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Abstract. Computations performed by a system of cyclic cellular au-
tomata, designed to model the principal organization rules known for the
tissue of the first cardiac pacemaker — the sinus node, are investigated in
terms of Kuramoto order parameters of synchronization. We show that
such description provides consistent quantification of stationary states
in the model. Finally, the model is used to give possible explanations for
changes observed in the sinus node rhythmicity caused by age.
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1 Introduction

Discoveries appearing day by day from biochemical and physiological labs are
challenging for computational methods because they need novel conceptions for
computation. The natural computations are different from methods to which
we got used to in many aspects. It is even said that specifying the problem is
demanding [1].

The natural computations are parallel. The natural systems are space dis-
tributed, constituted from many different subsystems. The computations are
run in parallel in all parts of these systems. The natural computations are dy-
namical. The present state of each system unit: organizing (as a protein or cell,
for example) or functional unit (like a tissue or organ), are recorded in its en-
vironment by initiating a sequence, often a cascade, of biochemical processes.
Effects of these processes are read back by the same unit to modify, adapt its
next state. Since the effects of states are emitted to the environment, the results
are dynamically used by other neighboring units. The natural computations are
multi-layered. The local environment of any unit consists of elements of other
computational systems. They can be different from each other because of, for
example, the way of communication. One system passes the information via dif-
fusion of transmitters (neuronal systems) while the other by cell-to-cell direct
injection of ions (cardiac cells). So they act at different time and space scales. But
these different computational systems penetrate tightly one another providing
the robust solution.

In the following we will observe computations performed by a system made of
cyclic cellular automata, designed to model the principal organization known for
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the tissue of the sinus node — the first cardiac pacemaker [2–8]. By computations
in this system we understand emerging of the collective state — synchroniza-
tion of oscillations of individual cells to produce the strong pacemaker signal. To
achieve such computational system, the network of coupled discrete-state units
is proposed. The elementary units — the basic layer of computations, reveal the
electrochemical properties of pacemaker cells. The network of intercell connec-
tions establishes the next layer. The sparsity and stochastic heterogeneity, known
organizing principles of the pacemaker tissue structure, are taken into account.
The adaptive and/or controlling layer is introduced in the so-called tonic way.
The regulatory role of the autonomic nervous system is revealed by parameters
describing sensitivity of cells for external stimulation.

The model has its roots in Greenberg-Hastings cellular automata modeling
the excitable medium[9, 10]. Discrete modeling has become attractive because it
provides the opportunity to adjust both assumptions and results in models with
natural cellular automata where the natural computations are performed. By
natural cellular automata we mean the technics of in vitro models where cultured
cardiac cells are placed on special matrices in order to observe emergence and
development of cell-to-cell interactions [11, 12].

Therefore, the basic objective of our modeling is to provide a tool which is
enable to test intuitions about general mechanisms responsible for the multiscale
effects. The work is a continuation of our investigations [13, 14]. In the following
the model is rewritten in a compact way, Sec. 2. Then results are presented
which were obtained in simulations aimed on effects of heterogeneity among
intercellular connections on collective properties of stationary states, Sec.3. The
results are expressed in terms of Kuramoto order parameters — the popular
tools for quantifying the synchrony among coupled oscillators [19, 20]. We show
that such description consistently quantifies collective properties in the studied
systems. In last Section we discuss the model properties in order to explain some
changes in the sinus node with age.

2 From Natural Computation to Computer Computation

The heart automaticity is originated in the sinoatrial node — a flat tissue located
on the right atrium. The node produces sustained oscillations of electrochemical
signals. These signals initiate the sequence of events which eventually lead to the
whole heart contraction. It is commonly believed that the source of sinoatrial
node function is closely related to electrophysiology of each individual cell.

