
Matti Järvisalo
Allen Van Gelder (Eds.)

 123

LN
CS

 7
96

2

16th International Conference
Helsinki, Finland, July 2013
Proceedings

Theory and Applications
of Satisfiability Testing –
SAT 2013



Lecture Notes in Computer Science 7962
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Matti Järvisalo Allen Van Gelder (Eds.)

Theory and Applications
of Satisfiability Testing –
SAT 2013

16th International Conference
Helsinki, Finland, July 8-12, 2013
Proceedings

13



Volume Editors

Matti Järvisalo
University of Helsinki
HIIT and Department of Computer Science
Gustaf Hällströmin katu 2b
00014 Helsinki, Finland
E-mail: matti.jarvisalo@cs.helsinki.fi

Allen Van Gelder
University of California at Santa Cruz
Computer Science Department
1156 High Street, SOE-3
Santa Cruz, CA 95064, USA
E-mail: avg@cs.ucsc.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39070-8 e-ISBN 978-3-642-39071-5
DOI 10.1007/978-3-642-39071-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941358

CR Subject Classification (1998): F.3.1, F.3, F.1, F.4.1, F.2, I.2, B.7, G.1.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at the 16th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2013) held during
July 8–12, 2013, in Helsinki, Finland. SAT 2013 was organized by University
of Helsinki in collaboration with Helsinki Institute for Information Technology
(HIIT) and the SAT Association.

The International Conference on Theory and Applications of Satisfiability
Testing (SAT) is the primary annual meeting for researchers focusing on the
theory and applications of the propositional satisfiability problem, broadly con-
strued: besides plain propositional satisfiability, it includes Boolean optimization
(including MaxSAT and Pseudo-Boolean (PB) constraints), Quantified Boolean
Formulas (QBF), Satisfiability Modulo Theories (SMT), and Constraint Pro-
gramming (CP) for problems with clear connections to propositional reasoning.
Many hard combinatorial problems can be tackled using SAT-based techniques,
including problems that arise in formal verification, artificial intelligence, opera-
tions research, biology, cryptology, data mining, machine learning, mathematics,
etc. Indeed, the theoretical and practical advances in SAT research over the past
20 years have contributed to making SAT technology an indispensable tool in
various domains.

SAT 2013 welcomed scientific contributions addressing different aspects of
SAT, including (but not restricted to) theoretical advances (including exact al-
gorithms, proof complexity, and other complexity issues), practical search algo-
rithms, knowledge compilation, implementation-level details of SAT solvers and
SAT-based systems, problem encodings and reformulations, applications, as well
as case studies and reports on insightful findings based on rigorous experimen-
tation.

A total of 71 papers were submitted to SAT 2013, distributed into 50 regular
papers, 15 short papers, and six tool papers. Four regular paper submissions were
found by the Program Committee to be out of scope for the conference (based
on guidelines in the call for papers), and were returned without review. The 67
remaining paper submissions were assigned for review to at least four Program
Committee members and their selected external reviewers. Continuing the pro-
cedure initiated in SAT 2012, the review process included an author-response
period, during which the authors of submitted papers were given the opportu-
nity to respond to the initial reviews for their submissions. For reaching final
decisions, a Program Committee discussion period followed the author-response
period. This year, external reviewers used by the Program Committee were also
invited to participate directly in the discussions for the papers they reviewed. In
the end, the Program Committee decided to accept 21 regular papers, five short
papers, and five tool papers.
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In addition to presentations on the accepted papers, the scientific program
of SAT 2013 included three invited talks:

– Albert Atserias (Technical University of Catalonia, Spain):
The Proof-Search Problem between Bounded-Width Resolution and
Bounded-Degree Semi-Algebraic Proofs ;

– Edmund M. Clarke (Carnegie Mellon University, USA):
Turing’s Computable Real Numbers and Why They Are Still Important
Today;

– Peter Stuckey (NICTA and University of Melbourne, Australia):
There Are No CNF Problems.

For SAT 2013, open calls for workshops and competitions were issued. As a result,
SAT 2013 hosted various affiliated events, including three workshops during July
8–9:

– 11th International Workshop on Satisfiability Modulo Theories (SMT 2013)
Organizers : Roberto Bruttomesso and Alberto Griggio;

– Fourth International Workshop on Pragmatics of SAT (PoS 2013)
Organizers : Daniel Le Berre and Allen Van Gelder;

– First International Workshop on Quantified Boolean Formulas (QBF 2013)
Organizers : Florian Lonsing and Martina Seidl;

and five competitions and system evaluations:

– Configurable SAT Solver Challenge 2013
Organizers : Frank Hutter, Adrian Balint, Sam Bayless, Holger Hoos, Kevin
Leyton-Brown;

– Max-SAT Evaluation 2013
Organizers : Josep Argelich, Chu-Min Li, Felip Manyà, Jordi Planes;

– SAT Competition 2013
Organizers : Adrian Balint, Anton Belov, Marijn Heule, Matti Järvisalo;

– SMT-EVAL 2013
Organizers : David Cok, Aaron Stump, Tjark Weber;

– QBF Gallery 2013
Organizers : Florian Lonsing, Martina Seidl, Allen Van Gelder.

Olivier Roussel kindly agreed to act as SAT 2013 Competitions Chair, taking
the main responsibility for the decisions on competition proposals.

We would like to thank all the people who contributed to making SAT 2013
a success. We thank the SAT Association Chair Armin Biere, Vice Chair John
Franco, and Treasurer Hans Kleine Büning for their help and advice in orga-
nizational matters. We thank the Steering Committee for selecting Helsinki as
the venue for SAT 2013. We thank the local organization team for their efforts
with practical aspects of local organization. We thank all authors who submit-
ted their work to SAT 2013. We thank the members of the SAT 2013 Program
Committee and the external reviewers for their hard work on guaranteeing the
scientific quality of accepted papers. A special thanks goes to the SAT 2013 in-
vited speakers for accepting our invitations. We also thank the organizers of the
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affiliated workshops and competitions and system evaluations. The EasyChair
conference system provided invaluable assistance in coordinating the submission
and review process, as well as in the assembly of these proceedings.

Finally, we gratefully thank University of Helsinki, Federation of Finnish
Learned Societies (Tieteellisten seurain valtuuskunta), SAT Association, AI Jour-
nal, IBM Research, Intel, and Microsoft Research for financial and organizational
support for SAT 2013.

May 2013 Matti Järvisalo
Allen Van Gelder
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Janota, Mikoláš
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The Proof-Search Problem

between Bounded-Width Resolution
and Bounded-Degree Semi-algebraic Proofs�

Albert Atserias

Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract. In recent years there has been some progress in our under-
standing of the proof-search problem for very low-depth proof systems,
e.g. proof systems that manipulate formulas of very low complexity such
as clauses (i.e. resolution), DNF-formulas (i.e. R(k) systems), or poly-
nomial inequalities (i.e. semi-algebraic proof systems). In this talk I
will overview this progress. I will start with bounded-width resolution,
whose specialized proof-search algorithm is as easy as uninteresting, but
whose proof-search problem is unintentionally solved by certain versions
of conflict-driven clause-learning algorithms with restarts. I will continue
with R(k) systems, whose proof-search problem turned out to hide the
complexity of certain two-player games of interest in the area of systems
synthesis and verification. And I will close with bounded-degree semi-
algebraic proof systems, whose proof-search problem turned out to hide
the complexity of systems of linear equations over finite fields, among
other problems.

1 Introduction

Let P be a propositional proof system, which we think of, abstractly, as a
polynomial-time verifiable relation between tautologies and proofs, or dually,
between contradictions and refutations [21]. The proof-search problem for P
asks, for a given tautology as input, to find one of its P -proofs. However, since
we cannot expect all tautologies to have polynomial-size P -proofs (as this would
imply NP = co-NP), we will feel satisfied if we are able to find P -proofs that are
not too far from optimal. More formally, a proof system P is called automatizable
in time t if there exists an algorithm that, when it is given a tautology as input,
finds one of its P -proofs in time t(s), where s is the size of its smallest P -proof.
Note that we do not insist that the found proof is the shortest possible [17].

The question whether there is an interesting proof system that is automatiz-
able in polynomial time is open. The admittedly vague term interesting should
mean that the proof system is powerful enough to admit some short proofs.
For (a non-)example, the proof system whose proof for a given tautology is
its full truth-table is not interesting for it does not have short proofs at all.

� Research partially supported by project TIN2010-20967-C04-05 (TASSAT).

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 1–17, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 A. Atserias

This makes it trivially automatizable in polynomial time, but for a silly reason.
For contrast, interesting proof systems in this sense do include propositional res-
olution, for example, whose reasoning power is able to produce short proofs of
non-trivial tautologies arising in multiple application contexts. For example, res-
olution admits polynomial-size proofs of the least-number principle (every finite
linear order has a least element) [40], which underlies many inductive proofs.

The purpose of this paper is to discuss the status of the proof-search problem
for inference-based proof systems that work with formulas of very low complexity.
These include resolution or DNF-resolution, which work with clauses and DNF-
formulas, respectively, and semi-algebraic proofs, which work with polynomial
inequalities over the reals. We also take the opportunity to discuss the connection
to some of the lift-and-project methods in mathematical programming.

2 Inference-Based Proof Systems

Most classical proof systems are inference-based: starting with a set of given hy-
potheses, some conclusions are produced syntactically by means of one or more
inference rules, which are then added to the set of hypotheses to proceed. In pro-
ducing proofs for a tautology, an inference-based proof system starts with the
empty set of hypotheses and the goal is to produce the tautology. Of course this
will mean that the set of inference rules includes some axioms, i.e. inference rules
that can be fired without any hypotheses. In producing refutations for a contra-
diction, an inference-based proof system starts with the given contradiction and
the goal is to produce some blatant inconsistency.

All typical inference-based proof systems manipulate some particular type
of formulas, be them clauses, DNF or CNF-formulas, propositional formulas
of some higher but fixed depth of alternations between disjunctions and con-
junctions, general propositional formulas, polynomial equations over some ring,
polynomial inequalities over some ordered ring, disjunctions of those, decision
trees branching on variables or more complicated formulas, binary decision di-
agrams of various sorts, Boolean circuits, etc. The inference rules are typically
some more or less obvious, non-interesting, and polynomially checkable ways of
producing some logical consequence of the hypotheses. In this sense, what makes
an inference-based proof system more or less powerful is the expressive power of
the type of formulas it manipulates.

2.1 Systems that Manipulate Propositional Formulas

In resolution, the formulas are clauses, disjunctions of variables or negated vari-
ables, and the only inference rule is the resolution rule:

A ∨ x B ∨ ¬x
A ∨B ,

where A and B are clauses and x is a variable. We will see this proof system as a
special case of a proof system that manipulates arbitrary propositional formulas
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and that has the following inference rules:

A ∨ A
A

A ∨B
A ∨ C B ∨D
A ∨B ∨ (C ∧D)

A ∨ C B ∨ C
A ∨B ,

where A, B, C and D denote propositional formulas in negation normal form
(i.e. all its negations appear in front of variables), and a bar on top of a formula
denotes its dual (i.e. A ∨B = A ∧ B, A ∧B = A ∨ B, x = ¬x, and ¬x = x).
The four rules above are called axiom, weakening, introduction of conjunction,
and cut. Besides these rules, the proof system is allowed to produce structural
manipulations, which means that it is allowed to rewrite a propositional formula
into an equivalent one that is obtained by repeated applications of the straight-
forward rules of commutativity, associativity, and idempotency of disjunctions
and conjunctions. We refer to this proof system as F, for Frege system [21].

The proof system F is implicationally complete, which means that if A is a
logical consequence ofA1, . . . , Am, then there is an F-proof that takesA1, . . . , Am

as hypotheses and produces A as conclusion. By the classical results of Cook and
Reckhow [21], the reasoning power of F is hence equivalent to any other Frege
proof system, i.e. any Hilbert-style textbook proof system for propositional logic,
and also equivalent to the propositional sequent calculus. By this we mean that
every proof in any one of these proof systems can be converted to an F-proof
in polynomial time on the size of the proof, and conversely. Here, the size of a
proof is the sum of the sizes of the formulas that make it (this includes all the
hypotheses, and of course the conclusion). When such efficient conversions from
P -proofs into P ′-proofs are possible we say that P ′ polynomially simulates P .

As said, resolution can be seen as the special case of this proof system in which
the only allowed formulas are clauses and the only allowed rule is cut. When the
only allowed formulas are k-DNF-formulas, i.e. disjunctions of conjunctions of
up to k literals, the corresponding restriction has been named R(k) or k-DNF-
resolution [29]. It is not hard to see that R(1) is equivalent to resolution. When
the only allowed formulas are arbitrary DNF-formulas, the proof system is called
DNF-resolution.

2.2 Tree-Like, Dag-Like, and Bounded-Width Proofs

An essential feature of inference-based proofs as defined up to now is that, as
soon as a conclusion is derived, it can be used multiple times as a hypothesis
at no additional cost. On the other hand, it is obvious that every multiple use
of a derived hypothesis could be replaced by multiple proofs of that hypothesis,
from which it looks like the feature is not that essential after all. However, the
point is that in doing this conversion, the proof-size could get exponentially
bigger because at every re-derivation we could be doubling the size of the proof
up to that point. In the following, we say that a proof in an inference-based
proof system is in tree form, or tree-like, if every derived formula is used at most
once as the hypothesis of an inference. Sometimes we use the term dag form, or
dag-like, to emphasize the fact that a certain proof is not in tree form.
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The intuition that the dag form of proofs is an essential feature that could
lead to exponential savings is indeed correct, but only for proof systems that
work with formulas of very low complexity. As will appear clear soon in this
section, dag-like proofs can usually be converted efficiently into tree-like proofs
whose lines are disjunctions of formulas of the starting dag-like proof or their
negations. In particular, this means that in any Frege system such as F, the tree-
like and dag-like versions polynomially simulate each other [30]. On the other
hand, for proof systems such as resolution or R(k) with constant k, it is known
that dag-like proofs could be exponentially shorter [15], [11], [25].

Since for resolution and R(k) tree-like proofs are much less powerful than their
dag-like versions, an obvious question arises: why do we even consider the tree-
likeness restriction at all? The answer is to be found on the fact that tree-like
proofs appear naturally as the result of backtracking procedures. For example,
the straightforward backtracking procedure to verify that a given set of clauses
is contradictory by branching on the truth values of unset variables, and by
pruning each branch as soon as some clause is falsified by the assignment of that
branch, corresponds to a tree-like refutation in resolution: turn the recursion
tree upside-down, label each leaf by one of the falsified clauses, and label the
internal nodes of the tree by a resolution inference on the branched variable [6].

At this point we can ask for the proof system that corresponds to backtracking
procedures that branch on the truth value of more complicated formulas and that
stop as soon as the assigned truth values incurs into a blatant contradiction with
the semantics of the connectives (for example by assigning A ∧B to true but A
to false), or with the given clauses. The correspondence with natural tree-like
proofs persists. For example, if the branching formulas are conjunctions of up to
k literals, what we get is equivalent to tree-like R(k) [25].

Interestingly, tree-like R(k)-proofs appear naturally in a different context.
Suppose C1, . . . , Cm, Cm+1, . . . , Ct is a resolution proof of Ct from C1, . . . , Cm

in which every clause has at most k literals; in that case we say that the resolution
proof has width k. Since the resolution rule is sound, the last inference-step in
this proof is indeed a tautology of the form C�(t) ∧ Cr(t) → Ct, or equivalently

C�(t) ∨Cr(t) ∨Ct, where 0 < �(t) < r(t) < t. This tautology depends on no more
than 3k variables and is a k-DNF, and hence has a tree-like R(k)-proof of size
2O(k), and indeed size O(k) because it has very special form. Of course, this is
also the case for any inference in the proof. Now, starting at the tautology that
corresponds to the inference that derives Ct, and cutting it with the tautologies
that correspond to the inferences that derive C�(t) and Cr(t), we get a k-DNF of

the form C�(�(t)) ∨Cr(�(t)) ∨C�(r(t)) ∨Cr(r(t)) ∨Ct. Repeating for every inference

in the proof we get C1∨· · ·∨Cm∨Ct, from which Ct follows by m cuts with the
m initial clauses C1, . . . , Cm. Observe that the result is a tree-like R(k)-proof
whose size is a factor O(k) bigger than the original proof (and note also that
this argument works equally well to polynomially simulate dag-like F-proofs by
tree-like F-proofs [30]).

As we will see later on, the width of a resolution proof as defined in the
beginning of the previous paragraph is a very important parameter for the



The Proof-Search Problem between Bounded-Width Resolution 5

understanding of resolution. For this reason, let us write Rk for the restriction of
resolution in which all clauses have at most k literals. Note that Rk is obviously a
restriction of R(1), and from the above, it can also be thought as a restriction of
tree-like R(k). However, let us also note that, for k < n, the restriction Rk need
not be complete on sets of clauses with n variables. Certainly Rk with k < n
cannot derive any clause with k + 1 literals, or cannot even start if the initial
set of clauses contains one with k + 1 literals, but even explicit n-variable con-
tradictory sets of 3-clauses are known for which all resolution refutations must
use a clause with Ω(n) literals [12].

2.3 Systems that Manipulate Polynomial Inequalities

If we represent true by 1 and false by 0, propositional clauses are obviously
represented by linear inequalities over the reals. For example, the clause x∨y∨z
is represented by the linear inequality x + (1 − y) + z ≥ 1, which may be re-
written as x− y+ z ≥ 0. In this sense, resolution may be seen as a proof system
that manipulates linear inequalities of special form, over the reals. There are
several ways in which this can be generalized to arbitrary linear inequalities. In
the cutting planes proof system [18], seen as a proof system for refuting sets
of propositional clauses, the hypotheses are represented by linear inequalities of
special form as above, the inequalities xi ≥ 0 and 1−xi ≥ 0 are added to the set of
hypotheses, and arbitrary inequalities with integer coefficients may be inferred
by means of positive linear combinations and integer rounding. Although the
published work on the cutting planes proof system is very extensive, in this paper
we want to focus on a more general family of proof systems that manipulates
inequalities over the reals that we call semi-algebraic proof systems.

In the most general semi-algebraic proof system the primary objects are
arbitrary polynomial inequalities over the reals. These are inequalities of the
form P ≥ 0, where P is a multi-variate polynomial in the ring of polynomials
R[x1, . . . , xn]. The proof system has the following simple rules of inference:

P ≥ 0 Q ≥ 0

c · P + d ·Q ≥ 0

P ≥ 0 Q ≥ 0

P ·Q ≥ 0 P 2 ≥ 0

where P and Q are polynomials, and c and d are positive real constants. These
rules are called positive linear combination, multiplication rule, and positivity of
squares, respectively. Of course a representation issue arises here as the coeffi-
cients of the polynomials, as well as the multipliers c and d, could be arbitrary
reals. Whenever this issue is important (e.g. when we consider the proof-search
problem for such proofs) we will restrict the valid proofs to those that involve
rational coefficients that are represented in binary. For the cases of interest, this
will not be a severe restriction, as we will see.

Obviously the rules above are sound: if (x1, . . . , xn) ∈ Rn satisfies the hypothe-
ses of a rule, then it must also satisfy the conclusion. Moreover, a deep result in
real algebraic geometry known as Stengle’s Positivstellensatz [41] implies that
the rules make up a proof system that is refutationally complete for systems of
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arbitrary polynomial inequalities. More precisely, if P1, . . . , Pm are polynomials
in R[x1, . . . , xn] such that the system P1 ≥ 0, . . . , Pm ≥ 0 is unfeasible over Rn,
then there is a proof of −1 ≥ 0 from the hypotheses P1 ≥ 0, . . . , Pm ≥ 0 (see
[35], [13]). We should also point out that this proof system is not implicationally
complete for arbitrary polynomial inequalities (see [35], [13] again). As will be
evident in the forthcoming, it is often convenient to restrict the degree of all the
polynomials appearing in the proof to some bound k. The semi-algebraic proof
system restricted to using polynomials of degree at most k will be called S+(k).
The version without positivity of squares is called S(k). Let us note that very
closely related proof system were called LSk+,∗ and LSk∗ in [27].

Just as clauses can be represented by linear inequalities, there is an obvi-
ous way of representing k-DNF-formulas as polynomial inequalities of degree k
through sums of extended monomials, i.e. inequalities of the form

m∑
t=1

∏
i∈It

xi
∏
i∈Jt

(1− xi) ≥ 1

where |It∪Jt| ≤ k for every t ∈ {1, . . . ,m}. Moreover, it is a rather pleasant fact
that, under this translation plus some additional axioms stating that 0 ≤ xi ≤ 1
and x2i = xi, the system R(k) is polynomially simulated by S(2k) (note 2k vs.k).
More precisely, if A1, . . . , Am and A are k-DNF-formulas and there is an R(k)-
proof of A from A1, . . . , Am of size s, then there is a semi-algebraic proof (of
the translation) of A from (the translations of) A1, . . . , Am and the additional
axioms xi ≥ 0, 1 − xi ≥ 0, xi − x2i ≥ 0 and x2i − xi ≥ 0, all whose polynomials
have rational coefficients, degree at most 2k, and the total size of the proof is
polynomial in s. The proof of this is not completely trivial, so we give a sketch.

We start by noting that there is a small degree-2k proof of A + B ≥ 1 from
A +

∏
i∈I xi

∏
j∈J (1 − xj) ≥ 1 and B +

∑
i∈I(1 − xi) +

∑
j∈J xj ≥ 1 for every

two sums of degree-k extended monomials A and B, and |I ∪ J | ≤ k. First
observe that if M is a degree-k extended monomial then, in the presence of the
four axioms stating 0 ≤ xi ≤ 1 and x2i = xi, there are small degree-2k proofs
of 0 ≤ M ≤ 1 and M2 = M . In what follows, write M(I, J) for the extended
monomial

∏
i∈I xi

∏
j∈J (1− xj). Now take the second hypothesis B+

∑
i∈I(1−

xi) +
∑

j∈J xj ≥ 1 and, iteratively for each i ∈ I, multiply by xi ≥ 0 and

then eliminate (1 − xi)xi using x2i = xi. Continuing, iteratively for each j ∈ J ,
multiply the result by 1−xj ≥ 0 and eliminate xj(1−xj)

∏
i∈I xi using x

2
j = xj

and hence x2j
∏

i∈I xi = xj
∏

i∈I xi. The result is B ·M(I, J) ≥ M(I, J). Add
this to the first hypothesis to get A+B ·M(I, J) ≥ 1. Now, using the fact that
B is a sum of extended monomials, derive B ≥ 0. Derive also 1 −M(I, J) ≥ 0,
and multiply together to get B −B ·M(I, J) ≥ 0. Adding this to the above we
get A+B ≥ 1.

The derivation above allows the simulation of cuts except that we also need
contraction of repeated terms. In other words, we need small degree-2k proof of
A+Q ≥ 1 from A+2Q ≥ 1 for every sum of degree-k extended monomials A and
every degree-k extended monomial Q. Proceed as follows: Multiply A+ 2Q ≥ 1
by 1 − Q ≥ 0 to get A + 3Q − 1 − AQ − 2Q2 ≥ 0. Then use the fact that A
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is a sum of degree-k extended monomials to get A ≥ 0 and hence AQ ≥ 0 by
multiplication, and add it to the previous inequality to get A+3Q−1−2Q2 ≥ 0.
Using Q2 = Q we get A+Q ≥ 1.

We leave the simulation of axioms, weakenings, and introductions of
conjunctions as exercises.

2.4 Connection with Lift-and-Project Methods

In linear programming we are given a collection of linear inequalities L1 ≥
0, . . . , Lm ≥ 0 that define a polyhedron over Rn and we are asked to optimize
a linear function L over the polyhedron. Proving that the optimum is at least
some bound c is of course an instance of the general problem of the previous sec-
tion: prove that L ≥ 0 follows from given assumptions L1 ≥ 0, . . . , Lm ≥ 0, over
Rn. However, L1, . . . , Lm and L are all linear, and in this case the fundamental
duality theorem for linear programming implies that, whenever the implication
holds, there is a linear programming proof, i.e. one that derives the conclusion as
a positive linear combination of the hypotheses and the trivial inequality 1 ≥ 0.
Moreover, any polynomial-time algorithm for linear programming can be used
to find the proof (by solving the dual).

All this is very good but not directly suited to an arbitrary combinatorial
problem in which the implications that matter are over a discrete domain, such
as {0, 1}n, instead of Rn or [0, 1]n. Of course, the domain {0, 1}n can be enforced
by adding the quadratic constraints x2i − xi ≥ 0 and xi − x2i ≥ 0, but now, if
we want to make use of these constraints, we are forced to go beyond positive
linear combinations and use some multiplications or squares. The lift-and-project
method of Lovász and Schrijver [33] allows these rules but only in the following
limited forms:

P ≥ 0 Q ≥ 0

c · P + d ·Q ≥ 0

L ≥ 0

L · xi ≥ 0

L ≥ 0

L · (1 − xi) ≥ 0 L2 ≥ 0

where P and Q are polynomials, L is linear, and c and d are positive real con-
stants. The second and third rules are called lifting rules. Besides these rules,
the axioms xi ≥ 0, 1 − xi ≥ 0, xi − x2i ≥ 0 and x2i − xi ≥ 0 are always present
(note also that by adding the first two axioms we get 1 ≥ 0).

The proof system introduced by Lovász and Schrijver is called LS+ in the
literature. The version in which positivity of squares is not allowed is called LS.
Note that LS and LS+ are restrictions of S(2) and S+(2), respectively. It is also
known that LS polynomially simulates resolution [38]. The restrictions of LS
and LS+ to lifting rank less than k are denoted by LSk and LS+k , respectively.
Here, the lifting rank of a proof is the maximum number of applications of the
lifting rules in a path from the hypotheses to the conclusion. Let us note that
for k < n, the restrictions LSk and LS+k are not complete over {0, 1}n; in other
words, there exist linear inequalities L1, . . . , Lm and L with n variables such
that L ≥ 0 follows from L1 ≥ 0, . . . , Lm ≥ 0 over {0, 1}n, but LSk and LS+k are
not able to prove L ≥ 0 from L1 ≥ 0, . . . , Lm ≥ 0. On the other hand, Lovász
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and Schrijver argued that LSn, and hence LS+n , is complete for deriving linear
inequalities over {0, 1}n.

The name “lift-and-project” comes from the idea that the linear inequalities
that define the initial polyhedron are lifted to linear inequalities over Rn2

(by
thinking of each product xixj as a new variable), and projected back to Rn

through linear combinations (by cancelling all products xixj) before a new lifting
is allowed.

A different lift-and-project method was suggested by Sherali and Adams [39].
Chronologically, this came before Lovász and Schrijver, but for the purposes of
exposition it makes more sense to reverse the order. In the method of Sherali and
Adams, the liftings are more powerful, but the way they are combined together is
more restricted. Precisely, instead of lifting linear inequalities by multiplication
by one literal, we allow lifting of arbitrary polynomials:

P ≥ 0

P · xi ≥ 0

P ≥ 0

P · (1− xi) ≥ 0

where P is an arbitrary polynomial. However, the proofs must have a very special
form: they start at the given inequalities L1 ≥ 0, . . . , Lm ≥ 0, xi ≥ 0, 1−xi ≥ 0,
xi − x2i ≥ 0 and x2i − xi ≥ 0, perform a few liftings, and combine them by
positive linear combinations (with no further liftings). Thus, all liftings come
before all positive linear combinations, and positivity of squares is not allowed.
This rather special form will look more natural if we think of the Sherali-Adams
method as making a single lift-and-project round, instead of making multiple
rounds as in LS, but using dimension nk for some k ≥ 2 in the middle stage,
instead of dimension n2 as in LS. The restriction of the Sherali-Adams proof
system to polynomials that do not exceed degree k is called SAk. We call SA+

k

the natural extension in which, besides the initial inequalities, arbitrary squares
are also allowed, but again all restricted to degree at most k.

It is not too hard to see that every proof in LSk or LS+k can be converted, in
polynomial time, into a proof in SAk or SA+

k by moving the liftings up towards
the hypotheses. Note also that SAk is a restriction of S(k) but not a restriction of
S(k−1). Compare this with the fact that, since LSk is a restriction of LS which in
turn is a restriction of S(2), each LSk is a restriction of S(2). As for LSk and LS+k ,
the restrictions SAk and SA+

k are not complete over {0, 1}n when k < n, but
Sherali and Adams proved that SAn, and hence SA+

n , is complete for deriving
linear inequalities over {0, 1}n. Of course nothing prevents us from considering
a proof system that allows multiple rounds of SAk as a generalization of LS.
This would keep it a subsystem of S(k) and, indeed, if the number of rounds is
unbounded, it would make it equivalent for systems of inequalities that include
xi ≥ 0 and 1−xi ≥ 0. The multiple-round version of SAk was called LSk in [27].

One last interesting thing to notice is that SAk polynomially simulates Rk

for sets of clauses. This follows from three facts: 1) that every k-clause of the
form

∨
i∈I xi ∨

∨
i∈J xi may be represented by a degree-k inequality of the form

0 ≥ M(I, J), where M(I, J) is the shorthand notation for extended monomials
used earlier, 2) that this representation may be obtained from the given form∑

i∈I(1 − xi) +
∑

i∈J xi ≥ 1 of a clause by at most k liftings (ignoring terms
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that are 0 modulo x2i = xi), and 3) that, in this representation, any width-k
resolution step may be simulated by addition with a valid inequality of the form
M(I∪{i}, J)+M(I ′, J ′∪{i}) ≥M(I∪I ′, J ∪J ′), which has an SAk-proof itself.

Let us note that Sherali and Adams did not phrase their lift-and-project
method in terms of inference rules. Also, they did not consider anything like
SA+

k , which is very closely related to the method of Lasserre. See [32] for a
comparison of the three methods.

3 The Proof-Search Problem

After this long introduction, we move now to the proof-search problem for the
proof systems introduced in Section 2. We start by stating some positive re-
sults and their consequences, then we discuss negative (i.e. conditional hardness)
results, and we close with some observations concerning the cases in-between.

3.1 Width-Related Algorithms

The width of a clause is defined as the number of literals it has. In the following,
a k-clause is one of width at most k. A generous bound on the number of k-
clauses on a set of n variables is (2n + 1)k/k! ≤ 2(n + 1)k. In particular this
means that if a contradictory set of clauses has a resolution refutation of width
k, then it also has one of size O(k(n+ 1)k), where n is the number of variables.
It also means that if such a refutation exists, then one can be found in time
nO(k) by repeatedly resolving upon known clauses provided the result is an as
yet unknown k-clause. This solves the proof-search problem for Rk in time nO(k),
where n is the number of variables of the given set of clauses.

As we just noticed, small width refutations entail short refutations. One of
the fundamental facts about resolution is that a partial converse is also true:
building on the work of Clegg, Edmonds, and Impagliazzo [19] and Beame and
Pitassi [8], Ben-Sasson and Wigderson [12] proved if a contradictory set of clauses
has a resolution refutation of size s, then it also has a resolution refutation of
width O(

√
n log s + w), where n is again the number of variables, and w is the

width of the widest clause in the given set of clauses. To appreciate the depth
of this result let us look at the case of polynomial s and constant w. In that
case the width becomes O(

√
n logn) which is very significantly smaller than

the maximum possible width n. It is also known that this trade-off is worst-
case optimal (up to logarithmic factors): there exist n-variable sets of 3-clauses
that have polynomial-size resolution refutations but that do not have resolution
refutations of width o(

√
n) (see [16]).

Among other applications, the fundamental size-width tradeoff result for reso-
lution can be used to argue that, for contradictory sets of w-clauses with constant
w, resolution is automatizable in non-trivial time. Consider the algorithm that
solves the proof-search problem for Rk in time nO(k) and run it on increas-
ing values of k until the empty clause is found. By the size-width tradeoff, k
will not exceed O(

√
n log s) where s is the size of the shortest resolution refu-

tation (recall that we are assuming that w is a constant, but we could even
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afford w = O(
√
n logn) for this to be true). Hence the algorithm runs in time

nO(
√
n log s). Note how this is a non-trivial time-bound: if s is polynomial, the

running time is of subexponential type 2O(n0.51).
The width-based algorithm from the preceding paragraph is not terribly sat-

isfying in that it completely ignores any structure that the input set of clauses
could have, and blindly derives all possible clauses (in increasing order of width).
In contrast, practically-used resolution-based algorithms exploit very fine-tuned
heuristics that learn strategically chosen clauses with the hope of deriving the
empty clause earlier or pruning the search-space to a point where exhaustive
search for a satisfying assignment becomes successful [34]. Of course one could
always run the width-based algorithm in parallel to a fine-tuned heuristic-based
algorithm in order to guarantee the worst-case bound from the first with the
practical features of the second. But, somewhat surprisingly, it turned out that
the architecture of most practically-used algorithms does not require this. The
relatively recent result from [3] shows that if a standard conflict-driven clause-
learning algorithm (CDCL algorithm) is given the opportunity to restart and
branch on randomly chosen literals often enough, then the resulting algorithm
is guaranteed to have high probability of finding a refutation after no more than
nO(k) iterations, if a resolution refutation of width k exists. Interestingly, the va-
lidity of this result is quite robust to the actual tuning of the underlying CDCL
algorithm. We refer the reader to the reference [3] for details.

3.2 Degree-Related Algorithms

The original motivation for the lift-and-project methods from Section 2.4 was to
devise a method by which an initial polytope P over [0, 1]n could be tightened
into better and better approximations P ⊇ P1 ⊇ P2 ⊇ · · · ⊇ Pn = P ∗, where
P ∗ denotes the convex hull of the 0-1 points in P . Both SA and LS achieve this
by letting Pk be the polytope defined by the inequalities that have an SAk or
LSk-proof from the inequalities that define the initial polytope. Moreover, and
this is the main point of the methods, in both cases there is an algorithm running
in time nO(k) to optimize any given linear objective function over the polytope
Pk (see [39], [33]).

For SAk even more is true. Not only it is possible to optimize linear functions
over Pk, but even SAk-proofs of optimality can be found. More precisely, there
exists an algorithm that, given linear functions L1, . . . , Lm and L, finds an SAk-
proof of L ≥ 0 from L1 ≥ 0, . . . , Lm ≥ 0, if there is one, and does so in time
nO(k), where n is the number of variables. One way to see this is by first observing
that, during the phase of liftings in an SAk-proof, all we are doing is multiplying
the given inequalities and the axioms x2i − xi ≥ 0 by an extended monomial of
the form

∏
i∈I xi

∏
j∈J (1 − xj) with |I ∪ J | ≤ k, of which there are no more

than (2n)k. The second observation is that what is left to do in the phase of

positive linear-combinations is a linear programming problem over R(n+1)k+1

(by interpreting each monomial of degree at most k + 1 as a new variable).
Thus, any algorithm solving linear programming in polynomial time will give an
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algorithm to solve the proof-search problem for SAk in time nO(k). Observe that,
by a simple binary search argument, this is a stronger claim than the ability to
optimize over the polytope Pk.

For the lift-and-project method LSk of Lovász and Schrijver only the weaker
claim about optimization is known. The difficulty in providing explicit LSk-
proofs of optimality is that the optimization algorithm works by providing a
polynomial-time separation oracle for the polytope Pi+1 given a separation or-
acle for Pi, and using this recursion to apply the ellipsoid method on Pk. An
intriguing observation is that if we are happy with an SAk-proof of optimality,
then we can still get it time nO(k). The reason for this is that, as mentioned
in Section 2.4, there is a polynomial translation of LSk-proofs into SAk-proofs.
Thus, the algorithm from the previous paragraph applies. This also shows that
the optimization problem for LSk can also be solved without resorting to the
ellipsoid method.

For SA+
k and LS+k similar statements are true by using polynomial-time algo-

rithms for semi-definite programming in one case, and the ellipsoid method in
the other. In both cases, the key observation is that the sums of squares of linear
forms are in one-to-one correspondance with the positive semi-definite quadratic
forms. For these reasons, SA+

k and LS+k are called the semi-definite versions of
SAk and LSk. The catchy acronym SoS (for sum-of-squares) is also used for
certain versions of SA+

k (see [35], [5]).

3.3 Reductions from Tree-Form to Bounded Width or Degree

The version of the Ben-Sasson-Wigderson size-width tradeoff for tree-like resolu-
tion is this: if a set of clauses has a tree-like resolution refutation of size s, then
it also has a resolution refutation of width O(log s+w), where w is the width of
the largest clause in the given set of clauses. In particular, this means that for
constant w, by running the proof-search algorithm for Rk with increasing values
of k until we find the empty clause, we succeed in time nO(log s), where s is the
size of the shortest tree-like refutation and n is the number of variables. Note
however that the proof is not necessarily tree-like. In other words, the algorithm
runs within a non-trivial time-bound that depends on the size of the shortest
tree-like refutation, but the obtained proof is in a different proof system.

For tree-like LS and LS+ what happens is closer to what happens for dag-like
resolution. The analogue size-rank tradeoff for tree-like LS and LS+ was shown
by Pitassi and Segerlind [36]: if a system of linear inequalities with n variables
has a tree-like LS-refutation of size s, then it also has an LSk-refutation with
k = O(

√
n log s), and the same for LS+. Again this gives an algorithm that,

given a system of linear inequalities that is contradictory over {0, 1}n, finds an
LS-refutation in time nO(

√
n log s), where s is the size of the shortest tree-like

LS-refutation, and n is the number of variables. However, the obtained proof is
not necessarily in tree form.

When this happens, namely that there is an algorithm that given a tautology
finds one of its P ′-proofs in time t(s) where s is the size of the smallest P -proof,
we say that P is weakly automatizable (in terms of P ′) in time t. For later use, let
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us point out that it is not hard to see that P is weak automatizable in polynomial
time if and only if there is a proof system P ′ that is automatizable in polynomial
time and that polynomially simulates P [37].

Using the fact that s ≥ n because the hypotheses are counted in the size of
any proof, what the first paragraph of this section says is that tree-like resolution
is weakly automatizable in quasi-polynomial time of the type sO(log s). For the
sake of completeness, let us also mention that for tree-like resolution, a direct
(non-weak) proof-search algorithm that runs in quasi-polynomial time sO(log s)

is known [8]. The latter has the added advantage that it works for arbitrary sets
of clauses and not only those of limited width.

3.4 Hardness Results

The weak automatizability of a proof or refutation system is closely related to
the concept of feasible interpolation [31], [37]. In short, the interpolation problem
for a refutation system P is the following: given a P -refutation of a conjunction
A0 ∧ A1, where A0 and A1 are formulas on disjoint sets of variables, output
b ∈ {0, 1} such that the formula Ab is contradictory by itself. Under a very mild
closure condition on the set of P -refutations, the connection is that if P is weakly
automatizable in polynomial time, then the interpolation problem for P can also
be solved in polynomial time. The mild closure condition, called natural in [7],
is that if a contradictory formula A has a P -refutation of size at most s, then
the result of assigning any truth value to any one of the variables of A also has
a P -refutation of size at most s. This is true of virtually any refutation system
one can think of (but see [7] where it is pointed out that this is not so clear for
proofs produced by CDCL algorithms).

To see the connection pointed out above argue as follows: Let P ′ be the refu-
tation system that is automatizable in polynomial time and that polynomially
simulates P . Given a P -refutation of A0 ∧ A1 as input, first we run the proof-
search algorithm for P ′ on input A0 until either it finds a P ′-refutation or it
runs for more than t(p(s)) steps, where s is the size of the given P -refutation of
A0 ∧A1, and t and p are, respectively, the polynomials that bound the running
time of the proof-search algorithm for P ′, and the size of the P ′-refutations as
a function of the size of the P -refutations. In the first case we output 0. In the
second case we know that A1 cannot be satisfiable and it is safe to output 1
(otherwise, by the mild closure condition, plugging one of its satisfying assign-
ment into the P -refutation of A0 ∧ A1 would give a size-s P -refutation of A0).
See [37], [2] for more on this.

Several interesting proof systems have feasible interpolation, which means
that their interpolation problem can be solved in polynomial time. These include
resolution, cutting planes, and LS [31], [38]. On the other hand, if we want to
show that a proof system P is not automatizable in polynomial time, it suffices
to argue that it does not have feasible interpolation. Typically this is done by
reducing a (conjecturally) hard problem to the interpolation problem for P .
More precisely, starting at a problem for which distinguishing the YES-instances
from the NO-instances requires more than polynomial time, we want to find a
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polynomial-time translation from instances into P -refutations of certain formulas
of the form A0 ∧A1, in such a way that YES-instances give a satisfiable A0 and
NO-instances give a satisfiable A1.

