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Abstract. Parallelization is a natural direction towards the improvements in the
scalability of algorithms for the computation of Minimally Unsatisfiable Subfor-
mulas (MUSes), and group-MUSes, of CNF formulas. In this paper we propose
and analyze a number of approaches to parallel MUS computation. Just as it is
the case with the parallel CDCL-based SAT solving, the communication, i.e. the
exchange of learned clauses between the solvers running in parallel, emerges as
an important component of parallel MUS extraction algorithms. However, in the
context of MUS computation the communication might be unsound. We argue
that the assumption-based approach to the incremental CDCL-based SAT solv-
ing is the key enabling technology for effective sound communication in the con-
text of parallel MUS extraction, and show that fully unrestricted communication
is possible in this setting. Furthermore, we propose a number of techniques to
improve the quality of communication, as well as the quality of job distribution
in the parallel MUS extractor. We evaluate the proposed techniques empirically
on industrially-relevant instances of both plain and group MUS problems, and
demonstrate significant (up to an order of magnitude) improvements due to the
parallelization.

1 Introduction

A minimally unsatisfiable subformula (MUS) of an unsatisfiable CNF formula is any
minimal, with respect to set inclusion, subset of its clauses that is unsatisfiable. MUSes,
and the related group-MUSes [15,21], find a wide range of practical applications [21,3],
and so the development of efficient MUS extraction algorithms is currently an active
area of research (see [16] for a survey, [26,4,24] for recent developments). State-of-the-
art MUS extraction algorithms use SAT solvers as NP oracles, and typically perform
a large number of SAT solver calls — each call with a different subformula of the
original input formula. The fact that many of these calls are independent suggests that
MUS computation problem might be a good candidate for parallelization.

A number of successful approaches to the parallelization of SAT solving have been
developed (see [13,19] for the recent overviews). In one of the widely used variants
of parallel SAT solvers, namely portfolio solvers, several incarnations of a sequential
solver, possibly with different configurations, are executed on the same input formula in
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parallel. An essential component of portfolio solvers built on top of CDCL-based SAT
solvers is the mechanism for the exchange of learned clauses — the communication —
between the sequential sub-solvers. As such, it is plausible, and, as we show, indeed the
case, that communication is an important aspect of any parallel MUS extraction solution
geared towards industrially-relevant problems. However, while the communication is
sound in portfolio-based parallel SAT solvers (since the sub-solvers work on the same
input formula), this is not necessarily the case in a parallel MUS extractor, since now
the formulas might differ.

In this paper we analyze a number of approaches to the parallel MUS computation.
We notice that some of the simpler of these approaches result in performance degra-
dation with respect to a sequential solution, however we do confirm the importance of
communication for the parallel MUS extraction. More importantly, we argue that the
assumption-based approach to the incremental CDCL-based SAT solving, introduced
in [9], is the key enabling technology for effective sound communication in scalable par-
allel MUS extraction algorithms, and suggest that this might also be the case in more
general settings where CDCL-based SAT solvers work on different related formulas in
parallel. We carefully analyze the communication aspect in the context of parallel MUS
extraction, and show that in this setting fully unrestricted communication is possible.
Furthermore, we propose a number of effective clause filtering techniques, and an im-
proved job distribution scheme based on the analysis of unsatisfiable cores. We evaluate
the proposed algorithms and techniques empirically, and demonstrate significant speed-
ups and scalability (e.g. median 2.94x, with up to 132x, speed up on 4 cores) on a set
of industrially-relevant MUS and group-MUS extraction benchmarks.

2 Preliminaries and Background

We assume the familiarity with propositional logic, its clausal fragment, and commonly
used terminology of the area of SAT. We focus on formulas in CNF (formulas, from
hence on), which we treat as (finite) (multi-)sets of clauses. We assume that clauses
do not contain duplicate variables. Given a formula F we denote the set of variables
that occur in F by V ar(F ), and the set of variables that occur in a clause C ∈ F
by V ar(C). An assignment τ for F is a map τ : V ar(F ) → {0, 1}. Assignments
are extended to formulas according to the semantics of classical propositional logic. If
τ(F ) = 1, then τ is a model of F . If a formula F has (resp. does not have) a model,
then F is satisfiable (resp. unsatisfiable). By F |τ we denote the reduct of the formula
F wrt. the assignment τ – that is the formula obtained from F by removing the satisfied
clauses and falsified literals from the remaining clauses. The resolution rule states that,
given two clauses C1 = (x ∨ A) and C2 = (¬x ∨B), the clause C = (A ∨B), called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We write
C = C1 ⊗x C2. Note that {C1, C2} |= C.

A CNF formula F is minimally unsatisfiable if (i) F is unsatisfiable, and (ii) for
any clause C ∈ F , the formula F \ {C} is satisfiable. The set of minimally unsatisfi-
able CNF formulas is denoted by MU. A CNF formula F ′ is a minimally unsatisfiable
subformula (MUS) of a formula F if F ′ ⊆ F and F ′ ∈ MU. The set of MUSes of a
CNF formula F is denoted by MUS(F ). A clause C ∈ F is necessary for F (cf. [14])
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if F is unsatisfiable and F \ {C} is satisfiable. Necessary clauses are often referred
to as transition clauses. The set of all necessary clauses of F is precisely

⋂
MUS(F ).

Thus F ∈ MU if and only if every clause of F is necessary. The problem of decid-
ing whether a given CNF formula is in MU is DP-complete [23]. Motivated by several
applications, minimal unsatisfiability and related concepts have been extended to CNF
formulas where clauses are partitioned into disjoint sets called groups [15,21].

