
Giancarlo Mauri
Alberto Dennunzio
Luca Manzoni
Antonio E. Porreca (Eds.)

 123

LN
CS

 7
95

6

12th International Conference, UCNC 2013
Milan, Italy, July 2013
Proceedings

Unconventional Computation
and Natural Computation

Lecture Notes in Computer Science 7956
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Giancarlo Mauri Alberto Dennunzio
Luca Manzoni Antonio E. Porreca (Eds.)

Unconventional Computation
and Natural Computation

12th International Conference, UCNC 2013
Milan, Italy, July 1-5, 2013
Proceedings

13

Volume Editors

Giancarlo Mauri
Alberto Dennunzio
Luca Manzoni
Antonio E. Porreca
Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336/14, 20126 Milan, Italy
E-mail: {mauri, dennunzio, luca.manzoni, porreca}@disco.unimib.it

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39073-9 e-ISBN 978-3-642-39074-6
DOI 10.1007/978-3-642-39074-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940604

CR Subject Classification (1998): F.1, F.2, I.1-2, C.1.3, C.1, J.2-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Starting in 2012, the conference series previously known as Unconventional Com-
putation (UC) changed its name to Unconventional Computation and Natural
Computation (UCNC). The name change was initiated to reflect the evolution
in the variety of fields in the past decade or so. The series is genuinely inter-
disciplinary and it covers theory as well as experiments and applications. It is
concerned with computation that goes beyond the classic Turing model, such as
human-designed computation inspired by nature, and with the computational
properties of processes taking place in nature.

The topics of the conference typically include: quantum, cellular, molecu-
lar, neural, DNA, membrane, and evolutionary computing; cellular automata;
computation based on chaos and dynamical systems; massive parallel compu-
tation; collective intelligence; computation based on physical principles such as
relativistic, optical, spatial, collision-based computing; amorphous computing;
physarum computing; hypercomputation; fuzzy and rough computing; swarm
intelligence; artificial immune systems; physics of computation; chemical com-
putation; evolving hardware; the computational nature of self-assembly, devel-
opmental processes, bacterial communication, and brain processes.

The first venue of the UCNC (previously UC) series was Auckland, New
Zealand, in 1998. Subsequent sites of the conference were Brussels, Belgium, in
2000; Kobe, Japan, in 2002; Seville, Spain, in 2005; York, UK, in 2006; Kingston,
Canada, in 2007; Vienna, Austria, in 2008; Ponta Delgada, Portugal, in 2009;
Tokyo, Japan, in 2010; Turku, Finland, in 2011 and Orléans, France, in 2012.
Each meeting was accompanied by its own proceedings1.

The 12th conference in the series, UCNC 2013, was organized in 2013 in Milan
(Italy) by the Department of Informatics, Systems and Communication (DISCo)
on the beautiful campus of the University of Milano-Bicocca during July 1–5,
2013.

Milan is situated in the north of Italy, in the middle of the vast area of the
Padan Plain, in a truly strategic position for the paths that lead to the heart of
Europe. It is the Italian capital of finance and advanced tertiary sector.

Milan is truly one of the few “complete” Italian cities, able to reconcile eco-
nomic and social realities. It is active in many fields of culture and research. It
is a busy and advanced metropolis that attracts millions of people every year,
offering a multitude of opportunities in the fields of education, employment,
entertainment, and tourism.

1 See http://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/uc.html.

VI Preface

The roots of Milan are planted in a past that has bestowed on us an artistic
and cultural heritage; this is not rare for towns in Italy, but not all of them have
so much to offer:

– The world-famous L’Ultima Cena (The Last Supper) by Leonardo Da Vinci

– The Opera House, La Scala

– The Sforza Castle

– The numerous museums and art galleries: many of the treasures of Milan are
hidden to the less attentive eyes of its inhabitants, but it is all there, waiting
to be discovered

Milan also has a rich calendar of events to cater for all tastes, be they cultural,
recreational or sports; the city certainly has something to offer for everyone.

UCNC 2013 was co-located with Computability in Europe 2013 (CiE 2013),
with three common invited speakers: Gilles Brassard (Université de Montréal),
Grzegorz Rozenberg (Leiden Institute of Advanced Computer Science and Uni-
versity of Colorado at Boulder), and Endre Szemerédi (Hungarian Academy
of Sciences, Rutgers University). Other invited speakers were Enrico Formenti
(Université Nice Sophia Antipolis, France), John V. Tucker (Swansea University,
UK), and Xin Yao (University of Birmingham, UK).

There were 46 submissions from 26 countries including Austria, Bangladesh,
Canada, Finland, France, Germany, Hungary, India, Iran, Italy, Japan, Latvia,
Malaysia, Moldova, Morocco, New Zealand, Norway, Philippines, Poland, Por-
tugal, Romania, Spain, Sweden, Turkey, UK, and the USA. Each paper was
reviewed by three referees and discussed by the members of the Program Com-
mittee. Finally, 20 regular papers were selected for presentation at the conference.
In addition, there were eight posters on display at the conference.

We warmly thank all the invited speakers and all the authors of the submitted
papers. Their efforts were the basis of the success of the conference. We would like
to thank all the members of the Program Committee and the external referees.
Their work in evaluating the papers and comments during the discussions was
essential to the decisions on the contributed papers. We would also like to thank
all the members of the UCNC Steering Committee, for their ideas and efforts in
forming the Program Committee and selecting the invited speakers.

We wish to thank the conference sponsors: the University of Milano-Bicocca,
the Italian Chapter of the European Association for Theoretical Computer Sci-
ence, and Micron Foundation.

The conference has a long history of hosting workshops. The 2013 edition in
Milan hosted three workshops:

– CoSMoS 2013, the 6th International Workshop on Complex Systems Mod-
elling and Simulation2 (Monday, July 1)

2 http://www.cosmos-research.org/cosmos2013.html

Preface VII

– BioChemIT 2013, the Third COBRA Workshop on Biological and Chemical
Information Technologies3 (Friday, July 5)

– WIVACE 2013, the Italian Workshop on Artificial Life and Evolutionary
Computation4 (July 1–2)

July 2013 Giancarlo Mauri
Alberto Dennunzio

Luca Manzoni
Antonio E. Porreca

3 http://www.cobra-project.eu/biochemit2013_call.html
4 http://wivace2013.disco.unimib.it/

Organization

Program Committee

Andrew Adamatzky University of the West of England, UK
Selim G. Akl Queen’s University, Canada

Olivier Bournez École Politechnique, France
Cristian S. Calude University of Auckland, New Zealand
José Félix Costa Techinical University of Lisbon, Portugal
Erzsébet Csuhaj-Varjú Eötvös Loránd University, Hungary
Alberto Dennunzio University of Milano-Bicocca, Italy
Michael J. Dinneen University of Auckland, New Zealand
Marco Dorigo Université Libre de Bruxelles, Belgium
Jérôme Durand-Lose Université d’Orléans, France
Masami Hagiya University of Tokyo, Japan
Oscar H. Ibarra University of California, Santa Barbara, USA
Jarkko Kari University of Turku, Finland
Lila Kari University of Western Ontario, Canada
Viv Kendon University of Leeds, UK
Giancarlo Mauri University of Milano-Bicocca, Italy (Chair)
Mario J. Pérez-Jiménez Universidad de Sevilla, Spain
Kai Salomaa Queen’s University, Canada
Hava Siegelmann University of Massachusetts Amherst, USA
Susan Stepney University of York, UK
Hiroshi Umeo Osaka Electro-Communication University,

Japan
Leonardo Vanneschi Universidade Nova de Lisboa, Portugal
Damien Woods California Institute of Technology, USA

Steering Committee

Thomas Back Leiden University, The Netherlands
Cristian S. Calude University of Auckland, New Zealand

(Founding Chair)
Lov K. Grover Bell Labs, Murray Hill, New Jersey, USA
Nataša Jonoska University of South Florida, USA (Co-chair)
Jarkko Kari University of Turku, Finland (Co-chair)
Lila Kari University of Western Ontario, Canada
Seth Lloyd Massachusetts Institute of Technology, USA
Giancarlo Mauri University of Milano-Bicocca, Italy
Gheorghe Păun Institute of Mathematics of the Romanian

Academy, Romania

X Organization

Grzegorz Rozenberg Leiden University, The Netherlands
(Emeritus Chair)

Arto Salooma University of Turku, Finland
Tommaso Toffoli Boston University, USA
Carme Torras Institute of Robotics and Industrial

Informatics, Barcelona, Spain
Jan van Leeuwen Utrecht University, The Netherlands

Organizing Committee

Alberto Dennunzio University of Milano-Bicocca, Italy
Teresa Gallicchio University of Milano-Bicocca, Italy
Luca Manzoni University of Milano-Bicocca, Italy
Giancarlo Mauri University of Milano-Bicocca, Italy
Antonio E. Porreca University of Milano-Bicocca, Italy (Chair)
Pamela Pravettoni University of Milano-Bicocca, Italy
Silvia Robaldo University of Milano-Bicocca, Italy
Mariella Talia University of Milano-Bicocca, Italy

Additional Reviewers

James Aspnes
Florent Becker
Ed Blakey
Mike Domaratzki
Claudio Ferretti
Yuan Gao
Zsolt Gazdag
Sama Goliaei
Emmanuel Hainry
Stuart Hasting
Mika Hirvensalo
Tarik Kaced
Yoshihiko Kakutani
Ibuki Kawamata
Yun-Bum Kim
Satoshi Kobayashi
Steffen Kopecki
Raluca Lefticaru
Roberto Leporini
Friedhelm Meyer auf der Heide
Julian Miller
Valtteri Niemi
Marco S. Nobile

Diogo Poças
Alexandru Popa
Antonio E. Porreca
Simon Poulding
Giuseppe Prencipe
Afroza Rahman
Bala Ravikumar
John Reif
Andrei Romashchenko
Francisco J. Romero-Campero
Louis Rose
Adam Sampson
Shinnosuke Seki
José M. Sempere
Amirhossein Simjour
Yasuhiro Suzuki
Krisztián Tichler
Nicholas Tran
Kuai Wei
Abuzer Yakaryilmaz
Claudio Zandron
Rosalba Zizza

Organization XI

Sponsors

We deeply thank the sponsors that made UCNC 2013 possible:

Università degli Studi
di Milano-Bicocca

Dipartimento di Informatica,
Sistemistica e Comunicazione

European Association for
Theoretical Computer Science
Italian Chapter

Micron Foundation

Table of Contents

Invited Papers

Asymptotic Dynamics of (Some) Asyncronous Cellular Automata
(Abstract) . 1

Enrico Formenti

Processes Inspired by the Functioning of Living Cells: Natural
Computing Approach (Abstract) . 3

Andrzej Ehrenfeucht and Grzegorz Rozenberg

Regular Papers

On the Power of Threshold Measurements as Oracles 6
Edwin Beggs, José Félix Costa, Diogo Poças, and John V. Tucker

Size Lower Bounds for Quantum Automata . 19
Maria Paola Bianchi, Carlo Mereghetti, and Beatrice Palano

Population Protocols on Graphs: A Hierarchy . 31
Olivier Bournez and Jonas Lefèvre

Spectral Representation of Some Computably Enumerable Sets
with an Application to Quantum Provability . 43

Cristian S. Calude and Kohtaro Tadaki

On the Power of P Automata . 55
Erzsébet Csuhaj-Varjú and György Vaszil

Array Insertion and Deletion P Systems . 67
Henning Fernau, Rudolf Freund, Sergiu Ivanov,
Markus L. Schmid, and K.G. Subramanian

Boolean Logic Gates from a Single Memristor via Low-Level Sequential
Logic . 79

Ella Gale, Ben de Lacy Costello, and Andrew Adamatzky

Light Ray Concentration Reduces the Complexity of the
Wavelength-Based Machine on PSPACE Languages 90

Sama Goliaei and Mohammad-Hadi Foroughmand-Araabi

Small Steps toward Hypercomputation via Infinitary Machine Proof
Verification and Proof Generation . 102

Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord

XIV Table of Contents

Secure Information Transmission Based on Physical Principles 113
Dima Grigoriev and Vladimir Shpilrain

Hypergraph Automata: A Theoretical Model for Patterned
Self-assembly . 125

Lila Kari, Steffen Kopecki, and Amirhossein Simjour

Modeling Heart Pacemaker Tissue by a Network of Stochastic
Oscillatory Cellular Automata . 138

Danuta Makowiec

Reaction Systems Made Simple: A Normal Form and a Classification
Theorem . 150

Luca Manzoni and Antonio E. Porreca

Voting with a Logarithmic Number of Cards . 162
Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone

Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient
Computation and Efficient Assembly of Shapes . 174

Jennifer E. Padilla, Matthew J. Patitz, Raul Pena,
Robert T. Schweller, Nadrian C. Seeman, Robert Sheline,
Scott M. Summers, and Xingsi Zhong

Control Languages Associated with Tissue P Systems 186
Ajeesh Ramanujan and Kamala Krithivasan

Geometric Methods for Analysing Quantum Speed Limits:
Time-Dependent Controlled Quantum Systems with Constrained
Control Functions . 198

Benjamin Russell and Susan Stepney

Numerical Analysis of Quantum Speed Limits: Controlled Quantum
Spin Chain Systems with Constrained Control Functions 209

Benjamin Russell and Susan Stepney

Combinatorial Optimization in Pattern Assembly . 220
Shinnosuke Seki

Towards Computation with Microchemomechanical Systems 232
Andreas Voigt, Rinaldo Greiner, Merle Allerdißen, and
Andreas Richter

Posters

Evolutionary Programming Using Distribution-Based and Differential
Mutation Operators . 244

Md. Tanvir Alam Anik and Saif Ahmed

Table of Contents XV

A P System Parsing Word Derivatives . 246
Artiom Alhazov, Elena Boian, Svetlana Cojocaru,
Alexandru Colesnicov, Ludmila Malahov, Mircea Petic, and
Yurii Rogozhin

Computational Power of Protein Interaction Networks 248
Bogdan Aman and Gabriel Ciobanu

Towards an All-Optical Soliton FFT in the 3NLS-Domain 250
Anastasios G. Bakaoukas

Quantum Random Active Element Machine . 252
Michael Stephen Fiske

Simulating Metabolic Processes Using an Architecture
Based on Networks of Bio-inspired Processors . 255

Sandra Gómez Canaval, José Ramón Sánchez, and Fernando Arroyo

On String Reading Stateless Multicounter 5′ → 3′ Watson-Crick
Automata . 257

László Hegedüs and Benedek Nagy

Relating Transition P Systems and Spiking Neural P Systems 259
Richelle Ann B. Juayong, Nestine Hope S. Hernandez,
Francis George C. Cabarle, and Henry N. Adorna

Author Index . 261

Asymptotic Dynamics of (Some) Asyncronous
Cellular Automata�

(Abstract)

Enrico Formenti

Université Nice Sophia Antipolis, Laboratoire I3S,
2000 Route des Colles, 06903 Sophia Antipolis, France

enrico.formenti@unice.fr

Cellular automata are a well-known discrete model for complex systems charac-
terized by local interactions. Indeed, these local interactions cause the emergence
of a global complex behavior. Cellular automata essentially consist in an infinite
number of identical finite automata arranged on regular grid (Z in this talk).
Each automaton updates its state on the basis of a local rule which takes into
account the state of a fixed number of neighboring automata.

One of the main features of the cellular automata model is that all updates
are synchronous and according to the same local rule. Both of these last require-
ments can be an issue when simulating many natural phenomena. Indeed, strong
homogeneity of time or space seems difficult to apply in some contexts (chemical
reactions in a cell, for instance).

For these reasons, a number of variants relaxing one of these constraints has
been introduced [1,2,4,6,7,8]. In this talk we focus on asynchronicity. After a
short state of art, the attention is turned to m-ACA, a new computational model
which has been introduced in order to try to give a common playground for
a large part of the asynchronous CA models. The main idea is to have some
kind of oracle that, at each time step, tells which cells should be updated.
Clearly, the choice of the oracle deeply influences the final model and its behav-
ior. Care should be taken to avoid either to fall back to the standard model or to
completely destroy computational capabilities [3].

Therefore, the proposal is that each cell (or group of cells) is given a proba-
bility measure which tells if the cell (or the group) should be updated or not.
Moreover, all probabilities are independently distributed and follow some fair-
ness conditions to assure that a cell has a non-zero probability of being eventually
updated and that it is not always updated.

In [3], several basic properties like (μ-)surjectivity and (μ-)injectivity are in-
vestigated proving that almost surely (μ-)surjective CA are almost surely (μ-
)injective and vice-versa. The study of more complex dynamical properties has
just started. Some properties are given for the equicontinuous behavior (i.e.
the less topologically complex) but the overall impression is that finding very

� This work has been partially supported by the French National Research Agency
project EMC (ANR-09-BLAN-0164) and by PRIN/MIUR project “Mathematical
aspects and forthcoming applications of automata and formal languages”.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 E. Formenti

general results is rather difficult. In the spirit of [5], we focus on some particu-
lar sub-classes to get some intuitions in the hope of being able to find general
principles. For the special case of the shift CA (all states are shifted left) we are
going to prove that any fair measure forces an homogenization process so that,
in the limit, with high probability, we shall observe only configurations in which
all automata are in the same state. A similar behavior is observed for a large
class of CA that we try to characterize.

Acknowledgements. The author warmly thanks Alberto Dennunzio, Luca
Manzoni and Giancarlo Mauri for sharing the “m-ACA adventure”.

References

1. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based
models. In: Proceedings of Artificial Life IV, pp. 382–387. MIT Press, Cambridge
(1994)

2. Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D
1, 59–68 (1984)

3. Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: m-asynchronous cellular au-
tomata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp.
653–662. Springer, Heidelberg (2012)

4. Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for
elementary cellular automata. Complex Systems 16(1), 1–27 (2005)

5. Fatès, N., Thierry, E., Morvan, M., Schabanel, N.: Fully asynchronous behavior of
double-quiescent elementary cellular automata. Theor. Comput. Sci. 362(1-3), 1–16
(2006)

6. Lumer, E.D., Nicolis, G.: Synchronous versus asynchronous dynamics in spatially
distributed systems. Physica D 71, 440–452 (1994)

7. Regnault, D., Schabanel, N., Thierry, E.: Progresses in the analysis of stochastic
2d cellular automata: A study of asynchronous 2d minority. Theoretical Computer
Science 410, 4844–4855 (2009)

8. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. BioSystems 51, 123–143 (1999)

Processes Inspired by the Functioning

of Living Cells: Natural Computing Approach

(Abstract)

Andrzej Ehrenfeucht1 and Grzegorz Rozenberg1,2

1 Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309, U.S.A.
2 Leiden Institute of Advanced Computer Science (LIACS)

Leiden University
Niels Bohrweg 1, 2300 RA Leiden

The Netherlands
rozenber@liacs.nl

Natural Computing (see, e.g., [12,13]) is concerned with human-designed com-
puting inspired by nature as well as with computation taking place in nature,
i.e., it investigates models, computational techniques, and computational tech-
nologies inspired by nature as well as it investigates, in terms of information
processing, phenomena/processes taking place in nature.

Examples of the first strand are evolutionary, neural, molecular, and quan-
tum computation, while examples of the second strand are investigations into the
computational nature of self-assembly, the computational nature of developmen-
tal processes and the computational nature of biochemical reactions. Obviously,
the two research strands are not disjoint.

A computational understanding of the functioning of the living cell is one of
the research topics from the second strand. A motivation for this research is
nicely formulated by Richard Dawkins, a world leading expert in evolutionary
biology: ”If you want to understand life, don’t think about vibrant throbbing
gels and oozes, think about information technology”, see [4].

We view this functioning in terms of formal processes resulting from interac-
tions between individual reactions, where these interactions are driven by two
mechanisms, facilitation and inhibition: reactions may (through their products)
facilitate or inhibit each other.

We present a formal framework for the investigation of processes resulting
from these interactions. We provide the motivation by explicitly stating a number
of assumptions that hold for these interactive processes, and we point out that
these assumptions are very different from assumptions underlying traditional
models of computation.

The central formal model of our framework, reaction systems (see [1,5,10]),
follows the philosophy of processes outlined above, and moreover:

(1) it takes into account the basic bioenergetics (flow of energy) of the living
cell,

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 3–5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

4 A. Ehrenfeucht and G. Rozenberg

(2) it abstracts from various technicalities of biochemical reactions to the extent
that it becomes a qualitative rather than a quantitative model, and

(3) it takes into account the fact that the living cell is an open system and so its
behavior (expressed by formal processes) is influenced by its environment.

Our full formal framework (see [1,5]) contains also models that are extensions
of the basic model of reaction systems. The research themes investigated within
this framework are motivated either by biological considerations or by the need
to understand the underlying computations. Some examples of these themes are:

– the notion of time in reaction systems, see [11],
– formation of modules in biological systems, see [9,16],
– understanding decay and its influence on interactive processes, see [3],
– how to include in our framework quantitative aspects of processes in living

cells, see [1,5,9,11],
– static and dynamic causalities, see [2],
– the nature of state transitions in reaction systems, see [6,14,8,15].

We (hope to) demonstrate that the framework of reaction systems is:

(i) well motivated by and relevant for biological considerations, and
(ii) novel and attractive from the theory of computation point of view.

References

1. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction sys-
tems. International Journal of Foundations of Computer Science 22(7), 1499–1517
(2011)

2. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A note on Causalities in Reaction
Systems. Electronic Communications of ECASST 30 (2010)

3. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011)

4. Dawkins, R.: The Blind Watchmaker. Penguin, Harmondsworth (1986)
5. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Qualitative and Quanti-

tative Aspects of a Model for Processes Inspired by the Functioning of the Living
Cell. In: Katz, E. (ed.) Biomolecular Information Processing. From Logic Systems
to Smart Sensors and Actuators, pp. 303–322. Wiley-VCH Verlag, Weinheim (2012)

6. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Minimal Reaction Systems.
In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems
Biology XIV. LNCS (LNBI), vol. 7625, pp. 102–122. Springer, Heidelberg (2012)

7. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for
reaction systems. International Journal of Foundations of Computer Science 21(3),
345–356 (2010)

8. Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction sys-
tems. International Journal of Foundations of Computer Science 21(1), 167–178
(2011)

9. Ehrenfeucht, A., Rozenberg, G.: Events and Modules in Reaction Systems. Theo-
retical Computer Science 376(1-2), 3–16 (2007)

Processes Inspired by the Functioning of Living Cells 5

10. Ehrenfeucht, A., Rozenberg, G.: Reaction Systems. Fundamenta Informaticae 75(1-
4), 263–280 (2007)

11. Ehrenfeucht, A., Rozenberg, G.: Introducing Time in Reaction Systems. Theoret-
ical Computer Science 410(4-5), 310–322 (2009)

12. Kari, L., Rozenberg, G.: The many facets of natural computing. Communications
of the ACM 51(10), 72–83 (2008)

13. Rozenberg, G., Bäck, T., Kok, J. (eds.): Handbook of Natural Computing. Springer
(2012)

14. Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L.,
Silva, A. (eds.) Logic and Program Semantics. LNCS, vol. 7230, pp. 271–282.
Springer, Heidelberg (2012)

15. Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical
Computer Science 466, 87–96 (2012)

16. Schlosser, G., Wagner, G.P. (eds.): Modularity in Development and Evolution. The
University of Chicago Press, Chicago (2004)

On the Power of Threshold Measurements

as Oracles

Edwin Beggs1, José Félix Costa2,3, Diogo Poças2,3,�, and John V. Tucker1

1 College of Science, Swansea University, Singleton Park, Swansea SA2 8PP,
Wales, United Kingdom

2 Department of Mathematics, Instituto Superior Técnico, UTL, Lisbon
3 Centro de Matemática e Aplicações Fundamentais, University of Lisbon

diogopocas1991@gmail.com

Abstract. We consider the measurement of physical quantities that are
thresholds. We use hybrid computing systems modelled by Turing ma-
chines having as an oracle physical equipment that measures thresholds.
The Turing machines compute with the help of qualitative information
provided by the oracle. The queries are governed by timing protocols and
provide the equipment with numerical data with (a) infinite precision,
(b) unbounded precision, or (c) finite precision. We classify the compu-
tational power in polynomial time of a canonical example of a threshold
oracle using non-uniform complexity classes.

1 Introduction

Computation andmeasurement are intimately connected in all sorts of ways.Mea-
surement is a scientific activity supported by a comprehensive axiomatic theory de-
veloped in the 20th Century using the methods of mathematical logic (see [9,11]).
We are developing a new theory ofmeasurementprocesses froman algorithmicper-
spective, in a series of papers (see [2,3,4,5,6,7,8]). At the heart of our theory is the
idea that an experimentermeasures a physical quantity by applying an algorithmic
procedure to equipment, and that we can model the experimenter as a Turing ma-
chine and the equipment as a device connected to the Turing machine as a physical
oracle. The Turing machine abstracts the experimental procedure, encoding the
experimental actions as a program. The physical oracle model is rather versatile:
for example, it accommodates using the measurements in subsequent computa-
tions and, indeed, arbitrary interactions with equipment. Some implications for
the axiomatic theory have been considered in [5].1 Case studies shape the develop-
ment of the theory. The standard oracle to a Turing machine is a set that contains
information to boost the power and efficiency of computation: a query is a setmem-
bership question that is answered in one time step. Experiments require queries
based upon rational numbers (dyadic rationals denoted by finite binary strings).

� Corresponding author.
1 Scientific activity seen as a Turing machine can be found in computational learning
theory (see [10]).

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 6–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On the Power of Threshold Measurements as Oracles 7

The measurement of distance taught us that oracles involve information with pos-
sible error (see [2,4,8]). The measurement of a mass taught us that oracles may
take considerable time to consult (such an experiment is fully analysed in [6,8]).
An important difference is the need of a cost function T of the size of the query
(e.g., a timer) as part of the Turing machine. To measure the value of a physical
quantity, i.e., a real number μ, the experimenter (= the Turing machine) proceeds
to construct approximations (which are generated by oracle consultations).When-
ever possible, a measurement procedure should approximate the unknown quan-
tity from above and from below, in a series of experimental values that converges.
We call such experiments two-sided. Two-sided measurement is the focus of our
previous work (see [8]), and that of axiomatic measurement theory (see [9]). How-
ever, not all measurements can be made this way: some quantities by their nature,
or by the nature of the equipment, are thresholds that can only be approximated
either just from below or just from above. Examples are experiments on activation
thresholds for the neurone and Rutherford scattering. We study threshold experi-
ments in this paper, which are complex and are not yet addressed in the literature.
We prove the following new theorems that indicate the computational power of
threshold oracles and reveal differences with the less complex two-sided case:

Theorem 1.1. (1) If a set A is decided in polynomial time by an oracle Turing
machine coupled with a threshold oracle of infinite precision, then A ∈ P/ log2�.
If a set A is in P/ log�, then A is decided by a oracle Turing machine coupled
with a threshold oracle of infinite precision.2 (2) If a set A is decided by an
oracle Turing machine coupled with a threshold oracle of unbounded or fixed
precision, then A ∈ BPP// log2�. If a set A is in BPP// log�, then A is decided
in polynomial time by a oracle Turing machine coupled with a threshold oracle.3 ,4

Threshold oracles have not yet been considered in the literature (e.g., in [4]) and
the results about two-sided oracles do not apply to these systems. Moreover, the
upper bound known so far for the two-sided oracles with non-infinite precision
is P/poly (except for particular types of two-sided oracles considered in [4] and
[7] for which the upper bounds are P/poly and BPP// log�, respectively).

2 Let B be a class of sets and F a class of functions. The advice class B/F is the class
of sets A for which there exists B ∈ B and some f ∈ F such that, for every word w,
w ∈ A if and only if 〈w, f(|w|)〉 ∈ B. For the prefix advice class B/F� some (prefix)
function f ∈ F must exist such that, for all words w of length less than or equal to
n, w ∈ A if and only if 〈w, f(n)〉 ∈ B. The role of advices in computation theory
is fully discussed e.g. in [1], Chapter 5. We use log2 to denote the class of advice
functions such that |f(n)| ∈ O((log(n))2).

3 BPP//F� is the class of sets A for which a probabilistic Turing machine M, a prefix
function f ∈ F�, and a constant γ < 1

2
exist such that, for every length n and input

w with |w| ≤ n, M rejects 〈w, f(n)〉 with probability at most γ if w ∈ A and accepts
〈w, f(n)〉 with probability at most γ if w /∈ A.

4 Note that in experiments where the lower/upper bounds are P/poly for the infinite
precision case, the unbounded comes together because BPP//poly = P/poly. In the
threshold experiments, however, the unbounded and finite precision cases display
identical power.

8 E. Beggs et al.

2 Threshold Experiments

We will begin by listing some examples of threshold experiments and then we
will focus on one particular experiment, the broken balance experiment, which is
canonical.

2.1 The Squid Giant Motor Neurone

This first threshold experiment is inspired in the spiking neurone, such as the
squid giant motor neurone, and it is designed to measure the threshold of ac-
tivation: an electric current ι is injected into the cell and the action potential,
once generated, can be detected along the axon. Suppose that the rest (mem-
brane) potential is ν0 (ν0 ∼ −65mV) and that the threshold electric current is
ι0 (ι0 ∼ 2nA). The goal is to measure the threshold ι0, for some concentration
of the ions: (a) if ι < ι0, then no signal is sent along the axon and (b) if ι ≥ ι0,
a series of action potentials is propagated along the axon. Once the current is
switched off, the rest potential is reset.

2.2 The Photoelectric Effect Experiment

The equipment consists of a metallic surface, a source of monochromatic light
and an electron detector. Each photon of the light beam has energy E = hf ,
where h is the Planck constant and f is the frequency of the light. On the other
hand, the metallic surface is characterised by a value φ = hf0 of energy, where f0
is the minimum (threshold) frequency required for photoelectric emission. The
goal is to measure f0, and to that end we can send a light beam with frequency
f : (a) if f ≤ f0, then no electron escapes the surface and (b) if f > f0, then
the electrons are ejected with kinetic energy E = h(f − f0). In this way, the
photoelectric experiment is a threshold experiment, since we only get a response
whenever the light beam frequency exceeds the threshold frequency.

z y

Rigid block

O

h

Fig. 1. Schematic representation of the broken balance experiment

2.3 The BBE: Broken Balance Experiment

The experiment consists of a balance scale with two pans (see Figure 1). In the
right pan we have some body with an unknown mass y. To measure y we place
test masses z on the left pan of the balance: (a) if z < y, then the scale will not
move since the rigid block prevents the right pan from moving down, (b) if z > y,
then the left pan of the scale will move down, which will be detected in some

On the Power of Threshold Measurements as Oracles 9

way and (c) if z = y, then we assume that the scale will not move since it is in
equilibrium. We assume the following characteristics of the apparatus inter alia:
(a) y is a real number in [0, 1], (b) the mass z can be set to any dyadic rational in
the interval [0, 1], and (c) a pressure-sensitive stick is placed below the left side of
the balance, such that, when the left pan touches the pressure-sensitive stick, it
reacts producing a signal. In the context of classical, pure Newtonian mechanics
of the rigid body, in the perfect Platonic world, once we assume that the test
mass weighs z and the unknown mass weighs y, the cost of the experiment,
Texp(z, y), which is the time taken for the left pan of the balance to touch the
pressure stick, is given by:

[Texp(z, y) = τ ×
√

z + y

max(0, z − y) for all y, z ∈ R.5] (1)

3 The BBE Machine as a Means to Measure Real
Numbers

In what follows the suffix operation �n on a word w, w�n, denotes the prefix
sized n of the ω-word w0ω, no matter the size of w. Letters such as a, b, c, ...,
denote constants. To the oracle Turing machine modelM we associate a schedule
T : N→ N, a time constructible function such that T (�) steps of busy waiting of
M are needed for the oracle to provide an answer ‘yes’ or ‘timeout’, resulting
in a transition ofM to the state qyes or qtimeout, respectively. Everything about
setting an oracle Turing machine coupled with a physical experiment as oracle
can be found in [2,6].

A larger variety of experiments could have been mentioned (such as Ruther-
ford’s scattering experiment). However, since the BBE is fairly simple to analyse
and understand, and as it displays the properties of threshold experiments, we
will focus on it. Just as in previous investigations (see, e.g., [2,6,7]), we will con-
sider different types of precision, i.e., different communication protocols between
the experimenter/Turing machine and the oracle/analogue device: (a) infinite
precision: when the dyadic z is read in the query tape, a test mass z is simul-
taneously placed in the left pan, (b) unbounded precision: when the dyadic z is
read in the query tape, a test mass z′ is simultaneously placed in the left pan
such that z−2−|z| ≤ z′ ≤ z+2−|z| and (c) fixed precision ε > 0: when the dyadic
z is read in the query tape, a test mass z′ is simultaneously placed in the left
pan such that z − ε ≤ z′ ≤ z + ε. In the last two cases, z′ is assumed to be an
independent random variable, with a uniform distribution on the error interval.
In what follows, Mass(m��) denotes the action that triggers the BBE experiment
with mass m��. Depending on the context, the experiment is performed either
with infinite, unbounded or finite precision, as explained above.

5 This expression for the time, specifically exhibiting an exponential growth on the
precision of z with respect to the unknown y, is typical in physical experiments,
regardless of the concept being measured. The constant τ depends on the geometry
of the lever, the value of h and the acceleration of gravity g.

10 E. Beggs et al.

Definition 3.1. We say that a set A is decidable by an infinite precision BBE
machine in polynomial time if there is an oracle Turing machineM, an unknown
mass y and a time schedule T such that M decides A and runs in polynomial
time. We say that a set A is decidable by an unbounded (or fixed) precision BBE
machine in polynomial time if there is an oracle Turing machine M running in
polynomial time, an unknown mass y, a time schedule T , and some 0 < γ < 1/2
such that, for any input word w, (a) if w ∈ A, thenM accepts w with probability
at least 1− γ and (b) if w �∈ A, then M rejects w with probability at least 1− γ.

Algorithm “Binary Search” :

Input number � ∈ N; % number of places to the right of the left leading 0
x0 := 0; m := 0, x1 := 1;
While x1 − x0 > 2−� Do Begin

m := (x0 + x1)/2;
s := Mass(m��); % Proc. Mass is either deter. or stoch. and takes time T (�)
If s = ‘yes’ Then x1 := m Else x0 := m;

End While;
Output x0.

Fig. 2. The experimental procedure Mass takes the scheduled time T (�), where � is the
size of the query and T an arbitrary time constructible function

Algorithm “Search(ε, h)” :

Input number � ∈ N; % number of places to the right of the left leading 0

c := 0; ζ := 22�+h; % h is used to bound the probability of error

Repeat ζ times
s := Mass(1��); % Recall that this step takes T(�) units of time

If s = ‘yes’ Then c := c+ 1;
End Repeat;

Output c/ζ.

Fig. 3. The experimental procedure Mass is stochastic for the fixed precision case

Proposition 3.1. (1) Let s be the result of Mass(m) in Figures 2 and 3, for an
unknown mass y and time schedule T . In the infinite precision scenario, (a) if
s =‘yes’, then y < m and (b) if s =‘timeout’, then y > m − (τ/T (|m|))2.
In the unbounded precision scenario, (a) if the oracle Mass(m) answers ‘yes’,
then y < m + 2−|m| and (b) if the oracle Mass(m) answers ‘timeout’, then
y > m − 2−|m| − (τ/T (|m|))2. (2) For any unknown mass y and any time
schedule T , (a) the time complexity of algorithm of Figure 2, both in the infinite
and unbounded precision scenarios, for input �, is O(�T (�)), (b1) in the infinite
precision case, for all k ∈ N, there exists � ∈ N such that T (�) ≥ τ2k/2 and the

On the Power of Threshold Measurements as Oracles 11

output is a dyadic rational m such that |y −m| < 2−k, (b2) in the unbounded
precision case, for all k ∈ N, there exists � ∈ N such that � ≥ k + 1 and T (�) ≥
τ2(k+1)/2 and the output is a dyadic rational m such that |y −m| < 2−k, and
(c) moreover, both in the infinite and unbounded precision scenarios, � is at most
exponential in k and, if T (k) is exponential in k, then the value of � witnessing
(b) can be taken to be linear in k. (3) For all s ∈ (0, 1), ε ∈ (0, 1/2), h ∈ N, and
time schedule T , (a) the time complexity of algorithm of Figure 3 for input � is
O(22�T (�)), (b) for all k ∈ N there exists � ∈ N such that T (�) > τ2(k+1)/2/

√
2ε

and thus, with probability of error 2−h, the output of the algorithm is a dyadic
rational m such that |s−m| < 2−�, and (c) if T (k) is exponential in k, then the
value of � witnessing the above proposition is linear in k.

In both cases of unbounded and finite precision, the experiment becomes prob-
abilistic and we can use it to simulate independent coin tosses and to produce
random strings. We can state (see [13,2]):

Proposition 3.2. (1) For all unknown mass y and all time schedule T there is
a dyadic rational z and a real number δ ∈ (0, 1) such that the result of Mass(z)
is a random variable that produces ‘yes’ with probability δ and ‘timeout’ with
probability 1− δ. (2) Take a biased coin with probability of heads δ ∈ (0, 1) and
let γ ∈ (0, 1/2). Then there is an integer N such that, with probability of failure
at most γ, we can use a sequence of independent biased coin tosses of length Nn
to produce a sequence of length n of independent fair coin tosses.

4 Lower Bounds on the BBE Machine

We encode an advice function (f : N → {0, 1}�) ∈ log� into a real number
μ(f) ∈ (0, 1) by replacing every 0 by 100, every 1 by 010 and adding 001 at the
end of the codes for f(2k), with k ∈ N (see Section 6(c) of [2]). These numbers
belong to the Cantor set C3.

Theorem 4.1. If A ∈ P/ log�, then A is decidable by a BBE machine with
infinite precision in polynomial time.

Proof: Let f be a prefix function in log� andM′ be a Turing machine running on
polynomial time such that, for any natural number n and any word w such that
|w| ≤ n, w ∈ A iff M′ accepts 〈w, f(n)〉. Let y = μ(f) and T any exponential
time schedule. Since f ∈ log, there are constants a, b ∈ N such that, for all n,
|f(n)| ≤ a�log(n)� + b. For each n ∈ N, let kn = 3(a + 1)�log(n)� + 3b + 8.
Resorting to Proposition 3.1 (2) (b1) and (c), there is a value of �, linear in
kn (and thus linear in �log(n)�), such that T (�) > τ2kn/2 and so the result of
running the algorithm of Figure 2 for input � is a dyadic rational m such that
|y −m| < 2−kn . Then, by Cantor C3 properties,6 m and y coincide in the first

6 For every x ∈ C3 and for every dyadic rational z ∈ (0, 1) with size |z| = m, (a) if
|x − z| ≤ 1/2i+5, then the binary expansions of x and z coincide in the first i bits
and (b) |x− z| > 1/2m+10.

12 E. Beggs et al.

kn − 5 = 3(a + 1)�log(n)� + 3(b + 1) bits, which means that m can be used to
decode f(2�log(n)�). The oracle machine M that reads the dyadic m and then
simulates M′ for the input word 〈w, f(2�log(n)�)〉 decides A. Furthermore, from
Proposition 3.1 (2) (a) and the fact that A ∈ P/ log�, the time complexity of
these activities is polynomial in n. �

Theorem 4.2. If A ∈ BPP// log�, then (a) A is decidable by a BBE machine
with unbounded precision in polynomial time and (b) A is decidable by a BBE
machine with fixed precision ε ∈ (0, 1/2) in polynomial time.

Proof: Herein we prove (a) and leave (b) to the full paper. LetM′ be the advice
Turing machine working in polynomial time p3, f ∈ log� the prefix function and
γ3 ∈ (0, 1/2) the constant witnessing that A ∈ BPP// log�. Let a, b ∈ N be
such that, for all n, |f(n)| ≤ a�log(n)� + b. Let γ2 be such that γ3 + γ2 < 1/2.
Let y = μ(f) and consider any exponential time schedule T . By Proposition
3.2 (1), there is a dyadic rational z that can be used to produce independent
coin tosses with probability of heads δ ∈ (0, 1). This rational depends only on
y and T and can be hard-wired into the machine. By Proposition 3.2 (2), we
can take an integer N (depending on δ and γ2) such that we can use Nn biased
coin tosses to simulate n fair coin tosses, with probability of failure at most γ2.
For each n ∈ N, let kn = 3(a+ 1)�log(n)�+ 3b+ 8. By Proposition 3.1 (2) (b2)
and (c), there is �, linear in kn, such that the result of the algorithm of Figure
2 in the case of unbounded precision, for input �, is a dyadic rational m such
that |y − m| < 2−kn , so that, by the Cantor set properties, m can be used to
decode f(2�log(n)�). We design a oracle machine M that, on input w of size n,
starts by running Binary Search for input � and then uses the result to decode
the advice μ(f). In the next step, the machine uses the dyadic rational z to
produce a sequence of Np3(n) independent biased coin tosses and extract from
it a new sequence of p3(n) independent fair coin tosses. If it fails (which may
happen with probability at most γ2), then the machine rejects w. Otherwise
the machine simulatesM′ on input 〈w, f(2�log(n)�)〉 using the sequence of p3(n)
fair coin tosses to decide the path of the computation of M′. The machine M
decides A in polynomial time. If w ∈ A, thenM rejects w if it failed to produce
the sequence of fair coin tosses or ifM′ rejected w. The probability of rejecting
w is bounded by γ2 + γ3. On the other hand, if w �∈ A, then M accepts w if it
produced a sequence of fair coin tosses and if M′ accepted w, and this happens
with probability at most γ3. This means that the error probability of M is
bounded by constant γ2 + γ3 which is less than 1/2. By Proposition 3.1 (2) (a),
the time complexity of the first step is O(�T (�)). Since � is logarithmic in n and
T is exponential in �, the result is bounded by some polynomial in n, p1(n). The
time complexity of the second step is also bounded by some polynomial p2 in n,
since we require only a polynomial amount of Np3(n) biased coin tosses. Finally,
since M′ runs in polynomial time p3, we conclude that M runs in polynomial
time O(p1 + p2 + p3). �

On the Power of Threshold Measurements as Oracles 13

5 Upper Bounds on the BBE Machine

5.1 P/ log� is an Upper Bound for the Infinite Precision Case

We introduce a sequence of real numbers called boundary numbers. These are
defined in terms of the time Texp(z, y) taken by the experiment for test value
z and unknown value y (see the timing Equation (1) in 2.3 for an example of
this), and the time schedule T : N → N which used to determine the output
‘timeout’.

Definition 5.1. Let y ∈ (0, 1) be the unknown mass and T a time schedule.
Then, for all k ∈ N, we define wk ∈ (0, 1) as the number such that Texp(wk, y) =
T (k). We also define zk as zk = wk�k.

For any oracle query z of size k, (a) if z ≤ zk,
7 then the result of the experiment

is ‘timeout’ and (b) if z > zk, then the result of the experiment is ‘yes’. Notice
that zk is precisely the result of the algorithm for input k and as such, by knowing
zk, we can obtain the result of any experiment of size k (in the infinite precision
case) without having to perform it. This is the core idea of the two following
proofs.

Theorem 5.1. If A is a set decidable by a BBE machine with infinite pre-
cision in polynomial time and the chosen time schedule is exponential, then
A ∈ P/ log2�.

Proof: Suppose that A is decided by a BBE machine M in polynomial time,
with exponential time schedule T . Since T is exponential and the running time
is polynomial, we conclude that the size of the oracle query grows at most loga-
rithmically in the size of the input word, i.e., there are constants a, b ∈ N such
that, for any input word of size n, the computation of M only queries words
with size less than or equal to a�log(n)�+b. Consider the advice function f such
that f(n) encodes the word z1#z2# · · ·#zt, where t = a�log(n)�+b. We observe
that f is a prefix function and |f(n)| ∈ O(t− 1+

∑t
i=1 i) = O(t2) = O(log

2(n)).
Furthermore, we can use f(n) to determine the answer to any possible oracle
query of size less than a�log(n)� + b. To decide the set A in polynomial time
with advice f , simply simulate the original machine M on the input word and,
whenever M is in the query state, simulate the experiment by comparing the
query word with the appropriate zi in the advice function. As this comparison
can be done in polynomial time andM runs in polynomial time too, we conclude
that A can be decided in polynomial time with the given advice. �
Observe that wk ↘ y, where y is the unknown mass. As we are going to see,
under some extra assumptions on the time schedule, the value of zk+1 can be
obtained by adding to the word zk a very few bits of information, shortening the
encoding to O(log(n)) bits.
7 This comparison can be seen either as a comparison between reals — the mass values
—, or as a comparison between binary strings in the lexicographical order — the
corresponding dyadic rationals.

14 E. Beggs et al.

Theorem 5.2. If A is a set decidable by a BBE machine with infinite precision
in polynomial time and the chosen time schedule is T (k) ∈ Ω(2k/2),8 then A ∈
P/ log�.

Proof: Since T (k) ∈ Ω(2k/2), it follows that there exist constants σ, k0 ∈ N such
that T (k) ≥ σ2k/2, for k ≥ k0. By Proposition 3.1 (2) (b1) and (c), we can ensure
that the value of the boundary number wk is such that y < wk < y+2−k+c, for
some constant c ∈ N and for k > k0. This means that, when we increase the size
of k by one bit, we also increase the precision on y by one bit. Let us write the
dyadic rational zk as the concatenation of two strings, zk = xk ·yk, where yk has
size c and xk has size k − c. Note that wk − 2−k+c < xk < wk, i.e. |xk − y| <
2−k+c. The bits of xk provide information about the possibilities for the binary
expansion of y. We show that we can obtain xk+1 from xk with just two more bits
of information. Suppose that xk ends with the sequence xk = · · · 10�. The only
two possibilities for the first k−c bits of y are · · · 10� or · · · 01�. Thus, xk+1 must
end in one of the following: xk+1 = · · · 10�1 or xk+1 = · · · 10�0 or xk+1 = · · · 01�1
or xk+1 = · · · 01�0. That is, even though xk is not necessarily a prefix of xk+1,
it still can be obtained from xk by appending some information that determines
which of the four possibilities occur. We define the function f(n) as follows:
(a) if n < k0, then f(n) = z1#z2# · · · #znn, (b) f(k0) = f(k0− 1)#xk0##yk0 ,
and (c) if n > k0, then f(n) = f(n− 1)##b1b2yn, where the bits b1b2 are used
to determine one of the four possibilities for xn with respect to xn−1. Observe
also that from f(n) one can recover the values of zk, for all k ≤ n. Moreover,
|f(n)| is linear in n, since all yk have size d. Since A is decided by a BBE
machine M in polynomial time and T is exponential, the size of the oracle
query grows at most logarithmically in the size of the input word. There are
constants d, e ∈ N such that, for any input word of size n, the computation of
M only queries for words with size less than or equal to d�log(n)�+e. We define
the advice function g : N → {0, 1}� such that g(n) = f(d�log(n)� + e). Note
that |g(n)| = O(log(n)) and g(n) can be used to determine the result of any
oracle query for any computation for any input word of size less than or equal
to n. Then, as in the proof of Theorem 5.1, we can devise a Turing machine that
decides A in polynomial time using g as advice, witnessing that A ∈ P/ log�. �

5.2 BPP// log2� Is an Upper Bound for the Unbounded Precision
Case

Our next step is to prove that any set decidable using a BBE machine with
unbounded precision in polynomial time can also be decided in polynomial time
using an advice of a particular size. Given a BBE machine M, we construct
an advice function f with the following properties: (a) for any n, f(n) contains
enough information to answer all queries occurring during the computation ofM
on a word of size n and (b) the size of f(n) grows as slowly as we can accomplish.

8 We define Ω(g) as the class of functions f such that there exist p ∈ N and r ∈ R+

such that, for all n ≥ p, f(n) ≥ rg(n).

On the Power of Threshold Measurements as Oracles 15

In the previous section, we made the observation that a dyadic rational zn of
size n could be used to answer all oracle queries of size up to n. Thus, using an
exponential time schedule, we could simulate any polynomial time computation
having the oracle replaced by an advice containing a logarithmic number of zn’s.
Given a threshold oracle (that is, an oracle with two possible random answers),
we can depict the sequence of the answers in a binary tree, where each path is
labelled with its probability. The leaves of these trees are marked with an accept
or reject. Then, to get the probability of acceptance of a particular word, we
simply add the probabilities for each path that ends in acceptance. The next
basic idea is to think of what would happen if we change the probabilities in the
tree. This means that we are using the same procedure of the Turing machine,
but now with a different probabilistic oracle. Suppose that the tree has depth
t and there is a real number ρ that bounds the difference in the probabilities
labelling all pairs of corresponding edges in the two trees. Proposition 2.1 of [4]
states that the difference in the probabilities of acceptance of the two trees is
at most 2tρ. (Motivation from the automata theory comes from von Neumann’s
article [13].)

Recall the sequence of real numbers wk such that wk is the solution to the
equation Texp(wk, y) = T (k). This means that wk is the mass in which the
time taken for the experiment to return a value equals the time scheduled for
an experiment with a query of size k. The numbers wk verify two important
properties. First, if we round down wk to the first k bits, we get zk. That is,
zk ≤ wk < zk + 2−k. Remember that zk is the result of the algorithm of Figure
2 for input k, or alternatively, is the biggest dyadic rational of size k for which
the result of the experiment is ‘timeout’ (see Proposition 3.1 (1)). The second
property is that, when performing the experiment Mass(zk) in Figure 2, since
the mass z′ is uniformly sampled from the interval (zk − 2−k, zk + 2−k), the
probability of obtaining result ‘yes’ is precisely (zk + 2−k − wk)/(2 × 2−k) =
1/2− (wk−zk)/(2×2−k). From these facts we can conclude that, if we know the
first k+ d bits of wk, then we can obtain an approximation of the probability of
answer ‘yes’ when performing experiment Mass(zk) with an error of at most 2−d.
The same reasoning can be made for the experiment Mass(zk + 2−k), which is
the other dyadic rational of size k for which the experiment is not deterministic.
In this case, the probability of answer ‘yes’ is 1− (wk − zk)/(2× 2−k), and this
value can also be approximated by knowing the first k + d bits of wk, with an
error of at most 2−d. We state without proof the theorem of this section:9

Theorem 5.3. If A is a set decided by a BBE machine in polynomial time with
unbounded precision and exponential time schedule T , then A ∈ BPP// log2�.

5.3 BPP// log2� Is an Upper Bound for the Finite Precision Case

We now establish an upper bound for the class of sets decided by BBE machines
with finite precision in polynomial time. Theorem 5.4 has a proof that follows

9 The proof of this theorem and of Theorem 5.4 can be found in the full paper on
threshold oracles, available on demand.

16 E. Beggs et al.

the same lines of the proof of Theorem 5.3. We discuss now how the bits of the
probability distribution can be computed. The numbers wk are defined as in the
beginning of Section 5.2. The following proposition is straightforward:

Proposition 5.1. For any dyadic rational z of size k let P (z) be the probability
of obtaining answer ‘yes’ when performing the experiment with test mass z,
unknown mass y, finite precision ε, and time schedule T .

P (z) =

⎧⎨
⎩

0 if z < wk − ε
1
2
+ z−wk

2ε
if wk − ε ≤ z < wk + ε

1 if wk + ε ≤ z
.

Our advice function will contain dyadic rational approximations of wk and ε
that will be used to compute approximations to P (z) up to 2−e, for some e ∈ N
and for any dyadic rational z of size k. Let d be an integer such that 2−d ≤ ε,
and let w′

k and ε′ be wk and ε rounded up to the first d + e and d+ e + 1 bits,
respectively. We can then compute (z −wk)/2 with precision 2−d−e−1 and P (z)
with error less than 2−e. The number of digits required grows linearly with the
precision desired on P (z) that in its turn increases logarithmically with the size
of the input word. We conclude that, for queries of size less than or equal to
that of z, only a logarithmic amount of bits of P (z) is required. Again, we state
without proof:

Theorem 5.4. If A is a set decided by a BBE machine in polynomial time with
fixed precision and an exponential time schedule, then A ∈ BPP// log2�.

6 Conclusions

We have introduced methods to study the computational power of threshold
systems, such as the neurone or photoelectric cells, for which quantities can only
be measured either from below or from above. We showed that Turing machines
equipped with threshold oracles in polynomial time have a computational power
between P/ log� and BPP// log2�, no matter whether the precision is infinite,
unbounded or fixed. We expect that hybrid systems in general cannot transcend
such computational power and that this computational power stands to hybrid
systems as the Church-Turing thesis is to Turing machines. Our result weakens
the claims of other classes associated with models of physical systems (see, e.g.,
P/poly in [12]). In studying two-sided experiments (as in [6]), we saw that an
oracle answer such as ‘left’ would imply that z < y and an oracle answer
such as ‘right’ would imply that z > y, where y is the unknown mass and z
the test mass. In a threshold experiment, we saw that the oracle answer ‘yes’
would imply that z > y. However, there exists yet another type of physical
experiment, the vanishing experiment, in which the answer ‘yes’ implies only
that z �= y. An example is the determination of Brewster’s angle in Optics: in
the lab measurement of the critical angle of incidence of a monochromatic light
ray into the surface of separation of two media such that there is a transmitted
ray but no reflected ray. Vanishing experiments are a new type of measurement to

On the Power of Threshold Measurements as Oracles 17

investigate. We think that our model captures (i) the complexity of measurement
and the limits to computational power of hybrid systems and (ii) the limits of
what can be measured (such as in [6]). Reactions towards a gedankenexperiment,
such as measuring mass as in Section 2, as an oracle can express dissatisfaction
as such idealized devices cannot be built. Unfortunately, there seems to be a
diffuse philosophy that considers the Turing machine an object of a different
kind. Clearly, both the abstract physical experiment and the Turing machine are
gedankenexperiments and non-realizable. To implement a Turing machine the
engineer would need either unbounded space and an unlimited physical support
structure, or unbounded precision in some finite interval to code for the contents
of the tape. However, the experiment can be set up to some degree of precison in
the same way that the Turing machine can be implemented up to some degree
accuracy. Knowing that both objects, the Turing machine and the measurement
device, are of the same ideal nature, we argue that the models allow us to study
the power of adding real numbers to computing devices, characteristic of hybrid
machines, and the limits of what can be measured.

Acknowledgements. The research of José Félix Costa and Diogo Poças is
supported by FCT PEst – OE/MAT/UI0209/2011.

References

1. Balcázar, J.L., Dı́as, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer
(1988, 1995)

2. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with ex-
periments as oracles. Proceedings of the Royal Society, Series A (Mathematical,
Physical and Engineering Sciences) 464(2098), 2777–2801 (2008)

3. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: On the complexity of measurement in
classical physics. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008.
LNCS, vol. 4978, pp. 20–30. Springer, Heidelberg (2008)

4. Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with ex-
periments as oracles II. Upper bounds. Proceedings of the Royal Society, Series A
(Mathematical, Physical and Engineering Sciences) 465(2105), 1453–1465 (2009)

5. Beggs, E., Costa, J.F., Tucker, J.V.: Computational Models of Measurement and
Hempel’s Axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity
and Knowledge Construction. Theory and Decision Library A, vol. 46, pp. 155–184.
Springer (2010)

6. Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments gov-
erned by algorithms. Mathematical Structures in Computer Science 20(06), 1019–
1050 (2010) Special issue on Quantum Algorithms, Venegas-Andraca, S.E. (ed.)

7. Beggs, E., Costa, J.F., Tucker, J.V.: Axiomatising physical experiments as oracles
to algorithms. Philosophical Transactions of the Royal Society, Series A (Mathe-
matical, Physical and Engineering Sciences) 370(12), 3359–3384 (2012)

8. Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on
computational power. Mathematical Structures in Computer Science 22(5), 853–
879 (2012), Special issue on Computability of the Physical, Calude, C.S., Barry
Cooper, S. (eds.)

18 E. Beggs et al.

9. Hempel, C.G.: Fundamentals of concept formation in empirical science. Interna-
tional Encyclopedia of Unified Science 2(7) (1952)

10. Jain, S., Osherson, D.N., Royer, J.S., Sharma, A.: Systems That Learn. An Intro-
duction to Learning Theory, 2nd edn. The MIT Press (1999)

11. Krantz, D.H., Suppes, P., Duncan Luce, R., Tversky, A.: Foundations of Measure-
ment. Dover (2009)

12. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
Limit. Birkhäuser (1999)

13. von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In: Automata Studies, pp. 43–98. Princeton University
Press (1956)

Size Lower Bounds for Quantum Automata�

Maria Paola Bianchi, Carlo Mereghetti, and Beatrice Palano

Dip. Informatica, Univ. degli Studi di Milano, v. Comelico 39, 20135Milano, Italy
{bianchi,mereghetti,palano}@di.unimi.it

Abstract. We compare the descriptional power of quantum finite au-
tomata with control language (qfcs) and deterministic finite automata
(dfas). By suitably adapting Rabin’s technique, we show how to convert
any given qfc to an equivalent dfa, incurring in an at most exponential
size increase. This enables us to state a lower bound on the size of qfcs,
which is logarithmic in the size of equivalent minimal dfas. In turn, this
result yields analogous size lower bounds for several models of quantum
finite automata in the literature.

Keywords: quantum finite automata, descriptional complexity.

1 Introduction

While we can hardly expect to see a full-featured quantum computer in the near
future, it is reasonable to envision classical computing devices incorporating
small quantum components. Since the physical realization of quantum systems
has proved to be a complex task, it is reasonable to keep quantum components as
“small” as possible. Thus, it is well worth investigating, from a theoretical point
of view, lower limits to the size of quantum devices when performing certain
tasks, also emphasizing trade-offs with the size of equivalent classical devices.

Small size quantum devices are modeled by quantum finite automata (qfas),
a theoretical model for quantum machines with finite memory. Originally, two
models of qfas are proposed: measure-once qfas (mo-qfas) [8,14], where the
probability of accepting words is evaluated by “observing” just once, at the end
of input processing, and measure-many qfas (mm-qfas) [2,13], having such an
observation performed after each move. Results in the literature (see, e.g., [4]
for a survey) show that mo-qfas are strictly less powerful than mm-qfas which,
in turn, are strictly less powerful than classical (deterministic or probabilistic)
automata. Several modifications to these two original models of qfas are then
proposed, in order to tune computational power and motivated by different pos-
sible physical realizations. Thus, e.g., enhanced [16], reversible [9], Latvian [1]
qfas, and qfas with quantum and classical states [21] are introduced.

Along this line of research, the model of quantum finite automata with control
language (qfcs) is proposed in [4], as a hybrid system featuring both a quantum

� Partially supported byMIUR under the project “PRIN: Automi e Linguaggi Formali:
Aspetti Matematici e Applicativi.”

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 19–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 M.P. Bianchi, C. Mereghetti, and B. Palano

and a classical component. In [4,15], it is proved that the class of languages
accepted with isolated cut point by qfcs coincides with regular languages, and
that qfcs can be exponentially smaller than equivalent classical automata.

A relevant feature of qfcs, of interest in this paper, is that they can naturally
and directly simulate several models of qfas by preserving the size. This property
makes qfcs a general unifying framework within which to investigate size results
for different quantum paradigms: size lower bounds or size trade-offs proved
for qfcs may directly apply to simulated types of qfas as well. In fact, the
need for a general quantum framework is witnessed by several results in the
literature (see, e.g., [2,3,5,7]), showing that qfas can be exponentially more
succinct than equivalent classical automata, by means of techniques which are
typically targeted on the particular type of qfa and not easily adaptable to
other paradigms. So, to cope with this specialization problem, here we study
size lower bounds and trade-offs for qfcs.

After introducing some basic notions, we show in Section 3 how to build from
a given qfc an equivalent dfa. To this aim, we must suitably modify classical
Rabin’s technique [17], since the equivalence relation we choose to define the
state set of the dfa is not a congruence. On the other hand, this relation –
based on the classical Euclidean norm – allows us to directly estimate the cost
of the conversion qfc → dfa by a geometrical argument on compact spaces.
We obtain that the size of the resulting dfa is at most exponentially larger
than the size of the qfc. Stated in other terms in Section 4, this latter result
directly implies that qfcs are at most exponentially more succinct than classical
equivalent devices. Indeed, due to qfcs generality, this succinctness result carries
over other models of qfas, such as mo-qfas, mm-qfas, and reversible qfas.

2 Preliminaries

We quickly recall some notions of linear algebra, useful to describe the quantum
world. For more details, we refer the reader to, e.g., [12,19]. The fields of real
and complex numbers are denoted by R and C, respectively. Given a complex
number z = a + ib, we denote its real part, conjugate, and modulus by zR = a,
z∗ = a− ib, and |z| =

√
zz∗, respectively. We let Cn×m denote the set of n×m

matrices with entries in C. Given a matrix M ∈ Cn×m, for 1 ≤ i ≤ n and
1 ≤ j ≤ m, we letMij denote its (i, j)th entry. The transpose ofM is the matrix
MT ∈ Cm×n satisfying MT

ij = Mji, while we let M∗ be the matrix satisfying

M∗
ij = (Mij)

∗
. The adjoint of M is the matrix M † = (MT)

∗
.

For matricesA,B ∈ Cn×m, their sum is the n×mmatrix (A+B)ij = Aij+Bij .
For matrices C ∈ Cn×m and D ∈ Cm×r, their product is the n × r matrix
(CD)ij =

∑m
k=1 CikDkj . For matrices A ∈ Cn×m and B ∈ Cp×q, their Kronecker

(or tensor) product is the np×mq matrix defined as

A⊗B =

⎛⎜⎝A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

⎞⎟⎠ .

Size Lower Bounds for Quantum Automata 21

When operations can be performed, we have that (A⊗B) · (C⊗D) = AC⊗BD.
A Hilbert space of dimension n is the linear space C1×n of n-dimensional complex
row vectors equipped with sum and product by elements in C, in which the
inner product 〈ϕ, ψ〉 = ϕψ† is defined. From now on, for the sake of simplicity,
we will write Cn instead of C1×n. The norm of a vector ϕ ∈ Cn is given by
‖ϕ‖ =

√
〈ϕ, ϕ〉. We recall the following properties, for ϕ, ψ, ξ, ζ ∈ Cn and r ∈ R:

〈ϕ, ψ〉 = 〈ψ, ϕ〉∗ = 〈ψ∗, ϕ∗〉, 〈ϕ+ ψ, ξ〉 = 〈ϕ, ξ〉+ 〈ψ, ξ〉,
〈rϕ, ψ〉 = r〈ϕ, ψ〉 = 〈ϕ, rψ〉, 〈ϕ⊗ ψ, ξ ⊗ ζ〉 = 〈ϕ, ξ〉〈ψ, ζ〉,

‖ϕ− ψ‖2 = ‖ϕ‖2 + ‖ψ‖2 − 2〈ϕ, ψ〉R, ‖ϕ⊗ ψ‖ = ‖ϕ‖‖ψ‖.

The angle between complex vectors ϕ and ψ is defined as (see, e.g., [18]):

ang(ϕ, ψ) = arccos
〈ϕ, ψ〉R
‖ϕ‖‖ψ‖ .

If 〈ϕ, ψ〉 = 0, we say that ϕ is orthogonal to ψ. Two subspaces X,Y ⊆ Cn are
orthogonal if any vector in X is orthogonal to any vector in Y . In this case, the
linear space generated by X ∪ Y is denoted by X ⊕ Y . A matrix M ∈ Cn×n is
said to be unitary whenever MM † = I =M †M , where I ∈ Cn×n is the identity
matrix. Equivalently, M is unitary if and only if it preserves the norm, i.e.,
‖ϕM‖ = ‖ϕ‖ for any ϕ ∈ Cn. M is said to be Hermitian whenever M = M †.
For a Hermitian matrixO ∈ Cn×n, let c1, . . . , cs be its eigenvalues and E1, . . . , Es

the corresponding eigenspaces. It is well known that each eigenvalue ck is real,
that Ei is orthogonal to Ej , for every 1 ≤ i �= j ≤ s, and that E1⊕· · ·⊕Es = Cn.
So, every vector ϕ ∈ Cn can be uniquely decomposed as ϕ = ϕ1 + · · ·+ ϕs, for
unique ϕj ∈ Ej . The linear transformation ϕ �→ ϕj is the projector Pj onto the
subspace Ej . Actually, the Hermitian matrix O is biunivocally determined by its
eigenvalues and projectors as O =

∑s
i=1 ciPi. We recall that a matrix P ∈ Cn×n

is a projector if and only if P is Hermitian and idempotent (i.e., P 2 = P).
As we will see, unitary matrices describe evolution in quantum systems, while
Hermitian matrices represent observables to be measured.

We recall that S ⊆ Cn is a compact set if and only if every infinite sequence
of elements in S contains a convergent subsequence, whose limit lies in S. For
a given vector ϕ ∈ Cn and a real positive value r, we define the set Br(ϕ) =
{v ∈ Cn | ‖v − ϕ‖ ≤ r} as the ball of radius r centered in ϕ. The balls Br(ϕ)
are examples of compact sets in Cn.

We assume the reader is familiar with basic notions on formal language theory
(see, e.g., [11]). The set of all words (including the empty word ε) over a finite
alphabetΣ is denoted byΣ∗, and with Σn we denote the set of words of length n.

A deterministic finite state automaton (dfa) is a 5-tuple D = 〈Q,Σ, τ, q1, F 〉,
where Q is the finite set of states, Σ the finite input alphabet, q1 ∈ Q the
initial state, F ⊆ Q the set of final (accepting) states, and τ : Q × Σ → Q is
the transition function. An input word is accepted, if the induced computation
starting from the state q1 ends in some final state q ∈ F after consuming the
whole input. The set of all words accepted by D is denoted by LD and called
the accepted language. An alternative equivalent representation for D is by the

22 M.P. Bianchi, C. Mereghetti, and B. Palano

3-tuple D = 〈α, {M(σ)}σ∈Σ , β〉, where α ∈ {0, 1}|Q| is the characteristic row
vector of the initial state, M(σ) ∈ {0, 1}|Q|×|Q| is the boolean matrix satisfying
(M(σ))ij = 1 if and only if τ(qi, σ) = qj , and β ∈ {0, 1}|Q|×1 is the characteristic
column vector of the final states. The accepted language can now be defined as
LD = {σ1 · · ·σn ∈ Σ∗ | αM(σ1) · · ·M(σn)β = 1}.

Let us now introduce the model of quantum finite automata with control
language [4,15].

Definition 1. Given an input alphabet Σ and an endmarker symbol � /∈ Σ,
a q-state quantum finite automaton with control language (qfc) is a system
A = 〈φ, {U(γ)}γ∈Γ ,O,L〉, for Γ = Σ ∪ {�}, where

– φ ∈ Cq is the initial amplitude vector satisfying ‖φ‖ = 1,
– U(γ) ∈ Cq×q is a unitary matrix, for any γ ∈ Γ ,
– O =

∑
c∈C cP (c) is a Hermitian matrix representing an observable where C,

the set of eigenvalues of O, is the set of all possible outcomes of measuring O,
and P (c) denotes the projector onto the eigenspace corresponding to c ∈ C,

– L ⊆ C∗ is a regular language, called the control language.

An input for A is any word from Σ∗ closed by the symbol �. The behavior of A
on x1 · · ·xn� ∈ Σ∗� is as follows. At any time, the state of A is a vector ξ ∈ Cq

with ‖ξ‖ = 1. The computation starts in the state φ, then transformations
associated with the symbols in x1 · · ·xn� are applied in succession. Precisely, the
transformation corresponding to a symbol γ ∈ Γ consists of two steps:

(i) Evolution: the unitary operator U(γ) is applied to the current state ξ
of the automaton, leading to the new state ξ′.

(ii) Measuring: the observable O is measured on ξ′. According to quantum
mechanics principles, the result of measurement is ck with probability

‖ξ′P (ck)‖2, and the state of the automaton “collapses” to ξ′P (ck)
‖ξ′P (ck)‖ .

So, the computation on x1 · · ·xn� yields a given sequence y1 · · · yny
 of results of
the measurements of O with probability pA(y1 · · · yny
;x1 · · ·xn�) defined as

pA(y1 · · · yny
;x1 · · ·xn�) =
∥∥∥∥∥φ

(
n∏

i=1

U(xi)P (yi)

)
U(�)P (y
)

∥∥∥∥∥
2

.

A computation yielding the word y1 · · · yny
 of measure outcomes is accepting
whenever y1 · · · yny
 ∈ L, otherwise it is rejecting. Hence, the probability that
the qfc A exhibits an accepting computation on input x1 · · ·xn� is

EA(x1 · · ·xn) =
∑

y1···yny�∈L
pA(y1 · · · yny
;x1 · · ·xn�).

The function EA : Σ∗ → [0, 1] is the stochastic event induced by A.
The language accepted by A with cut point λ ∈ [0, 1] is the set of words

LA,λ = {x ∈ Σ∗ | EA(x) > λ}. The cut point is said to be isolated whenever
there exists δ ∈ (0, 12] such that |EA(x)− λ| ≥ δ, for any x ∈ Σ∗.

Size Lower Bounds for Quantum Automata 23

When referring to the size of a qfc, we must account for both the quantum
and the classical component. Hence, in what follows, we say that A has q quan-
tum states and k classical states whenever it is a q-state qfc and the control
language L is recognized by a k-state dfa.

Throughout the paper, we say that two automata are equivalent whenever
they accept the same language.

3 Converting qfcs to dfas

We start by defining a matrix representation for qfcs. Then, for any given
qfc, we construct an equivalent dfa by suitably generalizing Rabin’s technique.
Finally, we analyze the state complexity of the resulting dfa with respect to the
size of the original qfc.

3.1 Linear Representation of qfcs

A convenient way to work with qfcs is by using their linear representation [4].
Let A = 〈φ, {U(σ)}σ∈Γ , O =

∑
c∈C cP (c), L〉 be a qfc with δ-isolated cut

point λ, and let D = 〈α, {M(c)}c∈C, β〉 be the minimal dfa recognizing L.
Denote by q and k the number of quantum and classical states of A. We define
the linear representation of A as the 3-tuple Li(A) = 〈ϕ0, {V (σ)}σ∈Γ , η〉 with

– ϕ0 = (φ⊗ φ∗ ⊗ α), a vector in Cq2k,

– V (σ) = (U(σ)⊗U †(σ)⊗I) ·
∑

c∈C P (c)⊗P (c)⊗M(c), a matrix in Cq2k×q2k,

– η =
∑q

j=1 ej ⊗ ej ⊗ β, a vector in Cq2k,

where ej is the vector with 1 in its jth component and 0 elsewhere. The main
point, not so hard to verify, is that Li(A) enables us to represent the stochastic
event induced by A as EA(x) = ϕ0V (x�) η, where we let V (ω) =

∏n
i=1 V (σi) for

any ω = σ1 · · ·σn ∈ Γ ∗. In addition, as shown in [4], we have ‖ϕ0V (ω)‖ ≤ 1 for
any ω ∈ Γ ∗. Therefore, all the state vectors of Li(A) belong to the unitary ball

B1(0) ⊂ Cq2k centered in the zero-vector 0.
We are going to show a crucial result saying, roughly speaking, that any

word ω induces an evolution in Li(A) which increases the distance between two
different starting vectors only by a constant factor not depending on the length
of ω. To this aim, we need some technical lemmas, the first one shown in [4]:

Lemma 1. For any σ ∈ Σ, let U(σ) be a unitary matrix, and let an observable
O =

∑
c∈C cP (c). Then, for any complex vector ϕ and word σ1 · · ·σn ∈ Γ ∗, we

have
∑

y=y1···yn∈Cn ‖ϕ
∏n

j=1 U(σj)P (yj)‖2 = ‖ϕ‖2.

The next lemma states a property of vectors lying within unitary balls. From
now on, for the sake of brevity, we will simply write B1 to denote a unitary ball
centered in 0, regardless the dimension of the space within which such a ball is
embedded.

24 M.P. Bianchi, C. Mereghetti, and B. Palano

Lemma 2. For any v, v′ ∈ B1 satisfying ‖v′‖ ≥ ‖v‖ and cos(ang(v′, v)) ≥ 0,
we have cos(ang(v′ − v, v)) ≥ − 1√

2
.

We are now ready to prove the crucial result on the distance between trajectories
in Li(A):
Lemma 3. For any state vectors ϕ = v⊗v∗⊗a and ϕ′ = v′⊗v′∗⊗a′ of Li(A),
and any ω ∈ Γ ∗, we have

‖ϕ′V (ω)− ϕV (ω)‖ ≤ 4‖ϕ′ − ϕ‖. (1)

Proof. We consider the case in which a = a′, and quickly address the opposite
case at the end of the proof. Without loss of generality, we can assume that
‖v′‖ ≥ ‖v‖. Moreover, we assume that cos(ang(v′, v)) ≥ 0. Otherwise, we can
consider the vector −v′ instead of v′, for which it holds cos(ang(−v′, v)) ≥ 0,
and the proof works unchanged since (−v′)⊗ (−v′)∗ ⊗ a = v′ ⊗ v′∗ ⊗ a = ϕ′.

By letting Δ = v′− v, we have ϕ′−ϕ = v⊗Δ∗⊗a+Δ⊗ v∗⊗a+Δ⊗Δ∗⊗a.
So, we can rewrite the left side of Inequality (1) as

‖(ϕ′ − ϕ)V (ω)‖= ‖(v ⊗Δ∗ ⊗ a)V (ω)+(Δ⊗ v∗ ⊗ a)V (ω)+(Δ⊗Δ∗ ⊗ a)V (ω)‖
≤ ‖(v ⊗Δ∗⊗ a)V (ω)‖+ ‖(Δ⊗ v∗ ⊗ a)V (ω)‖+ ‖(Δ⊗Δ∗ ⊗ a)V (ω)‖. (2)

To simplify Inequality (2), we analyze the generic form ‖(v1 ⊗ v2
∗ ⊗ a)V (ω)‖,

which can be written as∥∥∥∥∥∥
∑

y=y1···yn∈Cn

v1

n∏
j=1

U(σj)P (yj)⊗ v2∗
n∏

j=1

U †(σj)P (yj)⊗ aM(y)

∥∥∥∥∥∥ .
Since D, the automaton for the control language L ⊆ C∗ in A, is a dfa, we have
‖aM(y)‖ = 1 for every y ∈ C∗. So, we can write

‖(v1⊗v2∗⊗a)V (ω)‖ ≤
∑

y=y1···yn∈Cn

∥∥∥∥∥∥v1
n∏

j=1

U(σj)P (yj)

∥∥∥∥∥∥ ·
∥∥∥∥∥∥v2∗

n∏
j=1

U †(σj)P (yj)

∥∥∥∥∥∥ .
The right side of this inequality can be seen as the inner product between two
vectors v̂1, v̂2 of dimension |C|n, with the yth component of v̂1 (resp., v̂2) be-

ing
∥∥∥v1 ∏n

j=1 U(σj)P (yj)
∥∥∥ (resp.,

∥∥∥v2∗ ∏n
j=1 U

†(σj)P (yj)
∥∥∥). By Cauchy-Schwarz

inequality, we have |〈v̂1, v̂2〉| ≤ ‖v̂1‖‖v̂2‖. So, by Lemma 1, we can write

‖(v1⊗v2∗⊗a)V (ω)‖≤

√√√√ ∑
y1···yn

‖v1
n∏

j=1

U(σj)P (yj)‖2 ·

√√√√ ∑
y1···yn

‖v2∗
n∏

j=1

U †(σj)P (yj)‖2

=
√
‖v1‖2‖v2‖2 = ‖v1‖‖v2‖.

By replacing v1 and v2 with the vectors involved in Inequality (2), we obtain

‖ϕ′V (ω)− ϕV (ω)‖ ≤ 2‖v‖‖Δ‖+ ‖Δ‖2. (3)

Size Lower Bounds for Quantum Automata 25

We now analyze the right side of Inequality (1). We first observe that

‖ϕ′ − ϕ‖2 =‖v ⊗Δ∗ +Δ⊗ v∗ +Δ⊗Δ∗‖2 (since ‖a‖ = 1)

= ‖v‖2‖Δ‖2 + ‖Δ‖2‖v‖2 + ‖Δ‖2‖Δ‖2 + 2(〈v,Δ〉〈Δ∗, v∗〉)R +

+ 2(〈v,Δ〉〈Δ∗, Δ∗〉)R + 2(〈Δ,Δ〉〈v∗, Δ∗〉)R
= ‖v‖2‖Δ‖2 + ‖Δ‖2‖v‖2 + ‖Δ‖2‖Δ‖2+

+ 2|〈v,Δ〉|2 + 2(〈v,Δ〉‖Δ‖2)R + 2(‖Δ‖2〈v∗, Δ∗〉)R
≥ 2‖v‖2‖Δ‖2 + ‖Δ‖4 + 2(〈v,Δ〉R)2 + 4‖Δ‖2〈v,Δ〉R .

By letting θ = ang(v,Δ), we have

‖ϕ′ − ϕ‖2 ≥ 2‖v‖2‖Δ‖2 + ‖Δ‖4 + 2‖v‖2‖Δ‖2(cos(θ))2 + 4‖v‖‖Δ‖3 cos(θ). (4)

By joining Inequalities (3) and (4), in order to prove the desired Inequality (1)
it is enough to show that

(2‖v‖‖Δ‖+‖Δ‖2)2 ≤ 16(‖Δ‖4+4‖v‖‖Δ‖3 cos(θ)+2‖v‖2‖Δ‖2(1+(cos(θ))2)).

We can divide both sides by ‖Δ‖2, since for ‖Δ‖ = 0 the inequality is trivially
verified. By solving with respect to ‖Δ‖, we get that the inequality is always true
if it holds 4‖v‖2(16 cos(θ) − 1)2 − 60‖v‖2(8 (cos(θ))2 + 7) ≤ 0. If ‖v‖ = 0, this
is clearly verified. Otherwise, dividing by ‖v‖2 and routine manipulation lead us
to study the equivalent inequality

17(cos(θ))2 − 4 cos(θ)− 13 ≤ 0. (5)

Recall that, at the beginning of the proof, we assumed that ‖v′‖ ≥ ‖v‖ and
cos(ang(v, v′)) ≥ 0. So, by Lemma 2, we get − 1√

2
≤ cos(θ) ≤ 1. Within this

interval, the left side of Inequality (5) is never positive, whence the result follows.
We conclude by quickly noticing that in the case a �= a′, we have 〈a, a′〉 = 0.

So, one may easily obtain ‖ϕ′ − ϕ‖2 = ‖v′‖4 + ‖v‖4 and ‖(ϕ′ − ϕ)V (ω)‖ ≤
‖v′‖2 + ‖v‖2, and the claimed result again follows. ��

3.2 Conversion to dfas

We are now ready to construct a dfa DA equivalent to the qfc A, by using the
linear representation Li(A) = 〈ϕ0, {V (σ)}σ∈Γ , η〉.

For any word ω ∈ Σ∗, let ϕω = ϕ0V (ω) be the state vector reached by Li(A)
after reading ω. We define the relation ∼ on the set {ϕω | ω ∈ Σ∗} ⊆ B1 as:

ϕω ∼ ϕω′ ⇐⇒
there exists a sequence of words ω1, ω2, . . . , ωn ∈ Σ∗

satisfying ω = ω1, ω
′ = ωn, and ‖ϕωi − ϕωi+1‖ < δ

2
√
qk
.

It is easy to verify that ∼ is an equivalence relation, and that the distance
between two vectors belonging to different equivalence classes is at least δ

2
√
qk
.

This latter fact shows that ∼ is of finite index, since otherwise, by taking one

26 M.P. Bianchi, C. Mereghetti, and B. Palano

ϕω̂j

ϕω̂jσ

V (σ)

rep[ϕω̂jσ]∼

τ

Fig. 1. The transition τ on a symbol σ. The dots represent state vectors of Li(A),
while the ellipses indicate equivalence classes of ∼. The smaller points between ϕω̂jσ

and rep[ϕω̂jσ]∼ represent the state vectors at distance smaller than δ
2
√

qk
witnessing

the relation ∼ between them. The dashed arrow indicates the original evolution on
Li(A), while the full arrow represents the behavior of the dfa DA.

vector from each class, one could construct an infinite sequence of elements in B1

which cannot have any convergent subsequence, against the compactness of B1.
Therefore, by letting s be the index of ∼, we choose a representative for each
equivalence class, and call them ϕω̂1 , ϕω̂2 , . . . , ϕω̂s . In addition, for any word
ω ∈ Σ∗, we let rep[ϕω]∼ denote the representative of the equivalence class the
state vector ϕω belongs to.

