
Local Backbones

Ronald de Haan1,�, Iyad Kanj2, and Stefan Szeider1,�

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 School of Computing, DePaul University, Chicago, IL

Abstract. A backbone of a propositional CNF formula is a variable whose truth
value is the same in every truth assignment that satisfies the formula. The no-
tion of backbones for CNF formulas has been studied in various contexts. In
this paper, we introduce local variants of backbones, and study the computa-
tional complexity of detecting them. In particular, we consider k-backbones,
which are backbones for sub-formulas consisting of at most k clauses, and itera-
tive k-backbones, which are backbones that result after repeated instantiations of
k-backbones. We determine the parameterized complexity of deciding whether a
variable is a k-backbone or an iterative k-backbone for various restricted formula
classes, including Horn, definite Horn, and Krom. We also present some first em-
pirical results regarding backbones for CNF-Satisfiability (SAT). The empirical
results we obtain show that a large fraction of the backbones of structured SAT
instances are local, in contrast to random instances, which appear to have few
local backbones.

1 Introduction

A backbone of a propositional formula ϕ is a variable whose truth value is the same
for all satisfying assignments of ϕ. The term originates in computational physics [24],
and the notion of backbones has been studied for SAT in various contexts. Backbones
have also been considered in other contexts (e.g., knowledge compilation [5]) and for
other combinatorial problems [25]. If a backbone and its truth value are known, then we
can simplify the formula without changing its satisfiability, or the number of satisfying
assignments. Therefore, it is desirable to have an efficient algorithm for detecting back-
bones. In general, however, the problem of identifying backbones is coNP-complete
(this follows from the fact that a literal l is enforced by a formula ϕ if and only if ϕ∧¬l
is unsatisfiable).

A variable can be a backbone because of local properties of the formula (such back-
bones we call local backbones). As an extreme example consider a CNF formula that
contains a unit clause. In this case we know that the variable appearing in the unit clause
is a backbone of the formula. More generally, we define the order of a backbone x of
a CNF formula ϕ to be the cardinality of a smallest subset ϕ′ ⊆ ϕ such that x is a
backbone of ϕ′, and we refer to backbones of order ≤ k as k-backbones. Thus, unit
clauses give rise to 1-backbones.

A natural generalization of k-backbones are variables whose truth values are en-
forced by repeatedly assigning k-backbones to their appropriate truth value and sim-
plifying the formula according to this assignment. We call variables that are assigned
� Supported by the European Research Council (ERC), project COMPLEX REASON, 239962.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 377–393, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

378 R. de Haan, I. Kanj, and S. Szeider

by this iterative process iterative k-backbones (for a formal definition, see Section 2.1).
For instance, iterative 1-backbones are exactly those variables whose truth values are
enforced by unit propagation. The iterative order of a backbone x is the smallest k such
that x is an iterative k-backbone.

Finding Local Backbones. For every constant k, we can clearly identify all k-backbones
and iterative k-backbones of a CNF formulaϕ in polynomial time by simply going over
all subsets of ϕ of size at most k (and iterating this process if necessary). However, if ϕ
consists of m clauses, then this brute-force search requires us to consider at least mk

subsets, which is impractical already for small values of k. It would be desirable to
have an algorithm that detects (iterative) k-backbones in time f(k)||ϕ||c where f is a
function, ||ϕ|| denotes the length of the formula, and c is a constant. An algorithm with
such a running time would render the problem fixed-parameter tractable with respect
to parameter k [7]. In this paper we study the question of whether the identification of
(iterative) k-backbones of a CNF formula is fixed-parameter tractable or not, consider-
ing various restrictions on the CNF formula. We therefore define the following template
for parameterized problems, where C is an arbitrary class of CNF formulas.

LOCAL-BACKBONE[C]
Instance: a CNF formula ϕ ∈ C, a variable x of ϕ, and an integer k ≥ 1.
Parameter: The integer k.
Question: Is x a k-backbone of ϕ?

The problem ITERATIVE-LOCAL-BACKBONE is defined similarly. It is not hard to see
that LOCAL-BACKBONE[C] is closely related to the problem of finding a small un-
satisfiable subset of a CNF formula (this is proven below in Lemmas 1 and 2). More
precisely, for every class C, the problem LOCAL-BACKBONE[C] has the same parame-
terized complexity as the following problem, studied by Fellows et al. [10].

SMALL-UNSATISFIABLE-SUBSET[C]
Instance: a CNF formula ϕ ∈ C, and an integer k ≥ 1.
Parameter: The integer k.
Question: Is there an unsatisfiable subset ϕ′ ⊆ ϕ consisting of at most k clauses?

This problem is of relevance also for classes C for which the satisfiability is decidable in
polynomial time. For instance, given an inconsistent knowledge base in terms of an un-
satisfiable set of Horn clauses, one might want to detect the cause for the inconsistency
in terms of a small unsatisfiable subset.

Results. We draw a detailed parameterized complexity map of the considered problems
LOCAL-BACKBONE[C], ITERATIVE-LOCAL-BACKBONE[C], and SMALL-UNSATISFI-
ABLE-SUBSET[C], for various classes C. Table 1 provides an overview of our complex-
ity results (FPT indicates that the problem is fixed-parameter tractable, W[1]-hardness
indicates strong evidence that the problem is not fixed-parameter tractable; see Sec-
tion 2.2 for details). It is interesting to observe that the non-iterative problems tend to
be at least as hard as the iterative problems. Somewhat surprising is the W[1]-hardness
of LOCAL-BACKBONE[KROM] and SMALL-UNSATISFIABLE-SUBSET[KROM] (which
also implies the NP-hardness of the unparameterized versions of these problems). On
the one hand, this seems to contrast with the fact that a shortest tree-like resolution

Local Backbones 379

Table 1. Map of parameterized complexity results. (The classes C of formulas are defined in
Section 2.1).

C LOCAL-BACKBONE[C] ITERATIVE-LOCAL-BACKBONE[C]
CNF W[1]-c (Thm 2) W[1]-h (Cor 3)
DEFHORN W[1]-c (Thm 2) P (Thm 7)
NUHORN W[1]-c (Thm 3) W[1]-h (Cor 3)
KROM W[1]-c (Thm 4) P (Thm 8)
VOd FPT (Thm 5) FPT (Thm 6)

refutation of an unsatisfiable Krom formula can be found in polynomial time [4]. On
the other hand, this is in line with the result that deciding whether a CNF formula can
be refuted within k resolution steps (parameterized by k) is W[1]-complete [10]. The
polynomial time solvability of finding iterative local backbones in Krom and definite
Horn formulas is also interesting, especially in the light of the intractability of the cor-
responding problems of finding (non-iterative) local backbones.