This strategy for arguing the failure of feasible interpolation can be made to
work for several proof systems. For example, in the same paper where the concept
of automatization was defined, Bonet, Pitassi and Raz followed this strategy to
prove that no Frege system P has feasible interpolation unless factoring Blum
integers can be solved in polynomial time. Intuitively, the formula A0∧A1 states
that a hard bit of the given Blum integer is both 0 and 1 at the same time, and
a short P -proof is given for the impossibility of this fact. This established that
no Frege system is automatizable or weakly automatizable in polynomial time
under a reasonable cryptographic conjecture. Of course, this applies as well to
the Frege system F from Section 2.1. A few years later the argument was refined
to prove a weaker negative result for Frege-systems working with formulas of
fixed (but large) AND/OR alternation depth [14]. It was shown that for every
large enough depth d, such systems do not have feasible interpolation unless

factoring Blum integers can be solved in subexponential time 2n
1/dO(1)

.
For resolution and other low-depth proof systems such as R(k) or S(k) for

constant k, LS, or DNF-resolution, the situation is less clear. Part of the difficulty
is that resolution and LS do have feasible interpolation and therefore the type of
arguments above cannot be made to work. Thus, if we want to make progress in
our understanding of the automatizability of resolution we need to focus on the
proof-search problem itself. That is what Alekhnovich and Razborov did, i.e. they
reduced a conjecturally hard problem to the problem of distinguishing formulas
with small resolution refutations from formulas that do not have much larger
resolution refutations [1]. This way they proved that resolution and tree-like
resolution are not automatizable in polynomial time unless W[P] is tractable.
Without entering the details of W[P], let us mention that the intractability
of W[P] is quite likely as otherwise it would mean that the k-clique problem
on graphs with n vertices can be solved by a probabilistic algorithm in time
f(k) · p(n) for some fixed computable function f independent of n and some
fixed polynomial p independent of k (see [22]).

3.5 Games and Propositional Proofs

The hardness result of Alekhnovich and Razborov says nothing about the pos-
sibility that resolution could be automatizable in quasi-polynomial time. In-
deed, as mentioned in Section 3.3, tree-like resolution is automatizable in quasi-
polynomial time and this is not incompatible with the result of Alekhnovich and
Razborov. Also, it says nothing about the possibility that resolution or tree-like
resolution could be weakly automatizable in polynomial time. In particular, it
says nothing about the possibility that any of R(k) or S(k) for k ≥ 2, LS or cut-
ting planes, or DNF-resolution could be automatizable in polynomial time. All
these are important proof systems for which their automatizability could be an
important breakthrough. In view of this, since the proof-search problem is about
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distinguishing formulas with small proofs from those without, it makes sense to
continue the search for large families of formulas that admit small proofs in these
systems. With this in mind, a line of recent work has uncovered an interesting
connection between some classical problems in game theory and some of these
low-depth proof systems. We discuss this in the rest of this section.

In a mean-payoff game (MPG) two players take rounds at extending a path on
a finite weighted directed graph. The game ends as soon as the path intersects
itself, forming a cycle. The first player wins if the average weight of the cycle is
positive. Otherwise the second player wins. Classically, the game is played for
infinitely many rounds, but for our purposes this finite version suffices [23], [43].
The problem of mean-payoff games asks, for a given game graph with weights
written in binary, whether the first player has a winning strategy. The exact
complexity of this problem is unknown, but is known to lie in NP ∩ co-NP (see
[43]). The connection with low-depth proof systems was found by Atserias and
Maneva who showed that every MPG can be converted in polynomial time into
a set of clauses that is either satisfiable, in which case the first player has a
winning strategy, or has a polynomial-size DNF-refutation, in which case the
second player has a winning strategy [4]. In particular, this shows that if DNF-
resolution were automatizable or even weakly automatizable in polynomial time,
then MPGs would be solvable in polynomial time.

Shortly after this was shown, Huang and Pitassi improved this to the simple
stochastic games (SSG) of Condon [20], a class of games to which MPGs reduce
in polynomial time. Indeed, their proof showed more since they reduced SSGs
to the interpolation problem for DNF-resolution. In the conference version of
their paper [28], the reduction was stated to produce depth-3 refutations instead
of DNF-resolution-refutations, but it was later pointed out that the refutations
are indeed in DNF-resolution. We close this section by describing the latest
development in this line of research which takes us to a third type of games.

In a parity game (PG) again two players take rounds at extending a path on
a finite directed graph, this time unweighted. The game ends as soon as the path
intersects itself, forming a cycle. The first player wins if the least numbered vertex
in the cycle is odd. Otherwise the second player wins. As with MPGs, classically
the game is played indefinitely, but for us the finite version will be enough.
The problem of parity games asks for the winner of a given PG. Parity games
have their origins in automata theory where they are used to give combinatorial
semantics to the modal μ-calculus, among other things [24]. Again the complexity
of the problem of PGs is unknown, but it is known to reduce to MPGs and in
particular belongs to NP ∩ co-NP (see [43]).

An interesting recent discovery of Beckmann, Pudlák and Thapen [9] is that
the problem of parity games (PG) reduces to the interpolation problem for R(k)
for a fixed constant k ≥ 2. In particular, by known results relating interpolation
of R(k) with weak automatizability of resolution (see [2]), this means that if
resolution were weakly automatizable, then PGs would be solvable in polynomial
time. This last possibility is not fully unlikely, even conjectured by some, but
at least it shows that the proof-search problem for resolution must be at least
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as hard as PGs, a notorious 20 year-old unsolved problem. It also reinforces the
claim that resolution, and R(k) with constant k, are “interesting” from the point
of view of the proof-search problem in the sense it was meant in the introduction.

3.6 Semi-algebraic Proofs and Linear Equations Mod 2

Note that the results mentioned in the last paragraph of the previous section
also apply to the semi-algebraic systems LS and S(k) for k ≥ 2. This is because
the results were referring to weak automatizability of resolution, and the systems
LS and S(2) polynomially simulate resolution. We want to finish this paper by
pointing out what we believe is an important characteristic that distinguishes
these semi-algebraic systems from resolution and even DNF-resolution.

Hand-in-hand with the pigeonhole principle, unsolvable systems of linear equa-
tions over the 2-element field make one of the classical sources of hardness for
resolution-based proof systems, and even bounded-depth Frege systems; the cel-
ebrated Tseitin formulas illustrate the point [42], [12], [10]. On the other hand,
it was shown by Grigoriev, Hirsch, and Pasechnik [27] that the Tseitin formu-
las are not hard for a system very related to S(k), for some constant k. Even
more, a careful look at their proof shows that any unsolvable system of linear
equations mod 2 in which each equation has at most three non-zero coefficients,
when appropriately encoded as a set of clauses, has polynomial-size refutations
in S(5) by simulating Gaussian elimination. This should be put in contrast with
the results of Grigoriev [26] that imply that any SA+

k -refutation of the Tseitin
formulas requires k = Ω(n), where n is the number of variables.

What these observations say is that the proof-search problem for S(k) for con-
stant k ≥ 5 hides the complexity of systems of linear equations over the 2-element
field. Of course this is not a computationally hard problem since Gaussian elim-
ination solves it in polynomial time. But the point is that if S(k) is to have an
efficiently solvable proof-search algorithm, this algorithm will need to be at least
as clever as it takes to solve systems of linear equations. In particular, it also
says that the distance between SAk and S(k) is much bigger than it could look
from the definitions, and that the methods for solving the proof-search problem
for SAk are probably completely irrelevant to S(k). We would love to be wrong
on this and be shown that a clever application of the ellipsoid algorithm, say, is
able to lift the proof-search algorithm for SAk to a linear optimization algorithm
for (some interesting version of) S(k).

Acknowledgments. We thank the comments of Allen Van Gelder and an
anonymous referee on the preliminary draft of this paper.
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Abstract. Although every undergraduate in computer science learns
about Turing Machines, it is not well known that they were originally
proposed as a means of characterizing computable real numbers. For a
long time, formal verification paid little attention to computational ap-
plications that involve the manipulation of continuous quantities, even
though such applications are ubiquitous. In recent years, however, there
has been great interest in safety-critical hybrid systems involving both
discrete and continuous behaviors, including autonomous automotive
and aerospace applications, medical devices of various sorts, control pro-
grams for electric power plants, and so on. As a result, the formal analysis
of numerical computation can no longer be ignored. In this talk, we fo-
cus on one of the most successful verification techniques, temporal logic
model checking. Current industrial model checkers do not scale to han-
dle realistic hybrid systems. We believe that the key to handling more
complex systems is to make better use of the theory of the computable
reals, and computable analysis more generally. We argue that new formal
methods for hybrid systems should combine existing discrete methods in
model checking with new algorithms based on computable analysis. In
particular we discuss a model checker we are currently developing along
these lines.
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Abstract. SAT technology has improved rapidly in recent years, to the
point now where it can solve CNF problems of immense size. But solv-
ing CNF problems ignores one important fact: there are NO problems
that are originally CNF. All the CNF that SAT solvers tackle is the re-
sult of modelling some real world problem, and mapping the high-level
constraints and decisions modelling the problem into clauses on binary
variables. But by throwing away the high level view of the problem SAT
solving may have lost a lot of important insight into how the problem is
best solved. In this talk I will hope to persuade you that by keeping the
original high level model of the problem one can realise immense benefits
in solving hard real world problems.

1 Introduction

SAT technology has improved markedly in the last 12 years, to the point where
it can solve CNF problems of immense size. Hence it is now a generic tool
for tackling many combinatorial satisfaction and optimization problems. But
solving CNF problems ignores one important fact: there are NO problems that are
originally CNF. The CNF that SAT solvers tackle is the result of modelling a real
world problem, mapping the decisions of the problem into binary decisions, and
the complex constraints of the problem into possibly very large sets of clauses.
By throwing away this high level view of the problem SAT solving has been
able to concentrate on solving a very tightly defined problem, and doing it very
effectively, but it has also lost a lot of knowledge about the problem.

Constraint programming (CP) [1,2] is a very flexible approach to modelling
and solving combinatorial problems, which makes use of the high level structure
of the problem. Modern CP solvers make use of SAT solving technology to solve
most effectively, but without throwing away the structure. In this talk I hope
to convince you that no one should solve a CNF problem per se. By consider-
ing the high level structure one can reason about the high level structure of a
problem to

– improve the mapping of the complex constraints to clauses [3]; or
– during runtime lazily create a SAT model of the problem we are solving [4]; or
– during runtime choose how we wish to map complex constraints to clauses,

and indeed if we should [5].
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In this manner we can gain the benefits of both the complex reasoning possible
on the high level model, and the SAT style reasoning on the low level model.

Constraint programming with learning, or lazy clause generation (LCG) [4],
had proved remarkably successful in tackling hard combinatorial optimization
problems. It defines the state of the art complete method in many well studied
scheduling problems, such as resource constraint project scheduling (RCPSP) [6],
and its variations RCPSP with generalized precedences [7] and RCPSP with
discounted cashflows [8]. LCG has led to substantial benefits in real life packing
problems, such as carpet cutting [9]. LCG solvers have dominated the Mini-
Zinc challenge competition www.minizinc.org since 2010, although they are
not eligible for prizes, illustrating the approach is applicable over a wide range
of problem classes.

Constraint programming with learning is in some sense a special case of SAT
modulo theories [10]. CP concentrates on individual propagators, with a rich
language of communication at the SAT level, between each propagator, while
SMT concentrates on putting all the constraints of one form in a theory to
reason about them conjunctively. CP concentrates on complex propagators like
alldifferent that reflect some substructure (assignment subproblem) of the overall
problem, rather than theories for classes of constraints which have some tractable
reasoning.

MiniZinc [11] is an emerging standard for constraint programming modelling
which captures the model at a high level, but can automatically map it to low
level constraints. The language is currently supported by constraint program-
ming solvers such as Gecode [12] and Google’s OR-tools [13], mixed integer
programming solvers such as SCIP [14], and SMT solvers such as fzn2smt [15].
MiniZinc would appear to provide an excellent starting point for high-level mod-
elling that can then be mapped to CNF. Indeed I hope to persuade you that
SAT solvers should be lifted to solve problems described at the high level in a
language like MiniZinc.

Constraint programming researchers have learnt a lot from the SAT commu-
nity, and I hope that I can demonstrate that SAT may gain from some insights
from the CP community.

References

1. Hentenryck, P.V.: Constraint Satisfaction in Logic Programming. MIT Press (1989)
2. Marriott, K., Stuckey, P.: Programming with Constraints: an Introduction. MIT

Press (1998)
3. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and

efficient sat encodings of combinatorial problems. Journal of Artificial Intelligence
Research 46, 303–341 (2013), http://www.jair.org/papers/paper3809.html

4. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

5. Ab́ıo, I., Stuckey, P.J.: Conflict directed lazy decomposition. In: Milano, M. (ed.)
CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)

6. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative propa-
gator. Constraints 16(3), 250–282 (2011)

http://www.jair.org/papers/paper3809.html


There Are No CNF Problems 21

7. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Solving RCPSP/max by lazy clause
generation. Journal of Scheduling (2012) (online first: August 2012),
http://dx.doi.org/10.1007/s10951-012-0285-x

8. Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value
for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson,
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Abstract. We present a formalism that models the computation of
clause sharing portfolio solvers with inprocessing. The soundness of these
solvers is not a straightforward property since shared clauses can make a
formula unsatisfiable. Therefore, we develop characterizations of simpli-
fication techniques and suggest various settings how clause sharing and
inprocessing can be combined. Our formalization models most of the re-
cent implemented portfolio systems and we indicate possibilities to im-
prove these. A particular improvement is a novel way to combine clause
addition techniques – like blocked clause addition – with clause deletion
techniques – like blocked clause elimination or variable elimination.

1 Introduction

The satisfiability problem (SAT) is one of the most prominent problems in
theoretical computer science and has many applications in verification, plan-
ning, model checking [7] or scheduling [14]. Modern SAT solvers employ many
advanced techniques like clause learning [33], non-chronological backtracking,
restarts [13], clause removal [11,4] and advanced decision heuristics [35,4,3],
making SAT very attractive for problem-solving. Among all these additional
techniques, clause learning is the most powerful one, both from a theoretical and
an empirical point of view [36,5,27]. Formula simplification techniques like vari-
able elimination [10,40]and bounded variable addition [32] are applied to further
improve the efficiency. In recent SAT solvers, (e.g. Lingeling [6]), simplifica-
tions are also applied during search as inprocessing techniques, on all clauses at
hand, including learned clauses [26,31].

The parallel architecture of today’s computers is utilized in portfolio solvers
like ppfolio [37], pfolioUZK [42], ManySAT [18] and Plingeling [6]. In
the portfolio approach, different sequential solvers work on the same formula.
For instance, pfolioUZK consists of several different conflict-driven systematic
solvers, look-ahead SAT solvers and incomplete SAT solvers. Each of them is
allowed to apply arbitrary simplification techniques. In contrast to ppfolio,
ManySAT’s portfolio consists only of systematic CDCL SAT solvers, but ex-
changes learned clauses. Thus, ManySAT can solve instances faster than the

� The second author was supported by the European Master’s Program in Computa-
tional Logic (EMCL).
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best sequential solver of its portfolio. However, no simplification techniques are
applied during search. Plingeling combines the two worlds: The solver applies
a restricted form of inprocessing and shares unit clauses. Proving soundness of
such clause sharing portfolio solvers where simplification techniques are applied
during search is not trivial.

To the best of the authors’ knowledge, there does not exists a soundness proof
of any parallel clause sharing SAT solver with inprocessing. The authors are not
aware of a formalization of parallel SAT solvers, which can be used to verify
when clause sharing is sound. The research focus so far has been mainly on clause
sharing strategies [17,15,16,1], and on utilizing computing resources [22,23].

In this paper, we bridge the gap between simplification techniques and clause
sharing SAT solvers. A formal sharing model is introduced, which models the
computation of clause sharing portfolio solvers with inprocessing. This model al-
lows to reason about the behavior of portfolio solvers. Additionally, it allows to
explain how portfolio solvers are working in a compact and easy way. Abstracting
from the specific solver implementation is important since modern systems are
complex and are written in programming languages with side effects. Equipped
with this sharing model, we can show that, assumed the base solving engine is
correct, inprocessing does not harm portfolio solvers on satisfiable instances. In
general, inprocessing has to be restricted to obtain a valid system. In particular,
we will see the soundness of a combination of restricted inprocessing rules and
clause sharing as present in the Plingeling system. We will also see the sound-
ness of specific combinations with further inprocessing techniques, for instance
that adding blocked clauses is possible in only a single solver incarnation of the
portfolio. In addition to soundness proofs, several examples demonstrate that
certain combinations of techniques cannot be applied in the presence of clause
sharing. The result presented here can be easily lifted to parallel SAT solvers
based on the guiding path approach [43], since these solvers only restrict the
way how the search space is traversed but work on the same input formula.

The paper is structured as follows: Followed by a specification of the used
formal notation and an outline of the necessary preliminaries of modern SAT
solving in Section 2, the new sharing model is introduced in Section 3, variations
of it are discussed, and the soundness of several combinations of inprocessing
techniques and clause sharing is proven. Section 4 concludes the paper.

2 Preliminaries

We introduce the used notion of Satisfiability Testing (SAT), briefly discuss
recent solving approaches that exploit parallel computing resources and finally
give some insights in modern formula simplification techniques.

2.1 Notation and Basic Concepts

We assume a fixed set V of Boolean variables, or briefly just variables. A lit-
eral is a variable v (positive literal) or a negated variable v (negative literal).
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We overload the overbar notation: The complement x of a positive (negative,
resp.) literal x is the negative (positive, resp.) literal with the same variable as x.
A clause is a finite set of literals, a formula is a finite set of clauses. We write a
clause {x1, . . . , xn} also as disjunction x1 ∨ . . .∨xn, and a formula {C1, . . . , Cn}
also as conjunction C1 ∧ . . . ∧ Cn. In this notation, the empty clause is written
as ⊥ (falsum) and the the empty formula as  (verum). Occasionally, we write
formulas with further standard connectives such as ↔. This can be understood
as meta level notation for equivalent formulas in conjunctive normal form.

An interpretation is a mapping from the set V of all Boolean variables to
the set {,⊥} of truth values. The satisfaction relation |= can then be defined
inductively as follows: If x is a positive (negative, resp.) literal with variable v,
then I |= x holds if and only if I(v) =  (I(v) = ⊥, resp.). If C is a clause, then
I |= C if and only if there is a literal l ∈ C such that I |= l. If F is a formula, then
I |= F if and only if for all clauses C ∈ F it holds that I |= C. A general formula
is a literal, a clause or a formula. If, for an interpretation I and general formula F
it holds that I |= F , we say that I is a model of F , or that I satisfies F . If there
exists an interpretation that satisfies F , then F is called satisfiable, otherwise
unsatisfiable. Two general formulas are equisatisfiable if and only if either both
of them are satisfiable or both are unsatisfiable. A general formula F entails a
general formula G, written F |= G, if and only if for all interpretations I such
that I |= F it holds that I |= G. This definition of entailment has two nice
properties that simplify the proofs in this paper: transitivity and monotonicity.
The drawback is that some formula simplification rules must be treated in an
extra step. Two general formulas F and G are equivalent, written F ≡ G, if and
only if F |= G and G |= F .

A clause that contains exactly a single literal is called a unit clause. A clause
that contains a literal and its complement is called a tautology. The set of all
variables occurring in a formula F (in positive or negative literals) is denoted by
vars(F ). The set of all literals in the clauses in F by lits(F ). A literal x such that
x ∈ lits(F ) and x �∈ lits(F ) is called pure in F . If F is a formula and x is a literal,
then the formula consisting of all clauses in F that contain x is denoted by F x.
If v is a variable and C = v ∨ C′ as well as D = v ∨ D′ are clauses, then the
clause C′ ∨D′ is called the resolvent of C and D upon v. For two formulas F,G
and variable v, the set of all resolvents of a clause in F with a clause in G upon v
is denoted by F ⊗v G. The formula F after substituting all occurrences of the
variable v with the variable w is denoted by F [v �→ w].

2.2 Parallel SAT Solving

The first parallel SAT solvers have been based on the DPLL procedure and
divided the search space among the parallel resources [8]. Later on, parallel
architecture has been exploited in different ways. A survey on parallel SAT
solving is given in [21,34]. Parallel SAT solvers can be classified into competi-
tive approaches and cooperative approaches. The first class contains the port-
folio approach, where several solver incarnations try to solve the same formula
(e.g. [18,6,1]). The latter class contains the search space partitioning methods
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(e.g. [19]). Here, the search space of the input formula is divided into several
sub spaces, represented by several modified formulas. Finally, there exist hybrid
approaches, which combine competitive and cooperative strategies (e.g. [22,23]).
Guiding path solvers [43] are hard to categorize: on the one hand, this approach
partitions the search space. On the other hand, these systems do not alter the
input formula, but control the partitioning based on the current interpretation
of the specific solvers. From a modeling point of view, guiding path solvers
could be added to search space partitioning. Since our sharing model is based
on the formula that each solver uses, portfolio and guiding path solvers are
quite similar.

Since clause learning is essential for sequential solvers, this technique has
been lifted to parallel solvers as well: Clauses are shared among solver incar-
nations [18,17], even if different subformulas are solved [24,29]. However, most
of these solver incarnations do not use clause simplification techniques for in-
processing. During inprocessing clause simplification techniques are interleaved
with search and are also applied to learned and shared clauses. To the best of
the authors’ knowledge, all sharing implementations do not check the validity of
the received clause, but the implementation assumes that using received clauses
is sound. Obvious reasons for not performing such checks are the computational
costs of testing properties like F |= C or testing equisatisfiability of F and F ∧C
with respect to a clause C received by a solver whose working formula is F .

In the following, we focus on the portfolio approach, and discuss some systems
in detail. A nice property of this approach is that the search can be stopped,
as soon as one solver incarnation found the solution for the input formula. This
property motivates combining special solvers for formulas from special cate-
gories to a single portfolio solver, which then solves a given formula in the time
required by the fastest of the sequential component solvers. Portfolio solvers in
recent competitions like ppfolio [37] and pfolioUZK [42] simply execute sev-
eral powerful SAT solvers in parallel, even scheduled on a sequential machine.
This easy approach scales with the number of available solvers. If the number
of available parallel computing resources exceeds the number of solvers, parallel
solvers will be added to the portfolio.

More sophisticated portfolio approaches use a single solving engine and exe-
cute multiple incarnations in parallel (e.g.ManySAT [18] or PeneLoPe [2]). An
advantage of single engine portfolio solvers is that learned clauses can be shared
among the incarnations. A soundness proof is obvious: since all incarnations are
solving the same formula, and the solver always preserve the equivalence of the
formula, all learned clauses are a consequence of the input formula. Knowledge
sharing enables the portfolio solver to solve a formula even faster than the best
sequential incarnation, because the search of this best incarnation is enhanced
with more clauses that cut off search space. Another difference to these single en-
gine portfolio solvers has been introduced with the Plingeling system [6]. This
solver executes Lingeling as the solving engine, which applies simplification
technique during search, and also shared learned clauses.
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2.3 Inprocessing

Simplifying the formula before giving it to the SAT solver has become a crucial
part of the solving chain. Several techniques, such as bounded variable elimina-
tion [40,10], blocked clause elimination [25] and addition [28,26], equivalent literal
elimination [12], probing [30], and automated re-encoding by using extended res-
olution [32,41] have been proposed for simplification. These techniques have been
originally suggested with preprocessing, application before search, in mind. How-
ever, with minor modifications to treat learned clauses correctly, these techniques
can also be used during search as inprocessing. Successful SAT solvers that par-
ticipated in recent competitions, such as PrecoSAT [6], CryptoMiniSAT [38]
or Lingeling [6], utilize this. Many simplification techniques result in formulas
that have a certain semantic relationship to the input formula, defined as follows:

Definition 1 (Unsat-Preserving Consequence). A formula F ′ is called an
unsat-preserving consequence of a formula F if and only if

1. F |= F ′, and
2. If F is unsatisfiable, then F ′ is unsatisfiable.

Note that if F ′ is an unsat-preserving consequence of F , it immediately follows
that F and F ′ are equisatisfiable. If F ′ is an unsat-preserving consequence of F ,
then F ′ is also a consequence of F in the standard sense. That is, any model of
F is also a model of F ′. A special case of unsat-preserving consequence applies
if F ≡ F ′. As examples with respect to simplifications that involve addition and
removal of clauses consider that if C is a clause entailed by F , then F ∧C is an
unsat-preserving consequence of F ; and if F = F ′ ∧ C and F ′ is equisatisfiable
with F , then F ′ is an unsat-preserving consequence of F .

In [26] a formal framework that can be used to prove the correctness of exist-
ing and new inprocessing rules has been presented. From the properties of sim-
plification techniques discussed there we will drop the introduced redundancy
property, because this property is related to very specific simplification proce-
dures that go beyond the scope of this paper. The particular simplifications that
we will consider can be described as follows, where we adopt the convention that
F denotes the input formula and F ′ the output formula:

Variable Elimination. (VE) [40,10] eliminates a variable v by resolution: F ′ =
(F ∪ F v ⊗v F v) \ (F v ∪ F v). Note that v /∈ vars(F ′). It follows from properties
of propositional resolution that F ′ is an unsat-preserving consequence of F .

Equivalence Elimination. (EE) [12] replaces all occurrences of a variable v with
the variable w, if the input F entails the equivalence w ↔ v, that is, F ′ = F [v �→
w]. Since F ≡ F ∧ (w ↔ v) ≡ F [v �→ w] ∧ (w ↔ v) ≡ F ′ ∧ (w ↔ v), it follows
that F |= F ′. Moreover, this technique preserves satisfiability [20] and thus F ′

is an unsat-preserving consequence of F .

Blocked Clause Elimination. (BCE) [25] removes a blocked clause C from the
input formula F . Then F ′ = F \ {C}. A clause C is called blocked, if it contains
a literal x such that for all clauses D ∈ Fx the resolvent of C and D upon the



Soundness of Inprocessing in Clause Sharing SAT Solvers 27

variable of x is a tautology. Obviously, F |= F ′ and since equisatisfiability is
preserved by this technique, F ′ is an unsat-preserving consequence of F [25].

Extended Resolution. (ER) [41] adds a definition of a fresh variable v to the
formula: F ′ = F ∧ (v ∨ x ∨ y) ∧ (x ∨ v) ∧ (y ∨ v), where the two literals x
and y occur already in the formula, that is, x, y ∈ lits(F ). As presented in
[41], this addition preserves satisfiability of the formula, that is, F ′ and F are
equisatisfiable. However, F �|= F ′, because of the fresh variable, and therefore F ′

is not an unsat-preserving consequence of F .

Blocked Clause Addition. (BCA) [28,26] is the dual technique of BCE: BCA adds
a clause C, such that this clause is blocked in the new formula: F ′ = F ∧ C.
Note that the formula F ′ is not an unsat-preserving consequence of F , as can
be seen in the following small counterexample: Let F = (x∨ y). Then the clause
(x ∨ y) is blocked with the blocking literal y. However, F �|= (x ∨ y).
Bounded Variable Addition. (BVA) [32] can be understood as adding a partial
definition of a fresh variable v to the formula: First, a fresh variable is introduced
like in extended resolution, resulting in the intermediate formula G = F ∧(v∨x∨
y)∧(v∨x)∧(v∨y), where x, y ∈ lits(F ). The formulas F and G are equisatisfiable.
Next, all clauses C,D ∈ (G\{(v∨x), (v∨y)} which have a common subclause E
such that C = (x ∨E) and D = (y ∨E) are replaced by the new clause (v ∨E).
The resulting formula H is equivalent to G. Finally, the formula F ′, the result
of BVA, is obtained from H by removing the clause (v ∨ x ∨ y). As presented in
[32], BVA preserves satisfiability, that is, F ′ and F are equisatisfiable, because
the old clauses can be restored by resolution. However, F �|= F ′ and thus F ′ is
not an unsat-preserving consequence of F .

3 Sharing Clauses in Portfolio Solvers

We model the computation of clause-sharing solver portfolios by means of state
transition systems as follows: A state of computation of a single sequential
solver is a formula. A state of computation of a portfolio of n sequential solvers
Solver 1, . . . ,Solvern is an n-tuple (F1, . . . , Fn) of formulas, where Fi is the
state of the Solver i. Thus, a state of a portfolio is a snapshot of the states
of its member solvers. A portfolio system with input formula F0 and multi-
plicity n is a state transition system whose set of states is {(F1, . . . , Fn) |
F1, . . . , Fn are formulas} ∪ {SAT,UNSAT}, whose initial state init(n, F0) is the
n-tuple (F0, . . . , F0), and whose set of terminal states is {SAT,UNSAT}. For a
transition relation � of a portfolio system we define �∗ as the reflexive tran-
sitive closure of �, we define x �0 x, and for all natural numbers n > 0 we
define: x�n y if and only if x�n−1 z � y. In the course of the paper, we will
investigate the soundness of portfolio systems with different transition relations
corresponding to different allowed inprocessing methods. Soundness of a SAT
solver, and thus also of a portfolio system, is a combination of two properties:
refutational soundness and soundness with respect to satisfiability. More pre-
cisely, a portfolio system with input formula F0, multiplicity n and transition
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SAT-rule: (F1, . . . , Fi, . . . , Fn)�SAT SAT
iff Fi is satisfiable.

UNSAT-rule: (F1, . . . , Fi, . . . , Fn)�UNSAT UNSAT
iff Fi is unsatisfiable.

CM-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�CM (F1, . . . Fi−1, F
′
i , Fi+1, . . . , Fn)

iff Fi ≡ F ′
i .

CS-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�CS (F1, . . . , Fi−1, Fi∧C, Fi+1, . . . , Fn)
iff C ∈ Fj for some j ∈ {1, . . . , i− 1, i+ 1, . . . , n}.

UI-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�UI (F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn)

iff Fi and F ′
i are equisatisfiable.

ER-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�ER (F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn)

iff F ′
i is obtained by extended resolution from Fi.

BVA-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�BVA (F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn)

iff F ′
i is obtained by bounded variable addition from Fi.

RI-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�RI (F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn)

iff F ′
i is an unsat-preserving consequence of Fi.

ADD-rule: (F1, . . . , Fn)�ADD (F1 ∧ C,F2, . . . , Fn)
iff vars(C) ⊆ vars(F0), and
the formulas F1 ∧ C and F1 are equisatisfiable.

DEL-rule: (F1, . . . , Fi−1, Fi, Fi+1, . . . , Fn)�DEL (F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn)

iff i > 1 and Fi is an unsat-preserving consequence of F ′
i .

Fig. 1. Transition relations used to characterize clause sharing models by means of
portfolio systems with input formula F0 and multiplicity n. These definitions ap-
ply to all formulas F1, . . . , Fn, F

′
1, . . . , F

′
n, clauses C and i ∈ {1, . . . , n}. Fresh vari-

ables introduced by extended resolution (ER-rule) and by bounded variable addition
(BVA-rule) have to be globally fresh, that is, they are not allowed to occur in F1, . . . , Fn.

relation � is called sound if and only init(n, F0) �∗ UNSAT implies that F is
unsatisfiable and init(n, F0)�∗ SAT implies that F is satisfiable.

We investigate four different portfolio systems whose transition relation is
composed of the relations presented in Fig. 1, which we also call rules. The
particular systems that we are going to investigate are SysA, SysB, SysC and
SysD, characterized by the following respective transition relations:

�SysA :=�SAT ∪�UNSAT ∪�CM ∪�CS.
�SysB :=�SysA ∪�UI.
�SysC :=�SysA ∪�RI ∪�ER ∪�BVA.
�SysD :=�SysA ∪�ADD ∪�DEL ∪�ER ∪�BVA.

� SysA is a basic portfolio system that models clause sharing portfolios where
inprocessing rules preserve equivalence: The first termination rule is the SAT-
rule that terminates the computation with the answer SAT, if one formula
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Fi in the state is satisfiable. Likewise, the second termination rules is the
UNSAT-rule that leads to the answer UNSAT, if one formula Fi in the state is
unsatisfiable. Modern complete solvers are modifying the formula by adding
and removing learned clauses. Such clause management is modelled by the
CM-rule that rewrites a formula Fi of a solver incarnation into an equivalent
formula F ′

i . Finally, clause sharing is captured by the CS-rule that adds a
clause C from the formula Fj to the formula Fi, where i �= j. As we will
see later, solvers like ManySAT [18] or PeneLoPe [2] can be modeled as
instances of SysA.

� SysB extends the system SysA by the UI-rule that performs inprocessing,
just constrained to preserve equisatisfiability: The UI-rule replaces a formula
Fi with another formula F ′

i , if they are equisatisfiable. We will later see
that the general UI-rule does not harmonize with clause sharing, leading to
refutational unsoundness.

� SysC extends the system SysA by the RI-, ER- and BVA-rule. The RI-rule
replaces a formula Fi with a formula F ′

i , if the F
′
i is an unsat-preserving

consequence of Fi. Extended resolution and bounded variable addition can
be performed on a formula Fi by the ER- and BVA-rule. We will later see
that the formalism SysC is sound, and that Plingeling [6] is an instance of
this formalism.

� SysD extends the system SysA by the ER- and BVA-rule and two new rules
that allow to perform clause addition techniques on a single designated solver
whose state is represented without loss of generality by F1, and only clause
deletion techniques on the remaining solvers, represented by F2, . . . , Fn to
obtain a sound system: The ADD-rule adds a clause C to the formula F1,
if F1 and F1 ∧ C are equisatisfiable and vars(C) ⊆ vars(F0). On the other
hand, the clause deletion is captured by the DEL-rule, which like the RI-rule,
except that the DEL-rule can only modify F2, . . . , Fn.

3.1 Sharing Model SysA – Where Equivalence Is Preserved

Let us start with the system SysA that models clause sharing portfolios where
inprocessing preserves equivalence. The rules of SysA guarantee that all formulas
Fi ∈ (F1, . . . , Fn) of the current state are equivalent to the input formula, as
expressed by the following lemma:

Lemma 2 (Key Invariant of SysA). Let n ≥ 1, let F0, F1, . . . , Fn be formulas,
and let m ≥ 0. If init(n, F0) �m

SysA (F1, . . . , Fn), then for all i ∈ {1, . . . , n} it
holds that Fi ≡ F0.

Proof. The CM-rule preserves equivalence and therefore the CS-rule only adds
clauses that are entailed by the corresponding formula. The claim then holds
since equivalence is transitive. ��

The following theorem is a straightforward consequence of the above lemma:

Theorem 3 (Soundness of SysA). SysA is sound.
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Proof. If the input formula F0 is satisfiable (unsatisfiable, resp.), the UNSAT-
rule (SAT-rule, resp.) is never applicable, since by Lemma 2 all formulas in states
reached by SysA are equivalent to F0. ��

The portfolio solversManySAT andPeneLoPe are built uponMiniSAT [18,2].
PeneLoPe differs from ManySAT in the clause import and export strategy
and in the applied heuristics. Since the learned clauses in MiniSAT can be
obtained by resolution [39], MiniSAT preserves the equivalence of formulas. Be-
fore searching for a model of the input formula F0, the formula is subjected to
a preprocessor in ManySAT and PeneLoPe. The portfolio systems then work
on the result of the preprocessor. Consequently, SysA models the behavior of
ManySAT and PeneLoPe with respect to the preprocessed formula as input.

3.2 Sharing Model SysB – Inprocessing without Limits

The portfolio transition system SysB models clause sharing portfolios where in-
processing can be applied constrained only by equisatisfiability. Many inprocess-
ing techniques like variable elimination (VE), equivalence elimination (EE) and
blocked clause addition (BCA) do preserve equisatisfiability, but not equivalence.
Combining clause sharing and the general UI-rule inprocessing is problematic:

Example 4. Consider the two formulas x and x, where x is a variable. Both
formulas x and x are satisfiable and equisatisfiable. Since x ∧ x is unsatisfiable,
the execution init(2, x) = (x, x) �UI (x, x) �CS (x ∧ x, x) �UNSAT UNSAT of a
parallel SAT solver with transition relation �SysB produces an incorrect result.

Thus, the system SysB is not refutationally sound. This small example shows
that general inprocessing is incompatible with clause sharing, since the answer
UNSAT can be incorrect. The phenomenon that the addition of a clause makes
a formula unsatisfiable is the reason why clause sharing is a non-trivial problem.
On the other hand, the system SysB is sound with respect to satisfiability. SAT
answers obtained with SysB are still correct, as stated in the Theorem 5 below,
preceded by a lemma that shows the underlying invariant of SysB transitions:

Lemma 5 (Key Invariant of SysB). Let n ≥ 1, let F0, F1, . . . , Fn be formulas,
and let m ≥ 0. If init(n, F0) �m

SysB (F1, . . . , Fn) and for some i ∈ {1, . . . , n} it
holds that if Fi is satisfiable, then F0 is satisfiable.

Proof. By induction on m: For the base case m = 0, the statement is trivially
true since every component formula in init(n, F0) is identical to F0. For the
induction step, assume that the claim holds for the state (F1, . . . , Fn) and that
(F1, . . . , Fn) �R (F1, . . . , Fi−1, F

′
i , Fi+1, . . . , Fn) for some 1 ≤ i ≤ n and some

rule R in SysB. The induction step follows from the fact that if F ′
i is satisfiable,

then Fi is satisfiable, which holds for each non-terminating rule of SysB:

– CM-rule: Since F ′
i ≡ Fi.

– UI-rule: Since F ′
i and Fi are equisatisfiable.
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– CS-rule: In this case F ′
i = Fi ∧ C for some clause C. Thus, it holds that

F ′
i |= Fi which implies that if F ′

i is satisfiable, then Fi is satisfiable. ��

Theorem 6 (Soundness of SysB w.r.t Satisfiability). Let n ≥ 1 and let F0
be a formula. If init(n, F0)�m

SysB SAT, then F0 is satisfiable.

Proof. Immediate from Lemma 5 and the definition of the SAT-rule. ��

3.3 Sharing Model SysC – With Clause Deletion Techniques

System SysC models clause sharing portfolios where clause deletion techniques
are used. In contrast to model SysB, the result of a computation in SysC is always
sound. The parallel SAT solver Plingeling is an instance of SysC. The portfolio
of Plingeling consists of differently configured incarnations of the sequential
solver Lingeling. The following inprocessing rules are used in Plingeling [6]:
Variable elimination (VE) [10], equivalence elimination (EE) [12], and blocked
clause elimination (BCE) [25]. We do not discuss the other used techniques that
preserve equivalence like hyper binary resolution since they are modelled by the
CM-rule. Since these techniques transform a formula F into unsat-preserving
consequence of F , these techniques can be modelled by the RI-rule.

In the following, we need to trace the clauses introduced by extended resolu-
tion or bounded variable addition. For a particular sequence of transition steps
S0 � S1 � . . . � Sm, we let Dm denote the set of all definition clauses that
were introduced by the ER- and BVA-rule in the sequence. Note that an imple-
mentation does not need to construct the set Dm, but we will use this set in the
proofs to show that if init(n, F0) �m (F1, . . . , Fn), then F0 and Fi are always
equisatisfiable for i ∈ {0, . . . , n}. On the other hand, an implementation has to
guarantee that the variables introduced by extended resolution or bounded vari-
able addition are globally fresh, that is, fresh throughout all involved sequential
solvers. Incorrect UNSAT answers can then not be obtained with SysC.

Theorem 8 below states the soundness of SysC. This theorem is based again on
a key invariant stated in Lemma 7 as claim (iii). The lemma shows two further
invariants of SysC as claims (i) and (ii), which involve the Dm. In the context of
this paper these are just applied to prove invariant (iii).

Lemma 7 (Key Invariants of SysC). Let n ≥ 1, let F0, F1, . . . , Fn be for-
mulas, and let m ≥ 0. Assume init(n, F0) �m

SysC (F1, . . . , Fn) with a transi-
tion sequence that has the formula Dm as the set of clauses introduced by the
ER- and BVA-rule. Then the following properties hold:

(i) F0 ∧Dm |= F1 ∧ . . . ∧ Fn.
(ii) F0 and F0 ∧Dm are equisatisfiable.
(iii) For all i ∈ {1, . . . , n} it holds that Fi and F0 are equisatisfiable.

Proof. We show the statement by induction on the number m of transition
steps. For the base case m = 0, the claims (i)–(iii) are easy to see, since
D0 =  and init(n, F0) is the n-tuple (F0, . . . , F0). For the induction step, as-
sume that the claim holds for the state (F1, . . . , Fn) and that (F1, . . . , Fn) �R
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(F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn) for some rule R in SysC. We distinguish according

to the applied rule R:

– CM-rule: Then F ′
i ≡ Fi and Dm+1 = Dm. (i) holds since the substitution of

a subformula by an equivalent formula preserves equivalence. (ii) holds since
Dm+1 = Dm. (iii) holds since F ′

i and Fi are equivalent and equisatisfiable.
– RI-rule: Then Fi |= F ′

i , Fi and F ′
i are equisatisfiable and Dm+1 = Dm.

(i) holds since the entailment relation is transitive. (ii) holds since Dm+1 =
Dm. (iii) holds by the definition of the RI-rule.

– ER-rule: Then F ′
i = Fi∧ (v ∨x∨y)∧ (x∨v)∧ (y ∨v) and Dm+1 = Dm∧ (v∨

x ∨ y) ∧ (x ∨ v ∧ (y ∨ v), where v is a fresh variable and x, y ∈ lits(Fi). Then
(i) holds since the formula v ↔ x ∨ y is added on the left hand side and the
right hand side of the entailment. (ii) holds since v is a fresh variable and
(iii) holds since extended resolution preserves satisfiability.

– BVA-rule: Bounded variable addition consists of three steps: First, a fresh
variable v is defined by (v ∨ x ∨ y) ∧ (v ∨ x) ∧ (v ∨ y) like in the ER-rule,
then the formula is rewritten into an equivalent formula, as in the CM-rule.
Finally, the clause (v∨x∨y) is deleted, which can be modeled by the RI-rule.

