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Abstract. In recent years there has been some progress in our under-
standing of the proof-search problem for very low-depth proof systems,
e.g. proof systems that manipulate formulas of very low complexity such
as clauses (i.e. resolution), DNF-formulas (i.e. R(k) systems), or poly-
nomial inequalities (i.e. semi-algebraic proof systems). In this talk I
will overview this progress. I will start with bounded-width resolution,
whose specialized proof-search algorithm is as easy as uninteresting, but
whose proof-search problem is unintentionally solved by certain versions
of conflict-driven clause-learning algorithms with restarts. I will continue
with R(k) systems, whose proof-search problem turned out to hide the
complexity of certain two-player games of interest in the area of systems
synthesis and verification. And I will close with bounded-degree semi-
algebraic proof systems, whose proof-search problem turned out to hide
the complexity of systems of linear equations over finite fields, among
other problems.

1 Introduction

Let P be a propositional proof system, which we think of, abstractly, as a
polynomial-time verifiable relation between tautologies and proofs, or dually,
between contradictions and refutations [21]. The proof-search problem for P
asks, for a given tautology as input, to find one of its P -proofs. However, since
we cannot expect all tautologies to have polynomial-size P -proofs (as this would
imply NP = co-NP), we will feel satisfied if we are able to find P -proofs that are
not too far from optimal. More formally, a proof system P is called automatizable
in time t if there exists an algorithm that, when it is given a tautology as input,
finds one of its P -proofs in time t(s), where s is the size of its smallest P -proof.
Note that we do not insist that the found proof is the shortest possible [17].

The question whether there is an interesting proof system that is automatiz-
able in polynomial time is open. The admittedly vague term interesting should
mean that the proof system is powerful enough to admit some short proofs.
For (a non-)example, the proof system whose proof for a given tautology is
its full truth-table is not interesting for it does not have short proofs at all.
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This makes it trivially automatizable in polynomial time, but for a silly reason.
For contrast, interesting proof systems in this sense do include propositional res-
olution, for example, whose reasoning power is able to produce short proofs of
non-trivial tautologies arising in multiple application contexts. For example, res-
olution admits polynomial-size proofs of the least-number principle (every finite
linear order has a least element) [40], which underlies many inductive proofs.

The purpose of this paper is to discuss the status of the proof-search problem
for inference-based proof systems that work with formulas of very low complexity.
These include resolution or DNF-resolution, which work with clauses and DNF-
formulas, respectively, and semi-algebraic proofs, which work with polynomial
inequalities over the reals. We also take the opportunity to discuss the connection
to some of the lift-and-project methods in mathematical programming.

2 Inference-Based Proof Systems

Most classical proof systems are inference-based: starting with a set of given hy-
potheses, some conclusions are produced syntactically by means of one or more
inference rules, which are then added to the set of hypotheses to proceed. In pro-
ducing proofs for a tautology, an inference-based proof system starts with the
empty set of hypotheses and the goal is to produce the tautology. Of course this
will mean that the set of inference rules includes some axioms, i.e. inference rules
that can be fired without any hypotheses. In producing refutations for a contra-
diction, an inference-based proof system starts with the given contradiction and
the goal is to produce some blatant inconsistency.

All typical inference-based proof systems manipulate some particular type
of formulas, be them clauses, DNF or CNF-formulas, propositional formulas
of some higher but fixed depth of alternations between disjunctions and con-
junctions, general propositional formulas, polynomial equations over some ring,
polynomial inequalities over some ordered ring, disjunctions of those, decision
trees branching on variables or more complicated formulas, binary decision di-
agrams of various sorts, Boolean circuits, etc. The inference rules are typically
some more or less obvious, non-interesting, and polynomially checkable ways of
producing some logical consequence of the hypotheses. In this sense, what makes
an inference-based proof system more or less powerful is the expressive power of
the type of formulas it manipulates.

2.1 Systems that Manipulate Propositional Formulas

In resolution, the formulas are clauses, disjunctions of variables or negated vari-
ables, and the only inference rule is the resolution rule:

A ∨ x B ∨ ¬x
A ∨B

,

where A and B are clauses and x is a variable. We will see this proof system as a
special case of a proof system that manipulates arbitrary propositional formulas



The Proof-Search Problem between Bounded-Width Resolution 3

and that has the following inference rules:

A ∨ A

A

A ∨B

A ∨ C B ∨D

A ∨B ∨ (C ∧D)

A ∨ C B ∨ C

A ∨B
,

where A, B, C and D denote propositional formulas in negation normal form
(i.e. all its negations appear in front of variables), and a bar on top of a formula
denotes its dual (i.e. A ∨B = A ∧ B, A ∧B = A ∨ B, x = ¬x, and ¬x = x).
The four rules above are called axiom, weakening, introduction of conjunction,
and cut. Besides these rules, the proof system is allowed to produce structural
manipulations, which means that it is allowed to rewrite a propositional formula
into an equivalent one that is obtained by repeated applications of the straight-
forward rules of commutativity, associativity, and idempotency of disjunctions
and conjunctions. We refer to this proof system as F, for Frege system [21].

