization between atrial and ven-
tricular pacing. These are namely PA, PV, PSyn, R0A, R0V, and RSyn.

For the DDD pacemaker we duplicate the safety requirements of the AAI pacemaker
to adapt to the dual sensing and pacing of the atrium and the ventricle. The RSynIV
safety requirement guarantees atrial controlled ventricular pacing at the end of the AV
interval. Furthermore, we add a safety requirement RVES for the VES feature. Fig. 5
gives an overview of the safety requirements belonging to the DDD features.

4.5 Behavioral Modeling in SCADE

When synchronizing the SysML models that result from the CVL transformation with
SCADE Suite generates the corresponding (bare) operators (see Fig. 6).

Fig. 6. SCADE diagram of the AAI pacemaker (design parts)

For each pacemaker, a
SCADE operator is cre-
ated as well as in-
ner operators for both
kinds of blocks, the de-
sign and the observers.
SysML connectors are
mapped to connections
representing the equa-
tions to implement the connector semantics as defined in Sec. 3.1, Eq. 1. This gen-
eration of SCADE operators is done automatically by the SCADE System Designer by
importing the SysML model files per a special interface.

Fig. 7. SCADE operator of the design part RefractoryPeriod

Behavioral modeling is done in SCADE manually for the base model and each model
delta, i.e. each design operator and each observer node expressing a safety constraint
is modeled as prescribed in the functional specification. For instance, Fig. 7 shows the
SCADE node for the RefractoryPeriod. The counter is triggered by an input and
runs until it reaches the constant RFP Ventricle. Then a reset is triggered.

Fig. 8 shows the SCADE operator which corresponds to the safety requirement SR
RefractoryPeriod denoted SRA and SRV, resp., in Sec. 4.4. The output Proof
switches to false if the refractory period is active and at the same time a natural pace is
sensed or a stimulation occurs.



52 M. Huhn and S. Bessling

4.6 Verification of Products

Fig. 8. Safety requirement SR RefractoryPeriod as SCADE opera-
tor

Table 1 shows the
verification results.
The safety require-
ments are struc-
tured along the
feature groups. An
empty field indi-
cates that there is no safety requirement specific to that feature on this product. The
figures indicate the run-times of a successful proof by SCADE Design Verifier executed
on a Intel Core 2 Duo P9700 2,80 GHz. Most constraints - except those on refractory
periods - could be verified nearly instantaneously. In order to prove some of the more
involved safety requirements of the DDD pacemaker we rescaled the timing constants
by a factor 1:10, because only then we were able to achieve verification results in a
reasonable time.

Table 1. Verification run-times in seconds, * means time intervals divided by 10

Chambers Paced Chambers Sensed Sensing Response
Atrium Ventr. Dual None Atrium Ventr. Dual None Inhibit Dual

A00 PA 0 R0A 0
AAI PA 0 SA 5379 RIA 0
V00 PV 0 R0V 0
VVI PV 0 SV 4391 RIV 0
D00 PA 0 R0A 0

PV 0 R0V 0
PSyn 0 RSyn 0

DDD PA 0 SA 0∗ RIA 3∗

PV 0 SV 4∗ RIV 10∗

PSyn 0 PSynIV 0∗

RVES 0
DDDR PA 1 SA 0∗ RIA 0∗

PV 1 SV 22∗ RIV 0∗

PSyn 1 PSynIV 0∗

RM 0

The most evident observation from the case study is that reuse of submodels as well
as feature-specific singularities can be found in the design models as well as in the safety
requirements: The basic pacing constraints PA and PV, for its ventricular counterpart
resp., apply to all products, whereas only the DDD pacemaker needs to deal with the
RVES requirement.

Next, we compare the verification results to our previous work on the verification
of monolithic data-flow-oriented pacemaker models [11]. In [11], we derived the pace-
maker variants more informally from each other. But we could not produce verifica-
tion results for most constraints by just using SCADE Design Verifier due to complexity
problems. Only when applying time abstraction by transferring the verification problem



Enhancing Product Line Development by Safety Requirements and Verification 53

to UPPAAL, we could prove the pacemakers correct. Thus the product line approach
apparently has a positive impact on verification: The strict structuring of both design
and observer models in the base model and the fragments seems to fit well to SCADE

Design Verifier’s built-in heuristics for speeding up verification.
Another observation is that the feature-specific modeling of safety deltas leads to

more detailed safety requirements. Hence, the portion of the pacemaker’s behavior that
is covered by safety constraints increases compared to a top level specification of safety
constraints on all products in a body.

5 Conclusion

We presented a transformational model-based approach to product line design for safety-
critical systems that uniformly handles design models and safety requirements. We
used graph transformations to describe the modifications needed to adapt a base design
model and its safety requirements according to a feature. We demonstrated the approach
within the SCADE framework for the modeling and verification of dependable medical
device software and employed CVL for transformational product generation.

Product line development is commonly used in the medical device domain in order
to adapt the products to the characteristic requirements needed for individual patients
or variants of a disease. SCADE Suite provides certified code generation for depend-
able systems according to several safety standards and, moreover, formal verification by
STA-based model checking. Thus our approach is supported by a tool offering seamless
model-based development and is approved in practice. For the pacemaker case study,
we could successfully prove all safety requirements to hold on the pacemaker vari-
ants which is due to the limited functionality of pacemaker software. We believe that
our promising results on verification, which are in contrast to other domains at which
verification heavily suffers from complexity problems, transfers to a number of other
medical devices which are of restricted complexity as well.

Our next step is to introduce concepts for failure modeling and a feature-oriented
safety analysis methodology.

References

1. Abdulla, P.A., Deneux, J., Stålmarck, G., Ågren, H., Åkerlund, O.: Designing safe, reliable
systems using Scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp.
115–129. Springer, Heidelberg (2006)

2. Apel, S., Kästner, C.: An overview of feature-oriented software development. Journal of
Object Technology 8(5), 49–84 (2009)

3. Azanza, M., Batory, D., Dı́az, O., Trujillo, S.: Domain-specific composition of model deltas.
In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 16–30. Springer, Heidel-
berg (2010)

4. Bernstein, Daubert, Fletcher, Hayes, Lüderitz, Reynolds, Schoenfeld, Sutton: The revised
NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. Journal
of Pacing and Clinical Electrophysiology 25, 260–264 (2002)

5. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of software
product lines. In: Intern. Conf. on Software Engineering (ICSE), pp. 321–330 (2011)



54 M. Huhn and S. Bessling

6. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking lots of
systems: efficient verification of temporal properties in software product lines. In: Intern.
Conf. on Software Engineering (ICSE), pp. 335–344 (2010)

7. Esterel Technologies: SCADE Suite KCG 6.1: Safety case report of KCG 6.1.2 (July 2009)
8. Fischbein, D., Uchitel, S., Brabermann, V.: A foundation for behavioural conformance in

software product line architectures. In: ISSTA 2006 Workshop on Role of Software Archi-
tecture for Testing and Analysis (ROSATEA), pp. 39–48. ACM (2006)

9. Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H., Sudarsan, R., Gokhale, A., Neema, S.,
Shi, F., Bapty, T.: Model-driven program transformation of a large avionics framework. In:
Karsai, G., Visser, E. (eds.) GPCE 2004. LNCS, vol. 3286, pp. 361–378. Springer, Heidelberg
(2004)

10. Haugen, Møller-Pedersen, Oldevik, Olsen, Svendsen: Adding standardized variability to do-
main specific languages. In: Intern. Software Product Line Conference, pp. 139–148. IEEE
Computer Society (2008)

11. Huhn, M., Bessling, S.: Towards certifiable software for medical devices: The pacemaker
case study revisited. In: Intern. Workshop on Harnessing Theories for Tool Support in Soft-
ware, pp. 8–14 (2011)

12. Jee, E., Lee, I., Sokolsky, O.: Assurance cases in model-driven development of the pacemaker
software. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp.
343–356. Springer, Heidelberg (2010)

13. Jee, Wang, Kim, Lee, Sokolsky, Lee: A safety-assured development approach for real-time
software. In: Proceedings of the 2010 IEEE 16th International Conference on Embedded and
Real-Time Computing Systems and Applications, pp. 133–142. IEEE Computer Society,
Washington, DC (2010), http://dx.doi.org/10.1109/RTCSA.2010.42

14. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of
a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012.
LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012)

15. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product lines using
variation point obligations. Autom. Softw. Eng. 18(1), 39–76 (2011)

16. Liu, J., Dehlinger, J., Lutz, R.R.: Safety analysis of software product lines using state-based
modeling. The Journal of Systems and Software 80, 1879–1892 (2007)

17. Méry, D., Singh, N.K.: Functional behavior of a cardiac pacing system. Intern. Journal of
Discrete Event Control Systems, IJDECS (2010)

18. Object Management Group: OMG Systems Modeling Language V 1.2 (2010),
www.omg.org/spec/SysML/1.2/

19. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional algorithmic verification of soft-
ware product lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

20. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a formal se-
mantics. In: Intern. Conf. on Requirements Engineering (RE), pp. 136–145 (2006)

21. Scientific, B.: PACEMAKER System Specification (January 2007)
22. Tuan, Zheng, Tho: Modeling and verification of safety critical systems: A case study on

pacemaker. In: 4th Conf. on Secure Software Integration and Reliability Improvement, pp.
23–32. IEEE (2010)

23. Varró, D., Varró, G., Pataricza, A.: Designing the automatic transformation of visual lan-
guages. Science of Computer Programming 44(2), 205–227 (2002)

http://dx.doi.org/10.1109/RTCSA.2010.42
www.omg.org/spec/SysML/1.2/


 

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 55–71, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Defining New Structural and Mobile Support to Improve 
Hospital Facilities Access and Usability 

Alessandro Carlini1,3, Pierluigi Dalla Rosa2, Bartolomeo Montrucchio2,  
Ivan Cenci1, Francesca Maria Claudio1, Giovanni Luongo1,  

Jacopo Spigaroli1, and Giuseppina Gini1 

1 ASP, Politecnico di Milano, piazza L. Da Vinci 32, 
Milan, Italy 

2 ASP, Politecnico di Torino, Corso Duca degli Abruzzi 24, 
Turin, Italy 

3 University of Bourgogne,  
Dijon, France 

{pierluigi.dallarosa,ivan.cenci,francesca.claudio, 
giovanni.luongo,jacopo.spigaroli}@asp-poli.it,  

alessandro.carlini@u-bourgogne.fr, 
bartolomeo.montrucchio@polito.it, gini@elet.polimi.it 

Abstract. Our target was to improve mobility services within a large hospital 
center. We considered a modern hospital as case study. Our work had the 
valuable support of the San Raffaele Hospital (hSR). About patients and 
visitors’ mobility we found vast room for improvement in terms of user-
orientation and support to disabled people. We analyzed people flows and 
service accessibility, to design an integrated mobility support service and 
generate the final solution. As smartphones provide a countless variety of 
communication channels, the challenge was the definition of an effective 
solution for people mobility exploiting these devices. After choosing a location-
aware WLAN for tracking Wi-Fi devices, we defined the characteristics of the 
application for smartphones, and implemented a prototype. Many indexes, such 
as smartphone adoption growing rates, promising profitability studies, and 
massive portability of the mobile device indicate a smartphone application as an 
innovative and valuable support to improve mobility in hospital centers.  

Keywords: Hospital areas, mobile services, support for disabled, orientation 
and navigation. 

1 Introduction 

The healthcare system is currently facing the challenge of integrating medical care 
with services able to improving liveability and access to services, for patients and 
personnel.  

The authors had the opportunity to work in the REMEDIA - REinvent MEDIcal 
Ambient Project, sponsored by the Alta Scuola Politecnica (ASP) school (www.asp-
poli.it), whose objective was exploring new opportunities to design the “hospital of 



56 A. Carlini et al. 

 

the future”, where medical care goes along with liveability and socialization in a 
technologically-advanced environment. 

The medical partner in this project was the San Raffaele Hospital (hSR), an 
hospital which is actively responding to this challenge creating many services to 
improve the effectiveness in care and liveableness (a zoo to entertain the youngest 
patients, pet therapy, shops and bars to make the medical environment more 
enjoyable, an hotel to give the opportunity to relatives to take care of patients, etc).  

Today hospitals are facing new challenges and traditional (continuous) necessities 
to improve cost-effectiveness and liveability of the proposed services. Beyond the 
“pragmatic” aspect of the services effectiveness, today every hospital administration 
has to plan carefully any economical aspect, with more attention than in the past. 

This is one of the reasons why today we can notice a reversal trend, toward a 
unification of distinct facilities. This unification has an important role in charges 
reduction, and could lead to fewer equipments and brand new performing machines; 
nevertheless the inevitable consequence of the unification is the increasing in system 
complexity and the more difficult access to services [4, 9]. 

The development of the technology field continuously equips us with new tools 
and –possibly– new solutions. The aim of the present work is to marry these new 
technologies to the new approaching necessities of the hospital environment. 

The first indefeasible duty is the access to services, which mostly consist in the 
physical access to buildings, structures, rooms. New hospitals are frequently 
characterized by wide areas and many buildings. As a result, the simple activity of 
finding the way for a specific ward can become a real challenge for patients and 
visitors. The problem is further amplified for visually impaired patients, who 
experience difficulties in reading signs; and to wheelchair users, whose mobility is 
restricted to particular paths. 

In our project we addressed the issues described above, aiming at designing an 
integrated and innovative mobility support system capable of helping users navigate 
and reach given places and deliver desired services. 

It is important to note that the main objective of the project, i.e. the improvement 
of the liveability of services offered to users, comes with objectives reflecting other 
stakeholders' perspectives as well. On the one hand, a hospital needs to guarantee and 
improve profitability and visibility. On the other hand, several public and private 
authorities push towards the improvement of the working conditions within hospitals. 
Following a win-win approach, the present project was developed to meet these 
different needs and requirement at the same time.  

The macro-activities identified as significant, carried out, and described in the 
following Sections, are: 

- Objective focus. In this phase the Team investigated the actual state of “user-
oriented” services, and pointed out the opportunity of improving the mobility support 
service; 
- Stakeholders' requirements analysis. Once detailed the scope of the analysis, we 
worked to elicit Stakeholders' requirements. Particular attention was reserved to 
patients and visitors, the final users of the service: their requirements were 
investigated through semi-structured direct interviews; 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 57 

 

- Flow analysis. In order to detail the current situation of the hospital mobility service, 
we analyzed the actual state of patients and visitors' flow within the public areas. The 
analysis maps the macro-blocks that compose the hospital and the paths connecting 
them; 
- State of the Art analysis. The analysis of best practices in mobility was useful to 
explore opportunities and generate new ideas. The Team developed a broad 
investigation, also taking into consideration best practices outside the medical 
environment but relating to different contexts, as mobility support is an issue that 
several contexts have in common; 
- Generation of new ideas. Thanks to the analysis carried out and leveraging on the 
academic background, the Team generated new solutions to address the mobility and 
the access to service issues. Two concepts emerged particularly: the use of Terminal 
Units (TU) and the use of a Smartphone Application (SA); 
- Valuation and choice of the final solution. The concepts were evaluated according to 
relevant criteria, namely resolution of users' mobility problems, popularity among 
users, applicability of the solutions to the different clusters, impact on hospital key 
requirements and sustainability. Downstream, the SA was chosen as the more 
interesting and advantageous solution to the mobility issue; 
- Detailing the final solution. The SA was detailed in terms of functionalities, 
hardware configuration, software deployment, and interface; 
- Economical analysis. We developed an “evaluation tool” to support the investment 
assessment and to estimate benefits in adopting the new solution. The tool was made 
run with standard hospital data; the outcomes were used to perform a sensitivity 
analysis on the most critical variables; 
- Demonstrator building. The point of arrival is represented by the development of a 
SA able to simulate the navigation along a demonstrative path. It provides information 
about directions and time to destination, name of the final destination, ads and extra 
contents. 

2 User Requirements 

Being this a research for a new solution, the first step necessarily was the 
identification of the stakeholders; then, their needs and requirements were analyzed 
and validated.  
The identified stakeholders are: 

- patients and visitors: all patients receiving treatments in hospital and all people 
accompanying or visiting such patients; 
- hospital personnel: doctors, nurses, et; 
- hospital technical area; in our case the Team had the valuable support of the IRIS 
(Innovation & Research in life and health Services Unit) technical department of the 
hSR; 
- Customer Service, the office responsible for customer relation management.  

Other stakeholders identified in the present research, although only indirectly 
involved in the project, are Regione Lombardia and Ministero della Salute, 



58 A. Carlini et al. 

 

respectively the local administration and the ministry of the Italian government 
addressing public health. 

Each stakeholder has specific needs that determine the requirements to be taken 
into consideration to ensure the success of the project. The needs and requirements 
were gathered through meetings, and were validated by analyses of the context. In 
particular, the validation of patients and visitors' requirements was carried out through 
direct interviews, and subsequent cluster analysis. 

The scheme above well fits a “mutually beneficial collaboration” [3], meaning that 
the problems posed relate more on organizational implementation rather than on 
conflicts among stakeholders. Indeed, the improvement of the mobility support 
service meets the main needs of the different stakeholders. 

2.1 Interviews 

The identification of users' requirements in relation to mobility was carried out 
through about 30 closed questions, elaborated on the basis of a Fishbone Diagram 
(Figure. 1).  

 

Fig. 1. Fishbone diagram 

We interviewed 128 patients and visitors. The interviews, any of which lasted 
between 15 and 40 minutes, were composed of two parts. The first part consisted in 
30 questions with closed answers, aimed to identify the main problems of the users in 
relation to mobility; the second part was an open-question session aiming to gather 
the personal insights and suggestions for possible improvements. In the development 
of both parts the Team was supported by the hSR Customer Service Department. 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 59 

 

The answers were classified, normalized, translated in quantitative parameters 
(where necessary) and analyzed [5]. The analysis was performed through a Pareto 
approach [8] that allows ranking the problems and defining the priorities of 
intervention. The main results show the macro-causes of the scarce level of 
satisfaction towards the mobility support service, namely long waiting times, scarce 
information, and bad passageways organization. 

Following we synthesize the results of the first part of interviews. About 
information availability the main criticalities are shown in Figure 2; their causes, 
derived using a Pareto approach, are depicted in Figure 3. 

 

Fig. 2. Pie chart representing an example of the main criticalities and the possible 
improvements in the current Mobility Support System 

 

Fig. 3. Third-level causes (with relative weights) of the macro-cause “Information availability”, 
ordered from the most relevant to the least relevant. On the basis of the Pareto law, the arrows 
underline the dominant causes (CA = Central Acceptance). 

 
Two questions addressed the problem of waiting times. Their analysis showed 

waiting times at the Central Accepting Office as the “perceived as more relevant” 
problem; other criticalities are related to the scarceness of parking lots, the distance of 
no-fee parking, and the path from the parking to the entrance of the structure. 



60 A. Carlini et al. 

 

2.2 Cluster Analysis 

We explored users' requirements through a Cluster analysis. This analysis is justified 
by the principle that the totality of patients and visitors is not homogeneous: different 
typologies are characterized by distinct habits and preferences. Three segmentation 
criteria were considered predictive to determine the attractiveness of the new 
solutions: 

- How familiar they are with technological devices; 
- How familiar they are with hospital structures; 
- How they reach the hospital. 

The familiarity with technological devices was related to the age. Using these criteria 
eight significant clusters were identified. In addition, two additional clusters 
representing people with mobility problems were added. 

2.3 Analysis of the Visitors Flow 

The aim of this analysis was delineating the macro-blocks that compose the hospital 
public areas, and reporting the problems related to the paths interconnecting these 
macro-blocks. 

The macro-blocks that generally compose the hospital public area are: (1) wards, 
(2) reception / acceptance offices, (3) administration offices, (4) arrival points of 
public transports, (5) car parking; and occasionally: (6) hotels and refectory, (7) 
education centre. 

Results show that the paths from the main access points to the Acceptance, and 
from the Acceptance to the principal wards, are characterized by a flow density much 
greater than the others; consequently designers must pay much attention to the 
characteristics of these paths. Other –very common– critical points (also confirmed by 
the interviewed’ answers) are the lack of attentions to relevant aspects like (1) the 
excessive length of paths, (2) the absence of coverage over the outdoor paths, (3) the 
limits of the infrastructure for wheelchair users, and (4) the absence or the unclearness 
of direction signs. 

3 Devising Solutions 

Today innovative disciplines and new tools allow for infrastructural improvement 
providing better visualization of routes and simplification in localization and 
identification along the path (using colours codes, for example), offering more 
accessible information to the users by innovative way, and so on.  

Considering the present trend, the proposed solution gives priority to the use of 
innovative digital tools. In particular, on the basis of the requirement analysis, we 
developed two possible solutions to improve the mobility support within the hospital 
environment: the use of TU and the use of SA. The two solutions were analyzed and 
compared in terms of functionalities, performances, sustainability, adoptability, and 
compatibility with the current hospital structure. All the details are freely available in 
the whole report at http://home.dei.polimi.it/gini/ASP/REMEDIA.pdf. 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 61 

 

3.1 Terminal Units (TU Solution) 

The TU technology can effectively support the mobility in the hospital areas: the 
“kiosks” equipped with terminal units can provide a variety of services such as “path-
finding” and “map-printing”, reducing queues at the information points. 

We considered that the main reception represents a very important convergence 
node. We divided the way towards the wards into two parts: the first encompasses the 
paths linking the main reception to the three access points, while the second one is 
represented by the segment which separates the main reception from the wards 
themselves. 

It was evident that users who reach the hospital by bus or place their car in the 
outer parking have difficulties in finding the way to reach the right hospital ward. 
Consequently it is necessary to place the TUs at least in these areas (i.e. near bus 
stops, outer and underground parking, ward entrances, etc..).  
Seven functionalities were identified for the use of TUs.  

1. Person Identification 
For the access to special services or the diffusion of some information it will be 
necessary to identify the user. The ”Carta regionale dei servizi” could be useful for 
this purpose. 

2. Way Finding 
The kiosks could represent an important solution to help people find their way 
through the hospital structures. In particular, way finding could be supported by a 
traditional “point to point” navigation system (using more powerful systems like 3D 
representation and way simulation); or by more effective services, such as user & 
prescription identification for the automatic path generation, a more readable and 
“pleasant” interface to help people unfamiliar with technology, destination and path 
colour code explanation, and so on. The way finding function would let people flow 
inside the village easier, reducing the routing time to the final destination and 
improving the effectiveness of hospital services. 

3. Booking of Visits/Exams 
This function would represent an alternative to the traditional booking channels; this 
interface (also available through the internet, for example) could display dates and 
timetable to reserve a visit or an exam, modify a pre-existent condition, or give access 
to a personal area for more detailed services (i.e. report delivery, report history, 
vaccinations list, clinic folder, etc.). 

4 General Document Printing 
As the mobility support and the visits/exams booking, this service and the following 
(content download, payment, etc) could require the protected user identification.  

5 Content Download 
Technology-oriented people may find it useful to download contents from the kiosks 
to their portable devices via wireless connection (e.g. Wifi or Bluetooth). 
Downloadable contents can be both informative (for example, clinic specialties list) 
and recreational  



62 A. Carlini et al. 

 

6 Payments 
The payment function includes the possibility to pay for some services (like parking) 
and to buy prepaid cards to be used in the bar or shops located inside the hospital 
village. The payment of services or prepaid cards can be made through TU via cash or 
credit card.  

7 Parking Support Service 
The main issues related to the parking are two, namely the difficulty to remember 
where the car is parked, as the parking area is huge, and the cost of parking. The use 
of TUs can help to address these issues: kiosks and parking terminal units could print 
on the ticket the necessary information to locate the car, and also to pay at the exit.  

3.2 Smartphone Application (SA) 

Smartphones provide phone services, email, multi-protocol wireless communications, 
PDA capabilities and are now migrating from an embedded architecture to a more 
distributed and programmable one. These multi-functional phones are becoming an 
effective new way of dealing with digital technology, as they interact with a hybrid 
real-virtual environment. Smartphones are accessible to most of the people, are 
personal and are always in our pocket.  

These characteristics show the power of smartphones that is going to grow further 
in the years to come. Smartphone applications, as presented in the state of the art 
analysis within medical environment, are already used within hospitals. Indeed, the 
use of a personal device can help users understand information provided in a more 
effective way rather than an ad-hoc designed embedded system, although the latter 
could have a better cognitive interface. 

Synthetically, the SA can support mobility through guiding the user during all 
his/her movements within the hospital structure. To do so, the system needs data on 
user's actual position, final destination and every node inside the hospital. The set of 
functionalities supported would be: 

1 Personal Identification 
When booking a visit, either via telephone or on-line, patients register using an 
account linked to their telephone number. Therefore when they arrive at the hospital 
and connect to the wireless network through the smartphone, the system automatically 
recognizes their identity via phone number and provides access and application 
download. Alternatively, visitors or patients that get to the hospital with a different 
telephone number from the one associated to their booking can access the services 
provided connecting to the wireless network manually (i.e. entering their 
identification data). 

2 SMS Alerts 
The telephone number is fundamental not only for patient identification, but also for 
extra services like SMS alerts before the visit. The day before the visit the user 
receives an SMS reminding him/her of the visit and providing information about how 
to use the SA service. The SMS contains a link to the application, which is 
downloadable from the internet. 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 63 

 

3 Payments 
The possibility to pay through the device is really advantageous. Indeed: 

- It can optimize queues and reduce people stress; 
- It improves sustainability by reducing tickets and receipts printing; 
- Discounts for mobile payments can be offered to boost people's use of the Smart- 
phone application. 

The use of mobile payments is a strong paradigm-changer because of its new way of 
looking at money transactions. The user can access mobile payment and use phone 
credit or credit card to pay for medical services, parking or just having a coffee. 
People can avoid queues and directly present a digital ticket with a signature that 
matches up with the transaction. Smartphones often have a good resolution of the 
screen that allows the use of 2D scanners to read bar-codes on the monitor of phones. 
When the user pays, the system sends him/her a two-dimensional bar code that will be 
read when the user needs to show proof of payment for the service. 

4 Way finding 
The way finding feature, which is the core of the present research and the 
REMOBILA ASP project, works with three degrees of complexity depending on the 
choice of the users. Consequently, users could choose within three different 
visualization modes. First, users can let the smartphone guide them or choose to 
watch the map where it is shown where they are and the suggested route to destination 
(if the destination is set). Second, if users are technology-oriented they can choose to 
interact with the map, other than visualize it. Third, if the user is a patient the 
application could also show some notes about timing, how much time left before the 
visit, and an estimation of the time left to destination. The system can manage queues 
in real-time thanks to the tracking feature. If the patient has problems, he/she can 
request the help of an operator through the application.  

5 General Services 
The application could provide some general services too, such as booking online. The 
SA represents a powerful platform that can be exploited for different purposes. For 
example, it could be used for ethic marketing, such as sponsoring the donation of the 
“5x1000” to the hospital, or signalling the presence of bar, shops or other services 
when searched by the user. What is more, the way to provide messages must be 
careful planned, in order to respect the environmental and manners rules and the 
users’ tranquillity.  

6 Physically Impaired People 
About mobility inside a hospital structure, a note about physical impaired people is 
necessary. We focused on two categories of physical impaired people that could take 
advantage from the SA: 

- People using wheelchairs: the system can recognize their disability thanks to 
information given during the registration, or can be notified of a temporary 
wheelchair use by the users themselves. Consequently the system can guide the users 
along the best route for wheelchairs. 
- Visually impaired people: the system can recognize these users in the same way 
described for people using wheelchairs. Then, a text-to-speech system can drive the 



64 A. Carlini et al. 

 

patients, also providing next step and timing information. This support would be 
useful also for people whose sight is not good enough to read signs or to read the 
mobile’s monitor. 

3.3 Solution Evaluation 

The evaluation was conducted on the basis of the following criteria: 

- Resolution of users' mobility problems - The interviews pointed out that the mobility 
issues are perceived as a priority. 

- Popularity among users - The interviews conducted not only gathered users' 
requirements, but also tested the popularity of possible solutions among users, 
adopting the Co-Creative approach. Answers showed the most appealing solutions to 
be the TU rather than the SA.  

- Applicability of the solutions to the different clusters - Another important criterion of 
evaluation was the analysis of the clusters supported by the different solutions. Three 
segmentation criteria were applied: technological attitude, familiarity with the 
hospital, mean of transportation used to reach the hospital (see paragraph 2.2). The 
interview outcome showed that the percentage of people appreciating the SA solution 
increases with the decrease of age. It results that Terminal Units are well-adapted to 
all users, while –today– the SA is tailored for users younger than 64. It is important to 
point out that the number of people supported by the SA is doomed to increase in the 
next years. 

- Impact on hospital key requirements - Another important criterion is represented by 
the solution impact on hospital key performances, as illustrated in Section 2. Both 
solutions guarantee improvements in patients’ satisfaction and hospital image, 
respecting patients’ safety. Nevertheless, they are different as far as profitability and 
privacy are concerned. A preliminary comparative profitability analysis sees the SA 
solution prevail. Indeed, assuming comparable additional revenues, software costs, 
and interface development costs, the TU solution also requires the purchase and the 
installation of the kiosks, which are generally expensive. On the contrary, the 
smartphones solution has the advantage of exploiting a device -the smartphone- 
whose cost has been sustained by users themselves. Smartphones prevail in 
guaranteeing privacy too. Indeed, each demanded Terminal piece of information can 
be seen not only by the patient currently using the kiosk, but also by other people 
passing by. On the contrary, smartphones are strictly personal, guaranteeing privacy.  

- Sustainability - The comparison between the TU and the SA solutions leads to  
the following considerations. While mobility is supported by the kiosks through the 
possibility of printing the path to follow, the SA provides all the information on the 
display of the device. Therefore, smartphones allow eliminating the paper depletion 
implied in the usage of the terminals. Furthermore, the use of smartphones enables 
mobile payment, that further reduces paper waste (given by tickets, receipts etc.). 
Finally, the TU solution requires the installation of several kiosks within the hospital, 
which implies high levels of resource consumption both for the production phase and 
for the operating phase. On the other hand, the SA adds functionalities to a device that 
is already owned by users, so that additional resources depletion for producing and 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 65 

 

operating the devices are eliminated. Summing up, the comparison between the two 
solutions sees SA to prevail. 

In conclusion, the Smartphone device appears as better supporting the user 
mobility and the service depletion. The device is purchased by the owner in reason of 
other personal uses/benefits; the confidentiality of information, as well as 
identification and customization, are a natural consequence “by design”. The 
“portability” of information and services is at the maximum value (the device is 
following the person, where for the “totem” solution we obtain the opposite 
condition). Finally, the present availability of services and software assisting peoples 
with handicaps (e.g. TTS, Screenreader, voice control and dictation input, “Ray 
Phone”, “Fifth Sens”, “VizWiz”, etc.) suggests the Smartphone‐based solution as the 
more egalitarian and by consequence the finest.  

4 The Profitability Analysis 

Profitability represents a fundamental requirement. For this reason the financial 
impact of the solution was studied associating strategic impacts (e.g. increased 
mobility service level) and main actions (e.g. purchase and installation of 
infrastructures) to the financial dimensions (i.e. revenues or costs) they have an 
impact on. The analysis was based on the evaluation of some profitability indexes, 
namely Net Present Value and Payback Time. Nevertheless, some differences arose 
with respect to the standard evaluation process [6, 10].  

Therefore, an “evaluation tool” was developed. This tool, built on the basis of the 
analysis of revenue and cost drivers of the project, could be used by any hospital 
partner for a more precise evaluation of the investment. It has a general validity, and it 
supports the evaluation of the SA solution in wide range of contexts. What is more, 
the tool was also used to perform a sensitivity analysis on critical variables. Main 
results are presented hereafter. 

The first step of the economic analysis for the SA was the translation of strategic 
impacts into financial impacts [1], as illustrated in Figure 4.  

The following feasibility analysis studied main financial impacts, reasoning in 
differential terms from the actual state case.  

The new mobility solution is expected to have a positive impact on hospital 
revenues, given by the increase in the mobility Service Level (SL) and the ethic 
proximity marketing. As a result, the total additional revenues per user of the SA can 
be calculated as in Eq 1: 

 

ΔR = ΔRfromCoreActivityPerPerson * Num-users + ΔRfromMarketingActivities           (1) 
 

where ΔR, the total additional revenues, is given from the sum of the additional 
revenues from person related health services times the Num-users (= number of users 
adopting the smartphone solution) and the additional revenues related to additional 
services (not health related). 

A fundamental revenue driver is the number of users adopting the solution. The 
main parameters that influence this number are: 



66 A. Carlini et al. 

 

- number of persons in need of mobility support that go to hospital per day. 
- percentage of smartphones in Italy (nowadays around the 25% of phones); 
- adoption rate of the new solution by patients and visitors. A conservative value for 
this parameter, suggested by hSR, is 3%. The internal variables that would influence 
this number are: effectiveness of the interface, accessibility to impaired people and 
“Service Level” perceived by users. 

Therefore, the total number of users (including in and out patients and visitors) in the 
year t is calculated as in Eq 2:  
 

Userst = Num-people * %peopleNeedingMobilitySupport * Adoption.rate * 
(Adoption-rate-growth)t                 (2) 

 

 

Fig. 4. Transposition of the strategic impact into the financial impact 

About costs estimation, we observed that the main impact of the solution would be 
an increase in efficiency, reducing the cost per person if he/she adopts the solution. 
Cost efficiencies, which increase with the number of users, would be given by: 

-  extra hours cost reduction (the new solution would reduce visits delays); 
-  claims cost reduction (traditionally people experiencing delays result in both image 
costs and a out-of-pocket costs, like reimbursements and similar); 
-  delays cost reduction (out-of-pocket costs, such as unexploited machinery 
activation, unused solution preparation, and similar). 

The solution is also associated to additional cost entries, concerning new hardware, 
software, installation, and training (we detailed and evaluated a possible package; in 
the present article we avoid to present specific solutions and commercial brands). 

5 Final Design and Demonstrator Implementation 

5.1 Choice between “Intelligence” Located on the Client or Server Side 

The first decision taken was whether to put the “intelligence” (i.e. main database and 
main elaboration) on the client side or server side. In both cases the user, who owns a 
smartphone, has to register online - typically at home; then when arriving at the 
hospital he/she can access information previously downloaded, or may receive 
networked information. In the client side approach the smartphone is aware of the 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 67 

 

location of the patient and it is also responsible for location discovery, route 
calculation and identification. The knowledge of the structure is embedded in the 
client so the user can simply open the service on the smartphone, enabling it to show 
information. Using a server to process all the requests about way finding can be more 
complex but the hospital could have some extra benefits: more control on the system, 
awareness of the position of users in real-time and possibility to give users only the 
information they need. The server-side intelligence solution appears to be the most 
interesting; it guarantees a wide accessibility and a lighter client-side burden. 
Therefore this model is considered to be the most convenient to develop. 

5.2 Designing the Infrastructure 

The standard solutions exploiting GPS signals are not sustainable due to the lack of 
GPS coverage in indoor areas. To support the smartphone location the installation of a 
location-aware WLAN might be sufficient; this structure might also satisfy other 
hospital needs nowadays emerging, such as asset tracking, or providing different and 
new services to the patients.  

We found, on the commercial market, systems able to track up to 2500 devices 
simultaneously, a number in line with the visitors to a modern extended hospital (we 
verified the presence of other systems with more powerful performances as well). 

The chosen system [2] uses a distance-based technique (lateration) to discriminate 
the position of the mobile device by using received signal strength (RSS) measured by 
at least 3 access points surrounding it. Proper placement of access points should be 
respected in order to exploit the full performance potential of the system. Antennas 
should be mounted such that they have a clear 360° view, without being blocked at 
close range by large objects. The distance between deployed access points can have 
an impact on location performance, as well as the performance of co-resident voice 
and data applications.  

In our pilot study, we considered the criticalities of paths in the hospital and we 
dimensioned the system accordingly (Figure 5).  

 
Fig. 5. An example of deployment of the access points 



68 A. Carlini et al. 

 

The WLAN infrastructure allows the installation of third-party location clients to 
reside in the Unified Wireless Network in a complementary fashion to Wireless 
Control System (WCS), or in substitution to it. WCS is meant to keep track of every 
device located in the controlled area, but does not send this information to the objects 
tracked. For this reason it is needed an additional location client with the duty of 
notifying each single smartphone of its own position. Besides the plain sending of the 
position to the tracked device, according to the “Server-Side Intelligence” philosophy 
the system has to calculate the route from the current position to the destination and 
send it to the smartphone. Finally, an ad-hoc SW installed on the smartphone has the 
task of showing this information and managing the interaction with the user. 

5.3 Designing the Software Application 

The point of arrival of the project is represented by the development of a software 
application to be installed on a smartphone that simulates the navigation along a 
demonstrative path. In this context, the user interface should guarantee the most clear 
and quick access to the functions of the application. The demonstrator mainly consists 
in the elaboration of the mobile application interface, which is a key element in 
determining the success or the failure of the solution. We developed different 
interfaces [11] for the different clusters of users identified.  

Two alternative scenarios were taken into consideration: smartphone models that 
do not support native applications and smartphone models that support native 
application. 

- Web-based location system interface - This solution is referred to smartphones that 
have access limitations, due to the API provided by common browsers and poor 
performance of non compiled code. For these smartphones we developed a simplified 
solution based on the access to services via browser. When the user joins the hospital 
wireless network, the main landing page could automatically pop up and open the 
hospital web service. The website provides a really simple interface where users have 
to identify themselves. Note that the system uses https protocol as security measure. 
- Native application interface - This solution is referred to smartphones that have full 
access to all functionalities provided by the application. When users join the hospital 
wireless network, the main landing page automatically pops up and supplies the link 
to download the native application. Its interface can change from user to user 
according to their specific needs and aptitudes.  

A 2D map cannot cover all the floor areas that compose the hospital buildings at one 
sight. A good compromise between simplicity and completeness is given by a really 
essential 3D map, where the volumes are represented by few lines while the 
visualization of the floors remains in 2D. The full-3D representation is the best 
solution for navigating the hospital space, since it allows virtual navigation and 
supports next step information properly. Indeed, 3D virtual space combined with a 
camera model is one of the most accepted ways to create virtual interactive 
environments [7]. 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 69 

 

On the basis of the above considerations, we developed and prototyped three 
different solutions, selectable from the home page: (1) next move information, (2) 2D 
map, and (3) 3D map. The three associated icons are located in the home page in an 
effective way. In western culture, attention focuses first on the top-left corner of the 
screen, and then jumps to the areas with the biggest characters. The easiest navigation 
modality view, targeted to non-digital natives, has hence to be located where the 
attention focuses (top-left corner) and is associated to a graphic icon. The three 
modalities, illustrated in Figure 6, are detailed as follows: 

Simplified Navigation view - It shows essential information only, i.e. next step from 
current position to next node. This kind of interface can be used with headphones too, 
thanks to a text-to-speech software agent. Consequently, it is suitable for people that 
prefer audio indication and, more important, for visually impaired people and 
wheelchair users. We consider that wheelchair users would be facilitated by the use of 
headphones because it guarantees the possibility to free their hands. 

2D Navigation view - This view gives access to the 2D map. Through it, it is possible 
to see an overview of the whole path from the current position to the final destination, 
and to search for places of interest. The application highlights the places of interest in 
relation to the user condition. This view is also useful when leaving the hospital, as 
the “park button” could guide the user to the car. 

3D Navigation view - This last view is the most complex, since the application shows 
a 3D visualization of the whole hospital structure. Users can navigate the 3D map 
with the typical gestures of interaction in mobile applications (e.g. tapping).  

 

 

Fig. 6. The three interfaces for path finding 



70 A. Carlini et al. 

 

6 Conclusions  

REMEDIA project has been a remarkable example of synergic work, where the 
harmonization of different expertises (engineering, management, and architecture) of 
the team members has permitted the success of the project, combining media-oriented 
interfaces, architectural reproductions of hospital buildings, and studies of technical 
and economical feasibility. The outcome of this collaboration is the design of the 
Smartphone Application (SA) for guiding users, which is a novel interpretation of the 
mobility support in which technology represents an important but not fundamental 
tool.  

Indeed, the most challenging task to be faced nowadays is not the development of 
the technology, which has reached remarkably high levels, but its adequate use in 
relation to users' needs. To do so, hospital users’ interviews were of extreme value, 
providing requirement insight for the final solution. A strong contribution was also 
given by the evaluation of the actual state of patients and visitors and the flow within 
the hospital public areas, which allowed us to spot the problems related to the outer 
hospital paths. 

Translating the theoretical design of the solution into an implementable concept 
was an interesting and challenging task. We chose wireless triangulation for the 
assessment of smartphones location, dimensioned the infrastructure in terms of access 
points and proposed a break-even implementation approach. With regard to the 
feasibility of the solution, we developed an “evaluation tool” to be used by the 
hospital for the precise evaluation of the investment. Finally we developed a software 
application to be installed on smartphones that simulates the navigation along a 
demonstrative path, including a variety of navigation modalities tailored to different 
segments. 

The designed solution is now taken into consideration by hSRl, presently under 
huge management transformation, and definitively in favour of extending e-services.  

 
Acknowledgments. The authors acknowledge the Alta Scuola Politecnica for hosting 
their REMEDIA Project, aimed at designing the “hospital of the future”. The work 
would not have been possible without the strong interaction with Alberto Sanna, head 
of the “IRIS” Scientific Institute San Raffaele in Milan. 

References 

1. Azzone, G., Bertelè, U.: Valutare l’innovazione. Analisi e controllo degli investi-menti. 
Etaslibri, Italy (1998) 

2. Cisco Systems Inc.: Enterprise Mobility 4.1 Design Guide, San Josè, CA, USA (2009).  
3. Dente, B.: Public policy between authority and consensus – private communication (2011)  
4. Hospital Build Asia 2011 Exibition & Congress, Marina Bay Sands, Singapore (2011)  
5. Ishikawa, K.: Cause and effect diagram. In: Proceedings International Conference on 

Quality Control, Tokyo, Japan, pp. 607–610 (1963) 
6. Jovanovic, P.: Application of sensitivity analysis in investment project evaluation under 

uncertainty and risk. International Journal of Project Management 17, 217–222 (1999) 



 Defining New Structural and Mobile Support to Improve Hospital Facilities Access 71 

 

7. Manovich, L.: The Language of New Media. MIT Press, Cambridge (2001) 
8. Mathur, V.K.: How Well Do We Know Pareto Optimality? How Well Do We Know 

Pareto Optimality? Journal of Economic Education 22(2), 172–178 (1991) 
9. Optimizing Patient Flow: Moving Patients Smoothly Through Acute Care Settings. IHI 

Innovation Series white paper. Institute for Healthcare Improvement, Boston (2003) 
10. Pindyck, R.S.: Irreversibility, Uncertainty, and Investment. Journal of Economic 

Literature 29(3), 1110–1148 (1999) 
11. Raskin, J.: The Humane Interface: New Directions for Designing Interactive System. 

Addison Wesley (2000) 
 
 



 

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 72–86, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Regulated Software Development –  
 An Onerous Transformation 

Oisín Cawley1,*, Xiaofeng Wang2, and Ita Richardson1  

1 Lero-The Irish Software Engineering Research Centre, 
University of Limerick, Ireland 

{Oisin.Cawley,Ita.Richardson}@lero.ie  
2 Free University of Bozen 

Bolzano, Italy 
xiaofeng.wang@unibz.it 

Abstract. Software development within regulated settings is becoming more 
and more common place. Compliance typically involves saying what you do 
and doing what you say. However, in some domains, especially safety-critical 
ones, it needs to be more than simply following the rules, and should be 
something which everybody in the organisation supports in their daily tasks. 
This can be difficult to achieve and requires an organisational transformation, 
but once begun, sets the foundation on which the software development process 
can evolve. 

Keywords: Regulated Industry Standards, Software Process, Software Quality, 
Medical Information Systems. 

1 Introduction 

Many years ago there was an advertisement on Television which went something like, 
“If you had the only car in the world, you could drive where you like, but you haven’t 
so you can’t”. It was obviously a road safety commercial to re-enforce acceptable 
rules of driving, but this is very similar to what we are experiencing in the world of 
regulated software development today. If your application was the only software 
running, with no interaction with other systems, and no possible effect on third parties 
then who cares how you develop it? 

However, this is not the case for an increasing number of companies. Industries 
such as the financial services, safety-critical domains like aviation and medical 
devices, and companies listed on the U.S. stock exchange have seen the conditions 
under which they operate change significantly in recent times. These changes have 
affected the software development processes within such companies by introducing 
software compliance rules. These additional requirements may take various forms 
depending on the type of regulations which apply. What is important to know is that 
they introduce some significant changes which not only can be time consuming and 
                                                           
* Corresponding author.  



 Regulated Software Development – An Onerous Transformation 73 

 

expensive for the software development teams, but have a wide affect within the 
broader organisation.  

Our research has shown that the process changes which must be introduced to 
satisfy the regulations, transform peoples’ daily activities and therefore need to be 
given the attention and care due of any transformation process. The focus or intention 
of the regulations is important. A clear understanding of this will drive: the design of 
your new development processes, where a concentrated change management process 
will be needed, and the type and level of detailed evidence to be maintained for those 
crucial and sometimes painful audits. 

2 Research Process 

In this paper we have drawn on research into regulated software development from 
both a financial and safety-critical perspective. 

One author has 11 years experience working in a large US multinational (MyOrg) 
(Cawley and Richardson, 2010), and 7 of those under the Sarbanes-Oxley (SOX) 
regulations (www.soxlaw.com). MyOrg is a leader in global supply chain business 
process management. NASDAQ listed, it has over 25 centres in 14 countries and has 
a diverse and interconnected collection of information systems which are developed 
and maintained by a combination of in-house and outsourced personnel. By means of 
reflective analysis we examined the effects on the software development and support 
teams when the SOX regulations came into effect in 2002. 

With a growing interest in modern software development methodologies (SDMs) 
such as Agile and Lean, we performed a mapping study of these SDMs within safety-
critical regulated domains (Cawley et al., 2010). The resulting state-of-the-art gave us 
a solid understanding of the development issues in such domains as Aviation, 
Automotive, and Medical Devices. 

The Medical Device industry is seen as a growth area in many countries, and is fast 
developing into a race for world leadership. As an industry, which was somewhat 
immune to cost pressures, it is now feeling the effect of the demand for lower cost 
products. By means of an in-depth case study at a medical device manufacturing plant 
(MedTech), we examined the issues affecting the software development and which 
typically lead to the adoption of heavy SDMs (Cawley et al., 2011). MedTech is a US 
multinational with over 25,000 employees and develops medical solutions. A series of 
semi-structured interviews brought to light the concerns people had with the software 
development life-cycle (SDLC) and how the regulations had impacted it. 

We have synthesised this data into a model of influences which is presented in this 
paper. 

3 The Effects of Compliance 

The SDLC within a regulated area is reflective of a number of key influences. We 
synthesised our findings into a common model, categorising the influences into 4 
groups. These categories together with some of their main influences are depicted in 
Figure 1, with a selection of exemplars included for each.  



74 O. Cawley, X. Wang, and I. Richardson 

 

3.1 Regulations 

At the top of Figure 1 we have the first of these contextual elements, regulations. Why 
do we have regulations and how important are they in terms of the development of 
medical device software? According to (Campbell, 2004), regulations are simply a 
form of social organisation, and therefore supports the definition of regulations used 
in this study as being: “rules, principles, or conditions that govern procedure or 
behaviour” (The-Free-Dictionary, 2011). There are those who argue that there is too 
much regulation and  that not enough research has been done in assessing the 
adequacy of regulations in achieving their intended aims (Campbell, 2004). For 
example, regulations governing financial institutions, such as the Basel Accord 
(Basel, 2004) and the Sarbanes-Oxley Act (SOX, 2002), did not prevent the global 
banking crises of 2007. 

There are, however, different types or levels of regulation ranging from low (self 
regulation), medium (Government regulation), to high (Litigation) (Bush, 2007). It is 
only when a lower form of regulation is seen to be ineffective is it raised to a higher 
level. Nonetheless, it is difficult to argue against high levels of regulation which aim 
to ensure human safety. For example, the standards and recommended practices 
issued by the Association for the Advancement of Medical Instrumentation (AAMI), 
aspire to a “continued increase in the safe and effective application of current 
technologies to patient care” (ANSI/AAMI/IEC, 2006), a laudable objective. While 
there is little debate about the merit of such motives, the AAMI does however have an 
additional objective, namely “the encouragement of new technologies” (Ibid). There 
is therefore a balance which needs to be struck between this drive for innovation and 
need for a high degree of device safety and the consequent higher level of regulation 
(Ziegler, 2006).  

Other safety-critical domains such as automotive, aviation, and nuclear have 
similar concerns when it comes to human safety.  However, the domains differ with 
respect to the governing regulations. Given the technical specialisation of each area, 
this is not surprising.  There is a consequent need to tailor development activities such 
as risk management for the specific domain in which the systems are deployed. For 
example, MDs govern a wide range of products including many which will be 
operated by the patient themselves.  