We construct our dfa DA as follows:

– the set of states coincides with the set of representatives {ϕω̂1 , ϕω̂2 , . . . , ϕω̂s},
– the input alphabet is Σ,
– the initial state is the vector rep[ϕε]∼, which we assume to be ϕω̂1 ,
– the transition function is defined, for any σ ∈ Σ, as τ(ϕω̂j , σ) = rep[ϕω̂jσ]∼;

a step of τ is intuitively shown in Fig. 1,
– the final states are the representatives {ϕω̂j | ϕω̂jV (�) η ≥ λ+ δ} associated

with words accepted in the original qfc A; equivalently, ϕω̂j is final if and
only if its equivalence class contains ϕω for some word ω� accepted by A.

Before showing the correctness of our construction, we stress the fact that the
equivalence relation ∼ is not a congruence (in fact, ϕω ∼ ϕω′ does not neces-
sarily implies ϕωσ ∼ ϕω′σ for σ ∈ Σ, as the reader may easily verify). So, the
correctness does not come straightforwardly as in Rabin’s setting, but we need
an explicit proof:

Theorem 1. DA is equivalent to A.

Proof. We begin by introducing some notation:

– For a word z = z1z2 · · · zn ∈ Σ∗, we let z{j} = z1z2 · · · zj be the prefix of z
of length j, and z{−j} = zj+1zi+2 · · · zn the remaining suffix.

– We let ρj = τ(ϕω̂1 , z{j}) be the state reached by DA after reading the first j
symbols of z. So, ρ0 = ϕω̂1 is the initial state of DA.

– We let ψj = ρj−1V (zj) be the state vector reached by j − 1 steps of DA
followed by one step of Li(A). So, ψ0 = ϕ0 is the initial state of Li(A).

Note that, for each 0 ≤ j ≤ n, we have ψj ∼ ρj since ρj = rep[ψj]∼. Moreover, by
definition, the vectors witnessing ψj ∼ ρj are reachable in Li(A). Formally: there

Size Lower Bounds for Quantum Automata 27

ψ0 = ϕ0 ρ0 = ϕω̂1

ψ1

ρ1

· · ·
. . .

ψn ρn

ρnV ()
· · ·

ϕ0V (z)

Fig. 2. Evolution scheme of the computation over the word z. The full arrows describe
the transitions of the dfa DA, while the snake arrows denote the evolution in Li(A)
from each vector γj,t in the equivalence class reached after j symbols, through the
dynamic V over the remaining suffix z{−j}, leading to the vector γj,tV (z{−j}) in the
bottom chain. In this bottom chain, the leftmost point denotes the vector reached by
Li(A) after reading z, while the rightmost point is the state reached by DA after
reading z, with a final transition of Li(A) on . Intuitively, the correctness of DA
comes from the fact that all the vectors in the bottom chain are sufficiently close to
their neighbors to represent either all accepting or all rejecting quantum states in the
original qfc A.

exists a sequence ψj = γj,1, γj,2, . . . γj,�j = ρj satisfying ‖γj,i − γj,i+1‖ < δ
2
√
qk
,

and there exist xj,t ∈ Σ∗ such that ϕ0V (xj,t) = γj,t for 1 ≤ t ≤ �j. As a
consequence of Lemma 3, for every 0 ≤ j ≤ n and 1 ≤ t ≤ �j, we have

‖γj,tV (z{−j}�)− γj,(t+1)V (z{−j}�)‖ < 4 · δ

2
√
qk

=
2δ√
qk
. (6)

In addition, since
ρjV (z{−j}�) = ψj+1V (z{−(j+1)}�),

for all j’s, Inequality (6) implies that the vectors ρjV (z{−j}�) form a chain of
vectors from the final state vector ϕ0V (z�) of Li(A) to the vector ρnV (�), where
the distance between each pair of consecutive vectors is strictly smaller than 2δ√

qk
.

This is intuitively shown in Fig. 2.
We first show that z ∈ LA,λ ⇒ τ(ϕω̂1 , z) ∈ F, which is equivalent to showing

ϕ0V (z�) η ≥ λ+ δ ⇒ ρnV (�) η ≥ λ+ δ. (7)

Note that ϕ0 = γ0,1, ρn = γn,�n , and that, for 0 ≤ j ≤ n and 1 ≤ t ≤ �j, all γj,t’s
witnessing the relation ∼ are reachable in Li(A) through some word xj,t ∈ Σ∗,
i.e., γj,tV (z{−j}�) = ϕ0V (xj,t · z{−j}�). Since λ is a δ-isolated cut point, we have

γj,tV (z{−j}�) η
{
≥ λ+ δ if xj,tz{−j} ∈ LA,λ,
≤ λ− δ if xj,tz{−j} /∈ LA,λ.

28 M.P. Bianchi, C. Mereghetti, and B. Palano

Assume, by contradiction, that Inequality (7) does not hold. Then, there exists
a position in the bottom chain of Fig. 2 where the acceptance probability associ-
ated with a state vector in the chain is above the cut point, while the acceptance
probability associated to its right neighbor is below the cut point. More formally,
there must exist ι, κ such that:

γι,κV (z{−ι}�) η ≥ λ+ δ and γι,(κ+1)V (z{−ι}�) η ≤ λ− δ,

From these two inequalities and by observing that ‖η‖ ≤
√
qk, we get

2δ ≤‖(γι,κV (z{−ι}�)− γι,(κ+1)V (z{−ι}�))η‖
≤‖γι,κV (z{−ι}�)− γι,(κ+1)V (z{−ι}�)‖‖η‖
≤‖γι,κV (z{−ι}�)− γι,(κ+1)V (z{−ι}�)‖ ·

√
qk

<
2δ√
qk
·
√
qk = 2δ (by Inequality 6).

which is an absurdum.

Symmetrically, one can show that z /∈ LA ⇒ τ(ϕω̂1 , z) /∈ F , and this completes
the proof.

3.3 Size Cost of the Conversion

We now analyze the cost, in terms of number of states, of the above conver-
sion from qfcs to dfas. This will enable us to obtain a general gap at most
exponential between the succinctness of the quantum and classical paradigm.

Theorem 2. For any given qfc A with q quantum states, k classical states, and
δ-isolated cut point, there exists an equivalent dfa DA with s states satisfying

s ≤
(
1 +

4
√
qk

δ

)q2k

.

Proof. Let Li(A) = 〈ϕ0, {V (σ)}σ∈Γ , η〉 be the linear representation of A. As ob-
served in Section 3.1, its state vectors lies within B1(0) ⊂ Cd, for d = q2k. When
constructing the equivalent dfa DA as described in Section 3.2, the number s of
states of DA coincides with the number of equivalence classes of the relation ∼.

To estimate s, consider the ball B δ
4
√

qk
(ϕω̂i) ⊂ Cd, for each representative ϕω̂i .

Clearly, such a ball is disjoint from the analogous ball centered in ϕω̂j , for every
1 ≤ i �= j ≤ s. Moreover, all such balls are contained in B1+ δ

4
√

qk
(0) ⊂ Cd,

and their number is exactly the number s of equivalence classes of ∼. Since the
volume of a d-dimensional ball of radius r is Krd, for a suitable constant K
depending on d, there exist at most

K(1 + δ/4
√
qk)d

K(δ/4
√
qk)d

=

(
1 +

4
√
qk

δ

)q2k

balls of radius δ
4
√
qk

in B1+ δ
4
√

qk
(0). So, this number is an upper bound for s. ��

Size Lower Bounds for Quantum Automata 29

4 Size Lower Bound for Quantum Paradigms

By using the inequality of Theorem 2 “the other way around”, we are able to
state lower limits to the descriptional power of qfcs:

Theorem 3. Any qfc with q quantum states, k classical states, and δ-isolated
cut point accepting a regular language whose minimal dfa has μ states, satisfies

qk ≥
(

log(μ)

log
(
5
δ

)) 4
9

.

Proof. From our qfc, we can obtain an equivalent dfa with a number of states
bounded as in Theorem 2. Thus, for δ ∈ (0, 12] and q, k ≥ 1, we have

μ ≤
(
1 +

4
√
qk

δ

)q2k

≤
(
5
√
qk

δ

)q2k

≤
(
5

δ

) 4
√
qk·q2k

≤
(
5

δ

)(qk)
9
4

,

whence the result follows. ��
The lower bound in Theorem 3 is not only interesting in the world of qfcs, but
it turns out to have several applications in the world of quantum automata. In
fact, as recalled in the Introduction, qfcs represent a general unifying framework
within which several types of quantum automata may directly and naturally
be represented. In particular, in [4] it is proved that: (i) Any q-state measure-
once quantum finite automaton (mo-qfa) can be simulated by a qfc with 2q
quantum states and 1 classical state. (ii) Any q-state measure-many quantum
finite automaton (mm-qfa) can be simulated by a qfc with q quantum states
and 3 classical states. (iii) Any q-state quantum reversible automaton (qra) can
be simulated by a qfc with q quantum states and 2 classical states. So, by such
simulation results and Theorem 3, one immediately gets

Theorem 4. To accept a regular language having a μ-state minimal dfa by

a mo-qfa, mm-qfa or qra, at least κ (log(μ)/log
(
5
δ

)
)
4/9

states are necessary,
with κ = 1/2 for mo-qfa and qra, and κ = 1/3 for mm-qfa.

A better asymptotically optimal lower bound of log(μ)/(2 log(1 + 2/δ)) is ob-
tained in [6] for mo-qfas. There, however, Rabin’s approach has a more direct
application since the equivalence relation yielding the states of the equivalent
dfa is in fact a congruence, so the correctness of the dfa is straightforward.
In the case of qfcs, instead, the equivalence relation ∼ is not a congruence,
so we had to ensure that, starting from two different state vectors in the same
equivalence class, after the evolution on the same word, the two resulting vectors
are still either both accepting or both rejecting, even if they belong to different
classes. This was possible because of the property proved in Lemma 3.

As natural open problems, it remains either to witness the optimality of our
size lower bound for qfcs, or to improve it, especially for the particular cases
of simulated machines such as, e.g., mm-qfas and qras. Moreover, one of the

30 M.P. Bianchi, C. Mereghetti, and B. Palano

anonymous referees pointed out another general framework, namely quantum
automata with open time evolution [10], which may be worth investigating by
the same geometrical approach, since the computation of such devices on a given
input can also be linearized [20].

Acknowledgements. The authors wish to thank Alberto Bertoni for useful
discussions, and the anonymous referees for their comments.

References
1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.:

Algebraic results on quantum automata. Th. Comp. Sys. 39, 165–188 (2006)
2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses

and generalizations. In: Proc. 39th Symp. Found. Comp. Sci., pp. 332–342 (1998)
3. Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise

problems. Information Processing Letters 112, 289–291 (2012)
4. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum

automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20.
Springer, Heidelberg (2003)

5. Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing
some regular languages. Theoretical Computer Science 340, 394–407 (2005)

6. Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for analyzing quantum
automata. Theoretical Computer Science 356, 14–25 (2006)

7. Bianchi, M.P., Palano, B.: Events and languages on unary quantum automata.
Fundamenta Informaticae 104, 1–15 (2010)

8. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 5, 1456–1478 (2002)

9. Golovkins, M., Kravtsev, M.: Probabilistic reversible automata and quantum au-
tomata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp.
574–583. Springer, Heidelberg (2002)

10. Hirvensalo, M.: Quantum automata with open time evolution. Int. J. Nat. Comp.
Res. 1, 70–85 (2010)

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2001)

12. Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard
University Press, Cambridge (1992)

13. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc.
38th Annual Symposium on Foundations of Computer Science, pp. 66–75 (1997)

14. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoret-
ical Computer Science 237, 275–306 (2000)

15. Mereghetti, C., Palano, B.: Quantum finite automata with control language. The-
oretical Informatics and Applications 40, 315–332 (2006)

16. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: Proc. 40th Symposium on Foundations of Computer Science, pp. 369–376 (1999)

17. Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245 (1963)
18. Scharnhorst, K.: Angles in complex vector spaces. Act. Ap. Math. 69, 95–103 (2001)
19. Shilov, G.: Linear Algebra. Prentice Hall (1971); Reprinted by Dover (1977)
20. Yakaryilmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with

small space bounds. Information & Computation 209, 873–892 (2011)
21. Zheng, S., Qiu, D., Li, L., Gruska, J.: One-way finite automata with quantum and

classical states. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive.
LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)

Population Protocols on Graphs: A Hierarchy

Olivier Bournez and Jonas Lefèvre

Ecole Polytechnique, LIX, 91128 Palaiseau Cedex, France
{bournez,jlefevre}@lix.polytechnique.fr

Abstract. Population protocols have been introduced as a model in
which anonymous finite-state agents stably compute a predicate of the
multiset of their inputs via interactions by pairs. In this paper, we con-
sider population protocols acting on families of graphs, that is to say on
particular topologies. Stably computable predicates on strings of size n
correspond exactly to languages of NSPACE(n), that is to say to non-
deterministic space of Turing machines. Stably computable predicates
on cliques correspond to semi-linear predicates, namely exactly those
definable in Presburger’s arithmetic. Furthermore, we exhibit a strict hi-
erarchy in-between when considering graphs between strings and cliques.

Keywords: population protocols, computability, hierarchy, space
complexity.

1 Introduction

The model of population protocol has been introduced in [1] as a model of
anonymous agents, with finitely many states, that interact in pairs according
to some rules. Agents are assumed to be passively mobile, in the sense that
there is no control over the way the interactions happen: interactions can be
seen as resulting from a fair scheduler. The model has been designed to decide
predicates. Given some input configuration, the agents have to decide whether
this input satisfies the predicate, in which case the population of agents has to
eventually stabilize to a configuration in which every agent is in an accepting
state. A protocol must work for any size of population. Predicates computable
by classical population protocols have been characterized as being precisely the
semi-linear predicates, that is those predicates on counts of input agents definable
in first-order Presburger arithmetic. Semi-linearity was shown to be sufficient in
[1], and necessary in [2].

So far, most of the works on population protocols has concentrated on char-
acterizing what predicates on the input configurations can be stably computed
in different variants of the models and under various assumptions. Variants of
the original model considered so far include restriction to one-way communi-
cations [3], restriction to particular interaction graphs [4], and random inter-
actions [1]. Various kinds of fault tolerance has been considered for population
protocols [8], including the search for self-stabilizing solutions [5]. We refer to [6]
for a comprehensive 2007 survey.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 31–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 O. Bournez and J. Lefèvre

From a computability point of view, the equivalence between predicates com-
putable by population protocols and Presburger’s arithmetic definable sets (semi-
linear sets) is rather intriguing. The upper bound obtained in [2] is non-trivial
and rather different from classical arguments in computability or complexity
theory when dealing with computational models. The work in this paper origi-
nates from an attempt to better understand the relations between the population
protocol model and classical models like Turing machines.

In that perspective we consider population protocols over various interaction
graphs in the spirit of [1,4]. This can be also seen as considering population
protocols over particular spatial models.

Clearly classical population protocols corresponding to semi-linear sets corre-
spond to the case where the interaction graph is a clique (i. e. complete graph).
It has already been stated that one can simulate a Turing machine when working
over a path (or more generally a bounded degree graph) in [4].

We review these constructions and we somehow extend them to more general
classes of graphs/topologies.

In particular, we discuss intermediate classes, by considering interaction graphs
in between bounded degree graphs and cliques, namely separable graphs. We prove
that there is a whole hierarchy between paths (non-deterministic linear time) and
cliques (semi-linear sets), that can be proved to be strict for graphs verifying some
conditions.

1.1 Related Work

The following works, not covered by 2007 survey [6] can also be mentioned: in
[9] a variant of population protocols where agents have unique identifier and can
store a constant number of bits and a constant number of other agents’ identifiers
is considered. The model has been proved to be able to compute any predicate
computable by a non-deterministic Turing machine in space n logn. Moreover
the construction has been proved to tolerate Byzantine failures.

The idea of restricting to an underlying graph for interactions is already
present in the initial definition of the model in [1]. The paper [4] is devoted
to understand which properties of graphs can be computed by population pro-
tocols. It is proved for example that one can detect whether a given graph is a
path or a tree using population protocols, or whether a graph has a bounded
degree.

A variant of the classical model is studied in the paper [7]. This variant con-
siders that each agent is a Turing machine with a space f(n) for a population
of size n. For f(n) = Ω(logn), the computational power of the model is char-
acterized to be precisely the class of all symmetric predicates recognizable by
a non-deterministic Turing machine in space nf(n). A hierarchy for population
protocols is inherited from Turing machines. Furthermore it is proved that if
agents have o(log log) space then the model is no more powerful than the clas-
sical model. Our hierarchy is using both the restrictions of the communication
graph and the computational power of the agents.

Population Protocols on Graphs: A Hierarchy 33

2 Definitions

We restate the population protocol model introduced by Angluin, Aspnes,
Diamadi, Fisher and Peralta in [1] in the rest of this section.

Informally, in the basic population protocol model, we have a collection of
anonymous agents. Each agent is given an input value, then agents interact
pairwise in an order fixed by some scheduler that is assumed to satisfy some
fairness guarantee. Each agent is assumed to have finitely many states, and
the “program” for the system describes how the states of the two agents evolve
when two agents interact. The agents’ output values change over time and must
eventually converge to the correct output [6]. More formally:

Definition 1 (Population protocol). A population protocol (Q,Σ, in, out, δ)
is formally specified by:

– Q, a finite set of states, that correspond to possible states for an agent;
– Σ, a finite input alphabet;
– in, an input function from Σ to Q, where in(σ) represents the initial state

of an agent whose input is σ;
– out, an output function from Q to {0, 1}, where out(q) represents the output

value of an agent in state q;
– δ ⊂ Q2 × Q2, a transition relation that describes how pairs of agents can

interact. We will mostly write (s1, s2)→ (r1, r2) for ((s1, s2), (r1, r2)) ∈ δ.

A computation of such a protocol takes place over a fixed set A of n agents,
where n ≥ 2. A population configuration (over Q) is a mapping C : A → Q
specifying the state of each agent. We will say that a configuration C contains
a state q if C(a) = q for some agent a ∈ A. Agents with the same state are
assumed in the model indistinguishable. Hence we will always reason modulo
permutations of agents. In other words, configurations can also be considered
as ordered multisets of states, and we assume that for all permutation π of A,
configurations C and C′ with C′(a) = C(π(a)) are the same.

To a word ω = ω1ω2 . . . ωn ∈ Σ∗ of length n over input alphabet Σ, corre-
sponds any initial configuration C0[ω] where agents have corresponding initial
state: fixing any numbering of the set A of agents, agent 1 ≤ i ≤ n is in state
in(ωi). Given some configuration C, we write C → C′ if C′ can be obtained from
C by a single interaction of two agents: this means that C contains two states
q1 and q2, and C

′ is obtained from C by replacing q1 and q2 by q′1 and q′2, where
((q1, q2), (q

′
1, q

′
2)) ∈ δ. We denote →∗ for the transitive and reflexive closure of

relation →.
An execution over word ω = ω1ω2 . . . ωn ∈ Σ∗ is a finite or infinite se-

quence of configurations C0C1 . . . CiCi+1 . . . such that C0 = C0[ω] and, for all i,
Ci → Ci+1.

The order in which pairs of agents interact is assumed to be unpredictable,
and can be seen as being chosen by an adversary. In order for only meaningful
computations to take place, some restriction on the adversarial scheduler must be
made (otherwise, nothing would forbid for example that all interactions happen

34 O. Bournez and J. Lefèvre

always between two same agents). As often in the distributed computing context,
this is model by some fairness hypotheses: a fair execution is an execution such
that if a configuration C appears infinitely often in the execution and C → C′

for some configuration C′. Therefore C′ must appears infinitely often in the
execution. This fairness property states that a configuration which is always
reachable will eventually be reached. There is absolutely no control over any
finite execution, but any possibility that can not be evade with a finite execution
will be met. Observe that this is equivalent to say that if a configuration C′ is
reachable infinitely often, then it is infinitely reached.

At any step during an execution, each agent’ state determines its output at
that time: whenever an agent is in state q, its output is out(q). A configuration
C is said to output 1 (respectively 0) iff all agents outputs 1 (resp. 0): in other
words out(C(a)) = 1 for all agent a ∈ A (resp. 0). If in a configuration there are
agents outputting 1 and other outputting 0, the output of the configuration is
undefined. A configuration C is said to be output-stable with output b ∈ {0, 1}
if ∀C′, C →∗ C′, ∀s ∈ C′, out(s) = b. Namely a configuration is output-stable if
its output is defined and any reachable configuration has the same output.

A fair execution C0C1 . . . CiCi+1 . . . stabilizes with output b if there exists
some m such that for all j ≥ m, the output of configuration Cj is defined and
given by b. In particular, a fair execution converges with output b iff it reaches
an output-stable configuration with output b.

A protocol is well-specified if for any initial configuration C0[w], every fair
execution starting from C0[w] converges with an output, that is determined by
that input configuration. A well specified protocol induces a subset L ⊂ Σ∗ of
configurations yielding to output 1: this subset will be said to be the language
computed by the protocol.

We will also need to consider population protocols over graphs. Observe that
the previous model is just the case where the graph is a clique.

Definition 2 (Population protocol on a graph). Given a graph G with n
vertices, a population protocol over G is a population protocol whose set of agents
A is the set of vertices of G, and where in definition above two agents can interact
by a single interaction only if they are adjacent in graph G: in definitions above,
this only changes the definition of C → C′. Formally: C → C′ if C contains two
states q1 and q2 in respective vertices v1 and v2, and C

′ is obtained from C by
replacing q1 and q2 by q′1 and q′2, where ((q1, q2), (q

′
1, q

′
2)) ∈ δ, and (v1, v2) is an

edge of graph G.

We insist on the fact that we do not change anything else. In particular the input
is still distributed on the population without any control.

Given a family of graphs (Gn = (Vn, En))n∈N, where Gn has n = |Vn| vertices,
a well-specified protocol also induces a subset L ⊂ Σ∗: this subset will also be
said to be the language computed by the protocol over this family of graphs.

Equivalently a language L ⊂ Σ∗ is computed by population protocol work-
ing over this family if there is a well-specified protocol verifying the following
property: the w ∈ L correspond exactly to initial configurations C0[w] for which

Population Protocols on Graphs: A Hierarchy 35

every fair execution of the protocol on Gn, where n is the length of w, eventually
stabilize to output 1. From our definitions, languages corresponding to popu-
lation protocols are necessarily invariant by permutations of letters, as initial
configurations are assumed to be indistinguishable when agents are permuted.

Population protocols on bounded degree graphs can be related to Turing ma-
chines. The languages computed by population protocols on bounded degree
graphs correspond exactly to symmetric languages of NSPACE(n), that is to
say to language recognized in non-deterministic space n by Turing machines,
invariant by permutation of letters.

In the spirit of [7], we will also consider variants where the agents are no longer
just finite automata but deterministic Turing machines with memory space con-
straints: this model will be called the passively mobile machines model, following
the terminology of [7]: the agents are now Turing machines. Formally, they are
Turing machines with four tapes: working tape, output tape, incoming message
tape and outgoing message tape. They have internal transitions, corresponding
to local computations, and external transitions, corresponding to interactions,
where the two agents copy in their own incoming message tape the contents of
the outgoing message tape of the other agent.

The authors in [7] show that if the n agents of the population have a memory
of size at least log(n) then they can be organized to model a Turing machine.
Basically, the idea is that agents can use interactions to compute eventually
unique identifiers, and then use these identifiers so that each agent then simulate
a cell (or few cells) of the tape of a (global) Turing machine.

Here will be discussed smaller cases. Let us first come back to classical popu-
lation protocols where agents are finite state.

We will often use variations of the following routine electing a leader in a
uniform population: consider set of states is Qleader = {L, x}, where state L
means that this agent has a leader token and rules δleader = {(L,L) → (L, x),
(x, L)→ (L, x)}. Thanks to the first rule, if two agents with leader token meet,
one token is deleted. With this rule, the quantity of leader token will decrease to
one, but the last token can never be deleted. The second rule allows any leader
token to move on the graph. The computation starts with every agent with state
L: in any fair execution, eventually there will remain exactly one L state in the
population. Indeed, since leaders can move they can always meet, and hence the
fairness hypothesis guarantees that leaders will eventually meet and disappear
until only one remains.

3 Modeling a Turing Machine on Graphs

The paper [4] explains how to model a Turing machine with a population protocol
working on a graphs family with degree bounded by d. We will explain the main
steps of the construction.

The algorithm of [4] can be decomposed into three sub-algorithm: construct
a distance-2-coloring of the graph; use this labeling to build a spanning tree on
the graph; and use this spanning tree to model the tape of a Turing machine.

36 O. Bournez and J. Lefèvre

A distance-2-coloring of a graph G is a coloring of the vertices of G such that
two vertices that are adjacent or have a common neighbor receive distinct colors.

A graph family will be said to be distance-2-colorable if there exists a
population protocol such that starting from any initial configuration the
system eventually evolves (restricting as usual to fair computations only) to
a configuration that corresponds to a distance-2-coloring.

Proposition 1. A graph family is distance-2-colorable iff the graph family has
a bounded degree: there exists some constant d that bounds the degree of each
graph of the family.

Proof. The idea of the proof of the if part of the proposition is to use a moving
leader token. After a move the token stops and interacts successively with two
of its neighbors. If they have the same color, one changes, and the token moves
away. Thanks to the fairness property, the population will eventually reach a
configuration where no two neighbors of any agent have the same color. If two
moving leader tokens meet, one (and only one) is destroyed. A more detailed
proof of this can be found in [4].

Conversely, since agents are finite state, the degree is directly bounded by the
number of colors (i. e. states) minus one in a distance-2-coloring. ��

Notice that some more general families of graphs could also be distance-2-
colorable, if we consider that agents would not be finite state, that is to say
passively mobile machines instead of population protocols.

Proposition 2 ([4]). Consider a distance-2-colorable graph family. One can
build a population protocol that builds a spanning tree over this graph family.

Proof. The idea of the proof is to observe that a distance-2-coloring of the graph
allows one to emulate pointers. Indeed, each agent can store in his state a color
c0 and by definition of the coloring, it can have at most one neighbor with color
c0; in other words the color of an agent is like a unique pointer address for its
neighbors. This allows one to build a forest where the parent links in the trees
are the pointers and the forest can eventually be transformed into a spanning
tree using leaders and the fairness of the scheduler.

The construction itself uses leader tokens. The leader token starts its construc-
tion on a vertex that will be the root. Then it explores the graph in depth-first
fashion. While it finds a neighbor not yet in the tree, the token moves to this
agent, and makes this agent point to the one it comes from. If no new son can be
added to the tree, the leader token backtracks until it comes to an agent having
neighbor not yet in the tree. If a leader encounters an other leader, one is erased
and restart markers are produced to erase the trees already built. The construc-
tion then starts again with one less leader. It will eventually succeed when the
number of leaders will reach one (by the fairness assumption). The coloring and
the spanning tree construction being simultaneous, if an agent part of a tree is
recolored, a restart marker is produced.

Eventually, the coloring will be stable, only one leader token will make the
depth-first search, and a spanning tree will be built on the graph. ��

Population Protocols on Graphs: A Hierarchy 37

The class ZPSPACE(s) corresponds to language accepted by (so-called)
Zero-error Probabilistic Turing machines using a memory space bounded by s.

Equivalently, (and we will use this definition), it can be shown ZPSPACE(s)
corresponds to the class of languages accepted by a non-deterministic Turing
machine using a memory space s, with three special internal states Y es, No and
Don′t Know verifying the following property: if ω ∈ L (resp. ω �∈ L) then a
possible execution of the machine on ω can only output Y es or Don′t Know
(resp. No or Don′t Know). And for every input, there are executions outputting
a firm answer (Y es or No). The construction of this machine is described in [10].
The class ZPSPACEsym(s) is the restriction of the symmetric languages, that is
to say the language L such that for any permutation π, ω ∈ L iff ω′ ∈ L where
ω′[i] = ω[π(i)].

Proposition 3. Let (Gn) be a graph family. If there is a population protocol on
(Gn) that organizes the agents into a spanning tree, then there is a population
protocol that model a Turing machine tape with a tape of size n on Gn.

Proof. Once a spanning tree is built, the spanning tree can be used as the tape
of the Turing machine: we can order the vertices of the graph using the spanning
tree (using a breadth-first search for instance). The numeration gives the location
of the agent in the tape.

Let L ∈ ZPSPACEsym(n). Using the tools from above, we can model the
behavior of a Turing machine computing L. For any input x, the computation
outputs either a firm answer, either Don′t Know. Whenever the protocol ends
a simulation, it starts a new one. The first simulations of the Turing machine
may be made when the routine that organize the population into a tape is not
finished. Those simulations gives answers with no warranty. The fairness makes
certain though that the population will eventually be organized, after what exact
simulation can occur. The looping simulation ensures that configurations corre-
sponding to exact simulation of the Turing machine are always reachable. Then
fairness guarantees every correct simulation will occur during any execution of
the population protocol. By fairness, some execution giving the firm answer will
occur. And from this instant the simulation will only answer either the cor-
rect and firm answer, either Don′t Know. By outputting the last firm answers
computed by a simulation, the protocol can decide “x ∈ L?”. ��

4 Separable Graph Family

Definition 3. A graph family
(
G(n) = (V (n), E(n))

)
is (s, d)-separable if for

all n, the set of vertices V (n) can be partitioned into U1 and U2 (U2 may be
empty) such that:

– (U1, E(n)|U1
) is a connected graph with s(n) vertices

– for all vertices u ∈ U1, its degree (in G(n)) is bounded by d(n)
– for all vertices v ∈ U2, v belongs to a clique of size at least 2d(n)+1.

Notice that there are such separable graph families only if d(n) ≤ logn and
s(n) ≤ n.

38 O. Bournez and J. Lefèvre

For instance with d(n) = 2, a path of size s(n) connected (in one or two
vertices) to a clique of size at least 8 provides an (s, 2)-separable family of graphs.

U1
U2 U1

K16

K26

2U

A graph of an (s, 2)-separable family A graph of an (s, 4)-separable family

4.1 Recognition of the Bounded Degree Part

We will construct a simulation of Turing machine on separable graphs. The first
step is to recognize the cliques of the graphs.

Lemma 1. Let be G = (V,E) an (s, d)-separable graph with d = O(1). There is
a population protocol Clique that distinguishes U1 from U2.

That means its set of states can be partitioned in Qclique and Qbounded, and
for any fair execution (Ct) of the protocol Clique, there is t0 such that for all
configurations Ct with t ≥ t0, an agent has a state in Qclique iff it belongs to U2.

Proof. The construction of this protocol uses two routines.
Colord+1, the first routine, colors the agent with d + 1 colors in such a way

that an agent has every color in its neighborhood if it belongs to a clique of size
at least 2d+1.
Countd+1, the second routine, counts (up to d+1) how many different colors

there are in the neighborhood of any agent, and therefore decides if the agent is
in the bounded degree sub-graph (where an agent can not have d + 1 different
colors in its neighborhood) or in the clique (where the agents have at least d+1
colors in their neighborhood). ��

5 Modeling a Turing Machine on Separable Graph
Family

5.1 Counting Protocol

To achieve the simulation we need a protocol counting the input letters, the
objective is to have the input into a format the Turing machine can use. The
idea is to use the bounded-degree sub-graph as a tape to store the entry in a
more efficient form. Indeed, the protocol input is symmetric and can be describe
by the number of symbols of each type without losing any information. With
a tape, we can write those numbers in binary because the agents are implicitly
ordered. Of course, this is possible only if this “tape” is big enough with respect
to the total number of agents.

Population Protocols on Graphs: A Hierarchy 39

Lemma 2. Let be G an (s, d)-separable graph with s(n) = Ω(log(n)). There is
a population protocol WriteInput which organizes the bounded degree part as a
Turing machine tape and which writes (using binary encoding) the initial input
multiset on this tape.

Proof. The protocol WriteInput uses different routines.
First, Clique (from Lemma 1) recognizes the bounded degree sub-graph. Then

the routines described in the Propositions 1 and 2 organize the bounded degree
sub-graph as a Turing machine tape.

The next routine writes the multiset corresponding to the input (in binary
notation) on the tape.

This can be done only if the tape has enough cells, that is to say if there are
at least Ω(log n) cells on the tape. ��

5.2 Main Result of This Section

Let L(s) be the class of languages computed by population protocols on
(s, d)-separable graph family with d = O(1).

If s(n) = Ω(log n), using the routine WriteInput to prepare the population,
we can simulate a Turing machine on the bounded degree part. The Turing
machine we model uses at most s(n) cells on its working tape and the result of
any computation does not change if we apply any permutation on the input. In
fact, we prove that we model any Turing machine that computes a language of
the class NSPACEsym(s) using same principles.

Theorem 1. ∀s(n) = Ω(logn), L(s) = NSPACEsym(s)

Proof. Fix some s(n) = Ω(log n) and d = O(1).
First we prove L(s) ⊆ NSPACEsym(s).

A configuration of a population of size n on an (s, d)-separable graph needs
O(s(n) + log(n − s(n)) cells on a tape to be stored. Since s(n) = Ω(log n), we
only need O(s(n)) cells. To compute the result of a computation by a population
protocol we need to find a reachable configuration such that we cannot find
any other reachable configuration where the output is different or undefined.
Then it is computable by a Turing machine of NSPACE(s), since NSPACE(s) =
coNSPACE(s) for s(n) = Ω(log n) (see e. g. [10]). And the languages of L(s) are
symmetric then L(s) ⊆ NSPACEsym(s).

We prove now ZPSPACEsym(s) ⊆ L(s).
Let M be a machine corresponding to a language of ZPSPACEsym(s). We can
construct a population protocol of L(s) computing the same language. As direct
application of the Lemma 2, we are able to model a Turing machine using a tape
with s(n) cells. The proof of the Proposition 3 can be used to prove that the
simulated Turing machines can compute languages of the class ZPSPACEsym(s).
Therefore ZPSPACEsym(s) ⊆ L(s)

As s(n) = Ω(log n), it is known (see e. g. [10]) that we have NSPACEsym(s) =
ZPSPACEsym(s).

To conclude: L(s) = NSPACEsym(s) = ZPSPACEsym(s) ��

40 O. Bournez and J. Lefèvre

5.3 Passively Mobile Machines Model

Let s, s′ functions such that s(n) = O(n). We will consider the passively mobile
machines model (i. e. population protocol where the agents are Turing machines)
with memory of the agents bounded by s′.

In [7], a detailed proof of the following result can be found.

Proposition 4. Let s′(n) = Ω(log n). The set of languages computed by the
passively mobile machines model with memory of the agents bounded by s′ is
exactly NSPACEsym(n · s′(n)).

A protocol assigning a unique identifier to every agent if they have a logarithmic
memory can be devised.

In other words, if the agents have at least a logarithmic memory space, then
whatever the interaction graph is, the model is equivalent to a Turing machine
with a memory space equal to all the possible available space. If the agents have
less memory space, considering the interaction graph may permit to gain some
computational power. So we will now only consider cases were s′(n) = o(logn).

Let Ls′(s) be the class of languages computed by the passively mobile ma-
chines model with memory of the agents bounded by s′ on (s, d)-separable graph
family with d(n) = 2O(s′(n)). We remind that d(n) ≤ logn in any case.

The results of the previous sections can be extended to the population protocol
model where the agents are not finite states, but Turing machines with memory
bounded by s′. Then the agent can have up to 2O(s′(n)) different “states” (in fact
they are configurations). So we can use those extra states to construct distance-
2-coloring with more colors, and hence we may be able to construct a spanning
tree on (s, d)-separable graphs for non constant d. More precisely we have the
following result that extends Lemma 1.

Lemma 3. Let be G = (V,E) an (s, d)-separable graph. There is a passively
mobile machines model with memory bounded by log(d(n)) that distinguish U1

from U2.

It gives a way to model a Turing machine on the bounded degree sub-graph. The
modeled Turing machine has a tape modeled on s(n) agents, each one having
s′(n) cells; then the total space the Turing machine have is s(n) · s′(n) (each of
the s(n) agents contribute with s′(n) cells). And then the generalisation of the
Proposition 1 is the following.

Theorem 2. Let d, s and s′ such that d(n) = 2O(s′(n)), d(n) = O(log n), s′(n) =
o(logn) and s(n) ≤ n. The class of the language computable by passively mobile
machines of DSPACE(s′) on (s, d)-separable graph family is NSPACEsym(s · s′).

Ls′(s) = NSPACEsym(s · s′)
5.4 A Hierarchy

With Theorems 1 and 2, we can transpose the hierarchy of non-deterministic
Turing machines above the logarithmic space.

Population Protocols on Graphs: A Hierarchy 41

Theorem 3. Let s1, s2, s
′
1, s

′
2 such that si(n) = O(n) and s′i(n) = O(log logn)

for i = 1, 2. If s′1 ·s1(n) = o(s′2 ·s2(n)) then Ls′1(s1) ⊆ Ls′2(s2). And the inequality
is strict if s′2(n) · s2(n) = Ω(log n).

For instance, let be s′(n) = o(log n) and consider the sequence of function
logk n/s′(n). If k ≥ 1, we have Ls′(log

k n/s′(n)) = NSPACEsym(log
k n).

Therefore, we have the following hierarchy with:

L1(1) � Ls′(1)

� Ls′(log n/s
′(n))

� Ls′(log
2 n/s′(n))

...

� Ls′(log
k n/s′(n))

...

� Ls′(n) = NSPACEsym(n · s′(n))

L1(1) corresponds to what is computed by the classical model with finite au-
tomaton agents and the complete interaction graph: L1(1) is the class of the
semi-linear languages.Ls′(1) corresponds to the passively mobile machines model
where agents use O(s′) memory and the complete interaction graph. Ls′(n) corre-
sponds to the passively mobile machines model where agents use O(s′) memory
and the bounded degree interaction graph. The proof of the strict inequality
L1(1) � Ls′(1) is detailed in [7].

Note that in [7], a hierarchy is built by using only the memory available on
the agents. Their hierarchy can not be exactly characterized if s′(n) = o(log n)
and collapsed if s′(n) = o(log logn). Using restrictions on the interaction graph,
we are able to construct a more accurate hierarchy.

6 Conclusion

In this paper we determine the computational power of a model of population
protocol working on different kind of interaction graph families and with differ-
ent kind of restrictions on the computational power of the agent. The classical
population protocols are the case where the interaction graph is complete and
where the agents are finite automata. The case where the interaction graph is
a uniformly bounded degree graph and the agents are finite automata has the
same computational power as linear space non deterministic Turing machines.
With intermediate interaction graphs and the agents having more memory al-
lowed, the model is equivalent to non-deterministic Turing machine working with
some bounded memory. We have constructed a Turing machine simulation with
as much memory as the sum of all the memory of the agents of a “good” sub-
graph. By varying the “good” sub-graph and the bound over the memory of the
agents, we disserted a hierarchy. This hierarchy is inherited from the one over
the non-deterministic Turing machines.

42 O. Bournez and J. Lefèvre

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Proceedings of the Twenty-
Third Annual ACM Symposium on Principles of Distributed Computing, pp. 290–
299. ACM (2004)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

4. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably
computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spi-
rakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer,
Heidelberg (2005)

5. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population pro-
tocols, vol. 3, p. 13 (November 2008)

6. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the
EATCS 93, 106–125 (2007)

7. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.:
Passively mobile communicating machines that use restricted space. Theoretical
Computer Science (2011)

8. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die:
Making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer,
Heidelberg (2006)

9. Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate
byzantine failures, pp. 484–495 (2009)

10. Saks, M.: Randomization and derandomization in space-bounded computation. In:
Proceedings of the Eleventh Annual IEEE Conference on Computational Complex-
ity, pp. 128–149. IEEE (1996)

Spectral Representation of Some Computably

Enumerable Sets with an Application
to Quantum Provability�

Cristian S. Calude1,�� and Kohtaro Tadaki2,���

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
cristian@cs.auckland.ac.nz

2 Research and Development Initiative, Chuo University, Tokyo, Japan
tadaki@kc.chuo-u.ac.jp

Abstract. We propose a new type of quantum computer which is used
to prove a spectral representation for a class S of computable sets. When
S ∈ S codes the theorems of a formal system, the quantum computer
produces through measurement all theorems and proofs of the formal
system. We conjecture that the spectral representation is valid for all
computably enumerable sets. The conjecture implies that the theorems of
a general formal system, like Peano Arithmetic or ZFC, can be produced
through measurement; however, it is unlikely that the quantum computer
can produce the proofs as well, as in the particular case of S . The analysis
suggests that showing the provability of a statement is different from
writing up the proof of the statement.

1 Introduction

Mathematical results are accepted only if they have been proved: the proof con-
cludes with the proven statement, the theorem. The proof comes first and justifies
the theorem. Classically, there is no alternative scenario.

The genius mathematician Srinivasa Ramanujan discovered nearly 3900 re-
sults [2], many without proofs; nearly all his claims have been proven correct.
Ramanujan first recognised a true statement and only later that statement was
proven, hence accepted as a theorem. While we don’t know how Ramanujan’s
mind was able to “discover” mathematical true facts, we can ask whether there
is a way to understand, and possibly imitate, his approach.

In this paper a new type of quantum computer is used to prove a spectral
representation for a class S of computable sets is proved. For every S ∈ S we
construct a quantum system in such a way that the elements of S are exactly the
eigenvalues of the Hermitian operator representing an observable of the quantum
system, i.e. the spectrum of the operator. In particular, S can be represented
by the energy of the associated quantum system. The operator associated to

� Supported by JSPS KAKENHI Grant Number 23650001.
�� Work done in part during a visit to Research and Development Initiative, Chuo

University, Tokyo, Japan, January 2013; partially supported also by Marie Curie
FP7-PEOPLE-2010-IRSES Grant RANPHYS.

��� Corresponding author.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 43–54, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

44 C.S. Calude and K. Tadaki

S ∈ S has a special numerical form which guarantees that by measurement we
get both the element and the proof that the element is in S. We conjecture that
the spectral representation is valid for all computably enumerable sets.

When S ∈ S codes the theorems of a formal system, then the associated
quantum computer produces through measurement the theorems of the formal
system and their proofs. The conjecture implies that every theorem of a general
(recursively axiomatisable) formal system, like Peano Arithmetic or ZFC, can
be produced through measurement. However, we argue that in this general case
the quantum procedure produces, like Ramanujan, only the true the statement,
but not its proof. Of course, the proof can be algorithmically generated by a
classical algorithm, albeit in a possibly very long time (such a computation
makes sense only for statements recognised as “interesting”). For example, if the
Riemann hypothesis is produced by the quantum procedure we will know that
the famous hypothesis is true. However, to have a formal proof—whose existence
is guaranteed by the correctness of the quantum procedure—we may need to run
a very long classical procedure. The proof obtained in this way could be rather
unsatisfactory, as it may not convey the “understanding”, the reason for which
the Riemann hypothesis holds true (see also [4]). Although such a proof may not
make us “wiser” [1], it may stimulate the search for better arguments.

The paper is structured as follows. In Section 2 we present the basic quantum
mechanical facts necessary for describing our quantum systems. In Section 3 we
describe a class of computable sets for which we can prove in Section 4 the rep-
resentability theorem and its application to quantum provability (in Section 5).
In Section 6 we discuss the generalisation of the quantum procedure to all com-
putably enumerable sets and in Section 7 its application to quantum provability
for arbitrary formal systems.

2 Quantum Mechanical Facts

We start with some basic facts on quantum mechanics needed for this paper. The
quantum mechanical arguments are presented at the level of mathematical rigour
adopted in quantum mechanics textbooks written by physicists, for example,
Dirac [5] and Mahan [8].

A state of a quantum system is represented by a vector in a Hilbert space H.
The vector and the space are called state vector and state space, respectively. The
dynamical variables of a system are quantities such as the coordinates and the
components of momentum and angular momentum of particles, and the energy
of the system. They play a crucial role not only in classical mechanics but also in
quantum mechanics. Dynamical variables in quantum mechanics are represented
by Hermitian operators on the state spaceH. A dynamical variable of the system
is called an observable if all eigenvectors of the Hermitian operator representing
it form a complete system for H. Normally we assume that a measurement of
any observable can be performed upon a quantum system in any state (if we
ignore the constructive matter, which is one of the points of this paper).

The set of possible outcomes of a measurement of an observable O of a
system is the eigenvalue spectrum of the Hermitian operator representing O.

Spectral Representation of Some C.E. Sets with an Application 45

Let {|m,λ〉} be a complete orthonormal system of eigenvectors of the Hermitian
operator A representing an observable O such that A|m,λ〉 = m|m,λ〉 for all
eigenvalues m of A and all λ, where the parameter λ designates the degeneracy
of the eigenspace of A. Suppose that a measurement of O is performed upon a
quantum system in the state represented by a normalized vector |Ψ〉 ∈ H. Then

the probability of getting the outcome m is given by p(m) =
∑

λ |〈m,λ|Ψ〉|
2
,

where 〈m,λ|Ψ〉 denotes the inner product of the vectors |m,λ〉 and |Ψ〉. More-
over, given that the outcome m occurred, the state of the quantum system
immediately after the measurement is represented by the normalized vector

1√
p(m)

∑
λ

〈m,λ|Ψ〉|m,λ〉.

The commutator between two operators A and B is defined to be [A,B] :=
AB−BA. LetO1, . . . ,Ok be observables of a quantum system and let A1, . . . , Ak

be the Hermitian operators which represent O1, . . . ,Ok, respectively. If the Her-
mitian operators commute to each other, i.e., [Aj , Aj′] = 0 for all j, j′ = 1, . . . , k,
then we can perform measurements of all O1, . . . ,Ok simultaneously upon the
quantum system in any state. All dynamical variables which we will consider
below are assumed to be observables, and we will identify any observable with
the Hermitian operator which represents it.

In this paper we consider quantum systems consisting of vibrating particles.
The simplest one is the quantum system of one-dimensional harmonic oscilla-
tor, which consists only of one particle vibrating in one-dimensional space. The
dynamical variables needed to describe the system are just one coordinate x and
its conjugate momentum p. The energy of the system is an observable, called
Hamiltonian, and is defined in terms of x and p by

H =
1

2m
(p2 +m2ω2x2),

where m is the mass of the oscillating particle and ω is 2π times the frequency.
The oscillation of the particle is quantized by the fundamental quantum condition

[x, p] = i�, (1)

where � is Planck’s constant. The annihilation operator a of the system is
defined by

a =

√
mω

2�

(
x+

ip

mω

)
.

Its adjoint a† is called a creation operator. The fundamental quantum condition
(1) is then equivalently rewritten as

[a, a†] = 1, (2)

and the Hamiltonian can be represented in the form

H = �ω
(
a†a+

1

2

)
(3)

in terms of the creation and annihilation operators. In order to determine the

46 C.S. Calude and K. Tadaki

values of energy possible in the system, we must solve the eigenvalue problem of
H . This problem is reduced to the eigenvalue problem of the observable N :=
a†a, called a number operator. Using the condition (2), the eigenvalue spectrum
of N is shown to equal the set N of all nonnegative integers. Each eigenspace of
N is not degenerate, and the normalized eigenvector |n〉 of N belonging to an
arbitrary eigenvalue n ∈ N is given by

|n〉 = (a†)n√
n!
|0〉, (4)

where |0〉 is the unique normalized vector up to a phase factor such that a|0〉 = 0.
Since N is an observable, the eigenvectors {|n〉} forms a complete orthonormal
system for the state space. It follows from (3) that the values of energy possible
in the system are

En = �ω
(
n+

1

2

)
, (n = 0, 1, 2, . . .)

where the eigenvector of H belonging to an energy En is given by (4).
Next we consider the quantum system of k-dimensional harmonic oscillators

which consists of k one-dimensional harmonic oscillators vibrating independently
without no interaction. The dynamical variables needed to describe the sys-
tem are k coordinates x1, . . . , xk and their conjugate momenta p1, . . . , pk. The
Hamiltonian of the system is

H =

k∑
j=1

1

2mj
(p2j +m2

jω
2
jx

2
j), (5)

where mj is the mass of the jth one-dimensional harmonic oscillator and ωj

is 2π times its frequency. The vibrations of k oscillators are quantized by the
fundamental quantum conditions

[xj , pj′] = i�δjj′ , [xj , xj′] = [pj, pj′] = 0. (6)

The annihilation operator aj of the jth oscillator is defined by

aj =

√
mjωj

2�

(
xj +

ipj
mjωj

)
.

The adjoint a†j of aj is the creation operator of the jth oscillator. The
fundamental quantum condition (6) is then equivalently rewritten as

[aj , a
†
j′] = δjj′ , (7)

[aj , aj′] = [a†j, a
†
j′] = 0. (8)

and the Hamiltonian can be represented in the form

H =

k∑
j=1

�ωj

(
Nj +

1

2

)
(9)

where Nj := a†jaj is the number operator of the jth oscillator. In order to
determine the values of energy possible in the system, we first solve the eigenvalue
problems of the number operators N1, . . . , Nk. We can do this simultaneously

Spectral Representation of Some C.E. Sets with an Application 47

for all Nj since the number operators commute to each other, i.e., [Nj, Nj′] = 0
for all j, j′ = 1, . . . , k, due to (7) and (8). The eigenvalue spectrum of each Nj is
shown to equal N using (7). We define a vector |n1, . . . , nk〉 as the tensor product
|n1〉 ⊗ · · · ⊗ |nk〉 of |n1〉, . . . , |nk〉, where each |nj〉 is defined by (4) using aj in
place of a. For each j, the vector |n1, . . . , nk〉 is a normalized eigenvector of Nj

belonging to an eigenvalue nj ∈ N, i.e.,

Nj |n1, . . . , nk〉 = nj |n1, . . . , nk〉. (10)

All the vectors {|n1, . . . , nk〉} form a complete orthonormal system for the state
space. It follows from (9) that the values of energy possible in the system are

En1,...,nk
= �

k∑
j=1

ωj

(
nj +

1

2

)
, (n1, . . . , nk = 0, 1, 2, . . .)

The vector |n1, . . . , nk〉 is an eigenvector of H belonging to an energy En1,...,nk
.

The Hamiltonian (5) describes the quantum system of k-dimensional harmonic
oscillators where each oscillator does not interact with any others and moves in-
dependently. In a general quantum system consisting of k-dimensional harmonic
oscillators, each oscillator strongly interacts with all others. Its Hamiltonian has
the general form

P (a1, . . . , ak, a
†
1, . . . , a

†
k), (11)

where a1, . . . , ak are creation operators satisfying the quantum conditions (7) and
(8), and P is a polynomial in 2k variables with coefficients of complex numbers
such that (11) is Hermitian.1 For example, we can consider the quantum system
of k-dimensional harmonic oscillators whose Hamiltonian is

H =
∑
j

�ωj

(
a†jaj +

1

2

)
+

∑
j �=j′

gjj′a
†
jaj′ .

Here the interaction terms gjj′a
†
jaj′ between the jth oscillator and the j′th

oscillator with a real constant gjj′ are added to the Hamiltonian (9). Note,
however, that solving exactly the eigenvalue problem of an observable in the
general form of (11) is not an easy task.

3 A Class of Unary Languages

In this section we introduce a class of unary languages for which the
representability theorem proven in the next section holds true.

Let N∗ be the set of all finite sequences (x1, . . . , xm) with elements in N
(m ∈ N; for m = 0 we get the empty sequence ε). Let

L((x1 . . . xm), a) =

(
m∏
i=1

{1xi}∗
)
{1a}, (12)

for all (x1, . . . , xm) ∈ N∗, a ∈ N.
1 In the monomials appearing in P , the order of the variables x1, . . . , x2k does not mat-
ter. However, since aj and a†

j do not commute, in substituting a1, . . . , ak, a
†
1, . . . , a

†
k

into the variables of P the order of these operators makes a difference. Thus, the
operator (11) makes sense only by specifying this order.

48 C.S. Calude and K. Tadaki

Theorem 1. Let L0 be the minimal class of languages L over {1} containing
the languages {1n} for every n ∈ N, and which is closed under concatenation
and the Kleene star operation. Then, L0 = {L((x1, . . . , xm), a) | (x1, . . . , xm) ∈
N∗, a ∈ N}.

Proof. The class L0 has the required properties because L(ε, a) =
{1a}, the concatenation of L((x1, . . . , xm, a) and L((y1, . . . , yl), b) is
L((x1, . . . , xm), a)L((y1, . . . , yl), b) = L((x1, . . . , xm, y1, . . . , yl), a + b) and the
Kleene star of L((x1, . . . , xm), a) is L((x1, . . . , xm), a)∗ = L((x1, . . . , xm, a), 0).
In view of (12), L0 is included in every class L satisfying the properties in the
statement of the theorem. ��

Corollary 2. The class L0 coincides with the minimal class of languages L over
{1} which contains the languages {1n} and {1n}∗, for every n ∈ N and which is
closed under concatenation.

Comment 3. i) If L is a finite unary language with more than one element,
then L �∈ L0.
ii) The family L0 is a proper subset of the class of regular (equivalently,
context-free) languages.
iii) The language {1p | p is prime} is not in L0.

Consider the minimal class D0 of subsets of N containing the sets {b}, for every
b ∈ N, and which is closed under the sum and the Kleene star operation. Here
the sum of the sets S, T is the set S + T = {a + b | a ∈ S, b ∈ T }; the Kleene
star of the set S is the set S∗ = {a1 + a2 + · · ·+ ak | k ≥ 0, ai ∈ S, 1 ≤ i ≤ k}.

Theorem 4. The following equality holds true: L0 = {{1a | a ∈ S} | S ∈ D0}.

Based on the above theorem, we identify L0 with D0 in what follows.

4 The Representation Theorem

Can a set S ∈ D0 be represented as the outcomes of a quantum measurement?
We answer this question in the affirmative. First we show that the sets in D0

can be generated by polynomials with nonnegative integer coefficients.

Proposition 5. For every set S ∈ D0 there exists a polynomial with nonnegative
integer coefficients FS in variables x1, . . . , xk such that S can be represented as:

S = {FS(n1, . . . , nk) | n1, . . . , nk ∈ N}. (13)

Proof. Suppose that S ∈ D0. It follows from Theorem 4 and (12) that there exist
a1, . . . , ak, a ∈ N such that S = {a1n1 + · · ·+ aknk + a | n1, . . . , nk ∈ N}. Thus,
(13) holds for the polynomial FS(x1, . . . , xk) = a1x1 + · · ·+ akxk + a. ��

Comment 6. There exist infinitely many sets not in D0 which are representable
in the form (13).

Spectral Representation of Some C.E. Sets with an Application 49

Motivated by Proposition 5, we show that every set

S = {F (n1, . . . , nk) | n1, . . . , nk ∈ N}, (14)

where F is a polynomial in k variables with nonnegative integer coefficients, can
be represented by the set of outcomes of a constructive quantum measurement.
For this purpose, we focus on a quantum system consisting of k-dimensional
harmonic oscillators whose Hamiltonian has the form

H = F (N1, . . . , Nk), (15)

where N1, . . . , Nk is the number operators defined by Nj = a†jaj with the annihi-
lation operator aj of the jth oscillator. Note that the substitution of N1, . . . , Nk

into the variables of F is unambiguously defined since the number operators
N1, . . . , Nk commute to each other.

We say an observable of the form (11) is constructive if all coefficients of P are
in the form of p+qi with p, q ∈ Q. Thus, the Hamiltonian (15) is constructive by
definition. Actually, a measurement of the Hamiltonian (15) can be performed
constructively in an intuitive sense. The constructive measurement consists of
the following two steps: First, the simultaneous measurements of the number
operators N1, . . . , Nk are performed upon the quantum system to produce the
outcomes n1, . . . , nk ∈ N for N1, . . . , Nk, respectively. This is possible since the
number operators commute to each other. Secondly, F (n1, . . . , nk) is calculated
and is regarded as the outcome of the measurement of the Hamiltonian (15) itself.
This is constructively possible since F is a polynomial with integer coefficients.
Thus, the whole measurement process is constructive in an intuitive sense too.

Theorem 7. For every set S of the form (14) there exists a constructive
Hamiltonian H such that the set of all possible outcomes of a measurement of
H is S.

Proof. Consider the Hamiltonian H of the form (15). It is constructive, as we
saw above. We show that the eigenvalue spectrum of H equals to S.

First, using (10) we get

F (N1, . . . , Nk)|n1, . . . , nk〉 = F (n1, . . . , nk)|n1, . . . , nk〉 (16)

for every n1, . . . , nk ∈ N. Thus, every element of S is an eigenvalue of H . Con-
versely, suppose that E is an arbitrary eigenvalue of H . Then there exists a
nonzero vector |Ψ〉 such that H |Ψ〉 = E|Ψ〉. Since all vectors {|n1, . . . , nk〉} form
a complete orthonormal system for the state space, there exist complex numbers
{cn1,...,nk

} such that |Ψ〉 =
∑

n1,...,nk
cn1,...,nk

|n1, . . . , nk〉. It follows from (16)
that ∑

n1,...,nk

cn1,...,nk
F (n1, . . . , nk)|n1, . . . , nk〉 =

∑
n1,...,nk

cn1,...,nk
E|n1, . . . , nk〉.

Since the vectors {|n1, . . . , nk〉} are independent, we have

cn1,...,nk
(E − F (n1, . . . , nk)) = 0, (17)

for all n1, . . . , nk ∈ N. Since |Ψ〉 is nonzero, cn̄1,...,n̄k
is also nonzero for some

n̄1, . . . , n̄k ∈ N. It follows from (17) that E = F (n̄1, . . . , n̄k). ��

50 C.S. Calude and K. Tadaki

5 An Application to Quantum Provability

Let S be a set of the form (14). In the proof of Theorem 7, we consider the
measurement of the Hamiltonian of the form (15). In the case where the state |Ψ〉
over which the measurement of the Hamiltonian is performed is chosen randomly,
an element of S is generated randomly as the measurement outcome. In this
manner, by infinitely many repeated measurements we get exactly the set S.

If the set S codes the “theorems” of a formal system S—which is possible as
S is computable—then F (n1, . . . , nk) ∈ S is a theorem of S and the numbers
n1, . . . , nk play the role of the proof which certifies it.

Suppose that a single measurement of the Hamiltonian of the form (15) was
performed upon a quantum system in a state represented by a normalized vector
|Ψ〉 to produce an outcome m ∈ S, i.e., a theorem. Then, by the definition
of theorems, there exists a proof n1, . . . , nk which makes m a theorem, i.e.,
which satisfies m = F (n1, . . . , nk). Can we extract the proof n1, . . . , nk after
the measurement? This can be possible in the following manner: Immediately
after the measurement, the system is in the state represented by the normalized
vector |Φ〉 given by

|Φ〉 = 1√
C

∑
m=F (n1,...,nk)

〈n1, . . . , nk|Ψ〉|n1, . . . , nk〉,

where C is the probability of getting the outcome m in the measurement given:

C =
∑

m=F (n1,...,nk)

|〈n1, . . . , nk|Ψ〉|2 .

Since the number operators N1, . . . , Nk commute to each other, we can perform
the simultaneous measurements of N1, . . . , Nk upon the system in the state |Φ〉.
Hence, by performing the measurements of N1, . . . , Nk, we obtain any particular
outcome n1, . . . , nk with probability |〈n1, . . . , nk|Φ〉|2. Note that∑

m=F (n1,...,nk)

|〈n1, . . . , nk|Φ〉|2 =
∑

m=F (n1,...,nk)

|〈n1, . . . , nk|Ψ〉|2 /C = 1.

Thus, with probability one we obtain some outcome n1, . . . , nk such that m =
F (n1, . . . , nk). In this manner we can immediately extract the proof n1, . . . , nk
of the theorem m ∈ S obtained as a measurement outcome.

6 A Conjecture

In the early 1970s, Matijasevič, Robinson, Davis, and Putnam solved negatively
Hilbert’s tenth problem by proving the MRDP theorem (see Matijasevič [9]
for details) which states that every computably enumerable subset of N is
Diophantine. A subset S of N is called computably enumerable if there exists
a (classical) Turing machine that, when given n ∈ N as an input, eventually
halts if n ∈ S and otherwise runs forever. A subset S of N is Diophantine
if there exists a polynomial P (x, y1, . . . , yk) in variables x, y1, . . . , yk with

Spectral Representation of Some C.E. Sets with an Application 51

integer coefficients such that, for every n ∈ N, n ∈ S if and only if there exist
m1, . . . ,mk ∈ N for which P (n,m1, . . . ,mk) = 0.

Inspired by the MRDP theorem, we conjecture the following:

Conjecture 8 For every computably enumerable subset S of N, there exists
a constructive observable A of the form of (11) whose eigenvalue spectrum
equals S.

Conjecture 8 implies that when we perform a measurement of the observable
A, a member of the computably enumerable S is stochastically obtained as a
measurement outcome. As we indefinitely repeat measurements of A, members
of S are being enumerated, just like a Turing machine enumerates S.

In this way a new type of quantum mechanical computer is postulated to exist.
How can we construct it? Below we discuss some properties of this hypothetical
quantum computer.

As in the proof of the MRDP theorem—in which a whole computation history
of a Turing machine is encoded in (the base-two expansions of) the values of
variables of a Diophantine equation—a whole computation history of a Turing
machine is encoded in a single quantum state which does not make time-evolution
(in the Schrödinger picture). Namely, a whole computation history of the Turing
machine M which recognises S is encoded in an eigenstate of the observable A
which is designed appropriately using the creation and annihilation operators.
To be precise, let |Ψ〉 =

∑
n1,...,nk

cn1,...,nk
|n1, . . . , nk〉 be an eigenvector of A

belonging to an eigenvalue n ∈ S such that each coefficient cn1,...,nk
is drawn from

a certain finite set C of complex numbers containing 0 and the set {(n1, . . . , nk) |
cn1,...,nk

�= 0} is finite. The whole computation history of M with the input n is
encoded in the coefficients {cn1,...,nk

} of |Ψ〉 such that each finite subset obtained
by dividing appropriately {cn1,...,nk

} represents the configuration (i.e., the triple
of the state, the tape contents, and the head location) of the Turing machineM
at the corresponding time step. The observable A is constructed such that its
eigenvector encodes the whole computation history of M , using the properties
of the creation and annihilation operators such as

a†j |n1, . . . , nj−1, nj, nj+1, . . . , nk〉 =
√
nj + 1|n1, . . . , nj−1, nj + 1, nj+1, . . . , nk〉,

by which the different time steps are connected in the manner corresponding to
the Turing machine computation ofM . In the case of n /∈ S, the machineM with
the input n does not halt. Consequently, the length of the whole computation
history is infinite and therefore the set {(n1, . . . , nk) | cn1,...,nk

�= 0} is infinite,
which implies, because all coefficients belong to the finite set C of complex num-
bers, that the norm of |Ψ〉 is indefinite and hence |Ψ〉 is not an eigenvector of A.
In this manner, any eigenvalue of A is limited to a member of S.

Note that there are many computation histories of a Turing machine de-
pending on its input. In the proposed quantum mechanical computer, the mea-
surement of A chooses one of the computation histories stochastically and the
input corresponding to the computation history is obtained as a measurement
outcome. The above analysis shows that Conjecture 8 is likely to be true.

52 C.S. Calude and K. Tadaki

The main feature of the proposed quantum mechanical computer is that
the evolution of computation does not correspond to the time-evolution of the
underlying quantum system. Hence, in contrast with a conventional quantum
computer, the evolution of computation does not have to form a unitary time-
evolution, so it is not negatively influenced by decoherence2, a serious obstacle
to the physical realisation of a conventional quantum computer.

Again, in contrast with a conventional quantum computer, this proposed
quantum mechanical computer can be physically realisable even as a solid-state
device at room temperature (the lattice vibration of solid crystal, i.e., phonons),
which strongly interacts with the external environment. A member of S is ob-
tained as a measurement outcome in an instant by measuring the observable
A. For example, in the case when the observable A is the Hamiltonian of a
quantum system, the measurement outcome corresponds to the energy of the
system. In this case, we can probabilistically decide—with sufficiently small er-
ror probability—whether a given n ∈ N is in S: the quantum system is first
prepared in a state |Ψ〉 such that the expectation value 〈Ψ |A|Ψ〉 of the mea-
surement of the energy over |Ψ〉 is approximately n, and then the measurement
is actually performed. This computation deciding the membership of n to S
terminates in an instant if sufficiently high amount of energy (i.e., around n)
is pumped.

Kieu [7] proposed a quantum computation based on a Hamiltonian of the form
of (15), which is a very special case of (11) used in Conjecture 8. The purpose and
method of Kieu’s are both quite different from ours. His purpose is to perform
hypercomputation, i.e., to solve the membership problem for every c.e. set. On
the other hand, his method is based on adiabatic quantum computation and
uses the MRDP theorem in a direct manner. Kieu uses only ground states (i.e.,
the quantum states with the lowest energy), while the whole energy spectrum is
needed in our approach. These facts suggest that his method may not be useful
for proving Conjecture 8.

7 Quantum Proving without Giving the Proof

In Section 5 we discussed the quantum provability for a formal system whose
theorems can be coded by a set S defined as in (14). When an element m is ob-
tained as an outcome of the measurement, we can extract the proof n1, . . . , nk
which certifies that m is a theorem of the formal system S, i.e., it satisfies
m = F (n1, . . . , nk), by performing the second measurement over the state im-
mediately after the first measurement.

Actually, the proof n1, . . . , nk may be generated slightly before the
theorem F (n1, . . . , nk) is obtained, like in the classical scenario. As we saw
in Section 4, the measurement of F (N1, . . . , Nk) can first be performed by si-
multaneous measurements of the number operators N1, . . . , Nk to produce the

2 Decoherence, which is induced by the interaction of quantum registers with the
external environment, destroys the superposition of states of the quantum registers,
which plays an essential role in a conventional quantum computation.

Spectral Representation of Some C.E. Sets with an Application 53

outcomes n1, . . . , nk ∈ N; then, the theorem m = F (n1, . . . , nk), classically cal-
culated from n1, . . . , nk, can be regarded as the outcome of the measurement of
F (N1, . . . , Nk) itself.

In general, the set of all theorems of a (recursively axiomatisable) formal sys-
tem, such as Peano Arithmetic or ZFC, forms a computably enumerable set and
not a computable set of the form (14). In what follows, we argue the plausibility
that, for general formal systems, the proof cannot be obtained immediately after
the theorem was obtained via the quantum procedure proposed in the previous
section.

Fix a formal system whose theorems form a computably enumerable set. As
before we identify a formula with a natural number. LetM be a Turing machine
such that, given a formula F as an input, M searches all proofs one by one and
halts if M finds the proof of F . Assume that Conjecture 8 holds. Then there
exists an observable A of an infinite dimensional quantum system such that A is
constructive and the eigenvalue spectrum of A is exactly the set of all provable
formulae. Thus, we obtain a provable formula as a measurement outcome each
time we perform a measurement of A; it is stochastically determined which prov-
able formula is obtained. The probability of getting a specific provable formula
F as a measurement outcome depends on the choice of the state |Ψ〉 on which we
perform the measurement of A. In some cases the probability can be very low,
and therefore we may be able to get the provable formula F as a measurement
outcome only once, even if we repeat the measurement of A on |Ψ〉 many times.

Suppose that, in this manner, we have performed the measurement of A once
and then we have obtained a specific provable formula F as a measurement
outcome. Then, where is the proof of F? In the quantum mechanical computer
discussed in Section 6, the computation history of the Turing machine M is
encoded in an eigenstate of the observable A, hence the proof of F is encoded
in the eigenstate of A, which is the state of the underlying quantum system
immediately after the measurement.

Is it possible to extract the proof of F from this eigenstate? In order to
extract the proof of F from this eigenstate, it is necessary to perform an addi-
tional measurement on this eigenstate. However, it is impossible to determine
the eigenstate in terms of the basis {|n1, . . . , nk〉} completely by a single mea-
surement due the principle of quantum mechanics. In other words, there does
not exist a POVM measurement which can determine all the expansion coeffi-
cients {cn1,...,nk

} of the eigenstate with respect to the basis {|n1, . . . , nk〉} up to
a global factor with nonzero probability. This eigenstate is destroyed after the
additional measurement and therefore we cannot perform any measurement on
it any more. We cannot copy the eigenstate prior to the additional measurement
due to the no-cloning theorem (see [3]); and even if we start again from the mea-
surement of A, we may have little chance of getting the same provable formula
F as a measurement outcome.

The above analysis suggests that even if we get a certain provable formula
F as a measurement outcome through the measurement of A it is very difficult

54 C.S. Calude and K. Tadaki

or unlikely to simultaneously obtain the proof of F .3 This argument suggests
that for a general formal system proving that a formula is a theorem is different
from writing up the proof of the formula. Of course, since F is provable, there
is a proof of F , hence the Turing machine M with the input F will eventually
produce that proof. However, this classical computation may take a long time
in contrast with the fact—via the measurement of A—it took only a moment to
know that the formula F is provable.

As mathematicians guess true facts for no apparent reason we can speculate
that human intuition might work as in the above described quantum scenario. As
the proposed quantum mechanical computer can operate at room temperature it
may be even possible that a similar quantum mechanical process works in the hu-
man brain those offering an argument in favour of the quantum mind hypothesis
[10]. The argument against this proposition according to which quantum sys-
tems in the brain decohere quickly and cannot control brain function (see [11])
could be less relevant as decoherence plays no role in the quantum computation
discussed here.

Acknowledgement. We thank Professor K. Svozil for useful comments.

References

1. Aigner, M., Schmidt, V.A.: Good proofs are proofs that make us wiser: interview
with Yu. I. Manin. The Berlin Intelligencer, 16–19 (1998),
http://www.ega-math.narod.ru/Math/Manin.html

2. Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, Heidelberg (2005)
3. Buzek, V., Hillery, M.: Quantum cloning. Physics World 14(11), 25–29 (2001)
4. Calude, C.S., Calude, E., Marcus, S.: Proving and programming. In: Calude, C.S.

(ed.) Randomness & Complexity, from Leibniz to Chaitin, pp. 310–321. World
Scientific, Singapore (2007)

5. Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Oxford University
Press, London (1958)

6. Hiai, F., Yanagi, K.: Hilbert Spaces and Linear Operators. Makino-Shoten (1995)
(in Japanese)

7. Kieu, T.D.: A reformulation of Hilbert’s tenth problem through quantum mechan-
ics. Proc. R. Soc. Lond. A 460, 1535–1545 (2004)

8. Mahan, G.D.: Many-Particle Physics, 3rd edn. Kluwer Academic/Plenum Publish-
ers, New York (2010)

9. Matijasevič, Y.V.: Hilbert’s Tenth Problem. The MIT Press, Cambridge (1993)
10. Penrose, R., Hameroff, S.: Consciousness in the universe: Neuroscience, quantum

space-time geometry and Orch OR theory. Journal of Cosmology 14 (2011),
http://journalofcosmology.com/Consciousness160.html

11. Tegmark, M.: Importance of quantum decoherence in brain processes. Physical
Review E 61(4), 4194–4206 (2000)

3 For the formal system S in Section 5, we can obtain a theorem and its proof simulta-
neously via measurements since the observable F (N1, . . . , Nk) whose measurements
produce “theorems” is a function of the commuting observables N1, . . . , Nk whose
measurements produce “proofs”. However, this is unlikely to be true for general
formal systems.

http://www.ega-math.narod.ru/Math/Manin.html
http://journalofcosmology.com/Consciousness160.html

On the Power of P Automata�

Erzsébet Csuhaj-Varjú1 and György Vaszil2

1 Department of Algorithms and Their Applications, Faculty of Informatics
Eötvös Loránd University

Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@inf.elte.hu

2 Department of Computer Science, Faculty of Informatics
University of Debrecen

P.O. Box 12, 4010 Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Abstract. We study the computational power of P automata, variants
of symport/antiport P systems which characterize string languages by
applying a mapping to the sequence of multisets entering the system
during computations. We consider the case when the input mapping is
defined in such a way that it maps a multiset to the set of strings consist-
ing of all permutations of its elements. We show that the computational
power of this type of P automata is strictly less than so called restricted
logarithmic space Turing machines, and we also exhibit a strict infinite
hierarchy within the accepted language class based on the number of
membranes present in the system.

1 Introduction

P systems or membrane systems are distributed parallel computing devices, in-
spired by the functioning and the architecture of the living cell. The basic concept
was introduced by Gheorghe Păun, see [8]. A P system consists of a hierarchi-
cally embedded structure of membranes where each membrane encloses a region
that contains objects and might also contain other membranes. There are rules
associated to the regions describing the evolution and communication of the
objects present in the membranes. A sequence of configurations following each
other is a computation. P systems have intensively been studied in the last years;
the interested reader might consult the handbook [10] for a detailed overview
of the area.

Important variants of membrane systems are P automata, symport/antiport P
systems which accept strings in an automaton-like fashion. They were introduced
in [3] (for a summary on P automata, see [2]). Strings in the language of a P
automaton are obtained as mappings of the multiset sequences which enter the
P system through the skin membrane during an accepting computation.

� Supported in part by the Hungarian Scientific Research Fund, “OTKA”,
grant no. K75952, and by the European Union through the TÁMOP-4.2.2.C-
11/1/KONV-2012-0001 project which is co-financed by the European Social Fund.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 55–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

56 E. Csuhaj-Varjú and G. Vaszil

In [1], the case of simple, non-erasing mappings was examined. It was shown
that if the rules of the P automaton are applied sequentially (one rule in each
region at every computation step), then the accepted language class is strictly
included in the class of languages accepted by nondeterministic one-way Turing
machines with a logarithmically bounded workspace, or, if the rules are applied
in the maximally parallel manner (as many rules are applied in the regions simul-
taneously as possible), then the class of context-sensitive languages is obtained.
A closely related concept is the analyzing P system [4], which corresponds to a
P automaton where the mapping to obtain the accepted language is defined in
such a way that a multiset is mapped by a mapping fperm to the set of strings
which consists of all permutations of the elements of the multiset.

In this paper we deal with the power of P automata when the mapping fperm
is used to obtain the accepted language. Although this P automata variant has
been widely studied, its precise language accepting power has not been described.
Answering the open questions from [5], we show that both in the sequential
and in the maximally parallel rule application mode these P automata variants
describe a class of languages properly included in the class of languages accepted
by nondeterministic Turing machines working with restricted logarithmically
bounded workspace. This class of languages is of special interest since in this
case for every accepted input of length n, there is an accepting computation
where the number of nonempty cells on the work-tape(s) is bounded by log d
where d ≤ n is the number of input tape cells already read, that is, the distance
of the reading head from the left end of the one-way input tape. This property
can be interpreted as follows: the workspace that can be used for computation is
provided by the objects of the already consumed input, a property also typical
for natural systems. Furthermore, we also show that the number of membranes in
P automata defined over unary alphabet and using fperm in arbitrary working
mode induces a strict infinite hierarchy of the corresponding language classes
according to inclusion.

To obtain the results we introduce two variants of counter machines, mak-
ing it possible to read multisets (represented as sets of all permutations) and
manipulating counters in a conventional manner.

2 Preliminaries and Definitions

Throughout the paper we assume that the reader is familiar with the basics of
formal language theory and membrane computing; for details we refer to [12]
and [10].

An alphabet is a finite non-empty set of symbols. Given an alphabet V , we
denote by V ∗ the set of all strings over V . If the empty string, λ, is not included,
then we use notation V +. The length of a string x ∈ V ∗ is denoted by |x|. For
any set of symbols A ⊆ V and for any symbol a ∈ V , the number of occurrences
of symbols from A in x is denoted by |x|A, while |x|a denotes the number of
occurrences of the symbol a in x.

On the Power of P Automata 57

A finite multiset over an alphabet V is a mapping M : V → N where N is the
notation for the set of non-negative integers; M(a) is said to be the multiplicity
of a in M . M can also be represented by any permutation of a string x =

a
M(a1)
1 a

M(a2)
2 . . . a

M(an)
n ∈ V ∗, where ifM(x) �= 0, then there exists j, 1 ≤ j ≤ n,

such that x = aj . To simplify the notations, the set of all finite multisets over
an alphabet V is denoted by V ∗, and we use the notation V + for denoting the
set of nonempty (finite) multisets. The empty multiset is denoted by λ as in the
case of the empty string. If confusion may arise, we make explicit whether we
speak of a string or a multiset.

A P system is a structure of hierarchically embedded membranes (a rooted
tree), each having a unique label and enclosing a region containing a multiset of
objects. The outermost membrane which is unique and usually labeled with 1,
is called the skin membrane.

An antiport rule is of the form (u, in; v, out), where u, v ∈ V ∗ are finite multi-
sets over V . If such a rule is applied in a region, then the objects of u enter from
the parent region and, in the same step, objects of v leave to the parent region.
If only (u, in) or (u, out) is indicated, then we speak of symport rules. The rules
can also be equipped with promoters or inhibitors, written as (u, in; v, out)|z,
or (u, in; v, out)|z̄, z ∈ V ∗. In the first case the rule can only be applied if the
objects of the promoter multiset z are all present in the given region, in the
second case, the rule can be applied if no element of z is present. Analogously,
promoters or inhibitors can be added to symport rules as well. We assume that
the environment contains an unlimited supply of objects, thus, if an antiport
rule is applied in the skin region, then the requested multiset is always able to
enter the system from the environment (which is the parent region of the skin
membrane).

A P automaton (of degree k) is a membrane system Π = (V, μ, w1, . . . , wk,
P1, . . . , Pk) with object alphabet V , membrane structure μ, initial contents (mul-
tisets) of the ith region wi ∈ V ∗, 1 ≤ i ≤ k, and sets of antiport rules with
promoters or inhibitors Pi, 1 ≤ i ≤ k. Furthermore, P1 must not contain any
rule of the form (a, in) where a is an object from V .

The configurations of the P automaton can be changed by transitions in the se-
quential mode (seq) or in the non-deterministic maximally parallel mode (par).
In the first case one rule is applied in each region in every step, in the sec-
ond case as many rules are applied simultaneously in the regions at the same
step as possible. Thus, a transition in the P automaton Π is (v1, . . . , vm) ∈
δΠ,X(u0, u1, . . . , um), where δΠ,X denotes the transition relation,X ∈ {seq, par},
u1, . . . , uk are the contents of the k regions, u0 is the multiset entering the sys-
tem from the environment, and v1, . . . , vk, respectively, are the contents of the
k regions after performing the transition in the working mode.

In this way, there is a sequence of multisets which enter the system from
the environment during the steps of its computations. If the computation is
accepting, that is, if it halts, then this multiset sequence is called an accepted
multiset sequence.

58 E. Csuhaj-Varjú and G. Vaszil

From any accepted multiset sequence over V , a string of the accepted lan-
guage, that is, a string over some alphabet Σ is obtained by the application of
a mapping f : V ∗ → 2Σ

∗
, mapping each multiset to a finite set of strings.

Let Π be a P automaton as above, and let f be a mapping f : V ∗ → 2Σ
∗
for

some finite alphabetΣ. The language overΣ accepted byΠ in theX-mode of rule
application, where X ∈ {seq, par} with respect to f is defined as LX(Π, f,Σ) =
{f(v1) . . . f(vs) | v1, . . . , vs is an accepted multiset sequence of Π in mode X}.

In [5] the authors consider P automata with f defined in such a way that
a multiset over V is mapped by f to the set of strings which consists of all
permutations of the elements of the multiset. In the following, this mapping will
be denoted by fperm. Since in this case Σ does not differ from V , we denote
the accepted language by LX(Π, fperm). The class of languages accepted by Π
automata working in the X-mode, X ∈ {seq, par} defined by mapping fperm is
denoted by LX(PA, fperm).