We also provide some first empirical results on the distribution of local backbones
in some benchmark SAT instances. We consider structured instances and random in-
stances. For the structured instances that we consider we observe that a large fraction
of the backbones are of relatively small iterative order. In contrast, the backbones of the
random instances that we consider are of large iterative order. The results suggest that
the distribution of the iterative order of backbones might be an indicator for a hidden
structure in SAT instances.

Related Work. The notion of backbones has initially been studied in the context of op-
timization problems in computational physics [24]. The notion has later been applied to
several combinatorial problems [25], including SAT. The relation between backbones
and the difficulty of finding a solution for SAT has been studied by Kilby et al. [18],
by Parkes [22] and by Slaney and Walsh [25]. The complexity of finding backbones
has been studied theoretically by Kilby et al. [18]. The notion of backbones has also
been used for improving SAT solving algorithms by Dubois and Dequen [8] and by
Hertli et al. [14]. The problem of identifying unsatisfiable subsets of size at most k has
been considered by Fellows et al. [10], who proved that this problem is W[1]-complete.
Furthermore, they showed by the same reduction that finding a k-step resolution refuta-
tion for a given formula is W[1]-complete as well. Related notions of locally enforced
literals have also been studied, including a notion of generalized unit-refutation [13,19].

Full Version. Because of space constraints some proofs have been omitted or shortened.
Detailed proofs can be found in the full version, available at arxiv.org/abs/1304.5479.

2 Preliminaries

2.1 CNF Formulas, Unsatisfiable Subsets and Local Backbones

A literal is a propositional variable x or a negated variable ¬x. The complement x of a
positive literal x is ¬x, and the complement ¬x of a negative literal ¬x is x. A clause

arxiv.org/abs/1304.5479

380 R. de Haan, I. Kanj, and S. Szeider

is a finite set of literals, not containing a complementary pair x, ¬x. A unit clause is a
clause of size 1. We let ⊥ denote the empty clause. A formula in conjunctive normal
form (or CNF formula) is a finite set of clauses. We define the length ||ϕ|| of a formulaϕ
to be

∑
c∈ϕ |c|; the number of clauses of ϕ is denoted by |ϕ|. A formula ϕ is a k-CNF

formula if the size of each of its clauses is at most k. A 2-CNF formula is also called
a Krom formula. A clause is a Horn clause if it contains at most one positive literal. A
Horn clause containing exactly one positive literal is a definite Horn clause. Formulas
containing only Horn clauses are called Horn formulas. Definite Horn formulas are
defined analogously. We denote the class of all Krom formulas by KROM, the class of
all Horn formulas by HORN and the class of all definite Horn formulas by DEFHORN.
We let NUHORN denote the class of Horn formulas not containing unit clauses (such
formulas are always satisfiable). Let d be an integer. The class of CNF formulas such
that each variable occurs at most d times is denoted by VOd.

For a CNF-formula ϕ, the set Var(ϕ) denotes the set of all variables x such that
some clause of ϕ contains x or ¬x; the set Lit(ϕ) denotes the set of all literals l such
that some clause of ϕ contains l or l. A formula ϕ is satisfiable if there exists an as-
signment τ : Var(ϕ) → {0, 1} such that every clause c ∈ ϕ contains some variable x
with τ(x) = 1 or some negated variable ¬x with τ(x) = 0 (we say that such an as-
sigment τ satisfies ϕ); otherwise, ϕ is unsatisfiable. ϕ is minimally unsatisfiable if ϕ
is unsatisfiable and every proper subset of ϕ is satisfiable. It is well-known that any
minimal unsatisfiable CNF formula has more clauses than variables (this is known as
Tarsi’s Lemma [1,20]). For two formulas ϕ, ψ, whenever all assignments satisfying ϕ
also satisfy ψ, we write ϕ |= ψ. The reduct ϕ|L of a formula ϕ with respect to a set
of literals L ⊆ Lit(ϕ) is the set of clauses of ϕ that do not contain any l ∈ L with all
occurrences of l for all l ∈ L removed. For singletons L = {l}, we also write ϕ|l. We
say that a class C of formulas is closed under variable instantiation if for every ϕ ∈ C
and every l ∈ Lit(ϕ) we have thatϕ|l ∈ C. For an integer k, a variable x is a k-backbone
of ϕ, if there exists a ϕ′ ⊆ ϕ such that |ϕ′| ≤ k and either ϕ′ |= x or ϕ′ |= ¬x. A
variable x is a backbone of a formula ϕ if it is a |ϕ|-backbone. Note that the definition
of the backbone of a formula ϕ that is used in some of the literature includes all literals
l ∈ Lit(ϕ) such that ϕ |= l. For an integer k, a variable x is an iterative k-backbone
of ϕ if either (i) x is a k-backbone of ϕ, or (ii) there exists y ∈ Var(ϕ) such that y is
a k-backbone of ϕ, and for some l ∈ {y,¬y}, ϕ |= l and x is an iterative k-backbone
of ϕ|l.

For a Krom formula ϕ, we let impl(ϕ) be the implication graph (V,E) of ϕ, where
V = { x,¬x : x ∈ Var(ϕ) } andE = { (a, b), (b, a) : {a, b} ∈ ϕ }. We say that a path p
in this graph uses a clause {a, b} of ϕ if either one of the edges (a, b) and (b, a) occurs
in p; we say that p doubly uses this clause if both edges occur in p.

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For more
details, we refer to text books on the topic [7,11,21]. An instance of a parameterized
problem is a pair (I, k) where I is the main part of the instance, and k is the parameter. A
parameterized problem is fixed-parameter tractable if instances (I, k) can be solved by
a deterministic algorithm that runs in time f(k)|I|c, where f is a computable function

Local Backbones 381

of k, and c is a constant (algorithms running within such time bounds are called fpt-
algorithms). If c = 1, we say the problem is fixed-parameter linear. FPT denotes the
class of all fixed-parameter tractable problems. Using fixed-parameter tractability, many
problems that are classified as intractable in the classical setting can be shown to be
tractable for small values of the parameter.

Parameterized complexity also offers a completeness theory, similar to the theory
of NP-completeness. This allows the accumulation of strong theoretical evidence that
a parameterized problem is not fixed-parameter tractable. Hardness for parameterized
complexity classes is based on fpt-reductions, which are many-one reductions where
the parameter of one problem maps into the parameter for the other. More specifically, a
parameterized problemL is fpt-reducible to another parameterized problemL′ (denoted
L ≤fpt L

′) if there is a mapping R from instances of L to instances of L′ such that (i)
(I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈ L′, (ii) k′ ≤ g(k) for a computable
function g, and (iii)R can be computed in timeO(f(k)|I|c) for a computable function f
and a constant c.