Each country has its own specific regulatory requirements when it comes to 
medical device software. Within the United States it is governed by the Code of 
Federal Regulations Title 21. Within the European Union (E.U.) it is the Medical 
Devices Directive. More and more, such federal documents are allowing for 
adherence to international standards such as (ISO, 2003, ISO, 2007, 
ANSI/AAMI/IEC, 2006), to satisfy these requirements. It is the influences, affected 
by such international standards and guidelines, which make the medical device 
software development process unique. Our research has found that medical device 
companies predominantly employ what can be described as heavy weight software 
development methodologies to ensure all required steps are taken to satisfy regulatory 
requirements.  

Within our model, the arrows emanating from the Regulations box are shown 
leading to the other three categories, indicating that compliance with the regulations 
must be addressed within multiple levels and contexts. 



 Regulated Software Development – An Onerous Transformation 75 

 

 
 

 
 

F
ig

. 1
. C

at
eg

or
ie

s 
of

 I
nf

lu
en

ce
s 

on
 th

e 
S

D
L

C
 w

ith
in

 a
 R

eg
ul

at
ed

 C
on

te
xt

 



76 O. Cawley, X. Wang, and I. Richardson 

 

3.2 Organisation 

The term ‘Organisation’ can be a nebulous term and so for clarification the following 
definition is used: “[An] organisation is a complex social system and is the sum of 
many interrelated variables. The operations of the organisation are influenced by the 
external environment of which it is part” (Mullins, 2004). 

The relevance within our theoretical model is that the organisation influences the 
software development process by defining development tasks and delegating roles 
(such as developers and testers), responsibilities (such as project managers and 
validation engineers), and authority (such as approvals). In addition, its relationship 
with the surrounding environment is an important aspect relevant to the model as 
identified by the link with the regulations box. The regulatory context will influence 
the organisation’s ethos in terms of ensuring safe and secure software, the 
workforce’s attitude to risk management, and their sense of responsibility. 

For example, within the MD regulations, the international standard ISO 
13485:2003 (ISO, 2003) calls for a documented quality management system. In large 
companies, that will be satisfied at multiple levels. Firstly, the organisation may 
develop and publish corporate policies and procedures which describe the various 
processes at a high level. This is then complemented by specific standard operating 
procedures (SOPs) at the business unit level, and/or a software development process 
documents detailing software practices. Lower level processes which align with 
higher level ones demonstrate a coherent and unified approach, across the whole 
organisation, to addressing the regulatory requirements. 

The organisational guidelines and supports for the software development process 
often require significant investment. To protect that investment, an organisation will 
often seek to employ a formal software development methodology which is future 
proof (teachable), provides consistency, generates explicit deliverables, and provides 
an engineering-like development discipline (Roberts et al., 1998). The organisational 
influence plays a crucial role when it comes to the implementation of such a software 
development process or implementing changes to an existing process, for example, 
when entering a regulated industry. Such process changes may affect the way people 
do their jobs or indeed the job descriptions themselves, and since changing work 
practices is not a trivial undertaking, it should be dealt with like any organisational 
transformation (Kotter and Schlesinger, 1979), (Small and Downey, 2001). 

3.3 Software Management 

The software management box incorporates the overlapping activities of managing 
the tasks, resources and schedules, combined with the specific practices (many of 
which are of a technical nature) needed to perform the various activities within the 
SDLC. This category naturally influences the SDLC since it will be within these 
competencies, capabilities and situational contexts that the SDLC will need to be 
framed. For example, the technical nature of the product will automatically dictate the  
 



 Regulated Software Development – An Onerous Transformation 77 

 

type of skills required and the type of development environment needed. The 
availability or lack or availability of these resources will shape the resulting SDLC 
(Kettunen and Laanti, 2005). In addition, the existing technical infrastructure will go 
some way towards assisting or hindering the adoption of a specific SDLC approach. 
For example a company which uses a language not conducive to an object oriented 
approach (Poppendieck and Poppendieck, 2003) (such as earlier versions of Visual 
basic, Fortran and Pascal), may have difficulty in following an SDLC which calls for 
such practices. Similarly, unless some investment is made in additional hardware 
and/or software, an SDLC which promotes test driven development (Beck, 2002) and 
continuous integration (Hibbs et al., 2009) is unlikely to be proposed where the 
environment is not adequately equipped. 

Within the domain of MD software, there is an inherent risk to human safety. 
Consequently, the industry employs various techniques to reduce this risk of harm. 
Similar to other safety-critical domains, techniques such as Fault Tree Analysis, 
Failure Mode and Effects Analysis, Failure Mode Effects and Criticality Analysis 
serve to assist in identifying possible faults, their criticality and the probability of 
their occurrence. However, specific to the MD domain are the regulations as defined 
in ISO 14971 (Application of risk management to medical devices) (ISO, 2007) and 
IEC 62304 (Medical Device Software life cycle processes) (ANSI/AAMI/IEC, 2006). 
These standards lay down the requirements for ensuring that risk management (RM) 
is appropriately catered for within the SDLC. By assigning each software system a 
software safety class, the manufacturer can use it as a guide to the specific processes 
and tasks that are needed as part of their development process. 

Different people and organisations approach project management of software 
development differently. Depending on the perceived importance of the software, for 
example is it seen as a strategic competitive advantage (Porter, 1998), (Prahalad and 
Hamel, 1990), or merely an asset to be managed (Ben-Menachem, 2008), (OECD, 
2011), the SDLC will reflect this. A company which sees the software as being 
strategically important may also be more supportive of pursuing lean or agile 
approaches such as iterative development (Rasmussen et al., 2009) and/or closer 
contact between developers and end users (Rottier and Rodrigues, 2008) in order to 
improve that key process area. 

3.4 People 

An obvious influence on the software development process are the people who are 
involved with it on a daily basis. There are a myriad of areas which have been studied 
over the years surrounding the issues with software development due to the human 
condition. For example the fundamental problems associated with knowledge 
management in such a specialist environment continues right up to the present day 
(Robillard, 1999), (Damian and Zowghi, 2002), (Ye et al., 2008), (Levy and Hazzan, 
2009). Another factor is the motivation of the software developers themselves (Burn 
et al., 1991), (Sharp and Hall, 2009), (Treude et al., 2011), something considered to 
be the most impactful on productivity (Boehm, 1981). Indeed unmotivated developers 



78 O. Cawley, X. Wang, and I. Richardson 

 

can be seen as sources of negative productivity and a liability to a project’s success 
(McConnell, 1998). 

The effect of regulatory compliance is very notable at a personnel level as it is 
precisely the human activities that are being governed. When moving from an 
unregulated into a regulated environment, unless the work processes are already 
fulfilling the regulations (experience suggests that this is unlikely), there is a need for 
peoples’ daily activities to change. For example, both SOX and MD regulations look 
for some level of independence in certain key areas. SOX looks for segregation of 
duties when it comes to code deployment or even access to a production system, 
while MD regulations expect independence between developers and validation 
engineers. The typical approaches to activities such as communication and knowledge 
transfer, where important ad hoc conversations go undocumented, or an approval is 
given verbally, are no longer acceptable. When people are used to operating in an 
environment where issues can be fixed “on the spot”, these tighter controls can be 
very frustrating for both the technical employee as well as for the person awaiting 
resolution. 

4 A Transformation Process 

In 2007 the European Medical Device Directive (MDD) expanded its definition of a 
MD to include stand alone software in its own right to be a possible MD (McHugh et 
al., 2011). As was the case when SOX was enacted in 2002, this is where a 
transformation process will be necessary. In other words, existing processes and work 
habits need to change, and as with any change process requires disciplined attention 
to some important aspects (Small and Downey, 2001). 

This transformation is not only a change in physical activities such as recording 
test results or maintaining traceability, but equally requires a change in mindset. For 
example, the MD regulations hold risk management (RM) (safety risk as opposed to, 
for example, project risk) as a critical aspect of the product development: 

“The manufacturer shall establish, document and maintain throughout the life-
cycle an ongoing process for identifying hazards associated with a medical 
device, estimating and evaluating the associated risks, controlling these risks, 
and monitoring the effectiveness of the controls” (ISO, 2003). 

The words “throughout the life-cycle an ongoing process” means it is not something 
that starts and finishes during a particular phase of the life-cycle but is something that 
must be woven into the entire process. From a software point of view, RM is 
completely irrelevant without the context of the surrounding device or people and 
processes. A software failure alone cannot cause harm. It is important therefore that 
the interface between the software team and other teams, such as the hardware 
developers and quality engineers, supports an ethos of thinking about hazards in a 
cross functional holistic sense at all times (Figure 2).  



 Regulated Software Development – An Onerous Transformation 79 

 

 

Fig. 2. SDLC with RM across the entire process 

In order to structure the discussion around such a transformation we utilise the four 
categories identified in Figure 1 and draw on specific examples for clarity. 

4.1 Organisation 

Changing work practices, in order to be compliant, requires the generation of a sense 
of urgency typical of a transformation process (Kotter, 1995). However, if this 
urgency is not communicated in a timely manner, it can lead to severe teething 
problems when it comes to being audited. Within MyOrg, the first dry-run SOX audit 
presented some non-conformances because there was no evidence of compliance 
dating back to the official launch date. Although evidence could be collected from 
dates after this, the issue resulted in a painful retrospective evidence gathering 
exercise. 

Similarly, within the MD regulations, ISO 13485:2003 (ISO, 2003) states that 
management has the responsibility of “communicating to the organisation the 
importance of meeting customer as well as statutory regulatory requirements”. 
MedTech’s approach to this was to develop a mandatory training schedule for all 
employees on the newly formed product development process, administered by the 
human resources department. 

Leadership is an important attribute in a transformation process. Especially within 
larger organisations, the need for a strong guiding hand is required (Kotter, 1995). 
This need manifests itself at a number of levels, however, certain important roles and  
 



80 O. Cawley, X. Wang, and I. Richardson 

 

responsibilities will be mandated by the regulations. SOX, for example, holds the 
senior executives as individually responsible for the accuracy of the financial reports. 
MD standard ISO 13485:2003 holds “Top Management” responsible for “evidence of 
its commitment to the development and implementation of the quality management 
system” and for the implementation of an ongoing risk management process. These 
typically translate into the formation of specific roles within the company and the 
delegation of authority to ensure their implementation. MyOrg instituted a global 
SOX compliance officer, while MedTech formed a quality assurance department 
which took guidance from a corporate compliance group responsible for ensuring 
internal processes were compliant.  

A final comment from an organisational perspective is to realise the need to evolve 
the policies and procedures once the initial transformation is complete. No matter how 
well designed and executed this is, it will be received with mixed opinions. It is 
incumbent on senior management to be aware of and solicit this feedback in order to 
improve. Within MedTech, they carried out “an upgrade to the corporate process 
because we’ve been using it for almost 3 years at this stage now. So we’ve gotten 
feedback from the different sites and we’ve released a common overarching software 
policy that governs the whole corporation” (a senior software quality engineer). 
Similarly, within MyOrg, they reviewed the processes internally one year after SOX 
was introduced, leading to a revision of the process documents, thus reducing the 
associated overheads. 

4.1.1   The Bottom Line 
If the focus of a organisation is to make money (Goldratt, 1992), then the cost of 
operations is a critical concern. Compliance costs money. These costs come in many 
forms, such as employee training, longer project timelines, additional verification & 
validation (V&V), audits (internal and external), data archiving and staying on top of 
regulatory updates. Within MyOrg, the software development group automatically 
added 20% to project estimates to account for the extra activities. This reduced as 
time went on and processes got more embedded in daily activities but from a business 
management point of view caused some alarm as project costs jumped. MedTech had 
a similar experience which led to many projects not proceeding at all. 

The requirements around V&V, for example within the MD regulations, in 
addition to adding cost, also cause confusion. The confusion resides with the 
regulatory documents, in that they are necessarily broad based and unspecific in terms 
of how V&V should be performed (Vogel, 2010). In fact this is a common criticism 
of the regulatory documents in general: “I think the regulations haven’t reached full 
maturity in terms of what’s needed. Certainly the FDA regulations, the actual text of 
it, is a couple of paragraphs. A lot of it is interpretation after that” (Senior Engineer, 
MedTech). Because of this lack of clarity and the risk averse nature of the business 
units, there is a tendency to do too much in order to be compliant. Speaking about  
 



 Regulated Software Development – An Onerous Transformation 81 

 

their validation process, a MedTech project leader said “Personally I think we over 
club it a lot of the time”. Not only can the physical validation be overdone, but the 
documentary evidence required around it generates a lot of concern: “We’re caught in 
this deadlock of paperwork... The physical work is costing me X, and 3 to 4X is what 
it’s costing me to actually fill out the paper work to validate it”. 

While cost pressures continue to increase, this additional cost is an unwelcome 
burden. However, this reality needs to be reflected in the expectations of the business 
management teams. It also behoves the software development teams to find ways to 
streamline these new tasks to minimise cost. The following exemplifies the point: 
“Since [the process introduction] we’ve been looking and going, ‘Oh my God’, this 
has nearly crippled the business, we need to Lean it and take it all back out again” 
(Principle Engineer, MedTech). Software development techniques, such as test driven 
development, automated testing, continuous integration, and automatic document 
generation can aid in simplifying the processes.  They can support finding and 
eliminating defects as early as possible, and can also help ease the transformation 
process by implementing a more lean and agile approach (Cawley et al., 2011). 

4.2 Software Management 

Depending on the industry, the regulations will have different levels of tolerance to 
compliance. Moving from unregulated to regulated requires an understanding of that 
level of tolerance. Within the MD domain, for example, there is little tolerance when 
it comes to demonstrating compliance “If you’re Microsoft you can release something 
that has a tolerable quality level but it still has problems with it. Whereas in our 
environment it’s a lot more, you cannot go any further until you have done this. You 
must tick 100% of the boxes not 95% or 80%” (MedTech Senior Engineer). Within 
safety-critical companies, management therefore have little appetite when it comes to 
changing established processes for fear of falling foul of the regulators. Nevertheless, 
the modern business environment is calling for more efficient and cost effective 
processes, and so change is inevitable. 

To ensure compliance, a common approach to software project management is a 
phase-gate process. The salient point is the identification of specific development 
phases with clearly defined entry and exit criteria. Only when these criteria have been 
fulfilled can you enter/progress to the next stage. This approach seems to be a 
consequence of the regulations “The regulations have driven us, or the interpretation 
of the regulations have driven us towards meeting particular gates or milestones or 
particular steps” (MedTech Senior Engineer). 

The regulations, however, do not prescribe any particular methodology, even 
though they may look and read like they favour such a waterfall-type approach. For 
example, ISO14971:2007 (ISO, 2007) states that “This standard does not require a 
particular software development life-cycle”. What this allows for then, is the potential  
 



82 O. Cawley, X. Wang, and I. Richardson 

 

to evolve the development process and look at more efficient approaches. Our 
research has seen that companies are looking to the advantages that might be gained 
from agile methodologies such as eXtreme Programming (XP) and Scrum and, 
consequently, finding the evolution of their SDLC less problematic than anticipated 
(Cawley et al., 2010). 

Evolving your company’s software development process, typical in un-regulated 
industries, should be no different within regulated domains. In fact, we would suggest 
that the influences of the regulations lead to the adoption of inefficient development 
processes. This can be attributed to a lack of clarity/understanding and fear of non-
compliance. Once the initial process transformation occurs and becomes embedded, 
we suggest that companies will start finding weaknesses and will need to adjust their 
software processes accordingly. These changes will be in many forms such as more 
effective resource scheduling or implementing lean and agile practices. Within 
MedTech, they reduced the time for a typical validation process by 30%: “When we 
started out, there were validations that were effectively ongoing for 6, 9 months that 
just got bogged down and ran into problems ... now we were saying we’re going to do 
this and we’re going to complete it in 3 months”. By realising that resources were 
being inefficiently scheduled, they examined ways to address it, such as load 
levelling. Similar to the Kanban system in lean manufacturing (Anderson, 2010) and 
using cards to represent different activities within the software project,  they identified 
where bottlenecks were occurring: “The card represents something, so in my case it 
was representing a validation protocol or validation execution” (MedTech, Senior 
Engineer). By making the issues visible it was easier to discuss and address them “It 
was a bit like clearing the jam in the pipe. Once you got them moving you got a big 
flow, it made a big difference”. 

In addition, being a little less dogmatic when it came to fully completing 
documentation, allowed them to achieve faster prototype systems without breaching 
regulations: “... we discovered through pain that we need to give them a piece of 
equipment and let them run it for a while and they come back and tell you what they 
actually really want”. 

4.3 People 

An organisation can’t change unless its people change (Mathiassen et al., 2005). One 
way to achieve this is to issue new SOPs for project activities. Before rolling these 
out, however, it is important for employees to be brought up to speed on why there is 
a need for change and how the new SOPs satisfy that need. If this is not clearly 
enunciated then people may look for shortcuts. As a software developer at MedTech 
put it: “Before, we thought the system wasn’t great and this [the new process] came 
along which probably was worse. I don’t know how this came about”. This lack of 
clarity/buy in can result in short cutting or working outside the defined process: “You 
find that there’s an awful lot of background work done before we start the 
development proper...We officially don’t know about that” (Senior Software Quality 
Engineer, MedTech). 
 



 Regulated Software Development – An Onerous Transformation 83 

 

A further difficulty with transforming work practices is coping with legacy 
systems. Older products, developed using previous processes and practices, may not 
be suitably designed or have available the requisite artefacts to suit the new process. 
In this case, software modifications may have to be performed differently depending 
on the project. In addition, if an employee is assigned only to such legacy systems, 
then, despite having been fully trained, they get very little exposure to the new 
processes and are potential liabilities if assigned to projects using the new approach. 
As stated by a MedTech software developer about the new process: “It’s 2 years here 
in [MedTech] that they’ve started doing it. I actually haven’t worked on a project yet, 
in the development phase that has used it”. 

Transforming employee work practices is therefore a protracted affair and requires 
careful implementation and monitoring until the practices start to get embedded: 
“Once you get to know what you need, and the order of things, after that period of 
time it becomes second nature” (MedTech Software Developer). 

5 Discussion and Recommendations 

Regulatory compliance from a software development perspective can be daunting for 
a company which is unfamiliar with it. The effects of regulation are widespread 
within an organisation and, due to the inexact nature of the regulatory documents, 
compliance can lead to inefficient and heavy development lifecycles. 

This of course does not have to be the case. It is important to really understand the 
intention of the regulations, and once that is crystal clear, define the processes 
accordingly. We should remember that the people best suited to determining how to 
achieve the objectives of the regulations are the people who work in these specific 
contexts.  

Each company is different and so a one-size-fits-all approach will not work. 
Rolling out an umbrella policy or procedure across an entire organisation will lead to 
inefficient work practices. Even within companies, different departments will need to 
have flexibility in how they shape their processes. For example, the research and 
development department needs to be free to innovate without getting bogged down in 
red tape. In addition, because the software development process is a collaborative 
process, the overlapping between departments needs to be smooth. 

We should remember that many of the activities mandated by the regulations are 
probably already being performed to some degree. There is nothing ground breaking 
in what they look for, just a more robust method of ensuring the right things are 
happening. Becoming compliant therefore requires a careful transformation process 
which takes a multi-layered view. Once this initial transformation effort happens, the 
way is paved for an improvement process which evolves the SDLC. 

We conclude with a series of recommended steps, shown in Figure 3, which can 
assist the successful introduction of regulatory compliant software development 
processes within a medical device organisation. 



84 O. Cawley, X. Wang, and I. Richardson 

 

 

Fig. 3. Suggested steps for regulated process implementation 

Acknowledgements. This research is supported by the Science Foundation Ireland 
(SFI) Stokes Lectureship Programme, grant number 07/SK/I1299, the SFI Principal 
Investigator Programme, grant number 08/IN.1/I2030 (the funding of this project was 
awarded by Science Foundation Ireland under a co-funding initiative by the Irish  
 

FRAME OF 
MIND 

LEADERSHIP 

CLARITY 

COMMUNICAT
E 

DELIVER 

DELIVER 

DELIVER 

COMMUNICAT
E 

REVIEW 

STAY 
INFORMED 



 Regulated Software Development – An Onerous Transformation 85 

 

Government and European Regional Development Fund), and supported in part by 
Lero - the Irish Software Engineering Research Centre (http://www.lero.ie) grant 
10/CE/I1855. 

References 

1. Anderson, D.J.: Kanban. Blue Hole Press (2010) 
2. ANSI/AAMI/IEC. 62304:2006 Medical Device Software-Software life cycle processes. 

Association for the Advancement of Medical Instrumentation (2006)  
3. Basel: Basel II Accord (2004), http://en.wikipedia.org/wiki/Basel_II_ 

Accord (accessed July 31, 2012)  
4. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional (2002) 
5. Ben-Menachem, M.: Towards management of software as assets: A literature review with 

additional sources. Information and Software Technology 50, 241–258 (2008) 
6. Boehm, B.: Software Engineering Economics. Prentice Hall (1981) 
7. Burn, J.M., Couger, D., Ma, L., Tompkins, H.: Motivating IT professionals-the Hong 

Kong challenge. In: Proceedings of the Twenty-Fourth Annual Hawaii International 
Conference on System Sciences, January 8-11, vol. 4, pp. 524–529 (1991) 

8. Bush, W.R.: Software, regulation, and domain specificity. Information and Software 
Technology 49, 44–54 (2007) 

9. Campbell, M.K.: Regulations. IEEE Potentials 23, 14–15 (2004) 
10. Cawley, O., Richardson, I.: Lessons in Global Software Development – Local to Global 

Transition within a Regulated Environment. In: European Systems & Software Process 
Improvement and Innovation, Grenoble, France. Springer (2010) 

11. Cawley, O., Richardson, I., Wang, X.: Medical Device Software Development - A 
Perspective from a Lean Manufacturing Plant. In: O’Connor, R.V., Rout, T., McCaffery, 
F., Dorling, A. (eds.) SPICE 2011. CCIS, vol. 155, pp. 84–96. Springer, Heidelberg (2011) 

12. Cawley, O., Wang, X., Richardson, I.: Lean/Agile Software Development Methodologies 
in Regulated Environments – State of the Art. In: Abrahamsson, P., Oza, N. (eds.) LESS 
2010. LNBIP, vol. 65, pp. 31–36. Springer, Heidelberg (2010) 

13. Damian, D.E., Zowghi, D.: The impact of stakeholders’ geographical distribution on 
managing requirements in a multi-site organization. In: Proceedings of the IEEE Joint 
International Conference on Requirements Engineering, pp. 319–328 (2002) 

14. Goldratt, E.M.: The Goal: A Process of Ongoing Improvement. North River Press  
(1992) 

15. Hibbs, C., Jewett, S.C., Sullivan, M.: The Art of Lean Software Development. O’Reilly 
Media (2009) 

16. ISO: ISO 13485:2003 Medical devices – Quality management systems – Requirements for 
regulatory purposes International Organisation for Standardisation (2003)  

17. ISO: ISO 14971:2007 Medical devices – Application of risk management to medical 
devices. International Organisation for Standardisation (2007)  

18. Kettunen, P., Laanti, M.: How to steer an embedded software project: tactics for selecting 
the software process model. Information and Software Technology 47, 587–608 (2005) 

19. Kotter, J.: Leading change: Why Transformation Efforts Fail. Harvard Business Review 73 
(1995) 

20. Kotter, J.P., Schlesinger, L.A.: Choosing strategies for change. Harvard Business 
Review 57, 106–114 (1979) 

 



86 O. Cawley, X. Wang, and I. Richardson 

 

21. Levy, M., Hazzan, O.: Knowledge management in practice: The case of agile software 
development. In: 2009 ICSE Workshop on Cooperative and Human Aspects on Software 
Engineering, CHASE 2009, Vancouver, BC, Canada, May 17, pp. 60–65. IEEE Computer 
Society (2009) 

22. Mathiassen, L., Ngwenyama, O.K., Aaen, I.: Managing change in software process 
improvement. IEEE Software 22, 84–91 (2005) 

23. Mcconnell, S.: Problem programmers. IEEE Software 15, 128, 127, 126 (1998)  
24. McHugh, M., McCaffery, F., Casey, V.: Standalone Software as an Active Medical 

Device. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A. (eds.) SPICE 2011. 
CCIS, vol. 155, pp. 97–107. Springer, Heidelberg (2011) 

25. Mullins, L.: Management and Organisational Behaviour. Prentice Hall (2004) 
26. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit. 

Addison-Wesley Professional (2003) 
27. Porter, M.E.: Competitive advantage: creating and sustaining superior performance: with a 

new introduction. Free Press (1998) 
28. Prahalad, C.K., Hamel, G.: The Core Competence of the Corporation. Harvard Business 

Review 68, 79–91 (1990) 
29. OECD: Untangling intangible assets. OECD Observer, 13–15 (2011) 
30. Rasmussen, R., Hughes, T., Jenks, J.R., Skach, J.: Adopting Agile in an FDA Regulated 

Environment. In: Agile Conference (2009) 
31. Roberts Jr., T.L., Gibson, M.L., Fields, K.T., Rainer Jr., R.K.: Factors that impact 

implementing a system development methodology. IEEE Transactions on Software 
Engineering 24, 640–649 (1998) 

32. Robillard, P.N.: The role of knowledge in software development. Commun. ACM 42, 87–
92 (1999) 

33. Rottier, P.A., Rodrigues, V.: Agile Development in a Medical Device Company. In: 
AGILE 2008 Conference (2008) 

34. Sharp, H., Hall, T.: An initial investigation of software practitioners’ motivation. In: 
Proceedings of the 2009 ICSE Workshop on Cooperative and Human Aspects on Software 
Engineering. IEEE Computer Society (2009) 

35. Small, A.W., Downey, E.A.: Managing change: some important aspects. In: Proceedings 
of the Change Management and the New Industrial Revolution, IEMC 2001, pp. 50–57 
(2001) 

36. SOX: Sarbanes-Oxley Act of 2002 (2002), http://www.sec.gov/about/laws. 
shtml#sox2002 (accessed July 31, 2012)  

37. THE-FREE-DICTIONARY 2011. Regulations  
38. Treude, C., Barzilay, O., Storey, M.-A.: How do programmers ask and answer questions 

on the web (NIER track). In: Proceedings of the 33rd International Conference on 
Software Engineering, Waikiki, Honolulu, HI, USA. ACM (2011) 

39. Vogel, D.A.: Medical Device Software Verification, Validation and Compliance. Artech 
House Publishers (2010) 

40. Ye, Y., Nakakoji, K., Yamamoto, Y.: The economy of collective attention for situated 
knowledge collaboration in software development. In: Proceedings of the 2008 
International Workshop on Cooperative and Human Aspects of Software Engineering, 
Leipzig, Germany. ACM (2008) 

41. Ziegler, A.S.: Regulation. Annals of the New York Academy of Sciences 1093, 339–349 
(2006) 



An Architecture and Reference Implementation
of an Open Health Information Mediator:

Enabling Interoperability in the Rwandan Health
Information Exchange

Ryan Crichton1,2, Deshendran Moodley1, Anban Pillay1, Richard Gakuba3,
and Christopher J. Seebregts1,2,4

1 Health Architecture Laboratory, Centre for Artificial Intelligence Research,
University of KwaZulu-Natal and Council for Scientific and Industrial Research,

Durban, South Africa
2 Jembi Health Systems, Cape Town and Durban, South Africa

3 eHealth Coordination Unit, Ministry of Health, Rwanda
4 Medical Research Council, Cape Town, South Africa

Abstract. Rwanda, one of the smallest and most densely populated
countries in Africa, has made rapid and substantial progress towards
designing and deploying a national health information system. One of
the more challenging aspects of the system is the design of an archi-
tecture to support: interoperability between existing health information
systems already in use in the country; incremental extension into a fully
integrated national health information system without substantial re-
engineering; and scaling, from a single district in the initial phase, to
national level without requiring a fundamental change in technology or
design paradigm. This paper describes the key requirements and the de-
sign of the current architecture using the ISO/IEC/IEEE 42010 standard
architecture descriptions. The architecture takes an Enterprise Service
Bus approach. A partial implementation and preliminary analysis of the
architecture is given. Since these challenges are experienced by other
developing African countries, the next steps involves creating a generic
architecture that can be reused for health information exchange in other
developing African countries.

Keywords: interoperability, national health information system archi-
tecture, enterprise service bus, health information exchange.

1 Introduction

The current landscape of health information systems, especially in the developing
world, is mostly characterised by fragmented, piecemeal applications deployed
by multiple organizations [1,4]. Applications are usually custom built to satisfy
very specific needs, using different architectures and technologies, with interop-
erability low on the list of priorities. While these systems may be useful in a
specific domain, their integration into a coherent national health information

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 87–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



88 R. Crichton et al.

system (NHIS) is challenging. One potential solution to enable interoperabil-
ity is to implement a mediator component that facilitates information exchange
and orchestration between participating health information systems and appli-
cations in the NHIS, including point of service applications and shared registries
and services.

In our previous work [21] we identified general challenges and requirements for
designing and developing NHIS architectures in developing African countries. In
this paper we identify specific interoperability challenges and requirements for
the Rwandan NHIS and describe the design and implementation of an Health
Information Mediator (HIM) that has been adopted in Rwanda for use in its
NHIS. In section 2 we describe the background to the Rwandan NHIS. Section 3
provides the key requirements and challenges for interoperability that informed
the design of the HIM. The architecture of the HIM is presented in section 4 and
section 5 gives an analysis of this architecture. In section 6 the implementation
of the architecture is briefly described and we draw our conclusions in section 7.

2 Background: A National Health Information System
for Rwanda

The Rwanda Ministry of Health (MoH) has already made significant progress in
developing a country-level NHIS, that includes, among others, community health
systems, health management information systems and the national roll-out of
an electronic medical record application [20]. The Rwanda Health Enterprise
Architecture (RHEA) project, led by the Rwanda MoH and supported by a con-
sortium of partners and donors has developed an Health Information Exchange
to facilitate interoperability between individual health information systems and
applications. We follow Dixon et al [8] and define a health information exchange
(HIE) broadly as "the sharing of clinical and administrative healthcare data
among healthcare institutions, providers, and data repositories.”

Implementation of the Rwandan HIE will be achieved in several phases. The
first phase will implement foundational components, including client, profession-
als and facilities registries, a terminology service and a shared health record, to
improve interoperability between two point of care information systems support-
ing maternal health in the Rwamagana district, including 15 health centers. The
two point of care systems being implemented and maintained by the Rwandan
MoH are implementations of OpenMRS [18,2,26], an Electronic Medial Record
(EMR) system and RapidSMS, an SMS based data collection tool that is cur-
rently being used by community health workers. RapidSMS allows community
health workers (CHWs) in Rwanda to submit maternal and child health infor-
mation to a central server using SMS based messages from mobile phones. There
are many CHWs within Rwanda and this information plays an important role
in monitoring the progress of pregnant women and the health of children where
frequent visits to clinics are not possible. In subsequent phases, the HIE will need
to accommodate other applications and use cases and also scale, nationally.



An Architecture and Reference Implementation 89

The HIE’s main function is to enable the point of care systems currently
implemented in Rwanda to connect and inter-operate more easily. Using the HIE,
the MoH plans to promote data re-use between the connected systems and to
facilitate information sharing. It also aims to provide patients with a continuity of
care record [11] to enable access to a patient’s clinical information from different
health facilities thus improving the tracking of patients and reducing the number
of patients lost-to-follow-up.

The first phase involves deploying a set of foundational infrastructure ser-
vices that provide services to point of care applications, initially, OpenMRS and
RapidSMS. The HIE will allow the systems to share clinical information and en-
sure that shared information uniquely identifies the patient, provider and facility
within the information exchange (Figure 1).

The foundational infrastructure services are:

– Shared Health Record
• This system persists and responds to queries for an appropriate subset

of the patient’s longitudinal, patient-centric medical record.
– Client Registry

• This system persists and responds to queries for a patient’s demographic
and identifying information used to uniquely identify patients.

– Facility Registry
• This system persists and responds to queries for data of the facilities par-

ticipating in the information exchange. This is primarily used to maintain
current and valid facility codes required in transactions.

– Professional Registry
• This system persists and responds to queries for information about health

care professionals who work at participating health care facilities in the
information exchange. This is primarily used to uniquely identify health
care professionals within the HIE.

– Terminology Service
• This system stores all the clinical code systems (eg. LOINC, ICD10 and

country specific code systems) that will be used within the HIE and
facilitates verification and mapping between codes. It exposes endpoints
that allow codes to be verified against the stored code systems.

3 Interoperability: Challenges and Requirements

The interoperability layer, shown in figure 1, is the cornerstone of the Rwan-
dan HIE architecture and its design has significant impact on the effectiveness,
scalability, sustainability and adaptability of the overall system. In the sections
that follow we enumerate the challenges and requirements, suggest and explain
a possible design of an architecture for this interoperability layer and give a
preliminary analysis of it effectiveness when applied to the Rwandan HIE.

The design was informed by the following requirements and challenges that
were identified from studying the situation in Rwandan and with knowledge of
how health informations systems are deployed in low resource settings:



90 R. Crichton et al.

Fig. 1. The architecture of the Rwandan Health Information Exchange

Facilitate Interoperability between Disparate and Heterogeneous Sys-
tems, Both Existing and Future
In the context of the Rwandan NHIS, the HIE initially allows the OpenMRS and
RapidSMS systems to inter-operate with the infrastructure services (client reg-
istry, provider registry, facility registry and the shared health record) in order to
share information. Each system embodies a different technology and architecture
and the interoperability layer enables these systems to interact effectively.

The interoperability layer must provide mechanisms to allow existing dis-
parate and heterogeneous systems to be incorporated into the HIE with min-
imal changes to the systems and still allow for local autonomy. The systems
need to be able to grow and develop independently of the overall HIE and the
other systems participating in the HIE. The architecture must be technology
agnostic, with minimal restrictions on the technologies used within participat-
ing systems. Challenges include syntactic, semantic and process or pragmatic
heterogeneity [22,14].

Adapt and Scale within a Changing Environment
The focus of the current project is to enable the sharing of maternal health
information between point of service applications in a single district. However,
this architecture will also need to adapt to new requirements and grow as the
project progresses. It has to be designed to expand such that the services may be
readily expanded to other districts in Rwanda, to incorporate additional domains
of health care (for example, the HIV/TB programmes) and allow other systems
to be incorporated as part of the growth of the HIE.



An Architecture and Reference Implementation 91

The architecture must support incremental development and evolution of the
HIE and also must be able to grow as the country’s needs expand over time.
This is especially true in low-resource environments where many organizations
implement disparate information systems for a variety of purposes [3]. An essen-
tial feature of a HIE is its ability to cope with change. The architecture must be
flexible enough to deal with changing and evolving NHIS requirements.

The system must also be able to scale, in terms of transaction volume, geo-
graphical locations and increased functionality.

Local Changes Should Not Propagate through the System
In Rwanda, development teams in different organizations design and maintain
participating systems such as OpenMRS, RapidSMS and the infrastructure ser-
vices. Currently, there are 14 partners working on the Rwandan HIE with 7
different development teams working on the various participating systems that
must be able to develop independently without affecting other systems. Partici-
pating systems will need to balance local requirements and NHIS requirements,
but from a practical perspective development teams will often prioritise local
requirements. Changes to participating systems should have minimal effect on
other systems and systems must also be protected as much as possible from
changes to infrastructure services. All systems must still maintain a large degree
of local autonomy, especially since these systems are implemented and main-
tained by a variety of disparate organizations.

Provide a Low Barrier to Entry to Connect New and Legacy Systems
Implementing partners have development teams distributed around the world
with varying degrees of expertise and technical skills. Inter-operating with the
infrastructure services must be simple and require minimal effort both for current
as well as new technical teams. A number of existing health information systems
including the OpenMRS implementations and the RapidSMS implementation
existed before the HIE was conceived.

The HIE should reduce the burden of connecting new and legacy systems
participating in the HIE. The approach toward integration of legacy systems
should be to ‘embrace and extend’ and not to ‘rip and replace’. The architecture
must provide a minimal barrier to entry to incorporate a system into the HIE
and reduce the overhead required to modify a particular system to participate
in the HIE. This feature will maximize the existing investment in legacy appli-
cations and help prevent useful and functioning legacy applications from being
abandoned unnecessarily.

4 Architecture of the Health Information Mediator

In order to overcome the challenges and fulfill the requirements for interoperabil-
ity identified in section 3, we introduce a new component, the Health Information



92 R. Crichton et al.

Mediator (HIM) (figure 2). The design and implementation of the HIM draws
heavily from two technologies that were evaluated in the initial stages of the
Rwandan project. The first, Mirth Connect (Mirth Corporation), is an open in-
tegration engine for health information systems. However, the Rwandan project
required complex orchestrations that Mirth Connect could not easily support
and it was simpler to directly use the underlying Mule ESB [16] platform on
which Mirth Connect is built to perform orchestration. We also reviewed and
setup the reference implementation of the Canada Health Infoway (CHI) EHR
Blueprint [7,19]. In the CHI HIE implementation the interoperability and orches-
tration functions are provided by Biztalk (Microsoft Corporation), supplemented
by Everest, an HL71 version 3 adapter and open C# library. However, Biztalk
is expensive to license and maintain and HL7 version 3 is a difficult messaging
specification to implement in low resource settings due to its complexity and
verbose nature.

In this section, we describe the architecture of the HIM using ISO 42010 ar-
chitecture descriptions [17,10]. ISO/IEC FDIS 42010 provides a formal language
and a metamodel for creating, analysing and sustaining architecture descriptions.
An architecture can be described by a number of architectural views with each
view framing a number of concerns (including requirements) of different groups
of stakeholders with an interest in the system. Together, these views make up
the architecture description. Based on the requirements identified in section 3,
three major views of the HIM architecture and their associated concerns are
described below.

4.1 Logical View

This view describes the overall functionality of the system. The model kinds in-
clude custom diagrams showing how transactions flow through the architecture.
It frames the following concerns:

– The architecture must facilitate interoperability between heterogeneous sys-
tems

– The architecture must provide a low barrier to entry to connect both new
and legacy systems

– Changes should be kept local and not propagate through the system

Based on these requirements, we have designed the HIM as a middleware sys-
tem to enable interoperability between participating systems and infrastructure
services. The HIM is based on the Enterprise Service Bus (ESB) architectural
model.

An ESB [5,25] is a middleware system that facilitates interoperability by pro-
viding a central bus that manages all communications between participating
systems. Since the components within an ESB are loosely coupled and can run
completely independently of each other, each component can still function inde-
pendently when other components fail.
1 HL7 is a standard messaging format for data within the health domain.



An Architecture and Reference Implementation 93

ESB is a well established architectural model for meeting the requirements
associated with interoperability between distributed and disparate systems that
has previously been applied to the problem of interoperability between disparate
health information systems [24,15].

All participating systems in the HIE are represented as services. Systems that
provide services to other systems are termed service providers, while systems that
make requests of other systems are termed service requesters. All service requests
are made via the HIM. The HIM thus provides mediation and orchestration
functions within the system.

Our approach contains three major components described by the following
3-tuple:

HIM = {I, P, M}

where HIM is the Health Information Mediator, I is the Interface component, P
is the Persistence component and M is the Mediation component.

Figure 2 shows the order in which transactions flow through each of the
components.

Fig. 2. Overview of components in the HIM architecture

Each of these components are described below:

I - Interface Component. All interactions are carried out via the HIM. The
interface component exposes an application programming interface (API) that
allows systems or applications to make service requests through the HIE. It
is responsible for defining and handling all incoming service requests. Service
requests are received using a standard protocol (e.g. HTTP) and translated into
a common internal format that is accessible by the other components in the layer
(e.g. Java Objects). The request is then passed to the persistence component for
further processing.

This component not only provides a single and consistent entry point for all
service requests, but also enforces security and access policies for the HIE.



94 R. Crichton et al.

A single point of access simplifies interactions with the HIE as the systems
can make service requests without needing to know the location or security
requirements of the service providers.

The API currently uses web services which affords the HIM greater flexibility
when connecting systems using varying platforms and technologies. The func-
tions provided by the API are defined according to the requirements of the HIE
implementation. In the Rwandan use case this includes functions to save and
query a patient’s clinical record within the shared health record and to query
and update records in the client, provider and facility registries.

This component also provides a central place for defining and applying ad-
vanced security policies. In this component, access to the API and access to
specific functions of the API should be strictly controlled. The component also
allows data-level security policies to be applied, if needed. In this paper, we have
not addressed the complexities of defining how these security policies could be
applied in order to focus on the architectural significance of security and not the
implementation details.

P - Persistence Component. This component receives authorised service
requests from the interface component and starts and monitors a transaction
required to fulfill the request to completion.

It stores a copy of each transaction received by the HIM and maintains a per-
sistent data store for the request data, the response data and metadata for each
transaction. This data is stored for logging and audit purposes and can also be
used to identify and handle exception conditions. This allows the administrators
of the system to identify and solve recurring problems or failures. In this paper,
we acknowledge that audit trails and exception handling are important issues to
consider within a HIE, however we do not explore these issues further, at this
stage.

Transaction metadata allow administrators of the system to monitor transac-
tions and gauge the health of the system. This is useful for discovering bottle-
necks and performance problems.

M - Mediation Component. The mediation component executes transac-
tions. Its main functions are orchestration and message translation.

The mediation component is made up of a number of transaction channels. A
channel is provided for each transaction type, e.g. a transaction type to save a
patient’s encounter. It contains the necessary logic to normalise, orchestrate and
de-normalise that transaction. Each function exposed by the API in the interface
component maps to a transaction type and therefore to a transaction channel.

Below we describe the process that occurs within a single transaction channel
contained within the mediation component.

Figure 3 shows the inner workings of the transaction mediation component
described earlier. Each transaction type has its own transaction channel. The
diagram represents the workflow within a single transaction channel.



An Architecture and Reference Implementation 95

Fig. 3. The workflow of a transaction channel within the transaction mediation
component

A transaction channel always begins with a normalisation sub-component.
This sub-component transforms the request message contained within a trans-
action to a normalised state. After this process the transaction data must be in a
consistent and predictable format to allow components following this to process
it in a predictable fashion, no matter what format it arrived in. This process con-
sists of 2 operations. Firstly, an on-ramp transformation is applied. This ensures
syntactic interoperability for the transaction. For example, if the transaction ar-
rives from a legacy application that only supported exporting data in a custom
XML format, this process would ensure that the XML is transformed into a form
that the rest of the exchange can understand, e.g. an HL7 version 2 message.
Secondly, a translation operation is invoked. This operation is responsible for
ensuring the codes and code systems used within the transaction are translated
to a standard set of vocabulary or clinical terms that have a common interpre-
tation by other components of the HIM. This involves a call to the terminology
service to translate and verify that the codes used within the transaction are in
or are translated to an internal standard vocabulary. The terminology server is
responsible for maintaining a standard vocabulary and mappings to other vo-
cabularies used by participating systems. In this way semantic interoperability
between service requesters and providers is achieved.

Following this, the transaction is sent to the orchestration sub-component.
This sub-component is responsible for performing implementation-specific or-
chestration for the current transaction. The process of orchestration is described
in Peltz et al [23]. The aim of the orchestration component is to execute the re-
ceived transaction and perform any consequent action(s) required for this trans-
action. This could include 0 or more calls to external services. This component



96 R. Crichton et al.

also compiles the response for the executed transaction and returns this to the
persistence component which forwards the response to the service requester via
the interface component.

A de-normalisation sub-component is provided for each external service call.
This sub-component is responsible for transforming (or constructing) a service
request into a format that is understandable to the service provider. This oper-
ates in a similar way to the normalisation component except the operations occur
in reverse order. This approach serves to decouple service providers from the or-
chestration component, which allows for service providers to be easily modified
or replaced with minimal impact on the mediation component.

4.2 Scalability View

This view describes how the architecture can scale and frames the following
concern:

– The architecture must scale in terms of the number and volume of transactions

Fig. 4. Scalability configurations of the HIM architecture

Figure 4 show the scalability of the architecture. In the architecture there
are 3 major components; the interface API, the persistence component and the
mediation component. Each of these components are loosely coupled to allow
them to be deployed across different servers. This is shown in ‘Configuration 2’
in figure 4. The 3 components are responsible for separate units of work. This
loose coupling allows the components to be spread over different hardware as
long as they can communicate over a network. The ESB architectural model



An Architecture and Reference Implementation 97

used for this architecture ensures that the components are loosely coupled and
can be deployed distributedly.

It is also feasible to further separate the persistence component and the trans-
action mediation component through clustering. The persistence component per-
forms the static function of persisting any transaction that passes through it. As
this function is not dynamic it could easily be replicated over multiple servers
with the provision that the data store is kept in sync. This component could also
be invoked in an asynchronous fashion as the mediation component subsequent
to it does not require this process to complete in order to continue.

The transaction mediation component can be scaled horizontally. The transac-
tion mediation component holds a set of channels, one for each transaction type
that is supported by the implementation. Each of these channels encapsulates in-
formation about how each transaction should be transformed and orchestrated.
Each transaction channel runs independently which allows for deployment of the
channels across different servers. This is shown in configuration 3 in figure 4.

These configurations show two important aspects of the architecture. Firstly
performance in terms of volumes of transactions, i.e. splitting the load between
different servers increases the capability of the system to handle and process a
higher volume of transactions timeously. Additional servers can be introduced as
transaction volumes grow . Secondly, robustness. Since each of the three compo-
nents are responsible for separate units of work and individual components can
be replicated over different physical machines to provide redundancy. The num-
ber of instances of each component can be varied depending on the transaction
types and processing requirements.

4.3 Adaptability View

This view shows the architecture’s ability to grow with a country’s NHIS and
how new services can be easily added or changed within the architecture.

This view frames the following concern:

– The architecture must be adaptable in a changing environment

Fig. 5. Adaptability of the HIM architecture



98 R. Crichton et al.

Adaptability is an important consideration for this architecture. Figure 5 shows
how additional services could be added to the architecture. As can be seen, to
add additional services the interface component’s API needs to be extended to
add new API endpoints for each new function that needs to be supported. The
persistence component is generic enough that it does not require any change to
process new types of service requests. The transaction mediation component is
where most of the changes are required. This component is designed to encap-
sulate transaction mediation logic for each transaction type. A new transaction
channel can easily be added along side the others to support a new type of
service request. The channel will encapsulate all the logic for normalising the
transaction, executing the necessary orchestration steps and to de-normalise the
transaction when an external service orchestration call is made. This encapsula-
tion simplifies the addition of new service request types as functionality increases
and the HIE expands.

5 Analysis

In this section the HIM architecture is analysed against the requirements set
out in section 3. This HIM architecture is currently being used to drive the
development of the Rwandan HIE. The implementation and deployment of the
first phase of the HIE in Rwanda is currently underway and the architecture is
already showing benefit during this process. The discussion below is based on
our experiences of implementing this architecture.

One of the core requirements of the HIE is to allow disparate systems to
connect to each other easily. These could be legacy or new systems built by
various international or local organizations. The architecture accomplishes this
by enforcing a single interface API to connect to the HIE. This API hides the
complexity of the HIE as well as the underlying system(s) that are invoked to
fulfill service requests. This architecture also protects the applications requesting
services from changes that will inevitably occur to service providers, their API’s
or as a result of migration to a different location. This enables and supports
local autonomy of the participating systems.

As new services are being developed and deployed for the Rwandan NHIS the
Rwandan HIM implementation was used to quickly and easily switch between
mock service providers and the actual service provider implementations. This
demonstrates one of the most critical features of the architecture; the ability to
adapt. We are able to easily swap-out systems providing services as the environ-
ment changes. This will inevitably be a very important feature when the system
goes live within Rwanda due to the ever changing nature of HISs.

The proposed architecture has been shown to be highly adaptive. This can be
seen in the adaptability view of the architecture. Adding additional transaction
types to the HIM is simplified by minimising the points at which changes are
needed and by encapsulating transaction type specific logic into channels dedi-
cated to specific transactions. This allows the architecture to adapt effectively
as the HIE environment and functionality grows.



An Architecture and Reference Implementation 99

One of the major benefits of this architecture is that is does not prescribe the
use of a particular data exchange format. There are many messaging standards
available in the health domain for syntactic interoperability, each with different
structures for representing data. Standards exist for various types of messaging
needs. For example, sending clinical information (HL7 v2, HL7 v3, OpenEHR
Archetypes [6,13,9]) or aggregate health information for reporting (SDMX-HD
[3]). A defacto standard for health care messaging has yet to emerge [9]. New
standards will emerge over time and current standards will fall away. Given
these facts we can see that no single standard will ever be sufficient for all
messaging needs. Therefore, the architecture must support current and future
standards for syntactic interoperability. In the proposed architecture any data
can be exchanged as long as we have normalisation and de-normalisation trans-
forms defined to allow the data format to be transformed into and out of a form
that the mediation component can understand and orchestrate. This affords the
architecture greater flexibility in the types of data that can flow through it and
allows the architecture to cater for multiple domains of health care even if the
standard data exchange formats used within those domains are very different.
This approach also future proofs the architecture against the inevitable change
and evolution that will occur in the syntactic interoperability domain in health
care.