Finally, we recall a notion from [1]. A nondeterministic Turing machine with
a one-way input tape is restricted logarithmic space bounded if for every ac-
cepted input of length n, there is an accepting computation where the number
of nonempty cells on the work-tape(s) is bounded by O(log d) where d ≤ n is the
number of input tape cells already read, that is, the distance of the reading head
from the left end of the one-way input tape. The class of languages accepted
by such machines is denoted by r1LOGSPACE. In [1] it is shown that this class
is strictly included in 1LOGSPACE, the class of languages accepted by Turing
machines with a one-way input tape in logarithmic space, and that sequential
P automata with certain types of simple input mappings exactly characterize
this language class.

3 Results

We first define restricted counter machine acceptors corresponding to the
language class r1LOGSPACE. For the sake of readability, we present only the
necessary formal details.

A restricted k-counter machine acceptor M , an RCMA in short, is a (non-
deterministic) counter machine with k counters (holding non-negative integers)
and a one-way read only input tape. Thus, M = (Q,Σ, k, δ, q0, F) for some
k ≥ 1, where Q is the set of internal states, Σ is the input alphabet, q0 ∈ Q is

the initial state, F ⊆ Q is the set of final states, and δ : Q×Σ∗×Ck → 2Q×Dk

,
where C = {zero, nonzero}, denoting the two types of observations the ma-
chine can make on its counters, D = {increment, decrement, none} denot-
ing the operations the machine can execute on its counters. (Note that δ is
finitely defined, that is, defined for a finite subset of Σ∗, and a counter can be
incremented/decremented by one at any computational step.) Moreover,

– the transition relation is defined in such a way that the reading head can
read more than one input symbol in one computational step in the “multiset
sense”, that is, δ(q, x, α) = δ(q, y, α) for each x, y ∈ Σ∗ which represent the
same multiset. Moreover,

On the Power of P Automata 59

– the sum of the values stored in the counters can only increase as much in
one computational step as the number of symbols read in that same step,
that is, for all (q′, β) ∈ δ(q, x, α) we have |β|increment − |β|decrement ≤ |x|.

Let the class of languages accepted by restricted counter machine acceptors be
denoted by L(RCMA).

We also introduce the notion of the restricted version of a special multihead
finite automata defined in [6]. A special multihead finite automaton with k heads
is a multihead finite automaton having a one-way reading head, and k − 1 two-
way “counter” heads which are only able to distinguish if they are positioned on
the left end marker, the right end marker, or somewhere in between.

Let L(RSMFA) denote the class of languages which can be accepted by special
multihead finite automata in such a way that none of the counter heads ever
moves beyond (to the right of) the one-way reading head.

As it is also mentioned in [6], special multihead finite automata are equivalent
to logarithmic space Turing machines with a one-way read only input tape. It is
not difficult to see that the restricted variant defined above is equivalent to re-
stricted one-way logarithmic space Turing machines, that is, it also characterizes
r1LOGSPACE.

Now we show that restricted k-counter machine acceptors also characterize
r1LOGSPACE.

Lemma 1. L(RCMA) = r1LOGSPACE.

Proof. We show that restricted counter machine acceptors (RCMA) charac-
terize L(RSMFA), which in turn, is equal to r1LOGSPACE. It is clear that
L(RCMA) ⊆ L(RSMFA) since RCMA with k counters can be simulated by
RSMFA with k + 1 heads. As the sum of the counter contents of the RCMA is
not larger than the number of symbols read from the input, none of the “counter”
heads of the RSMFA needs to move beyond the one-way input reading head. The
only issue we need to solve concerns the ability of RCMA to read strings repre-
senting multisets with possibly more than one elements in a single computational
step. This can be simulated with RSMFA by modifying the finite control in such
a way that the strings read by these transitions of the RCMA are simulated in
several steps of the RSFMA.

To see that L(RSMFA) ⊆ L(RCMA), we show how to simulate an RSMFAM
having k heads with an RCMAM ′ having k counters. The one-way reading head
of M is simulated by the one-way reading head of M ′, while the k − 1 counter
heads of M are simulated by the first k − 1 counters of M ′, the increment and
decrement of the counters simulating the left and right movements of the tape
heads. Suppose now that the one-way reading head of M has advanced m cells
to the right from the left end of the input tape. This means that to record
the positions of each of the k counter heads of M , the simulating RCMA M ′

should record k non-negative integers, each having the value of at most m. Since
the sum of the values of the counters of M ′ cannot be more than m, it cannot
store these k integers in its counters directly. But, instead of storing a value
0 ≤ ji ≤ m, it can store a value 0 ≤ li ≤ �k/m� such that ji = li · k + si where

60 E. Csuhaj-Varjú and G. Vaszil

si ∈ {0, 1, . . . , k − 1}. Thus si can be recorded in the state of the finite control
for each counter 1 ≤ i ≤ k.

Furthermore, when a counter of M ′ is decremented, then the kth counter
(which is not necessary for the simulation of the k−1 heads ofM) is incremented
in order not to “lose” the possibility of incrementing another counter without
reading more input symbols (this might be necessary if the right move of a
counter head can be executed by M without further advancing the one-way
reading head). ��

Now we use RCMA to show that the class of languages characterized by P
automata with the mapping fperm are strictly included in r1LOGSPACE.

Theorem 2. LX(PA, fperm) ⊂ r1LOGSPACE where X ∈ {seq, par}.

Proof. First we show that LX(PA, fperm) ⊆ r1LOGSPACE for X ∈ {seq, par}.
Let L = LX(Π, fperm), for one of the modes X ∈ {seq, par}, and let Π =
(V, μ, w1, . . . , wm, P1, . . . , Pm).

We show how to construct an RCMA, M = (Q,Σ, k, δ, qini, F), such that
L = L(M). The machine M is able to simulate the computations of Π by
keeping track of the number of different objects in the different regions of Π .
M has three counters for each symbol-region pair, these are called storage coun-
ters, temporary counters, and assistant counters, one additional counter for each
symbol which are called input counters, and d additional counters called input
assistant counters where d is the maximal number of objects which can enter
the skin membrane from the environment by the application of one antiport
rule (d = max({|v| | (u, out; v, in)|z ∈ P1}). Thus, k = 3 · |V | · m + |V | + d.
These counters are initially empty, so the number of objects in the initial con-
figuration of M is recorded in the components (c1, . . . , ck′) of the internal state
qini = (q0, c1, . . . , ck′) ∈ Q′ × Nk′

with k′ = k − |V |.
The simulation of a computational step (v1, . . . , vm) ∈ δΠ(u0, u1, . . . , um) of

Π by M can be described as follows. (We omitted the indication of the working
mode in δ since it is irrelevant at the moment.) In the first phase, M reads wu0

from the input tape, where wu0 is a string corresponding to the multiset u0, and
for each symbol ai ∈ V with |wu0 |ai = ji, sets the corresponding input counter to
ji, 1 ≤ i ≤ |V |. This is done in several input reading steps: If the skin region of
Π contains a rule (x, out; y, in)|z, x, y, z being multisets over Σ, then M is able
to read in one computational step all strings wy ∈ Σ∗ representing y. Thus, by
the (repeated) use of the input reading transitions M is able to read the strings
corresponding to the multisets which can be imported into Π by the (parallel)
use of its antiport rules. During such an input reading transition corresponding
to a rule (x, out; y, in)|z, M first increments the first |y| of the input assistant
counters, then increments the input counters corresponding to the objects of y
by decrementing one of the input assistant counters for each increment.

Now M nondeterministically chooses symport/antiport rules (possibly with
promoters or inhibitors) from the sets Pi, 1 ≤ i ≤ m, of Π , and updates the
counters which keep track of the configuration of Π according to the chosen rule.
The storage counters corresponding to the region and the objects which leave

On the Power of P Automata 61

the region are decremented by the necessary amount, and the number of objects
entering the region are added to the corresponding temporary counters. If an
object enters from the environment in the skin region of Π , the corresponding
input counter ofM is decremented. (Note that the “counter components” of the
internal states are also taken into account: their value and the value of the cor-
responding “real” counter together represent the number of objects in Π . When
such an “internal counter” is decremented, then the increment of the necessary
temporary counter also happens in the corresponding “internal” version of that
counter. This way this nondeterministic rule choosing and configuration modi-
fying phase of the computation of M does not increase the overall sum of the
values stored in the different counters.) If Π works in the sequential mode, at
most one rule is chosen from each set, otherwise, if Π works in the maximally
parallel mode, then several rules can be chosen from the same set.

When this phase is finished, M checks whether the configuration change im-
plied by the above chosen rules corresponds to the required mode of operation
(sequential or maximally parallel). In both cases, it makes sure first that the
input counters are empty.

In the sequential case, M needs to check that in those regions where no rules
have been chosen, none of the available rules are applicable. To this end, it
can keep a record of the regions where rules were used in its finite control,
and check the applicability of the rules of that region one by one, using the
corresponding assistant counters to store the numbers which are subtracted from
various counters during the process in order to be able to easily restore the
original configuration when the checking of the applicability of a rule fails. In the
maximally parallel case, the checking phase must check the applicability of rules
in each region, which can be done in the same way as described above (including
the skin region, to check whether the multiset entering from the environment
was also maximal).

After the checking of the chosen rule set, M realizes the configuration change
by updating the storage counters using the values from the temporary counters,
and the simulation of the next computational step can start by reading a new
string from the input tape. Before continuing with the simulation, M can check
whether the current configuration is final or not, and decide to proceed or to
stop accordingly. (A configuration is final if it is halting, thus, if no rule can be
applied in any of the regions.)

Now we show that the inclusion of LX(PA, fperm) in r1LOGSPACE is proper,
X ∈ {seq, par}. Consider the language L1 = {(ab)n#w | w ∈ {1}{0, 1}∗
such that val(w) = n > 1} where val(w) denotes the value of w as a binary
integer. It is not difficult to see that L1 ∈ r1LOGSPACE. On the other hand,
L1 �∈ LX(PA, fperm), as follows from Lemma 4.1 of [5]. This lemma states that
any non-regular language over an alphabet V in Lpar(PA, fperm) contains a word
w which can be written as w = v1abv2, a, b ∈ V , such that w′ = v1bav2 is also a
word of the language. The argument proving the lemma also holds for systems
working in the sequential mode, thus, as no word of L1 contains such a subword,
we can conclude that L1 �∈ LX(PA, fperm) for X ∈ {seq, par}. ��

62 E. Csuhaj-Varjú and G. Vaszil

Next we are going to show that there exists an infinite hierarchy of language
classes in connection to P automata with input mapping fperm. To this aim, we
introduce the notion of a special restricted counter machine acceptor.

A special restricted k-counter machine acceptor, an SRCMA in short, is a
restricted k-counter machine acceptor M = (Q,Σ, k, δ, q0, F), but in addition,
the transition relation δ is defined in such a way, that if the length of the string
x read in one computational step is l, then the sum of the values stored in the
counters can only increase at most as much as l − 1 in the same computational
step. Thus,

– for all (q′, β) ∈ δ(q, x, α), we have |β|increment − |β|decrement ≤ |x| − 1.

Note that an SRCMA which reads at most one symbol in one computational step
cannot accept any non-regular language. (The counter values cannot increase,
thus, the machine is equivalent to a finite automaton.)

Let L(SRCMA) denote the class of languages accepted by SRCMA.
We will make use of the following two lemmas about special restricted counter

machine acceptors (SRCMA).

Lemma 3. A language L is accepted by a P automaton with input mapping
fperm, working in any of the sequential or maximally parallel modes, if and only
if L can be accepted by an SRCMA.

Proof. First we show that any language L ⊆ Σ∗ accepted by a P automaton with
input mapping fperm is also in L(SRCMA). For any such L = LX(Π, fperm),
for one of the modes X ∈ {seq, par} accepted by a P automaton Π , we can
construct an SRCMA M in a similar way as in the first part of the proof of
Theorem 2. Since M is a special RCMA (SRCMA), it can increase the values of
its counters in an even more restricted manner as an RCMA can. But still, as we
assume that rules of the form (a, in) cannot be used in the skin membrane of the
P automaton Π , the allowed sum of the counter contents of M corresponds to
the number of symbols entering the membrane system during the computation.
This means that using a similar technique as in the proof of Lemma 1, M can
still record the configurations of Π in its counters.

Now we show how an SRCMA M = (Q,Σ, k, δ, q0, F) can be simulated by
P automata in the maximally parallel mode. Let the transitions defined by δ
be labeled in a one-to-one manner by the set lab(δ), and let the simulating
P automaton be defined as Π = (V, μ, w1, . . . , wk+2, P1, . . . , Pk+2) with V =
Σ ∪ {q0, C,D,E, F | 1 ≤ i ≤ 5} ∪ {Bi,t, t1, t2, t3 | 1 ≤ i ≤ 5, t ∈ lab(δ)} ∪ {AiA

′
i |

3 ≤ i ≤ k + 2}, membrane structure μ = [[]2 []3 . . . []k+2]1, where the rule
sets with the initial membrane contents are as follows. (For easier readability,
instead of the string notation, we denote the initial multisets by enumerating
their elements between parentheses.)

w1 = {q0, C,D},
P1 = {(a, out;u, in)|t1 | a ∈ Σ, t ∈ lab(δ) is a transition of M

which reads a string representing u from the input tape}

On the Power of P Automata 63

w2 = {a,Bi,t, t1, (t2)
k, (t3)

k | 1 ≤ i ≤ 5, t ∈ lab(δ)} where a is some element

of Σ and (ti)
k denotes k copies of the object ti,

P2 = {(t1a, out; q0D, in) | a ∈ Σ, t ∈ lab(δ) labels a transition

from q0 ∈ Q} ∪
{(B1,tD(t2)

k, out; t1, in) | t ∈ lab(δ)} ∪ {(a, out)|D | a ∈ Σ} ∪
{(B2,t(t3)

k, out;B1,t, in), (B3,t, out;B2,t, in), (B4,t, out;B3,t(t2)
k, in),

(B5,t, out; (t3)
kB4,tCa, in), (s1a, out;B5,tD, in) | t, s ∈ lab(δ) where

s is a transition which can follow t, a ∈ Σ} ∪
{(E, out;B5,t, in) | t ∈ lab(δ) is a transition leading to a final

state of M} ∪
{(a, in)|C , (C, out) | a ∈ Σ},

and for 3 ≤ i ≤ k + 2, let

wi = {Ai, A
′
i, F, F},

Pi = {(Ai, out; t2, in), (A
′
i, out)|t2 , (AiA

′
i, in), (F, in;F, out)} ∪

{(t2a, out, t3, in), (t2F, out), (t3, out) | t ∈ lab(δ) is a transition

which decrements the value of counter i− 2} ∪
{(t2, out; t3, in), (t3, out; a, in) | t ∈ lab(δ) is a transition which

increments the value of counter i− 2} ∪
{(Fa, out)|t2 , (t2, out; t3, in), (t3, out) | t ∈ lab(δ) is a transition

which requires that the value of counter i− 2 is zero}

The above defined system has a skin region, a region representing the finite
control (region 2), and k regions corresponding to the k counters of M (regions
3 ≤ i ≤ k+2, referred to as the counter regions). The counter regions represent
the values stored in the counters of M with objects from Σ, region i contains as
many such objects as the values stored in counter i − 2. The object q0 present
in the skin region in the initial configuration is exchanged for a symbol t1 for a
transition symbol t ∈ lab(δ) denoting a transition from the initial state.

The simulation of a computational step of M starts by having one terminal
object a ∈ Σ, and a transition symbol t1 for some transition t ∈ lab(δ) of M in
the skin membrane. The terminal object a is used by a rule (a, out;u, in)|t1 to
import a multiset u ∈ Σ∗ which is read by M during the transition t. Now the
transition symbol is imported into region 2, and k copies of t2 (corresponding to
the same transition, but indexed with 2) are exported to the skin region together
with all the copies of objects fromΣ which are not used inside the counter regions
(these are stored in region 2 until they are needed). In the next five steps, the
values stored in the k counter regions are modified as necessary while the symbol
B1,t is changed to B5,t, increasing its index by one in every step. If a counter
needs to be decremented or checked for being zero, then the objects t2 enter
and take with them a terminal object to the skin region or perform the zero

64 E. Csuhaj-Varjú and G. Vaszil

check as necessary. Meanwhile k copies of t3 are released from region 2 which
continue the process by bringing in terminal objects to the counter regions when
the counter in question needs to be incremented during transition t ∈ lab(δ).
After the modification of the counter values, the remaining terminal objects are
transported back to region 2, and the symbol s1 for the next transition appears,
together with exactly one terminal object a ∈ Σ, so the simulation of the next
computational step of M can start in the same manner.

The simulation finishes when, after executing a transition leading to a final
state of M , the symbol E is exported from region 2 to the skin region and the
system halts.

Due to space restrictions, we do not describe here how SRCMA can be sim-
ulated by P automata with sequential rule application. We could use a similar
construction to the one presented in the proof of Theorem 6.2 in [2]. ��

In the following lemma, we denote the class of languages accepted by SRCMA
with k heads by L(SRCMA, k), and the class of languages accepted by (two-way)
k-head finite automata (MFA) by L(MFA, k).

Lemma 4. L(SRCMA, k) ⊂ L(SRCMA, 2k + 4), k ≥ 1.

Proof. It is clear that SRCMA can be simulated by two-way multihead finite
automata, since a two-way head can also be used as a counter if the numbers
which need to be stored do not exceed the length of the input, which is the
case in SRCMA. As SRCMA may read strings of more than one symbol in a
single computational step, we need to modify the finite control of the simulating
multihead automaton (as in the proof of Lemma 1) in such a way that the strings
read by these transitions are also read, although in several steps. This means
that L(SRCMA, k) ⊆ L(MFA, k + 1) holds for k ≥ 1. Further, it is shown in [7]
that there are unary languages which cannot be accepted by two-way multihead
finite automata with k heads, but can be accepted by such automata with k+1
heads, so we have L(MFA, k) ⊂ L(MFA, k+1). Considering multihead automata
over unary languages, there is no difference between a “real” reading head and
a counter head, thus, over unary inputs, a two way multihead automaton M
with k heads can be simulated by an SRCMA M ′ with 2k counters. To this
aim, M ′ uses a pair of counters, ci,1 and ci,2, to simulate the ith reading head
of M . The value of ci,1 corresponds to the number of symbols left of the ith
head ofM , the value of ci,2 corresponds to the number of the remaining symbols
to right (together with the one that is being read). The simulation begins with
an initialization phase, when M ′ records the number of symbols found on its
input tape in the second “component” of its counters, ci,2, 1 ≤ i ≤ k, achieving
this way a configuration corresponding to the initial configuration of M , when
all heads are positioned at the beginning of the tape. The sum of the numbers
which need to be recorded is k · n (where n is the length of the input). If during
this first phase, M ′ reads its input by two symbols in every step, then it has
�n/2� as an upper bound for the sum of its counter contents, so M ′ uses the
same technique as in the proof of Lemma 1 to record the configurations of Π
with actually using only the capacity of its counters. Thus, if we consider unary

On the Power of P Automata 65

languages, we have L(MFA, k) ⊆ L(SRCMA, 2k). Combining the three relations
above, we obtain the statement of the lemma. ��

Using the lemma above, we can separate the language classes accepted by P
automata with input mapping fperm having different number of membranes.

Theorem 5. For every r, there is an s > r and a unary language L which can
be accepted by a P automaton with input mapping fperm and s membranes, but
not by any such P automaton with r membranes.

The statement holds for P automata working in both the sequential and the
maximally parallel modes.

Proof. We use a similar reasoning as in [6]. As we have shown in the proof
of Theorem 2, P automata with input mapping fperm can be simulated by an
SRCMA with (3m+1)·|V |+d counters, where |V | is the cardinality of the object
alphabet, and d is a constant based on the antiport rules of the skin region. Now,
if a P automaton accepts a language over a unary alphabet Σ = {a}, then the
number of objects different from a inside the system cannot increase during any
computation. Thus, the information about their positions in the system can be
recorded in the finite control of the simulating SRCMA. This means that the
number of necessary counters to simulate a P automaton accepting a unary
language is 3m+ 1 + d where m is the number of membranes.

Assume now, that there is an r, such that all unary languages which can be
accepted by any P automaton can also be accepted by a P automaton with r
membranes. This would mean, that all unary P automata languages could also
be accepted by SRCMA with 3r + 1 + d counters. But according to Lemma 3
above, all SRCMA languages can also be accepted by P automata, thus, all unary
languages accepted by SRCMA can be also be accepted by 3r + 1+ d counters.
This contradicts Lemma 4, so our statement is proved. ��

4 Conclusion

We have shown that P automata working any of the sequential or nondetermin-
istic maximally parallel mode and using mapping fperm to obtain the words of
its language from its accepted multiset sequences are less powerful than non-
deterministic Turing machines working with restricted logarithmically bounded
workspace, where only the already consumed input can be used as workspace
for computation. We also show that if these P automata variants operate over
unary object alphabets, then the number of membranes in the P automata in-
duces an infinite strict hierarchy of language classes with respect to inclusion.
The mapping fperm is a natural concept since it reflects to the fact that the
objects which appear simultaneously can be observed in any order. Thus our
results suggest that certain variants of natural systems that use only existing
resources for computation and observation may not exhibit much computational
power.

66 E. Csuhaj-Varjú and G. Vaszil

References

1. Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the computational complexity of
P automata. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS,
vol. 3384, pp. 76–89. Springer, Heidelberg (2005)

2. Csuhaj-Varjú, E., Oswald, M., Vaszil, G.: P automata. In: [10], ch. 6, pp. 144–167
3. Csuhaj-Varjú, E., Vaszil, G.: P automata or purely communicating accepting P

systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002.
LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

4. Freund, R., Oswald, M.: A short note on analysing P systems. Bulletin of the
EATCS 78, 231–236 (2002)

5. Freund, R., Kogler, M., Păun, G., Pérez-Jiménez, M.J.: On the power of P and dP
automata. Annals of Bucharest University Mathematics-Informatics Series LVIII,
5–22 (2009)

6. Ibarra, O.H.: Membrane hierarchy in P systems. Theoretical Computer Sci-
ence 334(1-3), 115–129 (2005)

7. Monien, B.: Two-way multihead automata over a one-letter alphabet. RAIRO -
Informatique théorique/Theoretical Informatics 14(1), 67–82 (1980)

8. Păun, G.: Membrane Computing: An Introduction. Natural Computing Series.
Springer, Berlin (2002)

9. Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distributed way in membrane
computing: dP systems. International Journal of Computers, Communication and
Control V(2), 238–250 (2010)

10. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

11. Pérez–Jiménez, M.J.: A computational complexity theory in membrane computing.
In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.) WMC 2009. LNCS, vol. 5957, pp. 125–148. Springer, Heidelberg (2010)

12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (1997)

13. Vaszil, G.: On the parallelizability of languages accepted by P automata. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 170–178. Springer, Heidelberg (2011)

Array Insertion and Deletion P Systems

Henning Fernau1, Rudolf Freund2, Sergiu Ivanov3,
Markus L. Schmid1, and K.G. Subramanian4

1 Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier
D-54296 Trier, Germany

{fernau,MSchmid}@uni-trier.de
2 Technische Universität Wien, Institut für Computersprachen

Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

3 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est
Créteil Val de Marne, 61, Av. Gén. de Gaulle, 94010 Créteil, France

sergiu.ivanov@u-pec.fr
4 School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

kgsmani1948@yahoo.com

Abstract. We consider the (d-dimensional) array counterpart of string
insertion and deletion grammars and use the operations of array insertion
and deletion in the framework of P systems where the applicability of the
rules depends on the membrane region. In this paper, we especially focus
on examples of two-dimensional array insertion and deletion P systems
and show that we can already obtain computational completeness using
such P systems with a membrane structure of tree height of at most two
and only the targets here, in, and out.

1 Introduction

In the string case, the insertion operation was first considered in [13–15] and after
that related insertion and deletion operations were investigated, e.g., in [16, 17].
Backed by linguistic motivation, checking of insertion contexts was considered
in [18]. These contextual grammars start from a set of strings (axioms), and
new strings are obtained by using rules of the form (s, c), where s and c are
strings to be interpreted as inserting c in the context of s, either only at the
ends of strings (external case, [18]) or in the interior of strings ([21]). The
fundamental difference between contextual grammars and Chomsky grammars
is that in contextual grammars we do not rewrite symbols, but we only adjoin
symbols to the current string, i.e., contextual grammars are pure grammars.
Hence, among the variants of these grammars as, for example, considered in [5–
7, 22, 23, 19], the variant where we can retain only the set of strings produced
by blocked derivations, i. e., derivations which cannot be continued, is of special
importance. This corresponds to the maximal mode of derivation (called t-mode)
in cooperating grammar systems (see [2]) as well as to the way results in P
systems are obtained by halting computations; we refer the reader to [20, 24]
and to the web page [25] for more details on P systems.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 67–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

68 H. Fernau et al.

With the length of the contexts and/or of the inserted and deleted strings
being big enough, the insertion-deletion closure of a finite language leads to
computational completeness. There are numerous results establishing the de-
scriptional complexity parameters sufficient to achieve this goal; for an overview
of this area we refer to [29, 28]. In [12] it was shown that computational com-
pleteness can also be obtained with using only insertions and deletions of just
one symbol at the ends of a string using the regulating framework of P systems,
where the application of rules depends on the membrane region.

The contextual style of generating strings was extended to d-dimensional ar-
rays in a natural way (see [11]): a contextual array rule is a pair (s, c) of two
arrays to be interpreted as inserting the new subarray c in the context of the
array s provided that the positions where to put c are not yet occupied by a
non-blank symbol. With retaining only the arrays produced in maximal deriva-
tions, interesting languages of two-dimensional arrays can be generated. In [8],
contextual array rules in P systems are considered. A contextual array rule (s, c)
can be interpreted as array insertion rule; by inverting the meaning of this oper-
ation, we get an array deletion rule (s, c) deleting the subarray c in the relative
context of the subarray s.

In this paper, we exhibit some illustrative examples of P systems with
(two-dimensional) array insertion rules (corresponding to contextual array
rules). The main result of the paper exhibits computational completeness of
(two-dimensional) array insertion and deletion P systems.

2 Definitions and Examples

The set of integers is denoted by Z, the set of non-negative integers by N. An
alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by
V ∗; the elements of V ∗ are called strings, and the empty string is denoted by λ;
V ∗\{λ} is denoted by V +. The family of recursively enumerable string languages
is denoted by RE. For more details of formal language theory the reader is
referred to the monographs and handbooks in this area such as [4] and [27].

2.1 A General Model for Sequential Grammars

In order to be able to introduce the concept of membrane systems (P systems)
for various types of objects, we first define a general model ([10]) of a grammar
generating a set of terminal objects by derivations where in each derivation step
exactly one rule is applied (sequential derivation mode) to exactly one object.

A (sequential) grammar G is a construct (O,OT , w, P,=⇒G) where O is a set
of objects, OT ⊆ O is a set of terminal objects, w ∈ O is the axiom (start object),
P is a finite set of rules, and =⇒G⊆ O × O is the derivation relation of G.
We assume that each of the rules p ∈ P induces a relation =⇒p⊆ O × O with
respect to =⇒G fulfilling at least the following conditions: (i) for each object
x ∈ O, (x, y) ∈ =⇒p for only finitely many objects y ∈ O; (ii) there exists a

Array Insertion and Deletion P Systems 69

finitely described mechanism (as, for example, a Turing machine) which, given
an object x ∈ O, computes all objects y ∈ O such that (x, y) ∈ =⇒p. A rule
p ∈ P is called applicable to an object x ∈ O if and only if there exists at least
one object y ∈ O such that (x, y) ∈ =⇒p; we also write x =⇒p y. The derivation
relation =⇒G is the union of all =⇒p, i.e., =⇒G= ∪p∈P =⇒p. The reflexive and

transitive closure of =⇒G is denoted by
∗

=⇒G.
In the following we shall consider different types of grammars depending on

the components of G, especially on the rules in P ; these may define a special
type X of grammars which then will be called grammars of type X.

Usually, the language generated by G (in the ∗-mode) is the set of all terminal
objects (we also assume v ∈ OT to be decidable for every v ∈ O) derivable from

the axiom, i.e., L∗ (G) =
{
v ∈ OT | w ∗

=⇒G v
}
. The language generated by G in

the t-mode is the set of all terminal objects derivable from the axiom in a halting

computation, i.e., Lt (G) =
{
v ∈ OT |

(
w

∗
=⇒G v

)
∧ �z (v =⇒G z)

}
. The family

of languages generated by grammars of type X in the derivation mode δ, δ ∈
{∗, t}, is denoted by Lδ (X). If for every G of type X , G = (O,OT , w, P,=⇒G),
we have OT = O, then X is called a pure type, otherwise it is called extended.

2.2 String Grammars

In the general notion as defined above, a string grammar GS is represented as(
(N ∪ T)∗ , T ∗, w, P,=⇒P

)
where N is the alphabet of non-terminal symbols, T

is the alphabet of terminal symbols, N ∩ T = ∅, w ∈ (N ∪ T)+ is the axiom,
P is a finite set of string rewriting rules, and the derivation relation =⇒GS is
the classic one for string grammars defined over V ∗ × V ∗, with V := N ∪ T .
As classic types of string grammars we consider string grammars with arbitrary
rules of the form u→ v with u ∈ V + and v ∈ V ∗ as well as context-free rules of
the form A→ v with A ∈ N and v ∈ V ∗. The corresponding types of grammars
are denoted by ARB and CF , thus yielding the families of languages L (ARB)
and L (CF), i.e., the family of recursively enumerable languages RE and the
family of context-free languages, respectively.

In [12], left and right insertions and deletions of strings were considered; the
corresponding types of grammars using rules inserting strings of length at most
k and deleting strings of length at most m are denoted by DmIk.

2.3 Array Grammars

We now introduce the basic notions for d-dimensional arrays and array gram-
mars in a similar way as in [9, 11]. Let d ∈ N; then a d-dimensional array
A over an alphabet V is a function A : Zd → V ∪ {#}, where shape (A) ={
v ∈ Zd | A (v) �= #

}
is finite and # /∈ V is called the background or blank

symbol. We usually write A = {(v,A (v)) | v ∈ shape (A)}. The set of all d-di-
mensional arrays over V is denoted by V ∗d. The empty array in V ∗d with empty
shape is denoted by Λd. Moreover, we define V +d = V ∗d \ {Λd}. Let v ∈ Zd,

70 H. Fernau et al.

v = (v1, . . . , vd); the norm of v is defined as ‖v‖ = max {|vi| : 1 ≤ i ≤ d}; the
translation τv : Zd → Zd is defined by τv (w) = w+ v for all w ∈ Zd. For any ar-
ray A ∈ V ∗d we define τv (A), the corresponding d-dimensional array translated
by v, by (τv (A)) (w) = A (w − v) for all w ∈ Zd. The vector (0, . . . , 0) ∈ Zd is
denoted by Ωd.

Usually (e.g., see [1, 26, 30]) arrays are regarded as equivalence classes of
arrays with respect to linear translations, i. e., only the relative positions of the
symbols different from # in the plane are taken into account: the equivalence
class [A] of an array A ∈ V ∗d is defined by

[A] =
{
B ∈ V ∗d | B = τv (A) for some v ∈ Zd

}
.

The set of all equivalence classes of d-dimensional arrays over V with respect to
linear translations is denoted by

[
V ∗d] etc.

A d-dimensional array grammar GA is represented as([
(N ∪ T)∗d

]
,
[
T ∗d] , [A0] , P,=⇒GA

)
where N is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols,N∩T = ∅,A0 ∈ (N ∪ T)∗d is the start array, P is a finite set of d-dimen-

sional array rules over V , V := N ∪T , and =⇒GA⊆
[
(N ∪ T)∗d

]
×

[
(N ∪ T)∗d

]
is the derivation relation induced by the array rules in P .

A “classical” d-dimensional array rule p over V is a triple (W,A1,A2) where
W ⊆ Zd is a finite set and A1 and A2 are mappings from W to V ∪ {#}. In the
following, we shall also write A1 → A2, because W is implicitly given by the
finite arrays A1,A2. We say that the array C2 ∈ V ∗d is directly derivable from
the array C1 ∈ V +d by (W,A1,A2) if and only if there exists a vector v ∈ Zd such
that C1 (w) = C2 (w) for all w ∈ Zd−τv (W) as well as C1 (w) = A1 (τ−v (w)) and
C2 (w) = A2 (τ−v (w)) for all w ∈ τv (W) , i. e., the subarray of C1 corresponding
to A1 is replaced by A2, thus yielding C2; we also write C1 =⇒p C2. Moreover we
say that the array B2 ∈

[
V ∗d] is directly derivable from the array B1 ∈

[
V +d

]
by

the d-dimensional array production (W,A1,A2) if and only if there exist C1 ∈ B1

and C2 ∈ B2 such that C1 =⇒p C2; we also write B1 =⇒p B2.
A d-dimensional array rule p = (W,A1,A2) in P is called monoto-

nic if shape (A1) ⊆ shape (A2) and #-context-free if shape (A1) = {Ωd};
if it is #-context-free and, moreover, shape (A2) = W , then p is called
context-free. A d-dimensional array grammar is said to be of type X ,
X ∈ {d-ARBA, d-MONA, d-#-CFA, d-CFA} if every array rule in P is
of the corresponding type, the corresponding families of array languages
of equivalence classes of d-dimensional arrays by d-dimensional array gram-
mars are denoted by L∗ (X). These families form a Chomsky-like hierar-
chy, i.e., L∗ (d-CFA) � L∗ (d-MONA) � L∗ (d-ARBA) and L∗ (d-CFA) �
L∗ (d-#-CFA) � L∗ (d-ARBA). Two d-dimensional arrays A and B in

[
V ∗d]

are called shape-equivalent if and only if shape (A) = shape (B). Two d-dimen-
sional array languages L1 and L2 from

[
V ∗d] are called shape-equivalent if and

only if {shape (A) | A ∈ L1} = {shape (B) | B ∈ L2}.

Array Insertion and Deletion P Systems 71

2.4 Contextual, Insertion and Deletion Array Rules

A d-dimensional contextual array rule (see [11]) over the alphabet V is a pair
of finite d-dimensional arrays ((W1,A1) , (W2,A2)) where W1 ∩ W2 = ∅ and
shape (A1) ∪ shape (A2) �= ∅. The effect of this contextual rule is the same as
of the array rewriting rule (W1 ∪W2,A1,A1 ∪ A2), i.e., in the context of A1 we
insert A2. Hence, such an array rule ((W1,A1) , (W2,A2)) can also be called an
array insertion rule, and then we write I ((W1,A1) , (W2,A2)); if shape (Ai) =
Wi, i ∈ {1, 2}, we simply write I (A1,A2). Yet we may also interpret the pair
((W1,A1) , (W2,A2)) as having the effect of the array rewriting rule A1 ∪A2 →
A1, i.e., in the context of A1 we delete A2; in this case, we speak of an array
deletion rule and write D ((W1,A1) , (W2,A2)) or D (A1,A2).

Let GA be a d-dimensional array grammar
([
V ∗d] , [T ∗d] , [A0] , P,=⇒GA

)
with P containing array insertion and deletion rules. Then we can consider the
array languages L∗ (GA) and Lt (GA) generated by GA in the modes ∗ and
t, respectively; the corresponding families of array languages are denoted by
Lδ (d-DIA), δ ∈ {∗, t}; if only array insertion (i.e., contextual) rules are used,
we have the case of pure grammars, and we also write Lδ (d-CA). For interesting
relations between the families of array languages L∗ (d-CA) and Lt (d-CA) as
well as L∗ (d-#-CFA) and L∗ (d-CFA) we refer the reader to [11].

As a first example we illustrate that the generative power of contextual array
grammars can exceed that of context-free array grammars (also see [8], [11]):

Example 1. Consider the set RH of hollow rectangles with arbitrary side lengths
p, q ≥ 3 (over the singleton alphabet {a}). By extending arguments used
for similar problems in [3], it is easy to see that there cannot exist a gram-
mar of type d-CFA generating an array language which is shape-equivalent
to RH ; on the other hand, the following grammar of type 2-CA yields such
an array language in the t-mode, i.e., shape (Lt (G1)) = shape (RH): G1 =(
{a, b}∗2 , {a, b}∗2 , P,A0,=⇒G1

)
with A0 =

a
a a

; for a graphical representation

of the rules in P , we use the convention that the symbols from the two arrays
A1,A2 in the contextual array production I (A1,A2) are shown in one array and
those from A1 are marked by a box frame:

p1 =
a
a
a
, p2 = a a a , p3 =

b b
a
a

, p4 =
b

a a b
,

p5 = b b b , p6 =

b

b

b

, p7 =

b b b

b

b

.

Starting from the axiom A0, we can go up using the rule p1 p−3 times and go to
the right using the rule p2 q − 3 times, where p, q ≥ 3 can be chosen arbitrarily.
Then we turn to the right from the vertical line by once using the rule p3 and
turn up from the horizontal line by once using the rule p4, respectively; in both

72 H. Fernau et al.

cases symbols b are appended to the growing lines of symbols a, whereafter the
rules p1, p2, p3, and p4 cannot be applied anymore. The rules p5 and p6 then
complete the upper and the right edge of the rectangle. The derivation only
halts if the rule p7 is applied at the end.

The following example shows how we can generate an array language of coated
filled squares with a specified middle point, which will be an essential part in
the proof of our main theorem in Section 4:

Example 2. The contextual array grammar

G2 =
({
S̄, E,Q

}∗2
,
{
S̄, E,Q

}∗2
, P,A0,=⇒G2

)
generates an array language of squares filled by the symbol E, coated by a layer
of symbols Q, with the central position being marked by the symbol S̄ :

A0 =

E E E E
E E E E E
E E S̄ E E
E E E E E
E E E E E

t
=⇒G2

Q Q · · · Q · · · Q Q
Q E · · · E · · · E Q
...

...
...

...
...

Q E · · · S̄ · · · E Q
...

...
...

...
...

Q E · · · E · · · E Q
Q Q · · · Q · · · Q Q

The final arrays are constructed in such a way that, starting from the axiom,
layer by layer, another layer of symbols E is added, by applying the rules p0 to
p7; the final layer of symbols Q is added by using the rules q0 to q8. In sum, P
contains the following contextual rules:

p0 =

E E

E E

E E

, q0 =

Q Q

E E

E E

, p1 =
E E

E E E
, q1 =

Q Q

E E E
,

p2 =
E E E

E E E
, q2 =

Q Q Q

E E Q
, p3 =

E E

E E

E

, q3 =

E Q

E Q

E

,

p4 =
E E

E E
E E

, q4 =

E Q

E Q
Q Q

, p5 =
E E E

E E
, q5 =

E E E

Q Q
,

p6 =
E E E

E E E
, q6 =

Q E E

Q Q Q
, p7 =

E

E E

E E

, q7 =
Q E

Q E
, and

q8 =
Q Q

Q E
.

A derivation in G2 halts if and only if we end up with applying the rule q8, thus
finishing the coating layer of symbols Q.

Array Insertion and Deletion P Systems 73

3 (Sequential) P Systems

A (sequential) P system of type X with tree height n is a construct

Π = (G,μ,R, i0) where

– G = (O,OT , A, P,=⇒G) is a sequential grammar of type X ;
– μ is the membrane (tree) structure of the system with the height of the

tree being n (μ usually is represented by a string containing correctly nested
marked parentheses); we assume the membranes to be the nodes of the tree
representing μ and to be uniquely labelled by labels from a set Lab;

– R is a set of rules of the form (h, r, tar) where h ∈ Lab, r ∈ P , and
tar, called the target indicator, is taken from the set {here, in, out} ∪
{inh | h ∈ Lab}; R can also be represented by the vector (Rh)h∈Lab, where
Rh = {(r, tar) | (h, r, tar) ∈ R} is the set of rules assigned to membrane h;

– i0 is the initial membrane containing the axiom A.

As we only have to follow the trace of a single object during a computation of
the P system, a configuration of Π can be described by a pair (w, h) where w
is the current object (e.g., string or array) and h is the label of the membrane
currently containing the object w. For two configurations (w1, h1) and (w2, h2)
of Π we write (w1, h1) =⇒Π (w2, h2) if we can pass from (w1, h1) to (w2, h2) by
applying a rule (h1, r, tar) ∈ R, i.e., w1 =⇒r w2 and w2 is sent from membrane
h1 to membrane h2 according to the target indicator tar. More specifically, if
tar = here, then h2 = h1; if tar = out, then the object w2 is sent to the region
h2 immediately outside membrane h1; if tar = inh2 , then the object is moved
from region h1 to the region h2 immediately inside region h1; if tar = in, then
the object w2 is sent to one of the regions immediately inside region h1.

A sequence of transitions between configurations ofΠ , starting from the initial
configuration (A, i0), is called a computation of Π . A halting computation is a
computation ending with a configuration (w, h) such that no rule from Rh can
be applied to w anymore; w is called the result of this halting computation if
w ∈ OT . As the language generated by Π we consider Lt (Π) which consists of
all terminal objects from OT being results of a halting computation in Π .

By Lt (X-LP) (Lt

(
X-LP 〈n〉)) we denote the family of languages generated

by P systems (of tree height at most n) using grammars of type X . If only the
targets here, in, and out are used, then the P system is called simple, and the cor-
responding families of languages are denoted by Lt (X-LsP) (Lt

(
X-LsP 〈n〉)).

In the string case (see [12]), every language L ⊆ T ∗ in L∗
(
D1I1

)
can be

written in the form T ∗
l ST

∗
r where Tl, Tr ⊆ T and S is a finite subset of T ∗. Using

the regulating mechanism of P systems, we get
{
a2

n | n ≥ 0
}
∈ Lt

(
D1I2-LP 〈1〉)

and even obtain computational completeness:

Theorem 1. (see [12]) Lt

(
D1I1-LsP 〈8〉) = RE.

One-dimensional arrays can also be interpreted as strings; left/right insertion
(deletion) of a symbol a corresponds to taking the set containing all rules

I
(
a b

)
/I

(
b a

)
(D

(
a b

)
/D

(
b a

)
) for all b; hence, from Theorem 1,

74 H. Fernau et al.

we immediately infer the following result, which with respect to the tree height
of the simple P systems will be improved considerably in Section 4:

Corollary 1. Lt

(
1-DIA-LsP 〈8〉) = L∗ (1-ARBA).

For the array case we now restrict ourselves to the 2-dimensional case. First we
go back to Example 1 and show how we can take advantage of having different
contextual array rules to be applied in different membranes:

Example 3. Consider the contextual array grammar G1 from Example 1 and the
P system Π1 = (G1, [0 [1]

1
[
2
]
2
]
0
, R, 0) with R containing the rules (0, p1, in1),

(1, p2, out), (0, p3, in2), (2, p4, out), (0, p5, in1), (1, p6, out) and (0, p7, in2). By
synchronizing the growth of the left and the lower edge of the rectangle, we
guarantee that the resulting rectangle finally appearing in membrane 2 is a
square. Hence, we have shown that with Lt (Π1) in Lt

(
2-CA-LP 〈1〉) we can find

an array language which is shape-equivalent to the set of hollow squares.

4 Computational Completeness of Array Insertion and
Deletion P Systems

We now show our main result that any recursively enumerable 2-dimensional
array language can be generated by an array insertion and deletion P system
which only uses the targets here, in, and out and whose membrane structure
has only tree height 2.

Theorem 2. Lt

(
2-DIA-LsP 〈2〉) = L∗ (2-ARBA).

Proof. The main idea of the proof is to construct the simple P system Π of
type 2-DIA with a membrane structure of height two generating a recursively
enumerable 2-dimensional array language LA given by a grammar GA of type
2-ARBA in such a way that we first generate the coated squares described in
Example 2 and then simulate the rules of the 2-dimensional array grammar GA

inside this square; finally, the superfluous symbols E and Q have to be erased
to obtain the terminal array.

Now let GA =
([

(N ∪ T)∗d
]
,
[
T ∗d] , [A0] , P,=⇒GA

)
be an array grammar

of type 2-ARBA generating LA. In order to make the simulation in Π easier,
without loss of generality, we may make some assumptions on the forms of the
array rules in P : First of all, we may assume that the array rules are in a kind
of Chomsky normal form (e.g., compare [9]), i.e., only of the following forms:
A → B for A ∈ N and B ∈ N ∪ T ∪ {#} as well as AvD → BvC with
‖v‖ = 1, A,B,C ∈ N ∪ T , and D ∈ N ∪ T ∪ {#} (we would like to emphasize
that usually A,B,C,D in the array rule AvD → BvC would not be allowed
to be terminal symbols, too); in a more formal way, the rule AvD → BvC
represents the rule (W,A1,A2) with W = {Ωd, v}, A1 = {(Ωd, A) , (v,D)}, and
A2 = {(Ωd, B) , (v, C)}. As these rules in fact are simulated inΠ with the symbol
E representing the blank symbol #, a rule Av# → BvC now corresponds to a

Array Insertion and Deletion P Systems 75

rule AvE → BvC. Moreover, a rule A → B for A ∈ N and B ∈ N ∪ T can be
replaced by the set of all rules AvD → BvD for all D ∈ N ∪T ∪{E} and v ∈ Zd

with ‖v‖ = 1, and A → # can be replaced by the set of all rules AvD → EvD
for all D ∈ N ∪ T ∪ {E} and v ∈ Zd with ‖v‖ = 1.

After these replacements described above, in the P systemΠ we now only have
to simulate rules of the form AvD → BvC with ‖v‖ = 1 as well as A,B,C,D ∈
N ∪ T ∪ {E}. Yet in order to obtain a P system Π with the required features,
we make another assumption for the rules to be simulated: any intermediate
array obtained during a derivation contains exactly one symbol marked with
a bar; as we only have to deal with sequential systems where at each moment
exactly one rule is going to be applied, this does not restrict the generative power
of the system as long as we can guarantee that the marking can be moved to
any place within the current array. Instead of a rule AvD → BvC we therefore
take the corresponding rule ĀvD → BvC̄; moreover, to move the bar from one
position in the current array to another position, we add all rules ĀvC → AvC̄
for all A,C ∈ N ∪ T ∪ {E} and v ∈ Zd with ‖v‖ = 1. We collect all these
rules obtained in the way described so far in a set of array rules P ′ and assume
them to be uniquely labelled by labels from a set of labels Lab′, i.e., P ′ ={
l : ĀlvDl → BlvC̄l | l ∈ Lab′

}
.

After all these preparatory steps we now are able to construct the simple P
system Π with array insertion and deletion rules:

Π =
(
G,

[
0

[
I1

[
I2

]
I2

]
I1
. . .

[
l1

[
l2

]
l2

]
l1
. . .

[
F1

[
F2

]
F2

]
F1

]
0
, R, I2

)
with I1 and I2 being the membranes for generating the initial squares, F1 and F2

are the membranes to extract the final terminal arrays in halting computations,
and l1 and l2 for all l ∈ Lab′ are the membranes to simulate the corresponding
array rule from P ′ labelled by l. The components of the underlying array gram-
mar G can easily be collected from the description of the rules in R as described
below.

We start with the initial array A0 from Example 2 and take all rules
(I2, I (r) , here) with all rules r ∈ {pi, qi | 0 ≤ i ≤ 7} taken as array insertion
rules; instead of the array insertion rule q8 we now take the rule q′8 instead and
(I2, I (q

′
8) , out), where q

′
8 introduces the new control symbols K and KI . Using

(I1, D (q9) , out) we move the initial square out into the skin membrane.

q′8 =

K KI

Q Q

Q E

, q9 =
K KI

Q Q

To be able to simulate a derivation from GA for a specific terminal array, the
workspace in this initial square has to be large enough, but as we can generate
such squares with arbitrary size, such an initial array can be generated for any
terminal array in L∗ (GA).

An array rule from P ′ =
{
l : ĀlvDl → BlvC̄l | l ∈ Lab′

}
is simulated by

applying the following sequence of array insertion and deletion rules in the

76 H. Fernau et al.

membranes l1 and l2, which send the array twice the path from the skin mem-
brane to membrane l2 via membrane l1 and back to the skin membrane:(

0, I
(
K Kl

)
, in

)
,
(
l1, D

(
Āl vDl

)
, in

)
,(

l2, I
(
Āl vD̄

(l)
l

)
, out

)
,

(
l1, D

(
D̄

(l)
l (−v) Āl

)
, out

)
,(

0, I

(
D̄

(l)
l (−v)Bl

)
, in

)
,
(
l1, D

(
Bl vD̄

(l)
l

)
, in

)
,(

l2, D
(
K Kl

)
, out

)
,
(
l1, I

(
Bl vC̄l

)
, out

)
.

Whenever reaching the skin membrane, the current array contains exactly one
barred symbol. If we reach any of the membranes l1 and/or l2 with the wrong
symbols (which implies that none of the rules listed above is applicable), we intro-

duce the trap symbol F by the rules
(
m, I

(
F K

)
, out

)
and

(
m, I

(
F F

)
, out

)
for m ∈ {l1, l2 | l ∈ Lab′ ∪ {I}}; as soon as F has been introduced once, with(
0, I

(
F F

)
, in

)
we can guarantee that the computation in Π will never stop.

As soon as we have obtained an array representing a terminal array, the
corresponding array computed in Π is moved into membrane F1 by the rule
(0, D (K) , in) (for any X , D (X) / I (K) just means deleting/inserting X with-
out taking care of the context). In membrane F1, all superfluous symbols E
and Q as well as the marked blank symbol Ē (without loss of generality we
may assume that at the end of the simulation of a derivation from GA in Π
the marked symbol is Ē) are erased by using the rules (F1, D (X) , here) with
X ∈

{
E, Ē,Q

}
. The computation in Π halts with yielding a terminal array in

membrane F1 if and only if no other non-terminal symbols have occurred in the
array we have moved into F1; in the case that non-terminal symbols occur, we
start an infinite loop between membrane F1 and membrane F2 by introducing
the trap symbol F : (F1, D (X) , in) for X /∈ T ∪

{
E, Ē,Q

}
and (F2, I (F) , out).

As can be seen from the description of the rules in Π , we can simulate all
terminal derivations in GA by suitable computations in Π , and a terminal array
A is obtained as the result of a halting computation (always in membrane F1)
if and only if A ∈ L∗ (GA); hence, we conclude Lt (Π) = L∗ (GA).

5 Conclusion

In this paper, we have extended the notions of insertion and deletion from the
string case to the case of d-dimensional arrays. Array insertion grammars have
already been considered as contextual array grammars in [11], whereas the in-
verse interpretation of a contextual array rule as a deletion rule has newly been
introduced here. Moreover, we have also introduced P systems using these array
insertion and deletion rules, thus continuing the research on P systems with left
and right insertion and deletion of strings, see [12].

Array Insertion and Deletion P Systems 77

In the main part of our paper, we have restricted ourselves to exhibit examples
of 2-dimensional array languages that can be generated by array insertion (con-
textual array) grammars and P systems using array insertion rules as well as to
show that array insertion and deletion P systems are computationally complete.

As can be seen from the proof of our main result, Theorem 2, the second
part of the proof showing how to simulate array rules of the form ĀvD → BvC̄
is not restricted to the 2-dimensional case and can directly be taken over to
the d-dimensional case for arbitrary d; hence, for d > 2, the main challenge is
to generate d-dimensional cuboids of symbols E coated by a layer of symbols
Q, with the central position marked by the start symbol S̄. With regulating
mechanisms such as matrix or programmed grammars without the feature of
appearance checking, this challenge so far has turned out to be intractable for
d > 2 when using #-context-free array rules, e.g., see [9]; when using array
insertion rules, this problem seems to become solvable. Moreover, we would also
like to avoid the target here in the simple P systems using array insertion and
deletion rules constructed in Theorem 2, as with avoiding the target here, the
applications of the rules could be interpreted as being carried out when passing
a membrane, in the sense of molecules passing a specific membrane channel from
one region to another one. We shall return to these questions and related ones
in an extended version of this paper.

Acknowledgements. We gratefully acknowledge the support by the project
Universität der Großregion — UniGR enabling the visit of K.G. Subramanian
at the University of Trier; Markus L. Schmid was supported by a scholarship of
the German Academic Exchange Service (DAAD) for returning scientists.

References

1. Cook, C.R., Wang, P.S.-P.: A Chomsky hierarchy of isotonic array grammars and
languages. Computer Graphics and Image Processing 8, 144–152 (1978)

2. Csuhaj-Varjù, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London
(1994)

3. Dassow, J., Freund, R., Păun, G.: Cooperating array grammar systems. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence 9(6), 1029–1053
(1995)

4. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

5. Ehrenfeucht, A., Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: On repre-
senting RE languages by one-sided internal contextual languages. Acta Cybernet-
ica 12(3), 217–233 (1996)

6. Ehrenfeucht, A., Păun, G., Rozenberg, G.: The linear landscape of external con-
textual languages. Acta Informatica 35(6), 571–593 (1996)

7. Ehrenfeucht, A., Păun, G., Rozenberg, G.: On representing recursively enumerable
languages by internal contextual languages. Theoretical Computer Science 205(1-
2), 61–83 (1998)

78 H. Fernau et al.

8. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Con-
textual array grammars and array P systems (submitted)

9. Freund, R.: Control mechanisms on #-context-free array grammars. In: Păun, G.
(ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World
Scientific, Singapore (1994)

10. Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Com-
putation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg
(2011)

11. Freund, R., Păun, G., Rozenberg, G.: Contextual array grammars. In: Subrama-
nian, K.G., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and
Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp.
112–136. World Scientific (2007)

12. Freund, R., Rogozhin, Y., Verlan, S.: P systems with minimal left and right in-
sertion and deletion. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012. LNCS,
vol. 7445, pp. 82–93. Springer, Heidelberg (2012)

13. Galiukschov, B.: Semicontextual grammars. Logica i Matem. Lingvistika, pp. 38–
50. Tallin University (1981) (in Russian)

14. Haussler, D.: Insertion and Iterated Insertion as Operations on Formal Languages.
PhD thesis, Univ. of Colorado at Boulder (1982)

15. Haussler, D.: Insertion languages. Information Sciences 31(1), 77–89 (1983)
16. Kari, L.: On Insertion and Deletion in Formal Languages. PhD thesis, University

of Turku (1991)
17. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and

formal languages: Characterizing RE using insertion-deletion systems. In: Proc.
of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333
(1997)

18. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534
(1969)

19. Păun, G.: Marcus Contextual Grammars. Kluwer, Dordrecht (1997)
20. Păun, G.: Membrane Computing. An Introduction. Springer (2002)
21. Păun, G., Nguyen, X.M.: On the inner contextual grammars. Rev. Roum. Math.

Pures Appl. 25, 641–651 (1980)
22. Păun, G., Rozenberg, G., Salomaa, A.: Contextual grammars: erasing, determin-

ism, one-sided contexts. In: Rozenberg, G., Salomaa, A. (eds.) Developments in
Language Theory, pp. 370–388. World Scientific Publ., Singapore (1994)

23. Păun, G., Rozenberg, G., Salomaa, A.: Contextual grammars: parallelism and
blocking of derivation. Fundamenta Informaticae 25, 381–397 (1996)

24. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

25. The P systems Web page, http://ppage.psystems.eu/
26. Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)
27. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3.

Springer, Berlin (1997)
28. Verlan, S.: Recent developments on insertion-deletion systems. Comp. Sci. J. of

Moldova 18(2), 210–245 (2010)
29. Verlan, S.: Study of Language-theoretic Computational Paradigms Inspired by

Biology. Habilitation thesis, University of Paris Est (2010)
30. Wang, P.S.-P.: Some new results on isotonic array grammars. Information Process-

ing Letters 10, 129–131 (1980)

http://ppage.psystems.eu/

Boolean Logic Gates from a Single Memristor

via Low-Level Sequential Logic

Ella Gale, Ben de Lacy Costello, and Andrew Adamatzky

Unconventional Computing Group, University of the West of England,
Dept. of Applied Sciences & Dept. of Computer Science and Creative Technology,

Frenchay Campus, Coldhabour Lane, Bristol, BS16 5SR, UK
{ella.gale,ben.delacycostello,andrew.adamatzky}@uwe.ac.uk

http://uncomp.uwe.ac.uk

Abstract. By using the memristor’s memory to both store a bit and
perform an operation with a second input bit, simple Boolean logic gates
have been built with a single memristor. The operation makes use of
the interaction of current spikes (occasionally called current transients)
found in both memristors and other devices. The sequential time-based
logic methodology allows two logical input bits to be used on a one-
port by sending the bits separated in time. The resulting logic gate is
faster than one relying on memristor’s state switching, low power and
requires only one memristor. We experimentally demonstrate working
OR and XOR gates made with a single flexible Titanium dioxide sol-gel
memristor.

Keywords: Memristor, sequential logic, ReRAM, OR, XOR, Boolean
logic, Time-separated logic.

1 Introduction

The memristor is the recently-discovered [1] fourth fundamental element, joining
the set of the resistor, inductor and capacitor. It was predicted to exist based on
an expectation of symmetry in electromagnetic phenomena when applied to cir-
cuit theory [2], specifically in that it would be passive two-terminal device that
would relate the two as-then-unrelated circuit measurables: charge, q, and mag-
netic flux, ϕ 1. From knowledge about its electronic properties, Chua predicted
that it would be a non-linear version of a resistor that possesses a memory, hence
the name memristor, a contraction of memory-resistor.

Whilst Chua’s theoretical contributions were not known to the wider chemical
and physics communities, devices highly similar in constitution and operation to
Strukov’s memristor [1] were created and dubbed ReRAM, for Resistive Random
Access Memory, after the use their inventors intended for them. What exactly
constitutes a memristor or ReRAM device is a matter of debate, although it

1 The other measurables being current and voltage, and the other five relationships
being the definitions of current and voltage and the constitutive relations of the
other three fundamental circuit elements.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 79–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://uncomp.uwe.ac.uk

80 E. Gale, B. de Lacy Costello, and A. Adamatzky

has been suggested that they may be the same thing [3]. Both memristors and
ReRAM have suggested uses as computer memory and both are believed to
possess the same physical interactions and thus, in this paper, we shall deal with
both under the name of memristors, where it is understood that a large part of
the results presented here should be tested on ReRAM devices and are expected
to work in the same way.

Both memristors [1] and ReRAM [4] have been suggested as possible low-power
next-generation computer memory technology, however the field of ReRAM has
been around for 20 years and has not yet produced a commercial product and
Hewlett-Packard (the company that discovered the Strukov memristor) has been
delaying their computer memory offering based on their memristor.

Chua’s theoretical model of the memristor has been used to model neuronal
synapses (see for example [5–7]) and to update the Hodgkin-Huxley model of
neuronal membranes and axonal transport [8, 9]. It has been shown [10] that
the experimental memristor spikes in a similar manner to those seen in axonal
transport, where it is understood that neurons demonstrate a voltage spike in
response to the current influx, and the spikes shown in [10] are current spikes
in response to the voltage change. These current spikes have been seen in other
memristor systems to ours and are generally ignored or dismissed as current
transients. A view which will be tested with our devices in a forthcoming paper.
Regardless of how these spikes arise, they are impossible (as far as we know and
the literature states) to remove and thus it is our opinion that future uses of
memristor technology will have to involve these spikes. Based on the relation
to the brain’s operation, we consider that memristor networks will be useful for
neuromorphic computing, however in this paper we will demonstrate how a single
memristor can be used as a Boolean logic gate by making use of the physical
property of these current spikes, which can be done if we take an unconventional
approach to logic assignation.

This is not the first paper on how to make logic gates with memristors. Strukov
et al [11] resorted to using implication logic to design logic gates which required
two memrsitors (IMP-FALSE logic is Turing complete, but somewhat unfamiliar
to computer scientists). The most notable Boolean logic gates were simulated by
Pershin and di Ventra [12] and required a memcapacitor, three or four memristive
systems and a resistor. Before the gate was sent the two bits of data, a set of
initialization pulses were required to be sent to put the gate into the correct
state to give the correct answer. This system, however, is not true Boolean logic
because these initialization pulses were different dependent on what the logic to
follow would be. Thus the gate can not be considered to be operating only on
the two bits of input data and is not a simple Boolean logic gate (it is a Turing
machine doing a computation on several bits of data (Boolean input pulses and
initialization pulses) which is capable of modeling a Boolean logic gate). Note
also that this scheme was tested with memristor emulators, not real devices.
There have been other more complex designs for memristor based Boolean logic
gates, the simplest of which requires 11 circuit elements [13]. In this paper, we
will demonstrate how to perform Boolean logic with a single memristor.

Boolean Logic Gates from a Single Memristor 81

Although the memristor is credited with being the first computational device
to combine memory and processing functionality in one, with the suggestion of
an entirely new type of computer, remarkably there have been relatively few
papers on how this new computer might work: most people have chosen to focus
on stateful memory applications [11].

We will now demonstrate the physical properties of our memristors [14] and
validate their reproducibility (section 3), explain the concept of how these spikes
can be used to perform Boolean logic (section 4) and, as an example, demonstrate
experimentally that a single memristor can act an OR (section 4.1) or and XOR
(section 4.2) gate.

2 Methodology

The memristors are flexible TiO2 sol-gel memristors with aluminium electrodes
and were made as in [14] with the sol-gel created as in [15] (the memristor cho-
sen was a curved-type memristor (see [14])). All tests on the memristor were
performed with a Keithley 2400 Sourcemeter and data was recorded and anal-
ysed using MatLab. Each timestep was 0.02s. The voltages used and voltage
waveforms varied as are discussed below.

3 Physical Properties of the Memristor

When there is a change in voltage, ΔV , across a memristor the device exhibits a
current spike, the physical cause of which is discussed at length in [10]. This spike
is highly reproducible and repeatable and is related to the size of the voltage
change (ΔV) [10]. The spike’s size (as measured by the first measurement after
the Keithley’s changed voltage) is highly reproducible, the current then relaxes
to a stable long-term value (this value is predictable and reproducible), and it
takes approximately 2-3 seconds to get to this value.

This slow relaxation is thought to be the d.c. response of the memristor [10]
and if a second voltage change happens within this time frame, its resulting
current spike is different to that expected from the ΔV alone. The size and
direction of this current spike depends on the direction of ΔV , the magnitude
of ΔV and the short-term memory of the memristor.

As an example, consider a memristor pulsed with a positive 1V voltage square
wave as in figure 2 (where the pulses are repeated to demonstrate the repeata-
bility) with a timestep of ≈ 0.02s. The current response is shown in figure 1
and we can see there is a positive current spike associated with the +ΔV and a
perhaps less obvious negative current spike associated with the −ΔV transition
from +1V → 0V . At approximately 20s, we shortened the square wave to a
single time step, and the memory of the system has caused the response spike
(responding to the −ΔV to be smaller (and as it is smaller, it suggests that
there is some physical property of the device which has not adjusted to its +V

82 E. Gale, B. de Lacy Costello, and A. Adamatzky

Fig. 1. The effect of adding spikes close in time. The response spikes are the nega-
tive current spikes. When a positive spike it included but not allowed to relax the
corresponding negative spike is smaller.

value. See [16] for an discussion on why this physical property is predicted to be
the oxygen vacancies in the TiO2.) Thus the response is subtractive in current
and additive in resistance state.

To try and understand the subtleties of this apparent ‘addition’, consider the
following system: two voltages are sent to the memristor, one after the other
separated by one timestep (i.e. before the memristor has equilibrated), where
VB > VA and VB = 0.12V , and figure 3 shows the size of the two resulting spikes
as a function of increasing VA. We look at two situations: 1, VA(t)→ VB(t+ 1);
2, VB(t)→ VA(t+1). These two situations are drastically different if we look at
the transitions, ΔV , as situation 2 has a negative ΔVB→A, all the other tran-
sitions are positive. Situation 1 shows that if the smaller voltage is sent first
(VA → VB), the current of the first transition Δi0→A increases with the size of
VA, and the second transition ΔiA→B decreases with the size of ΔVA, due to
the decrease in the effective ΔVA→B . However, the sum of these two effects is
non-linear, so that the total current transferred (approximated as the sum of
the spikes here, but actually the area under the two current transients) is not
the same as that shown for situation 2 (until VB = VA). This shows that more
current is being transferred and demonstrates that the spikes are dependent on
ΔV . Furthermore, it makes it clear that Δi0→A +ΔiA→B �= Δi0→B +ΔiB→A,
(except in the trivial case where VB = VA) and that spike based ‘addition’
is non-commutative and therefore the order in which the spikes are sent is
relevent.

Boolean Logic Gates from a Single Memristor 83

Fig. 2. The input voltage for Test 1

4 Boolean Logic Using Current Spikes in Memristors

We can do Boolean logic with the spike interactions by sending the second bit of
information one timestep (0.02s) after the first. We take the input as the current
spikes from the voltage level. The output is the response current as measured
after the 2nd bit of information. After a logic operation the device is zeroed
by being taken to 0V for approximately 4s, and this removes the memristor’s
memory.

We have some freedom in how we assign the ‘1’ and ‘0’ states to device prop-
erties and these give different logic. The following examples will demonstrate
some approaches and build an OR gate or an XOR gate.

4.1 OR Gate

The truth table for an OR gate is given in table 1, essentially, the output should
be ‘1’ if either of the inputs was ‘1’. We take the ‘0’ output as being below a
threashold current and the ‘1’ output as being above a threashold. The threash-
old is set to >18nA with the ‘0’ input being set of 0.01V and the ‘1’ as 0.2V 2,
which gives the voltages below:

2 Using ‘0’ as 0V was also tested, it works and is lower power but was not chosen as
an example as it is a trivial case.

84 E. Gale, B. de Lacy Costello, and A. Adamatzky

Fig. 3. The effects of the order the spikes are sent in to show that spike addition is non-
commutative. S1=Δi0→A(t), T1=iA→B(t+ 1), T2=Δi0→B(t) and S2=ΔiB→A(t+ 1).
S1 and T1 refer to the shoulder (S1) and peak (T1) currents resulting switching from
0V → VA → VB. T2 and S2 refer to the peak (T2) and shoulder (S2) of switching from
0V → VB → VA. In both cases VB > VA.

Table 1. OR Truth Table (inclusive OR)

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 1

– 0, 0 = 0.01V, 0.01V
– 0, 1 = 0.01V, 0.2V
– 1, 0 = 0.2V, 0.01V
– 1, 1 = 0.2V, 0.2V.

Figure 4 shows the current data from the voltage inputs above. It can be seen
that when a ‘1’ is input, there is a large spike output. To read the logical state
of the device, one merely takes the current value as the second bit is read in.

4.2 A Logical System to Create an XOR Gate

The XOR truth table is shown in table 2. If we take logical ‘1’ to be the current
resulting from a positive voltage and a logical ‘0’ to be the current resulting from

Boolean Logic Gates from a Single Memristor 85

Fig. 4. OR Gate. Using ‘1’ equal to a current spike caused by a voltage change to 0.2V
and ‘0’ equal to a current spike caused by a voltage change to 0.01V we can make a
serial OR gate (where logical 1 is considered to be a current which is more than 5nA).
At 0.04s ‘0, 0’ was input, giving peaks below the threashold i.e. ‘0’ as an output. The
three large peaks are ‘1’ outputs resulting from ‘0,1’,‘1,0’ and ‘1,1’ inputs.

a negative voltage, then, the response is the current when the 2nd bit is input
(not after, although it could be designed that way but it is slower). We get a
high absolute value of current if and only if the two inputs are of different signs,
i.e. we have 1 0 or 0 1 which gives us an exclusive OR operation. For this logical
system, we used the same voltage level and allowed a change in sign to indicate
logical zero or logical one:

– 0, 0 = -0.1V, -0.1V
– 0, 1 = -0.1V, +0.1V
– 1, 0 = +0.1V, -0.1V
– 1, 1 = +0.1V, +0.1V.

As an example, the input voltage is shown in figure 6 and the current output is
shown in figure 5.

Table 2. XOR Truth Table (exclusive OR)

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

86 E. Gale, B. de Lacy Costello, and A. Adamatzky

Fig. 5. XOR gate, where a current response over ±1.25 × 10−8A is taken as one, as
current response under that threashold is taken as zero

Fig. 6. The programming voltage for the XOR gate

Boolean Logic Gates from a Single Memristor 87

Fig. 7. Reproducabiltiy test of XOR function. Here the XOR truth table is run 7 times.
The threshold between ‘1’ and ‘0’ is marked as shown.

With a pause between operations to allow the memristor to lose its memory,
the XOR operation is reproducible, as shown in figure 7.

As XOR A = NOT A, if we always take the 2nd point after the first (and only
bit in this case) as being the response bit (as we did above for the XOR gate),
we have a NOT gate.

5 Conclusions

This type of approach is a serial logic gate where the bits are separated in time.
This allows us to do logic operations with one memristor at the speed of the
spikes (fast) rather than at the speed of equilibration (slow). This approach also
allows us to do logic with a two terminal (one-port) device, the extra ‘complexity’
of the operation is contained within the time domain. Essentially, we use the
memristor’s short-term memory to hold the first bit and do the calculation.
This demonstrates that memristors can act as the processor and memory store
in one. It also shows the bizarre property of the memory in a system being used
to perform memoryless logic.

The memristor is acting similarly to a sequential logic circuit, where the com-
binatorial logic is combined with the memory store. Furthermore, the memristor
logic gate is asynchronous because there is no need for a clock pulse, but there
are issues of race hazard because the second bit must arrive within the time
window of the memristor’s memory.

88 E. Gale, B. de Lacy Costello, and A. Adamatzky

The speed of the these operations is not too fast in this proof-of-principle,
however, this is because of the speed at which the electrometer can properly
measure a current response. Circuit theory suggests that these spikes should
exist at shorter times, so we are confident that the devices can be sped up by
sending the second spike in faster.

The memristor is very low power, especially if operated at the voltages and
currents shown in the paper (it is possible to work at higher voltages if desired).

At the moment the output is a different circuit measurable to the input (i.e.
the output is current and the input is voltage), it is necessary to convert from
one to the other to enable the creation of logical circuits. However, we expect
that a current pulse should propagate through a circuit [17] and cause a change
in voltage across the next memristor, which could then be used to do the next
operation and thus allow the creation of larger memristor logical circuits. We
plan to do further work on testing this and investigating the possibility of using
a second memristor as a V → I transformer (based on the fact that previous
ΔV produced a ΔI).

Acknowledgments. This work was funded by EPSRC on grant EP/H014381/1.

References

1. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The Missing Memristor
Found. Nature 453, 80–83 (2008)

2. Chua, L.O.: Memristor - The Missing Circuit Element. IEEE Trans. Circuit The-
ory 18, 507–519 (1971)

3. Chua, L.O.: Resistance Switching Memories are Memristors. Applied Physics A:
Materials Science & Processing, 765–782 (2011)

4. Waser, R.: Nanoelectronics and Information Technology. Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim (2003)

5. Cantley, K., Subramaniam, A., Stiegler, H., Chapman, R., Vogel, E.: Hebbian
Learning in Spiking Neural Networks with Nano-Crystalline Silicon TFTs and
Memristive Synapses. IEEE Tran. Nanotechnology 10, 1066–1073 (2011)

6. Zamarreno-Ramos, C., Carmuñas, L.A., Pérez-Carrasco, J.A., Masquelier, T.,
Serrano-Gotarredona, T., Linares-Barranco, B.: On Spike-Timing Dependent Plas-
ticity, Memristive Devices and Building a Self-Learning Visual Cortex. Frontiers
in Neuromorphic Engineering 5, 26(1)–26(20) (2011)

7. Howard, G.D., Gale, E., Bull, L., de Lacy Costello, B., Adamatzky, A.: Evolution
of Plastic Learning in Spiking Networks via Memristive Connection. IEEE Trans.
Evolutionary Computation 26, 711–719 (2012)

8. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley Axon is made of Memristors. Int.
J. Bifur. Chaos 22, 1230011(1)–1230011(48) (2012)

9. Chua, L., Sbitnev, V., Kim, H.: Neurons are Poised Near the Edge of Chaos. Int.
J. Bifur. Chaos 22, 1250098(1)–1250098(49) (2012)

10. Gale, E.M., de Lacy Costello, B., Adamatzky, A.: Observation and Characteriza-
tion of Memristor Current Spikes and their Application to Neuromorphic Com-
putation. In: 2012 International Conference on Numerical Analysis and Applied
Mathematics, ICNAAM 2012. AIP Conference Proceedings, vol. 1479, pp. 1898–
1901. AIP Melvil, New York (2012)

Boolean Logic Gates from a Single Memristor 89

11. Borghetti, J., Snider, G.D., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.:
‘Memristive’ switches enable ‘stateful’ logic operations via material implication.
Nature 464, 873–876 (2010)

12. Pershin, Y.V., di Ventra, M.: Neuromorphic, Digital and Quantum Computation
with Memory Circuit Elements. Proc. IEEE 100, 2071–2080 (2012)

13. Pino, R.E., Bohl, J.W.: Self-Reconfigurable Memristor-Based Analog Resonant
Computer, US Patent, US 8,274,312 B2

14. Gale, E., Pearson, D., Kitson, S., Adamatzky, A., de Lacy Costello, B.: Alu-
minium Electrodes Effect the Operation f Titanium Dioxide Sol-Gel Memristors,
arXiv:1106:6293v1 (cond-mat.mtrl-ci),
http://arxiv.org/abs/1106.6293

15. Gale, E., Mayne, R., Adamatzky, A., de Lacy Costello, B.: Drop-coated Titanium
Dioxide Memristors, arXiv:1205:2885v2 (cond-mat.mtrl-ci),
http://arxiv.org/abs/1205.2885

16. Gale, E.: The Missing Magnetic Flux in the HP Memristor Found,
arXiv:1106:3170v1 (cond-mat.mtrl-ci), http://arxiv.org/abs/1106.3170

17. Gale, E., Matthews, O., de Lacy Costello, B., Adamatzky, A.: Beyond Markov
Chains, Towards Adaptive Memristor Network-based Music Generation. In: Pro-
ceedings of the Annual Convention of Society of the study of Artificial Intelligence
and the Simulation of Behaviour, AISB 2013, vol. 8, pp. 28–49 (2013)

http://arxiv.org/abs/1106.6293
http://arxiv.org/abs/1205.2885
http://arxiv.org/abs/1106.3170

Light Ray Concentration Reduces

the Complexity of the Wavelength-Based
Machine on PSPACE Languages

Sama Goliaei and Mohammad-Hadi Foroughmand-Araabi

University of Tehran, Tehran, Iran
{sgoliaei,foroughmand}@ut.ac.ir

Abstract. The wavelength-based machine, or simply w-machine, is an
optical computational model, dealing with light rays and simple optical
devices. w-Machine benefits from the parallel nature of light and co-
existence of different wavelengths in a light ray to perform computation.
In this paper, we have introduced a novel operation for w-machine, called
the concentration operation, which enables to concentrate light rays as a
single light ray, and check if the obtained light ray is dark or not, using
white-black imaging. In this paper, we have investigated the impact of the
concentration operation to computational complexity of w-machine for
Turing PSPACE languages, and we have shown that every Turing PSPACE

language is computable by a uniform series of concentration enabled w-
machines, in polynomial time and exponential size.

Keywords: Unconventional Computing, Optical Computing,
Wavelength-Based Machine, Concentration Enabled w-Machine,
Computational Complexity

1 Introduction

Optical problem solving, a branch of unconventional computing, tries to use the
light and optical devices to outperform existing methods to solve the problems.
In a thread of this research area, specific solutions are provided for particular
problems, by designing a suitable optical system for each instance of the given
problem. Some research works have used Fourier optics to compute number and
matrix multiplication [1]. Another method is provided by designing a graph-
like structure by optical devices and optical fibers. Light rays are then passed
through graph edges, and since the speed of light is limited, it is supposed that
reaching light to a certain vertex at certain time is correspond to a solution
for the problem. This method is used for some NP-complete problems, such as
the Hamiltonian path and the subset sum problems [2–5]. It has been proved
that, the length of required optical fibers in this method is exponential, unless
P = NP [6]. Another technique in this research thread is based on optical filters,
devices that restrict the path of light rays, for solving NP-complete problems,
such as 3-SAT and Hamiltonian path problems [7]. The inverse of this method is

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 90–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Concentration Enabled w-Machine and PSPACE 91

defined as the ray-tracing problem, which is the problem of computing whether
a zero-width light ray reaches to a point within an optical system of reflective
and refractive devices, and it is shown that the problem is undecidable in gen-
eral from [8]. It is also shown that the ray tracing problem, for any d-dimension
(d ≥ 2) optical systems consisting of a finite set of perpendicular and paral-
lel reflective surfaces represented by a system of rational linear equalities, is
PSPACE [8]. Wavelengths, as a property of light rays, are also used in this thread
to solve the string matching problem [9]. Also, we have previously provided a so-
lution for the 3-SAT problem, based on the property that different wavelengths
pass through optical devices simultaneously [10, 11].

In contrast to the mentioned thread, another research thread in optical
problem solving, tries to generalize optical ideas to solve the problems as an ab-
stract computational machine, and analyze its computability and complexity is-
sues. The continuous space machine (CSM), is a general computational machine,
manipulating optical images by optical devices. It is assumed that the optical
images in CSM have infinite resolution. Upper and lower bounds on the com-
plexity of restricted versions of CSM have been provided, and it has been proved
that a restricted version of CSM solves polynomial space problems on Turing
machine in polynomial time and satisfies the parallel thesis [12, 13]. VLSIO
is another abstract computing framework consisting of optical transformation
components, and wirings between components. Upper and lower bounds for com-
puting various optical functions on VLSIO have been provided, including results
are used to obtain lower bounds for some more specific problems, such as Fourier
transformation, convolution, multiplication and division [14, 15].

We have previously provided an abstract wavelength-based machine, named
w-machine. This machine manipulates light rays with different wavelengths via
basic operations, implemented by simple optical devices. We have provided Up-
per and lower bound on the complexity of w-machine, such as, the uniform
w-machine simulates non-deterministic Turing machine in polynomial time plus
the time required by Turing machine, and non-uniform w-machine computes all
languages in polynomial time and exponential size [10]. We have also shown
that almost all languages require exponential size to be solved on non-uniform
w-machine [16]. In this paper, we define a new operation, the concentration
operation, for the w-machine, and provide an optical implementation schema
for it. We show that concentration enabled w-machine, the w-machine with
concentration operation, computes any PSPACE language in polynomial time.

2 Concentration Enabled w-Machine

The wavelength-based machine with concentration operation, or shortly the con-
centration enabled w-machine, is an abstract computational machine, which
models computation via special forms of parallel traversing rays with possibly
different wavelengths, and operates on them via simple optical devices. In this
section, we first define w-tuples, w-sets, and concentrated w-sets to model par-
allel traversing light rays and their concentrated images. Then, we define basic
operations and other basic concepts of the concentration enabled w-machine.

92 S. Goliaei and M.-H. Foroughmand-Araabi

2.1 w-Tuples, w-Sets, and Concentrated w-Sets

The n-bit concentration enabled w-machine operates on special forms of parallel
traversing light rays, which form a light ribbon. The reference form of light
ribbon which we call it the reference light ribbon, is obtained by passing a
continuous spectrum light ray through two prisms, as it is shown in Fig. 1. In
the obtained light ribbon, different wavelengths are sorted. Let us divide the
width of the reference light ribbon into 2n wavelength intervals, and assign the
obtained wavelength intervals into n-bit binary strings 0n to 1n in ascending
order, as the example provided in Fig. 2. Let l be the width of the reference light
ribbon. It is possible in the concentration enabled w-machine, to deal with light
ribbons with width l/2Δ, for 0 ≤ Δ ≤ n. For a given light ribbon with width
l/2Δ, we divide the width of the light ribbon into 2n−Δ positions, each of which
of length l/2n, and assign each position to a binary string of length d = n−Δ,
from 0d to 1d, in ascending order, as the example provided in Fig. 3.

continues spectrum
light ray

reference light
ribbon

Fig. 1. Creating the reference light ribbon from a continuous spectrum light ray

00

01

10

11

Fig. 2. Dividing the the reference light ribbon into 2n wavelength intervals, for n = 2

A light ray with wavelengths from wavelength interval p (p ∈ {0, 1}n) travers-
ing in position q (q ∈ {0, 1}d), is modeled as tuple (p, q), which we call it a
w-tuple. In the other words, an n-bit w-tuple of degree d, is a tuple (p, q) for
p ∈ {0, 1}n and q ∈ {0, 1}d, which models wavelengths from wavelength interval
p, traversing in position q, in a light ribbon with width l/2n−d. In this defini-
tion, p is the wavelength element and q is the position element of the w-tuple.
Examples of w−tuples are presented in Fig. 4.