The basic deletion-based MUS extraction algorithm operates in the following man-
ner. Starting from an unsatisfiable formula F , the algorithm picks a clause C ∈ F ,
and tests the formula F \ {C} for satisfiability. If the formula is unsatisfiable, C is
removed from F , i.e. we let F = F \ {C}. Otherwise, C is necessary for F , and
so for every unsatisfiable subformula of F , and hence C is included in the computed
MUS. Once all clauses of the input formula F are tested for necessity in this manner,
the remaining clauses constitute an MUS of F . While the basic deletion algorithm is
neither theoretically nor empirically effective (see, for example, [16,4]), the addition of
clause-set refinement and model rotation[17] makes it the top performing algorithm for
industrially relevant instances. Clause-set refinement takes advantage of the capability
of modern SAT solvers to produce an unsatisfiable core: since a core includes at least
one MUS, all clauses outside the core can be removed from the formula after a single
UNSAT outcome. Model rotation, on the other hand, allows to detect multiple neces-
sary clauses in the case of SAT outcome: when F \ {C} ∈ SAT, the model τ returned
by the SAT solver serves as a witness of the necessity of C in F , and model rotation
attempts to (cheaply) modify τ to obtain a witnesses for other clauses of F , possibly
declaring multiple clauses of F necessary after a single SAT outcome.

Although the modern sequential CDCL-based SAT solvers are rooted in the DPLL
algorithm [8], the addition of clause learning [18] and back-jumping, drastically
changes the behaviour of the algorithm. We refer the reader to a tutorial introduction
of CDCL in [25] that illuminates these changes. Additional enhancements to CDCL
present in the modern SAT solvers include restarts [10], advanced data-structures and
decision heuristics [20], and sophisticated heuristics to control the quality of learned
clauses, based, for example, on the idea of literal block distance [2]. Many details of
the modern CDCL-based SAT solving can be found in [7]. Although the specifics of
the clause learning mechanism in CDCL-based SAT solvers are not crucial for the un-
derstanding of this paper, one aspect that is important is that new learned clauses are
derived from the clauses of the input formula and the previously learned clauses used in
a conflict via a sequence of resolutions steps. This ensures that the learned clauses are
logically entailed by the clauses of the input formula.

A detailed overview of the modern parallel SAT solving systems can be found
in [13,19]. Here, we focus on a widely used variant of parallel SAT solvers, namely
portfolio solvers, as for example MANYSAT [12], PLINGELING [6] or PENELOPE [1].
This type of solvers execute several incarnations of a sequential solver, possibly with
different configurations, on the same input formula in parallel. An important compo-
nent of this type of solvers is the exchange of learned clauses between the sequential
sub-solvers — the communication. The quality of the exchanged clauses becomes par-
ticularly important, and several heuristics have been proposed. In [12] only the clauses
of a fixed size have been shared, while in [11] this sharing filter has been improved
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further to a quality based heuristic: sharing limits are relaxed if not sufficiently many
clauses are exchanged, and when too many clauses are shared, the sharing limits are
tightened again.

Incremental SAT Solving. In many practical applications SAT solvers are invoked on
a sequence of related formulas. The incremental SAT solving paradigm is motivated by
the fact that the clauses learned from subformulas common to the successive formulas
can be reused. The most widely used approach to the incremental SAT is the so-called
assumption-based approach introduced in [9]. In this approach, a SAT solver provides
an interface to add clauses, and an interface to determine the satisfiability of the set
of currently added clauses, F , together with a user-provided set of assumption literals
A = {a1, . . . , ak} – that is, to test the satisfiability of the formula F ∪ ⋃

ai∈A{(ai)}.
An important feature of the approach of [9] is that the assumptions are not added to the
formula prior to solving, but, instead, are used as the top-level decisions. As a result,
any clause learned while solving the formula F under the assumptions A can be used
to solve a formula F ′ ⊇ F under a possibly different set of assumptions A′.

Assumption-based incremental SAT solving is often used to emulate arbitrary mod-
ifications to the input formula. Given a formula F = {C1, . . . , Cn}, the set A =
{a1, . . . , an} of fresh assumption variables is constructed (i.e. V ar(F ) ∩ A = ∅),
and the formula FA = {(ai ∨ Ci) | Ci ∈ F} is loaded into an incremental SAT
solver. Then, for example, in order to establish the satisfiability of F ′ ⊆ F , the for-
mula FA is solved under assumptions {¬ai | Ci ∈ F ′} ∪ {aj | Cj /∈ F ′}. In effect,
the assumptions temporarily remove clauses outside of F ′. If the outcome is sat, the
model, restricted to V ar(F ), is a model of F ′. If the outcome is unsat, SAT solvers
return a set of literals Acore ⊆ A such that FA is unsatisfiable under the assumptions
{¬ai | ai ∈ Acore} ∪ {aj | aj /∈ Acore}, and so the formula {Ci | ai ∈ Acore} is
an unsatisfiable core of F ′. Using the incrementality, any clause Ci ∈ F can be re-
moved permanently by adding the unit (ai) to the SAT solver. Conversely, the addition
of the unit (¬ai) permanently asserts, or finalizes, Ci. Importantly, in this setting the
negated assumptions are not resolved out of the learned clauses, whereas the negated
unit clauses are. For example, if ¬a1 and ¬a2 are assumptions, and (¬a3) is a unit
clause, and if D is a learned clause whose derivation used clauses containing a1, a2, a3,
then the literals a1 and a2 are in D, whereas a3 is resolved out of D. If a unit (a2) is
later added to the formula, then D is satisfied and is not used for further reasoning.