The proof system F is implicationally complete, which means that if A is a
logical consequence ofA1, . . . , Am, then there is an F-proof that takesA1, . . . , Am

as hypotheses and produces A as conclusion. By the classical results of Cook and
Reckhow [21], the reasoning power of F is hence equivalent to any other Frege
proof system, i.e. any Hilbert-style textbook proof system for propositional logic,
and also equivalent to the propositional sequent calculus. By this we mean that
every proof in any one of these proof systems can be converted to an F-proof
in polynomial time on the size of the proof, and conversely. Here, the size of a
proof is the sum of the sizes of the formulas that make it (this includes all the
hypotheses, and of course the conclusion). When such efficient conversions from
P -proofs into P ′-proofs are possible we say that P ′ polynomially simulates P .

As said, resolution can be seen as the special case of this proof system in which
the only allowed formulas are clauses and the only allowed rule is cut. When the
only allowed formulas are k-DNF-formulas, i.e. disjunctions of conjunctions of
up to k literals, the corresponding restriction has been named R(k) or k-DNF-
resolution [29]. It is not hard to see that R(1) is equivalent to resolution. When
the only allowed formulas are arbitrary DNF-formulas, the proof system is called
DNF-resolution.

2.2 Tree-Like, Dag-Like, and Bounded-Width Proofs

An essential feature of inference-based proofs as defined up to now is that, as
soon as a conclusion is derived, it can be used multiple times as a hypothesis
at no additional cost. On the other hand, it is obvious that every multiple use
of a derived hypothesis could be replaced by multiple proofs of that hypothesis,
from which it looks like the feature is not that essential after all. However, the
point is that in doing this conversion, the proof-size could get exponentially
bigger because at every re-derivation we could be doubling the size of the proof
up to that point. In the following, we say that a proof in an inference-based
proof system is in tree form, or tree-like, if every derived formula is used at most
once as the hypothesis of an inference. Sometimes we use the term dag form, or
dag-like, to emphasize the fact that a certain proof is not in tree form.
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The intuition that the dag form of proofs is an essential feature that could
lead to exponential savings is indeed correct, but only for proof systems that
work with formulas of very low complexity. As will appear clear soon in this
section, dag-like proofs can usually be converted efficiently into tree-like proofs
whose lines are disjunctions of formulas of the starting dag-like proof or their
negations. In particular, this means that in any Frege system such as F, the tree-
like and dag-like versions polynomially simulate each other [30]. On the other
hand, for proof systems such as resolution or R(k) with constant k, it is known
that dag-like proofs could be exponentially shorter [15], [11], [25].

Since for resolution and R(k) tree-like proofs are much less powerful than their
dag-like versions, an obvious question arises: why do we even consider the tree-
likeness restriction at all? The answer is to be found on the fact that tree-like
proofs appear naturally as the result of backtracking procedures. For example,
the straightforward backtracking procedure to verify that a given set of clauses
is contradictory by branching on the truth values of unset variables, and by
pruning each branch as soon as some clause is falsified by the assignment of that
branch, corresponds to a tree-like refutation in resolution: turn the recursion
tree upside-down, label each leaf by one of the falsified clauses, and label the
internal nodes of the tree by a resolution inference on the branched variable [6].

At this point we can ask for the proof system that corresponds to backtracking
procedures that branch on the truth value of more complicated formulas and that
stop as soon as the assigned truth values incurs into a blatant contradiction with
the semantics of the connectives (for example by assigning A ∧B to true but A
to false), or with the given clauses. The correspondence with natural tree-like
proofs persists. For example, if the branching formulas are conjunctions of up to
k literals, what we get is equivalent to tree-like R(k) [25].

Interestingly, tree-like R(k)-proofs appear naturally in a different context.
Suppose C1, . . . , Cm, Cm+1, . . . , Ct is a resolution proof of Ct from C1, . . . , Cm

in which every clause has at most k literals; in that case we say that the resolution
proof has width k. Since the resolution rule is sound, the last inference-step in
this proof is indeed a tautology of the form C�(t) ∧ Cr(t) → Ct, or equivalently

C�(t) ∨Cr(t) ∨Ct, where 0 < �(t) < r(t) < t. This tautology depends on no more
than 3k variables and is a k-DNF, and hence has a tree-like R(k)-proof of size
2O(k), and indeed size O(k) because it has very special form. Of course, this is
also the case for any inference in the proof. Now, starting at the tautology that
corresponds to the inference that derives Ct, and cutting it with the tautologies
that correspond to the inferences that derive C�(t) and Cr(t), we get a k-DNF of

the form C�(�(t)) ∨Cr(�(t)) ∨C�(r(t)) ∨Cr(r(t)) ∨Ct. Repeating for every inference

in the proof we get C1∨· · ·∨Cm∨Ct, from which Ct follows by m cuts with the
m initial clauses C1, . . . , Cm. Observe that the result is a tree-like R(k)-proof
whose size is a factor O(k) bigger than the original proof (and note also that
this argument works equally well to polynomially simulate dag-like F-proofs by
tree-like F-proofs [30]).

As we will see later on, the width of a resolution proof as defined in the
beginning of the previous paragraph is a very important parameter for the
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understanding of resolution. For this reason, let us write Rk for the restriction of
resolution in which all clauses have at most k literals. Note that Rk is obviously a
restriction of R(1), and from the above, it can also be thought as a restriction of
tree-like R(k). However, let us also note that, for k < n, the restriction Rk need
not be complete on sets of clauses with n variables. Certainly Rk with k < n
cannot derive any clause with k + 1 literals, or cannot even start if the initial
set of clauses contains one with k + 1 literals, but even explicit n-variable con-
tradictory sets of 3-clauses are known for which all resolution refutations must
use a clause with Ω(n) literals [12].