A criticism of the architecture presented here is that it does not draw a clear
line between parts of the system that are implementation specific and parts that
can be part of a more general interoperability framework. Within the interface
component and the mediation component there are parts that need to be defined
depending on the API and business processes that are being implemented. These
parts are implementation specific. The interface component defines an API that
will be heavily driven by implementation needs and the mediation component
defines orchestrations that are defined by the implementation as well as on-
ramp steps and off-ramp steps that would depend on the data representations
used within that implementation. It would be beneficial to identify the imple-
mentation specific aspects of this architecture so that a general interoperability
framework can be extracted and implementation specific configuration can be
plugged-in as needed. The current architecture does not account for this. This
can be explored in future work.

The security architecture is also not expanded upon greatly in this architec-
ture. It is identified that having a common entry point into the HIM is beneficial
in this regard as there is only a single endpoint to secure, however there are
much greater considerations that need to be identified. Two main examples are:
restricting transactions that specific applications can execute within the interop-
erability layer and providing data level security on the clinical information that
passes through the system.

The HIM architecture was conceived by studying the challenges and require-
ments of NHISs in a low resource setting. These challenges led us to an archi-
tecture that relies on a central component (the HIM) that co-ordinates all the
interaction within the HIE. This design choice has its benefits as well as its



100 R. Crichton et al.

challenges. Having a central component gives the benefit of easing the burden of
implementing interoperability between HISs as the infrastructure only need to
be deployed once and the HIM can simplify the burden of connecting to a HIE.
It also gives a country central control over the transactions supported within
the HIE. Having a central component that is responsible for orchestration of
all the transactions also allows the client systems to be so-called ’dumb clients’
and only interact with the system in a simple manner. This enables quicker and
easier integration that will help resource constrained projects to connect their
systems to the HIE. The design also keeps much of the communication between
systems in the datacentre where communication is quick and responsive. Client
systems in low resource setting are often on slow networks that are often unre-
sponsive or out of order. Minimal communication with a single central compo-
nent allows clients to communicate effectively with the little bandwidth that they
have. On the other hand, having a central component also has certain negative
aspects. A central component that the entire HIE relies on introduces a single
point of failure. Also, if any changes need to be make to the transactions that the
HIE supports the central component need to be changed and all other systems
have to wait until these changes are implemented before they can utilise the new
transactions. The HIM would likely be controlled by a government entity and
the client systems are often controlled by a wide variety of organizations that
can move much more quickly than a government entity. Thus, problems could
be encountered if the government entity is not responsive enough to change
requests.

Alternative design approaches could do away with a central component and
expect the client to know how to communicate among themselves (’smart clients’
or service choreography). In our case the central approach seemed most appro-
priate due to the fact that we are working in a low resource setting. The benefits
for a low resource setting out-weighed the negatives listed above, however, the
authors note that this will not always be the case in other settings.

Overall, the architecture fulfills the key requirements needed to implement a
HIE interoperability architecture for a NHIS in Rwanda. This has been proven
to work in a lab environment as the implementation for the Rwandan HIE is
being developed as well as in production as the Rwandan HIE begins to be rolled
out. Many of these requirements are not specific to Rwanda and can be applied
to other low-resource settings where a HIE is needed. Therefore, the authors
believe this architecture is highly applicable for use in other countries.

6 Implementation and Future Work

The HIM architecture, described above was implemented and successfully de-
ployed with the other HIE components in Rwanda during September 2012. The
current system connects two health facilities in the Rwamagana district to the
HIE deployed in the national datacentre in Kigali2.
2 See the implementation blog at
http://rwandahie.blogspot.com/2012/09/click.html

http://rwandahie.blogspot.com/2012/09/click.html


An Architecture and Reference Implementation 101

The Infrastructure services that form the rest of the Rwandan HIE were im-
plemented by different parties utilising a wide variety of open source projects,
which are listed below:

– Shared Health Record: OpenMRS (OpenMRS Foundation, Regenstrief In-
stitute and Partners in Health)

– Client Registry: OpenEMPI (SYSNET International)
– Provider Registry: a custom open source webapp built on OpenLDAP (In-

trahealth)
– Facility Registry: ResourceMapper (InSTEDD)
– Terminology service: Apelon DTS (Apelon Inc.) and a webapp frontend

(Jembi Health Systems NPC).

The Rwandan HIM was developed on the open source Mule ESB [16] platform,
and incorporates a RESTful web services approach [12]. The implementation
and field experience sets the foundation towards creating an Open Health In-
formation Mediator (OpenHIM). The architecture as well as the implemented
components of the Rwandan HIM are general enough to allow their re-use in
other settings. The aim is to release the Rwandan HIM as open source and for
it to serve as the reference implementation for the OpenHIM. The next step is
to establish an open community around OpenHIM to provide participation from
other stakeholders and to promote its adoption and to facilitate the creation of
Health Information Exchanges in other low resource settings.

7 Conclusion

In this paper we have identified the need for an interoperability architecture to
solve the problem of interoperability between many disparate health information
systems. The Rwandan HIE use case was used to drive the identification of the
requirements for this middleware layer, however, these requirements are largely
applicable to other contexts. We introduce the HIM architecture that attempts
to solve the problems identified by the requirements. ISO 42010 is utilised to
describe this architecture so that we can ensure all of the concerns are satisfied
by utilising 3 different views of the architecture.

The HIM architecture description presents a proposed solution for interoper-
ability architectures for use in low-resource countries like Rwanda and attempts
to formalise the description of such an architecture so that it can be reused in
other settings. The architecture is analysed using experience in implementing the
architecture for use in the Rwandan HIE. It is identified that the architecture
solves the problems identified by the requirements, however, it fails to provide
a clear separation between the implementation specific configuration and the
framework for a more general architecture. Overall, the architecture provides a
solution to the major problems faced when attempting to facilitate interoper-
ability between many disparate health information systems and it has proven in
practice to be an appropriate, adaptable and scalable solution.



102 R. Crichton et al.

Acknowledgements. The authors wish to acknowledge the support of the
Rwanda Ministry of Health and, in particular, Gilbert Uwayezo and Daniel
Murenzi who with the National eHealth Coordinator, Dr Richard Gakuba, man-
age the national rollout of health IT as well as advisers, Elizabeth Peloso and
Randy Wilson. Significant inputs were received from the Rwanda Health Enter-
prise Architecture (RHEA) and Rwanda Health Information Exchange (RHIE)
project teams, including Wayne Naidoo, Carl Fourie, Hannes Venter, Mead
Walker, Beatriz de Faria Leao, Paul Biondich, Shaun Grannis, Eduardo Jezier-
ski, Dykki Settle, Odysseas Pentakalos and Bob Joliffe. Additional support was
obtained from Mohawk College in Canada (in particular, Derek Ritz, Ted Scott,
Justin Fyfe and Duane Bender) and eZ-Vida in Brazil (in particular, Dr Lincoln
Moura and Ricardo Quintano Neira).

The RHEA project is funded by grants from the IDRC (Open Architec-
tures, Standards and Information Systems (OASIS II) - Developing Capacity,
Sharing Knowledge and Good Principles Across eHealth in Africa. Grant Num-
ber: 105708), the Rockefeller Foundation (Open eHealth Enterprise Architecture
Framework and Strategy Development for the Global South; Grant Number:
2009 THS 328) and the Health Informatics Public Private Partnership Project
funded by the President’s Emergency Plan for AIDS Relief (PEPFAR). This
research has been supported by funding from the President’s Emergency Plan
for AIDS Relief (PEPFAR) through a CDC cooperative agreement with Cardno
Emerging Markets, Cooperative Agreement #PS002068. The HEAL project is
funded by grants from the Rockefeller Foundation (Establishing a Health En-
terprise Architecture Lab, a research laboratory focused on the application of
enterprise architecture and health informatics to low-resource settings, Grant
Number: 2010 THS 347) and the IDRC (Health Enterprise Architecture Labo-
ratory (HEAL), Grant Number: 106452-001). The REACH (Research in Enter-
prise Architecture for Coordinating Healthcare) project was also funded by the
IDRC through ecGroup (Derek Ritz).

References

1. AbouZahr, C., Boerma, T.: Health information systems: the foundations of public
health. Bulletin of the World Health Organization 83(8), 578–583 (2005)

2. Allen, C., Jazayeri, D., Miranda, J., Biondich, P.G., Mamlin, B.W., Wolfe, B.A.,
Seebregts, C., Lesh, N., Tierney, W.M., Fraser, H.S.: Experience in implementing
the OpenMRS medical record system to support HIV treatment in Rwanda. Studies
in Health Technology and Informatics 129(pt. 1), 382–386 (2007)

3. Braa, J., Kanter, A.S., Lesh, N., Crichton, R., Jolliffe, B., Sæbø, J., Kossi, E.,
Seebregts, C.J.: Comprehensive yet scalable health information systems for low re-
source settings: a collaborative effort in Sierra Leone. In: AMIA Annual Symposium
Proceedings, vol. 2010, pp. 372–376 (2010)

4. Braa, J., Muquinge, H.: Building collaborative networks in Africa on health in-
formation systems and open source software development - Experience from the
HISP/BEANISH network. IST Africa (2007)



An Architecture and Reference Implementation 103

5. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (July
2004)

6. Chen, R.: Towards interoperable and knowledge-based electronic health records
using archetype methodology. PhD thesis, Department of Biomedical Engineering,
Linköpings universitet (2009)

7. CHI: EHRS Blueprint. An Interoperable EHR Framework. Executive Overview
8. Dixon, B.E., Zafar, A., Marc Overhage, J.: A framework for evaluating the costs,

effort, and value of nationwide health information exchange. JAMIA 17(3), 295–301
(2010)

9. Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G.B.: A survey and
analysis of Electronic Healthcare Record standards. ACM Comput. Surv. 37(4),
277–315 (2005)

10. Emery, D., Hilliard, R.: Updating IEEE 1471: Architecture Frameworks and Other
Topics. In: Seventh Working IEEE/IFIP Conference on Software Architecture
(WICSA 2008), pp. 303–306. IEEE, Washington, DC (2008)

11. Ferranti, J.M., Musser, R.C., Kawamoto, K., Hammond, W.E.: The Clinical Docu-
ment Architecture and the Continuity of Care Record: A Critical Analysis. Journal
of the American Medical Informatics Association 13(3), 245–252 (2006)

12. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, University of California, Irvine, CA, USA (2000)

13. Garde, S., Chen, R., Leslie, H., Beale, T., McNicoll, I., Heard, S.: Archetype-
Based Knowledge Management for Semantic Interoperability of Electronic Health
Records, pp. 1007–1011. IOS Press (2009)

14. Gibbons, P., Arzt, N., Burke-Beebe, S., Chute, C., Dickinson, G., Flewelling, T.,
Jepsen, T., Kamens, D., Larson, J., Ritter, J., Rozen, M., Selover, S., Stanford,
J.: Coming to Terms: Scoping Interoperability for Health Care. Technical report,
Health Level Seven EHR Interoperability Work Group (February 2007)

15. IBM: IBM Enterprise Service Bus for Healthcare. Technical report (2010)
16. MuleSoft Inc.: What is Mule ESB? (2012),

http://www.mulesoft.org/what-mule-esb
17. ISO: ISO/IEC FDIS 42010 IEEE P42010/D9. Systems and software engineering -

Architecture description. Technical report, ISO (March 2011)
18. Mamlin, B.W., Biondich, P.G., Wolfe, B.A., Fraser, H., Jazayeri, D., Allen, C.,

Miranda, J., Tierney, W.M.: Cooking up an open source EMR for developing coun-
tries: OpenMRS - a recipe for successful collaboration. In: AMIA Symposium, pp.
529–533 (2006)

19. Duane, B., Yendt, M., Minaji, B.: Developing an Open Source Reference Implemen-
tation of the Canadian Electronic Health Records Solution. Open Source Business
Resource, Health and Life Sciences (November 2008)

20. Ministry of Health, Rwanda: Health Sector Strategic Plan (July 2009-June 2012)
21. Moodley, D., Pillay, A.W., Seebregts, C.J.: Position Paper: Researching and Devel-

oping Open Architectures for National Health Information Systems in Developing
African Countries. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151,
pp. 129–139. Springer, Heidelberg (2012)

22. Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems.
SIGMOD Rec. 28(1), 5–12 (1999)

23. Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52
(2003)

http://www.mulesoft.org/what-mule-esb


104 R. Crichton et al.

24. Ryan, A., Eklund, P.: The Health Service Bus: an architecture and case study in
achieving interoperability in healthcare. Studies in Health Technology and Infor-
matics 160(pt. 2), 922–926 (2010)

25. Schmidt, M.T., Hutchison, B., Lambros, P., Phippen, R.: The Enterprise Service
Bus: Making service-oriented architecture real. IBM Systems Journal 44(4), 781–
797 (2005)

26. Seebregts, C.J., Mamlin, B.W., Biondich, P.G., Fraser, H.S.F., Wolfe, B.A., Jaza-
yeri, D., Allen, C., Miranda, J., Baker, E., Musinguzi, N., Kayiwa, D., Fourie, C.,
Lesh, N., Kanter, A., Yiannoutsos, C.T., Bailey, C.: The OpenMRS Implementers
Network. International Journal of Medical Informatics 78(11), 711–720 (2009)



OwlOntDB: A Scalable Reasoning System

for OWL 2 RL Ontologies with Large ABoxes

Rokan Uddin Faruqui and Wendy MacCaull

Centre for Logic and Information
St. Francis Xavier University

Nova Scotia, Canada
{x2010mcd,wmaccaul}@stfx.ca

Abstract. Ontologies are becoming increasingly important in large-
scale information systems such as healthcare systems. Ontologies can
represent knowledge from clinical guidelines, standards, and practices
used in the healthcare sector and may be used to drive decision support
systems for healthcare, as well as store data (facts) about patients. Real-
life ontologies may get very large (with millions of facts or instances).
The effective use of ontologies requires not only a well-designed and
well-defined ontology language, but also adequate support from reason-
ing tools. Main memory-based reasoners are not suitable for reasoning
over large ontologies due to the high time and space complexity of their
reasoning algorithms. In this paper, we present OwlOntDB, a scalable
reasoning system for OWL 2 RL ontologies with a large number of in-
stances, i.e., large ABoxes. We use a logic-based approach to develop the
reasoning system by extending the Description Logic Programs (DLP)
mapping between OWL 1 ontologies and datalog rules, to accommodate
the new features of OWL 2 RL. We first use a standard DL reasoner
to create a complete class hierarchy from an OWL 2 RL ontology, and
translate each axiom and fact from the ontology to its equivalent datalog
rule(s) using the extended DLP mapping. We materialize the ontology to
infer implicit knowledge using a novel database-driven forward chaining
method, storing asserted and inferred knowledge in a relational database.
We evaluate queries using a modified SPARQL-DL API over the rela-
tional database. We show our system performs favourably with respect to
query evaluation when compared to two main-memory based reasoners
on several ontologies with large datasets including a healthcare ontology.

Keywords: Ontology, Knowledge Representation, Healthcare System,
Scalable Reasoner, OWL 2 RL.

1 Introduction

Ontologies are becoming increasingly important in large-scale information sys-
tems such as healthcare systems. Ontologies can represent knowledge from clin-
ical guidelines, standards, and practices used in the healthcare sector and may
be used to drive decision support systems for healthcare. Applications for these
types of systems use large ontologies, i.e., ontologies with a large number

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 105–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



106 R.U. Faruqui and W. MacCaull

(millions) of instances. The W3C recommends the use of the Web Ontology
Language (OWL), a semantic markup language, which provides a formal syn-
tax and semantics to represent ontologies and paves the way for manipulating
ontologies effectively [20]. However, the effective use of ontologies requires not
only a well-designed and well-defined ontology language, but also adequate sup-
port from reasoning tools. Ontology reasoning is a methodology for extracting
and inferring knowledge from ontologies. Description Logic (DL)-based reason-
ers including RacerPro, FaCT++, and Pellet can efficiently perform reasoning
over expressive OWL ontologies. However, these reasoners perform in-memory
reasoning and are not particularly suitable for reasoning over ontologies with
millions of instances such as those often needed for real-world applications such
as healthcare systems.

Several approaches have been applied to improve the scalability of the rea-
soners. One of the most widely used approaches is database integration, i.e.,
utilizing secondary memory to increase efficiency. A number of reasoners such
as OntMinD [5] and QuOnto [4] use database integration by directly mapping
ontologies to databases. In this approach, ontologies are expressed in terms of
UML class diagrams or/and ER diagrams and query rewriting techniques are
used to perform reasoning over information stored in relational databases [10].
However, this approach restricts the expressivity of ontologies and supports only
a small fragment of DL logic called DL-Lite [9]. DL-Lite is the maximal tractable
fragment that supports efficient query answering using a relational database. So
scalable reasoning with more expressive DL fragments is still a challenging prob-
lem. Another approach to improve the scalability of reasoners for more expressive
ontologies is the logic programming-based approach. In this approach, an ontol-
ogy is translated to a logic program, then inference algorithms for logic programs
are used for reasoning. The main advantage of this approach is to reuse existing
efficient inference algorithms and implementations, which are suitable for large
ontologies. Logic programming-based approaches improve the scalability of the
reasoning systems by handling large amounts of instances but still restrict the
expressivity of ontologies [16].

In this paper, we present a scalable reasoning system, OwlOntDB, for OWL 2
RL ontologies. Here, by scalability, we refer the ability to perform reasoning over
ontologies with large numbers of instances. The new standardization, OWL 2, has
three profiles: OWL 2 EL - based on the EL++ Description Logic, OWL 2 QL -
based on the DL-Lite family of Description Logics, and OWL 2 RL - inspired by
pD∗ and Description Logic Programs (DLP) [12]. Each profile exhibits a poly-
nomial time complexity for ontological reasoning tasks. We choose OWL 2 RL
because it offers a great deal of expressivity while being suitable for rule-based
implementations. Grosof et al. [12] give a DLP mapping to translate OWL 1 on-
tologies to datalog programs to take advantage of logic programming-based algo-
rithms to infer knowledge. In our hybrid approach, we extend the DLP mapping
to accommodate the new features of OWL 2 RL, combine this with a mapping
to a relational database to develop a restrictions checker to handle some OWL 2
RL axioms and concepts that cannot be handled by the logic programming-based



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 107

approach, and then materialize all asserted and inferred knowledge from an on-
tology to a relational database. Our approach is a combination of the database
mapping and the logic programming-based inferencing. However, instead of us-
ing the direct-mapping based approach to map OWL 2 RL ontologies to relational
databases as in [10], we used a novel database-driven forward chaining approach
to infer and store OWL 2 RL ontologies to relational databases.

The remainder of the paper is organized as follows. In section 2 we describe our
scalable reasoning system, OwlOntDB. In section 3 we evaluate the performance
of our system using two benchmark ontologies and a real-world ontology for
healthcare. We discuss related work in section 4 and conclude in section 5.

2 A Scalable Reasoning System for Large ABoxes:
OwlOntDB

We recall that OWL 2 is based on the family of Description Logics (DL) [6],
a family of decidable fragments of first order logic. A DL-based ontology has
two components: a TBox and an ABox. The TBox introduces vocabulary rele-
vant to a domain and their semantics, while the ABox contains assertions about
individuals using this vocabulary. Our reasoning system supports OWL 2 RL,
which describes the domain of an ontology in terms of classes, properties, in-
dividuals, and datatypes and values. Individual names refer to elements of the
domain; classes describe sets of individuals having similar characteristics; prop-
erties describe binary relationships between pairs of individuals. A property can
be either an object property which links an individual to an individual, or a
datatype property which links an individual to a data value. In OWL 2 RL,
object properties can be functional, inverse functional, irreflexive, symmetric,
asymmetric, or transitive; however, data properties can only be functional [20].
Note that the new features of OWL 2 RL not found in OWL 1 are qualified cardi-
nality restrictions, irreflexive, and antisymmetric properties, and property chain
inclusion axioms. The syntax of OWL 2 RL is asymmetric, i.e., the syntactic
restrictions allowed for subclass expressions differ from those allowed for super-
class expressions. For instance, an existential quantification to a class expression
(ObjectSomeValuesFrom) is allowed only in subclass expressions whereas univer-
sal quantification to a class expression (ObjectAllValuesFrom) is allowed only
in superclass expressions. These restrictions facilitate the rule-based implemen-
tation of reasoning systems for OWL 2 RL ontologies. Note that at present we
assume the Unique Name Assumption (UNA) to translate OWL 2 RL ontologies
into datalog programs. However, OWL 2 RL does not use the UNA i.e., it does
not treat two different OWL 2 RL elements with different names as different.
We are currently in the process of removing this limitation.

Ontological reasoning tasks are related either to the TBox, or to the ABox or
to both the TBox and the ABox of an ontology. Here we focus on developing a
scalable reasoner for reasoning tasks related to the ABox, namely ABox queries
and mixed TBox and ABox queries. We use an existing DL-based reasoner
to perform the TBox reasoning necessary to infer the complete subsumption



108 R.U. Faruqui and W. MacCaull

Fig. 1. The system architecture of OwlOntDB

relationship among classes (i.e., generate the class hierarchy). The overview of
our system is found in Fig 1. OwlOntDB takes an OWL 2 RL ontology and ma-
terializes the datalog version of the classified ontology to the relational database
using our technique which we refer to as a database-driven forward chaining and
uses a modified SPARQL-DL as a query interface to extract knowledge from the
database. The details of each step are explained in the following subsections.

2.1 Translation

Our approach to reasoning is to express inference tasks for the OWL 2 RL
ontology in terms of inference tasks for the rule language datalog. Datalog is
a simple rule language stemming from Prolog. In this step, we translate the
classified ontology to a datalog programs using our extended DLP mapping.
We use the OWL API to parse the classified OWL 2 RL ontology and extract
all the logical axioms from the ontology. Then, we translate each logical axiom
into its equivalent datalog rule(s). In OWL 2 RL, facts are described using
ClassAssertions and ObjectPropertyAssertions/DataPropertyAssertions which
correspond to DL axioms of the form a : C and 〈a, b〉 : P , respectively, where
a and b are individuals, C is a class, and P is an object/data property. These
assertions axioms are already in the datalog rule format with empty bodies.
Translations of the OWL 2 RL axioms into datalog rules are given in Table 1.
Their (straightforward) semantics may be found in [11].

Recall that we translate an ontology to a logic program in order to use the
logic programming-based inference algorithm for ontology reasoning. However,



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 109

Table 1. Translation of OWL 2 RL axioms into datalog rules

OWL 2 RL Constructors DL Syntax Datalog Rule
ClassAssertions a : C C(a)
PropertyAssertion 〈a, b〉 : P P (a, b)
SubClassOf C � D C(x) → D(x)
ObjectPropertyChain P ◦Q � R P (x, y) ∧Q(y, z) → R(x, z)
EquivalentClasses C ≡ D C(x) → D(x), D(x) → C(x)
EquivalentProperties P ≡ Q Q(x, y) → P (x, y)

P (x, y) → Q(x, y)
ObjectInverseOf P ≡ Q− P (x, y) → Q(y, x)

Q(y, x) → P (x, y)
TransitiveObjectProperty P+ � P P (x, y) ∧ P (y, z) → P (x, z)
SymmetricObjectProperty P ≡ P− P (x, y) → P (y, x)
Object/DataUnionOf C1 �C2 � D C1(x) → D(x), C2(x) → D(x)
Object/DataIntersectionOfC � D1 �D2 C(x) → D1(x),C(x) → D2(x)
Object/DataSomeValuesFrom ∃P.C � D P (x, y) ∧ C(y) → D(x)
Object/DataAllValuesFrom C � ∀P.D C(x) ∧ P (x, y) → D(y)
Object/DataPropertyDomain� � ∀P−.C P (y, x) → C(y)
Object/DataPropertyRange � � ∀P.C P (x, y) → C(y)

we can not handle OWL 2 RL concepts dealing with cardinality restrictions
- namely, maximum cardinality and minimum cardinality, and axioms dealing
with property restrictions - namely, functional, inverse functional, irreflexive,
asymmetric - using a logic programming-based approach. These concepts and
axioms impose certain restrictions over the object and data properties of an on-
tology and any violation of these restrictions results in an inconsistent ABox.
We developed a two-phase approach to the translation, using first an automated
translator to translate the ontology to datalog and then a restrictions checker to
check for ABox consistency with respect to the restriction concepts and axioms.
We represent each restriction concept/axiom by a datalog rule and then store
the restrictions of a property to a relational database by translating the data-
log rule to an SQL statement. For each assertion the restrictions checker checks
whether it violates any restrictions. The datalog representations of the restric-
tion concepts and axioms are given in Table 2. We illustrate this with a brief
example: Suppose we have a TBox axiom IrreflexiveObjectProperty(hasSibling)
(hasSibling is an irreflexive object property) and then we infer an ABox axiom
hasSibling(Bob, Bob). Now the ABox of the ontology will be inconsistent with
respect to the TBox axiom because Bob cannot be the sibling of himself (ir-
reflexivity). We identify all violations according to the semantics of the axioms
listed in Table 2, where n = 0 or 1.

2.2 Materialization

Materialization [8] is an approach for inferring and storing implicit knowledge
from ontologies. If the ABox of an ontology is large and the query rate is high, the



110 R.U. Faruqui and W. MacCaull

Table 2. Datalog representation of the restrictions checker’s concepts and axioms

MinimumCardinality MaximumCardinality
� nP.C � nP.C
ObjectMinCardinality(n P C) ObjectMaxCardinality(n P C)
FunctionalProperty InverseFunctionalProperty
� �� 1 P � �� 1 P−
FunctionalObjectProperty(P ) InverseFunctionalObjectProperty(P )
Irreflexive Asymmetric
∃ P.self � ⊥ P � ¬P−
IrreflexiveObjectProperty(P ) AsymmetricObjectProperty(P )

materialization technique is faster than the approaches that perform reasoning
during query evaluation. Materialization techniques are used in many scalable
reasoners, including [5], [21] and [18]. In our materialization approach, we use the
forward-chaining method to infer implicit knowledge and a relational database to
store information. In this section, we give a formal representation of the datalog
version of the translated ontology by an abstract syntax, explain how a datalog
rule can be translated to an SQL statement, and discuss the inferencing over
datalog programs.

The abstract syntax for our datalog program is given in Listing 1.1 using
a BNF. In this notation, the terminals are quoted, the non-terminals are not
quoted, alternatives are separated by vertical bars, and components that can oc-
cur zero or more times are enclosed by braces followed by a superscript asterisk
symbol ({. . .}∗). A class atom represented by class(i-object) in the BNF consists
of a class and a single argument representing an individual. For example, an
atom Person(x) holds if x is an instance of the class Person. Similarly, an in-
dividual property atom represented by ObjectProperty(i-object,i-object) consists
of an object property and two arguments representing individuals. For example,
an atom hasDog(x,y) holds if x is related to y by property hasDog. A functional
object property such as hasMother is encoded as FunctionalObjectProperty (has-
Mother). If an atom is a ground fact, i.e., there are no variables in its argument
list, we call it a restrictive atom, because such an atom is restricted to appear
only in the head of a datalog rule.

As we already mentioned, storing asserted and inferred information is part of
materialization and to achieve this, we translate each datalog rule to an equiva-
lent SQL statement. We use a database structure adapted from [18] which has 33
relational tables to store OWL 2 RL ontologies. The structure uses a metamap-
ping approach, putting all the Class assertions into one table, all the Object
Property assertions into a second table and all the Data Property assertions
into a third table, rather than using a separate table for each predicate. Exten-
sions of the database corresponding to extensions of an ontology are then easy
to make. A fragment of the database structure is given in Figure 2 where some
tables including their column names are shown. An arrow between two tables
represents a referential constraint (functional dependency) between the tables.
Referential constraints are also known as foreign keys.



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 111

Program ::=Rule {Rule}∗
Rule ::= Head | Head ’←’ Body
Head ::= Atom | RestrictedAtom
Body ::= Atom{∧ Atom}∗
Atom ::= Class ’(’ i-object ’)’

| ObjectProperty ’(’ i-object ’,’ i-object ’)’
| DataProperty ’(’ i-object ’,’ d-object ’)’

RestrictedAtom ::= ’InverseObjectProperty(’ PropertyID ’,’ PropertyID’)’
| ’FunctionalObjectProperty(’ PropertyID ’)’
| ’InverseFunctionalObjectProperty(’ PropertyID ’)’
| ’SymmetricObjectProperty(’ PropertyID ’)’
| ’AsymmetricObjectProperty(’ PropertyID ’)’
| ’TransitiveObjectProperty(’ PropertyID ’)’
| ’IrreflexiveObjectProperty(’ PropertyID ’)’
| ’FunctionalDataProperty(’ PropertyID ’)’
| ’ObjectMinCardinality(’ n PropertyID ClassID ’)’
| ’ObjectMaxCardinality(’ n PropertyID ClassID’)’
| ’ObjectPropertyDomain(’ ClassID ’)’
| ’ObjectPropertyRange(’ ClassID ’)’
| ’DataPropertyDomain(’ ClassID ’)’
| ’DataPropertyRange(’ ClassID ’)’

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral
i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

Listing 1.1. Abstract syntax for datalog programs

In our datalog program, a datalog rule has one of the following forms

head(h1, . . . hn) (1)

head(h1, . . . hn) ← body(b1, . . . , bn) (2)

head(h1, . . . hn) ← body0(b1, . . . , bn) ∧ . . . ∧ bodyn(b1, . . . , bn) (3)

Datalog rules are closely related to operations in relational algebra, and the foun-
dation of SQL is also relational algebra. Analogies between datalog and relational
query languages such as SQL are well known and well studied [3]. We translate
the three kinds of datalog rules to their corresponding SQL statements as follows:

(1) INSERT INTO <Table1> VALUES ( h1, . . . hn)
(2) INSERT INTO <Table1> SELECT

<Projectors> FROM <Tables> WHERE <SELECTORS>
(3) INSERT INTO <Table1> SELECT <Projectors>

FROM <Table2> JOIN ... JOIN <TableN> WHERE <SELECTORS>

We use an exhaustive forward-chaining approach to infer implicit knowledge, i.e.,
for each class/property assertion a forward-chaining is performed. This is a novel
database-driven forward chaining. We first translate all the ABox facts and the
TBox rules to their corresponding SQL statements. Executing the SQL state-
ments corresponding to the ABox stores these facts into a relational database.
For each fact we determine the rules relevant for forward chaining. Executing



112 R.U. Faruqui and W. MacCaull

Fig. 2. A fragment of the database schema

the SQL statements for these rules stores new (inferred) facts into the database.
Before storing any inferred information, we check whether it violates any re-
strictions listed in Table 2 by executing SQL statements corresponding to the
restrictions checker’s axioms and concepts.

Note that the W3C also recommends a set of rules corresponding to the OWL
2 RL profile. However, we are using set of datalog rules because the complexity of
forward-chaining approach over datalog programs is polynomial and the relation-
ship between datalog and SQL facilitates our database-driven forward-chaining
approach.

Our algorithm, Materialize(R, F), takes the datalog version of the OWL 2
RL ontology, and performs forward chaining to infer implicit knowledge. The al-
gorithmMaterialize(R, F) (Line 1 - 8) invokes the procedure Consequences(r,F)

to populate the relational database by asserted ABox facts and to select a set of
firable rules to perform database-driven forward-chaining. The Consequences(r,F)

(Line 1 -4) first checks whether the first argument is a rule or a fact. If it is a
fact, then it converts to it an equivalent SQL statement and executes the SQL
statement to store the asserted or inferred facts into the database. If the argu-
ment is not a fact (Line 5 - 9), this procedure checks whether the rule is firable.
A firable rule is enabled if the body predicates of the rule are matched by as-
serted or inferred facts. (Note we do not add inferred facts to F , as our algorithm
is not main-memory-based. Rather the isFirable(r) function accesses (asserted
and inferred) facts from the database.) After getting the set of firable rules, the



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 113

Materialize(R, F) algorithm, (Line 7), translates each rule to its equivalent
SQL statement and translates all others datalog rules (i.e., not firable rules) to
their equivalent SQL statements in (Line 10 -11). Before storing inferred facts
by executing all the SQL statements, the checkRestriction(s) (Line 12) method
checks whether any assertion violates any restrictions and if not, it allows the
execution of the associated SQL statement by executeSQL(s) to store the infor-
mation in a relational database, otherwise it raises an exception message about
the inconsistency of the ABox (Line 11 - 13). For example, if hasMother(x, y)
is a functional object property, the restrictions checker queries the relational
database to check whether x is connected to more than one different y. Full
details of the checkRestriction(s) method may be found in [11].

Algorithm 1. Materialize(R, F) - materialize a datalog program into the
database
Data: R- set of datalog rules F - set of ABox facts
Result: S- set of SQL statements.

1 repeat
2 inferred ⇐ false
3 for ∀ r ∈ R do
4 for ∀ f ∈ Consequences(r , F) do
5 if f /∈ F then
6 inferred ⇐ true
7 S ⇐ datalogToSQL(f )

8 until ! inferred
9 for ∀ r ∈ R do

10 S ⇐ datalogToSQL(r)

11 for ∀ s ∈ S do
12 if checkRestriction(s) then
13 executeSQL(s)

2.3 Query Processing

In this subsection, we describe a query interface to extract materialized knowl-
edge from the database. SPARQL [25] is a W3C recommendation for querying
RDF graphs. An RDF graph is a collection of (subject, predicate, object) triples.
We cannot use SPARQL as it exists as a query language for OWL 2 RL for two
reasons. First, it is based on the triple patterns of RDF graphs, but RDF triple
patterns do not match the well-defined OWL 2 RL syntax, so a modified version
of SPARQL is necessary. Second, in our framework, we materialize ontologies to
relational databases. So we need a modified version of SPARQL to retrieve data
from relational databases.

SQL, the query language for relational databases, includes support for large
data-storage, efficient indexing schemes, and query optimization. If we directly



114 R.U. Faruqui and W. MacCaull

Procedure Consequences(r,F) - recursively applied for all the predicates
of a rule body to derive the consequence

Data: r - a datalog rule, F - set of ABox facts.
1 if r is a fact then
2 datalogToSQL(r)
3 executeSQL(s)
4 return r

5 inferred ⇐ ∅
6 for ∀ f ∈ F do
7 if isFirable(r) then
8 inferred ⇐ inferred ∪ r

9 return inferred

use SQL to extract knowledge from materialized ontologies, then users have to
learn the underlying relational schemas. Many real-world semantic web-based
applications need to extract data from both relational sources and ontologies.
So a uniform query language is necessary for accessing both structured data
(e.g., from relational databases) and semi-structured data (e.g., RDF triples,
OWL ontologies).

In order to use SPARQL for querying ontologies based on OWL 1, Sirin and
Parsia [27] designed a query language by modifying SPARQL called SPARQL-
DL, a substantial subset of SPARQL, by mapping RDF triple patterns using
OWL 1 DL semantics. Therefore, SPARQL-DL supports only the semantics of
OWL 1 ontologies. The SPARQL-DL API [2] supports a query language, which
we will refer to as SPARQL-DLE, for OWL 2 ontologies (including OWL 2
RL ontologies). However, the SPARQL-DL API is built to interface with main-
memory-based OWL 2 reasoners, so we need some modifications to support
queries over the relational database-based reasoner. In this subsection, we de-
scribe the semantics of SPARQL-DLE and explain our modifications.

The Semantics of SPARQL-DLE . SPARQL-DLE is an expressive query lan-
guage that can combine TBox and ABox queries. Here we briefly describe the
semantics of SPARQL-DLE which we extended from [27].

Let O be an OWL 2 ontology, let VO = (Vcls,Vop,Vdp,Vind,VD,Vlit) be a
vocabulary for O and let I = (ΔI , .I) be an interpretation for O. The list
of SPARQL-DL query atoms for OWL 1 and their corresponding semantics
may be found in [27]. Two new query atoms are required to deal with OWL
2: Reflexive(p) and Irreflexive(p). Their semantics is given in Table 3. Here
a(i) ∈ Vuri ∪ Vvar ∪ Vbnode, d ∈ Vuri ∪ Vvar ∪ Vbnode ∪ Vlit, C(i) ∈ Vvar ∪ Sc,
p(i) ∈ Vuri ∪ Vvar, Vcls is the set of classes, Vop is the set of object properties,
Vdp is the set of data properties, Vind is the set of individuals, Vlit is the set of
literals and VD is the set of data types of O. Note that OWL 2 RL does not
include reflexivity, so our reasoning system does not support queries involving
reflexive properties.



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 115

Table 3. Satisfaction of a SPARQL-DLE query atom with respect to an interpretation

Query atom q I �δ q if
Type(a, C) δ(a) ∈ CI

Reflexive(p) < a, b >∈ pI implies a = b
Irreflexive(p) < a, b >∈ pI implies a �= b

An evaluation δ : Vind ∪ Vbnode ∪ Vlit → ΔI is a mapping from the individ-
ual names, blank nodes, and literals used in the query to the elements of the
interpretation domain ΔI subject to the requirement δ(a) = aI if a ∈ Vind or
a ∈ Vlit. The interpretation I satisfies a query atom q, I �δ q, if q is compat-
ible with the corresponding condition for the query atom. I satisfies a query
Q = q1 ∧ . . . ∧ qn. w.r.t. an evaluation δ iff I |=δ qi for every i = 1, . . . , n.

A solution to a query Q is a mapping μ : Vvar → Vcls∪Vop∪Vdp∪Vlit such that
when all the variables in Q are substituted with the corresponding value from μ
we get a ground query μ(Q) (i.e., an atom having no variables) compatible with
VO and O � μ(Q).

Implementation of SPARQL-DLE in OwlOntDB. We modified the SPA-
RQL-DL API to extract knowledge from the relational database and imple-
mented it in our system. The SPARQL-DL API is built on top of the OWL
API [15]. The SPARQL-DL API was designed in such a way that it can an-
swer mixed TBox and ABox queries by invoking interfaces, such as allC(O),
allDP (O), allOP (O), allI(O), etc., provided by the ontology reasoner. We mod-
ified these interfaces (see the full list of interfaces that required modification be-
low) so that this API can evaluate queries using our persistent reasoning system.

1. allC(O), allDP (O), allOP (O), allI(O) return all classes, data properties,
object properties, and individuals, respectively, defined in O.

2. subC(O, C), supC(O, C), eqC(O, C) return all sub classes, super classes, and
equivalent classes, respectively, of class C in O.

3. subOP (O,P), supOP (O,P), eqOP (O,P), subDP (O,P), supDP (O,P), eq
DP (O,P) return all sub object properties, super object properties, equiva-
lent object properties, sub data properties, super data properties, and equiv-
alent data properties, respectively, of properties p in O.

4. en(O, q) checks whether O � q for a SPARQL-DLE atom q.

Recall we stored asserted and inferred information from ontologies into databases.
Therefore, we need an SQL query for each interface described in (1)-(3) to re-
trieve relevant information from corresponding tables of the relational database.
For example, the SQL queries for subC(O, C) and supOP (O,P) are:

SELECT SubID FROM SubClassOf WHERE SuperID = C
SELECT SuperPropertyID FROM SuperPropertyOf WHERE SubPropertyID = P

The SQL queries retrieve all subclasses for a given class and all super properties
for a given object property, respectively. The query given in 4. is evaluated by the



116 R.U. Faruqui and W. MacCaull

SPARQL-DL API by invoking the appropriate interfaces discussed in 1.-3. For
instance, if we consider the query q = SubClassOf (′′ Person ′′, c), the SPARQL-
DL API will invoke the interface subC(O, P erson) to retrieve all the subclasses
of “Person” from the database.

3 Evaluation

We evaluated OwlOntDB using an OWL 2 RL pain management ontology con-
structed from the guidelines for the management of cancer related pain in adults,
which provides a standard approach in assessing and managing cancer related
pain in adults across Nova Scotia, Canada [7]. We evaluated OwlOntDB using
this pain ontology because there are no widely accepted benchmarks for OWL
2. In [22], the authors discussed this problem and identified that while there are
some ontologies that can be used as standards for testing TBox reasoning, there
are no such standards for ABox reasoning. Evaluation was done on a laptop
computer with 2.4 GHz Intel Core 2 Duo processor, 4 GB of RAM running Mac
OS X version 10.6.8.

We use the pain management ontology [26] that includes the terminology and
concepts of health andmedicine used in theGuysboroughAntigonish StraitHealth
Authority (GASHA) and some terms from SNOMED-CT [1], ICNP [14], and the
guidelines for cancer pain treatment. A fragment of the pain management ontol-
ogy is depicted in Figure 3. Our ontology includes several classes including Pain,
Person, Patient, PainIntensityType, SpecialPainProblem, SideEffects ; some ob-
ject properties including hasPainIntensity, Domain:Pain, Range:PainInt- ensity-
Type, and data properties including hasPainLevel, Domain :Pain,Range:xs- d:int,
inverse object properties such as isFeeling and isFeltBy, and functional object
properties including hasPainLevel, i.e., each pain level belongs to an instance of
Pain class. We also use propositional connectives to create complex class expres-
sions (e.g., persons who feel pain are patients, in DL Person � ∃isFeeling .Pain
� Patient).We developed a data generator similar to that developed for the LUBM
benchmark [13] to synthetically generate large numbers of instances for the pain
management ontology. We generated five test datasets, PM250, PM500, PM1000,
PM2000, and PM3000, where the number of patients n = 250, 500, 1000, 2000, and
3000, respectively, and evaluated the following two queries to evaluate the perfor-
mance of our system. The SPARQL-DLE formulation of each query appears below
its natural language formulation.

PM Q1. Determine the medication information of all patients who feel “Mu-
cositis” pain.

PREFIX pm: <http://logic.stfx.ca/ontologies/PainOntology.owl#>
SELECT ?i ?j WHERE {
Type(?i,pm:Patient), PropertyValue(?i, pm:isFeeling, pm:MucositisPain),
PropertyValue(?i, pm:hasMedication, ?j) }



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 117

Fig. 3. A fragment of the pain management ontology

PM Q2. Find the names of those relatives (of patients) who serve as informal
care givers.

PREFIX pm: <http://logic.stfx.ca/ontologies/PainOntology.owl#>
SELECT ?i ?j WHERE {
Type(?i,pm:Patient), PropertyValue(?i, pm:hasCarer , ?j),
SubClassOf(?j, pm:Relative) }

The first query is a conjunctive ABox query and the second query is a con-
junctive mixed TBox and ABox query. We evaluated these queries over the cor-
responding ontologies using OwlOntDB and also using two highly optimized in-
memory reasoners Pellet and RacerPro 2.0. Our goal is to show that in-memory
reasoners cannot deal with ontologies with large ABoxes. The OwlOntDB mate-
rializes the information to a database, so it needs an initial processing before
query evaluation. The initial processing time (i.e., materialization time) for five
datasets required for OwlOntDB and total number of axioms in each ontology are
given in Table 4.

Table 4. Time required for materialization for the PM ontology

PM250 PM500 PM1000 PM2000 PM3000

No. of Axioms 20344 40396 77600 156308 231555
Time (sec.) 20.71 45.94 90.34 263.24 345.28

We also evaluated our system using two well-known benchmark ontologies
for OWL 1: LUBM - an ontology about organizational structures of universi-
ties developed to test the performance of ontology management and reasoning
systems 1, and the Wine ontology - an ontology containing a classification of

1 http://swat.cse.lehigh.edu/downloads/index.html

http://swat.cse.lehigh.edu/downloads/index.html


118 R.U. Faruqui and W. MacCaull

wines, taken from the KAON2 site 2. We used two LUBM datasets from LUBM
namely, lubm1, and lubm10, where 1 and 10 are the number of universities used
to generate test data and two Wine datasets wine1 - the original wine ontology,
and wine5 - which is synthetically generated by replicating 25 times the ABox
of wine1. The details of both ontologies can be found in [22]. We evaluated the
following queries over the appropriate LUBM and Wine ontologies:

LUBM Q1. Find names of the students who are university employees along
with their type of employment. (Note this is a mixed ABox and TBox query.)

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT * WHERE {

Type(?x, ub:Student), Type(?x, ?C), SubClassOf(?C, ub:Employee)}

LUBM Q2. Find the names of all students.

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT * WHERE {

Type(?x, ub:Student)}

Wine Q1 Determine all instances of “AmericanWine”.

PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?i WHERE {

Type(?i, wine:AmericanWine)}

Wine Q2 Determine all the instances of wine which are “Dry”.

PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?i WHERE {

Type(?i,?x), SubClassOf(?x, wine:DryWine) }

The materialization time for the LUBM and Wine ontologies required for
OwlOntDB and total number of axioms in each ontology are given in Table 5.

Table 5. Time required for materialization for the LUBM and Wine ontologies

LUBM1 LUBM10 Wine1 Wine5
No. of Axioms 84562 1316410 649 5576
Time (sec.) 117.58 830.53 21.422 217.5

The query evaluation time for Pellet, RacerPro, and OwlOntDB is given in
Table 6. Standard tableau-based reasoners support more expressive fragments
of DL and efficiently perform reasoning over ontologies with small ABoxes. From
our experiments, we found that for ontologies with large ABoxes, our reasoning
outperformed its tableau counterpart. Although we first used a tableau-based
DL reasoner for the TBox reasoning required for classification, we get better
performance for the query evaluation than these tableau-based reasoners be-
cause we first materialized the inferred information into a database. After the

2 http://kaon2.semanticweb.org/download/test_ontologies.zip

http://kaon2.semanticweb.org/download/test_ontologies.zip


OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 119

Table 6. A comparison of query answering times (in seconds). “-” means that the
reasoner failed to return the result and “. . .” means that the reasoner does not support
the query. Note that RacerPro supports only TBox queries, a limitation not due to
in-memory problems but due to the nature of RacerPro.

Q1 Q2

Pellet RacerPro OwlOntDB Pellet RacerPro OwlOntDB
PM250 41.65 27 7.53 65.85 . . . 9.79
PM500 91.83 70 11.71 127.038 . . . 14.89
PM1000 179.50 105.5 16.89 259.678 . . . 19.01
PM2000 718.18 225 20.78 959.32 . . . 23.21
PM3000 - 430 29.21 - . . . 34.01
LUBM1 129.02 . . . 3.43 127 73 0.79
LUBM10 - . . . 29.07 - - 15.03
Wine1 2.95 24 0.047 2.9 . . . 0.11
Wine5 6.08 37 0.3435 386.59 . . . 1.171

materialization, reasoning over a materialized ontology is simply an SQL query
into a relational database. Main-memory based reasoners perform inferencing
for each query, so they take a longer time when the ABox is large. Indeed, we
can see from the Table 6 that we do not get any query result from either Pellet
or RacerPro for a large ontology like LUBM10, but, the query response time
for this ontology using our OwlOntDB is very low. The disadvantage of the ma-
terialization technique is that it takes a long time initially to materialize the
ontology.

Recall we use a standard DL reasoner for the TBox reasoning which creates
a complete class hierarchy if the corresponding TBox is consistent. Therefore,
OwlOntDB is complete for TBox reasoning. The ABox reasoning is based on
a database-driven forward chaining approach. The empirical completeness of
ABox reasoning was checked by comparing the ABox reasoning results with the
results of the OWL 2 reasoners Pellet and RacerPro. A similar empirical ap-
proach is used in [23], to compare their in-memory-based OWL 2 RL reasoners
with Hermit. While efficient for the TBox reasoning, their in-memory-based im-
plementation performed poorly on ontologies with large ABoxes. We are still
working on the algorithm to deal with the situation where the set of axioms is
cyclic; currently our algorithm may not terminate if the set of axioms is cyclic.

4 Related Work

There has recently been considerable interest in developing scalable persistent
reasoning systems for Semantic Web applications. The integration of relational
databases and DL-based reasoners has been realized in many research initia-
tives including [18], [29], [4]. Most scalable reasoning systems such as Min-
erva [29], SOAR [18], and DLDB2 [24] combine existing DL reasoners with logic
programming-based approaches. However, these reasoners are based on DLP,



120 R.U. Faruqui and W. MacCaull

providing only incomplete coverage of OWL 2 RL reasoning. We use a 2-phase
approach to deal with all OWL 2 RL axioms.

OWLIM [16] is an in-memory reasoner. It also uses the logic programmingbased
approach (i.e., forward-chaining for inferencing) and focuses only on the DLP
fragment, hence it covers a subset of OWL 2 RL. Another logic programming-
based DL reasoner is KAON2 [21]. In KAON2, the ontology is translated into a
logic program and then it is materialized into a deductive database for querying
and storing the information. This approach is similar to our approach, except we
develop a scalable reasoner for OWL 2 RL, a more expressive fragment than that
supported by KAON2, and materialize the information to a relational database
rather than to a deductive database.

Another database-driven reasoning system is Orel [17], which covers the full
profile of OWL 2 RL as well as the OWL 2 EL profile, using an algorithm based
on DLP. However, this system supports only TBox reasoning; it does not support
(conjunctive) query answering (i.e., ABox reasoning). Another limitation of this
system is that it does not support a standard query language for the extraction
of knowledge from materialized ontologies, therefore, users have to know the
detailed structure of the underlying database schema to extract knowledge using
SQL. To extract knowledge from the database OwlOntDB supports SPARQL-
DLE , so users of our system have to know only about the ontology.