An alternative to the approach of [9], discussed extensively in [22], is to add as-
sumptions as temporary unit clauses to the SAT solver’s formula. To be usable for the
subsequent incremental invocations, the clauses learned from any of these units must be
extended with the negation of the assumption literals used to derive them. Although for
the applications discussed in [22] this post-processing step pays off, as we argue shortly
the approach of [9] appears to be the key to the efficient parallel MUS extraction.

3 Parallel MUS Extraction Algorithm

In this paper we describe a low-level parallelization of a particular MUS extraction al-
gorithm, that is, while the high-level flow of the algorithm is unchanged, we off-load
various satisfiability tests required by the algorithm to multiple threads. Clearly, such
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low-level parallelization can be further integrated into a high-level parallel MUS extrac-
tor, that would run different (parallelized on the low-level) MUS extraction algorithms
in parallel. Such high-level parallelization is a subject of future research.

The parallel MUS extraction algorithm proposed in this paper is based on the hybrid
MUS extraction algorithm [17] (a variant of the deletion-based algorithm, augmented
with the clause-set refinement and model rotation). The algorithm maintains a single
master thread, and one or more worker threads. The master keeps a current snapshot
of the working formula, and distributes the work items to the workers. A work item is
simply a clause (or a group) that needs to be tested for necessity with respect to the
current working formula. Thus, each worker owns a SAT solver, and given a work item
〈F,Ci〉, the responsibility of the worker is to invoke the SAT solver on the formula
F \ {Ci} and provide the result to the master. Once all available workers are started,
the master waits for some or all of the workers to finish processing their work item.
The results of finished workers are then aggregated, the master’s working formula is
updated, and any currently running workers whose work item’s status has already been
determined (the redundant workers) are aborted. Finally, the master proceeds to assign
the next work items to the available workers, until no more work items are left.

There is a number of degrees of freedom within this framework: (i) synchronous vs.
asynchronous execution — in the synchronous mode the master waits for all workers to
finish their current task before advancing to the next iteration, while in the asynchronous
execution the master processes the results as they come in from the workers; (ii) work
distribution — whether the workers test the necessity of the same or a different clause;
(iii) communication between workers — whether the workers are allowed to exchange
the learned clauses or not. In the rest of the paper we denote various configurations
by three letter acronyms: S (resp. A) for synchronous (resp. asynchronous) execution,
followed by S (resp. D) for same (resp. different) clause distribution, followed by N
(resp. C) for absence (resp. presence) of communication between the workers.

Perhaps the simplest reasonable configuration is the asynchronous execution on the
same clause, i.e. all workers are given the same task 〈F,Ci〉 (the AS configurations).
This configuration is akin to portfolio-like solutions for parallel SAT solving in that it
takes advantage of the fact that the run times of different incarnations of the same SAT
solver working on the same formula may vary significantly. Since all workers test the
same clause, once some workers are finished (there may be more than one), all others
become redundant. Clearly, this configuration should benefit from communication — a
comparison of the results for ASN and ASC configurations (Table 1 in Sec. 5) confirms
that this is the case. Since in ASC all workers work on exactly the same formula F \
{Ci}, they can freely exchange learned clauses. The main drawback of ASC is that,
despite the communication, the workers largely duplicate each other efforts. As a result,
and since the parallel execution incurs a non-trivial overhead on the system (mostly due
to memory accesses), this configuration performs worse than a sequential solution.

The next configurations we consider are those with synchronous execution on dif-
ferent clauses (the SD configurations). Here the workers are given the tasks 〈F,C1〉,
〈F,C2〉, . . . with the goal to distribute the work of checking the necessity of the clauses
between the workers. Note that since the master algorithm employs both the clause
set refinement and the model rotation, some of the workers will end up executing
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redundant tasks. We will address this drawback shortly, however meanwhile let us dis-
cuss the communication aspect of SDC. The main observation is that the communication
between workers is not sound. To be specific, consider two workers W1, W2 working on
the tasks 〈F,C1〉, and 〈F,C2〉, respectively. That is, W1 is running its SAT solver on the
formula F \ {C1}, while W2 is working on the formula F \ {C2}. The problem now is
that some clauses derived from C1 by W2 might not be valid logical consequences of the
formula F \ {C1} solved by W1. One could envision a number of ways to circumvent
this problem. For example, we could prohibit W1 from sending any clause derived from
C2 to W2 (and vise versa), however in this case the workers need to be aware of what
other workers are doing. Another option would be to force W1 to refuse any clause de-
rived from C1 — this solution would require to augment every exchanged clause with
some information regarding its origin, and to analyze every received learned clause. Fi-
nally, one could resort to an (NP-complete) implication test for each received clause.
Clearly, neither of these solutions are satisfactory. Yet, a natural solution does exist:
use assumption-based incremental SAT solvers. Before we come back to this impor-
tant point, we note another drawback of SD configurations: due to the fact that the run
times of the SAT calls executed by workers may vary significantly, the algorithm waits
for the completion of the longest running call while other workers are idle. Worse, it
might be that the longest call is redundant given the results of some of the workers that
finished their SAT calls faster. Thus, SD configurations might be hampered by a low
CPU utilization, and a large percentage of “wasted” SAT calls.

It should be no surprise then, that a scalable parallel MUS extraction algorithm re-
quires both the asynchronous execution, a work distribution strategy that reduces the du-
plication of workers’ efforts, and sound communication — this the configuration ADC.
The problem of sound communication in the asynchronous context not only remains,
but becomes exacerbated, as we now might have a situation where W1 is processing a
work item 〈F,C1〉, while W2 is working on 〈F ′, C2〉 with F ′ ⊂ F , and so the clauses
derived from F \ F ′ by W1 might not be valid for W2.