2.1 The Model of a Cell

Physiology of a Pacemaker Cell. There is a sequence of biochemical pro-
cesses which change the electrical potential of a myocyte — the cardiac cell,
membrane. The phenomenon of ions transmission through the membrane the
cell: inward (potassium K+) and outward (sodium Na+ and calcium Ca2+), is
called the action potential. The time interval when the myocyte membrane is
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depolarized takes about 400ms what is the half of the time interval between sub-
sequent heart contractions, approximately. In the case of pacemaker cells, the
course of the action potential is substantially different from other myocardium
cells. The depolarization process is slow, see Fig.1, because the increase in the
membrane potential is not caused by sodium Na+ ions but by calcium Ca2+ ions
only. Furthermore, after completing the action potential, the membrane poten-
tial does not stay resting but rises continuously due to activity of if current and
calcium current iCa(T), and reaches the threshold value. Then the next action
potential develops due to iCa(L)[2, 3]. The dotted lines in Fig.1 divide the oscil-
lation interval into three physiologically justified stages: 0, 3 and 4, called in the
following: firing, refractory and activity, respectively.

Fig. 1. Membrane potential of a
nodal cell in time together with ba-
sic currents: if , iCa(T), iCa(L), iK that
drive the membrane potential change.
Diagram is a modified scheme from
[3].

Fig. 2. The effects of depolarizing of
pulses (denoted as red arrows) on the
spontaneous cycle of a single enzymati-
cally dissociated pacemeker cell from the
sinoatrial node of the rabbit. Diagram is
a modified scheme from [16, 2]

The, so-called, phase sensitivity [15, 16, 2] describes an important aspect
of the pacemaker cell elecrophysiology, see Fig.2. Experiments with rabbit and
other mammalian heart cells showed that an external stimulus can influence the
intrinsic cycle. It could shorten the cycle if it arrives when a cell is after complet-
ing of the action potential, so after stage 3. The perturbation could elongate the
period if it comes when the action potential process has not been completed, so
during stage 3. In Fig.2 upper plots describe unperturbed membrane potential
with the mean period (T) =318 msec. Lower plots show the membrane potential
when the pulse appears before the end of the repolarization process, and when
the pulse comes later.

Assumptions. We propose to consider an automaton, called FRA-cell, to model
the sequence of nodal cell cycle. The model is based on the following assumptions:
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(i) The cell cycle consists of three successive stages along which the cell pro-
gresses: firing, refractory and activity. Upon completion of activity stage,
the cell immediately enters a new cycle in firing stage.

(ii) Each stage is characterized by its maximal duration which is represented
by consecutive stage states. The number of states for each stage is fixed.
As soon as the duration of a given stage is reached, the transition to the
first state of next stage of the cell cycle occurs.

(iii) The time at which the transition takes place can vary in a random manner.
(iv) If a cell is in activity stage and receives a stimulus then it switches to firing

stage.
(v) If a cell is in refractory stage and receives a stimulus then it stays longer

in this stage.

The FRA-Cell Model

(a) LetΣ = {Fi, Rj , Ak} be the state space of a FRA-cell, i, j, k ∈ {1, 2, . . . , nσ},
with nσ ∈ {f, r, a} denoting the duration of stages firing, refractory, and
activity, respectively.
Let φ(t) = σl is the phase of a FRA cell at time t, σl ∈ Σ.

(b) The cellular phase in the next time step φ(t+ 1) is

φ(t+ 1) = next(σ)1, with probability

(
l

nσ

)ξ

with l ≤ nσ,

φ(t+ 1) = σl+1, otherwise (1)

where next(firing)=refractory, next (refractory)=activity, next(activity)=
firing forces the transition to the subsequent cellular stage, and ξ > 1.

(c) If a FRA cell receives a stimulus then

φ(t+ 1) = F1, if φ(t) = Al with l = 1, . . . , a, (2)

φ(t+ 1) = Rmax{1,g(l)} if φ(t) = Rl with l = 1, . . . , r, (3)

where g(l) = �l\2�
The rule (1) is probabilistic. It allows to shorten duration of each stage. But
when ξ is large enough then the dynamics becomes deterministic. The rules (1)
and (2) together are adaptation of rules used in models of excitable medium
[9, 11, 10]. The rule (3) was considered in simple models of two interacting cells
only, and, up to our knowledge, it has not been investigated in the network
systems.