2.3 Systems that Manipulate Polynomial Inequalities

If we represent true by 1 and false by 0, propositional clauses are obviously
represented by linear inequalities over the reals. For example, the clause x∨y∨z
is represented by the linear inequality x + (1 − y) + z ≥ 1, which may be re-
written as x− y+ z ≥ 0. In this sense, resolution may be seen as a proof system
that manipulates linear inequalities of special form, over the reals. There are
several ways in which this can be generalized to arbitrary linear inequalities. In
the cutting planes proof system [18], seen as a proof system for refuting sets
of propositional clauses, the hypotheses are represented by linear inequalities of
special form as above, the inequalities xi ≥ 0 and 1−xi ≥ 0 are added to the set of
hypotheses, and arbitrary inequalities with integer coefficients may be inferred
by means of positive linear combinations and integer rounding. Although the
published work on the cutting planes proof system is very extensive, in this paper
we want to focus on a more general family of proof systems that manipulates
inequalities over the reals that we call semi-algebraic proof systems.

In the most general semi-algebraic proof system the primary objects are
arbitrary polynomial inequalities over the reals. These are inequalities of the
form P ≥ 0, where P is a multi-variate polynomial in the ring of polynomials
R[x1, . . . , xn]. The proof system has the following simple rules of inference:

P ≥ 0 Q ≥ 0

c · P + d ·Q ≥ 0

P ≥ 0 Q ≥ 0

P ·Q ≥ 0 P 2 ≥ 0

where P and Q are polynomials, and c and d are positive real constants. These
rules are called positive linear combination, multiplication rule, and positivity of
squares, respectively. Of course a representation issue arises here as the coeffi-
cients of the polynomials, as well as the multipliers c and d, could be arbitrary
reals. Whenever this issue is important (e.g. when we consider the proof-search
problem for such proofs) we will restrict the valid proofs to those that involve
rational coefficients that are represented in binary. For the cases of interest, this
will not be a severe restriction, as we will see.

Obviously the rules above are sound: if (x1, . . . , xn) ∈ R
n satisfies the hypothe-

ses of a rule, then it must also satisfy the conclusion. Moreover, a deep result in
real algebraic geometry known as Stengle’s Positivstellensatz [41] implies that
the rules make up a proof system that is refutationally complete for systems of
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arbitrary polynomial inequalities. More precisely, if P1, . . . , Pm are polynomials
in R[x1, . . . , xn] such that the system P1 ≥ 0, . . . , Pm ≥ 0 is unfeasible over Rn,
then there is a proof of −1 ≥ 0 from the hypotheses P1 ≥ 0, . . . , Pm ≥ 0 (see
[35], [13]). We should also point out that this proof system is not implicationally
complete for arbitrary polynomial inequalities (see [35], [13] again). As will be
evident in the forthcoming, it is often convenient to restrict the degree of all the
polynomials appearing in the proof to some bound k. The semi-algebraic proof
system restricted to using polynomials of degree at most k will be called S+(k).
The version without positivity of squares is called S(k). Let us note that very
closely related proof system were called LSk+,∗ and LSk∗ in [27].

Just as clauses can be represented by linear inequalities, there is an obvi-
ous way of representing k-DNF-formulas as polynomial inequalities of degree k
through sums of extended monomials, i.e. inequalities of the form

m∑

t=1

∏

i∈It

xi

∏

i∈Jt

(1− xi) ≥ 1

where |It∪Jt| ≤ k for every t ∈ {1, . . . ,m}. Moreover, it is a rather pleasant fact
that, under this translation plus some additional axioms stating that 0 ≤ xi ≤ 1
and x2

i = xi, the system R(k) is polynomially simulated by S(2k) (note 2k vs.k).
More precisely, if A1, . . . , Am and A are k-DNF-formulas and there is an R(k)-
proof of A from A1, . . . , Am of size s, then there is a semi-algebraic proof (of
the translation) of A from (the translations of) A1, . . . , Am and the additional
axioms xi ≥ 0, 1 − xi ≥ 0, xi − x2

i ≥ 0 and x2
i − xi ≥ 0, all whose polynomials

have rational coefficients, degree at most 2k, and the total size of the proof is
polynomial in s. The proof of this is not completely trivial, so we give a sketch.

We start by noting that there is a small degree-2k proof of A + B ≥ 1 from
A +

∏
i∈I xi

∏
j∈J (1 − xj) ≥ 1 and B +

∑
i∈I(1 − xi) +

∑
j∈J xj ≥ 1 for every

two sums of degree-k extended monomials A and B, and |I ∪ J | ≤ k. First
observe that if M is a degree-k extended monomial then, in the presence of the
four axioms stating 0 ≤ xi ≤ 1 and x2

i = xi, there are small degree-2k proofs
of 0 ≤ M ≤ 1 and M2 = M . In what follows, write M(I, J) for the extended
monomial

∏
i∈I xi

∏
j∈J (1− xj). Now take the second hypothesis B+

∑
i∈I(1−

xi) +
∑

j∈J xj ≥ 1 and, iteratively for each i ∈ I, multiply by xi ≥ 0 and

then eliminate (1 − xi)xi using x2
i = xi. Continuing, iteratively for each j ∈ J ,

multiply the result by 1−xj ≥ 0 and eliminate xj(1−xj)
∏

i∈I xi using x2
j = xj

and hence x2
j

∏
i∈I xi = xj

∏
i∈I xi. The result is B · M(I, J) ≥ M(I, J). Add

this to the first hypothesis to get A+B ·M(I, J) ≥ 1. Now, using the fact that
B is a sum of extended monomials, derive B ≥ 0. Derive also 1 −M(I, J) ≥ 0,
and multiply together to get B −B ·M(I, J) ≥ 0. Adding this to the above we
get A+B ≥ 1.