Now, a light ribbon with width l/2n−d containing different wavelengths is
modeled as an n-bit w-set of degree d, which is a set of n-bit w-tuples of degree
d. Example of modeling light ribbons as w-sets are presented in Fig. 5.

Concentration Enabled w-Machine and PSPACE 93

(a)
0

1 (b)

00

01

10

11

Fig. 3. Dividing the width of a light ribbon into 2d positions (a) d = 2 (b) d = 1

(a) (00,10) (b)
(11,0)

Fig. 4. Examples of w-tuples(a) (00, 10) (b) (11, 0)

(a)

(11,01)

(01,10)

(11,11)

(b) (00,1),(10,1)

(01,0)

Fig. 5. Examples of w-sets (a) {(11, 01), (01, 10), (11, 11)} (b) {(01, 0), (00, 1), (10, 1)}

In the concentration enabled w-machine, it is possible for wavelengths to
traverse in different positions in comparison to reference light ribbon. We say
that a w-tuple (p, q) is a normal w-tuple if and only if p = q. In the other
words, a w-tuple is normal if and only if the wavelength is traverse in the same
position as reference light ribbon. Similarly, a w-set is a normal w-set , if and
only if it contains only normal w-tuples.

Suppose we pass a normal w-set N from two prisms, to concentrate all wave-
lengths (regardless of their places in the w-set) to obtain a single light ray. The
obtained light ray is dark if and only if N = ∅. If we capture a positive white-
black image from this light ray with a white-black optical sensitive sheet, as it
is shown in Fig. 6, the obtained sheet is transparent in position of light ray if
and only if S �= ∅. We call this sheet, a concentrated w-set , denoted by ΥS ,
which is modeled as a Boolean variable, where ΥS = 1 if S �= ∅, and ΥS = 0 is 0
otherwise.

2.2 Basic Concepts and Operations

An n-bit concentration enabled w-machine w, performs operations on n-bit w-
sets via basic operations, and creates a set of m-bit binary strings as output,

94 S. Goliaei and M.-H. Foroughmand-Araabi

ΥS

S

Fig. 6. Creating a concentrated w-set ΥS from a given normal w-set S

Υ

(a) G operation. (b) Dup operation. (c) U operation.

(d) DJ operation. (e) J disjoin. (f) N operation.

Fig. 7. Optical implementation schema for basic operations

for some 1 ≤ m ≤ n. The basic operations of the machine are defined requiring
constant number of physical devices and constant time to be applied, as follows:

– Concentration (C): Creates a concentrated w-set which is equal to 1 if and
only if the given normal w-set is not empty. The operation is optically imple-
mented by passing the given normal w-set from two prisms, and placing an
optical sensitive sheet to capture positive white-black image of the outgoing
ray from the prisms (see Fig. 6).

– Double concentration (DC): Creates a concentrated w-set ΥA,B which is
equal to 1 if and only if both of the given normal w-sets A and B are
not empty. The operation is implemented optically by passing two given w-
sets from two prisms and capturing positive white-black images from two
obtained light rays. Then, we place the obtained images on each other, and
then, we capture a positive white-black image from them. Since this posi-
tive image is transparent if and only if A �= ∅ and B �= ∅, hence, the image
implements ΥA,B.

Concentration Enabled w-Machine and PSPACE 95

– Complete normal set creation (G): Creates a normal n-bit w-set containing
all possible normal n-bit w-tuples. It is possible for this operation to take a
concentrated w-set Υ as input. In this case, the operation creates a complete
normal w-set if the given concentrated w-set is 1, and creates an empty w-
set otherwise. The operation is optically implemented by passing a continues
spectrum light ray from two prisms, to obtain the reference light ribbon. In
case of taking a concentrated w-set Υ as input, Υ is placed on the path of
the light ray before reaching the first prism. Hence, if Υ = 0, the sheet is
dark and no light reaches the prisms, and in case of Υ = 1, the reference
light ribbon is created (see Fig. 7a).

– Duplication (Dup): Duplicates a given w-set, and is optically implemented
by passing the given w-set from a cubic beam-splitter (see Fig. 7b).

– Union (U): Creates the union of two given w-sets, and is optically
implemented by passing the given w-sets from two different sides of a cubic
beam-splitter (see Fig. 7c).

– Disjoin (DJ): Drops the first bit of the position element of each member
of the given w-set, and classifies the members according to the dropped bit
into two new w-sets. The operation is optically implemented by superposing
the second half of a given w-set on the first half of it, using mirrors and a
cubic beam-splitter (see Fig. 7d).

– Join (J): Creates the union of two given w-sets, and adds a 0 (1) bit to the
position elements of the members of the first (second) given w-set. This op-
eration can be considered as the reverse of the disjoin operation (see Fig. 7e).

– Normalization (N): Creates a w-set containing normal members of a
given w-set. The operation is optically implemented by passing the given
w-set through two prisms and passing the light ray coming out with the
same angle as the ray used to create the reference light ribbon from two
other prisms. Note that other light rays with different angles are blocked.
(see Fig. 7f).

– Output declaration (Om): Declares the set of m-bit prefixes of the members
of a given w-set as the output set of the machine. In optical view, the given
w-set is the output of the machine, in such a way that only the wavelengths
are considered, and positions are ignored.

A concentration enabled w-machine is represented by a directed acyclic graph,
where the vertices are machine operations and the edges explain how the output
of one operation is used as the input for another operation. The input edges
of the J operations and the output edges of the DJ operation are labeled to
specify the value of the added or dropped bit. Two or more operations may be
performed simultaneously if there is no directed path between them.

An n-bit concentration enabled w-machine w computes its output set, the
output set the language of the machine, and is denoted by lang(w). The length
of binary strings in lang(w) is denoted by outwordlen(w). The parameter n
is denoted by wordlen(w), which is the logarithm of the number of different
required wavelengths. The length of the longest directed path in w is denoted
by time(w), which indicates the time required by light to pass through w and

96 S. Goliaei and M.-H. Foroughmand-Araabi

compute the output set. The total number of vertices in w is denoted by size(w),
which indicates the total number of optical devices in w. Each binary language
(possibly with containing different length of strings) is computed by a series
{w}n∈N0 of w-machines, where wn computes n-bit binary strings in the language.
A series {w}n∈N0 is uniform if and only if there is a Turing machine which takes
1n as input and creates the description of wn, for all n ∈ N0.

Example 1. An example of a 3-bit concentration enabled w-machine w is pre-
sented in Fig. 8. In the presented machine, first, a G operation creates a complete
3-bit normal w-set. Then, a DJ operation is applied to create w-set A of degree
2, containing all w-tuples which the dropped bit is 0.

A = {(000, 00), (001, 01), (010, 10), (011, 11)}

Now, a J operation is applied on A, to add a 1 to position elements, and create
w-set B:

B = {(000, 100), (001, 101), (010, 110), (011, 111)}
A N operation is applied on B to obtain normal w-set C. Since B does not
contain any normal w-tuple, hence, C = ∅. Now, a concentration operation is
applied on C. Since C = ∅, hence, ΥC is 0, and the w-set D created by the
next G operation is equal to ∅. A DJ operation is then applied on D. Since,
D = ∅, hence, the obtained w-set from DJ operation is also empty. In the
second branch, a G operation is used to create a complete 3-bit normal w-set,
and a DJ operation is used to drop the first bit from the position element, and
create w-set E containing all w-tuples which the dropped bit is 1.

E = {(100, 00), (101, 01), (110, 10), (111, 11)}

Now, the union of E and the empty set obtained from the first branch is com-
puted, which is equal to E, and the 2-bit prefixes of this w-set are declared
as the output of the machine. Hence, the presented machine computes the lan-
guage {10, 11}. In the presented example, wordlen(w) = 3, outwordlen(w) = 2,
time(w) = 8, and size(w) = 10.

3 Concentration Enabled w-Machines for PSPACE

Languages

Theorem 1. For each binary language L in PSPACE, there is a uniform series
of concentration enabled w-machines computing L in polynomial time.

Proof. Let T be a Turing machine computing L in polynomial space, and let
sT (n) and tT (n) be the maximum space and time required by T to halt over
n-bit input strings. We design a uniform series {w}N0 of concentration enabled w-
machines in such a form that

⋃
n∈N0

lang(wn) = L and time(wn) be a polynomial
function of n. The idea of designing wn is to find all n-bit input strings σ and
configurations φfirst and φlast of T , where φlast is the next configuration of φfirst,

Concentration Enabled w-Machine and PSPACE 97

G DJ J N C G

G DJ U O2

0 1

A B C ΥC

1

E

Fig. 8. Example of a concentration enabled w-machine

if σ is given as the input string to T . Then, at the k-th step (1 ≤ k ≤ �lg tT (n)�),
we find all n-bit input strings σ and configurations φfirst and φlast of T , where
T reaches φlast from φfirst after at most 2k steps, when σ is given as the input
string to T .

Let Q = be the set of states, q0 be the starting state, qa be the accepting state
of T . We represent each configuration of T as a binary string with polynomial
length lc = �lg |Q|�+ �lg sT (n)�+ sT (n) as follows:

– �lg |Q|� bits are reserved to represent the current state
– �lg sT (n)� bits are reserved to represent the current position of the head
– sT (n) bits are reserved to represent the tape

Letm = n+2lc. Note that since lc is a polynomial function of n, hence, m is also
a polynomial function of n. We design wn in such a form that wordlen(wn) = m,
and the bits of the wavelength elements in wn are reserved as follows: n bits are
reserved to represent the input strings and 2lc bits are reserved to represent two
configuration of T . Let A2k (0 ≤ k ≤ �lg tT (n)�) be the normal w-set containing
all normal w-tuples (σφfirstφlast, σφfirstφlast), where T reaches φlast from φfirst
after at most 2k steps, for input string σ. First we show how to create A0, and
then, we show how to create A2k+1 from A2k .

To create A20 , we start from a G operation and create a w-set S containing all
m-bit normal w-tuples. Then, we use 2m−1 DJ operations, in the structure of a
binary tree with depth m, to create 2m w-sets S0m , · · · , S1m , where Sp = {(p,)}
(p ∈ {0, 1}m). Now we ignore all w-sets Sσφfirstφlast

which φlast is not the next
configuration after φfirst in T (for input string σ and configurations φfirst and
φlast). Then, 2

m − 1 J operations in the structure of a binary tree with depth
m are used to find w-set A20 as the union of all valid branches. Note that here,
the transitive function of T is hard-wired in wn. In the provided structure, the
longest directed path for computing A20 is O(m).

Now suppose we have already created A2k (0 ≤ k < �lg tT (n)�). Note that
T reaches configuration φlast from configuration φfirst over input string σ in at
most 2k+1 steps, if and only if there is a configuration φmid which T reaches φmid

from φfirst, and reaches φlast from φmid in at most 2k steps, over input string σ
(see Fig. 9). Thus,

(σφfirstφlast, σφfirstφlast) ∈ A2k+1 ⇔
∃φmid : {(σφfirstφmid, σφfirstφmid), (σφmidφlast, σφmidφlast)} ⊆ A2k

98 S. Goliaei and M.-H. Foroughmand-Araabi

φfirst

φmid

φlast

at most
2k steps

at most
2k steps

⇒
φfirst φlast

at most
2k+1 steps

Fig. 9. Obtaining members of A2k+1 from the members of A2k

We use 2m − 1 DJ operations, in the structure of a binary tree with depth m,
m pairs of Dup and J operations, and a N operation, to create 2m normal w-
sets S0m , · · · , S1m , where Sp = {(p, p)} (p ∈ {0, 1}m), as it is shown in Fig. 10.
Note that Sσφfirstφlast

= {(σφfirstφlast, σφfirstφlast)} if φlast is reachable from φfirst
in at most 2k steps, and is empty otherwise. Since we have to compare each
w-set Sσφfirstφlast

to 2lc other w-sets Sσφlastp (p ∈ {0, 1}lc), hence, we use 2lc − 1
duplication operations for each Sσφfirstφlast

in the structure of a binary tree with

depth lc, to create 2lc copies of w-set Sσφfirstφlast
.

Now, for each n-bit string σ and configurations φfirst,φlast, and φmid, we use
a double concentration operation on Sσφfirstφmid

and Sσφmidφlast
to obtain concen-

trated w-set Υφmid

σφfirstφlast
. By definition of the DC operation, Υφmid

σφfirstφlast
is 1 if and

only if Sσφfirstφmid
�= ∅ and Sσφmidφlast

�= ∅. In the other words,

Υφmid

σφfirstφlast
= 1⇔

{(σφfirstφmid, σφfirstφmid), (σφmidφlast, σφmidφlast)} ⊆ A2k

Thus,
Υφmid

σφfirstφlast
= 1⇒ (σφfirstφlast, σφfirstφlast) ∈ A2k+1

Now, we use a G operation taking Υφmid

σφfirstφlast
as input and creating complete

normal w-set R̂φmid

σφfirstφlast
as output. Now we use m disjoin operations to obtain

Rφmid

σφfirstφlast
, as it is shown in Fig. 11, which is equal to {(σφfirstφlast,)} if and only

if φlast is reached from φfirst via φmid in at most 2k+1 steps, over input string σ.

Now, we use 2m+lc − 1 union operations over w-sets Rφmid

σφfirstφlast
in such a form

that for all input strings σ and configurations φfirst, φlast, φmid, to obtain w-
set A′

2k+1 , where (σφfirstφlast,) ∈ A′
2k+1 if and only if (σφfirstφlast, σφfirstφlast) ∈

A2k+1 . Thus, by m J operations and a normalization operation, A2k+1 is
obtained, as it is shown in Fig. 12.

After �lg tT (n)� steps, A2�lg tT (n)� is obtained. Since T halts after at most tT (n)
steps over each n-bit input string, thus, each n-bit input string σ is accepted by T
if and only if for the initialization configuration φinit and some accepting configu-
ration φaccept, (σφinitφaccept, σφinitφaccept) ∈ A2�lg tT (n)� . Thus, we use 2m−1 DJ
operations to find w-set F containing all w-tuples (σφinitφaccept, σφinitφaccept),
where φinit is the initialization configuration for T over input string σ, and the
state in φaccept is equal to qaccept. Now, an output declaration operation On

declares the set of all n-bit strings which T accept them.

Concentration Enabled w-Machine and PSPACE 99

Dup J . . . Dup J N

DJ

DJ ...
Dup J . . . Dup J N

DJ

Dup J . . . Dup J N

0

1

0

1 S0m

0

1

0

1 Sσφfirstφlast

0

1

0

1 S1m

S0m

S1m

A2k

m layers

m pairs of operations

Fig. 10. Creating w-sets S0m to S1m , indicating reachable configurations in at most
2k steps

DC G DJ . . . DJ

Sσφfirstφmid

Sσφmidφlast

Υ φmid
σφfirstφlast

R̂φmid
σφfirstφlast

Rφmid
σφfirstφlast

m+ lc operations

Fig. 11. Creating w-set Rφmid
instrφfirstφlast

which is equal to {(σφfirstφlast, σφfirstφlast)} if

and only if φmid is reachable from φfirst, and φlast is reachable from φmid in at most
2k steps

U

. . . U Dup J . . . Dup J N

U
0

1

0

1A′
2k+1 A2k+1

R0lc
0m

. . .

. . .

R1lc
1m

m+ lc layers

m pairs of operations

Fig. 12. Creating w-set A2k+1 containing configuration pairs which are reachable in at
most 2k+1 steps over input string σ

100 S. Goliaei and M.-H. Foroughmand-Araabi

Since the length of the longest directed path to compute A20 is O(m), we
compute A2k+1 from A2k by adding length O(m) to the longest directed path, m
and �lg tT (n)� are polynomial functions of n, and the output is generated from
A2�lg tT (n)� by adding length O(m) to the longest directed path, hence, time(wn)
is a polynomial function of n. Note that wordlen(wn) = m is also a polynomial
function of n. Thus, the uniform concentration enabled w-machines compute
PSPACE languages in polynomial time. Note that since size(w) is exponential,
there is no polynomial time Turing machine generating the description of wn

in polynomial time. But, the provided series {wn}n∈N0 to compute PSPACE lan-
guages are uniform in a sense that there is a Turing machine Tw generating the
next operation of each operation, in polynomial time.

4 Conclusion and Future Works

w-Machine is a computational model that performs computation by applying
basic operations on w-sets, which are sets of binary string tuples. There is
a pure optical implementation schema for w-machine, in which each w-set is
implemented as a set of parallel light rays with different wavelengths, and
basic operations are implemented by simple optical devices such as prisms,
beam-splitters, and mirrors.

In this paper, we have defined a new operation in w-machine, called concentra-
tion operation. This operation detects the emptiness of w-sets, and is optically
implemented by white-black positive imaging from a light ray obtained concen-
tration of light rays in a w-set via prisms. We have shown that adding the con-
centration operation to w-machine, improves its computational power, such that
PSPACE languages can be computed by uniform series of concentration enabled
w-machines in polynomial time. Although the provided series of concentration
enabled w-machines to compute a PSPACE language may have exponential size,
but, they are uniform in a sense that there is a Turing machine which computes
the next operations of a each operation in polynomial time.

As a future work, we will try to figure out how concentration enabled w-
machine would be powerful in computation, exactly. We may also extend the
idea of the concentration operation by defining optical logical operation on con-
centrated w-sets. Note that complexity of simple w-machine is not completely
understood yet, specifically for Turing complexity classes such as PSPACE, which
is a possible thread in our future studies. Another subject of the future works is
to try to physically construct concentration enabled w-machines with larger sizes
in comparison to previous experiments on physical construction of w-machine.

References

1. Yu, F.T.S., Jutamulia, S., Yin, S. (eds.): Introduction to Information Optics, 1st
edn. Academic Press (2001)

2. Haist, T., Osten, W.: An optical solution for the traveling salesman problem. Optics
Express 15(16), 10473–10482 (2007)

Concentration Enabled w-Machine and PSPACE 101

3. Oltean, M., Muntean, O.: Exact cover with light. New Generation Comput-
ing 26(4), 329–346 (2008)

4. Oltean, M., Muntean, O.: Solving the subset-sum problem with a light-based de-
vice. Natural Computing 8(2), 321–331 (2009)

5. Muntean, O., Oltean, M.: Deciding whether a linear diophantine equation has
solutions by using a light-based device. Journal of Optoelectronics and Advanced
Materials 11(11), 1728–1734 (2009)

6. Oltean, M.: Solving the hamiltonian path problem with a light-based computer.
Natural Computing 6(1), 57–70 (2008)

7. Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete
problems, trading space for time. Theoretical Computer Science 411, 837–853
(2010)

8. Reif, J.H., Tygar, D., Yoshida, A.: The computability and complexity of ray trac-
ing. Discrete and Computational Geometry 11, 265–287 (1994)

9. Oltean, M.: Light-based string matching. Natural Computing 8(1), 121–132 (2009)
10. Goliaei, S., Jalili, S.: An optical wavelength-based computational machine. Inter-

national Journal of Unconventional Computing (in press)
11. Goliaei, S., Jalili, S.: An optical wavelength-based solution to the 3-SAT problem.

In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 77–85. Springer,
Heidelberg (2009)

12. Woods, D., Naughton, T.J.: Optical computing. Applied Mathematics and Com-
putation 215(4), 1417–1430 (2009)

13. Woods, D.: Upper bounds on the computational power of an optical model of
computation. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–
788. Springer, Heidelberg (2005)

14. Reif, J.H., Tyagi, A.: Energy complexity of optical computations. In: Proceedings
of the 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 14–21
(1990)

15. Barakat, R., Reif, J.H.: Lower bounds on the computational efficiency of optical
computing systems. Applied Optics 26(6), 1015–1018 (1987)

16. Goliaei, S., Foroughmand-Araabi, M.-H.: Lower bounds on the complexity of the
wavelength-based machine. In: Durand-Lose, J., Jonoska, N. (eds.) UCNC 2012.
LNCS, vol. 7445, pp. 94–105. Springer, Heidelberg (2012)

Small Steps toward Hypercomputation

via Infinitary Machine Proof Verification
and Proof Generation

Naveen Sundar Govindarajulu, John Licato, and Selmer Bringsjord

Department of Computer Science
Department of Cognitive Science

Rensselaer AI & Reasoning Laboratory
Rensselaer Polytechnic Institute

110 8th Street, Troy, NY 12180 USA
{govinn,licatj,selmer}@rpi.edu

Abstract. After setting a context based on two general points (that hu-
mans appear to reason in infinitary fashion, and two, that actual hyper-
computers aren’t currently available to directly model and replicate such
infinitary reasoning), we set a humble engineering goal of taking initial
steps toward a computing machine that can reason in infinitary fashion.
The initial steps consist in our outline of automated proof-verification
and proof-discovery techniques for theorems independent of PA that
seem to require an understanding and use of infinitary concepts (e.g.,
Goodstein’s Theorem). We specifically focus on proof-discovery tech-
niques that make use of a marriage of analogical and deductive reasoning
(which we call analogico-deductive reasoning).

1 Context: Infinitary Reasoning, Hypercomputation, and
Humble Engineering

Bringsjord has repeatedly pointed out the obvious fact that the behavior of
formal scientists, taken at face value, involve various infinitary structures and
reasoning. (We say “at face value” to simply indicate we don’t presuppose some
view that denies the reality of infinite entities routinely involved in the formal
sciences.) For example, in (Bringsjord & van Heuveln 2003), Bringsjord him-
self operates as such a scientist in presenting an infinitary paradox which to
his knowledge has yet to be solved. And he has argued that apparently infini-
tary behavior constitutes a grave challenge to AI and the Church-Turing Thesis
(e.g., see Bringsjord & Arkoudas 2006, Bringsjord & Zenzen 2003). More gen-
erally, Bringsjord conjectures that every human-produced proof of a theorem
independent of Peano Arithmetic (PA) will make use of infinitary structures and
reasoning, when these structures are taken at face value.1 We have ourselves

1 A weaker conjecture along the same line has been ventured by Isaacson, and is
elegantly discussed by Smith (2007).

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 102–112, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Small Steps toward Hypercomputation 103

designed logico-computational logics for handling infinitary reasoning (e.g., see
the treatment of the infinitized wise-man puzzle: Arkoudas & Bringsjord 2005),
but this work simply falls back on the human ability to carry out induction on
the natural numbers: it doesn’t dissect and explain this ability. Finally, it must
be admitted by all that there is simply no systematic, comprehensive model or
framework anywhere in the formal/computational approach to understanding
human knowledge and intelligence that provides a theory about how humans
are able to engage with infinitary structures. This is revealed perhaps most
clearly when one studies the fruit produced by the part of formal AI devoted
to producing discovery systems: such fruit is embarrassingly finitary (e.g., see
Shilliday 2009).

Given this context, we are interested in exploring how one might give a ma-
chine the ability to reason in infinitary fashion. We are not saying that we in
fact have figured out how to give such ability to a computing machine. Our
objective here is much more humble and limited: it is to push forward in the
attempt to engineer a computing machine that has the ability to reason in in-
finitary fashion. Ultimately, if such an attempt is to succeed, the computing
machine in question will presumably be capable of outright hypercomputation.
But the fact is that from an engineering perspective, we don’t know how to cre-
ate and harness a hypercomputer. So what we must first try to do, as explained
in (Bringsjord & Zenzen 2003), is pursue engineering that initiates the attempt
to engineer a hypercomputer, and takes the first few steps. In the present paper,
the engineering is aimed specifically at giving a computing machine the ability
to, in a limited but well-defined sense, reason in infinitary fashion. Even more
specifically, our engineering is aimed at building a machine capable of at least
providing a strong case for a result which, in the human sphere, has hitherto
required use of infinitary techniques.

2 Review of Incompleteness and PA

In this section, we give a very brief review of Gödelian incompleteness and Peano
Arithmetic from a purely syntactic point of view. The presentation here parallels
that in (Ebbinghaus, Flum & Thomas 1984). First we give a brief overview of
first-order logic.

First-Order Logic (FOL). The language of FOL includes an infinite collection
of variables, V = {x1, x2, . . . , xω}. For convenience, instead of using, for example,
x34, we use x, y, z, . . . as meta-variables ranging over the actual variables. We also
have access to the constant symbols C = {c1, c2, . . . , cω}, the function symbols
F = {f0, f1, . . . , fω} and the predicate symbols P = {P0, P1, . . . , Pω}. We also
have the logical connectives {∀, ∃,¬,⇒,⇔ ∧,∨}.

The set of grammatically correct FOL terms T are then given by the smallest
set that includes the following terms:

1. The atomic terms: ci or xj .
2. The compound terms fj(t1, . . . , tn), where each ti ∈ T .

104 N.S. Govindarajulu, J. Licato, and S. Bringsjord

The set of grammatically correct FOL formulae L are then given by the smallest
set that includes the following formulae:

1. the atomic formulae: Pk(t1, . . . , tn), where each ti ∈ T ;
2. (¬φ), for every φ ∈ L;
3. (φ⊕ψ), for every φ, ψ ∈ L and for ⊕ one of the binary connectives {∧,∨,⇒
,⇔};

4. (∀x φ) and (∃x φ) for every φ ∈ L and x a variable.

When using FOL, we usually restrict the language to a finite set of constant,
function, and predicate symbols σ, the signature.

Associated with FOL are many standard proof calculi, such as natural de-
duction (Pelletier 1999), resolution (Robinson 1965), etc. Given a proof calculus
P , a formula φ being provable from a set of formulae Γ is denoted by Γ $P φ.
Usually, in metalogical work, if the proof calculus is standard (sound and com-
plete; see (Ebbinghaus et al. 1984)), then the particulars of P are often of little
importance and the notation used is Γ $ φ.

Incompleteness of a Theory. A theory Γ in FOL is any set of formulae. A
theory Γ is called negation-complete if for every formula φ in the language of
Γ , we have either Γ $ φ or Γ $ ¬φ. A theory is negation-incomplete or just
incomplete if there is at least one such φ such that Γ �$ φ and Γ �$ ¬φ. Such a
statement is said to be independent of the theory.

As most readers will recall, Gödel’s first incompleteness theorem states that
any sufficiently strong theory of arithmetic that has certain desired attributes
is incomplete. (See Smith 2007 for a detailed and accessible introduction to
Gödel’s incompleteness theorems.) Peano Arithmetic (PA) is one of the smallest
incomplete theories that covers all of standard number theory.

PAis a first-order theory with the signature {0,+, ∗, succ} intended to model
arithmetic. PA has six axioms and one axiom schema for induction:

A1 : ∀x(0 �= succ(x))

A2 : ∀x∀y(succ(x) = succ(y)⇒ x = y)

A3 : ∀x(x + 0 = x)

A4 : ∀x∀y(x + succ(y) = succ(x+ y))

A5 : ∀x(x ∗ 0 = 0)

A6 : ∀x∀y(x ∗ succ(y) = (x ∗ y) + x)

Induction Schema : (φ(0) ∧ ∀x(φ(x) ⇒ φ(succ(x))))⇒ ∀φ(x)

One natural2 statement provably independent of PA is Goodstein’s Theorem,
reviewed in the next section.

2 In Gödel’s original work, which of course doesn’t detract from the seminal aspects
of the work in the least, we have only unnatural formula schemas the instances of
which are proved to be independent of PA, and an ingenious recipe for producing
such schemas.

Small Steps toward Hypercomputation 105

3 Review of Goodstein’s Theorem

The numerical examples are borrowed from (Potter 2004, Smith 2007), but the
definitions have been slightly condensed.

Definition 1 (bn(r)). The base n representation of a number r, bn(r), is a
notation in which r is represented as the sum of powers of n and where the

exponents are also powers of n, etc. Example: 266 = 22
(22

0
+20)

+ 2(2
20+20) + 22

0

Definition 2 (Growk(n) :). Take the pure base k representation of n. Replace
all k by k + 1. Compute the number obtained. Subtract one from the number.

Example: b2(19) = 22
22

0

+ 22
0

+ 20, therefore

Grow2(19) = 33
33

0

+ 33
0

+ 30 − 1 = 33
3

+ 3 = 7625597484990

Definition 3 (The Goodstein Sequence for m). For any natural number,
the Goodstein sequence for m is
m,
Grow2(m),
Grow3(Grow2(m)),
Grow4(Grow3(Grow2(m))), . . .

Some example values are shown in Figure 1

m

2 2 2 1 0

3 3 3 3 2 1 0

4 4 26 41 60 83 109 139 ... 11327
(96th term)

...

5 15 ~1013 ~10155 ~102185 ~1036306 10695975 1015151337 ...

Fig. 1. Goodstein sequences for m with m ∈ {2, 3, 4, 5}

Theorem 1 (Goodstein’s Theorem). For all natural numbers, the Goodstein
sequence reaches zero after a finite number of steps.

106 N.S. Govindarajulu, J. Licato, and S. Bringsjord

Theorem 2 (Unprovability of Goodstein’s Theorem). Goodstein’s the-
orem is not provable in Peano Arithmetic (PA) (or any equivalent theory of
arithmetic).

All known proofs of Goodstein’s Theorm use infinitary constructs one way or an-
other. The proofs either require infinite sets (beyond finitary arithmetic theories
such as PA), or the proofs require non-finitary rules such as the ω-rule.

The ω-rule is a rule of inference to be used with arithmetic theories. The
ω-rule is to be added to other systems of inference, either resolution or natural
deduction. This infinitary rule is of the following form

φ(0̄), φ(1̄), . . .

∀x φ(x) ω-rule

The above rule has an infinite number of premises and is unsuitable for im-
plementation in a standard, non-hypercomputational computer. The advantage
of the above rule is that Peano Arithmetic in a system which has this rule is
negation-complete; i.e., for every φ in the appropriate language, either PA $ω φ
or PA $ω ¬φ.

A restricted ω-rule is a finite form of the rule which still preserves negation-
completeness for PA. The disadvantage is that proof-verification and discovery
both fail to be even semi-decidable. Therefore, only approximations of this rule
are implementable. Let us assume that we are dealing with a first-order language
of arithmetic. This language has only {0, 1,+, ∗} as non-logical symbols, along
with equality. Given this setting, we can invoke nice theories: these are consis-
tent, decidable, and allow representations (Ebbinghaus et al. 1984).3 The first
incompleteness theorem states that for such theories there are statements that
cannot be proved (and the negation of which also cannot be proved) from the
theory in question.

With the restricted ω-rule the incompleteness result does not hold. Assume
that we have computer programs or machines operating over representations
of numerals and proofs. Then if we have a program m which for all n ∈ N,
m : n̄ �→ ρ(Γ, φ(n̄)). That is, for every natural number n and some formula φ
with one free variable, m produces a proof of φ(n̄) from some set of axioms Γ .
Given this, one form of the restricted ω-rule is as follows:

Γ m
∀x φ(x)

The most accessible reference for the above stated results is (Baker, Ireland &
Smaill 1992). All these results are available in (Ebbinghaus et al. 1984, Franzén
2004).

Even the restricted ω-rule is beyond trivial machine implementation, as, in
the general case, a proof-verification system that handles the rule should be
able to check in all possible cases if the program supplied halts with the correct

3 Roughly put, if a theory allows representations, then it can prove facts about the
primitive-recursive relations and functions.

Small Steps toward Hypercomputation 107

proof. This motivates us to consider more cognitively plausible proof-discovery
techniques. We feel that analogical reasoning is a general mechanism that is
exploited quite frequently in problem-solving in mathematics (see e.g. (Polya
1954)).

4 Partial Proof-Sketch Generation in ADR

Before we describe the proof-sketch generation process, we briefly go over the
Slate system for proof construction.

Slate
Slate is a graphical proof-construction environment based on natural deduction,
which includes support for constructing proofs in propositional logic, first-order
logic, and several modal logics. Slate also has the ability to automatically discover
proofs via resolution, by calling ATPs; e.g., SNARK (Stickel 2008). This feature
allows one to utilize Slate in a hybrid mode to construct proofs that are semi-
automated.4 Proofs in Slate can be viewed as a directed acyclic graph G =
{〈F , I〉, E} with two types of nodes: the formula nodes F and the inference
rule nodes I. Each inference rule node corresponds to an application of the
inference rule in the proof and has as parents the premises of the rule, and as
children the conclusion of the rule. Each formula node f has a complex structure
comprised of a unique identifier id, the formula φ corresponding to the node,
and a set of identifiers, T, corresponding to the scope under which the current
formula was derived. More concisely, each formula node f := 〈id, φ,T〉. To prove
a formula φ from a set of premises Γ , one needs to construct a graph that has
a formula node f = 〈id, φ,T〉 such that the identifiers in T correspond to nodes
of the following form 〈idp, γ, {}〉 where γ ∈ Γ for all idp ∈ T. This graph-based
approach avoids the usual rigid row-based linearity of formal proofs in favor
of more cognitively realistic agent-controlled “workspaces” the formal nature of
which generally aligns with Kolmogorov-Uspenskii (= KU) machines.5

Analogico-Deductive Reasoning
Proof discovery is often aided by analogical reasoning, particularly when the
high-level description of the proof has some analogical similarity to a known
proof in a different domain. For example, the proof of Gödel’s First Incomplete-
ness Theorem has a well-known analogical similarity to the proof of the Liar
Paradox, one which the present authors have taken steps toward automating
and generating computationally. This process, which goes from the initial ana-
logical insight to the desired formal proof, we have named Analogico-Deductive

4 For an overview of an earlier version of Slate, see (Bringsjord, Taylor, Shilliday, Clark
& Arkoudas 2008).

5 These machines introduced in (Kolmogorov & Uspenskii 1958). For a brief discussion
of KU machines in connecction with the Church-Turing Thesis, see (Bringsjord &
Govindarajulu 2011).

108 N.S. Govindarajulu, J. Licato, and S. Bringsjord

∀ intro �

¬ intro �

FOL ⊢ �

∨ elim �

FOL ⊢ �

FOL ⊢ �

FOL ⊢ �

∃ elim �

→ intro �

FOL ⊢ �

FOL ⊢ �

FOL ⊢ �

FOL ⊢ �

FOL ⊢ �

27. InfDesc(a)
{Contra,DEFINE: Inf Desc,Lemma 1}

28. ¬InfDesc(succ(a))
{16,DEFINE: Inf Desc,Lemma 1}

29. ¬InfDesc(a) → ¬InfDesc(succ(a))
{DEFINE: Inf Desc,Lemma 1}

30. ∀x (¬InfDesc(x) → ¬InfDesc(succ(x)))
{DEFINE: Inf Desc,Lemma 1}

PA 2. ∀x,y ((succ(x) = succ(y)) → (x = y))
{PA 2} Assume �

PA 1. ∀x 0 ≠ succ(x)
{PA 1} Assume �

INDUCTION SCHEMA INST.. (¬(0 < 0) ∧ ∀x (¬(x < 0) → ¬(succ(x) < 0))) → ∀x ¬(x < 0)
{INDUCTION SCHEMA INST.} Assume �

13. ¬(0 < 0)
{DEFINE <,PA 1,PA 2,PA 3,PA 4}

11. ∀z ¬(z < 0)
{DEFINE <,INDUCTION SCHEMA INST.,PA 1,PA 2,PA 3,PA 4}

12. ¬InfDesc(0)
{DEFINE <,DEFINE: Inf Desc,INDUCTION SCHEMA INST.,PA 1,PA 2,PA 3,PA 4}

14. ∀x (¬(x < 0) → ¬(succ(x) < 0))
{DEFINE <,PA 1,PA 2,PA 3,PA 4}

DEFINE <. ∀x,y (∃z (0 ≠ z ∧ (z + x = y)) ↔ (x < y))
{DEFINE <} Assume �

PA 3. ∀x (x = x + 0)
{PA 3} Assume �

PA 4. ∀x,y (x + (succ(y)) = succ(x + y))
{PA 4} Assume �

PA 5. ∀x (0 = x * 0)
{PA 5} Assume �

PA 6. ∀x,y (x * (succ(y)) = (x * y) + x)
{PA 6} Assume �

DEFINE: Inf Desc. ∀m (InfDesc(m) ↔ ∃n ((n < m) ∧ InfDesc(n)))
{DEFINE: Inf Desc} Assume �

Lemma 1. ∀x,y ((y < succ(x)) → ((y = x) ∨ (y < x)))
{Lemma 1} Assume �

21. (b = a) ∨ (b < a)
{Exist Evid,Lemma 1}

Exist Evid. (b < succ(a)) ∧ InfDesc(b)
{Exist Evid} Assume �

25. InfDesc(a)
{24,DEFINE: Inf Desc,Exist Evid}

23. InfDesc(a)
{22,Exist Evid}

22. b = a
{22} Assume �

24. b < a
{24} Assume �

Contra. InfDesc(succ(a))
{Contra} Assume �

26. InfDesc(a)
{DEFINE: Inf Desc,Exist Evid,Lemma 1}

16. ¬InfDesc(a)
{16} Assume �

19. ∃n ((n < succ(a)) ∧ InfDesc(n))
{Contra,DEFINE: Inf Desc}

INDUCTION SCHEMA INST.. (¬InfDesc(0) ∧ ∀x (¬InfDesc(x) → ¬InfDesc(succ(x)))) → ∀m ¬InfDesc(m)
{INDUCTION SCHEMA INST.} Assume �

NoInfDesc. ∀m ¬InfDesc(m)
{DEFINE <,DEFINE: Inf Desc,INDUCTION SCHEMA INST.,INDUCTION SCHEMA INST.,Lemma 1,PA 1,PA 2,PA 3,PA 4}

ADR Source Domain

N

Fig. 2. Semi-automated proof from PA and a lemma that there is no infinite descent
in N

Reasoning (ADR), a combination of analogical and hypothetico-deductive rea-
soning (Licato, Bringsjord & Hummel 2012, Bringsjord & Licato 2012). ADR
works by analogically mapping a known proof in a source domain to a par-
tially known proof in a target domain. Once this mapping is found, analogical
transfer is used to fill out as much of the target domain’s proof as possible.
Finally, within the target domain, the recently acquired knowledge is subjected
to domain-specific verification in order to eliminate contradictions.

Of course, the above is a brutally simplified version of the ADR process. In a
fully autonomous ADR system, there must be many other mechanisms in place
in order to ensure that the process of analogical mapping and transfer (which is
often somewhat imprecise and flexible) does not produce output that is invalid

Small Steps toward Hypercomputation 109

in a particular domain, such as a non-well-formed-formula in a formal domain.
This can occur in cases in which the source domain is less formal than the target
domain; for examle, a source domain with an informal understanding of the Liar
Paradox and a target domain which is a fully formalized proof of Gödel’s First
Incompleteness Theorem. This can be at least partially remedied by the use
of what we call patching operators. These are essentially domain-specific rules
meant to emulate the expertise of a reasoner familiar with the domain in ques-
tion. For more information, see (Licato, Govindarajulu, Bringsjord, Pomeranz
& Gittelson 2013).

ADR Used to Move toward Proving Goodstein’s Theorem
We can now give a more in-depth summary of an ADR process that starts with an
analogy, and outputs one of the key steps in Goodstein’s Theorem. The key step
here is that there is some analogical similarity between the natural numbers N

and the ordinal numbers up to ε0 = ωωω···

, the “epsilon-naught” numbers. This
is important, as proofs about just the natural numbers can be quite simple. For
example, Figure 2 contains a proof that there is no strictly decreasing sequence
of natural numbers from PA and the lemma:

∀x∀y(y < succ(x))⇒ (y = x) ∨ (y < x)

A similar statement holding for ε0 is a key step in the proof of Goodstein’s
Theorem. Given the source domain S consisting of the Peano-Arithmetic axioms
and a proof that there is no sequence of natural numbers that form a strict
infinitely descending sequence ∀m ¬InfDesc(m) for N, and a target domain T
consisting of some similar set-theoretic axioms describing ordinal arithmetic of
ε0, ADR successfully suggests a corresponding target theorem ∀m ¬InfDesc(m)
for ε0 (that there is no infinitely descending sequence of ordinal numbers). The
source domain for the ADR process is the Slate workspace in Figure 2; the target
is the Slate workspace in Figure 3.

For the analogical mapping step, we use our system Modifiable Engine for
Tree-based Analogical Reasoning (META-R), which is based on the match-
ing system originally described by Owen (1990). Our implementation builds on
Owen’s system by utilizing newer techniques for efficient graph matching, such
as those based on Linear Program Rounding and Bipartite Matching.6 META-R
finds the matching between the axioms in the two domains, and on the basis of
this matching transfers some of the intermediate steps in the source domain’s
proof, which are then subjected to further analysis by the target domain.

The result of this first step is a high-level proof-sketch, pictured in Figure 3.
This proof-sketch can then be transformed into an informal (or large-step) proof
using standard automated theorem-proving technologies.

6 We do not elaborate on these here in the interest of staying on topic, but for more
information we again point the interested reader to (Licato et al. 2013).

110 N.S. Govindarajulu, J. Licato, and S. Bringsjord

FOL ⊢ �

Ord Add 1. ∀x 0 ≠ succ(x)
{Ord Add 1} Assume �

Ord Add 2. ∀x,y ((succ(x) = succ(y)) → (x = y))
{Ord Add 2} Assume �

Ord Add 3. ∀x (x = x + 0)
{Ord Add 3} Assume �

Ord Add 4. ∀x,y (x + (succ(y)) = succ(x + y))
{Ord Add 4} Assume �

DEFINE: Inf Desc. ∀m (InfDesc(m) ↔ ∃n ((n < m) ∧ InfDesc(n)))
{DEFINE: Inf Desc} Assume �

Lemma 1. ∀x,y ((y < succ(x)) → ((y = x) ∨ (y < x)))
{Lemma 1} Assume �

INDUCTION SCHEMA INST ∀x¬(x<0). (¬(0 < 0) ∧ ∀x (¬(x < 0) → ¬(succ(x) < 0)) ∧ ∀λ (Limit(λ) → ∀β (<(β,<,λ) → (¬(β < 0) → ¬(λ < 0))))) → ∀x ¬(x < 0)
{INDUCTION SCHEMA INST ∀x¬(x<0)} Assume �

INDUCTION SCHEMA INST ∀m¬InfDesc(m). (¬InfDesc(0) ∧ ∀x (¬InfDesc(x) → ¬InfDesc(succ(x))) ∧ ∀λ (Limit(λ) → ∀β ((β < λ) → (¬InfDesc(β) → ¬InfDesc(λ))))) → ∀m ¬InfDesc(m)
{INDUCTION SCHEMA INST ∀m¬InfDesc(m)} Assume �

DEFINE <. ∀x,y ((x < y) ↔ ((x ∈ y) ∨ ∃z (0 ≠ z ∧ (z + x = y))))
{DEFINE <} Assume �

NoInfDesc. ∀m ¬InfDesc(m)
{NoInfDesc} Assume �

LEMMA. ∀m,n (g(m,n) ≠ 0 → ∃k InfDesc(k))
{LEMMA} Assume �

12. ∀m ∃n (g(m,n) = 0)
{LEMMA,NoInfDesc}

ADR Target Domain Input

Lemma

Goodstein’s Theorem

ADR Output

ε0 = ωω
ω·
··

Fig. 3. Workspace containing a high-level proof sketch partially filled in by ADR with
Figure 2 as input

5 Conclusion and Future Work

The ADR process briefly described herein is meant to be an overview of an
approach which attempts to simulate the reasoning processes that might allow
an experienced mathematician to go from a simple analogical insight to a full
formal proof of some theorem that is infinitary in nature. Obviously, much more
work is needed to automate such a process, and we do not in this paper claim
that full human-level analogico-deductive reasoning ability is achieved by the
current version of our system. We simply present a framework that we hope can
emphasize the role of ADR in the discovery of complex, infinitary proofs, such
as those that establish Goodstein’s Theorem.

Our current and future work involves expanding on much of what was de-
scribed in this paper. META-R will continue to be augmented and modified
using the best-known techniques for solving the computationally difficult prob-
lem that analogical matching represents, and we hope to make this tool available
for use by other interested researchers. We will also further develop the method
of applying ADR to proof generation presented in Licato et al. (2013), and
briefly described in the present paper. We suspect that the “Master Argument”

Small Steps toward Hypercomputation 111

(Smith 2007), which uses Tarski’s Theorem and matches the route which Gödel
himself regarded to be the most perspicuous one to incompleteness, might be
amenable to our approach.

References

Arkoudas, K., Bringsjord, S.: Metareasoning for Multi-agent Epistemic Logics. In:
Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 111–125.
Springer, Heidelberg (2005),
http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf

Baker, S., Ireland, A., Smaill, A.: On the Use of the Constructive Omega-Rule Within
Automated Deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp.
214–225. Springer, Heidelberg (1992)

Bringsjord, S., Arkoudas, K.: On the Provability, Veracity, and AI-Relevance of the
Church-Turing Thesis. In: Olszewski, A., Wolenski, J., Janusz, R. (eds.) Church’s
Thesis After 70 Years, pp. 66–118. Ontos Verlag, Frankfurt (2006),
http://kryten.mm.rpi.edu/ct_bringsjord_arkoudas_final.pdf; This book is
in the series Mathematical Logic, edited by W. Pohlers, T. Scanlon, E. Schim-
merling, R. Schindler, H. Schwichtenberg

Bringsjord, S., Govindarajulu, N.S.: In Defense of the Unprovability of the Church-
Turing Thesis. Journal of Unconventional Computing 6, 353–373 (2011); Preprint
available at http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf

Bringsjord, S., Licato, J.: Psychometric Artificial General Intelligence: The Piaget-
MacGyver Room. In: Wang, P., Goertzel, B. (eds.) Theoretical Foundations of
Artificial General Intelligence. Atlantis Press (2012),
http://kryten.mm.rpi.edu/Bringsjord_Licato_PAGI_071512.pdf

Bringsjord, S., Taylor, J., Shilliday, A., Clark, M., Arkoudas, K.: Slate: An Argument-
Centered Intelligent Assistant to Human Reasoners. In: Grasso, F., Green, N.,
Kibble, R., Reed, C. (eds.) Proceedings of the 8th International Workshop on
Computational Models of Natural Argument, CMNA 2008, Patras, Greece, pp.
1–10 (2008),
http://kryten.mm.rpi.edu/Bringsjord_etal_Slate_cmna_crc_061708.pdf

Bringsjord, S., van Heuveln, B.: The Mental Eye Defense of an Infinitized Version of
Yablo’s Paradox. Analysis 63(1), 61–70 (2003)

Bringsjord, S., Zenzen, M.: Superminds: People Harness Hypercomputation, and More.
Kluwer Academic Publishers, Dordrecht (2003)

Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Springer, New York
(1984)

Franzén, T.: Transfinite Progressions: A Second Look at Completeness. Bulletin of
Symbolic Logic, 367–389 (2004)

Kolmogorov, A., Uspenskii, V.: On the Definition of an Algorithm. Uspekhi Matem-
aticheskikh Nauk 13(4), 3–28 (1958)

Licato, J., Bringsjord, S., Hummel, J.E.: Exploring the Role of Analogico-Deductive
Reasoning in the Balance-Beam Task. In: Rethinking Cognitive Development: Pro-
ceedings of the 42nd Annual Meeting of the Jean Piaget Society, Toronto, Canada
(2012), https://docs.google.com/open?id=0B1S661sacQp6NDJ0YzVXajJMWVU

Licato, J., Govindarajulu, N.S., Bringsjord, S., Pomeranz, M., Gittelson, L.: Analogico-
deductive Generation of Gödel’s First Incompleteness Theorem from the Liar Para-
dox. In: Proceedings of the 23rd Annual International Joint Conference on Artificial
Intelligence, IJCAI 2013 (2013)

http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf
http://kryten.mm.rpi.edu/ct_bringsjord_arkoudas_final.pdf
http://kryten.mm.rpi.edu/SB_NSG_CTTnotprovable_091510.pdf
http://kryten.mm.rpi.edu/Bringsjord_Licato_PAGI_071512.pdf
http://kryten.mm.rpi.edu/Bringsjord_etal_Slate_cmna_crc_061708.pdf
https://docs.google.com/open?id=0B1S661sacQp6NDJ0YzVXajJMWVU

112 N.S. Govindarajulu, J. Licato, and S. Bringsjord

Owen, S.: Analogy for Automated Reasoning. Academic Press (1990)
Pelletier, J.: A Brief History of Natural Deduction. History and Philosophy of Logic 20,

1–31 (1999)
Polya, G.: Induction and Analogy in Mathematics. Princeton University Press, Prince-

ton (1954); This is Volume I of Mathematics and Plausible Reasoning. Volume II
is Patterns of Plausible Inference

Potter, M.: Set Theory and its Philosophy: A Critical Introduction. Oxford University
Press, Oxford (2004)

Robinson, J.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of
the ACM (JACM) 12(1), 23–41 (1965)

Shilliday, A.: Elisa: A New System for AI-assisted Logico-mathematical Scientific Dis-
covery Incorporating Novel Techniques in Infinite Model Finding. PhD thesis,
Rensselaer Polytechnic Institute (2009)

Smith, P.: An Introduction to Gödel’s Theorems. Cambridge University Press, Cam-
bridge (2007)

Stickel, M.E.: SNARK: SRI’s New Automated Reasoning Kit SNARK (2008),
http://www.ai.sri.com/~stickel/snark.html

http://www.ai.sri.com/~stickel/snark.html

Secure Information Transmission

Based on Physical Principles

Dima Grigoriev1 and Vladimir Shpilrain2,�

1 CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
dmitry.grigoryev@math.univ-lille1.fr

2 Department of Mathematics, The City College of New York, New York, NY 10031
shpil@groups.sci.ccny.cuny.edu

Abstract. We employ physical properties of the real world to design
a protocol for secure information transmission where one of the parties
is able to transmit secret information to another party over an insecure
channel, without any prior secret arrangements between the parties. The
distinctive feature of this protocol, compared to all known public-key
cryptographic protocols, is that neither party uses a one-way function.
In particular, our protocol is secure against (passive) computationally
unbounded adversary.

1 Introduction

In public-key cryptography, one of the basic functionalities is encryption, which is
performed over an open channel, without any prior secret arrangements between
the parties engaged in a cryptographic protocol.

More specifically, the scenario is as follows. One of the parties, Alice, wants to
transmit to another party, Bob, some secret information (say, a secret number
m). She can use an encryption algorithm to produce an encryption E(m) of her
secret number m. She then transmits E(m) to Bob over an open (i.e., insecure)
channel, and Bob uses a decryption algorithm to recoverm from E(m). All algo-
rithms and all transmissions are supposed to be known to the public and yet the
cryptosystem should be secure; this is the so-called Kerckhoffs’s principle, which
is considered mandatory in public-key cryptography. Therefore, in particular,
Bob’s decryption algorithm should involve a private key that only Bob knows.
Also, the encryption function m → E(m) should be one-way, which means, in-
formally, that it is efficient to compute but hard to invert (at least, on most
inputs). “Efficient” here means that the function of an input can be computed
in time polynomial in the size of an input. Thus, “hard to invert” roughly means
that there is no algorithm of time complexity polynomial in the size of an input
that would find a pre-image of any given input.

It was shown in [4] that for a public-key encryption protocol to be secure, it
has to employ at least one one-way function. On the other hand, a necessary

� Research of the second author was partially supported by the NSF grants DMS-
0914778 and CNS-1117675.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 113–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 D. Grigoriev and V. Shpilrain

condition for the existence of one-way functions is that P is not equal to NP,
where P is the class of functions computable in deterministic polynomial time,
and NP is the class of functions computable in non-deterministic polynomial
time. It is a central open problem in complexity theory whether or not these two
classes are equal, with the prevalent opinion being that they are not. See [2] for
a general background on this famous problem.

One immediately obvious thing is that a definition of any complexity class de-
pends on how one formalizes the concept of being “computable”. The universally
accepted formalization now is that a function is computable if there is a Turing
machine that computes this function. Again, see [2] for a general background on
Turing machines; here we just say that a Turing machine is a simple mechanism
that manipulates symbols on a strip of tape according to a table of rules. This
machine was described in 1936 by Alan Turing. A Turing machine that is able
to simulate any other Turing machine is called a universal Turing machine. A
more mathematically oriented definition with a similar “universal” nature was
introduced by Alonzo Church, whose work on lambda calculus intertwined with
Turing’s in a formal theory of computation known as the Church-Turing thesis.
The thesis states that Turing machines are indeed a good formalization of the
intuitive notion of computability and provide a precise definition of an algorithm.

It is the main purpose of this paper to show that there are secure encryption
protocols that do not employ any one-way functions. On the intuitive level,
when combined with the aforementioned results, this yields a feeling that there
are “naturally computable” functions that cannot be computed by a Turing
machine, but we do not make any formal statements in that direction at this
time.

We note that our procedures are rather practical and only use physical prop-
erties of objects encountered by people in everyday life.

The structure of the paper is as follows. In Section 2, as a “warm up”, we show
how to use a natural algorithm for a special case of a cryptographic primitive
called secret sharing. More specifically, our special case is: a dealer distributes
“shares” of a secret (which could be a secret number) to two parties, the idea
being that only when the two parties get together, they can recover the whole
secret, but neither alone can. This problem may seem trivial: if the secret number
is n, then the dealer can just split n as n = n1 + n2 and give n1 to one of
the parties and n2 to the other. What we want to achieve however is that, after
the two parties have recovered the whole secret, they end up still not knowing
the other party’s share. This is obviously impossible if the secret is n = n1 + n2
and the shares are n1 and n2. In our Section 2, we show how to solve this
problem by using a natural algorithm that does not, in fact, employ any non-
trivial physics; just everyday experience. It is unknown (at least, to us) whether
this problem can be solved by a procedure implementable on a Turing machine.
What is interesting though is that this question is equivalent to the following
one, that looks almost purely mathematical. Alice knows a point (x1, y1) in the
plane, while Bob knows a point (x2, y2). Can they exchange information in such
a way that each ends up knowing the slope s = y2−y1

x2−x1
of the line connecting their

Secure Information Transmission Based on Physical Principles 115

points, but neither ends up knowing the other party’s point (xi, yi)? We note
that it is fairly easy to arrange secret sharing between more than two parties
without any party having to reveal their share to recover the secret, see [3] or
[5]. At the end of Section 2, we give an application (pointed out to us by Bren
Cavallo) of our method to Yao’s “millionaires’ problem” [7].

Then, in Section 3, we describe an encryption protocol where a secret number
is encrypted as the length of a piece of an elastic rope, which consists of two
parts with different modula of elasticity, one of them being secret. Again, phys-
ical properties that are used in this protocol are very simple, and the protocol
can be easily implemented in real life, although it is only suitable for transmit-
ting secret information over a short distance. What is important is that this
protocol is secure even against (passive) computationally unbounded adversary.
Since a computationally unbounded adversary can use “encryption emulation
attack” (i.e., reproduce encryption algorithm with all possible randomness and
then compare the results to the actual encrypted message), security against such
an adversary can only mean one thing: there are many possible combinations of
different messages with different random choices that result in the same encryp-
tion. This is exactly what happens in our protocol.

We admit that the encryption protocol in Section 3 is rather impractical,
but we believe it is helpful in understanding why what we call “nature-based
cryptography” provides for what the “usual”, complexity-based, cryptography
cannot possibly provide: security against (passive) computationally unbounded
adversary.

In Section 4, we give a more detailed analysis of the encryption emulation
attack in our scenario, and in Section 5, we discuss security against active ad-
versary, i.e., an adversary who does not just observe and process information,
but can interfere with the protocol itself.

Finally, in our main Section 6, building on the ideas of Section 3, we give a
rather simple and practical encryption protocol where instead of a piece of rope
we use an electrical circuit to transmit data.

2 Secret Sharing between Two Parties

The problem that we address in this section is as follows. The dealer wants to
distribute information (“shares”) about a secret number s to two parties, Alice
and Bob, in such a way that only when the two parties get together, they can
recover the whole secret, but neither alone can.

One possible solution (which is a special case of Shamir’s solution [6] of a
more general problem) is: the dealer represents the number s as s = y2−y1

x2−x1
and

gives (x1, y1) to Alice and (x2, y2) to Bob. Problem solved.
Now we want to have an additional functionality: after the two parties have

recovered the whole secret s, they end up still not knowing the other party’s
share. It is an open problem whether or not this can be achieved by “purely
mathematical” methods (implementable on a Turing machine), but what we
offer here is a solution that uses physical properties of the real world.

116 D. Grigoriev and V. Shpilrain

We therefore position Alice and Bob in a plane, Alice at the point A = (x1, y1)
and Bob at the point B = (x2, y2), and give them both long pieces of rope. We
assume that the scaling is such that Alice cannot see Bob’s point from where she
is and Bob cannot see Alice’s point from where he is. Now here is the protocol:

1. Alice fixes one end of her rope at the point A = (x1, y1) and selects a
neighborhood U of the point A that cannot be seen by Bob. Bob, too, selects
a private neighborhood V of his point B = (x2, y2).

2. Alice throws (or brings) the other end of her rope to a random point C in
the plane, far enough so that her neighborhood U could not be seen from C.
Then she positions the part of the rope inside U so that this part is not a
straight line. She then communicates the coordinates of the point C to Bob.

3. Bob walks to the point C, ties one end of his rope to Alice’s rope, then walks
back to his point B, unwinding his rope along the way. That is, he is not
pulling the rope at this step, just unwinding.

4. When Bob reaches his point B, he starts pulling the rope until Alice tells
him to stop, which is as soon as Alice sees that the part of the rope inside
her neighborhood U is a straight line.

5. To make sure that it is not by accident that the part of the rope inside her
neighborhood U is a straight line, Alice asks Bob whether or not the part
of the rope inside his neighborhood V is a straight line. If it is not, then
Alice starts pulling her end of the rope toward her point A until Bob tells
her to stop, which is as soon as Bob sees that the part of the rope inside his
neighborhood V is a straight line.

6. When the parts of the rope inside both neighborhoods U and V are straight,
Alice and Bob assume that their points A and B are connected by a straight
rope, and they find the slope s of the corresponding straight line by selecting
any two points on the parts of the line inside their private neighborhoods.

Some parts of this protocol may seem redundant, and indeed, if both parties are
honest, the protocol can be simplified. However, we want to make sure that if
one of the parties is dishonest, he/she cannot cheat to get a hold of the other
party’s share (xi, yi). This is why, in particular, Alice tells Bob to stop as soon
as she sees that the part of the rope inside her neighborhood U is a straight
line. Otherwise, Bob could triangulate Alice’s point A by straightening the rope
between A and two different points of his choice.

We note that even though neither party in this scenario can determine the
other party’s point precisely, the slope of the line connecting the two points
gives away some information, and this has the following interesting application
to Yao’s “millionaires’ problem”.

2.1 Application to Yao’s “Millionaires’ Problem”

The “two millionaires problem” introduced in [7] is: Alice has a number x1 and
Bob has a number x2, and the goal of the two parties is to solve the inequality
x1 < x2? without revealing the actual values of x1 or x2.

Secure Information Transmission Based on Physical Principles 117

Here is how we can solve this problem by using the solution of the secret shar-
ing problem above. Alice privately selects a number y1 < 0, and Bob privately
selects a number y2 > 0. Now Alice has a point (x1, y1) in the plane, and Bob
has a point (x2, y2) in the plane. By using the method in this section, Alice and
Bob can determine the slope s of the line connecting the two points without
revealing the actual points. Then x1 < x2 if and only if s > 0.

Note that Yao’s “millionaires’ problem” in this interpretation is a formally
weaker problem than secret sharing between two parties because to solve the
“millionaires’ problem”, we do not need to know the actual value of the slope s;
it is sufficient to know just the sign of s.

3 Encryption without One-Way Functions

Disclaimer. We realize that the encryption protocol in this section is rather im-
practical, but we believe it is helpful in understanding why what we call “nature-
based cryptography” provides for what the “usual”, complexity-based, cryptog-
raphy cannot possibly provide: security against (passive) computationally un-
bounded adversary. In particular, we believe that “pulling the rope” relays a
helpful visual imagery of how the receiver (Bob) participates in the transmis-
sion: he is not just “sitting there” waiting for information from Alice to arrive,
but participates in transmission actively by “pulling out” a secret from Alice’s
private space. This is something that seems to be impossible to mimic in the
“usual” public-key scenario, and it is there where physical properties of the real
world play a crucial role.

For a simple and practical implementation of the ideas of this section, we
address the reader to our Section 6, but we do recommend to read this and the
following two sections first.

In this section, we give an encryption protocol that does not use any one-
way functions, so that its security is based on physical properties of real-world
objects. Particular real-world objects that we use in this section are elastic ropes
that quickly regain their original (“natural”) length after being stretched by a
force and then released. We also assume that all ropes mentioned in this section
obey Hooke’s law when deformed:

Δl =
F

E
· l,

where l is the natural length of a rope, Δl is the rope’s extension (strain), E
is the rope’s modulus of elasticity, and F is the normal stress, i.e., the force
straining the rope divided by the area of the rope’s cross-section. We note that
in physics, a more popular notation for the normal stress is σ, but we believe
that in our situation, F is a more reader-friendly notation, and we shall often
refer to F simply as “force” because the thickness of the rope does not play any
role in our considerations.

The scenario is as follows. Alice wants to send a secret positive number xA to
Bob. We assume that Alice has a private space U (e.g. a private room) where

118 D. Grigoriev and V. Shpilrain

nobody (i.e., neither Bob nor an eavesdropper Eve) can observe her actions.
Similarly, Bob has a private space V where nobody can observe his actions.
Alice and Bob share a long elastic rope: Alice holds one end of the rope, and
Bob holds the other. We assume that Alice also has a collection of ropes of
various modula of elasticity known to everybody (this is a tribute to Kerckhoffs’s
principle) that she can combine privately (by cut and paste) to produce two
pieces of rope, R and R′, of the same private random length but with different
private random modula of elasticity.

We assume that everybody (Alice, Bob, Eve) can observe (and measure) ev-
erything that is going on in the “public space”, i.e., outside the union of U and
V . For simplicity, we are assuming that both U and V are convex domains in
the plane.

Now here is the protocol itself:

1. Alice begins by cutting off a piece of the rope of random length inside her
private space U . Bob does the same inside his private space V . Now nobody
knows the total natural length of the rope connecting Alice and Bob.

2. Alice replaces, inside her private space U , a random part of the rope by her
private piece of rope R with private random modulus of elasticity. The point
of doing this is that now the eavesdropper Eve does not know the modulus
of elasticity of the whole rope connecting Alice and Bob.

3. Alice interprets her secret number xA as the length of the part of the rope
which is inside her private space U in the beginning of the transmission. (We
are assuming that a straight rope of length xA can fit inside U). Specifically,
she randomly splits xA as a sum of two positive numbers: xA = x′A + ε, and
pins the rope to the floor so that the part of the rope between the rope’s
end and the pin has length ε, and the part of the rope between the pin and
the boundary of U has length x′A. She also marks the point PA on the rope
where the rope intercepts the boundary of U .
Denote by xB the natural length of the part of the rope inside Bob’s private
space V , and by L the natural length of the part of the rope outside the
union of U and V . We assume that everybody (Alice, Bob, Eve) knows L.

4. Now the transmission begins. Bob, who remains inside his private space V ,
pulls the rope on his end with a private force FB (he may randomly change
its magnitude along the way), until the marked point PA is at a random
point inside his private space V . (This prevents the eavesdropper Eve from
knowing the natural length of the part of the rope that Bob has pulled inside
V since the beginning of the transmission.) It is also important that during
this whole procedure, no part of Alice’s private piece of rope R gets outside
of U , to prevent Eve from computing its modulus of elasticity.

5. Alice replaces the piece of rope R by R′, to prevent Eve from computing the
modulus of elasticity of the rope used for transmission. She then releases her
pin and tells Bob to pull the entire rope inside his private space V .

6. Having done that, Bob measures the natural length of the entire rope, sub-
tracts L and xB, and gets xA, which is Alice’s secret number.

Security of this protocol is essentially based on the following claim:

Secure Information Transmission Based on Physical Principles 119

Main Claim. If the eavesdropper Eve does not know the modulus of elasticity
of the rope inside Alice’s private space U , then she cannot unambiguously de-
termine the natural length of any part of the rope pulled from the inside of U
to the outside.

Proof. The validity of this claim follows from Hooke’s law: Δl = F
E · l, where l is

the natural length of a rope, F is the force straining the rope, Δl is the rope’s
extension (strain), and E is the rope’s modulus of elasticity.

What Eve wants to know here is l, the natural length of the rope (or part
of it) inside U . She is observing Δl, but E is private, so even if Eve is able
to measure the force F , she still has two unknowns in this equation, which we
can re-write as: F

Δl = E
l . If Eve knows F and Δl, then she knows the ratio of

E and l, which still leaves many possibilities for different pairs (E, l) with the
same ratio. Therefore, Eve cannot determine l unambiguously by observing the
“transmission”. ��

In Section 5, we discuss the scenario where the adversary can actively interfere
with the protocol.

4 Encryption Emulation Attack

Encryption emulation attack is reproducing encryption algorithm with all possi-
ble randomness and then comparing the results to the actual encrypted message.
In the classical model, encryption is a (possibly non-deterministic) one-to-one
function (otherwise, decryption by the receiver would not be unique), and there-
fore encryption emulation attack is always effective. This is usually the most
powerful attack, but the problem is: this attack typically requires prohibitively
vast amount of resources from the attacker. If, however, the attacker is compu-
tationally unbounded, she can use this attack, hence no encryption scheme in
the classical model can be secure against computationally unbounded adversary.

Since in our scheme, we claim security against computationally unbounded
adversary, this can only mean one thing: our encryption is not one-to-one, in
contrast with the classical model. This yields a question of how can decryption
by the receiver in this case be unique. Let us compare our model to the classical
one in more detail.

The main difference is that in our model, the receiver (Bob) actively par-
ticipates in Alice’s transmission, in contrast with the classical model where the
receiver is a passive observer of the transmission, just like Eve, and therefore Eve
and Bob get exactly the same information during the transmission phase of the
protocol. In our scheme, on the other hand, Bob gets more information during
the transmission phase, namely he knows where the point PA ends up, while
Eve does not. In other words, Bob influences the transmission phase with his
secret key. It would be interesting to arrange an encryption scheme with similar
properties by purely mathematical means, but at the time of this writing we do
not know whether or not this is possible (most likely, it is not).

120 D. Grigoriev and V. Shpilrain

Now let us see why the encryption in our scheme is not one-to-one as far as
Eve is concerned. The point is, again, that encryption is a function not only of
Alice’s secret number xA and her other secret parameters ε, EA (where EA is her
secret modulus of elasticity), but also of Bob’s secret parameters that include his
force FB and the final position B(PA) of the point PA. To simplify the notation,
denote by X the set of Alice’s parameters, and by Y the set of Bob’s parameters.
Now the encryption of Alice’s secret number xA is a function F (X,Y). First of
all, we have to ask ourselves: what is the co-domain of this function, i.e., where
does it take its values? One possible answer to this question is that a value of F
is a function S(t) that describes the state of the rope at a moment t after the
beginning of the protocol, where t changes from 0 to the moment when the whole
rope is in Bob’s private space V . Denote by Ŝ(t) the “retract” of this function,
i.e., the state of the rope observable by Eve at a moment t.

Since we claim security against computationally unbounded adversary, we do
not care whether the function F is one-way or not (in fact, it is not); what we
care about is that this function is not one-to-one as far as Eve is concerned, in the
sense that if, for some Ŝ(t), there is a pair (X1, Y1) such that F (X1, Y1) = Ŝ(t),
then there is also at least one pair (X2, Y2) such that the corresponding secret

numbers x
(1)
A ∈ X1 and x

(2)
A ∈ X2 are different, and yet

F (X1, Y1) = F (X2, Y2).

At the same time, the function F should be one-to-one as far as decryption
by Bob is concerned, i.e., for any S(t), (X1, Y), (X2, Y) such that F (X1, Y) =
F (X2, Y), one should have the corresponding secret numbers xA equal. This
latter condition is satisfied by the very design of the protocol since we have seen
in Section 3 that Bob decrypts without any ambiguity.

To show the validity of the displayed condition, we note that if we change
ε (which is part of xA), the function S(t) will not change at least until the
moment when Alice releases her pin. For Ŝ(t) to remain unchanged after Alice
releases her pin, the total natural length of the rope visible to Eve after the pin
is released should not change. That is, if, for example, we decrease ε by some
δ, there should be a way to increase the length of the rest of the rope visible
to Eve by the same δ, by varying other parameters. Indeed, recall Hooke’s law
again: E ·Δl = F · l, where l is the natural length of the part of the rope visible
to Eve after the pin is released, without the part of length ε (because the latter
part is not being strained). Thus, the total natural length of the rope visible to
Eve after the pin is released is l + ε.

Now suppose ε′ = ε− δ. Then, to keep the total natural length visible to Eve
unchanged, the length l has to be replaced by l′ = l + δ. Then, in order to keep
Δl (visible to Eve during the transmission) unchanged, Alice’s private elasticity
modulus E can be changed to E′ so that E′ · Δl = F · l′. We can solve this
for E′: E′ = F · l′

Δl , thereby showing that different pairs (E, xA) can produce
the same state of the rope observable by Eve. This is why Eve cannot decrypt
unambiguously by using the encryption emulation attack.

Secure Information Transmission Based on Physical Principles 121

5 Active Adversary

Active adversary is an adversary who can actively interfere with the protocol,
as opposed to just observing and analyzing. We distinguish two kinds of active
adversaries:

1. (not-so-dangerous kind) An adversary of this kind would just mess up com-
munication between Alice and Bob without attempting to retrieve Alice’s secret
message. The simplest way would be just to cut the rope. There is no defense
against such malicious behavior (after all, an Internet cable can be cut, too),
but there is no threat to security either, so we shall not be concerned about
adversaries of this kind.
2. (dangerous kind) An adversary of this kind would attempt to retrieve Alice’s
secret message. In our situation, an adversary may try to measure the natural
length of a piece of the rope emerging from Alice’s private room by applying a
force compensating Bob’s force to return a selected piece of the rope to its natural
state. In this case, Bob will detect a counter-force and abort the protocol.

Thus, even though Alice and Bob may not be able to prevent interference in
their protocol, they are able to detect malicious activity and abort the protocol
to prevent an adversary from recovering secret information. This has a super-
ficial resemblance to the intruder detection ideas in quantum cryptography [1],
although our scenario is much closer to everyday life. Also, in the scenario in
[1], the intruder may not be detected (with nonzero probability) if she makes
correct guesses.

6 A More Practical Implementation: Electrical Circuit

In this section, we describe a more practical implementation of the ideas of
Section 3. Obviously, using a piece of rope for transmission of data limits appli-
cability of relevant encryption essentially to communication between two offices
on the same floor (at best). Therefore, even though the ideas look nice in theory,
if they are to be applied to real-life communication, their implementation has to
be much more practical.

Here we suggest an encryption protocol similar to that of Section 3, but instead
of a piece of rope we use an electrical circuit to transmit data, and the secret
information that we transmit is the electric charge of a capacitor.

Thus, the initial setup is as follows. Alice wants to send a secret positive
number q

A
to Bob. We assume that Alice has a private space U (e.g. a private

room) where nobody (i.e., neither Bob nor an eavesdropper Eve) can observe
her actions. Similarly, Bob has a private space V where nobody can observe his
actions. In her private space U , Alice has a capacitor C1 of the capacitance c

A

with the charge qA , while Bob in his private space V has a capacitor C2 of the
capacitance c

B
with the charge q

B
, selected by Bob randomly. These capacitors

are connected to form an electrical circuit (see Figure 1), in such a way that
the capacitors’ plates holding positive charge are connected by one wire, and

122 D. Grigoriev and V. Shpilrain

the plates holding negative charge are connected by another wire. Alice also
has a switch that keeps the circuit disconnected until the actual transmission
begins, and she has an ammeter to monitor the electric current in the circuit.
Bob also has (in his private space) a rheostat (i.e., a variable resistor) included
in the circuit. This allows him to randomly change the resistance of the whole
circuit, and therefore also to change parameters of the electric current during
the transmission. Now more formally:

Alice’s (sender’s) public key: capacitance c
A

Alice’s secret message: charge q
A

Bob’s (receiver’s) long-term private key: capacitance c
B

Bob’s session private key: charge q
B
. This private key is selected by Bob

randomly before each transmission from Alice.

Fig. 1. Electrical circuit

Now here is the protocol itself:

1. Alice uses her switch to connect the circuit, thereby starting re-distribution
of electric charges between the capacitors C1 and C2. When the re-
distribution of the charges is complete, Alice’s ammeter shows that there
is no current in the circuit, so she disconnects the circuit.

2. After re-distribution of the charges is complete, let QA be the new charge of
the capacitor C1, and QB the new charge of the capacitor C2. Then:

QA = c
A
· qA + qB
c
A
+ c

B

, QB = c
B
· qA + qB
c
A
+ c

B

,
QA

c
A

=
QB

c
B

.

3. Bob, who knows QB, cB , qB , and cA , can now recover Alice’s secret q
A
from

the second formula above: q
A
= QB · (1 +

c
A

c
B
)− q

B
.

Encryption emulation attack on this protocol will not work for the same reason it
does not work with the protocol in our Section 3. Namely, in the three equations
displayed at Step 2 of our protocol above, there are 5 parameters unknown to
the adversary (the only known parameter is cA), which yields many possible

Secure Information Transmission Based on Physical Principles 123

solutions for q
A
. In fact, one of the three equations is redundant (for example,

equation 1 follows from the equations 2 and 3), so there are just 2 equations
with 5 unknowns to the adversary!

The adversary may attempt to measure the electric current I in the circuit
during the transmission and use other laws of physics to try to recover some of
the parameters. Relevant laws of physics include Ohm’s law I = U

R , where U
is the voltage and R the total resistance in the circuit. Since right after Alice
turns her switch on, the initial voltage U is

q
A

c
A
− q

B

c
B
, upon combining these two

formulas we get I =
q
A

c
A
R −

q
B

c
B
R .

This formula introduces two more parameters, at least one of which, the total
resistance R, cannot be measured by the adversary Eve because some parts of
the circuit, including the rheostat with variable resistance, are hidden from Eve.

There are other formulas involving some of the parameters of our electrical
circuit, but they all are similar to the formula above in the sense that they
introduce new parameters, at least one of which cannot be evaluated by Eve
because it is relevant to properties of those circuit elements that are hidden in
either Alice’s or Bob’s private space.

For the same reason, even an active adversary cannot determine q
A

in this
situation because even if she measures, say, I, at whatever moment(s) during the
transmission, it will not help her because she does not know how the rheostat’s
resistance (in Bob’s private space) changes. Of course, an active adversary can
mess up things in many different ways (the simplest way being just cutting a
wire); in particular, she can make sure that Bob will not get the right value of
q
A
in the end by connecting her own capacitor to the circuit. Detecting this or

other kind of interference with the protocol is one of the issues to be addressed
in a real-life implementation of our protocol, but we leave this discussion out
of the present paper since it would take us too far into the realm of electrical
engineering. What we emphasize here is that even an active adversary cannot
get a hold of the actual secret q

A
.

6.1 Attempting to Compromise the Receiver’s Long-Term Private
Key

Suppose Alice transmits several secret messages to Bob. Then, in addition to
the three equations (see Step 2 of our protocol), the adversary gets several other
triples of equations, with the same c

A
and c

B
, but different other parameters. (As

we have seen before, one equation in each triple is redundant, so the adversary
actually gets extra pairs of equations.) Thus, with each new pair of equations
the adversary gets 4 new unknowns (q

A
, q

B
, Q

A
, Q

B
), which does not help her

recover any of the unknowns, including Bob’s long-term private key c
B
.

Another attack, called chosen ciphertext attack, which is typically considered
in cryptography, allows the adversary to encrypt messages of her choice, in an
attempt to get information about a long-term private key. What it means for
our protocol is that in the system of equations at Step 2 of our protocol there
would be 4 unknowns to the adversary rather than 5, but this still is not enough
to determine any of the unknowns without ambiguity. Also, if the adversary

124 D. Grigoriev and V. Shpilrain

encrypts messages of her choice more than once, then each time she will get 2
new equations with 3 new unknowns, which does not help her.

Finally, suppose Alice herself attempts to get Bob’s long-term private key.
In this case, she knows q

A
, Q

A
, c

A
, but does not know q

B
, Q

B
, c

B
, and this still

does not allow her to recover Bob’s long-term private key c
B
without ambiguity.

Encrypting several messages in this scenario will produce more pairs of equations
together with new pairs of unknowns q

B
, Q

B
, which still does not help her.

7 Conclusions

We have employed physical properties of the real world to design public-key en-
cryption protocols secure against computationally unbounded adversary, which
is impossible in the “usual” (i.e. complexity-based) cryptography.

What appears to be the main reason why this is possible in nature-based
cryptography but impossible in complexity-based cryptography is that physical
properties of the real world can be employed to arrange for the receiver (Bob)
to be able to influence the transmission of information from the sender (Alice)
by using his private key, as opposed to the typical scenario in complexity-based
cryptography where Bob, after having published his public key, is just “sitting
there” waiting for information from Alice to arrive.

Acknowledgements. Both authors are grateful to the Max Planck Institut für
Mathematik, Bonn for its hospitality during their work on this paper. We are
also grateful to Igor Monastyrsky for consultations on physical aspects of our
schemes, and to Bren Cavallo for pointing out an application of our method to
Yao’s “millionaires’ problem”. The first author is also grateful to Labex CEMPI
(ANR-11-LABX-0007-01).

References

1. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and
coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, p. 175 (1984)

2. Garey, M., Johnson, J.: Computers and Intractability, A Guide to NP-Completeness.
W. H. Freeman (1979)

3. Grigoriev, D., Shpilrain, V.: Secrecy without one-way functions. Groups, Complex-
ity, Cryptology 5 (2013)

4. Impagliazzo, R., Luby, M.: One-way functions are essential for information based
cryptography. In: Proc. 30th IEEE Sympos. on Found. of Comput. Sci., pp. 230–235.
IEEE, New York (1989)

5. Kahrobaei, D., Habeeb, M., Shpilrain, V.: A secret sharing scheme based on group
presentations and the word problem. Contemp. Math., Amer. Math. Soc. 582, 143–
150 (2012)

6. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)
7. Yao, A.C.: Protocols for secure computations (Extended Abstract). In: 23rd Annual

Symposium on Foundations of Computer Science (Chicago, Ill., 1982), pp. 160–164.
IEEE, New York (1982)

Hypergraph Automata: A Theoretical Model

for Patterned Self-assembly

Lila Kari, Steffen Kopecki, and Amirhossein Simjour

Department of Computer Science,
University of Western Ontario, London, ON, N6A 5B7, Canada

{lila,steffen,asimjour}@csd.uwo.ca

Abstract. Patterned self-assembly is a process whereby coloured tiles
self-assemble to build a rectangular coloured pattern. We propose self-
assembly (SA) hypergraph automata as an automata-theoretic model
for patterned self-assembly. We investigate the computational power of
SA-hypergraph automata and show that for every recognizable picture
language, there exists an SA-hypergraph automaton that accepts this
language. Conversely, we prove that for any restricted SA-hypergraph
automaton, there exists a Wang Tile System, a model for recognizable
picture languages, that accepts the same language. The advantage of
SA-hypergraph automata over Wang automata, acceptors for the class
of recognizable picture languages, is that they do not rely on an a priori
defined scanning strategy.