We now argue that assumption-based incremental SAT solving (i.e. the approach in-
troduced in [9]), often seen as simply an implementation technique, is in fact a key
enabling technology for the scalable parallel MUS extraction algorithms. Recall from
Sec. 2 that in the incremental SAT setting the test of the satisfiability of some subfor-
mula F1 of an input formula F can be performed without removing any of the clauses
of F . Instead, the clauses outside of F1 can be temporarily disabled using assumptions.
As a result, clauses that are learned while analyzing a different subformula F2 of F are
valid (though might also be temporarily disabled) for the analysis of F1. Consider now
the organization of the parallel MUS extraction algorithm described above, whereby
the workers are provided with incremental SAT solvers. During the initialization, all
workers are given the same augmented formula FA = {(ai ∨ Ci) | Ci ∈ F} con-
structed by adding assumption literals to the clauses (or groups) of the input formula
F . The workers invoke their incremental SAT solvers on FA under a set of assumptions
that represent the subformula assigned to them by the master. As the construction of an
MUS of F progresses, the master determines that some clauses of F need to be either
permanently removed or finalized — to achieve this, the master adds the corresponding
unit clauses to the SAT solvers of the workers. Now, consider again the configuration
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SDC — notice that since the execution is synchronous, all workers have exactly the
same input formula FA ∪ U , where U is the set of unit clauses added to the formula
in order to delete and to finalize some clauses. Since the only difference between the
worker’s execution is the set of assumptions under which they test the satisfiability of
FA ∪ U , the workers are free to exchange the learned clauses, without any limitations
and any additional reasoning. In the asynchronous setting, ADC, the situation is not quite
straightforward, since then, while W1 is working on the formula FA ∪U , the worker W2,
which “ran ahead” of W1, might be working on the formula FA ∪ U ∪ U ′, where U ′ is
a set of unit clauses added by the master since the beginning of execution of W1. Since
the input formula of W1 is a subformula of the input formula of W2, the clauses learned
by W1 will be valid for W2. However, it is not clear that W2 can send its learned clauses
“back” to W1, since W2 has additional clauses in its formula. We will prove that fully
unrestricted communication is sound in the asynchronous setting as well.

Notice that in the assumption-based incremental SAT setting the assumption literals
provide an automatic way of tagging the learned clauses with the information of their
origins. At the same time, SAT solving under assumptions automatically ensures that
any clause previously learned from a currently disabled clause is disabled. The alterna-
tive approach to the incremental SAT, whereby the assumptions are added as temporary
unit clauses (cf. Sec. 2), would, in our setting, require the reconstruction step described
in [22] for every learned clause sent to another solver, which is not likely to scale.
Our observations suggest that the approach of [9] to the assumption-based incremental
SAT solving might be the key to the effective communication in more general scenarios
where the CDCL-based SAT solvers work on different related formulas in parallel.

Formal Description of the Algorithm. By F = {C1, . . . , Cn} we denote the input
CNF formula, whose MUS M is to be computed. Let AF = {a1, . . . , an} be a set
of fresh assumption variables (or, assumptions). Each assumption variable ai will be
implicitly associated with the clause Ci. As in Sec. 2, by FA we will denote the formula
FA = {(a1 ∨ C1), . . . , (an ∨ Cn)}. Given any A ⊆ AF , let cls(A) = {Ci | ai ∈ A}.
Throughout the execution, the master maintains two sets of assumptions: the set of
necessary assumptions Anec ⊆ AF that corresponds to clauses that are declared to
be necessary (i.e. part of the computed MUS), and the set of unnecessary assumptions
Aunnec ⊆ AF that corresponds to the clauses that will not be included in the computed
MUS. The sets Anec and Aunnec are disjoint. For convenience, we let Aunk = AF \
(Anec ∪ Aunnec) to denote the set of assumptions that correspond to clauses whose
status is unknown. The state of the master is described by a pair 〈Anec, Aunnec〉 of
the sets of the necessary and the unnecessary assumptions. Given such a state pair (or,
simply, a state) S = 〈Anec, Aunnec〉, by F (S) we denote the formula

F (S) = FA ∪ {(¬ai) | ai ∈ Anec} ∪ {(aj) | aj ∈ Aunnec}. (3.1)

The pseudocode of the algorithm is presented in Alg. 1. Each of the workers Ww, w =
1, . . . , nw, runs on its own thread, and has its own incremental SAT solver which is
initialized with the formula FA. As the master progresses, it adds negative units to
finalize the necessary clauses, and positive units to remove the unnecessary clauses
from the workers’ SAT solvers. Since in the asynchronous configurations the formulas
inside the SAT solvers may diverge, it will be convenient to view each worker Ww as
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Algorithm 1. Parallel MUS extraction algorithm (with incremental SAT)
Input : F — unsatisfiable CNF Formula; nw — number of worker threads
Output: M ∈ MUS(F )

1 initializeWorkers (F, {W1, . . . ,Wnw}) // each Wi is a worker
2 〈Anec, Aunnec〉 ← 〈∅, ∅〉 // initial state

3 while Aunk �= ∅ or there are running workers do // Aunk � AF \ (Anec ∪Aunnec)
4 if Aunk �= ∅ then // there are untested clauses
5 foreach idle Ww do
6 ai ← pickAssumption(Aunk)
7 Ww.updateState(〈Anec, Aunnec〉)
8 Ww.startTask(ai)

9 sleepUntilFinished()
10 Res = { Ww.getResult() | Ww is finished }
11 〈ΔAnec ,ΔAunnec〉 ← mergeResults(Res)
12 〈Anec, Aunnec〉 ← 〈Anec ∪ΔAnec , Aunnec ∪ΔAunnec〉
13 abortRedundantWorkers()

14 return M � cls(Anec) // M ∈ MUS(F )

having its own version of a state-pair Sw = 〈Aw
nec, A

w
unnec〉, with F (Sw) (as per 3.1)

being exactly the set of input clauses in Ww’s SAT solver. Details of the functions used
in Alg. 1 are discussed below:

pickAssumption(Aunk): for S configurations, the function picks ai ∈ Aunk,
and returns the same ai for each invocation in the foreach loop on line 5; for D con-
figurations, for each invocation the function returns a different ai ∈ Aunk, if possible,
and the last picked ai if not.