Central to the completeness theory is the hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
para-NP. Each intractability class W[t] contains all parameterized problems that can
be reduced to a certain parameterized satisfiability problem under fpt-reductions. The
intractability class para-NP includes all parameterized problems that can be solved by
a nondeterministic fpt-algorithm. Fixed-parameter tractability of any problem hard for
any of these intractability classes would imply that the Exponential Time Hypothesis
fails [11,16] (i.e., the existence of a 2o(n) algorithm for n-variable 3SAT).

3 Local Backbones and Small Unsatisfiable Subsets

The straightforward reductions in the proofs of the following two lemmas, illustrate the
close connection between LOCAL-BACKBONE and SMALL-UNSATISFIABLE-SUBSET.

Lemma 1. SMALL-UNSATISFIABLE-SUBSET ≤fpt LOCAL-BACKBONE.

Proof. Let (ϕ, k) be an instance of SMALL-UNSATISFIABLE-SUBSET. We construct an
instance (ϕ′, z, k) of LOCAL-BACKBONE, by letting ϕ′ = { c∪ {z} : c ∈ ϕ } for some
z
∈ Var(ϕ). We claim that (ϕ, k) ∈ SMALL-UNSATISFIABLE-SUBSET if and only if
(ϕ′, z, k) ∈ LOCAL-BACKBONE. A complete proof of this claim can be found in the
full version of the paper. ��
Lemma 2. LOCAL-BACKBONE ≤fpt SMALL-UNSATISFIABLE-SUBSET.

Proof. Let (ϕ, z, k) be an instance of LOCAL-BACKBONE. We construct an instance
(ψ, k) of SMALL-UNSATISFIABLE-SUBSET. For every variable x ∈ Var(ϕ) we take
two copies x1, x2. For i ∈ {1, 2} we let ϕi be a copy of ϕ using the variables xi. Now
we define ψ = ϕ1|z1 ∪ ϕ2|¬z2 . In other words, ψ is the union of two disjoint copies
of the reducts of ϕ with respect to z and ¬z. We claim that (ϕ, z, k) ∈ LOCAL-BACK-
BONE if and only if (ψ, k) ∈ SMALL-UNSATISFIABLE-SUBSET. A complete proof of
this claim can be found in the full version of the paper. ��
Theorem 1. LOCAL-BACKBONE is W[1]-complete.

Proof. Since SMALL-UNSATISFIABLE-SUBSET is W[1]-complete [10], the result fol-
lows from Lemmas 1 and 2. ��

382 R. de Haan, I. Kanj, and S. Szeider

4 Local Backbones of Horn Formulas

Restricting the problem of finding backbones in arbitrary formulas to Horn formulas re-
duces the classical complexity from co-NP-completeness to polynomial time solvabil-
ity. It is a natural question whether the parameterized complexity of finding local back-
bones decreases in a similar way when the problem is restricted to Horn formulas. We
will show that this is not the case. In order to do so, we define the parameterized prob-
lem SHORT-HYPERPATH, show that it is W[1]-hard, and then provide fpt-reductions
from SHORT-HYPERPATH.

For a Horn formula ϕ and s, t ∈ Var(ϕ), we say that a subformula ϕ′ ⊆ ϕ is a
hyperpath from s to t if (i) t = s or (ii) c = {x1, . . . , xn, t} ∈ ϕ′ and ϕ′\c is a hy-
perpath from s to xi for each 1 ≤ i ≤ n. If |ϕ| ≤ k then ϕ is called a k-hyperpath.
The parameterized problem SHORT-HYPERPATH takes as input a Horn formula ϕ, two
variables s, t ∈ Var(ϕ) and an integer k. The problem is parameterized by k. The ques-
tion is whether there exists a k-hyperpath from s to t. For a more detailed discussion on
the relation between (backward) hyperpaths in hypergraphs and hyperpaths as defined
above, we refer to a survey article by Gallo et al. [12].

For the hardness proof of SHORT-HYPERPATH, we reduce from the W[1]-complete
problem MULTICOLORED-CLIQUE [9]. The MULTICOLORED-CLIQUE problem takes
as input a graph G, some integer k, and a proper k-coloring c of the vertices of G.
The problem is parameterized by k. The question is whether there is a properly colored
k-clique in G.

Lemma 3. SHORT-HYPERPATH is W[1]-hard, even for instances (ϕ, s, t, k) where
ϕ ∈ 3CNF.

Proof. We give a reduction from MULTICOLORED-CLIQUE. Let (G, k, c) be an in-
stance of MULTICOLORED-CLIQUE, where G = (V,E) and V1, . . . , Vk are the equiv-
alence classes of V induced by the k-coloring c. We construct an instance (ϕ, s, t, k′)
of SHORT-HYPERPATH, where k′ = k +

(
k
2

)
+ 1 and

Var(ϕ) = {s, t} ∪ V ∪ { pi,j : 1 ≤ i < j ≤ k };
ϕ = ϕV ∪ ϕp ∪ ϕt;

ϕV = { {¬s, v} : v ∈ V };
ϕp = { {¬vi,¬vj , pi,j} : 1 ≤ i < j ≤ k, vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ E };
ϕt = {{¬pi,j : 1 ≤ i < j ≤ k } ∪ {t}}.

This construction is illustrated for an example with k = 3 in Figure 1. We claim
that (G, k, c) ∈ MULTICOLORED-CLIQUE if and only if (ϕ, s, t, k′) ∈ SHORT-
HYPERPATH. A complete proof of this claim can be found in the full version of the
paper.

To see that clauses of size at most 3 in the hyperpath suffice, we slightly adapt the
reduction. The only clause we need to change is the single clause e ∈ ϕt. This clause e
is of the form {¬p1, . . . ,¬pm, t}, form =

(
k
2

)
. We introduce new variables v1, . . . , vm

and replace e by them+1 many clauses {¬p1, v1}, {¬vi−1,¬pi, vi} for all 1 < i ≤ m
and {¬vm, t}. Clearly, the resulting Horn formula only has clauses of size at most 3.
This adapted reduction works with the exact same line of reasoning as the reduction
described above, with the only change that k′ = k + 2

(
k
2

)
+ 1.