DLEJena [19] is an OWL 2 RL reasoner that also combines a forward-chaining-
based rule engine Jena and a DL reasoner Pellet. It supports a practical subset
of OWL 2 RL. A pair of OWL 2 RL reasoners is described in recent work, [23]
using two existing rule systems Jess and Drools. However, these reasoners are all
in-memory-based reasoners; they are not scalable: they cannot handle ontologies
with large ABoxes. We could not find any scalable OWL 2 RL reasoners to use
for comparison with our approach.

5 Conclusion and Future Work

Scalable reasoning is crucial for the development of large-scale ontology-driven
applications. In this paper, we propose a practical scalable ontology reasoning
approach. The combination of DL reasoners with logic-based inferencing using
datalog exploits the particular advantages of each method in order to support
expressive ontologies, such as those which use OWL 2 RL in their TBoxes, and
large ABoxes. Logic-based approaches give us scalable reasoning strategies, and
database systems are a well-known technology for handling large amounts of
data. We develop a hybrid approach by applying database-driven forward chain-
ing approach over logic-based translated ontologies that allows us to perform
scalable reasoning over ontologies with large ABoxes. There is a number of ad-
vantages and disadvantage for materialization techniques. However, they are
good for many applications where query answering is more frequent and updat-
ing is less frequent.

Our approach is still preliminary and some improvements can be made. One
of the future directions to improve our system is to remove the Unique Name



OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 121

Assumption (UNA) because UNA is not made in OWL 2 semantics. The ini-
tial processing time for the materialization is very high. Parallel and distributed
computing may be applied to reduce the materialization time. However, this
will not be fast enough for applications that require frequent update and real-
time query answering, such as healthcare applications, where ontologies are used
to drive decision support systems. The current strategy is to rematerialize the
whole ontology if the ontology is updated, but this brings a heavy overhead as the
time required for materialization must be added to the time for query-answering.
Incremental materialization is anticipated to be an efficient solution for the up-
date problem. We are working to reduce materialization time by replacing our
exhaustive forward chaining inferencing approach by an incremental approach
that rematerializes relevant axioms. We note that Pellet supports incremental
materialization but only for concept assertions. There are also some works in
deductive database areas for incremental maintenance of truth in materializa-
tion [28]; a further investigation can be made to check whether these techniques
can be used for relational databases. Efficient handling of frequent updates in
an ontology with large number of instances is an important aspect of developing
large-scale ontology-driven systems such as healthcare systems.

Acknowledgments. This work is supported by an NSERC Discovery Grant,
an NSERC Industrial Post Graduate Fellowship and ACOA. We would like to
thank Fazle Rabbi for the help to develop benchmark data generator, Jocelyne
Faddoul and Fazle Rabbi for support on RacerPro and Rachel Embree and Mary
Heather Jewers for the fruitful discussions about ontologies and the guidelines
for the management of cancer related pain in adults. We thank the anonymous
referees for their comments and corrections.

References

1. SNOMED-CT Systematized Nomenclature of Medicine-Clinical Terms (2007),
http://www.ihtsdo.org/snomed-ct/

2. SPARQL-DLAPI (2011), http://www.derivo.de/en/resources/sparql-dl-api/
3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley

(1995)
4. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri,

M., Rosati, R.: QuOnto: Querying Ontologies. In: Veloso, M.M., Kambhampati, S.
(eds.) AAAI, pp. 1670–1671. AAAI Press/The MIT Press (2005)

5. Al-Jadir, L., Parent, C., Spaccapietra, S.: Reasoning with large ontologies stored
in relational databases: The OntoMinD approach. Data & Knowledge Engineer-
ing 69(11), 1158–1180 (2010)

6. Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press (2003)

7. Broadfield, L., Banerjee, S., Jewers, H., Pollett, A.J., Simpson, J.: Guidelines for
the management of cancer-related pain in adults. Supportive care cancer site team,
cancer care Nova Scotia, Canada (2005)

8. Broekstra, J.: Storage, Querying and Inferencing for Semantic Web Languages.
Ph.D. thesis, VU Amsterdam (2005)

http://www.ihtsdo.org/snomed-ct/
http://www.derivo.de/en/resources/sparql-dl-api/


122 R.U. Faruqui and W. MacCaull

9. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The DL-Lite Family.
Journal of Automated Reasoning 39, 385–429 (2007)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and Databases: The DL-Lite Approach. In: Tes-
saris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C.,
Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356. Springer,
Heidelberg (2009)

11. Faruqui, R.U.: Scalable reasoning over large ontologies. MSc thesis, St. Francis
Xavier University (2012), http://logic.stfx.ca/thesis/

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proceedings of the 12th Interna-
tional Conference on World Wide Web, pp. 48–57. ACM Press (2003)

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158–182 (2005)

14. Hardiker, N., Coenen, A.: A formal foundation for ICNP. Journal of Stud. Health
Technol. Inform. 122, 705–709 (2006)

15. Horridge, M., Bechhofer, S.: The OWL API: A java API for working with OWL 2
Ontologies. In: 6th OWL Experienced and Directions Workshop (OWLED) (Oc-
tober 2009)

16. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM - A Pragmatic Semantic Repos-
itory for OWL. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S.,
Pan, Z., Sheng, Q.Z. (eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 182–192.
Springer, Heidelberg (2005)

17. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel: Database-Driven reasoning for OWL
2 Profiles. In: 23rd Int. Workshop on Description Logics (DL 2010), pp. 114–124
(2010)

18. Lu, J., Ma, L., Zhang, L., Brunner, J.S., Wang, C., Pan, Y., Yu, Y.: SOR: a
practical system for ontology storage, reasoning and search. In: Proceedings of
the 33rd International Conference on Very Large Data Bases, VLDB 2007, pp.
1402–1405. VLDB Endowment (2007)

19. Meditskos, G., Bassiliades, N.: DLEJena: A practical forward-chaining OWL
2 RL reasoner combining Jena and Pellet. Web Semant. 8(1), 89–94 (2010),
http://dx.doi.org/10.1016/j.websem.2009.11.001

20. Motik, B., Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 Web Ontology Language: Profiles, W3C Recommendation (October 2009),
http://www.w3.org/TR/owl2-profiles/

21. Motik, B.: KAON2 - Scalable Reasoning over Ontologies with Large Data Sets.
ERCIM News 2008(72) (2008)

22. Motik, B., Sattler, U.: A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006.
LNCS (LNAI), vol. 4246, pp. 227–241. Springer, Heidelberg (2006)

23. O’Connor, M.J., Das, A.: A Pair of OWL 2 RL Reasoners. In: Klinov, P., Horridge,
M. (eds.) OWLED. CEUR Workshop Proceedings, vol. 849. CEUR-WS.org (2012)

24. Pan, Z., Zhang, X., Heflin, J.: DLDB2: A Scalable Multi-perspective Semantic Web
Repository. In: Web Intelligence, pp. 489–495. IEEE (2008)

25. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

26. Rakib, A., Faruqui, R.U., MacCaull, W.: Verifying resource requirements for
ontology-driven rule-based agents. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012.
LNCS, vol. 7153, pp. 312–331. Springer, Heidelberg (2012)

http://logic.stfx.ca/thesis/
http://dx.doi.org/10.1016/j.websem.2009.11.001
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/rdf-sparql-query/


OwlOntDB : A Scalable Reasoning System for OWL 2 RL Ontologies 123

27. Sirin, E., Parsia, B.: SPARQL-DL: Sparql query for OWL-DL. In: 3rd OWL Ex-
periences and Directions Workshop (OWLED 2007) (2007)

28. Volz, R., Staab, S., Motik, B.: Incrementally Maintaining Materializations of On-
tologies Stored in Logic Databases. In: Spaccapietra, S., Bertino, E., Jajodia, S.,
King, R., McLeod, D., Orlowska, M.E., Strous, L. (eds.) Journal on Data Semantics
II. LNCS, vol. 3360, pp. 1–34. Springer, Heidelberg (2005)

29. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A Scalable OWL
Ontology Storage and Inference System. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia,
F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 429–443. Springer, Heidelberg (2006)



Trustworthy Pervasive Healthcare Services

via Multiparty Session Types

Anders S. Henriksen1, Lasse Nielsen1, Thomas T. Hildebrandt2,
Nobuko Yoshida3, and Fritz Henglein1

1 University of Copenhagen
{starcke,lnielsen,henglein}@diku.dk

2 IT University of Copenhagen
hilde@itu.dk

3 Imperial College London
yoshida@doc.ic.ac.uk

Abstract. This paper proposes a new theory of multiparty session types
extended with propositional assertions and symmetric sum types for
modelling collaborative distributed workflows. Multiparty session types
statically guarantee that workflows are type-safe and deadlock-free, facil-
itate automatic generation of participant-specific (“local”) workflow pro-
tocols from global descriptions, and support flexible implementation of
local workflows guaranteed to be compliant with the workflow protocols.
The extensions with assertions and symmetric sum types support ex-
pressing state-based (pre)conditions and consensual multiparty synchro-
nisation, which are common in complex distributed workflows.

We demonstrate the theory’s applicability to clinical practice guide-
lines (CPGs) by providing a prototype implementation targeting mo-
bile healthcare applications. It compiles declarative healthcare workflows
specified in a flexible spreadsheet-formatted process matrix into type-
checked multiparty processes. The type-checked processes are interpreted
on a server communicating with generic, stateless clients running on An-
droid tablet computers, which addresses the pervasiveness requirements
common to clinical and home healthcare scenarios. A physician has, with
little prior training, successfully used the prototype to design her own
healthcare workflow as a process matrix, employing instantaneous test
and usage feedback from the prototype.

1 Introduction

Healthcare processes are characterised by being highly mobile, collaborative, se-
curity critical, and requiring a high degree of flexibility and adaptability [3,9].
Furthermore, they typically involve complex decisions based on data collected
during the process, and they are regulated, e.g. by law and clinical practice guide-
lines (CPGs) [25]. These characteristics make healthcare processes a particularly
challenging class of case management processes [11] in need of computerised sup-
port. Their design and implementation needs to support pervasive execution and
to be highly trustworthy, where formalised and verifiable process models can play

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 124–141, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Multiparty Session Types for TrustCare 125

a particularly important role. In the present paper we focus on how formalised
models based on a compilation from a declarative process model to a new vari-
ant of multi-party session types can support pervasive execution and increase
the trustworthiness. Pervasive execution is supported by automatic distribution
of guideline protocols using the theory of end point projections, implemented
in a prototype demonstrator allowing pervasive access to guidelines via stateless
clients running on Android tablet computers. Trustworthiness is increased in two
ways: 1) The declarative input format allows for specifying guidelines simply as
the set of basic activities and their causal constraints instead of a procedure or
flowchart. This frees the domain experts from having to ”think as computers”,
which as stated by Parnas [20] is obviously hopeless for concurrent systems. 2)
The theory of multiparty session types allows for statically guaranteeing dead-
lock freedom.

CPGs are descriptions of medical treatment procedures, typically maintained
by professional medical associations at the national level, for specific medical dis-
orders. CPGs can express workflows and various cooperations among healthcare
processes, which are formed by the diverse collaborative patterns between mul-
tiple participants. That is, a CPG is an agreement of global protocol or guideline
between distributed organisations or participants. A pattern that plays a promi-
nent role in CPGs is what we will call symmetric, multiparty synchronisation
where the participants collectively decide on one of the possible choices of possi-
ble next step in the protocol. Such global protocols with symmetric, multiparty
synchronisations are naturally expressed in a choreography language, such as the
WS-CDL [27] or the BPMN 2.0 [18] choreography notation exemplified in Fig. 1
in Sec. 2.

Traditionally, workflow process models and choreographies, and also CPGs,
are represented as flow-graphs inspired by and based on the seminal work on
the Petri Nets model [26,13], where safety and liveness properties can be verified
using model checking techniques [14]. As pointed out in [9], most of this work
has been focusing on centralised models and executions of the global protocols.

In the present paper we leverage the work on session types and end-point
projections [8], which provides a foundation for decentralised execution and veri-
fication by type checking of protocols in general, and CPGs in particular, specified
globally as choreographies. The framework of multiparty session types provides a
formal choreography model language typed with global multiparty session types
that guarantee that well-typed processes are deadlock free and can be projected
to session typed end-point processes (i.e. corresponding to BPMN processes for
each participant).

The work on choreographies and session types has, however, so far been fo-
cusing on process models with explicit control flow (variations of the π-calculus),
which have been observed to have limitations when it comes to flexibility and
adaptability [1]. As an alternative, formal declarative process notations with im-
plicit control flow have been proposed and investigated as a means to provide
more support for adaptability in case management systems in general [1,21,5,23]
and health care processes in particular [6,9].



126 A.S. Henriksen et al.

The key contributions of the present paper are to show 1) how the theory of
multiparty session types [8] extended with logical predicates [4] and symmet-
ric sum types [16] can be used to compactly represent declarative, distributed,
and collaborative workflows, that 2) can be modelled as a global guideline by
domain experts and 3) verified for deadlock-freedom statically, i.e. at compile
time, using automatic code generation and type inference, and 4) interpreted in
a decentralised way to provide a pervasive execution on generic tablet clients.

Concretely we show in Sec.2 how collaborative healthcare workflows declared
as Process Matrix spreadsheets can be automatically mapped to session typed
distributed programs which are interpreted to provide a trustworthy pervasive
workflow execution on Android tablet PCs. We then in Sec. 3 report on a demon-
stration of the prototype to a physician, who after having seen an example health-
care workflow being executed, was able to specify her own healthcare workflow
declaratively as a Process Matrix spreadsheet and immediately test it on the
Android tablet PCs. Finally we briefly outline in Sec. 4 the formal theory be-
hind the approach and the properties it ensures, and describe related and future
work in Sec. 5.

2 From Spreadsheets via Types to Pervasive Services

In this section we give an overview of the prototype implementation and the
different technologies used by means of a simple example workflow. First, in
Sec. 2.1 we describe the example workflow as a BPMN 2.0 Choreography diagram
and the corresponding Process Matrix spreadsheet. We then demonstrate in
Sec. 2.2 how the process matrix workflow processes can be described compactly
in multiparty session types with assertions and symmetric sum types. Finally we
overview the prototype implementation in Sec. 2.3.

2.1 Example Workflow as Choreography and Process Matrix

A simple CPG workflow involving three participants is described in Fig. 1 as
a Choreography diagram in the Business Process Modelling Notation (BPMN)
2.0. The described workflow is activated, when a patient is admitted (indicated
by the start event shown as a circle with a thin border at the left of the di-
agram). Then two tests, Test1 and Test2, are executed in parallel by a nurse.
Note that each activity box is a communication between the three participants
with one initiator (indicated in the white ribbon) and two receivers (indicated
in the shaded ribbons). Thus, the test results are sent by the nurse to both the
patient and the doctor. Each test may be repeated, as indicated by the repeating
subprocess (the looping arrow), e.g. if the test failed or the result was not clear.
Then, depending on the results of the tests, either the patient is discharged di-
rectly (following the bottom ”ok” branch), or the doctor prescribes a drug for
the patient (following the top ”not ok” branch), sending the prescription to both
the patient and the nurse. The workflow is ended when the patient is discharged,
indicated by the end event shown as a circle with a thick border at the right



Multiparty Session Types for TrustCare 127

Test1

Nurse

Patient

Doctor

Test2

Nurse

Patient

Doctor

Prescribe

Doctor

Nurse

Patient

Discharge

result1

result2

prescript ion

n
o

t 
o

k

ok

Fig. 1. Workflow as BPMN 2.0 Choreography

of the diagram. The described workflow is a standard paradigm in CPGs; that
is, first a set of tests are performed and, depending on the results, either more
tests are performed, the patient is discharged, or a treatment is executed. In this
workflow the treatment consists of simply prescribing a drug for the patient.

For our demonstrator we do not use BPMN 2.0 choreographydiagrams. Instead
we use a simplified version of the declarative Process Matrix representation devel-
oped by our industrial partner Resultmaker (http://www.resultmaker.com/) in
the TrustCare research project. The process matrix corresponding to the chore-
ography in Fig. 1 is shown in Fig. 2 below, using three boolean data fields (pre,
result1, and result2) explained below.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W ¬ pre result1

1.1.2 Test2 R R W ¬ pre result2

1.2.1 Prescribe R W R 1.1.1, 1.1.2 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)

1.3.1 Discharge R W R 1.1.1, 1.1.2 (result1 ∧ result2) ∨ pre end

Fig. 2. Example CPG workflow as Process Matrix

The process matrix has a row for each activity, and columns providing name,
access control (Read or Write) for each participant (Patient, Nurse, Doctor),
Sequential predecessor relation, Logical predecessor relation (not used in our
simple example), Conditions, Input data, and an optional Action performed
when the activity is executed. The condition field must evaluate to true for an
activity to be enabled. Actions are given in a small if-then-else language:

Cmd ::= c | end,
c ::= set(x) | reset(x) | if e then c1 else c2 | {c1; . . . ; cn},
e ::= x | ¬ e | e1 ∧ e2 | e1 ∨ e2

http://www.resultmaker.com/


128 A.S. Henriksen et al.

where the end command ends the workflow, set(x) and reset(x) sets the value of
the variable x to true or false respectively. For instance, when the prescription
activity is executed, the pre variable is set to true, which disables the Test1 and
Test2 activities. This also allows to represent non-determinism, i.e. branching
behavior. If-then-else considers a Boolean expression and then uses either of the
commands. The bracketed commands are performed in sequence. Furthermore,
every sequential predecessor (for which the condition field presently evaluates to
true) must have been executed at least once before the activity can be executed.

A logical predecessor of an activity enforces the extra constraint that if the
logical predecessor is re-executed then the activity must also be re-executed.
Thus, by default an activity with no sequential or logical predecessors and no
conditions can be executed at any time and any number of times. In other words,
looping behavior (or jumping back to previous activities) is the ”default”. In
particular, Test1 and Test2 can be repeated as long as the prescription has not
been made. This means that flexibility (of the worker) is the default; if the work
flow is to be constrained, i.e. be less flexible, the constraints must be explicitly
given. For instance, if tests should be allowed also after a prescription, and in
that case requiring a new prescription if both tests are still not ok, one could
simply change the matrix to the one given in Fig. 3.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W result1 reset(pre)

1.1.2 Test2 R R W result2 reset(pre)

1.2.1 Prescribe R W R 1.1.1 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)
1.1.2

1.3.1 Discharge R W R 1.1.1, (result1 ∧ result2) ∨ pre end
1.1.2

Fig. 3. More flexible CPG with tests being logical predecessors of prescription

The same flexibility can of course be obtained using a choreography as the two
notations are equally expressive, but in the process matrix notation, flexibility
in execution is the default. Activities can be listed in the ”normal” order, but
repeated by default if necessary. Also, processes can be changed incrementally
e.g. by adding rows and changing conditions. Hereto comes, that spreadsheets are
familiar to many users, in particular if they have used Excel. Also, it was observed
in a field study, that the tabular process descriptions actually corresponded to
the paper based records used at the hospitals to keep track of the treatment [12].

2.2 Example Workflow as Multiparty Session Type

We now demonstrate how process matrix workflow processes as given above can
be described compactly in multiparty session types with logical propositions as
assertions and with so-called symmetric sum types.



Multiparty Session Types for TrustCare 129

μ workflow 〈 t e s t 1 : Bool=false , t e s t 2 : Bool=false , pre : Bool=false ,
r e s u l t 1 : Bool=false , r e s u l t 2 : Bool=false〉 .

{ Test1 [ [ not pre ] ] :
3→1 : 1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 1
3→2 : 2 〈Bool 〉 as y [ [ x=y ] ] ; // The r e s u l t o f t e s t 1
workflow 〈 true , t e st2 , pre , x , r e s u l t 2 〉 ,

Test2 [ [ not pre ] ] :
3→1 : 1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 2
3→2 : 2 〈Bool 〉 as y [ [ x=y ] ] ; // The r e s u l t o f t e s t 2
workflow 〈 te st1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [ [ t e s t 1 and t e s t 2 and not pre and not ( r e s u l t 1 and r e s u l t 2 ) ] ] :
2→1 : 3 〈 S t r i ng 〉 ; // The p r e s c r i p t i o n
2→3 : 4 〈 S t r i ng 〉 ; // The p r e s c r i p t i o n
workflow 〈 te st1 , te st2 , true , r e su l t 1 , r e s u l t 2 〉 ,

Discharge [ [ t e s t 1 and t e s t 2 and ( ( r e s u l t 1 and r e s u l t 2 ) or pre ) ] ] :

end
}

Fig. 4. Session type representation of workflow using assertions

Multiparty session types [8] define protocols for interactions in a group of
participants. They closely correspond to choreographies. In addition to defining
the protocol, the theory of session types guarantees type-safety and deadlock
freedom.1 Moreover, it facilitates verifying that a collection of π-calculus pro-
cesses, corresponding to BPMN processes in a collaboration diagram describing
each participant, follow the specified protocol. The extension of multiparty ses-
sion types with assertions [4] refines type signatures with logical predicates,
which can be used to restrict the values that are communicated and choices
that are made. We also use symmetric sum types [17], which are an extension of
multiparty session types that can type nondeterministic choice agreed upon by
multiple participants.

These three main features—multiparty, symmetric synchronisations and logi-
cal predicates—are essential for representing process matrix workflows in a direct
and compact way and verifying practical use cases, not only in the context of
CPGs, but also for workflows in general.

Fig. 4 specifies the workflow from Fig. 1 as a multiparty session type with
symmetric sum types and assertions. The workflow is described by a recursive
type (indicated by the initial μ sign), parameterised by a state: test1, and test2,
describe if the respective test action has already been executed; this is needed
because the test actions are sequential predecessors of the prescribe and dis-
charge actions. The pre condition records whether the prescription activity has
been executed. It is used to ensure prescription is executed only once and to
block subsequent test1 and test2 actions. Finally, result1 and result2 record the
results of the respective tests. The type is a symmetric sum (choice) with options
specified by the underlined labels, Test1, Test2, Prescribe, and Discharge. The in-
tuition is that all participants symmetrically agree on one of the four actions.

1 This is referred to as progress in the theory of session types. This may be confusing,
since progress is also used as synonym for liveness, i.e. that something good eventually
happens, which is not guaranteed by the present theory of session types.



130 A.S. Henriksen et al.

Fig. 5. Demonstrator architecture

After executing an action, the recursive type is reentered with an updated state,
except if the action is Discharge,, which ends the workflow. In the state where
both tests have been executed, no prescription has been made yet and at least
one of the test results was not ok (represented as the Boolean value false), the
Prescribe, action is enabled.

The specification also describes that when Test1, is executed, the result is sent
from participant 3 (the nurse) to participant 1 (the patient) and 2 (the doctor)
(represented by 3 → 1 and 3 → 2).

The logical assertions are also useful for other aspects of the CPG workflows.
Assertions can for example be used to enforce that doses of medicine be below
a particular limit. For simplicity, this has not been included in our example,
however. In the example workflow assertions are used to ensure that the same
result is sent to the patient and the doctor, and control wether the medicine
must be administered or the patient can be discharged directly.

2.3 Implementation

The demonstrator allows distributed execution of workflows specified by a pro-
cess matrix on a server accessed by Android tablet clients. The architecture is
depicted in Fig. 5. The arrow from the CPG cloud indicates that the process
designer describes a workflow (e.g. a CPG) as a process matrix specification in
a spreadsheet. The arrow to the mps (multi-party session types) code generator
indicates that it takes the process matrix as input. In the demonstrator imple-
mentation, the process matrix is given as a comma-separated value (CSV) file
produced from an off-the-shelf spreadsheet program. It enables the process ma-
trix to be specified in a normal spreadsheet program, which provides a graphical
table editor familiar to many end-users.

Code Generation. The generated mps code consists of a global multiparty
session type, as exemplified in Fig. 4, representing the global workflow protocol,
and the local process for each participant.



Multiparty Session Types for TrustCare 131

The code for the local processes contains user-interface information which,
when interpreted, prompts users for information through a graphical user in-
terface (GUI). The local process code generation, including its GUI-actions, is
configurable; concretely, it is generated from descriptions written in a separate
spreadsheet table.

Fig. 6 shows code for the process matrix from Fig. 2 that is very close to the
actual generated code. We only show the Doctor part, as the global type is very
similar to the one shown in Fig. 4. (The number 2 appearing in the code several
places indicates that this is participant 2, the doctor).

1 l i n k (3 , wf , s , 2 ) ;
2 gu iva lue (3 , s , 2 , ” . uid ” , ”d ” ) ;
3 gu iva lue (3 , s , 2 , ” a121 d : t i t l e ” , ” Pre s c r i b e ” ) ;
4 . . .
5 de f Loop 〈 a111 : Bool , a112 : Bool , a121 : Bool , a131 : Bool ,
6 r e s1 : Bool , r e s2 : Bool , pre : Bool 〉
7 (w: wf 〈 a111 , a112 , a121 , a131 , res1 , res2 , pre 〉@(2 o f 3 ) ) =
8 guisync(3 , w, 2) {
9 a111-n 1 [ [ not pre ] ] ( ) :

10 w[ 7 ] ? lungs ok ;
11 gu iva lue (3 , w, 2 , ”Lungs ok ? : i n f o ” , lungs ok ) ;
12 Loop 〈 true , a112 , a121 , a131 ,
13 ( lungs ok or ( ( not lungs ok ) and re s1 ) ) , res2 , pre 〉 (w) ,
14 a112-n 1 [ [ not pre ] ] ( ) :
15 w[ 7 ] ? throat ok ;
16 gu iva lue (3 , w, 2 , ”Throat ok ? : i n f o ” , throat ok ) ;
17 Loop 〈 a111 , true , a121 , a131 , res1 ,
18 ( throat ok or ( ( not throat ok ) and re s2 ) ) , pre 〉 (w) ,
19 a121-d [ [ a111 and a112 and ( ( not pre ) and ( not ( r e s1 and re s2 ) ) ) ] ]
20 ( p r e s c r i p t i o n : S t r ing = ”” ) :
21 w[ 3 ] ! p r e s c r i p t i o n ;
22 w[ 5 ] ! p r e s c r i p t i o n ;
23 gu iva lue (3 , w, 2 , ” P r e s c r i p t i on : i n f o ” , p r e s c r i p t i o n ) ;
24 gu iva lue (3 , w, 2 , ” . a121 d ” , true ) ;
25 Loop 〈 a111 , a112 , true , a131 , res1 , res2 , true 〉 (w) ,
26 a131-d [ [ a111 and a112 and ( ( r e s1 and re s2 ) or pre ) ] ]
27 ( dis comment : S t r ing = ”” ) :
28 end
29 }
30 in
31 Loop 〈 false , false , false , false , false , false , false〉 ( s )

Fig. 6. Mps code for Doctor participant

Corresponding to the recursion in the global session type in Fig. 4, the gen-
erated mps code consists of a single loop (line 5-31), where all actions specified
in the matrix correspond to a branch (lines 9, 14, 19, 26) in a single synchro-
nisation. Each branch is annotated with the writer of that action. In contrast
to BPMN choreographies, a process matrix allows actions with more than one
writer. This will be compiled to several branches in the synchronisation; e.g., if
the nurse could also discharge the patient, there would be a branch a131-n .

The loop maintains a state, which includes the conditions derived from the
workflow and for each action whether it has been executed. Each writer action
receives inputs from the GUI (line 20) and sends them to the reader participants
(lines 21, 22).



132 A.S. Henriksen et al.

The predecessor and activity conditions are enforced using the state. Using
an assertion for each branch, we can make sure a branch is only shown when
its predecessors have been executed and the activity condition is true. When
looping in the end of each branch, the executed state is updated in two ways:

– The executed state of the completed action, is set to true (e.g. a111 in line
12).

– The executed state of any action that has the completed action as logical
predecessor is set to false.

The last part of the logic is the extra control column. The effect of the set
command for action a121 can be seen in line 25, where the variable pre is set to
true.

Apims. As part of our architecture, we have have created an ASCII syntax for
the asynchronous π-calculus with multiparty sessions and symmetric synchroni-
sation called apims, and implemented a type checker and an interpreter. This is
to our knowledge the first prototype implementation of the π-calculus with mul-
tiparty sessions and multiparty session types. The implementation along with
example programs can be found on the apims website [2].

The arrow connecting the mps code generation and the apims type checker
in Fig. 5 shows that the mps code is type checked with the apims type checker.
If the code is not well-typed it will in this case be because the workflow may
deadlock, i.e. it may reach a state that is not the final state, but no activity
can be executed. The example process matrices given above produce well-typed
code. An innocent-looking modification such as changing the logical or (∨) in
the condition for the Discharge activity to a logical and (∧) would make it
possible to deadlock, however: if both tests are fine (blocking the prescription),
the missing prescription prevents the discharge of the patient. The static type
checking thus allows the designer at compile time to catch potential deadlocks
before the workflow is initiated and return to the spreadsheet and revise the
specification as indicated by the arrow back to the Process Matrix Spreadsheet. 2

If the code is well-typed, the apims interpreter in the lower right of Fig. 5
interprets the code of each participant process. It communicates with the user
interfaces of the clients through a GUI manager, a separate, replaceable module
that communicates with the clients and maintains a view of the global process
state for each participant. In particular, each guisync term introduces a list of
choices for each participant corresponding to enabled branches in the workflow,
and each guivalue a list of values for each participant. The GUI manager main-
tains data structures for these two components, and the clients interact with the
workflow by manipulating these components. The choices can be accepted by
the clients, and if all parties accept a choice, execution can continue with the
corresponding branch.

2 However, the current implementation does not provide a very useful feedback to the
non technical user.



Multiparty Session Types for TrustCare 133

GUI Clients. The values are used to send data to the client. Several kinds of
data are transmitted: meta data, e.g. the human readable name of the different
actions (as specified in the spreadsheet); value data, e.g. the data entered by the
other participants; and execution data, e.g. the execution state of each action.

These data are encoded in the key-value pair of each guivalue. Note that clients
are stateless : By keeping all data in the interpreter, clients can be changed/break
down without ruining the execution.

Fig. 7. Screenshot from Android client logged in as Doctor

In Fig. 6 the guivalue in line 2 assigns the Doctor role to the specific part of the
code. This lets the GUI manager know which choices are assigned to which role.
Fig. 7 shows a screenshot of the Android client running the example workflow
in the doctor role, which can be seen at the top of the screen. The workflow
is in a state where the nurse has performed both tests. The other guivalues all
correspond to different parts of the screen. The guivalue in line 3 assigns the
human-readable name “Prescribe” to the action a121-d . The guivalues in lines
11 and 16 are used to show the information received from the nurse (the result of
the tests), which can be seen in the window to the right. Similarly the guivalue
in line 23 results in the values shown on the right-hand side once the Doctor
has entered those. The last guivalue in line 24 is used to pass the execution
state of the action to the client. This results in a small checkmark filled with
a green colour for the action, so the user knows that it has been performed. In
the screenshot the execution state is false, so the checkmark is not filled, i.e. it
is shown as white.

It is important to stress that every participant uses the same generic Android
client. The GUI manager uses the generated code to make sure that the An-
droid client used by the Doctor presents only the local process corresponding to
the workflow relevant to the doctor, and the Android client used by the Nurse
presents only the local process relevant to the Nurse. An example screenshot of



134 A.S. Henriksen et al.

the Android client running the example as the nurse role is shown in Fig. 8. It
shows the workflow in a state where the nurse has performed the lung test with
a negative result and still needs to perform the throat test.

Fig. 8. Screenshot from Android client logged in as Nurse

The model-view-controller architecture of apims supports fully flexible inter-
face design without compromising the trustworthiness of correct execution of the
specified workflows. Furthermore, the communication between clients and apims
is mediated through the interface definition language framework Thrift [24],
which supports multiple language bindings. Altogether, this supports flexible
client design for usability in a pervasive context; e.g., a simple approach to se-
cure and efficient inputting on a tablet computer has been by using QR-codes
scanned though the tablet’s camera. This enables a user to scan the drug name
and the dose from physical objects, minimising the amount and attendant risks
of manual typing. We have only superficially touched upon the technical and
usability challenges of developing user interface clients for tablet computers in
comparison to conventional PC clients, however.

3 Experiment: An End-User Developed Workflow

To test the developed software, we performed a simple experiment with the help
of a physician: Dorthe Furstrand Lauritzen (DFL). The motivation behind the
experiment was to get first hand impressions from a domain expert, to evaluate
the current implementation and set goals for future development. Although DFL
is a physician and not a computer scientist, she has experience with use of IT
and in particular implementation of CPGs. However, she had never seen any
of the techniques used in the demonstrator before, in particular the declarative
process matrix notation was completely new to her.



Multiparty Session Types for TrustCare 135

Id Name D N S AN OPN Seq Log Condition

1.1.1 Nurse evaluation R W R R R

1.1.2 Patient History W R R R R

1.1.3 Extended history W R R R R abnorm

1.1.4 Preoperative treatment W R R R R cyto

1.1.5 Objective W R R R R

1.1.6 Extended objective W R R R R abnorm2

1.1.7 Ultrasound W R R R R

1.1.8 Formalia W R R R R

1.1.9 Extended formalia W R R R R abnorm3

1.2.0 Information for the patient R W R R R 1.1.1 - 1.1.9

1.2.1 Schedule for OP R R W R W 1.2.0

Fig. 9. End-user developed workflow (Flow)

The main component of the experiment was to put DFL in the role of the
workflow designer, letting her use the spreadsheets to formalise a simple self-
chosen medical workflow, which can be run on the Android tablets. There are
several aspects of the experiment:

– Letting a medical professional come with a self-chosen workflow, tests the
expressiveness of the system.

– Letting a new user interact with the workflow creation tool tests the usability
of the tool.

– Letting a medical professional use the tool, tests the hypothesis: the do-
main expert can implement simple workflows, leading to a simpler and more
flexible development process, e.g.
• The domain experts might be able to make simple changes directly with-
out involving the development team.

• The domain experts can use simple workflows to communicate more
directly and efficiently with the development team.

3.1 The Experiment

The experiment, which took a single day, was set-up as follows: DFL had access
to a computer where the server, the code generator and example spreadsheets
were available. To simplify the interface, all spreadsheets were placed on the
desktop and batch commands performed the code generation and server start.
To learn the syntax, DFL did a small exercise under instruction by one of the
authors.

The workflow chosen by DFL model how a healthy woman gets an abortion;
according to DFL this was “a simplification of the simplest workflow I could
find”.

The developed workflow is shown in Fig. 9 and Fig. 10. The roles are: Doc-
tor (D), Nurse (N), Secretary (S), Anaesthesiologist (AN) and operation nurse
(OPN).

An example screenshot from the running Android client is shown in Fig. 11.



136 A.S. Henriksen et al.

Id Input Action

1.1.1 name height weight bP

1.1.2 cave ever birth healthy if ! healthy then set(abnorm);
if cave then set(abnorm);
if ! ever birth then set(cyto)

1.1.3 cavetx healthtx

1.1.4 rp cytotec

1.1.5 gU ia stet c et p ia if ! gU ia then set(abnorm2);
uterus retroflekteret if ! stet c et p ia then set(abnorm2)

1.1.6 sttx gutx

1.1.7 fHR cRL gA

1.1.8 clamydiatested clamydia negative if ! clamydiatested then set(abnorm3);
rhesus negative signed form A if ! clamydia negative then set(abnorm3);

under 18 gA under 12 if rhesus negative then set(abnorm3);
if under 18 then set(abnorm3);
if ! signed form A then reset(1.1.8);
if ! gA under 12 then reset(1.1.8)

1.1.9 rp antibiotics rp anti D signed form B

1.2.0 pt informeret samtykke

1.2.1 op tid gA ved op

Fig. 10. End-user developed workflow (Data)

3.2 Evaluation

Generally the experiment turned out very successfully: DFL was easily able to
use the spreadsheets to build her own workflow. The instructing author only
had to take over one time to fix a problem. Even though the workflow included
fairly complex logic, DFL was able to create it without any previous program-
ming experience and despite the unwieldy syntax of the action field. The system
seemed expressive enough to create the simple flow, but during the experience
DFL asked for more complex logic (e.g. comparison of values) and more presen-
tation control (e.g. grouping of values). The general usability of the tool seemed
good, as DFL was able to start developing her workflow almost from the start.
Of course there are several points that could be improved (most notably the
action field). All in all, it is promising to let a domain expert work directly with
the workflow code; maybe not for the full version, but for rapid prototyping.

4 Formal Theory

This section provides the outline of the formal theory and shows the properties
which the prototype can ensure. See [16] for detailed definitions and proofs.

Once given global types as a description of global interactions among commu-
nicating processes, we can consider the following development steps for validating
programs.

Step 1. A domain expert describes an intended interaction protocol as global
type G with logical predicates, and checks whether is well-formed or not.



Multiparty Session Types for TrustCare 137

Fig. 11. Screenshot from Android client running the experiment workflow

In our implementation the global type is generated from a Process Matrix
spreadsheet, by the mps code generator depicted in Fig. 5, i.e. the domain
expert writes a spreadsheet instead of a global type.

Step 2. Projections of global typeG (called local types) onto each participant are
generated, either by a programmer or as in our implementation automatically.

Step 3. Program code P , one for the local behaviour of each participant p, is
generated and its conformance to local type T is validated by efficient type-
checking. The mps code generator in the implementation actually creates
default implementations for each participant. A programmer can use the
default implementations as starting point and then develop more refined
implementations, possibly in other session typed end-point languages, while
adhering to the projected local type.

When programs are executed, their interactions are guaranteed to follow the
stipulated scenario without deadlocks.

Going back to the example from Sec. 2, the local type describing the behaviour
of each participant can be obtained by projection (Step 2) and following this
type, its process is implemented by filling input and output binding of values
from the local type(Step 3). In Fig. 12 is given the local type of the patient
and its behaviour described as an end-point process in the π-calculus, extended
with the sync primitive. There is a clear one-to-one correspondence between
type and process: for example, the recursive type μ corresponds to the recursive
agent (denoted by def) and the sum type corresponds to the synchronisation
(denoted by sync).

The implementation extends the π-calculus with a guisync constructor, which
is the result of extending the sync for user input. Each branch has a set of typed
arguments that must be given using the GUI before that choice is accepted, and
the given arguments can be used by the process in that branch. In Fig. 6 guisync
is seen in line 8, and the user input can be seen as “prescription” in line 20.



138 A.S. Henriksen et al.

G�1 = // Local type f o r Pat ient
μ workflow 〈 t e s t 1 : Bool=false ,

t e s t 2 : Bool=false ,
pre : Bool=false ,
r e s u l t 1 : Bool=false ,
r e s u l t 2 : Bool=false〉 .

{ Test1 [ [ not pre ] ] :
1? 〈Bool 〉 as x ;
f o r a l l y [ [ x=y ] ] ;
workflow 〈 true , t e s t2 , pre , x , r e s u l t 2 〉 ,

Test2 [ [ not pre ] ] :
1? 〈Bool 〉 as x ;
f o r a l l y [ [ x=y ] ] ;
workflow 〈 te s t1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [ [ t e s t 1 and t e s t 2 and
not pre and
not ( r e s u l t 1 and r e s u l t 2 ) ] ] :

3? 〈 St r ing 〉 as x ;
workflow 〈 te s t1 , t e s t2 , true ,

r e su l t 1 , r e s u l t 2 〉 ,
Discharge [ [ t e s t 1 and t e s t 2 and

( ( r e s u l t 1 and r e s u l t 2 ) or pre ) ] ]
end

}

PP = // Pat ient
a [ 2 . . 3 ] ( p , d , n ) .
de f X〈 t1 : Bool , t2 : Bool , pre : Bool ,

r1 : Bool , r2 : Bool 〉
( ( p , d , n ) : workflow �1 〈 t1 , t2 , pre ,

r1 , r2 〉)=
sync( ( p , d , n ) , 3 )
{ Test1 [ [ not pre ] ] :

p? ( r e s u l t ) ;
X〈 true , t2 , pre , r e su l t , r2 〉 ( ( p , d , n ) ) ,
Test2 [ [ not pre ] ] :
p? ( r e s u l t ) ;
X〈 t1 , true , pre , r1 , r e s u l t 〉 ( ( p , d , n ) ) ,
Prescribe [ [ t1 and t2 and not pre

and not ( r1 and r2 ) ] ] :
p? ( p r e s c r i p t i o n ) ;
X〈 t1 , t2 , true , r1 , r2 〉 ( ( p , d , n ) ) ,

Discharge [ [ t1 and t2 and

( ( r1 and r2 ) or pre ) ] ] }
end

}
in X〈 false , false , false , false , false〉 ( ( p , d , n ) )

Fig. 12. Local type and process for the patient

We then type-check processes by following the session typing rules. The typing
judgement extends the original one [4] with symmetric sum types. The judgement
Θ;Γ � P�Δ states that assumingΘ the processP in the environmentΓ performs
exactly the session communication described inΔ. By the rules, we can verify the
example is type-able, i.e.Θ;Γ � (PP | PD | PN )�ΔwherePD andPN are the doc-
tor and the nurse implemented similarly to PP and | denotes parallel composition.
We end this section by stating the subject reduction theorem, which guarantees that
once the process is compiled, then there will be no type error at runtime.

Theorem 1 (Subject reduction). If true;Γ � P 	 ∅ and P → P ′, then
true;Γ � P ′ 	 ∅.
From this theorem, we can derive many safety properties as corollaries [8, Sec. 5].
The properties which this framework guarantees include: (1) type safety: the
lack of standard type errors in expressions; (2) communication safety: commu-
nication error freedom (i.e. a sending action is always matched to its correspond-
ing receiving action at the same channel); (3) session fidelity: the interactions
of a type-able process exactly follow the specification described by its global
type; and (4) progress: once a communication has been established, well-typed
programs will never get stuck at communication points. The formal definitions
and the proofs of these properties can be found in [16,4,8].

5 Conclusions, Related and Future Work

We have successfully applied the symmetric sum types and assertion extensions
of the multiparty session types to compactly specify flexible, declarative work-
flows with data constraints as needed for CPGs. This enables a decentralised



Multiparty Session Types for TrustCare 139

execution automatically generated from the specification, which is guaranteed
to be deadlock free by type checking and the subject reduction theorem. We
provided an end-to-end, model-driven, pervasive demonstrator implementation.
Finally, we reported on a successful experiment, letting a physician declaratively
specify her own CPG in an off-the-shelf spreadsheet program and run it on the
demonstrator.

The original implementation of the Process Matrix called Online Consultant
by Resultmaker [12] is database based. This means that communication con-
sists of the sender uploading information to the server, and all participants must
query the server when using the information. Implementing the workflows based
on the π-calculus and session types not only gives the Process Matrix a formal
semantics, but also allows an implementation where participants communicate
their data as peer-to-peer. This offers more natural and robust realisation of
the workflows. It is important to point out that while the current demonstra-
tor prototype executes all participant threads on a single, central server, there
is nothing that hinders decentralised execution of such threads either on local
servers or even at the clients. However, if executed (only) on a mobile client one
loses the possibility to access/recover the thread if the mobile client is lost or
damaged. Also, the theorem provers we have implemented (to verify assertions
in the type checker) are based on the LK and CFLKF proof systems, which
are not very efficient in practice. But there is an abundance of theorem provers
available [22,10] which can enable both more efficient verification (in practice)
and more expressive assertion languages. We can even use a resolution based
theorem prover or indeed any method that can decide assertion validity, as we
do not currently use the derivations for anything.

The approach in the present paper relates to work based on the Lightweight
Coordination Calculus (LCC) [23,9] in being decentralised and representing
clinical protocols and guidelines as message-based interaction models, which
exchange information among agents distributed across different hospitals. As
pointed out in [9], most other approaches ([19]) providing formal modelling, en-
actment and verification of CPGs have been based on centralised models and
executions. While the work based on LCC focuses only on describing the in-
dividual agents, the approach based on global and local session types taken in
the present paper combines the best of both worlds: the global session type cor-
responds to the centralised, global overview of the CPG and the local session
types generated automatically from the global session type provide the indi-
vidual views. Moreover, instead of relying on model checking (of the combined
system of agents) the session type approach extracts the individual communi-
cation protocols which can be type-checked against an individual agent thread
implemented in the π-calculus being interpreted in the current demonstrator.
This also opens up possibilities for implementing local session type checking for
other end-point languages, such as Java, Python, C, Ocaml, LCC and related
formal notations described below.

Another related approach is the declarative Dynamic Condition Response
(DCR) Graphs process model [5,15] developed in the TrustCare project.



140 A.S. Henriksen et al.

DCR Graphs can be verified for safety and liveness properties using the SPIN
model checker [15] and directly formalise the declarative process matrix model
and extend it with the possibility of differentiating between may and must be-
haviours, that is, an activity may be possible, but not required in order to fulfil
the goal of the workflow. As for the session types approach, DCR Graphs allow
global descriptions from which end-point descriptions can be derived automati-
cally and executed locally [7,6]. The distribution technique is more flexible than
the one based on session types, since it is not restricted to a fixed allocation of
participants in the global description. However, DCR Graphs have so far limited
support for data and no facility for type and assertion checking for local agents
as developed in this paper. This makes the DCR Graphs approach less flexible
with respect to end point implementations which must be based on the projected
DCR Graphs.

As for future work, it would indeed be interesting to explore session typed
LCC, Petri Nets and DCR Graphs, which would enable to provide end-points in
these languages and to include and benefit from the work on these alternative
approaches. We also plan to explore an extension of session types with time
deadlines and violations of such, which are crucial in order to represent real
CPGs. Finally, we are planning a larger experiment with several users and CPGs
in collaboration with It, Medico og Telefoni (IMT) (www.regionh.dk).

Acknowledgements. This work was funded in part by the Danish Council for
Strategic Research, Grant #2106-07-0019, the IT University of Copenhagen and
University of Copenhagen (the TrustCare project, www.trustcare.eu). We want
to thank Dorthe Furstrand Lauritzen for participating in the experiment and for
extensive feedback on the demonstrator, and the anonymous reviewers for their
careful reviews and comments.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - R&D 23(2), 99–113
(2009)

2. Apims project page, http://www.thelas.dk/index.php/apims
3. Bardram, J.E., Bossen, C.: Mobility work: The spatial dimension of collaboration

at a hospital. CSCW 14, 131–160 (2005)
4. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for

distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010)

5. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Proceedings of PLACES 2010
(2011)

6. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe dis-
tribution of healthcare workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011.
LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012)

7. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 237–252. Springer, Heidelberg (2011)

http://www.thelas.dk/index.php/apims


Multiparty Session Types for TrustCare 141

8. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

9. Hu, B., Dasmahapatra, S., Robertson, D., Lewis, P.: Decentralised clinical guide-
lines modelling with lightweight coordination calculus. In: LBM (December 2007)

10. Kalman, J.A.: Automated reasoning with Otter. Rinton Press (2001)
11. Koehler, J., Hofstetter, J., Woodtly, R.: Capabilities and levels of maturity in IT-

based case management. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012.
LNCS, vol. 7481, pp. 49–64. Springer, Heidelberg (2012)

12. Lyng, K., Hildebrandt, T., Mukkamala, R.: From paper based clinical practice
guidelines to declarative workflow management. In: ProHealth 2008 (2008)

13. MacCaull, W., Rabbi, F.: NOVA workflow: A workflow management tool target-
ing health services delivery. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS,
vol. 7151, pp. 75–92. Springer, Heidelberg (2012)

14. Rabbi, F., Mashiyat, A.S., MacCaull, W.: Model checking workflow monitors and
its application to a pain management process. In: Liu, Z., Wassyng, A. (eds.) FHIES
2011. LNCS, vol. 7151, pp. 111–128. Springer, Heidelberg (2012)

15. Mukkamala, R.R.: A Formal Model For Declarative Workflows - Dynamic Condi-
tion Response Graphs. PhD thesis, IT University of Copenhagen (2012)

16. Nielsen, L.: Regular Expressions and Multiparty Session Types with Applications
to Workflow Based Verification of User Interfaces. PhD thesis, University of Copen-
hagen (2012)

17. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: EX-
PRESS 2010. EPTCS, vol. 41, pp. 121–135 (2010)

18. Object Management Group BPMN Technical Committee. Business Process Model
and Notation, version 2.0. Webpage (January 2011),
http://www.omg.org/spec/BPMN/2.0/PDF

19. Open clinical. guideline modelling methods summaries. Webpage,
www.openclinical.org/gmmsummaries.html

20. Parnas, D.L.: Software aspects of strategic defense sytsems. Communications of
the ACM 28(12), 1326–1335 (1985); Reprinted from Journal of Sigma Xi 73(5),
432-440

21. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006 Workshops.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

22. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Communications 15(2, 3), 91–110 (2002)

23. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.,
Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476,
pp. 183–197. Springer, Heidelberg (2005)

24. Slee, M., Agarwal, A., Kwiatkowski, M.: Thrift: Scalable cross-language services
implementation, http://thrift.apache.org/

25. ten Teije, A., Miksch, S., Lucas, P.: Computer-based Medical Guidelines and Proto-
cols: A Primer and Currend Trends. Studies in Health Technology and Informatics.
IOS Press (2008)

26. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

27. Web Services Choreography Working Group. Choreography Description Language,
http://www.w3.org/2002/ws/chor/

http://www.omg.org/spec/BPMN/2.0/PDF
www.openclinical.org/gmmsummaries.html
http://thrift.apache.org/
http://www.w3.org/2002/ws/chor/


A Grid Based Distributed Cooperative
Environment for Health Care Research

Felipe Maia1, Rafael Araújo1, Luiz Carlos Muniz1, Rayrone Zirtany1,
Luciano Coutinho1, Samyr Vale1, Francisco José Silva1, Pierpaolo Cincilla2,
Ikram Chabbouh2, Sébastien Monnet2, Luciana Arantes2, and Marc Shapiro2

1 UFMA - Avenida dos Portugueses, s/n
65085-580 São Lúıs, MA, Brazil

{lrc,samyr,fssilva}@deinf.ufma.br
2 UPMC - Paris, France

firstname.lastname@lip6.fr

Abstract. Providing a distributed cooperative environment is a chal-
lenging task, which requires a middleware infrastructure that provides,
among others, management of distributed shared data, synchronization,
consistency, recovery, security and privacy support.