– CS-rule: (i) is clear since F1 ∧ . . . ∧ Fi−1 ∧ Fi ∧ Fi+1 ∧ . . . ∧ Fn ≡ F1 ∧
. . . ∧ Fi−1 ∧ Fi ∧ C ∧ Fi+1 ∧ . . . ∧ Fn, which follows since C ∈ Fj for some
j ∈ {1, . . . , i− 1, i+ 1, . . . , n}. (ii) holds since Dm+1 = Dm. (iii) holds since
the equisatisfiability of F0 and F ′

i = Fi ∧C can be proven as follows: In case
F0 is unsatisfiable, by the induction assumption Fi is also unsatisfiable, and
thus Fi ∧ C = F ′

i is also unsatisfiable. Assume now the other case, that F0
is satisfiable. By statement (ii) of the induction assumption it follows that
F0∧Dm is satisfiable, and thus by statement (i) of the induction assumption
that also F1 ∧ . . . ∧ Fn is satisfiable. Since i, j ∈ {1, . . . , n} and Fj |= C it
follows that also Fi ∧ C = F ′

i is satisfiable. ��

Theorem 8 (Soundness of SysC). SysC is sound.

Proof. Let n ≥ 0 and let F0, F1, . . . , Fn be formulas such that init(n, F0) �∗
SysC

(F1, . . . , Fn)�SysC UNSAT (SAT, resp.). From the definition of the UNSAT-rule
(SAT-rule, resp.) it follows that there exists an i ∈ {1, . . . , n} s.t. the formula Fi is
unsatisfiable (satisfiable, resp.). By Lemma 7.iii it follows that F0 is unsatisfiable
(satisfiable, resp.). ��

The above theorem shows in particular that combining clause sharing and
applying inprocessing rules as done in Plingeling is sound.

3.4 Sharing Model SysD – With Clause Addition Techniques

Motivated by the blocked clause addition technique, we will now study how to
combine clause addition with clause deletion techniques and develop the sharing
model SysD. To the best of our knowledge, blocked clause addition is not applied
in clause sharing portfolios. The following examples illustrate two main problems
that occur: First, if we allow two sequential solver to perform clause addition
techniques like blocked clause addition, UNSAT-answers may be incorrect.
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Example 9. Consider the satisfiable formula F0 = (x∨y)∧(x∨y)∧(x∨z)∧(y∨z)
from [26]. Note that the clause (x ∨ z) is blocked w.r.t. z and the clause (y ∨ z)
is blocked w.r.t. z. By using BCA, init(2, F0) �UI (F0 ∧ (x ∨ z), F0) �UI (F0 ∧
(x ∨ z), F0 ∧ (y ∨ z))�CS (F0 ∧ (x ∨ z) ∧ (y ∨ z), F0 ∧ (y ∨ z))�UNSAT UNSAT,
but this answer is incorrect.

This incorrect answer is the reason, why we restrict clause addition techniques
such that they are permitted only in one designated solver, the first component
of the portfolio. The second problem is combining clause deletion techniques and
clause addition techniques in one solver: it may lead to incorrect UNSAT-answers:

Example 10. Consider the satisfiable formula F0 = F ′ ∧ (x ∨ z) from [26] where
F ′ = (x∨y)∧(x∨y)∧(x∨z)∧(y∨z). Then, (x∨z) is blocked and after removing
this clause, the clause (y ∨ z) can be again added by blocked clause addition.
Then, init(2, F0) �UI (F ′, F ′ ∧ (x ∨ z)) �UI (F ′ ∧ (y ∨ z), F ′ ∧ (x ∨ z)) �CS

(F ′ ∧ (y ∨ z)∧ (x∨ z), F ′ ∧ (x∨ z))�UNSAT UNSAT, but this answer is incorrect.

For this reason, the presented system in general applies clause deletion techniques
in all solvers except the designated solver in which clause addition is permitted.
With these examples in mind, we can show the following property in SysD:

Lemma 11 (Key Invariants of SysD). Let n ≥ 1, let F0, F1, . . . , Fn be for-
mulas, and let m ≥ 0. Assume init(n, F0) �m

SysD (F1, . . . , Fn) with a transi-
tion sequence that has the formula Dm as the set of clauses introduced by the
ER- and BVA-rule. Then the following properties hold:

(i) F1 ∧Dm |= F2 ∧ . . . ∧ Fn.
(ii) F1 and F1 ∧Dm are equisatisfiable.
(iii) for all i ∈ {1, . . . , n} it holds that Fi and F0 are equisatisfiable.

Proof. As before, we show the statement by induction on the number m of
transition steps. For the base case m = 0, the claims (i)–(iii) are easy to see,
since D0 =  and init(n, F0) is the n-tuple (F0, . . . , F0). For the induction step,
assume that the claim holds for the state (F1, . . . , Fn) and that (F1, . . . , Fn)�R

(F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn) for some rule R in SysD. We distinguish according

to the applied rule R:

– CM-rule: Then F ′
i ≡ Fi and Dm = Dm+1. Claims (i) and (ii) follow since re-

placement of a subformula with an equivalent formula preserves equivalence,
claim (iii) follows since equivalence implies equisatisfiability.

– ADD-rule: Then F ′
1 = F1 ∧ C and F ′

1 is equisatisfiable to F1. Since the
entailment relation is monotone, (i) holds. (ii) follows since by the definition
of the ADD-rule vars(C) ⊆ vars(F0) and Dm only contains clauses introduced
by extended resolution or bounded variable addition. (iii) is an immediate
consequence of the definition of the ADD-rule.

– DEL-rule. Then Fi |= F ′
i for i ∈ {2, . . . , n}. Consequently, F1 ∧Dm |= F2 ∧

. . . Fi−1∧Fi∧Fi+1∧ . . .∧Fn |= F2∧ . . . Fi−1∧F ′
i ∧Fi+1∧ . . .∧Fn and thus (i)

holds. Since i �= 1, (ii) holds and (iii) is a consequence of the requirement that
Fi and F ′

i are equisatisfiable implied by the unsat-preserving consequence
precondition of the rule.
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– ER-rule: Then F ′
i = Fi ∧ (v ∨ x ∨ y) ∧ (x ∨ v) ∧ (y ∨ v), where v is a globally

fresh variable and x, y ∈ lits(Fi). (iii) holds as extended resolution preserves
satisfiability. For showing (i) and (ii) we consider the following cases:

• i = 1: Then, (i) is an immediate consequence of the entailment relation
being monotone. (ii) holds since a globally fresh variable was defined.
• i > 1: Then (i) holds as the added clause of Fi is also contained in Dm+1.
(ii) holds as i �= 1 and a globally fresh variable was defined.

– BVA-rule: Then F ′
i = Fi∧C and Dm+1 = Dm∧C′ where C = (v∨x)∧(v∨y)

and C′ = C∧(v∨x∨y). Similar to the ER-rule, (i) holds. Since F ′
i ∧Dm+1 ≡

Fi ∧ Dm+1 and Fi and F ′
i are equisatisfiable, (ii) holds. (iii) holds since

bounded variable addition preserves equisatisfiability.
– CS-rule: Then F ′

i = Fi ∧ C where C ∈ Fj for some j ∈ {1, . . . , i − 1, i +
1, . . . , n}. We consider the following cases:
• j = 1 and i > 1: Then F1 exports a clause. (i) holds as the entailment
relation is monotone. (ii) holds since i > 1. (iii) is shown as follows:
If Fi is unsatisfiable, then Fi ∧ C is unsatisfiable and by the induction
assumption, F0 is unsatisfiable. Otherwise, if Fi is satisfiable, it follows by
induction assumption that F0 is satisfiable and then that F1 is satisfiable.
Then F1∧Dm is satisfiable (sinceDm only contains definitions) and hence
by (i) F1 ∧Dm∧F2 ∧ . . .∧Fn is satisfiable. We can conclude that Fi ∧C
is satisfiable as C ∈ F1.
• i = 1 and j > 1: Then F1 imports the clause C from Fj . (i) holds since
the entailment relation is monotone. (ii) is proven as follows: Suppose F1
is satisfiable. Then F1 ∧ Dm is satisfiable by induction assumption and
since (ii) holds we know that F1∧Dm |= C. Consequently F1∧C∧Dm is
satisfiable. Otherwise, if F1 is unsatisfiable, F1 ∧Dm is unsatisfiable by
induction assumption and consequently F1∧C∧Dm is unsatisfiable. For
showing (iii), suppose that F1 is unsatisfiable, then F1∧C is unsatisfiable.
Otherwise, let F1 be satisfiable, then F1 ∧Dm is satisfiable by induction
assumption and consequently F1 ∧Dm ∧ F2 ∧ . . . Fn is satisfiable by (i).
Therefore, F1 ∧C is satisfiable since C ∈ Fj .
• j �= 1 and i �= 1: This can be done similar to the proof of Prop. 7. ��

Theorem 12 (Soundness of SysD). SysD is sound.

Proof. Analogously to the proof of Theorem 8, but based on Lemma 11.iii. ��

Theorem 12 justifies that we can use clause addition procedures in a single
solver and clause deletion procedures in the remaining solvers. The authors are
not aware of a parallel SAT solver that uses this combination of techniques.

Example 10 shows that mixing deletion and addition procedures in a single
sequential solver does not work. Moreover, using clause addition techniques in
more than a single solver incarnation is problematic. If solver S1 adds a clause C
by technique A and solver S2 adds clause D by technique B, then S1 might not
be able to apply B anymore since applying B might not preserve equisatisfiabil-
ity. As already pointed out in [26], the application of simplification rules must
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take the learned clauses into account. Accordingly, the solver incarnations that
apply clause addition techniques must take all clauses of the other solvers into
account. Hence, if several solvers in a portfolio apply clause addition techniques,
the implementation has to guarantee that the learned clause database is syn-
chronized before. Otherwise, learned clauses of other solvers could be received
after the clause addition and then the soundness of the overall system can break.
We require that the ADD-rule only adds clauses that have variables occurring in
the original formula. The reason is illustrated in the following:

Example 13. Consider the satisfiable formula F0 = (x ∧ y). Suppose that the
ADD-rule does not require that the added clause C only contains variables that
occur in F0. Then init(2, F0)�BVA (F0, F0 ∧ (v ∨ x ∨ y) ∧ (v ∨ x) ∧ (v ∨ y))�CS

(F0∧(v∨x), F0∧(v∨x∨y)∧(v∨x)∧(v∨y))�ADD (F0∧(v∨x)∧v, F0∧(v∨x∨y)∧(v∨
x)∧(v∨y))�CS (F0∧(v∨x)∧v, F0∧(v∨x∨y)∧(v∨x)∧(v∨y)∧v)�UNSAT UNSAT,
but this answer is incorrect.

Restricting the variables of the added clause is not a big restriction. Basically,
instead of adding a clause (v ∨C), where v is defined by as (x∨ y), one can add
the clause (x ∨ y ∨ C) by the ADD-rule. Afterwards, the clause (x ∨ C) can be
obtained by resolution. This technique only works, if the definition is completely
present at the solver. An alternative to this syntactical restriction of the added
clause is the requirement that F1 and F1 ∧C ∧Dm are equisatisfiable.

3.5 Guiding Path Solvers

Rooted in the DPLL algorithm [9], a guiding path [43] is the current partial
interpretation of a (sequential) SAT solver. In the parallel setting, assume the
sequence of decision literals Di of the solver Si to be Di = (l1, . . . , ln). Now, if
another solver incarnation Sj should be added to the parallel solver, this solver
would simply create another sequence Dj = Di[lk �→ lk], for exactly one k ≤ n.
Thus, the new sequence Dj differs exactly in the polarity of one literal of the
sequence Di. Now, the two solvers proceed with their search until one of the two
either finds a solution or backtracks to the sequence D = (l1, . . . , lk−1). If the
latter case is reached, the whole sub search space can be closed, and thus also
the other solver can be terminated and given a new sequence. Note, none of the
steps in the guiding path approach touched the underlying formula F .

Therefore, our presented sharing model is fully applicable to guiding path
solvers, because it models only the formulas but not the search process of the
single solver incarnations.

4 Conclusion

In SAT solving, it is desirable to explore advanced techniques in combination
with each other. However, soundness of such combinations is not always easy to
see. Combinations that are sound and useful, but involve constraints that are



36 N. Manthey, T. Philipp, and C. Wernhard

too complicated to be easily captured by intuition might be missed with ex-
perimental verification approaches. Here we have seen an approach to overcome
this situation for the case of parallel SAT solvers that perform clause sharing
in combination with a variety of inprocessing techniques. The behavior of port-
folio solvers is represented formally as a state transition system. Different sets
of transition rules allow to represent different combinations of inprocessing sim-
plifications and ways of clause sharing among the component solvers running
in parallel. The three currently most successful clause sharing portfolio solv-
ing systems can be modeled as such transition systems, allowing to prove their
soundness. Moreover, the soundness of further, not yet implemented, combina-
tions of particular ways of clause sharing with particular inprocessing techniques
has been shown.

The considered simplifications include variable elimination, equivalence elim-
ination, blocked clause elimination, extended resolution, blocked clause addition
and bounded variable addition. For many of these, the preservation of a semantic
relation, which we call unsat-preserving consequence, has been identified as the
crucial property behind soundness. We have inspected four transition systems,
SysA, SysB, SysC, and SysD, characterized by different sets of inprocessing rules.
The four models allow unrestricted clause sharing among the component solvers
running in parallel. SysA models solvers that employ only equivalence preserving
techniques. With SysB, we considered parallel solvers that allow unrestricted sat-
isfiability preserving simplifications. Such solvers would be sound with respect
to satisfiability, but not refutationally sound, and thus hardly of practical use.
SysC covers parallel solvers that utilize inprocessing to weaken formulas, for ex-
ample by removing clauses, and extended resolution. SysD shows the soundness
of clause sharing with combinations of clause addition techniques, and clause
deletion techniques. To the best of the authors’ knowledge such parallel solvers
have not yet been considered in the literature. The following table gives a sum-
mary of the results proven in this paper, and the currently implemented systems
to which they apply.

Presented sharing models with properties and covered systems

Model Covered inprocessing techniques Soundness Systems

SysA preserve equivalence � ManySAT, PeneLoPe
SysB preserve equisatisfiability no –
SysC clause deletion techniques � Plingeling

SysD clause addition and deletion techniques � open

The presented modeling also applies to parallel SAT solvers that follow the
guiding path approach. As future work, we plan to extend it to parallel SAT
solvers that rely on iterative partitioning [22,23], where clause sharing has also
been introduced [24,29]. With the characteristics of SysD, another open question
arises: can modern portfolio solvers be improved by adding a single distinguished
solver incarnation that performs clause addition techniques?
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39. Sörensson, N., Biere, A.: Minimizing learned clauses. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 237–243. Springer, Heidelberg (2009)

40. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

41. Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Stud-
ies in Mathematics and Mathematical Logic Part II, 115–125 (1968)

42. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., Porschen, S.: pfoliouzk: Solver
description. In: Proc. SAT Challenge 2012; Solver and Benchmark Descriptions, p.
45. Univ. of Helsinki (2012), http://hdl.handle.net/10138/34218

43. Zhang, H., Bonacina, M.P., Hsiang, J.: Psato: a distributed propositional prover
and its application to quasigroup problems. Journal of Symbolic Computa-
tion 21(4), 543–560 (1996)

http://hdl.handle.net/10138/34218
http://baldur.iti.uka.de/sat-race-2010/descriptions/solver_13.pdf
http://hdl.handle.net/10138/34218


Exponential Separations in a Hierarchy

of Clause Learning Proof Systems

Jan Johannsen

Institut für Informatik
Ludwig-Maximilians-Universität München

jan.johannsen@ifi.lmu.de

Abstract. Resolution trees with lemmas (RTL) are a resolution-based
propositional proof system that is related to the DPLL algorithm with
clause learning. Its fragments RTL(k) are related to clause learning
algorithms where the width of learned clauses is bounded by k.

For every k up to O(log n), an exponential separation between the
proof systems RTL(k) and RTL(k + 1) is shown.

1 Introduction

Many of the most efficient contemporary SAT solvers belong to the class of
conflict-driven clause learning (CDCL) solvers. Historically, these solvers devel-
oped as extensions of the basic backtracking procedure known as the DPLL
algorithm [9, 8], even though their most recent versions use more general forms
of backtracking.

This recursive DPLL procedure is called for a formula F in conjunctive normal
form and a partial assignment α (which is empty in the outermost call). If α
satisfies F , then it is returned, and if α causes a conflict, i.e., falsifies a clause
in F , then the call fails. Otherwise a variable x not set by α is chosen, and the
procedure is called recursively twice, with α extended by x := 1 and by x := 0.
If one of the recursive calls returns a satisfying assignment, then it is returned,
otherwise the call fails.

The first generations of CDCL solvers employed several refinements and
extensions of the basic DPLL algorithm, including clause learning [14], non-
chronological backtracking [1] and restarts [10]. Crucial for their success is the
technique of clause learning [14]: when the procedure finds a conflict, a sub-
assignment α′ of the current assignment α is computed such that α′ suffices
to cause this conflict. This sub-assignment α′, the reason for the conflict, can
then be stored in form of a new clause added to the formula, viz. the unique
largest clause Cα′ falsified by α′. This way, when in a later branch of the search
another partial assignment extending α′ occurs, earlier backtracking is possible
since then the added clause Cα′ causes a conflict.

When clause learning is implemented, a strategy is needed to decide which
learnable clauses to keep in memory, because learning too many clauses leads
to excessive memory consumption. Early learning strategies were such that the
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width, i.e., the number of literals, of learned clauses was restricted (see e.g.
[14, Sec. 3.2]). Experience has shown that such learning strategies are not very
helpful, i.e., learning only short clauses does not significantly improve the per-
formance of a DPLL algorithm for hard formulas. This experience is supported
by several lower bound theorems.

Contemporary CDCL solvers use more general forms of backtracking, which
are not represented by the recursive DPLL algorithm scheme above, since it
may be the case that branches in the search tree pruned in backtracking contain
satisfying assignments. Therefore, in the following we speak about DPLL algo-
rithms with clause learning instead of CDCL algorithms, to make it clear that
our results apply to these earlier class of algorithms, where it is enforced that no
satisfying branches are pruned. It remains to be investigated whether the results
carry over to more contemporary CDCL algorithms.

The first lower bound for width-restricted clause learning was shown [6] for
the well-known pigeonhole principle clauses PHPn. These formulas require time
2Ω(n logn) to solve when learning clauses of width up to n/2 only, whereas they
can be solved in time 2O(n) when learning arbitrary clauses. Another lower bound
was shown [13] for a a set of clauses Ordn based on the principle that every finite
ordering has a maximal element. These formulas can be solved in polynomial
time when learning arbitrary clauses, but require exponential time to solve when
learning clauses of size up to n/4 only. This lower bound was generalized [4] to
a lower bound exponential in w for all formulas for which a lower bound w on
the width of resolution refutations holds.

All these lower bounds are shown by proving the same lower bounds on the
length of refutations in a certain resolution based propositional proof system
RTL. The relationship of this proof system to the DPLL algorithm with clause
learning was established in several earlier works [6, 12]. The learned clauses
correspond to so-called lemmas in the proof systems, so the mentioned lower
bounds were shown for a restricted version RTL(k) of RTL which allows only
lemmas of width k, for the respective values of k.

In this work, we show that the restricted systems RTL(k) form a strict hi-
erarchy: for every k, we prove an exponential separation of RTL(k + 1) from
RTL(k). In other words, increasing the width of lemmas that can be used by one
can give an exponential speed-up.

2 Preliminaries

A literal is a variable x or a negated variable x̄. A clause is a disjunction C =
a1 ∨ . . . ∨ ak of literals ai. The width of C is k, the number of literals in C. We
identify a clause with the set of literals occurring in it, even though for clarity
we still write it as a disjunction.

A formula in conjunctive normal form (CNF) is a conjunction F = C1∧. . .∧Cm

of clauses, it is usually identified with the set of clauses
{
C1, . . . , Cm

}
. A formula

F in CNF is in k-CNF if every clause C in F is of width w(C) ≤ k.
We consider resolution-based refutation systems for formulas in CNF, which

are strongly related to DPLL algorithms. These proof systems have as their only
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inference rule the resolution rule, which allows to infer the clause C ∨ D from
the two clauses C ∨ x and D ∨ x̄, provided that the variable x does not occur in
either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨D

We say that the variable x is eliminated in this inference.
A more general form of resolution inference is w-resolution, which allows to

perform the inference even if the eliminated variable does not occur in one (or
both) of the premises. More precisely, let C and D be clauses such C does not
contain x̄ and D does not contain x, then the w-resolution inference eliminating
x allows to infer the clause (C \ {x}) ∪ (D \ {x̄}) from these.

The w-resolution rule can be simulated by the usual resolution rule together
with the rule of weakening – which allows to conclude from a clause C any super-
clause D ⊇ C – as follows: infer C ∨x and D∨ x̄ by (possibly empty) weakenings,
then apply resolution.

An ordered binary tree is a rooted tree in which every inner node has two
children, a distinguished left and right child. The post-ordering ≺ of an ordered
binary tree is the order in which its nodes are visited by a post-order traversal,
i.e., u ≺ v holds for nodes u, v if u is a descendant of v, or if there is a common
ancestor w of u and v such that u is a descendant of the left child of w and v is
a descendant of the right child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary
tree, in which every node v is labeled with a clause Cv such that:

1. The root is labeled with C.
2. If v is an inner node with children u1, u2, then Cv follows from Cu1 and Cu2

by the resolution rule.
3. A leaf v is labeled by a clause D in F , or by a clause C labeling some node
u ≺ v. In the latter case we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width w(C) ≤
k. An RTL-refutation of F is an RTL-derivation of the empty clause from F .

A tree-like resolution derivation is an RTL-derivation that does not use any
lemmas. An RTL-derivation is called regular if on every path, no variable is
eliminated twice. This condition is inessential for tree-like resolution since min-
imal tree-like refutations are always regular [15]. It is not known whether RTL-
refutations can be simulated by regular RTL-refutations without increasing the
size super-polynomially.

Let V be a set of variables. A restriction ρ of V is a partial assignment
V → {0, 1}. A restriction ρ is extended to literals by setting

ρ(x̄) :=

{
1 if ρ(x) = 0

0 if ρ(x) = 1
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For a clause C in variables V , we define

C�ρ :=

⎧⎪⎨⎪⎩
1 if ρ(a) = 1 for some a ∈ C∨
a∈C, ρ(a) 	=0

a otherwise,

where the empty disjunction is identified with the constant 0. For a CNF-formula
F over V , we define

F �ρ :=

⎧⎪⎨⎪⎩
0 if C�ρ = 0 for some C ∈ F∧
C∈F,C
ρ	=1

C�ρ otherwise,

where the empty conjunction is identified with 1.

Proposition 1. Let R be a tree-like resolution derivation of C from F of size
s, and ρ a restriction. Then there is a tree-like resolution derivation R′ of C�ρ
from F �ρ of size at most s.

In particular, if C�ρ = 0 then R′ is a tree-like resolution refutation of F �ρ. As
usual, we denote the derivation R′ by R�ρ.

Tree-like resolution exactly corresponds to the DPLL algorithm by the follow-
ing well-known correspondence: the search tree produced by the run of a DPLL
algorithm on an unsatisfiable formula F forms a tree-like resolution refutation
of F , and from a given tree-like regular resolution refutation of F one can con-
struct a run of a DPLL algorithm showing the unsatisfiability of F that produces
essentially the given search tree.

Buss et al. [6] define a variant WRTI of RTL which exactly corresponds to a
general formulation of the DPLL algorithm with clause learning. Proofs in WRTI
are regular resolution trees with lemmas using the w-resolution rule, but in which
a clause can only be used as a lemma if it was derived by input resolution. An
input resolution derivation is one in which in every inference step, one of the
children is a leaf, i.e., labeled by a clause from the input formula or a lemma
derived earlier.

The size of a refutation of an unsatisfiable formula F in WRTI has been shown
[6] to be polynomially related to the run-time of a schematic algorithm DLL-
L-UP on F . This schema DLL-L-UP subsumes many clause learning strategies
commonly used in practice [6]. It follows from these results that if an unsatisfiable
formula F can be solved by a DPLL algorithm with clause learning in time t,
then it has an WRTI-refutation, and hence an RTL-refutation of size polynomial
in t. Moreover, if the algorithm learns only clauses of width at most k, then the
refutation is in RTL(k).

3 The Result

Our main result is an exponential separation between the systems RTL with
lemmas restricted to be of width k, for every k:
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Theorem 2. For every k, there is a family of formulas F
(k)
n such that

– F
(k)
n have RTL(k + 1)-refutations of polynomial size nO(1).

– F
(k)
n requires RTL(k)-refutations of exponential size 2Ω(n/ logn),

This even holds for k = k(n) depending on n when k(n) = O(log n).

The lower bound also holds for a stronger system that also includes a weakening
rule, the proof requires little to no modification. Therefore, it also applies for
the systems with the w-resolution rule of Buss et al. [6].

On the other hand, the upper bound is shown for the weaker system with
only the usual resolution rule, and the refutations given are regular.

4 Graph Pebbling

Let G = (V,E) be a pointed dag, i.e., a directed acyclic graph having exactly
one sink t, such that every vertex has either in-degree 0 or 2, and let S, T ⊆ V .
The pebble game on (G,S, T ) is played by placing pebbles onto the vertices of G
according to the rules below until a pebble is placed onto a vertex in T . Formally,
a pebbling of (G,S, T ) is a sequence C0, C1, . . . , C� of subsets Ci ⊆ V , where Ci

should be pictured as the set of vertices carrying pebbles at time i, with C0 = ∅
and C� ∩ T �= ∅ such that for all i < � one of the following properties holds:

1. Ci+1 = Ci ∪ {u} for some u ∈ S, i.e., a pebble can be put onto a vertex in
S.

2. Ci+1 = Ci ∪ {u} for some u such that all immediate predecessors of u are in
Ci, i.e., if all predecessors of u are pebbled, then u can be pebbled.

3. Ci+1 ⊂ Ci, i.e., pebbles can be removed from vertices.

By (2), a source vertex can be pebbled at any time, so we can always assume
that S contains all sources of G.

The complexity of a pebbling is maxi≤� |Ci|, i.e., the maximal number of
pebbles used. The pebbling number peb(G,S, T ) is the minimal complexity of a
pebbling of (G,S, T ). The pebbling number peb(G) of G is peb(G, ∅, {t}).

We shall need the following well-known property of the pebbling number [3].

Lemma 3. For every pointed dag G = (V,E), disjoint subsets S, T ⊆ V and v ∈
V \S∪T , we have peb(G,S, T ) ≤ max(peb(G,S∪{v}, T ), peb(G,S, T∪{v}))+1.

Graphs with a maximally large pebbling number were constructed by Celoni
et al. [7]:

Theorem 4. There are pointed graphs Gn with n vertices such that peb(Gn) ≥
Ω(n/ logn).

5 Pebbling Formulas

For a pointed dag G = (V,E), the pebbling formula Peb(G) is the unsatisfiable
formula in variables xv for v ∈ V consisting of the following clauses:
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– xs for every source s
– x̄u ∨ x̄v ∨ xw for every inner vertex w with predecessors u and v
– x̄t for the sink t

The formula Peb(G) has a short tree-like resolution refutation of linear size, since
it is a Horn formula. Ben-Sasson et al. [3] construct harder to refute formulas
from them by replacing every variable x with the disjunction of two new variables
x1 ∨x2. For the resulting formulas Peb2(G) they show a lower bound for tree-like
resolution that is exponential in the pebbling number peb(G).

6 Generalized Xorification

A different way to make a boolean formula harder is xorification, i.e., replacing
every variable by the XOR of two or more variables. This technique has been
used in proof complexity so far mainly for space lower bounds [2, 5]. It also has
been applied in circuit complexity, e.g. to obtain cubic lower bounds on formula
size1 [11].

The formulas that witness the separations in Theorem 2 are obtained by
xorification from the pebbling formulas Peb(G). In the lower bound argument,
restrictions will be applied to these formulas, and in order to understand and
analyze the restricted formulas, we introduce a generalized form of xorification.

We generalize xorification in two ways: first, some variables are replaced by the
XOR of k variables, whereas some other variables are replaced by the negation
of the XOR of k variables. Second, some designated variables are not replaced
at all, but remain a single variable or its negation. Thus, for every variable two
bits β0 and β1 specify how it occurs in the xorification: β0 controls whether it is
replaced by an XOR or not, and β1 specifies whether it is negated or not. This
is made precise in the following definition:

Let F be a formula in variables from a set V . Recall that ¬x is equivalent
to x ⊕ 1. For k ∈ N and a function β : V → {0, 1}2, where we denote the com-
ponents of β by β(x) = (β0(x), β1(x)), the generalized xorification X(F, k, β) is
defined by:

– X(x, k, β) = x1 ⊕ . . .⊕ xk ⊕ β1(x) for a variable x ∈ V with β0(x) = 0.
– X(x, k, β) = x1 ⊕ β1(x) for a variable x ∈ V with β0(x) = 1.
– X(x̄, k, β) = X(x, k, β)⊕ 1 for a negated variable x ∈ V .
– X(C, k, β) =

∨
a∈C X(a, k, β) expanded into CNF, for a clause C.

– X(F, k, β) =
∧

C∈F X(C, k, β) for a CNF formula F .

For the pebbling formulas Peb(G), we use the abbreviation Peb⊕k
β (G) for

X(Peb(G), k, β), and we omit the lower index if β is the constant function
β ≡ (0, 0). More generally, for a clause C we write C⊕k for X(C, k, β) when
β ≡ (0, 0). Also we abbreviate β(xv) by β(v), i.e., we identify the vertices of G
with the variables of Peb(G).

1 I am grateful to Ryan Williams for providing this reference on
cstheory.stackexchange.com
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We picture the variables of Peb⊕k(G) as a rectangular matrix, with a column
for every vertex v of G and a row for every index 1 ≤ i ≤ k.

The following lower bound for tree-like resolution is a generalization of the
result of Ben-Sasson et al. [3], the proof is an adaptation2 of their proof.

Theorem 5. For every pointed dag G = (V,E) and every β : V → {0, 1}2,
tree-like resolution refutations of Peb⊕2

β (G) require size 2Ω(peb(G)−b), where b is
the number of v ∈ V with β0(v) = 1.

Proof. Let R be a tree-like resolution refutation of Peb⊕2
β (G), we show that

|R| ≥ 2peb(G)−b−2 − 1.
To that end, we define a sequence C0, C1, . . . , Ch of clauses in R, with C0 = 0

and Ci+1 one of the predecessors of Ci for every i < h, and Ch a leaf, i.e.,
an axiom from Peb⊕2

β (G), together with an increasing sequence of restrictions
ρ0 ⊆ ρ1 ⊆ . . . ⊆ ρh such that Ci�ρi = 0 for every i ≤ h, and sets S0, S1, . . . , Sh
and T0, T1, . . . , Th with Si ∩ Ti = ∅.

We let S0 be the set of sources in G and T0 = {t} where t is the sink of G, and
ρ0 = ∅. Now assume Ci, ρi, Si and Ti are defined, and assume that Ci is derived
from Di ∨ x and D′

i ∨ x̄, where x is a variable xv,ε for v ∈ V and ε ∈ {1, 2}. Let
ε̄ := 3− ε so that xv,ε̄ is the other variable in column v.

We define Ci+1, ρi+1, Si+1 and Ti+1 by distinguishing cases, where in each
case, ρi+1 is obtained from ρi by specifying the value for the variable xv,ε.

– Case 1a: v ∈ Ti, and β0(v) = 1 or xv,ε̄ /∈ dom ρi.
Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti.

– Case 1b: v ∈ Ti and xv,ε̄ ∈ dom ρi.
Set ρi+1(xv,ε) = ρi(xv,ε̄)⊕ β1(v), Si+1 = Si and Ti+1 = Ti.

– Case 2a: v ∈ Si, and β0(v) = 1 or xv,ε̄ /∈ dom ρi.
Set ρi+1(xv,ε) = β1(v) ⊕ 1, Si+1 = Si and Ti+1 = Ti.

– Case 2b: v ∈ Si and xv,ε̄ ∈ dom ρi.
Set ρi+1(xv,ε) = ρi(xv,ε̄)⊕ β1(v)⊕ 1, Si+1 = Si and Ti+1 = Ti.

– Case 3: v /∈ Si ∪ Ti and peb(G,Si, Ti ∪ {v}) = peb(G,Si, Ti).
Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti ∪ {v}.

– Case 4a: v /∈ Si∪Ti and peb(G,Si, Ti∪{v}) < peb(G,Si, Ti) and β0(v) = 1.
Set ρi+1(xv,ε) = β1(v) ⊕ 1, Si+1 = Si ∪ {v} and Ti+1 = Ti.

In all these cases 1a - 4a, define Ci+1 to be the parent clause of Ci that is falsified
by ρi+1.

– Case 4b: v /∈ Si∪Ti and peb(G,Si, Ti∪{v}) < peb(G,Si, Ti) and β0(v) = 0.
Choose Ci+1 as that parent clause of Ci s.t. the subtree rooted at Ci+1 is
the smaller among the two, and set a value of ρi+1(xv,ε) such that Ci+1 is
falsified by ρi+1. Moreover, let Si+1 = Si ∪ {v} and Ti+1 = Ti.

2 Urquhart [16] claims that a lower bound for tree-like resolution refutations of
Peb⊕2(G) can be obtained by imitating the proof of Ben-Sasson et al. [3] “almost
word for word”. We found however that it requires some subtle modifications even
for the non-generalized case.
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In the following, we denote X(xv, 2, β) by x⊕v , i.e., x
⊕
v = xv,1 ⊕ xv,2 ⊕ β1(v) if

β0(v) = 0 and x⊕v = xv,1 ⊕ β1(v) if β0(v) = 1.

Claim. If ρi(x
⊕
v ) = 0, then v ∈ Ti.

If the assumption of the claim holds, then in the case β0(v) = 1, the value of
xv,1 must have been set in case 1a or in case 3. In either case v ∈ Ti.

In the case β0(v) = 0, the variable among xv,ε and xv,ε̄ whose value was set
later, must have been set by Case 1b, and hence v ∈ Ti.

Claim. If ρi(x
⊕
v ) = 1, then v ∈ Si.

The proof is similar to that of the previous claim.
It follows that Ch is not a clause from a target axiom X(x̄t, k, β). If this were

the case, then ρh(x
⊕
t ) = 1, and hence t ∈ Sh by the claim above, whereas we

have t ∈ T0 ⊆ Th and Sh ∩ Th = ∅. By analogous reasoning, Ch cannot be a
clause from a source axiom X(xs, k, β) for a source s of G.

For i ≤ h, let bi be the number of v ∈ V with β0(v) = 1 such that xv,1 ∈
dom ρi.

Claim. For every i ≤ h, the size si of the subtree of R rooted at Ci is at least
si ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1.

The claim is proven by induction on i, downward from h to 0.
By the considerations above, Ch must be a clause from X(x̄u ∨ x̄v ∨ xw, 2, β)

for some w ∈ V with predecessors u and v. Therefore ρh(x
⊕
u ) = ρh(x

⊕
v ) = 1,

so u, v ∈ Sh by the claim above, and ρh(x
⊕
w) = 0, and thus w ∈ Th. We get

peb(G,Sh, Th) = 3, and hence sh = 1 = 2peb(G,Sh,Th)−bh+bh−2 − 1, which shows
the induction base for i = h.

Assume the claimed lower bound holds for si+1. Since si is the size of the
tree rooted at Ci, which contains the subtree rooted at Ci+1 of size si+1, we
obviously have si ≥ si+1.

If Ci+1 is defined by one of the cases 1a through 3, then peb(G,Si+1, Ti+1) =
peb(G,Si, Ti) and bi+1 ≥ bi , and thus

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.
If Ci+1 was defined using case 4a, then we have

peb(G,Si+1, Ti+1) ≥ peb(G,Si, Ti)− 1

by Lemma 3, and bi+1 = bi + 1, thus we get

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−1−bh+bi+1−2 − 1 ,

which shows the claim for si.
If Ci+1 was defined using case 4b, then we have

peb(G,Si+1, Ti+1) ≥ peb(G,Si, Ti)− 1
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by Lemma 3 again, and bi+1 = bi, therefore we obtain

si ≥ 2si+1 + 1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.
The theorem follows, since we have |R| = s0, and b0 = 0, and bh ≤ b, and

peb(G,S0, T0) = peb(G). ��

7 The Lower Bound

We will now prove one half of our main result, a lower bound on the size of
RTL(k)-refutation of the (k + 1)-fold xorification of the pebbling formulas.

Theorem 6. For a pointed dag G, every RTL(k)-refutation of Peb⊕(k+1)(G)
requires size 2Ω(peb(G)).

Proof. Let R be an RTL(k)-refutation of F := Peb⊕(k+1)(G). Note that every
clause in F is of width at least k+1. Let C be the first clause in R with w(C) ≤ k,
so that C could possibly be used as a lemma. Then the subtree RC of R rooted
at C is a tree-like resolution derivation of C from F .

Let ρ be the smallest restriction with C�ρ = 0, and note that |ρ| ≤ k. Recall
that we picture the variables of Peb⊕k(G) as arranged in a rectangular matrix,
with a column for every vertex v of G and a row for every index 1 ≤ i ≤ k.
There are two cases: either the variables set by ρ are all in the same column, or
ρ sets variables from at least two different columns.

In the latter case, there are at most k − 1 rows set in every column, thus for
each column v there are two rows i(v) and i′(v) such that xv,i(v) and xv,i′(v) are
not set by ρ. In this case, we can set all but these two rows in every column,
i.e., extend ρ to a restriction ρ∗ by setting ρ∗(xv,j) = 0 for every variable xv,j /∈
dom ρ with j /∈ {i(v), i′(v)}. Define β0(v) = 0 for every v ∈ V , and β1(v) :=⊕

j /∈{i(v),i′(v)} ρ
∗(xv,j).

In the first case, let v be the column containing all variables set by ρ. If
there are fewer than k variables set, then we can proceed as in the other case.
Otherwise, there is one row i such that xv,j is set by ρ for all j �= i. In this
case, we set all but two rows in every other column, and in column v only one
variable remains. Thus we pick a row i′ with i′ �= i arbitrarily, and extend ρ
to a restriction ρ∗ by setting ρ∗(xu,j) = 0 for every column u �= v and row
j /∈ {i, i′}. Set β0(v) = 1 and β1(v) =

⊕
j 	=i ρ(xv,j) for the vertex v, and for all

other vertices u �= v, set β0(u) = 0 and β1(u) = 0.
In both cases, for the so defined function β we have F �ρ∗ ≡ Peb⊕2

β (G) after
a renaming of the variables that changes only the numbering of the rows.

Thus in both cases RC�ρ∗ is a tree-like resolution refutation of Peb⊕2
β (G), and

the number b of v ∈ V with β0(v) = 1 is at most 1, therefore |RC | ≥ 2Ω(peb(G))

by Theorem 5. The size lower bound for R follows. ��
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8 The Upper Bound

We now prove the remaining half of our result, the upper bound.

Theorem 7. For every pointed dag G with n vertices, the formulas Peb⊕k(G)
have regular RTL(k)-refutations of size O(23kn).

Proof. Fix a topological ordering ≺ of G, and let S be the set of sources of G.
We first show the following claim:

Claim. Let w ∈ V with predecessors u and v, where u ≺ v. For every clause C in
x⊕k
w , there is a tree-like regular resolution derivation of C from x⊕k

u and x⊕k
v and

(x̄u ∨ x̄v ∨ xw)
⊕k of size O(22k). Moreover, in this derivation only the variables

from columns u and v are eliminated, and on every path from a leaf labeled with
a clause from x⊕k

v to C, only the variables from column v are eliminated.

Proof. Take a regular tree-like resolution refutation Rv of x⊕k
v and x̄⊕k

v , of size
O(2k). Add the clause C to every clause in Rv except the leaves from x⊕k

v . This
yields a derivation R′

v of C from x⊕k
v and x̄⊕k

v ∨ C.
Now take a regular tree-like resolution refutation Ru of x⊕k

u and x̄⊕k
u , of size

O(2k). For every clause C′ in x̄⊕k
v ∨ C, take a copy of Ru, and add C′ to every

clause in it except the leaves from x⊕k
u . Replace the leaf in R′

v labeled C′ by the
result. This gives the desired derivation and thus proves the claim. ��

To prove the theorem, we construct a sequence R1, . . . , R� of partial resolution
trees with lemmas, in which some leaves are labeled by clauses that are not
axioms or lemmas derived earlier, these are called the open leaves. In addition,
we define a sequence U1, . . . , U� of subsets of V \ S, such that the following
invariants hold:

– The open leaves in Ri are all among the clauses from xu,1⊕ . . .⊕xu,k for an
u ∈ Ui.

– On the path from an open leaf with a clause from xu,1 ⊕ . . . ⊕ xu,k to the
root, all variables resolved are from a column v ∈ V with u � v.