Local Backbones 383

1

2

3

·
·
·
·
·

· · · · ·

· · · · ·

(a) A 3-partite graph G with
a clique (in black)

·
·
·
·
·

· · · · ·

· · · · ·

s
p1,2

p2,3

p1,3

t

(b) The B-hyperpath in H of size k′ = 3 +
(
3
2

)
+ 1 from

s to t corresponding to the clique

Fig. 1. Illustration of the reduction in the proof of Lemma 3 for the case of a 3-colored clique

Note that even the slightly stronger claim holds that G has a properly colored
k-clique if and only if there exists a (subset) minimal k′-B-hyperpath ϕ′ ⊆ ϕ for which
we have |ϕ′| = k′. ��
We are now in a position to prove the W[1]-hardness of LOCAL-BACKBONE[HORN].
In fact, we show that finding local backbones is already W[1]-hard for definite Horn
formulas with a single unit clause. We also show that this hardness crucially depends
on allowing unit clauses in the formula, since for definite Horn formulas without unit
clauses the problem is trivial. In fact, the complexity jumps to W[1]-hardness already
when allowing a single unit clause.

Theorem 2. LOCAL-BACKBONE[DEFHORN ∩ 3CNF] is W[1]-hard, already for in-
stances (ϕ, x, k) where ϕ has at most one unit clause.

Proof. We show W[1]-hardness by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k)
be an instance of SHORT-HYPERPATH. We can assume that ϕ ∈ 3CNF. We construct
an instance (ψϕ, t, k

′) of LOCAL-BACKBONE. Here k′ = k + 1. For each ϕ′ ⊆ ϕ
we define a formula ψϕ′ , by letting Var(ψϕ′) = Var(ϕ′) and ψϕ′ = {{s}} ∪ ϕ′.
Clearly ψϕ ∈ DEFHORN ∩ 3CNF and ψϕ has only a single unit clause. We claim that
(ψϕ, t, k

′) ∈ LOCAL-BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH. A
complete proof of this claim can be found in the full version of the paper. ��
Also, restricting the problem to Horn formulas without unit clauses unfortunately does
not yield fixed-parameter tractability.

Theorem 3. LOCAL-BACKBONE[NUHORN ∩ 3CNF] is W[1]-hard.

Proof. We show the W[1]-hardness of LOCAL-BACKBONE[NUHORN ∩ 3CNF]
by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k) be an instance of SHORT-
HYPERPATH. We can assume without loss of generality that ϕ ∈ 3CNF, and that each
clause in which t occurs positively is of size 3. We construct an instance (ψϕ, xs, k) of
LOCAL-BACKBONE. For each ϕ′ ⊆ ϕ we define a formula ψϕ′ .

ψϕ′ = { {¬xa,¬xb, xc} : {¬a,¬b, c} ∈ ϕ′, c
= t } ∪
{ {¬xa,¬xb} : {¬a,¬b, t} ∈ ϕ′ }
{ {¬xa, xb} : {¬a, b} ∈ ϕ′ }

384 R. de Haan, I. Kanj, and S. Szeider

Clearly we have thatψϕ ∈ HORN∩3CNF and thatψϕ has no unit clauses. We claim that
(ψϕ, xs, k) ∈ LOCAL-BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH. A
complete proof of this claim can be found in the full version of the paper. ��

5 Local Backbones of Krom Formulas

We have seen that finding local backbones is already fixed-parameter intractable for
Horn formulas, for which finding backbones is tractable. We show that Krom formulas
have a similar property: even though finding backbones in Krom formulas is tractable,
finding local backbones is fixed-parameter intractable.

Theorem 4. LOCAL-BACKBONE[KROM] is W[1]-hard.

Proof. We reduce from MULTICOLORED-CLIQUE. Let (G, k, c) be an instance of
MULTICOLORED-CLIQUE, where G = (V,E) and V1, . . . , Vk are the equivalence
classes of V induced by the k-coloring c. We construct an instance (ϕ, x, k′) of LOCAL-
BACKBONE[KROM]. Intuitively, we introduce a gadget for each Vi (see Figure 2a) and
additionally a gadget for each pair (i, j) for 1 ≤ i < j ≤ k (see Figure 2b), and se-
quentially link these gadgets together (see Figure 2c). In the definition of (ϕ, x, k′) for
each 1 ≤ i ≤ k we define a formula ϕguess

i that corresponds to the gadget for Vi, and
for each 1 ≤ i < j ≤ k we define a formula ϕcheck

i,j that corresponds to the gadget for

the pair (i, j). In the construction of ϕ we use variables σj
i,v and τ ji,v that are used to

encode the choice of vertex v in Vi for the clique, and that are used to verify whether v
and the choice for Vj are connected. We let x = g1 and k′ = k(2k+1)+ 3

(
k
2

)
+2 and

we define

Var(ϕ) = {g1, . . . , gk+1} ∪ {c1,1, c1,2 . . . , ck−1,k, ck,k+1} ∪
{ σj

i,v, τ
j
i,v : 1 ≤ i ≤ k, 1 ≤ j ≤ k, v ∈ Vi }, and

ϕ =
⋃

1≤i≤k

ϕguess
i ∪

⋃

1≤i<j≤k

ϕcheck
i,j ∪ {{¬gk+1, c1,1}, {¬ck,k+1,¬g1}}.

For each 1 ≤ i ≤ k, we define ϕguess
i , where Vi = {v1, . . . , vn}, by letting

ϕguess
i = { {¬gi, σ1

i,vl} : 1 ≤ l ≤ n } ∪
{ {¬σj

i,vl
, τ ji,vl} : 1 ≤ j ≤ k, 1 ≤ l ≤ n } ∪

{ {¬τ ji,vl , σj+1
i,vl

} : 1 ≤ j < k, 1 ≤ l ≤ n } ∪
{ {¬τki,vl , gi+1} : 1 ≤ l ≤ n }.

Similarly, for each 1 ≤ i < j ≤ k we define the subformula ϕcheck
i,j as follows. Here

we let E ∩ (Vi × Vj) = {(v1, v′1), . . . , (vm, v′m)}. Also, we define the function next by
letting next(i, j) = (i, j + 1) if j
= k and next(i, j) = (i+ 1, i+ 2) if j = k.

ϕcheck
i,j = { {¬ci,j ,¬τ ji,vl} : 1 ≤ l ≤ m } ∪

{ {τ ji,vl ,¬σj
i,vl

}, {σj
i,vl
,¬τ ij,v′

l
}, {τ ij,v′

l
,¬σi

j,v′
l
} : 1 ≤ l ≤ m } ∪

{ {σi
j,v′

l
, cnext(i,j)} : 1 ≤ l ≤ m }.