In this paper, we present the ECADeG project which proposes a lay-
ered architecture for developing distributed cooperative environments
running on top of a desktop grid middleware that can encompass multi-
ple organizations. We also present a particular cooperative environment
for supporting scientific research focused on the health domain. It uses
the services supplied by the ECADeG architecture in order to allow re-
searchers to share access to multiple institutions databases, visualize and
analyze data by means of data mining techniques, edit research docu-
ments cooperatively, exchange information through forums and chats,
etc.. Such a rich cooperative environment helps the establishment of
partnerships between health care professionals and their institutions.

1 Introduction

A distributed cooperative environment provides a common user interface that
enables collaborative tasks in a specific context. In such environments, many
features can be provided, such as asynchronous and synchronous communica-
tion mechanisms, a repository for shared resources, or concurrent (synchronous)
editing of content. Nevertheless, building a distributed cooperative environment
is a challenging task, since several issues must be taken into consideration, such
as managing the communication between the distributed entities, data replica-
tion, detection and resolution of update conflicts, privacy and security, provision
of a WYSIWIS (What You See Is What I See) interface, and performance. As
a consequence, a distributed cooperative environment is usually built on top of
a middleware infrastructure that provides a set of services for hiding the com-
plexity of the distributed environment.

The ECADeG project is a joint initiative of the Federal University of Maranhão
(UFMA) Distributed Systems Laboratory, in Brazil, and the Regal Team, a joint
research group of LIP6 Laboratory at University Pierre et Marie Currie (UPMC)

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 142–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Grid Based Distributed Cooperative Environment 143

and INRIA, France. ECADeG stands for “Enabling Collaborative Applications
for Desktop Grids” and the project aims at the design and implementation of
a middleware infrastructure to support the development of collaborative ap-
plications, and its evaluation through a case study in the health care domain.
We established a formal partnership with the UFMA University Hospital (HU-
UFMA), whose health care professionals provide the necessary medical back-
ground for the project development.

The ECADeG collaborative environment has particular concerns about secu-
rity and privacy in order to deal with sensitive data such as patient and health-
care information. The challenge is to follow the set of defined legal standards for
medical organizations along with the specific requirements of the collaborative
environment. Besides the above challenge, the platform also addresses several
key challenges such as sharing data and computing resources.

This paper presents the current status of the ECADeG project. It describes the
two main building blocks used as the foundation for the development of the soft-
ware infrastructure proposed in ECADeG: the InteGrade, an grid middleware for
desktop grids; and Telex, a middleware that facilitates the construction of collabo-
rative applications providing optimistic sharing of documents across a network of
computers. The paper also describes a preliminary view of ECADeG middleware
architecture, organized as a set of layers running on top of the InteGrade grid mid-
dleware and presents the applications that comprise the cooperative environment
for supporting scientific research focused at the health domain.

2 Background: InteGrade and Telex

The ECADeG middleware is being developed having as its foundation an ap-
plication execution environment based on grid computing, the InteGrade mid-
dleware [1], and a middleware for supporting the development of distributed
collaborative applications called Telex [2], both described in this Section.

The InteGrade project1 is a multi-university effort to build a robust and flexi-
blemiddleware for opportunistic grid computing. By leveraging the idle computing
power of existing commodity workstations and connecting them to a grid infras-
tructure, InteGrade enables the execution of computationally-intensive parallel
applications that would otherwise require expensive cluster or parallel machines.

The basic architectural unit of an InteGrade grid is a cluster, a collection of
machines usually connected by a local network. Clusters can be organized in a
hierarchy, enabling the construction of grids with a large number of machines.

Currently, the InteGrade middleware offers a choice of programming models
for computationally intensive distributed parallel applications, MPI (Message
Passing Interface), and BSP (Bulk Synchronous Parallel) applications. It also
offers support for sequential and bag-of-tasks applications.

Since opportunistic grid environments are highly prone to failures, special care
was taken to circumvent application execution disruptions. InteGrade provides a
task-level fault tolerance mechanism based on checkpointing, which periodically
saves the process’ state in stable storage during the failure-free execution time [3].

1 Homepage: http://www.integrade.org.br

http://www.integrade.org.br


144 F. Maia et al.

Upon a failure, the process restarts from the latest available saved checkpoint,
thereby reducing the amount of lost computation. InteGrade includes a portable
application-level checkpointing mechanism for sequential, bag-of-tasks, and BSP
parallel applications written in C. For MPI parallel applications, it provides a
system-level checkpointing mechanism based on a coordinated protocol.

Concerning the management of application data, which includes the applica-
tion binaries, input and output data, InteGrade’s OppStore component provides
a reliable distributed data storage using the free disk space from shared grid
machines. The system is structured as a federation of clusters and is connected
by a Pastry peer-to-peer network [4,5].

Telex is a generic platform that eases the development of collaborative appli-
cations. It allows application programmers to concentrate on core functionalities,
by taking care of the data distribution, replication and consistency issues. Telex
supports optimistic sharing over a large-scale network of computers.

Telex implements an optimistic replication approach in which updates are
made locally, and are then propagated to each remote site when a communication
channel is established. Update propagation is transparent to the user, and data
consistency is ensured by a reconciliation protocol which runs in the background
(off the critical path).

Telex is application independent although application aware. Applications
need to formalize their concurrency semantics by identifying the shared data,
the actions that can be made on the data and the constraints between these
actions. When an end-user interacts with the application, the latter translates
the operations into actions and constraints then transmits them to Telex. Based
on the received local and remote actions and constraints, Telex computes sound
schedules and sends them to the application to be executed. A sound schedule
is a sequence of actions that satisfy the application constraints.

Schedules are computed from the Action-Constraint Graph (ACG), a repli-
cated, dynamic graph. Actions are the nodes of the graph, and constraints the
edges and arcs. A schedule is a conflict-free sub-graph.

Telex sites may generate different sound schedules from the same set of actions
and constraints. A Telex module called the replica reconciler makes the sites agree
on a common schedule to apply and thus achieve (eventual) mutual consistency.

ECADeG uses Telex services to manage data consistency and synchronization
of distributed collaborative applications.

3 The ECADeG Project

The first aim of ECADeG project is to develop a grid-based middleware platform
for the execution of distributed collaborative applications. The second one is to
validate the middleware with a real distributed cooperative application, targeting
the support for multi-institutional research projects in the health care domain.

The health care cooperative research environment will be based on data pro-
vided by theAGHUplatform (Aplicativo deGestão paraHospitais Universitários -
Management Application for University Hospitals)2 currently under development

2 http://aghu.mec.gov.br/

http://aghu.mec.gov.br/


A Grid Based Distributed Cooperative Environment 145

by the Brazilian Ministry of Education and Culture (MEC), which implements
a unified management model to be adopted by Brazilian’s federal university hos-
pitals. The AGHU database is designed to store all the data concerning patients
and their care (consultations, image-based examinations, hospitalizations, surg-
eries, prescriptions, etc.). Some Brazilian university hospitals are already running
the first available modules of AGHU on their own servers. However, each hospi-
tal runs its own copy of the AGHU platform due to the fact that each institution
is administratively independent and is responsible (a trustee) for the health data
that is internally generated. Therefore, the access of health data maintained by
an institution by other hospitals or physicians is carefully controlled. Our middle-
ware solution will integrate all the AGHUs installations, which would allow the
university hospitals to share data and information cooperatively, as well as other
computing resources, such as processor power for performing computationally in-
tensive tasks, and specialized peripherals in a safe and controlled environment.
Therefore, we will be able to provide a rich collaborative environment which helps
to establish partnerships between health care professionals and their institutions.

Figure 1 shows an overview of the ECADeG architecture which consists of four
main layers: Execution Environment, Core Services, Applications, and Security.

Fig. 1. ECADeG architecture

Execution Environment Layer: This layer holds the execution environment
for the set of collaborative services defined by the ECADeG architecture. It is
based on the InteGrade grid middlewareas described in Section 2.



146 F. Maia et al.

Core Services Layer: The core services layer offers the set of services that sup-
ports the execution of distributed collaborative applications. The Content Man-
agement System provides a data space for storing any content (text, spreadsheets,
data fragments retrieved from the AGHU databases, images, audio, video) shared
by researchers in the context of a research project. Any stored content can be de-
scribed through meta-data, whose set of attributes are defined by the application.
The Social Networking Engine provides a complete social networking environment
with bulletin boards, chats, video conferences, forums, and the tools for creating
andmanaging users and groups. TheData Retrieval Engine is a tool that performs
parallel data retrieval using multiple AGHU databases given an application query.
It provides a SQL based API for applications and transparently manages the par-
allel access to multiple AGHU databases, composing a single result set as if the
query was performed in a single global database. The KDD Framework is a com-
ponent for knowledge discovery using data mining techniques to obtain relevant
information from data retrieved through the Data Retrieval Engine. The frame-
work will support classification and associations discovery tasks, since there are
several possible applications of those tasks considering the medical field: (i) char-
acterization of patients to provide further consultation, (ii) identification of suc-
cessful therapies for different diseases, (iii) prediction of which patients are more
likely of catch a certain disease, according to historical patient data. The Context
Service provides a publish/subscribe interface for managing context data useful in
collaborative environments, such as users availability for on-line interaction, their
current activity, and location. Telex, as described in Section 2, allows users to cre-
ate and concurrently edit shared content.

Applications access the functionalities provided by the Core Services Layer
through a standardized API that comprises the Core Services API Layer. A first
version of the Content, Context and Data Retrieval tool is already implemented
and is being tested. We are currently defining the data mining library algorithms
to be deployed in the KDD framework and porting them to the InteGrade ex-
ecution environment. As a typical usage scenario that illustrates possible in-
teractions among the several components that comprise the core services layer,
consider a group or researchers working in different locations accessing a Collab-
orative Query Editor (CQE) developed using Telex to create a custom query to
be sent to the AGHU databases of several health institutions. They use the CQE
visual editor in order to choose which tables, columns and search criteria that
will be used. After the query is ready, the CQE sends it to the Data Retrieval
Engine which, in turn, process the query and start a process in each grid node
that communicates with individual AGHU database servers in order to execute
the query. Each process collects the database results and returns them to the
Data Retrieval Engine that performs a merge procedure. The Data Retrieval
Engine returns the final results to be presented to the researchers in the Collab-
orative Query Editor. They can use the Social Network engine tools to discuss
and share information using chat or video-conference. If they want to process
the data retrieved, e.g. for statistical analysis of the number of patients stricken
by a disease in some region, the KDD framework can be used in order to run
data mining algorithms to this end.



A Grid Based Distributed Cooperative Environment 147

Applications Layer: In the ECADeG project we foresee the development of
six main applications. The Administrative Environment is the tool that will be
used by administrators to create, edit and delete users, define roles and enforce
security policies. The Interactive Virtual Environment will allow users, once
logged in, to interact with each other using chat, videos, forums and bulletin
boards. This application uses the services provided by the Social Networking
Engine and the Context Service. The Shared Calendar will be used for creating
synchronized appointments between the platform users. Telex will be used to en-
force the appointments consistency. The Collaborative Query Editor will create
a visual query editor to the AGHU databases. Users will be able to collabora-
tively build queries together in real time. Telex will provide the mechanisms for
maintaining the query consistency during the concurrent editing, while the Data
Retrieval Engine will be used for the parallel access of the AGHU databases. The
Knowledge Discovery System is a font-end for extracting information through
data mining techniques from data retrieved using the Collaborative Query Edi-
tor. This application will be used by a KDD expert that will work together with
health care researchers in order to better serve the platform users with relevant
information for their research. It will use the KDD framework defined at the
Core Services Layer. The Collaborative Real-Time Content Editor is an applica-
tion that allows users to collaboratively edit shared content. In its first release,
we will focus on text editing. Users will be able to concurrently edit technical
reports, papers, masters and PhD thesis in real time. Again, Telex will provide
the necessary tools for maintaining text consistency in the course of the concur-
rent editing. We already developed a first version of the ECADeG distributed
collaborative environment prototype that is being validated by its final users
(health care research professionals). We are also still working on the integration
of the prototype functionalities with the core services layer components.

Security Layer: The security layer is transversal to all the other ECADeG
layers and is based on a model that comprises a set of security policies that
take into account several aspects of a collaborative environment, such as privacy
and confidentiality, the organization of collaborative processes, data sharing be-
tween organizations with different administrative domains, context information
and notifications of presence [6]. In addition, ECADeG security model follows
the safety standards established by the Certification Manual for Electronic Reg-
istration Systems in Health (M/S-RES) [7], a document developed through a
partnership between the Brazilian Society of Informatics in Health (Sociedade
Brasileira de Informática na Saúde, SBIS) 3 and the Brazilian Federal Council
of Medicine (Conselho Federal de Medicina, CFM)) 4. This document describes
a certification process for applications that deal with patients data, demanding
that they have a complete privacy and security model, meeting the needs of users
and, especially, being compliant with the legislation requirements. The ECADeG
security layer includes a set of components (identity management, access control,
data anonymization, auditing, and abuse report) to ensure compliance with all

3 http://www.sbis.org.br/
4 http://portal.cfm.org.br/

http://www.sbis.org.br/
http://portal.cfm.org.br/


148 F. Maia et al.

security policies established by its security model. The ECADeG development
process also follows the steps defined in CLASP (Comprehensive, Lightweight
Application Security Process) [8], a well defined process guided by a set of activ-
ities associated with a set software development roles that emphasizes security
since the very initial phases of software development. Several security compo-
nents are already implemented, such as the identity management, access control,
and auditing. We are currently working on the provision of mechanisms that will
allow the specification of privacy policies based on statements.

4 Related Work

Since the 80’s a large amount of research has been done on distributed collabora-
tive environments and their characteristics, as observed in [9], [10] and [11]. We
can find in the literature proposals of distributed collaborative environments for
various fields such as engineering ([12],[13], [14]), education ([15],[16], [17]) and
health ([18], [19], [20]).By involving a large number of professionals from different
areas for the design and use of collaborative environments, their development
becomes complex and very dependent on the applicative domain.

A key distinctive feature of the ECADeG project is the proposal of an environ-
ment for parallel and cooperative access to databases that share a common data
model and are distributed across several university hospitals. The proposals in
[20] are different in the sense that they must define a WSDL5 (Web Service Def-
inition Language) interface with a restricted set of operations for each database
where searches are made. This makes the extension of this platform more com-
plex, and less transparent than the approach used by the middleware proposed
in this article (see the Data Retrieval Engine, in the Section 3).

Similarly to [15], [16] and [18], the architecture of the ECADeG project is
organized into a set of layers and modular services, including the use of com-
puting grids. In this regard, an important difference between ECADeG and the
cited works is that ECADeG is based on an opportunistic grid framework (Inte-
Grade) that is able to run the services of ECADeG together with several classes
of applications like regular, loosely coupled and tightly coupled applications. In
[18] and [15], for instance, a dedicated computing grid is used only to execute
processes that require intensive computation.

Compared to [18], [15], [19], [13], [12] and [20] where users have few forms
of collaboration, the ECADeG project proposes a more complete set of tools to
provide the users with a richer experience of collaborative working, for instance
through chat rooms, video conferencing, collaborative editing of documents, file
sharing, conducting search patterns using data mining algorithms, within a single
workspace in order to assist them in their research.

Regarding the security aspect, the majority of the work in the literature fails
to implement or suggest a full security model for the collaborative environment
being proposed (with the exception of [18] that implements an initial privacy and
security model based on [21]). As a consequence, there is a gap when the security

5 http://www.w3.org/TR/wsdl

http://www.w3.org/TR/wsdl


A Grid Based Distributed Cooperative Environment 149

matters, as noted by [22]. With this concern in mind, the whole process of devel-
opment, tests and validation of collaborative applications and infrastructures, in
the ECADeG project, is governed by a security engineering process based on the
Comprehensive Lightweight Application Security Process version 1.2 [8] (CLASP
v1.2), and the set of rules present in the certification Manual for Electronic Reg-
istration Systems in Health described in the previous section. This results in a
complete model of privacy and security, meeting the needs of users and, especially,
which is in accordance with the requirements of Brazilian law.

5 Conclusion

This paper has described the ECADeG project, which proposes a layered archi-
tecture for developing distributed cooperative environments running on top of a
desktop grid middleware. An ECADeG cooperative environment can encompass
multiple organizations, sharing a variety of resources. We have also presented
a particular cooperative environment for supporting scientific research focused
at the health domain, which, by using the services supplied by the ECADeG
architecture, provides applications for parallel access to databases of Brazilian
university hospitals (using the AGHU platform), data visualization and analy-
sis by means of data mining techniques, cooperative editing of research papers,
interchange of information through forums and chats, among others. ECADeG
project intends thus to provide a rich cooperative environment, which can help
the partnerships between health care professionals and their institutions. By
offering a virtual environment for cooperatively creating and sharing data and
information, it mitigates the problem of physical distance of participants.

Acknowledgment. The authors would like to thank FAPEMA (State of
Maranhão Research Agency) for the support of this work, grant INRIA-00114/11.

References

1. da Silva e Silva, F.J., Kon, F., Goldman, A., Finger, M., de Camargo, R.Y., Filho,
F.C., Costa, F.M.: Application execution management on the Integrade oppor-
tunistic grid middleware. JPDC 70(5), 573–583 (2010)

2. Benmouffok, L., Busca, J.M., Marquès, J.M., Shapiro, M., Sutra, P., Tsoukala,
G.: Telex: A semantic platform for cooperative application development. In: Conf.
Française sur les Systemes d’Exploitation, CFSE (2009)

3. de Camargo, R.Y., Kon, F., Goldman, A.: Portable checkpointing and commu-
nication for BSP applications on dynamic heterogeneous Grid environments. In:
SBAC-PAD 2005: The 17th International Symposium on Computer Architecture
and High Performance Computing, Rio de Janeiro, Brazil, pp. 226–233 (October
2005)

4. de Camargo, R.Y., Kon, F.: Design and implementation of a middleware for data
storage in opportunistic grids. In: CCGrid 2007: Proceedings of the 7th IEEE/ACM
International Symposium on Cluster Computing and the Grid. IEEE Computer
Society, Washington, DC (2007)



150 F. Maia et al.

5. de Camargo, R.Y., Cerqueira, R., Kon, F.: Strategies for checkpoint storage on
opportunistic grids. IEEE Distributed Systems Online 18(6) (September 2006)

6. Ahmed, T., Tripathi, A.R.: Security policies in distributed CSCW and workflow
systems. IEEE Transactions on Systems Man and Cybernetics Part A Systems and
Humans 40(6), 1220–1231 (2010)

7. Silveira, A.S., de Faria Leão, B., da Costa, C.G.A., Marques, E.P., Kiatake, L.G.G.,
Evangelisti, L.R., da Silva, M.L., da Costa Galvão, S., Takemae, T.T.R.: Manual
de Certificação para Sistemas de Registro Eletrônico em Saúde (S-RES) (2009)

8. OWASP: CLASP v1.2 Comprehensive, Lightweight Application Security Process
version 1.2. OWASP (2011)

9. Borghoff, U.M., Schlichter, J.H.: Computer-Supported Cooperative Work: Intro-
duction to Distributed Applications. Springer, New York (2011)

10. Grudin, J.: CSCW: history and focus. IEEE Computer 27(5), 19–26 (1994)
11. Ahmed, T., Tripathi, A.R.: Security policies in distributed CSCW and workflow

systems. IEEE Transactions on Systems Man and Cybernetics Part A Systems and
Humans 40(6), 1220–1231 (2010)

12. Zhao, Y., Shi, X.: Collaborative computational chemical grid based on CGSP. In:
Proceedings of the 2007 IFIP International Conference on Network and Parallel
Computing Workshops, NPC 2007, pp. 199–202. IEEE Computer Society, Wash-
ington, DC (2007)

13. He, F., Han, S.: A method and tool for human-human interaction and instant
collaboration in CSCW-based cad. Computers in Industry 57(8-9), 740–751 (2006)

14. Fan, L., Zhu, H., Bok, S.H., Kumar, A.S.: A framework for distributed collaborative
engineering on grids. Computer-Aided Design 4, 353–362 (2007)

15. Jiang, J., Zhang, S., Li, Y., Shi, M.: CoFrame: a framework for CSCW applications
based on grid and Web services, p. 577. IEEE (2005) Number 90412009

16. Li, Y., Yang, S., Jiang, J., Shi, M.: Build grid-enabled large-scale collaboration
environment in e-learning grid. Expert Systems with Applications 31(4), 742–754
(2006)

17. Chen, J., Xiong, Z., Zhang, X.: Research on a Novel E-Learning Architecture In-
tegrated Grid Technology, pp. 94–97. IEEE (2008)

18. Brussee, R., Porskamp, P., van den Oord, L., Rongen, E., Bloo, H., Erren, V.,
Schaake, L.: Integrated health log: Share multimedia patient data. In: ICME, pp.
1593–1596 (2005)

19. Lu, X.L.: System design and development for a CSCW based remote oral medical
diagnosis system. In: IEEE (ed.) International Conference on Machine Learning
and Cybernetics, vol. 6, pp. 3698–3703 (2005)

20. Phung, H.M., Hoang, D.B., Lawrence, E.: A novel collaborative grid framework for
distributed healthcare. In: CCGRID, pp. 514–519 (2009)

21. Baumer, D., Earp, J.B., Payton, F.C.: Privacy of medical records: IT implications
of HIPAA. SIGCAS Comput. Soc. 30(4), 40–47 (2000)

22. Hongxue, X., Fucai, W., Hong, Z., Mingtong, X.: A security architecture model of
CSCW system. In: Management and Service Science, pp. 1–4. IEEE (2010)



Closed-Loop Modeling of Cardiac Pacemaker and Heart

Dominique Méry1 and Neeraj Kumar Singh2

1 Université de Lorraine, LORIA, BP 239, Nancy, France
Dominique.Mery@loria.fr

2 Department of Computer Science, University of York, United Kingdom
neeraj.singh@cs.york.ac.uk

Abstract. The development of critical medical systems requires high levels of
confidence in increasingly complex software systems. Formal methods have been
identified as a means of contributing to assurance in this domain. We present a
closed-loop modeling approach between an electrocardiography analysis based
heart model and pacemaker. This stem is a step towards a modeling approach
for medical systems at early stage of the system development. Implantable de-
vices like cardiac pacemakers and implantable cardioverter-defibrillators require
closed-loop modeling (integrated system and environment modeling) to qualify
the certification standards. The industry has long sought such an approach to vali-
dating a system model in a virtual biological environment. This approach involves
a pragmatic combination of formal specifications of the system and the biolog-
ical environment to model a closed-loop system that enables verification of the
correctness of the system and helps to improve the quality of the system.

Keywords: Heart Model, ECG, Cellular Automata, Event-B, Closed-loop model,
Proof-based development, Refinement.

1 Introduction

In the area of medical engineering, cardiac pacemaker and implantable cardioverter-
defibrillators are considered as remarkable innovations of the past century, used for
saving millions of lives worldwide. The implantation rate of these devices has been
increased [1–3]. Malfunctions related to the hardware and firmware are considered as a
common type of defects for both pacemakers and implantable cardioverter-defibrillators
[1, 4, 5]. During the 1990s, 17323 devices were explanted due to malfunction [3]. In
1996, 10% of medical device recalls were caused by software-related issues. In 2010,
the Food and Drug Administration (FDA) reported 23 cases of defective devices, where
some of the cases were due to software defects [1, 5–7].

Nowadays, manufacturers use standard guidelines for system development. These
standards include software evaluation, which covers mainly code inspection, static anal-
ysis, module-level testing and integration testing. The purpose is to use these stan-
dards to establish reasonable assurance of safety and effectiveness. However, these
approaches are not sufficient to check the software correctness. Testing — combined
with finding bugs at the final stage of system development — is very expensive. As soft-
ware plays an increasingly more important role in medical devices and in healthcare-
related activities more generally, regulatory agencies such as the FDA, and certification

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 151–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



152 D. Méry and N.K. Singh

bodies such as the FDA’s Quality System Regulation and the International Standards
Organization’s 13485 [8, 7, 9], need effective methods for ensuring that newly devel-
oped software-based healthcare systems are safe and reliable. Regulatory agencies, in
addition to the medical device manufacturers themselves, have been striving for a more
rigorous engineering-based review strategy to provide this assurance [10]. Traditional
methods of system development are not using formal techniques for verifying the cor-
rectness of the system requirements. An effective way of finding bugs at an early stage
of the system development is practical application of formal methods. Formal methods
have been successful in targeted applications of medical devices [11–14, 10, 9]. Over
the past decade, there has been considerable progress in the development of formal
methods for improving confidence in complex software-based systems [15, 16].

Software bugs and unexpected behaviors of the system are not easy to find from
system specifications alone. To apply formal methods for verifying the specification
of such complex systems is not enough. Such systems require a closed-loop modeling
approach, where formal models of the system and an environment form a closed-loop
model. The closed-loop model captures the possible behaviors of the system under en-
vironmental conditions. Such closed-loop modeling is the primary technique in system
engineering and cyber-physical systems.

Verifying the correct behavior of a system model using an environment, is a chal-
lenging problem, where the system model and environment are both developed using
identical formal notations. For example, a formal model of a cardiac pacemaker or
implantable cardioverter-defibrillators requires a heart model to verify the correctness
of the developed system (see Fig. 1). No tools and techniques exist for environment
modeling that would enable verification of the developed system model. Most medi-
cal devices are tightly coupled with their biological environment (i.e., the heart), where
these devices use sensors and actuators as interaction points. The integration of the heart
and pacemaker is formally modelled and provides a good example of medical device
integration [17]. In our previous work [18], we have developed a mathematical heart
model. This heart model is an electro-physiological model, which models the timing
and electrical conduction of the heart with both intrinsic and artificial pacing signals. In
this paper, we recall the heart model for closed-loop modeling of pacemaker functional-
ity for identifying complex behavior of the system. In the closed-loop model, the heart
and pacemaker interact with each other [17]. The pacemaker responds according to the
heart requirements. The heart generates all possible behaviors of the normal and abnor-
mal conditions. The focus of this effort is three-fold: (a) we develop a mathematical
heart model based on logico-mathematical theory, which provides a set of general and
patient condition-specific pacemaker software requirements to ensure the safety of the
patient, (b) we develop both cardiac pacemaker and heart models for closed-loop mod-
eling, (c) we verify the closed-loop system over a variety of basic operations where the
heart rate must be maintained and the atrial-ventricular synchrony must be maintained
through formal proofs of the system.

The rest of this paper is organized as follows. Section 2 summarizes the construction
of the heart model, which is extensively described in our previous publication [18].
Section 3 presents a closed-loop formal model of a pacemaker which interacts with
the heart model. The closed-loop requirements are described in Section 4. Section 5



Closed-Loop Modeling of Cardiac Pacemaker and Heart 153

Fig. 1. Cardiac pacemaker and Heart interaction

discusses lessons learned from this experience, and Section 6 concludes the paper with
some perspectives together with proposals for future work.

2 Heart Model

The heart consists of four chambers (see Fig. 2(a)): right atrium, right ventricle, left
atrium and left ventricle, which contract and relax periodically. The natural heart’s sys-
tem requires an electrical stimulus, which is generated by the small mass of specialized
tissue located in the right atrium called the sinus node. This electrical stimulus travels
down through the conduction pathways and causes the heart’s chambers to contract and
pump out blood. Each contraction of the ventricles represents one heartbeat. The atria
contract for a fraction of a second before the ventricles, so their blood empties into the
ventricles, before the ventricles contract.

Fig. 2(a) presents a set of basic components and an impulse conduction path of
the heart. The electrical current flows progressively in the heart muscle using special
conduction cells. To model the heart system abstractly, we consider a set of landmark
nodes (A, B, C, D, E, F, G, H) in the entire conduction network (see Fig. 2(b)), which
provides a control behavior of the heart. These landmarks were identified in literature
surveys [19–22] and extensive discussions with two experts, a cardiologist and a phys-
iologist.

This section presents an elementary information about the heart modeling, which
helps the reader to understand the modeling of the closed-loop system. A detailed de-
scription about the heart system and formalization steps are available in [18, 23]. We
introduce the necessary elements using formal notations to define the heart system as
follows:

Definition 1 (The Heart System). Given a set of nodes N, a transition (conduction) t
is a pair (i, j), with i, j ∈ N . A transition is denoted by i � j. The heart system is a tuple
HSys = (N, T, N0, TWtime, CWspeed ) where:

• N = { A, B, C, D, E, F, G, H } is a finite set of landmark nodes in the conduction
pathways of the heart system;
• T ⊆ N × N = {A �→ B, A �→ C, B �→ D, D �→ E, D �→ F, E �→ G, F �→ H} is a set of
transitions to represent electrical impulse propagation between two landmark nodes;
• N0 = A is the initial landmark node (SA node);



154 D. Méry and N.K. Singh

(a) Electrical Conduction system (b) Landmarks in network

Fig. 2. The Electrical Conduction and Landmarks of the Heart System [18]

• TWtime ∈ N → TIME is a weight function as time delay of each node, where
TIME is a range of time delays;
• CWspeed ∈ T → SPEED is a weight function for the impulse propagation speed of
each transition, where SPEED is a range of propagation speed.

Property 1 (Impulse Propagation Time). In the heart system, the electrical impulse
originates from the SA node (node A), travels through the entire conduction network
and terminates at the atrial muscle fibres (node C) and at the ends of the Purkinje fibres
in both sides of the ventricular chambers (node G and node H). The impulse propaga-
tion time delay differs for each landmark node (N). The impulse propagation time is
represented as the total function TWtime ∈ N → P(0..230). The impulse propagation
time delay for each node (N) is represented as: TWtime(A) = 0..10, TWtime(B) =
50..70, TWtime(C) = 70..90, TWtime(D) = 125..160, TWtime(E) = 145..180,
TWtime(F ) = 145..180, TWtime(G) = 150..210 and TWtime(h) = 150..230.

Property 2 (Impulse Propagation Speed). The impulse propagation speed also differs
for each transition (i � j, where i, j ∈ N). The impulse propagation speed is represented
as the total function CWspeed ∈ T → P(5..400). The Impulse propagation speed
for each transition is represented as: CWspeed(A �→ B) = 30..50, CWspeed(A �→
C) = 30..50, CWspeed(B �→ D) = 100..200, CWspeed(D �→ E) = 100..200,
CWspeed(E �→ G) = 300..400 and CWspeed(F �→ H) = 300..400.

Electrical activity is spontaneously generated by the SA node, which propagates
through the conduction network in the entire heart system using several intermedi-
ate landmark nodes (see Fig. 2). The electrical system synchronizes the contraction
between atria and ventricles. To change time intervals or conduction speeds between
landmarks (see Fig. 2(b) and Fig. 2(a)) are a major cause of abnormalities in the heart
system. Abnormalities in electrical signals in the heart can generate various kinds of ar-
rhythmias. A slow conduction speed generates bradycardia and a fast conduction speed
generates tachycardia. In this model, we consider the range of all possible values for



Closed-Loop Modeling of Cardiac Pacemaker and Heart 155

conduction speeds and conduction times for each landmark node and conduction path
(see Table 1). This model represents the morphological structure of the ECG signal
through the conduction network (see Fig. 2(a)).

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5

Fig. 3. Impulse Propagation through Landmark nodes [18]

Table 1. Cardiac Activation Time and Cardiac Velocity [19]

Location in the heart Cardiac Activation Location in Conduction Velocity
Time (ms.) the heart (cm/sec.)

SA Node (A) 0..10 A �→ B 30..50
Left atria muscle fibers (C) 70..90 A �→ C 30..50
AV Node (B) 50..70 B �→ D 100..200
Bundle of His (D) 125..160 D �→ E 100..200
Right Bundle Branch (E) 145..180 D �→ F 100..200
Left Bundle Branch (F) 145..180 E �→ G 300..400
Right Purkinje fibers (G) 150..210 F �→ H 300..400
Left Purkinje fibers (H) 150..230

Heart block is the term given to a disorder of conduction of the impulse that stimu-
lates heart muscle contraction. The normal cardiac impulse arises in the SA node (A),
situated in the right atrium, and spreads to the AV node (B), whence it is conducted
by specialized tissue known as the Bundle of His (D), which divides into the left and
right bundle branches in the ventricles (see Fig. 2(a)). Disturbances in conduction may
appear as slow conduction, intermittent conduction failure or complete conduction fail-
ure. These three kinds of conduction failure are also known as 1st, 2nd and 3rd degree
blocks. We can show these different kinds of heart block throughout the conduction
network in terms of our set of landmark nodes (see Fig. 4).

A set of spatially distributed cells form a Cellular Automata (CA) model, which
contains a uniform connection pattern among neighbouring cells and local computation
laws. CA are discrete dynamic systems corresponding to space and time, which provide
uniform properties for state transitions and interconnection patterns. The cardiac muscle
cells of the heart are presented in the following states: Active, Passive orRefractory.
Initially, all cells are Passive, where each cell is discharged electrically and has no



156 D. Méry and N.K. Singh

(a) SA Block (b) AV Block (c) Infra-Hisian (d) RBBB (e) LBBB

Fig. 4. Impairments in Impulse Propagation due to the Heart Blocks [18]

influence on its neighbouring cells. When an electrical impulse propagates, the cell
becomes charged and eventually activated (Active state). The Active cell transmits an
electrical impulse to its neighbour cells. The electrical impulse is propagated to all the
cells in the heart muscle. After activation, the cell becomes discharged and enters the
Refractory state within which the cell can not be reactivated. After a time, the cell
changes its state to the Passive state to await the next impulse.

(a) A two-Dimensional Cellular Automata
Model

(b) State Transition of a Cell

Fig. 5. Two-Dimensional Cellular Automata and State Transition Model [18]

3 Closed-Loop Model of Heart and Cardiac Pacemaker

This section describes a closed-loop formal model of a cardiac pacemaker and of the
heart system, where the cardiac pacemaker responses according to the functional behav-
ior of the heart [18, 23]. The main objective of this model is to verify the complex prop-
erties of the cardiac pacemaker under the virtual environment. Fig. 1 represents a block
diagram of the cardiac pacemaker and of the heart system, where the cardiac pacemaker
responses, when it senses intrinsic activities from the heart. In this system specification,
the heart model simulates the functional behavior of the normal and abnormal heart
rate. The heart model activities are always monitored by the cardiac pacemaker and it
responses according to the user needs.



Closed-Loop Modeling of Cardiac Pacemaker and Heart 157

In our previous work, we have already developed the formal model of the cardiac
pacemaker [24] and of the heart system [18]. This paper presents a closed-loop model
of the cardiac pacemaker, where the heart is used as an environment. For developing
this closed-loop model, we borrow formal specifications from the previously devel-
oped and verified formal models of the cardiac pacemaker [24] and heart system [18].
However, to develop the closed-loop model, we have done substantial changes in the
existing models to specify the desired behavior of the system. Moreover, we develop
the whole system from scratch using progressive refinements. Each refinement level in-
troduces both cardiac pacemaker and heart system behaviors. To check the correctness
of the closed-loop system, we have introduced safety properties using invariants, and
discharged all the generated proof obligations at each refinement level. Due to space
limitations, the following section formalizes the closed-loop system abstractly.

3.1 The Context and Initial Model

To formalize the heart behavior, we capture the electrical features. We identify a set
of landmark nodes from the conduction network (see Fig. 2(a)) of the heart. These
landmark nodes are also known as the electrical impulse propagation nodes Conduc-
tionNode, which enable expression of the normal and abnormal behaviors of the heart
system. We find the direct connections among the impulse propagation nodes, which
constitute the impulse propagation path. The impulse propagation time and the impulse
propagation velocity for each pair of nodes vary due to different types of muscles in
the heart. To formalize the heart system, we define three constants impulse propagation
time ConductionTime, impulse propagation path ConductionPath and impulse propaga-
tion velocity ConductionSpeed. All these constants are initial components, which are
defined through a set of axioms (axm1-axm4). To formalize the cardiac pacemaker,
we define a set of constants (LRL, URL, ARP , V RP , PV ARP etc.), which express
timing intervals. These timing intervals are used as a set of configuration parameters.
To model a boolean behavior of the sensor and actuator, we define an enumerated set
status. Axioms for the cardiac pacemaker are defined by axm5 and axm6. All these
constants and axioms have been extracted from the definitions (see Section 2) and tech-
nical specification [25], that are validated by the cardiologist and the physiologist.

axm1 : partition(ConductionNode, {A}, {B}, {C}, {D}, {E}, {F}, {G}, {H})
axm2 : ConductionT ime ∈ ConductionNode → P(0 .. 230)
axm3 : ConductionPath ⊆ ConductionNode × ConductionNode
axm4 : ConductionSpeed ∈ ConductionPath → P(5 .. 400)
axm5 : LRL ∈ 30 .. 175 ∧ URL ∈ 50 .. 175 ∧ PV ARP ∈ 150 .. 500
axm6 : ARP ∈ 150 .. 500 ∧ V RP ∈ 150 .. 500 ∧ status = {ON,OFF}

To define an abstract model of the closed-loop system, we develop the combined model
of the cardiac pacemaker and of the heart, where the cardiac pacemaker acts accord-
ing to the heart behavior. The environment model of the heart behaves according to
the observations of the impulse propagation in the conduction nodes. We define a set



158 D. Méry and N.K. Singh

of variables to model the heart and pacemaker models, where four variables (Con-
ductionNodeState, CConductionTime, CConductionSpeed and HeartState) are used to
model the heart behavior, and six variables(PM Actuator A,PM Actuator V ,
PM Sensor A, PM − Sensor V , Pace Int and sp) are used to express the cardiac
pacemaker behavior. All these variables are defined using a list of invariants (inv1-
inv7). The cardiac pacemaker variables are introduced for modeling actuators, sensors
and timing intervals. A list of invariants (inv8,inv9 and inv10) presents safety prop-
erties. The invariant inv8 states that, when the clock counter sp is less than VRP and
atrioventricular (AV) counter state AV Count State is FALSE, then the pacemaker’s
actuators and sensors of both chambers are OFF. Similarly, the next invariants (inv9
and inv10) represent the required properties of ON state of the pacemaker’s actuators
in both chambers.

inv1 : ConductionNodeState ∈ ConductionNode→BOOL
inv2 : CConductionT ime ∈ ConductionNode→ 0 .. 300
inv3 : CConductionSpeed ∈ ConductionPath→ 0 .. 500
inv4 : HeartState ∈ BOOL
inv5 : PM Actuator A ∈ status ∧ PM Actuator V ∈ status
inv6 : PM Sensor A ∈ status ∧ PM Sensor V ∈ status
inv7 : Pace Int ∈ URI .. LRI ∧ sp ∈ 1 .. Pace Int
inv8 : sp < V RP ∧ AV Count STATE = FALSE ⇒

PM Actuator V = OFF ∧ PM Sensor A = OFF∧
PM Sensor V = OFF ∧ PM Actuator A = OFF

inv9 : PM Actuator V = ON ⇒ sp = Pace Int ∨ (sp < Pace Int∧
AV Count > V Blank ∧ AV Count ≥ FixedAV )

inv10 : PM Actuator A = ON ⇒ (sp ≥ Pace Int− FixedAV )

The abstract specification of the closed-loop model contains several events related to the
cardiac pacemaker and to the heart system. There are many events, namely HeartOK
to represent a normal state of the heart, HeartKO to express an abnormal state of the
heart, HeartConduction to trace the current updated value of each landmark node in
the conduction network, Actuator ON V, Actuator OFF V, Actuator ON A and Actua-
tor OFF A to represent ON and OFF states of the pacemaker’s actuators for both cham-
bers, Sensor ON A, Sensor OFF A, Sensor ON V, and Sensor OFF V to represent ON
and OFF states of the pacemaker’s sensors for both chambers, and tic to represent clock
counter. Due to space limitations, we describe few events in detail.

The event HeartOK expresses desired behavior of the normal heart, where a set of
guards formulates the required conditions. The first guard (grd1) states that all the land-
mark nodes must be visited for one cycle during impulse propagation using conduction
network. The second guard specifies that the current impulse propagation time for each
landmark node should be ranged in the pre-specified ranges (Property 1). Similarly, the
last guard states that the current impulse propagation velocity of each path should range
between pre-defined impulse propagation velocities (Property 2). The action predicate
(act1) denotes the normal state of the heart, when these guards are satisfied.



Closed-Loop Modeling of Cardiac Pacemaker and Heart 159

EVENT HeartOK
WHEN
grd1 : ∀i·i ∈ ConductionNode⇒ ConductionNodeState(i) = TRUE
grd2 : ∀i·i ∈ ConductionNode⇒ CConductionTime(i) ∈ ConductionTime(i)

grd3 : ∀i, j ·
⎛
⎝

i 
→ j ∈ ConductionPath
⇒
CConductionSpeed(i 
→ j) ∈ ConductionSpeed(i 
→ j)

⎞
⎠

THEN
act1 : HeartState := TRUE

END

In the two electrodes pacemaker, we use two sensors and two actuators for capturing
the required behavior of the cardiac pacemaker. In this section, we show only actua-
tor and sensor events of the ventricle chamber. Moreover, other events related to the
sensor and actuator of the atrial chamber are identical. Events Actuator ON V and
Sensor ON V are excerpt from the abstract model to describe ON state of the actu-
ator and sensor of the cardiac pacemaker. A list of guards of both events enables to set
ON state of both actuator and sensor, allowing to pace and to sense in the ventricular
chamber under the desired conditions using real-time constraints. A detailed formaliza-
tion of the other events related to the cardiac pacemaker are described in [24, 26].

EVENT Actuator ON V
WHEN

grd1 : PM Actuator V = OFF
grd2 : (sp = Pace Int)∨

(sp < Pace Int∧
AV Count > V Blank ∧
AV Count ≥ FixedAV )

grd3 : sp ≥ V RP ∧ sp ≥ PV ARP
∧sp ≥ URI

THEN
act1 : PM Actuator V := ON
act2 : last sp := sp

END

EVENT Sensor ON V
WHEN

grd1 : PM Sensor V = OFF
grd2 : (sp ≥ V RP ∧ sp < Pace Int − FixedAV ∧

PM Sensor A = ON)
∨
(sp ≥ Pace Int − FixedAV ∧
AV Count STATE = TRUE)

grd3 : PM Actuator A = OFF
THEN

act1 : PM Sensor V := ON
END

In our previous models [18, 23, 24, 26]. of the cardiac pacemaker and of the heart
system, we use the tic event to model a clock, separately. However, in the closed-loop
model, we use a single event tic to specify a common clock for both cardiac pacemaker
and heart environment models. The event tic models the clock behavior, where time is
progressively increased using the current clock counter sp. It controls the time line of
pacing and sensing events. A guard (grd1) of this event provides the required conditions
to increase the clock counter sp by 1 (ms.).

EVENT tic
WHEN

grd1 : (sp < V RP )
∨
(sp ≥ V RP ∧ sp < Pace Int − FixedAV ∧
PM Sensor A = ON ∧ PM Sensor V = ON

THEN
act1 : sp := sp + 1

END



160 D. Méry and N.K. Singh

3.2 Chain of Refinements

So far, we have described our abstract model of the closed-loop model. Each refinement
level is used to introduce a new set of functional properties for modeling the normal and
abnormal behaviors of the heart and of the pacemaker. Rather than presenting a chain
of refinement stages in detail, we give an overview of the remaining refinement stages,
sufficient to explain the rationale of each refinement stage in formalizing the system.
For more detailed information, see in [23, 24, 18, 26].

Refinement 1: Introducing threshold in Cardiac Pacemaker and Impulse Propa-
gation in the Heart System. This refinement step is known as a conduction model,
which introduces the impulse propagation in the conduction network of the heart. The
impulse propagation originates from the SA node and passes through all the landmark
nodes and reaches at the Purkinje fibers of the ventricles. We formalize the conduction
model by the introduction of a set of events, which supports piecewise development
of the impulse propagation. The electrical impulse passes through several intermediate
landmark nodes and finally sinks to the terminal nodes (C, G, H). The conduction model
uses the clock counter to model the real-time system to satisfy the required temporal
properties for the impulse propagation. A set of new events simulates the desired be-
havior of the impulse propagation into the heart conduction network, where each new
refined event formalizes impulse flow between two landmark nodes; for instance, the
electrical impulse moves from SA node (A) to AV node (B).

In the refinement of the closed-loop system, the cardiac pacemaker development in-
troduces sensors behavior for both atrial and ventricular chambers, which models the
sensing activities using some standard threshold values. The threshold values are dif-
ferent for both atrial and ventricle chambers. The heart conduction behavior is contin-
uously monitored by the cardiac pacemaker model. The monitored value is compared
with the standard threshold value under the required timing intervals to allow or inhibit
to pace into the heart chamber for controlling the desired behaviors of the heart.

Refinement 2: Introduction of Hysteresis for Cardiac Pacemaker Model and Per-
turbation of the Conduction for the Heart Model. This refinement step introduces
an abnormal behavior in the closed-loop model through introduction of the blocking
activities, and hysteresis operating mode in the cardiac pacemaker model. The blocking
behavior in the heart network is known as perturbation model, which specifies pertur-
bations in the heart conduction system and helps to discover exact blocks into the heart
conduction network. We introduce a set of events through progressive refinement to
simulate the desired blocking behavior. The blocking behavior generates troubles into
electrical impulse propagation. Different types of heart blocks are presented through
the partition of the landmark nodes in the conduction network.

The cardiac pacemaker model uses the refinement to introduce a new feature related
to the operating modes. This new feature is known as the hysteresis operating mode,
which prevents the constant pacing and allows a patient to have his/her own underly-
ing rhythm as much as possible. The hysteresis is a programmed feature whereby the
pacemaker paces at a faster rate than the sensing rate. This refinement introduces a
new event, which allows to set hysteresis mode, and the cardiac pacemaker operates
according to the desired rate.



Closed-Loop Modeling of Cardiac Pacemaker and Heart 161

Refinement 3: Introduction of Rate Modulation for the Cardiac Pacemaker Model
and a Cellular Model for the Heart System. This is the final refinement of the closed-
loop system, which introduces the cellular level modeling for the heart system and the
rate modulation for the cardiac pacemaker. The final refinement of the heart system
provides a simulation model, which introduces the impulse propagation at the cellular
level using cellular automata. The electrical impulse propagates at the cells level. A set
of constants and mathematical properties is introduced using axioms, and a set of events
is used to formalize the desired behaviors of the heart using cellular automata, which
are described in [18].

In the final model of the cardiac pacemaker, we describe a rate adapting pacing tech-
nique. The rate adapting pacing technique gives freedom to select automatically desired
pacing rate according to the physiological needs. Automatic selection of the desired
pacing rate helps to increase or to decrease the pacing rate and assists a patient for
controlling the heart rate according to the different day to day activities. In the rate
modulation mode, the pacemaker operates faster than the lower rate, but no more than
the upper sensor rate limit, when it determines then the heart rate needs to increase. For
instance, when a patient does an exercise, the heart rate cannot increase automatically
to fulfill the required pumping rate. The rate modulation sensor is used to determine the
maximum exertion performed by the patient. This increased pacing rate refers to the
sensor indicated rate. Reducing the physical activities helps to progressively decrease
the pacing rate down to the lower rate. A set of new refined events models increasing
and decreasing pacing rate of the cardiac pacemaker.

3.3 Proof Statistics

Table 2 contains the proof statistics of
the development of the closed-loop model
of the cardiac pacemaker with the heart
system. These statistics measure the size
of the model, the proof obligations (POs)
generated and discharged by the RODIN
prover and those that are interactively
proved. The complete development of the
closed-loop model model results in 3049
(100%) POs, within which 2147 (70%) are
proved automatically by the RODIN tool.