The derivation above allows the simulation of cuts except that we also need
contraction of repeated terms. In other words, we need small degree-2k proof of
A+Q ≥ 1 from A+2Q ≥ 1 for every sum of degree-k extended monomials A and
every degree-k extended monomial Q. Proceed as follows: Multiply A+ 2Q ≥ 1
by 1 − Q ≥ 0 to get A + 3Q − 1 − AQ − 2Q2 ≥ 0. Then use the fact that A
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is a sum of degree-k extended monomials to get A ≥ 0 and hence AQ ≥ 0 by
multiplication, and add it to the previous inequality to get A+3Q−1−2Q2 ≥ 0.
Using Q2 = Q we get A+Q ≥ 1.

We leave the simulation of axioms, weakenings, and introductions of
conjunctions as exercises.

2.4 Connection with Lift-and-Project Methods

In linear programming we are given a collection of linear inequalities L1 ≥
0, . . . , Lm ≥ 0 that define a polyhedron over R

n and we are asked to optimize
a linear function L over the polyhedron. Proving that the optimum is at least
some bound c is of course an instance of the general problem of the previous sec-
tion: prove that L ≥ 0 follows from given assumptions L1 ≥ 0, . . . , Lm ≥ 0, over
R

n. However, L1, . . . , Lm and L are all linear, and in this case the fundamental
duality theorem for linear programming implies that, whenever the implication
holds, there is a linear programming proof, i.e. one that derives the conclusion as
a positive linear combination of the hypotheses and the trivial inequality 1 ≥ 0.
Moreover, any polynomial-time algorithm for linear programming can be used
to find the proof (by solving the dual).

All this is very good but not directly suited to an arbitrary combinatorial
problem in which the implications that matter are over a discrete domain, such
as {0, 1}n, instead of Rn or [0, 1]n. Of course, the domain {0, 1}n can be enforced
by adding the quadratic constraints x2

i − xi ≥ 0 and xi − x2
i ≥ 0, but now, if

we want to make use of these constraints, we are forced to go beyond positive
linear combinations and use some multiplications or squares. The lift-and-project
method of Lovász and Schrijver [33] allows these rules but only in the following
limited forms:

P ≥ 0 Q ≥ 0

c · P + d ·Q ≥ 0

L ≥ 0

L · xi ≥ 0

L ≥ 0

L · (1 − xi) ≥ 0 L2 ≥ 0

where P and Q are polynomials, L is linear, and c and d are positive real con-
stants. The second and third rules are called lifting rules. Besides these rules,
the axioms xi ≥ 0, 1 − xi ≥ 0, xi − x2

i ≥ 0 and x2
i − xi ≥ 0 are always present

(note also that by adding the first two axioms we get 1 ≥ 0).
The proof system introduced by Lovász and Schrijver is called LS+ in the

literature. The version in which positivity of squares is not allowed is called LS.
Note that LS and LS+ are restrictions of S(2) and S+(2), respectively. It is also
known that LS polynomially simulates resolution [38]. The restrictions of LS
and LS+ to lifting rank less than k are denoted by LSk and LS+k , respectively.
Here, the lifting rank of a proof is the maximum number of applications of the
lifting rules in a path from the hypotheses to the conclusion. Let us note that
for k < n, the restrictions LSk and LS+k are not complete over {0, 1}n; in other
words, there exist linear inequalities L1, . . . , Lm and L with n variables such
that L ≥ 0 follows from L1 ≥ 0, . . . , Lm ≥ 0 over {0, 1}n, but LSk and LS+k are
not able to prove L ≥ 0 from L1 ≥ 0, . . . , Lm ≥ 0. On the other hand, Lovász
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and Schrijver argued that LSn, and hence LS+n , is complete for deriving linear
inequalities over {0, 1}n.

The name “lift-and-project” comes from the idea that the linear inequalities
that define the initial polyhedron are lifted to linear inequalities over R

n2

(by
thinking of each product xixj as a new variable), and projected back to R

n

through linear combinations (by cancelling all products xixj) before a new lifting
is allowed.

A different lift-and-project method was suggested by Sherali and Adams [39].
Chronologically, this came before Lovász and Schrijver, but for the purposes of
exposition it makes more sense to reverse the order. In the method of Sherali and
Adams, the liftings are more powerful, but the way they are combined together is
more restricted. Precisely, instead of lifting linear inequalities by multiplication
by one literal, we allow lifting of arbitrary polynomials:

P ≥ 0

P · xi ≥ 0

P ≥ 0

P · (1− xi) ≥ 0

where P is an arbitrary polynomial. However, the proofs must have a very special
form: they start at the given inequalities L1 ≥ 0, . . . , Lm ≥ 0, xi ≥ 0, 1−xi ≥ 0,
xi − x2

i ≥ 0 and x2
i − xi ≥ 0, perform a few liftings, and combine them by

positive linear combinations (with no further liftings). Thus, all liftings come
before all positive linear combinations, and positivity of squares is not allowed.
This rather special form will look more natural if we think of the Sherali-Adams
method as making a single lift-and-project round, instead of making multiple
rounds as in LS, but using dimension nk for some k ≥ 2 in the middle stage,
instead of dimension n2 as in LS. The restriction of the Sherali-Adams proof
system to polynomials that do not exceed degree k is called SAk. We call SA+

k

the natural extension in which, besides the initial inequalities, arbitrary squares
are also allowed, but again all restricted to degree at most k.