Local Backbones 385

gi

σ1
i,v1 τ 1i,v1 σ2

i,v1 τ 2i,v1
. . . τki,v1

σ1
i,v2 τ 1i,v2 σ2

i,v2 τ 2i,v2
. . . τki,v2

...

σ1
i,vn τ 1i,vn σ2

i,vn τ 2i,vn
. . . τki,vn

gi+1

(a) Gadget ϕguess
i for partition Vi = {v1, . . . , vn}

ci,j

¬τ ji,v1 ¬σj
i,v1

¬τ ij,v′
1

¬σi
j,v′

1

¬τ ji,v2 ¬σj
i,v2

¬τ ij,v′
2

¬σi
j,v′

2

...

¬τ ji,vm ¬σj
i,vm

¬τ ij,v′
m

¬σi
j,v′

m

cnext(i,j)

(b) Gadget ϕcheck
i,j for partitions i and j and

E ∩ (Vi × Vj) = {(v1, v′1), . . . , (vm, v′m)}

g1 g2 g3 . . . gk+1

c1,2c1,3c1,4ck−1,k . . .ck,k+1

¬g1

. . .

ϕguess
1
. . .

. . .

ϕguess
2
. . .

. . .
ϕcheck

1,2

. . .

. . .
ϕcheck

1,3

. . .

. . .
ϕcheck

k−1,k

. . .

(c) Linking the gadgets together in ϕ

Fig. 2. Gadgets for the reduction in the proof of Theorem 4

Intuitively, this reduction works as follows. Note that since g1 occurs only negatively
in ϕwe know that g1 can only be a k′-backbone ofϕ if there exists a path from g1 to ¬g1
in impl(ϕ) that uses at most k′ clauses. A path of length 2k + 1 through impl(ϕguess

i)
corresponds to guessing a vertex in the equivalence class Vi. Additionally, a path of
length 5 through impl(ϕcheck

i,j) corresponds to verifying whether there is an edge in the

graph that is in Vi × Vj . So clearly, there exists a path of length k(2k + 1) + 5
(
k
2

)
+ 2

in impl(ϕ) from g1 to ¬g1. However, many clauses in impl(ϕcheck
i,j) can be doubly used

clauses, already used before in paths through impl(ϕguess
i). Concretely, there exists a

path through impl(ϕcheck
i,j) that uses only 3 clauses that have not yet been used in paths

through impl(ϕguess
i) if and only if the paths through impl(ϕguess

i) and impl(ϕguess
j) have

selected vertices vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ E. In other words, there exists
a path in impl(ϕ) from g1 to ¬g1 that uses k′ clauses if and only if G has a properly
colored k-clique.

In the full version of the paper, we formally prove that G has a properly colored
k-clique if and only if g1 is a k′-backbone of ϕ. ��

386 R. de Haan, I. Kanj, and S. Szeider

We would like to point out that all complexity results for the various restrictions of
LOCAL-BACKBONE also hold for SMALL-UNSATISFIABLE-SUBSET under the corre-
sponding restrictions. This is because the reduction in the proof of Lemma 2 works
for all classes of formulas that are closed under variable instantiations. For instance,
the reduction in the proof of Lemma 2 together with Theorem 3 tells us that SMALL-
UNSATISFIABLE-SUBSET[HORN∩3CNF] is W[1]-hard. This does not follow from the
reduction that Fellows et al. [10] use to prove the W[1]-hardness of SMALL-UNSATISFI-
ABLE-SUBSET. In particular, the following previously unstated results hold.

Corollary 1. SMALL-UNSATISFIABLE-SUBSET[C] is W[1]-hard for each C ∈ {DEF-
HORN ∩ 3CNF,NUHORN ∩ 3CNF,KROM}.

In fact, these fixed-parameter intractability results for SMALL-UNSATISFIABLE-
SUBSET give us the following NP-hardness results. Interestingly, for the case of KROM

formulas this result contrasts with the known result that finding minimal resolution
refutations for KROM formulas can be done in polynomial time [3,4].

Corollary 2. Let C ∈ {KROM, 3CNF ∩ DEFHORN, 3CNF ∩ NUHORN}. Given a for-
mula ϕ ∈ C and an integer k, deciding whether ϕ contains an unsatisfiable subset of
size ≤ k is NP-hard.

6 Local Backbones of Formulas with Bounded Variable
Occurrence

When considering the restriction of LOCAL-BACKBONE to formulas where variables
occur a bounded number of times, we get a fixed-parameter tractability result at last.
This fixed-parameter tractability result is closely related to the result that SMALL-
UNSATISFIABLE-SUBSET is fixed-parameter tractable for instances restricted to classes
of formulas that have locally bounded treewidth [10]. Fellows et al. used a meta the-
orem to prove this. We give a direct algorithm to solve SMALL-UNSATISFIABLE-
SUBSET[VOd] in fixed-parameter linear time.

Let (ϕ, k) be an instance of SMALL-UNSATISFIABLE-SUBSET[VOd]. The following
procedure decides whether there exists an unsatisfiable subset ϕ′ ⊆ ϕ of size at most
k, and computes such a subset if it exists. We let ϕ� = { c ∈ ϕ : |c| < k }. It suffices
to consider subsets of ϕ�, since any unsatisfiable subset ϕ′ ⊆ ϕ contains a minimally
unsatisfiable subset ϕ′′ ⊆ ϕ′, and by Tarsi’s Lemma we know that ϕ′′ contains only
clauses of size smaller than k.

Without loss of generality, we assume that the incidence graph of ϕ� is connected.
Otherwise, we can solve the problem by running the algorithm on each of the connected
components. We guess a clause c ∈ ϕ�, we let F1 := {c}, and we let all variables be
unmarked initially. We compute Fi+1 for 1 ≤ i ≤ k by means of the following (non-
deterministic) rule:

1. take an unmarked variable z ∈ Var(Fi);
2. guess a non-empty subset F ′

z ⊆ Fz for Fz = { c ∈ ϕ� : z ∈ Var(c) };
3. let Fi+1 := Fi ∪ F ′

z ;
4. mark z.

