
LearnSAT: A SAT Solver for Education

Mordechai (Moti) Ben-Ari

Department of Science Teaching
Weizmann Institute of Science

Rehovot 76100 Israel
http://www.weizmann.ac.il/sci-tea/benari/

Abstract. The extensive research on SAT solving and the development of soft-
ware for applications have not been matched by the development of educational
materials for introducing students to this field. LEARNSAT is a SAT solver de-
signed for educational purposes. It implements the DPLL algorithm with CDCL
and NCB. LEARNSAT produces detailed output of the execution of the algo-
rithms. It generates assignment trees and the implication graphs of CDCL which
are rendered by DOT. LEARNSAT is written in PROLOG so that the algorithms
are concise and easy to read.

Keywords: education, CDCL SAT solver, Prolog.

1 Introduction

The literature on SAT solving is extensive: the Handbook [2] of almost one thousand
pages covers theory, algorithms and applications. Since SAT solvers are widely used, it
is essential that quality learning materials be available for students, even those who do
not intend to become researchers, for example, undergraduate students taking a course
in mathematical logic. Such learning materials will also be helpful for people using
SAT solvers in applications.

Instructors should be enabled to create learning materials that demonstrate the central
algorithms in detail. Furthermore, these demonstrations should use real problems in
place of the artificial examples that appear in research papers.

LEARNSAT is a SAT solver designed for educational use. Design considerations
include: (a) the student and instructor should be provided with maximum flexibility
in specifying the trace output when running the SAT solver; (b) it should be simple
to install and run on the vanilla computers used by students (Windows and Mac); (c)
given the wide variety of programming languages taught to undergraduates, the program
should be usable with only a superficial knowledge of a particular language; (c) the
source code should be concise and very well documented so that advanced students can
easily understand it.

2 The LEARNSAT SAT Solver

LEARNSAT implements the core algorithms of many modern SAT solvers: DPLL with
conflict-driven clause learning (CDCL) and non-chronological backtracking (NCB).

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 403–407, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



404 M. (Moti) Ben-Ari

LEARNSAT can be run in three modes—plain DPLL, DPLL with CDCL, and DPLL
with both CDCL and NCB—so that the student can examine the improvements obtained
by each refinement. The user can specify the order in which literals are assigned. CDCL
is implemented by backwards resolution from a conflict clause to a unique implication
point (UIP). It is also possible to compute dominators in the implication graph although
this computation is just displayed and not used.

3 The Output of LEARNSAT

The key to learning sophisticated algorithms like SAT solving is a trace of the step-
by-step execution of the algorithm. The user of LEARNSAT can choose any subset
of 25 display options in order to tailor the output to a specific learning context. The
display options include elementary steps like decision assignments, unit propagations
and identifying conflict clauses, as well as the advanced steps of CDCL: the resolution
steps used to obtained a learned clause and the search for UIPs. The Appendix shows
the (default) output for the example in [4] run in NCB mode.

LEARNSAT can generate two types of graphs that are rendered using the DOT tool
(Figure 1): a tree showing the search through the assignments and the implication
graphs that display the process for learning clauses from conflicts.1 It is also possi-
ble to generate these graphs incrementally after each step in the algorithm that modifies
the graphs.

4 Examples

The LEARNSAT archive includes the examples used in [3,4,5] to help advanced stu-
dents read these articles. The archive also includes encodings of the following problems:
(i) 4-queens,2 (ii) Tseitin clauses associated with the graphs K2,2 and K3,3,3 (iii) two
and three-hole pigeonhole problems, and (iv) two- and three-level grid pebbling. With
experience we will learn which of these problems is best for educational purposes.

The input to the program is a formula in clausal form written in a readable symbolic
form; the 2-hole pigeonhole problem is:

hole2 :-
dpll(
[

% Each pigeon in hole 1 or 2
[p11, p12], [p21, p22], [p31, p32],

% No pair is in hole 1
[˜p11, ˜p21], [˜p11, ˜p31], [˜p21, ˜p31],

% No pair is in hole 2
[˜p12, ˜p22], [˜p12, ˜p32], [˜p22, ˜p32],
], _).

1 In the Figure, the default color decoration for decision and conflict nodes has been changed to
bold for black-and-white printing.

2 The encoding and its solution by DPLL are explained in detail in [1, Section 6.4].
3 See [1, Section 6.5].



LearnSAT: A SAT Solver for Education 405

x021=0

x031=0

root

x1=0 x1=1

x2=0
[x1,x031,~x2] x2=0

x3=0
[x1,~x3] x3=0 x3=1

x4=1
[x2,x3,x4]

x4=1
[x2,x3,x4] x4=0

x5=0
[~x4,~x5]

x5=0
[~x4,~x5] x5=0

x6=1
[x5,x6]

x6=0
[x021,~x4,~x6]

x6=0
[x021,~x4,~x6]

x0
21

=0
@

1

x6
=

0@
3

5.
[x

02
1,

~x
4,

~x
6]

ka
pp

a

6.
[x

5,
x6

]
x0

31
=0

@
2

x2
=

0@
3

1.
[x

1,
x0

31
,~

x2
]

x4
=

1@
3

3.
[x

2,
x3

,x
4]

x1
=

0@
3

1.
[x

1,
x0

31
,~

x2
]

x3
=

0@
3

2.
[x

1,
~x

3]
3.