Table 2. Proof Statistics

Model Total number Automatic Interactive
of POs Proof Proof

Closed-loop model of One-electrode pacemaker
Abstract Model 304 258(85%) 46(15%)
First Refinement 1015 730(72%) 285(28%)
Second Refinement 72 8(11%) 64(89%)
Third Refinement 153 79(52%) 74(48%)

Closed-loop model of Two-electrode pacemaker
Abstract Model 291 244(84%) 47(16%)
First Refinement 1039 766(74%) 273(26%)
Second Refinement 53 2(4%) 51(96%)
Third Refinement 122 60(49%) 62(51%)
Total 3049 2147(70%) 902(30%)

The remaining 902 (30%) POs are proved interactively using the RODIN tool. In-
tegration of the heart model and the cardiac pacemaker model generates lots of extra
POs. The main reason of these new POs is to use shared variables in both models to
link between the heart and pacemaker models. A set of invariants corresponding to the
shared variables generates new POs. For example, the current clock counter variable (sp)
is shared, which has been used in events of the heart and pacemaker models. The com-
bined invariants of the heart and pacemaker models generates new POs corresponding
to the current clock counter variable (sp). The whole system represents functional prop-
erties of the cardiac pacemaker operating modes under the biological environment in
the heart. The heart model represents normal and abnormal states of the heart, which is



162 D. Méry and N.K. Singh

estimated by the physiological analysis. To guarantee the correctness of these functional
behaviors, we have established various invariants in the incremental refinements.

Model checking [27] is a complementary technique for validation and verification of
a formal specification. The model checker investigates expected system behaviors under
the required safety properties and confirms the correctness of the closed-loop system.
The use of model checker helps to discover some unexpected behaviors, and assists to
verify all the operating modes of the cardiac pacemaker in the heart environment model.
A tool ProB [28] is used to animate the closed-loop model and able to prove the absence
of errors [26].

4 Closed-Loop Modeling Requirements

This section presents a set of requirements for modeling the closed-loop system in order
to guarantee the safety properties [2]. These requirements are useful for verifying the
closed-loop system.

4.1 Patient Safety in Closed-Loop

The closed-loop system must meet a set of requirements related to the physiological
needs. The heart’s state indicates the patient’s condition, which presents conditional
properties. In the closed-loop system, the heart states are connected to the heart model
parameters, which are not affected by pacemaker therapy. The integration of the heart
model and pacemaker model allows us to evaluate whether the pacemaker provides an
appropriate therapy for any arrhythmias.

4.2 Behavioral Requirements

The closed-loop system exposes several conditions for both normal and abnormal heart
functionalities, which are represented through node automata (Fig. 2(b)) using ranges
of impulse propagation speed and impulse propagation time. The condition is a boolean
value for meaning whether the heart state is true. The cardiac pacemaker presents pac-
ing and sensing activities under specified conditions. Some behavioral requirements are
given as follows: 1) Atrial and ventricular paces should not occur during atrial and ven-
tricular refractory period, respectively. This requirement is an important safety property,
which is verified in the closed-loop model. Any pacing during the refractory period cre-
ates derangements in timing for the atria and ventricles. 2) Intrinsic activities of the atria
and ventricles should be sensed by different leads. The intrinsic activities are essential
input for the pacemaker. The pacemaker should ensure that the intrinsic activities are
sensed accurately. 3) Natural pacing in the atria and ventricles, and artificial pacing and
sensing activities of the pacemaker must be coordinated to ensure efficient pumping for
maintaining the heart rhythm.

4.3 Clinical Requirements with Closed-Loop

Clinical requirements depend on the patient needs such as normal sinus rhythm, brady-
cardia, heart block and tachycardia. These requirements are common critical conditions,
which can vary between patients because of different physiological needs.



Closed-Loop Modeling of Cardiac Pacemaker and Heart 163

In this paper, the heart model is as abstract as possible to capture all possible sce-
narios of the heart, which is completely based on the conduction speed and conduction
time. Whenever these two parameters change or lie out of the range, then the ECG
signal deforms and we cannot obtain the desired ECG signal, which represents an ab-
normal heart state. Moreover, we have introduced heart blocking behavior using step-
wise refinement. Rather then considering any particular behavior of the heart, we have
abstractly formalized the heart. For instance, we have not processed any special treat-
ment in our model to capture the retrograde conduction (travel backwards). We have
considered the perfect heart condition (see HeartOK, where we have only a forward
conduction network). The retrograde conduction results in many different symptoms,
primarily those symptoms resulting from the delayed, non-physiologic timing of atrial
contraction in relation to ventricular contraction. According to our model, if the retro-
grade conduction affects the timing cycle or conduction speed, then the heart presents
an abnormal state. The normal state of the closed-loop model is presented according to
the timing and speed of the conduction requirements. In case of abnormal state of the
heart, the cardiac pacemaker paces and senses according to the patient’s needs. In this
closed-loop system, the cardiac pacemaker can take effect, when the heart presents an
abnormal state, which helps to maintain the patient heart rhythm. We have considered
heart state (OK or KO) for each cycle. If the cycle has any abnormality, the heart will
be in abnormal state and the pacemaker takes over to maintain the heart rhythm. In ad-
dition, this closed-loop model helps to identify the pacemaker requirements according
to the heart behavior.

5 Discussion

This paper presents an approach for modeling the closed-loop system. The prime objec-
tive of this approach is to provide a new modeling technique, which helps to combine
the formal models of a critical system and related environment. For example, the car-
diac pacemaker operates in the biological heart system. The closed-loop modeling is
an effective approach, which guarantees the correctness of the operating behavior of
the critical system. Moreover, this approach provides a viable mechanism for obtaining
the certification standards for the system development. To build a closed-loop model
using both environment and device modeling, is considered as a standard approach for
validation, given that designing an environment model is a challenging problem in the
real world. Industry has long sought such an approach to validating system models in a
biological environment. We have proposed the closed-loop modeling approach, which
is based on our previous research related to the cardiac pacemaker [24] and to the heart
model [18].

A Virtual Heart Model (VHM) based on Simulink has been developed by Jiang et
al. [2], which can be used for testing a pacemaker. However, a major constraint of
their approach is that the VHM and pacemaker both use the Simulink, which is not
based on any formal technique such as a theorem prover or model checker. Therefore,
it is not feasible to integrate their VHM with any formal methods based cardiac pace-
maker model in order to build a closed-loop system. A wide range of work related to
the formal verification of the pacemaker has been presented [24, 29, 30], but none of
these has used the heart environment model for verification purpose. We have proposed



164 D. Méry and N.K. Singh

modeling the heart in an abstract way to simulate the desired behavior of the heart sys-
tem whilst avoiding the complexity, which is based on logico-mathematical theory [18].
Our proposed approach for modeling the closed-loop system of the heart and pacemaker
is better than existing modeling approach. The closed-loop model of the heart and pace-
maker is developed using a refinement-based approach and has been used to verify the
system properties under patient conditions.

6 Conclusion

We present a method for modeling pacemakers within the closed-loop context of a heart
model. The heart model is based on logico-mathematical theory and is the first compu-
tational model [18] that considers the heart as an electrical conduction system. Given
that a cardiac pacemaker interacts with the heart exactly at this level (i.e., electrical im-
pulses), this model is a very promising environmental model to be used in parallel with
a pacemaker model to form a closed-loop system. It therefore has an immediate use in
the grand challenges in formal methods where an industrial pacemaker specification has
been elected as a benchmark. To model the closed-loop system of the heart and cardiac
pacemaker, we have used the Event-B modeling language[31, 15]. Our approach in-
volves formalizing and reasoning about behavior of a cardiac pacemaker under normal
and abnormal heart conditions. A set of general and patient condition-specific temporal
requirements is specified for the closed-loop system. Based on these requirements, we
have presented an interactive and physiologically relevant closed-loop model for veri-
fying basic and complex operations of the cardiac pacemaker. With the use of model
checkers, we demonstrate that the proposed system is capable of testing common and
complex heart conditions across a variety of pacemaker modes. This system is a step
towards a modeling approach for medical cyber-physical systems with the patient-in-
the-loop. The main objectives of the proposed idea are as follows:

– To meet the certification standards
– To verify a critical system like a cardiac pacemaker or implantable cardioverter-

defibrillators in a patient model (using a formal representation)
– To analyse the interaction between the heart model and a cardiac pacemaker or

implantable cardioverter-defibrillators.

Applying the closed-loop approach for developing the cardiac pacemaker has many
benefits, including the exposure of errors which might have not been detected without
the environment model. A list of guidlines proposed by regulatory standards (NITRD,
IEEE, and IEC/ISO) allows adoption of the closed-loop modeling using formal tech-
niques to establish mechanisms for verifying the specification against the user require-
ments and certification standards, and to ensure that designs and programs satisfy their
requirements specifications.

We have outlined how an incremental refinement approach to the closed-loop model
of the heart and pacemaker system enables a high degree of automatic proof using the
RODIN tool. Our various developments reflect not only many facets of the problem, but
also the learning process involved in understanding the problem and its ultimate possi-
ble solutions. The consistency of our specification has been checked through reasoning,



Closed-Loop Modeling of Cardiac Pacemaker and Heart 165

and validation experiments were performed using the ProB model checker with respect
to safety conditions. At each stage of the refinement, we have introduced a new behavior
for the system and proved its consistency and performed refinement checking. We have
introduced more general invariants at the refinement level, showing that the initializa-
tion of the whole system is valid. Finally, we have verified the correctness of the exact
behavior of our closed-loop system with the help of physiology and cardiology experts.

As a part of our future efforts we plan to generate the automatic test cases from this
closed-loop model, permitting system testing. In addition, it would be beneficial to con-
sider a more complex pacemaker model such as the three electrodes pacemaker. Finally,
as future work we plan to implement the developed closed-loop formal model. With this
approach, our goal is to generate this closed-loop model, moving from a formal model to
a Simulink model, which is the most common approach for realizing a real-time system.
The final implemented system will comply with developed closed-loop formal models.

Acknowledgement. We are grateful to cardiologist experts Prof. Yves Juillière (MD,
Cardiology) and Dr. Frédérique Claudot (PhD) and biomedical experts Dr. Didier Fass
(PhD) of the Université de Lorraine, who shared their experience with us. We are thank-
ful to the anonymous reviewers for their helpful and detailed comments.

References

1. Sandler, K., Ohrstrom, L., Moy, L., McVay, R.: Killed by code: Software transparency in
implantable medical devices (2010)

2. Jiang, Z., Pajic, M., Mangharam, R.: Model-based closed-loop testing of implantable pace-
makers. In: 2011 IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS),
pp. 131–140 (April 2011)

3. Maisel, W.H., Sweeney, M.O., Stevenson, W.G., Ellison, K.E., Epstein, L.M.: Recalls and
safety alerts involving pacemakers and implantable cardioverter-defibrillator generators.
JAMA: The Journal of the American Medical Association 286(7), 793–799 (2001)

4. US FDA Center for Devices and Radiological Health: Medical devices; current good manu-
facturing practice (cgmp) final rule; quality system regulation (1996)

5. US FDA Center for Devices and Radiological Health: Guidance for the content of premarket
submissions for software contained in medical devices (May 2005)

6. Center for Devices and Radiological Health: Safety of Marketed Med. Devices, FDA (2006)
7. A Reseach and Development Needs Report by NITRD: High-Confidence Medical Devices :

Cyber-Physical Systems for 21st Century Health Care,
http://www.nitrd.gov/About/MedDevice-FINAL1-web.pdf

8. Keatley, K.L.: A review of the fda draft guidance document for software validation: guidance
for industry. Qual. Assur. 7(1), 49–55 (1999)

9. Lee, I., Pappas, G.J., Cleaveland, R., Hatcliff, J., Krogh, B.H., Lee, P., Rubin, H., Sha, L.:
High-confidence medical device software and systems. Computer 39(4), 33–38 (2006)

10. Méry, D., Singh, N.K.: Trustable formal specification for software certification. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 312–326. Springer,
Heidelberg (2010)

11. Bowen, J., Stavridou, V.: Safety-critical systems, formal methods and standards. Software
Engineering Journal 8(4), 189–209 (1993)

12. Jetley, R.P., Carlos, C., Iyer, S.P.: A case study on applying formal methods to medical de-
vices: computer-aided resuscitation algorithm. International Journal on Software Tools for
Technology Transfer 5(4), 320–330 (2004)

http://www.nitrd.gov/About/MedDevice-FINAL1-web.pdf


166 D. Méry and N.K. Singh

13. Jetley, R., Purushothaman Iyer, S., Jones, P.: A formal methods approach to medical device
review. Computer 39(4), 61–67 (2006)

14. Méry, D., Singh, N.K.: Real-time animation for formal specification. In: Aiguier, M., Bre-
taudeau, F., Krob, D. (eds.) Complex Systems Design & Management, pp. 49–60. Springer,
Heidelberg (2010)

15. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press (2010)

16. Fitzgerald, J.S.: The typed logic of partial functions and the vienna development method.
In: Bjørner, D., Henson, M.C. (eds.) Logics of Specification Languages. Monographs in
Theoretical Computer Science. An EATCS Series, pp. 453–487. Springer, Heidelberg (2008)

17. Lieber, R., Fass, D.: Human systems integration design: Which generalized rationale? In:
Kurosu, M. (ed.) Human Centered Design, HCII 2011. LNCS, vol. 6776, pp. 101–109.
Springer, Heidelberg (2011)

18. Méry, D., Singh, N.K.: Formalization of heart models based on the conduction of electri-
cal impulses and cellular automata. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS,
vol. 7151, pp. 140–159. Springer, Heidelberg (2012)

19. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric
and Biomagnetic Fields, 1st edn. Oxford University Press, USA (1995) ISBN 0-19-505823-2

20. Khan, M.G.: Rapid ECG Interpretation. Humana Press (2008)
21. Bayes de Luna, A., Batcharov, V.N., Malik, M.: The morphology of the Electrocardiogram.

In: John Camm, A., Lascher, T.F., Serruys, P.W. (eds.) The ESC Textbook of Cardiovascular
Medicine. Blackwell Publishing Ltd. (2006)

22. Artigou, J.Y., Monsuez, J.J., Société française de cardiologie: Cardiologie et maladies vas-
culaires. Elsevier Masson (2006)

23. Méry, D., Singh, N.K.: Technical Report on Formalisation of the Heart using Analysis of
Conduction Time and Velocity of the Electrocardiography and Cellular-Automata. Technical
report, LORIA UMR7503 - Université de Lorraine (May 2011)

24. Méry, D., Singh, N.K.: Functional behavior of a cardiac pacing system. International Journal
of Discrete Event Control Systems 1(2), 129–149 (2011)

25. Boston Scientific: Pacemaker system specification, Technical report (2007),
http://www.cas.mcmaster.ca/sqrl/SQRLDocuments/PACEMAKER.pdf

26. Singh, N.K.: Reliability and Safety of Critical Device Software Systems. PhD in Computer
Science, Université Henri Poincaré - Nancy 1, France (November 2011),
http://www.scd.uhp-nancy.fr/docnum/SCD_T_2011_0129_SINGH.pdf

27. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
28. Leuschel, M., Butler, M.: Prob: A model checker for B. In: Araki, K., Gnesi, S., Mandrioli,

D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)
29. Macedo, H.D., Larsen, P.G., Fitzgerald, J.: Incremental Development of a Distributed Real-

Time Model of a Cardiac Pacing System Using VDM. In: Cuellar, J., Maibaum, T. (eds.) FM
2008. LNCS, vol. 5014, pp. 181–197. Springer, Heidelberg (2008)

30. Gomes, A.O., Oliveira, M.V.M.: Formal specification of a cardiac pacing system. In: Caval-
canti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 692–707. Springer, Heidelberg
(2009)

31. Project RODIN: Rigorous open development environment for complex systems (2004),
http://rodin-b-sharp.sourceforge.net/

http://www.cas.mcmaster.ca/sqrl/SQRLDocuments/PACEMAKER.pdf
http://www.scd.uhp-nancy.fr/docnum/SCD_T_2011_0129_SINGH.pdf
http://rodin-b-sharp.sourceforge.net/


Model-Based Solution for Controlling Physiology

Elthon Oliveira1,2, Leandro Silva1,2, Hyggo Almeida2, and Angelo Perkusich2

1 Universidade Federal de Alagoas
Núcleo de Ciências Exatas - NCEx / Lab. de Computação Pervasiva - Percomp

Campus Arapiraca / Instituto de Computação, Arapiraca / Maceió - Alagoas, Brasil
elthon@arapiraca.ufal.br, leandrodias@ic.ufal.br

2 Universidade Federal de Campina Grande
Laboratório de Sistemas Embarcados e Computação Pervasiva - Embedded
Centro de Engenharia Elétrica e Informática, Campina Grande - PB, Brasil

hyggo@dsc.ufcg.edu.br, perkusic@dee.ufcg.edu.br

Abstract. In 2008, 63% of the estimated global deaths was due to non-
communicable diseases (NCD). One of the main known NCD behavioral
risk factors is physical inactivity. Daily physical activity allows control-
ling weight, reducing NCD death risks. However, irresponsible practice
of physical activities can harm both healthy and unhealthy people due
to physiological disturbance. In this paper a model-based solution is pre-
sented for controlling human physiology during exercise. The presence
of non-invasive sensors for collecting physiological data periodically is
assumed. Such data is evaluated in comparison to a supervised reference
model built using a formal language. Some challenges are also outlined.

Keywords: supervisory control theory, physiology, physical activity.

1 Introduction

According to World Health Organization (WHO) [1], 63% of the estimated global
deaths in 2008 were due to non-communicable diseases (NCD). The main known
NCD behavioral risk factors are tobacco use, physical inactivity, unhealthy diet
and harmful use of alcohol. Daily physical activity allows controlling weight and
reduction of cardiovascular disease, type 2 diabetes and cancer risks [2]. Thus,
one can say that daily physical activity allows reducing NCD death risks.

Despite the benefits, some risks must be considered while doing regular activ-
ity: musculoskeletal injury, dehydration, heat stroke, sudden cardiac death and
oxidative stress [3]. Such risks are often experienced with unsupervised and ir-
responsible practice of physical activities. They can be harmful to both healthy
and unhealthy people due to some physiological disturbance. In order to pre-
vent such a disturbance, it is required to strictly follow recommendations from
healthcare professionals or to have some professional supervising the exercise.

These life style recommendations are given to patients by healthcare profes-
sionals and they are tailored to individual needs based on factors such as age and
health status [4]. For instance, suppose a 50 years old patient named Eric with
some cardiovascular disease and a 21 years old completely healthy patient named

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 167–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



168 E. Oliveira et al.

Scott. A heart rate greater than 100 bpm (beats per minute) during a resistance
training may represent to Eric a very dangerous situation while to Scott may
not. The recommendation to Eric at the right moment his heart rate exceeds 100
bpm could be “decrease the intensity of the exercise” or even “quit exercising”.
Similar recommendations to Scott could be taken at a different threshold.

Once the patient has access to his physiological data during physical activity
by means of sensors throughout his body, he would have to keep in mind all
the recommendations about the specified limits for all the relevant variables
defined for him. Considering just body information, it would already be difficult
to reason about. To make it worse, information about the environment, such as
temperature or even altitude, may be also relevant depending on the context.
As stated in [5] and [6], environmental variables may infect physiology. So, in
certain scenarios, different classes of variables (physiological, environmental and
behavioral) can be put together in order to take more accurate decisions.

The ideal scenario is that where healthcare professionals personally supervise
the patient during his physical activity and keep such a supervision during the
recovery period [7]. Despite of being an important procedure, individual super-
vision is not feasible due to the ratio of healthcare professionals to patients. Pro-
fessionals examine patients and give them recommendations of behavior. There
is no supervision. Computational solutions for in loco physiological monitor-
ing/controlling should mitigate this problem.

In this paper it is presented an approach for controlling human physiology
during exercises practice using pervasive computing [8] and supervisory con-
trol theory [9]. The presence of non-invasive sensors for collecting physiological
(e.g., blood pressure, temperature) and environmental (e.g., altitude, relative
humidity) data periodically is assumed. Such data is evaluated in comparison
to a supervised reference model built using a formal language. This supervised
reference model will represent the knowledge of healthcare professionals (pre-
scription/goal) to control one specific physiological system given the individual
profile, his physical activity and the environment where he will be exercising.

Regular automata are the chosen formal language used with supervisory con-
trol due to its simplicity and expressiveness. Besides, each part of the system
(variables) can be modeled separately. Then, a bigger and more complex model
representing the whole system can be obtained from the product operation exe-
cuted over the smaller models. Such an operation is automatically performed. In
this way, in the case of change in one the variables, just a specific small model
must be manually changed. A new system model can be generated again by
applying the mentioned operation. In comparison to a common rule-based style
system, it is easier to promote changes into the reference model.

2 Defining the Human Physiology Control

Physiological state can be seen as a set of values of all physiological variables that
can assume any value within their respective defined ranges. For instance, assum-
ing intervals for heart rate [70, 100) (meaning good h) and [100,+∞) (meaning



An Approach for Controlling Human Physiology 169

bad h), and for systolic blood pressure [90, 119] (meaning good p) and (119,+∞)
(meaning bad p). An individual with a 110 bpm heart rate and a 95 mmHg sys-
tolic blood pressure would present {bad h,good p} as his physiological state.

The state of individual may not only be composed by physiological variables,
but it can also be enriched with the other two classes of variables: environmen-
tal and behavioral ones. Besides, events like slow down or breath slowly could
change the state of the individual from {bad h,good p} to {good h,good p}. Some
of these events are known by healthcare professionals and are passed to patients
as recommendations like “if you are running and your heart rate is greater than
100 bpm, slow down a bit”. Three parts are observed in this recommendation:
(i) a behavioral information (running), (ii) a physiological information (heart
rate is greater than 100 bpm) and (iii) an event (slow down a bit). The event (or
action) slow down a bit can be controlled and should be taken by the patient
so its heart rate can also be controlled, consequently. In Figure 1, a finite state
machine (FSM) that represents this scenario is presented. The arrow pointing
to state good h.good p indicates that it is the initial state of the “machine”.

good_h.good_p

bad_h.bad_pgood_h.bad_p

bad_h.good_p

decrease_pressure decrease_pressure
increase_pressure

slow_down

increase_speed
increase_pressure

increase_speed

slow_down

Fig. 1. FSM with two variables

Based on this recommendation format, the set of states and the events can be
seen as a discrete event system (DES) [10]. And like all DES, it can be controlled
at some operation levels.

2.1 Steps for Defining the Control

Defining human physiological control consists of five steps. Each step must be
followed based on the previous ones. Such steps must be executed by a healthcare
professional during anamnesis. The steps are detailed bellow.

1. Delineating the Individual Profile. The healthcare professional must:
– identify if the patient is affected by some disease (chronic or not);
– measure all important variables (heart rate, blood sugar, etc);
– define the patient goal (prevention, treatment, training, etc);
– classify the patient according to his physical condition (sedentary, com-

mon athlete, high performance athlete, etc); and
– identify the environments where the patient can do his physical activities

(outdoor, indoor, ate a gym, at home, etc).



170 E. Oliveira et al.

2. Defining Variables to Monitor and/or Control.
Not all variables must be monitored in every case. Some variables may be
important and some others may be considered irrelevant depending on the
patient profile, the environment and the expected behavior. For instance, in
a resistive training, speed is irrelevant. The three classes of variables that
can be monitored and/or controlled are:

– physiological: heart rate, body temperature, blood sugar, etc;
– environmental: temperature, relative humidity, altitude, etc; and
– behavioral: standing, sitting, lying, running, walking, etc.

3. Defining Intervals of Values for Each Chosen Variable.
It is necessary to define the intervals of values for each chosen variable and
name them. Any interval can be defined and this should be done based on
each case. For instance, assume the need of a FSM with only two states. Fol-
lowing the rules described by CDC1, the heart rate intervals to moderate-
intensity and vigorous-intensity physical activities of a 50 years old pa-
tient should be in [85, 119] and [120, 144], respectively. The number of states
and what rules to follow depend on the needs and specificities of each case.

4. Defining Events/Actions between the Defined States.
Events, called here transitions, can change the state of the patient from one
state to another. The simple act of slowing down when jogging can decrease
heart rate. In the case of heart rate, more actions (transitions) can do the
same, but only healthcare professionals may assign them to the transition
between states. In Figure 2, the FSM for heart rate is presented. The events
increase heart rate and decrease heart rate are generic. They represent
actions/recommendations that change state of patient heart rate.

VigorousIntensityModerateIntensity

decrease_heart_rate

increase_heart_rate

Fig. 2. FSM for heart hate

5. Defining the Specification According to the Patient Goal.
People that seek for a healthcare professional have different goals. They
may look for physical activity as prescription for some disease treatment,
for disease prevention, or for a healthy way of physical improvement. In all
these cases, patients must follow recommendations given by the healthcare
professional. In this approach, recommendations are described as automata
and/or some automata concepts like forbidden state and accepting state. An
example will be illustrated in Section 2.3.

It is important to highlight that all these steps must be followed by a healthcare
professional. Even with some clinical guidelines in hand, one must have the

1 Centers of Disease Control and Prevention (http://www.cdc.gov).

http://www.cdc.gov


An Approach for Controlling Human Physiology 171

domain knowledge and experience with real cases so the model can express, at
the worst case, almost all of (and only) the relevant features of the case.

2.2 User/Model Interaction

As stated before, the presence of non-invasive sensors is assumed. Each one of
the three classes of variable may be monitored by a specific sensor that collects
their data periodically. The reading periodicity depends on the nature of the
variable. So, one variable may be read in every five seconds and another may be
read in every 20 minutes. Collected data are sent to a server to be processed.

Desktop PCs, tablets or even smartphones can be used as servers. After pro-
cessing data, server must send feedback to patient. Any kind of device with
a display (e.g.; cellphone, TV, treadmill) can receive data and be used to show
feedback messages to patient. In the case of server being a smartphone, messages
may be showed by itself without the need to send data to another entity.

Every time a variable is read, a two columns table (with variables and their
last collected values) is updated. The current state of the system, represented
by the value-column, is located in one state of the reference model. If such a
state is considered desirable, an “ok” message is given to patient. Otherwise, a
“not ok” message with a sequence of actions, named path, is given to patient
as text messages. It is this path that can take patient from an undesirable state
(unsafe or not) to a desirable one. The actions that form path are the labels of
transitions that take patient from origin state to destination one.

2.3 An Example

Due to space restrictions, instead of presenting a bigger and more complex case
study, it is presented a functional toy example. However, it was intended to show
as many details as possible about the approach presented in this work.

In this example it is presented a case where the patient aims to lose weight.
For this, he intends to practice jogging regularly.

1. Delineating the individual profile.
A 25-years-old male person with sedentary routine and no history of disease.

2. Defining variables to monitor and/or control.
It is planned to monitor and control hear rate and systolic blood pressure
variables. Environmental and behavioral variables are not considered here.

3. Defining intervals of values for each chosen variable.
Due to didactic purposes, the number of states for each chosen variable is
small. States and their intervals are presented in Table 1.

4. Defining events/actions between the defined states.
Two generic events are defined for each FSM (a.k.a. model). For heart rate
model there are increase heart rate and decrease heart rate (Figure 3(a)).
And for systolic blood pressure model there are increase pressure and
decrease pressure (Figure 3(b)). As aforesaid, each one of the generic events



172 E. Oliveira et al.

Table 1. States and their intervals of the chosen variables

Variable State Interval

Heart rate (bpm)
safe [97, 156]

tolerable [157, 175]
dangerous [176, 195]

Systolic blood pressure (mmHg)
hypotension [−∞, 89]
desirable [90, 119]

prehypertension [120, 139]
hypertension [140,+∞]

tolerablesafe dangerous

decrease_heart_rate

increase_heart_rate

decrease_heart_rate

increase_heart_rate

(a) Heart rate model.

hypertensiondesirablehypotension prehypertensiondecrease_pressure

increase_pressureincrease_pressure

decrease_pressure

increase_pressure

decrease_pressure

(b) Systolic blood pressure model.

Fig. 3. FSM’s for the chosen variables

can be replaced by a set of actions/recommendations. For instance, depend-
ing on the context, increase pressure could be replaced by events such as
increase environmental temperature, increase speed or eat salty food.

5. Defining the specification according to the patient goal.
The recommendations that patient must follow are: (i) the blood pressure
cannot decrease from its initial state and (ii) if the blood pressure increases,
it must decrease. It is aimed to keep the patient in a set of physiological
states in where he can be safe during his physical activity.

Specifications can be written by two ways. One is building an automaton
that works as a constraint (Figure 4). Another way is by setting some states
as forbidden, but it is not presented here due to space restrictions.

s1 s2

decrease_pressure

increase_pressure

Fig. 4. Specification for systolic blood pressure

At first, after executing all five steps, it is enough to make a product of the models
defined after the 4th step. The outcome model possess states that represent all
the combinations among states from the two models. The outcome model has
12 states and 34 transitions.



An Approach for Controlling Human Physiology 173

Then, applying the product to this outcome model and the specification, a
supervised model is produced. This new model contains only 6 states and 14
transitions that follow the written specifications/recommendations (Figure 5).
The states are painted gray indicating that all of them are accepting states.

s2.tolerable.prehypertension

s1.dangerous.desirable

s2.dangerous.prehypertension

s1.tolerable.desirables1.safe.desirable

s2.safe.prehypertension

increase_pressure

decrease_heart_rate

decrease_pressure

decrease_heart_rate

decrease_heart_rate

decrease_heart_rate

increase_heart_rate

increase_heart_rate

decrease_pressure
decrease_pressure

increase_pressure
increase_pressure

increase_heart_rate

increase_heart_rate

Fig. 5. Reference model for patient physiological behavior

The model allows the patient to enter in one of the two dangerous physiology
states (heart rate between 185 and 195 bpm). If it is desired to avoid such states,
in the 5th step it is enough to set the dangerous state, from the hear rate model,
as a forbidden state.

3 Related Work

Many works have been developed in the area of pervasive healthcare in the last
years. Almost all of them concern about disease diagnosis and others about
disease and medication treatments [11].

Some works focus on diagnostic algorithms. Most of them are about cardiac
diseases. The ones that stand out are developed for atrial fibrillation [12], my-
ocardial infarction and atrio-ventricular block [13] and cardiac arrhythmia [14].
Others focus on different kinds of diseases. The work presented by [15] uses neu-
ral networks for diagnosing diabetes. The one presented by [16] proposes the
development of a diagnoses system of sleep apnea and hypopnea syndrome. And
in [17], a pervasive and preventive healthcare solution addressing the medication
noncompliance is proposed.

None of these works focus on disease prevention and treatment with data fu-
sion (different classes of variables). There is a proposal of a fusion data model [18],
but it does not include behavioral and environmental information. One work
deals with different classes of variables [19]. However, due to the decision rules
format, there is no efficient support for evolution of the model.

There is a commercial tool (http://www.bodymedia.com/) in the context of
exercises practice. However, its purpose is to count calories consumed during
activities executed by user daily and supervise him to lose weight.

4 Final Remarks

In this work an approach to promote safe and controlled physical activities based
on models is presented. A deeper research into the supervisory control theory is

http://www.bodymedia.com/


174 E. Oliveira et al.

intended to be done to promote a more accurate control of human physiology. In
this way, unanticipated human behavior and some real world constraints omitted
here can be overcome in more complex and real scenarios.

This work focuses on control of human physiology. It can be used to monitor-
ing exercise aiming disease prevention or treatment, and physical improvement.
Other potential applications are medication management, diet program, emer-
gency alert and identification of conflicts among recommendations. As formal
models are used, it is possible to generate verified source code which is great due
to the level of demanded reliability.

An easy evolution of the human model and also data fusion are promoted. It
is enough to build a FSM for a new variable and apply the product operation
with the rest of the models. Besides, each model can be completely customized.
One can say that the models are individual-physiology-profile oriented.

An new step or phase is added to clinical workflow. A healthcare supervisor
controls and/or gives suggestions to patient all the time to prevent his physio-
logical system to not follow recommendations given by human professional.

The periodicity in which sensors read variables must be set by the heath care
professional. Each variable should be read in a different period due to its specific
characteristics. The accuracy of controlling must increase with short periods.

The non-friendly interface of automata is a problem. Another drawback is
the necessary formal minimum knowledge. As this work is still conceptual, such
disadvantages are not critical since friendly software interfaces are intended.

It is clear that building such a reference model will represent an additional
time in clinical workflow execution. In this way, efforts must be employed to
develop tools that mitigate necessary time for this task. Besides, as it was men-
tioned in Section 2.3, the generated reference model presents all the possible
combinations of states. Medical knowledge (in some structured way) will be
used to prune models so that no physiologically impossible states remain.

Validation of this work will be conducting together with the healthcare profes-
sional. At first, this will be done with simulated data. A program to be developed
will interact with reference model supplying physiological, environmental and be-
havioral information. Messages exchanged between them will be analysed by the
human professional. Later, generated source-code will be embedded in some de-
vices and the work will be submitted to real test on the field. Nevertheless, it will
be necessary to acquire sensors with some communication features. With this, it
is intended to demonstrate the feasibility of this work concept. It is also intended
to define a more realistic example so it can be used as a full case study. This
more realistic example will demand the presence of a healthcare professional for
following the described steps to build the formal reference model.

References

1. World Health Organization: World health statistics. WHO Press (2012)

2. Bianchini, F., Kaaks, R., Vainio, H.: Weight control and physical activity in cancer
prevention. Obesity Reviews 3(1), 5–8 (2002)



An Approach for Controlling Human Physiology 175

3. Melzer, K., Kayser, B., Pichard, C.: Physical activity: the health benefits outweigh
the risks. Current Opinion in Clinical Nutrition and Metabolic Care 7(6), 641–647
(2004) PMID: 15534432

4. Fletcher, G., Trejo, J.F.: Why and how to prescribe exercise: Overcoming the
barriers. Cleveland Clinic Journal of Medicine 72(8), 645–649 (2005)

5. Wilmshurst, P.: Temperature and cardiovascular mortality. BMJ 309(6961),
1029–1030 (1994)

6. Fujiwara, T., Kawamura, M., Nakajima, J., Adachi, T., Hiramori, K.: Seasonal
differences in diurnal blood pressure of hypertensive patients living in a stable
environmental temperature. Journal of Hypertension 13(12), 1747–1752 (1995)

7. American College of Sports and Medicine: ACSM’s Guidelines for Exercise Testing
and Prescription, 6th edn. Lippincott Williams & Wilkins (February 2000)

8. Weiser, M.: The computer for the 21st century. Scientific American (February 1991)
9. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings

of the IEEE 77(1), 81–98 (1989)
10. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 1 edn.

Springer (September 1999)
11. Koutkias, V.G., Chouvarda, I., Triantafyllidis, A., Malousi, A., Giaglis, G.D.,

Maglaveras, N.: A personalized framework for medication treatment management
in chronic care. IEEE Transactions on Information Technology in Biomedicine:
A Publication of the IEEE Engineering in Medicine and Biology Society 14(2),
464–472 (2010) PMID: 20007042

12. Yaghouby, F., Ayatollahi, A., Bahramali, R., Yaghouby, M., Alavi, A.H.: Towards
automatic detection of atrial fibrillation: A hybrid computational approach. Com-
puters in Biology and Medicine 40(11-12), 919–930 (2010)

13. Sankari, Z., Adeli, H.: HeartSaver: a mobile cardiac monitoring system for auto-
detection of atrial fibrillation, myocardial infarction, and atrio-ventricular block.
Computers in Biology and Medicine 41(4), 211–220 (2011) PMID: 21377149

14. Özçift, A.: Random forests ensemble classifier trained with data resampling
strategy to improve cardiac arrhythmia diagnosis. Computers in Biology and
Medicine 41(5), 265–271 (2011)

15. Karan, O., Bayraktar, C., Gümüşkaya, H., Karlık, B.: Diagnosing diabetes using
neural networks on small mobile devices. Expert Syst. Appl. 39(1), 54–60 (2012)

16. Burgos, A., Goñi, A., Illarramendi, A., Bermudez, J.: Real-Time detection
of apneas on a PDA. IEEE Transactions on Information Technology in
Biomedicine 14(4), 995–1002 (2010)

17. Pang, Z., Chen, Q., Zheng, L.: A pervasive and preventive healthcare solution for
medication noncompliance and daily monitoring. In: 2nd International Symp. on
Appl. Sciences in Biomedical and Communication Technologies, pp. 1–6 (November
2009)

18. Pantelopoulos, A., Bourbakis, N.G.: Prognosis-a wearable health-monitoring sys-
tem for people at risk: methodology and modeling. IEEE Transactions on Infor-
mation Technology in Biomedicine: A Publication of the IEEE Engineering in
Medicine and Biology Society 14(3), 613–621 (2010) PMID: 20123575

19. Copetti, A., Leite, J.C.B., Loques, O.: A decision mechanism to context infer-
ence in pervasive healthcare environments. SBA: Controle e Automação Sociedade
Brasileira de Automática 22(4), 363–378 (2011)



Automated Reviewing of Healthcare
Security Policies

Nafees Qamar1, Johannes Faber1, Yves Ledru2, and Zhiming Liu1

1 United Nations University
International Institute for Software Technology

{nqamar,jfaber,lzm}@iist.unu.edu
2 UJF-Grenoble 1/Grenoble-INP/UPMF-Grenoble2/CNRS, LIG

yves.ledru@imag.fr

Abstract. We present a new formal validation method for healthcare
security policies in the form of feedback-based queries to ensure an an-
swer to the question of Who is accessing What in Electronic Health
Records. To this end, we consider Role-based Access Control (RBAC)
that offers the flexibility to specify the users, roles, permissions, actions,
and the objects to secure. We use the Z notation both for formal spec-
ification of RBAC security policies and for queries aimed at reviewing
these security policies. To ease the effort in creating the correct speci-
fication of the security policies, RBAC-based graphical models (such as
SecureUML) are used and automatically translated into the correspond-
ing Z specifications. These specifications are then animated using the
Jaza tool to execute queries against the specification of security policies.
Through this process, it is automatically detected who will gain access to
the medical record of the patient and which information will be exposed
to that system user.

1 Introduction

Security and privacy in information systems generally concern questions such
as Who accesses What. An Electronic Health Record (EHR) is a longitudinal
electronic record of health information for a patient generated by one or more
encounters in any care delivery setting. Security mechanisms are supposed to be
applied to protect such EHRs to shield against external threats from outside the
system, such as attacking or running malicious applications, as well as internal
threats from inside the system, e.g., a valid system user illegitimately accesses
private data of a patient. It was, however, reported that major threats to patient
privacy actually stemmed mostly from internal factors [Jou09]. For this reason,
it is essential to investigate who is doing what in a system besides ensuring
smooth data availability. For example, what are the operations a user such as a
nurse can perform, and what resources are accessible by a user? The system also
needs to be flexible enough to allow exceptional access to system resources, espe-
cially in medical emergency cases. Due to these exceptions, the large number of
stakeholders, end users, and interaction components, the specification of policies

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 176–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Automated Reviewing of Healthcare Security Policies 177

on security and privacy and their correct implementation in EHR systems are
particularly challenging. Not surprisingly, medical data disclosure is the second
highest reported breach [HY06]. To address this issue, legal regulations, such
as USA’s Health Care Insurance Portability and Accountability Act (HIPAA),
are in place as safeguards to confidentiality, integrity, and availability of these
systems.

To guarantee that application-specific security objectives are enforced by the
enacted security policies based on regulations like HIPAA, the rules that define
the security policies need to be justified using validation techniques. To this
end, we propose using the Z notation [Spi92, DW96] to represent the security
rules as well as to specify queries for revealing internal threats to EHRs. The
execution of the queries animates the security policies to generate feedbacks on
authorized and unauthorized states of an EHR system. Additionally, these also
help in analyzing over- or under-designed security policies, which otherwise can
block desirable operations or permit undesirable ones, respectively.

To ease the effort in model construction and understanding, we propose to
use a graphical notation, such as SecureUML [LBD02] or UMLsec [Jür05], to
model security policies. The graphical models are automatically translated into
specifications in the formal Z notation, which is amenable to formal analysis. In
this way, the proposed formal approach can be integrated with graphical model-
ing and transformation techniques – the so-called model-driven techniques. For
specifying security policies, we apply the standardized Role-based Access Con-
trol (RBAC) mechanism [FSG+01]. RBAC offers roles, which are permanent
organizational positions whilst users can arbitrarily be changed. Based on this,
we introduce formalized review functions in terms of Z specifications. These re-
view functions can be animated using, e.g., the Jaza tool to get feedback on
which actions are available to which role, on access to specific resources, and on
duplicate permissions. To further reflect the complex situation in the healthcare
domain, we additionally introduce Separation of Duties (SoD) constraints to an-
alyze conflicts of interest between different stakeholders in the system. This is
done statically, by ensuring that a user cannot have two conflicting roles at all,
as well as dynamically, by ensuring that a user cannot have two conflicting roles
in a single session. We exemplary demonstrate that this approach is suitable to
deal with emergency situations, where immediate access to information might
be needed and report on the types of information one needs to collect before de-
ploying a security policy. We prefer RBAC to Mandatory Access Control [BL75]
and Discretionary Access Control [DOD85], because it builds on a generic prin-
ciple of access control that makes it adaptable to any organizational structure
and flexible with respect to the application implementation.

To summarize, we present a new formal validation method for healthcare secu-
rity policies with two main contributions. First, we introduce formally specified
queries for automatically reviewing security policies and analyze what informa-
tion of an EHR is exposed to a system user. Second, we introduce SoD constraints
to cope with the complex security policies usually found in EHR systems. We
use an example from the healthcare domain for demonstration.



178 N. Qamar et al.

The paper is structured as follows: Section 2 discusses state-of-the-art formal
techniques on security policies. Section 3 states RBAC and gives a scenario,
which is used as a running example throughout the paper. Section 4 demonstrates
the formalization of security policies in Z notation, whereas Sect. 5 presents
formally specified queries for reviewing security policies. Section 6 formalizes
SoD constraints, and finally, Sect. 7 concludes and shares some perspectives.

2 Related Work

Healthcare privacy and security techniques are intended to cope with a number
of issues such as authorized data disclosure, integrity of information, regula-
tory implication for healthcare, and information security risk management. The
survey [AJ10] also considers a multitude of such techniques and provides a clas-
sification. The authors conclude that existing techniques are inadequate to meet
security and privacy challenges in EHRs. It also shows that healthcare security
and privacy issues have not been treated in a deserved manner. Our findings
complement this survey concerning these issues, which also have not been dealt
with formal languages such as the Z notation, generally known for their preci-
sion and unambiguity. For example, [TMB06] uses formal methods to improve
medical protocols, but such techniques are missing in general.

The standardized Z notation [Spi92] has been successfully applied to various
industrial projects for formal modeling and development [Bow03]. Our past work
presents an RBAC-based security kernel using Z [QLI11, LQI+11], which shows
that Z can be effectively used to verify or validate security policies. The work
in this paper builds on these preliminary results with an extended set of formal
queries for validation of security policies and formal SoD constraints. The use of
Z in our previous work is motivated by the support of authorization constraints,
which do not appear in this paper. When there are authorization constraints, one
needs to consider the evolution of the state of the functional model [LIM+11].
Currently, only our tool takes this evolution in the animation of the complete
model into account.

Alloy has the potential to do similar work as Z, but currently no tool is
available covering both functional security models and authorization constraints.
Regarding B, a similar tool is currently under development in the Selkis project
[MIL+11]. The tool will allow using the ProB tool both for animation and model
checking.

ISO-standardized RBAC has widely been described by researchers using Z
such as [Hal94, AK06, YHHZ06]. However, the work there offers only generic for-
mal representation of RBAC. There are other techniques for validation and verifi-
cation of security properties [MSGC07, Bos95, AK06]. In particular, [MSGC07]
proposes a process to verify Z specifications by the Z/EVES theorem prover.
In parallel, OCL expressions are also meant to specify restrictions on a sys-
tem model but do not support feedback queries. For example, SecureMOVA
[BCDE09] offers a set of queries to analyze security policies expressed as formu-
las in UML’s Object Constraint Language.



Automated Reviewing of Healthcare Security Policies 179

Fig. 1. Role Based Access Control [FSG+01]

The work [ZWCJ02] proposes to verify algebraic characteristics of RBAC
schemas using Alloy. Alloy is used as a constraint analyzer to check the in-
consistencies among roles and Static Separation of Duty (SSD) constraints and
to generate a counter-example when inconsistencies are found. However, the
work addresses SSD constraints only. [SM02, AH07] also discuss SoD constraints.
The former discusses decentralized administration of RBAC and allows arbitrary
changes to an initially stated model that may result in conflicting policies over
time with respect to SoD constraints. They argue that SoD constraints may in-
troduce implicit security policy flaws because of role hierarchies. In [TRA+09], a
translation from UML to Alloy is given for verification of the UML models. The
work is mainly focused on analysis of contextual information such as location
and time for access decisions.

3 Role-Based Access Control

In this section, we introduce the preliminaries of Role-based Access Control
(RBAC). We will use a running example to illustrate the basic concepts and
properties.

3.1 Data Model of RBAC

The data model of RBAC [FSG+01] as shown in Fig. 1 is based on five data
types: users (USERS), roles (ROLES), objects (OBS), permissions (PRMS) and
executable operations (OPS) by users on objects. A sixth data type for sessions
(SESSIONS) is used to associate roles temporarily to users. Sessions correspond
to the dynamic aspect of RBAC that actually includes session management.

RBAC differentiates between users and roles. A role is considered as a per-
manent position in an organization whereas a given user might be switched with
another user for that role. Thus, rights are offered to roles instead of users.
Roles are assigned to permissions that can later be exercised by users playing



180 N. Qamar et al.

these roles. Modeled objects (OBS) in RBAC are potential resources to protect.
Operations (OPS) are viewed as application-specific user functions. Other con-
structs included in the model are user assignment, hierarchy, and permission
assignment, which are designated as UA, RH, and PA, respectively. Here, we
very briefly outline all the aforementioned RBAC constructs:

– User is a person who uses a system or an automated agent.
– Role is an organization entity or a permanent position in an enterprise. Each

role may have an allowable set of actions according to the access control
policy. In this way, access to computational resources is realized via roles.

– UA ⊆ USERS × ROLES is a many-to-many mapping between users and
roles; UA specifies which roles can be taken by a given user.

– PA ⊆ PRMS × ROLES is a many-to-many mapping permission-to-role; PA
expresses which roles may be granted a given permission.

– user sessions(u : USERS) → 2SESSIONS is a mapping of user u onto a set
of sessions; it lists the current sessions of a given user.

– session roles(s : SESSIONS) → 2ROLES is a mapping of session s onto a set
of roles; it lists the current roles of a given user in a given session.

– RH ⊆ ROLES × ROLES is a partially ordered role hierarchy; a senior role
may inherit the permissions from its junior roles.

– PRMS : 2OPS×OBS is a set of permissions. Permissions are regarded as an
approval to perform operations on RBAC-protected objects. An executable
image of a program is considered as an operation, which executes some func-
tion for the user. For example, within medical records, operations might
include insert, delete, append, and update medical instructions.

3.2 Example: RBAC-Based Security Management for EHRs

Healthcare security policies are ideally modeled using RBAC, because permanent
positions such as doctors, nurses, and other healthcare staff can be mapped to
the roles as set in the policy. Figure 2 represents a small healthcare security
policy management, which attempts to secure medical records by the use of
roles associated to permissions given as stereotypes, while permissions are on
the class i.e., MedicalRecords. For instance, a patient, which corresponds to a
particular role in an EHR system, has the ability to read his/her own medical
record. A doctor inherits permissions from the patient, besides holding another
permission given as UserCredentials, on which the doctor could exercise a write
operation. The role EmergencyOfficer is assigned with a permission such as read,
which is intended for emergency access. Using our toolset [LQI+11] one can
translate such diagram into a Z model. Here we confine ourselves to explain the
needed part to allow reviewing of such formal translations.

Access Control Violations. Access control rules specified as graphical models
are hard to validate because of their ambiguous semantics. This in turn leads
to information integrity and confidentiality problems in general. In the example



Automated Reviewing of Healthcare Security Policies 181

Fig. 2. Design of a medical application using SecureUML

above, a patient could change his/her own medical record if the security policy
is not correctly realized in the system. Similarly, a doctor being also a patient
can forge his/her own medical record if not avoided by a corresponding SoD con-
straint. To address these inadequate security policies, we introduce a technique
for automatically reviewing such deficiencies in Sect. 5 after the next section’s
discussion on the formalization of policies.

4 Formalized Healthcare Security Policies

This section gives an overview of the formalization of security policies, which
has been introduced in our previous work [QLI11].

4.1 The Z Notation and the Jaza Tool

The ISO-standardized Z language [Spi92] offers an extensive set of concepts
and constructs from first-order logic and set theory to specify software systems.
Schemas are the major structuring primitives in Z. Each schema is further di-
vided into two components: the signature part, which includes variables and
types, and the predicate part, for imposing constraints upon these variables.