Ww.updateState(〈Anec, Aunnec〉): sets Sw to be identical to S; on the implemen-
tation level this causes the addition of unit clauses to Ww’s SAT solver.

Ww.startTask(ai): starts Ww’s SAT solver. If Sw = 〈Aw
nec, A

w
unnec〉 is the state of

the worker Ww at the moment of invocation, the set of clauses in Ww’s SAT solver is
F (Sw), and the SAT solver is invoked under assumptions {ai}∪{¬aj | aj �=i ∈ Aunk}.
Thus, the worker tests whether the clause Ci, associated with the assumption ai, is
necessary for the formula cls(Aw

nec ∪ Aw
unk). We will say that ai is Ww’s task literal,

and that, until the SAT solver run has finished, Ww is processing its task.

sleepUntilFinished(): for synchronous configurations (S ) this function waits
until all workers finished their tasks; for asynchronous configurations (A ) this function
waits until at least one worker has finished its task (but there might still be more than
one finished worker when this function returns).

Ww.getResult(): retrieves the outcome of the SAT test performed by a finished
worker Ww. Since a worker’s state might be out of sync with the master’s, for notational
convenience we assume that the returned result is a tuple Rw = 〈Sw, ai, st, τ, A

w
core〉,

where Sw is the state of the worker, ai is the worker’s task literal, st is the outcome
of the SAT call (sat or unsat), τ is the model returned by the SAT solver in case
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st = sat, and Aw
core ⊆ Aw

unk is a set of assumption literals in the final conflict clause
in case st = unsat.
mergeResults(Res): is responsible for the analysis of the set Res of the results
of finished workers. The function returns a tuple 〈ΔAnec , ΔAunnec〉 of assumptions
that correspond to the newly discovered necessary and unnecessary clauses, initialized
with 〈∅, ∅〉. For each Rw = 〈Sw, ai, st, τ, A

w
core〉 ∈ Res with st = sat, the func-

tion appends ai to ΔAnec , and executes the model rotation algorithm on the formula
cls(Anec ∪ Aunk) with the assignment τ to detect additional necessary clauses. For
each such clause, the corresponding assumption variable is added to ΔAnec . For each
result tuple with st = unsat the function first checks whether Aw

core is a subset of
Aunk — in the asynchronous mode this might not be the case, since the state of the
worker Sw might be out-of-date with respect to the state of the master. All unsat re-
sults for which Aw

core �⊆ Aunk are discarded, and from the remaining unsat results
one set Aw

core is selected1. The function then sets ΔAunnec to be Aunk \Aw
core.

abortRedundantWorkers(): aborts all workers whose task literal is not in Aunk.
The learned clauses accumulated by a worker’s SAT solver remain in the solver.

Proof of Correctness and the Soundness of Unrestricted Communication. The cor-
rectness of the presented algorithm hinges on the following loop invariant.

Invariant 3.1. For v = 1, . . . , let Sv = 〈Av
nec, A

v
unnec〉 denote the state of the mas-

ter prior to the v-th test of the main loop guard (line 3 of Alg. 1). Then, the formula
cls(Av

nec ∪ Av
unk) is unsatisfiable, and every clause in cls(Av

nec) is necessary for it.

To prove the invariant we need to establish a correctness property of the results returned
by the finished workers. The property holds trivially in the configurations without com-
munication, however a subtlety arises when the unrestricted communication is enabled.
This is best demonstrated by the following example.

Example 1. Let the (already augmented) formula FA be {(a1 ∨ ¬b ∨ ¬c ∨ ¬d), (a2 ∨
¬b∨c∨d), (a3∨b∨c∨¬d), (a4∨b∨c∨d), (a5∨¬c∨¬d), (a6∨c∨¬d), (a7∨¬c∨d)}.
Assume that there are three workers, and W1 already determined that C1 is unnecessary:

Ww Task Assumptions Aw
nec Aw

unnec

W1 a4 {¬a2,¬a3, a4,¬a5,¬a6,¬a7} { } {a1}
W2 a2 {¬a1, a2,¬a3,¬a4,¬a5,¬a6,¬a7} { } { }
W3 a3 {¬a1,¬a2, a3,¬a4,¬a5,¬a6,¬a7} { } { }
Assume W1 finishes its task first: it returns sat, and a model τ that witnesses the clause
C4. In mergeResults() the master applies model rotation, and determines that C2

is also necessary. The master now has Anec = {a2, a4} and Aunnec = {a1}. Since
W2’s task is a2, it becomes redundant and is aborted. Assume W1 is given a5, and W2

some other task (not shown). Note that the master adds the units {(¬a2), (¬a4)} to
W1’s solver, and the units {(a1), (¬a2), (¬a4)} to W2’s, prior to the call.