Local Backbones 387

If at any point all variables in Fi are marked, we stop computing Fi+1. For any Fi, if
|Fi| > k we fail. For each Fi, we check whether Fi is unsatisfiable. If it is unsatisfiable,
we return with ϕ′ = Fi. If it is satisfiable and if it contains no unmarked variables, we
fail. It is easy to see that this algorithm is sound. If some ϕ′ ⊆ ϕ� is returned, then ϕ′

is unsatisfiable and |ϕ′| ≤ k. In order to see that the algorithm is complete, assume
that there exists some unsatisfiable ϕ′ ⊆ ϕ� with |ϕ′| ≤ k. Then, since we know that
the incidence graph of F ′ is connected, we know that F ′ can be constructed as one of
the Fi in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running
time. We have to execute the search process at most once for each clause of ϕ�. At
each point in the execution of the algorithm, Fi contains at most k variables. Therefore,
there are at most k choices to take an unmarked variable z. Since each variable occurs
in at most d clauses, for each Fz used in the rule we know |Fz| ≤ d. Thus, there are
at most 2d possible guesses for F ′

z in each execution of the rule. Since we iterate the
rule at most k times, we consider at most (k2d)k sets F ′, each of size O(k2). Thus each
(un)satisfiability check can be done in O(2k) time. Therefore, the total running time of
the algorithm is O(kk2dkn), for n the size of the instance.

This algorithm also gives us a direct algorithm that shows that LOCAL-BACK-
BONE[VOd] is fixed-parameter linear.

Theorem 5. LOCAL-BACKBONE[VOd] is fixed-parameter linear.

Proof. The result follows directly by using the reduction in the proof of Lemma 2 in
combination with the above algorithm. ��

7 Iterative Local Backbones

We now consider the (parameterized) complexity of finding iterative local backbones. It
is easy to see that ITERATIVE-LOCAL-BACKBONE is in para-NP. This is witnessed by a
straightforward nondeterministic fpt-algorithm, that guesses a sequence of n witnesses
(ϕi, li) with |ϕi| ≤ k, and that verifies whetherϕi ⊆ ϕ|{l1,...,li−1} and whetherϕi |= li.

Some of the results we obtained for the problem of finding local backbones can be
carried over.

Theorem 6. Let C be a class of formulas such that LOCAL-BACKBONE[C] is fixed-
parameter tractable and C is closed under variable instantiation. Then ITERATIVE-
LOCAL-BACKBONE[C] is fixed-parameter tractable.

Proof. We give an algorithm to solve ITERATIVE-LOCAL-BACKBONE[C] that calls a
subroutine to solve instances of SMALL-UNSATISFIABLE-SUBSET[C]. This algorithm
is given in the form of pseudo-code as Algorithm 1. By the fact that C is closed under
variable instantiations we are able to apply the reduction in the proof of Lemma 2. Thus,
we can assume that the question of whether some ϕ ∈ C contains an unsatisfiable subset
of size at most k can be solved in f(k)||ϕ||c time, for some computable function f and
some constant c. Then, the entire algorithm runs in O(f(k)||ϕ||c+2) time. This proves
the claim. ��

388 R. de Haan, I. Kanj, and S. Szeider

input : an instance (ϕ, x, k) of ITERATIVE-LOCAL-BACKBONE

output: yes iff (ϕ, x, k) ∈ ITERATIVE-LOCAL-BACKBONE

ψ ← ϕ; conseq← ∅;
for i← 1 to |Lit(ϕ)| do

foreach literal l ∈ Lit(ψ) do
if (ψ|l, k) ∈ SMALL-UNSATISFIABLE-SUBSET then

conseq← conseq ∪ {l};
ψ ← ψ|conseq;

return {x,¬x} ∩ conseq �= ∅
Algorithm 1. Deciding ITERATIVE-LOCAL-BACKBONE with a SMALL-
UNSATISFIABLE-SUBSET oracle

Corollary 3. ITERATIVE-LOCAL-BACKBONE[NUHORN ∩ 3CNF] is W[1]-hard.

Proof. Observe that the proofs of Lemma 3 and Theorem 3 imply that it is already
W[1]-hard to determine whether a formulaϕ ∈ NUHORN∩3CNF has a subset ϕ′ ⊆ ϕ
of size exactly k witnessing that any x ∈ Var(ϕ) is a k-backbone. From this, it immedi-
ately follows that determining whether (ϕ, x, k) ∈ ITERATIVE-LOCAL-BACKBONE is
W[1]-hard as well. ��
We identify several tractable cases for ITERATIVE-LOCAL-BACKBONE. The prob-
lem of finding iterative local backbones in definite Horn formulas is polynomial time
solvable. Similarly, finding iterative local backbones in Krom formulas is solvable in
polynomial time as well. Interestingly, for these restrictions the problem of finding
(non-iterative) local backbones remains W[1]-hard. In order to show that finding it-
erative local backbones in definite Horn formulas is tractable, we will use the following
observation.

Observation 1 Let ϕ be any propositional formula, let l be any literal such that there
exists a ϕ′ ⊆ ϕ with |ϕ′| ≤ k and ϕ′ |= l, and let ψ = ϕ|l. Then x ∈ Var(ψ) is an
iterative k-backbone of ψ if and only if it is an iterative k-backbone of ϕ.

Theorem 7. ITERATIVE-LOCAL-BACKBONE[DEFHORN] is in P.

Proof. We show that for any definite Horn formula ϕ and any k ≥ 1 the set of iterative
k-backbones of ϕ coincides with the set of variables x ∈ Var(ϕ) such that ϕ |= x. The
claim then follows, since the entailment relation |= can be decided in linear time for
definite Horn formulas [6].

Fix an arbitrary integer k ≥ 1 and an arbitrary definite Horn formulaϕ. Since definite
Horn formulas cannot entail negative literals, we know that each iterative k-backbone x
of ϕ is also a semantic consequence of ϕ. Now, let x ∈ Var(ϕ) be an arbitrary atom and
assume that ϕ |= x. So there exist variables x1, . . . , xm ∈ Var(ϕ) such that xm = x
and for each xi we have either (i) {xi} ∈ ϕ or (ii) {¬xi1 , . . . ,¬xil , xi} ∈ ϕ for some
i1 < · · · < il < i. We prove by induction on m that each xi is an iterative k-backbone.
Take an arbitrary xi. By the induction hypothesis, we can assume that every xj for j < i
is an iterative k-backbone of ϕ. We proceed by case distinction for the justification of

Local Backbones 389

xi in the sequence. In case (i), we know that {xi} ∈ ϕ. Therefore, it directly follows
that xi is a k-backbone of ϕ, and thus is an iterative k-backbone too. In case (ii), we
know that {¬xi1 , . . . ,¬xil , xi} ∈ ϕ for some i1 < · · · < il < i. By the induction
hypothesis, we know that each xij is an iterative k-backbone of ϕ. By assumption,
we have that ϕ |= xij for each xij . By Observation 1, we get that xi is an iterative
k-backbone of ϕ if and only if it is an iterative k-backbone of ϕ{xi1 ,...,xil

}. It holds that
{xi} ∈ ϕ{xi1 ,...,xil

}. Thus, xi is an iterative k-backbone of ϕ. ��

Theorem 8. ITERATIVE-LOCAL-BACKBONE[KROM] is in P.