It is not too hard to see that every proof in LSk or LS+k can be converted, in
polynomial time, into a proof in SAk or SA+

k by moving the liftings up towards
the hypotheses. Note also that SAk is a restriction of S(k) but not a restriction of
S(k−1). Compare this with the fact that, since LSk is a restriction of LS which in
turn is a restriction of S(2), each LSk is a restriction of S(2). As for LSk and LS+k ,
the restrictions SAk and SA+

k are not complete over {0, 1}n when k < n, but
Sherali and Adams proved that SAn, and hence SA+

n , is complete for deriving
linear inequalities over {0, 1}n. Of course nothing prevents us from considering
a proof system that allows multiple rounds of SAk as a generalization of LS.
This would keep it a subsystem of S(k) and, indeed, if the number of rounds is
unbounded, it would make it equivalent for systems of inequalities that include
xi ≥ 0 and 1−xi ≥ 0. The multiple-round version of SAk was called LSk in [27].

One last interesting thing to notice is that SAk polynomially simulates Rk

for sets of clauses. This follows from three facts: 1) that every k-clause of the
form

∨
i∈I xi ∨

∨
i∈J xi may be represented by a degree-k inequality of the form

0 ≥ M(I, J), where M(I, J) is the shorthand notation for extended monomials
used earlier, 2) that this representation may be obtained from the given form∑

i∈I(1 − xi) +
∑

i∈J xi ≥ 1 of a clause by at most k liftings (ignoring terms
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that are 0 modulo x2
i = xi), and 3) that, in this representation, any width-k

resolution step may be simulated by addition with a valid inequality of the form
M(I∪{i}, J)+M(I ′, J ′∪{i}) ≥ M(I∪I ′, J ∪J ′), which has an SAk-proof itself.

Let us note that Sherali and Adams did not phrase their lift-and-project
method in terms of inference rules. Also, they did not consider anything like
SA+

k , which is very closely related to the method of Lasserre. See [32] for a
comparison of the three methods.

3 The Proof-Search Problem

After this long introduction, we move now to the proof-search problem for the
proof systems introduced in Section 2. We start by stating some positive re-
sults and their consequences, then we discuss negative (i.e. conditional hardness)
results, and we close with some observations concerning the cases in-between.

3.1 Width-Related Algorithms

The width of a clause is defined as the number of literals it has. In the following,
a k-clause is one of width at most k. A generous bound on the number of k-
clauses on a set of n variables is (2n + 1)k/k! ≤ 2(n + 1)k. In particular this
means that if a contradictory set of clauses has a resolution refutation of width
k, then it also has one of size O(k(n+ 1)k), where n is the number of variables.
It also means that if such a refutation exists, then one can be found in time
nO(k) by repeatedly resolving upon known clauses provided the result is an as
yet unknown k-clause. This solves the proof-search problem for Rk in time nO(k),
where n is the number of variables of the given set of clauses.

As we just noticed, small width refutations entail short refutations. One of
the fundamental facts about resolution is that a partial converse is also true:
building on the work of Clegg, Edmonds, and Impagliazzo [19] and Beame and
Pitassi [8], Ben-Sasson and Wigderson [12] proved if a contradictory set of clauses
has a resolution refutation of size s, then it also has a resolution refutation of
width O(

√
n log s + w), where n is again the number of variables, and w is the

width of the widest clause in the given set of clauses. To appreciate the depth
of this result let us look at the case of polynomial s and constant w. In that
case the width becomes O(

√
n logn) which is very significantly smaller than

the maximum possible width n. It is also known that this trade-off is worst-
case optimal (up to logarithmic factors): there exist n-variable sets of 3-clauses
that have polynomial-size resolution refutations but that do not have resolution
refutations of width o(

√
n) (see [16]).

Among other applications, the fundamental size-width tradeoff result for reso-
lution can be used to argue that, for contradictory sets of w-clauses with constant
w, resolution is automatizable in non-trivial time. Consider the algorithm that
solves the proof-search problem for Rk in time nO(k) and run it on increas-
ing values of k until the empty clause is found. By the size-width tradeoff, k
will not exceed O(

√
n log s) where s is the size of the shortest resolution refu-

tation (recall that we are assuming that w is a constant, but we could even
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afford w = O(
√
n logn) for this to be true). Hence the algorithm runs in time

nO(
√
n log s). Note how this is a non-trivial time-bound: if s is polynomial, the

running time is of subexponential type 2O(n0.51).
The width-based algorithm from the preceding paragraph is not terribly sat-

isfying in that it completely ignores any structure that the input set of clauses
could have, and blindly derives all possible clauses (in increasing order of width).
In contrast, practically-used resolution-based algorithms exploit very fine-tuned
heuristics that learn strategically chosen clauses with the hope of deriving the
empty clause earlier or pruning the search-space to a point where exhaustive
search for a satisfying assignment becomes successful [34]. Of course one could
always run the width-based algorithm in parallel to a fine-tuned heuristic-based
algorithm in order to guarantee the worst-case bound from the first with the
practical features of the second. But, somewhat surprisingly, it turned out that
the architecture of most practically-used algorithms does not require this. The
relatively recent result from [3] shows that if a standard conflict-driven clause-
learning algorithm (CDCL algorithm) is given the opportunity to restart and
branch on randomly chosen literals often enough, then the resulting algorithm
is guaranteed to have high probability of finding a refutation after no more than
nO(k) iterations, if a resolution refutation of width k exists. Interestingly, the va-
lidity of this result is quite robust to the actual tuning of the underlying CDCL
algorithm. We refer the reader to the reference [3] for details.