Let R1 be a tree-like regular resolution refutation of the clauses from x̄⊕k
t , which

are axioms of Peb⊕k(G), and those from x⊕k
t , which are the open leaves of R1,

and let U1 := {t}. Obviously the invariants hold, and the size of R1 is 2k.
Assume we have constructed Ri, we show how to construct Ri+1. Let v be

the maximal element of Ui w.r.t. the ordering ≺, and let u1 and u2 be its pre-
decessors. For each clause C from x⊕k

v , replace its first occurrence in Ri by the
derivation RC of C from x⊕k

u1
and x⊕k

u2
given by the claim above. The other

occurrences of C will then become lemmas.
Let the result be Ri+1, then the open leaves of Ri+1 are those of Ri without

the clauses from x⊕k
v , plus those leaves of RC labeled by clauses from x⊕k

u1
and

x⊕k
u2

, except when u1 or u2 are sources. Thus if we define Ui+1 := (Ui \ {v}) ∪
({u1, u2} \ S), then the first invariant holds.
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Since in a path from an open leaf C of Ri to the root, only variables from
columns w with v � w are eliminated, and in RC only variables from columns
u1 and u2, the second invariant as well as regularity of Ri+1 hold.

For each of the 2k−1 clauses in x⊕k
v , we have added one derivation of size 22k,

hence the size of Ri+1 is |Ri+1| ≤ |Ri|+ 23k.
The process terminates after at most n iterations, since max≺ Ui strictly de-

creases in every step. Since in R�, there are no open leaves left, it is a regular
RTL-refutation. Since every lemma used is a clause from x⊕k

v for some v ∈ V ,
they are of size k, hence R� is a regular RTL(k)-refutation of Peb⊕k(G) of size
23k · n. ��

9 Wrapping Up

Finally, we put everything together to prove the main theorem.

Proof (of Theorem 2). Let F
(k)
n be the formula Peb⊕(k+1)(Gn), where Gn are

the graphs given by Theorem 4 with n vertices and pebbling number peb(Gn) =
Ω(n/ logn). For k = O(log n), these formulas are of polynomial size nO(1).

By Theorem 6, the formulas F
(k)
n require RTL(k)-refutations of exponential

size 2Ω(n/ logn), and by Theorem 7, they have regular RTL(k)-refutations of
polynomial size nO(1). ��

Note that for k larger than O(log n), the formulas Peb⊕(k+1)(Gn) are themselves
of super-polynomial size in n, and therefore have no proofs of size polynomial in
the size of the underlying graph Gn.

10 Conclusion

We have shown that for resolution trees with lemmas – a resolution-based propo-
sitional proof system that forms the basis of a family of proof systems capturing
the complexity of clause-learning algorithms – an increase of one in the width
of clauses that may be used as lemmas can lead to an exponential speed-up.

The lower bounds hold for the strongest form of these proof systems with no
regularity restrictions, and even with the weakening rule. The upper bounds, on
the other hand, are given for a rather weak variant, the given refutations are
regular and do not use any weakenings.

Unfortunately, we cannot immediately conclude an exponential speed-up of
the DPLL algorithm with clause learning with learned clauses of width k + 1
over the version with learned clauses of width k from this. In order for that
conclusion to hold, the upper bound would have to be given for a still weaker
variant of the system, in which only lemmas derived by input resolution can be
used, i.e. a restricted version of WRTI without use of the w-resolution rule and
with lemmas restricted to width k + 1.
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Abstract. For a pair of given graphs we encode the isomorphism princi-
ple in the natural way as a CNF formula of polynomial size in the number
of vertices, which is satisfiable if and only if the graphs are isomorphic.
Using the CFI graphs from [12], we can transform any undirected graph
G into a pair of non-isomorphic graphs. We prove that the resolution
width of any refutation of the formula stating that these graphs are iso-
morphic has a lower bound related to the expansion properties of G.
Using this fact, we provide an explicit family of non-isomorphic graph
pairs for which any resolution refutation requires an exponential number
of clauses in the size of the initial formula. These graphs pairs are colored
with color multiplicity bounded by 4. In contrast we show that when the
color classes are restricted to have size 3 or less, the non-isomorphism
formulas have tree-like resolution refutations of polynomial size.

1 Introduction

Resolution is one of the most popular and best studied proof systems for propo-
sitional logic. Since the first exponential lower bound for the size of resolution
refutations proven by Haken [17] for the family of formulas encoding the pigeon-
hole principle, many other combinatorial principles have been shown to have
exponential lower bounds [26,13,9,7,8]. With the recent development of modern
SAT-solvers based on DPLL algorithms and the fact that the resolution princi-
ple lies in the core of such algorithms, resolution lower bounds have gained in
importance because they also provide lower bounds for the running time of the
SAT-solvers. We study here the complexity of testing graph non-isomorphism
using resolution. The graph isomorphism problem, GI, asks whether there is a
bijection between the nodes of two given graphs preserving the adjacency re-
lationship. The problem has been extensively studied in the past (see e.g [21])
because its intrinsic importance and also because it is one of the few problems in
NP that is not known to be solvable in polynomial time but also is not expected
to be NP-complete.

The impressive improvement of the performance of SAT-solvers based on
DPLL algorithms in the last years has motivated a new way for dealing with NP
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problems. For many practical applications, these problems are reduced to for-
mulas than are then tested for satisfiability using the SAT-solvers. This method
works well in practice for several problems, although strong resolution lower
bounds for random instances of some NP-complete problems are known [7,8]. It
is natural to ask how well this approach works for problems in NP that are not
believed to be complete in the class, like graph isomorphism. We study here the
size of resolution refutations for formulas encoding graph isomorphism in the
natural way. Given two graphs G1 = (V1, E1) and G2 = (V2, E2), with n nodes
each, the formula F (G1, G2) over the set of variables {xi,j | i, j ∈ [n]} is satisfi-
able if and only if there if an isomorphism between G1 and G2. Each satisfying
assignments of the formula encodes an isomorphisms. In such an assignment the
variable xi,j receives value 1 if and only if the encoded isomorphism maps vertex
vi ∈ V1 to vj ∈ V2.

Definition 1.1. For a pair of graphs G1, G2 with n vertices each, F (G1, G2) is
the conjunction of the following sets of clauses:

Type 1 clauses: for every i ∈ [n] the clause (xi,1 ∨ xi,2 ∨ · · · ∨ xi,n) indicating
that vertex vi ∈ V1 is mapped to some vertex in V2.

Type 2 clauses: for every i, j, k ∈ [n] with i �= j the clause (xi,k∨xj,k) indicating
that not two different vertices are mapped to the same one.

Type 3 clauses:, for every i, j, k, l ∈ [n] i < j and k �= l with (vi, vj) ∈ E1 ↔
(vk, vl) �∈ E2, the clause (xi,j ∨ xi,k) expressing the adjacency relation (an
edge cannot be mapped to a non edge and vice-versa).

Formula F (G1, G2) has n
2 variables and O(n4) clauses. The clauses of Types 2

and 3 have width 2, while the clauses of Type 1 have width n.
It is not hard to find pairs of non-isomorphic graphs whose formulas require

exponential size resolution refutations. For example if graph G1 consists of n+1
isolated vertices and G2 n isolated vertices (no edges), then F (G1, G2) is exactly
PHP(n+1, n), the formula encoding the pigeonhole principle with n+1 pigeons
and n holes. It is well known that this formula requires exponential size resolu-
tion refutations [17]. More elaborate examples can be constructed for example
encoding PHP in pairs of connected graphs with the same number of vertices. In
order to find more interesting examples and to investigate whether the apparent
inability of resolution for dealing with GI comes only from the difficulty to count,
we consider here graphs with colored vertices and bounded color multiplicities
(there is a bound on the number of vertices of each color). In an isomorphism
between colored graphs, colors must be preserved. A vertex coloring is reflected
very naturally in the clauses of Type 1, since for a vertex i in the first graph
we only have to include the variables xi,j for the vertices j in the second graph
with the same color as i. If the maximum color multiplicity is bounded by k,
the clauses of Type 1 are reduced to have at most k literals. This restricts the
isomorphism search space. This also prevents from encoding the pigeonhole prin-
ciple in the formula. Also in this case we can ignore all the variables xi,j when
i and j have different colors. This means that the corresponding isomorphism
formulas have at most kn variables.



54 J. Torán

When the input graphsG1 andG2 are colored, we will also denote by F (G1, G2)
the formula defined as above, but with the Type 1 clauses restricted according to
the colors.

For any constant k, it is known that GI for graphs with color multiplicity
bounded by k can be solved in polynomial time, and even using more restricted
resources [6,15,5]. In contrast to this fact, we show in this paper than in the
case of resolution, there is a big difference between color classes of size 3 and
larger classes. When the maximum color multiplicity is 3, the non-isomorphism
formulas have polynomial size resolution refutations, (even tree-like refutations).
On the other hand we prove an exponential lower bound for the resolution refu-
tation of certain pairs of non-isomorphic graphs with color classes of size 4 or
larger. The gap in the complexity of resolution depending on the size of the
color classes coincides with the gap in the number of variables required for graph
identification [19].

For our lower bound we consider the CFI graphs used by Cai, Fürer and
Immerman in [12] to prove the impossibility of Weisfeiler-Lehmann based algo-
rithms for solving GI. In this important paper the authors gave a method to
transform any graph G with n vertices and maximum degree d into a pair of
non-isomorphic graphs of size nd2d based on G. We show here that any resolu-
tion refutation of the related isomorphism formulas must have exponential size

in ex(G)
d , were ex(G) is the expansion of the graph G (Definition 4.5). The ex-

ponential lower bound follows by considering constant degree graphs with linear
expansion. The lower bound holds even for pairs of colored graphs of degree at
most 3 and color classes of size at most 4.

The idea behind the proof of the resolution lower bound resembles that from
Urquhart [26] for proving resolution lower bounds for Tseitin formulas [25]. We
profit however from several newer results that help us to simplify the proof.
Especially, we make use the relationship between resolution size and width (the
maximum number of literals in a clause in the refutation) proven by Ben-Sasson
and Wigderson in [11], which imply size lower bounds by proving bounds on
the width.

2 Preliminaries

We deal with Boolean formulas in conjunctive normal form, CNF. A CNF for-
mula F on the set of variables V is a conjunction of clauses C1, . . . , Cm. Each
clause is a disjunction of literals. A literal is either a variable or a negated vari-
able from V. A (partial) assignment α is a (partial) mapping from V in {0, 1}.
For a clause C and an assignment α, we denote by C|α the result of applying α
to C. This is 1 if α assigns value 1 some literal in C, or the result of deleting
the literals in C being assigned to 0 otherwise. For a CNF formula F , F |α is the
conjunction of the clauses C|α for every C in F.
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2.1 Resolution

The concept of resolution was introduced by Robinson in [22]. Resolution is a
refutation proof system for propositional formulas in conjunctive normal form.
The only inference rule in this proof system is the resolution rule:

C ∨ x D ∨ x̄
C ∨D .

Resolving variable x from clauses C ∨ x and D ∨ x̄ we get the resolvent clause
C ∨D. A resolution refutation of a CNF formula F is a sequence of clauses
C1, . . . , Cs where each Ci is either a clause from F or is inferred from earlier
clauses by the resolution rule, and Cs is the empty clause.

A resolution refutation can be pictured as a directed acyclic graph in which the
clauses are the vertices and there are edges from the clauses to their resolvents.
The restriction of resolution in which the underlying graph is a tree is called
tree-like resolution.

Definition 2.1. The size of a resolution refutation is the number of clauses it
contains. For an unsatisfiable formula F , size(Res(F )) denotes the minimal size
of a resolution refutation of F .

We denote the size of the smallest tree-like refutation for F , by size(TRes(F )).
Families of unsatisfiable formulas exist, for which there is an exponential sepa-
ration between the size of tree-like resolution refutation and that of resolution
refutations without restrictions [10]. It is well known that the size of a tree-like
resolution refutations for an unsatisfiable formula corresponds to the running
time of a DPLL algorithm on the formula (see e.g. [23]).

Definition 2.2. [11] The width of a clause is the number of literals appearing in
it. For a set of clauses C (C can be for example a formula in CNF or a resolution
refutation) the width of C, denoted by width(C), is the maximal width of a clause
in the set C.

The width needed for the resolution of an unsatisfiable CNF formula F , de-
noted by width(Res(F )), is the minimal width needed in a resolution of F , that
is, the minimum of width(π) over all resolution refutations π of F .

For proving the lower bound on the resolution size we will use the relationship
between width and size of a refutation introduced by Ben-Sasson and Widgerson
in [11]. This approach allows to reduce the problem of giving lower bounds on
the size of a refutation to that of giving lower bounds on the width.

Theorem 2.1. [11] For an unsatisfiable formula F in CNF with n variables

size(Res(F )) = exp(Ω(
[width(Res(F ))− width(F )]2

n
)).
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2.2 Graph Isomorphism

The graphs considered in this paper will be undirected simple graphs, usually
denoted by G = (V,E), where V is the vertex set and E ⊆

(
V
2

)
. We say two

graphs G1 and G2 are isomorphic if there is a bijection ϕ : V1 −→ V2 such that
(u, v) ∈ E1 iff (ϕ(u), ϕ(v)) ∈ E2. We write G1

∼= G2 and call ϕ an isomorphism.
An automorphism of a graph G is an isomorphism from G to G. Automorphisms
are permutations on the set V , and the set of automorphisms Aut(X) forms a
group under permutation composition. We say that a set of vertices V ′ ⊆ V is
set-wise stabilized by an automophism ϕ, if V ′ = ϕ(V ′).

We will deal with graphs with colored vertices. A coloring with k colors is
a function f : V → {1, . . . k}. In an isomorphism between colored graphs, the
colors have to be preserved. This restricts the search space when looking for
isomorphisms. For a color c, the color class corresponding to c is the set of
vertices with this color in V . The set of color classes defines a partition of the
graph vertices. A refinement of a given set of color classes, is a refinement of this
partition, that is, every color class in the refinement is a subset of the original
partition. When a pair of graphs is given as input for the isomorphism problem,
there are two color classes of each color, one in each graph. It should be clear
from the context, from which one of the classes we are talking about in the text.

3 Polynomial Size Tree-Like Resolution Refutations for
Color Multiplicity 2 and 3

For the case of graphs with color classes of size 2, all the clauses in the non-
isomorphism formulas have width 2. It is well known that an unsatisfiable set of
clauses of width at most 2 has polynomial size tree-like resolution refutations.
This simple observation provides an alternative proof for the fact that GI for
graphs with color multiplicities at most 2 is in P. We extend this observation to
the case of graphs with color classes at most 3.

Theorem 3.1. Let G1 and G2 be two colored non-isomorphic graphs with color
classes of size at most 3. Then F (G1, G2) has tree-like resolution refutations of
polynomial size.

Proof. We can suppose that the subgraphs induced by every pair of color classes
in G1 and G2 are isomorphic, because otherwise, there would be an unsatisfiable
subformula of constant size in F (G1, G2), having a constant size tree-like resolu-
tion refutation. For some pairs of color classes, the subgraphs S1 and S2, induced
by the vertices with these colors in G1 and G2 can restrict the set of possible
isomorphisms between the subgraphs, thus implying a further refinement in the
vertex partition defined by the colors.

For example in Figure 1 every possible isomorphism between S1 and S2 must
map 1 to b or c, 2 to b or c, and 3 to a. This implies that every possible iso-
morphism between the subgraphs must map 4 to f , 5 to d or e and 6 to d or
e. Observe that by considering the subgraphs induced just by the white color
classes, no further refinement would have followed.
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Fig. 1. The subgraphs S1 and S2 induced by a pair of color classes (black,white)

One can use this refinement in the set of possible isomorphisms between S1 and
S2 to derive a refinement of the clauses of Type 1 by a constant size resolution
refutation from the (constant size) initial set of clauses in F (S1, S2). In our
example these new clauses would be: (x1,b, x1,c), (x2,b, x2,c), x3,a, x4,e, (x5,d, x5,f )
and (x6,d, x6,f ) . A way to see that in case of a refinement in the color classes
it is always possible to obtain the reduced clauses, is by noticing that if there
is no isomorphism between the subgraphs mapping 1 to a, for example, then
the subformula obtained by setting x1,a to 1 in F (S1, S2) is unsatisfiable and
therefore it has a constant size tree-like refutation R. By the standard trick of
using the structure of the refutationR, but starting with the clauses in F (S1, S2)
(instead of F (S1, S2)|x1,a=1), one derives the literal x1,a (or maybe the empty
clause in case F (S1, S2) was unsatisfiable). By resolving these literals (unitary
clauses) with the corresponding clauses of Type 1, one obtains the desired refined
clauses.

Because of these observations, we can suppose that in G1 and G2 the parti-
tion on the vertex set defined by the color classes, cannot be further refined by
considering the subgraphs induced by pairs of color classes. Considering this, by
inspecting the few possible cases of edge connections between two color classes,
it can be seen that for every pair of colors, say black and white, there are two
possible situations in the subgraphs S1 and S2 induced by these color classes in
G1 and G2, (this fact has been previously observed [19,20]). Either:

1. For every possible bijective mapping of the black vertices, there is a unique
extension to the white vertices that is an isomorphism from S1 to S2, or

2. For every possible bijective mapping of the black vertices, every possible
bijective extension to the white vertices is an isomorphism from S1 to S2.

(This property does not hold when the color classes can have size larger than
3.) We show in Figure 2 the possible edge connections between two color classes
when they do not imply a refinement. The first and last situations belong to
Case 2, while the second and third belong to Case 1. The situations involving
color classes of size smaller than 3 are not included in the figure but are also
easy to check.

Translating this to resolution, this property intuitively means that in Case
1, an assignment for a possible mapping of one of the color classes fixes an
assignment of the variables for another color, and so on, until (in the case of
non-isomorphic graphs) a contradiction is found.
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Fig. 2. The possible (non refining) edge connections between two color classes of size 3

Suppose that black and white are two color classes with edge connections as
in Case 1, and suppose we had three unitary clauses, specifying a mapping of
the black vertices (like for example x1,a, x2,b, and x3,c). By a unit-resolution
refutation of constant size, resolving first these clauses with clauses of Type 3
and then using the obtained resolvents together with the clauses of Type 1 for
the white vertices, the unitary clauses specifying the corresponding mapping of
the white vertices can be obtained. Observe that one would also obtain (by unit-
resolution) the unit clauses for the white vertices if instead of the unit clauses for
the black vertices one would have started with a partial assignment α defining
a mapping of the black vertices (like x1,a = 1, x2,b = 1, and x3,c = 1) and
considering the formula F (G1, G2)|α.

We can now define a new graph C in which there is a vertex for each color class in
G1, and there is an edge between two color classes if and only if the edge connections
between the vertices of the corresponding classes in G1 or G2 are as in Case 1.

IfG1 andG2 are not isomorphic, then there must be a set of color classes so that
the subgraphs induced by these classes in G1 and G2 are non-isomorphic. These
color classes define a connected component inC. Moreover, if for every pair of color
classes the corresponding induced subgraphs in G1 and G2 are isomorphic, then
there has to be a cycle in C so that the graphs induced by the colors in this cycle
are non isomorphic. Otherwise, it would be possible to extend the isomorphism
between two color classes to an isomorphism between G1 and G2.

Let black be any color class in such a cycle. By the above observations, from
any of the possible partial assignments α of the variables corresponding to a
bijective mapping of the black color class, the clauses corresponding to the unique
possible mapping of a neighboring color class in the cycle can be derived (by a
constant unit-resolution refutation) and so on, coming back to black. A partial
isomorphism different from the initial one is then forced on this class, thus forcing
a contradiction.

Since the number of colors in the cycle is bounded by the number of vertices,
any partial assignment α defining a bijective mapping of the black vertices, de-
fines a polynomial size tree-like (and unit-resolution) refutation of F (G1, G2)|α.
There are only 6 possible such bijective mappings α. By using again the trick re-
peating these refutations separately on F (G1, G2), one obtains a tree-like deriva-
tion of an unsatisfiable set of clauses involving only variables xi,j with i and j in
the black classes. This set has constant size, and from it, the empty clause can
be derived.
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4 The CFI Graphs and Their Formulas

We define now the graphs that will be used for the resolution lower bounds.
These graphs were considered in [12] to prove lower bounds for the Weisfeiler-
Lehman method in isomorphism testing. In [24] a generalization of these graphs
was used in order to show that GI is hard for the complexity class DET.

Definition 4.1. For k ≥ 2 the graph Xk = (Vk, Ek) is defined as follows:
Vk = Ak ∪ Bk ∪ Mk where Ak = {ai | i ∈ [k]}, Bk = {bi | i ∈ [k]} and

Mk = {mS | S ⊆ [k], |S| even}. The graph is bipartite, the set of edges connect
a and b vertices with m vertices Ek = {(mS , ai) | i ∈ S} ∪ {(mS , bi) | i �∈ S}.
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�

�

�

a1

b1

a2

b2

m∅

m{2,3}

m{1,3}

m{1,2}

b3

a3

Fig. 3. The graph X3

Graph Xk consists of 2k−1 + 2k vertices and k2k−1 edges. Let us give some
intuition on the definition. Suppose that for each i we color the vertex set {ai, bi}
with color i so that any automorphism of Xk must set-wise stabilize these vertex
sets. An automorphism in the colored graph, might map some ai vertices to the
corresponding bi vertex, while fixing the rest of the a and b vertices. As stated
in the following Lemma from [12], describing the set of automorphism in Xk,
the graph is constructed in such a way, that their automorphisms correspond to
the situations in which the number of i ∈ [n] with vertex ai being mapped to bi
is even.

Lemma 4.1. [12] There are exactly 2k−1 automorphisms in Xk stabilizing the
sets {ai, bi}, i ∈ [k]. Each such automorphism is determined by interchanging ai
and bi for each i in some subset S ⊆ [k] of even cardinality.
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More intuitively, the construction can be understood with the simplification of
Xk given in Figure 4. Here we have one vi vertex for each pair ai, bi, and these
are connected to a single m vertex for all the vertices in Mk. If we assign {0, 1}
values to the vi vertices, the previous lemma just says that the sum of these
values has to be even.

v2

v1

v3
m

�

�

�

Fig. 4.

We now transform a graph G into a graph X(G) by substituting its vertices
by the gadgets of Definition 4.1.

Definition 4.2. Let G = (V,E) be a connected graph with minimum degree at
least 2. We transform G in a new graph X(G) in which every vertex v of degree
d in G is substituted by a copy X(v) of the gadget Xd, and these are connected
in the following way:

To each edge e = (u, v) having v as endpoint we associate two vertices {ave , bve}
in X(v) and two vertices {aue , bue} in X(u). We then join with an edge the ae
vertices in X(v) and X(u) and the be vertices in X(v) and X(u). This means that
every edge in G is transformed into two edges in X(G). X(G) can be intuitively
understood as the result of going back from the graph in Figure 4, to the one in
Figure 3, for every vertex.

If G has maximum degree d then X(G) has at most |V |d2d vertices and 2|E|+
|V |d2d−1 edges. It should be clear that the set of automorphisms of X(G) stabi-
lizing the pairs {ave , bve} have to be edge respecting in the sense of the following
definition.

Definition 4.3. A permutation ϕ acting on the set {ave , bve | e is an incident
edge with vertex v in G} is called edge respecting if it stabilizes all the pairs
{ave , bve} and has the property that for every edge e = (u, v) in G, ϕ(aue ) = a

u
e if

and only if ϕ(ave) = a
v
e.

The following observation is a direct consequence of Lemma 4.1.

Observation 4.1 There is a 1-1 correspondence between the set of edge respect-
ing permutations ϕ acting on the set {ave, bve | e is an incident edge with vertex
v in G} and with the property that for every vertex v, ϕ interchanges the ver-
tices ave and bve for an even number of edges e incident with v, and the set of
automorphism in Aut(X(G)) stabilizing the sets {ave, bve}.
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For E′ ⊆ E, let X̃(G,E′) be a copy of X(G) but in which all the edges e =
(u, v) ∈ E′ are twisted, that is aue is connected to bve and bue is connected to
ave . The next lemma shows that depending on the number of twisted edges in
X̃(G,E′) we can only have two possible isomorphism classes.

Lemma 4.2. [12] Let G = (V,E) be a connected graph with minimal degree at
least 2 and let E′ ⊆ E with ||E′|| = t. If t is even then X̃(G,E′) is isomorphic to
X(G), and if t is odd, then X̃(G,E′) is isomorphic to X̃(G, {e}), for any edge
e ∈ E. Moreover, X(G) and X̃(G, {e}) are non-isomorphic.

We will say that an edge (u, v) in G is straight, if the corresponding edge in
X̃(G,E′) has not been twisted. For simplicity, we will denote by X̃(G) the
graph X̃(G, {e}) for some fixed e ∈ E. Since all the graphs defined in this
way are isomorphic, for our purposes it does not matter which of these graphs
we are considering. Analogously we will refer to the formula F (X(G), X̃(G)),
considering that X̃(G) is a fixed graph.

We extend Definition 4.3 to the set of bijections between the vertices of X(G)
and X̃(G).

Definition 4.4. A bijection ϕ between the sets {ave, bve |ave , bve ∈ V (X(G))} and
{ave , bve |ave , bve ∈ V (X̃(G))} is called edge respecting if for every vertex v and
incident edge e, {ϕ(ave), ϕ(bve)} = {ave , bve} and fulfills the following property:

For every edge e = (u, v) in G, if e is straight then ϕ(aue ) = a
u
e if and only if

ϕ(ave) = a
v
e, and if e is twisted then ϕ(aue ) = a

u
e if and only if ϕ(ave) = b

v
e.

For graph G, the variables in the formula F (X(G), X̃(G)) are of the form xi,j
representing the mapping of vertex vi in X(G) to vertex vj in X̃(G). For clarity
we will divide the set of x variables in two kinds during the exposition:

The y variables correspond to the endpoints of the original edges in G, (that
have been doubled in X(G)). For a vertex v in G and an edge e incident with v,
the vertices corresponding to v and e in X(G) are {ave , bve}. yav

e ,b
v
e
, for example

is the variable representing the mapping from ave in X(G) to bve in X̃(G). For
simplicity, when the edge is clear from the context, we will sometimes denote
this variable by yva,b. Also we will consider the graphs X(G) and X̃(G) to be
colored so that for a vertex v in G and an edge e incident with v, {ave , bve} are
the only two vertices having the color (v, e). Since we are only interested in color
preserving isomorphisms, the clause of Type 1 for a vertex ave is (yvae,ae

∨ yvae,be
)

and has width 2 (analogous for the vertex bve). This only restricts the number of
possible isomorphisms and makes it easier to refute the formula.

The z variables correspond to the m vertices in the X(v) gadgets. For a vertex
v of degree d in G, there are 2d−1 vertices mv

S , in X(G) and in X̃(G). The
variables zvS,S′ are the ones representing the mappings between these vertices.
Analogously as in the case of the y variables, for a vertex v we will consider that
the vertices mv

S , in X(G) and X̃(G) are the only ones colored with color v. This
implies that the clauses of Type 1 for a vertex mv

S have width 2d−1.
For a vertex v in G we denote by F (X(v)) the set of initial clauses in

F (X(G), X̃(G)) containing some variable yv or zv (observe that for two ver-
tices u and v, F (X(u)) and F (X(v)) might not be disjoint. Analogously, for a
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set of vertices C ⊆ V we denote by F (X(C)) the union of the clauses F (X(v))
for v ∈ C.

By Lemma 4.2, for any graph G, the formula F (X(G), X̃(G)) is unsatisfi-
able. However, as stated in the next lemma, for any vertex from G there are
assignments satisfying simultaneously all the formula clauses except some of the
clauses in F (X(v)).

Lemma 4.3. For any graph G = (V,E) and for every v ∈ V there is an assign-
ment satisfying all the clauses in F (X(G), X̃(G)) except two clauses in F (X(v)).

Proof. Consider first the easy case in which X̃(G) is the version of X(G) in
which exactly one edge e = (u, v) is twisted, for some neighbor u of v in G. The
assignment xi,j = 1 if and only if j = i satisfies all the clauses in F (X(G), X̃(G))
except the two Type 3 clauses (yau

e ,a
u
e
∨yav

e ,a
v
e
) and (ybue ,bue ∨ybve ,bve ). In the general

case, by Lemma 4.2, X̃(G) is isomorphic to the copy of X(G) with only twisted
edge e = (u, v). Let ϕ be an isomorphism between these graphs. The assignment
xi,j = 1 if and only if j = ϕ(i) satisfies all the clauses in F (X(G), X̃(G)) except
the two Type 3 clauses (yau

e ,ϕ(au
e )
∨ yav

e ,ϕ(av
e)
) and (ybue ,ϕ(bue )

∨ ybve ,ϕ(bve)
).

We will show in the next section that the size of the resolution refutations of
F (X(G), X̃(G)) for any graph G are related to the expansion of G.

Definition 4.5. Let G = (V,E) be an undirected graph with |V | = n. The
expansion of G, ex(G) is defined as:

ex(G) = min k : ∃S ⊆ V, |S| ∈
[
n

3
,
2n

3

]
, |{(x, y) ∈ E : x ∈ S, y �∈ S}| = k.

Intuitively this represents the minimum number of edges that have to be cut in
order to separate a big component of G from the rest.

5 Resolution Lower Bounds for Color Multiplicity Larger
than 3

We show next that for certain pairs of non-isomorphic graphs G1, G2, the size of
any resolution refutation of F (G1, G2) is exponential in n, the number of vertices.
The proof follows the ideas introduced in [9] and [11] for proving resolution lower
bounds. We will prove that for any connected graph G of minimum degree at
least 2, the width of any refutation of F (X(G)X̃(G)) is at least the expansion
of G. The lower bound on the size follows by considering a graph G with large
expansion and applying Theorem 2.1.

Theorem 5.1. Let G = (V,E) be a connected graph with maximum degree d
and minimum degree at least 2. Any resolution refutation of the colored version

of F (X(G), X̃(G)) requires width at least ex(G)
d .
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Proof. Let R be a resolution refutation for F (X(G), X̃(G)). For a vertex v in
G, let G − {v} be the subgraph of G induced by the set of vertices V \ {v}.
An assignment α of all the variables in F (X(G), X̃(G)) is called v-critical, if it
satisfies all the clauses in F (X(G), X̃(G)) except maybe some clauses in X(v).
Observe that by Lemmas 4.2 and 4.3, that that there are v-critical assignments
for every vertex v, and that if α is v-critical, then the number of vertices ave
being mapped to bve for some edge e incident with v, is odd, while for every
other vertex u �= v the number of such vertices is even.

We define the significance of a clause C in R, abbreviated by σ(C), as the
number of vertices v such that there is a v-critical assignment, that falsifies C. It
should be clear, that the initial clauses in F (X(G), X̃(G)) have significance 1 or
0. The empty clause, at the end of the resolution refutation R, has significance
n. Moreover, when K is the resolvent of two clauses K1,K2, having significance
s1 and s2, then the significance from K is at most s1+s2, since every assignment
that falsifies K, falsifies also K1 or K2. From this follows, that there must be a
clause C in R with significance s ∈ [n3 ,

2n
3 ]. (One can choose the first clause C in

R with σ(C) ≥ n
3 ). Let V

′ be the set of vertices v for which there exists some v-
critical assignment α, falsifying C. |V ′| = s. For every vertex w ∈ V \V ′, it holds
that all w-critical assignments satisfy clause C. Since s ∈ [n3 ,

2n
3 ], there are at

least ex(G) edges joining a vertex in V ′ with a vertex in V \V ′. Let e = (v, w) be
such an edge and let d be the degree of v. We modify α in a few positions, so that
it mutates to a w-critical assignment αe: we toggle the values of the variables
related to the end points of e, yva,a, y

v
a,b, y

v
b,a, y

v
b,b, as well as toggling the values

from ywa,a, y
w
a,b, y

w
b,a, y

w
b,b. Moreover, we set in αe the values of the z variables from

vertex v so that the assignment restricted to X(v) defines a partial isomorphism.
This is always possible since the number of vertices av being mapped to bv for
the edges incident with v, by αe is even. All the other values in α are not changed
in αe. Because of this, αe is w-critical. As a consequence of the modification, αe
satisfies the clause C. This implies that at least one of the changed variables must
occur in C. Observe that for two edges e = (v, w), e′ = (v′, w′) with v, v′ ∈ V ′

and w,w′ ∈ V \ V ′ if v �= v′ then the sets of changed variables in αe and αe′

are disjoint. If v = v′ then αe and αe′ can coincide in the values of some of the
changed z variables. But v has degree at most d. This implies that for every set
of d edges e = (v, w) with v ∈ V ′ and w ∈ V \V ′ a different variable must occur

in C and therefore width(C) ≥ ex(G)
d .

The lower bound follows:

Corollary 5.1. There exists a family of graphs G such that for any n,Gn ∈ G has
n vertices and the resolution refutation of the formula F (X(Gn), X̃(Gn)) express-
ing that the graphsX(Gn) and X̃(Gn) are non-isomorphic, requires size exp(Ω(n)).
X(Gn) and X̃(Gn) are colored graphs with color multiplicity at most 4.

Proof. It is known that there are constructive families G of graphs of degree 3 and
with an expansion that is linear in the number of vertices (see e.g. [1]). For a graph
Gn ∈ G with n vertices, the graph X(Gn) has O(n) vertices, and color multiplic-
ity at most 4. The formula F (X(Gn), X̃(Gn)) contains O(n) variables and O(n

2)
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clauses. Observe that the number of variables is linear in n because the size of the
color classes is bounded. The width of these clauses is at most 4. By the above
result, the width of any resolution refutation of the formula is Ω(n). By Theorem
2.1, the size of any resolution refutation of F (X(Gn), X̃(Gn)) is exp(Ω(n)).

6 Discussion

We have shown that the natural encoding of the isomorphism problem in CNF
formulas requires exponential size resolution refutations for a certain family of
colored graphs. These graphs have colored classes of size 4 and maximum degree
3. In contrast, when the size of the color classes is bounded by 3, the formulas
have polynomial size tree-like resolution refutations. The formulas used for the
lower bound are based on the CFI graphs from [12]. In these pairs of graphs,
every vertex of a certain color has the same degree, the same number of neigh-
bors of another color or the same distance to any color. Therefore, the difficulty
of the resolution system in performing counting (as shown for example in the
resolution lower bounds for the pigeon hole principle), is not the reason for the
large refutations, since counting does not help in this context. As shown in [12],
the non-isomorphic graphs we use, are indistinguishable using even inductive
logic with counting. The lower bound can be explained as an “encoding” of the
Tseitin tautologies (for which resolution lower bounds are known), into graph
isomorphism instances. I believe that this new connection between Tseitin tau-
tologies and isomorphism might help to solve some open question in the area of
proof complexity. An example of this might be the proof of exponential lower
bounds for Tseitin tautologies in stronger systems, like the cutting plane proof
system. Such a result is only known for the case in which a parameter called the
degree of falsity is bounded [16,18]. Knowledge on graph isomorphism problem
might help to attack the question from another perspective.

Although the main interest for the results has a theoretical motivation, the
isomorphism formulas discussed here could be used as benchmarks for testing
sat-solvers. To my knowledge this has only been done for formulas encoding
sub-graph isomorphism [3,4]. A way to do this, for example, would be to con-
sider a (regular) graph and color its vertices with color classes of a bounded
size. Considering then a random permutation of the vertices, one obtains an
isomorphic copy of the graph. If the size of the color classes is at most 3, we
know by Theorem 3.1 that there is a variable ordering under which the running
time of a DPLL algorithm testing isomorphism is polynomial. For color classes
of size larger than 3 we only have non trivial resolution upper bounds (that
might guide the sat-solvers) for the case of the CFI graph pairs. Because of the
connection between such isomorphism formulas and the Tseitin tautologies, the
results from [2] relating the width of a resolution refutation for a Tseitin formula
with a structural parameter (branch-width) of the underlying graph, can also
be applied to the isomorphism formulas. This provides a way to design example
instances for isomorphism formulas with bounded resolution width.
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LNCS, vol. 6085, pp. 315–318. Springer, Heidelberg (2010)

4. Anton, C.: An improved satisfiable SAT generator based on random subgraph
isomorphism. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS, vol. 6657,
pp. 44–49. Springer, Heidelberg (2011)

5. Arvind, V., Kurur, P.P., Vijayaraghavan, T.C.: Bounded color multiplicity graph
isomorphism is in the #L Hierarchy. In: Proceedings of the 20th Conference on
Computational Complexity, pp. 13–27 (2005)

6. Babai, L.: Monte Carlo algorithms for Graph Isomorphism testing. Tech. Rep.
79-10, Dép. Math. et Stat., Univ. de Montréal (1979)
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23. Schöning, U., Torán, J.: Das Erfüllbarkeitsproblem SAT - Algorithmen und Anal-
ysen, Lehmann (2012)

24. Torán, J.: On the hardness of Graph Isomorphism. SIAM Journal on Comput-
ing 33(5), 1093–1108 (2004)

25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125.
Consultants Bureau (1968)

26. Urquhart, A.: Hard examples for resolution. Journal of the ACM 34, 209–219 (1987)



On Propositional QBF Expansions and Q-Resolution
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Abstract. Over the years, proof systems for propositional satisfiability (SAT)
have been extensively studied. Recently, proof systems for quantified Boolean
formulas (QBFs) have also been gaining attention. Q-resolution is a calculus
enabling producing proofs from DPLL-based QBF solvers. While DPLL has
become a dominating technique for SAT, QBF has been tackled by other com-
plementary and competitive approaches. One of these approaches is based on
expanding variables until the formula contains only one type of quantifier; upon
which a SAT solver is invoked. This approach motivates the theoretical analysis
carried out in this paper. We focus on a two phase proof system, which expands
the formula in the first phase and applies propositional resolution in the second.
Fragments of this proof system are defined and compared to Q-resolution.

This paper follows the line of research on proof systems for propositional and quan-
tified Boolean formulas (QBFs). This research is motivated by complexity theory and
more recently by the objective to develop and certify QBF solvers [11,18,8,14]. Proof
systems for QBF come in different styles and flavors. Krajı́ček and Pudlák propose a
Genzen-style calculus KP for QBF [18]. Büning et al. propose a refutation calculus
Q-resolution [8], an extension of propositional resolution. Giunchiglia et al. extend the
work of Büning et al. into term resolution for proofs of true formulas [14] . Certain
separation results were shown between KP and Q-resolution recently by Egly [12].

While many QBF solvers are based on the DPLL procedure [21,9,23,20,13], other
solvers tackle the given formula by expanding out quantifiers until a single quantifier
type is left. At that point, this formula is handed to a SAT solver [1,4,19,15]. Exper-
imental results show that expansion-based QBF solvers can outperform DPLL-based
solvers on a number of families of practical instances. Also, expansion can be used in
QBF preprocessing [6,5].

This practical importance of expansion motivates the study carried out in this paper.
We define a proof system ∀Exp+Res, which eliminates universal quantification from the
given false formula and then applies propositional resolution to refute the remainder.

We show that ∀Exp+Res can p-simulate tree Q-resolution refutations. Conversely,
we show that Q-resolution can p-simulate ∀Exp+Res refutations under certain
restrictions on the propositional resolution part of the proofs.

1 Preliminaries

A literal is a Boolean variable or its negation. The literal complementary to a literal l is
denoted as l̄, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction of zero or more noncom-
plementary literals. A formula in conjunctive normal form (CNF) is a conjunction of
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c© Springer-Verlag Berlin Heidelberg 2013
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clauses. Whenever convenient, a clause is treated as a set of literals and a CNF formula
as a set of sets of literals. For a literal l = x or l = x̄, we write var(l) for x. For a
clause C, we write var(C) to denote {var(l) | l ∈ C} and for a CNF ψ, var(C) denotes
{l | l ∈ var(C), C ∈ ψ}

Substitutions are denoted as x1/ψ1, . . . , xn/ψn, with xi �= xj for i �= j. The set
of variables x1, . . . , xn is called the domain of the substitution. An application of a
substitution is denoted as φ[x1/ψ1, . . . , xn/ψn] meaning that variables xi are simulta-
neously substituted with corresponding ψi in φ. A substitution is called an assignment
iff each ψi is one of the constants 0, 1. An assignment is called total, or complete, for a
set of variables X if each x ∈ X is in the domain of the assignment. For substitutions
τ1 = x1/ψ1, . . . , xn/ψn and τ2 = y1/ξ1, . . . , ym/ξm with distinct domains we write
τ1 ∪ τ2 for the substitution x1/ψ1, . . . , xn/ψn, y1/ξ1, . . . , ym/ξm.

Quantified Boolean Formulas (QBFs) [7] are an extension of propositional logic with
quantifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth assign-
ments as Ψ [x/0]∧Ψ [x/1] and ∃x. Ψ as Ψ [x/0]∨Ψ [x/1]. Unless specified otherwise, we
assume that QBFs are in closed prenex form with a CNF matrix, i.e.Q1X1 . . .QkXk. φ,
whereXi are pairwise disjoint sets of variables;Qi ∈ {∃, ∀} and Qi �= Qi+1. The for-
mula φ is in CNF and is defined only on variables X1 ∪ . . .∪Xk. The propositional
part φ is called the matrix and the rest the prefix. If a variable x is in the set Xi, we say
that x is at level i and write lv(x) = i; we write lv(l) for lv(var(l)). A closed QBF is
false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

For a clause C, a universal literal l ∈ C is blocked by an existential literal k ∈ C iff
lv(l) < lv(k). ∀-reduction is the operation of removing from a clause C all universal
literals that are not blocked by some literal. For two ∀-reduced clauses x ∨ C1 and
x̄ ∨ C2, where x is an existential variable, a Q-resolvent [8] is obtained in two steps.
(1) Compute Cu = C1 ∪C2 � {x, x̄}. If Cu contains complementary literals, the Q −
resolvent is undefined. (2) ∀-reduce Cu. For a QBF P .φ, a A Q-resolution proof of a
clauseC is a sequence of clausesC1, . . . , Cn whereCn = C and anyCi in the sequence
is part of the given matrix φ or it is a Q-resolvent for some pair of the preceding clauses.
A Q-resolution proof is called a refutation iff C is the empty clause, denoted ⊥.