182 N. Qamar et al.

[PERMISSION ,SESSION ,USER]

ROLE ::= Patient | Doctor |
EmergencyOfficer

RESOURCE ::= MedicalRecords
ATOMIC ACTION ::=

Read | Write | Delete | Create

Sets
role : FROLE
user : FUSER
session : F SESSION
resource : FRESOURCE
permission : FPERMISSION
atm action : FATOMIC ACTION

Fig. 3. Z types for security policies

A schema represents an operation, and it may reference further schemas by
means of their names. We will use the running example to explain the Z con-
structs used here.

Jaza (http://www.cs.waikato.ac.nz/~marku/jaza/) can animate a large
subset of constructs of the Z language. It uses a combination of rewriting and
constraint solving to find final states for a given initial state. If the initial state
does not satisfy the precondition of the operation, the tool returns “No Solu-
tions”. The tool can be further queried to find out which constraint could not be
satisfied.

4.2 Z Models for Security Policies

We explain our formalization of security policies with the Z notation following
the example from Sect. 3.2. This approach from [QLI11] can be used to formalize
security policies following the RBAC data model as given in Sect. 3.1.

Z Schemas. Using Z, six types are introduced in Fig. 3 as basic type definitions
(PERMISSION, SESSION, USER) or enumerated types on the left. The value of
these types is based on the security model presented in Fig. 2. The schema Sets
on the right side declares corresponding finite sets (F) for each of these types.

Jaza Representation. The following Jaza expressions initialize some of these
sets according to the values of the running example from Sect. 3.2.

atm_action’ == {Read, Write, Delete, Create},
permission’ == {"PatientRecord", "UserCredentials", "EmergencyRights"},
resource’ == {MedicalRecords},
role’ == {Patient, Doctor, EmergencyOfficer},
user’ == {"Alice", "Bob", "Mark"},

The schema Perm Assignment reminds of the underlying translation from
graphical SecureUML models to Z notation. It is used to compute the table

http://www.cs.waikato.ac.nz/~marku/jaza/


Automated Reviewing of Healthcare Security Policies 183

perm Assignment in Fig. 4. In [QLI11] this schema as well as the translation
of SecureUML models in general are explained. One can also find there the
corresponding rules to automatically generate other RBAC structures such as
PA, UA, sessions, and role hierarchy. For this work, it is sufficient to understand
the type of the resulting permission assignment as shown in the following schema:
users with assigned roles are related to a set of permissions for specific resources.

Perm Assignment
. . .

perm Assignment : (USERID × USER × ROLE) ↔
(PERMISSION × ATOMIC ACTION × RESOURCE)

. . .

The table perm Assignment, pictured in Fig. 4 in Jaza syntax, results from the
translation process. It creates a link between a user’s ID, users and their assigned
roles to the permissions, the operations, and the resources. The set for user
IDs (USERID) is not available in RBAC, but we believe it will be useful when
implementing a real system. This generated table assigns the initial permission
values for the use with a Z-based formal model animator such as Jaza.

This sums up the formalization of the access control information for the
running example, which can be interpreted by a tool. In the following, we
present formal queries allowing us to analyze suchlike formal models for security
rules.

5 Formal Queries for Healthcare Security Policies

The RBAC model provides mainly three types of functions to operate on se-
curity policies: administrative, supporting system, and review. Administrative
functions involve creation and maintenance of basic sets of elements. These sets
are USERS, ROLES, OPS and OBS. Additionally, constructing relations among
the sets is also supported by administrative functions (UA and PA assignments).
This has already been covered in an earlier paper [QLI11].

Review Functions, on the other hand, help in querying the data structures
such as those of UA and PA assignments. The administrator may view the
contents of specified relations through review functions. By this means, we can
perform queries to request the users assigned to a role, permissions of a role,
and allowed roles in a session. In the RBAC standard, the review functions are
either mandatory, like querying the assigned users and assigned roles, or optional,
like querying permissions of a role. Therefore, not all RBAC implementations
provide all review functions. In the following, we present a set of formalized and
extended review functions, which provide feedback on the contents of the security
policies.



184 N. Qamar et al.

5.1 Authorized Roles for an Atomic Action

The first operation schema EvaluateRoleAuthorizedAtomicAction computes the
set of atomic actions for a given role. This query is helpful when one needs to
evaluate who can perform a particular operation in a given security policy.

EvaluateRoleAuthorizedAtomicAction
ΞSets ; ΞComputeAssignment
role? : ROLE
atomicActions! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

role? ∈ dom concrete Assignment
atomicActions! = {prm : ran concrete Assignment |

(role?, prm) ∈ concrete Assignment • (role? �→ prm)}

The declaration part of a Z schema is notated above the horizontal line,
whereas the predicate part below the horizontal line defines constraints on the de-
clared variables. The declaration part of the schema EvaluateRoleAuthorizedAtom-
icAction includes the state schema Sets (the symbol Ξ basically indicates that
its elements are not changed in this schema) and an input variable role? of type
ROLE. The output set being computed, atomicActions! (i.e., operations from a
modeled system), is a relation that is a cross product of a role with associated
permissions, atomic actions, and resources. The predicate part of the schema
checks that the input role (role?) is actually from the domain of the relation
concrete Assignment. The output (atomicActions!) is the set of all possible values
associated with a particular role (i.e., role?). Note that concrete Assignment is
actually defined in a further schema ComputeAssignment, which is not shown
here in full detail due to space reasons, but can be found in [QLI11].

ComputeAssignment
. . .
concrete Assignment : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

. . .

The set construction in schema EvaluateRoleAuthorizedAtomicAction

{prm : ran concrete Assignment |
(role?, prm) ∈ concrete Assignment • (role? �→ prm)}

first declares a local variable prm to be in the range of concrete Assignment. The
predicate part, (role?, prm) ∈ concrete Assignment, selects tuples of the shape
(role?, prm) occurring in concrete Assignment. Finally, the expression behind



Automated Reviewing of Healthcare Security Policies 185

perm_Assignment ==
{

(("ABC001", "Alice", Patient, ("PatientRecord", Read, MedicalRecords)),
(("ABC002", "Bob", Doctor, ("PatientRecord", Read, MedicalRecords)),
(("ABC003", "Bob", Doctor, ("UserCredentials", Write, MedicalRecords)),
(("ABC004", " Mark", EmergencyOfficer,

("EmergencyRights", Read, MedicalRecords)),
},

Fig. 4. Permission assignment in Jaza syntax

the • symbol collects the maplets for all of these permissions in the set. By this
the result relation is built. Below we show an example of executing this schema
against an input role EmergencyOfficer from the running example (cf. Fig. 4).
Jaza lists the operations that the emergency officer is permitted to perform.

JAZA> ;EvaluateRoleAuthorizedAtomicAction
Input role? = EmergencyOfficer
atomicActions!==
{(EmergencyOfficer, ("EmergencyRights", Read, MedicalRecords))}

5.2 Actions Available for a Role

The operation schema EvaluateActionsAgainstRoles works exactly opposite to the
operation schema EvaluateRoleAuthorizedAtomicAction, which, for a given atomic
action, returns the list of all associated roles (along with a resource and a per-
mission) to perform that action.

EvaluateActionsAgainstRoles
ΞSets ; ΞComputeAssignment
atm action? : ATOMIC ACTION
roleAction! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

roleAction! = {r : dom comp Assignment; p : permission; rsrc : resource |
(r �→ (p, atm action?, rsrc)) ∈ concrete Assignment •

(r �→ (p, atm action?, rsrc))}

The input (atm action?) is of the set type ATOMIC ACTION. The output role-
Action! has the same type as given in the previous schema. The set roleAction!
retrieves the allowed roles to perform an atomic action. Note that we also re-
trieve the associated permissions and resources with each obtained role since
this appears more comprehensible from a security engineer’s point of view. In
the following example of this schema query, we provide an atomic action named
Read, and the corresponding information is returned.



186 N. Qamar et al.

JAZA> ;EvaluateActionsAgainstRoles
Input atm\_action? = Read
atomicActions!=={(Patient, ("PatientRecord", Read, MedicalRecords)),
(Doctor, ("PatientRecord", Read, MedicalRecords)), (EmergencyOfficer,
("EmergencyRights", Read, MedicalRecords))}

5.3 Analyzing Access to a Resource

It is equally important to know the resources within the system that can be
accessed by some roles. EvaluateResourcesAccess is used to this end. For a given
resource resource?, it returns the pairs of atomic actions associated with that
particular resource.

EvaluateResourcesAccess
ΞSets ; ΞComputeAssignment
resource? : RESOURCE
resourcesAccess! : ROLE ↔

(PERMISSION × (ATOMIC ACTION × RESOURCE))

action resource set! : F(ATOMIC ACTION × RESOURCE)

resourcesAccess! = {r : dom comp Assignment; p : permission;
atm : atm action | (r �→ (p, atm, resource?))

∈ concrete Assignment • (r �→ (p, (atm, resource?)))}
action resource set! = {x : ran resourcesAccess! • second(x)}

This operation also takes an input resource? of the type RESOURCE and com-
putes the related roles and atomic actions of that resource; action resource set!
ensures that only the atomic actions corresponding to the resources are retrieved.
This schema is exemplified below: the input is resource MedicalRecords, and the
result produced by Jaza is printed1.

JAZA> ;EvaluateResourcesAccess
Input resource? = MedicalRecords
action\_resource\_set!=={(Read, MedicalRecords),(Write,
MedicalRecords), (Delete, MedicalRecords),(Create, MedicalRecords)}

5.4 Permissions for Atomic Action and Role

The operation schema FindPermissions is intended to query the permissions for
both a given atomic action and a role. This schema has two input parameters
i.e., atm action? and role? of the types ATOMIC ACTION and ROLE, respectively.
The predicate computes the set of permissions for the input role and the atomic
action. As a result, perms! will return the set of all associated permissions for
the input values. We need to give the atomic action along with the role as input,
and it will return the permissions linked to them.
1 Here and in the following we only show the relevant outputs.



Automated Reviewing of Healthcare Security Policies 187

FindPermissions
ΞSets ; ΞComputeAssignment
atm action? : ATOMIC ACTION
role? : ROLE
perms! : ROLE ↔

(PERMISSION × ATOMIC ACTION × RESOURCE)

perms! = {p : permission; rsrc : resource |
(role? �→ (p, atm action?, rsrc)) ∈ concrete Assignment •
(role? �→ (p, atm action?, rsrc))}

The following query is a result for the provided action Read and the role Doctor.
Jaza tells us that there is one read permission associated to a doctor, named
PatientRecord.

JAZA> ;FindPermissions
Input atm\_action? = Read
Input role? = Doctor
perms!== {(Doctor, ("PatientRecord", Read, MedicalRecords))}

5.5 Finding Duplicate Roles

The schema FindDuplicateRoles allows us to search for duplicate roles. This query
is useful to determine whether two roles have the same privileges in a secure
system. This schema returns two roles, which are different but are associated
with the same sets of atomic actions.

FindDuplicateRoles
ΞSets ; ΞComputeAssignment
role1!, role2! : ROLE
aSet1!, aSet2! : FATOMIC ACTION

role1! ∈ role ∧ role2! ∈ role
role1! �= role2!
aSet1! = {p : permission; a : ATOMIC ACTION ; rsrc : resource |

(role1! �→ (p, a, rsrc)) ∈ concrete Assignment • a}
aSet2! = {p : permission; a : ATOMIC ACTION ; rsrc : resource |

(role2! �→ (p, a, rsrc)) ∈ concrete Assignment • a}
aSet1! = aSet2!

The following query reports that Patient and EmergencyOfficer are duplicate
roles, more precisely they have the permissions to perform the same actions.

Jaza ; FindDuplicateRoles
role1!==Patient, role2!==EmergencyOfficer



188 N. Qamar et al.

Availability of Data. Utilization of a particular service is handled by avail-
ability properties, which are particularly relevant in emergency situations. The
availability properties offered by RBAC deal with granting permissions, which
will ensure that a resource is available to a user. RBAC aims at avoiding un-
desirable states in which a user who is entitled to an access permission does
not get it. To this end, we propose formal queries, which can be used to review
RBAC-based policies. For example, it is significant to determine the minimum
information about a patient that can be accessed by everyone. Thus, the avail-
ability of operations in our designed policy that could be used in such cases has
to be checked.

5.6 Atomic Action Accessed by All

The operation schema AccessAll returns the atomic operations accessible by all
roles of a system. The declaration part includes an output variable action!. The
given predicate returns the atomic actions accessible by all roles.

AccessAll
ΞSets ; ΞComputeAssignment
action! : ATOMIC ACTION

∀ r : role • (∃ p : permission; rsrc : resource •
(r �→ (p, action!, rsrc)) ∈ concrete Assignment)

Jaza ;AccessAll
action!==Read

5.7 Atomic Action Access by Nobody

The operation schema AccessNobody returns the atomic action, which is com-
pletely inaccessible by all roles.

AccessNobody
ΞSets ; ΞComputeAssignment
action! : ATOMIC ACTION

∀ r : role • (∀ p : permission; rsrc : resource •
(r �→ (p, action!, rsrc)) �∈ concrete Assignment)

It includes an output variable action!, which has the type of an atomic action.
The predicate part checks for the inaccessible atomic actions.

JAZA> ;AccessNobody
action!==Create



Automated Reviewing of Healthcare Security Policies 189

6 Separation of Duty Constraints

Separation of Duty (SoD) constraints are an optional construct of RBAC and are
used to address conflicts of interest among roles, which consist of two categories,
Static Separation of Duty (SSD) and Dynamic Separation of Duty (DSD).

The SSD takes care of conflicts of interest and ensures that a user does not take
some conflicting roles even in different sessions. These constraints are specified
over UA assignments as pairs of roles. UA is restricted during sessions. This
ensures that if a user is assigned to a role, the user can never take the prohibited
role. SSD can be applied not only to colluding users but also to groups, which are
collections of users. Permissions can be associated with both users and groups.

DSD is the second kind of constraint offered by RBAC (Fig. 1). These con-
straints are intended to limit the permissions that are available to a user, whilst
SSD constraints reduce the number of potential permissions that can be made
available to a user. This is realized by placing constraints on the users that can be
assigned to a set of roles. The main difference between SSD and DSD constraints
lies in the context in which they are used. SSD are imposed on user’s total per-
mission space, but DSD restricts the users to activate the roles within or across
a user’s sessions. For example, a user Bob may have been assigned with two roles
i.e., Doctor and Patient, but he may not exercise the permissions of both roles in
the same session. In the RBAC model, a session is a traditional way of commu-
nicating information between a user and a system during a given time interval.
Session management in RBAC deals with functions such as session creation for
users including role activation/deactivation, enforcing constraints (e.g., DSD) on
role activation. An obligatory part of DSD constraints is the use of sessions. In
the following, we formally specify SoD constraints using the Z notation.

RoleAssignment
Sets
conflicting Roles : ROLE ↔ ROLE
role Assignment : USER ↔ ROLE

dom conflicting Roles ⊆ role
ran conflicting Roles ⊆ role
dom role Assignment ⊆ user
ran role Assignment ⊆ role
∀ u : user • (∀ i , j : role

| ((u �→ i) ∈ role Assignment) ∧ ((u �→ j) ∈ role Assignment)
• ((i , j) �∈ conflicting Roles)))

The declaration in RoleAssignment contains relations describing conflicting roles
(conflicting Roles) and for assigning roles to users (role Assignment). They are
defined as part of the security policy of a system. The first four constraints en-
sure that the relations to which the schema is applied are actually defined on



190 N. Qamar et al.

the roles and users from Sets (cf. Sect. 4.2). The last predicate specifies that any
two roles assigned to a user are not from the conflicting roles set.

The subsequent schema SessionRoles formalizes DSD constraints. The schema
includes one partial function session User, because the users of a session have
to be considered when checking the role assignment. The relation session Role
assigns roles to sessions, and like in the previous schema, conflicting Roles DSD
describes the conflicting pairs of roles.

In the predicate part, the constraints for restricting domain and range (sim-
ilarly to RoleAssignment) have been omitted. The first listed constraint states
that whenever a user is assigned to a session with specific roles, the user should
have these as pre-assigned roles. The last constraint specifies that the roles taken
in one session should not be contained in the set of conflicting roles.

SessionRoles
Sets; RoleAssignment
session User : SESSION �→ USER
session Role : ROLE ↔ SESSION
conflicting Roles DSD : ROLE ↔ ROLE

...
∀ r : role • (∀ s : session

• (r , s) ∈ session Role ⇒ (session User(s), r) ∈ role Assignment)
∀ s : session • (∀ i , j : role | ((i , s) ∈ session Role) ∧ ((j , s) ∈ session Role)

• ((i , j) �∈ conflicting Roles DSD))

In the security policy of Fig. 2 let us assume that a doctor is permitted to
exercise two roles, i.e., a patient and a doctor. This can be regarded as a serious
threat to the medical records where a patient, actually a doctor, compromises
the information integrity, because a doctor may perform operations which a
patient is not supposed to perform. However, such scenarios are avoidable by
introducing an SSD constraint such that a doctor and a patient are specified
as conflicting roles. However, this restricts the doctor who might be a patient
at some point. In turn, as a solution, we can employ a DSD constraint, which
enables exercising both roles but not in one session. Similarly, the role hierarchy
(see Fig. 1) can be combined with SSD or DSD to avoid conflicting roles within
the hierarchy.

7 Conclusions and Perspectives

This paper presents a formal approach to reviewing healthcare security policies.
The proposed approach integrates the Z notation with security design models
in order to assess access control rules of an EHR system. The applied idea fol-
lows the security-by-design principle and hence exhibits a strategy to cope with
internal threats by investigating security properties such as integrity and confi-
dentiality. The Jaza tool is applied to validate formal specifications. Note that



Automated Reviewing of Healthcare Security Policies 191

in our approach, the formally translated model (the initial state space) does not
grow, and it avoids any further complex computations except using the queries
to validate the model.

Abundant research literature can be found on how to translate graphical
models to formal notations. Nonetheless, to reap out benefits from such for-
mal translations, it is necessary to apply tools and techniques that facilitates
easy validation and verification of formal models. Inspired by this, our approach
takes such gaps into account. Also, the approach does not require mathemati-
cally skilled validation engineers for the following reasons: 1) working with only
graphical models of security policies, and 2) automated translation of graphical
models besides the reviewing queries. The approach is generic in a sense that it
can be used to design and validate other secure information systems irrespective
of a particular domain. The paper has only addressed the internal threats (i.e.,
from the system users). However, UML profiles such as UMLsec [Jür05] can be
applied to model and verify systems against external threats.

Currently, the SoD constraints of RBAC are inherently restricted: For in-
stance, a hospital may require an emergency officer to have four roles out of
six, but SoD constraints can only be applied over a pair of roles. Our future
work includes extending this toolset by overcoming such deficiencies as well as
automating the query generation process to help building quality models in the
healthcare domain. The tool’s performance will also be evaluated using larger
models with an extended and complete set of queries.

Acknowledgments. This work has been supported by the projects SAFEHR
and GAVES funded by Macao Science and Technology Development Fund, and
partly supported by the ANR Selkis Project under grant ANR-08-SEGI-018.

References

[AH07] Ahn, G.-J., Hu, H.: Towards realizing a formal RBAC model in real sys-
tems. In: Lotz, V., Thuraisingham, B.M. (eds.) Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies, SACMAT
2007, Sophia Antipolis, France, June 20-22, pp. 215–224. ACM (2007)

[AJ10] Appari, A., Johnson, M.E.: Information security and privacy in health-
care: current state of research. Int. J. of Internet and Enterprise Manage-
ment 6(4), 279–314 (2010)

[AK06] Abdallah, A.E., Khayat, E.J.: Formal Z specifications of several flat role-
based access control models. In: 30th Annual IEEE/NASA Software En-
gineering Workshop (SEW), pp. 282–292. IEEE CS (2006)

[BCDE09] Basin, D.A., Clavel, M., Doser, J., Egea, M.: Automated analysis of
security-design models. Information & Software Technology 51(5), 815–
831 (2009)

[BL75] Bell, D., LaPadula, L.: Secure computer system: Unified exposition and
multics interpretation. Technical report, MITRE Corp, Bedford (1975)

[Bos95] Boswell, A.: Specification and validation of a security policy model. IEEE
Trans. Software Eng. 21(2), 63–68 (1995)



192 N. Qamar et al.

[Bow03] Bowen, J.: Formal Specification and Documentation using Z: A Case Study
Approach. Thomson Publishing (2003)

[DOD85] DOD 5200.28-STD. Trusted computer system evaluation criteria. Techni-
cal report, United States Department of Defense (1985)

[DW96] Davies, J., Woodcock, J.: Using Z: Specification, Refinement, and Proof.
Prentice Hall (1996) ISBN 0-13-948472-8

[FSG+01] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed NIST standard for role-based access control. ACM Trans. Inf.
Syst. Secur. 4(3), 224–274 (2001)

[Hal94] Hall, A.: Specifying and interpreting class hierarchies in Z. In: Bowen, J.P.,
Hall, J.A. (eds.) Z User Workshop, pp. 120–138. Springer (1994)

[HY06] Hasan, R., Yurcik, W.: A statistical analysis of disclosed storage security
breaches. In: Proceedings of the 2006 ACM Workshop on Storage Security
and Survivability, StorageSS 2006, Alexandria, VA, USA, October 30, pp.
1–8. ACM (2006)

[Jou09] Rubenstein, S.: Are your medical records at risk? Wall Street Journal
(2009)

[Jür05] Jürjens, J.: Secure systems development with UML. Springer (2005)
[LBD02] Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based mod-

eling language for model-driven security. In: Jézéquel, J.-M., Hussmann,
H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 426–441. Springer,
Heidelberg (2002)

[LIM+11] Ledru, Y., Idani, A., Milhau, J., Qamar, N., Laleau, R., Richier, J.-L.,
Labiadh, M.-A.: Taking into account functional models in the validation
of IS security policies. In: Salinesi, C., Pastor, O. (eds.) CAiSE Workshops
2011. LNBIP, vol. 83, pp. 592–606. Springer, Heidelberg (2011)

[LQI+11] Ledru, Y., Qamar, N., Idani, A., Richier, J.-L., Labiadh, M.-A.: Validation
of security policies by the animation of Z specifications. In: Breu, R.,
Crampton, J., Lobo, J. (eds.) Proceedings of the 16th ACM Symposium
on Access Control Models and Technologies, SACMAT 2011, Innsbruck,
Austria, June 15-17, pp. 155–164. ACM (2011)

[MIL+11] Milhau, J., Idani, A., Laleau, R., Labiadh, M.-A., Ledru, Y., Frappier, M.:
Combining UML, ASTD and B for the formal specification of an access
control filter. Innov. Syst. Softw. Eng. 7, 303–313 (2011)

[MSGC07] Morimoto, S., Shigematsu, S., Goto, Y., Cheng, J.: Formal verification of
security specifications with common criteria. In: Proceedings of the 2007
ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-
15, pp. 1506–1512. ACM (2007)

[QLI11] Qamar, N., Ledru, Y., Idani, A.: Validation of security-design models using
Z. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 259–274.
Springer, Heidelberg (2011)

[SM02] Schaad, A., Moffett, J.D.: A lightweight approach to specification and
analysis of role-based access control extensions. In: Proceedings of the
Seventh ACM Symposium on Access Control Models and Technologies,
pp. 13–22. ACM (2002)

[Spi92] Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall
International Series in Computer Science (1992)

[TMB06] Teije, A., Marcos, M., Balser, M., et al.: Improving medical protocols by
formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)



Automated Reviewing of Healthcare Security Policies 193

[TRA+09] Toahchoodee, M., Ray, I., Anastasakis, K., Georg, G., Bordbar, B.: En-
suring spatio-temporal access control for real-world applications. In: Pro-
ceedings of the 14th ACM Symposium on Access Control Models and
Technologies, pp. 13–22. ACM, New York (2009)

[YHHZ06] Yuan, C., He, Y., He, J., Zhou, Z.: A verifiable formal specification for
RBAC model with constraints of separation of duty. In: Lipmaa, H., Yung,
M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 196–210. Springer,
Heidelberg (2006)

[ZWCJ02] Zao, J., Wee, H., Chu, J., Jackson, D.: RBAC schema verification using
lightweight formal model and constraint analysis. Technical report, MIT,
Cambridge (2002)



A Formal Diagrammatic Approach to Compensable
Workflow Modelling

Adrian Rutle1,2, Hao Wang1, and Wendy MacCaull1

1 Centre for Logic and Information, St. Francis Xavier University, Canada
{hwang,wmaccaul}@stfx.ca

2 Aalesund University College, Faculty of Engineering and Natural Sciences, Norway
adru@hials.no

Abstract. Workflows consist of interconnected tasks which are executed to ach-
ieve predefined business goals. When some tasks fail during execution, compens-
ation can be used as an error-handling procedure to remove side-effects of already
finished tasks. This paper extends our formal diagrammatic approach to work-
flow modelling (which uses principles from model-driven engineering (MDE)) to
account for the phenomenon of compensation. Both static semantics, represen-
ted by instances of workflow models, and dynamic semantics, represented by a
transition system, are described. In MDE, models are first class entities of the de-
velopment process from which executable application code is generated. The use
of MDE technologies is especially important for software in health services de-
livery where processes are safety critical, highly localised and frequently change.

1 Introduction

Workflow software systems improve productivity and quality of service; however, de-
fects in a workflow model may have severe consequences. While business modelling fa-
cilitates involvement of domain experts and business managers in the modelling phase
of workflow software development, a formal foundation is needed to guarantee that
workflow models are correct and represent the intended system. Currently there is
still a gap between practice (programming) and theory (formal methods and analysis
techniques) [16]. For example, the widely used Business Process Model and Notation
(BPMN) [19] is a diagrammatic language for business process modelling, which is
designed as a standard notation readily understandable by various participants with dif-
ferent expertise due to its graphical nature [20]. Because Business Process Execution
Language for Web Services (BPEL4WS) [17] is currently the de facto standard for busi-
ness process execution, there are several attempts to translate the models in BPMN to
BPEL4WS. However, it has been found that the two languages are fundamentally dif-
ferent, thus translation can be applied only to a subset of BPMN [21]. A more serious
problem is that changes in BPEL4WS implementation are difficult to synchronise with
the BPMN model. In healthcare software systems, changes in software to account for
customisation to local settings and updates of protocols are frequent and inevitable.

Distributed and heterogeneous business processes make business transactions long
lasting, the so-called Long-Running Transactions (LRT) [7,8]. Traditional all-or-nothing
atomicity is no longer appropriate for these transactions because it is impractical to lock

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 194–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Formal Diagrammatic Approach to Compensable Workflow Modelling 195

resources for a long period of time and some activities may be interactive, hence cannot
be easily check-pointed [7]. Therefore, a relaxed notion of atomicity called compensa-
tion is used. In compensable workflow modelling, each task is combined with a com-
pensation task. When a failure occurs during the execution of the workflow, the com-
pensation tasks related to the already finished tasks are activated to remove side-effects
and restore the system to a desired state. Note that compensation is not equivalent to
undoing, e.g., the damages caused to a patient by a failed procedure cannot be undone;
in that situation other arrangements for mitigation are required.

There are efforts towards developing rigorous formal methods, especially process
calculi, for specification and analysis of concurrent, distributed and mobile systems.
Although various process calculi have been proposed, addressing some aspects of work-
flow executions, most domain experts, software engineers and workflow model design-
ers are unable to use them due to their complexity.

In previous work [25,27], we proposed a model-driven engineering (MDE) approach
to business process modelling, combining the best of the two worlds: a visually appeal-
ing language making modelling easier and a formal foundation facilitating automatic
software generation and verification. In this paper, we extend our approach by adding
support for compensation. The formal approach we use is based on the Diagram Predic-
ate Framework (DPF) [10,11,24,26] which provides a formalisation of (meta)modelling
and model transformations based on category theory [4] and graph transformations [12].
In [25,27], we extended the formal foundation of DPF to define semantics for workflow
models, defining the dynamic semantics of models by a transition system where the
states are instances and the transition relations are described by applications of trans-
formation rules. Here we augment the workflow models by combining each task with
a compensation task and define the static and dynamic semantics accordingly. We also
discuss a method to ensure the soundness [2] of workflow models.

Unlike traditional approaches where models are used merely for documentation
purposes, MDE employs models as the primary artefacts of the software development
process. In this way, the relation between the final result of the development process –
the executable software system – and the workflow models remains intact during soft-
ware development, maintenance, deployment, etc. In our approach, each state of the
workflow software system corresponds to an instance of the workflow model, and each
execution path allowed by the system corresponds to a sequence of instance transitions.
This correspondence, one of the main advantages of our MDE-based approach, facilit-
ates the use of verification, analysis and simulation techniques on models, ensuring that
the analysis results are valid for the software system.

MDE technologies are especially valuable when applied to workflow for safety crit-
ical systems such as those involved in health care. Health care protocols are often com-
plex, and are usually based on clinical guidelines written in natural language. These
guidelines must be general enough to fit the variations that arise from local settings –
whether they be a hospital, a doctor’s office, a clinic, etc. Updates of guidelines are
frequent to reflect advances in knowledge and treatments. The complexity of some
guidelines results in inconsistencies and/or ambiguities. Yet conformance to guidelines
is essential to the health of the patient. Following the MDE approach, we abstract
the protocols through modelling, which helps the domain experts (clinicians) clarify



196 A. Rutle, H. Wang, and W. MacCaull

meaning and provides them with an opportunity to deal with the inconsistencies and
ambiguities that may arise. Behavioural anomalies (errors) in these models, not obvi-
ous by inspection of the models, can be found through the use of formal verification and
other analysis techniques – before the protocols are used on patients. MDE facilitates
the generation of (correct) code from the models. Customisations and adaptations of the
protocol occur at the model level, not at the code level, so compliance with the protocol
can be ensured in the many customisations and updates that are inevitable for healthcare
protocols. An implemented workflow software system, which reflects the requirements
of the model, and which can be used to guide and direct the entire care team on the
process they are to follow, is the final desired result. Overall, the MDE approach has the
potential to provide executable software which can ensure conformance with healthcare
protocols, which, as an end result, enhances the health and safety of the patient.

The remainder of the paper is structured as follows. Section 2 outlines the metamod-
elling approach and reviews our formal, diagrammatic approach to workflow modelling.
Section 3 introduces the main contributions of the paper: our approach to compensable
workflow modelling and some analysis techniques to check soundness of compensable
workflow models. In Section 4, some related work is discussed. Finally, Section 5 con-
cludes and presents some ideas for future work.

2 Metamodelling and Modelling Languages

Using the MDE methodology, a workflow modelling language is described by a meta-
model, from which a corresponding model editor is constructed. The metamodel defines
the abstract syntax of the modelling language; i.e., it defines the types and relations
between types, whereas the model editor is used to create and modify workflow models.
Each workflow model must conform to the language’s metamodel; i.e., it must respect
the typing and other constraints of the language. For example, Fig. 1 shows a metamodel
with the concepts Task and Flow. The model editor constructed from this metamodel
will allow users to define workflow models consisting of specific tasks and flows, e.g.,
Check eligibility and f, respectively.

The model editor must deal with two kinds of constraints. First, metamodel con-
straints; that is, if there are constraints added to the metamodel, the editor should
not allow definition of models which violate these constraints. For example, if in the
metamodel we require that flows are (transitively) irreflexive (see Fig. 1) the model
editor should not allow users to define loops in workflow models. Second, model con-
straints; that is, if users want to define models with a satisfactory degree of precision,
they sometimes need to add constraints to the models defined by the model editor. Ex-
amples of this kind of constraint are routing constraints such as XOR, AND, OR, etc.

The first kind of constraint is usually enforced by developing internal mechanisms
when the model editor is constructed from the metamodel; this prevents the definition
of models which do not conform to the language’s metamodel, in the sense which we
will make precise below. The second kind of constraint may be formulated by adding
predicates on the structure of the models; e.g., [exactly-one,c] for an XOR con-
straint which has a condition c (see Fig. 1). This constraint describes some property
of the workflow model; e.g. in the figure, it defines that exactly one of the two flows f
or g can be followed, based on the eligibility condition. Obviously, this property must



A Formal Diagrammatic Approach to Compensable Workflow Modelling 197

PC team
planning

Check
eligibility

Reject
patient

[isNotEligible]

g

f

[xor]

[isEligible]

Model

TaskFlow

[irr]

Metamodel

Si

Metamodel editor

Task

flow

[exactly-
one, c]

Types

Constraints

Model editor

[irreflexive]

Constraints

Node

Arrow

Types

Σi+1 Σi

Fig. 1. A metamodel and a model editor, and correspondence with a modelling formalism
Fi = (Σi,Si, Σi+1)

be encoded in the software system which will be generated from the model. And most
importantly with regard to MDE, to enable reasoning about models – i.e., before code-
generation – the semantics of these properties must be already well-defined in the mod-
elling language. For models, the semantics is all about which structures are qualified
as their instances; that is, the same way as a metamodel defines certain restrictions or
language requirements which each model conforming to the metamodel must satisfy,
a model defines certain domain requirements which each instance conforming to the
model must satisfy.

Thus to understand how a software system generated from a model will behave, it
is necessary to inspect the instances of the model. For models describing system struc-
ture, such as data models, this means that the modelling environment should facilitate
instantiation of models, i.e., creation of instances of models. For models describing
system behaviour, such as workflow models, this means that the modelling environ-
ment should facilitate, in addition to instantiation of models, transition of instances,
i.e., creation of execution paths. In fact, constructing an instance editor from a model is
not different from constructing a model editor from a metamodel since a metamodel is
a model with the role of being a metamodel wrt. models defined by the corresponding
model editor. Like many metamodelling frameworks, DPF supports seamless definition
of (meta)model editors from (meta)models. We have extended DPF with the necessary
techniques to support time and the creation of execution paths in [25,27]; this paper
adds support for compensation in workflow modelling.

Now we briefly review the basic concepts of DPF which we use for the formalisa-
tion of workflow modelling; for details and formal definitions, the interested reader can
consult [24,26]. In DPF, a model is represented by a specification S. A specification
(or a model) S = (S, CS:Σ) consists of an underlying graph S together with a set of
constraints CS which are specified by means of a predicate signature Σ. A predicate
signature consists of a collection of predicates, each having a name and an arity (or shape
graph). A constraint consists of a predicate from the signature together with the subgraph
of the model’s underlying graph which is affected by the constraint; e.g., a constraint in
the model in Fig. 1 consists of[exactly-one,c] and a subgraph of the model which
in this case is the whole underlying graph of the model. A specification morphism is a
constraint preserving graph homomorphism [12] between the underlying graphs of the
specifications. We will use the terms “specification” and “model” interchangeably.



198 A. Rutle, H. Wang, and W. MacCaull

We define the semantics of a predicate as the set of all graphs which satisfy the
predicate, called its set of valid instances. For example, for the [irreflexive] pre-
dicate all graphs which do not include a loop are in the set of its valid instances. The
semantics of a specification S = (S, CS : Σ) is given by the set of its instances. The
set of instances of S consists of all graphs which are (i) typed by the underlying graph
S of S and (ii) satisfy the constraints CS of S.

To facilitate the discussion of metamodelling hierarchies, we define conformance
relation between models at adjacent levels of a hierarchy. We distinguish between two
kinds of conformance: typed by and conforms to. A specification S = (S, CS : Σ) is
typed by a graph T if there exists a graph homomorphism ι : S → T, called the typing
morphism, while S is said to conform to a specification T = (T, CT:Σ) if S is typed
by T and S is an instance of T; e.g., if we add a flow f’ from the task Check eligibility to
itself in Fig. 1; then the model would still be typed by the metamodel, however, it would
not conform to it because of the violation of the irreflexivity constraint. We define typed
specification morphisms as specification morphisms which preserve typing.

In DPF, a modelling language is described by a modelling formalism Fi = (Σi,Si,
Σi+1). Fig. 1 shows the correspondence between the elements of modelling formalisms
and modelling languages. The corresponding metamodel of the modelling language is
represented by the specification Si which has its constraints (e.g. [irreflexive])
formulated by predicates from the signature Σi+1. These constraints of Si should be
satisfied by all specifications, Si−1 = (Si−1, CSi−1 : Σi), which are specified by Fi.
The constructs which are used to define constraints at the next level (e.g. [exactly-
one,c]) are located in the signature Σi. As we see from the figure, there is no differ-
ence between metamodel editors and model editors.

2.1 Workflow Modelling

We now develop a formal, conceptual framework for modelling compensable health
workflows. Workflow modelling languages provide constructs to define tasks and their
routing flows. Fig. 2 shows a modelling formalism F2 = (Σ2,S2, Σ3) used for the
specification of workflow models, with a metamodel defining the types Task and Flow,
and a signature containing predicates for splitting and merging. The figure shows only
parts of Σ2, Σ1 and S1; the details are shown in Tables 1 and 2 and Fig. 3, respectively.

Table 1 shows signature Σ2 with some predicates which are useful for workflow
modelling. The predicates have spans or sinks of two arrows as arity, and are used to
define relations between different flows. We could define these predicates with arities
being spans or sinks of any finite number of arrows, however two arrows suffice to ex-
plain the modelling formalism. The predicate [exactly-one,c] is used to indicate
that exactly one of the two flows must be followed; the predicate [all-premises]
is used to indicate that both flows f and g must be followed to start running the task Y.
The predicate [exactlyone,c] has a parameter condition c, which is a proposition
that may evaluate to true or false, or it may not be evaluated yet. As seen from the table,
for the predicate [exactly-one,c], one of the flows will have c as a condition, the
other one will have the negation of c; thus forcing exactly one flow to be followed. To
save space, we omit from Table 1 the other usual predicates used in workflow model-
ling, such as [at-least-one,c1, c2] and [exactly-one-premise].



A Formal Diagrammatic Approach to Compensable Workflow Modelling 199

TaskFlow
[irr]

r ∈ Visualisation

X

f[irr]

p ∈ Visualisation

[exactly-one,c]

2

3

S
2

q ∈ Visualisation

[true] X
f

<T> Y

1 S
1

[irre exive]

Σ

Σ

Σ 3
Π

Σ

2
Π

Σ

1
Π

Σ

PC team
planning

Check
eligibility

Reject
patient

[isNotEligible]
g

f
[xor]

[isEligible]

X f

[c]

g [!c]

Y

Z

[xor]

F2 = (Σ2,S2, Σ3)

F1 = (Σ1,S1, Σ2)

Fig. 2. Two modelling formalisms F2 = (Σ2,S2, Σ3) and F1 = (Σ1,S1, Σ2) for creation of
workflow models and instances of workflow models, respectively

The semantics of the predicates in Table 1 is formulated by enumerating the set
of their valid instances. We use x:X to denote the typing morphism ι : x → X, and

we write :X if x is unique. We have used x:X
<D|E|R|F>

to denote the case where we

have one of the following: x:X
<D>

, x:X
<E>

, x:X
<R>

or x:X
<F>

. Later it will be clear
that <D>,<E>,<R>,<F>,<�>,<⊥> and <?> are visualisations for the predicates
[disabled], [enabled], [running], [finished], [true], [false] and
[not-evaluated], respectively, of the signature Σ1 in Table 2. These predicates
are used to annotate task and flow instances with their individual execution states.

As we see from Table 1, the semantics of – i.e., the set of valid instances of – the
predicates of the signature Σ2 is explained in terms of graphs annotated by predicates
from the signature Σ1. In other words, the set of valid instances does not consist of
graphs, but consists of specifications which have their constraints formulated by means
of predicates from the signature Σ1. This semantic dependence is necessary since, in
order to define meaningful semantics for predicates like [exactly-one,c], we need
to consider the execution states (such as disabled, enabled, etc.) of the task instances
x:X, y:Y and z:Z. These execution states belong to the instances of workflow models,
and they are indicated by predicates from the signature Σ1, such as [disabled],
[enabled], etc. The details of the static and dynamic semantics of our workflow
models are given in Section 2.2; first we show an example from the health care domain.

Fig. 3 shows a simplified version of a Palliative Care (PC) team building workflow
model, which details S1 that is specified by F2 and used as the metamodel of F1 in
Fig. 2. The specification S1 captures the following requirements:

R1 Patient’s eligibility has to be checked first before any other tasks are performed;
R2 If patient is eligible for PC, build PC team;
R3 If patient is not eligible for PC, reject patient;



200 A. Rutle, H. Wang, and W. MacCaull

Table 1. A sample signature Σ2 = (ΠΣ2 , αΣ2 ) used for workflow modelling

p Visualisation Semantics (set of valid instances)

[exactly-
one,c]

X
f

[c]
��

g

��
��

[!c]

���
��

�

Y

Z

[xor]

<D|E|R|F> x:X
:f

<?>
��

:g
���

���

<?>

����
���

y:Y
<D>

z:Z
<D>

<F> x:X
:f

<�>
��

:g
��

��
�

<⊥>

���
��

�

y:Y
<E|R|F>

z:Z
<D>

[all-
together]

X
f ��

g

��
��

���
��

�

Y

Z

[and]

<D|E|R|F> x:X
:f ��

:g
���

���

����
���

y:Y
<D>

z:Z
<D>

<F> x:X
:f ��

:g
��

��
�

����
��

y:Y
<E|R|F>

z:Z
<E|R|F>

[all-
premises]

X f �� Y

Z

g����

������
[and’]

<D|E|R|F> x:X :f �� y:Y
<D>

<D|E|R|F> z:Z

:g
�����

�������

<F> x:X :f �� y:Y
<E|R|F>

<F> z:Z

:g
�����

�������

[at-least-
one-
premise]

X
f �� Y

Z

g����

������
[or’]

<D|E|R|F> x:X
:f �� y:Y

<D>

<D|E|R|F> z:Z

:g
�����

�������

<F> x:X
:f �� y:Y

<E|R|F>

<D|E|R|F> z:Z

:g
�����

		�����

R4 A patient is either eligible or not eligible for PC, but not both;
R5 After PC team planning, assign both general practitioner (GP) and PC nurse;
R6 If both GP and PC nurse are assigned, submit the team information.

In S1, R1 is specified by the task Check Eligibility which is the only task with no in-
coming flows. R2, R3 and R4 are specified by the tasks PC team planning and Reject
patient, the two flows f and g, and the constraint [exactly-one,isEligible]. R5
is specified by the tasks Assign GP and Assign PC nurse, and the flows i and j with
the constraint [all-together]. R6 is specified by the task Submit team info and
the flows i’ and j’, and the constraint [all-premises].

2.2 Semantics of Workflow Models

Recall that the static semantics of a workflow model S1 is given by the set of its in-
stances. These instances represent discrete, static states of the workflow software system
developed from the workflow model. We defined the set of instances of a model S to
consist of graphs that are typed by the underlying graph of S and that satisfy the con-
straints of S. In this section, we define the set of instances to be a set of specifications
S0 = (S0, CS0 : Σ1) rather than graphs. This is because Σ2 is semantically depend-
ent on Σ1; which means that the set of valid instances of predicates of Σ2 consists of



A Formal Diagrammatic Approach to Compensable Workflow Modelling 201

1
S

PC team
planning

Check
eligibility

Reject
patient

Assign
GP

Assign
PC nurse

[isNotEligible]

g

f

i

j

[and]

[xor]

[isEligible]

Submit
team info

i'

j'

[and']

<F> <E>

<F>

<R>

<D>

<D>

0
S

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:Submit
team info

<F>

<E>

<?>

<E><?>

0
S

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:Submit
team info

<D>

<D>

<D>

:g

:f

:i

:j

:i'

:j'
<T>

< >
:g

:f

:i

:j

:i'

:j'

Fig. 3. The specification S1 and two sample specifications S0 and S�
0, where only S0 is an

instance of S1; the instance editor would prevent creation of S�
0

specifications rather than graphs. We define a modelling formalism F1 = (Σ1,S1, Σ2)
which enables us to create instances S0 of a workflow model S1 (see Figs. 2 and 3).

At any state of the workflow software system, task instances, e.g., :Check eligib-
ility in S0 in Fig. 3, are either disabled, enabled, running or finished, according to
the constraints specified in the workflow model S1. We use the signature Σ1 shown
in Table 2 to annotate task instances in S0 accordingly. Moreover, the condition of the
predicate [exactly-one,c]may be waiting for evaluation, or be evaluated to either
true or false; the signature Σ1 also includes predicates to annotate flow instances in S0
accordingly. The signature Σ1 has no semantic counterpart since for this modelling en-
vironment instances of S0 do not have any practical meaning. For this reason, we write
“annotations” (instead of “constraints”) added to a specification S0. Note that states of
an individual task instance, e.g., disabled, enabled, etc., should be distinguished from
the overall state of a workflow model, which corresponds to a workflow instance.

Fig. 3 shows a specification S0 which is specified by F1 and is an instance of S1.
In S0 the task instance :Assign GP is running (annotated with <R>), the task instance
:Assign PC nurse is enabled (annotated with <E>), and the rest of the task instances
are either finished or disabled (annotated with <F> and <D>, respectively). The figure
also shows a specification S�

0 which is not an instance of S1. Although S�
0 is typed

Table 2. A signature Σ1 used for annotation of workflow instances

q ∈ ΠΣ1 Visualisation q ∈ ΠΣ1 Visualisation

[enabled] X
<E>

[true] X
f

<�>
�� Y

[disabled] X
<D>

[false] X f

<⊥>
�� Y

[running] X
<R>

[not-evaluated] X
f

<?>
�� Y

[finished] X
<F>



202 A. Rutle, H. Wang, and W. MacCaull

by S1, the constraint [exactly-one,isEligible] is violated since both of the task
instances :PC team planning and :Reject patient are annotated with <E>. In real life
scenario this would mean both doing PC team planning and rejecting the patient.

In a workflow software system, when time passes the execution states of the tasks
are changed according to certain rules. For example, a task which is in the disabled
state may either remain disabled or become enabled; a task which is in the enabled state
may either remain enabled or change to running, etc. Correspondingly, for the workflow
model S1, a task instance (in an instance of S1) annotated with <D> may either remain
annotated with <D> or become annotated with <E>; a task instance which is annotated
with <E>may either remain annotated with <E> or become annotated with <R>, etc. Of
course, these annotation changes must respect the constraints in S1 in order to continue
being an instance of S1. Further, a transition from one state to another must include at
least one annotation change of one task instance, and cannot include two consecutive
annotation changes of the same task instance.

For a workflow model S1, a transition S0
<t>

 S′

0 is given by an application of a

transformation rule t, where both specifications S0,S′
0 are instances of S1. A trans-

formation rule t = L K�
�l�� � � r �� R consists of three specifications L, K and R, and

two inclusion specification morphisms l, r. L and R are the left-hand side (LHS) and
right-hand side (RHS) of the transformation rule, respectively, while K is their inter-
face. L \ K describes the part of a specification which is to be deleted, R \ K describes
the part to be added, and K describes the overlap between L and R. To save space we
omit the technical details of transformation rules, full details may be found in [12,26].

By defining the notions of states and transitions between states we obtain a trans-
ition system which we use to provide the dynamic semantics for workflow models.
In general, given a set of transformation rules TR := {t1, t2, ..., tn}, different se-
quences of rule applications to a start specification may result in different target spe-
cifications. A transition system consists of all possible ways of applying the rules
from TR to a start specification S; i.e., it represents all specification transformations

S
∗ 

 S′ , S

∗ 

 S′′ , . . . . Below we detail the notion of start specification, but first
we show in Table 3 the transformation rules comprising our transition system.

We will explain briefly the general pattern of the rules in Table 3. Rule t1 is used
to change the annotation of a task instance y to <E> when the preceding task in-
stance x is finished. Rules t2 and t3 are for changing annotations of task instances
from <E> to <R> and from <R> to <F>, respectively. Rules t4 and t5 are used to de-
scribe the transitions of spans of flow instances, and t6 and t7 are used to describe the
transitions of sinks of flow instances. The LHSs of t4 and t5 are equal, meaning that
at any situation when a match of these rules is found, the system may proceed non-
deterministically to either of the two states indicated by the RHSs of the rules. That is,
either both of the task instances y and z become annotated with <E> or one of them
becomes annotated with <E>. These choices define the semantics for splitting with
[exactly-one,c], [all-together] and [at-least-one]. Recall that ap-
plying the rules must always produce valid instances of the workflow model. If the
structure in the workflow model by which x, y, z, f and g are typed is constrained with
[all-together], only t4 will produce a valid instance, and thus only t4 will be



A Formal Diagrammatic Approach to Compensable Workflow Modelling 203

applicable. Analogously, in case of [exactly-one,c] only t5 is applicable, while
in case of [at-least-one] both t4 and t5 are applicable. In t7, one may proceed
and enable y although z is not yet finished. This sort of behaviour is necessary for
flows which are constrained by [at-least-one-premise]. To save space we
have omitted the duals of the rules t5/t7 where z is enabled/finished, respectively.

Transition systems in general may be or may not be terminating [12,24]. That is,
starting with S, it may always be possible to apply more rules from TR. To achieve
termination of our transition system, we control the application of transformation rules
through (i) priorities, (ii) the use of negative application conditions (NACs) [12] and
(iii) requiring that each rule application must result in a specification which conforms
to a certain meta-specification. We require that in Table 3 the LHSs of all rules from t4
to t7 are NACs for t1. Informally, this forbids changing the annotation on a single task
instance if it is part of a bigger structure. This priority definition is necessary since in a
bigger structure there may be dependencies between flow and task instances.