[x
2,

x3
,x

4]

5.
[x

02
1,

~x
4,

~x
6]

x5
=

0@
3

4.
[~

x4
,~

x5
]

6.
[x

5,
x6

]

Fig. 1. Assignment tree for DPLL mode (left) and implication graph for NCB mode (right)



406 M. (Moti) Ben-Ari

A program is provided to convert from DIMACS format to this symbolic form (and
conversely) in order to faciliate the student’s transition to more advanced SAT solvers.

5 Implementation

LEARNSAT is implemented in PROLOG which was chosen because PROLOG programs
are extremely concise: the core algorithms take only 150 lines. The source code itself
reads almost like pseudo-code (although making extensive modifications to the code
would require mastery of the language). Furthermore, students are likely to know some
PROLOG since it is often taught in a course on logic. Finally, the widely used high-
quality SWI-PROLOG compiler is distributed with installers for Windows and Mac. Its
default interface is minimal and easy to use.

The source code is extensively commented and the documentation in the archive
includes: a user’s guide, a tutorial using the example from [4], and documentation of
the software.

6 Future Plans

LEARNSAT is not meant as a research tool nor even to train graduate students in the
latest implementation techniques (MinSAT and Sat4j are more appropriate for this). In-
stead, the focus of future development will be on improving the pedagogical aspects of
the tool. This will include expanding the user interface and the graphical features, and—
perhaps more important—developing extensive tutorials. The tutorials will be based on
standard puzzles like the 4-queens and hopefully also on actual applications.

7 Availability

LEARNSAT is open source and is available at http://code.google.com/p/mlcs/.

Acknowledgements. I would like to thank the anonymous referees for their comments
and suggestions concerning LEARNSAT.

References

1. Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd edn. Springer (2012)
2. Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press

(2009)
3. Malik, S., Zhang, L.: Boolean satisfiability from theoretical hardness to practical success.

Commun. ACM 52(8), 76–82 (2009)
4. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In:

Biere, et al. (eds.) [2], ch. 4, pp. 131–153 (2009)
5. Marques-Silva, J.P., Sakallah, K.A.: GRASP—a new search algorithm for satisfiability. In:

Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 1996, pp. 220–227 (1996)



LearnSAT: A SAT Solver for Education 407

A Output for the Example in [4]

LearnSAT v1.3.2. Copyright 2012-13 by Moti Ben-Ari. GNU GPL.
Decision assignment: x021=0@1
Decision assignment: x031=0@2
Decision assignment: x1=0@3
Propagate unit: ˜x2 derived from: 1. [x1,x031,˜x2]
Propagate unit: ˜x3 derived from: 2. [x1,˜x3]
Propagate unit: x4 derived from: 3. [x2,x3,x4]
Propagate unit: ˜x5 derived from: 4. [˜x4,˜x5]
Propagate unit: ˜x6 derived from: 5. [x021,˜x4,˜x6]
Conflict clause: 6. [x5,x6]
Not a UIP: two literals are assigned at level: 3
Clause: [x5,x6] unsatisfied
Complement of: x5 assigned true in the unit clause: [˜x4,˜x5]
Resolvent of the two clauses: [x6,˜x4] is also unsatisfiable
Not a UIP: two literals are assigned at level: 3
Clause: [x6,˜x4] unsatisfied
Complement of: x6 assigned true in the unit clause: [x021,˜x4,˜x6]
Resolvent of the two clauses: [x021,˜x4] is also unsatisfiable
UIP: one literal is assigned at level: 3
Learned clause: [x021,˜x4]
Non-chronological backtracking to level: 1
Skip decision assignment: x1=1@3
Skip decision assignment: x031=1@2
Decision assignment: x021=1@1
Decision assignment: x031=0@2
Decision assignment: x1=0@3
Propagate unit: ˜x2 derived from: 1. [x1,x031,˜x2]
Propagate unit: ˜x3 derived from: 2. [x1,˜x3]
Propagate unit: x4 derived from: 3. [x2,x3,x4]
Propagate unit: ˜x5 derived from: 4. [˜x4,˜x5]
Propagate unit: x6 derived from: 6. [x5,x6]
Satisfying assignments:
[x021=1@1,x031=0@2,x1=0@3,x2=0@3,
x3=0@3,x4=1@3,x5=0@3,x6=1@3]

Statistics: clauses=6,variables=8,units=10,decisions=6,conflicts=1


	LearnSAT: A SAT Solver for Education
	1Introduction
	2The LearnSAT SAT Solver
	3The Output of LearnSAT
	4Examples
	5Implementation
	6Future Plans
	7Availability
	References