1 Introduction

DNA-based self-assembly is an autonomous process whereby a disordered system
of DNA sequences forms an organized structure or pattern as a consequence of
Watson-Crick complementarity of DNA sequences, without external direction. A
DNA-tile-based self-assembly system starts from DNA “tiles”, each of which is
formed beforehand from carefully designed single-stranded DNA sequences which
bind via Watson-Crick complementarity and ensure the tiles’ shape (square) and
structure. In particular, the sides and interior of the square are double-stranded
DNA sequence, while the corners have protruding DNA single strands that act
as “sticky ends”. Subsequently, the individual tiles are mixed together and inter-
act locally via their sticky-ends to form DNA-based supertiles whose structure
is dictated by the base-composition of the individual tiles’ sticky ends. Winfree
[15] introduced the abstract Tile Assembly Model (aTAM) as a mathematical
model for tile-based self-assembly systems. Ma [13] introduced the patterned
self-assembly of single patterns, whereby coloured tiles self-assemble to build a
particular rectangular coloured pattern. Patterned self-assembly models a par-
ticular type of application in which tiles may differ from each other by some
distinguishable properties, modelled as colours [14,2]. Orponen and Göös [7] and
Orponen et al. [10] designed several algorithms to find the minimum tile set
required to construct one given coloured pattern. Czeizler and Popa [4] proved
that this minimization problem is NP-hard.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 125–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 L. Kari, S. Kopecki, and A. Simjour

In this paper, we propose self-assembly (SA) hypergraph automata as a gen-
eral model for patterned self-assembly and investigate its connections to other
models for two-dimensional information and computation, such as 2D (picture)
languages and Wang Tile Systems. A 2D (picture) language consists of 2D words
(pictures), defined as mappings p : [m] × [n] → [k] from the points in the two-
dimensional space to a finite alphabet of cardinality k. Here, [k] denotes the set
[k] = {1, 2, . . . , k}. Note that, if we take the alphabet [k] to be a set of colours,
the definition of a picture is analogous to that of a coloured pattern [13].

Early generating/accepting systems for 2D languages comprise 2 × 2 tiles
[6], 2D automata [3], two-dimensional on-line tessellation acceptors [8], and 2D
grammars. More recently a generating system was introduced by Varricchio [5]
that used Wang tiles. A Wang tile system [5] is a specialized tile-based model
that generates the class of recognizable picture languages, a subclass of the family
of 2D languages. The class of recognizable picture languages is also accepted
by Wang automata, a model introduced in [11]. Like other automata for 2D
languages [1], Wang tile automata use an explicit pre-defined scanning strategy
[12] when reading the input picture and the accepted language depends on the
scanning strategy that is used. Due to this, Wang automata are a suboptimal
model for self-assembly. Indeed, if we consider the final supertile as given, the
order in which tiles are read is irrelevant. On the other hand, if we consider the
self-assembly process which results in the final supertile, an “order of assembly”
cannot be pre-imposed. In contrast to Wang automata, SA-hypergraph automata
are scanning-strategy-independent.

SA-hypergraph automata are a modification of the hypergraph automata in-
troduced by Janssens and Rozenberg [9] in 1982. An SA-hypergraph automaton
(Section 3) accepts a language of labelled “rectangular grid graphs”, wherein the
labels are meant to capture the notion of colours used in patterned self-assembly.
An SA-hypergraph automaton consists of an underlying labelled graph (labelled
nodes and edges) and a set of hyperedges, each of which is a subset of the set of
nodes of the underlying graph. Intuitively, the hyperedges are meant to model
tiles or supertiles while the underlying graph describes how these can attach to
each other, similar to a self-assembly process.

We investigate the computational power of SA-hypergraph automata and
prove that for every recognizable picture language L there is an SA-hypergraph
automaton that accepts L (Thm. 1). Moreover, we prove that for any restricted
SA-hypergraph automaton, there exists a Wang tile system that accepts the
same language of coloured patterns (Thm. 2). Here, restricted SA-hypergraph
automaton means an SA-hypergraph automaton in which certain situations that
cannot occur during self-assembly are explicitly excluded.

2 Preliminaries

A picture (2D word) p over the alphabet Σ is a matrix of letters from Σ. Each
element of this matrix is called a pixel. p(i,j) denotes the pixel in the ith row and
jth column of this matrix. Two pixels p(i,j) and p(i′,j′) are adjacent if |i − i′|+

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 127

|j − j′| = 1. The function w(p) denotes the width and h(p) denotes the height
of the picture p. Σ∗∗ is the set of all pictures over the alphabet Σ. A picture
language (2D language) is a set of pictures over an alphabet Σ. For example,
L = {p ∈ Σ∗∗| for all 1 ≤ i ≤ h(p), p(i,1) = p(i,w(p))} is the language of all
rectangles that have the same first and last column.

A subpicture over Σ is a matrix of letters from Σ ∪ {empty}. A subpicture q
is connected if for every pair of pixels q(i′,j′), q(i,j) ∈ Σ there exists a sequence of
pixels s = 〈s0, s1, . . . , sn〉 from q such that s0 = q(i,j), sn = q(i′,j′), and sk ∈ Σ
for 0 ≤ k < n; moreover, sk and sk+1 must be adjacent. If p is a picture, then
q is a subpicture of p if there exists a translation δ : N2 → N2 such that for
all (i, j) ∈ [h(q)] × [w(q)] we have either q(i,j) = empty or q(i,j) = pδ(i,j). The
function δ is a translation if δ(i, j) = (i+ k, i+ l) for some k, l ∈ Z.

A definition of recognizability was proposed using labelled Wang tiles [12]. A
labelled Wang tile, shortly LWT, is a labelled unit square whose edges may be
coloured. Formally, a LWT is a 5-tuple (cN , cE , cS, cW , l) where l belongs to a
finite set of labels Σ and cN , cE , cS , and cW belong to C ∪ {#} where C is a
finite set of colours and # represents an uncoloured edge. Intuitively, cN , cE , cS ,
and cW represent the colour of the north, east, south, and west edge of the tile,
respectively. Labelled Wang tiles cannot rotate. The colours on the north, south,
east, and west edges of an LWT t are denoted by σN (t), σS(t), σE(t), and σW (t),
respectively; λ(t) denotes the label of t.

A Wang Tile System (WTS) [5] is a triple W = (Σ,C,Θ) where Σ and C
are two finite alphabets (the alphabet of tile labels and the alphabet of colours,
respectively) with # /∈ C, and Θ is a finite set of labelled Wang tiles with labels
from Σ and colours from C. The WTS W recognizes the picture language L(W)
where the picture p ∈ Σ∗∗ belongs to L(W) if and only if there exists a mapping
m : [h(p)]× [w(p)]→ Θ from the pixels of p to tiles from Θ such that the label of
the tile m(i, j) is equal to p(i,j); moreover, this mapping must be mismatch free.
The mapping m is mismatch free if for two adjacent pixels p(i,j) and p(i+1,j)

in p the south edge of m(i, j) and the north edge of m(i + 1, j) are coloured
by the same colour from C; for two adjacent pixels p(i,j) and p(i,j+1) in p the
east edge of m(i, j) and the west edge of m(i, j + 1) are coloured by the same
colour from C; and for every border pixel p(i,j) with i = 1, j = 1, i = h(p), or
j = w(p) we require that the north, west, south, or east edge, respectively, of
m(i, j) is uncoloured. For a pixel in a corner, e. g. p(1,1), this implies that two
edges are uncoloured. Let p̄ be a matrix of labelled Wang tiles from Θ. We call p̄
a Wang tiled version of the picture p if the width and the height of p and p̄ are
equal, and there exists a mismatch free mapping m such that for any i and j we
have p̄(i,j) = m(i, j). Two tiles p̄(i,j) and p̄(i′,j′) are adjacent if the pixels p(i,j)
and p(i′,j′) are adjacent. A language L is recognizable if there exists a Wang tile
system W such that W recognizes L. Fig. 1 shows an example.

A coloured pattern, as defined in [13], is the end result of a self-assembly
process that starts with a fixed-size L-shaped seed supertile and proceeds as in
Fig. 2 i) until one coloured rectangle is formed. Note that Wang Tile Systems
can be seen as generators for (potentially infinite) languages of such coloured

128 L. Kari, S. Kopecki, and A. Simjour

a a a a

aaaa

a a a a

aaaa

#

#

#

#

#

#

#

#

#

#

1 1
1
1
1 1

1
1
1 1

1
1

0 0 00
0
0

0
0

0
0
0

0

0 0

0

0 0

0

0
0

0
0

0

0
0
0

0
0 0

0

0
0

0 0

00

#
#a a a a

aaaa

a a a a

aaaa

a a a a

aa a

a

#

#

#

#

#1 1
1

1
1 1

1

0 0 00
0

0
0

0 0 0
0

0

0

0

0 0

aa
#

#
1

0 0
0

0

aa a# ##1
1

0

0
0

0

0

0
0

0

1
0

i) ii) iii)

Fig. 1. Let W = (Σ,C,Θ) be the Wang Tile System where Σ = {a}, C = {0, 1} and
Θ consists of the 13 LWTs shown in i). This Wang tile system recognizes the picture
language containing all square pictures p with h(p) = w(p) ≥ 3 and where every pixel
is labelled by a. Part ii) is an example picture and iii) shows the Wang tiled version of
the picture in part ii).

patterns where the L-shaped seed-structure of an arbitrary size is generated
starting from a single-tiled seed with uncoloured north and west edges and is
extended by tiles with uncoloured north or west edges, as shown in Fig. 2 ii).

#
#
#
#
#
#

#

#

#
#

#
#
#

#

Fig. 2. i) The self-assembly of a single coloured pattern, starting with a fixed-size L-
shaped seed. ii) The process of generating a picture in the language of a Wang Tile
System.

3 Hypergraph Automata

Let f : A → B be a function and let A′ ⊆ A. The restriction of f to A′ is
f |A′ : A′ → B such that f |A′(x) = f(x) for all x ∈ A′. For any set A we let
id : A→ A denote the identity.

Let Σ be an alphabet. A pseudo-picture graph is a directed labelled graph
G = (N,Ev ∪ Eh, π) where N is a finite set of nodes, Ev, Eh ⊆ N × N are
two sets of edges such that Ev ∩ Eh = ∅, and π : N → Σ is the label func-

tion. Edges from Ev and Eh will frequently be denoted by
v−→ and

h−→, re-
spectively. The node-induced subgraph of G by a subset N ′ ⊆ N is defined
as the graph (N ′, E′

v ∪ E′
h, π|N ′) where E′

v = {(x, y) ∈ Ev | x, y ∈ N ′} and
E′

h = {(x, y) ∈ Eh | x, y ∈ N ′}. A graph G′ is called a full subgraph of G if
for some N ′ ⊆ N it is the node-induced subgraph of G by N ′.

A pseudo-picture graph G = (N,Ev ∪ Eh, π) is an n ×m-picture graph (for
n,m ∈ N) if there is a bijection fG : N → [n] × [m] such that for x, y ∈ N ,

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 129

we have (x, y) ∈ Ev if and only if fG(x) + (1, 0) = fG(y), and (x, y) ∈ Eh

if and only if fG(x) + (0, 1) = fG(y). We want to stress that we do not use
Cartesian coordinates: our pictures are defined as matrices; incrementing the
first coordinate corresponds to a step downwards, and incrementing the second
coordinate corresponds to a step rightwards. In other words, the nodes of a
picture graph G can be embedded in N2 such that every edge in Ev has length 1
and points downwards, every edge in Eh has length 1 and points rightwards, and
two nodes with Euclidean distance 1 are connected by an edge. N.B. if a pseudo-
picture graph is an n×m-picture graph, it cannot be an n′ ×m′-picture graph
with n �= n′ or m �= m′, and the function fG is unique. If G is a picture graph,
we call e ∈ Ev a vertical edge and e ∈ Eh a horizontal edge. The set of all picture
graphs is denoted by G. Every n×m-picture graphG = (N,Ev∪Eh, π) represents
a picture p(G) ∈ Σ∗∗ with h(p(G)) = n and w(p(G)) = m. More precisely, for
all (i, j) ∈ [n] × [m] we let p(G)(i,j) = π(f−1

G (i, j)). Hence, p : G → Σ∗∗ can be
seen as a function. A connected pseudo-picture graph G′ is called a subgrid if it
is a full subgraph of a picture graph G. We also say G′ is a subgrid of G.

A hypergraph [9] is a triple H = (N,E, f) where N is the finite set of nodes,
E is the finite set of hyperedges, and f : E → P(N) is a function assigning to
each hyperedge a set of nodes; the same set of nodes may be assigned to two
distinct hyperedges. For every hyperedge e ∈ E, we let

IH(e) = {x ∈ N | ∃e′ ∈ E \ {e} : x ∈ f(e) ∩ f(e′)}

be the set of intersecting nodes in f(e). Janssens and Rozenberg [9] introduced
hypergraph automata to describe graph languages. Here, we modified their defi-
nition in order to study pseudo-picture graphs.

Definition 1. A self-assembly (SA) hypergraph automaton is a tuple A =
(N,E, f, d,G,E0) where H = (N,E, f) is a hypergraph, called the underlying
hypergraph, d : E → IH(e)× IH(e) is the transition function assigning to each
hyperedge e ∈ E a transition Q1 → Q2 with Q1, Q2 ⊆ IH(e), G is a pseudo-
picture graph with node set N called the underlying graph, and E0 ⊆ E is the
set of initial hyperedges.

Every hyperedge e ∈ E defines a graph Ge which is the subgraph of G induced
by f(e). For d(e) = Q1 → Q2 we call Q1 and Q2 the incoming active nodes and
outgoing active nodes of Ge, respectively. In order for the hypergraph automaton
to be well-defined, we require that Ge is connected and that the subgraph of Ge

induced by its incoming active nodes is connected, too, for all e ∈ E. If e ∈ E0,
then Ge is also called an initial graph.

A configuration of the hypergraph automaton A is a triple (M,O, g) where
M = (NM , EM,v ∪ EM,h, πM) is a subgrid, O ⊆ NM is the set of active nodes,
and g : NM → N is a function such that πM (x) = π(g(x)) for all x ∈ NM . The
set NM consists of (possibly multiple) copies of nodes from N and the function
g assigns to each node in NM its original node in N . An edge (x, y) ∈ EM,h is
a copy of the edge (g(x), g(y)) ∈ Eh and (x, y) ∈ EM,v is a copy of the edge
(g(x), g(y)) ∈ Ev. However, for two nodes x and y in M , if their originals g(x)

130 L. Kari, S. Kopecki, and A. Simjour

and g(y) are connected by a horizontal (or vertical) edge, this does not imply
that x and y are connected by a horizontal (or vertical) edge.

Let (M1, O1, g1) be a configuration withM1 = (N1, E1,v∪E1,h, π1) and let e ∈
E be a hyperedge with d(e) = Q1 → Q2. If there exists a non-empty subset P ⊆
O1 such that g1|P forms a graph-isomorphism from the subgraph of M1 induced
by P to the subgraph of Ge induced by the incoming active nodes Q1, then the
hyperedge e defines a transition or derivation step (M1, O1, g1) →

A
(M2, O2, g2)

. Informally speaking, the resulting graph M2 consists of joining together the
graphsM1 and Ge by identifying every node x ∈ P with the corresponding node
g1(x) ∈ Q1. The active nodes O2 in M2 are the active nodes O1 \ P in M1 plus
the outgoing active nodes Q2 in Ge, see Fig. 3. We also say that (M2, O2, g2) is
the result of gluing the hyperedge e to (M1, O1, g1). Formally, the configuration
(M2, O2, g2) where M2 = (N2, E2,v ∪ E2,h, π2) is constructed as follows. Let
N ′ = {x′ | x ∈ f(e) \Q1} be a set containing a copy of each node from Ge

except for the incoming active nodes such that N ′ ∩N1 = ∅. Let N2 = N1 ∪N ′

and let g2 : N2 → N such that g2(x) = g1(x) for x ∈ N1 and g2(x
′) = x for

x′ ∈ N ′. An edge (x, y) belongs to E2,v if (x, y) ∈ E1,v or x, y ∈ P ∪ N ′ and
(g2(x), g2(y)) ∈ Ev; an edge (x, y) belongs to E2,h if (x, y) ∈ E1,h or x, y ∈
P ∪N ′ and (g2(x), g2(y)) ∈ Eh. Naturally, π2(x) = π(g2(x)) for all x ∈ N2 and
O2 = (O1 \P)∪ {x′ ∈ N ′ | x ∈ Q2}. The reflexive and transitive closure of→

A
is

denoted by
∗→
A

and called a derivation.

h

h
v v

h

h
v v

v

h

h
v v

v

h

h
v

M1 Ge M2

g1

P Q1

Q2
+ =

|P

Fig. 3. A transition (M1, O1, q1) →A (M2, O2, q2) joins together the graphs M1 and Ge

by identifying every node x ∈ P with the corresponding node g1(x) ∈ Q1. The set O2

of the active nodes of the new configuration M2 consists of the nodes of the union of
the active nodes in O1 \ P with the outgoing active nodes Q2 of Ge. The active nodes
of M1 and M2 are represented as circled nodes.

For e ∈ E0 we let Oe such that d(e) = Q1 → Oe and we call the con-
figuration (Ge, Oe, id) an initial configuration of A. A final configuration is a
configuration (M, ∅, g) without active nodes. The graph language accepted by
the SA-hypergraph automaton A is

L(A) =
{
M ∈ G

∣∣∣ ∃e ∈ E0 : (Ge, Oe, id)
∗→
A

(M, ∅, g)
}
.

Note that L(A) contains picture graphs only. The picture language associated to
the graph language L(A) is the language p(L(A)).

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 131

Remark 1. Since we only investigate picture graphs, we assume that for every
hyperedge e ∈ E the underlying graph Ge is a subgrid.

Example 1. Fig. 4 shows an example of an SA-hypergraph automaton A which
is defined as follows. The SA-hypergraph automaton is A = (N,E, f, d,G,E0),
where N = {x1, x2, . . . , x9, z1, z2, . . . , z7}, E = {e1, e2, . . . , e16}, and E0 = {e10}.
The function f is defined such that each hyperedge consists of four nodes which
build a 2× 2-subgrid of the grid graph in Fig. 4. For example we have, f(e1) =
{x1,x2,x4,x5}, f(e2) = {x2,x3,x5,x6}, . . . , f(e9) = {x9,x7,x3,x1}, f(e10) =
{z1,z5,z2,x1}, and f(e11) = {z5,z6,x1,x2}. For each hyperedge in ii), the func-
tion d, which describes the active areas where we can glue new hyperedges, is
defined to build a horizontal (vertical) chain of nodes that models the top row
(left column) of tiles. For example, d(e11) = {z5, x1} → {z6, x1, x2}. The “back-
ward edges”, e.g., (x3, x1), (x6, x4), (x9, x7), and (z7, z5), enable the reuse of
hyperedges to build a periodic pattern. For each hyperedge in iii), the function
d changes the active input nodes (top-left, bottom-left, and top-right) to the
new set of active nodes (top-right, bottom-left, and bottom-right), signifying
the change of the places where the new hyperedges can be glued. For example,
d(e1) = {x1, x2, x4} → {x2, x4, x5}, d(e2) = {x2, x3, x5} → {x3, x5, x6}, and
d(e3) = {x3, x1, x4} → {x1, x6, x4}.

z5
z1 h

v

h

z6
h

z3

z2

z4

v

v

h

z7
x1 x2 x3

x7

x4

x1
v

x7 x8 x9

x6x5x4

x1 x2 x3h h hh

h h h h

hhhh

v v v

vvvv

vvvv

vvvv

x1 x2 x3

x7 x8 x9

x7

x

x1

x9

x6

x3

i) iii)ii)

v v v

h

h

h

Fig. 4. Part i) shows an example of coloured self-assembled pattern. Parts ii) and iii)
together depict the underlying graph of the SA-hypergraph automaton that constructs
the same pattern. Part ii) constructs the white top row and white left column, and
part iii) constructs the coloured pattern.

The SA-hypergraph automaton A starts from the top-left white tile, corre-
sponding to E0 = {e10}. Afterwards, the automaton continues the construction
with the hyperedges in the top row or the left column. The construction of the
white-grey-black part starts after the construction of the white top row and left
column. Fig. 5 shows an example of possible transitions of the SA-hypergraph
automaton A.

The concept of hypergraph automata was introduced by Janssens and Rozenberg
[9] in 1982. Our definition of SA-hypergraph automata is a variant of the original
definition with the following modifications: Firstly, we start from a set of initial
graphs whereas the original definition used a single initial graph. For unlabelled

132 L. Kari, S. Kopecki, and A. Simjour

z5z1 h

v

z2

v

h x1

z5
z1 h

v

h

z6

z2

v

x2
v

h x1 h

e11 e12
z5

z1 h

v

h

z6
h

z2

z7
v v

x2
v

h x1 x3h h
*

e1

z5
z1 h

v

h

z6
h

z2

z7
v v

x1

h

h

v

x2
v

h x1 x3

z5
h

z6
v

x2h h h

e14,e15,e16

z5
z1 h

v

h

z6
h

z2

z7
v v

x1

h

h

v

x2
v

h x1 x3

z5
h

z6
v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v

h h h

v

v

z5
z1 h

v

h

z6
h

z2

z7
v v

x1

h

h

v

x2
v

h x1 x3

z5
h

z6
v

x2

x7

x4h

v

z2

v

h

h

z3

x1

z4

v

v v

x5

h h h

h

v

v

x6

z5
z1 h

v

h

z6
h

z2

z7
v v

x1

v

h

h

v

x2
v

h x1

v

x3

z5
h

z6
v

x2

x7

x4h

v

z2 h

v

h

h

z3

x1

z4

v

v

h

v

x5 h

v

v

h

hx9
v

v

v

x8
v

h

h

h

h

h

h

h

h

v

v

hh

x7

x4 x5

x8

vv v

x1x2 x3 x2

*

Fig. 5. In this example, the construction of a picture graph from Fig. 4 is explained.
At each step, one hyperedge or a sequence of hyperedges is glued.

graphs both models are capable of accepting the same class of graph languages,
as long as one makes an exception for the empty graph. However, for labelled
graphs a single initial graph is not sufficient; e. g., if a language L of labelled
graphs contains one graph A where every node is labelled by a and one graph
B where every node is labelled by b, then A and B cannot be generated from
the same initial graph as A and B do not have a common non-empty isomorphic
subgraph. Secondly, we use final configurations in order to accept only some
of the graphs that can be generated by rules from the initial graph. In the
original definition, for simplicity, final configurations were omitted and every
graph which can be generated from the initial graph belonged to the accepted
language. Thirdly, it seemed more convenient to us to use the notion of active
nodes rather than active intersections.

4 Hypergraph Automata for Picture Languages

In this section, we establish a strong connection between recognizable picture
languages and picture graph languages that can be accepted by SA-hypergraph
automata. We prove that the self-assembly of a Wang Tile System can be simu-
lated by an SA-hypergraph automaton, see Thm. 1. The main idea is to start the
tiling in the top left corner of a tiled picture and then extend the tiled picture
downwards and rightwards, just as in Fig. 2 ii). Our converse result is slightly
weaker: the picture language L = p(L(A)), associated to the graph language ac-
cepted by an SA-hypergraph automaton A, is recognizable if A does not contain
a strong loop, see Thm. 2. The restriction for A not to contain a strong loop
is a natural assumption as strong loops cannot be used in any derivation that
accepts a picture graph.

Theorem 1. For any recognizable picture language L there is a SA-hypergraph
automaton A such that the picture language associated to the graph language
L(A) is L.

Proof. Let V = (Σ,C′, Θ′) be a Wang Tile System that recognizes the picture
language L, that is L = L(V). We will slightly modify the WTS V such that

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 133

it fulfils a certain property as described in the following. We define a WTS
W = (Σ,C,Θ) which recognizes L and such that any two copies of a tile t ∈ Θ
in a tiling of W must have a row- and a column-distance which is a multiple of
3. The modification of V will become of importance later in the proof: We need
to ensure that for a 2× 2 square of matching tiles t1, t2, t3, t4, it is not possible
to directly attach another copy of any of t1, t2, t3, t4 to this square.

We will define a SA-hypergraph automaton A = (N,E, f, d,G,E0) which
simulates the assembly of a tiled picture from L = L(W) as described in Fig. 2 ii).
Let N be a set of nodes such that |N | = |Θ | and let ϑ : N → Θ be a bijection.
For each node x ∈ N there is a corresponding tile ϑ(x) and vice versa. Let NT ,
NR, NB, NL be the set of nodes which correspond to tiles on the top, right,
bottom, left border of a tiled picture, respectively:

NT = {x ∈ N | σN (ϑ(x)) = #} , NR = {x ∈ N | σE(ϑ(x)) = #} ,
NB = {x ∈ N | σS(ϑ(x)) = #} , NL = {x ∈ N | σW (ϑ(x)) = #} .

Let G = (N,Ev ∪ Eh, π) be the underlying graph of A. The label function π is
naturally defined as π(x) = λ(ϑ(x)) for x ∈ N . For all nodes x, y ∈ N there
is an edge (x, y) ∈ Eh if and only if σE(ϑ(x)) = σW (ϑ(y)) �= # and either
x, y ∈ N \ (NT ∪ NB) or x, y ∈ NT or x, y ∈ NB; there is an edge (x, y) ∈ Ev

if and only if σS(ϑ(x)) = σN (ϑ(y)) �= # and either x, y ∈ N \ (NL ∪ NR) or
x, y ∈ NL or x, y ∈ NR. This means if the east edge of a tile t can attach to the
west edge of tile s, then their corresponding nodes x = ϑ−1(t) and y = ϑ−1(s)
are connected by an h-edge (x, y) ∈ Eh. Analogously, if the south edge of a tile t
can attach to the north edge of tile s, then their corresponding nodes x = ϑ−1(t)
and y = ϑ−1(s) are connected by an v-edge (x, y) ∈ Ev.

If NT ∩NB �= ∅ or NR∩NL �= ∅, the language L(W) possibly contains pictures
p with h(p) = 1 or w(p) = 1, respectively, which can be seen as one-dimensional
pictures. These pictures have to be treated separately. For now we assume that
NT ∩NB = NR ∩NL = ∅.

The hyperedges E and the transition function d define the possible transitions
of A. In every transition we add exactly one node to the graph of a configura-
tion of A. Our naming convention is that x is the node which is attached in
the derivation step and y, y1, y2, y3 are incoming active nodes of the hyperedge.
Every graph containing only one node which corresponds to a tile in the top
left corner is an initial graph. In order to construct a picture graph which rep-
resents a picture in L(W) we introduce three types of transitions, see Fig. 6.
The transitions of type I generate the top row of the graph and transitions of
type II generate the left column of the graph; both transition types keep every
generated node active. Transitions of type III generate the rest of the graph:
A node is attached if it has a matching east neighbour (y1), a matching north
neighbour (y3), and these two nodes are connected by another node (y2); unless
we reach the right or bottom border of the graph the nodes x, y1, and y3 are
active after using the transition. ��

Next, we prove that a picture language L = p(L(A)), associated to the graph
language L(A), is recognizable if A does not contain a strong loop. Let A be an

134 L. Kari, S. Kopecki, and A. Simjour

I II IIIType

Hyperedges
h

h
v v

x

y3y2

y1
v

x

y
h xy

Fig. 6. The hyperedges in the SA-hypergraph automaton A induce three different types
of graphs. White nodes represent incoming active nodes of the hyperedges.

SA-hypergrph automaton. A series of hyperedges s = 〈e0, e1, . . . , en〉 from A is
a (derivation) loop if e0 = en and Q2,i ∩ Q1,i+1 �= ∅ where d(ei) = Q1,i → Q2,i

for 0 ≤ i < n. Loops in an SA-hypergraph automaton are a prerequisite for
using a hyperedge several times in one derivation. Therefore, an SA-hypergraph
automaton without any loops can only accept a finite graph language. Let Gi =
Gei be the graph induced by ei, let x be a node in G0 = Gn, and let Oi =
Q2,i∩Q1,i+1 be set overlapping incoming/outgoing active nodes of Gi and Gi+1.
There is a path in the underlying graph of A from x to x which only visits the
subgraphs G0, . . . , Gn, in the given order, and passes through at least one node
of each Oi (the path may use incoming and outgoing edges). The loop s is a
strong loop if, on this path, the number of incoming horizontal edges equals the
number of outgoing horizontal edges and the number of incoming vertical edges
equals the number of outgoing vertical edges. In other words, when starting from
a configurationM and successively gluing the hyperedges from s toM , then the
subgraph added by the hyperedge e0 and the subgraph added by the hyperedge
en fully overlap when naturally embedded in Z2. Note that, by Remark 1, all
graphs Gi are subgrids which implies that the choice of the path from x to x
does not matter in this definition.

Theorem 2. Let A be a SA-hypergraph automaton without any strong loops.
The picture language L = p(L(A)), associated to the graph language L(A), is
recognizable (by a Wang Tile System).

Proof. Let A = (N,E, f, d,G,E0) and let G = (N,Ev ∪Eh, π). We may assume
that e ∈ E0 if and only if d(e) = ∅ → Oe. Therefore, none of the initial hy-
peredges can be used in a transition. This assumption is justified by the fact
that we can duplicate all hyperedges in E0 such that one copy can be used in
a transition but does not belong to E0 and the other copy which belongs to E0

cannot be used in a transition. Furthermore, any hyperedge without incoming
active nodes which does not belong to E0 is useless and can be removed from E.

For a node x ∈ N we define the list of related hyperedges to x, Hx =
{e ∈ E | x ∈ f(e)}. Let x be a node and ψ ⊆ Hx. We call a hyperedge g ∈ ψ a
generator of (x, ψ) if x /∈ Q1 with d(g) = Q1 → Q2. Note that if g ∈ E0, then g
must be a generator. We call a hyperedge c ∈ ψ a consumer of (x, ψ) if x /∈ Q2

with d(c) = Q1 → Q2. The pair (x, ψ) is a tile candidate if ψ contains exactly one
generator g(x,ψ) and exactly one consumer c(x,ψ); furthermore, if g(x,ψ) = c(x,ψ),
we require that ψ = {g(x,ψ)}. Note that if g(x,ψ) �= c(x,ψ), then for all e ∈ ψ with

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 135

d(e) = Q1 → Q2, we have that x ∈ Q1 unless e is the generator and x ∈ Q2

unless e is the consumer. The tile candidate (x, ψ) describes the attachment of
a copy of the node x to the output graph by the generator; afterwards, x is used
as active node by all hyperedges in ψ \ {g(x,ψ), c(x,ψ)}; finally, x is deactivated
by the consumer. Let Gψ be the node-induced subgraph of G by

⋃
e∈ψ f(e). If

Gψ is not a subgrid (a subgraph of some picture graph), we remove (x, ψ) from
the set of tile candidates. Let Ψ denote the set of all remaining tile candidates.

The Wang tile systemW = (Σ,C,Θ) which recognizes L is constructed based
on the list Ψ . In order to recognize the picture language associated to L(A),
we have to define the attachments of tile candidates. We use unordered pairs
{(x, ψ), (y, ϕ)} ∈ Ψ2 of tile candidates for the colours on the edges. For a tile
candidate (x, ψ) ∈ Ψ we define the set of labelled Wang tiles

Θ(x,ψ) = SN,(x,ψ) × SE,(x,ψ) × SS,(x,ψ) × SW,(x,ψ) × {lx}
where lx is the label π(x) and SN,(x,ψ), SE,(x,ψ), SS,(x,ψ), SW,(x,ψ) are sets of
colours which are defined below. The tile set is the union Θ =

⋃
(x,ψ)∈Ψ Θ(x,ψ).

Fig. 7 shows an example of this construction.

h h

h h

h h

v

v

v

v

v

v

e1
e2

e3

x1

x2

x3

x4
x5 x6

x7
x8 x9

{e1, e2,
 e3}, x2

{e1}
, x1

{e2}
,x3

{e1, e2,
 e3},x5

{e3}
,x8

{e3}
,x9

{e3}
,x7

{e1, e3}
,x4

{e2, e3}
,x6

i) iii)ii)
(x1,
{e1})

(x3,
{e2})

(x7,
{e3})

(x8,
{e3})

(x9,
{e3})

(x4,
{e1,e3})

(x6,
{e2,e3})

(x2,
{e1,e2})

(x2,
{e1,e2,
 e3})

(x5,
{e1,e2})

(x5,
{e1,e2,
 e3})

Fig. 7. Let A = (N,E, f, d,G,E0) be a SA-hypergraph automaton where N , E, f , and
G are defined in part i). Function d is defined such that d(e1) = {x1} → {x2, x4, x5},
d(e2) = {x2, x5} → {x2, x5, x6} and d(e3) = {x2, x4, x5, x6} → {}. SA-hypergraph
automaton starts from e1. Part ii) shows the set of all the possible tile candidates. On
each tile related node and the set of ψ are written. The tiling on part iii) is the result
of overlapping of three hyperedges e1, e2, and e3.

For (x, ψ), (y, ϕ) ∈ Ψ , we let {(x, ψ), (y, ϕ)} ∈ SE,(x,ψ) and {(x, ψ), (y, ϕ)} ∈
SW,(y,ϕ) if and only if 1.) (x, y) ∈ Eh; 2.) Hx ∩ ϕ ⊆ ψ; 3.) ψ ∩ Hy ⊆ ϕ;
and 4.) g(x,ψ) = g(y,ϕ) or y ∈ Q1 for d(g(x,ψ)) = Q1 → Q2 or x ∈ Q′

1 for
d(g(y,ϕ)) = Q′

1 → Q′
2. For (x, ψ), (y, ϕ) ∈ Ψ , we let {(x, ψ), (y, ϕ)} ∈ SS,(x,ψ) and

{(x, ψ), (y, ϕ)} ∈ SN,(y,ϕ) if and only if (x, y) ∈ Ev and conditions 2 to 4 are
satisfied. For (x, ψ) ∈ Ψ , we let SE,(x,ψ) = {#} if x does not have an incoming
vertical edges in the graph Gψ . By symmetric condition we let SN,(x,ψ) = {#},
SS,(x,ψ) = {#}, or SW,(x,ψ) = {#}.

Every picture p ∈ L(W), generated by the suggested tiling system, is in
p(L(A)) and vice versa. ��

136 L. Kari, S. Kopecki, and A. Simjour

5 Conclusion

We introduced SA hypergraph automata, a language/automata theoretic model
for patterned self-assembly systems. SA hypergraph automata accept all recog-
nizable picture languages but, unlike other models, (e.g., Wang Tile Automata)
SA-hypergraph automata do not rely on an a priori given scanning strategy of
a picture. This property makes the SA hypergraph automata better suited to
model DNA-tile-based self-assembly systems.

SA-hypergraph automata provide a natural automata-theoretic model for
patterned self-assemblies that will enable us to analyse self-assembly in an auto-
mata-theoretic framework. This framework lends itself easily to, e.g., descrip-
tional and computational complexity analysis, and such studies may ultimately
lead to classifications and hierarchies of patterned self-assembly systems based
on the properties of their corresponding SA-hypergraph automata. An addi-
tional feature is that each SA-hypergraph automaton accepts an entire class of
“supertiles” as opposed to a singleton set, which may also be of interest for some
applications or analyses.

Acknowledgements. We thank Professor Grzegorz Rozenberg for extended
discussions and his suggestion of applying hypergraph automata to the DNA
self-assembly setting.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: A computational
model for recognizable two-dimensional languages. In: Holub, J., Žďárek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007)

2. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-
bearing seed for nucleating algorithmic self-assembly. Proceedings of the National
Academy of Sciences (2009)

3. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: SWAT (FOCS), pp.
155–160 (1967)

4. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. In: Stefanovic, D., Turberfield, A.
(eds.) DNA 2012. LNCS, vol. 7433, pp. 58–72. Springer, Heidelberg (2012)

5. de Prophetis, L., Varricchio, S.: Recognizability of rectangular pictures by Wang
systems. Journal of Automata, Languages and Combinatorics 2(4), 269 (1997)

6. Giammarresi, D., Restivo, A.: Two-dimensional languages, pp. 215–267. Springer
(1997)

7. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-
assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 71–82.
Springer, Heidelberg (2011)

8. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Inf. Sci. 13(2), 95–121 (1977)

9. Janssens, D., Rozenberg, G.: Hypergraph systems generating graph languages. In:
Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153,
pp. 172–185. Springer, Heidelberg (1983)

Hypergraph Automata: A Theoretical Model for Patterned Self-assembly 137

10. Lempiäinen, T., Czeizler, E., Orponen, P.: Synthesizing small and reliable tile sets
for patterned DNA self-assembly. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011.
LNCS, vol. 6937, pp. 145–159. Springer, Heidelberg (2011)

11. Lonati, V., Pradella, M.: Picture recognizability with automata based on Wang
tiles. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 576–587. Springer, Heidelberg (2010)

12. Lonati, V., Pradella, M.: Strategies to scan pictures with automata based on Wang
tiles. RAIRO - Theor. Inf. and Applic. 45(1), 163–180 (2011)

13. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans.
on CAD of Integrated Circuits and Systems 27(5), 963–967 (2008)

14. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology (2004)

15. Winfree, E.: Algorithmic self-assembly of DNA. PhD thesis (1998)

Modeling Heart Pacemaker Tissue by a Network

of Stochastic Oscillatory Cellular Automata

Danuta Makowiec

Institute of Theoretical Physics and Astrophysics, University of Gdańsk, Poland
fizdm@univ.gda.pl

http://www.strony.fizdm.ug.edu.pl/ME/

Abstract. Computations performed by a system of cyclic cellular au-
tomata, designed to model the principal organization rules known for the
tissue of the first cardiac pacemaker — the sinus node, are investigated in
terms of Kuramoto order parameters of synchronization. We show that
such description provides consistent quantification of stationary states
in the model. Finally, the model is used to give possible explanations for
changes observed in the sinus node rhythmicity caused by age.

Keywords: cellular automata, synchronization, multiscale modeling.

1 Introduction

Discoveries appearing day by day from biochemical and physiological labs are
challenging for computational methods because they need novel conceptions for
computation. The natural computations are different from methods to which
we got used to in many aspects. It is even said that specifying the problem is
demanding [1].

The natural computations are parallel. The natural systems are space dis-
tributed, constituted from many different subsystems. The computations are
run in parallel in all parts of these systems. The natural computations are dy-
namical. The present state of each system unit: organizing (as a protein or cell,
for example) or functional unit (like a tissue or organ), are recorded in its en-
vironment by initiating a sequence, often a cascade, of biochemical processes.
Effects of these processes are read back by the same unit to modify, adapt its
next state. Since the effects of states are emitted to the environment, the results
are dynamically used by other neighboring units. The natural computations are
multi-layered. The local environment of any unit consists of elements of other
computational systems. They can be different from each other because of, for
example, the way of communication. One system passes the information via dif-
fusion of transmitters (neuronal systems) while the other by cell-to-cell direct
injection of ions (cardiac cells). So they act at different time and space scales. But
these different computational systems penetrate tightly one another providing
the robust solution.

In the following we will observe computations performed by a system made of
cyclic cellular automata, designed to model the principal organization known for

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 138–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modeling of the Heart Pacemaker 139

the tissue of the sinus node — the first cardiac pacemaker [2–8]. By computations
in this system we understand emerging of the collective state — synchroniza-
tion of oscillations of individual cells to produce the strong pacemaker signal. To
achieve such computational system, the network of coupled discrete-state units
is proposed. The elementary units — the basic layer of computations, reveal the
electrochemical properties of pacemaker cells. The network of intercell connec-
tions establishes the next layer. The sparsity and stochastic heterogeneity, known
organizing principles of the pacemaker tissue structure, are taken into account.
The adaptive and/or controlling layer is introduced in the so-called tonic way.
The regulatory role of the autonomic nervous system is revealed by parameters
describing sensitivity of cells for external stimulation.

The model has its roots in Greenberg-Hastings cellular automata modeling
the excitable medium[9, 10]. Discrete modeling has become attractive because it
provides the opportunity to adjust both assumptions and results in models with
natural cellular automata where the natural computations are performed. By
natural cellular automata we mean the technics of in vitro models where cultured
cardiac cells are placed on special matrices in order to observe emergence and
development of cell-to-cell interactions [11, 12].

Therefore, the basic objective of our modeling is to provide a tool which is
enable to test intuitions about general mechanisms responsible for the multiscale
effects. The work is a continuation of our investigations [13, 14]. In the following
the model is rewritten in a compact way, Sec. 2. Then results are presented
which were obtained in simulations aimed on effects of heterogeneity among
intercellular connections on collective properties of stationary states, Sec.3. The
results are expressed in terms of Kuramoto order parameters — the popular
tools for quantifying the synchrony among coupled oscillators [19, 20]. We show
that such description consistently quantifies collective properties in the studied
systems. In last Section we discuss the model properties in order to explain some
changes in the sinus node with age.

2 From Natural Computation to Computer Computation

The heart automaticity is originated in the sinoatrial node — a flat tissue located
on the right atrium. The node produces sustained oscillations of electrochemical
signals. These signals initiate the sequence of events which eventually lead to the
whole heart contraction. It is commonly believed that the source of sinoatrial
node function is closely related to electrophysiology of each individual cell.

2.1 The Model of a Cell

Physiology of a Pacemaker Cell. There is a sequence of biochemical pro-
cesses which change the electrical potential of a myocyte — the cardiac cell,
membrane. The phenomenon of ions transmission through the membrane the
cell: inward (potassium K+) and outward (sodium Na+ and calcium Ca2+), is
called the action potential. The time interval when the myocyte membrane is

140 D. Makowiec

depolarized takes about 400ms what is the half of the time interval between sub-
sequent heart contractions, approximately. In the case of pacemaker cells, the
course of the action potential is substantially different from other myocardium
cells. The depolarization process is slow, see Fig.1, because the increase in the
membrane potential is not caused by sodium Na+ ions but by calcium Ca2+ ions
only. Furthermore, after completing the action potential, the membrane poten-
tial does not stay resting but rises continuously due to activity of if current and
calcium current iCa(T), and reaches the threshold value. Then the next action
potential develops due to iCa(L)[2, 3]. The dotted lines in Fig.1 divide the oscil-
lation interval into three physiologically justified stages: 0, 3 and 4, called in the
following: firing, refractory and activity, respectively.

Fig. 1. Membrane potential of a
nodal cell in time together with ba-
sic currents: if , iCa(T), iCa(L), iK that
drive the membrane potential change.
Diagram is a modified scheme from
[3].

Fig. 2. The effects of depolarizing of
pulses (denoted as red arrows) on the
spontaneous cycle of a single enzymati-
cally dissociated pacemeker cell from the
sinoatrial node of the rabbit. Diagram is
a modified scheme from [16, 2]

The, so-called, phase sensitivity [15, 16, 2] describes an important aspect
of the pacemaker cell elecrophysiology, see Fig.2. Experiments with rabbit and
other mammalian heart cells showed that an external stimulus can influence the
intrinsic cycle. It could shorten the cycle if it arrives when a cell is after complet-
ing of the action potential, so after stage 3. The perturbation could elongate the
period if it comes when the action potential process has not been completed, so
during stage 3. In Fig.2 upper plots describe unperturbed membrane potential
with the mean period (T) =318 msec. Lower plots show the membrane potential
when the pulse appears before the end of the repolarization process, and when
the pulse comes later.

Assumptions. We propose to consider an automaton, called FRA-cell, to model
the sequence of nodal cell cycle. The model is based on the following assumptions:

Modeling of the Heart Pacemaker 141

(i) The cell cycle consists of three successive stages along which the cell pro-
gresses: firing, refractory and activity. Upon completion of activity stage,
the cell immediately enters a new cycle in firing stage.

(ii) Each stage is characterized by its maximal duration which is represented
by consecutive stage states. The number of states for each stage is fixed.
As soon as the duration of a given stage is reached, the transition to the
first state of next stage of the cell cycle occurs.

(iii) The time at which the transition takes place can vary in a random manner.
(iv) If a cell is in activity stage and receives a stimulus then it switches to firing

stage.
(v) If a cell is in refractory stage and receives a stimulus then it stays longer

in this stage.

The FRA-Cell Model

(a) LetΣ = {Fi, Rj , Ak} be the state space of a FRA-cell, i, j, k ∈ {1, 2, . . . , nσ},
with nσ ∈ {f, r, a} denoting the duration of stages firing, refractory, and
activity, respectively.
Let φ(t) = σl is the phase of a FRA cell at time t, σl ∈ Σ.

(b) The cellular phase in the next time step φ(t+ 1) is

φ(t+ 1) = next(σ)1, with probability

(
l

nσ

)ξ

with l ≤ nσ,

φ(t+ 1) = σl+1, otherwise (1)

where next(firing)=refractory, next (refractory)=activity, next(activity)=
firing forces the transition to the subsequent cellular stage, and ξ > 1.

(c) If a FRA cell receives a stimulus then

φ(t+ 1) = F1, if φ(t) = Al with l = 1, . . . , a, (2)

φ(t+ 1) = Rmax{1,g(l)} if φ(t) = Rl with l = 1, . . . , r, (3)

where g(l) = �l\2�
The rule (1) is probabilistic. It allows to shorten duration of each stage. But
when ξ is large enough then the dynamics becomes deterministic. The rules (1)
and (2) together are adaptation of rules used in models of excitable medium
[9, 11, 10]. The rule (3) was considered in simple models of two interacting cells
only, and, up to our knowledge, it has not been investigated in the network
systems.

2.2 The Tissue Model

Physiology of Pacemaker Tissue. The sinus node tissue is flat without any
fixed structure. Its contents is usually described as heterogeneous populations
of small myocytes [4–8]. The nodal cells form clusters and bundles surrounded
by abundant collagen. The node border is a relatively discrete boundary seen
between the margins of the node and the adjacent atrial tissues. The transmission
of action potentials from cell to cell occurs via large-conductance ion channels,
closely packed in large arrays named gap junctions.

142 D. Makowiec

Assumptions. Following [11] we assume that the pacemaker tissue is well ap-
proximated by a square lattice with open boundary conditions. Each vertex is
occupied by a FRA-cell, but only some of lattice neighboring cellular connections
are established for inter-cellular interactions. Additionally, we inject heterogene-
ity to the network by local and intentional wrinkling of inter-cellular connections.
The procedure of wrinkling is based on Watts-Strogatz [17] rewiring rule. The
intentionality of wrinkling is realized by preferential unlinking from the rare con-
nected neighbors. The locality means that only cells from the close neighborhood
can be linked instead. The network of interactions does not evolve. Details of the
wrinkling algorithm are given in [18]. Moreover, we assume that cells in firing
stage are the only source of stimuli to nearest neighbors.

The Model of Network Interactions

(A) A FRA-network of density d consists of N = L × L FRA-cells located
in vertices of square lattice, where any two cells of Moore neighborhood
are connected to interact with probability d. The boundary conditions of a
lattice are open.

(B) Let a be a FRA-cell and N (a) be the set of cells interacting with cell a.
Let b ∈ N (a). For a given p ∈ [0, 1], probability pbreak to unlink cell b from
the cell a is as follows

pbreak =
p

deg(b)

where deg(b) = card N (b) is the vertex degree of cell b. A randomly chosen
cell b′ ∈ N (b) is linked to cell a in place of cell b. So, finally b′ ∈ N (a).
The procedure is repeated J Monte Carlo time steps.

Unlinking from a leaf is forbidden. In total, the probability for rewiring of each
link is p∗J . Let us recall that Moore neighborhood on a square lattice comprises
the eight cells surrounding the central cell.

2.3 The Control System

The Physiology of the Cardiac Heart Contraction Control. Depolariza-
tion of the sinus node cells results in the heart contractions about 100 times per
minute. This high rate is constantly modified by the activity of sympathetic and
parasympathetic nerve fibers. Parasympathetic activation basically decreases the
pacemaker rate by decreasing if current. The activation of the sympathetic part
of the autonomic regulation acts contrary.

Assumptions. We assume that autonomic regulation acts tonically what re-
veals in the sensitivity of a FRA-cell to interact with its neighbors.

The Model

Let N(a, t) = card {a′ ∈ N (a)|φa′ (t) = Fi, i = 1, ..., f} be number of cells
interacting with a which at t are in firing stage.

Modeling of the Heart Pacemaker 143

Then for a given F = 0, 1, ... and R = 0, 1, ..
If N(a, t) > F then rule (2) applies.
If N(a, t) > R then rule (3) applies.

So, F is the sensitivity threshold for interaction of cell a in activity stage, and
R is the sensitivity threshold for interaction of cell a in refractory stage.

3 Results

3.1 Kuramoto Order Parameters to Quantify Collective States

If there is some variation among N interacting oscillators, namely, when an os-
cillator is isolated then oscillates with own intrinsic frequency, then macroscopic
synchronization means that the quantity:

Kf =
M

N
, (4)

has non-zero value. Here M is the size of the largest group of oscillators that
attain the same mean frequency. This parameter of synchrony perfectly fits to
neuronal interactions. However, in the case of short-range and pulse-like inter-
actions, the more accurate measure of the level of synchrony in a collections of
N phase oscillators φl(t) is given by the following quantity:

Kφ =
1

N

∣∣∣∣∣
N∑
l=1

eiφl

∣∣∣∣∣ , (5)

If all oscillators have the same phase then Kφ = 1. If phases are scattered at
random then Kφ is close to zero. Hence, this order parameter quantifies the
degree of phase synchronization, whereas Kf measures the degree of frequency
synchronization. A non-zero Kφ implies a non-zero Kf , but the opposite is not
true.

It turns out [13] that if FRA-network is homogeneous (no wrinkling) and
FRA-cell dynamics is deterministic (ξ >> 1) then system, evolving under rules
(1) and (2) only, is led to states with the perfect adjustment of frequency (hence,
Kf = 1) and with the fixed arrangement of cellular phases. The phases of neigh-
boring cells differ by ±1. Such organization of phases denotes emergence of
spiral-wave patterns. The stationary state oscillates either with the natural cel-
lular period T = f + r+ a or with the shortest possible: T ∗ = f + r+1. Rarely,
a period occurs which length is between T ∗ and T . In all these cases, the order
parameter Kφ is significantly greater than 0 and its value depends on periodicity
of the wave. But the spiral patterns are observed in the real cardiac tissue only
in the pathological cases [6–8].

Entering rule (3) results in that any two neighboring cells always gain the
phase difference equal to zero, asymptotically [14]. It means that in the net-
work of FRA-cells we observe the perfect phase synchronization with Kφ = 1.

144 D. Makowiec

This state is called marching cells. Moreover at certain model parameters waves
collapsing inward occur. Again, all such states in the real sinus node tissue are
a manifestation of pathological changes.

Notice that because of (3) the periods of states with stationary wave-patterns
can be elongated. For example, at wave phase adjustment in a line of FRA-
cells, the following pattern is stable:

t− 1 : Ff−2 Ff−1 Ff R1 R1 R2

t : Ff−1 Ff R1 R1 R2 R3

t+ 1 : Ff R1 R1 R2 R2 R4

(6)

what means that the period of the state oscillations is greater than a natural
cell period by 1.

3.2 Results from Simulations

In Figs 3 – 6 the results are shown in terms of order parameters Kf and Kφ for
densities d large enough to observe the collective properties.

From Fig. 3, describing systems with deterministically evolving FRA cells
located on homogeneous networks, we see that the solutions are firmly deter-
mined. The parameter Kf equals to 1 in large intervals of densities d and for
many values of F and R. This means that all cells oscillate with the same period.
Only if F = 3 and R = 0 the value of Kf drops down. Furthermore, when d is
changing, the switch is observed in the state periodicity from oscillations other
than T (shorter than T in case F = 0, 1, or longer than T in case F = 2, 3,) to
the oscillation with T .

States oscillating with period different from T demand permanent entrainment
between cellular states. The transitions are observed for densities in Δc = {d :
0.5 < d < 0.8}. From Fig. 4 we see that there are essential changes in Kφ value
for densities in Δc interval. Outside this interval, if d > Δc, then Kφ often
reaches 1, while in the case of small density the phase synchronization is, in
general, small.

Combining the values of order parameters for models with F = 0 and R = 1
or R = 2 with the dominant oscillations presented in Fig. 3, we can give the
direct interpretation for Kφ values as follows. If a state is a spiral wave with the
shortest period T ∗ then Kφ ≈ 0.5. If a state oscillates with the cellular period T
then Kf ≈ 0.2. These estimates agree with the rough assessment based on the
mean field calculations.

Comparing the listed results to the corresponding properties shown in Fig.
5 we can learn which properties survive inclusion of stochastic dynamics and
heterogeneity into the intercellular connections. The rough observation indicates
that dependence of dominant oscillation on density d is similar to that observed
in the rigid systems. However, now the participation of the dominant period is
much smaller. Notice that for all F and R considered by us, Kf < 0.3. Moreover,
from Fig. 4 we see that Kφ never attains 1. But, on the other hand, Kφ is also
significantly distinct from 0. Hence the high level of phase synchronization is

Modeling of the Heart Pacemaker 145

Fig. 3. Kuramoto order parameter Kf (empty marks) and the most frequent period
(filled marks) for different densities d, and for different sensitivity F and R in stationary
states obtained from system performing deterministic dynamics on not wrinkled net-
works. Simulation condition: the lattice size N = 104 and f = 9, r = 11, a = 19; plots
represent mean values from 104 time steps and 50 independent simulation experiments.
The first 104 time steps were skipped to let the system stabilize.

achieved in stationary states. The phase synchronization emerges due to the
fact that distributions of periods are concentrated around the dominant period.
In Fig. 6 we show distributions of period lengths for some model parameters. We
see that in most cases the distribution is a modal one. However, also bimodal
distributions appear for densities d ∈ Δc.

It is worth noting, that for the model parameters F = 1, R = 2, 3 and
d ∈ (0.6, 0.7) ⊂ Δc, independently of the cellular dynamics (deterministic or
stochastic) and of network structure (homogeneous or intentionally wrinkled),
the value of Kφ is the same. So the state of the system is firmly kept with the
common oscillations though the value of the period can change from the shortest
oscillations to the natural cellular oscillations. Since the natural systems often
work at the edge of criticality then we hypothesize that these FRA-systems cor-
respond to the natural pacemaker in the best way. The strong support for our
hypothesis comes from the fact that Δc falls into densities which are observed
in the real sinus node tissue [4].

146 D. Makowiec

Fig. 4. Kuramoto order parameter Kφ of stationary states for different density of
stochastic network connections, sensitivity F and R of interactions, cellular dynamics
(deterministic versus stochastic with ξ = 10), and network structure (homogeneous
versus heterogeneous due to wrinkling). Simulations conditions are described in Fig.3

4 Discussion

Cardiac cell cultures are becoming important experimental systems of mini-
mal complexity that capture many of the salient features of myocardial tissue
function and are simple enough that the tissue parameters can be controlled
systematically [11, 12]. Between the two pathological network states of strongly
entrained spiral waves and marching cells which are observed in both computer
and biological tissue models, there are many states with physiologically justified
properties. Hence, by discrete modeling we provide tools to formalize the biolog-
ical observations. Here, especially Kuramoto order parameters Kf , Kφ justified
their ability to qualify and quantify the collective features in the multi parameter
model. However, the next challenge is to send the model results back to physiol-
ogists, so they can use them iteratively as the input in their further experiments.

Modeling of the Heart Pacemaker 147

Fig. 5. Kuramoto order parameter Kf (empty marks) and the most frequent period
(filled marks) for different densities d, and for different sensitivity F and R in stationary
states obtained from systems driven by stochastic dynamics with ξ = 10, and on
wrinkled networks when p = 0.01, J = 50. Simulations conditions are described in
Fig.3.

Therefore, when closing we concentrate on clarification if the model results are
able to reveal some changes in the sinus node with age.

The function of the sinus node declines with age, leading to a condition called
sick sinus syndrome [5, 8, 21]. Aging causes a decrease in the overall intrinsic
heart rate, and an increase in the nodal conduction time. These changes are
preceded by a period of tissue remodeling — significant structural changes in
the intracellular matrix caused by increase of the collagen tissue. The collagen
deposition can be thought as limiting the plasticity of the network connections
what translates to FRA system as less wrinkled underlying networks of inter-
actions. In consequence, if F = 1, then tendency to the solution with marching
cells appears, see blue lines in Fig. 4. Moreover, together with collagen increase,
the density d could be though as decreased, what leads, according to our results,
to states where strongly entrained spirals emerge.

Age dependent alternations in ion channels (by perturbations in expression
and/or function of genes) influence both the intrinsic cellular cycle and sen-
sitivity of a cell for interactions. For example, there is observed a decrease in
potasium iK current with aging in the rat sinus node which could be linked to the
observed increase in action potential duration with aging [22]. Such properties
can be easily coded in FRA systems. By varying with durations of particular
stages of FRA-cell cycle one reconstructs effects of changes in particular parts

148 D. Makowiec

Fig. 6. Distribution of periods observed in some stationary state at given model param-
eters: stochastic dynamics, ξ = 10, wrinkling at p = 0.01, J = 0.01. Other parameters
are the same as described under Fig.3.

of the intrinsic cell period. Modifications in values of F and R parameters allow
to reveal effects of the impairment of sensitivity. It appears that if F changes
from 1 to 2 or 3 then only heterogeneity in the network connection which is
strong enough, protects against appearance of entrained spirals. If additionally
R decreases then desynchronization occurs - there is no source of the leading
oscillation independently of the level of heterogeneity.

References

1. Stumpf, M., Balding, D.J., Gorolami, M.: Handbook of Statistical Systems Biology.
Wiley (2011)

2. Jalife, J., Delmar, M., Davidenko, J., Anumonwo, J., Kalifa, J.: Basic Cardiac
Electrophysiology for the Clinician. Wiley-Blackwell (2009)

3. Klabunde, R.E.: Cardiovascular Physiology Concepts. accesible via,
http://www.cvphysiology.com/Arrhythmias/A005.html

4. Saffitz, J.E., Lerner, D.L., Yamada, K.A.: Gap Junctions Distribution and regula-
tion in the Heart. In: Zipes, D.P., Jalive, J. (eds.) Cardiac Elecrophysiology. From
Cell to Bedside, pp. 181–191. Saunders Co., Philadelphia (2004)

5. Dobrzynski, H., Boyett, M.R., Anderson, R.H.: New Insights Into Pacemaker Ac-
tivity: Promoting Understanding of Sick Sinus. Circulation 115, 1921 (2007)

6. Mangoni, M.E., Nargeot, J.: Genesis and Regulation of the Heart Automaticity.
Physiol. Rev. 89, 919 (2008)

http://www.cvphysiology.com/Arrhythmias/A005.html

Modeling of the Heart Pacemaker 149

7. Aslanidi, O.V., Boyett, M.R., Dobrzynski, H., Zhang, H.: Mechanisms of transi-
tion from normal to reentrant electrical activity in a model of rabbit atrial tissue:
interaction of tissue heterogeneity and anisotropy. Biophysical J. 96, 7989 (2009)

8. Boyett, M.R.: ‘And the beat goes on’ The cardiac conduction system: the wiring
system of the heart. Experimental Physiol. 94, 1035 (2009)

9. Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion
in excitable media. SIAM J. Appl. Math. 34, 515 (1978)

10. Berry, H., Fatés, N.: Robustness of the critical behaviour in the stochastic
Greenberg-Hastings cellular automaton model. IJUC 7, 65 (2011)

11. Bub, G., Shrier, A., Glass, L.: Global Organization of Dynamics in Oscillatory
Heterogeneous Excitable Media. Phys. Rev. Lett. 94, 028105 (2005)

12. Chang, M.G., Zhang, Y., Chang, C.Y., Xu, L., Emokpae, R., Tung, L., Marban,
E., Abraham, M.R.: Spiral waves and reentry dynamics in an in vitro model of the
healed infarct border. Circ. Res. 105, 1062 (2009)

13. Makowiec, D.: Modeling the sinoatrial node by cellular automata with irregular
topology. Int. J. Mod. Phys. C 21, 107 (2010)

14. Makowiec, D.: Phase-sensitive cellular automata on stochastic network as a model
for cardiac pacemaker rhythmicity. Acta Phys. Pol. B Proc. Supp. 5, 85 (2012)

15. Michaels, D.C., Matyas, E.P., Jalife, J.: Dynamic interactions and mutual synchro-
nization of sinoatrial node pacemaker cells. Circ. Res. 58, 706 (1986)

16. Anumonvo, J.M., Delmar, M., Vinet, A., Michaels, D.C., Jalife, J.: Phase resetting
and entrainment of pacemaker activity in single sinus nodal cells. Circ. Res. 68,
1138 (1991)

17. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393, 409 (1998)

18. Makowiec, D.: Evolving network - simulation study. From a regular lattice to scale
free network. EPJ B 48, 547 (2005)

19. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin
(1984)

20. Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto
model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77,
137 (2005)

21. Rose, A.: Keeping the clock ticking as we age: changes in sinoatrial node gene
expression and function in the aging heart. Exp. Physiol. 96, 1114 (2011)

22. Alings, A.M., Bouman, L.M.: Electrophysiology of the ageing rabbit and cat sinoa-
trial node-a comparative study. Eur. Heart J. 14(9), 1278 (1993)

Reaction Systems Made Simple�

A Normal Form and a Classification Theorem

Luca Manzoni and Antonio E. Porreca

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy

{luca.manzoni,porreca}@disco.unimib.it

Abstract. Reaction systems are models of computation inspired by the
interactions between biochemical reactions. We define a notion of multi-
step simulation among reaction systems and derive a classification with
respect to the amount of resources (reactants and inhibitors) involved in
the reactions. We prove that one reactant and one inhibitor per reaction
are sufficient to simulate arbitrary systems. Finally, we show that the
equivalence relation of mutual simulation induces exactly five linearly
ordered classes of reaction systems.

1 Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg [3,4], are a for-
malised abstraction of biochemical processes in which the dynamics are discrete
in both space and time and are described in terms of reactions. A reaction is
modelled as a set of reactants, necessary for the reaction to take place, a set
of inhibitors, whose presence blocks the reaction from occurring, and a set of
products.

Reaction systems may be considered a qualitative model, as opposed to a
quantitative one, as we only focus on the presence or absence of chemical species,
and not on the precise amounts. In particular, multiple reactions having common
reactants do not interfere; indeed, all reactions that are enabled at a certain
time step happen simultaneously. Another feature of reaction systems which
differentiates them from other biologically inspired computational models is the
lack of permanency: the state of the system only consists of the products of the
reactions that took place in the last time step, without preserving the entities
that were not involved in any reaction.

Mathematically, a reaction systems defines a transition function (the result
function) between states, i.e., sets of entities (chemical species), which completely
describes the dynamics of the system. In many cases, the study of the properties
of reaction systems involves the comparison of the result functions of different
systems or classes of systems. A natural way to understand the modelling power
of reaction systems is to consider their behaviour when the amount of resources
� This research was partially funded by Lombardy Region under project NEDD.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 150–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reaction Systems Made Simple 151

(reactants and inhibitors per reactions) is limited. It was proved [2,5] that there
exist infinite proper hierarchies of classes of result functions: by allowing more
resources, more functions become definable by reaction systems.

While the analysis of result functions is a direct way to compare reaction
systems, the classification it provides has a very high granularity. Requiring
the equality of the whole dynamics can be restrictive for certain applications
where we are interested in a higher-level view of the behaviour of the systems.
As an analogy, consider a simulation between Turing machines: we are often
not interested in a step-by-step correspondence of configurations, and we allow
the simulation to be slower than the original machine. In a similar fashion,
in this paper we define a notion of simulation in which the simulating system
is allowed to use several steps to simulate a single step of the other system;
auxiliary entities (analogous to an alphabet extension) may also be involved
in the simulation. The resulting equivalence relation of mutual simulability is
coarser than equality of result functions, but still captures the intuitive idea of
“having the same behaviour”.

This paper is structured as follows. In Section 2 we recall the definitions and
notation related to reaction systems. In Section 3, we introduce the notion of
k-simulation and prove that any reaction system can be k-simulated by using
only one reactant and one inhibitor per reaction. In Section 4 we study reaction
systems with no reactants or no inhibitors, and prove that exactly five linearly
ordered equivalence classes exist. Finally, in Section 5 we discuss the results and
provide some possible directions for further research.

2 Basic Notions

In this paper we denote sets by upper-case letters, reactions and atomic elements
by lower-case letters, and reaction systems by calligraphic letters. Given a set X ,
we denote by 2X the power set of X .

A reaction is formally defined as follows.

Definition 1. Given a finite set S (the background set), a reaction over S is a
triple of sets a = (Ra, Ia, Pa) ∈ 2S × 2S × 2S. We call Ra the set of reactants,
Ia the set of inhibitors, and Pa the set of products.

Since we will show that one reactant and one inhibitor suffice to simulate any
reaction system (see Theorem 1), in this paper we also admit empty reactant
and inhibitor sets, as in the original definition [4], in order to investigate the
expressivity of the resulting reactions and to prove that they are strictly weaker
than reactions involving both kinds of resources.

Definition 2. A reaction system is a pair A = (S,A) where S is a finite set
and A a set of reactions over S.1

1 We may assume, without loss of generality, the existence of a countably infinite
universe including every background set.

152 L. Manzoni and A.E. Porreca

A state of a reaction system A = (S,A) is any subset of S. The dynamics of a
reaction systems are defined as follows.

Definition 3. Let A = (S,A) be a reaction system, a = (Ra, Ia, Pa) ∈ A, and
T ⊆ S. We say that a is enabled by T iff Ra ⊆ T and Ia ∩ T = ∅.

The result of a on T is defined as

resa(T) =

{
Pa if a is enabled by T
∅ otherwise.

The result of A on T is defined as

resA(T) =
⋃
a∈A

resa(T).

The state sequence of a reaction system A with initial state T is given by suc-
cessive iterations of the result function:(

resnA(T)
)
n∈N

=
(
T, resA(T), res2A(T), . . .

)
.

Since the background set of a reaction system is finite, the state space is also
finite; hence, every state sequence is ultimately periodic.

3 A Normal Form for Reaction Systems

We begin by observing that, for each reaction system, there exists another re-
action system having the same result function (hence the same behaviour) but
using only one product per reaction.

Proposition 1 (Brijder, Ehrenfeucht, Rozenberg [1]). For each reaction
system A = (S,A) there exists a reaction system A′ = (S,A′) over the same
background set having reactions with at most one product per reaction and such
that resA(T) = resA′(T) for all T ⊆ S. ��

We classify reaction systems according to the maximum amount of reactants and
inhibitors appearing in their reactions; the number of products is not used as a
parameter due to the proposition above.

Definition 4. For all i, r ∈ N, we denote by RS(r, i) the class of reaction sys-
tems A = (S,A) such that, for all (Ra, Ia, Pa) ∈ A, we have |Ra| ≤ r and
|Ia| ≤ i. We also define the classes RS(∞, i) =

⋃
r∈N

RS(r, i), RS(r,∞) =⋃
i∈N
RS(r, i), and RS(∞,∞) =

⋃
r,i∈N

RS(r, i).

The classification into classes of the form RS(r, i) is exhaustive, and the class
RS(∞,∞) contains all reaction systems.

In order to compare reaction systems with respect to their ability to generate
state sequences, we define a notion of simulation less restrictive than equality of
result functions: here, the simulating system may use several steps to simulate a

Reaction Systems Made Simple 153

single step of the original system. This is consistent with notions of simulation
employed for many computational models (e.g., Turing machines), when we are
not interested in the strict correspondence of every pair of configurations, but
only in the overall behaviour of the two systems.

Definition 5 (k-simulation). Let A = (S,A) and A′ = (S′, A′), with S ⊆ S′,
be reaction systems, and let k ∈ N. We say that A′ k-simulates A iff, for all
T ⊆ S and all n ∈ N, we have

resnA(T) = resknA′ (T) ∩ S.

In other words, when considering the sequences of states of A and A′ starting
from T , the n-th state of A coincides with the (kn)-th state of A′ with respect
to the elements of S (some auxiliary elements of S′ − S may also occur).

We use the notion of k-simulation to define a relation on classes of reaction
system.

Definition 6. Let X and Y be classes of reaction systems, and let k ∈ N. We
define the binary relation &k as follows: X &k Y iff for all A ∈ X there exists
a reaction system in Y that �-simulates A for some � ≤ k.

We say that X & Y iff X &k Y for some k ∈ N. We write X ≈k Y if X &k Y
and Y &k X, and X ≈ Y for X & Y ∧ Y & X. Finally, the notation X ≺ Y is
shorthand for X & Y ∧ Y �& X.

Notice that X ⊆ Y implies X &1 Y , since any reaction system is trivially 1-
simulated by itself.

A k-simulation and an �-simulation can be composed into a (k�)-simulation.

Lemma 1. X &k Y and Y &� Z implies X &k� Z. ��

From this lemma, we immediately get the following result:

Proposition 2. The relation & is a preorder. Hence, the relation ≈ is an equiv-
alence relation. ��

We now begin analysing the relationships among the classes of reaction systems
defined above. The first step is to show that a reaction system can always be
simulated using only one reactant.

Lemma 2. RS(r, i) &3 RS(1, r) for all r ≥ 1, i ≥ 1.

Proof. Let A = (S,A) ∈ RS(r, i). Let A′ = (S′, A′) be a reaction system
with S′ = S ∪ Ŝ ∪ S̄ ∪ 2S , where Ŝ = {ŝ : s ∈ S} and S̄ = {s̄ : s ∈ S}.
The power set of S is included in S′ in order to encode subsets of S as atomic
elements in A′. The set A′ contains, for each s ∈ S, the reactions

(∅, {s}, {s̄}) ({s},∅, {ŝ}). (1)

154 L. Manzoni and A.E. Porreca

Furthermore, for each reaction a = (Ra, Ia, Pa) ∈ A, with Ra = {x1, . . . , xp}
and Ia = {y1, . . . , yq}, the set A′ contains the following reactions:

(∅, {x̄1, . . . , x̄p}, {Ra}) (2)
({ŷ1},∅, {Ia}), . . . , ({ŷq},∅, {Ia}) (3)
({Ra}, {Ia}, Pa) (4)

In order to prove that A′ 3-simulates A, we show that the following statement
holds: if n is a multiple of 3 (i.e., n = 3m for some m), then

resnA′(T) ∩ S = res
n/3
A (T); (5)

if n = 3m+ 1, then

resnA′(T) ∩ (Ŝ ∪ S̄) =
{
ŷ : y ∈ res

(n−1)/3
A (T)

}
∪

{
x̄ : x /∈ res

(n−1)/3
A (T)

}
, (6)

and if n = 3m+ 2, then

resnA′(T) ∩ 2S =
{
Ra : Ra ⊆ res

(n−2)/3
A (T)

}
∪{

Ia : Ia ∩ res
(n−2)/3
A (T) �= ∅

}
. (7)

By induction on n: if n = 0, then (5) holds by definition.
If n > 0 has the form 3m+ 1, then by induction hypothesis we have

resn−1
A′ (T) ∩ S = res

(n−1)/3
A (T).

Notice that the only reactions producing elements of Ŝ or S̄ are those in (1),
which, for every s ∈ S, produce ŝ if s ∈ resn−1

A′ (T), and s̄ otherwise. As a
consequence, statement (6) holds.

If n > 0 has the form 3m+ 2, then by induction hypothesis we have

resn−1
A′ (T) ∩ (Ŝ ∪ S̄) =

{
ŷ : y ∈ res

(n−2)/3
A (T)

}
∪

{
x̄ : x /∈ res

(n−2)/3
A (T)

}
.

The only reactions having elements of 2S as products are (2) and (3): for every
reaction a ∈ A, the set {Ra} is produced iff for all x ∈ Ra we have x̄ /∈ resn−1

A′ (T),
which is equivalent (by induction hypothesis) to x ∈ res

(n−2)/3
A (T). Furthermore,

for every a ∈ A, the set {Ia} is produced iff there exists at least one y ∈ Ia

such that ŷ ∈ resn−1
A′ (T), which in turn means that y ∈ res

(n−2)/3
A (T). Hence,

statement (7) holds.
Finally, if n > 0 has the form 3m, by induction hypothesis we have

resn−1
A′ (T) ∩ 2S =

{
Ra : Ra ⊆ res

(n−3)/3
A (T)

}
∪{

Ia : Ia ∩ res
(n−3)/3
A (T) �= ∅

}
.

The only reactions having products in S are of the form (4). For every reaction
a = (Ra, Ia, Pa) ∈ A, the corresponding reaction ({Ra}, {Ia}, Pa) ∈ A′ is enabled
in A′ at time n − 1 iff a is enabled in A at time n−3

3 = n
3 − 1. Hence, the two

reaction systems A and A′ have the same state (ignoring symbols in S′ − S) at
time n

3 and n respectively, as required.
In particular, statement (5) holds for all n, i.e., A′ 3-simulates A. ��

Reaction Systems Made Simple 155

Now we show that the number of inhibitors can also be reduced to one.

Lemma 3. RS(r, i) &2 RS(max{r, 1}, 1).
Proof. Let A = (S,A) ∈ RS(r, i). Consider the reaction system A′ = (S′, A′)
with S′ = S ∪ 2S and A′ containing, for each reaction a = (Ra, Ia, Pa) ∈ A with
Ia = {s1, . . . , sn}, the following reactions:

({s1},∅, {Ia}), . . . , ({sn},∅, {Ia}) (Ra,∅, {Ra}) ({Ra}, {Ia}, Pa).

In order to prove that A′ 2-simulates A, we can show by induction that

resnA′(T) = res
n/2
A (T) (8)

if n is even, and

resnA′(T) =
{
Ra : Ra ⊆ res

(n−1)/2
A (T)

}
∪

{
Ia : Ia ∩ res

(n−1)/2
A (T) �= ∅

}
if n is odd; the conditions are easily seen to hold by considering the form of the
reactions of A′. The result then follows immediately from (8). ��
By combining the previous two lemmata, we are finally able to show that one
reactant and one inhibitor can simulate any reaction systems, thus providing a
normal form into which every reaction system can be reduced.

Theorem 1 (Normal form). RS(∞,∞) ≈6 RS(1, 1).
Proof. By definition we have RS(1, 1) ⊆ RS(∞,∞), thus it follows immedi-
ately that RS(1, 1) &6 RS(∞,∞). Conversely, if r ≥ 1 and i ≥ 1 we have
RS(r, i) &3 RS(1, r) by Lemma 2 andRS(1, r) &2 RS(max{1, 1}, 1) = RS(1, 1)
by Lemma 3, hence RS(i, r) &6 RS(1, 1) by transitivity (Lemma 1). Since
RS(r, i) &1 RS(r + 1, i+ 1), the result holds even if i = 0 or r = 0. ��

4 Classification of Reaction Systems

Having established a minimum amount of resources needed to simulate general
reaction systems, we are interested in analysing the behaviour of weaker systems,
i.e., with reactions involving no reactants or no inhibitors.

First of all, we show that the number of reactants in a reaction with no
inhibitors can be halved, provided that their initial number is greater than two.

Lemma 4. RS(r, 0) &2 RS
(⌈

r
2

⌉
, 0

)
for all r > 2.

Proof. Let A = (S,A) ∈ RS(r, 0). We simulate A with another reaction system
A′ = (S′, A′), where S′ = S ∪ 2S.

Each reaction a = (Ra,∅, Pa) ∈ A is simulated by at most three reactions
in A′. We can write Ra as the union of (non necessarily distinct) sets R1 and R2

consisting of at most
⌈
r
2

⌉
elements each. The reaction a is then simulated by

(R1,∅, {R1}) (R2,∅, {R2}) ({R1, R2},∅, Pa).

Notice that A′ ∈ RS
(⌈

r
2

⌉
, 0

)
. In order to show that A′ 2-simulates A, we prove

by induction on n that

156 L. Manzoni and A.E. Porreca

– if n is even, then resnA′(T) ∩ S = res
n/2
A (T);

– if n is odd, then for all a = (Ra,∅, Pa) ∈ A we have Ra ⊆ res
(n−1)/2
A (T) iff

there exist (non necessarily distinct) sets Q1, Q2 ⊆ S such that Ra = Q1∪Q2

and Q1, Q2 ∈ resnA′(T).

If n = 0, then the condition clearly holds, since res0A′(T) ∩ S = T = res0A(T).
If n > 0 is odd, by induction hypothesis resn−1

A′ (T)∩S = res
(n−1)/2
A (T). Hence,

for all a ∈ A, we have Ra ⊆ res
(n−1)/2
A (T) iff Ra ⊆ resn−1

A′ (T)∩ S; this is equiva-
lent to the existence ofQ1, Q2 ⊆ resn−1

A′ (T) such thatQ1∪Q2 = Ra; in particular,
by letting Q1 = R1 and Q2 = R2 as described above, we get Q1, Q2 ∈ resnA′(T)
by applying the reactions. Conversely, if there exist sets Q1, Q2 ⊆ S such that
Ra = Q1 ∪Q2 and Q1, Q2 ∈ resnA′(T), these are necessarily produced by the two
reactions (Q1,∅, {Q1}) and (Q2,∅, {Q2}), implying Q1, Q2 ⊆ resn−1

A′ (T), that
is Ra ⊆ resn−1

A′ (T) ∩ S = res
(n−1)/2
A (T).

Now assume n > 0 and even. Let x ∈ resnA′(T)∩S. Then x ∈ Pa for some reac-
tion a′ = ({R1, R2},∅, Pa) ∈ A′ enabled at time n−1, hence R1, R2 ∈ resn−1

A′ (T).
The reaction a′ has a corresponding reaction a = (Ra,∅, Pa) ∈ A with Ra =

R1∪R2. Then, by induction hypothesis, we haveRa ⊆ res
(n−2)/2
A (T): reaction a is

enabled in A at time n−2
2 , producing x at time n

2 . Conversely, let x ∈ res
n/2
A (T).

Then x ∈ Pa for some reaction a = (Ra,∅, Pa) ∈ A and Ra ⊆ res
(n−2)/2
A (T); by

induction hypothesis then Ra ⊆ resn−2
A′ (T)∩S. Since A′ contains reactions of the

forms (R1,∅, {R1}), (R2,∅, {R2}), and ({R1, R2},∅, Pa) with R1 ∪ R2 = Ra,
the element x is produced in two steps, i.e., x ∈ resnA′(T) ∩ S.

In particular, we have res2nA′(T) ∩ S = resnA(T) for all n ∈ N. ��

By iterating Lemma 4 the number of reactants can be reduced to two.

Proposition 3. RS(∞, 0) ≈ RS(2, 0).

Proof. By definition we have RS(2, 0) &1 RS(∞, 0). By applying Lemma 4
repeatedly we obtain RS(r, 0) &r RS(2, 0), implying RS(∞, 0) & RS(2, 0). ��

In a reaction system where only one reactant per reaction is allowed, each element
appearing at a given time in the state of the system can be either traced back
to a single element of the initial state, or it is always generated, independently
of the initial state.

Lemma 5. Let A = (S,A) ∈ RS(1, 0). Then, for all T ⊆ S, for all n ∈ N, for
all x ∈ resnA(T) either there exists y ∈ T such that x ∈ resnA({y}), or we have
x ∈ resnA(∅).

Proof. By induction on n. When n = 0 we have res0A(T) = T and x ∈ T . Hence,
it suffices to choose y = x.

Now assume n > 0 and let x ∈ resnA(T). There are two cases: either x is
generated by a reaction (∅,∅, {x}) ∈ A, or by a reaction ({z},∅, {x}) ∈ A for
some z ∈ S. In the first case, we have x ∈ resnA(∅). Otherwise, by induction
hypothesis, there are two sub-cases:

Reaction Systems Made Simple 157

– either z ∈ resn−1
A (∅), and then x ∈ resnA(∅), or

– there exists y ∈ T such that z ∈ resn−1
A ({y}), and then x ∈ resnA({y}). ��

As a consequence, reaction systems where two reactants per reaction are allowed
can produce more complex state sequences than those with only one reactant,
since the generation of products may depend on the simultaneous presence of
several reactants.

Proposition 4. RS(1, 0) ≺ RS(2, 0).

Proof. Clearly RS(1, 0) &1 RS(2, 0).
Let A = (S,A) ∈ RS(2, 0) be defined by S = {x, y, z} and the reaction

({x, y},∅, {z}). Suppose that A′ ∈ RS(1, 0) k-simulates A for some k. We have
resA({x, y}) = {z}, hence reskA′({x, y}) ∩ S = {z}. By Lemma 5, one of the two
following conditions holds:

z ∈ reskA′(∅) (9)

z ∈ reskA′({w}) for some w ∈ {x, y}. (10)

If (9) holds, then we have z ∈ reskA′(∅) ∩ S �= resA(∅) = ∅, contradicting
the fact that A′ k-simulates A. On the other hand, if (10) holds, we have z ∈
reskA′({w}) ∩ S �= resA({w}) = ∅, once again a contradiction.

Therefore A cannot be k-simulated by any reaction system in RS(1, 0). ��

In the absence of inhibitors, at least one reactant is needed in order to obtain
state sequences that actually depend on the initial state.