Table 3. Some transformation rules t = L ←↩ K ↪→ R of our transition system

t L K R

t1 <F> x
a �� y

<D> <F> x
a �� y <F> x

a �� y
<E>

t2 x
<E>

x x <R>

t3 x
<R>

x x <F>

t4 <F> x
a ��

b
			

		

��	
		

	

y
<D>

z
<D>

<F> x
a ��

b



















y

z

<F> x
a ��

b
			

		

��	
		

	

y
<E>

z
<E>

t5 <F> x
a ��

b
			

		

��	
		

	

y
<D>

z
<D>

<F> x
a ��

b
			

		

��	
		

	

y

z
<D>

<F> x
a ��

b
			

		

��	
		

	

y
<E>

z
<D>

t6 <F> x
a �� y

<D>

<F> z
b
�����

������

<F> x
a �� y

<F> z
b
����

������

<F> x
a �� y

<E>

<F> z
b
�����

������

t7 <F> x
a �� y

<D>

<D|E|R> z
b

�����

������

<F> x
a �� y

<D|E|R> z
b







��






<F> x
a �� y

<E>

<D|E|R> z
b

�����

������



204 A. Rutle, H. Wang, and W. MacCaull

Cancel
plan

1
S

PC team
planning

Check
eligibility

Reject
patient

Assign
GP

Assign
PC nurse

[isNotEligible]

g

f

i

j

[and]

[xor]

[isEligible]

Submit
team info

i'

j'

[and']

Do
nothing

Cancel PC
nurse

assignment

Cancel GP
assignment

Do
nothing

Do
nothing

TaskFlow

[irr]

CTask

Comp

2
S

<F> <F>

<F>

<R>

<T>

<D>< >

0
S

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:g

:f

:i

:j

:Submit
team info

:i'

:j'

Cancel
plan

Do
nothing

Cancel PC
nurse

assignment

Cancel GP
assignment

Do
nothing

Do
nothing

<D>

<D>

<D>

<D>

<D>

<D>

<D> <F> <C>

<C>

<G>

<T>

<D>< >

0
S'

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:g

:f

:i

:j

:Submit
team info

:i'

:j'

Cancel
plan

Do
nothing

Cancel PC
nurse

assignment

Cancel GP
assignment

Do
nothing

Do
nothing

<D>

<D>

<D>

<D>

<E>

<D>

<E>

[inj]

Fig. 4. Metamodelling hierarchy with compensation

3 Compensation and Analysis

In our approach to compensation we combine each task t with a compensation task ct,
and when a failure occurs after t has finished, the compensation task ct will be executed
to remove possible side-effects caused by executing t. We assume that t is atomic in
the sense that if it fails during execution, it does not leave any side-effects. Thus only
when t is finished it leaves side-effects. To facilitate this, we extend the metamodel
S2 by adding the new types CTask and Comp (abbreviations for CompensationTask
and Compensation), where Comp connects Task to CTask (see S2 in Fig. 4). This
enforces that in all workflow models S1 specified by F2, whenever a task T:Task is

specified, a compensation task cT:CTask and a compensation arrow T:Task
co:comp−−−−−→

cT:CTask must also be specified. Moreover, we add a constraint [injection] on
Comp (visualised as [inj]), which enforces that two different tasks are not allowed to be
connected to the same compensation task. The specification S1 in Fig. 4 is an example
compensable workflow model which conforms to the extended metamodel S2.

Although the formal foundation of the proposed compensable workflow modelling
language forces the definition of an additional node for each “normal” task, language
designers may choose different visualisations for the combination of tasks and their
corresponding compensation tasks, see Fig. 5 for an example. Here we only focus on
the formal foundations independent of visualisation effects. In Fig. 5 we ignore neutral
compensation tasks which are called Do Nothing. Remark that this is just a visualisa-
tion effect and the underlying semantic model will be S1 as shown in Fig. 4.

In order to define the static and dynamic semantics for workflow models with
compensation, we will also extend the signature Σ1 with two new predicates, and the



A Formal Diagrammatic Approach to Compensable Workflow Modelling 205

Cancel
plan

PC team
planning

Check
eligibility

Reject
patient

Assign
GP

Assign
PC nurse

[isNotEligible]

g

f

i

j

[and]

[xor]

[isEligible]

Submit
team info

i'

j'

[and']

Cancel PC
nurse

assignment

Cancel GP
assignment

Fig. 5. Possible visualisation of compensation tasks

transition system with five new rules shown in Table 4. The predicate [error] (visu-
alised <G>) is used to annotate a task instance indicating that it has failed. The predicate
[compensate] (visualised <C>) is used to annotate a task instance indicating one of
the following situations (see Fig. 6): it is under compensation (if the corresponding com-
pensation task is either annotated with <E> or <R>), or it is compensated successfully
(if the corresponding compensation task is annotated with <F>), or its compensation
also has failed (if the corresponding compensation task is annotated with <G>).

Some restrictions apply when using the two new predicates. First, the predicate
[compensate] is only allowed to annotate task instances, since, compensation task
instances do not have compensation; i.e., they either finish successfully or fail. Second,
only when a task instance is annotated with <C>, is its corresponding compensation task
instance allowed to be annotated with <E>, <R>, <F> or <G>, since, as long as a task
instance is not under compensation, its corresponding compensation task instance must
be disabled. Fig. 6 illustrates these restrictions by showing the allowable combinations.

Fig. 4 shows a compensable workflow model corresponding to S1 in Fig. 3 which
conforms to the extended metamodel. The figure also shows two instances S0 and S′

0
of S1. In S0 the task instance :Assign GP is running, but if it fails, as indicated in S′

0,
the task instances :PC team planning and :Assign PC nurse will be notified to start
compensation. Note that the corresponding compensation task instance :Cancel GP
assignment will not be enabled in this case since the task instance :Assign GP did
not finish and hence did not leave any side-effects. Moreover, not every task in S1 has

x::Task
<D|E|R|F >

c::Comp

y::CTask

x::Task

c::Comp

y::CTask
<E|R>

x::Task

c::Comp

y::CTask
<F>

x::Task

c::Comp

y::CTask

(a) (b) (c) (d)

G| <C><C> <C>

<G><D>

Fig. 6. Allowed combinations of annotations: (a) y is disabled, (b) x is under compensation, (c) x
is successfully compensated (d) the compensation y of x has failed



206 A. Rutle, H. Wang, and W. MacCaull

a meaningful corresponding compensation task; e.g., the tasks Check eligibility and
Reject patient have the neutral corresponding compensation task Do nothing.

For the extension of the transition system, since we now have both Task and CTask
in the metamodel S2, some of the transformation rules must be defined in a way which
distinguishes between task instances and compensation task instances. For this reason,
some of the new transformation rules are typed transformation rules. A typed trans-

formation rule is a transformation rule t = L K�
�l�� � � r �� R in which each of the spe-

cifications L,K,R are typed by a certain metamodel, and l, r are typed specification
morphisms. Although the transformation rules are applied to specifications S0 which
are instances of S1, we require them to be typed by the metamodelS2 at the meta-level
rather than to S1. This is because we only need to distinguish between task instances
and compensation task instances, and this information is available in the metamodel.
In this way, we can define generic transformation rules which are independent of the
details of a specific workflow model S1. Thus, instead of writing x:aTask:Task in our
transformation rules, we write x::Task denoting that the type of the type of x is Task.

The new transformation rules are shown in Table 4. Rule t8 adds the possibility
of failure to running (compensation) task instances. Rule t9 forces the preceding task
instance x1 to enable its compensation task instance y1 when the task instance x2 fails.
Rule t10 forces the task instance x1 to enable its compensation task instance y1 when
the compensation task instance y2 of the successor task instance x2 finishes. The rules
t11 and t12 are used to notify other possible parallel branches to start compensation.
t11 forces every task instance which is enabled or running to fail (or abort), while t12
forces every task instance which is finished and is not followed by another finished,
compensating or failed task instance, to start compensation. The NAC of t12 forbids
some application of the rule since we want to force start the compensation of the last
finished task instance in all parallel branches. This is because, for <F>, the rule should
be applied to the last finished task, then rule t10 can be used to start compensation of x2.
In the case of <C>, it means that x3 has started compensation and x2 will eventually
get compensated when x3’s compensation is finished successfully. In the case of <G>,
finally, it means that the rule t9 will be used. Rules t1 through t8 from Tables 3 and 4
are not typed hence are applicable to both task and compensation task instances.

We can now give a complete control structure of the rules in Tables 3 and 4. In
addition to the NAC of rule t12 and the restriction that LHSs of all rules t4 to t7 are
NACs for the rule t1, we require the highest priority for t11, t12. In Fig. 4 the sequence
of transitions t8, t12, t9 has happened to transform S0 to S′

0. Remark that although t12
has higher priority than t8, t12 was not applicable before t8 was applied to S0.

One of the advantages of formalising workflow modelling languages is to facilitate
automatic analysis of workflow models. In this section we outline some properties of
workflow models which have to be satisfied in order to make sure that each execution
scenario (of workflow software systems developed from the workflow models) termin-
ates in an appropriate way [1]. Workflow models which have the option to terminate,
have proper termination, and lack dead tasks (i.e., tasks which are not enabled in any
execution scenario), are said to be sound [2].

Since our transition system is based on graph transformations, we use the termin-
ation property from graph transformations [12]. More precisely, we have defined our



A Formal Diagrammatic Approach to Compensable Workflow Modelling 207

Table 4. The transformation rules t = L ←↩ K ↪→ R for handling compensation

t L K R

t8 x
<R>

x x
<G>

t9
<F>

x1::Task

c::Comp

��

a::Flow �� x2::Task
<G>

<D>
y1::CTask

x1::Task

c::Comp

��

a::Flow �� x2::Task
<G>

y1::CTask

<C>
x1::Task

c::Comp

��

a::Flow �� x2::Task
<G>

<E>
y1::CTask

t10
<F>

x1::Task

c::Comp

��

a::Flow �� x2::Task
<C>

c::Comp

��
<D>

y1::CTask y2::CTask
<F>

x1::Task

c::Comp

��

a::Flow �� x2::Task
<C>

c::Comp

��

y1::CTask y2::CTask
<F>

<C>
x1::Task

c::Comp

��

a::Flow �� x2::Task
<C>

c::Comp

��
<E>

y1::CTask y2::CTask
<F>

t11 x1::Task
<G>

x2::Task
<E|R>

x1::Task
<G>

x2::Task

x1::Task
<G>

x2::Task
<G>

t12
<G>

x1::Task (NAC)

<F>
x2::Task

a::Flow ��
<F|C|G>

x3::Task

x1::Task
<G>

x2::Task
<F>

c::Comp

��

y2::CTask
<D>

x1::Task
<G>

x2::Task

c::Comp

��
y2::CTask

x1::Task
<G>

x2::Task
<C>

c::Comp

��

y2::CTask
<E>

transformation rules in such a way that for any start state of a workflow model, we can
guarantee that the transition system will eventually terminate and produce an end state;
termination in this sense means that no more transformation rules are applicable. Prov-
ing that the transformation rules from Tables 3 and 4 together with the control structures
are terminating is straightforward, but outside the scope of this paper. In addition to the
termination property of the transition system, we need also to require that each task will
be annotated with <E> at least in one state.

First we define start state. Given a workflow model S1, start state Ss
0 is an instance

of S1 such that the transition system can generate all other specifications starting from
Ss

0, which are instances of S1, and, all its task instances with no incoming flows are
annotated with <E> and all other task instances are annotated with <D>.

We distinguish between two disjoint sets of end states: normal end states (no task
instance has failed) and compensation end states (some task instances have failed and



208 A. Rutle, H. Wang, and W. MacCaull

0
S

e

<F>

<F>

<F> <F>

<F>

<T>

<D>
< >

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:g

:f

:i

:j

:Submit
team info

:i'

:j'

Cancel
plan

Do
nothing

Cancel PC
nurse

assignment

Cancel GP
assignment

Do
nothing

Do
nothing

<D>

<D>

<D>

<D>

<D>

<D>

<F>

<C>

<C>

<G>

0
S

ce

<F>

<F>

<C>
<T>

<D>< >

:PC team
planning

:Check
eligibility

:Reject
patient

:Assign
GP

:Assign
PC nurse

:g

:f

:i

:j

:Submit
team info

:i'

:j'

Cancel
plan

Do
nothing

Cancel PC
nurse

assignment

Cancel GP
assignment

Do
nothing

Do
nothing

<D>

<D>

<D> <D>

Fig. 7. Examples of (normal) end state Se
0 and compensation end state Sce

0

compensation has successfully removed side-effects) (see Fig. 7). Given a workflow
model S1, a normal end state Se

0 is an instance of S1 such that (i) the transition system
can generate Se

0 starting from the start state of S1, (ii) no more transformation rules
are applicable to Se

0, (iii) at least one task instance with no outgoing flows is annotated
with <F>, and, (iv) no task instance is annotated with <G>. Furthermore, a compensa-
tion end state Sce

0 is an instance of S1 such that (i) the transition system can generate
Sce

0 starting from the start state of S1, (ii) no more transformation rules are applicable
to Sce

0 , (iii) at least one task instance is annotated with <G>, and, (iv) all compensa-
tion task instances are annotated with <F> or <D>. ES1 denotes the set of all normal
and compensation end states of S1. Note that normal and compensation end states do
not exhaust all the possibilities for end states. For instance, when a compensation task
fails, the termination criteria will be reached; i.e., no more transformation rules will be
applicable, although the workflow is not in a desirable end state. In this case, manual
intervention will be necessary to get workflow execution on the right track again.

Now the properties which a workflow model S1 must satisfy in order to be sound
can be expressed as: (i) Proper termination: the transition system terminates always
resulting in one of the end states in ES1 ; (ii) No dead tasks: for each task X in S1, the
specification SX

0 is one of the states in the transition system, where SX
0 is an instance

of S1 in which a task instance x:X is annotated with <E>.
It is straightforward prove that for each workflow model S1 the transition system

(described by the rules in Tables 3 and 4) starting from the start state Ss
0, will terminate

in one of the end states in ES1 . In particular, given the start state and the transition
system, we can construct all possible sequences of transformation rule applications by
applying all transformation rules in all possible sequences, and inspect the resulting
target specifications (those which cannot be transformed anymore) to check whether
they are normal or compensation end states. In this way we “calculate” the state space,
and prove that each path will eventually end in one of the end states. In addition to
the soundness property, user-defined properties could be defined in the same format
as above, i.e., by requiring that there exists a state in the transition system which has a
certain feature. That is, we can define other properties as target instances (in other words
states) and inspect the transition system (state space) to see whether that particular
instance (state) exists.



A Formal Diagrammatic Approach to Compensable Workflow Modelling 209

4 Related Work

Kindler [14] advocated MDE, particularly the Model-driven Architecture (MDA) [18]
for Process-Aware Information Systems (PAIS). Similar to our motivation, he also ar-
gues for the suitability of MDE in PAIS, however, although many of the MDE concepts
are explained and put in relation to PAIS, a specific modelling language for workflow
(or business) process modelling is not proposed.

Brüning et al. [6] present a strict metamodelling approach to workflow modelling,
which makes it possible to easily express semantics of sophisticated transition rela-
tionships between activities using UML class diagrams and OCL constraints. Due to
shortcomings of UML and OCL w.r.t. constraint evaluation combined with multi-level
metamodelling, this approach flattens the three levels – metamodel, model and instance
– into two levels. OCL constraints are defined at the metamodel level and they are
enforced at the model/instance level. Our approach allows multi-level metamodelling
with a unification of structural and OCL constraints into one formalism, and clearly
distinguishes between the different levels of the metamodelling hierarchy.

Ghamarian et al. [13] employ a graph transformations-based framework, GROOVE,
to provide semantics to behavioural models. Our approach extends graph transform-
ations by using constraint-aware model transformations – i.e., considering diagram-
matic constraints in transformation rule definitions and applications – which facilitate
the definition of more fine grained rules and better control of their applications [26].

Wong et al. [28] present a semantics for a subset of BPMN in CSP and facilitate the
use of model checkers like FDR for model verification. We are working on the model
verification for our approach; more details can be found in Section 5.

There are several works that formalise compensation using process calculi, includ-
ing compensating CSP (cCSP) [7] and Sagas calculi [5]. Chen et al. [8] further extend
cCSP with semantic theory of failures and divergences of LRTs. In particular, they
add non-deterministic choices, synchronization among parallel processes, hiding and
recursion so as to provide support for compositional design and verification of LRTs
by refinement and decomposition. These works provide solid theoretical foundations
for compensation primitives and flow compositions. We will investigate these compos-
itional features and include them in our future work.

Aït-Sadoune et al. [3] use the Event B method for formal description, modelling and
validation of web services compositions. The approach suggests a refinement based
method that encodes the BPEL models decompositions and formalises relevant proper-
ties as Event B properties which later can be proved. This work is not based on the MDE
methodology which is necessary to have executable code automatically generated.

Damas et al. [9] extend high-level Message Sequence Charts with guards and com-
pile the input models into an intermediate event-based formalism, the guarded Labeled
Transition Systems. They propose tool-supported analysis techniques including model
checking against state-based properties, state invariant generation, and guard analysis.

NOVA Workflow [22] is a framework for compensable workflow modeling which
supports the modeling, execution and verification of workflow systems. It was exten-
ded by a domain specific language, T�, to support applications such as health services
delivery [23]. However, it does not follow the metamodelling approach described here
and may lead to impaired links between the workflow model and the generated code.



210 A. Rutle, H. Wang, and W. MacCaull

5 Conclusion and Future Work

This paper outlines a formal approach to compensable workflow modelling follow-
ing MDE-methodologies and formal modelling principles. The approach provides a
visually appealing technique for workflow modelling. Two different modelling formal-
isms are described: the first is used for the specification of workflow models while the
second is used for the specification of their instances. Creation of instances is equival-
ent to creation of states (static semantics) while creation of sequences of transformation
rule applications is equivalent to creation of execution paths (dynamic semantics). The
presented modelling formalism is extended with new types, predicates and transform-
ation rules to support compensation. This illustrates the flexibility of the MDE-based
approach to extend modelling formalisms to support new behaviour. In addition, we use
a metamodelling approach to define modelling languages facilitating the definition of
different abstraction levels suitable for different users. In this way we may abstract away
from formal details and overcome the complexity related to the use of formal methods.

We are using model checking (work in progress) to formally verify whether our work-
flow models fulfil desired properties. Currently we have an automated translator from
workflow models to DVE (the modelling language for the DiVinE model checker), to
let us verify LTL properties. As a proof of concept, the workflow modelling formalism
and the automated translator are implemented as plugins to the DPF Workbench [15].
We are also developing an interface so the non-specialist can easily input LTL formulas
for verification. This interface will allow the definition of requirements such as those
on page 199 in a user-friendly syntax. Furthermore, we will investigate the theory of
failures and divergences of LRTs which are elaborated in [8].

In future we plan to generate executable code to run real-life workflow software for
application to healthcare and other safety critical systems. It is anticipated that the high
overhead of the modelling formalism will be substantially offset by the benefits of auto-
mated generation of executable, verified code which is easily modified and accurately
reflects the specifications of the processes modelled using the formalism.

Acknowledgements. This research is sponsored by Natural Sciences and Engineering
Research Council of Canada and by the Atlantic Canada Opportunities Agency. Thanks
to the anonymous reviewers who have contributed positively to the quality of the paper.

References

1. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT Press (2002)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. In-
formation Systems 30(4), 245–275 (2005)

3. Ait-Sadoune, I., Ait-Ameur, Y.: Stepwise Design of BPEL Web Services Compositions: An
Event_B Refinement Based Approach. In: Lee, R., Ormandjieva, O., Abran, A., Constantin-
ides, C. (eds.) SERA 2010. SCI, vol. 296, pp. 51–68. Springer, Heidelberg (2010)

4. Barr, M., Wells, C.: Category Theory for Computing Science, 2nd edn. Prentice Hall (1995)
5. Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensations in Flow

Composition Languages. In: POPL 2005, pp. 209–220. ACM (2005)



A Formal Diagrammatic Approach to Compensable Workflow Modelling 211

6. Brüning, J., Gogolla, M., Forbrig, P.: Modeling and Formally Checking Workflow Properties
Using UML and OCL. In: Forbrig, P., Günther, H. (eds.) BIR 2010. LNBIP, vol. 64, pp.
130–145. Springer, Heidelberg (2010)

7. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions. In:
Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP25. LNCS, vol. 3525, pp. 133–150.
Springer, Heidelberg (2005)

8. Chen, Z., Liu, Z., Wang, J.: Failure-Divergence Semantics and Refinement of Long Running
Transactions. Theoretical Computer Science (to appear)

9. Damas, C., Lambeau, B., Roucoux, F., van Lamsweerde, A.: Analyzing critical process mod-
els through behavior model synthesis. In: ICSE 2009, pp. 441–451. IEEE Computer Society
(2009)

10. Diskin, Z.: Mathematics of Generic Specifications for Model Management I and II. In: En-
cyclopedia of Database Technologies and Applications, pp. 351–366. Information Science
Reference (2005)

11. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal Arrow Foundations for Visual
Modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI),
vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

12. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transform-
ation. Springer (March 2006)

13. Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis
using GROOVE. STTT, 1–26 (2011)

14. Kindler, E.: Model-based software engineering and process-aware information systems. In:
Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 27–45. Springer,
Heidelberg (2009)

15. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: DPF Workbench: A Diagrammatic
Multi-Layer Domain Specific (Meta-)Modelling Environment. In: Lee, R. (ed.) Computer
and Information Science 2012. SCI, vol. 429, pp. 37–52. Springer, Heidelberg (2012)

16. Lapadula, A., Pugliese, R., Tiezzi, F.: Specifying and Analysing SOC Applications with
COWS. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models.
LNCS, vol. 5065, pp. 701–720. Springer, Heidelberg (2008)

17. OASIS: Web services business process execution language version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

18. Object Management Group: MDA Guide (June 2003),
http://www.omg.org/cgi-bin/doc?omg/03-06-01

19. OMG: Business Process Model and Notation (BPMN) Version 2.0 (January 2011),
http://www.omg.org/spec/BPMN/2.0/

20. Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making sense of busi-
ness process descriptions: An experimental comparison of graphical and textual notations.
Journal of Systems and Software 85(3), 596–606 (2012)

21. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From BPMN Process
Models to BPEL Web Services. In: ICWS, pp. 285–292. IEEE Computer Society (2006)

22. Rabbi, F.: Design, Development and Verification of a Compensable Workflow Modeling Lan-
guage. Master’s thesis, Dept. of Math, Stats and CS, StFX University, Canada (2011)

23. Rabbi, F., MacCaull, W.: T�: A Domain Specific Language for Rapid Workflow Develop-
ment. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 36–52. Springer, Heidelberg (2012)

24. Rutle, A.: Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. thesis, De-
partment of Informatics, University of Bergen, Norway (2010)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/BPMN/2.0/


212 A. Rutle, H. Wang, and W. MacCaull

25. Rutle, A., MacCaull, W., Wang, H., Lamo, Y.: A Metamodelling Approach to Behavioural
Modelling. In: BM-FA 2012, pp. 5:1–5:10. ACM (2012)

26. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and
transformation of constraints in MDE. JLAP 81(4), 422–457 (2012)

27. Wang, H., Rutle, A., MacCaull, W.: A Formal Diagrammatic Approach to Timed Workflow
Modelling. In: TASE 2012, pp. 167–174. IEEE Computer Society (2012)

28. Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Araki, K. (eds.)
ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)



Towards Generic MDE Support for Extracting
Purpose-Specific Healthcare Models from

Annotated, Unstructured Texts

Pieter Van Gorp1, Irene Vanderfeesten1, Willem Dalinghaus1,
Josh Mengerink1, Bram van der Sanden1, and Pieter Kubben2

1 School of Industrial Engineering, Eindhoven University of Technology
{p.m.e.v.gorp,i.t.p.vanderfeesten}@tue.nl

2 Department of Neurosurgery, Maastricht University Medical Center
pieter@kubben.nl

Abstract. Once healthcare-specific models have been captured formally
(i.e., in a metamodel-based language), the application of model
transformation, analysis and code generation techniques is rather straight-
forward. Unfortunately, in many healthcare settings valuable domain
knowledge is hidden in unstructured text (e.g., in a research paper or a
national report on clinical guidelines). This motivates the need for tools
to annotate such texts with metadata. Such tools can be prototyped eas-
ily for one type of healthcare artifacts (e.g., for clinical guidelines or care
pathways) and one purpose (e.g., for workflow management or decision
support) but it is a research challenge to build a robust and generic (i.e.,
metamodel-independent) tool for this important type of model extrac-
tion support. This paper desribes our ongoing work to building such a
tool on top of a state-of-the-art MDE platform.

1 Introduction

Governments, insurance organizations, hospital boards, physicians and patient
organizations support the relevance of rigorous engineering methods for the de-
velopment and certification of information systems in healthcare. Model-Driven
Engineering (MDE) techniques are particularly strong at separating medical and
organizational concepts from system implementation details. This is important
since information system architectures vary significantly within and between care
institutions while at the conceptual level patients cross the institutional and sys-
tem boundaries. As in most other engineering disciplines, models in MDE are
simplified representations that enable one to reason more easily about complex
issues. The distinguishing factor is that MDE techniques can combine multiple
modeling languages (and formalisms).

MDE leverages explicit modeling language definitions (called metamodels)
and model transformation definitions to break down complex modeling prob-
lems in more manageable subproblems. We have recently demonstrated that
MDE technology is particularly mature in support for generating powerful model

J. Weber and I. Perseil (Eds.): FHIES 2012, LNCS 7789, pp. 213–221, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



214 P. Van Gorp et al.

editors from annotated metamodels [1]. This short paper focuses on providing
novel support for extracting models from unstructured texts.

The remainder of this paper is structured as follows: Section 2 presents a
typical example of a clinical decision support (CDS) system. Section 3 presents
our solution in two steps (first specific to the CDS example and then more
generally). Section 4 describes related and future work and Section 5 concludes.

2 Example Clinical Decision Support System

Fig. 1 shows a clinical guideline (CG) supported by the Congress of Neurological
Surgeons and the American Association of Neurological Surgeons. The selected
guideline is that for surgical management of depressed cranial fractures.

Fig. 1. Example of a Clinical Guideline recommendation (summary based on [2])

As a concrete example of a CDS system derived from such a guideline, con-
sider Fig. 2. That figure shows screenshots of an app that enables specialists to
(1) lookup a guideline from a catalogue and (2) retrieve recommendations by
entering patient-specific information. Fig. 2(a) shows the app after selecting our
example guideline. In our example scenario, the user answers respectively “yes”,
“no”, “yes” (cfr., the “on”, “off”, “on” buttons) on the series of questions shown
on Fig. 2(a) to 2(c). According to the guideline, this leads to the suggestion
that there is evidence in favor of performing an early operation (Fig. 2(d)). The
underlying decision algorithm is not directly visible in the guideline text. Some
medical papers do provide flowcharts to make the proposed decision making pro-
cess more explicit. However, specialists in a concrete care facility typically still
have to adapt such flowcharts to their specific situation. This paper starts from
our collaboration with a Dutch academic hospital.



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 215

(a) Q&A 1 (b) Q&A 2

(c) Q&A 3 (d) Suggestion

Fig. 2. Example execution of the generated app running on an Android smartphone

In this hospital, one of the neurosurgeons maintains a set of flowcharts to
formalize a set of specialized guidelines. The neurosurgeon also programs CDS
support in apps such as the one from Fig. 2. These apps are quite popular in both
the Android and iOS app stores [3]. Remarkably, the flowcharts are just informal
documentation for these apps. We observed that by using MDE techniques, the
apps could be generated automatically. That could reduce the development effort
and the risk for inconsistencies. It would require however the use of a flowchart
editor with a custom metamodel (e.g., with support for modeling CDS questions
and links back to medical evidence).

This paper focuses on a key limitation of MDE and our suggested way to over-
come it. Our extended experience report also clarifies to Health IT practitioners
what existing MDE tools can offer them in the first place [1].

3 Deriving Models from Annotated, Unstructured Text

Fig. 3 sketches our proposed tool-chain from an end-user perspective: first, med-
ical specialists annotate scientific CGs. This can happen in the context of their



216 P. Van Gorp et al.

Fig. 3. Model-driven, evidence-based, development of CDS apps

personal continuous learning process or in the context of regularly planned liter-
ature review cycles within a hospital. In this step, annotations should be stored
in a computer-interpretable form. Second, the guideline annotations are trans-
formed automatically into a flowchart skeleton model. Third, the flowchart is
manually refined. Finally, the flowchart is transformed automatically into a CDS
app. Configuration files for a more heavyweight CDS system could be generated
too but this is not implemented at the time of writing. In the following, we first
demonstrate a metamodel-specific tool-chain that we have used to better under-
stand the above workflow in the context of CG-based CDS. Then, we describe
our ongoing efforts to derive similar tool-chains more efficiently in the large.

3.1 Ad-Hoc Support: Extracting Flow-Charts from CGs

Fig. 5 shows the text from Fig. 1 within the annotation tool. The title annotation
is shown in green. The parts of the text that are considered observations have
been annotated in yellow, the actions/treatments are shown in red, and the
explanatory elements are shown in blue. The bottom left of Fig. 1 shows controls
for creating new annotations while the top left shows a tree preview of the
guideline model that is under construction. By clicking the compile button, this
representation is translated into a metamodel-based flowchart model (step 2
from Fig. 3), which can be refined manually (step 3 from Fig. 3). Fig. 4 shows
a screenshot of an example use of this editor. The left pane shows the editor
palette, which enables the instantiation of the concepts from the syntax defintion.
The middle pane shows an example flowchart diagram. In the screenshot, the
“Hematoma” node from the upper left is selected and its details are shown in
the rightmost editor pane. The pane enables a.o. associating reference papers
(i.e., evidence) to the node. The editor instantiates models in such a format that
they can be seemlessly processed by other special purpose MDE tools (e.g., for
transformation and verification, see http://www.eclipse.org/modeling/).

We have also developed a prototypical code generator for realizing step 4
from Fig. 3. The complete tool-chain prototype was implemented by two junior
programmers with basic Java programming skills. Students did receive guidance
by one MDE expert, primarily in the use of the Epsilon framework [4]. Epsilon’s
Eugenia component has saved valuable time during the development of the CDS-
specific flowchart model editor (shown in Fig. 4). The annotation editor (shown
in Fig. 5) as well as its simple “annotation to model compiler" have been hand-
crafted.

http://www.eclipse.org/modeling/


Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 217

Fig. 4. Example Use of the MDE-based Clinical Guideline Editor Prototype

Fig. 5. Demonstration of support for elicitating model elements using text annotations



218 P. Van Gorp et al.

The need for custom model editors as well as annotation-based model extrac-
tors goes far beyond CGs and CDS, as discussed further in our related and future
work section. Therefore, instead of replicating functionality in hand-crafted com-
ponents for other metamodels, we investigated how the annotation and compila-
tion support could be provided using modeling and transformation techniques.

3.2 Robust Support: Generating the Toolsuite from a Metamodel

Our aim is to provide MDE support across CDS and workflow applications for
CGs, care pathways, reference pathways, etc. This section clarifies how we are
tackling the lack of generic annotation-based model extraction tools by means
of a small extension to the aforementioned Eugenia tool.

Eugenia is the MDE tool that we have used to transform the definition of the
custom flowchart metamodel (the upper part of Fig 6) into a custom visual model
editor. That existing Eugenia functionality is visualized by the bold arrow in the
right part of Fig 6. The bold arrow in the left part of the figure represents the
proposed new functionality for the Epsilon platform. That arrow visualizes how
we intend to generate a custom (i.e., metamodel-specific) annotation tool from
a metamodel definition. Coming back to the functionality of such a generated
annotation tool: the left part of Fig. 6’s "Generated Annotation Editor" contains
a palette with buttons for creating specific annotations in the text that is shown
in the right part of the box. From these annotations, the custom annotation
editor (the generated tool at the bottom left of Fig. 6) would then create a
model that could be further refined by the custom model editor (the generated
tool at the bottom right of Fig. 6).

The following examples demonstrate the feasibility of implementing the pro-
posed Eugenia extensions: the palette contains a button labeled "Action/Treat-
ment" and a button labeled "Title". The annotations for these buttons map
directly to element attributes of the corresponding model. Therefore, it becomes
possible to annotate the metamodel definition shown at the top of Fig. 6 in such a
way that the buttons and their behavior is generated automatically by Eugenia.
The two diagonal arcs on the figure illustrate which lines from the metamodel
definition relate to which button in the annotation editor: for example, line 5
relates to the button labeled "Title".

Note that a plain Eugenia metamodel definition (as shown at the top of
Fig. 6) does not yet contain sufficient information to generate the metamodel-
specific annotation editor. First of all, each line related to an annotation ele-
ment would have to be supplemented with a label for the button (e.g., "Title"
for line 5). Secondly, the line should be supplemented with a color for the text
highlights (e.g., green for line 5 shown at the top of Fig. 6). Given these pro-
posed extensions, line 5 could therefore be preceded by a line such as: "@anno-
tation.element(button.name=‘Title’,text.color=‘green’)".

Further implementation details are outside the scope of this paper. We there-
fore leave it open whether the annotation editor and model editor shown at the
bottom of Fig. 6 are separate tools or one integrated component. Regardless,
generic model transformation languages/tools could be used to automatically



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 219

Fig. 6. Generating annotation tools from an extended Eugenia metamodel

produce and optimize output models. For the sake of persistence and consis-
tency, we propose that the complete texts as well as the begin and end indices
of annotations are stored also inside the metamodel-based output model.

4 Related and Future Work

We evaluated tool support for systematically deriving clinical guideline models
from medical literature. We focussed on MDE tools since these are known to
excel in the linkage of models with different purposes and at various levels of
abstraction. MDE tools are also known to support the co-evolution of conceptual
models with derived software systems. To the best of our knowledge, there are no
experience reports on the linkage of MDE artifacts with unstructured documents.

Some isolated engineering efforts have been published outside the MDE con-
text. For example, Lobach et al. [5] describe a conceptual process for translat-
ing informal guidelines into computer-interpretable representations. Concerning
tool support, the Yale Center for Medical Informatics has developed and eval-
uated GEM Cutter II [6]. From the evaluation perspective, the Yale group has
demonstrated that an annotation-based approach to guideline model extraction
is promising, but also that additional analysis is needed to determine the feasi-
bility of offering “GEM-cut” recommendations nationally (in the US). From the
tooling point of view, we observe that GEM Cutter (1) is based directly on XML
technologies rather than on formal metamodels, (2) does not provide support for
visual models and (3) implicitly imposes one particular metamodel. We aim at
tool support that excels on these three points: (1) we aim at an annotation-
based model extraction infrastructure based on Eclipse ECore and EMF, which
are the industry-standards for metamodeling in MDE; (2) we aim at supporting
visual models, especially since medical papers often include flowchart based sum-
maries; and (3) we aim at adaptable metamodels. We consider the last point of



220 P. Van Gorp et al.

particular relevance, since besides clinical guidelines there are various medical
texts for which annotation-based model extraction is promising.

Terminology for candidate models is used rather confusingly both in medical
and in information systems literature: different terms are used interchangeably,
and the same term may have different meanings. Therefore, we have surveyed
and classified the related literature. This has resulted in the following list of arti-
facts for which metamodels, editors, and extraction tools, need to be developed:
Clinical Guidelines (CGs, e.g., [2]), Clinical Protocols (CPRs, e.g., [7]), Care
Pathways (CPAs, e.g., [8]), Individual Care Pathways (ICPs, e.g., [9]), Assigned
Pathways (APs) and Reference Pathways (RPAs). Our summarized definitions
can be found in our previous work [1]. All these candidate models can be classi-
fied along two dimensions:

D1 (Patient Scope). The first dimension involves the scope of the description
from the patient perspective: the most coarse grained descriptions aim at any
type of patient, regardless of care groups. Other descriptions aim at multiple
patients but within one specific care group. Finally, some descriptions are
specific to an individual patient.

D2 (Provider Scope). In the provider aggregation dimension, some descrip-
tions aim at multiple organizations while others are oriented at only one
specific care organization.

Fig. 7. 2D Classification of Process Oriented Care Descriptions

Fig. 7 shows that the classification of the aforementioned care descriptions in the
proposed 2-dimensional space: when referring to the concrete goals and activi-
ties for one patient within one organization (=1, =1), one is considering ICPs
and APs. When referring to the process descriptions for a group of patients
within one organization (> 1in group, =1), one is considering CPAs. When for
such a group of patients one is referring to an abstract process description that is
shared by multiple organizations (> 1in group, >1) then one is considering RPAs.
In the context of decision support for patients regardless of groups, CPRs are
descriptions used within organizational boundaries (> 1in general, =1) while CGs
are used beyond these boundaries (> 1in general, >1). All these artifacts are se-
mantically related and since they can also evolve over time, our classification
opens interesting opportunities for applying MDE techniques for co-evolution
(e.g., those from Cichetti et al. [10]) in a challenging healthcare setting. In com-
bination with our various metamodel-specific annotation tools, the traceability
to related textual artifacts becomes manageable too. The practical integration
of these techniques is the subject of our future work.



Towards Generic MDE Support for Extracting Purpose-Specific Healthcare 221

5 Conclusions

This short paper focuses on a specific MDE contribution: the development of
a CDS based on the extraction of models from unstructured clinical guideline
texts. However, our line of work is at the interface between Health Informatics
and MDE research. Within the paradigm of using light-weight, custom editors in-
stead of using heavyweight "one size fits all" editors (e.g., editors based on GEM,
GLIF or SAGE), we have identified the lack of tools to extract purpose-specific
models from unstructured texts. Besides presenting an exploratory, ad-hoc im-
plementation of such a CDS-specific model extraction tool, we have discussed
how a state-of-the-art MDE toolsuite can be extended for generating similar
extraction tools in the large. Generating such tools is important since they are
needed for a variety of healthcare and purpose-specific metamodels.

References

1. Van Gorp, P., Vanderfeesten, I., Dalinghaus, W., Mengerink, J., van der Sanden,
B., Kubben, P.: MDE support for process-oriented health information systems:
from theory to practice. In: Pre-proceedings of FHIES 2012 (August 2012)

2. Ross Bullock, M., et al.: Surgical management of depressed cranial fractures. Neu-
rosurgery 58(suppl. 3), S56–S60, discussion Si–iv (2006)

3. Kubben, P.: Neuromind (December 2012),
http://apps.digitalneurosurgeon.com/neuromind

4. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck,
G.: Taming EMF and GMF using model transformation. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225.
Springer, Heidelberg (2010)

5. Lobach, D.F., Kerner, N.: A systematic process for converting text-based guidelines
into a linear algorithm for electronic implementation. In: Proc. AMIA Symp., pp.
507–511 (2000)

6. Haskell, L.T., Monteforte, P.M.J., Shiffman, R.N., Coates, V.H., Nix, M.P.: S92 –
applying the Guideline Elements Model (GEM) cutter II tool to guidelines repre-
sented in the national guideline clearinghouse (www.guideline.gov). Otolaryngol.
Head Neck Surg. 143(suppl. 60-61) (July 2010)

7. Lorne Community Hospital: Anaphylaxis (2007),
http://www.health.vic.gov.au/qum/downloads/anaphylaxis.pdf

8. South East Wales Cardiac Network: Integrated care pathway cardiac reha-
bilitation (May 2005), http://www.wales.nhs.uk/sitesplus/documents/986/
ICPCardiacRehabPathwayJan2006.pdf

9. Elm Mount Units: Individual recovery/care plan review elm mount units (August
2012), http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/
Elm%20Mount_CPT.pdf

10. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of the 2008 12th International IEEE
Enterprise Distributed Object Computing Conference, EDOC 2008, pp. 222–231.
IEEE Computer Society, Washington, DC (2008)

http://apps.digitalneurosurgeon.com/neuromind
http://www.health.vic.gov.au/qum/downloads/anaphylaxis.pdf
http://www.wales.nhs.uk/sitesplus/documents/986/ICPCardiacRehabPathwayJan2006.pdf
http://www.wales.nhs.uk/sitesplus/documents/986/ICPCardiacRehabPathwayJan2006.pdf
http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/Elm%20Mount_CPT.pdf
http://www.mhcirl.ie/Inspectorate_of_Mental_Health_Services/ICPT/Elm%20Mount_CPT.pdf


Author Index

Almeida, Hyggo 167
Arantes, Luciana 142
Araújo, Rafael 142

Barkaoui, Kamel 1
Ben Dhieb, Amel 1
Bertolini, Cristiano 19
Bessling, Sara 37

Carlini, Alessandro 55
Cawley, Oiśın 72
Cenci, Ivan 55
Chabbouh, Ikram 142
Cincilla, Pierpaolo 142
Claudio, Francesca Maria 55
Coutinho, Luciano 142
Crichton, Ryan 87

Dalinghaus, Willem 213
Dalla Rosa, Pierluigi 55

Faber, Johannes 176
Faruqui, Rokan Uddin 105

Gakuba, Richard 87
Gini, Giuseppina 55

Henglein, Fritz 124
Henriksen, Anders S. 124
Hicheur, Awatef 1
Hildebrandt, Thomas T. 124
Huhn, Michaela 37

Kubben, Pieter 213

Ledru, Yves 176
Liu, Zhiming 19, 176
Luongo, Giovanni 55

MacCaull, Wendy 105, 194
Maia, Felipe 142
Mengerink, Josh 213
Méry, Dominique 151
Monnet, Sébastien 142
Montrucchio, Bartolomeo 55
Moodley, Deshendran 87
Muniz, Luiz Carlos 142

Nielsen, Lasse 124

Oliveira, Elthon 167

Perkusich, Angelo 167
Pillay, Anban 87

Qamar, Nafees 176

Richardson, Ita 72
Rutle, Adrian 194

Seebregts, Christopher J. 87
Shapiro, Marc 142
Silva, Francisco José 142
Silva, Leandro 167
Singh, Neeraj Kumar 151
Spigaroli, Jacopo 55
Srba, Jǐŕı 19

Vale, Samyr 142
Vanderfeesten, Irene 213
van der Sanden, Bram 213
Van Gorp, Pieter 213

Wang, Hao 194
Wang, Xiaofeng 72

Yoshida, Nobuko 124

Zirtany, Rayrone 142


	Preface
	Organization
	Table of Contents
	Modelling and Analysis of Flexible Healthcare Processes Based on Algebraic and Recursive Petri Nets
	1 Introduction
	2 Flexibility Requirements of Healthcare Workflows
	3 Recursive Workflow Nets
	3.1 Recursive ECATNets Review
	3.2 Recursive Workflow Nets

	4 Modelling Chemotherapy Treatment Process Using RecWF-Nets
	5 Analysis of Healthcare Recursive Workflow Nets
	5.1 Correctness Properties of Healthcare RecWF-Nets
	5.2 RecWF-Net Analysis in the MAUDE System

	6 Related Works
	7 Conclusion
	References

	Verification of Timed Healthcare Workflows Using Component Timed-Arc Petri Nets
	1 Introduction
	2 Blood Transfusion Case Study and Little-JIL
	2.1 Blood Transfusion Case Study
	2.2 Little-JIL

	3 Modelling of Little-JIL Workflow in TAPN
	3.1 Introduction to Component Timed-Arc Petri Nets
	3.2 Translation of Little-JIL Primitives to CTAPN
	3.3 Additional Workflow Modelling Features

	4 Verification of the Blood Transfusion Case Study
	5 Conclusion
	References

	Enhancing Product Line Development by Safety Requirements and Verification
	1 Introduction
	2 Basics
	2.1 Dependable System Modeling Using SCADE
	2.2 VariabilityModeling Using CVL
	2.3 RelatedWork

	3 Adding Variability to Dependable System Development
	3.1 The Base Model and Models Deltas
	3.2 Managing Variability in the Design Space by Model Transformations
	3.3 A Uniform Enhancement by Safety Requirements
	3.4 BehavioralModels and Verification
	3.5 Implementation of the Graph Transformational Approach

	4 Variability in a Pacemaker Product Line
	4.1 The Pacemaker Product Line
	4.2 The Pacemaker’s Base Model and Model Deltas
	4.3 Model Transformations for Product Generation
	4.4 Variability of Safety Requirements
	4.5 BehavioralModeling in SCADE
	4.6 Verification of Products

	5 Conclusion
	References

	Defining New Structural and Mobile Support to Improve Hospital Facilities Access and Usability
	1 Introduction
	2 User Requirements
	2.1 Interviews
	2.2 Cluster Analysis
	2.3 Analysis of the Visitors Flow

	3 Devising Solutions
	3.1 Terminal Units (TU Solution)
	3.2 Smartphone Application (SA)
	3.3 Solution Evaluation

	4 The Profitability Analysis
	5 Final Design and Demonstrator Implementation
	5.1 Choice between “Intelligence” Located on the Client or Server Side
	5.2 Designing the Infrastructure
	5.3 Designing the Software Application

	6 Conclusions
	References

	Regulated Software Development – An Onerous Transformation
	1 Introduction
	2 Research Process
	3 The Effects of Compliance
	3.1 Regulations

	3.2 Organisation
	3.3 Software Management
	3.4 People

	4 A Transformation Process
	4.1 Organisation
	4.2 Software Management
	4.3 People

	5 Discussion and Recommendations
	References

	An Architecture and Reference Implementation of an Open Health Information Mediator: Enabling Interoperability in the Rwandan Health
Information Exchange
	1 Introduction
	2 Background: A National Health Information System
for Rwanda
	3 Interoperability: Challenges and Requirements
	4 Architecture of the Health Information Mediator
	4.1 Logical View
	4.2 Scalability View
	4.3 Adaptability View

	5 Analysis
	6 Implementation and Future Work
	7 Conclusion
	References

	OwlOntDB: A Scalable Reasoning System�for OWL 2 RL Ontologies with Large ABoxes
	1 Introduction
	2 A Scalable Reasoning System for Large ABoxes:�OwlOntDB
	2.1 Translation
	2.2 Materialization
	2.3 Query Processing

	3 Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

	Trustworthy Pervasive Healthcare Services via Multiparty Session Types
	1 Introduction
	2 From Spreadsheets via Types to Pervasive Services
	2.1 Example Workflow as Choreography and Process Matrix
	2.2 Example Workflow as Multiparty Session Type
	2.3 Implementation

	3 Experiment: An End-User Developed Workflow
	3.1 The Experiment
	3.2 Evaluation


	4 Formal Theory
	5 Conclusions, Related and Future Work
	References


	A Grid Based Distributed Cooperative Environment for Health Care Research
	1 Introduction
	2 Background: InteGrade and Telex
	3 The ECADeG Project
	4 Related Work
	5 Conclusion
	References


	Closed-Loop Modeling of Cardiac Pacemaker and Heart
	1 Introduction
	2 Heart Model
	3 Closed-Loop Model of Heart and Cardiac Pacemaker
	3.1 The Context and Initial Model
	3.2 Chain of Refinements
	3.3 Proof Statistics


	4 Closed-Loop Modeling Requirements
	4.1 Patient Safety in Closed-Loop
	4.2 Behavioral Requirements
	4.3 Clinical Requirements with Closed-Loop


	5 Discussion
	6 Conclusion
	References


	Model-Based Solution for Controlling Physiology
	1 Introduction
	2 Defining the Human Physiology Control
	2.1 Steps for Defining the Control
	2.2 User/Model Interaction
	2.3 An Example


	3 Related Work
	4 FinalRemarks
	References


	Automated Reviewing of Healthcare
Security Policies
	1 Introduction
	2 Related Work
	3 Role-Based Access Control
	3.1 Data Model of RBAC
	3.2 Example: RBAC-Based Security Management for EHRs

	4 Formalized Healthcare Security Policies
	4.1 The Z Notation and the Jaza Tool
	4.2 Z Models for Security Policies

	5 Formal Queries for Healthcare Security Policies
	5.1 Authorized Roles for an Atomic Action
	5.2 Actions Available for a Role
	5.3 Analyzing Access to a Resource
	5.4 Permissions for Atomic Action and Role
	5.5 Finding Duplicate Roles
	5.6 Atomic Action Accessed by All
	5.7 Atomic Action Access by Nobody

	6 Separation of Duty Constraints
	7 Conclusions and Perspectives
	References


	A Formal Diagrammatic Approach to Compensable
Workflow Modelling
	1 Introduction
	2 Metamodelling and Modelling Languages
	2.1 Workflow Modelling
	2.2 Semantics ofWorkflow Models

	3 Compensation and Analysis
	4 Related Work
	5 Conclusion and Future Work
	References

	Towards Generic MDE Support for Extracting Purpose-Specific Healthcare Models from Annotated, Unstructured Texts
	1 Introduction
	2 Example Clinical Decision Support System
	3 Deriving Models from Annotated, Unstructured Text
	3.1 Ad-Hoc Support: Extracting Flow-Charts from CGs
	3.2 Robust Support: Generating the Toolsuite from a Metamodel

	4 Related and Future Work
	5 Conclusions
	References

	Author Index