2.2 The Tissue Model

Physiology of Pacemaker Tissue. The sinus node tissue is flat without any
fixed structure. Its contents is usually described as heterogeneous populations
of small myocytes [4–8]. The nodal cells form clusters and bundles surrounded
by abundant collagen. The node border is a relatively discrete boundary seen
between the margins of the node and the adjacent atrial tissues. The transmission
of action potentials from cell to cell occurs via large-conductance ion channels,
closely packed in large arrays named gap junctions.
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Assumptions. Following [11] we assume that the pacemaker tissue is well ap-
proximated by a square lattice with open boundary conditions. Each vertex is
occupied by a FRA-cell, but only some of lattice neighboring cellular connections
are established for inter-cellular interactions. Additionally, we inject heterogene-
ity to the network by local and intentional wrinkling of inter-cellular connections.
The procedure of wrinkling is based on Watts-Strogatz [17] rewiring rule. The
intentionality of wrinkling is realized by preferential unlinking from the rare con-
nected neighbors. The locality means that only cells from the close neighborhood
can be linked instead. The network of interactions does not evolve. Details of the
wrinkling algorithm are given in [18]. Moreover, we assume that cells in firing
stage are the only source of stimuli to nearest neighbors.

The Model of Network Interactions

(A) A FRA-network of density d consists of N = L × L FRA-cells located
in vertices of square lattice, where any two cells of Moore neighborhood
are connected to interact with probability d. The boundary conditions of a
lattice are open.

(B) Let a be a FRA-cell and N (a) be the set of cells interacting with cell a.
Let b ∈ N (a). For a given p ∈ [0, 1], probability pbreak to unlink cell b from
the cell a is as follows

pbreak =
p

deg(b)

where deg(b) = card N (b) is the vertex degree of cell b. A randomly chosen
cell b′ ∈ N (b) is linked to cell a in place of cell b. So, finally b′ ∈ N (a).
The procedure is repeated J Monte Carlo time steps.

Unlinking from a leaf is forbidden. In total, the probability for rewiring of each
link is p∗J . Let us recall that Moore neighborhood on a square lattice comprises
the eight cells surrounding the central cell.

2.3 The Control System

The Physiology of the Cardiac Heart Contraction Control. Depolariza-
tion of the sinus node cells results in the heart contractions about 100 times per
minute. This high rate is constantly modified by the activity of sympathetic and
parasympathetic nerve fibers. Parasympathetic activation basically decreases the
pacemaker rate by decreasing if current. The activation of the sympathetic part
of the autonomic regulation acts contrary.

Assumptions. We assume that autonomic regulation acts tonically what re-
veals in the sensitivity of a FRA-cell to interact with its neighbors.

The Model

Let N(a, t) = card {a′ ∈ N (a)|φa′ (t) = Fi, i = 1, ..., f} be number of cells
interacting with a which at t are in firing stage.
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Then for a given F = 0, 1, ... and R = 0, 1, ..
If N(a, t) > F then rule (2) applies.
If N(a, t) > R then rule (3) applies.

So, F is the sensitivity threshold for interaction of cell a in activity stage, and
R is the sensitivity threshold for interaction of cell a in refractory stage.

3 Results

3.1 Kuramoto Order Parameters to Quantify Collective States

If there is some variation among N interacting oscillators, namely, when an os-
cillator is isolated then oscillates with own intrinsic frequency, then macroscopic
synchronization means that the quantity:

Kf =
M

N
, (4)

has non-zero value. Here M is the size of the largest group of oscillators that
attain the same mean frequency. This parameter of synchrony perfectly fits to
neuronal interactions. However, in the case of short-range and pulse-like inter-
actions, the more accurate measure of the level of synchrony in a collections of
N phase oscillators φl(t) is given by the following quantity:

Kφ =
1

N

∣∣∣∣∣
N∑
l=1

eiφl

∣∣∣∣∣ , (5)

If all oscillators have the same phase then Kφ = 1. If phases are scattered at
random then Kφ is close to zero. Hence, this order parameter quantifies the
degree of phase synchronization, whereas Kf measures the degree of frequency
synchronization. A non-zero Kφ implies a non-zero Kf , but the opposite is not
true.