Proof. We show that the iterative k-backbones of a Krom formulaϕ coincide with those
backbones of ϕ that can be identified by iterated application of the following rule: if the
implication graph of ϕ contains a path from a literal l ∈ {x,¬x} to its complement l
of length at most k, conclude that x is a backbone and set ϕ := ϕ|l. Detection of such
a path can be done in polynomial time. Also, at most O(|Var(ϕ)|) iterated applications
of this rule suffice to reach a fixpoint. All that remains is to show the correspondence.

The correspondence claim follows from the following property. Let l ∈ Lit(ϕ). If
impl(ϕ) contains a path l →∗ l that uses at most k clauses and that doubly uses m of
these clauses, then there exist literals l1, . . . , lm+1 ∈ Lit(ϕ) such that (i) lm+1 = l and
(ii) for each 1 ≤ i ≤ m + 1 the graph impl(ϕ|{l1,...,li−1}) contains a path li →∗ li
that uses at most k clauses and does not doubly use any clause. We prove this claim by
induction on m. The case for m = 0 is trivial. Consider the case for m ≥ 1. Since the
path l →∗ l doubly uses some clause, we know that l →∗ a → b →∗ b → a →∗ l,
for some a, b ∈ Lit(ϕ). We can assume without loss of generality that the path b →l b
does not doubly use any clause. If this is not the case, the path b →l b contains a
subpath c →∗ c that does not doubly uses any clauses, and we could select c instead
of b. Also, we know that l ≤ k. It is easy to see that impl(ϕ|b) contains the path
l →∗ a → a →∗ l, which uses at most k clauses and doubly uses m − 1 of these
clauses. By the induction hypothesis, we obtain that there exist l′1, . . . , l

′
m such that

l′m = l and for each 1 ≤ i ≤ m the graph impl(ϕ|{l′1,...,l′i−1}) contains a path l′i →∗ l′i
that uses at most k clauses and does not doubly use any clause. Now let l1 = b and
li = l′i−1 for all 2 ≤ i ≤ m+ 1. It is straightforward to verify that l1, . . . , lm+1 satisfy
the required properties. ��
Somewhat related to our mechanism of computing enforced assignments via iterated
k-backbones is the mechanism used to define unit-refutation complete formulas of
level k [13,19]. This mechanism is based on mappings rk from CNF formulas to CNF
formulas. For a nonnegative integer k, the mapping rk is defined inductively as follows.
In the case for k = 0, we let r0(ϕ) = {⊥} if ⊥ ∈ ϕ, and r0(ϕ) = ϕ otherwise. In
the case for k > 0, we let rk(ϕ) = rk(ϕ|l) if there exists a literal l ∈ Lit(ϕ) such that
rk−1(ϕ|l) = {⊥}, and rk(ϕ) = ϕ otherwise. In particular, the mapping r1 computes
the result of applying unit propagation. Note that the result of rk(ϕ) is the application
of a number of forced assignments to ϕ, i.e., rk(ϕ) = ϕ|L for some L ⊆ Lit(ϕ) such
that for all l ∈ L we have ϕ |= l. We let LUC

k (ϕ) denote the set of forced literals that

390 R. de Haan, I. Kanj, and S. Szeider

are computed by rk, i.e., LUC
k (ϕ) = L ⊆ Lit(ϕ) such that rk(ϕ) = ϕ|L. Similarly,

we let LILB
k (ϕ) denote the set of forced literals that are found by computing iterative

k-backbones.
The following observations relate the two mechanisms. Let ϕ be an arbitrary CNF

formula. We have that LUC
1 (ϕ) = LILB

1 (ϕ). In fact, this set contains exactly those en-
forced literals that can be found by unit propagation. Also, for any k ≥ 2 we have
that LILB

k (ϕ) � LUC
k (ϕ). The inclusion follows from the fact that each minimal sub-

set ϕ′ of size at most k that enforces a literal l has at most k literals (which is a direct
result of Tarsi’s Lemma). Whenever l is identified as an enforced literal in iterative
k-backbone computation, it can then also be computed by rk by first guessing l, and
subsequently obtaining a contradiction for each instantiation of the other variables in
Var(ϕ′). In order to see that the inclusion is strict, consider the family of formulas
(ϕn)n∈N, where ϕn = { {¬xi, xi+1} : 1 ≤ i < n } ∪ {¬xn,¬x1}. For each ϕn, we
know that ϕn |= ¬x1. Furthermore, we have that ¬x1 ∈ LUC

2 (ϕn), but x1 is not an
iterative k-backbone of ϕn for any k < n.

8 Experimental Results

In order to illustrate the relevance of the concept of local backbones and iterative lo-
cal backbones, we provide some empirical evidence of the distribution of (iterative)
local backbones in instances from different domains. We considered both randomly
generated instances (3CNF instances with various variable-clause ratios around the
phase transition) and instances originating from planning [15,17], circuit fault analy-
sis [23], inductive inference [23], and bounded model checking [26]. We considered
only satisfiable instances. For practical reasons, we used a method that gives us a
lower bound on the number of k-backbone variables. By reducing the separate LOCAL-
BACKBONE problems to SMALL-UNSATISFIABLE-SUBSET, we can use algorithms
computing subset-minimal unsatisfiable subsets to approximate the number of iterative
local backbones (we used MUSer2 [2]). In order to get the exact number, we would have
to compute cardinality-minimal unsatisfiable subsets, which is difficult in practice.

The experimental results are shown in Figure 3. For each of the instances, we give
the percentage of backbones that are of order k (dashed lines) and the percentage of
backbones that are of iterative order k (solid lines), as well as the total number of back-
bones and the total number of clauses. There are instances with several backbones, most
of which have relatively small order. This is the case for the instances from the domains
of planning (logistics), circuit fault analysis (ssa7552) and bounded model checking
(bmc-ibm). It is worth noting that already more than 75 percent of the backbones in
all the considered bmc-ibm instances are of iterative order 2. We also found instances
that have no backbones of small order or of small iterative order. This is the case for
the instances from the domain of inductive inference (ii32) and the randomly generated
instances. Some of these instances do have backbones, while others have no backbones
at all. It would be interesting to confirm these findings by a more rigorous experimental
investigation.