Proposition 5. RS(0, 0) ≺ RS(1, 0).

Proof. Clearly RS(0, 0) &1 RS(1, 0).
We prove that there exists A = (A,S) ∈ RS(1, 0) such that no A′ = (A′, S′) ∈

RS(0, 0) simulates A. Observe that resnA′(T) = resA′(∅) for all T ⊆ S′ and
n ≥ 1, i.e, the evolution of A′ reaches a fixed point immediately after the first
step, irrespective of the initial state. On the other hand, if A is defined by
S = {x} with the reaction ({x},∅, {x}), we have

resA(∅) = ∅ �= {x} = resA({x}).

Hence RS(1, 0) �& RS(0, 0). ��

Unlike reactants, any number of inhibitors can be simulated by a single one.

Proposition 6. RS(0,∞) ≈3 RS(0, 1).

Proof. Trivially, RS(0, 1) &3 RS(0,∞) holds.
Let A = (S,A) ∈ RS(0,∞), and let A′ = (S′, A′) ∈ RS(0, 1) with S′ =

S ∪ S̄ ∪ 2S, where S̄ = {x̄ : x ∈ S}. For each x ∈ S, A′ contains the reaction

(∅, {x}, {x̄}) (11)

158 L. Manzoni and A.E. Porreca

and, for each a = (∅, Ia, Pa) with Ia = {x1, . . . , xp}, the reactions

(∅, {x̄1}, {Ia}), . . . , (∅, {x̄p}, {Ia}) (12)
(∅, {Ia}, Pa). (13)

We prove, by induction on n, that for all T ⊆ S we have

resnA′(T) ∩ S = res
n/3
A (T) if n = 3m; (14)

x̄ ∈ resnA′(T) ⇐⇒ x /∈ res
(n−1)/3
A (T) if n = 3m+ 1; (15)

Ia ∈ resnA′(T) ∩ 2S ⇐⇒ Ia ∩ res
(n−2)/3
A (T) �= ∅ if n = 3m+ 2. (16)

For n = 0, we have res0A′(T) ∩ S = T = res0A(T).
If n > 0 is a multiple of 3, then by induction hypothesis

Ia ∈ resn−1
A′ (T) ∩ 2S ⇐⇒ Ia ∩ res

(n−3)/3
A (T) �= ∅.

Notice that, if X ∈ resn−1
A′ (T) ∩ 2S, then necessarily X = Ia for some a ∈ A, as

the only reactions producing elements of 2S have the form (12). For each reaction
a ∈ A we have a corresponding reaction a′ of type (13), and a is inhibited at
time n−3

3 in A iff ′ is inhibited at time n− 1 in A′: statement (14) follows.
If n > 0 with n = 3m+ 1, by induction hypothesis we have

resn−1
A′ (T) ∩ S = res

(n−1)/3
A (T).

We have x̄ ∈ resnA′(T) iff the reaction (∅, {x}, {x̄}) was enabled at time n − 1,
that is x /∈ resn−1

A′ (T) ∩ S = res
(n−1)/3
A (T) as required.

Finally, if n > 0 with n = 3m+ 2, by induction hypothesis

x̄ ∈ resn−1
A′ (T) ⇐⇒ x /∈ res

(n−2)/3
A (T).

Let a ∈ A. We have Ia ∈ resnA′(T) ∩ 2S iff at least one of the reactions of the
form (12) was enabled at time n− 1. This means that there exists x ∈ Ia such
that x̄ /∈ resn−1

A′ (T) and x ∈ res
(n−2)/3
A (T). Equivalently, Ia ∩ res

(n−2)/3
A (T) �= ∅.

This proves (16).
The statement of the proposition immediately follows from (14). ��

Perhaps surprisingly, reactants can also be simulated by a single inhibitor.

Lemma 6. RS(∞, 0) &2 RS(0, 1).

Proof. Let A = (S,A) ∈ RS(∞, 0). Let A′ = (S′, A′) ∈ RS(0, 1) with S′ =
S ∪ 2S and having, for each reaction a = (Ra,∅, Pa) with Ra = x1, . . . , xp, the
following set of reactions:

(∅, {x1}, {Ra}), . . . , (∅, {xp}, {Ra}) (17)
(∅, {Ra}, Pa). (18)

Reaction Systems Made Simple 159

Let T ⊆ S. We prove, by induction on n, that

resnA′(T) ∩ S = res
n/2
A (T) if n is even (19)

Ra ∈ resnA′(T) ⇐⇒ Ra � res
(n−1)/2
A (T) if n is odd. (20)

For n = 0 we have res0A′(T) ∩ S = T = res0A(T).
For even n > 0 we have, by induction hypothesis,

Ra ∈ resn−1
A′ (T) ⇐⇒ Ra � res

(n−2)/2
A (T).

Notice that the only reactions in A′ with products in S have the form (18), and
they are enabled at time n−1 iff Ra ⊆ res

(n−2)/2
A (T), i.e., iff reaction a is enabled

in A at time n−2
2 . Condition (19) follows.

For odd n > 0, by induction hypothesis we have

resn−1
A′ (T) ∩ S = res

(n−1)/2
A (T)

The only reactions of A′ having products in 2S have the form (17). The ele-
ment Ra is produced iff there exists x ∈ Ra with x /∈ resn−1

A′ (T) ∩ S, i.e., iff
reaction a is not enabled in A at time n−1

2 , as in (20).
The statement of the lemma follows from (19). ��

The following two lemmata provide a property of the result function of reaction
systems without inhibitors and without reactants, respectively.

Lemma 7. If A = (S,A) ∈ RS(∞, 0), then the function resA is monotone, i.e.,
T1 ⊆ T2 implies resA(T1) ⊆ resA(T2) for all T1, T2 ⊆ S. As a consequence, the
function resnA is monotone for all n ∈ N.

Proof. For each reaction a ∈ A, if a is enabled by T1 then it is also enabled by
T2 ⊇ T1, as a has no inhibitors. Thus, resa(T1) ⊆ resa(T2), and

resA(T1) =
⋃
a∈A

resa(T1) ⊆
⋃
a∈A

resa(T2) = resA(T2).

The function resnA is monotone by induction on n. ��

In a similar way, the next result can be proved.

Lemma 8. If A = (S,A) ∈ RS(0,∞), then the function resA is anti-monotone,
i.e., T1 ⊆ T2 implies resA(T1) ⊇ resA(T2) for all T1, T2 ⊆ S. As a consequence,
the function resnA is anti-monotone for odd n, and monotone for even n. ��

These properties imply that reaction systems using one inhibitor exclusively can
produce state sequences that no reaction system using only two reactants (or,
by Proposition 3, any number of reactants) can generate.

160 L. Manzoni and A.E. Porreca

Proposition 7. RS(2, 0) ≺ RS(0, 1).

Proof. By Lemma 6 we have RS(2, 0) &2 RS(0, 1).
LetA = (S,A) ∈ RS(0, 1) be defined by S = {x} and (∅, {x}, {x}) as the only

reaction. By Lemma 8, the function resA is anti-monotone (furthermore, it is not
monotone as it is not the identity function). By Lemma 7, for any A′ ∈ RS(2, 0)
the function reskA′ is monotone for all k ∈ N. Therefore, A′ cannot k-simulate A.

��

Finally, we show that both reactants and inhibitors are needed in order to sim-
ulate arbitrary state sequences, thus proving the minimality of the normal form
of Theorem 1.

Proposition 8. RS(0, 1) ≺ RS(1, 1).

Proof. Trivially, we have RS(0, 1) &1 RS(1, 1).
Consider the reaction system A = (S,A) ∈ RS(1, 1) defined by S = {x, y}

and the reaction ({x}, {y}, {x, y}). We have

resA(∅) = ∅ resA({x}) = {x, y} resA({x, y}) = ∅.

Hence, resA is neither monotone nor anti-monotone. No A′ ∈ RS(0, 1) can
simulate A, since (by Lemma 8) the function reskA′ is monotone for even k and
anti-monotone for odd k. ��

All the results proved in this paper can be summarised by the following theorem,
which provides a complete classification of reaction systems with respect to the
number of reactants and inhibitors per reaction.

Theorem 2. The relation & is a total preorder on the set of classes of reac-
tion systems of the form RS(r, i). The classes are comparable according to the
following diagram for all r, i ≥ 2:

RS(0, 0) ≺ RS(1, 0) ≺ RS(2, 0) ≺ RS(0, 1) ≺ RS(1, 1)

≈ ≈ ≈

RS(r, 0) ≺ RS(0, i) ≺ RS(r, i)

≈ ≈ ≈

RS(∞, 0) ≺ RS(0,∞) ≺ RS(∞,∞)

In particular, the relation ≈ induces exactly five equivalence classes. ��

5 Further Remarks

After having introduced the notion of k-simulation, we have proved that every
reaction system A = (S,A) ∈ RS(r, i) can be simulated by using one reactant

Reaction Systems Made Simple 161

and one inhibitor per reaction. We have then analysed reaction systems with no
reactants or no inhibitors, showing that there exist a finite, linear hierarchy of
non-equivalent classes of reaction systems.

The simulating reaction system A′ has a linear slowdown, that is, simulating n
steps of the original system is performed in kn steps, and k is usually independent
of |S|, |A|, r, and i. The only exception is the simulation in O(rn) steps of an
RS(r, 0) reaction system by means of an RS(2, 0) reaction system. Furthermore,
the size of A′ can be always made polynomial with respect to the size of A: even
if we often include, for the sake of simplicity, the whole power set of S in the
background set of A′, only a polynomial number of elements (depending on |S|
and on the number of reactions of A) actually appear as reactants, inhibitors,
or products: hence, the remaining ones can be simply removed. The number of
reactions of A′ is also polynomial with respect to the size of A.

Although in this paper we focused only on system were the input is all given
in the initial state, the original definition [4] allows the system to receive further
input (i.e., new elements to be inserted in the state of the system) at every step.
It is possible to extend the definition of k-simulation to this case, and prove all
the results above in the new setting.

5.1 Open Problems

An open problem involves the minimality of k in certain k-simulations described
here. For instance, the k-simulation of Proposition 6 is provably minimal by
anti-monotonicity (Lemma 8); similarly, in Lemma 6 the simulation cannot be
performed in one step (by Lemmata 7 and 8). In the r-simulation of Proposition 3
the dependency on r is probably unavoidable. On the other hand, it is unknown
whether there exist reaction systems necessarily requiring a 6-simulation in order
to reduce reactants and inhibitors to one. Furthermore, most k-simulations in
this paper employ auxiliary elements, and it seems unlikely that they can always
be eliminated. Can we at least ensure that every (kn)-th state of the simulating
system is identical to the n-th state of the simulated one?

References

1. Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction systems with duration. In:
Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS,
vol. 6610, pp. 191–202. Springer, Heidelberg (2011)

2. Ehrenfeucht, A., Main, M., Rozenberg, G.: Functions defined by reaction systems.
International Journal of Foundations of Computer Science 22(1), 167–168 (2011)

3. Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude, C.S.,
Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29. Springer,
Heidelberg (2004)

4. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75,
263–280 (2007)

5. Salomaa, A.: Functions and sequences generated by reaction systems. Theoretical
Computer Science 466, 87–96 (2012)

Voting with a Logarithmic Number of Cards

Takaaki Mizuki, Isaac Kobina Asiedu, and Hideaki Sone

Cyberscience Center, Tohoku University,
6-3 Aramaki-Aza-Aoba, Aoba, Sendai 980-8578, Japan
tm-paper+ucnc2013@g-mail.tohoku-university.jp

Abstract. Consider an election where there are two candidates and
several voters. Such an election usually requires the same number of
ballot papers as the number of voters. In this paper, we show that such
an election can be conducted using only a logarithmic number of cards
with two suits—black and red—with identical backs. That is, we can
securely compute the summation of a number of inputs (0s and 1s) using
a logarithmic number of cards with respect to the number of inputs.

1 Introduction

Assume that there are n players P1, P2, . . . , Pn wishing to evaluate a function
f(x1, x2, . . . , xn), where xi is a secret value provided by player Pi. The goal of
secure computation is to ensure the privacy of the players’ inputs while guar-
anteeing the correctness of the computation. In the cryptography community, a
considerable amount of research has been devoted to the problem of secure com-
putation since the seminal research of Yao [13]; comprehensive surveys appear
in [5,11].

The above-mentioned problem typically arises during elections. For example,
assume that there are two candidates, and that each of n players chooses one
of the candidates in a vote. Then, player Pi’s ballot can be regarded as input
xi ∈ {0, 1}, i.e., xi = 0 and xi = 1 mean that the player selects the first and sec-
ond candidate, respectively. Based on this interpretation, it suffices to compute
the value of f(x1, x2, . . . , xn) =

∑n
i=1 xi without revealing the secret inputs.

This can be done through the use of some cryptographic protocol. However,
even in the digital era, such elections are often conducted with physical ballot
papers, without any cryptographic protocols implemented in computers. Thus,
the importance of physical implementations of voting can not be dismissed (e.g.,
[1,9,10]).

An election using ballot papers usually requires n sheets of paper (where n is
the number of voters). In contrast, in this paper we show that such elections can

be conducted using a logarithmic number of cards with two suits—black (♣)

and red (♥)—with identical backs (?). That is, we can securely compute the
summation of n inputs of 0s and 1s with O(log n) cards.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 162–173, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Voting with a Logarithmic Number of Cards 163

1.1 Computation Using a Deck of Cards

As mentioned above, this paper deals with secure computation using a deck of
cards. Here, we present some notations and introduce the properties of cards to
be used.

The alphabet of cards is ♣ , ♥ , and ? , where ? represents a card with

its face down; both ♣ and ♥ are represented with ? when facing down. The
binary coding used for computation in this paper is as follows:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Given a bit x ∈ {0, 1}, a pair of face-down cards ? ? whose value is equal to
x (according to the encoding rule (1) above) is called a commitment to x, and
is expressed as

? ?︸ ︷︷ ︸
x

.

The cards can also be manipulated as follows.

– Face up:

? −→ ♣ , ? −→ ♥ .
– Face down:

♣ −→ ? , ♥ −→ ? .

– Swap:

? ?︸ ︷︷ ︸
x

−→

⇀↽︷ ︸︸ ︷
? ? −→ ? ?︸ ︷︷ ︸

x̄

.

Note that swapping the two cards constituting a commitment to a bit x results
in a commitment to negation x̄. As seen later, some shuffling operations are used
in addition to these manipulations, in the literature as well as in our protocols
constructed in this paper.

1.2 History of Card-Based Protocols

Several card-based protocols for secure computation have been proposed (Ta-
ble 1). All of these protocols take two commitments to bits a, b ∈ {0, 1} as input,
and produce output a ∧ b of the AND function, or a⊕ b of the XOR function.

There are two types of protocols with regard to output format. While the first
two protocols in Table 1 produce their output (the value of a ∧ b) publicly, the
remaining seven protocols produce their output in a committed format, i.e., their
output is described as a sequence such as

? ?︸ ︷︷ ︸
a∧b

that follows the encoding rule (1).
In addition to the protocols listed in Table 1, there are copy protocols, one of

which is introduced later in Section 2.4.

164 T. Mizuki, I.K. Asiedu, and H. Sone

Table 1. Known card-based protocols for secure computation

◦ Secure AND in a non-committed format

of colors # of cards Avg. # of trials

den Boer [2] 2 5 1

Mizuki-Kumamoto-Sone [7] 2 4 1

◦ Secure AND in a committed format

of colors # of cards Avg. # of trials

Crépeau-Kilian [4] 4 10 6

Niemi-Renvall [10] 2 12 2.5

Stiglic [12] 2 8 2

Mizuki-Sone [6] (§2.2) 2 6 1

◦ Secure XOR in a committed format

of colors # of cards Avg. # of trials

Crépeau-Kilian [4] 4 14 6

Mizuki-Uchiike-Sone [8] 2 10 2

Mizuki-Sone [6] (§2.3) 2 4 1

1.3 Our Results

As mentioned before, we wish to implement voting in the case of two candidates.
If we distribute two cards of different suits to each voter Pi, then the voters can
privately commit their ballots xi to commitments in the form of

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

· · · ? ?︸ ︷︷ ︸
xn

.

Given such a sequence of n secret ballots, the simplest way to achieve the goal
is to reveal the n cards after collecting and shuffling all left cards from each
commitment, so that we can obtain only the number of ballots evaluating to 1
(and consequently the number of ballots evaluating to 0) by counting the number
of red cards. In this case, because each voter is given a pair of cards to choose
one to vote with, 2n cards are required in total.

In this paper, we present card-based cryptographic protocols which can con-
duct such elections using fewer than 2n cards. Specifically, we first review the
most efficient protocols currently known in Section 2; then in Section 3, combin-
ing the existing protocols, we construct a summation protocol with 2�logn�+8
cards (where the logarithm base is 2 throughout this paper); in Section 4, we
devise a new efficient half adder protocol, which improves summation computa-
tion in a way that it can be conducted with 2�logn�+ 6 cards; and finally, this
paper is concluded in Section 5.

2 Known Protocols

In this section, after explaining the concept of a “random bisection cut,” which
is a kind of shuffling operation, we introduce the existing AND, XOR and copy
protocols [6] that are the most efficient ones currently known. (See Table 1 again.)

Voting with a Logarithmic Number of Cards 165

2.1 Random Bisection Cuts

A random bisection cut [6] is a type of shuffle operation, where a deck of cards
is bisected and shifted randomly. We demonstrate the operation by taking six
cards as an example.

1. Assume that there are six cards as follows:

? ? ? ? ? ? .

2. Bisect the deck of cards, and let the two sections be α and β:

? ? ?︸ ︷︷ ︸
α

? ? ?︸ ︷︷ ︸
β

.

3. Shift α and β randomly:

? ? ?︸ ︷︷ ︸
α

shift︷︸︸︷
⇀↽ ? ? ?︸ ︷︷ ︸

β

.

4. After applying such a random shift, the cards are either in their initial state
or in a shifted state, as follows:

? ? ?︸ ︷︷ ︸
α

? ? ?︸ ︷︷ ︸
β

or ? ? ?︸ ︷︷ ︸
β

? ? ?︸ ︷︷ ︸
α

,

each of which occurs with probability of exactly 1/2.

This kind of shuffling is referred to as a random bisection cut denoted by [· | ·].
Below is the expression of a random bisection cut for six cards:[

? ? ?
∣∣∣ ? ? ?

]
.

2.2 Six-Card AND Protocol

Using the random bisection cut, we can construct a six-card AND protocol [6],
which can securely compute the function f(a, b) = a ∧ b with a total of six

cards, namely three ♣ s and three ♥ s. The procedure of the AND protocol is
as follows.

1. Arrange the six cards as below, and then turn over the two face-up cards:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
0

.

166 T. Mizuki, I.K. Asiedu, and H. Sone

2. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
�
������ ���

? ? ? ? ? ? .

3. Apply a random bisection cut:[
? ? ?

∣∣∣ ? ? ?
]
→ ? ? ? ? ? ? .

4. Rearrange the sequence of six cards as follows:

? ? ? ? ? ?
������

�
��	

? ? ? ? ? ? .

5. Reveal the first and second cards. Then, a commitment to a ∧ b is obtained
as follows:

♣ ♥ ? ? ? ?︸ ︷︷ ︸
a∧b

or ♥ ♣ ? ?︸ ︷︷ ︸
a∧b

? ? .

A six-card OR protocol can be easily constructed in a similar manner, that is,
starting from

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♥ ♣ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
1

,

we can similarly obtain

♣ ♥ ? ?︸ ︷︷ ︸
a∨b

? ? or ♥ ♣ ? ? ? ?︸ ︷︷ ︸
a∨b

.

2.3 Four-Card XOR Protocol

We can also construct a four-card XOR protocol [6].

1. Arrange two commitments:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

.

2. Rearrange the sequence of four cards as follows:

? ? ? ?
������

? ? ? ? .

Voting with a Logarithmic Number of Cards 167

3. Apply a random bisection cut:[
? ?

∣∣∣ ? ?
]
→ ? ? ? ? .

4. Rearrange the sequence of four cards as follows:

? ? ? ?
������

? ? ? ? .

5. Reveal the first and second cards. Then, a commitment to a ⊕ b (or a⊕ b)
is obtained as follows:

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

or ♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

.

Recall that the NOT operation can be accomplished fairly easily by simply
swapping the two face-down cards.

2.4 Copy Protocol with a Random Bisection Cut

Given a commitment to a bit x, four additional cards are sufficient to make a
copy of the commitment [6], as follows.

1. Arrange the four additional cards to the right of the given commitment:

? ?︸ ︷︷ ︸
x

♣ ♥ ♣ ♥ → ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
0

? ?︸ ︷︷ ︸
0

.

2. Rearrange the sequence of six cards as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
3

?
5

?
2

?
4

?
6

? .

3. Apply a random bisection cut:[
? ? ?

∣∣∣ ? ? ?
]
→ ? ? ? ? ? ? .

4. Rearrange the sequence of six cards as follows:

1

?
2

?
3

?
4

?
5

?
6

? →
1

?
4

?
2

?
5

?
3

?
6

? .

Then, we have

? ?︸ ︷︷ ︸
x⊕r

? ?︸ ︷︷ ︸
r

? ?︸ ︷︷ ︸
r

,

where r is a random bit because of the random bisection cut.
5. Reveal the first and second cards. Then, we have

♣ ♥ ? ?︸ ︷︷ ︸
x

? ?︸ ︷︷ ︸
x

or ♥ ♣ ? ?︸ ︷︷ ︸
x̄

? ?︸ ︷︷ ︸
x̄

.

Carrying this idea further, 2k+2 additional cards are sufficient to make k copies
of a commitment to x [6].

168 T. Mizuki, I.K. Asiedu, and H. Sone

3 Voting with a Logarithmic Number of Cards

In this section, we show that by utilizing a half adder, the number of cards used
for voting can be reduced from 2n to 2�logn�+ 8.

A half adder is a logical circuit that performs an addition operation on two
binary numbers (of length 1). The half adder produces a sum and a carry value
which are both binary numbers. The sum s is an XOR function of inputs a and
b:

s = a⊕ b.
The carry c is an AND function of inputs a and b:

c = a ∧ b.

By combining the existing AND, XOR, and copy protocols introduced in the
previous section, we can easily construct a half adder protocol, which is shown
in Section 3.1. Based on the half adder, we can perform secure voting with
2�logn�+ 8 cards as shown in Section 3.2.

3.1 Computing the Half Adder Using the Existing Protocols

Given two commitments to a and b, the following procedure securely computes
the half adder with six additional cards.

1. Place six cards next to the two given commitments as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ ♣ ♥ ♣ ♥ .

2. Use the six additional cards to copy inputs a and b with the copy protocol
shown in Section 2.4. After the copy operation, the state of all 10 cards is
as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ .

3. Use the first two commitments (to a and b) to produce a commitment to
a⊕ b with the XOR protocol mentioned in Section 2.3. Then, we obtain the
sum s = a⊕ b of the half adder:

? ?︸ ︷︷ ︸
s=a⊕b

♣ ♥ ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ .

4. Use the rightmost three commitments to produce a commitment to a ∧ b
with the AND protocol mentioned in Section 2.2. Then, we obtain the carry
c = a ∧ b of the half adder (after some rearrangements):

? ?︸ ︷︷ ︸
c=a∧b

? ?︸ ︷︷ ︸
s=a⊕b

♣ ♥ ♣ ♥ ♣ ♥ .

Voting with a Logarithmic Number of Cards 169

3.2 Voting with the Half Adder

By using the half adder protocol presented above, the summation
∑n

i=1 xi can
be securely computed with 2�logn�+ 8 cards.

1. Place �logn� + 1 pairs of different cards together with six additional cards
as follows:

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�log n�+1) pairs

♣ ♥ ♣ ♥ ♣ ♥ ,

where we use the left deck to represent the outcome of the summation (more
specifically, �logn� pairs are sufficient to represent any integer between 0
and n− 1, and one more pair is needed for the n-th commitment to xn).

2. Let the first two voters P1 and P2 make commitments to x1 and x2 using
four cards from the left deck:

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�logn�−1) pairs

? ?︸ ︷︷ ︸
x1

? ?︸ ︷︷ ︸
x2

♣ ♥ ♣ ♥ ♣ ♥ .

3. Apply the half adder (explained in the previous subsection) to the rightmost
10 cards. Then, we have

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�logn�−1) pairs

? ?︸ ︷︷ ︸
x1∧x2

? ?︸ ︷︷ ︸
x1⊕x2

♣ ♥ ♣ ♥ ♣ ♥ ,

which can be rewritten as

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�log n�−1) pairs

? ?︸ ︷︷ ︸
s212

? ?︸ ︷︷ ︸
s112

♣ ♥ ♣ ♥ ♣ ♥

where s112 represents the first digit in x1 + x2, and s
2
12 represents the second

digit in x1 + x2.
4. Next, after the third player P3 makes a commitment:

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�log n�−2) pairs

? ?︸ ︷︷ ︸
x3

? ?︸ ︷︷ ︸
s212

? ?︸ ︷︷ ︸
s112

♣ ♥ ♣ ♥ ♣ ♥ ,

apply the half adder to s112 and x3 to arrive at

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�log n�−2) pairs

? ?︸ ︷︷ ︸
s112∧x3

? ?︸ ︷︷ ︸
s212

? ?︸ ︷︷ ︸
s1123

♣ ♥ ♣ ♥ ♣ ♥ .

To obtain s2123, apply the XOR protocol to (s112 ∧ x3) and s212:

♣ ♥ ♣ ♥ · · · ♣ ♥︸ ︷︷ ︸
(�logn�−1) pairs

? ?︸ ︷︷ ︸
s2123

? ?︸ ︷︷ ︸
s1123

♣ ♥ ♣ ♥ ♣ ♥ .

5. Repeat in this way until we obtain s
�log(n+1)�
12...n .

170 T. Mizuki, I.K. Asiedu, and H. Sone

By doing this, we can obtain a sequence of commitments to the binary rep-
resentation of the value of

∑n
i=1 xi, namely the total number of votes for the

candidate represented by ♥ ♣ = 1. The total number of cards with the use of
this naive half adder protocol amounts to 2�logn�+ 8.

4 New Adder Protocols

In this section, we propose an efficient half adder protocol that requires two
fewer cards than the naive protocol presented above. By using this improved half
adder protocol, the number of cards for voting can be reduced to 2�logn� + 6.
Furthermore, we also design an efficient full adder protocol.

4.1 An Improved Half Adder Protocol

Recall that the naive half adder protocol presented in Section 3.1 requires six
additional cards (other than the two input commitments). In contrast, our new
half adder protocol requires only four additional cards. Moreover, it needs to copy
only one input commitment. The procedure for computation is given below.

1. Arrange the input commitments and the four additional cards as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

♣ ♥ ♣ ♥ .

2. Use the four additional cards to copy input b with the copy protocol men-
tioned in Section 2.4. After the copy operation, the state of the cards is as
follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
b

♣ ♥ .

3. Let all cards face down and rearrange their order:

? ? ? ? ? ? ? ?

�

�
������

�
��	

�
��	

? ? ? ? ? ? ? ? .

4. Apply a random bisection cut to the cards:[
? ? ? ?

∣∣∣ ? ? ? ?
]
.

5. Rearrange the order again:

? ? ? ? ? ? ? ?
���

�
���
�
���

�����
�

��	
? ? ? ? ? ? ? ? .

Voting with a Logarithmic Number of Cards 171

Then, we have

? ?︸ ︷︷ ︸
a⊕r

? ?︸ ︷︷ ︸
b⊕r

? ?︸ ︷︷ ︸
b∧r̄

? ?︸ ︷︷ ︸
b∧r

,

where r is a random bit because of the random bisection cut.

6. Reveal the first and second cards.

(a) If they are ♣ ♥ , then a⊕ r = 0, that is, a = r, and hence the output of
the half adder is:

♣ ♥ ? ?︸ ︷︷ ︸
a⊕b

? ? ? ?︸ ︷︷ ︸
a∧b

.

(b) If they are ♥ ♣ , then a⊕ r = 1, that is, a = r̄, and hence the output of
the half adder is:

♥ ♣ ? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
a∧b

? ? .

Note that revealing the two cards in step 6 does not leak any information about
a and b because r is a random bit.

Obviously, by replacing the naive half adder protocol with the improved one in
the summation protocol given in Section 3.2, we can securely compute

∑n
i=1 xi

using only 2�logn�+ 6 cards.

4.2 Computing the Full Adder

Here, we propose a full adder protocol, which performs an addition operation on
three bits. Given two input bits a and b and a carry c, the full adder produces
the sum

s′ = (a⊕ b)⊕ c

and the carry value

c′ = (a ∧ b) ∨ ((a⊕ b) ∧ c).

Using four additional cards, the full adder can be securely computed as follows.

1. Place three commitments and four additional cards as follows:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
c

♣ ♥ ♣ ♥ .

2. Use the four additional cards to apply the improved half adder protocol
(presented in Section 4.1) to a and b: after that, the state of the cards is as
follows:

? ?︸ ︷︷ ︸
a∧b

? ?︸ ︷︷ ︸
a⊕b

? ?︸ ︷︷ ︸
c

♣ ♥ ♣ ♥ .

172 T. Mizuki, I.K. Asiedu, and H. Sone

3. Use the four additional cards to apply the half adder to (a⊕ b) and c. Then,
we have

? ?︸ ︷︷ ︸
a∧b

? ?︸ ︷︷ ︸
(a⊕b)∧c

? ?︸ ︷︷ ︸
(a⊕b)⊕c

♣ ♥ ♣ ♥ .

4. Finally, compute the OR function of a∧b and (a⊕b)∧c using two additional
cards (as shown in Section 2.2). Then, we obtain the carry of the full adder:

? ?︸ ︷︷ ︸
(a∧b)∨((a⊕b)∧c)

? ?︸ ︷︷ ︸
(a⊕b)⊕c

♣ ♥ ♣ ♥ ♣ ♥ .

The full adder protocol enables us to securely add any two (binary) numbers.
For example, we can divide the voters into two groups, let each group execute
the summation protocol, and combine the two outputs by using the full adder
to obtain the total number of votes.

5 Conclusion

In this paper, we explored a new use of card-based cryptographic protocols and
devised improved half adder and full adder protocols. The half adder protocol
can be used for voting. Whereas conventional voting schemes require 2n cards,
the protocol presented here can reduce the number of cards required for voting
to 2�logn�+ 6.

In addition to practical applications such as elections, research on card-based
protocols along with other physically implemented cryptographic protocols (e.g.,
[1,3,9]) can aid professional cryptographers in providing intuitive explanations
to the general public about the nature of the cryptographic protocols they have
constructed or about cryptography in general. We also believe that it will help
researchers and teachers with cryptography-related education in the classroom.

Acknowledgments. We thank the anonymous referees whose comments helped
us improve the presentation of the paper. This work was supported by JSPS
KAKENHI Grant Number 23700007.

References

1. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a
PEZ dispenser. Theoretical Computer Science 306, 69–84 (2003)

2. den Boer, B.: More efficient match-making and satisfiability: the five card trick.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 208–217. Springer, Heidelberg (1990)

3. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Com-
munications of the ACM 39(5), 77–85 (1996)

4. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994)

Voting with a Logarithmic Number of Cards 173

5. Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge
University Press, Cambridge (2004)

6. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009)

7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
598–606. Springer, Heidelberg (2012)

8. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralasian Journal of Combinatorics 36, 279–293 (2006)

9. Moran, T., Naor, M.: Polling with physical envelopes: A rigorous analysis of
a human-centric protocol. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 88–108. Springer, Heidelberg (2006)

10. Niemi, V., Renvall, A.: Secure multiparty computations without computers. The-
oretical Computer Science 191, 173–183 (1998)

11. Schneider, T.: Engineering Secure Two-Party Computation Protocols. Springer,
Heidelberg (2012)

12. Stiglic, A.: Computations with a deck of cards. Theoretical Computer Science 259,
671–678 (2001)

13. Yao, A.: Protocols for secure computations. In: Proceedings of the 23th IEEE
Symposium on Foundations of Computer Science, FOCS 1982, pp. 160–164 (1982)

Asynchronous Signal Passing for Tile

Self-assembly: Fuel Efficient Computation
and Efficient Assembly of Shapes

Jennifer E. Padilla1, Matthew J. Patitz2, Raul Pena3, Robert T. Schweller3,
Nadrian C. Seeman1, Robert Sheline3, Scott M. Summers4, and Xingsi Zhong3

1 Department of Chemistry, New York University, New York, NY 10003, USA
{jp164,ned.seeman}@nyu.edu

2 Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR 72701, USA

mpatitz@self-assembly.net
3 Department of Computer Science, University of Texas – Pan American, Edinburg,

TX 78539, USA
{nb-raul,rtschweller,b.sheline,zhongxingsi}@utpa.edu

4 Department of Computer Science and Software Engineering,
University of Wisconsin – Platteville, Platteville, WI 53818, USA

summerss@uwplatt.edu

Abstract. In this paper we demonstrate the power of a model of tile
self-assembly based on active glues which can dynamically change state.
We formulate the Signal-passing Tile Assembly Model (STAM), based
on the model of Padilla, et al. [1] to be asynchronous, allowing any action
of turning a glue on or off, attaching a new tile, or breaking apart an
assembly to happen in any order. Within this highly generalized model
we provide three new solutions to tile self-assembly problems that have
been addressed within the abstract Tile Assembly Model and its variants,
showing that signal passing tiles allow for substantial improvement across
multiple complexity metrics. Our first result utilizes a recursive assembly
process to achieve tile-type efficient assembly of linear structures, using
provably fewer tile types than what is possible in standard tile assembly
models. Our second system of signal-passing tiles simulates any Turing
machine with high fuel efficiency by using only a constant number of tiles
per computation step. Our third system assembles the discrete Sierpinski
triangle, demonstrating that this pattern can be strictly self-assembled
within the STAM. This result is of particular interest in that it is known
that this pattern cannot self-assemble within a number of well studied tile
self-assembly models. Notably, all of our constructions are at temperature
1, further demonstrating that signal-passing confers the power to bypass
many restrictions found in standard tile assembly models.

1 Introduction

The abstract Tile Assembly Model (aTAM) [2] created a paradigm for computa-
tion to be carried out by a physical assembly process that captured the essence of

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 174–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Asynchronous Signal Passing for Tile Self-assembly 175

the Wang tiling model [3]. Turing machine simulation within the aTAM demon-
strated its capacity for universal computation, and many subsequent assem-
bly programs shifted focus to patterns, shapes and structures as the output of
tile computation [4–7]. Many modifications to the standard aTAM have been
investigated, including several variants that capture the notion of hierarchical
assembly [1, 8–12]. Previous work introduced the notion of using signaled glue
activation [1,13], in particular to guide hierarchical assembly, enabling recursive
self assembly [1]. Here we develop a general model of signaled tile self-assembly
to enrich the tile assembly paradigm with greater capabilities that anticipate ad-
vancing techniques in the field of DNA nanotechnology and allow tile assembly
to more closely emulate biological and natural processes.

Signaled glue activation was introduced in [1] for the purpose of establishing
communication inside an assembly so that by activating glues at the exterior
of the assembly it may take on new identities or roles. Interactions between
assemblies, as described in hierarchical models such as the 2-HAM [8, 14], can
simulate the interactions of individual tiles, coordinated in the STAM by the
introduction of signals. In particular, recursive assembly results when supertiles
simulate the original tiles of the tile set [1], a strategy outlined here in section 4
in a scheme for efficient line assembly.

Cooperativity, where more than one tile must be in place to determine which
tile may be added next, is an important aspect of tile assembly systems. A bind-
ing threshold is included in the aTAM, given as the temperature, τ of the system.
Tiles can bind only if the sum of glue interactions at a particular site meet or
exceed τ , thus a system at temperature 2 readily includes cooperativity, whereas
it is not as readily achieved at temperature 1. In the STAM, cooperativity can
occur at temperature 1 via a query process, where a tile binds to an assembly at
one edge, then queries a neighboring tile by turning on a set of glues. Information
about the neighboring tile is gained based on which of these glues binds to its
match. This cooperative effect differs from the aTAM in that STAM tiles may
also respond to the identities and binding events of more distant tiles, enabling
the constructions given in this paper to operate at temperature 1. Though the
constructions here do not demonstrate a full simulation of the aTAM at temper-
ature 2 by the STAM at temperature 1, the results here are significant given the
known and conjectured limitations to temperature 1 computation in the aTAM
and its variants [15, 16].

We expect glue deactivation to be as easy to implement as glue activation
based on plausible DNA strand displacement mechanisms. Therefore, we utilize
this new capability to design a Turing Machine that is fuel efficient (Section 5),
and to implement the strict self-assembly of the Sierpinski triangle (Section 6).
While on first consideration, glue deactivation might be thought to be on par
with negative glues, it never requires repulsive forces between tiles, a necessity
for negative glues that to our knowledge has yet to be implemented. Glue de-
activation serves here to produce a fuel efficient Turing Machine that does not
need to copy the state of unchanged positions on the tape. A halting compu-
tation produces an output tape, not a transcript of the computation as in the

176 J.E. Padilla et al.

traditional aTAM simulation of a Turing Machine. Strict self assembly of the
Sierpinski triangle is achieved by releasing tiles that are not part of the target
structure.

The addition of signaled glue activation and deactivation to tile assembly
brings it one step closer to emulating biological processes of self assembly, where
communication within a developing and growing living organism are crucial to
its survival and success. In this construction, it becomes easier to view the Turing
Machine plus its tape as a developing entity, that by following its input instruc-
tions, much as a cell follows its genetic recipe, goes through a metamorphosis and
emerges from a halting computation as a new entity. The asynchronous growth
process of the strict Sierpinski triangle in this model resembles the growth of
something such as coral, where the “living” functional part of the system in-
habits the growing frontier of the structure, laying down an enduring structure
before dying and being washed away. The constructions presented in this pa-
per demonstrate not only a more efficient use of materials (Table 1) in certain
cases, but also serve to make the model more relevant in a biological context.
The STAM anticipates the increasing sophistication of molecular computation
systems, as described in the next section.

Table 1. Summary of our Results in the context of previous work in the field. In
the Turing machine results, Q is the number of states of the Turing machine being
simulated and Si is the length of the tape at step i in the computation.

n× 1 Lines Tiles Signals TemperatureGlue ActivationGlue Deactivation

aTAM n - 1 - -

STAM (Thm.1) O(1) O(log n) 1 Yes. No.

Turing Machine Space Fuel TempTilesSignalsGlue Act.Glue Deact.

aTAM ([4]) O(
∑

Si)O(Si) 2 O(Q) - - -

3D aTAM ([15]) O(
∑

Si)O(Si) 1 O(Q) - - -

Negative Glues ([17]) O(Si) O(Si) 2 O(Q) - - -

Negative Glues ([18]) O(Si) O(1) 8 O(Q) - - -

STAM (Thm.2) O(Si) O(1) 1 O(Q) O(1) Yes. Yes.

Sierpinski TriangleStrictTilesSignalsTempScaleGlue Act.Glue Deact.

aTAM ([5]) No. 7 - 2 1 - -

STAM (Thm.4) Yes. 19 5 1 2 Yes. Yes.

STAM (Thm.3) No. 5 4 1 1 Yes. No.

2 Physical Basis for the Model

The generalized model presented here has been designed to take into consider-
ation a DNA implementation of all aspects of signaled assembly. We envision a
physical implementation where Watson-Crick DNA base pairing provides spe-
cific glue interactions as it has done before for DNA implementations of the

Asynchronous Signal Passing for Tile Self-assembly 177

aTAM [2, 5]. Additionally, we suggest that toehold-mediated DNA strand dis-
placement reactions [19] may be the basis for the new elements of our model:
binding-induced signaling, and glue activation or deactivation. The physical body
of a tile might be composed entirely from a DNA origami structure [20, 21] in
order to provide more room for signal pathways than the smaller DNA struc-
tures that have been used to implement the passive tiles of the aTAM [22]. Many
known and tested DNA strand exchange mechanisms [23–25], cascades [26], and
walkers [23,27–29] suggest possibilities for implementing the signal pathway, in-
cluding logic gates for responding to multiple inputs and transducers for ensuring
that the activated glue can have a different sequence from the glues on the input
edges [30]. Details of a plausible DNA origami tile construction are given in [1].

3 STAM Notation and Model

In this section we define the Signal-passing Tile Assembly Model (STAM), an
extension of the 2-Handed Assembly Model (2HAM) [8, 9, 11, 12], which itself
is an extension of the Tile Assembly Model (TAM) [2]. The STAM is a refined
version of the model presented in [1], in which the basic tiles of the TAM are
augmented with the ability to receive information, in the form of signals, from
neighboring tiles in an assembly, and to pass signals to neighboring tiles. A very
important feature of signals is that each signal can only move across any given
tile one time - they are not reusable.

The STAM that we define is a highly generalized model which imposes mini-
mal restrictions on aspects such as the speed of signals and orderings of events.
This generalized version, while perhaps difficult to create well-behaved construc-
tions within, provides a framework that is intended to be maximally independent
of the specific details of potential physical implementations of actual signal tiles,
such as those using mechanisms suggested in [1]. Valid constructions within this
model, such as all of the constructions presented within the following sections of
this paper, will therefore also work correctly within more restricted versions of
the model (for instance, where signal timing or ordering can be guaranteed).

3.1 Informal Description of the 2HAM

Since the STAM is an extension of the 2HAM, we now give a brief, informal
description of the 2HAM.

A tile type is a unit square with four sides, each having a glue consisting of a
label (a finite string) and strength (a positive integer value). We assume a finite
set T of tile types, but an infinite number of copies of each tile type, each copy
referred to as a tile. A supertile (a.k.a., assembly) is a positioning of tiles on the
integer lattice Z2. Two adjacent tiles in a supertile interact if the glues on their
abutting sides are equal (in both label and strength) and bind with that shared
strength. Each supertile induces a binding graph, a grid graph whose vertices are
tiles, with an edge between two tiles if they interact and where the weight of that
edge is the strength of their bond. The supertile is τ-stable if every cut of its

178 J.E. Padilla et al.

binding graph has strength at least τ . That is, the supertile is stable if at least
energy τ (i.e. a cut across bonds whose strengths sum to at least τ) is required
to separate the supertile into two parts. A tile assembly system (TAS) is a pair
T = (T, τ), where T is a finite tile set (or more generally a finite set of supertiles)
and τ is the temperature, a parameter specifying the minimum binding energy
required for a supertile to be stable. Given a TAS T = (T, τ), a supertile is
producible if either it is an element of T , or it is the τ -stable result of translating
two producible assemblies without overlap or rotation. A supertile α is terminal
if for every producible supertile β, α and β cannot be τ -stably attached. A TAS is
directed (a.k.a., deterministic, confluent) if it has only one terminal, producible
supertile. Given a connected shape X ⊆ Z2, a TAS T strictly self-assembles X
(also produces X uniquely) if every producible, terminal supertile places tiles
exactly on those positions in X (appropriately translated if necessary). Given
a pattern Y ⊆ Z2 (which must not necessarily be connected), a TAS T weakly
self-assembles Y if every producible, terminal supertile places a subset of tiles
B ⊆ T exactly on those positions in Y (appropriately translated if necessary).
Weak self-assembly can be thought of as using a subset of tile types to “paint a
picture” of Y on a possibly larger canvas of tiles composing a terminal assembly.

3.2 High-Level Description of the STAM

In the STAM, tiles are allowed to have sets of glues on each edge (as opposed to
only one glue per side as in the TAM and 2HAM). Tiles have an initial state in
which each glue is either “on” or “latent” (i.e. can be switched on later). Tiles
also each implement a transition function which is executed upon the binding of
any glue on any edge of that tile. The transition function specifies a set of glues
(along with the sides on which those glues are located) and an action for each:
1. turn that glue on (only valid if it is currently latent), or 2. turn that glue
off (valid if it is currently on or latent). This means that glues can only be on
once (although may remain so for an arbitrary amount of time or permanently),
either by starting in that state or being switched on from latent, and if they are
ever switched to off then no further transitions are allowed for that glue. This
essentially provides a single “use” of a glue (and thus the implicit signal sent
by its activation and binding). Note that turning a glue off breaks any bond
that the glue may have formed with a neighboring tile. Also, since tile edges can
have multiple active glues, when tile edges with multiple glues are adjacent, it is
assumed that all glues in the on state bind (for a total binding strength equal to
the sum of the strengths of the individually bound glues). The transition function
defined for each tile type is allowed a unique set of output actions for the binding
event of each glue along its edges, meaning that the binding of any particular
glue on a tile’s edge can initiate a set of actions to turn an arbitrary set of the
glues on the sides of the same tile either on or off. As the STAM is an extension
of the 2HAM, binding and breaking can occur between tiles contained in pairs
of arbitrarily sized supertiles. In order to allow for physical mechanisms which
implement the transition functions of tiles but are arbitrarily slower or faster
than the average rates of (super)tile attachments and detachments, rather than

Asynchronous Signal Passing for Tile Self-assembly 179

immediately enacting the outputs of transition functions, each output action is
put into a set of “pending actions” which includes all actions which have not
yet been enacted for that glue (since it is technically possible for more than one
action to have been initiated, but not yet enacted, for a particular glue).

An STAM system consists of a set of tiles and a temperature value. To define
what is producible from such a system, we use a recursive definition of producible
assemblies which starts with the initial tiles and includes any supertiles which can
be formed by doing the following to any producible assembly: 1. executing any
entry from the pending actions of any one glue within a tile within that supertile
(and then that action is removed from the pending set), 2. binding with another
supertile if they are able to form a τ -stable supertile, or 3. breaking apart into
two separate supertiles along a cut whose total strength is less than τ .

As an overview, tiles in the STAM pass signals to neighboring tiles simply by
activating glues which can bind with glues on adjacent edges of neighboring tiles.
The information content of a signal is dependent upon the transition function of
the receiving tile, that is, by what glue actions the receiving tile initiates upon the
binding of its glue. By subsequently activating and deactivating its own glues,
the receiving tile can propagate the signal to any of its neighbors. Solely by
utilizing the mechanism of glue activation and deactivation initiated and carried
out on individual tiles but chained together through series of glue bindings, a
global network which is capable of passing information across entire assemblies
(and also of allowing them to selectively enable sites for further growth or to
discard arbitrary portions of the assembly), is created. However, an important
restriction is the “fire once” nature of the signals, meaning that each glue can
only transition to any given state once, and therefore the number of signals which
a tile can process is a constant dependent upon the definition of the tile type.

The STAM, as formulated, is intended to provide a model based on experi-
mentally plausible mechanisms for glue activation and deactivation, but to ab-
stract them in a manner which is implementation independent. Therefore, no
assumptions are made about the speed or ordering of the completion of sig-
naling events (i.e. the execution of the transition functions which activate and
deactivate glues and thus communicate with other tiles via binding events). This
provides a highly asynchronous framework in which care must be made to guar-
antee desired results, but which then provides robust behavior independent of
the actual parameters realized by a physical system. Furthermore, while the
model allows for the placement of an arbitrary number of glues on each tile side
and for each of them to signal an arbitrary number of glues on the same tile,
this would obviously be limited in physical implementations. Therefore, each
system can be defined to take into account a desired threshold for each of those
parameters, not exceeding it for any given tile type, and we have also defined
the notion of signal complexity, as the maximum number of glues on any side of
any tile in a given set, to capture the complexity of a tile set.

Due to space constraints, a detailed definition of the STAM is omitted. Please
refer to [31] for a significantly more detailed definition of the model.

180 J.E. Padilla et al.

4 Efficient Construction of Linear Assemblies

In the aTAM, n × 1 lines are inherently inefficient to self-assemble, requiring
the worst possible tile complexity of n. However, using signal-passing tiles it is
possible to create n × 1 lines using no more than 6 tile types, regardless of the
value of n. Of course, the value of n must some how be encoded in the system,
but rather than requiring n tile types as in the aTAM, in the STAM the value
of n can be efficiently encoded using logn bits to require O(1) tile types with
O(log n) signal complexity. The construction we use makes use of a recursive
doubling strategy where random tile binding events randomly assign the fate
of each supertile at each stage, and is of independent interest in terms of using
signal-passing tiles to perform recursive assembly of structures.

Theorem 1. For every n ∈ N, there exists an STAM system T = (T, 1), with
|T | = O(1), which uniquely assembles an n× 1 line. Moreover, the signal com-
plexity of T is O(log n) and T does not use glue deactivation.

5 Fuel Efficient Turing Machines

Showing that the original abstract Tile Assembly Model is computationally uni-
versal is a simple matter of designing a tile assembly system which can simulate
a universal Turing machine, as originally shown in [2], and later expanded upon
in [15, 17, 32, 33]. While displaying the computational power of the aTAM (and
variants prior to the STAM), a common drawback of the constructions has been
the number of tiles utilized during the formation of the assembly which simulates
the computation, which, in this paper, is referred to as the fuel efficiency of the
simulation.

For prior constructions, it has been necessary to make a new copy of the entire
tape of the Turing machine between each computational step, with the new copy
identical to the original except for the slight difference of a mere two tape cells
indicating: 1. the output value in the tape cell left by the tape head, and 2. the
tape cell marking the current location of the tape head. This full-scale copying
of the tape, including the vast majority of cells which are unchanged, is wasteful
in terms of the number of tiles required, experimentally very error prone due to
the huge number of tile attachments required, and results in enormous assem-
blies. In this section, we exhibit a construction which is capable of simulating
a universal Turing machine in the STAM, but while doing so only requires a
small constant number of tiles (never more than 7) as fuel for each computa-
tional step and maintains an assembly which consists of a number of tiles which
is only twice the total number of tape cells used by the Turing machine up to
that step. It is possible that with significantly fewer binding events in the STAM
construction than in those of previous models (even taking into account those
used for signaling), it may be the case that the number of errors which occur
could decrease, assuming, of course, that the mechanism which carries out the
transition function is sufficiently error-free.

Asynchronous Signal Passing for Tile Self-assembly 181

Throughout this paper, and without loss of generality, we define Turing ma-
chines as follows. Let M be an arbitrary single-tape Turing machine, such that
M = (Q,Σ, Γ, δ, q0, qaccept, qreject) with state set Q, input alphabet Σ = {0, 1},
tape alphabet Γ = {0, 1, }, transition function δ, start state q0 ∈ Q, accept
state qaccept ∈ Q, and reject state qreject ∈ Q. Furthermore, M begins in state
q0 on the leftmost cell of the tape, expects a one-way infinite-to-the-right tape,
and is guaranteed to never attempt to move left while on the leftmost tape cell.

Theorem 2 (Fuel efficient Turing machines). For any Turing machine M
with input w ∈ {0, 1}∗, there exists an STAM system TM(w) = (TM(w), 1) with
tile complexity O(|Q|), signal complexity O(1), and fuel efficiency O(1), which
simulates M on w in the following way:

1. TM(w) contains an active supertile consisting of 2|w| + 2 active tiles repre-
senting w and M ’s start state.

2. If M halts on w, then A�[TM , 1] contains exactly one supertile with > 3
tiles and that supertile contains exactly one ACCEPT (REJECT) tile if
M accepts (rejects) w.

3. If M does not halt on w, then A�[TM , 1] contains exactly 0 (terminal) su-
pertiles with > 3 tiles.

Our proof of Theorem 2 is by construction. Here, we provide a brief overview.
Our construction works by utilizing a set of tile type templates that, along

with the definition of a Turing machineM , are used to generate the set of active
tiles which are specific to M . The construction uses a pair of tiles to represent
each tape cell, with one tile representing the value (0, 1, or) of that cell and one
tile providing a “backbone” which the other attaches to and which also attaches
to the backbone tiles of the cells to its left and right. Additionally, there is a
special tile for the tape cell representing the rightmost end of the tape, and also,
at any given time, exactly one tape cell which also represents one state of M
along with the tape cell value. The location of the tape cell with that information
denotes the location of M ’s tape head at that point, and the value of the state
tells what state M is in. Transitions of M occur in a series of 4 main steps in
which tiles bind to the north of the tape cell denoting the head location, then to
the north of the tape cell to the immediate left or right (depending on whether
or notM ’s transition function specifies a left or right moving transition from the
current state while reading the current tape cell value), and along the way cause
the dissociation of the tiles representing the tape cell values in both locations
and their replacement with tiles which represent the correct output tape cell
value of the transition and correctly record the new state and head location at
the tape cell immediately to the left or right. Due to the asynchronous nature of
glue deactivations, and also the necessity that any “junk” assemblies produced
(i.e. those assemblies which break off from the assembly representing the Turing
machine tape and which don’t contribute to the final “answer”) must not be
able to attach to any portion of any supertile which represents any stage of the
computation, junk assemblies are produced as size 2 or 3 so that any activated
glues which would otherwise be able to bind to another supertile are hidden

182 J.E. Padilla et al.

between the tiles composing the junk assembly. In such a way,M(w) is correctly
simulated while requiring only a constant number of new tiles per simulated
transition step, and all junk assemblies remain inert and at size either 2 or 3.
If M(w) halts, there will be one unique, terminal supertile which represents the
result of that computation and is of size > 3. If M(w) does not halt, only the
junk assemblies will be terminal.

6 Self-assembly of the Sierpinski Triangle

Discrete self-similar fractals are defined as sets of points in Z2, and consist of
infinite, aperiodic patterns. It is difficult, if not impossible, for them to strictly
self-assemble in the aTAM, as is shown in [34, 35] where the impossibility of a
class of discrete self-similar fractals, including the Sierpinski triangle, strictly self-
assembling in the aTAM is proven. The impossibility of strictly self-assembling
the Sierpinski triangle in the 2HAM was shown in [11]. Additionally, Doty [36]
has shown a generalization of the impossibility proof from [35] which applies
to, among other things, scaled versions of the Sierpinski triangle for any scaling
factor. Thus, any method of strictly self-assembling the Sierpinski triangle, scaled
or not, is of interest.

In this section, we show that weak self-assembly of the Sierpinski triangle is
possible in the STAM with fewer tile types (4 versus 7) and lower temperature
(1 versus 2) than existing TAM constructions, and we also show that strict self-
assembly at scale factor 2 is possible in the STAM at temperature 1, a first for
any model at any temperature.

6.1 The Discrete Sierpinski Triangle

Here we use the definition of [34]. Let V = {(1, 0), (0, 1)}. Define the sets
S0, S1, S2, · · · ⊂ Z2 by the recursion S0 = {(0, 0)}, Si+1 = Si ∪ (Si + 2iV),
where A + cB = {m + cn | m ∈ A and n ∈ B}. Then the (standard) discrete
Sierpinski triangle is the set S� = ∪∞

i=0Si. See Figure 1a for a depiction of the
first five stages (i.e. S0 through S4).

Our Sierpinski triangle constructions are as stated in the following two theo-
rems. Additionally, in the next section we provide a high-level sketch of the more
technically challenging construction for Theorem 4.

Theorem 3. There exists an STAM system that weakly self-assembles the Sier-
pinski triangle. The system has 5 unique tiles, signal complexity = 4, assembles
at temperature τ = 1, and does not utilize glue deactivation.

Theorem 4. There exists an STAM system that strictly self-assembles the dis-
crete Sierpinski triangle at temperature τ = 1, with tile complexity = 19, scale
factor = 2, signal complexity = 5, and which makes use of glue deactivation,
producing terminal junk assemblies of size ≤ 6.

Asynchronous Signal Passing for Tile Self-assembly 183

(a) The first five stages of the discrete Sier-
pinski triangle.

�����

�������	 ������		

�������� ������	�

������

(b) Transformation of a point (x, y)
into a set of points f(x, y) for scale
factor 2, and associated notation.

Fig. 1. The Sierpinski triangle and a description of the mapping for the scaled version.

6.2 Strict Self-assembly of the Sierpinski Triangle

Our proof of Theorem 4 is by construction. Here, we provide a brief overview.
Define f(x, y) as the function which takes as input a point (x, y) and which

returns the set of 4 points which correspond to (x, y) at a scale factor of 2, that
is, the 2 × 2 square of points {(2x + a, 2y + b) | a, b ∈ {0, 1}}. (For instance,
f(1, 1) = {(2, 2), (2, 3), (3, 2), (3, 3)}). For notation, we will refer to the 4 points
in the set f(x, y) as f(x, y)00, f(x, y)01, f(x, y)10, and f(x, y)11 with subscripts
corresponding to the values for a and b, given as 00, 01, 10, and 11, respectively.
See Figure 1b for a clarification of this notation.

Let S2� = {f(x, y) | (x, y) ∈ S�} be the Sierpinski triangle at scale factor
2, i.e. where each point in the original Sierpinski triangle is replaced by a 2× 2
square of points, which we will refer to as a block. To prove Theorem 4, we now
present an STAM system, T2� = (T2�, 1) which strictly self-assembles S2�. At
a high-level, it does so by weakly self-assembling S2� by treating each block
f(x, y) as a single tile which receives one input each from the block to its south
and the block to its west. Each input is either a 0 or 1, and the block performs
the equivalent of an xor operation on those inputs and outputs the result to
its north and east. A block f(x, y) which outputs a 1 corresponds to a point
(x, y) ∈ S� and thus a location which must remain tiled in the final assembly
(shown as grey locations in Figure 1a). A block f(x, y) which outputs a 0 instead
corresponds to a point (x, y) �∈ S� and must eventually be removed from the
final assembly (shown as white locations in Figure 1a). Whenever a white region
is completely tiled and completely surrounded by blocks corresponding to grey
positions (note that all white regions in S� are surrounded by grey positions),
glue deactivation is used to “eject” the blocks of that white region as a set of
“junk” supertiles. Those junk supertiles are then broken down into constant
sized terminal supertiles (of sizes 3, 4, and 6) which are unable to attach to any
portion of the infinitely growing assembly, and thus remain inert junk assemblies.

Acknowledgments. The authors would like to thank Nataša Jonoska and
Daria Karpenko for fruitful discussions and comments on this work. Research

184 J.E. Padilla et al.

was supported by National Science Foundation Grant CCF-1117210 to J.E.P.
and N.C.S. and National Science Foundation Grant CCF-1117672 to M.J.P.,
R.P., R.T.S., R.S., and X.Z.

References

1. Padilla, J.E., Liu, W., Seeman, N.C.: Hierarchical self assembly of patterns from
the Robinson tilings: DNA tile design in an enhanced tile assembly model. Natural
Computing 11, 323–338 (2012)

2. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology (June 1998)

3. Wang, H.: Proving theorems by pattern recognition II. AT&T Bell Labs Tech.
J. 40, 1–41 (1961)

4. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC 2000: Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, Portland, Oregon, United
States, pp. 459–468. ACM (2000)

5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 2041–2053 (2004)

6. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal
on Computing 36(6), 1544–1569 (2007)

7. Kao, M.-Y., Schweller, R.: Randomized self-assembly for approximate shapes.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer,
Heidelberg (2008)

8. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.-Y., Moisset de Espanés,
P., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM
Journal on Computing 34, 1493–1515 (2005)

9. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller,
R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes
with O(1) glues. Natural Computing 7(3), 347–370 (2008)

10. Becker, F.: Pictures worth a thousand tiles, a geometrical programming language
for self-assembly. Theoretical Computer Science 410(16), 1495–1515 (2009)

11. Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller,
R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant
factors). Technical Report 1201.1650, Computing Research Repository (2012)

12. Chen, H.L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: SODA
2012: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1163–1182. SIAM (2012)

13. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust pro-
grammable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA
2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

14. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., Moisset de Espanés,
P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 23–32 (2002)

15. Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: Deterministic as-
sembly in 3d and probabilistic assembly in 2d. In: Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms (2011)

16. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature
1. Theoretical Computer Science 412, 145–158 (2011)

Asynchronous Signal Passing for Tile Self-assembly 185

17. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly.
In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 37–48. Springer,
Heidelberg (2011)

18. Schweller, R., Sherman, M.: Fuel efficient computation in passive self-assembly. In:
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana (to appear, 2013)

19. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-
fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

20. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Na-
ture 440(7082), 297–302 (2006)

21. Liu, W., Zhong, H., Wang, R., Seeman, N.C.: Crystalline Two-Dimensional DNA-
Origami arrays. Angewandte Chemie International Edition 50(1), 264–267 (2011)

22. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

23. Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular
self-assembly pathways. Nature 451(7176), 318–322 (2008)

24. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry 3(2), 103–113 (2011)

25. Qian, L., Winfree, E.: A simple dna gate motif for synthesizing large-scale circuits.
Journal of The Royal Society Interface 8(62), 1281–1297 (2011)

26. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 101(43), 15275 (2004)

27. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with co-
ordinated legs. Science 324(5923), 67 (2009)

28. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,
Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular
robots guided by prescriptive landscapes. Nature 465(7295), 206–210 (2010)

29. Wickham, S.F.J., Endo, M., Katsuda, Y., Hidaka, K., Bath, J., Sugiyama, H.,
Turberfield, A.J.: Direct observation of stepwise movement of a synthetic molecular
transporter. Nature Nanotechnology 6(3), 166–169 (2011)

30. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. Science 314(5805), 1585 (2006)

31. Padilla, J.E., Patitz, M.J., Pena, R., Schweller, R.T., Seeman, N.C., Sheline, R.,
Summers, S.M., Zhong, X.: Asynchronous signal passing for tile self-assembly: Fuel
efficient computation and efficient assembly of shapes. Technical Report 1202.5012,
Computing Research Repository (2012)

32. Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. Natural Comput-
ing 10, 853–877 (2011)

33. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-Assembly of Ar-
bitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small
Scale Factor (extended abstract). In: Schwentick, T., Dürr, C. (eds.) 28th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2011,
Dortmund, Germany, March 10-12. LIPIcs, vol. 9, pp. 201–212. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2011)

34. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski
triangles. Theoretical Computer Science 410, 384–405 (2009)

35. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals. Natural
Computing 9, 135–172 (2010)

36. Doty, D.: Personal communication (2012)

Control Languages Associated

with Tissue P Systems

Ajeesh Ramanujan and Kamala Krithivasan

Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai - 36
ajeeshramanujan@gmail.com, kamala@iitm.ac.in

Abstract. We consider a way to associate a language with the com-
putations of a tissue P system. We assign a label to every rule, where
the labels are chosen from an alphabet or the label can be λ. The rules
used in a transition should have either the empty label or the same label
from the chosen alphabet. In this way, a string is associated with each
halting computation, called the control word of the computation. The set
of all control words associated with computations in a tP system form
the control language of the system. We study the family of control lan-
guages of tP systems in comparison with the families of finite, regular,
context-free, context-sensitive, and recursively enumerable languages.

Keywords: P systems, tP systems, regular languages, context-free lan-
guages, context-sensitive languages, recursively enumerable languages.

1 Introduction

P systems, introduced in [1], can be used as language generating/accepting de-
vices in various ways – see, e.g., [2, 3, 5–10]. In all these papers (and several
others), words are associated with the sequence of objects emitted by the sys-
tem, taking all the permutations when more than one symbol is emitted. An-
other way to associate a string with a computation is by following the membrane
trace [8, 11] of a specified object as it travels through the system: i.e., a symbol
bi is generated each time that the traveling object enters the membrane i.

In this paper we consider neural like-tissue P systems (shortly called tP sys-
tems) introduced in [4]. Tissue-like membrane structures are described by graphs,
where membranes, also called cells, are nodes of a graph. Here, an edge between
two nodes corresponds to a communication channel between cells placed in these
nodes. Each cell also has a state which controls the evolution of the objects us-
ing rewriting rules of the form su → s′u′, where s, s′ are states, and u → u′ is
a usual multiset rewriting rules, with target indications in u′, which direct the
movement of objects from one cell to another. One of the cells is designated as
the output cell, which also sends objects to the environment, providing in this
way an output. When moved between cells, objects can also be replicated, and
then copies are sent to all cells to which an edge (synapses) is available from the
cell where the rule is applied.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 186–197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Control Languages Associated with Tissue P Systems 187

In this paper, strings over arbitrary alphabets are obtained, in the form of
control words associated with computations in a tP system whose rules are
labeled. This idea was initially considered in [13] and further explored for spiking
Neural P system in [14]. We extended the idea to transition P systems in [16].
We continue here this study for the case when tP systems are used.

In some sense, we may say that the control language associated with a tP
system is generated by this system. Here we assign a label to every rule, where the
labels are chosen from a finite alphabet or can be labeled with λ. All rules used in
a computation step should have the same label, or they can also be labeled with
λ. So in this case a transition is controlled by the label of the rule used. If a rule
can be used, use it. Here we consider two cases: first by imposing one important
restriction on the application of rules. In that case during a computation step,
at least on rule must have a label other than λ. So the generated string has the
same length as the number of steps used during computation. In the second case,
we relax the restriction by allowing all the rules to have λ label in a single step of
computation. A string is generated by the system if and only if the computation
of the system halts.

In what follows we will use this terminology, calling the control languages
languages generated by tP systems, in the sense specified above. Note however
the essential difference between this notion and the languages defined by tP
systems, in the “standard” sense – see references in [3, 4].

The difference between the case when λ moves (when only rules with the
empty label are used) are allowed and the case when such moves are not allowed
is essential: in the former case all recursively enumerable languages are generated,
while in the latter case only a subset of context-sensitive languages are generated,
without covering the family of context-free languages.

The paper is organized as follows. In Section 2, we provide the necessary
automata theory prerequisites. In Section 3, we give the definition of a tissue
P system as defined in [4]. In Section 4, we introduce and define the control
language associated with tP system and we study the families of languages gen-
erated by this model.

2 Basic Definition

Let Σ be a finite set of symbols called an alphabet. A string w over Σ is a
sequence of symbols from Σ. λ denotes the empty string. The set of all strings
over Σ is denoted by Σ∗. The length of a string w ∈ Σ∗ is denoted by |w|.
A language L over Σ is a set of strings over Σ. The family of finite, reg-
ular, context-free, context-sensitive, and recursively enumerable languages are
denoted by FIN,REG,CF,CS, and RE respectively.

The set of natural numbers is denoted by N. A multiset over a set X is a
mapping M : X → N; for a ∈ X, we say that M(a) is the multiplicity of a in M.
For Y ⊆ X and M over X, we define the projection of M on Y by

prY (M)(a) =

{
M(a), if a ∈ Y,
0, otherwise.

188 A. Ramanujan and K. Krithivasan

A linearly bounded automaton is a Turing machine restricted to the use of
working space linearly bounded with respect to the length of the input. For-
mally, there exist non-negative integers a and b such that for any configuration

represented by xqiy such that q0w
∗
$M xqiy for some qi ∈ Q and we have

|xy| ≤ a|w|+ b.
A register machine is a constructM = (m,H, l0, lh, I), wherem is the number

of registers, H is the set of instruction labels, l0 is the start label (labeling an
ADD instruction), lh is the halt label (assigned to instruction halt), and I is
the set of instructions labeled in a one-to-one manner by the labels from H. The
instructions are of the following forms:

– li : (ADD(r), lj) (add 1 to register r and then go to the instruction with
label lj),

– li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label lj, otherwise go to the instruction with label lk),

– lh : HALT (the halt instruction).

A register machine M accepts a number n in the following way: we start with
number n in a specified register r0 and all other registers being empty (i.e., stor-
ing the number 0), we first apply the instruction with label l0 and we proceed to
apply instructions as indicated by the labels (and made possible by the contents
of the registers); if we reach the halt instruction, then the number n is said to be
accepted by M. The set of all numbers accepted by M is denoted by N(M). It
is known (see, e.g., [12]) that register machines (even with only three registers,
but this detail is not relevant in what follows) accept all sets of numbers which
are Turing computable.

3 Tissue P Systems (tP Systems)

Definition 1. A tissue P system [4] of degree m ≥ 1, is a construct Π =
(O, σ1, · · · , σm, syn, iout), where:

1. O is a finite non-empty alphabet (of objects);
2. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} (synapses among cells);
3. iout ∈ {1, · · · ,m} indicates the output cell;
4. σ1, · · · , σm are cells, of the form σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m, where:

(a) Qi is a finite set (of states);
(b) si,0 ∈ Qi is the initial state;
(c) wi,0 ∈ O∗ in the initial multiset of objects;
(d) Pi is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈

Qi, w, x ∈ O∗, ygo ∈ (O × {go})∗ and zout ∈ (O × {out})∗ with the
restriction that zout = λ for all i ∈ {1, 2, · · · ,m} different from iout.

A tP system as above is said to be cooperative if it contains at least a rule
sw → s′w′ such that |w| > 1, and non-cooperative in the opposite case.

Control Languages Associated with Tissue P Systems 189

Any m-tuple of the form (s1w1, · · · , smwm), with si ∈ Qi and wi ∈ O∗, for
all 1 ≤ i ≤ m, is called a configuration of Π ; thus (s1,0w1,0, · · · , sm,0wm,0) is the
initial configuration of Π.

Using the rules from the sets Pi, 1 ≤ i ≤ m, we can define transitions among
the configurations of the system. We consider three modes of processing the
objects and three modes of transmitting objects from a cell to another.

Let us denote Ogo = {(a, go)|a ∈ O}, Oout = {(a, out)|a ∈ O}, and Otot =
O ∪Ogo ∪Oout. For a multiset over Otot, we denote by go(w) the submultiset of
symbols a ∈ O, appearing in w in the form (a, go), and by out(w) the submultiset
of of symbols a ∈ O appearing in w in the form (a, out). For a node σi, we denote
anc(i) = {j|(j, i) ∈ syn} and succ(i) = {j|(i, j) ∈ syn}.

For s, s′ ∈ Qi, x ∈ O∗, y ∈ O∗
tot, we write

sx⇒min s
′y iff sw→ s′w′ ∈ Pi, w ⊆ x, and y = (x− w) ∪ w′,

sx ⇒par s′y iff sw → s′w′ ∈ Pi, w
k ⊆ x,wk+1 �⊆ x for some k ≥ 1, and

y = (x− wk) ∪ w′k,
sx⇒max s

′y iff sw1 → s′w′
1, · · · , swk → s′w′

k ∈ Pi, k ≥ 1, such that w1 · · ·wk ⊆
x, y = (x − w1 · · ·wk) ∪ w′

1 · · ·w′
k, and there is no sw → s′w′ ∈ Pi such that

w1 · · ·wkw ⊆ x.
In the first case, only one occurrence of the multiset from the left hand side

of a rule is processed; in the second case a maximal change is performed with
respect to a chosen rule, in the sense that as many as possible copies of the
multiset from the left hand side of the rule are replaced by the corresponding
number of copies of the multiset from the right hand side; in the third case a
maximal change is performed with respect to all rules which use the current
state of the cell and introduce the same new state after processing the objects.

We also write sx ⇒α sx, for α ∈ {min, par,max}, if there is no rule sw →
s′w′ ∈ Pi such that w ⊆ x. This denotes the case when a cell cannot process the
current objects in a given state.

The symbols will be sent to the cells related by synapses to the cell σi where
the rule sw → s′w′ is applied according to the following three modes:

– repl : each symbol a, for (a, go) appearing in w′, is sent to each of the cells
σj such that (i, j) ∈ syn;

– one : all symbols a appearing in w′ in the form (a, go) are sent to one of the
cells σj such that (i, j) ∈ syn, nondeterministically chosen;

– spread : the symbols appearing in w′ in the form (a, go) are nondeterminis-
tically distributed among the cells σj such that (i, j) ∈ syn.

For two configurations C1 = (s1w1, · · · , smwm), C2 = (s′1w
′′
1 , · · · , s′mw′′

m) we
write C1 ⇒α,β C2, for α ∈ {min, par,max}, β ∈ {repl, one, spread}, if there are
w′

1, · · · , w′
m in O∗

tot such that siwi ⇒ s′iw
′
i, 1 ≤ i ≤ m, and

– for β = repl, we have, w′′
i = prO(w

′
i) ∪

⋃
j∈anc(i) go(w

′
j);

– for β = one, we have, w′′
i = prO(w

′
i) ∪

⋃
j∈Ii

go(w′
j), where Ii is a subset

of anc(i) such that the set anc(i) was partitioned into I1, · · · , Im; at this
transition, all non-empty sets of objects of the form

⋃
j∈Ik

go(w′
j), 1 ≤ k ≤ m,

should be sent to receiving cells (added to multisets w′′
l , 1 ≤ l ≤ m);

190 A. Ramanujan and K. Krithivasan

– for β = spread, we have, w′′
i = prO(w

′
i) ∪ zi, where zi is a submultiset of

the multiset
⋃

j∈anc(i) go(w
′
j) such that z1, · · · , zm are multisets with the

property
⋃m

j=1 zj =
⋃

j∈anc(i) go(w
′
j), and such that all z1, · · · , zm are sent

to receiving cells (added to multisets w′′
l , 1 ≤ l ≤ m).

During any transition, if no rule is applicable in a cell, then the cell waits until
new objects are sent to it from its ancestor cells. A global clock is assumed and
the working of the system is synchronized.

A sequence of transitions among configurations of the tP system Π is called
a computation of Π. A computation which ends in a configuration where no rule
in no cell can be used, is called a halting computation.

4 Control Words of tP Systems

In this section we introduce and define control languages for tP systems and
we consider the power of language generated with respect to a control word
associated with a computation of a tP system.

Consider a tP system Π = (O, σ1, · · · , σm, syn, iout) of degree m. Assume a
total ordering on the rules. Let P = P1∪P2∪· · ·∪Pm and Σ be a finite alphabet.
Define a function l : P → Σ ∪ {λ}, called the labeling function, that assigns a
label to every rule in P . With such a system, we associate a language as follows.

Given two configurations C1, C2 of Π , we consider only transition C1 ⇒b

C2, b ∈ Σ between configurations which use only rules with the same label b and
rules labeled with λ. We say that such a transition is label restricted.

With a label restricted transition we associate the symbol b if at least one
rule with label b is used; if all used rules have the label λ, i.e. label unrestricted,
then we associate λ to this transition. Thus, with any computation in Π starting
from the initial configuration to a halting configuration we associate a (control)
word. In the label restricted case, the number of steps in the computation is the
same as the length of the control word as in each step at least one rule with a
label from Σ is used. In the label unrestricted case, the length of the control
word is less than or equal to the number of steps in the computation.

The language of control words associated with all label unrestricted halting
computations in a tP systemΠ is denoted by Lλ

α,β(Π), α ∈ {min, par,max}, β ∈
{repl, one, spread}, in the mode (α, β). The superscript indicates the fact that
λ steps (all rules applied in one step can have λ labels) are permitted. When
only steps where at least one rule with a non-empty label is used, the generated
language is denoted by Lα,β(Π), α ∈ {min, par,max}, β ∈ {repl, one, spread},
in the mode (α, β).

The family of languages Lα,β(Π) associated with cooperative tP systems Π
with at most m ≥ 1 cells, and each of them using at most r ≥ 1 states is denoted
by LtPm,r(Coo, α, β); When non-cooperative tP systems are used we write
LtPm,r(nCoo, α, β). In the unrestricted case, the corresponding language family
is denoted by LλtPm,r(Coo, α, β). When one (or both) of the parameters m, r is
(are) not bounded, then we replace it (them) with ∗, thus obtaining families of
the form LtPm,∗(γ, α, β), LtP∗,r(γ, α, β), etc.

Control Languages Associated with Tissue P Systems 191

Note that, in this paper, output cell in the tP systems plays no role, hence
they are omitted. Moreover, whenever possible, we associate directly the labels
to rules, writing b : sw → s′w′ instead of writing l(sw → s′w′) = b.

We also use the convention that two language processing devices – generating
or accepting – are equivalent if they characterize languages which differ at most
in the empty string (otherwise stated, the string λ is ignored when comparing
two language processing devices).

Before investigating the power of tP systems with labels, let us consider an
example, inorder to clarify the definitions and to illustrate the working of our
variant.

Example 1. Consider the tP system Π1 = ({a1, b1, c1}, σ1, σ2, σ2, syn) with:

σ1 = ({s, s′}, s, a1b1, {a : sa1 → s(a1, go), b : sb1 → s′b1, b : s′a1b1 → s′b1,
b : s′b1c1 → s′b1}),
σ2 = ({s}, s, λ, {a : sa1 → s(a1, go), b : sa1 → s(c1, go)}),
σ3 = ({s}, s, λ, {a : sa1 → s(a1, go), b : sa1 → s(c1, go)}).
syn = {(1, 2), (1, 3), (2, 1), (3, 1)}.

The tP system Π1 is graphically represented as in Figure 1, with rectangles
representing cells (these rectangles contain the initial state, the initial multiset,
and the set of labeled rules), with arrows indicating the synapses.

1

s, a1b1

a : sa1 → s(a1, go)
b : sb1 → s′b1
b : s′a1b1 → s′b1
b : s′b1c1 → s′b1

2

s, λ

a : sa1 → s(a1, go)

b : sa1 → s(c1, go)

3

s, λ

a : sa1 → s(a1, go)

b : sa1 → s(c1, go)

Fig. 1. A labeled tP system

The reader can easily verify that we have:

Lmin,repl(Π1) = {b2, ab3} ∪ {anbn+1, n ≥ 2},
Lmin,β(Π1) = {anb2, n ≥ 0}, for β ∈ {one, spread},

Lpar,repl(Π1) = {anb2
�n+1

2
�+1, n ≥ 0},

Lpar,β(Π1) = {anb2, n ≥ 0}, for β ∈ {one, spread},
Lmax,repl(Π1) = {b2, ab3} ∪ {anbn+1, n ≥ 2},
Lmax,β(Π1) = {anb2, n ≥ 0}, for β ∈ {one, spread},

In the replicative case, the symbols produced by the rule sa1 → s(a1, go) from
cell 1 are doubled . When the rules are used in the parallel mode, then all the

192 A. Ramanujan and K. Krithivasan

symbols present in the system are doubled from a step to next step, thereby
obtaining power of 2 in the generated language. When the rules are used in the
minimal mode, the symbols are processed one by one and we obtain a context-
free language in the case of repl mode and we obtain a regular language in the
case of one and spread modes. In the maximal mode, we can send copies of a1
at the same step to cells 2 and 3, hence we obtain the same language as in min
mode.

Next we investigate the relationship between the family of languages generated
by tP systems and the families of finite, regular, context-free, context-sensitive,
and recursively enumerable languages.

Theorem 1. REG ⊂ LtP1,1(nCoo, α, β), α ∈ {min, par,max}, β ∈ {rep, one,
spread}.

Proof. LetG = (N, T, P, S) be a regular grammar that generatesR. Assume that
all productions are of the form A→ bB or A→ b or S → λ, where A,B ∈ N, b ∈
T. Let v be the number of variables in G. Rename the variables as Ai, 1 ≤ i ≤ v,
such that A1 = S and redefine the production rules using the renamed variables.
Let the modified grammar be G′ = (N ′, T, P ′, A1). Using G

′, we construct a tP
system Π with one cell and one state as follow: Π = (N ′ ∪ {$}, σ1, ∅), where:

σ1 = ({s}, s, A1, {b : sAi → sAj |Ai → bAj ∈ P ′} ∪ {b : sAi → s$|Ai → b ∈
P ′}).

The tP system Π constructed in Theorem 1 works as follows: The system starts
in the initial state s and with the object A1 which corresponds to the initial
symbol in the cell. The use of a rule b : sAi → sAj simulates the use of the
production Ai → bAj ∈ P ′ and generates the symbol b. The system halts when
the system uses the rule b : sAi → s$ corresponding to Ai → b ∈ P ′ introducing
the terminating symbol $ in the cell. No further rule can be applied and the
system halts.

Theorem 2. (CF − REG) ∩ LtP∗,∗(γ, α, β) �= ∅, γ ∈ {nCoo, Coo}, α ∈ {min,
par,max}, β ∈ {rep, one, spread}.

Proof. Let L2 be the non-regular context-free language {anbn|n ≥ 1}. We con-
struct a tP system Π2 with one cell and one state as follows:
Π2 = ({a1, b1, c1}, σ1, ∅), where:

σ1 = ({s}, s, a1, {a : sa1 → sa1b1, a : sa1 → sb1c1, b : sb1c1 → sc1}).