It turns out [13] that if FRA-network is homogeneous (no wrinkling) and
FRA-cell dynamics is deterministic (ξ >> 1) then system, evolving under rules
(1) and (2) only, is led to states with the perfect adjustment of frequency (hence,
Kf = 1) and with the fixed arrangement of cellular phases. The phases of neigh-
boring cells differ by ±1. Such organization of phases denotes emergence of
spiral-wave patterns. The stationary state oscillates either with the natural cel-
lular period T = f + r+ a or with the shortest possible: T ∗ = f + r+1. Rarely,
a period occurs which length is between T ∗ and T . In all these cases, the order
parameter Kφ is significantly greater than 0 and its value depends on periodicity
of the wave. But the spiral patterns are observed in the real cardiac tissue only
in the pathological cases [6–8].

Entering rule (3) results in that any two neighboring cells always gain the
phase difference equal to zero, asymptotically [14]. It means that in the net-
work of FRA-cells we observe the perfect phase synchronization with Kφ = 1.
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This state is called marching cells. Moreover at certain model parameters waves
collapsing inward occur. Again, all such states in the real sinus node tissue are
a manifestation of pathological changes.

Notice that because of (3) the periods of states with stationary wave-patterns
can be elongated. For example, at wave phase adjustment in a line of FRA-
cells, the following pattern is stable:

t− 1 : Ff−2 Ff−1 Ff R1 R1 R2

t : Ff−1 Ff R1 R1 R2 R3

t+ 1 : Ff R1 R1 R2 R2 R4

(6)

what means that the period of the state oscillations is greater than a natural
cell period by 1.

3.2 Results from Simulations

In Figs 3 – 6 the results are shown in terms of order parameters Kf and Kφ for
densities d large enough to observe the collective properties.

From Fig. 3, describing systems with deterministically evolving FRA cells
located on homogeneous networks, we see that the solutions are firmly deter-
mined. The parameter Kf equals to 1 in large intervals of densities d and for
many values of F and R. This means that all cells oscillate with the same period.
Only if F = 3 and R = 0 the value of Kf drops down. Furthermore, when d is
changing, the switch is observed in the state periodicity from oscillations other
than T (shorter than T in case F = 0, 1, or longer than T in case F = 2, 3,) to
the oscillation with T .

States oscillating with period different from T demand permanent entrainment
between cellular states. The transitions are observed for densities in Δc = {d :
0.5 < d < 0.8}. From Fig. 4 we see that there are essential changes in Kφ value
for densities in Δc interval. Outside this interval, if d > Δc, then Kφ often
reaches 1, while in the case of small density the phase synchronization is, in
general, small.

Combining the values of order parameters for models with F = 0 and R = 1
or R = 2 with the dominant oscillations presented in Fig. 3, we can give the
direct interpretation for Kφ values as follows. If a state is a spiral wave with the
shortest period T ∗ then Kφ ≈ 0.5. If a state oscillates with the cellular period T
then Kf ≈ 0.2. These estimates agree with the rough assessment based on the
mean field calculations.

Comparing the listed results to the corresponding properties shown in Fig.
5 we can learn which properties survive inclusion of stochastic dynamics and
heterogeneity into the intercellular connections. The rough observation indicates
that dependence of dominant oscillation on density d is similar to that observed
in the rigid systems. However, now the participation of the dominant period is
much smaller. Notice that for all F and R considered by us, Kf < 0.3. Moreover,
from Fig. 4 we see that Kφ never attains 1. But, on the other hand, Kφ is also
significantly distinct from 0. Hence the high level of phase synchronization is
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Fig. 3. Kuramoto order parameter Kf (empty marks) and the most frequent period
(filled marks) for different densities d, and for different sensitivity F and R in stationary
states obtained from system performing deterministic dynamics on not wrinkled net-
works. Simulation condition: the lattice size N = 104 and f = 9, r = 11, a = 19; plots
represent mean values from 104 time steps and 50 independent simulation experiments.
The first 104 time steps were skipped to let the system stabilize.

achieved in stationary states. The phase synchronization emerges due to the
fact that distributions of periods are concentrated around the dominant period.
In Fig. 6 we show distributions of period lengths for some model parameters. We
see that in most cases the distribution is a modal one. However, also bimodal
distributions appear for densities d ∈ Δc.

