
Snappy: A Simple Algorithm Portfolio

Horst Samulowitz, Chandra Reddy, Ashish Sabharwal, and Meinolf Sellmann

IBM Watson Research Center, Yorktown Heights, NY 10598, USA
{samulowitz,creddy,ashish.sabharwal,meinolf}@us.ibm.com

Abstract. Algorithm portfolios try to combine the strength of indi-
vidual algorithms to tackle a problem instance at hand with the most
suitable technique. In the context of SAT the effectiveness of such ap-
proaches is often demonstrated at the SAT Competitions. In this paper
we show that a competitive algorithm portfolio can be designed in an
extremely simple fashion. In fact, the algorithm portfolio we present does
not require any offline learning nor knowledge of any complex Machine
Learning tools. We hope that the utter simplicity of our approach com-
bined with its effectiveness will make algorithm portfolios accessible by a
broader range of researchers including SAT and CSP solver developers.

1 Introduction

Algorithm portfolios [cf. 6, 8, 10] for combinatorial problems such as Boolean
Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs) have emerged
as a highly successful approach for combining the strength and effectiveness of a
variety of core solution techniques (“base solvers”) that excel on various subsets
of problem instances. By using Machine Learning based data-driven methods to
select the most promising algorithm (or a schedule of several promising ones)
based on past performance of each base solver on hundreds or even thousands
of instances, such portfolios often achieve much more robust performance across
a broad range of problem domains than any single base solver. In the context of
SAT, a regression based portfolio called SATzilla2009 [16] showcased the benefits
of algorithm portfolios by dominating several categories at annual SAT Competi-
tions (www.satcompetition.org) in the past. Over the years, researchers work-
ing on portfolio algorithms have employed a number of techniques with their own
benefits, including Scheduling based approaches [11, 15], Decision Forests [18],
Nearest Neighbor classification [9], and Collaborative Filtering [14].

Unfortunately, despite the existence of such techniques for several years, port-
folio algorithms have not truly been adopted by the SAT and CSP research
communities. The users of these portfolios are often none other than their own
creators, and sometimes a few other research groups working on competing port-
folios. In other words, portfolios have not been embraced by the community as
a generic tool. This is in sharp contrast with base solvers such as Minisat [13],
Glucose [2], CryptoMinisat [12] and Lingeling [3], just to name a few, which are
widely used by a large subset of the SAT community on a regular basis. Similarly,
CSP solvers such as Gecode [5] and Choco [4] are commonly used.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 422–428, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.satcompetition.org


Snappy: A Simple Algorithm Portfolio 423

Our hope is that the availability of an easy to use portfolio tool would en-
courage SAT and CSP researchers to explore new avenues. E.g., if there was a
new restart strategy for Glucose that made it work better on some instances but
worse on others, a simple 2-solver portfolio could be employed to try to achieve
the best of both worlds.

The motivation for this work is the belief that a key reason for the lack of
common adoption of portfolio solvers is usability. For example, the “portfolio
builder” or trainer of some existing portfolios such as 3S is not publicly available
due to proprietary reasons, while that of others such as SATzilla2012 requires
a license to a relatively new version of MATLAB as well as enough familiarity
with the offline training aspect of the code to be able to effectively adapt it
to every new benchmark. Further, training can be expensive: it can take a few
minutes to hours for SATzilla2009 and 3S, and much more for SATzilla2012 due
to quadratic scaling in the number of base solvers [1]. The resulting effort and
time investment often deters most researchers from benefiting from powerful
portfolio technology.

The goal of this work is to develop an algorithm portfolio that (a) is simple
to use and experiment with, (b) is data-driven and can thus exploit years of ex-
perience with various base solvers, (c) has no offline training phase or “portfolio
builder”, and (d) can improve its own performance through online learning.

To this end, we propose a training-less algorithm portfolio called snappy (Sim-
ple Neighborhood-based Algorithm Portfolio in PYthon). Packaged as a single
file written in Python (www.python.org), it relies on a relatively simple predic-
tion mechanism based on base solver performances on nearest neighbors. The
availability of an extensive set of Python libraries allows the user to easily exper-
iment with various aspects of interest such as distance measures, neighborhood
size, weighting, cost function, feature reduction, etc. By skipping the traditional
training phase altogether, snappy opens up the possibility of learning and im-
proving itself on-the-fly when run on a number of test instances.