Local Backbones 391

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

pe
rc

en
ta

ge
of

ba
ck

bo
ne

s
th

at
ar

e
of

(i
te

ra
tiv

e)
or

de
r

at
m

os
tk

logistics

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

ssa7552

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

pe
rc

en
ta

ge
of

ba
ck

bo
ne

s
th

at
ar

e
of

(i
te

ra
tiv

e)
or

de
r

at
m

os
tk

bmc-ibm

0 20 40 60 80 100
0

20

40

60

80

100

(iterative) order k

ii32
random

Fig. 3. Percentage of backbones that are of order at most k (dashed) and of iterative order at
most k (solid), for SAT instances from planning (logistics.[a–d], 828–4713 variables, 6718–
21991 clauses, 437–838 backbones), circuit fault analysis (ssa7552-[038,158–160], 1363–1501
variables, 3032–3575 clauses, 405–838 backbones), bounded model checking (bmc-ibm-[2,5,7],
2810–9396 variables, 11683–41207 clauses, 405–557 backbones), inductive inference (ii32[b–
e][1–3], 222–824 variables, 1186–20862 clauses, 0–208 backbones) and random 3SAT instances
(random, 200 variables, 820–900 clauses, 1–131 backbones).

9 Conclusions

We have drawn a detailed complexity map of the problem of finding local backbones
and iterative local backbones, in general and for formulas from restricted classes. Ad-
ditionally, we have provided some first empirical results on the distribution of (itera-
tive) local backbones in some benchmark SAT instances. We found that in structured
instances from different domains backbones are of quite low (iterative) order. This sug-
gests that the notions of local backbones and iterative local backbones can be used to
identify structure in SAT instances.

Some of our findings are somewhat surprising. (1) Finding local backbones in Horn
and Krom formulas is fixed-parameter intractable, whereas backbones for these classes
of formulas can be found in polynomial time. (2) In certain cases finding iterative lo-
cal backbones is computationally easier than finding (non-iterative) local backbones.

392 R. de Haan, I. Kanj, and S. Szeider

(3) Local backbones and iterative local backbones seem to be a better indicator of struc-
ture than backbones. Random instances do have backbones, but these are of high order
and iterative order.

Backbones and local backbones are implied unit clauses. It might be interesting to ex-
tend our investigation to implied clauses of larger fixed size, binary clauses in particular.

References

1. Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable
formulas. J. Combin. Theory Ser. A 43, 196–204 (1986)

2. Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor. J. on Satisfiability,
Boolean Modeling and Computation 8(1/2), 123–128 (2012)

3. Buresh-Oppenheim, J., Mitchell, D.: Minimum 2CNF resolution refutations in polynomial
time. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 300–313.
Springer, Heidelberg (2007)

4. Buresh-Oppenheim, J., Mitchell, D.: Minimum witnesses for unsatisfiable 2CNFs. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 42–47. Springer, Heidelberg (2006)

5. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17, 229–264
(2002)

6. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. J. Logic Programming 1(3), 267–284 (1984)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Sci-
ence. Springer, New York (1999)

8. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard 3-SAT
formulae. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference
on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, pp. 248–253
(2001)

9. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity
of multiple-interval graph problems. Theoretical Computer Science 410(1), 53–61 (2009)

10. Fellows, M.R., Szeider, S., Wrightson, G.: On finding short resolution refutations and small
unsatisfiable subsets. Theoretical Computer Science 351(3), 351–359 (2006)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, vol. XIV. Springer, Berlin (2006)

12. Gallo, G., Longo, G., Pallotino, S., Nguyen, S.: Directed hypergraphs and applications. Dis-
crete Applied Mathematics 42, 177–201 (1993)

13. Gwynne, M., Kullmann, O.: Generalising and unifying SLUR and unit-refutation complete-
ness. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.)
SOFSEM 2013. LNCS, vol. 7741, pp. 220–232. Springer, Heidelberg (2013)

14. Hertli, T., Moser, R.A., Scheder, D.: Improving PPSZ for 3-SAT using critical variables. In:
Schwentick, T., Dürr, C. (eds.) Symposium on Theoretical Aspects of Computer Science,
vol. 9, pp. 237–248. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2011)

15. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent, I., van
Maaren, H., Walsh, T. (eds.) SAT 2000: Highlights of Satisfiability Research in the year
2000. Frontiers in Artificial Intelligence and Applications, pp. 283–292. Kluwer Academic
(2000)

16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. of Computer and System Sciences 63(4), 512–530 (2001)

17. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic
search. In: Proceedings of the Thirteenth AAAI Conference on Artificial Intelligence, AAAI
1996, pp. 1194–1201. AAAI Press (1996)

Local Backbones 393

18. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In:
Proceedings of the Twentieth National Conference on Artificial Intelligence and the Seven-
teenth Innovative Applications of Artificial Intelligence Conference, AAAI 2005, Pittsburgh,
Pennsylvania, USA, July 9-13, pp. 1368–1373 (2005)

19. Kullmann, O.: Investigating a general hierarchy of polynomially decidable classes of cnf’s
based on short tree-like resolution proofs. Electronic Colloquium on Computational Com-
plexity (ECCC) 6(41) (1999)

20. Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth Annual
IEEE Conference on Computational Complexity, pp. 116–124 (2000)

21. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its. Applications. Oxford University Press, Oxford (2006)

22. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the Fourteenth National
Conference on Artificial Intelligence, AAAI 1997, pp. 340–345. AAAI Press (1997)

23. Prelotani, D.: Efficiency and stability of hypergraph SAT algorithms. In: Johnson, D.S.,
Trick, M.A. (eds.) Cliques, Coloring and Satisfiability, pp. 479–498. AMS (1996)

24. Schneider, J., Froschhammer, C., Morgenstern, I., Husslein, T., Singer, J.M.: Searching for
backbones – an efficient parallel algorithm for the traveling salesman problem. Computer
Physics Communications 96, 173–188 (1996)

25. Slaney, J.K., Walsh, T.: Backbones in optimization and approximation. In: Nebel, B. (ed.)
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJ-
CAI 2001, Seattle, Washington, USA, August 4-10, pp. 254–259 (2001)

26. Strichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla,
A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg (2000)

	Local Backbones
	1Introduction
	2Preliminaries
	2.1CNF Formulas, Unsatisfiable Subsets and Local Backbones
	2.2Parameterized Complexity

	3Local Backbones and Small Unsatisfiable Subsets
	4Local Backbones of Horn Formulas
	5Local Backbones of Krom Formulas
	6Local Backbones of Formulas with Bounded Variable Occurrence
	7Iterative Local Backbones
	8Experimental Results
	9Conclusions
	References