The tP system Π constructed in Theorem 2 works as follows: The system starts
in the initial state s with the object a1 in the cell. By using the rule a : sa1 →
sa1b1 labeled with a, n − 1 times, the system generates the string an−1 and
introduces n− 1 b1’s into the system and stays in the state s. Then it uses the
a labeled rule a : sa1 → sb1c1 once, generating one more a, removing the object
a1 and introducing one more b1 and one c1 into the system. So after this step,
the the multiplicity of object b1 is n. Then in the next n steps, the system uses

Control Languages Associated with Tissue P Systems 193

the b labeled rule b : sb1c1 → sc1, generating n b’s and removing the b1’s from
the system. After this step, the system contains the terminating object c1 and
the system halts the computation generating the string anbn.

Theorem 3. CF − LtP∗,∗(γ, α, β) �= ∅, γ ∈ {nCoo, Coo}, α ∈ {min, par,max},
β ∈ {rep, one, spread}.

Proof. Consider the context free language L = {wwR|w ∈ {a, b}∗}. Assume that
there exists a tP system Π = (O, σ1, σ2, · · · , σm, syn) with m ≥ 1 cells, each of
them using at most r ≥ 1 states, that generates L. Consider a string uuR ∈ L
and let l be the length of u. After reading l symbols of u, Π must be able to reach
as many different configurations as there are strings of length l. This must hold
since Π has to remember the first half of the string uuR in order to compare it
with the second half. Since the alphabet size is two (the argument is applicable
to any finite set of cardinality greater than 1), Π has to reach at least 2l different
configurations after reading l symbols. If Π cannot reach that many configura-
tions, there are two different strings u and u′, where the length of u′ is strictly less
than u, that leads Π to the same configuration. So it is required to prove that for
sufficiently large l, only less than 2l configurations are reachable. The proof is as
follows: Let O = {a1, a2, · · · , ak}. Let S = P1∪P2∪· · ·∪Pm and |S| = n. Assume
a total order on S. Let the ith configuration be represented by two row vectors
c1i = (s1, · · · , sm), of size m representing the state of the m cells at the ith step
and c2i = (a11, a

1
2, · · · , a1k, a21, a22, · · · , a2k, · · · , am1 , am2 , · · · , amk), of size mk, where

aji ∈ O represent the the multiplicity of the object ai in the cell j. Every rule inΠ
is of the form siap1

1 a
p2

2 · · · a
pk

k → sjaq11 (as11 , go)(a
t1
1 , out)a

q2
2 (as22 , go)(a

t2
2 , out) · · ·

aqkk (askk , go)(a
tk
k , out), pi, qi, si, ti ≥ 0 and si, sj are the state of an arbitrary cell

before and after the application of the rule. Application of a rule in cell i takes
away pj aj’s from the cell i and adds qj , sj , tj aj ’s to the cells indicated in the
target field of the rule and the cell changes the state from si to sj . Associated
with each rule rk, 1 ≤ k ≤ n, we define a row vectors called modification vector
vk = (b11, b

1
2, · · · , b1k, b21, b22, · · · , b2k, · · · , bm1 , bm2 , · · · , bmk), of size mk, where bji ∈ O

represent the change in the multiplicity of the object ai in cell j, 1 ≤ j ≤ m
on the application of the rule. Application of each rule modifies the configura-
tion by adding a vector vk corresponding to rule k and also records the change
in the state of the cells by modifying the vector corresponding to the state of
the system. Suppose that the rule ri, 1 ≤ i ≤ n is used ki, 1 ≤ i ≤ n times
during the computation. The configuration of the tP system gets modified to

the configuration c0 +

n∑
i=1

ki.vi, where
∑
i

ki ≤ l, and c0 is the initial configu-

ration in the vector form, that correspond to the multiplicity of the objects in
the cells initially and the state vector also gets modified accordingly. Hence with
n rules we can reach at most as many configurations as there are such tuples
(k1, k2, · · · , kn). These n numbers add exactly up to l and therefore 0 ≤ ki ≤ l
for all i ∈ {1, 2, · · · , n}. So there are at most (l + 1)n such tuples. Therefore,
for sufficiently large l there are less than 2l different configurations that are
reachable by a tP system that generates L. This concludes the proof.

194 A. Ramanujan and K. Krithivasan

Theorem 4. LtP∗,∗(γ, α, β)− CF �= ∅, γ ∈ {nCoo, Coo}, α ∈ {min, par,max},
β ∈ {rep, one, spread}.

Proof. We can extend the construction of tP system in Theorem 2 to generate
non context-free context-sensitive language such as {anbncn|n ≥ 1}.

Theorem 5. LtP∗,∗(γ, α, β) ⊂ CS, γ ∈ {nCoo, Coo}, α ∈ {min, par,max}, β ∈
{rep, one, spread}.

Proof. We show how to recognize a control word generated by a tP system with
a linear bounded automaton. In order to do this, we simulate a computation of
tP system by remembering the number of objects in each cell and the state of
the system after the generation of each symbol in the control word and show
that the total number of objects in the system is bounded on the length with
respect to the control word.

Consider a control language L of a tP system Π. Let w = b1b2 · · · bk, k ≥ 0
be a control word in L. Let the number of cells be m and the total number of
rules in all the cells be n.We build a multi track nondeterministic LBA B which
simulates Π. In order for B to simulate Π, it has to keep track of the number of
objects in each cell and the state of each cell, after generating each symbol. So B
has a track assigned to every rule of Π, a track for each symbol-cell pair (ai, j) ∈
O × {1, 2, · · · ,m}, a track for each state-cell pair (qi, j) ∈ O × {1, 2, · · · ,m},
and a track for each triple (ai, j, k) ∈ O × {1, 2, · · · ,m}2. B keeps track of the
configurations of Π by writing a positive integer on each track assigned to the
symbol-cell pair (ai, j), denoting the number of objects ai in cell j and on each
track assigned to the state-cell pair (qi, j), denoting the state qi of cell j. A single
step of the computation of B is as follows: Based on the current configuration
(the multiset of objects in each cell and the current state of each cell), the next
symbol to be generated, B choses a set of rules that are to be applied in the
next step by writing an integer on the track corresponding to the rules which
indicates the number of times that a particular rule is to applied. Then for each
triple (ai, j, k), B examines the chosen rule set and writes the number of objects
ai leaving from cell j to cell k on the corresponding track, decreasing the number
on the track for (ai, j) accordingly. Then it creates the next configuration by
adding the values written on the track for each (ai, j, k) to the number stored on
the track for (ai, k). The system also modifies the state of each cell by modifying
the corresponding track entry assigned to each state-cell pair (qi, j). We can
see that in any step of the computation, the tracks contain integers bounded
by the number of objects inside Π during the corresponding computation step.
So if the number of objects inside the tP system in a configuration c during a
computation is bounded by S(i), where i is the number of symbols generated,
then the space used by B to record the configurations and to calculate the
configuration change of Π is bounded by t × logb(S(i)), where b denotes the
base of the track alphabet of B and t denotes the number of tracks used. So we
can see that for any sequence of accepting computation c0, c1, . . . , cm in Π, and
in any mode in label restricted computation, |ci| ≤ k.d where k is a constant
depending on the form of rules, and d ≤ i is the number of non-empty multisets

Control Languages Associated with Tissue P Systems 195

read by the tP system up to reaching configuration ci. Finally, B checks whether
any further rules can be applied. If not, it accepts the string, else it rejects. So
the total number of objects in the system is bounded with respect to the input
length and so the generated language is context-sensitive.

Theorem 6. LλtP1,1(γ, α, β) = RE, γ ∈ {nCoo, Coo}, α ∈ {min, par,max},
β ∈ {rep, one, spread}.

Proof. Let L ⊆ Σ∗ be a recursively enumerable language. Let Σ = {b1, b2, · · · bl}.
Define an encoding e : Σ �→ {1, 2, · · · , l} such that e(bi) = i. We extend the
encoding for a string w = c1c2 · · · ck as follows: e(w) = c1 ∗ (l + 1)(k−1) + · · ·+
c(k−1) ∗ (l + 1)1 + ck ∗ (l + 1)0. We use l + 1 as the base in-order to avoid the
digit 0 at the left end of the string.

For any L, there exists a deterministic register machine M = (m,H, q0, h, I)
which halts after processing the input i0 placed in its input register if and only
if i0 = e(w) for some w ∈ L. So, it is sufficient to show how to generate the
encoding e(w), and simulate the instructions of a register machine with a tP
system. The value of register r is represented by the multiplicity of the object
ar in the cell and the label li is represented by an object li.

The instructions of a register machine are simulated by a tP system with a
single state q as follows:

– Add instruction li : (ADD(r), lj) is simulated by the instruction qli → qarlj .
Removes the object li and introduces the objects ar and lj and stays in the
state q.

– Subtract instruction li : (SUB(r), lj , lk) is simulated by the instructions

qli → ql
′
il

′′
i , qarl

′
i → ql

′′′
i , ql

′′
i → ql

′′′′
i , ql

′′′
i l

′′′′
i → qlj , ql

′′′′
i l

′
i → qlk;

The object li is replaced by two objects l
′
i, l

′′
i by using the rule qli → ql

′
il

′′
i .

If an object ar is present in the system, the number of it gets decreased by
one by using the rule qarl

′
i → ql

′′′
i , which also introduces the object l

′′′
i in

the next step. If no ar is present, l
′
i remains but l

′′′′
i is introduced into the

system by using the rule ql
′′
i → ql

′′′′
i . In the next step, either object lj or

lk get introduced into the system depending on the objects present in the
system by using the rule ql

′′′
i l

′′′′
i → qlj or ql

′′′′
i l

′
i → qlk. In all the above steps,

the system stays in the state q.
– For the halt instruction lh : HALT, nothing to do. The system halts when

the object lh is introduced into the system.

We construct a tP system Π with one cell and one state as follows: Π =
(O, σ1, ∅), where:

O = {s} ∪ {li, l
′
i, l

′′
i , l

′′′
i , l

′′′′
i |li ∈ H} ∪ {ar|1 ≤ r ≤ m} ∪ {lg, l

′
g, lgi, lg(l+1),

la1|1 ≤ i ≤ l} ∪ {lc1, lc2, lc3, lr1, lr2}.
σ1 = ({q}, q, s, R1) with :

R1 = {bi : qs→ qlga
i
1|bi ∈ Σ, 1 ≤ i ≤ l} ∪ set of all rules correspond-

ing to the register machine instructions (M and generating encoding in
Step 2) labeled with λ.

196 A. Ramanujan and K. Krithivasan

with one cell performing the following operations (a1 and a2 are two distin-
guished objects of Π, where multiplicity of a1 represents the encoding corre-
sponding to the symbol generated in each step and the multiplicity of a2 repre-
sents the encoding of the generated string up to a particular step).

1. For some 1 ≤ i ≤ l, generating symbol bi ∈ Σ, is performed by using a rule
bi : qs → qlga

i
1, labeled with bi, that introduces the object lg, which is the

label of the first instruction for generating the encoding in Step 2 and the
object a1 with multiplicity i.

2. Perform the computation e(ua) = (l+1)∗e(u)+e(a), u ∈ Σ∗, a ∈ Σ. Assume
that the encoding of u is represented by the multiplicity of object a2. The
encoding of ua is performed by the following register machine sub-program.
lg : (SUB(r3), lg1, l

′
g); lgi : (ADD(r2), lg(i+1)), 1 ≤ i ≤ l ; lg(l+1) : (ADD(r2),

lg) ; l
′
g : (SUB(r1), la1, lc1) ; la1 : (ADD(r2), l

′
g) ; lc1 : (SUB(r2), lc2, lr1) ;

lc2 : (ADD(r3), lc3) ; lc3 : (ADD(r4), lc1) ; lr1 : (SUB(r4), lr2, s) ; lr2 :
(ADD(r2), lr1);
The instructions of the sub-program can be translated to the tP system rules
as shown in the beginning of the proof. The multiplicity of objects a1, a2, a3
and a4 corresponds to the content of registers r1, r2, r3 and r4.

3. Repeat from step 1, or, non-deterministically, stop the increase in the mul-
tiplicity of object a2 by using a λ labeled rule λ : qs → qq0, where q0 is an
object that corresponds to the label of the first instruction of the register
machine M in Step 4.

4. Multiplicity of a2 is equal to e(w) for some w ∈ Σ+.We now start to simulate
the working of the register machine M in recognizing the number e(w). If
the machine halts, by introducing the object h corresponding to the halt
instruction in M, then w ∈ L, otherwise the machine goes into an infinite
loop.

So, we can see that the computation halts after generating a string w if and only
if w ∈ L.

5 Conclusion

In this paper we investigated the control words associated with computations
of tP systems. A generating style was adopted: each step of a computation
generates a symbol and a string is obtained by concatenating the generated
symbols in a halting computation. To this aim, labels are associated with the
rules of a tP system, which are symbols of a given alphabet or they are empty.
In each transition, only rules with the same label or with the empty label are
used. Also λ moves are possible, when all used rules have the empty label, and
no symbol is generated.

The families of languages generated in this way are compared with the families
of the Chomsky hierarchy. In the case when λ moves are allowed, all recursively
enumerable languages can be generated in this way, in the opposite case all
generated languages are context-sensitive, all regular languages can be generated

Control Languages Associated with Tissue P Systems 197

by tissue P systems, not all context-free languages, but there are non-context-
free context-sensitive languages which can be obtained as control languages of
tP systems.

References

1. Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ence 61(1), 108–143 (2000)

2. Păun, G.: Membrane Computing - An Introduction. Springer, Berlin (2002)
3. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford Univ. Press (2010)
4. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems.

Theoretical Computer Science 296, 295–326 (2003)
5. Alhazov, A., Ciubotaru, C., Ivanov, S., Rogozhin, Y.: The family of languages

generated by non-cooperative membrane systems. In: Gheorghe, M., Hinze, T.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp.
65–80. Springer, Heidelberg (2010)

6. Alhazov, A., Ciubotaru, C., Rogozhin, Y., Ivanov, S.: The membrane systems
language class. In: Proc. Eighth Brainstorming Week on Membrane Computing,
Sevilla, pp. 23–35 (2010); Proc. LA Symposium. RIMS Kôkyûroku Series 1691,
Kyoto University, pp. 44–50 (2010)

7. Ibarra, O.H., Păun, G.: Characterizations of context-sensitive languages and other
language classes in terms of symport/antiport P systems. Theoretical Computer
Science 358, 88–103 (2006)

8. Ionescu, M., Mart́ın-Vide, C., Păun, G.: P systems with symport/antiport rules:
The traces of objects. Grammars 5, 65–79 (2002)

9. Păun, G.: Languages in membrane computing: Some details for spiking neural P
systems. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 20–35.
Springer, Heidelberg (2006)

10. Păun, G., Rozenberg, G., Salomaa, A.: Membrane computing with an external
output. Fundamenta Informaticae 41(3), 313–340 (2000)

11. Ionescu, M.: Membrane Computing. Traces, Neural Inspired Models, Controls, PhD
Thesis, URV Tarragona (2008)

12. Minsky, M.: Computation - Finite and infinite Machines. Prentice Hall, Englewood
Cliffs (1967)

13. Krithivasan, K., Păun, G., Ramanujan, A.: Control words associated with P sys-
tems. In: Gheorghe, M., Păun, G., Pérez-Jiménez, M.J. (eds.) Proceedings of 10th
Brainstorming Week on Membrane Computing, Frontiers of Membrane Comput-
ing: Open Problems and Research Topics, Sevilla, vol. II, pp. 171–250 (2012)

14. Ramanujan, A., Krithivasan, K.: Control words of spiking neural P systems. Ro-
manian J. of Information Science and Technology (to appear)

15. Păun, G., Pérez-Jiménez, M.J.: Languages and P systems: recent developments
(manuscript)

16. Ramanujan, A., Krithivasan, K.: Control Words of Transition P Systems. In:
Bansal, J.C., Singh, P.K., Deep, K., Pant, M., Nagar, A.K. (eds.) BIC-TA 2012.
AISC, vol. 201, pp. 145–155. Springer, Heidelberg (2013)

Geometric Methods for Analysing Quantum

Speed Limits: Time-Dependent Controlled
Quantum Systems with Constrained Control

Functions

Benjamin Russell and Susan Stepney

Department of Computer Science, University of York, UK, Y010 5DD
{bjr502,susan.stepney}@york.ac.uk

Abstract. We are interested in fundamental limits to computation im-
posed by physical constraints. In particular, the physical laws of motion
constrain the speed at which a computer can transition between well-
defined states. Here, we discuss speed limits in the context of quantum
computing. We derive some results in the familiar representation, then
demonstrate that the same results may be derived more readily by trans-
forming the problem description into an alternative representation. This
transformed approach is more readily extended to time-dependent and
constrained systems. We demonstrate the approach applied to a spin
chain system.

1 Problem and Motivation

The Margolus-Levitin bound [11] defines the limit to the speed of dynamical
evolution of a quantum system with time-independent Hamiltonian as imposed
by the energy expectation. This and other such speed limit bounds have an in-
terpretation in terms of the maximum information processing rate of a quantum
systems [10]. This bound complements the Mandelstam-Tamm inequality [16],
a bound to the speed of dynamical evolution of a quantum system in terms of
the energy uncertainty.

However, in the application of quantum optimal control to quantum comput-
ing, a time-dependent Hamiltonian is more common [15], and a more complete
analysis of the limit to the speed of quantum computers needs to take into ac-
count the time dependence of the Hamiltonian. A notable result analogous to the
Margolus-Levitin bound, applicable to time dependent systems in the adiabatic
regime, can be found in [1].

When considering the ‘ultimate’ physical limits to computation [10], one con-
siders a time-independent system as a model for the fastest possible quantum
computer. We can consider a time-dependent control system as a sub-system of
a larger time-independent system as follows. Let system A be the computational
system, and let another system B produce the control fields; these could be con-
sidered to be subsystems of the larger system A⊗B. If B is chosen to include all

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 198–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Geometric Methods for Analysing Quantum Speed Limits 199

of the environment of A that significantly affects A, then the combined system
could be described by a time-independent Hamiltonian, subject to the ‘ultimate’
physical limits. Since the control functions must be implemented by some quan-
tum system, the limits quantum mechanics places on the dynamics of the system
producing the control fields places limits on the control fields themselves. Hence,
in addition to time dependence, the control functions may be subject to further
physical constraints.

Geometric derivations [6,16,9] have been used to determine bounds for time-
independent systems. Specifically, [9] provides a strong connection between the
quantum speed limit and metric structures on unitary groups. Here we extend
the kind of analysis of [9] to time-dependent and constrained systems. We analyse
the relationship between constraints on the control functions and the quantum
speed limit using tools from Riemannian and related geometries.

The structure of the paper is as follows. First we summarise two complemen-
tary geometrical formalisms of quantum mechanics, and use these to rederive
known time bounds (§2). Then we further develop the approach, to cover time-
dependent and constrained systems (§3). We then apply these results to a specific
spin chain system (§4).

2 The Geometry of Finite Dimensional Quantum
Mechanics

Throughout this paper, su(n) refers to the special unitary Lie algebra of N ×N
anti-hermitian matrices; SU(N) refers to the group of N × N special unitary
matrices.

Quantum mechanical states are typically formulated in term of a complex
Hilbert space of states [4]. Quantum time evolution is then typically formulated
by considering a unitary time evolution operator Ût acting on the state space.
In the case of a Hamiltonian (always taken to be a Hermitian operator) with no
explicit time dependence, Ĥ , the time evolution is given by:

Ût = exp
(
−itĤ

)
(1)

This solves the Schrödinger equation for the state if one defines the state after
time t to be |ψt〉 = Ût|ψ0〉 for some given initial state |ψ0〉. There are many
different approaches to representing the time evolution operator for an explicitly
time-dependent Hamiltonian; common methods include the Dyson series and the
Magnus expansion [2].

There are, however, other, more geometrical ways to formulate quantum me-
chanics. The space of states, in the case of a finite dimensional complex Hilbert
spaces, CN , can be formulated as a complex projective space [5]. This construc-
tion possesses no redundancy in its description of the state of a quantum system.
In the Hilbert space construction, physically distinguishable states correspond to
equivalence classes of vectors in Hilbert space (each class is comprised of a com-
plex line or ‘ray’). In contrast, a single point in the projective space description

200 B. Russell and S. Stepney

corresponds to a single physically distinct state.The price for this minimality is
the increased difficulty of working with differentiable manifolds rather than with
vector spaces.

The space of all unitary operators acting on a (finite dimensional) complex
Hilbert space of states forms a Lie group [3], the Lie algebra of which consists of
all anti-Hermitian operators. Both of these constructions introduce differential
geometry into the picture of quantum dynamics.

2.1 Metrics on CPn

We do not attempt a full account of the material discussed in this section; [8] is
a clear and rigorous source for the mathematics relating to complex projective
spaces, projective Hilbert spaces, and the Fubini-Study metric.

The projective structure corresponding to CN+1, considered as a vector space
without any inner product or norm structure, is CPN , a differentiable manifold.
In quantum mechanics the standard inner product structure on CN+1 is em-
ployed to form an inner product space 〈CN+1, 〈·|·〉〉, where the standard inner
product is given by:

〈u|v〉 =
N∑

k=0

ukvk (2)

After quotienting CN+1/{0} into equivalence classes to form CPN , a natural
choice of Riemannian metric arises for CPN : the Fubini-Study metric. The in-
finitesimal form of this metric, the metric tensor, is given by [8]:

ds2 =
〈δψ|δψ〉
〈ψ|ψ〉 − 〈δψ|ψ〉〈ψ|δψ〉

〈ψ|ψ〉2
(3)

where |ψ〉 is the point on CPN that corresponds to the ray in 〈CN+1, 〈·|·〉〉
to which |ψ〉 belongs; |δψ〉 is an element of the tangent space at this point,
T|ψ〉CPN . (Where no confusion arises, we use the common abuse of notation
that does not distinguish between the vector |ψ〉 and the corresponding point
in CPN .) This is the unique metric tensor (up to overall scaling by a positive
constant) on CPN invariant under all unitary transformations of |ψ〉 [8].

Invariance under unitary transformations follows directly from the definition
of a unitary operator as an operator the leaves all inner products of states in
〈CN+1, 〈·|·〉〉 invariant. This is the projective counterpart to the standard in-
ner product on CN+1; that is, it is compatible with the quotient into rays of
〈CN+1, 〈·|·〉〉 rather than the quotient of just the vector space structure. This is
readily verified: under the transformation |ψ〉 �→ Z|ψ〉, for any Z ∈ C/{0}, the
metric is invariant:

Geometric Methods for Analysing Quantum Speed Limits 201

ds2 �→ 〈δψ|ZZ|δψ〉
〈ψ|ZZ|ψ〉

− 〈δψ|ZZ|ψ〉〈ψ|ZZ|δψ〉
〈ψ|ZZ|ψ〉2

(4)

=
|Z|2
|Z|2

〈δψ|δψ〉
〈ψ|ψ〉 −

(
|Z|2
|Z|2

)2 〈δψ|ψ〉〈ψ|δψ〉
〈ψ|ψ〉2

= ds2

The finite form of this metric is given by [14]:

γ(|ψ〉, |φ〉) = arccos

√
|〈ψ|φ〉|2

〈ψ|ψ〉2〈φ|φ〉2
(5)

and in this metric, the manifold forms a metric space. The metric clearly has
the same invariance and uniqueness properties as its infinitesimal form, eqn.(3).

2.2 Deriving the Mandelstam-Tamm Inequality

Our following rederivation of the Mandelstam-Tamm inequality illustrates the
usefulness of Riemannian geometry in the context of quantum speed limits. From
eqn.(5) we have that ∀|ψ〉, |φ〉 ∈ CN 〈ψ|φ〉 = 0 implies γ(|ψ〉, |φ〉) = arccos(0) =
π
2 . Hence (if all states involved are initially normalised), if |ψt〉 connects to
orthogonal state in time τ , i.e. 〈ψτ |ψ0〉 = 0, then:

L[|ψt〉] =
∫ t=τ

t=0

ds (6)

=

∫ t=τ

t=0

√
〈δψ|δψ〉
〈ψ|ψ〉 − 〈δψ|ψ〉〈ψ|δψ〉

〈ψ|ψ〉2
dt

=

∫ t=τ

t=0

√
〈δψ|δψ〉 − 〈δψ|ψ〉〈ψ|δψ〉 dt ≥ π

2

where L is the length functional for a curve on the projective space according
to the Fubini-Study metric. Here the inequality follows from the definition of a
geodesic.

In the case that |ψt〉 solves the Schrödinger equation for a time-independent
Hamiltonian Ĥ we have:

|δψt〉 =
d

dt
|ψt〉 =

d

dt
exp

(
−itĤ

)
|ψ0〉 = −iĤ exp(−itĤ)|ψ0〉 = −iĤ|ψt〉 (7)

Substituting this into eqn.(6), we find:

L[|ψt〉] =
∫ t=τ

t=0

√
〈δψt|δψt〉 − 〈δψt|ψt〉〈ψt|δψt〉 dt (8)

=

∫ t=τ

t=0

√
〈ψt|Ĥ2|ψt〉 − 〈ψt|Ĥ |ψt〉2 dt

=

∫ t=τ

t=0

ΔE|ψt〉dt =
∫ t=τ

t=0

ΔE|ψ0〉dt = τΔE|ψ0〉 ≥
π

2

202 B. Russell and S. Stepney

Here ΔE|ψt〉dt can be replaced by ΔE|ψ0〉 in the last line since the Hamiltonian
is time-independent, which implies that the energy uncertainty is also. From this
follows the Mandelstam-Tamm inequality:

τ ≥ π

2ΔE|ψ0〉
(9)

It is worth comparing our derivation to that in [6] (their eqns. 22-25; note that the
‘Wooters distance’ is simply the finite form of the Fubini-Study metric applied
to normalised states). There the finite form of the metric is differentiated; here
we use the differential form of the metric immediately.

2.3 Metrics on SU(N)

There is a natural choice of metric tensor on the Lie group of all special unitary
operators acting on CN , SU(N). This is due to a general result about symmetric
bilinear forms on semi-simple Lie groups. (U(N) is not semi-simple, and so we
specialise from here on to SU(N), which is in fact simple.) Again, we do not
give a complete description of these constructions; specifically we do not discuss
adjoint representations and the general definition of the Killing form, but instead
specialise to SU(N) immediately. A good source for this material is [7].

The Killing form (denoted by B) is the unique symmetric bilinear form (up
to a positive constant multiple) on su(N) (which consists of all traceless, anti-
hermitian operators on C) satisfying ∀x, y, z ∈ su(N):

1. B([x, y], z) = B(x, [y, z])
2. B(s(x), s(y)) = B(x, y) for any automorphism of s of su(n).

For su(n), the Killing form is given by:

B(x, y) = 2nTr(xy) (10)

Then g(x, y) = −B(x, y) = 2nTr(x†y) is a Riemannian metric on SU(n). The
length of a smooth curve (according to the metric g) on Ût SU(n) is now given by:

L[Ût] =

∫ t=τ

t=0

√
2nTr

dÛt

dt

†
dÛt

dt
dt (11)

In the case that Ût solves the Schrödinger equation for some (possibly time-
dependent) Hamiltonian Ĥt

d

dt
Ût = −iĤtÛt (12)

then the length of this curve can be written in terms of Ĥt. This follows from
the Schrödinger equation and the unitary invariance of the Killing form (due to
the cyclic property of the trace):

Geometric Methods for Analysing Quantum Speed Limits 203

L[Ût] =

∫ t=τ

t=0

√
2nTr

dÛt

dt

†
dÛt

dt
dt (13)

=

∫ t=τ

t=0

√
2nTr

(
−iĤtÛt

)† (
−iĤtÛt

)
dt

=

∫ t=τ

t=0

√
2nTr

(
Û−1
t Ĥ2

t Ût

)
dt

=

∫ t=τ

t=0

√
2nTr

(
Ĥ2

t ÛtÛ
−1
t

)
dt

=

∫ t=τ

t=0

√
2nTr

(
Ĥ2

t

)
dt

Notice that the dependence on the operator Ût has disappeared. This reduces,
in the case of time-independent Ĥ, to:

L[Ût] =

∫ t=τ

t=0

√
2nTr Ĥ2 dt = τ

√
2nTr Ĥ2 (14)

2.4 A Bound on the Orthogonality Time

To illustrate the relationship between point to set distances on the special unitary
group and speed limits for state transfer problems, we include our deviation of a
bound on the orthogonality time (for time-independent systems) similar to the
Margolus-Levitin bound.

Consider the shortest time that 〈ψ0|ψt〉 = 〈ψ0|Ût|ψ0〉 = 0 can be achieved.
This is the same as the shortest time in which the time evolution operator can
be driven from Î to some Ût achieving this. Any such Ût achieving this, for a
time-independent system, must have the following form for some unitary change
of basis matrix V̂ , some unitary Â and some θ ∈ [0, 2π]:

Ût = exp (−itĤ) = V̂ †B̂V̂ (15)

where

B̂ =

⎛⎜⎜⎜⎜⎜⎝
0 − exp(−iθ) 0 . . . 0

exp(iθ) 0 0 . . . 0
0 0
...

... Â
0 0

⎞⎟⎟⎟⎟⎟⎠ (16)

Consider the function fp : SU(N)→ R (for p ≥ 1) defined as:

fp(Â)
def
= Tr

(∣∣∣log(Â)∣∣∣p) (17)

204 B. Russell and S. Stepney

where |Â| =
√
Â†Â . Applying this function to both sides of eqn.(15) gives:

Tr(| − itĤ|p) = Tr(| log(V̂ †B̂V̂)|p) (18)

This implies:

tp Tr(|Ĥ |p) =Tr(| log B̂|p) (19)

=Tr(| log
(

0 − exp(−iθ)
exp(iθ) 0

)
|p) + Tr(| log Â|p)

≤Tr(| log
(

0 − exp(−iθ)
exp(iθ) 0

)
|p) = 2πp

2p

Taking the pth root of each side yields the bound:

t ≥ 2
1
pπ

2Tr(|Ĥ |p)
1
p

=
π

2

(
2

Tr(|Ĥ |p)

) 1
p

(20)

This is similar to, but not as strong as, the bounds given in [9]. As in [9], it is
possible to optimise this bound, to:

t ≥ min
ε∈R

π

2

(
2

Tr(|Ĥ + εÎ|p)

) 1
p

(21)

by reassigning a new ground state energy.
This bound coincides with the Margolus-Levitin bound for a two level system

and p = 1. This bound with p = 2 corresponds to the bound arising from the
metric induced by the Killing form.

3 Speed Limits for Time Dependent Controls with
Constraints

A mathematical method for obtaining answers to the following questions about
a time-dependent quantum system with constrained control functions is relevant
to quantum computing:

1. Given two states, what is the least time the system can transfer between them
(if the constraint permits this transformation) and which control functions
cause this to happen?

2. Given a desired time evolution operator, what is the least time the system can
transfer from the identity on the unitary group to it (if the constraint permits
this transformation) and which control functions cause this to happen?

In many physically plausible cases, the time-dependent Hamiltonian for a can-
didate system for the implementation of quantum gates can be cast in the form:

Ĥ(t) = Ĥint +

M∑
n

fn(t)Ĥn (22)

Geometric Methods for Analysing Quantum Speed Limits 205

where Ĥint is the time-independent portion of the Hamiltonian; M is the num-
ber of control functions; fn are control functions, and Hn is the nth control
Hamiltonian.

3.1 Constraints as Submanifolds of su(N)

Consider a system with Hamiltonian Ĥ(t) given as in eqn.(22). One can form
a geometric interpretation of a constraint on the control functions fn by con-
sidering the relationship between a constraint given (perhaps implicitly) by an
equation of the form F (f1, . . . , fM) = c and submanifolds of the tangent spaces
to SU(n).

In cases where F : RM → R is a sufficiently smooth function the level sets
{(f1, . . . , fM) ∈ RM s.t. F (f1, . . . , fM) = c} foliate RM . The intuitive picture
of a level set in this context is given by imagining the set of all vectors in a vector
space with the same length according to some norm. That is: each level set is
a disjoint submanifold of RM ; each level set has the same dimension (M − 1);
the union of all levels sets is RM . These level sets can be carried over to the
tangent spaces to SU(N) at each point Â ∈ SU(N), TÂSU(n), by considering
the submanifold of tangent vectors compatible with the constraint given. This
set can be expressed as:

AF
def
=

{
iĤ ∈ TÂSU(n) s.t. Ĥ = Ĥint +

M∑
n=0

fnĤn, F (f1, . . . , fM) = c

}
(23)

3.2 Sphere Bundles and Speed Limits

We now consider the relationship between speed limits arising from a constraint
F on the control functions and a special type of Riemannian metric on SU(n).
For the purpose of simplifying the statement of the following theorem, define:

Definition 1. A smooth parametrised curve Û(t) ∈ SU(n) (parametrised by
t ∈ [0, τ]) is said to be Constraint Compatible for a constraint function F if
∀t ∈ [0, τ], dÛ/dt ∈ AF .

Theorem 1. Each Riemannian metric g : TSU(n)× TSU(n) → R on SU(n)
s.t. ∀Â ∈ AF , g(Â, Â) ≤ 1 satisfies for each smooth, constraint compatible curve
on Û(t) ∈ SU(n):

L[Û(t)] ≤ τ (24)

Proof.

L[Û(t)] =

∫ t=τ

t=0

√
g(Â, Â) dt ≤

∫ t=τ

t=0

1 dt = τ (25)

��

206 B. Russell and S. Stepney

4 Application to Spin Chains

We now apply these results to a specific quantum system of relevance in quantum
computing: a spin chain. A controlled Heisenberg spin chain of N spins (with
coupling constants Jx, Jy, Jz has Hamiltonian [12]:⎛⎝ ∑

k∈{x,y,z}
Jk

(
N−2∑
n=0

Î⊗
n

2 ⊗ σk ⊗ σk ⊗ Î⊗
N−n−2

2

)⎞⎠ (26)

+

(
N−1∑
n=0

fn(t)Î
⊗n

2 ⊗ σz ⊗ Î⊗
N−n−1

2

)

Apply the constraint that the total energy used to produce the control functions
is less than κ2, to obtain:

N−1∑
k=0

fn(t)
2 ≤ κ2 (27)

This implies (after some algebra) the following theorem:

Theorem 2. The Riemannian metric that is the largest multiple of the Killing
form of su(2N) such that all controlled Heisenberg model Hamiltonians (with N
spins) that obey the constraint satisfy gop(Ht, Ht) ≤ 1 is given by:

gop(x, y) =
−B(x, y)

2N+1
(
(N − 1)(Jx

2 + Jy
2 + Jz

2) + κ2
) (28)

=
Tr(x†y)

(N − 1)(Jx
2 + Jy

2 + Jz
2) + κ2

Proof. Omitted: simple but laborious.

This theorem, combined with eqn.(25), yields:

τ ≥
∫ t=τ

t=0

√
gop(Ĥt, Ĥt) dt (29)

=
1√

(2N+1)
(
(N − 1)(Jx

2 + Jy
2 + Jz

2) + κ2
) ∫ t=τ

t=0

√
−B(−iĤt,−iĤt) dt

(30)

=
1√

(N − 1)(Jx
2 + Jy

2 + Jz
2) + κ2

∫ t=τ

t=0

√
Tr(Ĥt

2
) dt (31)

for any values of the control functions. We appeal to the following facts:

1. The one parameter subgroups of unitary groups are the geodesics of the
Killing form since it is (strictly −B is the metric) a bi-invarient metric [8].

Geometric Methods for Analysing Quantum Speed Limits 207

2. Stone’s theorem [13] guarantees that the one parameter subgroups take the
form exp(−itĤ) for some hermitian Ĥ , which is nothing other that the form
of the time evolution operator for a time independent quantum system with
Hamiltonian Ĥ .

Using these, the known length of the appropriate geodesic (which can be readily
calculated by finding the length of the one-parameter subgroup connecting the
identity to the desired transformation according to the metric given by −B),
and statements made above, we get:

τ ≥ 1√
(2N+1)

(
(N − 1)(Jx

2 + Jy
2 + Jz

2) + κ2
) ∫ t=τ

t=0

√
−B(−iĤt,−iĤt) dt

(32)

≥ π√
(N − 1)(Jx

2 + Jy
2 + Jz

2) + κ2
(33)

Thus we conclude that a Heisenberg spin chain with N spins, constrained as
described, cannot transfer from one state to an orthogonal state in less time
than:

τ ≥ π/

√
(N − 1)(Jx

2 + Jy
2 + Jz

2) + κ2 (34)

The uniqueness properties of the Killing form guarantee that this is the best
(largest lower bound on t) speed limit available from any bi-invariant, unitarily
invariant metric, as any such metric is a multiple of the Killing form and gopt is
the largest multiple meeting the premises of theorem eqn.(1).

5 Conclusions and Further Work

We have demonstrated the use of geometric formalisms in deriving time bounds
on quantum systems. We have used this approach to rederive known results in
a more compact and elegant manner. More importantly, the new formulation
allows us to extend the approach to time dependent and constrained systems, as
relevant to quantum computation. We have demonstrated this for a spin chain
system.

Next steps include:

– Determining which metric-like structures on unitary group can be used to
derive quantum speed limits, including an investigation into the possible
role of Finsler functions as these generalise Riemannian metrics but can still
produce speed limits.

– Understanding more clearly the relationship between problems 1 and 2 (as
discussed in §3). Understanding this relationship in terms of homogeneous
spaces (in the sense that CPN ∼= SU(N)/U(N − 1)) and Riemannian sym-
metric spaces. Are metric-like structures on special unitary groups the best
method for deriving speed limits for state transfer problems 1 or do metrics
on complex projective spaces suffice.

208 B. Russell and S. Stepney

– Extending the analysis of the relationship between constrained control func-
tions and geometric derivations of quantum speed limits, to determine which
classes of metric-like structures can yield speed limit theorems for which
classes of constraints.

– Extending the approach to other Hamiltonian systems, particularly to inves-
tigate how quickly one can transfer from a separable state to a maximally
entangled state in the presence of constrained constrol functions.

Acknowledgements. We would like to thank Sam Braunstein for many helpful
discussions, and Eli Hawkins for much input, particularly his observations on
theorem (1). Russell is supported by an EPSRC DTA grant.

References

1. Andrecut, M., Ali, M.K.: The adiabatic analogue of the Margolus–Levitin theorem.
Journal of Physics A: Mathematical and General 37(15), L157 (2004)

2. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its
applications. Physics Reports 470(5-6), 151–238 (2009)

3. Bump, D.: Lie Groups. Springer (2004)
4. Gasiorowicz, S.: Quantum Physics. John Wiley & Sons (1995)
5. Jia, B., Lee, X.-G.: Quantum states and complex projective space. ArXiv Mathe-

matical Physics e-prints (2007)
6. Jones, P.J., Kok, P.: Geometric derivation of the quantum speed limit. ArXiv

Mathematical Physics e-prints 82(2), 022107 (2010)
7. Knapp, A.W.: Lie Groups Beyond an Introduction. Progress in Mathematics.

Birkhäuser, Basel (2002)
8. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley (1996)
9. Lee, K.-Y., Chau, H.F.: Relation between quantum speed limits and metrics on

U(n). Journal of Physics A Mathematical General 46(1), 015305 (2013)
10. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047–1054

(1999)
11. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys-

ica D120, 188–195 (1998)
12. Mohn, P.: Magnetism in the Solid State: An Introduction. Springer (2003)
13. Stone, M.H.: On one-parameter unitary groups in Hilbert space. Ann. Math. 33(2),

643–648 (1932)
14. Wells, R.O.N.: Differential Analysis on Complex Manifolds. Graduate Texts in

Mathematics. Springer (1980)
15. Werschnik, J., Gross, E.K.U.: Quantum Optimal Control Theory. ArXiv e-prints,

arXiv:0707.1883 (July 2007)
16. Zwierz, M.: Comment on “Geometric derivation of the quantum speed limit”.

ArXiv Mathematical Physics e-prints 86(1), 016101 (2012)

Numerical Analysis of Quantum Speed Limits:

Controlled Quantum Spin Chain Systems
with Constrained Control Functions

Benjamin Russell and Susan Stepney

Department of Computer Science, University of York, UK, Y010 5DD
{bjr502,susan.stepney}@york.ac.uk

Abstract. We are interested in fundamental limits to computation im-
posed by physical constraints. In particular, the physical laws of motion
constrain the speed at which a computer can transition between well-
defined states. Certain time bounds are known, but these are not tight
bounds. For computation, we also need to consider bounds in the pres-
ence of control functions. Here, we use a numerical search approach to
discover specific optimal control schemes. We present results for two cou-
pled spins controlled in two scenarios: (i) a single control field influencing
each spin separately; (ii) two orthogonal control fields influencing each
spin.

1 Introduction

Computers operate under physical laws, which constrain their operation. In par-
ticular, the physical laws of motion constrain the speed at which a computer can
transition between well-defined states.

In the case of quantum systems, certain fundamental bounds on these transi-
tion times are known. The Margolus-Levitin bound [5] demonstrates the limit to
the speed of dynamical evolution of any quantum system with a time-independent
Hamiltonian as imposed by the energy expectation. This and other such speed
limit bounds have an interpretation in terms of the maximum information pro-
cessing rate of a quantum systems [4]. This bound complements the Mandelstam-
Tamm inequality [12], a bound to the speed of dynamical evolution of a quantum
system in terms of the energy uncertainty.

When considering a quantum computer, we consider a system A implement-
ing a computation and a system B producing the control fields specifying the
particular computation. Together these can be considered to be subsystems of a
larger quantum system A⊗B. This highlights that the control functions are im-
plemented by some quantum system, and the limits quantum mechanics places
on the dynamics of the system producing the control fields places limits on the
control fields themselves. Hence, as well as the computational system A, the
control functions B are also subject to physical constraints.

These constraints arise variously. The energy available for the production of
control fields limits is one obvious restriction. However there are other limita-
tions that arise from physical constraints, presented by physical laws rather than

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 209–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

210 B. Russell and S. Stepney

engineering difficulties or limitations on resources, on the devices producing the
control fields. For example, allowing more energy to produce the control fields
could allow the production of fields with greater amplitudes, however, no amount
of energy could facilitate any part of the device producing control fields to move
faster than the vacuum speed of light; this can constrain the frequency of time-
varying fields. Ultimately the device producing the control fields is subject to
the laws of quantum mechanics and relativity, which limit the detail with which
a control field can be specified, and the rate at which it can change in time.

As a consequence, when attempting to understand the physical limits to the
speed of quantum computers, we must also take into account the limits placed
on computation speed by constraints on the control functions.

First we introduce an exemplar problem and certain plausible constraints (§2).
Next we describe the optimisation problem approach (§3). Then we describe the
numerical approach we use for finding optimal solutions (§4). We then apply this
approach to a two-bit chain, deriving specific results (§5).

2 The Exemplar Problem

2.1 Heisenberg Spin Chain

To investigate the effect of constraints on the control function, we consider an
exemplar problem relevant to quantum computation: a controlled Heisenberg
spin chain of N spins (with coupling constants Jx, Jy, Jz . This has Hamiltonian
[6]:

∑
k∈{x,y,z}

Jk

(
N−2∑
n=0

Î⊗
n

2 ⊗ σk ⊗ σk ⊗ Î⊗
N−n−2

2

)
(1)

+

N−1∑
n=0

gn(t)Î
⊗n

2 ⊗ σz ⊗ Î⊗
N−n−1

2

+

N−1∑
n=0

hn(t)Î
⊗n

2 ⊗ σy ⊗ Î⊗
N−n−1

2

where: σk is the kth standard Pauli matrix; the gn and hn represent the externally
generated, potentially time-dependant, control fields in the z and y directions
respectively. For the case of a single, z direction, control field per spin, the hn
are zero.

Two central problems in quantum optimal control are: 1) Determine whether
or not a specific system can implement a desired unitary time evolution (control-
lability); and, if so, 2) how quickly this desired transformation can be achieved
(time optimality) [11]. It is the second of these, specifically for a Heisenberg
model spin chain, that we address here.

Numerical Analysis of Quantum Speed Limits 211

2.2 Band-Limited Fourier Series for Representing Control
Functions with Bounded Rate of Change

In [8] we study geometric methods for determining speed limits on implement-
ing quantum information processing tasks in the presence of constraints of the
control functions of a constrained quantum system. There, no comment is made
about constraints on the time derivatives of the control functions. Such con-
straints represent the maximum rate at which a control function can change.
Here, we have chosen to represent control functions gk(t) (t ∈ [0, τ], τ ≤ 1)
which have bounded rate of change by band-limited Fourier series:

gk(t) =
ak,0
2

+

M∑
m=1

(ak,m sin(mt) + bk,m cos(mt)) (2)

where the relationship between the Fourier coefficients {ak,m, bk,m} and the con-
trol function gk are given by the usual formula. (For simplicity in the following
discussions we ignore the orthogonal control field hk; they are either treated
analogously to the gk in the two control field case, or are zero in the one control
field case.)

We can easily find a bound on the magnitude of the derivative of each control
function gk in terms of its degree of band-limiting M and its largest Fourier
coefficient Ak = max{|ak,m|, |bk,m|}:∣∣∣∣ ddtgk(t)

∣∣∣∣2 =

∣∣∣∣∣ ddt
M∑

m=1

(ak,m sin(mt) + bk,m cos(mt))

∣∣∣∣∣
2

(3)

=

∣∣∣∣∣
M∑

m=1

m (ak,m cos(mt)− bk,m sin(mt))

∣∣∣∣∣
2

(4)

≤
M∑

m=1

m2 |ak,m cos(mt)− bk,m sin(mt)|2 (5)

≤
M∑

m=1

m2
(
a2k,m cos2(mt)− ak,mbk,m sin(2mt) + b2k,m sin2(mt)

)
(6)

≤
M∑

m=1

m2
(
a2k,m + b2k,m + 1

)
(7)

≤ (2Ak + 1)

M∑
m=1

m2 = (2Ak + 1)M(M + 1)(2M + 1)/6 (8)

2.3 Band-Limited Fourier Series for Representing Control
Functions with Bounded Power

In this band-limited Fourier representation, the constraint that the total energy
used to produce each of the control fields individually (the power) is bounded

212 B. Russell and S. Stepney

by κ takes a simple form due to Parseval’s theorem. The desired constraint is:∫ τ

0

g2k(t)dt ≤ κ2 (9)

which represents the constraint on the total power used in the production of the
control fields. Parseval’s theorem tell us that:∫ τ

0

g2k(t)dt =
1

τ

M∑
m=0

(
a2k,m + b2k,m

)
(10)

3 Optimisation Problem

3.1 General Optimisation

We wish to find control functions which maximise functionals (whose relevance
is described in [1] and elsewhere) of the form:

F [g] = +Tr(Ô†Ût) (11)

where g is the vector of control functions for a controlled quantum system, Ô is
a desired unitary transformation and Ût is the time-evolution operator obtained
from applying the control functions to the system in question.

Maximising such functionals is equivalent to minimising the euclidean distance
between the operators Ô and Ût: ‖Ô−Ût‖2 = Tr((Ô−Ût)

†(Ô−Ût)). This can be
see by expanding out the right hand side and discarding terms that are constants
as they have no effect on the optimisation.

3.2 Goal Operators

We need to choose specific unitary transformations as candidates for optimisa-
tion (the Ô transform in eqn (11)). Permutation matrices are clearly unitary as
they are orthogonal, and they are suitable initial candidates for goal operators.

As the n × n permutation matrices over C are a faithful representation of
the symmetric group of all permutations of n letters [7], there will be n! such
matrices. In the case of a system of N qubits, the time evolution operator is a
2N × 2N matrix, and thus we consider all permutation matrices of the same size
as potential goal operators.

There are (2N)! such matrices. For aN = 2 system, there are 24 such matrices.
The identity can be excluded from further consideration as it can be trivially
‘implemented’ by any quantum system: after no time, nothing happens!

4 Numerical Method

4.1 Gradient Descent

Consider the problem of optimising (minimising) a function f : RN → R (for
some N ∈ N). If one were performing gradient descent to minimise (assuming

Numerical Analysis of Quantum Speed Limits 213

Algorithm 1. Gradient descent pseudo-code

1: x := random vector
2: while f(x) ≤ threshold do
3: x′ := x + move size * random unit vector
4: Δ := f(x′)− f(x)
5: if Δ < 0 then
6: x := x′

7: end if
8: end while

the existence of at least a single minimum) such an f , starting from a randomly
chosen initial condition, then algorithm 1 would describe the method.

The ‘Grape’ (Gradient Ascent Pulse Engineering) algorithm for the discovery
of control schemes has been well studied in the context of quantum computing
and quantum optimal control in the presence of constrained control functions
[9], [10]. It facilitates applying an iterative gradient ascent (or descent depending
on the problems formulation, the two are equivalent) method to find control
functions which maximise functionals of the form of eqn.(11).

The control ‘landscape’ for such functionals has also been studied [2], and
has been found to potentially possess multiple optima. In the presence of local
optima, gradient ascent methods of optimisation can become ‘trapped’. Hence
one needs a more sophisticated search algorithm.

4.2 Simulated Annealing

Simulated annealing (SA) [3] is an alternative method to gradient descent for
optimising a (real valued, sufficiently smooth) function of several (finitely many,
real valued) variables that attempts to overcome the difficulty of local optima.

SA varies the gradient descent method by including a probabilistic accep-
tance of non-improving moves, in order to escape from local optima. In order to
achieve this, a ‘cooling schedule’ is introduced via the introduction of a global
‘temperature’ variable that decreases as the system ‘cools’. When the system is
‘hot’ there is a relatively high chance of accepting a non-improving move, but
after it has cooled significantly, this probability drops to zero. The probability
of accepting a non-improving move is given by the Boltzmann distribution.

Algorithm 2 describes the method. Here T0 is the initial temperature, and
δT controls the cooling rate. These parameters are to be chosen according to
the specific application; there is no known general principle for choosing the
most effective values and experimentation is frequently needed to find effective
values [3].

4.3 SA for Constrained Fourier Series

In order to impose constraints, we augment standard SA with a rejection sam-
pling method; moves are allowed only if the proposed new state does not violate
the constraint.

214 B. Russell and S. Stepney

Algorithm 2. Simulated Annealing pseudo-code

1: x := random vector
2: T := T0

3: while f(x) ≤ threshold ∧ 0 ≤ T do
4: x′ := x + move size * random unit vector
5: Δ := f(x′)− f(x)
6: if Δ < 0 ∨ rand(0, 1) ≤ exp(−Δ/T) then
7: x := x′

8: end if
9: T := T − δT
10: end while

Algorithm 3. Simulated Annealing for constrained Fourier series pseudo-code
1: repeat
2: G := random vector
3: until C(G)
4: T := T0

5: while f(x) ≤ threshold ∧ 0 ≤ T do
6: repeat
7: G′ := G + move size * random unit vector
8: until C(G′)
9: Δ := f(G′)− f(G)
10: if Δ < 0 ∨ rand(0, 1) ≤ exp(−Δ/T) then
11: G := G′

12: end if
13: T := T − δT
14: end while

Rejection sampling is implemented by repeating the generation of x′ in the
SA algorithm 2 (line 4) until the constraint is satisfied.

Let G be the relevant vector of Fourier coefficients {ak,m, bk,m}. Let C()
be the Boolean-valued constraint on the Fourier coefficients. Then algorithm 3
describes our rejection sampling constrained SA method.

We use constrained SA to search for the Fourier coefficients for each of the
control functions. We impose the following fidelity constraint:

φ =

∫ τ

0

g2k(t)dt =
1

τ

M∑
n=0

(
an

2 + bn
2
)
≤ κ2 (12)

and we arbitrarily choose κ = 1 for convenience.

4.4 The Fitness Function

We analyse the effectiveness of constrained SA in the discovery of time optimal
control functions that result in a spin-chain systems implementing a permutation

Numerical Analysis of Quantum Speed Limits 215

of set of (orthonormal) basis vectors. This can be achieved by considering func-
tionals of the form:

F [g, τ] = +Tr(P̂ †Ûτ)− τ2 (13)

where P is a permutation matrix (see § 3.2). Here we are maximising F ; the τ2

term is included to ‘punish’ slow implementations and reward faster ones.
In order to find time optimal solutions, we vary the Fourier coefficients of the

control functions as described in algorithm 3; we also vary τ (the time the spin
chain’s dynamics is evolved for in order to calculate the fitness function) by a
random amount between −0.001 and 0.001 with each iteration of SA. This is
performed at the same step of the algorithm as varying the Fourier coefficients
(algorithm 3, line 7). A similar method of rejection sampling is used to prevent
τ becoming negative.

The simulation was performed using a standard geometric integrator build
into the Matlab symbolic math package.

In the SA process, the termination criterion was chosen so that the algorithm
would terminate only if a fitness of F ≥ 0.7 was achieved (eqn.(13)), and a fidelity
of φ ≥ 0.92 was achieved (eqn.(12)), or 500 iterations had been performed.

5 Results

We present the results for six specific permutations (§3.2) in table 1. These demon-
strate all the behaviours exhibited by the SA algorithm during our experiments.

Throughout our investigation we choose the Fourier band limit (eqn.(2)) to
be M = 5.

5.1 Two Qubits, Each with Two Orthogonal Control Fields

In the two control field case (hn �= 0), we found the algorithm to exhibit a variety
of behaviours with the parameters chosen. We saw three types of run:

1. The matrices which achieved a fidelity of greater than 0.92 converged quickly
(in about 200 iterations). The reduction of the gate implementation time as
the SA proceeded did not seem to limit the progress towards a high fidelity
control scheme. This suggests that the algorithm did not find solutions ap-
proaching the time optimal ones, as no trade off between fidelity and time
optimality was observed. An example graph of the progress of fidelity during
such a run of SA can be seen in fig.1, and for the progress of implementation
time in fig.2.

2. Some of the matrices which did not achieve a fidelity of greater than 0.92
seemed to stagnate in their progress to increasing fidelity as the implemen-
tation time reached a critical low point. These ‘stagnation points’ occur at
a fidelity of around 0.5 − 0.6; after this little progress was made before the
algorithm timed out. This suggests that a point was reached where time op-
timality and fidelity were in direct conflict. An example graph of the progress
of fidelity during such a run of SA can be seen in fig.3; and for the progress
of implementation time in fig.4.

216 B. Russell and S. Stepney

Table 1. 2-qubit results with one and two control fields per qubit

P 1 control field (g) 2 control fields (g, h)
max fidelity φ min time τ max fidelity φ min time τ

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
0.057 0.499 0.540 0.456

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
0.563 0.564 0.553 0.486

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
– – 0.92 0.679

(
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

)
– – 0.587 0.592

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
– – 0.92 0.693

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
0.078 0.854 0.92 0.693

3. Other matrices which did not achieve a fidelity of greater than 0.92 seemed
to be progressing but simply too slowly to achieve a suitable result before
the 500 iteration timeout. Further work will include extending the timeout,
with better “stagnation” detection.

This collection of behaviours suggest that a modification to the fitness function
is needed. High fidelity is essential for the implementation of quantum gates,
and should be given a higher precedence over time optimality. A fitness function
that rewards both speed and high fidelity, but without allowing time optimality
to compromise fidelity, is needed. The search for such a fitness function will also
be the basis for further work.

Some of the optima found in the two control fields per qubit cases are close
to the global ones (in terms of the fidelity alone, not time optimality); in future
work the control schemes found with the SA method will be compared explicitly
to theoretical optima for time optimality. The cases this applies to are those
with two control fields per qubit which reached a fidelity of 0.92 or greater.

The results attempt to provide a minimum implementation time, given the
energy constraint or at least to demonstrate that the SA method is capable or
providing such information about a system. This will allow us to investigate the
tightness of speed limit bounds for specific quantum operations.

Numerical Analysis of Quantum Speed Limits 217

Fig. 1. Progress of fidelity φ in a two field case where convergence occurred

Fig. 2. Progress of implementation time τ in a two field case where fidelity convergence
towards 1 occurred

Fig. 3. Progress of fidelity φ in a two field case where stagnation occurred

218 B. Russell and S. Stepney

Fig. 4. Progress of implementation time τ in a two field case where stagnation occurred

5.2 Two Qubits, Each with a Single Control Field

In the case of two qubits each with a single control field, the results were found
to be less promising, and no fast, high fidelity schemes were found. What was
observed was either the SA converged to a solution with fidelity far from one,
or it failed to converge, with fidelity and implementation times remaining close
to their initial values until timeout (cases where this happened are marked −
in the results table 1). This may be because this system in question is simply
not ‘controllable’, and cannot implement the gate required, with the single field
constrained control functions of the form used. However, it is difficult to tell this
situation apart from a failure of the algorithm due to bad choice of parameters.

In the cases where convergence occurred, there was a similar pattern of search
behaviours as in the two control field case. Either a point where time optimal-
ity was hindering progress towards a higher fidelity solution was reached and
progress stagnated, or fidelity began to converge (frequently at about 0.5) as the
implementation continued to decrease the time, unhampered by the convergence
of fidelity. In the later cases the algorithm timed out, and it is apparent that a
higher timeout value is needed to probe this scenario further.

6 Conclusions and Further Work

We have introduced a form of SA, constrained SA, suitable for searching for
optimal solutions under constraints. We have found that this constrained SA
shows potential as an effective method for discovering optimal control schemes
for Heisenberg spin chains subject to constrained control functions. We have
also found that it opens many directions for future work. The approach is readily
extensible to other quantum computational systems, and to other constraints and
could be a good tool for studying constrained, quantum time optimal control.

The numerical results additionally provide information on the implementabil-
ity of specified gates using particular control schemes.

Next steps include:

Numerical Analysis of Quantum Speed Limits 219

1. a direct comparison of constrained SA to GRAPE
2. a comparison of the numerically discovered implementation time of optimal

control schemes to theoretical speed limit bounds
3. an investigation of the role of the Fourier band limit M on the time opti-

mality of control schemes discovered by constrained SA
4. an investigation of other relevant physical constraints
5. design of a better fitness function for SA so that fidelity is never compro-

mised.

Acknowledgments. We thank Simon Poulding for many helpful discussions.
Russell is supported by an EPSRC DTA grant.

References

1. Altafini, C., Ticozzi, F.: Modeling and Control of Quantum Systems: An Introduc-
tion. IEEE Transactions on Automatic Control 57, 1898–1917 (2012)

2. Hsieh, M., Rabitz, H.: Optimal control landscape for the generation of unitary
transformations. Phys. Rev. A 77, 042306 (2008)

3. Laarhoven, P.J.M., Aarts, E.H.: Simulated Annealing: Theory and Applications.
Springer (1987)

4. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047–1054
(1999)

5. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys-
ica D120, 188–195 (1998)

6. Mohn, P.: Magnetism in the Solid State: An Introduction. Springer (2003)
7. de B. Robinson, G.: Representation theory of the symmetric group. Edinburgh

University Press (1961)
8. Russell, B., Stepney, S.: Geometric methods for analysing quantum speed limits:

Time-dependent controlled quantum systems with constrained control functions.
In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 198–208. Springer, Heidelberg (2013)

9. Schulte-Herbruggen, T.: Controlling quanta under constraints (2007), presentation
http://www.impan.pl/BC/Arch/2007/CCQ/Schulte-Herbrueggen.pdf

10. Schulte-Herbruggen, T.: Quantum compilation by optimal control of open systems
(2007), presentation http://www.physik.uni-siegen.de/quantenoptik/events/

marialaach07/schulte-herbrueggen marialaach07.pdf

11. Werschnik, J., Gross, E.K.U.: Quantum Optimal Control Theory. ArXiv e-prints
(July 2007), arXiv:0707.1883 (quant-ph)

12. Zwierz, M.: Comment on “Geometric derivation of the quantum speed limit”. Phys-
ical Review A 86, 016101 (2012)

http://www.impan.pl/BC/Arch/2007/CCQ/Schulte-Herbrueggen.pdf
http://www.physik.uni-siegen.de/quantenoptik/events/marialaach07/schulte-herbrueggen_marialaach07.pdf
http://www.physik.uni-siegen.de/quantenoptik/events/marialaach07/schulte-herbrueggen_marialaach07.pdf

Combinatorial Optimization in Pattern

Assembly�

(Extended Abstract)

Shinnosuke Seki

Helsinki Institute for Information Technology (HIIT),
Department of Information and Computer Science, Aalto University, P.O. Box 15400,

FI-00076, Aalto, Finland
shinnosuke.seki@aalto.fi

Abstract. Pattern self-assembly tile set synthesis (Pats) is an NP-hard
combinatorial problem to minimize a rectilinear tile assembly system
(RTAS) that uniquely self-assembles a given rectangular pattern. For
c ≥ 1, c-Pats is a subproblem of Pats which takes only the patterns
with at most c colors as input.We propose a polynomial-time reduction
of 3Sat to 60-Pats in order to prove that 60-Pats is NP-hard.

1 Introduction

Tile self-assembly is an algorithmically rich model of “programmable crystal
growth.” Well-designed molecules (square-like “tiles”) with specific binding sites
can deterministically form a single target shape even subject to the chaotic
nature of molecules floating in a well-mixed chemical soup. Such tiles were ex-
perimentally implemented as DNA double-crossover molecules in 1998 [7].

Shape-building is one primary goal of self-assembly; pattern-painting is an-
other. Based on the abstract Tile Assembly Model (aTAM) introduced by Win-
free [6], Ma and Lombardi have first shed light on this problem and formalized
it in the name of patterned self-assembly tile set synthesis (Pats) in [3,4]. Pats
aims at minimizing the number of tile types necessary for a rectilinear TAS
(RTAS) to uniquely assemble a given rectangular pattern.

Pats was recently proved to be NP-hard [1]. Nevertheless, it is not until the
number of colors available for input patterns is upperbounded by some constant
c ≥ 1 that Pats gets practically meaningful, as summarized in DNA 18 as: “any
given logic circuit can be formulated as a colored rectangular pattern with tiles,
using only a constant number of colors.” We call this variant the c-Pats. The
main contribution of this paper is to prove the next theorem.

Theorem 1. 60-Pats is NP-hard.

� The author appreciates valuable comments from Ho-Lin Chen, David Doty, and the
anonymous referees on the earlier version of this paper. This work is financially aided
by HIIT Pump Priming Grant No. 902184/T30606.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 220–231, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combinatorial Optimization in Pattern Assembly 221

Fig. 1. (Left) Four tile types implement together the half-adder with two inputs A,
B from the west and south, the output S to the north, and the carryout C to the east.
(Right) Copies of the “half-adder” tile types turn the L-shape seed into the binary
counter pattern, whose origin is at the bottom-left corner as illustrated.

(2-Pats was claimed NP-hard [4], but the proof was incorrect, as noted in [1]).
A file including all figures in this paper in color can be found at the website of
the author (http://users.ics.aalto.fi/sseki).

2 Rectilinear TAS and c-PATS

This section begins with a terse explanation of rectilinear Tile Assembly System
(RTAS) using examples. Then we define c-Pats. An excellent introduction to
the fundamental model called the abstract Tile Assembly Model is in [5].

A (rectangular) pattern (of width w and height h) is a function from the
rectangular domain {(x, y) | x ∈ {0, 1, . . . , w − 1}, y ∈ {0, 1, . . . , h − 1}} to N.
We denote the image of a pattern P by color(P). That is, any color in color(P)
appears at least once on P . We say that P is k-colored if |color(P)| ≤ k.

The self-assembly of binary counter (Fig. 1) illustrates how a rectilinear TAS
(RTAS) works. A tile type is a square of some color whose four sides are labeled.
Hence a tile type is identified by its color and four labels, which are read in the
counter-clock wise order starting at north (N); for instance, the second orange
tile type in Fig. 1 (Left) is (1, 1, 0, 0, orange). Given a tile type t and a direction
d ∈ {N, W, S, E}, we denote by t(d) the label at d. Assume that there is an infinite
supply of copies of the four tile types (two blue, two orange) in Fig. 1; the copies
are simply called tiles. Using them, the RTAS tiles the plain delimited by the
L-shape (gray) structure called seed according to the following rule.

RTAS’s Tiling Rule: A tile can attach at a position (x, y) if its west label
matches the east label of the tile on (x − 1, y) and its south label matches
the north label of the tile on (x, y − 1).

This rule suggests that it is not until its west and south neighbors are tiled
that a position becomes attachable. At the initial time point, therefore, the sole
attachable position is (1, 1). See the L-shape seed in Fig. 1; a tile of type (1,

http://users.ics.aalto.fi/sseki

222 S. Seki

1, 0, 0, orange) can attach at (1, 1), while no tile of other three types can
due to label-mismatching. The attachment makes the two positions (1, 2) and
(2, 1) attachable. In this manner, the tiling proceeds from south-west to north-
east rectilinearly until no attachable position is left. After the attachment thus
terminates, the resulting pattern is considered the output and called terminal
pattern (assembly). The 5× 9 binary counter pattern in Fig. 1 is terminal.

A rectilinear TAS (RTAS) is a pair T = (T, σL) of a set T of tile types and
an L-shape seed σL. Its size is the cardinality of T . An RTAS is directed if there
are no distinct tile types t1, t2 ∈ T such that t1(W) = t2(W) and t1(S) = t2(S)
(the directedness of TASs is defined in a different but equivalent way). It is clear
from the definition that a directed RTAS generates a unique terminal pattern,
and in this case, we say that it uniquely self-assembles the pattern.

The pattern self-assembly tile set synthesis (Pats), proposed by Ma and Lom-
bardi [3], aims at computing the minimum size directed RTAS that uniquely
self-assembles a given rectangular pattern. (The solution to Pats is required to
be directed here, but not originally. This, however, does not change the prob-
lem, as being observed in [2].) Pats is an NP-hard problem [1]. By restricting
the number of colors c used to draw input patterns, a practically-meaningful
subproblem of Pats is formulated as follows.

Definition 1. c-colored Pats (c-Pats)
Given: a c-colored pattern P ;
Find: a smallest directed RTAS that uniquely self-assembles P .

In Sect. 4, we will prove that 60-Pats is NP-hard. This is done by a polynomial-
time reduction of 3Sat to the decision variant of 60-Pats: given a 60-colored
pattern and an integer n, decides whether there is a directed RTAS with at most
n tile types that uniquely self-assembles the given pattern.

3 Basic Combinatorial Results

Let us show several basic results on directed RTASs, which will be used later
in order to prove Theorem 1. Recall that an RTAS is directed if and only if it
contains no distinct tile types t1, t2 with t1(W) = t2(W) and t1(S) = t2(S). This
allows us to design a simple pattern P such that in order for any directed RTAS
to uniquely self-assemble a pattern including P , the RTAS must contain at least
2 tile types of some specific color. We introduce several such patterns below.

The binary counter pattern Pbc (Fig. 1) contains one of such pattern P . At
the positions (2, 2) and (4, 2) of distinct colors, an RTAS T must put tiles of
distinct types t1, t2 (there is no chameleon tile type). Moreover, in order for T
to be directed, either t1(W) �= t2(W) or t1(S) �= t2(S) must hold. The west and
south neighbors of these positions being all blue, the label discrepancy implies
that T contains blue tiles that disagree with each other on either east or north
labels, and hence, are of distinct types. This is formalized as follows.

Lemma 1. Let T be a directed RTAS that uniquely self-assembles a pattern P .
For a color i and positions (x1, y1), (x2, y2), if P (x1−1, y1) = P (x1, y1−1) =

Combinatorial Optimization in Pattern Assembly 223

Fig. 2. (Left) If this blue-orange subpattern is on a pattern P , a directed RTAS needs
at least 2 blue tile types and at least 2 orange ones in order to uniquely self-assemble
P ; (Right) This pattern has a directed RTAS contain at least 2 blue tile types.

Fig. 3. A 3-mosaic pattern Pmos(3) (the gray part can be regarded as the seed). Using
the 9 tile types shown right, an RTAS can uniquely self-assemble this pattern, and this
is the sole minimum tile set.

P (x2−1, y2) = P (x2, y2−1) = i but P (x1, y1) �= P (x2, y2), then T has at least
two tile types of color i.

Corollary 1. If a directed RTAS uniquely self-assembles a pattern on which the
pattern shown in Fig. 2 (Left) appears, then it has at least 2 blue tile types and
at least 2 orange tile types.

Another pattern of interest is shown in Fig. 2 (Right). With tiles of the same
type t at all the four blue positions, t would satisfy t(W) = t(E) and t(N) = t(S)
and hence a blue tile (of this type) would fill the orange position. Thus, in order
for a directed RTAS to assemble a pattern including this pattern, at least 2 blue
tile types are needed. This observation is formally described as follows.

Lemma 2. Let T be a directed RTAS that uniquely self-assembles a pattern P .
For a color i and a position (x, y), if P (x−2, y) = P (x−1, y) = P (x, y−1) =
P (x, y−2) = i but P (x, y) �= i, then T has at least two tile types of color i.

Mosaic Pattern. plays the critical role in the proof of Theorem 1. For k ≥ 1,
a k-mosaic pattern Pmos(k) has the property that if a directed RTAS uniquely
self-assembles a pattern including Pmos(k), then there are at least k− 1 colors in
color(Pmos(k)) such that the RTAS contains at least 2 tile types of the color.

Fig. 3 shows a 3-mosaic pattern. It contains 7 colors: white, blue, orange,
lined-black, lined-white, A, and B. Assume that the gray part allows us to encode
any information. How many tile types are necessary and sufficient for a directed
RTAS T to uniquely self-assemble it? Trivially, 7 types are necessary as there is
no chameleon tile type. The key issue is that in order for tiles tA and tB to attach

224 S. Seki

Fig. 4. The pattern P (φ) to which a 3Sat instance φ is reduced. The 3 black lines
represent variable wires, and the lowest one of width 2m + 2 is a fake one. Note that
this one stems from the right of PA, while the others originate from the seed.

at the positions A and B exclusively, they must receive different labels either
from the south or from the west. In other words, T must carry a 1-bit signal as
labels to these positions. Fig. 3 demonstrates that 9 types are enough by having
2 lined-black tile types and 2 lined-white ones carry the signal rightward (to
be A or not to be). The mosaic region is “thicker” in the sense that carrying
the signal through it costs more tile types. Indeed, no matter which path in the
region is taken, one encounters all of white, blue, orange positions. If it were
not for two white tile types, the signal is lost at the diagonal white stripes, and
this argument is valid also for blue and orange. As a result, extra 3 tile types
would be needed. As such, not only coloring (how many tile types to be drawn
by each color) but also label allocation is uniquely determined (up to renaming)
for smallest tile type sets. This unique label allocation plays a critical part in
the proof of Theorem 1.

4 Polynomial-Time Reduction of 3SAT to 60-PATS

Our proof of Theorem 1 takes the classic approach: a polynomial-time many-one
reduction from 3Sat to the decision variant of 60-Pats with n = 60 + 24. A
given instance of 3Sat is a formula φ that is a conjunction of clauses consisting
of exactly three literals (a variable or its negation); the m variables of φ are
indexed as v1, v2, . . . , vm. We will propose a pattern P (φ) to which φ is reduced
and a set T of 60 + 24 tile types with the following properties:

1. For any t1, t2 ∈ T , t1(W) �= t2(W) or t1(S) �= t2(S) holds;
2. P (φ) is a snapshot of the circuit called the 3Sat evaluator when it evaluates
φ to be true according to an assignment b given as input. Tiles in T enable
a directed RTAS to simulate the evaluation, which results in the unique
self-assembly of P (φ) from the L-shape seed encoding φ and b.

3. Any directed RTAS with less than 60 + 24 tile types cannot uniquely self-
assemble P (φ).

4. If a directed RTAS (T ′, σ′L) with |T ′| = 60+24 uniquely self-assembles P (φ),
then T ′ is isomorphic to T (up to label renaming) and σ′L encodes φ.

From the property 2, if an assignment b satisfies φ, then the L-shape seed that
encodes b and φ uniquely self-assembles into P (φ) using tiles in T of size 60+24.

Combinatorial Optimization in Pattern Assembly 225

Fig. 5. The 3Sat evaluator for the specific 3Sat instance (v4∨v3∨v2)∧(v4∨¬v3∨v1).
Literals (white stripes) are evaluated at substituters (blue squares), and the evaluation
(black stripes with a white arrow) is transmitted upward for the evaluation of clause
they belong to. The design principle works for arbitrary number of variables or clauses.
LED signals at the top indicate that the input satisfies Clause 1 but not Clause 2.

Moreover this RTAS is directed due to 1. Conversely, 3 and 4 mean that the sole
minimum (60+24 tile types) tile type set for P (φ) is T , and in order for a directed
RTAS with T to uniquely self-assemble P (φ), its seed must encode φ properly.
We design T so as for its tile types to evaluate φ according to an assignment
encoded on the L-shape seed. Since P (φ) is a snapshot for φ to be thus evaluated
true, the existence of such a minimum RTAS implies the satisfiability of φ. This
is an overview of the proof. We are going to see more details.

A blueprint of P (φ) in Fig. 4 shows that P (φ) is composed of four subpatterns:
3Sat evaluator pattern Peval(φ) and three gadget patterns PA, PB , PD, which
play an auxiliary role in verifying the properties 3 and 4 above.

4.1 3SAT Evaluator Pattern

Let us begin with the 3Sat evaluator pattern. It is designed based on a digital
circuit called the 3Sat evaluator for φ (see Fig. 5). Just as the name suggests,
it evaluates φ according to a given assignment. It must be noted first that this
circuit is designed to be planar (no wire goes over the others) and rectilinear
(signals always transmit from south-west to north-east). These properties enable
a directed RTAS to simulate this circuit, using tiles in T .

As input, the 3Sat evaluator for φ takes from the left an assignment b =
(b1, . . . , bm) according to which φ is evaluated, where b1, . . . , bm ∈ {0, 1} (0:false,
1:true). It is provided with m horizontal wires, which transmit the input right-
ward along with the index i of the variable they represent. It is also provided
with vertical wires, which represent literals in φ. We refer to the horizontal wire
for variable vi simply as the variable wire vi, and a vertical wire for literal vj
(resp. ¬vj) as a literal wire vj (resp. ¬vj). Any variable wire is connected with
any literal wire at their intersection by a device called substituters. At the in-
tersection of the variable wire vi and a literal wire vj or ¬vj , the substituter

226 S. Seki

Fig. 6. The 51 tile types (of 27 colors) to simulate the 3Sat evaluator by an RTAS.
Two tile types surrounded by the blue rounded rectangle are of the same color, though
they are drawn with different colors in order to clarify their roles.

compares their indices, and if i = j, it substitutes the Boolean value bi into
the literal by an XNOR gate and transmits the result to the north; otherwise, it
does nothing but merely “lets one go over the other.” For each clause, its three
literals thus evaluated are conjugated by three OR gates, which determine if the
clause is satisfied or not, and the evaluation is output at the top as LED signal
(red:unsatisfied, green:satisfied; see Fig. 5).

Now we propose a tile type set Teval (Fig. 6) with which a directed RTAS
simulates the 3Sat evaluator for φ according to an assignment b. It consists of
51 tile types of 27 colors: 1 type of each of 9 colors c1,1, c1,2, . . . , c1,9, 2 types
of each of 15 colors c2,1, . . . , c2,15, and 4 types of each of 3 colors c4,1, c4,2, c4,3.
The assignment b = (b1, . . . , bm) and instance φ are encoded on the vertical
and horizontal axes of L-shape seed, respectively (see Fig. 7). Observe that a
variable vi is encoded with its assigned value bi as biv

2i while the literal vj and
its negation are encoded as l2j1 and l2j0 (1:positive, 0:negative), respectively.
There are two things to note. One is that on the vertical axis of the seed, the
variables v1, . . . , vm are encoded in this order from the top. The other is that
below the wire vm is another wire of width 2m+ 2 (see Fig. 4), which encodes
no variable but prevents us from cheating the reduction, as stated later.

Let Peval(φ, b) be the pattern that tiles in Teval self-assembles from the seed
(see Fig. 7). On it, any literal wire vj encounters the m variable wires. At its
intersection with the variable wire vi, a pattern that visualizes the mechanism of
substituter in the 3Sat evaluator self-assembles. See Fig. 8 (Middle). When the
wires meet, the check-start tile attaches and triggers the assembly of diagonal
zig-zag snake. When the snake hits the right periphery of the literal wire, one
of the 2 check tile attaches, and if the variable wire vi is waiting to its north
with the input bi (this happens if and only if i = j), one of the 4 XNOR tiles
selectively attaches, substitutes bi into the literal, and outputs the result to the

Combinatorial Optimization in Pattern Assembly 227

Fig. 7. Using tiles in the set Teval, this pattern uniquely self-assembles from the L-shape
seed that encodes a 3Sat instance with 3 variables v1, v2, v3 and a clause {v1,¬v2, v3}
with the assignment (1, 1, 1).

Fig. 8. Patterns occurring at the intersection of the literal wire v2 (Left) with the
variable wire v3, (Middle) with the wire for matching variable v2, or (Right) with the
variable wire v1 and with the thinnest possible wire, which encodes no variable.

228 S. Seki

north (1:true, 0:false; note that before and after the substitution, the signal 1/0
through a literal wire is interpreted in different ways). Fig. 8 also shows how the
literal wire goes over the variable wire without being substituted in other two
cases of i > j (Left) and i < j (Right). Until being substituted, the literal wire vj
has already crossed the variable wires vm, vm−1, . . . , vj+1, which are thicker than
itself, and it is going to cross the remaining variable wires vj−1, . . . , v1 in this
order, which are thinner, while carrying the substituted value. In its crossing a
thicker variable wire, tile types P and N (of color c1,5, . . . , c1,8) visually tell which
of 1/0 signal it carries, while its crossing a thinner one leaves no such visual clue.
Two facts of significance follow from this property. One is that any literal wire
encounters the thicker “fake” variable of width 2m+ 2 before being substituted
and leaves the visual evidence of whether the literal is positive or negative (this
information is encoded on the seed as labels, that is, invisibly). The other is
that the encounter order conceals from Peval(φ, b) any hint of what the encoded
assignment b is. OR tile types evaluate clauses as shown in Fig. 7.

The only positions on Peval(φ, b) whose color depends on the encoded assign-
ment b are the LED positions. Redrawing all these positions by green (satisfied)
yields the pattern Peval(φ). Further combining it with the three gadget patterns
PA, PB , PD gives the pattern P (φ). Besides the 27 main colors on Peval(φ), 33
auxiliary colors appear on the gadget patterns (A1-11 and AB1-4 on PA, B1-9
and BC1 on PB, and D1-7 and D-bg on PD), and in total, 60-colors are on P (φ).
The set T of 60 + 24 tile types we propose is the union of Teval and another set
Taux of 33 tile types of these auxiliary colors (one type per color). The space
is not enough to illustrate how a directed RTAS (T, σL) uniquely self-assembles
the whole pattern P (φ). Instead, Figs. 7, 8, 9, and 10 exhibit how tile types in
T self-assemble its essential components. It must be noted that PA, being thus
assembled, produces the fake variable wire of width 2m+2 below other variable
wires, as shown in Fig. 4.

Note that an unsatisfiable φ may admit another set of 60+ 24 tile types with
which a directed RTAS uniquely self-assembles P (φ). The gadget patterns rule
out this possibility and show that assemblability implies satisfiability.

4.2 Assemblability Implies Satisfiability

In the rest, we assume that the satisfiability of φ is not sure. Imagine then
that you are given 60+24 uncolored tile types, and asked to color them and
allocate labels to them so as for a directed RTAS with the resulting tile type set
to uniquely self-assemble P (φ). Then we will observe that this is possible only
when φ is satisfiable. This completes the proof of Theorem 1.

First of all, at least one tile type per color is trivially needed. On P (φ), we
then find subpatterns to which Lemmas 1, 2, and Corollary 1 are applied to
draw 6 of the remaining 24 uncolored ones by c2,1, . . . , c2,4, c2,5 (white), and c2,6
(black) (for instance, a subpattern for Corollary 1 is on the substituter pattern
in Fig. 8; compare it with Fig. 2).