Our aim is not to create the best portfolio approach to date but to pro-
vide a tool that is effective and has a low barrier to being adopted by a wide
range of algorithmic researchers. We provide empirical evidence that the simple,
training-less approach embodied by snappy can be competitive with the current
state of the art in portfolios for SAT. This is not to say that more sophisticated
approaches to portfolios do not have value. For example, the SAT/UNSAT pre-
dictor in SATzilla is a powerful tool in itself, and so is the mixed integer pro-
gramming based algorithm scheduler of 3S. Nonetheless, the sophisticated ap-
proaches also have a higher barrier to entry, which we hope to overcome through
the simple yet competitive approach of snappy.

2 Background

We assume familiarity with the basics of SAT and CSP solvers, and briefly
discuss algorithm portfolios in this context. The main concept behind any solver
portfolio is to utilize data (collected offline) on the performance of various base

www.python.org


424 H. Samulowitz et al.

solvers on a relatively large set of “training” instances in order to predict, given
a new “test” instance, which single base solver or schedule of base solvers is
most cost-effective for solving the test instance. The cost of interest is often
the runtime, but may be other quantities such as solution quality in case of
an optimization problem. The various portfolios referred to earlier differ in how
they go about using training data to make this prediction. One aspect common
to them is the abstract representation of instances in terms of a (small) set of
“features”, such as instance size, constraint density, etc.

Once the training data is collected, state-of-the-art portfolios such as 3S and
SATzilla (winners of the past two SAT Competitions) go through an extensive
offline training and internal cross-validation phase in order to learn the param-
eters of their prediction model. This phase typically requires understanding the
portfolio builder well and can often be costly [1]. In the interest of space, we
refer the reader to Xu et al. [16, 17] and Kadioglu et al. [9] for details.

3 Portfolio Tool Description

Our portfolio, snappy, is packaged as one Python file available at: http://

researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip Its ba-
sic usage is reported by running python snappy.py -h.

The tool can be run in two modes, analysis (ana) and execution (exe). In both
modes, like all portfolio solvers, it expects “training data” which consists of a
.times file specifying, in a header-less comma-separated format, the runtime of
each base solver (columns) on a number of instances (rows), and a .features

file specifying the features (columns) of each instance. Additionally, the desired
timeout is specified for performance evaluation purposes. Options in both modes
include what neighborhood size to consider, what penalty to use for performance
evaluation when hitting the timeout, what distance measure to use (e.g., Eu-
clidean or Minkowski), and whether to use distance-based weighting.

In the analysis (ana) mode, the tool expects a set of test instances and evalu-
ates the performance of the portfolio on this test dataset in relation to the single
best base solver (SBS) or the virtual best solver (VBS). The intent is that users
can use the analysis mode to experiment with and tune the parameters of the
portfolio for their benchmark of interest. One may optionally specify a given
pre-schedule of base solvers, which is taken into account in all performance eval-
uations. Enabling the online “learning” mode makes snappy alter its behavior
based on the runtimes it has observed on test instances.

In the execution (exe) mode, the tool expects a comma-separated list of fea-
tures. Alternatively, the user may specify the name of a feature extraction tool
and a test instance such that executing the tool will produce a comma-separated
list of features of the instance.

The main components of snappy are:

Data Normalization: All feature values are cut off at a fixed maximum/minimum
value and features are scaled to the same unit (e.g., [0..1]). This is motivated by
the fact that we use distance to select nearest neighbors.

http://researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip
http://researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip


Snappy: A Simple Algorithm Portfolio 425

Fig. 1. A sample of the PAR score of various algorithms for varying k

Feature Space and Distance Measures: There exist various ways of computing the
distance between feature vectors besides the Euclidean distance, such as stan-
dardized Euclidean, Minkowski, and Canberra, which are available through the
scipy.spatial.distance Python package. More sophisticated measures such
as the Mahalanobis distance impose requirements on the underlying data (e.g.,
being able to take the inverse of the Covariance matrix). To enable such mea-
sures we also support a PCA based Eigenvector representation of the data where
features with low variance are eliminated. This allows the approach to stay some-
what more robust against uninformative and potentially misleading features.