W1 a5 {¬a3, a5,¬a6,¬a7} {a2, a4} {a1}
Then, during conflict analysis the learned clause (c ∨ d) can be generated by W1 from
(a2 ∨ ¬b ∨ c ∨ d), (a4 ∨ b ∨ c ∨ d), and the two units (¬a2), (¬a4). When this clause

1 In our implementation we select a set Aw
core of the smallest size.
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is received by W3, it learns (a5 ∨ a6 ∨ a7) from F (S3) by resolving (c ∨ d) with (a5 ∨
¬c ∨ ¬d), (a6 ∨ c ∨ ¬d) and (a7 ∨ ¬c ∨ d), resulting in the set A3

core = {a5, a6, a7}.
But, the formula cls(A3

core) is satisfiable ! As we see shortly, the master must conjoin
A3

core with Anec to get the “real” unsatisfiable core. �

Lemma 1. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww at the time of the

invocation of the function Ww.startTask(ai). Let A be any subset of Aw
unk \ {ai},

andD be any set of clauses implied by the formula F (Sw)∪{(¬aj) | aj ∈ A}. Further-
more, let 〈st, τ, Aw

core〉 be the outcome of a SAT solver call on the formula F (Sw) ∪D
under the set of assumptions P = {ai} ∪ {¬aj | aj �=i ∈ Aw

unk}. Then,

(i) if st = sat, then the formula F (Sw) is satisfiable P , and τ is a model of F (Sw)
(that respects P ).

(ii) if st = unsat, then the formula F (Sw) is unsatisfiable under the assumptions
P ′ = {¬aj | aj ∈ A ∪ Aw

core}.

The set D in Lemma 1 is intended to represent the set of “extra” clauses that a worker
Ww has received from other workers during the execution of its task, and the set A ⊆
Aw

unk of assumptions to correspond to the clauses that were discovered to be necessary
by the master since Ww started its task. Notice the addition of the set A to the set of
assumptions P ′ in part (ii) of the lemma (cf. Example 1). We now argue that all clauses
received by any worker Ww satisfy the condition of Lemma 1.

Lemma 2. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww that has suc-

cessfully completed its task ai (i.e. it has not been aborted by the master), and let
S = 〈Anec, Aunnec〉 be the state of the master by the time it calls Ww.getResult()
(line 10, Alg. 1). Then, for every clause C in Ww’s SAT solver,

F (Sw) ∪ {(¬aj) | aj ∈ Anec \Aw
nec} |= C. (3.2)

Proof (sketch). The complete proof involves an inductive argument on the global se-
quence of generated learned clauses. The base case is the non-trivial part of the proof
and is established using the following observations. Let W1 and W2 be two workers with
the states S1 and S2 respectively, such that S1

unk ⊃ Sw
unk ⊃ S2

unk, i.e. W1 is “behind”
Ww and W2 is “ahead” of Ww. Since F (S1) ⊂ F (Sw), any clause C learned by W1 from
its input formula satisfies (3.2). Let C be a clause learned by W2 from its input formula
F (S2), i.e. C is implied by the formula

F (S2) = F (Sw) ∪ {(¬aj) | aj ∈ A2
nec \Aw

nec} ∪ {(ak) | ak ∈ A2
unnec \Aw

unnec}.

The assumptions ak occur only positively in F (S2), so, due to the units (ak), clauses
with ak will not be used as conflict. Hence, ak do not occur in C, and so C is implied by

F (Sw) ∪ {(¬aj) | aj ∈ A2
nec \Aw

nec}.

We conclude that (3.2) holds by taking into account that A2
nec ⊆ Anec. ��

Lemma 3 below establishes the correctness of the results returned by the workers by
putting together Lemmas 1 and 2, and taking into account the fact that for any worker
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Ww with state Sw that has successfully completed a task ai, we have that ai ∈ Aunk, as
otherwise the master would have aborted Ww during abortRedundantWorkers()
call at the end of the previous iteration. In particular, ai /∈ (Anec \ Aw

nec), and so the
set Anec \ Aw

nec from (3.2) satisfies the condition imposed on the set A in Lemma 1.
Notice that in Example 1, if W2 was not aborted when a2 was found necessary, on the
reception of the clause (c ∨ d) from W1 it would return unsat, instead of sat.

Lemma 3. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww that has successfully

completed its task ai, and let S = 〈Anec, Aunnec〉 be the state of the master by the time
it obtains Ww’s result tuple R = 〈Sw, ai, st, τ, A

w
core〉. Then, if st = sat, then τ is

a model of the formula cls(Anec ∪ Aunk) \ {Ci}; if st = unsat, then the formula
cls(Anec ∪ Aw

core) is unsatisfiable.

Using Lemma 3 and the definition of mergeResults() we establish Invariant 3.1.

Theorem 1. Algorithm 1 terminates on any unsatisfiable input formula F , and the set
M = cls(Anec) returned by the algorithm is an MUS of F .

SAT Solver Modifications. To exchange the learned clauses, a globally accessible
clause pool, implemented as a ring buffer, is created. Each incremental SAT solver
incarnation adds its learned clauses to the pool and receives the clauses submitted by
other solvers. A solver incarnation sends a learned clause immediately after its gener-
ation if the clause passes the heuristic filters (discussed below). Clauses are received
from the pool prior to a decision on decision level 0.