3.2 Degree-Related Algorithms

The original motivation for the lift-and-project methods from Section 2.4 was to
devise a method by which an initial polytope P over [0, 1]n could be tightened
into better and better approximations P ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pn = P ∗, where
P ∗ denotes the convex hull of the 0-1 points in P . Both SA and LS achieve this
by letting Pk be the polytope defined by the inequalities that have an SAk or
LSk-proof from the inequalities that define the initial polytope. Moreover, and
this is the main point of the methods, in both cases there is an algorithm running
in time nO(k) to optimize any given linear objective function over the polytope
Pk (see [39], [33]).

For SAk even more is true. Not only it is possible to optimize linear functions
over Pk, but even SAk-proofs of optimality can be found. More precisely, there
exists an algorithm that, given linear functions L1, . . . , Lm and L, finds an SAk-
proof of L ≥ 0 from L1 ≥ 0, . . . , Lm ≥ 0, if there is one, and does so in time
nO(k), where n is the number of variables. One way to see this is by first observing
that, during the phase of liftings in an SAk-proof, all we are doing is multiplying
the given inequalities and the axioms x2

i − xi ≥ 0 by an extended monomial of
the form

∏
i∈I xi

∏
j∈J (1 − xj) with |I ∪ J | ≤ k, of which there are no more

than (2n)k. The second observation is that what is left to do in the phase of

positive linear-combinations is a linear programming problem over R
(n+1)k+1

(by interpreting each monomial of degree at most k + 1 as a new variable).
Thus, any algorithm solving linear programming in polynomial time will give an



The Proof-Search Problem between Bounded-Width Resolution 11

algorithm to solve the proof-search problem for SAk in time nO(k). Observe that,
by a simple binary search argument, this is a stronger claim than the ability to
optimize over the polytope Pk.

For the lift-and-project method LSk of Lovász and Schrijver only the weaker
claim about optimization is known. The difficulty in providing explicit LSk-
proofs of optimality is that the optimization algorithm works by providing a
polynomial-time separation oracle for the polytope Pi+1 given a separation or-
acle for Pi, and using this recursion to apply the ellipsoid method on Pk. An
intriguing observation is that if we are happy with an SAk-proof of optimality,
then we can still get it time nO(k). The reason for this is that, as mentioned
in Section 2.4, there is a polynomial translation of LSk-proofs into SAk-proofs.
Thus, the algorithm from the previous paragraph applies. This also shows that
the optimization problem for LSk can also be solved without resorting to the
ellipsoid method.

For SA+
k and LS+k similar statements are true by using polynomial-time algo-

rithms for semi-definite programming in one case, and the ellipsoid method in
the other. In both cases, the key observation is that the sums of squares of linear
forms are in one-to-one correspondance with the positive semi-definite quadratic
forms. For these reasons, SA+

k and LS+k are called the semi-definite versions of
SAk and LSk. The catchy acronym SoS (for sum-of-squares) is also used for
certain versions of SA+

k (see [35], [5]).

3.3 Reductions from Tree-Form to Bounded Width or Degree

The version of the Ben-Sasson-Wigderson size-width tradeoff for tree-like resolu-
tion is this: if a set of clauses has a tree-like resolution refutation of size s, then
it also has a resolution refutation of width O(log s+w), where w is the width of
the largest clause in the given set of clauses. In particular, this means that for
constant w, by running the proof-search algorithm for Rk with increasing values
of k until we find the empty clause, we succeed in time nO(log s), where s is the
size of the shortest tree-like refutation and n is the number of variables. Note
however that the proof is not necessarily tree-like. In other words, the algorithm
runs within a non-trivial time-bound that depends on the size of the shortest
tree-like refutation, but the obtained proof is in a different proof system.

For tree-like LS and LS+ what happens is closer to what happens for dag-like
resolution. The analogue size-rank tradeoff for tree-like LS and LS+ was shown
by Pitassi and Segerlind [36]: if a system of linear inequalities with n variables
has a tree-like LS-refutation of size s, then it also has an LSk-refutation with
k = O(

√
n log s), and the same for LS+. Again this gives an algorithm that,

given a system of linear inequalities that is contradictory over {0, 1}n, finds an
LS-refutation in time nO(

√
n log s), where s is the size of the shortest tree-like

LS-refutation, and n is the number of variables. However, the obtained proof is
not necessarily in tree form.

When this happens, namely that there is an algorithm that given a tautology
finds one of its P ′-proofs in time t(s) where s is the size of the smallest P -proof,
we say that P is weakly automatizable (in terms of P ′) in time t. For later use, let
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us point out that it is not hard to see that P is weak automatizable in polynomial
time if and only if there is a proof system P ′ that is automatizable in polynomial
time and that polynomially simulates P [37].