Aggregation Schemes and Solver Selection: Since we do not fix a single neigh-
borhood size k a priori but choose it dynamically (see e.g., [7]), we employ an
aggregation scheme based on the performance of each base algorithm for each
possible k ≤ kmax. Essentially we have a kmax ×#Algorithms matrix and each
entry (k,A) contains a performance measure, namely the average penalized run-
time, of algorithm A on the first k neighbors of the test instance. A sample
visualization of such a matrix is shown in Figure 1 where we plot the penalized
average runtime (PAR) per k ∈ [0..20] and algorithm (1 to 18) including the
(unknown) performance of each algorithm on the test instance (k = 0). The line
corresponding to the selected algorithm is marked with crosses.

Based on this data one can deploy various aggregation schemes to select a
solver. One simple scheme, which is the “default” setting and underlies all ex-
periments reported in this paper, is one that selects the base algorithm that has
the minimum PAR score for some k ∈ [kmin, kmax]:

arg min
A∈Algorithms

min
k∈[kmin,kmax]

PAR(A, k nearest neighbors of the test instance)

One can also consider various other aggregation schemes such as distance-based
weighted voting. Some of these are also available in snappy.



426 H. Samulowitz et al.

Online-Learning: Since we do not perform any offline learning, it gives us the
liberty to easily incorporate knowledge that becomes available as the portfolio
is run. To this end we consider the following ways of adding knowledge incre-
mentally. First, every time a test instance is considered we add its feature vector
to the current set of training instances and re-normalize the entire data again
before selecting the next algorithm. We noticed that re-normalizing has a posi-
tive impact on performance. Second, after we select an algorithm for a given test
instance, we add the actual runtime information for the selected algorithm on
this instance to our data set. This means that, over time, the k-neighborhood of
different algorithms might differ as some algorithms will be selected more often
than others. This simple addition also seemed to have a positive effect.

4 Empirical Demonstration

We demonstrate the effectiveness of snappy by comparing it with two state-
of-the-art algorithm portfolios for SAT that won in the last two competitions:
3S [9] and SATzilla2012 [18]. Our comparison does not rely on generating any
new runtime or feature data, or running any base solver, but is based entirely
on benchmarks used previously by the respective portfolio designers to showcase
the merits of 3S and SATzilla, resp. Being competitive on these benchmarks thus
speaks to the strength of our simple approach.

Our Python based tool is expected to work well across multiple platforms. All
experiments reported here were conducted on a Linux machine with Python 2.6.6
installed with the following packages: Numpy 1.6.2, Scipy 0.11, and Matplotlib
1.2. All performance numbers of snappy are based on one, fixed, “default” setting
of various parameters. We note that the performance of snappy varies with dif-
ferent settings of the command-line parameters and we expect the users of this
tool to experiment with parameter settings that work best in their domain. Fi-
nally, all comparisons are performed on exactly the same datasets (in particular
identical solver base) the results for 3S and SATzilla were obtained on.

We begin with a comparison with 3S using no scheduler1 in Table 1. The first
benchmark is the one with challenging training/test splits used in the original
paper on 3S [9]. The other four benchmarks are based on an updated set of solvers
and instances used to train the ISS solver (a information-sharing extension of 3S)
for SAT Challenge 2012. These four benchmarks are divided into two categories
based on the original 48 SATzilla features (“f1”) and a new set of more efficiently
computed 32 features (“f2”) used by ISS. Within each category, there are cross-
validation splits (“10-fold”) and a competition-style split (“comp”).

While we trained and evaluated 3S on all of these benchmarks, we were un-
successful in doing so with SATzilla2012 as this appeared to require significant
familiarity with the underlying MATLAB code and a need to adapt the code for
every benchmark so as to give it a fair chance of success. Instead we compare the
performance of snappy directly with the results reported by Xu et al. [17]. The

1 When 3S and snappy use the same schedule, the relative difference in performance
remains similar to what is reported in Table 1.



Snappy: A Simple Algorithm Portfolio 427

Table 1. 3S vs. snappy (with default settings): average percentage of instances solved
and average PAR-1 score in seconds

Benchmark 3S snappy

Name #Alg #Feat. Timeout % PAR-1 % PAR-1

SAT-2011-splits 37 48 5000 91.23 772.8 94.52 512.5

SAT-2012-10fold-f1 72 48 2000 96.59 174.3 96.48 161.8
SAT-2012-comp-f1 72 48 2000 83.05 556.4 83.77 560.5

SAT-2012-10fold-f2 72 32 2000 97.23 146.1 96.17 167.5
SAT-2012-comp-f2 72 32 2000 85.42 499.1 85.42 526.3