It is worth noting, that for the model parameters F = 1, R = 2, 3 and
d ∈ (0.6, 0.7) ⊂ Δc, independently of the cellular dynamics (deterministic or
stochastic) and of network structure (homogeneous or intentionally wrinkled),
the value of Kφ is the same. So the state of the system is firmly kept with the
common oscillations though the value of the period can change from the shortest
oscillations to the natural cellular oscillations. Since the natural systems often
work at the edge of criticality then we hypothesize that these FRA-systems cor-
respond to the natural pacemaker in the best way. The strong support for our
hypothesis comes from the fact that Δc falls into densities which are observed
in the real sinus node tissue [4].
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Fig. 4. Kuramoto order parameter Kφ of stationary states for different density of
stochastic network connections, sensitivity F and R of interactions, cellular dynamics
(deterministic versus stochastic with ξ = 10), and network structure (homogeneous
versus heterogeneous due to wrinkling). Simulations conditions are described in Fig.3

4 Discussion

Cardiac cell cultures are becoming important experimental systems of mini-
mal complexity that capture many of the salient features of myocardial tissue
function and are simple enough that the tissue parameters can be controlled
systematically [11, 12]. Between the two pathological network states of strongly
entrained spiral waves and marching cells which are observed in both computer
and biological tissue models, there are many states with physiologically justified
properties. Hence, by discrete modeling we provide tools to formalize the biolog-
ical observations. Here, especially Kuramoto order parameters Kf , Kφ justified
their ability to qualify and quantify the collective features in the multi parameter
model. However, the next challenge is to send the model results back to physiol-
ogists, so they can use them iteratively as the input in their further experiments.
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Fig. 5. Kuramoto order parameter Kf (empty marks) and the most frequent period
(filled marks) for different densities d, and for different sensitivity F and R in stationary
states obtained from systems driven by stochastic dynamics with ξ = 10, and on
wrinkled networks when p = 0.01, J = 50. Simulations conditions are described in
Fig.3.

Therefore, when closing we concentrate on clarification if the model results are
able to reveal some changes in the sinus node with age.

The function of the sinus node declines with age, leading to a condition called
sick sinus syndrome [5, 8, 21]. Aging causes a decrease in the overall intrinsic
heart rate, and an increase in the nodal conduction time. These changes are
preceded by a period of tissue remodeling — significant structural changes in
the intracellular matrix caused by increase of the collagen tissue. The collagen
deposition can be thought as limiting the plasticity of the network connections
what translates to FRA system as less wrinkled underlying networks of inter-
actions. In consequence, if F = 1, then tendency to the solution with marching
cells appears, see blue lines in Fig. 4. Moreover, together with collagen increase,
the density d could be though as decreased, what leads, according to our results,
to states where strongly entrained spirals emerge.

Age dependent alternations in ion channels (by perturbations in expression
and/or function of genes) influence both the intrinsic cellular cycle and sen-
sitivity of a cell for interactions. For example, there is observed a decrease in
potasium iK current with aging in the rat sinus node which could be linked to the
observed increase in action potential duration with aging [22]. Such properties
can be easily coded in FRA systems. By varying with durations of particular
stages of FRA-cell cycle one reconstructs effects of changes in particular parts
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Fig. 6. Distribution of periods observed in some stationary state at given model param-
eters: stochastic dynamics, ξ = 10, wrinkling at p = 0.01, J = 0.01. Other parameters
are the same as described under Fig.3.

of the intrinsic cell period. Modifications in values of F and R parameters allow
to reveal effects of the impairment of sensitivity. It appears that if F changes
from 1 to 2 or 3 then only heterogeneity in the network connection which is
strong enough, protects against appearance of entrained spirals. If additionally
R decreases then desynchronization occurs - there is no source of the leading
oscillation independently of the level of heterogeneity.
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