Using the fact that s ≥ n because the hypotheses are counted in the size of
any proof, what the first paragraph of this section says is that tree-like resolution
is weakly automatizable in quasi-polynomial time of the type sO(log s). For the
sake of completeness, let us also mention that for tree-like resolution, a direct
(non-weak) proof-search algorithm that runs in quasi-polynomial time sO(log s)

is known [8]. The latter has the added advantage that it works for arbitrary sets
of clauses and not only those of limited width.

3.4 Hardness Results

The weak automatizability of a proof or refutation system is closely related to
the concept of feasible interpolation [31], [37]. In short, the interpolation problem
for a refutation system P is the following: given a P -refutation of a conjunction
A0 ∧ A1, where A0 and A1 are formulas on disjoint sets of variables, output
b ∈ {0, 1} such that the formula Ab is contradictory by itself. Under a very mild
closure condition on the set of P -refutations, the connection is that if P is weakly
automatizable in polynomial time, then the interpolation problem for P can also
be solved in polynomial time. The mild closure condition, called natural in [7],
is that if a contradictory formula A has a P -refutation of size at most s, then
the result of assigning any truth value to any one of the variables of A also has
a P -refutation of size at most s. This is true of virtually any refutation system
one can think of (but see [7] where it is pointed out that this is not so clear for
proofs produced by CDCL algorithms).

To see the connection pointed out above argue as follows: Let P ′ be the refu-
tation system that is automatizable in polynomial time and that polynomially
simulates P . Given a P -refutation of A0 ∧ A1 as input, first we run the proof-
search algorithm for P ′ on input A0 until either it finds a P ′-refutation or it
runs for more than t(p(s)) steps, where s is the size of the given P -refutation of
A0 ∧A1, and t and p are, respectively, the polynomials that bound the running
time of the proof-search algorithm for P ′, and the size of the P ′-refutations as
a function of the size of the P -refutations. In the first case we output 0. In the
second case we know that A1 cannot be satisfiable and it is safe to output 1
(otherwise, by the mild closure condition, plugging one of its satisfying assign-
ment into the P -refutation of A0 ∧ A1 would give a size-s P -refutation of A0).
See [37], [2] for more on this.

Several interesting proof systems have feasible interpolation, which means
that their interpolation problem can be solved in polynomial time. These include
resolution, cutting planes, and LS [31], [38]. On the other hand, if we want to
show that a proof system P is not automatizable in polynomial time, it suffices
to argue that it does not have feasible interpolation. Typically this is done by
reducing a (conjecturally) hard problem to the interpolation problem for P .
More precisely, starting at a problem for which distinguishing the YES-instances
from the NO-instances requires more than polynomial time, we want to find a
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polynomial-time translation from instances into P -refutations of certain formulas
of the form A0 ∧A1, in such a way that YES-instances give a satisfiable A0 and
NO-instances give a satisfiable A1.

This strategy for arguing the failure of feasible interpolation can be made to
work for several proof systems. For example, in the same paper where the concept
of automatization was defined, Bonet, Pitassi and Raz followed this strategy to
prove that no Frege system P has feasible interpolation unless factoring Blum
integers can be solved in polynomial time. Intuitively, the formula A0∧A1 states
that a hard bit of the given Blum integer is both 0 and 1 at the same time, and
a short P -proof is given for the impossibility of this fact. This established that
no Frege system is automatizable or weakly automatizable in polynomial time
under a reasonable cryptographic conjecture. Of course, this applies as well to
the Frege system F from Section 2.1. A few years later the argument was refined
to prove a weaker negative result for Frege-systems working with formulas of
fixed (but large) AND/OR alternation depth [14]. It was shown that for every
large enough depth d, such systems do not have feasible interpolation unless

factoring Blum integers can be solved in subexponential time 2n
1/dO(1)

.
For resolution and other low-depth proof systems such as R(k) or S(k) for

constant k, LS, or DNF-resolution, the situation is less clear. Part of the difficulty
is that resolution and LS do have feasible interpolation and therefore the type of
arguments above cannot be made to work. Thus, if we want to make progress in
our understanding of the automatizability of resolution we need to focus on the
proof-search problem itself. That is what Alekhnovich and Razborov did, i.e. they
reduced a conjecturally hard problem to the problem of distinguishing formulas
with small resolution refutations from formulas that do not have much larger
resolution refutations [1]. This way they proved that resolution and tree-like
resolution are not automatizable in polynomial time unless W[P] is tractable.
Without entering the details of W[P], let us mention that the intractability
of W[P] is quite likely as otherwise it would mean that the k-clique problem
on graphs with n vertices can be solved by a probabilistic algorithm in time
f(k) · p(n) for some fixed computable function f independent of n and some
fixed polynomial p independent of k (see [22]).

3.5 Games and Propositional Proofs

The hardness result of Alekhnovich and Razborov says nothing about the pos-
sibility that resolution could be automatizable in quasi-polynomial time. In-
deed, as mentioned in Section 3.3, tree-like resolution is automatizable in quasi-
polynomial time and this is not incompatible with the result of Alekhnovich and
Razborov. Also, it says nothing about the possibility that resolution or tree-like
resolution could be weakly automatizable in polynomial time. In particular, it
says nothing about the possibility that any of R(k) or S(k) for k ≥ 2, LS or cut-
ting planes, or DNF-resolution could be automatizable in polynomial time. All
these are important proof systems for which their automatizability could be an
important breakthrough. In view of this, since the proof-search problem is about
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distinguishing formulas with small proofs from those without, it makes sense to
continue the search for large families of formulas that admit small proofs in these
systems. With this in mind, a line of recent work has uncovered an interesting
connection between some classical problems in game theory and some of these
low-depth proof systems. We discuss this in the rest of this section.