In this paper Q-resolution proofs treated as connected directed
acyclic graphs so that the each clause in the proof corresponds to
some node pn labeled with that clause. We assume that the input
clauses are already ∀-reduced. Q-resolution steps are depicted as on
the right. Note that ∀-reduction corresponds to a separate node. A
proof system P1 p-simulates a proof system P2 iff any proof in P2
of a formulaΦ can be translated into a proof inP1 ofΦ in polynomial
time (c.f. [11,22]).

p4 C

p3 Cu

p2

C1 ∨ x
p1

C2 ∨ x̄

2 Expansions

Modern SAT solvers can be easily used in a black box setting which suggests a straight-
forward approach to solving QBF by expanding variables until only one type of
quantifier is left; at that point a SAT solver can be invoked. Here we are assuming the
mainstream type of a SAT solver that accepts formula in CNF and produces resolution
proofs for unsatisfiable inputs.
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Existential quantification can be expanded by the equivalence ∃x. Φ = Φ[x/0] ∨
Φ[x/1] and universal quantification by the equivalence ∀x. Φ = Φ[x/0]∧Φ[x/1]. These
equivalences reveal two main obstacles to developing a calculus using both expansion
and plain resolution (besides the exponential growth). The first obstacle is that the result
of an expansion is not in prenex form; this can be overcome by prenexing the expansion.
The second obstacle is that the result of expanding the existential quantifier does not
yield CNF. Hence, in this paper we focus only on expansion of the universal quantifier.
We show that this limitation still leads to a refutation complete calculus with many
interesting properties.

Expansion of universal quantifiers enables decreasing the number of quantifiers and
maintain prenex normal form at the cost of introducing fresh variables. For instance,
expanding ∃x∀y∃z. φ yields ∃x. (∃z. φ[y/0]) ∧ (∃z. φ[y/1]). To get back to prenex
form, we add two fresh copies of z, one for the sub-QBF where y = 0 and one for the
sub-QBF where y = 1, thus obtaining ∃xz0z1. φ[y/0, z/z0] ∧ φ[y/1, z/z1].

A significant drawback of expansion is that the formula grows in size exponentially.
This effect can be mitigated by observing that only partial expansions may be suffi-
cient to show unsatisfiability. For instance, for the formula ∀y∃x. (y ∨ x)∧ (y ∨ x̄) it is
sufficient to consider an expansion with y/0 to show the formula false. Another source
of rapid growth lies in the number of the formula’s quantification levels. Expanding y
in ∃x∀y∃z∀u∃w. φ yields ∃x. (∃z∀u∃w. φ[y/0])∧ (∃z∀u∃w. φ[y/1]). We could again
prenex all variables but since we are aiming at eventually expanding all universal vari-
ables, we can expand more carefully by prenexing only z:∃xz0z1. ∀u∃w. φ[y/0, z/z0]∧
∀u∃w. φ[y/1, z/z1]. Such expansion gives us a finer control over the expansion process
(see [15, Sec. 3.1] for more detailed discussion). If for instance now we wish to expand
u as 1 in the first sub-formula and 0 in the second sub-formula we obtain the following:

∃xz0z1w01w10. φ[y/0, z/z0, u/1, w/w01] ∧ φ[y/1, z/z1, u/0, w/w10]

Consider a general QBF Φ = ∀U1∃ E2 . . . ∀U2N−1∃ E2N . φ (WLOG we start with a
universal quantifier to simplify notation). For succinctness reasons, from now on Φ
refers to this formula.

An expansion consists of expanding variables U1 with some values and introducing
fresh variables for E2 variables yielding a sub-QBF for each considered assignment
to the U1 variables. These sub-QBFs are recursively expanded in an analogous fash-
ion. Note that if we expanded from the highest quantification level (innermost level),
we would lose the structural information, which is enabling the above-mentioned finer
expansion steps. The following definitions formalize this process.

Definition 1 (∀-expansion tree). A ∀-expansion tree is a rooted tree T such that each
path p0

τ1→ p1 . . .
τN→ pN in T from the root p0 to some leaf pN has exactlyN edges and

each edge pi−1
τi−→ pi is labeled with a total assignment τi to the variables U2i−1, for

i ∈ 1..N . Each path in T is uniquely determined by its labeling.

Convention Since paths from the root in an ∀-expansion tree are uniquely determined
by the labeling of the edges, i.e. assignments, we treat paths and the union of the
appropriate assignments interchangeably.

Definition 2 (∀-expansion). Let T be a ∀-expansion tree. For a root-to-leaf path P in
T and a clause C, the following rules define ∀-expansion of C by P , ∀-expansion of φ
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T

u2/1

u1/0

u2/0 u2/1

u1/1

(a) ∀-expansion tree

Ψ = ∀u1∃e1∀u2∃e2. ψ E (T , Ψ)

u1 ∨ e1 ∨ ū2 ∨ e2 e
u1/0
1 ∨ e

u1/0,u2/1
2

u1 ∨ e1 ∨ ū2 ∨ ē2 e
u1/0
1 ∨ ē

u1/0,u2/1
2

u1 ∨ ē1 ē
u1/0
1

ū1 ∨ ē1 ∨ ū2 ∨ ē2 ē
u1/1
1 ∨ ē

u1/1,u2/1
2

ū1 ∨ ē1 ∨ ū2 ∨ e2 ē
u1/1
1 ∨ e

u1/1,u2/1
2

ū1 ∨ e1 ∨ u2 ∨ ē2 e
u1/1
1 ∨ ē

u1/1,u2/0
2

ū1 ∨ e1 ∨ u2 ∨ e2 e
u1/1
1 ∨ e

u1/1,u2/0
2

(b) ∀-expansion

Fig. 1. Example expansion tree and its application

by P , and ∀-expansion of Φ by T . These expansions are denoted as E (P,C), E (P, ψ),
and E (T , Φ), respectively.

1. For each path Pk in T from the root, labeled by assignments τ1, . . . , τk, and an
existential variable x with lv(x) = 2k define a fresh variable xτ1,...,τk .

2. For each path P in T from the root to some leaf labeled by τ1, . . . , τN , and a clause
C ∈ φ define E (P,C) as C[τ1 ∪ . . . τN ∪ τR] where

τR = {x/xτ1,...,τk | 1 ≤ k ≤ N, x an existential variable s.t. lv(x) = 2k}

3. For each path P in T from the root to some leaf define E (P, φ) as a union of
E (P,C) for C ∈ φ.

4. Define E (T , Φ) as the union of all E (P, φ) for each root-to-leaf path P in T .

Example 1. Figure 1(a) shows an example of a ∀-expansion tree and Figure 1(b) shows
a ∀-expansion of some formula Ψ based on this tree. The expansion considers both
values of u1 but only the value 1 is considered for u2 when u1 = 0. The tree has 3 leafs
so the formula could potentially grow 3 times. But because the formula is very simple,
for each clause C there is only a single path P from the root to some leaf for which
E (P,C) �= 1. Hence, the expansion has the same size as the original formula. Note

that there are as many copies of e2 as there are leafs in the expansion tree (eu1/0,u2/1
2 ,

e
u1/1,u2/0
2 , eu1/1,u2/1

2 ) but only two copies of e1 (eu1/0
1 ,eu1/1

1 ).

Definition 3 (∀Exp+Res). ∀Exp+Res refutation for Φ is a pair (T , π) where T is a
∀-expansion tree for Φ and π is a resolution refutation for E (T , Φ). A size of (T , π),
denoted |(T , π)|, is the sum of the numbers of nodes in T and π.

Note that for a ∀-expansion T the size of E (T , Φ) is bounded by the number of leafs of
T times the size of the matrix φ. Therefore a ∀Exp+Res refutation can be validated in
polynomial time.

Theorem 1. A formula Φ is false iff there exists a ∀Exp+Res refutation for Φ.
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Proof. If Φ is false, consider T full capturing a full expansion of all of the quantifiers.
More precisely, each node pi of T full at depth i (with the root being at depth 0) has
2|U2i+1| children, each corresponding to a total assignment to variables U2i+1. Since
this expansion mirrors semantics of QBF, E (T full, Φ) is false iff Φ is false.

Throughout the ∀-expansion process, (sub-)QBFs ∀U . Ψ are replaced with the con-
junctsΞ =

∧
τ∈ω Ψ [τ ] for someω, a set of total assignments to U . SinceΞ is equivalent

to ∀U . Ψ when ω is the set of all assignments, it is weaker if ω is a set of only some
total assignments, i.e. (∀U . Ψ)→ Ξ . Consequently Φ→ E (T , Φ) for any ∀-expansion
tree T . Therefore, if E (T , Φ) is false, then Φ is false. ��

3 Simulating Tree Q-Resolution by ∀Exp+Res

Consider a tree Q-resolution refutation π ofΦ. Our objective is to construct a ∀Exp+Res
refutation (T , π′) based on π. We should stress that DPLL-based solvers enable produc-
ing non-tree Q-resolution proofs due to learning [23]. Hence, this proof is not a proof
of the fact ∀Exp+Res can simulate DPLL-based solving in general.

We will construct T and π′ so that π′ will share its basic structure with π but with
universal variables removed and existential variables renamed (according to the def-
inition of E ). We observe that if π consists of a single node ⊥, T and π′ are easily
constructed by setting T to the empty tree and setting π′. Therefore, from now on, we
assume that all leafs of π are labeled with nonempty clauses. For the sake of succinct-
ness, in this section, π always refers to the given Q-resolution proof that we wish to
translate to a ∀Exp+Res refutation.

We first observe that if two clauses x ∨ C1 and x̄ ∨ C2 are resolved in π, the
∀-expansion tree being constructed must ensure that x is substituted by the same fresh
variable x′ in both clauses so that the same resolution step can be carried out in π′

on variable x′. The literals x and x̄ can appear inside the Q-resolution tree π only if
they were introduced by some of its leafs. Consequently, the corresponding leafs of the
resolution tree π′ must contain the same copy of x. This observation motivates the con-
struction. In the first phase of the construction, we identify sets of leafs of π where a
certain existential variable must be substituted by the same fresh copy. In the second
phase we construct a ∀-expansion tree T that will respect the sets identified in the first
phase. The ∀-expansion tree T will provide us with the leafs of π′.

Consider a resolution step in π on some variable x corresponding to nodes p1 and p2
with the resolvent (parent) node r. LetC1,C2, andCr be the clauses labeling p1, p2, and
r, respectively. Hence, Cr = C1 ∪C2 � {x, x̄} (recall that ∀-reduction is modeled as a
separate step). LetD be the set of universal literals l ∈ C1 ∪C2 such that lv(l) < lv(x).
Let S be the set of leafs p of π such that there is a path from either p1 or p2 to p for
which all clauses on the path contain the variable x (including the clause labeling p).
Record the quadruple (r, x,D, S). In the following text we write Qπ to denote the set
of quadruples generated for each resolution step in π.

Consider any two leafs p1,p2 of π s.t. p1, p2 ∈ S for some (r, x,D, S) ∈ Qπ. Once
we ensure that x is replaced with the same fresh copy in the clauses labeling p1 and p2,
the plain resolution refutation π′ is easy to construct.
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Proposition 1. Let T be a ∀-expansion tree of Φ and let M be a total mapping from
the leafs of π to paths of T . If the following conditions C1– C3 hold for T andM , then
there is a resolution refutation π′ of E (T , Φ) linear in size of π.
(C1) If p is a leaf of π, thenM(p) is a path from the root to some leaf in T .
(C2) If p is a leaf of π, labeled by a clause C, and M(p) = P , then P assigns to 0

all universal literals of C.
(C3) If leafs p1, p2 of π appear in the same S for some quadruple (r, x,D, S) ∈ Qπ,

M(p1) = P1, and M(p2) = P2, then P1 and P2 assign the same value to all
universal variables with level l < lv(x).

Proof. We construct π′ from π in the leaf-to-root direction; during this construction we
mark each node of p′ in π′ as corresponding with some node p in π. The construction
follows the following rules Rl, Rr, Ru.

(Rl)For each leafp inπ labeled withC create a leafp′ ∈ π′ labeled with E (M(p), C);
mark p and p′ as corresponding.

(Rr) Let r be a node, with children p1, p2 labeledC,C1, andC2, respectively, where
C = C1 ∪C2 � {x, x̄}. Further, consider the nodes p′1 and p′2 corresponding to p1 and
p2, respectively, and their respective labelsC′

1 andC′
2. If there is a literal xP ∈ C′

1 ∪C′
2

for some P , create a node r′ in π′ and label it with C′ = C′
1 ∪C′

2 � {xP , x̄P }. Mark r
and r′ as corresponding.

(Ru) Let pu be node in π with a single child r labeled Cu and Cr, respectively,
where Cu is a result of ∀-reduction of Cr. If pr corresponds to p′r mark pu and p′r also
corresponding.

By induction on resolution depth, we show that the above construction results in a
valid resolution tree π′. Additionally we prove, that if p′ in π′, labeled with a clause
C′, corresponds to some p in π, labeled with a clause C, then for any existential literal
l ∈ C, with var(l) = x there is one and only one literal l′ ∈ C′ s.t. var(l′) = xP , for
some P , and, the literals l, l′ have the same polarity. Consequently, the root of π′ must
be labeled with the empty clause.

Rule Rl is well-defined due to conditions (C1) and (C2); it establishes the induction
hypothesis due to definition of E . For rule Rr we first observe that there must be a
xP1 ∈ C′

1 ∪C′
2, for some P1, from the induction hypothesis because x ∈ C1 ∪C2.

WLOG let xP1 ∈ C′
1. From induction hypothesis we also have, x ∈ C1, x̄ ∈ C2, and

x̄P2 ∈ C′
2 for some P2. Since C′

1 and C′
2 were obtained by valid resolution steps, there

must be a path in π′ from some leaf p′l1 to p′1 where all clauses contain the literal xP1 ;
analogously there a is path in π′ from some leaf p′l2 to p′2 where all clauses contain
the literal x̄P2 . Both paths correspond to some paths from pl1 to p1 and pl2 to p2 in π.
Hence, pl1 , pl2 ∈ S for some (r, x,D, S) ∈ Qπ. Due to condition (C3), the variable x
must be substituted with the same copy in the leafs and therefore also P1 = P2. Because
xP1 ∈ C′

1 and x̄P1 ∈ C′
2, the resolution step on C′

1 and C′
2 is possible. It remains to be

shown that the resolution step does not introduce more than one copy of some literal.
Assume that there are literals yR1 and yR2 in C′

1 and C′
2, respectively, where y �= x.

From induction hypothesis, y ∈ C1 and y ∈ C2. Consequently, there are some leafs
pl1 , pl2 of π s.t. y appears in all clauses on the paths from pl1 to p1 and from pl2 to
p2. Because π is a refutation proof, y gets eventually resolved away. Therefore there
is some (ry , y,Dy, Sy) ∈ Qπ for which pl1 , pl2 ∈ Sy and therefore R1 = R2 from
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p4 ⊥
p3 u1 ∨ u2

p2

u1 ∨ e
p1

u2 ∨ ē

(a) Q-resolution

T
u1/0, u2/0

(b) ∀-expansion tree
p4 ⊥

p2

eu1/0,u2/0

p1

ēu1/0,u2/0

(c) plain resolution

Fig. 2. Examples

condition (C3). Rule Ru preserves the induction hypothesis as universal reduction does
not modify the set of existential literals. ��

Example 2. Consider ∀u1u2∃e. (u1 ∨ e) ∧ (u2 ∨ ē) with the Q-resolution refutation in
Figure 2(a), which induces a single quadruple (p4, e, {u1, u2}, {p1, p2}). To obtain a
∀Exp+Res refutation, generate the single-branch tree T in Figure 2(b) and mapping
M with M(p1) = M(p2) = {u1/0, u2/0} yielding the ∀-expansion eu1/0,u2/0 ∧
ēu1/0,u2/0 with the corresponding resolution tree Figure 2(c). Observe that conditions
C1– C3 from Proposition 1 are fulfilled. Clauses participating in the Q-resolution step
are expanded so that e is replaced with the same copy. The universal literals u1, u2 are
assigned to 0 by the expansion. Consequently, this Q-resolution step can be reproduced
in a plain resolution refutation. Note that universal reduction steps are unnecessary in
the resolution refutation since expansions remove all universal literals.

3.1 Construction of T and M

Proposition 1 gives us conditions C1– C3 on a ∀-expansion tree T and a mappingM so
that any T and M satisfying these conditions enable us to construct the desired plain-
resolution refutation π′ for E (T , Φ). This subsection shows that such T andM can be
constructed for any given Q-resolution refutation π.

For a quadruple q = (r, x,D, S) ∈ Qπ we say that q is at level lv(x) and we say that
a leaf p of π is in q iff p ∈ S. Recall that the intuition behind a quadruple (r, x,D, S) ∈
Qπ is that the expanded counterparts of clauses labeling the leafs in S will contain the
same fresh copy of x. Further, the assignment used for the expansion must assign to 0
the universal literals in those clauses. This poses the following question: If some leaf p
of π is in two different quadruples q1, q2 ∈ Qπ, how do we ensure that the conditions
are not conflicting?

We say that (r, x,D, S), (r′, x′, D′, S′) ∈ Qπ are connected iff S ∩S′ �= ∅. We say
that leafs p1, p2 of π share level k iff there exists a sequence (with possible repetitions)
of quadruples q1, . . . , qn ⊆ Qπ, s.t. p1 is in q1; p2 is in qn; each qi in the sequence has
a level l ≥ k; and each two adjacent quadruples are connected.

Observation 1. The relation “share level k” is an equivalence relation on the leafs
of π. All leafs of π share level 2 (recall that existential variables start at level 2). If two
leafs share level k, then they share a level l ≤ k.

Let us look more closely at quadruples that share some level k. Recall that the given Φ
formula has the prefix ∀U1∃ E2 . . . ∀U2N−1∃ E2N . Consider two connected quadruples



74 M. Janota and J. Marques-Silva

Algorithm 1. Expansion tree construction fromQπ

1 Function Build (k, StopLev, L)
in : StopLev..base-case level, k ≤ StopLev..current level, L..subset of leafs of π
out : a pair (T ′,M ′), where T ′ is an expansion tree for universal variables with

level ≥ k, M ′ is a mapping from leafs in L to root-to-leaf paths in T ′

2 begin
3 if k = StopLev then
4 T ′ ← create a tree with a single node, the root r
5 M ′ ← map all nodes in L to the empty path starting in r
6 return (T ′,M ′)

7 T ′ ← a tree with the root node r
8 M ′ ← empty mapping
9 Ξ ← partition nodes L by the “share level k + 1” relation

10 foreach ρ ∈ Ξ do
11 Qρ ← {q ∈ Qπ | there exists p ∈ ρ in q, q is at level > k}
12 Dρ ← {l | (p, e,D, S) ∈ Qρ, l ∈ D, lv(l) = k}
13 τρ ← {u/0 | u ∈ Dρ}∪ {u/1 | ū ∈ Dρ}∪ {u/0 | u, ū /∈ Dρ, lv(u) = k}
14 (T ρ,Mρ) ← Build(k + 2,StopLev, ρ)
15 add T ρ to T ′, connect r to the root of T ρ with an edge labeled with τρ
16 if Mρ maps a leaf p ∈ L to τ , map p to τρ ∪ τ in M ′

17 return (T ′,M ′)

(r, x,D, S), (r′, x′, D′, S′) ∈ Qπ, both at some level ≥ k, i.e. lv(x) ≥ k and lv(x′) ≥
k. Our objective is to build such mapping M that for any two p1, p2 ∈ S, the paths
M(p1) and M(p2) share the prefix of length lv(x)/2 corresponding to assignments to
variables U1U2 . . .Ulv(x)−1; this ensures that x is renamed to the same fresh copy in
clauses of the leafs. The same holds for leafs in S′. Since the quadruples are connected,
there is some leaf p that belongs to p ∈ S ∩S′. Further, since both x and x′ are at a level
greater or equal to k, by transitivity, all leafs in S ∪S′ must be mapped to such paths
of the ∀-expansion tree T that they share their prefixes of length k/2. This immediately
generalizes to sequences of connected quadruples. If two leafs p1, p2 of π share level
k = 2l, then M(p1) and M(p2) must have common prefix of length l, corresponding
to assignments to variables U1U2 . . .Uk−1.

This observation motivates Algorithm 1, which is represented as a recursive function.
The recursion is initiated by the call Build(1, 2N+1, Lall) where Lall is the set of leafs
of π. After this initial call terminates, any root-to-leaf paths with the same labeling in
the returned tree are merged to obtain the required T .

The function returns T ′, a subtree of the tree T being constructed, and a mapping
M ′ that maps the given leafs L to paths of T ′. The labeling of root-to-leaf paths in
T ′ are total assignments to variables Uk,Uk+2, . . . ,U2N−1, where k is an odd natural
number. Hence, for the base case of the recursion, i.e. k = 2N +1, the function creates
a single-node tree T ′ and maps all given leafs L to an empty path starting and ending
in the root of T ′.
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For the non-base case, the function partitions the given leafs L of π by the “share
level k + 1” relation. From the conditions on T , clauses labeling leafs that share level
k + 1 must be expanded such that existential variables with level > k are replaced
with the same copies. At the same time, the universal literals in these clauses with
level ≤ k must be assigned to 0. The algorithm visits each partition ρ of the “share
level k + 1” partition and collects quadruples q ∈ Qπ for which there is some leaf
p ∈ ρ in q. Subsequently, it collects all universal literals at level k that appear in these
quadruples and computes an assignment τρ which assigns them to 0 and other literals
assigns arbitrarily (line 14).

Example 3. Consider the following Q-resolution proofπ with the prefix ∀u1∃e2∀u3∃e4.

p9 ⊥
p8 u1 ∨ ū3

p4 ē4p7

u1 ∨ ū3 ∨ e4

p3 ē2 ∨ ū3 ∨ e4p6u1 ∨ e2
p5u1 ∨ e2 ∨ u3

p2 u3 ∨ e4p1u1 ∨ e2 ∨ u3 ∨ ē4

(p8, e4, {u1, ū3}, {p3, p4})
(p7, e2, {u1}, {p1, p3})

(p5, e4, {u1, u3}, {p1, p2})

This yields the quadruples depicted on the right hand side. All leafs share level 1 + 1
and are put into a single partition ρ = {p1, p2, p3, p4} labeled with {u1/0}. Based
on sharing of level 3 + 1, ρ is split into {p1, p2} and {p3, p4}, labeled {u3/0} and
{u3/1}, respectively. The resulting mapping isM(p1) = M(p2) = {u1/0, u3/0} and
M(p3) =M(p4) = {u1/0, u3/1}.

Let us now focus on the correctness of Algorithm 1. The algorithm is terminating be-
cause the set of quadruplesQπ is finite. That the algorithm constructs mappingM and
the tree T satisfying the conditions (C1)–(C3) of Proposition 1 hinges on proving that
the set of literals Dρ (line 12) does not contain complementary literals. Consequently,
that the assignment τρ (line 14) is indeed an assignment. For now we assume that this
holds and show it later in order to first focus on the overall workings of the algorithm.

Since π has no empty clauses in leafs and all input clauses are ∀-reduced, every
leaf p labeled with some clause C must be in some quadruple in Qπ. At each level k,
quadruples are partitioned so eventually there will be one and only one path P in T
s.t. M(p) = P . Thus satisfying condition (C1) of Proposition 1. If C contains some
universal literal l with lv(l) = k, l must be blocked by some existential literal b ∈ C
with lv(b) > k. This literal b is eventually resolved away and therefore there must be a
quadruple qb = (r, var(b), Db, Sb) ∈ Qπ s.t. p ∈ Sb. Since b blocks l on a path from p
to some child of r, it also holds that l ∈ Db. Hence qb ∈ Qρ, defined on line 11, and
l ∈ Dρ, defined on line 12. The algorithm places p into a subtree prepended by an edge
labeled with τρ, which sets l to 0. Thus satisfying condition (C2). Consider two leafs
p1, p2 of π such that they are in the same quadruple q at some level l. These leafs are
connected at level ≤ l. Hence they will be part of the same partition for levels k < l.
Therefore, the algorithm puts the leafs in the same subtree while k < l and therefore
M(p1) andM(p2) assign the same value to all universal variables with level k < l thus
satisfying condition (C3).

Now it remains to be shown that the set Dρ constructed on line 12 is not contradic-
tory. This will be shown in Lemma 5. However, before we reach this lemma, a series of
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auxiliary lemmas need to be derived. Since Q-resolution enables resolving two clauses
C1 ∨ x and C2 ∨ x̄ only if C1 ∪C2 does not contain complementary literals, we can
make the following observation.

Observation 2. For any (r, x,D, S) ∈ Qπ, the literals D are noncontradictory.

Lemma 1. If any two quadruples (r1, x1, D1, S1), (r2, x2, D2, S2) ∈ Qπ are
connected, then r1 dominates r2, i.e. r2 is in a subtree of r1, or r2 dominates r1.

Proof. Since the quadruples are connected, there is some leaf pl of π s.t. pl ∈ S1 and
pl ∈ S2. At the same time there is an undirected path from both r1 and r2 to pl. If
neither r1 dominated r2 nor r2 dominated r1 there would be a cycle from root to r1, pl,
r2, and back to the root. ��

Lemma 2. Consider any two quadruples (r1, x1, D1, S1), (r2, x2, D2, S2) ∈ Qπ such
that r1 dominates r2 and r2 dominates some pl ∈ S1. Then all the clauses on the path
from r1 to r2 except for r1 contain a literal b ∈ {x1, x̄1}.

Proof. Since the leaf pl is dominated by both r1 and r2, there is a path from the root
of π going through r1, r2, and ending in pl. Since pl ∈ S1, from definition of the
quadruples, there is a literal b ∈ x1, x̄1 that appears everywhere on the path except for
the node r1. ��

The following lemma shows that for any sequence of connected quadruples that are all
at some level l ≥ k, there is a quadruple pertaining to a resolution node r such that r
dominates all the other resolution nodes in the sequence, and, all paths from this node to
these resolution nodes contain some existential literal b with lv(b) ≥ k. Consequently,
these literals block all universal literals with level l < k on these paths.

Lemma 3. Consider a sequence of quadruples γ = q1, . . . , qn, such that each qi ∈ Qπ

in the sequence has a level l ≥ k and each two adjacent quadruples are connected. Then
there is (r, x,D, S) ∈ γ such that for any quadruple (rj , xj , Dj , Sj) ∈ γ the node r
dominates rj and all the clauses on the path from r to rj , except for r, contain some
existential literal b with lv(b) ≥ k.

Proof. Proof by induction on the length of prefix of γ. For the base case choose
(r, x,D, S) as q1. For the inductive case consider i > 1 and q′ = (r′, x′, D′, S′)
from the induction hypothesis such that q′ satisfies the condition for q1, . . . , qi−1.
Since adjacent quadruples are connected, for qi = (ri, xi, Di, Si) and qi−1 =
(ri−1, xi−1, Di−1, Si−1) there is a leaf pc ∈ Si−1 ∩Si. Split on the following cases.

If qi is equal to any of the qj for j < i, choose (r, x,D, S) to be q′. If ri dominates
r′ then invoke Lemma 2 whose preconditions are satisfied because ri dominates r′ and
r′ dominates pc, from the induction hypothesis. Hence there is a path from one of the
children of ri to r containing the literal b ∈ {xi, x̄i}. Note that b does not appear in
ri but does appear in r′. From induction hypothesis, for any rj , j < i there is a path
from a child of r′ to rj where each clause is blocked by some literal with level l ≥ k.
Concatenating the path from ri to r′ with the path r′ to rj satisfies the condition for j.
Choose (r, x,D, S) to be qi.
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From Lemma 1, either ri is dominated by ri−1 or ri−1 is dominated by ri. Hence
we need to consider only these two remaining cases. If ri−1 dominates ri, then from
Lemma 2 there is a bi−1 ∈ {xi−1, x̄i−1} that appears on the path from one of the
children of ri−1 to ri (inclusively). From induction hypothesis, there is a path from r′

to ri−1, excluding r′, that contains some existential literals b with lv(b) ≥ k. Concate-
nating this path with the path from ri−1 to ri gives us a path satisfying the required
condition for the node ri. In particular, there is a path from a child of r′ to ri such that
each clause on the path contains a some existential literals b with lv(b) ≥ k.

If ri−1 is dominated by ri and ri does not dominate r′, then r′ must dominate ri
otherwise there would be a cycle from the root to r′, ri−1, ri, and back to root. From
induction hypothesis, each clause on the path from r′ to ri−1 contains some existential
literal b with lv(b) ≥ k. Since r′ dominates ri, which in turn dominates ri−1, the path
from r′ to ri is a prefix of the path from r′ to ri−1 and therefore also satisfies the
required condition. Choose (r, x,D, S) to be q′. ��

Lemma 4. Consider ρ a subset of leafs of π that is an equivalence class of the share
level k + 1 relation for some odd number k. DefineQk

ρ ⊆ Qπ as follows.

Qk
ρ = {(r, x,D, S) ∈ Qπ | p ∈ ρ, p ∈ S, lv(x) > k}

Then for any qa, qb ∈ Qk
ρ there is a sequence of quadruples q1, . . . , qm where qa = q1,

qb = qm, each qi is at a level > k and qi ∈ Qk
ρ, and each two adjacent qi,qi+1 ∈ Qk

ρ

are connected.

Proof. From definition of Qk
ρ there are leafs pa, pb ∈ ρ s.t. pa ∈ qa, pb ∈ qb. Since ρ

is an equivalence class of share level k + 1 relation, there is a sequence of connected
quadruples s1, . . . , sn such that pa is in s1 and pb is in sn, and each quadruple in the
sequence is at a level > k. Since for any si = (ri, xi, Di, Si), the set Si is non-empty,
all leafs p ∈ Si share level k + 1 with pa and p ∈ ρ. Hence, all the quadruples si
in the sequence are in Qk

ρ. Since qa and s1 are connected because of pa and qb and
qb are connected because of pb, constructing the sequence qa, s1, . . . , sn, qb yields the
required sequence. ��

Lemma 5. Let k, ρ, and Qk
ρ be defined as in Lemma 4. Define a set of literals Dk

ρ

as Dk
ρ =

{
l | (r, x,D, S) ∈ Qk

ρ, lv(l) = k, l ∈ D
}

. The set Dk
ρ does not contain

complementary literals.

Proof. Lemma 4 gives us that Qk
ρ can be organized into a sequence γ where each two

adjacent quadruples are connected and each qi ∈ γ is at a level > k. From Lemma 3
there is a quadruple (rd, xd, Dd, Sd) ∈ γ s.t. for any quadruple (rj , xj , Dj, Sj) ∈ γ
the node rd dominates rj and all the clauses on the path from rd to rj , except for
rd, contain some existential literal b with lv(b) > k. Hence, no universal literals with
level l ≤ k can be ∀-reduced on a path from rj to rd in π. Therefore necessarily, Dd

contains all literals Dj . Consequently, Dk
ρ ⊆ Dd. From Observation 2, the set Dd is

noncontradictory and thereforeDk
ρ is also noncontradictory. ��

This last lemma gives us what we needed to conclude the correctness of Algorithm 1,
i.e. that the set of literals Dρ, constructed on line 12 is not contradictory. Algorithm 1
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operates in time polynomial to the size of π because the size of the set Qπ is linear to
the size of π and partitioning by “share level k+1” relation can be done in polynomial
time. This fact, together with Proposition 1 lets us derive the following.

Theorem 2. For any tree Q-resolution refutation π there exists a ∀Exp+Res refuta-
tion (T , πT ) s.t. both T and πT are polynomial in size of π. This ∀Exp+Res refuta-
tion can be constructed in time polynomial to π. Hence, ∀Exp+Res p-simulates tree
Q-resolution.

4 Simulating Restricted ∀Exp+Res by Q-Resolution

This section shows that a certain fragment of ∀Exp+Res refutations can be simulated
by Q-resolution. This fragment allows expansions of universal quantifiers as before but
puts a restriction on the resolution proof of the expansion. In particular, it allows only
resolutions that follow the order of the quantifier prefix.

Definition 4 (level-ordered). Consider a ∀Exp+Res refutation (T , π) of Φ. We say that
(T , π) is level-ordered iff the following holds. Let xP ∨C1 and x̄P ∨C2 be some clauses
resolved in π, then lv(y) ≤ lv(x) for any yP1 ∈ var(C1 ∨ C2).

Lemma 6. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ. Let C be some
clause in π and xP1

1 ,xP2
2 ∈ var(C). If lv(x1) ≤ lv(x2), then the path P1 is a prefix of

the path P2.

Proof. By induction on the number of resolution steps that led to C. The condition is
true for the leafs of π from the definition of E . For the induction step consider clauses
C1∨x̄Pr andC2∨xPr with the resolventC = C1∨C2. IfC is empty or unit, the condition
is trivially satisfied. Let xP1

1 ,xP2
2 ∈ var(C) with lv(x1) ≤ lv(x2). Because π is level-

ordered, lv(x1) ≤ lv(xr) and lv(x2) ≤ lv(xr), from which the induction hypothesis
gives that both paths P1 and P2 are prefixes of the path P . Since lv(x1) ≤ lv(x2), then
|P1| ≤ |P2| from definition of E . Hence the path P1 is a prefix of the path P2. ��

Lemma 7. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ. Let C be a clause
in π and xP1 ,xP2 ∈ var(C), then P1 = P2.

Proof. Immediate consequence of Lemma 6. ��

Theorem 3. Let (T , π) be a level-ordered ∀Exp+Res refutation of Φ. Then a
Q-resolution refutation of Φ can be constructed in polynomial time with respect to
|(T , π)|. Hence, Q-resolution p-simulates level-ordered ∀Exp+Res.

Proof (sketch). The proof is similar to the one of Proposition 1, i.e. we construct a
Q-resolution refutation π′ based on π and prove its correctness by induction on resolu-
tion depth. For each leaf p in π labeled with a clause C, there exists a path P from the
root to some leaf in T and a clauseC′ ∈ φ such that E (P,C′) = C. ReplaceC withC′.
Whenever there is a resolution on some variable xP in π, perform resolution on x in π′.
Add ∀-reduction steps after each resolution step. Effectively, the Q-resolution refutation
will have the same shape as the plain resolution refutation but each variable xP will be
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p9 ⊥

p6u1 ∨ e2

p4u1 ∨ e2 ∨ u3 ∨ u4

p1u1 ∨ e2 ∨ u3 ∨ u4 ∨ e5 p2 u3 ∨ ē5

p7 u1 ∨ ē2

p5 u1 ∨ ē2 ∨ u3 ∨ ū4

p3 u1 ∨ ē2 ∨ u3 ∨ ū4 ∨ e5

Fig. 3. Nontree Q-resolution example

replaced with the variable x (“removed superscripts”), and, some universal literals will
be inserted into the clauses.

The correctness of the resulting π′ follows from Lemmas 6 and 7. Lemma 7 guar-
antees that in the plain resolution refutation there are no clauses containing variables
xP1 and xP2 with P1 �= P2. Consequently, removing the superscripts does not yield
complementary existential literals in clauses of π′.

It remains to be shown that there are no complementary universal literals within
clauses of π′. If there’s a universal literal k ∈ C′ for some clause C′ ∈ π, there most be
some existential literal x ∈ C′ that blocks it. At the same time there’s a corresponding
literal xP ∈ C for the corresponding clause in π. We observe that P assigns k to 0.
For leaf clauses this follows from the definition of E . For resolution steps this follows
from the level-orderndess which guarantees that the literal being resolved on blocks
all universal literals in the clause. So if there’s a resolution on a xP in π, the clauses
involved in the corresponding resolution in π′ may contain only universal literals that
are assigned to 0 by P and therefore complementary universal literals cannot meet.

5 Examples

This section illustrates some of the practical implications of the results derived so far.
Section 3 shows that tree Q-resolution refutations can be simulated by ∀Exp+Res refu-
tations. This result points in the direction of formulas where ∀Exp+Res will perform
significantly worse than Q-resolution. In particular, this hints that non-tree Q-resolution
refutations might prove nontrivial to simulate for ∀Exp+Res. The following example
illustrates why that is the case.

For the quantifier prefix ∀u1∃e2∀u3u4∃e5, Figure 3 shows a simple non-tree Q-
resolution proof that demonstrates a drawback of ∀-expansion-based proofs. Assume
that clauses on p1, p3 are expanded to some clauses C′

1, C′
3, respectively. The clauses

will contain some copies of e5: eP1
5 ∈ C′

1, eP3
5 ∈ C′

3, let’s say. It must be that
P1(u1) = P1(u3) = P1(u4) = 0 and P3(u1) = P3(u3) = P3(ū4) = 0 Because
of the different polarity of literal u4 in the assignments, P1 �= P3. This means that
there must be 2 different expansions of clause on p2. Hence, formulas leading to a high
level of sharing in Q-resolution are likely to be easier for DPLL-based solvers than for
expansion-based solvers.

Section 4 shows that Q-resolution can simulate ∀Exp+Res refutations where the
plain resolution part follows a certain variable order. Again, this points us in the di-
rection of formulas where ∀Exp+Res might perform better than Q-resolution, i.e. for-
mulas with proofs not respecting this order. To support this hypothesis, we construct
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xi ∨ z ∨C1
i x̄i ∨ z̄ ∨C2

i

x1 ∨ z ∨ ȳ1 x̄1 ∨ z̄ ∨ ȳ1
x2 ∨ z ∨ y1 x̄2 ∨ z̄ ∨ ȳ1
x3 ∨ z ∨ ȳ1 x̄3 ∨ z̄ ∨ y1
x4 ∨ z ∨ y1 x̄4 ∨ z̄ ∨ y1

z/0 z/1

x1 ∨ ȳ
z/0
1 x̄1 ∨ ȳ

z/1
1

x2 ∨ y
z/0
1 x̄2 ∨ ȳ

z/1
1

x3 ∨ ȳ
z/0
1 x̄3 ∨ y

z/1
1

x4 ∨ y
z/0
1 x̄4 ∨ y

z/1
1

Fig. 4. Example formula for n = 1

the following formula1. Let n ∈ N+ and H = 22n. Consider the set of variables
y1, . . . , yn,x1, . . . , xH , z and the prefix ∃x1, . . . , xH∀z∃y1, . . . , yn. We construct the
matrix as follows. For each i ∈ 1 . . .H construct two clauses of the form xi+1∨z∨C1

i ,
x̄i+1 ∨ z̄ ∨ C2

i , where var(C1
i ) = var(C2

i ) = y1 . . . yn and the pair C1
i , C

2
i goes over

all the possible 22n = H pairs of sets of literals on the pertaining variables. More pre-
cisely, Let ij be the jth bit of i, where j ∈ 0..(2N − 1). Add to C1

i the literal ȳj if
ij = 0, where j ∈ 0..(N − 1). Add to C1

i the literal yj if ij = 1, where j ∈ 0..(N − 1).
Add to C2

i the literal ȳj if ij = 0, where j ∈ N..(2N − 1). Add to C2
i the literal yj

if ij = 1, where j ∈ N..(2N − 1). For the expansion we consider an expansion that
includes both possible assignments: z/0 and z/1. Figure 4 shows the matrix and the
expansion for n = 1.

While the expansion duplicates the yi variables, it is easily shown unsatisfiable.
Any total assignment to the copies of yi variables gives a conflict and therefore a SAT
solver that assigns these variables first, will need at most 22n = H conflicts to show
unsatisfiability.

We show that this formula requires exponential computation by a conflict-driven
DPLL QBF solver [23]. (However, this does not mean that there is no polynomial
Q-resolution proof.) We first make the following observation.

Lemma 8. If a CNF ψ is unsatisfiable and |C| ≥ k for all C ∈ ψ, then |ψ| ≥ 2k.

Proof. Let V = var(ψ). Each clause C ∈ ψ is 0 under 2|V |−|C| ≤ 2|V |−k assignments
to variables V . Since ψ is unsatisfiable, for each assignment τ to variables V there is a
clause that is 0 under τ . By averaging |ψ| ≥ 2|V |

2|V |−k = 2k.