Improving Communication. Although, as shown above, the unrestricted communica-
tion is sound, clause sharing has to be restricted due to following reasons: (i) the re-
ceived clauses might be redundant; (ii) additional clauses slow down the reasoning of a
SAT solver incarnation; (iii) the usefulness of the new clauses cannot be determined in
advance. Thus, we restrict the communication to the clauses that appear to be promising
by adding two sharing filters to the system: learned clauses are shared if (i) their size
or (ii) the literal block distance (LBD) [2] are less than a certain threshold. The de-
fault configuration uses a size limit of 10 literals and an LBD limit of 5. Following the
ideas in [11] we also added a configuration DYN, in which these sharing thresholds are
controlled dynamically. As previously discussed, the exchanged learned clauses may
include a large number of assumption literals, which affect both the size and the LBD
value of the clauses. For example, a clause with a single non-assumption literal and a
large number of assumption literals might be filtered out due to its size. Clearly, such
clause will be extremely useful to other solvers, as it might trigger unit propagation
once the assumptions are assigned. Thus, from the filtering point of view, the assump-
tion literals are superfluous, and so we added the configuration PRASS in which these
literals are ignored (“protected”) in the analysis by the sharing filters. Since the activity
of learned clauses is initialized, we also allow this for received clauses (BUMP).

Core-Based Scheduling. Work duplication remains an important problem in our algo-
rithm. To reduce the duplication we implemented a scheduling scheme based on the
analysis of unsatisfiable cores returned by the workers. The scheme relies on the intu-
itive observation that clauses that appear in the intersection of unsatisfiable cores during
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the execution of the algorithm (including those discarded by mergeResults()) are
likely to be necessary. In core-based scheduling CBS we prioritize clauses based on
their core membership count.

4 Related Work

To our knowledge the only published work on the parallelization of MUS extraction
algorithms is the recently published papers by Wieringa [26] and Wieringa and Hel-
janko [27]. In both papers an MUS extractor is built on top of a parallel incremental
SAT solver. As the focus of [26] is the analysis of model rotation, the parallelization
aspects, and importantly, the communication aspects, are not discussed in sufficient
detail. In [27] the authors present a parallel incremental SAT solver Tarmo, and use
the MUS extraction problem as a case study to demonstrate its effectiveness. To this
extent, the authors implemented the MUS extraction algorithm described in [26] on
top of Tarmo — we will refer to this combination as TarmoMUS, as this is the name
of the MUS extractor distributed by the authors. The essential difference between the
algorithm proposed in this paper, and TarmoMUS is that in our algorithm the commu-
nication is unrestricted (modulo the filtering techniques discussed above), whereas in
TarmoMUS the communication is restricted to be “forward” only. This restriction both
incurs an additional implementational overhead, and reduces the quality and usefulness
of exchanged clauses. In Sec. 5 we demonstrate that our algorithm scales significantly
better that of [27] — we attribute this difference to the unrestricted communication.
Additional important technique in our algorithm that is absent from TarmoMUS is the
assumption “protection” during clause filtering.

5 Experimental Evaluation

The algorithm described in this paper was implemented in C++ with pthreads, and
the resulting tool, pMUSer2, was evaluated on a subset of benchmarks used in the
MUS track of SAT Competition 2011. The subset consists of 175 MUS and 201 group-
MUS instances on which the sequential MUS extractor MUSer2 [5] takes more than
10 seconds of CPU time. The experiments were performed on an HPC cluster, where
each node is a dual quad-core Intel Xeon E5450 3 GHz with 32 GB of memory. All
tools were run with a timeout of 1800 seconds and a memory limit of 16 GB per input
instance. All communicating configurations use the PRASS option by default.

Table 1 summarizes the results of various configurations of the parallel, as well as the
sequential, algorithms. Clearly, adding communication to the asynchronous configura-
tions of the increases the performance in terms of solved instances and overall solving
time. The high average run time of the ADC configuration can be explained with the
overhead introduced of less useful shared clauses. The table also shows clearly that us-
ing incremental SAT as the basis for parallel MUS is essential – without this technique
only the configurations AS would be possible, but these two configurations show the
worst performance. For the AS and SD configurations, also a slight decrease in the
calls to the SAT solver can be recognized. Note, that this number of calls includes all
solved instances, so that the increase from ADN to ADC is still plausible: the additional
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Table 1. The table compares different algorithm configurations and shows the following statistic;
the number of solved instances from the benchmark set; the average run time for the full bench-
mark set (including timeout instances) and, for parallel solvers, the average CPU utilization; the
penalized runtime, i.e. the runtime of solving the full benchmark set with a penalty of factor 10
added for all instances that could not be solved; the total number of sent clauses shows how many
learned clauses are provided for other solver incarnations; the total number of SAT solver calls;
the percentage of SAT calls whose result has been ignored (wasted calls); the percentage of calls
that have been aborted. The last column indicates whether the results are for plain MUS or for
group MUS instances.
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MUSer2 144 186.46 100 590 K – 413 K – – –
ASN(4) 135 157.01 80.30 747 K – 1458 K 21.80 54.13 –
ASC(4) 137 146.37 80.65 709 K 433 K 1453 K 21.88 54.04 –
SDN(4) 143 154.93 47.27 603 K – 517 K 15.91 – –
SDC(4) 141 138.31 46.70 636 K 433 K 512 K 16.19 – –
ADN(4) 146 126.45 91.90 544 K – 488 K 5.76 11.70 –
ADC(4) 150 154.09 90.79 476 K 1186 K 602 K 5.84 12.26 –

ADC-PRASS(4) 148 104.95 90.15 504 K 548 K 585 K 5.15 12.12 –
ADC+DYN+BUMP(4) 153 133.98 91.55 419 K 7071 K 661 K 7.01 11.83 –

ADC(8) 151 128.05 87.76 454 K 867 K 672 K 7.78 13.30 –
ADC+CBS(8) 151 117.22 86.71 452 K 1283 K 552 K 4.10 3.53 –

ADC+DYN+BUMP+CBS(8) 155 136.35 88.27 383 K 5564 K 635 K 5.56 3.13 –
MUSer2 194 123.56 100 150 K – 325 K – – �
ADC(4) 198 106.92 90.19 75 K 487 K 530 K 14.35 33.39 �

ADC+DYN+BUMP+CBS(4) 197 110.11 93.79 94 K 1688 K 350 K 11.68 7.29 �
ADC(8) 198 100.76 86.99 74 K 333 K 692 K 20.93 33.26 �

ADC+DYN+BUMP+CBS(8) 198 88.52 88.39 71 K 1178 K 439 K 9.92 8.66 �

SAT solver calls depend on the additionally solved instances. Since the communication
speeds up single SAT calls, more solver calls are wasted, because a competing solver
has finished its task faster and thus aborts redundant solvers. Note, that the CPU uti-
lization of the SD (synchronous) configurations is almost half of that of asynchronous
configurations. Therefore, using asynchronous SAT solver calls is important to the scal-
ability of the parallel algorithm and further motivates the analysis of communication for
this setting. Comparing the results of the basic configurations with the sequential solver
MUSer2 we note that only the configurations AD improve the performance from 144
to 150 solved instances with an improved average run time.

In Sec. 3 we discussed several improvements of the algorithm, which are also evalu-
ated in Table 1. Disabling the PRASS option reduces the performance, and also reduces
the number of shared clauses significantly – underlining that ignoring assumption lit-
erals is a must for successful clause sharing. Optimizing clause sharing with BUMP
and DYN improves ADC further to 153 solved instances and an improved average run
time. Note that this configuration also shares significantly more clauses than ADC, but
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Fig. 1. Comparison of extractors on plain MUS instances

wastes more SAT calls. The core-based scheduling heuristic CBS does not improve the
performance on 4 cores. The best four core configuration ADC+DYN+BUMP is referred
as pMUSer2(4). In the eight core setting, the addition of CBS improves the number
of SAT calls and reduces the percentage of wasted and aborted calls, without improv-
ing the overall performance significantly compared to ADC. However, adding sharing
optimizations DYN and BUMP to ADC+CBS improves the overall performance: four
more instances can be solved, the average run time decreases and the number of wasted
and aborted SAT calls is also smaller than for any other eight core configuration. The
best eight core configuration we found is ADC+DYN+BUMP+CBS, which we refer to as
pMUSer(8). The behaviour of the parallel MUS extraction algorithm in the context
of group-MUS extraction is quite similar. Again, the configuration ADC gives the best
results and can solve already 198 out of 201 instances. For four cores, adding sharing
or scheduling optimizations does not increase the performance, but again CBS helps
to reduce the number of SAT calls as well as wasted and aborted SAT calls and DYN
increases the number of shared clauses. When adding more cores, also 198 instances
can be solved also by ADC+DYN+BUMP+CBS – suggesting that if the timeout were
increased slightly, the four core variant could have solved these instances as well.

Figure 1 depicts the comparative behaviour of MUSer2 and pMUSer with 4 and 8
cores on the plain MUS instances. In addition, we evaluated the parallel MUS extractor
TarmoMUS [27], discussed in Sec. 4. While in the sequential mode TarmoMUS is no-
tably faster than MUSer22, the plot demonstrates that our algorithm scales significantly
better with the number of cores, than TarmoMUS. For example, already a 4-core config-
uration of pMUSer2 outperforms the 4-core configuration of TarmoMUS. The statistics
to compare the scalability of the algorithms are presented in Table 2. For both average
and median speedup pMUSer2 gives much better results on plain instances. From se-
quential to four cores, MUSer2 scales linear in average. Obtained speedups range from
0.49 up to 132.59, showing that the parallelization can result in super-linear speedups

2 Our analysis suggests that this is due to different versions of the SAT solvers used by the tools.
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Table 2. Relative speedup with the addition of parallel resources: minimum, average, maximum
and median. As a basis for the calculation the commonly solved instances have been used.

Solver 1 Solver 2 Min. Avg. Max. Median Common Groups
TarmoMUS TarmoMUS(4) 0.55 1.44 4.40 1.17 141 –
TarmoMUS TarmoMUS(8) 0.41 1.74 6.92 1.29 141 –

MUSer2 pMUSer2(4) 0.49 4.09 132.59 2.94 143 –
MUSer2 pMUSer2(8) 0.28 4.01 97.66 3.38 142 –
MUSer2 pMUSer2(4) 0.46 1.41 4.07 1.33 194 �
MUSer2 pMUSer2(8) 0.44 1.88 9.20 1.49 194 �

Fig. 2. Wall-clock time, sequential vs. 4 cores: left — plain MUS; right – group MUS

(consider also the scatter plots in Figure 2). For TarmoMUS the average, maximum
and median speed-ups are lower, and when more resources are added, the performance
increases only slightly. Neither pMUSer2 nor TarmoMUS scale well to eight cores.

6 Conclusion

We argued that assumption-based incremental SAT solving is essential to ensuring the
scalability of the proposed parallel MUS extraction algorithm. We proved the soundness
of unrestricted communication in our algorithm, and proposed a number of optimiza-
tions focused on improving the quality of communication and job distribution. While
the algorithm scales extremely well from a single-core to the 4-core setting, we did not
observe similar improvements going from the 4-core setting to the 8-core. In our view,
the main obstacle to the scalability to a high number of cores is the fact that as the num-
ber of cores grows, the workers are more likely to duplicate each others efforts. While
the situation is somewhat improved by the core-based scheduling, the solution is not yet
satisfactory, and requires further research. Additional avenue for improvement might lie
in the high-level parallelization, whereby different (parallelized on the low-level) MUS
extraction algorithms are executed in parallel.
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