The three gadget patterns are modifications of the mosaic pattern introduced
in Sect. 3. Their role is to cooperatively force us to draw the 18 uncolored

Combinatorial Optimization in Pattern Assembly 229

Fig. 9. A part of the gadget pattern PB . Thick black rectangulars indicate mosaics.

tile types in the same way as Teval, and furthermore, to allocate labels in the
isomorphic manner to Teval (see Fig. 6). More specifically,

PA: (This and PB play analogous roles. Since the space is limited and PA is
vertically long, we can only present a part of PB in Fig. 9.) PA is responsible
for the coloring and label allocation of tile types for upward signal trans-
mission (those of colors c2,12, . . . , c2,15, c4,1, c4,2, c4,3 in Fig. 6). Due to the
property of mosaic patterns, na ≥ 7 of the 18 uncolored tile types are to be
drawn by some of these 7 main colors and A1-8. Moreover, the number na
would become at least 8 (one uncolored tile type wasted) unless the choice
is for the 7 main colors and labels are allocated so as to transmit 0/1-signal
upward as corresponding tile types in Teval do (ref. Fig. 3). The isomorphic
label allocation will not have been settled until PB and PD are considered.

PB: See Fig. 9. This plays the analogous role to PA but rather for tile types
to transmit signals rightward (those of colors c2,7, . . . , c2,11, c4,1, c4,2, c4,3 in
Fig. 6). Among the remaining (at most 11) uncolored tile types, nb ≥ 8 are
to be drawn by some of the main 8 colors and B1-9. This has the preference
for the main colors as PA; that is, unless the choice is for the 8 main colors
and labels are allocated so as for them to transmit 0/1-signal horizontally,
nb would become at least 9. The right half of PB is responsible for the label
allocation, which we will discuss shortly.

PD: See Fig. 10. After PA and PB have been taken into account, at most 3
tile types remain uncolored. We claim that PD needs 3 uncolored tile types
no matter how we have drawn as well as allocated glues according to PA

and PB , and they are to be drawn with the colors c4,1, c4,2, c4,3. Hence,
the consumption of uncolored tile types due to PA and PB must have been
minimized, reflecting the preference of PA, PB for the Teval’s coloring and
glue allocation. In summary, c4,1, c4,2, c4,3 each is used to draw 4 tile types
(in total 12 tile types), c2,1, . . . , c2,15 each is used to draw 2 tile types (in
total 30 tile types), and the other colors including the auxiliary ones appear
on sole tile type.

Label Allocation. Having completed the coloring, we briefly explain the reason
why we must also allocate labels in such a way as shown in Fig. 6 at least for

230 S. Seki

Fig. 10. A part of the gadget pattern PD

colors that are responsible for transmitting or processing 0/1 signals for 3Sat
evaluation (in fact, this is enough).

For each of the colors c1,1, . . . , c1,9 and all auxiliary ones, there is only one tile
type of the color in our tile set. When a directed RTAS self-assembles P (φ) using
tiles in this set, therefore, at all positions of the color, tiles of this type attach. Let
t1, t0, teval be the sole tile types of the colors c1,1 (1), c1,2 (0), and c1,4 (c-eval
l-eval), respectively. On P (φ), there are two c1,4-colored positions whose north
neighbors are colored 1 and 0, respectively. Thus, t1(S) = t0(S) = teval(N). Since
we are constructing a tile type set for a directed RTAS, t1(W) �= t0(W) must
hold. Let t1(W) = 1 and t0(W) = 0 with 1 �= 0. The pattern 0 1 on PD sets
t0(E) = 1, and likewise t1(E) = 0. In the same manner, for the tile types tP , tN
with respective colors c1,7, c1,8, we have tP (W) = tN (W) and tP (N) = tP (S) �=
tN (N) = tN (S).

Now these four tile types t1, t0, tP , tN allocate labels to the other tile types.
For the label allocation to the 4 OR tile types (color c4,1), it should suffice to
refer to Fig. 10. The remaining part of PD (not shown in Fig. 10) is responsible
for thus allocating labels to the tile types of colors c4,2, c4,3. The one risk to be
taken into consideration resides in the 4 tile types for wire crossing (color c4,2). If
the north label of the (sole) tile type of color D1 is 1 and that of the D4-colored
one is 0, then the resulting 4 tile types for wire crossing certainly flips the signal
vertically. In order to render this conversion harmless, we encode the variable
vi for 1 ≤ i ≤ m − 1 (except vm) on the seed rather as biv

2i0; this produces a
wire at the lower end of the variable wire vi. As such, any signal certainly goes
through wire crossing even times, and the effect of signal flip is cancelled.

As for colors with two tile types, let us consider the two tile types tlb1, tlb2 of
lined blue color (c2,8). They must be allocated labels so as to transmit the 0/1-
signal horizontally and tlb1(S) = tlb2(S), due to PB. Besides the label allocation
shown in Fig. 6, there is another one: tlb1(W) = tlb2(E) = 1 and tlb1(E) = tlb2(W) =
0. These two allocations are equivalent in their signal propagation ability as
long as the signal propagation distance is even, and in fact, the pattern P (φ) is
designed so as to satisfy this property. The argument so far is also true for the
two tile types of lined black color (c2,7).

Combinatorial Optimization in Pattern Assembly 231

These tile types help to allocate labels to the tile types of the colors c2,9, c2,10,
and c2,11. See the right half of PB (Fig. 9), where a c2,9-position is sandwiched
by 0 and 1 indirectly. Let tfail1 be the tile type that attaches there. The east
label of t0, which is 1 as mentioned above, is transmitted to the right by tlb1, tlb2
and hence, tfail1(W) = t0(E) = 1. Similarly, tfail1(E) = t1(W) = 1. In this way, PB

also allocates labels to tfail2 as tfail2(W) = tfail2(E) = 0. This guarantees that an
assignment signal (0/1) is not converted by them (PB just guarantees that they
carry the 1-bit signal horizontally, and cannot rule out by itself the possibility
that these signals be flipping). Though being not included in Fig. 9, PB contains
an analogous pattern for two tile types of the other two colors.

Choice of Seed. The choice of assignment to variables, encoded on the vertical
axis, is at our will. Can we choose 0/1 for each literal likewise? If so, this reduction
could be fooled by encoding other 3Sat instance instead. The fake variable
wire prevents us from thus cheating since at the intersection with it, the 0/1-
information encoded on the seed is visually revealed as being explained before.

References

1. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the
framework of patterned DNA self-assembly. In: Stefanovic, D., Turberfield, A. (eds.)
DNA 18. LNCS, vol. 7433, pp. 58–72. Springer, Heidelberg (2012)

2. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-
assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 71–82.
Springer, Heidelberg (2011)

3. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE T. Comput.
Aid. D. 27(5), 963–967 (2008)

4. Ma, X., Lombardi, F.: On the computational complexity of tile set synthesis for
DNA self-assembly. IEEE T. Circuits-II 56(1), 31–35 (2009)

5. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: Proc. of STOC 2000, pp. 459–468 (2000)

6. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology (June 1998)

7. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998)

Towards Computation

with Microchemomechanical Systems

Andreas Voigt, Rinaldo Greiner, Merle Allerdißen, and Andreas Richter

TU Dresden, Center for Advancing Electronics Dresden and Chair of Polymeric
Microsystems,

01062 Dresden, Germany
andreas.richter7@tu-dresden.de

www.polymems.de

Abstract. Labs-on-chips are promising candidates for the realization
of chemical information systems, where data are embodied in the form
of chemical concentrations. In this paper we present the concept of
microchemomechanical systems, a lab-on-a-chip technology based on in-
trinsically active components. The active components are valves fabri-
cated from phase-changeable polymers that provide a direct feedback
mechanism and exhibit a transistor-like functionality. Therefore this mi-
crofluidic platform facilitates the realization of logic operations, if-then
structures and the sampling of chemical signals. In analogy with elec-
tronic von Neumann CPUs, control and execution unit are integrated on
a single chip. Due to the intrinsic activity of the valves and their small
size, microchemomechanical systems are highly suitable for large-scale
integration.

Keywords: phase-changeable polymers, hydrogels, chemical informa-
tion processing, microchemomechanical systems.

1 Introduction

Chemical information processing is based on the use of chemical concentrations
as carriers of information. The discovery of the Belousov-Zhabotinsky reaction at
the end of the 50s was a crucial step for this emerging field. Another important
cornerstone in the 80s was the proof, that light-sensitive Belousov-Zhabotinsky
chemicals can be used for chemical image processing [1]. In the 90s the construc-
tion of cellular automata based on reaction-diffusion processes was demonstrated
theoretically [2]. At the beginning of the current century it has been verified ex-
perimentally that reaction-diffusion systems can be used to set up logic gates [3].
It is worth noting, that the idea of chemical computation has developed to the
point, where its core concepts are utilized for software-based artificial chemical
computing schemes [4].

Fundamental logic computation schemes, including logic gates, flip-flops, coun-
ters, oscillators and modulators, have also been realized by Prakash and Gershen-
feld [5] with bubble microfluidics. The development of continuous microfluidics

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 232–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.polymems.de

Towards Computation with Microchemomechanical Systems 233

has been less advanced from a computational perspective. Currently large-scale
integrated microfluidics is dominated by microelectromechanical systems. The
flow is steered by use of valves that are operated by pneumatic control ([6],
[7], [8], [9]). Several thousand valves have been integrated onto a single chip.
However, since the valves have to be controlled by an external control unit, the
systems are expensive, and the further scalability may be limited. More impor-
tantly, there is no direct feedback mechanism between the fluids and the controls.
Looking at the success story of integrated electronic ICs, one can clearly see that
the inherent feedback mechanisms of electronic transistors was one of the key
factors.

We introduce the concept of microchemomechanical microfluidic systems
(μCHEMS) [10]. The valves used for flow control are based on phase-changeable
polymers. Their main advantage is the fact that they are active components
directly controlled by the fluid. As in the case of electronic von Neumann CPUs
both control unit and execution unit are integrated on the chip. The scalability
is not limited by the need of an external control. Furthermore the smart valves
have an inherent decision making ability. Therefore they are predestined for the
use in computing operations such as sampling, Boolean functions and if-then
structures. We see two possible applications for μCHEMS. Firstly they repre-
sent a “beyond CMOS technology” and may play an elemental role in the con-
struction of an unconventional computer. Secondly, the introduction of methods
from computer science, information theory and signal processing into microflu-
idics can provide a means for the construction of easier-to-operate, faster and
multi-functional systems for the analysis and synthesis of chemicals.

In section 2 we discuss the experimental foundation of μCHEMS, the smart
valves and their materials. In section 3 the theoretical foundation is laid out.
The terminology and methodology of chemomechanical information processing
and a comparison with von Neumann CPUs is shown. In section 4 we demon-
strate a microchemomechanical module for chemical sampling. In section 5 the
conclusion is given, and section 6 presents an outlook how to further broaden
the applicability of μCHEMS.

2 Experimental Foundations

2.1 Material Basis

The basis of the chemomechanical valves are phase-changeable polymers, i. e.
polymers that can change their properties, e. g. volume or mechanical charac-
teristics, at least once (without necessarily undergoing a phase transition). This
change in volume is used to open or close fluidic channels. Three types of poly-
mers are used in our research: a) conventional hydrogels, b) smart hydrogels, c)
soluble polymers.

Hydrogels are cross-linked polymers that significantly change their volume by
absorbing or releasing water. Conventional hydrogels undergo only one swelling
process, while stimuli-sensitive (smart) hydrogels undergo reversible and repro-
ducible volume phase transitions depending on small changes in environmental

234 A. Voigt et al.

Fig. 1. Closing valve made of sodium acrylate, a conventional hydrogel. The closing
procedure is initiated by the contact of the valve with water. (Scale bar 500 μm; water
colored by food color.)

parameters such as temperature, pH value or the concentration of a solute. We
employ sodium acrylate (SA), a conventional polyectrolytic hydrogel, which is
characterized by its fast swelling times [11]. As a smart hydrogel we employ
poly(N-isopropylacrylamide) (PNIPAAm) with swelling times typically two or-
ders of magnitude lower.

Soluble polymers are not cross-linked and hence do not absorb water like hy-
drogels but – due to the breakup of intermolecular polymer-polymer interactions
– they undergo a permanent dissolution process. The dissolution time depends
on the material used, the size and on the flow rate of the process medium, since
a saturation zone develops around the polymer in the process which has to be
removed for efficient dissolution. Polyethylene glycol (PEG) and Poly(vinyl al-
cohol) (PVA) are used for the opening valves in this work.

2.2 Valves

The unique feature of the valves used for flow control in μCHEMS is the fact that
they are controlled directly by the fluid and its constituents. This corresponds
to a decision making processes comparable to the control of electric currents in
transistors. Three different types of valves can be built from the materials men-
tioned above: a) water controlled closing valves, b) concentration/temperature
controlled valves, c) water controlled opening valves. It is important to note that
the switching times of the valves can be scaled over several orders of magnitude
[10]. This is crucial for the construction of microfluidic chips designed to perform
well-defined fluidic operations.

Towards Computation with Microchemomechanical Systems 235

Fig. 2. Opening valve made of polyethylene glycol (PEG), a dissolvable polymer. The
dissolution process is driven by the water streaming past the valve. (Scale bar 500μm;
water colored by food color.)

Water controlled closing valves (Fig. 1) are based on SA. They start swelling
the moment they get into contact with water and hence close the microchannel
after a defined time. Afterwards, the channel remains closed permanently. The
closing time can be defined by two parameters: i) The concentration of the cross-
linking agent N,N’-methylenebisacrylamide (BIS); this influences the stiffness
and hence the swelling time constant and the maximum swelling degree of the
gel ii) The ratio of the volume of the unexpanded gel to the volume of the valve
chamber. By appropriate choice of these parameters the closing time of the
valve can be scaled from milliseconds to minutes. The valves can be operated
with maximal back pressures between 60 and 75 kPa.

In contrast to the SA valves, concentration/temperature controlled valves
made of PNIPAAm can be closed and reopened over a lifetime of many cycles.
They change their state depending on the concentration of alcohol solvated in
water and on their temperature. Hence they are very versatile components that
have e. g. been used to build chemical transistors ([12], [13]) and chemostats [14].
Their switch time is typically in the range between minutes and hours.

Water controlled opening valves, based on soluble polymers, start to dissolve
the moment they are brought into contact with water. When the polymer layer
has dissolved to a certain thickness the valves is opened by a breakthrough
due to the pressure difference on the opposite sides of the valve, which is an
irreversible process. The opening time can be adjusted by choice of the material,
the geometry and the water flow rate. We use PEG as a material for our standard
opening valves (Fig. 2). Their opening times can be scaled between 20 s and 600 s.
PVA is used for thin large-area membranes separating chambers. The membrane
dissolution time is scalable between a few seconds and hours.

236 A. Voigt et al.

3 Theoretical Foundations

Here we present first considerations that will be useful for a future modeling
of μCHEMS systems. A complete model will also comprise a description of the
channel structure and the precise behavior of the valves. Promising approaches
for future simulations include the use of existing tools for electric circuits and
the set-up of a distinct model based on a 2d graph.

3.1 Terminology

A microchemomechanical processor (Fig. 3) has a number of inlets into which
a solvent (usually water) containing one or several solutes is pumped. The chip
itself consists of the channel structures, valves and – possibly – sensing devices
like fluorescence detectors and electrodes. It is useful to define a clear terminology
for a future description in terms of methods from mathematics, electronics or
computer science. The four most important characteristic terms are chemical
data, system state, input and output.

Chemical data are represented as concentrations ci(r, t) of different chemicals
(index i) on the chip. Chemical data can be manipulated in two ways: a) by
mechanical translation due to the pumping process for a given valve configura-
tion, b) by chemical reactions. Additionally there are diffusion processes which
can usually be neglected for transport, but can also be utilized for the mixing
of chemicals in reaction chambers or along long channels. It is useful to distin-
guish pure data chemicals from control chemicals, where control chemicals play
an active role in the switching of smart hydrogel valves.

The input is determined by the m inlets of a chip. If n chemicals are involved,
the complete input signals are given by an m×n matrix s11(t), ..., smn(t) where
the first index denotes the inlet and the second index denotes the chemical.
Usually most of the entries of the matrix will be zero. As with chemical data, it
is useful to distinguish between input control signals and input data signals.

There are several quantities that can serve as an output of microfluidic chips:
a) the fluid output at the p channel outlets t11(t), ..., tpn, b) the signals f1(t), ...,
fq(t) from q fluorescence detectors sensing chemical reactions, c) the signals
e1(t), ..., er(t) from r chemical sensitive electrodes.

The system state at time t is characterized by

1. The valve state: If there are u valves on the chip, this is a u-dimensional
vector v(t), where vi = 1 denotes that valve i is open, and vi = 0 denotes
that valve i is closed. Depending on the chip configuration it is more adequate
to treat these vector components as Boolean or as continuous values.

2. The data state, given by the totality of all chemical concentrations c1(r, t),
c2(r, t),...,cn(r, t) for all positions r.

Note that we have refrained from defining the term program. There are various
quantities or phenomena that bear resemblance to the normal usage of the word
“program”: a) the input control signal, b) the succession of valve states, c) the
succession of operations (pushing of fluids, chemical reactions).

Towards Computation with Microchemomechanical Systems 237

channel structure
valves

fluorescence detectors
electrodes

system state =

inlets

outlets

input s11(t),...,smn(t)

output t11(t),...,tpn(t)

signals f1(t),...,fq(t)
signals e1(t),...,er(t)

valve state v(t)
+ data state c1(r,t),...,cn(r,t,)

Fig. 3. Schematic overview of a microchemomechanical processor

3.2 Processing of Information

Mechanical translation of chemical concentrations is achieved by pumping the
fluids through the channels or into reaction chambers. Aside from the pump
parameters the effect of pumping is defined by the channel geometry and the
current valve state. To a good approximation the microfluidic chip is a linear
resistive network where the pumps may be either pressure sources (e. g. gravita-
tional pumping) or current sources (e. g. peristaltic pumps). However, in contrast
to electronics, where signals are transmitted by voltage or current variations, the
signals in microfluidic processors are not pressure waves or flow rate waves in
water. Instead the chemical concentration distributions are shifted with the flow
by convective transport.

Chemical reactions can take place, if at a position r the concentrations ci and
cj of two different chemicals Ai and Aj are unequal to zero. In principle the
reaction kinetics can be either stochastic [15] or deterministic [16]. For a small
number of molecules stochastic models have to be used, while for large numbers
of molecules the process can be considered deterministic [4]. In the simplest
deterministic case the following behavior occurs: In case a reaction

aAi + bAj → Al (1)

can happen, and if the reactions takes place in a single step without intermedi-
ates, the rate of reaction is given by

r = k cai c
b
j , (2)

238 A. Voigt et al.

Fig. 4. Analogy of micochemomechanical systems with electronic von Neumann CPUs

where k is the rate coefficient of the reaction. The temporal development of
chemical concentrations due to chemical reactions is governed by rate equations
of this or a more complex type.

Note that both mechanical transport and chemical reactions facilitate seve-
ral kinds of parallelizability, i. e. calculations occurring simultaneously. There
is a lateral parallelizability of processes that happen in different stream; there
is a longitudinal parallelizability of processes along the same stream; multiple
different chemical reactions may happen simultaneously.

For a mathematical description of the switching process of hydrogel valves it
is necessary to analyze the swelling (or deswelling) process. It is determined by
the diffusion of polymer chains into the solvent, the polymer-solvent interaction
energy and the rubber elasticity of the polymer network. An approximative de-
scription of the swelling process that is suitable in many cases has been given
by Tanaka [17], who proposes that it follows an exponential decay with a char-
acteristic time constant

τ = l2/D. (3)

Here l is the characteristic length scale of the hydrogel and D is the cooperative
diffusion coefficient that is assumed to be a constant specific for a certain hydro-
gel. This law applies both to conventional and smart hydrogels. The equilibrium
state of a smart hydrogel for a given set of external parameters results from a
balance of the mentioned chemical processes, where the fundamental equations
have been developed by Flory and Rehner ([18], [19]). In general the switch po-
sition of a smart hydrogel valve will be a sigmoid type function of the input
parameters:

s = fsigm(c1, ..., cn, T, pH, ...). (4)

3.3 Comparison with an Electronic Von Neumann CPU

One defining characteristic of electronic von Neumann CPUs is the fact, that
both control unit and execution unit are integrated on a single chip. In anal-
ogy a control unit and an execution unit – both on-chip – can be discerned for

Towards Computation with Microchemomechanical Systems 239

Fig. 5. The sampling module samples two different chemical signals and unites them
in a reaction chamber. (Scale bar 1mm; water colored by food color.)

Table 1. Characteristics of the valves used in the sampling module

valve material type time constant

1 SA closing 45 s
2 PVA opening 7min
3 PEG breakthrough -
4 PEG opening 3min
5 SA closing 3min

μCHEMS chips (Fig. 4). The control unit is responsible for generating a succes-
sion of valve states v(t). In MEMS chips this is achieved by a direct, external
control of the valves, i. e. the control unit is NOT integrated on the chip. In
μCHEMS chips the valves are controlled by the control substance. The succes-
sion of valve state v(t) results from the control signal(s) for a given channel
geometry and valve arrangement. There are various options for the architecture
of the control unit:

1. It can be in a layer separate from the data [20].
2. The control unit can be in the same layer as the data where the valves are

controlled by the presence of water.
3. There can be an arrangement where the control chemicals are the data chem-

icals of interest.
4. The control unit can be in the same layer as the data, where control chemicals

and data are different chemicals in the solution.

240 A. Voigt et al.

The execution unit manipulates the data states ci(r, t) (including the control
data). An elementary operation consists in the pumping process for one fixed
valve state.

4 Sampling of Chemical Substances

Equidistant sampling plays a crucial role in chemical analysis, e. g. in monitoring
of bioreactors, enzyme analysis, analysis of factors of growth and quality control.
We present a module for automated parallel sampling of two chemical input
signals (Fig. 5). The module is designed for cascading, leading to a repeated
sample process.

Medium 1 and medium 2 flow in different layers of the chip. Table 1 shows the
types of valves used in the module and their parameters. Note that the valves 2
are membranes separating the two layers. The operation group consists of valves
1-3. When the medium enters the module (5B), bypass 3 is in the closed state.
Therefore the medium flows into the chamber, passing valves 1 (5C). After 45 s
valves 1 close. This is the core step of sampling, where a defined volume of the
fluid is kept in the chamber. Meanwhile valve 2 starts dissolving, eventually
leading to the union of both media in the chamber, which potentially starts a
chemical reaction. The long dissolution time (7min) of valve 2 was chosen in
order to compensate for arrival time discrepancies between the different media.
Due to the now closed valves 1 there is a pressure build-up that leads to the
breakthrough of valve 3 (5D). Valves 4 and 5 are the timing group that specifies
the interval until which the fluid will reach the next cascade. At the beginning
the fluid flows through the bypass via valve 5. After a defined time (here: 3min)
valve 5 will close and valve 4 will open, guiding the fluid to the next cascade
(5E). The parameters of the timing group can be scaled independently of the

Fig. 6. Photo of the microfluidic chip designed for equidistant long-term investigations.
(Water colored by food color.)

Towards Computation with Microchemomechanical Systems 241

operation group. Due to the fact that the valve time constants can be varied
over a large range, it is possible to choose a timing of e. g. 2 h which facilitates
the construction of chips for long-term investigations over several days. A chip
(Fig. 6) designed with 192 modules, corresponding to 2096 valves, is described in
[10]. Note the analogy of the sampling of a chemical signal described here with
the sampling of a signal in electronic signal processing.

5 Conclusions

Chemical information processing is a paradigm inherent in nature characterized
by its resilience, power and reliability [4]. Technological chemical information
processing as a “beyond CMOS” technology has yet a lot to learn from na-
ture. Labs-on-chips are promising candidates for the implementation of chemi-
cal computing, since they facilitate the manipulation of very small amounts of
substances. The microchemomechanical systems (μCHEMS) presented here are
labs-on-chips that utilize active valves with an inherent decision making ability,
which makes it possible to implement elementary computing operations with
simple modules and to integrate control unit and execution unit on a single
chip. μCHEMS are excellently suitable for large scale integration. The num-
ber of valves that can be integrated on a single chip is almost identical to the
number of transistors (2300) of the Intel 4004, the first commercial electronic
microprocessor ([21], [22]). In addition, it seems likely that multiple types of par-
allelizability can be utilized with μCHEMS. In our vision microchemomechanical
systems will be helpful both in solving computational problems from natural and
life sciences, and in the automation of complex or repetitive chemical analysis
and synthesis processes.

6 Outlook

As an outlook we want to point out to certain computational operations by
use of smart hydrogels that will be worked on in the near future. First of all
it is worthwhile to highlight the analogy of equation 4 to the transfer function
of an artificial neuron. Following the common construction of logic gates from
artificial neurons, we can build logic gates using smart hydrogel valves (Fig. 7).
Two flows containing concentrations ca and cb of the same chemical are added by
a junction. In the downstream channel sections the concentrations are mixed by
diffusion, resulting in the averaged concentration (ca + cb)/2. Let the switching
threshold concentration of the valve be c0. We then define a concentration of e. g.
ca (or cb) = 1.5c0 as “1” while the state “0” is represented by a concentration of
0. Hence the valve will be open exactly if both input states are “1”, while it will
close otherwise. Exactly the same structure can be used as an OR gate, if we
define state “1” as (e. g.) 2.5c0, while state “0” corresponds to a concentration
of 0. The gate will be open if either of the input states is “1”.

Another operation that will be interesting (however more difficult to imple-
ment) in the future is the if-then type structure. Since smart hydrogels are

242 A. Voigt et al.

input 1 input 2

mixing/reaction
channel

output

hydrogel
valve

Fig. 7. Basic module for realizing logic gates and if-then structures

responsive to certain chemicals, the flows on the microfluidic chip can be guided
depending on the outcome of a chemical reaction. To achieve this the same basic
set-up as for the logic gates can be used. However, this time ca and cb are con-
centrations of two different chemicals. Let us assume that the smart hydrogel
is not sensitive towards the two chemicals. This time the downstream channel
section is not mainly used for diffusive mixing, but as a chemical reactor. De-
pending on whether the hydrogel is sensitive towards the result of the reaction
it will be open or closed. A successful implementation of if-then structures will
broaden the applicability of microchemomechanical systems immensely, both for
a potential use in pure chemical information processing and automated chemical
analysis and synthesis.

Acknowledgments. This work is supported by the German Research Foun-
dation (Heisenberg Chair of A.R., RI 1294/2-1, 3-1, 6-1, 7-1), the Saxon State
Ministry for Science and the Arts as well as the European Social Fund. The work
is also partly supported by the German Research Foundation (DFG) within the
Cluster of Excellence “Center for Advancing Electronics Dresden”.

References

1. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive
chemical waves. Nature 337, 244–247 (1989)

2. Adamatzky, A.: Information-processing capabilities of chemical reaction-diffusion
systems. 1. belousov-zhabotinsky media in hydrogel matrices and on solid supports.
Advanced Materials for Optics and Electronics 7, 263–272 (1997)

3. Adamatzky, A., De Lacy-Costello, B.: Experimental logical gates in a reaction-
diffusion medium: The xor gate and beyond. Physical Review E 66, 046112 (2002)

4. Dittrich, P.: Chemical computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L.,
Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg
(2005)

Towards Computation with Microchemomechanical Systems 243

5. Prakash, M., Gershenfeld, N.: Microfluidic bubble logic. Science 315, 832–835
(2007)

6. Mark, D., Haeberle, S., Roth, G., von Stetten, F., Zengerle, R.: Microfluidic lab-
on-a-chip platforms: requirements, characteristics and applications. Chem. Soc.
Rev. 39, 1153–1182 (2010)

7. Arora, A., Simone, G., Salieb-Beugelaar, G.B., Kim, J.T., Manz, A.: Latest devel-
opments in micro total analysis systems. Anal. Chem. 82, 4830–4847 (2010)

8. Chin, D., Linder, V., Sia, S.K.: Commercialization of microfluidic point-of-care
diagnostic devices. Lab Chip 12, 2118–2134 (2012)

9. Gervais, L., de Rooij, N., Delamarche, E.: Microfluidic chips for point-of-care im-
munodiagnostics. Adv. Mater. 23, H151–H176 (2011)

10. Greiner, R., Allerdissen, M., Voigt, A., Richter, A.: Fluidic microchemomechanical
integrated circuits processing chemical information. Lab Chip 12, 5034–5044 (2012)

11. Richter, A., Paschew, G., Klatt, S., Lienig, J., Arndt, K.-F., Adler, H.-J.: Review
on hydrogel-based ph sensors and microsensors. Sensors 8, 561–581 (2008)

12. Gerlach, G., Arndt, K.-F. (eds.): Hydrogel Sensors and Actuators: Engineering and
Technology. Springer (2009)

13. Richter, A., Tuerke, A., Pich, A.: Controlled double-sensitivity of microgels applied
to electronically adjustable chemostats. Adv. Mater. 19, 1109–1112 (2007)

14. Richter, A., Wenzel, J., Kretschmer, K.: Mechanically adjustable chemostats based
on stimuli-responsive polymers. Sens. Actuat. B 125, 569–573 (2007)

15. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Phys-
ical Chemistry 58(1), 35–55 (2007), PMID: 17037977

16. Houston, P.L.: Chemical Kinetics and Reaction Dynamics. Dover Publications
(2006)

17. Tanaka, T., Fillmore, D.J.: Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–
1218 (1979)

18. Flory, P.J., Rehner, J.: Statistical mechanics of crosslinked polymer networks i.
rubberlike elasticity. J. Chem. Phys. 11, 512–520 (1943)

19. Flory, P.J., Rehner, J.: Statistical mechanics of crosslinked polymer networks ii.
swelling. J. Chem. Phys. 11, 521–526 (1943)

20. Allerdissen, M., Greiner, R., Richter, A.: Microfluidic microchemomechanical sys-
tems. Adv. Sci. Technol. 81, 84–89 (2013)

21. Augarten, S.: State of the art: a photographic history of the integrated circuit.
Ticknor & Fields (1983)

22. Faggin, F., Hoff, M.E., Mazor, S., Shima, M.: The history of the 4004. IEEE Micro,
10–20 (December 1996)

Evolutionary Programming Using

Distribution-Based and Differential Mutation
Operators

Md. Tanvir Alam Anik and Saif Ahmed

Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

{tanviranik,iconicsaif}@gmail.com

Abstract. In this paper, we propose an evolutionary programming (EP)
algorithm that incorporates both distribution-based and differential mu-
tation operators in one algorithm. Distribution-based mutation opera-
tors are the ones that employ probability distribution functions such as
Gaussian, Cauchy distributions for mutation. Thus the balance between
exploration and exploitation is obtained by two different categories of
mutation operators.

Keywords: Distribution-based mutation operators and differential mu-
tation operators.

1 Introduction

Evolutionary programming (EP), evolution strategies (ESs), and genetic algo-
rithms (GAs) are three main streams of Evolutionary algorithms (EAs) and
have been extensively used in global optimization problems. Since mutation is
the main operator in EP, a number of innovative mutation operators based
on various probability distributions e.g. Gaussian mutation (CEP) [2], Cauchy
mutation (FEP) [1], a combination of Cauchy and Gaussian mutations [1],[3]
have been proposed to improve the performance of EP. Differential Evolution
(DE), another simple yet effective algorithm for global optimization uses both
crossover and mutation to produce offspring. DE executes its mutation by adding
a weighted difference vector between two individuals to a third individual. This
paper describes a new EP algorithm based on dual mutation scheme (DMEP)
that integrates both distribution-based and differential mutation operators to
improve explorative and exploitative search abilities of EP.

2 DMEP Algorithm

DMEP attempts to achieve the balance between exploration and exploitation by
two different categories of mutation operators. A simple island model has been
adopted to partition the main population into two sub-populations. We call these

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 244–245, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

EP Using Distribution-Based and Differential Mutation Operators 245

sub-populations: Island-1(IS1) and Island-2(IS2). Individuals of IS1 and IS2 are
mutated by distribution-based and differential mutation operators respectively.
Each type contains mutation operators capable of producing different search step
sizes.

2.1 Distribution-Based Mutation Operators

In order to globally explore wider regions of a search space heavy tail distribution
like Cauchy distribution [1] is suitable. Meanwhile, short tail distribution like
Gaussian distribution [2] can promote local exploitation. The arithmetic mean
of Cauchy and Gaussian distributions [3] can be effective when a search step
size in between Cauchy and Gaussian distributions is necessary. In this regard,
Cauchy, Gaussian and arithmetic mean of Cauchy and Gaussian distributions
(MMO) [3] have been chosen as the distribution-based mutation operators for
DMEP to provide different search step sizes while producing offspring.

2.2 Differential-Based Mutation Operators

Differential mutation operators have been included in the proposed scheme to
achieve a proper tradeoff between exploration and exploitation. A mutation op-
eration that incorporates globally best individual of the entire population can
increase exploitative search ability. Meanwhile, a mutation operation that incor-
porates local neighbors of an individual based on its position in the current popu-
lation not considering geographical nearness or similar fitness values can increase
explorative search ability. Thus DMEP includes DE/target-to-global-best/1 and
DE/target-to-local-best/1: two differential mutation operators details of which
can be found in [4].

3 Conclusion

In summary, we have proposed an EP algorithm that obtains global exploration
and local exploitation abilities with the help of two different categories of mu-
tation operators. Details about the behavior of these mutation operators and
experimental evaluation of DMEP over some benchmark functions are the fo-
cuses of our future work.

References

1. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3(2), 82–102 (1999)

2. Back, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter
optimization. Evolutionary Comput. 1(1), 1–23 (1993)

3. Chellapilla, K.: Combining mutation operators in evolutionary programming. IEEE
Transactions on Evolutionary Computation 2(3), 91–96 (1998)

4. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a
neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553
(2009)

A P System Parsing Word Derivatives�

Artiom Alhazov, Elena Boian, Svetlana Cojocaru, Alexandru Colesnicov,
Ludmila Malahov, Mircea Petic, and Yurii Rogozhin

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău, MD-2028, Moldova

{artiom,lena,Svetlana.Cojocaru,kae,mal,mirsha,rogozhin}@math.md

Abstract. This paper describes membrane computational models pars-
ing affixed Romanian words with prefixes, suffixes, terminations, and
alterations in the root. An algorithm for Romanian affixes extraction is
given, and several models of P systems are proposed.

Keywords: affixation, morphemes, parsing, P system models, mem-
brane computing, linguistic resources.

This paper discusses construction of membrane systems to parse Romanian words
with affixes. This contributes to replenishment of corpora and dictionaries, and to
formation of morphological word nest for derivation. Affixation is the most pro-
ductive technique to form new Romanian words as the Romanian language pos-
sesses 86 prefixes and approx. 600 suffixes [2]. We proposed in [1] several models of
P systems to select affixed Romanian words.We here continue that work, allowing
a derivation step to have more than one root alternation, addition of a prefix and
a suffix, replacement of a termination, as well as all of the above.

Word Derivation Model. Assume that we have a finite set of word pairs A of
root alternations and finite languages Pref of prefixes, RR of roots, Suf of suffixes
and T of terminations (T may include the empty word), all over a finite alphabet

V . We also write elements of A in the form x→ y. We use Pref, Ŝuf to denote
the sets Pref, Suf, where all symbols of each word have lines or hats over them.
These two cases correspond to operations of adding a prefix and adding a suffix.

We denote the marked terminations by T = { t | t ∈ T }, and the termination

rewriting rules by
�
T= { t1 → t2 | t1, t2 ∈ T }. Let Op = Pref ∪ Ŝuf∪

�
T ∪A.

The fourth case (A) corresponds to an operation of performing an alternation.
Assume we have a finite language M over Op of control words s = oi1 · · · oik

corresponding to the derivation steps consisting of operations described above.
We now define them more formally, using the syntax o(w) to denote the result
of operation o over a word w (note that the result of some operations may be
undefined on some words, the corresponding choice not leading to any result):

p(w) = pw, ŝ(w t) = wŝ t , (x → y)(w x) = w y ,

(x→ y)(w1xw2) = w1yw2, (oi1 · · · oim)(w) = oi1(· · · (oim(w)) · · ·).
� The authors acknowledge the project STCU-5384 “Models of high performance com-
putations based on biological and quantum approaches”.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 246–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A P System Parsing Word Derivatives 247

We speak about the problem of accepting a language obtained by removing the
prefix, suffix and termination marks from the words of the minimal language L,
such that if wt ∈ Q, then w t ∈ L, and if w ∈ L and s ∈M then s(w) ∈ L if it
is defined. Our acceptor also produces the lexical decomposition of the input.

Definitions. Let O be a finite set of elements called symbols, then the set of
words (strings) over O is denoted by O∗, and the empty word is denoted by λ.

A P system with string-objects and input is a tuple consisting of the working
alphabet, an input alphabet, a membrane (tree) structure of pmembranes, initial
multisets of strings over O in regions i, 1 ≤ i ≤ p, finite sets of rules defining the
behavior of strings from O in regions i, 1 ≤ i ≤ p, and the input region.

A rule x → (y, tar) for region i can be applied to a string uxv in region i,
resulting in a string uyv in region specified by tar. Whenever there are multiple
ways to apply different rules, we assume presence of sufficient number of copies.

Main Result. We describe the P system Π accepting words x given in form
$1x$2. Let Op = {o1, · · · , ok} and T = {t1, · · · , tn}. We also define a set W =
Suf(M r) of suffixes of the mirror language of M .
Π reversely applies operations of adding affixes and alternations in termina-

tions and in the rest of the word, according to the control words from M . End
markers $1 and $2 ensure that affixes are only removed from the appropriate
ends of the word. Affixes are moved outside of the interval between $1 and $2.

First Π marks a termination in the word, sending the string to the skin. The
main evolution is reduced to selecting and performing reverse derivation steps
in regions corresponding to the operations; the skin controls the substeps of the
process. At any time, the system sends a copy of the word into a region corre-
sponding to its termination, and back to the skin, unmarking the termination
and moving it to the left of all suffixes, separated by a hyphen from the root, in
case the control symbol was 〈λ〉. If the word between the markers (the root and
the termination) matches some word in RR, the resulting word is sent out.

Besides accepting words, the system also decomposes the word. To do so,
instead of removing prefixes and suffixes, they are moved outside of the interval
between $1 and $2.

The terminations T are λ, a, ă, e, ea, i, ică, ie, iu, ı̂, l, o, u, ui, uie.
Examples with root alternations: words $1̂ıntineri$2, $1fetiţă$2, $1mulţime$2,

$1deşteaptă$2, $1brăduţ$2 and $1desprăfuire$2 (youthen, little girl, multitude,

dignified (fem.), small spruce, undusting) will yield output ı̂n-tânăr--̂i, fat-ă-̂îţ,

mulţ--̂im̂, deştept-, brad-û̂ţ, and d e s-praf--û̂i − r̂ê, respectively.
This model can be used for other languages with similar word derivation.

References

1. Alhazov, A., Boian, E., Cojocaru, S., Colesnicov, A., Malahov, L., Petic, M., Ciubo-
taru, C.: Membrane Models of Romanian Word Affixation. Applied Linguistics and
Linguistic Technologies: MegaLing-2012. Kyiv (in print, 2013) (in Russian)

2. Graur, A., Avram, M.: Word formation in Romanian, vol. II, p. 310. Romanian
Academy Press, Bucharest (1978) (in Romanian)

Computational Power

of Protein Interaction Networks

Bogdan Aman and Gabriel Ciobanu

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700506 Iaşi, Romania

baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract. It is proved that an abstract model of protein-protein inter-
action derived from membrane computing can simulate all computable
functions by using a small number of components, not so complex pro-
teins (having at most lengths two, where length is an abstract measure of
complexity), and operations inspired by endocytosis (pino, phago) and
exocytosis (exo).

An important part of cell activity is realized by a complex protein-protein net-
work. Most of the actions taking place in a cell are in fact controlled by pro-
teins bound on cells membranes. These proteins can be of two types: peripheral
proteins (placed on the internal or external side of a cell membrane) and inte-
gral proteins (having parts on both internal and external sides of a membrane).
In order to cope with the increased complexity of protein-protein interaction
networks, their complexity is correlated with protein lengths. Proteins on mem-
branes are often arranged in large complexes in order to transduce extracellular
signals into intracellular ones.

Membrane systems represent a class of computing devices inspired by living
cells that are complex hierarchical membrane structures with a flow of materials
and information which underlies their functioning [2]. The membranes contain
multisets of symbols (also called objects), evolution rules acting on these objects,
and possibly other membranes. Inspired by the peripheral proteins of cells and
since membranes are highly dynamic, several types of membrane systems were
previously investigated [1].

We prove that protein interaction networks using proteins of small complexity
(length) acting according to various biological inspired operations can simulate
all computable functions.

Protein-Protein Interaction Networks For an alphabet V = {a1, . . . , an}, we
denote by V ∗ the set of all strings over V . V ∗ is a monoid with λ as its unit
element, and V + = V ∗\{λ}. By V ∼ = {a1 ∼ . . . ∼ an | a1, . . . , an ∈ V, n ≥ 1}we
denote the set of protein complexes. In order to illustrate the fact that proteins
can interact, we denote by a the proteins and by a the co-proteins that can
interact with a. We use a1 ∼ . . . ∼ an as a shorthand notation for a1 ∼ . . . ∼ an.

Definition 1. A protein-protein interaction networks with n membranes is a
construct Π = (V, μ, u1, . . . , un, v1, . . . , vn, R), where:

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 248–249, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computational Power of Protein Interaction Networks 249

1. V is a finite (non-empty) alphabet of proteins;
2. μ is a membrane hierarchical structure with n ≥ 2 membranes; the mem-

branes are bijectively labelled by {1, . . . , n};
3. u1, . . . , un are multisets of proteins bounded to the n membranes;
4. v1, . . . , vn are multisets of proteins placed inside the n membranes;
5. R is a finite set of rules of the following forms:

• [a]b → []a∼b, a ∈ V , b ∈ V ∼ (boundin)
• []ba→ []b∼a, a ∈ V , b ∈ V ∼ (bondout)
• u[v]a a → [[u′]cv′]d, a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d ∈ (V ∼)∗ (pino)
• [[u]av]a → u′[v′]c d, a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d ∈ (V ∼)∗ (exo)
• [u]a[v]a→ [[[u′]c]dv′]b, a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d, b ∈ (V ∼)∗ (phago)

Starting from an initial configuration of the network (given by the initial mem-
brane structure and multisets of proteins), the evolution takes place by applying
the rules activated by protein-protein interactions. A rule is applicable when all
the involved proteins and membranes appearing in its left-hand side are avail-
able. In each step a membrane can be used in at most one mobility rule. A
halting configuration is reached when no rule is applicable. The result of a halt-
ing evolution consists of all the vectors describing the multiplicity of proteins
inside and on all the membranes (a non-halting evolution provides no output).

Computational Power of Protein Interactions. The rules (pino) and (phago) are
used to increase the number of membranes, while rule (exo) is used to decrease
the number of membranes. We combine the rules (pino) and (phago) with (exo)
just to balance the number of membranes.

In the following results, three membranes represent the minimum number
with respect to the operations of endocytosis and exocytosis.

Theorem 1. Protein-protein interaction networks with three membranes and
proteins of length two can simulate any computable function by using rules of
types (bondin), (bondout), (pino) and (exo).

Comparing to Theorem 1, the higher number of membranes for the next result
is triggered by the use of (phago) operation and lack of (boundout).

Theorem 2. Protein-protein interaction networks with four membranes and
proteins of length two can simulate any computable function by using rules of
types (bondin), (phago) and (exo).

Up to our knowledge this is the first quantitative approach in terms of an abstract
measure of complexity (called length in this paper) that studies the computa-
tional power of protein interaction networks.

References

1. Aman, B., Ciobanu, G.: Mobility in Process Calculi and Natural Computing.
Springer (2011)

2. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

Towards an All-Optical Soliton FFT

in the 3NLS-Domain

Anastasios G. Bakaoukas

Department of Computing, Coventry University, Coventry, UK
ab3369@coventry.ac.uk, Anastasios.Bakaoukas@gmail.com

Abstract. An all–optical soliton method for calculating the FFT (Fast
Fourier Transform) algorithm is presented. The method comes as an
extension of the calculation methods (Soliton Gates) as they become
possible in the Cubic Nonlinear Schrödinger Equation (3NLSE) domain,
and provides a further proof of the computational abilities of the scheme.
The method involves collisions entirely between first order solitons in
optical fibers whose propagation evolution is described by the 3NLSE.

1 Introduction

There is a number of studies in which the use of soliton optical pulses for the
purposes of carrying out computations has been investigated [1, 2]. For the pur-
poses of this study only temporal solitons (involving a balance between the Kerr
type non–linearities and the dispersive effects in glass fibres) are concerned. At
this early point the fact that the interactions between solitons of this type can
be a relatively long–range phenomenon need to be emphasised, because the Kerr
non–linearity is a relatively weak effect. Temporal solitons in optical fibres where
the non–linearity is of the Kerr type, are well described by the 3NLS Equation
which, for very short (fs) pulses, requires corrections to account for higher or-
der dispersion, Raman scattering etc. If pulse widths are such that these higher
order effects can be neglected, then Solitons in optical fibres, are solutions of
the integrable 3NLSE and since collisions between fibre solitons are elastic they
were not previously considered to be capable of useful computation [2].

2 All-Optical Soliton FFT

The Half–adder processor scheme, first introduced in [3], forms the essential
central building block on which the overall FFT Soliton computational scheme
is wrapped around, to realise in the end the complete “Butterfly” calculation
process which directly leads to the all–optical soliton FFT computational ar-
rangement. The system reads the collision envelopes at distance and time spec-
ified points and uses this information to generate solitons with an appropriate
phase value to represent the output of each “gate”. The phase values of two of
the output solitons determine the “sum” and “carry” outputs at the end of the
computation process whilst all other solitons are superfluous to this calculation.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 250–251, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards an All-Optical Soliton FFT in the 3NLS-Domain 251

The scheme is flexible enough to be gradually get “packed” in fixed–purpose
calculation lengths.

The “Two 2–bit Numbers Multiplier” involves a Half–adder as its lying–in–its–
heart functional unit (Three–bit Adder arrangement). The particular
arrangement forms the compact small–scale equivalent of the “Two maximum–
number–of–bits Numbers Multiplier”, which for general purpose calculations
must involve Full–adders as well as Half–adders in its arrangement. The rea-
son behind choosing the Two 2–bit Numbers Multiplier is only the fact that the
particular arrangement possesses all the functionalities and properties need to
be demonstrated, while at the same time gives us the ability to keep the material
presented at a minimum of extension and complexity. The Two 2–bit numbers
multiplier arrangement requires the addition of another four AND gates, to ac-
commodate initial bit multiplications. For the remaining part of the “Butterfly”
calculation process, we need a soliton arrangement to convert a positive bit–
number to a negative one. In order to achieve this we adopt the method of
complementing each digit in a bit–number in turn (change 1 for 0 and 0 for 1)
and then add 1 to the result. That way, the bit–number taken out of the pro-
cedure corresponds to a bit–number representing the negative equivalent of the
initial bit–number. A series of collisions between the solitons carrying the bit–
number values and a single “Control Soliton” with a phase value opposite to the
one possessed by the “Control Soliton” that generated the initial bit–number, is
enough to produce the bit–number complement. The appropriate “Control Soli-
ton” to achieve the complement calculation must possess a phase value of 0, in
turn corresponding to a bit value of 0. The addition of 1 to the complement can
be easily achieved by means of Full–adder arrangements internally consisting of
two interconnecting Half–adder arrangements and an OR gate.

After the complement of a bit–number has been calculated, subtracting it
from another bit–number requires the addition between the complement calcu-
lated and the second bit–number. That way only Half–adder and Full–adder
arrangements are required for the realisation of all the calculations involved in
the “Butterfly” arrangement. Addition and subtraction calculations appear at
the final stages of the “Butterfly”, those that actually are giving the result and
passing the values calculated to the next processing stage of the overall FFT
calculation arrangement. Having completed the identification of the individual
parts out of which the soliton “Butterfly” arrangement consists of, we can present
the schematic of the overall arrangement.

References

1. Jakubowski, M.H., Steiglitz, K., Squier, R.K.: Computing with Solitons Multi-
Valued Logic (Special Issue on Collision Based Computing) (2001)

2. Jakubowski, M.H., Steiglitz, K., Squier, R.K.: When Can Solitons Compute? Com-
plex Systems 10(1) (1996)

3. Bakaoukas, A.G., Edwards, J.: Computing in the 3NLS Domain using First Order
Solitons. International Journal of Unconventional Computing (IJUC) 5(6) (2009)
ISSN: 15487199

Quantum Random Active Element Machine

Michael Stephen Fiske

Aemea Institute, San Francisco, CA
mf@aemea.org

In [4], a computational procedure (Procedure 2) – combining quantum random-
ness and the active element machine (AEM) [5] – executes a universal Turing
machine with Turing incomputable firing patterns. The procedure emulates any
digital computer program so its computational steps are incomprehensible to an
external observer. This procedure’s purpose is to hinder malware authors.

An AEM consists of computational primitives called active elements that si-
multaneously transmit and receive pulses to and from other active elements. Each
pulse has an amplitude and a width, indicating how long the pulse amplitude
lasts as input to the element receiving the pulse. If element Ei simultaneously
receives pulses with amplitudes summing to a value greater than Ei’s thresh-
old and Ei’s refractory period has expired, then Ei fires. If Ei fires at time t
and a non-zero connection exists from Ei to Ek, a pulse reaches element Ek at
time t + τik, where τik is the transmission time. AEM programs are built from
element, connection, fire, program and meta commands. A command explic-
itly specifies its execution time. Multiple commands can simultaneously execute.
During AEM program execution, the meta command can self-modify the AEM.

These constructions are physically realizable; the AEM model and a quantum
random number generator (QRNG) device [8] act as a single computational en-
tity. The quantum randomness and the meta command can non-deterministically
modify the AEM’s program. A theory of ideal QRNGs in [1] strives to certify
the behavior of actual QRNG devices [2]. Given an ideal QRNG that never stops
measuring 0’s and 1’s, the theory in [1] implies that the binary sequence x0x1 . . .
is bi-immune. Set A corresponds to x0x1 . . . , where k ∈ A if and only if xk = 1.

Set A ⊂ N is immune if A is infinite and ∀B ⊂ N, [B is infinite and computably
enumerable] =⇒ B∩A �= ∅. A is bi-immune if both A and A are immune. The
following lemma helps prove theorem 1: Let A ⊕ B = (A − B) ∪ (B − A). If R
is computably enumerable and A is bi-immune, then A⊕R is bi-immune.

Theorem 1. Suppose the measurement, noncontextuality, eigenstate and ele-
ments of physical reality assumptions in [1] hold. Thus, in [4], the quantum
random sequence used in procedure 2 is bi-immune. Hence, in procedure 2, the
active element firing pattern (definition 3, page 79) – emulating the computation
of a non-halting universal Turing machine – is a bi-immune sequence.

Theorem 2. If A is a bi-immune set, created by a QRNG, and R is Turing
computable, then a quantum random AEM can compute bi-immune A⊕R.

Our constructions are motivated by the observations that a Gödel numbering is
a special type of interpretation and a Turing machine is a discrete, autonomous,
dynamical system. In [7], pages 26–29 describe an implicit interpretation as-

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 252–254, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Quantum Random Active Element Machine 253

sumption in computability theory: e.g., a fixed Gödel numbering for the partial
recursive functions is a Turing computable coding from sets of instructions to
the integers. This assumption puts an unnecessary constraint on computation,
illustrated in [4] as an incomputable firing interpretation to an external observer.

Let states Q = {q1, . . . , q|Q|}, alphabet A = {a1, . . . , a|A|}, halt state h and
program η : Q × A → Q ∪ {h} × A × {−1,+1} be a Turing machine. Define a
1–1 mapping φ from η to a finite set of affine functions. Set B = |A|+ |Q|+ 1.
Set ν(h) = 0, ν(ai) = i and ν(qi) = i + |A|. φ maps right computational step
η(q, Tk) = (r, α,+1) to affine f(x, y) = (Bx−B2ν(Tk),

1
By+Bν(r)+ν(α)−ν(q)).

State q moves to r; α ∈ A replaces Tk on tape square k. φ maps left step
η(q, Tk) = (r, α,−1) to g(x, y) = (1

Bx+Bν(Tk−1)+ ν(α)− ν(Tk), By+Bν(r)−
B2ν(q)−Bν(Tk−1)). φ maps configuration (q, k, T) ∈ Q×Z×AZ to φ(q, k, T) =
(
∑∞

j=−1 ν(Tk+j+1)B
−j , Bν(q) +

∑∞
j=0 ν(Tk−j−1)B

−j) in the x-y plane.

Dynamical system dx
dt = F (x, y), dy

dt = G(x, y) is autonomous if the indepen-
dent variable t does not appear in F and G. The map H(x, y) = (1 + y − 7

5x
2,

3
10x) is discrete and autonomous. Executing a Turing machine corresponds to
iterating a discrete, autonomous system in the x-y plane, consisting of a finite
number of affine functions, whose domains lie in distinct unit squares. If config-
uration (q, k, T) halts after n computational steps, then the orbit of φ(q, k, T)
exits one of the unit squares on the nth iteration. If configuration (r, j, S) is
immortal, then the orbit of φ(r, j, S) remains in these unit squares forever.

From these observations, a proof of the Turing unsolvability of the halting prob-
lem is reexamined. On pages 9–10 of [3], a proof by contradiction is used to define

a “total, Turing computable” g(x) =

{
1 if Φx(x) does not halt
Φx(x) + 1 if Φx(x) halts

where Φx(y) represents a universal Turing machine. The existence of y with
g = Φy and the resulting contradiction g(y) = Φy(y) + 1 = g(y) + 1 depend
upon the interpretation assumption as Φx(y) acts as an interpreter in the proof.
No contradiction is necessarily reached from a Turing incomputable interpreta-
tion. Since the meta command uses quantum randomness to modify the AEM
program, this can create a non-autonomous system. Non-autonomous systems
exhibit dynamical behaviors that autonomous systems cannot produce [6].

References

1. Abbott, A.A., Calude, C.S., Conder, J., Svozil, K.: Strong Kochen-Specker theorem
and incomputability of quantum randomness. Phys. Rev. A 86, 062109, 1–11 (2012)

2. Calude, C.S., Dinneen, M.J., Dumitrescu, M., Svozil, K.: Experimental Evidence of
Quantum Randomness Incomputability. Phys. Rev. A 82, 022102, 1–8 (2010)

3. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer
(2010)

4. Fiske, M.S.: Turing Incomputable Computation. In: Turing-100 Proceedings. Alan
Turing Centenary. EasyChair, vol. 10, pp. 66–91 (2012),
http://www.aemea.org/Turing100

5. Fiske, M.S.: The Active Element Machine. In: Unger, H., Kyamakya, K., Kacprzyk,
J. (eds.) Autonomous Systems: Developments and Trends. SCI, vol. 391, pp. 69–96.
Springer, Heidelberg (2011)

http://www.aemea.org/Turing100

254 M.S. Fiske

6. Fiske, M.S.: Non-autonomous Dynamical Systems Applicable to Neural Computa-
tion. Northwestern University (1996)

7. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. MIT
Press (1987)

8. Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum
random number generator. Journal of Modern Optics 47, 595–598 (2000)

Simulating Metabolic Processes

Using an Architecture Based on Networks
of Bio-inspired Processors

Sandra Gómez Canaval, José Ramón Sánchez, and Fernando Arroyo

Department of Languages, Projects and Computer Systems,
University College of Computer Science,

Technical University of Madrid, Crta. de Valencia km. 7 - 28031 Madrid, Spain
{sgomez,jcouso,farroyo}@eui.upm.es

In this work, we propose the Networks of Evolutionary Processors (NEP) [2]
as a computational model to solve problems related with biological phenomena.
In our first approximation, we simulate biological processes related with cellu-
lar signaling and their implications in the metabolism, by using an architecture
based on NEP (NEP architecture) and their specializations: Networks of Polar-
ized Evolutionary Processors (NPEP) [1] and NEP Transducers (NEPT) [3]. In
particular, we use this architecture to simulate the interplay between cellular pro-
cesses related with the metabolism as the Krebs cycle and the malate-aspartate
shuttle pathway (MAS) both being altered by signaling by calcium.

NEP is complete and efficient from the computational point of view (i.e. is able
to solve hard problems NP complete given linear time solutions). This model con-
sists of several processors, each of one is placed in a node of a virtual graph. Each
processor acts on local data in accordance with some predefined rules (evolution-
ary operations simulating point mutations of nucleotides over DNA sequences)
and communicates the results using a filtering strategy. This strategy may re-
quire satisfy some conditions that are imposed by processors, when sending,
receiving or both. The processors can communicate the resulting data with the
rest of the processors connected with it. A processor node can be viewed as a cell
that carries out only one specific evolutionary operation (substitution, elimina-
tion or insertion). NEPT uses these operations in order to generate recursively
enumerable languages recognized by other NEP (without filtering strategy). On
the other hand, NPEP uses these operations together with a valuation mapping
(from strings to integers) to generate strings labeled with an electrical polariza-
tion. Each node has their own polarization, then the filtering strategy consists
in let pass those strings with their same polarization.

NEP architecture sees a biological process like a web, that is, a network of sev-
eral NEP working in a collaborative way. This architecture consist in three layers
each one representing one block of computing: selection layer (implemented by
a NEPT), represents the reception of an extracellular signal molecule arriving
at the cellular membrane, and its alteration (transduction); control layer (imple-
mented by a NPEP), realizes the monitoring functionality of signaling pathway,
either activates or inactivates the target proteins (effectors); and finally the pro-
cessing layer (implemented by one or several NEP), represents the target activity
which alters the metabolism.

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 255–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

256 S. Gómez Canaval, J.R. Sánchez and F. Arroyo

A very well known metabolic process is the Krebs cycle that is critical in
cellular respiration. Signaling by calcium helps to activate metabolic pathways,
such as the malate-aspartate shuttle pathway (MAS). Krebs cycle and MAS are
linked through shared substrates as the α-ketoglutarate (αKG). The interplay
between these processes, sharing and competing for αKG, as well as being al-
tered by calcium is an important study of the brain stimulation in vivo. In order
to model the interplay between these biological processes, we define a NEPT in
the selection layer, which is able to translate strings representing chemical com-
pounds into new specific strings representing some receptor proteins, enzymes
and metabolites (i.e. piruvate, malate, aspartate, calcium, etc). These strings
are collected in the output node and are sent to the input node of NPEP in
the control layer. NPEP recognizes these strings and generates new polarized
strings that are collected in their output node: a negative charge means an in-
hibitor substance for MAS, a neutral charge represents a promoter for MAS
and positive charge represents a promoter for Krebs cycle. Resulting polarized
strings with a negative or neutral polarization are sent to the input node of the
NEP representing the MAS shuttle and the string with a positive charge are
sent to the NEP for Krebs cycle. Finally in the NEPs, each node receive only
the necessaries substances (filtered by the input strategy), transforming them
(using substitution, elimination or insertion rules representing the correspond-
ing chemical transformation) and only the necessaries substances for the linked
nodes (filtered by the output strategy) are sent as can be seen in Fig. 1 and 2.

Fig. 1. Krebs cycle Fig. 2. MAS shuttle pathway

References

1. Alarcón, P.P., Arroyo, F., Mitrana, V.: Networks of Polarized Evolutionary Proces-
sors as Problem Solvers. In: Advances in Knowledge-Based and Intelligent Informa-
tion and Engineering Systems, pp. 807–815 (2012)

2. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolu-
tionary processors. Acta Informática 39, 517–529 (2003)

3. Gómez Canaval, S., Mitrana, V., Sánchez Couso, J.R.: Transducers Based on Net-
works of Evolutionary Processors (submitted)

On String Reading Stateless Multicounter

5′ → 3′ Watson-Crick Automata

(Extended Abstract)

László Hegedüs and Benedek Nagy

Department of Computer Science, Faculty of Informatics,
University of Debrecen, Debrecen, Hungary
{hegedus.laszlo,nbenedek}@inf.unideb.hu

Counter machines are finite state automata equipped with a fixed, finite number
of counters. The machine can check whether a counter is zero or not. In each step,
a counter’s value can be increased by one, decreased by one, or left unchanged.
Counter machines with two counters are Turing universal [5]. 5′ → 3′ Watson-
Crick automata are two-head finite automata whose reading heads start from
the two opposite ends of the input in the beginning of the computation [3,4].
Stateless multicounter 5′ → 3′ Watson-Crick automata were defined in [1,2]. The
following is a more general definition, allowing to read strings in a transition.

Definition 1. We denote by M = (r,m,Σ, δ, c, $) a nondeterministic stateless
multicounter 5′ → 3′ WK-automaton with m counters and radius r, where

– m ∈ N0 is the number of counters,
– r ∈ N, r ≥ 2 is the radius of the machine, (the case r = 2 was already

analysed in [1,2])
– Σ is a nonempty input alphabet,
– δ : V ×{1, 0}m×{0, 1, 2, . . . , r,∞} → 2({0,1}×{0,1}×{0,+,−}m) is the transition

function (the heads may step through on the read string or stay and the
counters may be increased, decreased or unchanged depending on the read
strings, the actual signs – that is 0 or positive (1) – of the counters, and on
the distance of the heads if it is less than or equal to r),

– c, $ �∈ Σ are two special symbols called end-markers.

Here, V = {(u, v) | u ∈ {c, ε}Σ∗, v ∈ Σ∗{$, ε}, |u| > 0, |v| > 0, and |uv| ≤ r}.

The set of (string reading) k-reversal deterministic stateless multicounter 5′ → 3′

WK-automata with m counters and radius r is denoted by rWKCk
m. Automata

that are not k-reversal for any k ∈ N are denoted by WKC∞. Further,

rWKC∗
m =

⋃∞
k=0 rWKCk

m and rWKCk
∗ =

⋃∞
m=0 rWKCk

m

rWKC∗
∗ =

⋃∞
k=0 rWKCk

∗ =
⋃∞

m=0 rWKC∗
m =

⋃∞
k=0

⋃∞
m=0 rWKCk

m

∗WKCk
m =

⋃∞
r=2 rWKCk

m.

Let cw$ = xzy be the input of an arbitrary, stateless multicounter 5′ → 3′

WK-automaton. x�z�y is used to denote that the left and right heads have read
x and y respectively and subword z is still to be processed. A configuration

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 257–258, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 L. Hegedüs and B. Nagy

of a machine M is denoted by (x�z�y, (C1, . . . , Cm)). The start configuration
is (�cw$�, (0, . . . , 0)), while the accepting configurations are (x��y, (0, . . . , 0)),
where cw$ = xy. The set of accepted words form the accepted language.
The hierarchy of the classes of accepted languages is represented in Fig. 1. One-
way arrows denote the proper subset relation, while two-way arrows represent
equalities. Dashed arrows denote the subset relation, but it is still an open ques-
tion whether those classes are proper subsets of each-other or they are equal.

Fig. 1. Hierarchy on the number of counters, reversals and the size of the radius (here
r > 2, k ≥ 1, m ≥ 1) for deterministic automata. L(x) represents the language family
accepted by the automata type x; CS and RE stand for the classes of context-sensitive
and recursively enumerable languages, respectively.

References

1. Eğecioğlu, Ö., Hegedüs, L., Nagy, B.: Stateless multicounter 5′ → 3′ Watson-Crick
automata. In: IEEE Fifth Int. Conf. BIC-TA, pp. 1599–1606 (2010)

2. Hegedüs, L., Nagy, B., Eğecioğlu, Ö.: Stateless multicounter 5
′ → 3′ Watson-Crick

automata: the deterministic case. Natural Computing 11, 361–368 (2012)
3. Nagy, B.: On 5′ → 3′ sensing Watson-Crick finite automata. In: Garzon, M.H., Yan,

H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 256–262. Springer, Heidelberg (2008)
4. Freund, R., Păun, G., Rozenberg, G., Salomaa, A.: Watson-Crick Finite Automata.

In: Third Ann. DIMACS Symp. on DNA Based Computers, pp. 535–546 (1994)
5. Minsky, M.L.: Computation: finite and infinite machines. Prentice-Hall, Inc., Upper

Saddle River (1967)

Relating Transition P Systems

and Spiking Neural P Systems

(Extended Abstract)

Richelle Ann B. Juayong, Nestine Hope S. Hernandez,
Francis George C. Cabarle, and Henry N. Adorna

Algorithms & Complexity Lab, Department of Computer Science
University of the Philippines Diliman, 1101 Quezon City, Philippines

{rbjuayong,nshernandez,fccabarle,hnadorna}@up.edu.ph

Abstract. In this work we provide a relationship between Transition P
systems with noncooperative rules or nTP systems and Spiking Neural
P systems with weighted synapses or wSNP systems. In particular we
define a reasonable operating mode of nTP systems we refer to as k-
restricted object-minimal region-maximal parallelism or k-Omin, Rmax

mode. We show that there exists a simulation of nTP systems operating
in 1-Omin, Rmax mode with wSNP systems.

Keywords: Membrane Computing, wSNP systems, nTP systems, sim-
ulation.

Cell-like and neural-like P systems differ not only in their structures but also
in their modes of operation. In this work we provide a relationship between
(cell-like) Transition P systems with noncooperative rules or nTP systems and
(neural-like) Spiking Neural P systems with weighted synapses or wSNP systems.
The goal is to use this work to realize further relations of cell- and neural- like
systems. Readers are assumed to be familiar with Membrane Computing basics
[1] and formal language theory, including notations and definitions for an nTP
system without dissolution [3] and for a wSNP system [5].

In most P system models, rules are applied in a nondeterministic and maxi-
mally parallel manner. We impose a restriction on this manner of applying rules
in which we require that maximal parallelism only applies to regions while ob-
jects per region are k-restricted minimally parallel (similar to its description in
[2]) in the objects per region. This is described in the following definition.

Definition 1. An nTP system without dissolution ΠnTP that runs in k-restricted,
object-minimal, region-maximally parallel mode (denoted by k-Omin, Rmax mode)
requires that per region, all objects that can evolve must evolve (region-maximally
parallel). If an object is applicable in a region, at most k copies of an object can
evolve in a time step (k-restricted minimally parallel).

We now define a notion of simulation in the context of P systems, as adapted
from [4]. For any P system Π , we denote a transition from configuration Ci

Π at

G. Mauri et al. (Eds.): UCNC 2013, LNCS 7956, pp. 259–260, 2013.
© Springer-Verlag Berlin Heidelberg 2013

260 R.A.B. Juayong et al.

time i to Ci+1
Π at time i+1 as Ci

Π ⇒ Ci+1
Π . We then relate nTP systems without

dissolution to wSNP systems using this simulation notion.

Definition 2. Let Π and Π ′ be two P systems and let S be a binary relation
over configurations in Π and Π ′. S is a simulation over Π and Π ′ if when-

ever Ci
ΠSC

j
Π′ , then if Ci

Π ⇒ Ci+1
Π , there exists Cj′

Π′ such that Cj
Π′

∗⇒ Cj′
Π′ , j <

j′ and Ci+1
Π SCj′

Π′ . We say Cj
Π′ simulates Ci

Π and Π ′ simulates Π.

Theorem 1. For every nTP system ΠnTP without dissolution that runs in a
nondeterministic and 1-Omin, Rmax mode, there exists a wSNP system ΠwSNP

that simulates ΠnTP.

Proof idea. Given an ΠnTP without dissolution we construct a ΠwSNP such that
there exists a simulation relation S over configurations in ΠwSNP and ΠnTP. In
particular we have (Ci

nTP, C
3i
wSNP), (C

i
nTP, C

3i+1
wSNP), (C

i
nTP, C

3i+2
wSNP) ∈ S. Figure 1

provides an illustration of this simulation.

�

�

�

�

�
�

�
	
1

dbc

Rd11 : d → d2

Rd12 : d → (b, in)

Rd13 : d → b2c
Rc11 : c → b

Rc12 : c → d2b2c2

2 Rb21 : b → d

(a) A nTP system
(b) A wSNP system

Fig. 1. Illustration of Theorem 1: (b) is a wSNP system simulating the nTP system
without dissolution in (a).

References

1. Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Chapter 1 Introduction to Membrane
Computing. Applications of Membrane Computing. Springer (2006)

2. Freund, R., Verlan, S.: (Tissue) P systems working in the k-restricted minimally or
maximally parallel transition mode. Natural Computing 10, 821–833 (2011)

3. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Computing Backwards with P sys-
tems. In: WMC 2010, Curtea de Argeş, Romania, pp. 282–295 (2009)

4. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-
versity Press (1999)

5. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking Neural
P Systems with Weights. Neural Computation 22, 2615–2646 (2010)

Author Index

Adamatzky, Andrew 79
Adorna, Henry N. 259
Ahmed, Saif 244
Alam Anik, Md. Tanvir 244
Alhazov, Artiom 246
Allerdißen, Merle 232
Aman, Bogdan 248
Arroyo, Fernando 255
Asiedu, Isaac Kobina 162

Bakaoukas, Anastasios G. 250
Beggs, Edwin 6
Bianchi, Maria Paola 19
Boian, Elena 246
Bournez, Olivier 31
Bringsjord, Selmer 102

Cabarle, Francis George C. 259
Calude, Cristian S. 43
Ciobanu, Gabriel 248
Cojocaru, Svetlana 246
Colesnicov, Alexandru 246
Costa, José Félix 6
Csuhaj-Varjú, Erzsébet 55

de Lacy Costello, Ben 79

Ehrenfeucht, Andrzej 3

Fernau, Henning 67
Fiske, Michael Stephen 252
Formenti, Enrico 1
Foroughmand-Araabi, Mohammad-Hadi

90
Freund, Rudolf 67

Gale, Ella 79
Goliaei, Sama 90
Gómez Canaval, Sandra 255
Govindarajulu, Naveen Sundar 102
Greiner, Rinaldo 232
Grigoriev, Dima 113

Hegedüs, László 257
Hernandez, Nestine Hope S. 259

Ivanov, Sergiu 67

Juayong, Richelle Ann B. 259

Kari, Lila 125
Kopecki, Steffen 125
Krithivasan, Kamala 186

Lefèvre, Jonas 31
Licato, John 102

Makowiec, Danuta 138
Malahov, Ludmila 246
Manzoni, Luca 150
Mereghetti, Carlo 19
Mizuki, Takaaki 162

Nagy, Benedek 257

Padilla, Jennifer E. 174
Palano, Beatrice 19
Patitz, Matthew J. 174
Pena, Raul 174
Petic, Mircea 246
Poças, Diogo 6
Porreca, Antonio E. 150

Ramanujan, Ajeesh 186
Richter, Andreas 232
Rogozhin, Yurii 246
Rozenberg, Grzegorz 3
Russell, Benjamin 198, 209

Sánchez, José Ramón 255
Schmid, Markus L. 67
Schweller, Robert T. 174
Seeman, Nadrian C. 174
Seki, Shinnosuke 220
Sheline, Robert 174
Shpilrain, Vladimir 113
Simjour, Amirhossein 125
Sone, Hideaki 162
Stepney, Susan 198, 209

262 Author Index

Subramanian, K.G. 67
Summers, Scott M. 174

Tadaki, Kohtaro 43
Tucker, John V. 6

Vaszil, György 55

Voigt, Andreas 232

Zhong, Xingsi 174

	Preface
	Organization
	Table of Contents
	Invited Papers
	Asymptotic Dynamics of (Some) AsyncronousCellular Automata
	References

	Processes Inspired by the Functioningof Living Cells: Natural Computing Approach
	References

	Regular Papers
	On the Power of Threshold Measurementsas Oracles
	1 Introduction
	2 Threshold Experiments
	2.1 The Squid Giant Motor Neurone
	2.2 The Photoelectric Effect Experiment
	2.3 The BBE: Broken Balance Experiment

	3 The BBE Machine as a Means to Measure Real Numbers
	4 Lower Bounds on the BBE Machine
	5 Upper Bounds on the BBE Machine
	5.1 P/ log� is an Upper Bound for the Infinite Precision Case
	5.2 BPP// log2� Is an Upper Bound for the Unbounded PrecisionCase
	5.3 BPP// log2� Is an Upper Bound for the Finite Precision Case

	6 Conclusions
	References

	Size Lower Bounds for Quantum Automata
	1 Introduction
	2 Preliminaries
	3 Convertingqfcs to
	3.1 Linear Representation of
	3.2 Conversion to
	3.3 Size Cost of the Conversion

	4 Size Lower Bound for Quantum Paradigms
	References

	Population Protocols on Graphs: A Hierarchy
	1 Introduction
	1.1 Related Work

	2 Definitions
	3 Modeling a Turing Machine on Graphs
	4 Separable Graph Family
	4.1 Recognition of the Bounded Degree Part

	5 Modeling a Turing Machine on Separable Graph Family
	5.1 Counting Protocol
	5.2 Main Result of This Section
	5.3 Passively Mobile Machines Model
	5.4 A Hierarchy

	6 Conclusion
	References

	Spectral Representation of Some ComputablyEnumerable Sets with an Applicationto Quantum Provability
	1 Introduction
	2 Quantum Mechanical Facts
	3 A Class of Unary Languages
	4 The Representation Theorem
	5 An Application to Quantum Provability
	6 AConjecture
	7 Quantum Proving without Giving the Proof
	References

	On the Power of P Automata
	1 Introduction
	2 Preliminaries and Definitions
	3 Results
	4 Conclusion
	References

	Array Insertion and Deletion P Systems
	1 Introduction
	2 Definitions and Examples
	2.1 A General Model for Sequential Grammars
	2.2 String Grammars
	2.3 Array Grammars
	2.4 Contextual, Insertion and Deletion Array Rules

	3 (Sequential) P Systems
	4 Computational Completeness of Array Insertion and Deletion P Systems
	5 Conclusion
	References

	Boolean Logic Gates from a Single Memristorvia Low-Level Sequential Logic
	1 Introduction
	2 Methodology
	3 Physical Properties of the Memristor
	4 Boolean Logic Using Current Spikes in Memristors
	4.1 OR Gate
	4.2 A Logical System to Create an XOR Gate

	5 Conclusions
	References

	Light Ray Concentration Reducesthe Complexity of the Wavelength-BasedMachine on PSPACE Languages
	1 Introduction
	2 Concentration Enabled w-Machine
	2.1 w-Tuples, w-Sets, and Concentrated w-Sets
	2.2 Basic Concepts and Operations

	3 Concentration Enabled
	Machines for
	Languages
	4 Conclusion and Future Works
	References

	Small Steps toward Hypercomputationvia Infinitary Machine Proof Verificationand Proof Generation
	1 Context: Infinitary Reasoning, Hypercomputation, and Humble Engineering
	2 Review of Incompleteness and
	3 Review of Goodstein’s Theorem
	4 Partial Proof-Sketch Generation in ADR
	5 Conclusion and Future Work
	References

	Secure Information TransmissionBased on Physical Principles
	1 Introduction
	2 Secret Sharing between Two Parties
	2.1 Application to Yao’s “Millionaires’ Problem”

	3 Encryption without One-Way Functions
	4 Encryption Emulation Attack
	5 ActiveAdversary
	6 A More Practical Implementation: Electrical Circuit
	6.1 Attempting to Compromise the Receiver’s Long-Term Private

	7 Conclusions
	References

	Hypergraph Automata: A Theoretical Modelfor Patterned Self-assembly
	1 Introduction
	2 Preliminaries
	3 Hypergraph Automata
	4 Hypergraph Automata for Picture Languages
	5 Conclusion
	References

	Modeling Heart Pacemaker Tissue by a Networkof Stochastic Oscillatory Cellular Automata
	1 Introduction
	2 From Natural Computation to Computer Computation
	2.1 The Model of a Cell
	2.2 The Tissue Model
	2.3 The Control System

	3 Results
	3.1 Kuramoto Order Parameters to Quantify Collective States
	3.2 Results from Simulations

	4 Discussion
	References

	Reaction Systems Made Simple
	1 Introduction
	2 BasicNotions
	3 A Normal Form for Reaction Systems
	4 Classification of Reaction Systems
	5 Further Remarks
	5.1 Open Problems

	References

	Voting with a Logarithmic Number of Cards
	1 Introduction
	1.1 Computation Using a Deck of Cards
	1.2 History of Card-Based Protocols
	1.3 Our Results

	2 Known Protocols
	2.1 Random Bisection Cuts
	2.2 Six-Card AND Protocol
	2.3 Four-Card XOR Protocol
	2.4 Copy Protocol with a Random Bisection Cut

	3 Voting with a Logarithmic Number of Cards
	3.1 Computing the Half Adder Using the Existing Protocols
	3.2 Voting with the Half Adder

	4 New Adder Protocols
	4.1 An Improved Half Adder Protocol
	4.2 Computing the Full Adder

	5 Conclusion
	References

	Asynchronous Signal Passing for TileSelf-assembly: Fuel Efficient Computationand Efficient Assembly of Shapes
	1 Introduction
	2 Physical Basis for the Model
	3 STAM Notation and Model
	3.1 Informal Description of the 2HAM
	3.2 High-Level Description of the STAM

	4 Efficient Construction of Linear Assemblies
	5 Fuel Efficient Turing Machines
	6 Self-assembly of the Sierpinski Triangle
	6.1 The Discrete Sierpinski Triangle
	6.2 Strict Self-assembly of the Sierpinski Triangle

	References

	Control Languages Associatedwith Tissue P Systems
	1 Introduction
	2 Basic Definition
	3 Tissue P Systems (tP Systems)
	4 Control Words of tP Systems
	5 Conclusion
	References

	Geometric Methods for Analysing QuantumSpeed Limits: Time-Dependent ControlledQuantum Systems with Constrained ControlFunctions
	1 Problem and Motivation
	2 The Geometry of Finite Dimensional Quantum Mechanics
	2.1 Metrics on CPn
	2.2 Deriving the Mandelstam-Tamm Inequality
	2.3 Metrics on
	2.4 A Bound on the Orthogonality Time

	3 Speed Limits for Time Dependent Controls with Constraints
	3.1 Constraints as Submanifolds of
	3.2 Sphere Bundles and Speed Limits

	4 Application to Spin Chains
	5 Conclusions and Further Work
	References

	Numerical Analysis of Quantum Speed Limits:Controlled Quantum Spin Chain Systemswith Constrained Control Functions
	1 Introduction
	2 The Exemplar Problem
	2.1 Heisenberg Spin Chain
	2.2 Band-Limited Fourier Series for Representing Control
	2.3 Band-Limited Fourier Series for Representing Control

	3 Optimisation Problem
	3.1 General Optimisation
	3.2 Goal Operators

	4 NumericalMethod
	4.1 Gradient Descent
	4.2 Simulated Annealing
	4.3 SA for Constrained Fourier Series
	4.4 The Fitness Function

	5 Results
	5.1 Two Qubits, Each with Two Orthogonal Control Fields
	5.2 Two Qubits, Each with a Single Control Field

	6 Conclusions and Further Work
	References

	Combinatorial Optimization in PatternAssembly
	1 Introduction
	2 Rectilinear TAS and c-PATS
	3 Basic Combinatorial Results
	4 Polynomial-Time Reduction of 3SAT to 60-PATS
	4.1 3SAT Evaluator Pattern
	4.2 Assemblability Implies Satisfiability

	References

	Towards Computationwith Microchemomechanical Systems
	1 Introduction
	2 Experimental Foundations
	2.1 Material Basis
	2.2 Valves

	3 Theoretical Foundations
	3.1 Terminology
	3.2 Processing of Information
	3.3 Comparison with an Electronic Von Neumann CPU

	4 Sampling of Chemical Substances
	5 Conclusions
	6 Outlook
	References

	Posters
	Evolutionary Programming UsingDistribution-Based and Differential MutationOperators
	1 Introduction
	2 DMEP Algorithm
	2.1 Distribution-Based Mutation Operators
	2.2 Differential-Based Mutation Operators

	3 Conclusion
	References

	A P System Parsing Word Derivatives
	References

	Computational Powerof Protein Interaction Networks
	References

	Towards an All-Optical Soliton FFTin the 3NLS-Domain
	1 Introduction
	2 All-Optical Soliton FFT
	References

	Quantum Random Active Element Machine
	References

	Simulating Metabolic ProcessesUsing an Architecture Based on Networksof Bio-inspired Processors
	References

	On String Reading Stateless Multicounter 5' → 3' Watson-Crick Automata
	References

	Relating Transition P Systemsand Spiking Neural P Systems
	References

	Author Index