A conflict-driven QBF solver first assigns the xi variables, then z, and then yi variables.
Since long-distance resolution is not invoked in this example, clauses containing z do
not give propagation while xi variables are being assigned. Since the formula is false,
after all xi variables are assigned by some assignment τx, the solver eventually finds
such value vz for z that φ[τx, z/vz] is unsatisfiable. Once z is assigned a value, either
all xi ∨ z ∨ C1

i are satisfied or all x̄i ∨ z̄ ∨ C2
i are satisfied. For the solver to back-

track to the level of xi variables, it must learn a clause containing only xi variables.
From Lemma 8, 2n clauses must be used in learning this clause since this clause is a
result of a resolution tree that forms a refutation proof once all z and xi variables are
removed from it. Consequently, the learned clause containing only xi variables has at
least 2n variables. This is repeated until the set of learned clauses containing only xi
variables is unsatisfiable. Invoking again Lemma 8 gives that this must be repeated at

1 The formula’s generator is found at http://sat.inesc-id.pt/~mikolas/sat13

http://sat.inesc-id.pt/~mikolas/sat13
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least 22
n

= 2
√
H times (exponentially more than the expansion approach). We note

that QuBE7.2 [13], DepQBF [20], and, non-CEGAR version of GhostQ [17] were able
solve this formula only for n ≤ 3. The expansion-based solver RAReQS [15] was able
to solve the formula up to n = 10 (which has 1, 048, 587 variables).

6 Conclusions and Future Work

This paper introduces and studies a proof system ∀Exp+Res aimed at refuting false
QBFs based on expansion of universal variables and propositional resolution. Besides
preprocessing [6,5] expansion of variables plays an important role in QBF solving.
The solvers QUBOS [1], Nenofex [19], Quantor [4] expand universal variables from
inner- to outermost levels. However, these expansions are possibly interleaved with
operations for removal of existential quantifiers. In future work, we wish to investigate
if these interleaved expansions give additional proving power to the solvers. The solver
sKizzo [3] expands all universal quantifiers as is done in ∀Exp+Res (even though the
process is called Skolemization). sKizzo expands the formula clause by clause, ignoring
assignments to universal variables that satisfy the clause. So even though sKizzo does
not explicitly avail of partial expansions, trivial parts of the expansion are not generated.

The solver RaReQS [16,15] constructs two types of expansions: one for universal
variables and one for existential ones. For false QBFs, universal expansion eventually
becomes false. Hence, the workings of RaReQS mimics the ∀Exp+Res in the case of
false formulas. It should also be noted that out of the mentioned solvers, only RaReQS
constructs partial expansions, i.e. both polarities of the expanded variable are consid-
ered in the other solvers.

It is the ability of ∀Exp+Res to expand partially that was crucial in showing that
∀Exp+Res can p-simulate tree Q-resolution refutations. In the opposite direction, we
showed that Q-resolution can polynomially simulate ∀Exp+Res if the plain resolution
part follows certain order of variables.

Hence, at this point it remains open how unrestricted ∀Exp+Res compares to un-
restricted Q-resolution or possibly long distance Q-resolution [23,2,17]. However,
Section 5 hints towards formulas that will be easy for one calculus and hard for the
other. We conjecture that exponential separations can be shown in both directions.
Such separation would be of high practical importance. Firstly, it would explain why
expansion-based solvers are better for some classes of instances than DPLL solvers,
and the other way around. Secondly, the separation would necessitate QBF certification
formats supporting both types of solvers.
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Abstract. Quantified Boolean Formula (QBF) solvers that utilize non-
CNF representations are able to reason dually about conflicts and so-
lutions by accessing structural information contained in the non-CNF
representation. This structure is not as easily accessed from a CNF rep-
resentation, hence CNF based solvers are not able to perform the same
kind of reasoning. Recent work has shown how this additional structure
can be extracted from a non-CNF representation and encoded in a form
that can be fed directly to a CNF-based QBF solver without requiring
major changes to the solver’s architecture. This combines the benefits of
specialized CNF-based techniques and dual reasoning.

This approach, however, only works if one has access to a non-CNF
representation of the problem, which is often not the case in practice.
In this paper we address this problem and show how working only with
the CNF encoding we can successfully extract partial structural infor-
mation in a form that can be soundly given to a CNF-based solver. This
yields performance benefits even though the information extracted is in-
complete, and allows CNF-based solvers to obtain some of the benefits of
dual reasoning in a more general context. To further increase the applica-
bility of our approach we develop a new method for extracting structure
from a CNF generated with the commonly used Plaisted-Greenbaum
transformation.

1 Introduction

The problem of deciding the truth of a Quantified Boolean Formula (QBF) is
PSPACE-Complete. Hence, any problem in PSPACE can be compactly encoded
as a QBF decision problem. This includes many problems that would require
exponentially sized SAT encodings. QBF’s representational power comes from
its use of universal and existential quantified variables and from the arbitrary
interleaving of these quantifiers. This makes QBF a particularly useful repre-
sentation for problems involving adversarial situations, incomplete information,
and non-deterministic behavior. It also makes the development of efficient QBF
solvers an important research goal.

In this paper we present a method for improving the performance of CNF-
based QBF solvers. We develop a technique that allows such solvers to better
exploit the duality inherent in the QBF formalism. The novelty of our approach
is that, unlike prior related efforts, it does not require us to possess additional
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information about the problem instance beyond what is already contained in
its CNF representation. This is important because many QBF problems are
presented only in CNF with no easy access to additional information.

Duality has been effectively exploited in prior non-CNF QBF solvers
[20,13,10]. This technique involves reasoning about the given QBF formula as
well as about its negation. By detecting when a partial truth assignment, π,
falsifies the formula’s negation we have detected that π satisfies the formula. In
QBF solving, as we will explain, it is important to detect both falsifying and
satisfying partial assignments. Non-CNF representations, e.g., the circuit repre-
sentation used in [10] provide easy access to the formula and its negation and
thus support this kind of dual reasoning. In contrast, although detecting falsify-
ing partial assignments is easy with a CNF representation (the assignment need
only falsify a single clause), detecting satisfying partial assignments is not. This
has a negative impact on the performance of CNF-based QBF solvers.

It has been shown in prior work that if we have access to a circuit description
of the formula we can achieve the speedups of dual reasoning within a CNF-
based solver without significant changes to the solver’s architecture [11]. This
work shows that one of the standard features of modern QBF solvers, cube
learning, can be exploited to achieve this speedup by simply providing the solver
an initial set of input cubes derived from the negation of the formula. Empirically,
this yields a significant performance gain in such solvers. Furthermore, since the
clause and cube data structures are simpler and highly optimized in CNF solvers,
a CNF solver supplied with “input cubes” can perform better than a native non-
CNF solver which has to support reasoning on a more complex representation.

The core of our approach is to recognize that when a circuit description of
the formula is unavailable we can still extract partial information about the cir-
cuit from the CNF encoding. In particular a number of techniques have been
developed to extract original structure from CNF [4]. These techniques are usu-
ally incomplete and employ heuristic or greedy techniques, since in general it
is NP-Hard to optimally extract the original structure from a CNF encoding.
Nevertheless, a portion of the original structure can often be extracted.

We show how this partial information can be used generate an incomplete set
of initial cubes that we prove can be soundly added to the solver and further
exploited with a slight modification the solver. We also show empirically that,
although incomplete, these cubes still yield useful performance improvements.
Finally, we address for the first time the issue of extracting circuit structure
information from the commonly used Plaisted-Greenbaum encoding [17].

2 Background and Definitions

A propositional formula in CNF is a conjunction of clauses each of which is a
disjunction of literals each of which is a propositional variable or its negation.
A formula in DNF is a disjunction of cubes each of which is a conjunction of
literals. Negating a CNF yields a DNF and vice versa. We assume that all clauses
and cubes contain at most one literal for any given variable and view them as
sets of literals. CNFs (DNFs) are viewed as sets of clauses (cubes).
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An assignment is a set of variable value pairs, (v = true or V = false)
represented as a set of literals. It is complete if it includes all variables in the
problem, otherwise it is partial. We use φ|π to denote the reduction of a formula
φ by the assignment π. The reduction is computed by replacing variables in φ by
the values assigned to them in π followed by simplifying. We use “≡” to denote
that two expressions evaluate to the same value if they are closed QBFs, or are
equisatisfiable if they have free variables. The empty clause is equivalent to ⊥
(false) and the empty cube is equivalent to  (true).

Note that a partial assignment π need only satisfy a single cube for us to
detect that it satisfies a DNF, and similarly π need only falsify a single clause
for us to detect that it falsifies a CNF. On the other hand detecting that a partial
assignment falsifies a DNF or satisfies a CNF requires checking all cubes or all
clauses.

Definition 1. A QBF formula Q.φ contains a prefix Q which is sequence of
universally (∀) and existentially (∃) quantified variables, and a matrix φ which
is a propositional formula over the variables in Q. The truth of a QBF formula is
defined recursively: ∃xQ.φ ≡ (Q.φ|x)∨(Q.φ|¬x) and ∀xQ.φ ≡ (Q.φ|x)∧(Q.φ|¬x).
We assume that all variables of φ are contained in Q. Hence φ will eventually
be reduced to the constant 1 or 0: Q.1 is always true and Q.0 is always false.

A QBF Q.φ is in CNF if φ is in CNF. The Tseitin transformation [19] converts
an arbitrary formula into CNF by introducing a new variable to represent each
subformula along with clauses to ensure the new variable and its subformula are
equivalent. We use T (ψ) to denote the Tseitin transformation of the formula
ψ. To apply this transformation to a QBF we have to insert the newly new
variables into the prefix [2]. The new variables are existentially quantified and
are placed in the prefix immediately after all of the variables of the sub-formula
they encode: given a setting of these variables the sub-formula has a fixed truth
value and so does the new auxiliary variable. Thus T (Q.ψ) will be Q+.T (ψ)
with Q+ being Q with the new variables of T (ψ) added.

Example 1. QBF ∃ab∀cd.(a∧c)∨(a∧d)∨b can be encoded in CNF as ∃ab∀cd∃fg.
(¬f ∨a)∧ (¬f ∨c)∧ (f ∨¬a∨¬c)∧ (¬g∨a)∧ (¬g∨d)∧ (g∨¬a∨¬d)∧ (f ∨g∨ b).

The decision tree of a QBF is a complete binary tree, where all nodes at level
i split on the value of the ith variable of the quantifier prefix. Thus each node
represents a partial assignment described by the path to it from the root and
leaves correspond to complete assignments. A leaf � is labeled with with the
value φ|π(�) where π(�) is the complete assignment corresponding to �. (Hence,
each leaf is labeled with true or false). A node that splits on an existential
variable is labeled true iff at least one of its children is true, a node that splits
on a universal is labeled true iff both of its children are true. It follows that
the root is labeled with the truth value of the QBF is true.

A QBF model is a subset of the true nodes of the decision tree that includes
the root, exactly one child for every existential node and both children for a
universal node. Similarly, a countermodel is a subset of the false nodes that
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includes the root, both children of existential nodes and one child of a universal
node. See [11] for examples. A true QBF will have one or more models, and a
false QBF will have one or more countermodels. Since the root has a unique
label a QBF has at least one model or countermodel but never both.

Resolution combines two non-tautological clauses c1 = (α ∨ x) and c2 =
(β ∨ ¬x) to obtain a new clause c3 = (α ∨ β). It has the property that c1 ∧ c2 ≡
c1 ∧ c2 ∧ c3, so adding the new resolvent to a set of clauses does not affect any
models or countermodels that set has under a relevant prefix. Term resolution
combines two non-tautological cubes c1 = (α ∧ x) and c2 = (β ∧ ¬x) to obtain
a new cube c3 = (α ∧ β). Similarly, the set of models or countermodels of a set
of cubes is preserved by adding term resolvants.

A literal u is tailing in a clause c if u comes later in the prefix that the other
literals in c. Universally quantified tailing literals can be removed from a clause,
a procedure called universal reduction. If C is a set of clauses, Q a quantifier,
and u is a universal literal that is tailing in c ∈ C then it can be shown that
Q.C has the same set of models and countermodels as Q.(C − c) ∪ {(c − u)}.
Existential reduction is the dual case of removing a tailing existential from a
cube. Just like universal reduction, existential reduction preserves the models of
a set of cubes.

2.1 QDPLL

Algorithm 1. QDPLL

Input: Q.φ (φ in CNF)
1 C = φ; U = ∅;
2 while true do
3 c = propagate(C, U);
4 if c ≡ nextvar then
5 v = select var();
6 assign var (v);

7 else
8 if c ≡ complete then
9 c = gatherCube()

10 (btlevel, c) = analyze();
11 if c is a clause then
12 C = C ∪ c;
13 else
14 U = U ∪ c;
15 backtrack (btlevel);

Algorithm 1 presents an outline of
QDPLL, a DPLL style algorithm for
solving QBF [9], [21]. The solver
maintains a set of clauses C, initial-
ized to the clauses of the input for-
mula, and a set of cubes U , initial-
ized to the empty set. The sets are
maintained so that every model of
Q.φ is also a model of Q.C, and ev-
ery countermodel of Q.φ is a coun-
termodel of Q.U (note that initially
Q.U ≡ Q.⊥ ≡ ⊥).

During propagation C and U are
examined to find unit clauses or
cubes. Clauses are reduced by falsified
literals and universal reduction and
when they become unit they imply
forced existential literals. (Unit uni-
versal clause become empty by univer-

sal reduction rather than implying the remaining universal literal). Dually, cubes
are reduced by true literals and existential reduction and when they become unit
they imply forced universal literals. Propagation might detect an empty clause
or cube: such a clause or cube is called conflicting. If propagation finds a conflict
it returns it in the variable c.
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If propagation completes without finding a conflict, another variable is selected
and assigned a value (an unassigned variable with outer most scope must be
selected). If no more variables remain, a new conflicting cube is constructed from
the current set of assignments. Since φ ⊆ C and no conflicting clause has been
found, all of the input clauses are satisfied by the currently set of assignments
π. A cube is constructed by selecting from π a subset τ sufficient to satisfy
all clauses in φ. This subset includes at least one true literal from every input
clause; hence τ can be quite large. The conjunction of literals in τ is the new
cube. Note that τ → φ, and φ is falsified at every leaf of every countermodel of
Q.φ, so τ must also be falsified and the set of countermodels is preserved. τ is
also conflicting at this point of the search: every literal in it is true.

Hence, when line 10 is executed either ‘propagate’ or ‘gatherCube’ has set c to
a conflict. An empty clause indicates that there is no model extending the current
node, while an empty cube indicates that there is no countermodel extending the
current node. In either case the solver can analyze the contradicted clause (cube)
by performing a series of resolution (term resolution) and universal (existential)
reduction steps based on previously forced literals. The result is a new clause
(cube) that can be added to C (U) whilst preserving models (countermodels),
since the new clause, or cube, is a logical entailment of the current C or U , and
the solver can backtrack to ‘btlevel’: the level at which it is once again possible
that a model or countermodel exists.

We note that while the clause database is initialized with clauses from the
input problem, the cube database is initially empty. Thus, it can do no prop-
agation, and cannot be used to recognize solutions (i.e., the non-existence of
counter-models). Also, the cubes τ generated by ‘gatherCube’ are often very
long. Since new cubes are generated by term resolution from these initial long
cubes the effectiveness of cube learning in the QDPLL is negatively impacted.

2.2 Dual Propagation

Consider the formula ∃ab∀cd.(a ∧ c) ∨ (a ∧ d) ∨ b. Recall its Tseitin encoding:

(¬f ∨a)∧ (¬f ∨c)∧ (f ∨¬a∨¬c)∧ (¬g ∨a)∧ (¬g ∨d)∧ (g∨¬a∨¬d)∧ (f ∨g∨ b)

with the prefix ∃ab∀cd∃fg. The assignment {b} is a solution, and is enough to
certify that the formula is true. However, a CNF solver working with the Tseitin
encoding is unable to detect that. All the variables have to be set before a solution
is detected: suppose all variables are set to true. Then the solver chooses a subset
of variables that satisfies all clauses. Every literal from {a, c, d, f, g} must be
included since there is some clause where it is the only true literal. Since the
clause (f ∨ g ∨ b) is already satisfied by that assignment, b does not have to
be included. After existential reduction, the cube (a ∧ c ∧ d) is added to the
database. As the solver continues its search, it might consider the assignment
{a, b, c,¬d, f,¬g}. This generates cube (a, c,¬d), which can be resolved with the
previous one to obtain (a, c). So, the next assignment considered will include ¬c,
which renders all previously learnt cubes useless. The search might go through
every combination of values of c and d before terminating.
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Given the right representation, however, this formula can be easily solved
with no search. The difficulty is that a CNF-based solver starts out with an
empty cube database U . However, recent work has presented a technique for
initializing that database, and has argued that this is identical to the technique
of dual propagation as employed by non-CNF solvers [11].

The main idea is to convert the formula to DNF and use that to initialize
the cube database. The conversion has to introduce new variables to avoid an
exponential explosion in the formula’s size. Suppose Q.φ is a non-CNF QBF, and
consider its negation ¬(Q.φ). If we push in the negation through the quantifier
prefix, by De Morgan’s law, we get (¬Q).¬φ, where (¬Q) is the same prefix as Q
except the quantifiers are flipped. Then let Qn.φn = T ((¬Q).¬φ) be the Tseitin
encoding. Note that Qn is simply (¬Q) with some new existential variables
introduced. Then Qn.φn ≡ ¬(Q.φ), and thus Q.φ ≡ ¬(Qn.φn) ≡ (¬Qn).¬φn.
Also, note that the quantifier prefix (¬Qn) has the same variables as in Q,
with quantifiers negated and then negated back, and some auxiliary variables,
which have been existential in Qn but have since then been negated and became
universal variables. So, (¬Qn) is the same as Q except a number of auxiliary
universal variables have been added. We can show that Q.φ ≡ (¬Qn).φ, since
introducing dummy variables to the prefix does not change the value of a QBF.
Note that for any such new variable, the two subtrees that are its children in
the decision tree are identical. So, (¬Qn).φ ≡ (¬Qn).¬(φn). Note that since φn

is in CNF, pushing in the negation in ¬(φn) yields a DNF.

Example 2. Applied to our example, this gives a DNF ∃ab∀cd∀hi.(h∧¬a)∨ (h∧
¬c) ∨ (¬h ∧ a ∧ c) ∨ (i ∧ ¬a) ∨ (i ∧ ¬d) ∨ (¬i ∧ a ∧ d) ∨ (h) ∨ (i) ∨ (b). Note that
in this form there is a unit cube (b) which after existential reduction becomes
empty. This immediately indicates that the formula is true without any search.

Let Qt.φt = T (Q.φ). Let Q+ be the quantifier Qt with the universal auxiliary
variables from (¬Qn)−Q added. It is sound to use Q+.φt as the initial formula,
and ¬(φn) as the cubes. This result follows from a more general one described
below. Applying this method to our example, the cube database will initially
contain an empty cube, which would allow the solver to immediately recognize
that the formula is true.

Note that Q+.φt ≡ Q+.φ, and if Q+.φ is false, then a countermodel of Q.φ
extended by the valid settings of all auxiliary variables is a countermodel for
both Q+.φt and Q+.¬(φn). As we’ll see below, these are sufficient conditions to
show that QDPLL would give a correct answer given Q+.φt as input, and with
cube database ¬φn.

The conditions that guarantee soundness for seeding the cube database have
been formalized [11], and can be reformulated as follows:

Theorem 1. Let Q.φ be a QBF, and C and U be sets of clauses and cubes
respectively, such that:

– Q.C ≡ Q.φ
– If Q.φ ≡ ⊥, then at least one countermodel of Q.C is a countermodel of Q.U

Then a QDPLL solver is guaranteed to return a correct value of Q.φ
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Proof. A QDPLL solver only returns a value if it obtains an empty clause
or an empty cube. The majority of its steps (resolution/term resolution and
universal/existential reduction) preserve the models and countermodels of its
databases: if the set of clauses(cubes) S′ is obtained from S by zero or more
of these steps, then the sets of models and countermodels of Q.S′ and Q.S are
preserved.

The only step that is not model/countermodel-preserving is the extraction of
a new cube. If Su is a set of cubes, and c is a new cube gathered from a set of
clauses Sc, then Su∪{c} might potentially have less countermodels than Su (but
never more). Since c includes a literal from every clause of Sc, we are guaranteed
that c → Sc. In particular, this means that c is false at every leaf of every
countermodel of Sc. So, any countermodel of Su which is also a countermodel of
Sc is preserved.

Suppose QDPLL starts with C and U as its initial databases, and let C′ and
U ′ be its databases at an arbitrary point in the search. We can then say that:
any model of Q.C is a model of Q.C′; any common countermodel of Q.U and
Q.C is also a countermodel of Q.U ′. So, an empty clause in C′ guarantees that
Q.C′ has no models, and thus neither does Q.C, so Q.φ ≡ ⊥. An empty cube
guarantees that there were no shared countermodels of Q.U and Q.C, and thus
Q.φ ≡ .

The original motivation for the formulation of these rules was the ability to use
preprocessing on the two formulas separately. However, as we will show below,
we can use it to use incomplete information to seed the cube database.

2.3 CNF Encodings

In general, given a CNF, figuring out which variables are auxiliary (used to
represent subformulas) is as hard as solving the problem. However, it is pos-
sible to develop incomplete techniques, and/or techniques aimed at particular
methodologies for encoding CNF. Most existing techniques are aimed at finding
functional dependencies, cases a value of a variable is completely specified by
some set of clauses as a function over preceding variables.

The simplest technique is to look for patterns commonly used to encode logical
gates. For example, AND and OR gates are often encoded as (y ∨ x1) ∧ (y ∨
x2) ∧ ... ∧ (y ∨ xn) ∧ (¬y ∨ ¬x1 ∨ ¬x2 ∨ ... ∨ ¬xn), which encode the equivalence
¬y ≡ x1 ∧ x2 ∧ ... ∧ xn. Note that here the literals may be any combination of
polarities. In the above example, the gates encoding F and G can be recognized
by this method.

This kind of pattern matching can be implemented efficiently. However, there
is another problem: the resultant circuit has to be acyclic. Finding an optimal
subset of gates can be costly, so often a greedy approach is taken. One application
of such gate recognition is the simplification of SAT problems [3].

More advanced technique exist that use propagation and other reasoning tech-
niques to uncover equivalences [15], [12], or to select which definitions would give
a maximal circuit [4]. Although our method would benefit from better structure
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reconstruction, comparison and review of different reconstruction techniques is
beyond the scope of this paper.

Some forms of structural reconstruction have also been applied to QBF [13],
[16]. Most of the techniques can be generalized from CNF in a straightforward
manner, while keeping in mind an additional constraint: that the auxiliary vari-
able must be scoped by the variables it depends in.

For the first part of this paper we are using the greedy pattern matching
technique which ensures that the dependent variable is deeper in the quantifier
prefix than the variables it depends on.

The Plaisted-Greenbaum transformation is an improvement over the Tseitin
encoding [17]. It recognizes that if the literal x only appears positively in the rest
of the formula, then instead of the equivalence x ≡ α, it is sufficient to encode
¬α→ ¬x. Thus the Plaisted-Greenbaum transformation of our example formula
would be ∃ab∀cd∃fg.(¬f ∨ a) ∧ (¬f ∨ c) ∧ (¬g ∨ a) ∧ (¬g ∨ d) ∧ (f ∨ g ∨ b).

Obviously, the formulas transformed this way do not have any gate definitions
that an algorithm could find. Actually, they have no functional dependencies,
since only one polarity of the variable is forced. So, no method mentioned above
is directly applicable. We are unaware of any work on reconstructing formulas
transformed using the Plaisted-Greenbaum transformation.

3 Utilizing Partial Information

Let Q.γ be a QBF formula in CNF, and suppose that the set of clauses A ⊂ γ
encodes a definition of a variable x. Let V be a set of variables in A except for x.
When we say that a set of clauses encodes a definition, we assume the following
set of conditions:

– x is an existential variable.
– All variables in V precede x in Q.
– For any assignment to variables in V , π can be extended by exactly one

setting of x such that the new assignment satisfies A.

The second condition is specific to QBF, and is based on the fact that in order
to preserve the value of the QBF, the auxiliary variables must follow all the
variables in the subformula to which they are equivalent. Consider, for example,
a formula ∀a∃b.(¬a∧¬b)∨ (a∧ b). This formula is true, since b can always be set
to the same value as a. Suppose we create an auxiliary variable c to represent
a ∧ b. The matrix will then be ((¬a ∧ ¬b) ∨ c) ∧ (c ≡ a ∧ b). If we insert c in
the wrong place in the prefix, we might get ∃c∀a∃b. Now, however, the formula
becomes false. If c is true, a can be set to false, violating c ≡ a ∧ b. If c is false,
a can be set to true, violating ((¬a ∧ ¬b) ∨ c). Conversely, if we started with
the latter formula and treated c as an auxiliary variable, we would turn a false
formula into a true one. Other examples can be found in [16].

Note that the second condition assumes a strict ordering on Q, and not the
relaxed variant where variables on the same quantifier level can be interchanged.
This way, the conditions ensure that there are no cyclic dependencies among the
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selected definitions (i.e., this prevents cases where x is defined in terms of y
while y is defined in terms of x). The last condition ensures that there is always
a setting of x that satisfies the definition, and that there is only one such setting:
i.e., the value of x is completely determined by the settings of V .

Let us say that the Sx(A) is the subformula to which the set of clauses A forces
x to correspond. It never needs to be explicitly computed, but for theoretical
results it can be defined as a disjunction of all assignments to the variables in
A which make x true. Let γ|x←B mean the result of taking the formula γ and
substituting every occurrence of x by the formula B. We can note that if A is a
definition of x in Q.γ, then Q.γ ≡ Q.γ|x←Sx(A).

Algorithm 2. Partial-solve

Data: Q.φ: QBF in PCNF
1 C = φ;
2 (X, D) = extractDefs(Q.φ)
3 (Q’, Xu) = insertUniversal(X, Q)
4 U = ¬(replace(X, Xu, D));
5 return QDPLLp(Q’, C, U, D, X, Xu)

Algorithm 2 outlines our ap-
proach. The function extractDefs
is the gate search algorithm. Any
gate extraction algorithm can be
used here, as long as it returns X ,
the set of variables found to be
auxiliary, and D, which is a CNF
obtained by conjoining the disjoint
definitions for variables in X .

The function insertUniversal takes a set of variables X and a quantifier
prefix Q. For each variable x ∈ X it inserts a fresh universal variable at the
earliest universal level following x, and returns the new prefix and the list of
newly inserted variables.

The function replace takes the set of definition clauses D, and replaces every
occurrence of every variable in X by its corresponding variable from Xu. Then,
it returns a CNF formula which is the conjunction of the clauses of the result.

Then,QDPLLp is ran on the CNF formulaQ′.C with cubes U . Here QDPLLp

is a modification of QDPLL which explicitly takes the initial clause and cube
databases, and also takes the information about the definitions. The only dif-
ference between QDPLLp and QDPLL, except for the way the databases are
initialized, is in the way new cubes are obtained. Instead of selecting a subset of
variables to satisfy all clauses in C, QDPLLp only satisfies the clauses in C −D
obtaining a cube c. Then c′ = replace(X,Xu, {c}) is used as the starting cube.

Note that whenever a new cube is generated under a complete assignment
π, the newly added cube c′ is guaranteed to be made true by π. To show that,
it suffices to show that at the point of cube generation, π sets x = x′ for any
x ∈ X that corresponds to x′ ∈ Xu. Suppose not. Let x be the quantifier-earliest
variable such that x �= x′ under π. Let A be the clausal definition of x, and let
Au be A with all variables from X replaced by their counterparts from Xu. Since
all earlier variables are equivalent, Sx(A) ≡ Sx(Au). Since no cubes are true, and
the negation of Au is among the cubes, then all clauses of Au are satisfied by π.
So, x′ is set to Sx(Au). Also, since all clauses are true, so is A, and x ≡ Sx(A).
So, x ≡ x′. This ensures that QDPLLp can use c′ as a starting cube for learning.

Theorem 2. Partial-solve is guaranteed to return the value of its input Q.φ.
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Proof. We shall use the same notation as in Alg. 2.
If QDPLLp(Q’, C, U, D, X, Xu) discovers an empty clause, then Q′.C has no

models. Then neither did Q.C = Q.φ, so it is ⊥.
Let φ− be the formula obtained from φ − D by replacing every x ∈ X by

Sx(A), where A is the definition of x. Note that φ− might no longer be in CNF,
and that no variables from X appear in φ−. We note that φ ≡ (φ−D) ∧ (x1 ≡
Sx1(A1)) ∧ (x2 ≡ Sx2(A2)) ∧ ... for all variables xi ∈ X and corresponding
definitions Ai. So, Q.φ

− ≡ Q.φ by simple equivalence reasoning.
So Q.φ ≡ ⊥, then so is Q.φ−, and it has a countermodel. Because φ− does

not contain any variables from X , then it must have a countermodel where for
every node n splitting on a variable from X , the subtrees under n are identical.
Let M1 be such a countermodel for Q.φ−.

Consider the cubes U = ¬(replace(X,Xu, D)), and the prefix (Q′, Xu) = in-
sertUniversal (X,Q). By adding dummy variables, we haveQ′.φ− ≡ Q.φ. LetM2

be the countermodel of Q′.φ− obtained from M1 by picking those values of the
auxiliary universal variables as to satisfy their definitions in replace(X,Xu, D).

Every leaf node inM2 would falsify all the cubes in U , so this countermodel is
a countermodel for Q′.U . Also, note that φ→ φ−, so this is also a countermodel
for Q′.C.

Now, consider a new cube c obtained by QDPLLp at cube gathering phase.
Suppose c is true some leaf ofM2 corresponding to an assignment π. By construc-
tion of M2, all universal auxiliary variables are set according to their definitions
in π. We can then generate an assignment π′ from π by setting all the auxiliary
existentials to the values of their definition. By choice of M1, the leaf corre-
sponding to π′ must also be in M2. Since c contains no auxiliary existentials,
c|π′ ≡  . Also note that in π′ the values of variables in Xu match their corre-
sponding values from X . So, let c′ be c with variables from Xu replaced by the
corresponding ones from X . Then c′|π′ ≡ . However, by construction of c, c′

contains one literal from every clause in C −D, and, since all variables in X are
set according to their definitions, D|π′ ≡ . Then φ|π′ ≡ , and φ|π′ → φ−|π′ .
So, this leaf could not have been in a countermodel of Q′.φ−. So, any new cube
c generated by QDPLLp will be ⊥ at any leaf of M2.

So, no cube generated by QDPLLp(Q’, C, U, D, X, Xu) could be  at any leaf
ofM2. This means that if QDPLLp(Q’, C, U, D, X,Xu) discovers an empty cube,
thenM2 could not exist, and neither couldM1. Then, Q.φ has no countermodels
and is .

4 Handling the Plaisted-Greenbaum Transformation

The approach detailed in Section 3 only works when the encoding used
completely specifies the value of auxiliary variables. However, the Plaisted-
Greenbaum encoding only uses one side of the implications, making it impossible
to handle the gate as described above. In this section we will describe how it is
possible to reconstruct structure from problems encoded this way.
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Let x be an existential literal from a QBF Q.φ. Let C1 ⊆ φ contain all clauses
with x, and C2 ⊆ φ contain all clauses with ¬x. If at least one of these sets
contains exclusively variables that scope x, then the formula can be modified
without changing its value so that x is functionally dependent on the variables
before it.

Suppose C1 only contains variables that scope x. Then, C1 = {c1, c2, c3, ...}
can be rewritten as γ → x, where γ is a DNF that can be composed by the
disjunction

∨
c∈C1

¬(c− {x}).

Example 3. For example, if C = (a ∨ x) ∧ (b ∨ ¬a ∨ x) ∧ (d ∨ x), then γ ≡
(¬a) ∨ (¬b ∧ a) ∨ ¬d.

Theorem 3. If γ is obtained as stated, and φ2 = (φ − C1) ∧ (γ ≡ x), then
Q.φ ≡ Q.φ2.

Proof. First we note that φ ∧ (x→ γ) ≡ φ2, so φ2 → φ and thus Q.φ2 → Q.φ.
Now, assume Q.φ. Let i be the position of x in Q. Consider the leaf nodes of

the model of Q.φ. If φ2 ≡ ⊥ at any of them, then let n be its ancestor at level
i + 1. Since φ ≡  and φ2 ≡ ⊥, then x ≡  and γ ≡ ⊥. We also note that
φ− C1 is a CNF which contains only negative occurrences of x. Also, if γ ≡ ⊥,
then C1 ≡ . So, flipping x will not change the value of φ if γ ≡ ⊥. So, if n is in
a model for Q.φ, then there is an alternative model which includes the sibling
of n. By applying the same reasoning for each occurrence of x, it is possible to
construct a valid Q-model of φ2.

Using this property, we can repeatedly replace any such implication by an equiv-
alence (obviously, the ordering constraints on Q prevent cycles). After that, we
can apply Algorithm 2 to solve the problem utilizing these equivalences.

Example 4. Suppose Q.φ = ∀u∃ab.(b ∨ a) ∧ (b ∨ u) ∧ ψ, where ψ only contains
negative occurrences of b. Then Q.φ ≡ Q.(b ∨ a) ∧ (b ∨ u) ∧ (¬b ∨ ¬a ∨ ¬u) ∧ ψ.
So, we could solve Q∀c.(b∨a)∧ (b∨u)∧ (¬b∨¬a∨¬u)∧ψ while initializing the
cube database to (¬c∧¬a)∨ (¬c∧¬u)∨ (c∧ a∧ u), where c is a fresh universal
corresponding to b. The new cubes would then only be gathered from ψ.

We can further improve the algorithm by observing that the same properties
that allowed removing some of the definition clauses still hold. Thus, the full
equivalence is not needed in either the clause or the cube database.

Note that now there are clauses encoding xi ≡ γ, and in the rest of the clauses
xi only appears negatively. Also, there are cubes encoding x′i ≡ γ, and in the
rest of the cubes (including those that will be generated during solving) x′i only
appears negatively. In both of those cases, one side of the implication can be
removed, resulting in γ → xi in the clauses and ¬γ → ¬x′i in the cubes.

The intuition behind this idea is that by the time x needs to be assigned, if it
has not been forced to be true, then all clauses with its positive polarity are true.
If under this assignment a solution is found where x is true (thus violating the
other half of the definition clauses), then by flipping x we get a solution where
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those clauses are not violated. So, removing these clauses does not change the
value of the QBF. The similar reasoning works for cubes.

In terms of correctness of QDPLLp, one can note that removing cubes cannot
affect it. Removing clauses is also sound as long as the value of the QBF is not
affected (which is true, as shown above).

Example 5. For the example above, it is sufficient to solve Q∀c.(b∨a)∧(b∨u)∧ψ
while initializing the cube database to (c ∧ a ∧ u).

So, the simplified technique comes down to the following:

– Find a literal xi such that in the set of clauses C1 which contain xi, it is
tailing. Reformulate C1 as γ → xi.

– Create a corresponding auxiliary variable x′i, and add ¬γ → ¬x′i to the cube
database

– Remove C1. from consideration when creating a new cube.

The above can be repeated for all suitable variables, as long as no cycles are cre-
ated. Note that negating γ might in general be an expensive operation. This can
be avoided by introducing auxiliary variables. In fact, the Tseitin or the Plaisted-
Greenbaum transformation can be used to encode them. After the transforma-
tion is completed, QDPLLp can be used to solve the problem.

Related Concepts. If no new variables are introduced in encoding ¬γ → ¬x,
then all the clauses that encode it can be shown to be blocked, with the blocking
literal ¬x [1]. It is sound to introduce blocked clauses, which provides alternative
intuition for Theorem 3. However, this syntactic reasoning might not generalize
to more complicated versions of γ, for example, those obtained by reasoning on
propagation.

The conditions on the variable x to which this method can be applied are
actually the same as the conditions for being depth monotonic [5]. Intuitively,
they mean that the value of x can be determined without considering the clauses
containing ¬x.

Our approach could potentially be strengthened to include dependency rea-
soning. By determining functional dependencies of a variable, we could rule out
other dependencies to strengthen universal reduction. This might be done by
identifying where our conditions agree with dependency reasoning, for example,
the triangle dependency scheme [18], and might be an interesting avenue for
future work.

5 Experiments

We have implemented a no-frills barebones DPLL QBF solver with clause and
cube learning, VSIDS variable heuristic and phase saving. This solver was used
as a baseline (B).
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Fig. 1. Different versions of the algorithm

Then we equipped it with the
ability to perform partial dual prop-
agation. We have implemented a
simple pattern matching gate ex-
traction mechanism which recog-
nizes the simple encodings of AND,
OR and equivalence gates. The
quantifier is initially treated as a
partial order, where variables on
the same quantifier level are un-
ordered. As new gates are discovered
and added, additional constraints

are added to prevent cycles. Initial VSIDS value is set to 1 for the input vari-
ables, and to 0 for the auxiliary variables, no further distinction is made after
the initialization. This was the second variant of the solver (G).

The third variant, I, was as G was, except instead of gate recognition it used
the implication reasoning from Section 4. This is the third variant of our solver,
aimed primarily at reconstructing the Plaisted-Greenbaum transformation.

The last variant (GI) was the same as the previous one, except both gate
reconstruction and implication reasoning were applied. First, the solver extracted
all the gates, after which it applied implication reasoning.

All experiments were ran on a 2.8GHz machine with 12GB of RAM under a
time limit of 600 CPU seconds per instance. The benchmark set was taken from
the CNF track of QBFEval’2010 [6].

Figure 1 compares the different versions of the algorithm. The gate recognition
algorithm is clearly helpful, but the dataset did not seem to have a lot of problems
that were amenable to that approach. Implications reasoning greatly improved
the solving time on many more problems. Combined together, these approaches
offer the best performance.

We then compared our result with the state-of-the-art QBF solvers: depQBF
[14] the winner of QBFEval’101, and Qube (version 7.2) [8] – the results of
running it under default settings are reported as Qube7.2-d. We also compared
with GhostQ (version of 2010), which is a non-CNF solver provided with a script
for gate recognition [13]. We omitted that result from the plot because GhostQ
only solved 136 problems.

The graph clearly shows how the addition of our approach turned a simple
baseline solver B, which is clearly inferior to other solvers, into GI which confi-
dently outperforms the stand-alone solvers.

Preprocessing. The state of the art QBF solving is not limited to stand-alone
solvers. Before being given to the solver, the formula can be reduced and simpli-
fied. In fact, Qube comes with a built-in preprocessor sQueezeBF [7]; depQBF
works best when combined with Bloqqer [1]. We report the results of these two
methods under the names Qube7.2-all and Bloqqer + depqbf , respectively. We
can see that preprocessing has a strong impact on performance.

1 These are results for the version of 2010; the latest available performed slightly worse.
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Fig. 2. Comparison with state of the art QBF solvers

We have also combined Bloqqer with B to get Bloqqer+B. We note the dra-
matic impact of this, however, it was not enough to compare with GI. Un-
fortunately, applying preprocessing out of the box negates our approach, since
preprocessing breaks down the structure we aim to reconstruct. The solvers B,
I, G and GI with Bloqqer solved 342, 340, 343 and 341 problems, respectively.

Although the naive application of preprocessing does not work with our
method, it is interesting to see if the approaches can be combined. For exam-
ple, the unrecovered portion of the CNF could be preprocessed (while taking
into account the recovered clauses); the CNF could be preprocessed after the
recovery but before solving; or, further yet, a duality-preserving version of the
preprocessor might be developed. All these require modifications to the existing
preprocessors and are an interesting avenue for future work.

To indicate the potential usefulness of our approach when combined prepro-
cessing, we show a more detailed comparison between GI and Qube7.2-all and
Bloqqer+depqbf. Figure 3 displays GI solving time on the y axis and the com-
petitors on the x axis (any problems below the bisecting line are solved faster
by GI). Color indicates how well much structure of the formula was recovered.
The number is natural log of the fraction of the formula recovered. A value of
0 indicates a formula where nothing was recovered, while −10 is the one which
was recovered (almost) completely. The problems which timed out for a solver
were placed above the timeout value of 600, beyond the red line.

The figures indicate that while GI lags on a number of instances (most of
which show a poorer reconstruction rate), for some problems it also offers sub-
stantial speedups, and is able to solve a number of problems unsolved by other
approaches.

Of the four approaches: GhostQ, Qube7.2-all, Bloqqer+depqbf and GI, the
number of uniquely solved instances was 0, 24, 38 and 13, respectively.

Finally, Figure 4 gives an indication of the reconstructive power of the three
algorithms. We look at how many clauses remain in the problem and were not
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Fig. 3. Comparison of GI with fully preprocessed methods

identified as part of any definition. On the y axis is the fraction of the original
problem remaining after the extraction (the smaller it is, the better). On the x
axis is the number of problems reconstructed with this percentage or better.
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Fig. 4. Analysis of reconstructive power

We note that the gate extraction
seems to be able to reconstruct a
small number of problems well, and is
close to useless on many others. The
implications, on the other hand, are
almost always present in problems,
even if they were not originally en-
coded using the Plaisted-Greenbaum
transformation. It is able to yield at
least some reductions in the majority
of cases. Combining the two meth-
ods, as expected, leads to even better
results than any one of the methods separately. The new method is now able to
fully reconstruct problems encoded using vanilla Tseitin or Plaisted-Greenbaum
approaches, and can significantly reduce many other problems.

6 Conclusion

We have presented an approach for utilizing partial dual propagation in QBF
solving. Rather than requiring a complete dual representation of the formula, we
can utilize partial definitions recovered from the CNF problem. The framework
is relatively general, and could be be used with other reconstruction techniques.
We have also developed a method to recover structure from problems encoded
using the Plaisted-Greenbaum transformation.