Table 2. SATzilla vs. snappy (with default settings): average percentage of instances
solved and average PAR-1 score in seconds

Benchmark SATzilla snappy

Name #Alg #Feat. Timeout % PAR-1 % PAR-1

Industrial 18 125 5000 75.3 1685 72.6 1789
Crafted 15 125 5000 66.0 2096 63.3 2198
Random 9 125 5000 80.8 1172 80.3 1221

corresponding benchmark is available at the SATzilla webpage2 and is comprised
of three categories: application, crafted, random. The results are shown in Ta-
ble 2. It is worth noting that this version of SATzilla employs a scheduler before
selecting a long-running algorithm. While this data set comprises 125 features
we only consider the first 48 features in snappy.

As the performance numbers in both tables demonstrate, snappy, despite its
simplicity and ease of use, is quite competitive with the state of the art.

5 Conclusion

We presented a new algorithm portfolio approach that we hope will be easy to
adopt by a broad range of researches, including those designing the base solvers
that underlie any such portfolio. Our tool, snappy, does not only provide a strong
baseline, but can also be easily extended by its users. For instance, if portfolio
performance becomes an issue3 one could use a priori k-means clustering to
reduce the number of instances one needs to consider—which can be done by
adding just few lines of code using the scipy library. Similarly, if one wants to
automatically tune the high level parameters (e.g., distance measure), one can
also add cross-validation using one line of Python. We believe this kind of ex-
perimentation flexibility can be immensely valuable from a research perspective.

2 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla. We thank Lin Xu for pro-
viding the cross-validation splits used in prior work [17] on this dataset.

3 On the largest dataset used in this paper with about 5, 000 instances, it takes around
1,5 seconds to select an algorithm.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla


428 H. Samulowitz et al.

References

[1] Amadini, R., Gabbrielli, M., Mauro, J.: An empirical evaluation of portfolios ap-
proaches for solving csps. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013.
LNCS, vol. 7874, pp. 316–324. Springer, Heidelberg (2013)

[2] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern sat solver.
In: IJCAI 2009 (July 2009)

[3] Biere, A.: Lingeling and friends at the sat competition 2011. Technical report,
Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria (2011)

[4] Cnrs, L.: Choco: an open source java constraint programming library. In: White
Paper 14th International Conference on Principles and Practice of Constraint
Programming CPAI 2008 Competition, pp. 7–14 (2008),
http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf

[5] Gecode Team. Gecode: Generic constraint development environment (2006),
http://www.gecode.org

[6] Gomes, C., Selman, B.: Algorithm portfolios. Artificial Intelligence Journal 126(1-
2), 43–62 (2001)

[7] Huda, M.S., Alam, K.M.R., Mutsuddi, K., Rahman, M.K.S., Rahman, C.M.: A
dynamic k-nearest neighbor algorithm for pattern analysis problem. In: 3rd Inter-
national Conference on Electrical & Computer Engineering (2004)

[8] Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976)

[9] Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

[10] Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: Proc. of the 15th Int. Joint Conference
on Artificial Intelligence (IJCAI), pp. 1542–1543 (2003)

[11] O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Irish Confer-
ence on Artificial Intelligence and Cognitive Science (2008)

[12] Soos, M.: CryptoMiniSat 3.1 (2013), http://www.msoos.org/cryptominisat2
[13] Sorensson, N., Een, N.: MiniSAT 2.2.0 (2010), http://minisat.se
[14] Stern, D., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.:

Collaborative expert portfolio management. In: AAAI (2010)
[15] Streeter, M., Smith, S.: Using decision procedures efficiently for optimization. In:

ICAPS, pp. 312–319 (2007)
[16] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Satzilla: Portfolio-based algorithm

selection for sat. JAIR 32(1), 565–606 (2008)
[17] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver

contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani,
R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012)

[18] Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: Satzilla2012: Improved
algorithm selection based on cost-sensitive classification models. solver description.
In: SAT Challenge 2012 (2012b)

http://www.emn.fr/z-info/choco-solver/pdf/choco-presentation.pdf
http://www.gecode.org
http://www.msoos.org/cryptominisat2
http://minisat.se

	Snappy: A Simple Algorithm Portfolio
	1 Introduction

	2
Background
	3
Portfolio Tool Description
	4
Empirical Demonstration
	5
Conclusion
	References