In a mean-payoff game (MPG) two players take rounds at extending a path on
a finite weighted directed graph. The game ends as soon as the path intersects
itself, forming a cycle. The first player wins if the average weight of the cycle is
positive. Otherwise the second player wins. Classically, the game is played for
infinitely many rounds, but for our purposes this finite version suffices [23], [43].
The problem of mean-payoff games asks, for a given game graph with weights
written in binary, whether the first player has a winning strategy. The exact
complexity of this problem is unknown, but is known to lie in NP ∩ co-NP (see
[43]). The connection with low-depth proof systems was found by Atserias and
Maneva who showed that every MPG can be converted in polynomial time into
a set of clauses that is either satisfiable, in which case the first player has a
winning strategy, or has a polynomial-size DNF-refutation, in which case the
second player has a winning strategy [4]. In particular, this shows that if DNF-
resolution were automatizable or even weakly automatizable in polynomial time,
then MPGs would be solvable in polynomial time.

Shortly after this was shown, Huang and Pitassi improved this to the simple
stochastic games (SSG) of Condon [20], a class of games to which MPGs reduce
in polynomial time. Indeed, their proof showed more since they reduced SSGs
to the interpolation problem for DNF-resolution. In the conference version of
their paper [28], the reduction was stated to produce depth-3 refutations instead
of DNF-resolution-refutations, but it was later pointed out that the refutations
are indeed in DNF-resolution. We close this section by describing the latest
development in this line of research which takes us to a third type of games.

In a parity game (PG) again two players take rounds at extending a path on
a finite directed graph, this time unweighted. The game ends as soon as the path
intersects itself, forming a cycle. The first player wins if the least numbered vertex
in the cycle is odd. Otherwise the second player wins. As with MPGs, classically
the game is played indefinitely, but for us the finite version will be enough.
The problem of parity games asks for the winner of a given PG. Parity games
have their origins in automata theory where they are used to give combinatorial
semantics to the modal μ-calculus, among other things [24]. Again the complexity
of the problem of PGs is unknown, but it is known to reduce to MPGs and in
particular belongs to NP ∩ co-NP (see [43]).

An interesting recent discovery of Beckmann, Pudlák and Thapen [9] is that
the problem of parity games (PG) reduces to the interpolation problem for R(k)
for a fixed constant k ≥ 2. In particular, by known results relating interpolation
of R(k) with weak automatizability of resolution (see [2]), this means that if
resolution were weakly automatizable, then PGs would be solvable in polynomial
time. This last possibility is not fully unlikely, even conjectured by some, but
at least it shows that the proof-search problem for resolution must be at least
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as hard as PGs, a notorious 20 year-old unsolved problem. It also reinforces the
claim that resolution, and R(k) with constant k, are “interesting” from the point
of view of the proof-search problem in the sense it was meant in the introduction.

3.6 Semi-algebraic Proofs and Linear Equations Mod 2

Note that the results mentioned in the last paragraph of the previous section
also apply to the semi-algebraic systems LS and S(k) for k ≥ 2. This is because
the results were referring to weak automatizability of resolution, and the systems
LS and S(2) polynomially simulate resolution. We want to finish this paper by
pointing out what we believe is an important characteristic that distinguishes
these semi-algebraic systems from resolution and even DNF-resolution.

Hand-in-hand with the pigeonhole principle, unsolvable systems of linear equa-
tions over the 2-element field make one of the classical sources of hardness for
resolution-based proof systems, and even bounded-depth Frege systems; the cel-
ebrated Tseitin formulas illustrate the point [42], [12], [10]. On the other hand,
it was shown by Grigoriev, Hirsch, and Pasechnik [27] that the Tseitin formu-
las are not hard for a system very related to S(k), for some constant k. Even
more, a careful look at their proof shows that any unsolvable system of linear
equations mod 2 in which each equation has at most three non-zero coefficients,
when appropriately encoded as a set of clauses, has polynomial-size refutations
in S(5) by simulating Gaussian elimination. This should be put in contrast with
the results of Grigoriev [26] that imply that any SA+

k -refutation of the Tseitin
formulas requires k = Ω(n), where n is the number of variables.

What these observations say is that the proof-search problem for S(k) for con-
stant k ≥ 5 hides the complexity of systems of linear equations over the 2-element
field. Of course this is not a computationally hard problem since Gaussian elim-
ination solves it in polynomial time. But the point is that if S(k) is to have an
efficiently solvable proof-search algorithm, this algorithm will need to be at least
as clever as it takes to solve systems of linear equations. In particular, it also
says that the distance between SAk and S(k) is much bigger than it could look
from the definitions, and that the methods for solving the proof-search problem
for SAk are probably completely irrelevant to S(k). We would love to be wrong
on this and be shown that a clever application of the ellipsoid algorithm, say, is
able to lift the proof-search algorithm for SAk to a linear optimization algorithm
for (some interesting version of) S(k).
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