Empirical evidence demonstrates the benefits of this technique, which could
also be used in conjunction with many orthogonal approaches.
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Abstract. Recent solvers for quantified boolean formulas (QBF) use a clause
learning method based on a procedure proposed by Giunchiglia et al. (JAIR
2006), which avoids creating tautological clauses. Recently, an exponential worst
case for this procedure has been shown by Van Gelder (CP 2012). That paper
introduced QBF Pseudo Unit Propagation (QPUP) for non-tautological clause
learning in a limited setting and showed that its worst case is theoretically poly-
nomial, although it might be impractical in a high-performance QBF solver, due
to excessive time and space consumption. No implementation was reported.

We describe an enhanced version of QPUP learning that is practical to in-
corporate into high-performance QBF solvers, being compatible with pure-literal
rules and dependency schemes. It can be used for proving in a concise format that
a QBF formula is either unsatisfiable or satisfiable (working on both proofs in
tandem). A lazy version of QPUP permits non-tautological clauses to be learned
without actually carrying out resolutions, but this version is unable to produce
proofs.

Experimental results show that QPUP is somewhat faster than the previous non-
tautological clause learning procedure on benchmarks from QBFEVAL-12-SR.

1 Introduction

Solvers for Quantified Boolean Formulas (QBFs) are rapidly increasing in strength,
partly due to increased understanding of how to incorporate conflict-driven clause learn-
ing (CDCL), which found great practical success in propositional satisfiability. Several
current solvers are patterned after the Q-resolution method described by Giunchiglia et
al. [3]. A thorough survey of the field through 2005 may be found in this paper.

We present a formal framework for solvers to search for proofs that an instance is
true or false in tandem, and to use information found in one proof search to assist in the
other proof search. The framework is closely related to the work of Zhang and Malik
[19], and Giunchiglia et al. [3], but uses the idea of a Complete Guard Formula and a
closely related Basic Guard Formula to prove some key properties straightforwardly.
This approach differs from that used for CirQit2 [4] and GhostQ [7] in that those
solvers use a representation in which the entire negated formula is known, whereas the
guard formula is only partially known.
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This paper then presents a prototype implementation of QBF Pseudo Unit Propaga-
tion (QPUP) non-tautological clause learning. The main innovation is to identify a cut
in the conflict graph such that the learned clause associated with the cut will be non-
tautological and asserting: that is, after backtracking, the learned clause will enable a
new literal to be implied immediately. After the cut is identified, resolution proceeds
from clauses on the boundary of the cut toward the conflicting clause, in an order such
that tautologies cannot occur. Previous techniques performed resolutions beginning at
the conflicting clause and working back toward the boundary of the cut, without ever
explicitly defining the cut. When the latter order is used, tautologies can occur and
require possibly expensive special treatment (exponential time in the worst case).

All clauses derived during the QPUP procedure satisfy an invariant that permits an
asserting learned clause to be constructed lazily, without actually performing the resolu-
tions. This shortcut saves substantial clause-learning time, but does not permit a detailed
Q-resolution proof to be output as a by-product, and occasionally constructs a slightly
weaker learned clause.

An implementation of QPUP learning was incorporated in the open-source solver
DepQBF [8,10,9]. Experimental results (Section 6) illustrate the potential of QPUP
learning compared to traditional clause learning in terms of more solved formulas, fewer
backtracks and reduced run times.1

2 Preliminaries

In this section, we collect specific notation for later use. In general, quantified boolean
formulas (QBFs) generalize propositional formulas by adding universal and existential
quantification of boolean variables. See [6] for a thorough introduction. For this paper
QBFs are in prenex conjunctive normal form (PCNF): Ψ =

−→
Q.F consists of prenex

−→
Q

and clause-matrix F (the original clauses). The prenex
−→
Q is partitioned into maximal

contiguous subsequences of the same quantifier type, called quantifier blocks. Each
quantifier block has a different qdepth with the outermost block having qdepth = 1.
If p and q are variables of opposite quantifier types, we say that q is inner to p if
qdepth(p) < qdepth(q).

Clauses may be written as literals enclosed in square brackets (e.g., [p, q, r ]), and
[] denotes the empty clause. Where the context permits, letters e and others near the
beginning of the alphabet denote existential literals, while letters u and others near
the end of the alphabet denote universal literals. Letters like p, q, r denote literals of
unspecified quantifier type. We use⊥ to denote the constant false in the role of a literal.
The variable underlying literal p is denoted by |p|.

A closed QBF (all variable occurrences are quantified) evaluates to either 0 (false)
or 1 (true), as defined by induction on its principal operator: (1) (∃xφ(x)) = 1 iff
φ(0) = 1 or φ(1) = 1. (2) (∀xφ(x)) = 0 iff φ(0) = 0 or φ(1) = 0. (3) Other
operators have the same semantics as in propositional logic. This definition emphasizes
the connection of QBF to two-person games with complete information, in which player
E (Existential) tries to set existential variables to make the QBF evaluate to 1, and

1 Please visit http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz
for a longer version of this paper, binaries, and some logs.

http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz
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player A (Universal) tries to set universal variables to make the QBF evaluate to 0.
Players set their variable when it is outermost, or for non-prenex, when it is the root of
a subformula (see [7] for more details). Only one player has a winning strategy.

The proof system known as Q-resolution consists of two operations, resolution and
universal reduction (some papers combine them into one operation). Q-resolution is of
central importance for QBFs because it is a sound and complete proof system [5].

Definition 2.1. Resolution is defined as usual. The resolvent of C1 and C2 on existen-
tial e is denoted as resq(C1, C2) = [(C1 − e ), (C2 − e)] or as C1 ∗e C2. (We drop
set-forming braces around singleton sets where obvious.) The resolvent must be non-
tautologous for Q-resolution. Universal reduction is special to QBF. The notation is
unrdq(C3) = (C3 − u), where C3 is non-tautologous and u is tailing for C3. Here, a
universal literal u is said to be tailing for C3 if no existential literal in C3 is inner to u.
A postfix operator notation for the same expression is C3Δu. Performing all possible
universal reductions on C3 is denoted by unrd∗(C3) or C3Δ∗, and the resulting clause
is said to be fully reduced. The operators are left-associative, like + and −, so that
compound expressions without parentheses can be read left to right.

A Q-derivation of a clause is a proof using the Q-resolution operations; a Q-refuta-
tion is a Q-derivation of the empty clause.

Definition 2.2. An assignment (sometimes called a partial assignment) is a partial
function from variables to truth values, and is usually represented as the set of literals
that it maps to true. A total assignment assigns a truth value to every variable. Assign-
ments are denoted by σ, τ , etc. Applications of σ to logical expressions are denoted by
q�σ , C�σ , F�σ , etc., and consist of replacing assigned variables in the expression by
their truth values in σ, then simplifying with truth-value identities (but not propagating
unit clauses). If σ assigns variables that are quantified in Ψ , those quantifiers are deleted
in Ψ�σ , and their variables receive the assignment specified by σ.

3 Guard Formulas

This section describes guard formulas, and states their main properties that are impor-
tant for QBF solving. We begin with some terminology.

Definition 3.1. Let the initial PCNF formula be Ψ =
−→
Q.F , where

−→
Q is the quantifier

prefix and F is the matrix of clauses. A consistent minimal hitting set (cmhs) for a set
of clauses F is a partial assignment σ (regarded as a consistent set of literals) such that
every clause C ∈ F is satisfied by σ and no proper subset of σ has this property. Note
that F has no hitting set if it is propositionally unsatisfiable.

Let Q̃ be the same as
−→
Q except that the quantifier type of each variable is inverted.

The Complete Guard Formula for Ψ is the PCNF Γ∗ = Q̃.G∗(F), where G∗(F) is the
set of clauses defined as follows:

C ∈ G∗(F) if and only if ¬(C) is a cmhs for F (1)

Here,¬(C) is the partial assignment consisting of the negations of all literals inC. (The
negation of a clause is often called a cube.)
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Ψ ∀u ∃d ∃a ∀v ∃b ∃c ∃e
C1 u d a
C2 u a v c e
C3 u e

C4 d a v b
C5 d a v b
C6 d c

C7 a v b c
C8 v b

C9 v b
C10 v c

Γ∗ ∃u ∀d ∀a ∃v ∀b ∀c ∀e
D1 u d a v b c
D2 u d a v b c

D3 u d v b c e

D4 d a v b e

D5 d a v b c e

ΓB ∃u ∀d ∀a ∃v ∀b ∀c ∀e
D1 u d a v
D2 u d a v

D3 u d v

D4 d a v
D5 d a v

Fig. 1. QCNFs Ψ , Γ∗, and ΓB , discussed in Example 3.6 and later examples

Since Γ∗ is a PCNF we may exploit the soundness and completeness of Q-resolution
for PCNF refutations. In general discussions we call Ψ the original formula and call Γ∗
and related formulas guard formulas.

Definition 3.2. If two propositional formulas F1 and F2 evaluate to the same truth
value for every total assignment, then F1 ≡ F2, read as F1 and F2 are propositionally
equivalent. If every total assignment that satisfies F1 also satisfies F2, then F1 |= F2,
read as F1 logically implies F2.

The idea of cubes is familiar in QBF, but Γ∗ has this important property, which has not
been enunciated before, as far as we know (proofs are omitted to save space):

Lemma 3.3. With the notation of Definition 3.1: (A) G∗(F) ≡ ¬F ; (B) Γ∗ has the
opposite truth value from Ψ .

Definition 3.4. Let Ψ and Γ∗ and F and G∗ be as defined in Definition 3.1. The Basic
Guard Formula for Ψ is the PCNF ΓB = Q̃.GB(F), where GB(F) is the set of clauses
arising by performing all possible universal reductions on clauses in G∗(F). (Recall that
the quantifier type of each variable in Q̃ is the opposite of its quantifier type in

−→
Q .)

Lemma 3.5. With the notation of Definition 3.4: (A) ΓB has the opposite truth value
from Ψ ; (B) ΓB has a Q-refutation if and only if the truth value of Ψ is true; (C) For
any C ∈ GB(F), ¬(C) can be extended to a cmhs for F by adding only literals ei such
that ei is inner to some u ∈ ¬(C), where ei is existential and u is universal in

−→
Q .

Example 3.6. Let Ψ be the QCNF shown in chart form on the left of Figure 1. The
corresponding Γ∗ and ΓB are shown on the right. ΓB does not admit a Q-refutation, so
we conclude by Lemma 3.5 that Ψ is false.

It is not practical for a solver to construct G∗(F) or GB(F) explicitly since the sizes
of these clause sets might be anywhere from empty to exponentially larger than F .
Instead, solvers (ideally) discover clauses in G∗(F) as the proof search goes along, re-
duce them to clauses in GB(F), and record them. (Some implementations may discover
non-minimal consistent hitting sets and not extract a cmhs.) Any partial assignment that
satisfies all clauses in F is a consistent hitting set. If at any point the solver discovers a
Q-refutation of whatever guard clauses have been discovered, Ψ is proven to be true.
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4 QBF Conflict-Driven Clause-Learning Solvers (Review)

The QBF conflict-driven clause-learning (QCDCL) strategy for PCNF solving is in-
spired by the great success of conflict-driven clause-learning (CDCL) in propositional
SAT solving [11,12,2]. Although CDCL is often described in the literature as a variant
of DPLL with learning added, it has been argued that the idea of CDCL is actually quite
different [11,16].

Due to universal quantifiers, the QCDCL strategy becomes considerably more tech-
nical. To date, the most in-depth treatment in the literature is found in Giunchiglia et al.
[3], although they call it Q-DLL-LN. This section reviews the main ideas so that QPUP
clause learning may be placed in context.

4.1 QCDCL Rounds

A QCDCL solver proceeds by rounds. Initially a PCNF Ψ =
−→
Q.F is known and

Γ∗ = Q̃.G∗(F) (see Section 3) is unknown. As clauses related to G∗(F) are discovered,
they are added to an (initially empty) set of guard clauses G. Each round proceeds by
decision levels until a terminating event occurs. Assignments accumulate throughout a
round in a sequence often called the trail, τ . Each assignment is applied to Ψ (and is
implicitly applied to Γ∗), giving Ψ�τ and Γ∗�τ , and is appended to τ before the next
assignment is made. Assignments have categories, such as “assumption,” or one of the
safe assignments detailed in Section 4.2, to facilitate clause learning after a conflict.
The alevel (assignment level) of a literal is the decision level at which it was assigned.

At decision-level 0, beginning with an empty τ , safe assignments are applied to
Ψ�τ and G�τ , where G is whatever part of ΓB has been discovered and recorded. Safe
assignments are those that cannot change the truth value of Ψ�τ and Γ∗�τ . Safe variable
assignments continue until no more are found, or until a terminating event occurs.

At positive decision levels, the first variable assignment is an assumption, which is
unsafe (may change the truth value of Ψ�τ or Γ∗�τ ). For soundness, the assumption
literal must not be inner to any unassigned literal.

Subsequent variable assignments on the same decision level are safe for Ψ�τ and
Γ∗�τ . Safe variable assignments continue until no more are found, or until a termi-
nating event occurs. For all decision levels, if no terminating event has occurred, the
decision level is increased by 1, a new assumption is made, and the higher decision
level continues with additional safe variable assignments, as just described.

4.2 Safe QCDCL Assignments

Perhaps the major complication in going from CDCL to QCDCL is the number of safe
assignments to be managed. The first complication is that there are two quite different
PCNF formulas being updated and a safe assignment needs to be safe for both formulas.
In many cases, it is obviously safe for one formula, but not so clear for the other.

The safe assignments typically implemented in QCDCL-based solvers are:

Unit-clause implication: If C ∈ F and C�τ , followed by universal reductions, con-
tains the single existential literal e, append e to τ .
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Guard unit implication: IfC ∈ G andC�τ , followed by universal reductions, contains
the single existential literal u, based on Q̃, append u to τ .
Existential pure-literal rule: If the existential literal e appears in some clause in F�τ ,
and e does not appear in F�τ , then append e to τ .
Universal pure-literal rule: If the universal literal u appears in some clause in F�τ ,
and u does not appear in F�τ , then append u to τ .

4.3 QCDCL Terminating Events

There are three kinds of terminating events for a round:

(1) All clauses in F are satisfied; i.e., F�τ is empty. Then the assignments in τ
comprise a consistent hitting set for F and a clause of G∗(F) may be discovered by
finding a cmhs and negating it. (In practice an implementation might settle for an over-
approximation of the cmhs.) This clause is simplified by universal reductions, keeping
in mind that the quantifier types are now dictated by Q̃, yielding a new guard clause
G. If a cmhs was used, G ∈ ΓB , otherwise it is subsumed by some clause in ΓB . G is
added to G. Applying τ falsifiesG, since it was a negated hitting set before the universal
reductions. Next, assignments are retracted from τ , a complete decision level at a time,
from highest to lower, until the remaining assignments no longer falsify G.

(2) A conflict occurs in some clause C ∈ F , meaning that τ , coupled with univer-
sal reductions in C, have falsified C, i.e., C�τ , followed by universal reductions, is an
empty clause. In this case a new clauseD is derived from Ψ by Q-resolution and added
to F . D�τ , followed by universal reductions, also is an empty clause. Next, assign-
ments are retracted, a complete decision level at a time, from highest to lower, until the
remaining assignments, followed by universal reductions, no longer falsify D.

(3) A conflict occurs in some clauseC ∈ G, meaning thatC�τ , followed by universal
reductions, is an empty clause. Note that the only clauses in G are those added by earlier
instances of case 1 and this case. In this case a new guard clauseE is derived from Q̃.G
by Q-resolution2 and added to G. E�τ , followed by universal reductions, also is an
empty clause. Next, assignments are retracted, a complete decision level at a time, from
highest to lower, until the remaining assignments, followed by universal reductions, no
longer falsify E.

If D in case 2 is an empty clause, the truth value of Ψ can be proven to be false.
If E in case 3 is an empty clause, the truth value of Ψ can be proven to be true. It is
straightforward in principle to extract either Q-refutation from a trace of the solver’s
actions [1,13]. If G in case 1 is an empty clause, the truth value of Ψ can be shown to
be true simply by applying the hitting set underlying G to Ψ , because the hitting set
contains only existential variables (based on

−→
Q ). In these cases, the instance is solved.

If no empty clause has been derived, another round is started. The unretracted part of
τ from the previous round is the initial value of τ for the next round. Whatever decision
levels were not retracted remain in place. Safe assignments continue on the highest
unretracted decision level.

2 Previous descriptions of this general strategy in the literature speak of “cubes,” and “term res-
olution,” as separate concepts, but the formulation as a guard formula needs only Q-resolution.
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Definition 4.1. An asserting clause in the context of a trail σ is a clause C such that
C�σ satisfies the conditions for unit-clause implication in the original formula or for
guard unit implication in the guard formula (Section 4.2). I.e., C�σ has only one ex-
istential literal e (possibly ⊥), called the asserting literal, and e is not inner to any
universal literals in C�σ . This terminology is primarily used when σ is the trail after
backtracking from τ ; i.e., σ is a proper prefix of τ .

An important optimization is that the learned clause, D in case 2 or E in case 3, is
asserting after backtracking, so at least one safe assignment is available before a new
assumption is needed. When the learned clause is asserting, it is usual to backtrack as
many decision levels as possible, while maintaining the asserting property.

By the nature of a round, an asserting learned clause cannot be subsumed by an al-
ready known clause, or else it would have become a unit-clause implication or guard
unit implication before the completion of the decision level to which the round back-
tracked after learning this clause. We know this did not happen because at least one
higher decision level was started before the asserting clause was learned. Since every
round learns a clause, it follows that the number of rounds is finite (as long as all learned
clauses are remembered).

5 Learning with QBF Pseudo Unit Propagation (QPUP)

We introduce a practical version of QPUP which can be used to derive a learned clause
from a conflict graph. A simple version of QPUP uses the entire conflict graph and
was introduced as a theoretical, rather than practical construct [17]. Its point was to
show that a non-tautological asserting clause (Definition 4.1) could be learned in time
polynomial in the size of the conflict graph (whereas the published methods of learning
a non-tautological clause might take exponential time).

This section describes how to selectively apply QPUP after a conflict has occurred,
keeping operations confined to recent decision levels as far as practical, in the spirit of
the propositional CDCL strategy. This more sophisticated version of QPUP learning is
deferred to Section 5.2, until additional nomenclature has been introduced. The proce-
dure is essentially the same for conflicts in the original formula and the guard formula.

5.1 QCDCL Conflict Graphs

During a QCDCL search suppose a falsified clause is encountered after a sequence of
assumptions, unit-clause implications, and otherwise-assigned literals, as described in
Section 4. Each literal in the trail τ is either an assumption or an implied literal or an
otherwise-assigned literal (any other safe assignment).

Definition 5.1. A clause is effectively unit in the context of τ if the restriction based on
τ , followed by universal reductions (see Definition 2.1), makes the clause a unit clause.
A clause is said to be effectively empty (or falsified) in the context of a partial assignment
τ if the restriction based on τ , followed by any applicable universal reductions, makes
the clause an empty clause. The antecedent clause of an implied literal p (denoted
ante(p)) is the (unique) clause that became effectively unit earliest to imply p. If a
clause became effectively empty, we say that ⊥ is the “implied literal”.
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Fig. 2. QCDCL conflict graph; see Example 5.2 and later examples. Circles enclose implied
literals. Boxes at the left enclose assumptions. Diamonds enclose otherwise-assigned literals.
Rounded boxes enclose an antecedent clause. The antecedent clause of a universal implied literal
is in the opposite formula and cannot be used for resolution. The rounded box has dashed lines to
denote this. Dashed arrows show connections to universal literals. The dotted arcs show various
cuts. A solid arrow crossing a cut goes to an existential literal whose negation is definitely in
the QCDCL learned clause associated with that cut (cf. propositional CDCL). A dashed arrow
always crosses the cut and goes to a universal literal, but its negation may not be in the learned
clause.

The conflict graph associated with a falsified clause is the rooted directed acyclic
graph (DAG) in which⊥ is the root vertex and its antecedent is the falsified clause. The
remaining vertices are the assumptions, implied literals, and otherwise-assigned literals
reachable from ⊥, based on the directed edges.

The directed edges of the conflict graph are (p, q), where p and q are vertices in the
conflict graph, p is existential, and q ∈ ante(p). See Figure 2.

Otherwise-assigned literals in the conflict graph for the original formula can arise
through the universal pure-literal rule and through guard unit implication. Like as-
sumptions, otherwise-assigned literals have no antecedent. Existential pure literals are
not vertices in the conflict graph of an original formula.

The only differences in a conflict graph for the guard formula are that the vertices
with antecedents are guard unit implications (which are existential literals in the context
of the guard formula) and the otherwise-assigned literals are existential pure literals in
the original formula or unit-clause implications in the original formula. Both of these
literal types are universal in the context of the guard formula. Universal pure literals are
not in the guard conflict graph.

Example 5.2. For concreteness we suppose that the QCDCL proof search assumes
negative literals. Figure 2 shows a conflict graph for the original formula of Figure 1 that
occurs in round 4. In the first three rounds the guard clausesD1 andD2 were discovered
and the guard clause [u] was derived, causing all decision levels to be retracted.

At the beginning of round 4, u is a guard unit implication at level 0, so it is an
otherwise-assigned literal for purposes of the original formula. Now e is implied via
C3. Round 4 continues as follows: Level 1: assume d ; imply c via C6; imply a via C2.
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Level 2: assume v ; imply b via C7; imply⊥ via C8. Discussion is continued in several
subsequent examples.

Definition 5.3. In a QCNF conflict graph a conflict-generating cut is a partition of the
vertices in the reason side and the conflict side such that: (A) ⊥ is on the conflict side;
(B) every vertex on the conflict side is reachable from ⊥ by a directed path using only
vertices on the conflict side; (C) every assumption and otherwise-assigned literal is on
the reason side. We abbreviate “conflict-generating cut” to “cut” in later discussions.

A unique implication point (UIP) p is an existential vertex such that all edges from
existential literals that are reachable from ⊥ and are assigned later than p go to: (D) p
or (E) an existential literal assigned later than p or (F) an existential literal assigned at
a decision level less than p or (G) a universal literal.

In propositional CDCL, the clause associated with a cut consists of the negations of
literals on the reason side that are reached by a single edge from some literal on the
conflict side. In QCNF this clause might not be derivable in Q-resolution because uni-
versal literals can result in tautologous resolvents. Moreover, some universal literals
might be removable by universal reduction.

The UIP cut for a UIP p in traditional CDCL places all existential literals that are
assigned later than p and are in the conflict graph on the conflict side, and places all
other literals in the conflict graph on the reason side. This paper refines the definition
of the UIP cut in the context of QCDCL to permit certain existential literals that are
assigned earlier than p to appear on the conflict side. This might be necessary to be able
to associate a non-tautological clause with the cut.

Example 5.4. Figure 2 shows a typical situation where the traditional UIP cut would
derive a tautological clause. The dotted arcs show some conflict-generating cuts. Vertex
c is a UIP. The traditional associated 1UIP cut is shown by the rightmost dotted arc. The
clause associated with this cut, obtained by resolving the clauses on the conflict side,
is tautological. Neither v nor v can be eliminated by universal reduction using only
clauses on the conflict side because they are always blocked by b or c or e .

Long distance resolution was proposed by Zhang and Malik [19] to accommodate
such tautological clauses. Giunchiglia and co-authors pioneered the derivation of
learned clauses using Q-resolution and avoiding tautological clauses [3].

5.2 QPUP Clauses

The idea of QPUP is that resolutions are performed that mimic the derivation of the im-
plied literal by unit-clause resolution, treating certain earlier-assigned existential literals
as unit clauses. However, the negations of those earlier-assigned literals are included in
the QPUP clause. In this sense, QPUP extends propositional Pseudo Unit Propagation
(PUP) [18].

Definition 5.5. Let a conflict graph and a conflict-generating cut be given, as described
in Section 5.1. Recall alevel (assignment level) from Section 4.1. Each assumption in-
creases the alevel by one and subsequently assigned literals up to the next assumption
take this value for their alevel. Let dlevel be the decision level at which the conflict
occurred.
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A function qpup(e, a�) is any function that returns a clause for each existential literal
e on the conflict side of the cut, including⊥, with certain properties:

1. If all edges leaving e go to the reason side, then qpup(e, a�) = ante(e).
2. If r ∈ qpup(e, a�), then r is on the reason side and is reachable by a single edge

from some vertex on the conflict side.
3. Let A be the set of existential literals in qpup(e, a�) with alevel ≤ a�. If r ∈

qpup(e, a�) and r is universal and r would be unassigned after retracting all as-
signments with alevel > a�, then r is tailing in (qpup(e, a�)−A− e).

4. A clause that subsumes qpup(e, a�) can be derived by Q-resolution from ante(e)
and the clauses qpup(ri, a�) such that ri ∈ ante(e) and ri is on the conflict side.
(Note that a clause subsumes itself.)

The properties are well defined because the conflict graph is acyclic. Note that proper-
ties 1 and 4 ensure that qpup(e, a�) is not tautological.

Not every cut permits qpup to be defined. Suppose qpup can be defined for a given
cut and a backtrack level a� < dlevel. The important invariant forD = qpup(e, a�) is

unrd∗(qpup(e, a�)− {e}) ⊆ qpup(⊥, a�) (2)

I.e., if e is removed fromD and all possible universal reductions are performed inD−e,
then the remaining literals are in qpup(⊥, a�). Note that the invariant holds also when
e = ⊥. Given a conflict graph, the goal is to identify a suitable conflict-generating cut
such that the clause qpup(⊥, a�) is non-tautological and asserting and hence can be
used as a learned clause.

Example 5.6. Referring again to Figure 2, it is easy to see by inspection that qpup
cannot be defined for the rightmost cut for any a� < dlevel, because a is on the conflict
side and a cannot be resolved out without creating a tautology.

For the leftmost cut, qpup is easily defined for a� = 0. For c and e their qpup is their
antecedent. Then qpup(a, 0) = ante(a) ∗e qpup(e, 0) ∗c qpup(c, 0)Δ v = [u , d, a].
This can be resolved against the clause with a , etc., without creating a tautology. Fi-
nally, qpup(⊥, 0) = [u , d], which is asserting for level 0.

Note that alevel(e) < alevel( d ), but including e on the conflict side is necessary
to enable tautologies to be avoided. Finally, it is worth noting that traditional QCDCL
based on [3] derives the weaker clause [u , d, v , e ] by starting at the falsified clause
[v, b] and resolving on b, c, a, and again on c.

Our principal contribution is the description (in the next section) and experimental eval-
uation of a practical procedure to identify a cut and a value of a� such that qpup is effi-
cient to compute and has the further property that qpup(⊥, a�) is non-tautological and
asserting after backtracking.

5.3 Cuts and Backtrack Levels for QPUP

This section provides an abstract description of our procedure to identify a suitable cut
and backtrack level for QPUP after a conflict. For simplicity a conflict in the original
formula is assumed.
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The key idea is that an agenda is constructed and processed. The agenda is a se-
quence of literals in trail-assignment order that are relevant to deriving the needed qpup
clauses. As an exception, unassigned universal literals appear with the same clause that
caused them to be inserted. Processing the agenda corresponds to finding a suitable cut
in iterative fashion. The procedure is illustrated by Examples 5.7 and 5.8 to make it
easier to follow the general description.

Starting from an empty cut, existential literals are put on the conflict side until a UIP
cut is found. If that cut cannot be associated with a non-tautological clause, processing
continues and further literals are put on the conflict side, thus modifying the cut. During
processing, no clauses are constructed explicitly. The state of the agenda is inspected to
check if the clause associated with the current cut is non-tautological and asserting.

Literals are annotated with some status information. We use these graphical mnem-
onics: p/k denotes that alevel(p) = k (∞ denotes it is unassigned); e© means that e
must be on the conflict side and its qpup must eventually be computed to produce a
Q-derivation of the learned clause; q denotes that q is a suitable UIP, i.e., qpup will be
computed with a� = (alevel(q)− 1) and q will be the asserting literal in qpup(⊥, a�),
the learned clause.

Literals are processed from right to left, i.e., in reverse trail order. Universal literals
are skipped over and each existential literal is processed just once. Processing may
cause other literals to be inserted into the agenda, but such inserts are always to the left
of the literal being processed, i.e., in the part of the agenda yet to be processed.

In general terms, the processing has two phases: In the first phase a suitable UIP
literal is identified and this establishes the value of a� for which qpup is needed. In the
second phase the complete cut is identified.

The agenda is initialized with the literals in ante(⊥), with ⊥© rightmost, unassigned
universals immediately to its left, and remaining literals further to the left, in trail order.
For phase 1, proceeding right to left, examine the next existential literal, say e /k.

(1) If some literal to the left of e has alevel = k, e must go on the conflict side. (2)
If e is inner to some pair of complementary universal literals in the agenda, e must go
on the conflict side. (3) If e is inner to some universal literal u/m in the agenda where
m ≥ k, e must go on the conflict side.

If none of the above tests determines that e must go on the conflict side, then change
the notation to e /k, denoting that e will be the asserting literal, set a� = k − 1, and
proceed to phase 2.

Otherwise, replace e /k with ante(e) in the agenda, as follows: e© replaces e /k;
unassigned universal literals that are not already in the agenda are inserted immediately
to the left of e©; remaining literals of ante(e) that are not already in the agenda are
inserted in correct trail order (somewhere to the left of e©), annotated with their alevels.
Continue phase 1 to the left of e©.

If phase 1 reaches the left end of the agenda without identifying an asserting literal,
then qpup(⊥, 0) will reduce to the empty clause.

Example 5.7. Referring again to Figure 2, Table 1 shows the evolution of the agenda
through phase 1. After step 1, a cannot be the asserting literal because c is earlier on
the same alevel. After step 2, c cannot be the asserting literal because it is inner to v
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Table 1. Agenda processing discussed in Examples 5.7 and 5.8

Step Agenda

0 v/2 b/2 ⊥©
1 c /1 a /1 v/2 b© ⊥©
2 u /0 e /0 c /1 v /2 a© v/2 b© ⊥©
3 u /0 e /0 d/1 c© v /2 a© v/2 b© ⊥©
4 u /0 e /0 d /1 c© v /2 a© v/2 b© ⊥©

end phase 1

5 u /0 e© d /1 c© v /2 a© v/2 b© ⊥©

and v . After step 3, d can be the asserting literal because it is not inner to v and v .
Step 4 terminates phase 1.

Phase 2 begins immediately to the left of the asserting literal in the agenda. Proceeding
right to left as in phase 1, examine the next existential literal, say f /j. We know j ≤ a�.
If f is inner to some pair of complementary universal literals in the agenda, f must go
on the conflict side. Otherwise, f /j remains unchanged in the agenda and processing
moves left. If f must go on the conflict side, replace f /j with ante(f) in the agenda,
following the same procedure as above for replacing e /k with ante(e). In particular f©
now appears in the agenda and phase 2 continues to the left of f©. Phase 2 terminates
after the leftmost literal in the agenda has been processed. At this point, the UIP cut has
been found and is associated with the non-tautological asserting clause qpup(⊥, a�),
which is to be learned.

Example 5.8. Continuing from Example 5.7, the end of Table 1 shows the evolution of
the agenda through phase 2. After step 4, e cannot be on the reason side because it is
inner to v and v , so it is replaced by ante(e). After step 5, no existential literals inner
to v and v remain on the reason side and processing terminates. Literal d is the UIP.
Literals e, c, a and b are on the conflict side.

After termination of agenda processing, clauses qpup(e, a�) are computed for every
existential literal e on the conflict side. The computations are done in trail order, i.e.,
from left to right in the agenda. The order is important because the computation of some
qpup(e2, a�) might use qpup(e1, a�) if e1 is left of e2 in the agenda, i.e., earlier on trail.
Finally, the clause qpup(⊥, a�) is computed. Example 5.6 illustrates the computation
of the QPUP clauses referring to the agenda from Example 5.8.

Lemma 5.9. The agenda-based procedure presented above (A) has worst-case run time
which is polynomial in the size of the conflict graph and (B) allows to derive a non-
tautological asserting learned clause C = qpup(⊥, a�).

5.4 Lazy QPUP

The agenda-based approach from the previous section allows for a lazy form of QPUP
learning where no resolutions are carried out. In effect, it inspects the final agenda to
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Table 2. Running times in seconds on qdpllexp family. “segv” denotes “segmentation violation”.

family index 18 19 20 21 22 23
QuBE 1.3 10 22 47 105 segv segv
DepQBF 0.1 8 16 32 69 140 298
CirQit 3.15 1 1 3 5 11 21
DepQBF QPUP .00 .00 .00 .00 .00 .00

Note: DepQBF QPUP does not regis-
ter any CPU time, even up to level
99. The run logs show that the reso-
lution count increases by 8 for each
level in the family.

determine which literals will be in qpup(⊥, a�), i.e., the learned clause. No literals on
the conflict side (those enclosed in circles) will appear; all existential literals on the
reason side must appear. For universal literals, those that can be reduced out at the
end and complementary pairs definitely will not appear. To be safe, other universal
literals are kept, but they cannot prevent the learned clause from being asserting after
backtracking to a�.

6 Experimental Results

We implemented a prototype version of QPUP learning and lazy QPUP as described in
Sections 5.2 and 5.4 in the open-source search-based QBF solver DepQBF3 for compar-
isons with traditional QCDCL. QPUP learning is applied to the original formula as well
as to the guard formula. It is compatible with all the sophisticated techniques already
in DepQBF, including pure literal detection, proof generation for certificate extraction
[1,13], and the standard dependency scheme.

It has been reported that QCDCL clause learning, published as Q-DLL-LN [3] and
used in other solvers (often under the label QDPLL), can spend time that is exponential
in the size of the conflict graph to learn a single clause [17]. A family of small instances
was given that elicits exponential behavior. Since the original motivation for QPUP was
to avoid this behavior, we checked it on this family. The first three lines of Table 2,
reproduced from [17], provide empirical confirmation of the theoretical analysis that
the running time for traditional QDPLL learning doubles for each increase of one level
in the family. The note shows that QPUP does not experience exponential growth.

To compare DepQBF with QPUP learning, lazy QPUP and traditional QCDCL, we
considered the 276 preprocessed instances used for QBFEVAL-12 Second Round
(QBFEVAL-12-SR). We did not apply any further preprocessing to these instances.4

For additional tests we used preprocessed instances from QBFEVAL-10 which were
not solved by preprocessing. We ran experiments on 64-bit Linux AMD Opteron 6176
SE with a time limit of 900 seconds and a memory limit of 7 GB.5

Table 3 shows a comparison of DepQBF with traditional QCDCL, QPUP learning
and lazy QPUP. Figure 3 shows these results in a cactus plot. Lazy QPUP solves the
largest number of instances, both overall and individually with respect to satisfiable and

3 Please visit http://lonsing.github.com/depqbf/ for released versions. The version re-
ported in this section is available from the first author.

4 Visit http://fmv.jku.at/seidl/qbfeval2012r2/ and select “eval12bloqqer,”
5 Please visit http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz

for binaries, logs and a longer report.

http://lonsing.github.com/depqbf/
http://fmv.jku.at/seidl/qbfeval2012r2/
http://www.kr.tuwien.ac.at/staff/lonsing/sat13submission.tar.gz
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Fig. 3. Cactus plot of run times related to Table 3 for QBFEVAL-12-SR

unsatisfiable ones. The PAR10 time (i.e., average time with timeouts multiplied by 10)
of lazy QPUP is moderately smaller than the time of the other two configurations.

Table 4 shows detailed statistics on instances solved by both QPUP learning and
traditional QCDCL. Due to the large overlap in solved instances these statistics are
comparable. (Lazy QPUP counts closely match QPUP.) QPUP is higher on most counts,
but is 12% lower on backtracks. Additional tests on the 373 preprocessed QBFEVAL-
10 instances that were not solved during preprocessing showed a similar pattern, and
are omitted to save space.

When all three methods are forced to use the same variable re-weighting policy, it
becomes clear that QPUP produces shorter learned clauses than traditional QCDCL.
It is noteworthy that the logical computation (meaning the sequence of assumptions,
safe assignments, learned clauses and backtracks) was exactly the same on 228 of the
273 instances solved by both methods on preprocessed QBFEVAL-10 instances. This
confirms that QPUP almost always produces the same learned constraint as traditional
QCDCL. For the 45 instances that did differ in their logical computations Table 5
shows some statistics. In one striking instance,6 both methods learned the same first
four clauses, but then the fifth learned clause by traditional QCDCL was a superset of
that learned by QPUP, and contained 128 additional literals (534 vs. 406).

Lazy QPUP performed the same logical computation as QPUP on 97% of the 273
instances reported in Table 5 and used 111 CPU Seconds on average. In addition it
solved one additional instance on which QPUP timed out, which we attribute to a faster
procedure, not a different learning strategy.

The overall picture in Table 3, the reduced numbers of backtracks in Tables 4 and 5,
and the reduced learned-clause lengths in Table 5 show the potential of QPUP learning.
Higher resolution counts for QPUP are expected when QCDCL does not encounter
conflicting universal literals, based on the analysis of PUP [18], but other benefits of
QPUP appear to compensate.

6 TOILET16.1.iv.32-shuffled
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Table 3. DepQBF with QPUP, lazy QPUP, and traditional QCDCL on the 276 preprocessed in-
stances from QBFEVAL-12-SR. Times are average including timeouts multiplied by 10 (PAR10).

Solved Time
(sat,unsat) (avg.)

Trad. QCDCL 119 (62, 57) 5,148
QPUP 119 (63, 56) 5,151
Lazy QPUP 125 (65, 60) 4,963

Table 4. Comparison of QPUP learning and traditional QCDCL based on the runs from Table 3.
Averages are based on 113 instances solved by both configurations. “Resolutions” and “length”
are per learned clause.

Both Solved Trad. vs. QPUP
Time 55.21 51.93
Assignments 9.1·106 11.1·106
Backtracks 59,000 52,000
Resolutions 23.50 34.05
Length 53.58 82.50

Table 5. Comparison of traditional QCDCL and QPUP learning on the 45 instances with dif-
fering logical computation among the 273 preprocessed QBFEVAL-10 instances solved by both
configurations. Statistics are average values and standard deviation (σ) of the difference.

Trad. QCDCL QPUP Difference σ of Diff.
No. Learned Clauses 228,666 154,379 74,287 210,332
Learned Clause Length 191.8 131.4 60.4 141.7
No. Clause Resolutions 3.96·106 4.80·106 -0.84·106 4.93·106
No. Learned Cubes 79,555 89,723 -10,168 54,825
Learned Cube Length 409.2 408.3 0.9 7.2
No. Cube Resolutions 51,674 107,167 -55,493 237,015
Backtracks 268,528 209,942 58,586 216,325
CPU Seconds 208 186 22 111

7 Conclusion

This paper presented QPUP learning, a novel approach to conflict-driven clause-learn-
ing (QCDCL) in QBF solvers. Given a conflict graph, the idea is to resolve on variables
in the same order as they were assigned, rather than in reverse order. In contrast to
traditional QCDCL, QPUP learning is a polynomial-time procedure.

The implementation of QPUP learning in DepQBF is compatible with sophisticated
techniques like pure literals, dependency schemes [14,15,8], proof generation and hence
also certificate extraction. Experimental results show the potential of QPUP learning
but, at the same time, identified several procedural optimizations as future work.



Efficient Clause Learning via QBF Pseudo Unit Propagation 115

Further research directions are comparison of certificates obtained by resolution
proofs based on traditional QCDCL and QPUP learning, a detailed analysis of the
learned clauses, and formally proving the correctness of QPUP learning in the con-
text of guard formulas and dependency schemes, building upon the framework of guard
formulas.
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Abstract. This work presents a novel strategy for improving SAT solver
performance by using concurrency. Rather than aiming to parallelize
search, we use concurrency to aid a conventional CDCL search procedure.
More concretely, our work extends a conventional CDCL SAT solver
with a second computation thread, which is solely used to strengthen
the clauses learned by the solver. This provides a simple and natural
way to exploit the availability of multi-core hardware.

We have employed our technique to extend two well established
solvers, MiniSAT and Glucose. Despite its conceptual simplicity the tech-
nique yields a significant improvement of those solvers’ performances, in
particular for unsatisfiable benchmarks. For such benchmarks an exten-
sive empirical evaluation revealed a remarkably consistent reduction of
the wall clock time required to determine unsatisfiability, as well as an
ability to solve more benchmarks in the same CPU time.

The proposed technique can be applied in combination with exist-
ing parallel SAT solving techniques, including both portfolio and search
space splitting approaches. The approach presented here can thus be seen
as orthogonal to those existing techniques.

1 Introduction

Propositional satisfiability (typically abbreviated SAT) is the problem of finding
a satisfying truth assignment for a given propositional logic formula, or deter-
mining that no such assignment exists. This classifies the formula as respectively
satisfiable or unsatisfiable. SAT is an important theoretical problem as it was
the first problem ever to be proven NP-complete [8].

Despite the theoretical hardness of SAT, current state-of-the-art decision pro-
cedures for SAT, so called SAT solvers, have become surprisingly efficient. The
introduction of Conflict Driven Clause Learning (CDCL) [23] was a crucial
step in the process of making these algorithms into industrial strength prob-
lem solvers. However, modern SAT solvers are not just efficient implementations
of the CDCL search procedure. Instead, they implement several forms of extra
reasoning. For example, formula simplification before CDCL search, so called
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preprocessing, is commonly used. An important work for the widespread adap-
tation of this technique was the introduction of an efficient preprocessor called
SatELite [10]. Some modern solvers, such as Lingeling [6], use inprocessing, which
is the sequential interleaving of search and simplification procedures. For a re-
cent and extensive overview of pre- and inprocessing techniques, as well as a
concise set of rules formalizing such techniques please refer to [21].

Another technique that is crucial for performance, but not part of the core
CDCL search procedure is conflict clause strengthening (e.g. [11,14,29]). This is
usually performed during conflict analysis (see Sec. 2). The length of a conflict
clause can be efficiently reduced to a minimal clause implied by the set of clauses
used in its derivation [14,29]. Hence, the name conflict clause minimization is also
commonly used [11]. However, reducing a conflict clause to a minimal conflict
clause implied by all clauses in the formula is NP-hard, as this clause is of length
zero iff the formula is unsatisfiable. In [14] the related Generalized Conflict-
Clause Strengthening problem was defined and proven NP-hard.

Sequentially interleaving a more expensive conflict clause strengthening
procedure with the core CDCL search procedure may provide performance im-
provements, but it is hard to develop good heuristics for deciding when to switch
between searching and conflict clause strengthening. As the majority of computer
hardware is nowadays equipped with multi-core CPUs conflict clause strengthen-
ing can instead be performed in parallel with the core search procedure. We have
developed a novel solving architecture that uses two computation threads, one
for CDCL search and one solely for strengthening conflict clauses. The conflict
clause strengthening algorithm used is similar to existing algorithms for prob-
lem clause strengthening [25,17]. In extensive experimental results we show the
performance of two implementations of our architecture, based on two different
well established SAT solvers, MiniSAT [12] and Glucose [2].

For all experiments we will present results regarding wall clock time and CPU
time. Wall clock time is defined as the amount of time that passes from the
start to the finish of the solving process, and this measure is independent of the
amount of resources that are used during that time. CPU time on the other hand
is the sum of the time spend by each of the cores used, i.e. if a single program
uses all the computation power of two CPU cores concurrently then the CPU
time grows twice as fast as the wall clock time.

The presented two threaded solver maintains all the features of a normal
SAT solver, including for example its interface for incremental SAT solving [13].
Hence, our new solver could in principle replace the conventional solver inside the
parallel incremental solver that we presented in recent work [30]. Although the
performance of the technique presented here in combination with incremental
SAT is interesting this is left for further work.

One may consider a parallelization of an algorithm as a strategy for assigning
any number of simultaneously available computation resources to performing a
single task. By that definition this work does not present a parallelization of a
SAT solver, as only the use of exactly two concurrent computation threads is
considered. However, existing techniques for parallelizing SAT algorithms can be
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used in combination with our two threaded solver, in order to obtain a generic
parallelization. Even running multiple copies of our two threaded solver is a
practical proposition for such environments, given its good performance regard-
ing CPU time. Hence, we will provide a short overview of relevant work on
parallelizing SAT solvers.

Two major approaches for parallelizing SAT algorithms can be distinguished
[19]. The first is the classic divide-and-conquer approach, which aims to parti-
tion the formula to divide the total workload evenly over multiple SAT solver in-
stances [7,28,32]. The second approach is the so called portfolio approach [16,22].
Rather than partitioning the formula, portfolio systems run multiple solvers in
parallel each of which attempt to solve the same formula. The system finishes
whenever the fastest solver is done. Both approaches can be extended with some
form of conflict clause sharing between the solver threads.

Although other techniques have recently been developed (e.g. [18,19]) portfolio
solvers have received the majority of the research attention in recent years.
Some insight into the good performance of these approaches is provided in [20].
ManySAT [16] is a well known adaptation of the portfolio strategy. It employs
conflict clause sharing and is thus a so called cooperative portfolio. It is build
around running multiple copies of the sequential solver MiniSAT [12] in parallel.
Although each of the solver threads may be given different settings the threads
are largely homogeneous.

Other portfolio solvers are non-cooperative, but use truly heterogeneous solver
threads. Examples are ppfolio1, SATzilla [31], and 3S [22]. These all use a col-
lection of different SAT solvers from several developers. Whereas SATzilla and
3S try to be clever about which solvers to use for solving a particular formula
ppfolio is completely näıve. In fact, ppfolio is a very simple program that just
executes multiple solvers in parallel. It was meant to illustrate a lower bound on
what is achievable using portfolios1, but it turned out to be one of the strongest
solvers at the SAT Competition2 in 2011.

In several recent cooperating portfolios using homogeneous solver threads,
such as Plingeling [6], cooperation is limited to sharing unit clauses only. The
relatively weak performance of portfolios sharing more than just unit clauses was
the motivation for work presenting a new set of clause sharing heuristics [1]. The
solver implementing those heuristics, called PeneLoPe, won a silver medal at the
SAT Challenge in 2012 [4]. The winner, solving one instance more, was a non-
cooperative portfolio called pfolioUZK [4]. PeneLoPe is based on ManySAT and
its performance is remarkable, considering its use of homogeneous solver threads.

2 Definitions

A literal l is either a Boolean variable x or its negation ¬x. Double negations
cancel out, hence ¬¬l = l. An assignment ρ is a set of literals such that if l ∈ ρ
then ¬l /∈ ρ. If l ∈ ρ we say that literal l is assigned the value true. If ¬l ∈ ρ
1 www.cril.univ-artois.fr/~roussel/ppfolio
2 www.satcompetition.org

www.cril.univ-artois.fr/~roussel/ppfolio
www.satcompetition.org
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it is said that l is assigned the value false, or equivalently that l is falsified. If
for some literal l neither l nor ¬l is in the assignment ρ then l is unassigned.
For an assignment ρ we denote by ¬ρ the set {¬l | l ∈ ρ}. A clause c is a set
of literals c = {l0, l1, · · · , ln} representing the disjunction

∨
c = l0 ∨ l1 · · · ∨ ln.

Hence, clause c is satisfied by assignment ρ iff c ∩ ρ �= ∅. A clause consisting of
exactly one literal is called a unit clause.

As typical in work on SAT solvers, we only consider formulas in conjunctive
normal form (CNF). Such formulas are formed as conjunctions of disjunctions,
and hence can be represented as sets of clauses. The formula F under the assign-
ment ρ is denoted Fρ as in [5]. It is defined as the formula F after removing all
clauses satisfied by ρ, followed by shrinking the remaining clauses by removing
literals that are falsified by ρ. Formally:

Fρ = { c \ ¬ρ | c ∈ F and c ∩ ρ = ∅ }

Let iup(F , ρ) be the assignment ρ that is the result of executing the following
iterative unit propagation loop:

while {l} ∈ Fρ do ρ = ρ ∪ {l}

Moreover we define F|ρ = F iup(F , ρ), which is the result of simplifying formula F
under assignment ρ by iterative unit propagation. If ∅ ∈ F|ρ we say that a conflict
has been reached. If on the other hand F|ρ = ∅ then assignment ρ satisfies F . The
DPLL algorithm [9] is the classical algorithm for determining the satisfiability
of CNF formulas. It starts from the formula F and an empty assignment ρ, and
alternates between iterative unit propagation and branching decisions. During a
branching decision, or simply decision, the algorithm picks a decision variable xd
that is unassigned by ρ and assigns it to either true or false. Whenever iterative
unit propagation leads to a conflict the algorithm backtracks to the last decision
to which it had not backtracked before, and negates the assignment made at that
decision. This backtracking search continuous until either all variables of F are
assigned, or all branches of the search tree have been unsuccessfully explored. In
the former case ρ satisfies F , in the latter case F is unsatisfiable.

Most modern SAT solvers are so called Conflict Driven Clause Learning
(CDCL) solvers [23,24]. Just like the basic DPLL procedure the search for a
satisfying assignment proceeds by alternating between iterative unit propaga-
tion and branching decisions. The crucial difference is what happens when a
conflict is reached. In this case, a CDCL solver will analyze the sequence of deci-
sions and implications that lead to the conflict. During this conflict analysis the
solver derives a conflict clause, which is a clause implied by the input formula
that gives a representation of the “cause” of the conflict. By including the con-
flict clause in the set of clauses on which iterative unit propagation is performed
hitting another conflict with the same cause can be avoided.

An important property of the most popular clause learning scheme for CDCL
solvers, called first unique implication point (1-UIP) [24], is that each con-
flict clause contains exactly one literal that was falsified by the last decision
or the subsequent unit propagation. This literal is called the asserting literal.
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After conflict analysis the CDCL solver must backtrack. Unlike the DPLL pro-
cedure CDCL solvers use non-chronological backtracking, which is driven by the
conflict clauses. By definition all literals in a conflict clause are assigned the
value false by assignment ρ when it is derived. After learning conflict clause c,
the solver backtracks until the earliest decision at which all literals of c except
the asserting literal la are assigned false. The literal la is then assigned the value
true, as this is required to satisfy c. Subsequent unit propagation may yield a
new conflict which is handled in the same way.

Any conflict clause c, derived by a CDCL solver from the formula F with
the aid of previously derived conflict clauses P , can be derived using a so called
trivial resolution derivation [5]. This implies that if the value false is assigned
to all literals of a conflict clause, then the result of simplifying formula F ∪ P
under that assignment by iterative unit propagation is guaranteed to reach a
conflict, i.e. the following property holds:

∅ ∈ F ′|ρ for F ′ = F ∪ P and ρ = {¬l | l ∈ c} (1)

Another important property of conflict clauses derived using the 1-UIP scheme
is their 1-empowerment property [27]. Informally this means that if all literals
of a conflict clause c except its asserting literal la are assigned to false, then
iterative unit propagation on the set F ∪ P does not yield the necessary truth
assignment true to la, i.e. the following property holds:

la /∈ iup(F ′, ρ) for F ′ = F ∪ P and ρ = {¬l | l ∈ c and l �= la} (2)

It is said that c is 1-empowering with respect to F ∪ P via its asserting literal
la. This property implies that adding the conflict clause c to the learnt clause
set P strictly extends the propagation abilities of the solver. In other words, the
deductive power of the CNF formula F ∪ P is strictly increased [17].

3 The Solver-Reducer Architecture

We propose an architecture using two concurrently executing threads, which
are called the solver and the reducer. The solver acts like any conventional
SAT solver, except for its interaction with the reducer. The interaction between
the solver and the reducer is limited to passing clauses through two shared-
memory data structures called the work set and the result queue. The work set is
used to pass clauses from the solver to the reducer, the result queue is used
for passing clauses in the opposite direction, as illustrated in Fig. 1.

Whenever the solver learns a clause it writes a copy of that clause to the
work set. The reducer reads clauses from the work set and tries to strengthen
them. When the reducer successfully reduces the length of a clause, it places
the new shorter clause in the result queue. The solver checks frequently whether
there are any clauses in the result queue. If this is the case the solver enters the
clauses from the result queue in its learnt clause set. It is possible that all of the
literals in such a clause are assigned the value false in the current assignment
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solver reducer

work set

result queue

Fig. 1. The solver-reducer architecture

ρ of the solver. In this case the solver must backtrack before entering the
clause in the set. Our implementation of on-the-fly addition of “foreign” clauses
in the solver tries to keep backtracking to a minimum. If the clause is asserting
then this is handled in the same way as for normal conflict clauses. We could have
chosen to introduce the clauses only when the solver’s assignment ρ contains no
decision variables (as in e.g. [30]), but a more dynamic approach was considered
more appropriate here. There is no mechanism to ensure that the clause c is
removed from the solver’s learnt clause set when a clause c′ ⊂ c is obtained
from the result queue.

Our proposed architecture is conceptually simple, and we will show that it
can provide substantial performance improvements. An unfortunate side-effect
of our approach is that the behavior of the solver becomes non-deterministic, as
the execution order is determined by the operating system’s thread scheduling
policy. This means that runs of our two threaded solver are not reproducible,
and performance may vary drastically in between two different runs on the same
formula. The same problem occurs also when using more conventional paral-
lelizations of SAT solvers. In [15] it was shown that a deterministic version of
ManySAT, using synchronization barriers and a dynamic heuristic for deciding
when to perform synchronization, on average performed almost as well as the
original version. We believe that a similar technique could be applied successfully
in an implementation of the solver-reducer architecture.

3.1 The Reducer

The reducer continuously checks the work set for new input clauses, and then
runs its reduction algorithm. The algorithm is based on unit propagation and
conflict clause learning. Basically, the algorithm assigns the literals of the input
clause cin to false one by one until iterative unit propagation leads to a conflict,
or all variables are assigned. The pseudocode for this algorithm is given in Fig. 2,
where PR represents the set of learnt clauses maintained by the reducer.

Consider the case where the algorithm returns cout from Line 7. This case
occurs iff there is no trivial resolution derivation of cin from F ∪ PR. This is
possible, because the set PR does not necessarily contain all the clauses PS
that were contained in the solver when cin was derived. The returned clause
cout ⊆ cin is obtained by removing with respect to cin any literals l ∈ cin for
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1. cout = ∅; ρ = ∅
2. F ′ = F ∪ PR

3. for l ∈ (cin \ cout) s.t. ¬l /∈ iup(F ′, ρ)
4. if ∅ ∈ F ′|ρ then (PR, cnew) = analyze(F , PR, ρ); return cnew

5. cout = cout ∪ {l}; ρ = ρ ∪ {¬l}
6. PR = PR ∪ {cout}
7. return cout

Fig. 2. Pseudocode for the reducer’s algorithm

which the value false of the corresponding literal l was implied rather than
assigned. This implements self-subsumption resolution [10]. It is sound because
the forced falsification of l means that for some c ⊂ cin it holds that F |= c∪{¬l},
and by resolution on the clauses cin and c ∪ {¬l} it follows that F |= cin \ {l}.
Because cout is 1-empowering with respect to F ∪ PR it is added to PR.

Now consider the case were the algorithm returns after calling the function
analyze on Line 4 of the pseudocode. The function analyze analysis the con-
flicting assignment ρ. Until ρ is non-conflicting or ρ = ∅ it performs backtracking
by removing literals from ρ, conflict clause learning by adding clauses to PR,
and iterative unit propagation. Because for each clause added to PR at least
one literal is removed from ρ the number of new conflict clauses is bounded by
|ρ| ≤ |cin|. These conflict clauses are crucial for the performance of the reducer,
but they are never shared with the solver. The function analyze returns a
clause3 cnew such that cnew ⊆ cout. Consider the assignment ρ after the back-
tracking performed by analyze. If ρ = ∅ then cnew = ∅. Else, for some l ∈ cout
and ρ′ ⊆ ρ it holds that l ∈ iup(F ′, ρ′). In this case cnew = {l′ | ¬l′ ∈ ρ′} ∪ {l}.

Our reducer’s algorithm is very similar to the vivification algorithm of [25].
The vivification algorithm aims to find redundant literals in the problem clauses
c ∈ F by assigning the value false for the literals in c, and performing unit
propagation on the formula F \{c}. In case a conflict arises the algorithm learns
only exactly one new conflict clause. The order in which the literals are assigned
is heuristically controlled in the vivification algorithm. In our reducer imple-
mentation the literals are assigned in the order in which they appear in the
clause. Due to the organization of the conflict clause analysis procedure of the
solver this means that the asserting literal of the conflict clause is always as-
signed first. Note that the clause c ∪ {la}, where la is the asserting literal, is
equivalent to the implication (¬

∨
c)→ la. Although the clause can be rewritten

as an implication with any one of its literals as the consequent, this implica-
tion of la is the one that guaranteed the 1-empowering property of the clause
in the solver. By starting from la, the reducer aims to reduce the size of the
antecedent ¬c of this deduction power increasing implication.

3 In the implementation cnew is obtained using MiniSAT’s analyzeFinal function,
where ρ is regarded as the set of assumptions [13].
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The reducer can not do anything that a conventional solver could not also
do in the same number of steps. This means that the solver-reducer architecture
does not implement a stronger proof system (see, e.g. [5]) than a conventional
CDCL solver. In fact, a modern SAT solver using the VSIDS heuristic [24],
phase saving [26], and frequent restarts (e.g. [3]) has a tendency to “run towards
conflicts” just like the reducer does. Consider a SAT solver using phase saving
and extreme parameter settings: It restarts after every conflict, and uses a VSIDS
activity decay so large that the set of variables involved in the most recent conflict
always have larger activities than any other variables. In this case, after every
conflict and the subsequent restart, the VSIDS heuristic will pick as decision
variables those variables that occur in the most recent conflict clause. Combined
with phase saving this will lead to the same sequence of assignments as the
reducer would make to reduce that conflict clause.

3.2 The Work Set

A set of clauses stored in a shared-memory data structure called the work set is
forming the inputs of the reducer. It is possible to implement the work set as a
simple unbounded FIFO queue. This may be sufficient if the reducer has only
very few clauses in its learnt clause set, as in this case it can often perform unit
propagation fast enough to keep up with the conflict clause generation of the
solver. However, the clause learning in the reducer is crucial to the strength
of the reduction procedure. As the size of reducer’s learnt clause set increases
it is able to provide stronger reduced clauses, but at a lower speed.

If the reducer can not keep up with the solver then a work set implemented
as a FIFO queue will just keep growing. As the reducer lags behind it will
only strengthen “old” clauses, that are less likely to be of use to the solver.
An unbounded LIFO queue would make the reducer focus on reducing recent
clauses first, but strong clauses may shift to the back of such a queue quickly if the
reducer is momentarily busy. Giving preference to strengthening clauses that
are likely to be “important” to the solver is natural. The “quality” of a conflict
clause can be crudely approximated by its length, or alternatively by its Literal
Blocks Distance (LBD) [2]. Hence, an alternative work set implementation could
keep an unbounded set of clauses sorted by their length. However, as the average
conflict clause length changes during the search, a clause that was relatively long
(“bad”) at the time it was learned may seem relatively short (“good”) after some
time has passed. Thus, this unbounded sorted set also leads to reducing outdated
clauses. The same argument holds when the LBD is used for sorting the set, as
the LBD measure of a clause is bounded by its length.

We achieved the best performance using work set with a limited capacity. If
the solver enters a clause into a full work set then this clause will replace the
oldest clause in the set. If the reducer requests a clause from the work set it
is given the “best” clause from the set. In this way, the reducer’s inputs are
kept both “fresh” and “good”.
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3.3 Implementation

We have implemented our solver-reducer architecture on top of two well estab-
lished existing SAT solvers, MiniSAT 2.2.04 [12] and Glucose 2.15 [2]. Mini-
SAT is often used as a basis for the development of new solving techniques,
as witnessed by the existence of a “MiniSAT hack track” at the SAT competi-
tions. Glucose won the SAT Challenge in 2012 [4]. Older Glucose versions won
at the applications tracks of the SAT competitions in 2009 (for unsatisfiable
benchmarks) and in 2011 (for mixed benchmarks). Because Glucose is based on
MiniSAT the solver-reducer architecture was easy to port to Glucose once it had
been developed inside MiniSAT. We will refer to the two open-source6 solver-
reducer implementations we created as respectively MiniRed and GlucoRed.

Both the solver and the reducer of MiniRed are build as extensions to
the MiniSAT solver. All the default settings and heuristics of MiniSAT were
maintained in the solver and the reducer. Similarly, the solver and the
reducer of GlucoRed maintain the default settings of the Glucose solver. An
example of a heuristic that concerns both the solver and the reducer is
the heuristic for deciding when to reduce the size of their learnt clause sets.
GlucoRed uses the LBD measure of a clause as a sorting metric for the work
set, i.e. when the reducer requests a clause from the work set it is given the
clause with the smallest LBD. Because MiniSAT does not compute LBD values
MiniRed uses clause length as a sorting metric instead. The result queue is
implemented as an unbounded FIFO queue.

The two threads interact solely by passing clauses, or more precisely pointers
to clauses, through the work set and the result queue. Exclusive access to those
datastructures is achieved by the use of a single lock. To reduce the number of
times the lock must be acquired the solver and reducer always combine read
and write operations. In the reducer this is straightforward: If the length of a
clause is reduced, then the new shorter clause is written to the result queue once
the lock has been obtained to read a new input clause from the work set. The
solver combines reading and writing by checking the result queue for new
reduced clauses whenever it has acquired the lock to write a new clause to the
work set, i.e. whenever it derives a conflict clause. The solver always postpones
the addition of reduced clauses from the result queue to its learnt clause database
until just before its next branching decision.

4 Experimental Evaluation

All experiments in this work were performed in a computing cluster, using ma-
chines that each have two six core Intel Xeon X5650 processors7. A memory
limit of 7GB was enforced.

4 http://www.minisat.se
5 http://www.lri.fr/~simon
6 http://users.ics.aalto.fi/swiering/solver_reducer
7 These resources were provided by the Aalto Science-IT project.

http://www.minisat.se
http://www.lri.fr/~simon
http://users.ics.aalto.fi/swiering/solver_reducer
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Fig. 3. Erratic use of the work set during three different runs

The MiniSAT [12] distribution provides a version of the solver with an inte-
grated preprocessor, which is similar to SatELite [10]. During the SAT Challenge
[4] the developers of Glucose [2] did not use such an internal preprocessor. In-
stead, they provided a script that first ran SatELite, and then ran Glucose on the
resulting formula. For a fair comparison of the strength of the solvers we chose
to run all solvers without enabling their integrated preprocessors, and provide
them with both original and simplified benchmarks.

The first set of benchmarks we used is named Competition, and contains in
total 547 benchmarks. The set combines 300 benchmarks from the application
track of the SAT competition held in 2011, and the 247 application track bench-
marks from the SAT Challenge 2012 that were marked as unused in previous
competitions [4]. The set Simplified contains 501 benchmarks that are the re-
sult of running SatELite on the set Competition. The difference in size between
the Competition set and the Simplified set is caused by leaving out benchmarks
that were proven unsatisfiable by SatELite, and benchmarks that could not be
simplified in 15 minutes.

4.1 Capacity of the Work Set

All experiments used a work set with a capacity of 1000 clauses. The average
performance of our implementation is not particularly sensitive to this setting.
It is however hard to make any general statements about the typical use of the
work set. We illustrate this using a small experiment for which we solved three
unsatisfiable benchmarks from the Simplified set using MiniRed. Each of these
benchmarks takes just over thirty seconds to solve using conventional MiniSAT.
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In Fig. 3 the number of clauses in the work set just before a new clause is inserted
is plotted for the solver’s first 140 000 conflict clauses8. The graph shows that
the use of the work set is very different for the three benchmarks. For f8b the set
fills up almost immediately and remains full afterwards, whereas for c7nidw the
size keeps varying dramatically. For benchmark IBM9 the reducer easily keeps
up with the supply of clauses, as the work set never fills. Interestingly, IBM was
also the only one of the three benchmarks for which the added reducer did not
seem to be beneficial for the solver’s performance.

4.2 Clause Length

The numbers in Fig. 4 were obtained using MiniRed and the benchmarks from
the Simplified set. MiniRed was run twice for every benchmark, once with the
default settings, and once with the standard MiniSAT conflict minimization
procedure [11] disabled in the solver. In total 367 benchmarks were solved
within 1800 seconds of CPU time during both runs.

Let us first focus on the numbers printed in a bold font, which represent the
results for MiniRed’s default settings. The numbers on the arrows indicate the
average length of all the clauses that passed it during the 367 runs. Note that
the absolute values of these numbers are meaningless, as they are averaged over
a large set of independent and very different runs. The relation between these
numbers nevertheless provides some insight in the operation of our architecture.

The arrow that points up out of the work set represents the clauses that are
deleted from the work set because of its limited capacity, as described in Sec. 3.2.
During this experiment on average 34.6% of the clauses placed in the work
set were deleted. The average length of those clauses is large (91.3) compared to
the average length of the clauses that are entering the work set (56.8). This was
expected, as the work set delivers the shortest clauses first to the reducer. The
average length of the clauses passing through the reducer dropped from 38.1
to 27.6 literals. On average 30.2% of the clauses remain the exact same length
after passing through the reducer. These clauses are not placed in the result
queue, as represented by the arrow that points down at the bottom of Fig. 4.
Unsurprisingly the average length of those clauses is rather short (15.3).

The results for the experiment in which MiniRed was run with the solver’s
conflict clause minimization disabled are printed in an italic font in the figure.
The total number of conflict clauses generated by the solver over the 367 runs
grew by 17%, and those clauses were on average 2.5 times longer. However, the
clauses that are actually delivered from the work set to the reducer are not
much longer than those in the first experiment, and after reduction they are even
slightly shorter. Surprisingly, the average overall performance of MiniRed was
almost identical in both experiments. Note that disabling the conflict clause
minimization in conventional MiniSAT results in a substantial degradation of

8 For the benchmarks c7nidw and IBM the total number of conflict clauses generated
by the solver was slightly over 300 000 clauses, for f8b the total was around 150 000.

9 IBM abbreviates IBM FV 2004 rule batch 26 SAT dat.k95.
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reduced?

work set
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34.6% discarded from work set 40 .3%

30.2% not reduced 16 .4%

56.8 143 .4 38.1 44 .4

27.6 25 .0
32.9 27 .432.9 27 .4

15.3 12 .9

91.3 287 .9

Fig. 4. Average clause lengths over 367 benchmarks

the performance [11], hence MiniRed’s consistent good performance is made
possible by the reducer. It apparently did not harm the solver that the
length of the longest clauses was never reduced at all, not even using the conflict
clause minimization routine. In the remainder of this work we will only use the
default settings, in which the solver’s conflict clause minimization is enabled.

4.3 Performance

Table 1 contains the number of benchmarks solved by the four different solvers
within 900 seconds of wall clock time. The numbers in the table that are printed
in a smaller font inside brackets represent the number of benchmarks solved
within 1800 seconds of CPU time. The column VBS (Virtual Best Solver) pro-
vides the total number of benchmarks solved by at least one of the four solvers.
The columns labelled Δ underline the difference between the number of bench-
marks solved with- and without reducer.

Note the impressive performance improvement the solver-reducer architecture
provides for unsatisfiable benchmarks. MiniRed improves the number of unsat-
isfiable benchmarks solved for the Simplified set by 58 benchmarks, and even
regarding CPU time still provides a 31 benchmark improvement over MiniSAT.
The gaps are smaller but still significant for the Glucose based implementation.
The results for the unsatisfiable benchmarks from the Competition set are pre-
sented as cactus plots in Fig. 5. Comparison is made based on wall clock time in
Fig. 5a and based on CPU time in Fig. 5b. The same is done for the unsatisfiable
benchmarks from the Simplified set in Fig. 6a and Fig. 6b. The logarithmic-scale
scatter plots in Fig. 7 and Fig. 8 provide another presentation of the wall clock
time performance of MiniSAT versus MiniRed, and Glucose versus GlucoRed.
The remarkable consistency of the improvement for unsatisfiable benchmarks
can be clearly seen.

It is not surprising that the reducer does not contribute much to the aver-
age performance for satisfiable benchmarks, and that thus for such benchmarks
the addition of the reducer results in worse performance regarding the CPU
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Table 1. Number of benchmarks solved

Set VBS MiniSAT MiniRed Δ Glucose GlucoRed Δ

Competition UNSAT 239 (251) 151 (171) 208 (208) 57 (37) 207 (234) 235 (235) 28 (1)

SAT 177 (179) 166 (174) 168 (168) 2 (-6) 158 (167) 155 (157) −3 (-10)

Simplified UNSAT 246 (249) 164 (191) 222 (222) 58 (31) 220 (232) 237 (237) 17 (5)

SAT 166 (168) 150 (157) 159 (159) 9 (2) 155 (157) 147 (149) −8 (-8)

Table 2. Number of benchmarks in the Simplified set solved by PeneLoPe

GlucoRed PeneLoPe-2 PeneLoPe-4 PeneLoPe-8

UNSAT 237 (237) 227 (227) 231 (221) 247 (217)

SAT 147 (149) 142 (142) 160 (154) 164 (149)
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Fig. 5. Results for unsatisfiable benchmarks from the Competition set
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time. Between Glucose and GlucoRed, the number of satisfiable benchmarks
from the Simplified set degrades even regarding wall clock time. Glucose uses
many tunable heuristics that we left untouched when creating GlucoRed. Some
of these, such as the restart blocking heuristic [3], may be negatively affected
by the on-the-fly introduction of reducer result clauses. An important mea-
sure for the heuristics inside Glucose is the average LBD of its conflict clauses.
GlucoRed does not incorporate the clauses provided by the reducer in this
average. Moreover, Glucose and GlucoRed use the LBD measure for deciding
which clauses to remove when reducing their learnt clause sets. MiniSAT and
MiniRed use an activity based heuristic for this purpose. We expect that for
implementations of the solver-reducer architecture the latter is better because
it has a natural tendency to delete subsumed clauses. This is important as the
reducer provides clauses to the solver that are subsumed by clauses that
are (or were) already in its learnt clause set. Adaptation of the heuristics from
PeneLoPe [1] may also improve GlucoRed’s performance.

It would be interesting to study the performance of a PeneLoPe style port-
folio of solver-reducer implementations such as GlucoRed. Table 2 presents the
number of benchmarks in the Simplified set solved by PeneLoPe using 2, 4 and
8 cores. Recall that PeneLoPe is a portfolio solver using homogeneous solver
threads and clause sharing. This type of portfolio is expected to perform best
on formulas that are satisfiable, as compared to unsatisfiable formulas the run
time deviations between multiple runs of a similar solver are larger [19]. Pene-
LoPe witnesses this by solving more satisfiable benchmarks using four threads
than it does using two threads, given the same amount of CPU time. Clearly,
GlucoRed and PeneLoPe have orthogonal strengths. Given the same amount of
CPU time GlucoRed can prove more benchmarks unsatisfiable than PeneLoPe,
regardless of whether 2, 4 or 8 threads are used for PeneLoPe. For unsatisfiable
benchmarks the two threaded solver GlucoRed is so much more efficient that in
900 seconds of wall clock time it solves six unsatisfiable benchmarks more than
PeneLoPe does using four threads.

5 Conclusions

This work presents the solver-reducer architecture, which employs strengthening
of conflict clauses in parallel with CDCL search in a modern SAT solver. An
extensive empirical evaluation showed the good performance of this conceptually
simple idea, which can be combined with conventional parallelization strategies.

The use of concurrency to aid conventional sequential CDCL search, rather
than to parallelize that search, has not been suggested before. This simple but
novel idea can be exploited in many different ways. For example, a logical next
step would be to consider concurrent formula simplification. This would be a
natural way of employing concurrency in recent solvers that use inprocessing,
i.e. the sequential interleaving of solving and simplifying procedures.
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Abstract. Parallelization is a natural direction towards the improvements in the
scalability of algorithms for the computation of Minimally Unsatisfiable Subfor-
mulas (MUSes), and group-MUSes, of CNF formulas. In this paper we propose
and analyze a number of approaches to parallel MUS computation. Just as it is
the case with the parallel CDCL-based SAT solving, the communication, i.e. the
exchange of learned clauses between the solvers running in parallel, emerges as
an important component of parallel MUS extraction algorithms. However, in the
context of MUS computation the communication might be unsound. We argue
that the assumption-based approach to the incremental CDCL-based SAT solv-
ing is the key enabling technology for effective sound communication in the con-
text of parallel MUS extraction, and show that fully unrestricted communication
is possible in this setting. Furthermore, we propose a number of techniques to
improve the quality of communication, as well as the quality of job distribution
in the parallel MUS extractor. We evaluate the proposed techniques empirically
on industrially-relevant instances of both plain and group MUS problems, and
demonstrate significant (up to an order of magnitude) improvements due to the
parallelization.

1 Introduction

A minimally unsatisfiable subformula (MUS) of an unsatisfiable CNF formula is any
minimal, with respect to set inclusion, subset of its clauses that is unsatisfiable. MUSes,
and the related group-MUSes [15,21], find a wide range of practical applications [21,3],
and so the development of efficient MUS extraction algorithms is currently an active
area of research (see [16] for a survey, [26,4,24] for recent developments). State-of-the-
art MUS extraction algorithms use SAT solvers as NP oracles, and typically perform
a large number of SAT solver calls — each call with a different subformula of the
original input formula. The fact that many of these calls are independent suggests that
MUS computation problem might be a good candidate for parallelization.

A number of successful approaches to the parallelization of SAT solving have been
developed (see [13,19] for the recent overviews). In one of the widely used variants
of parallel SAT solvers, namely portfolio solvers, several incarnations of a sequential
solver, possibly with different configurations, are executed on the same input formula in
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parallel. An essential component of portfolio solvers built on top of CDCL-based SAT
solvers is the mechanism for the exchange of learned clauses — the communication —
between the sequential sub-solvers. As such, it is plausible, and, as we show, indeed the
case, that communication is an important aspect of any parallel MUS extraction solution
geared towards industrially-relevant problems. However, while the communication is
sound in portfolio-based parallel SAT solvers (since the sub-solvers work on the same
input formula), this is not necessarily the case in a parallel MUS extractor, since now
the formulas might differ.

In this paper we analyze a number of approaches to the parallel MUS computation.
We notice that some of the simpler of these approaches result in performance degra-
dation with respect to a sequential solution, however we do confirm the importance of
communication for the parallel MUS extraction. More importantly, we argue that the
assumption-based approach to the incremental CDCL-based SAT solving, introduced
in [9], is the key enabling technology for effective sound communication in scalable par-
allel MUS extraction algorithms, and suggest that this might also be the case in more
general settings where CDCL-based SAT solvers work on different related formulas in
parallel. We carefully analyze the communication aspect in the context of parallel MUS
extraction, and show that in this setting fully unrestricted communication is possible.
Furthermore, we propose a number of effective clause filtering techniques, and an im-
proved job distribution scheme based on the analysis of unsatisfiable cores. We evaluate
the proposed algorithms and techniques empirically, and demonstrate significant speed-
ups and scalability (e.g. median 2.94x, with up to 132x, speed up on 4 cores) on a set
of industrially-relevant MUS and group-MUS extraction benchmarks.

2 Preliminaries and Background

We assume the familiarity with propositional logic, its clausal fragment, and commonly
used terminology of the area of SAT. We focus on formulas in CNF (formulas, from
hence on), which we treat as (finite) (multi-)sets of clauses. We assume that clauses
do not contain duplicate variables. Given a formula F we denote the set of variables
that occur in F by V ar(F ), and the set of variables that occur in a clause C ∈ F
by V ar(C). An assignment τ for F is a map τ : V ar(F ) → {0, 1}. Assignments
are extended to formulas according to the semantics of classical propositional logic. If
τ(F ) = 1, then τ is a model of F . If a formula F has (resp. does not have) a model,
then F is satisfiable (resp. unsatisfiable). By F |τ we denote the reduct of the formula
F wrt. the assignment τ – that is the formula obtained from F by removing the satisfied
clauses and falsified literals from the remaining clauses. The resolution rule states that,
given two clauses C1 = (x ∨ A) and C2 = (¬x ∨B), the clause C = (A ∨B), called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We write
C = C1 ⊗x C2. Note that {C1, C2} |= C.

A CNF formula F is minimally unsatisfiable if (i) F is unsatisfiable, and (ii) for
any clause C ∈ F , the formula F \ {C} is satisfiable. The set of minimally unsatisfi-
able CNF formulas is denoted by MU. A CNF formula F ′ is a minimally unsatisfiable
subformula (MUS) of a formula F if F ′ ⊆ F and F ′ ∈ MU. The set of MUSes of a
CNF formula F is denoted by MUS(F ). A clause C ∈ F is necessary for F (cf. [14])
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if F is unsatisfiable and F \ {C} is satisfiable. Necessary clauses are often referred
to as transition clauses. The set of all necessary clauses of F is precisely

⋂
MUS(F ).

Thus F ∈ MU if and only if every clause of F is necessary. The problem of decid-
ing whether a given CNF formula is in MU is DP-complete [23]. Motivated by several
applications, minimal unsatisfiability and related concepts have been extended to CNF
formulas where clauses are partitioned into disjoint sets called groups [15,21].

The basic deletion-based MUS extraction algorithm operates in the following man-
ner. Starting from an unsatisfiable formula F , the algorithm picks a clause C ∈ F ,
and tests the formula F \ {C} for satisfiability. If the formula is unsatisfiable, C is
removed from F , i.e. we let F = F \ {C}. Otherwise, C is necessary for F , and
so for every unsatisfiable subformula of F , and hence C is included in the computed
MUS. Once all clauses of the input formula F are tested for necessity in this manner,
the remaining clauses constitute an MUS of F . While the basic deletion algorithm is
neither theoretically nor empirically effective (see, for example, [16,4]), the addition of
clause-set refinement and model rotation[17] makes it the top performing algorithm for
industrially relevant instances. Clause-set refinement takes advantage of the capability
of modern SAT solvers to produce an unsatisfiable core: since a core includes at least
one MUS, all clauses outside the core can be removed from the formula after a single
UNSAT outcome. Model rotation, on the other hand, allows to detect multiple neces-
sary clauses in the case of SAT outcome: when F \ {C} ∈ SAT, the model τ returned
by the SAT solver serves as a witness of the necessity of C in F , and model rotation
attempts to (cheaply) modify τ to obtain a witnesses for other clauses of F , possibly
declaring multiple clauses of F necessary after a single SAT outcome.

Although the modern sequential CDCL-based SAT solvers are rooted in the DPLL
algorithm [8], the addition of clause learning [18] and back-jumping, drastically
changes the behaviour of the algorithm. We refer the reader to a tutorial introduction
of CDCL in [25] that illuminates these changes. Additional enhancements to CDCL
present in the modern SAT solvers include restarts [10], advanced data-structures and
decision heuristics [20], and sophisticated heuristics to control the quality of learned
clauses, based, for example, on the idea of literal block distance [2]. Many details of
the modern CDCL-based SAT solving can be found in [7]. Although the specifics of
the clause learning mechanism in CDCL-based SAT solvers are not crucial for the un-
derstanding of this paper, one aspect that is important is that new learned clauses are
derived from the clauses of the input formula and the previously learned clauses used in
a conflict via a sequence of resolutions steps. This ensures that the learned clauses are
logically entailed by the clauses of the input formula.

A detailed overview of the modern parallel SAT solving systems can be found
in [13,19]. Here, we focus on a widely used variant of parallel SAT solvers, namely
portfolio solvers, as for example MANYSAT [12], PLINGELING [6] or PENELOPE [1].
This type of solvers execute several incarnations of a sequential solver, possibly with
different configurations, on the same input formula in parallel. An important compo-
nent of this type of solvers is the exchange of learned clauses between the sequential
sub-solvers — the communication. The quality of the exchanged clauses becomes par-
ticularly important, and several heuristics have been proposed. In [12] only the clauses
of a fixed size have been shared, while in [11] this sharing filter has been improved
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further to a quality based heuristic: sharing limits are relaxed if not sufficiently many
clauses are exchanged, and when too many clauses are shared, the sharing limits are
tightened again.

Incremental SAT Solving. In many practical applications SAT solvers are invoked on
a sequence of related formulas. The incremental SAT solving paradigm is motivated by
the fact that the clauses learned from subformulas common to the successive formulas
can be reused. The most widely used approach to the incremental SAT is the so-called
assumption-based approach introduced in [9]. In this approach, a SAT solver provides
an interface to add clauses, and an interface to determine the satisfiability of the set
of currently added clauses, F , together with a user-provided set of assumption literals
A = {a1, . . . , ak} – that is, to test the satisfiability of the formula F ∪

⋃
ai∈A{(ai)}.

An important feature of the approach of [9] is that the assumptions are not added to the
formula prior to solving, but, instead, are used as the top-level decisions. As a result,
any clause learned while solving the formula F under the assumptions A can be used
to solve a formula F ′ ⊇ F under a possibly different set of assumptionsA′.

Assumption-based incremental SAT solving is often used to emulate arbitrary mod-
ifications to the input formula. Given a formula F = {C1, . . . , Cn}, the set A =
{a1, . . . , an} of fresh assumption variables is constructed (i.e. V ar(F ) ∩ A = ∅),
and the formula FA = {(ai ∨ Ci) | Ci ∈ F} is loaded into an incremental SAT
solver. Then, for example, in order to establish the satisfiability of F ′ ⊆ F , the for-
mula FA is solved under assumptions {¬ai | Ci ∈ F ′} ∪ {aj | Cj /∈ F ′}. In effect,
the assumptions temporarily remove clauses outside of F ′. If the outcome is sat, the
model, restricted to V ar(F ), is a model of F ′. If the outcome is unsat, SAT solvers
return a set of literals Acore ⊆ A such that FA is unsatisfiable under the assumptions
{¬ai | ai ∈ Acore} ∪ {aj | aj /∈ Acore}, and so the formula {Ci | ai ∈ Acore} is
an unsatisfiable core of F ′. Using the incrementality, any clause Ci ∈ F can be re-
moved permanently by adding the unit (ai) to the SAT solver. Conversely, the addition
of the unit (¬ai) permanently asserts, or finalizes, Ci. Importantly, in this setting the
negated assumptions are not resolved out of the learned clauses, whereas the negated
unit clauses are. For example, if ¬a1 and ¬a2 are assumptions, and (¬a3) is a unit
clause, and ifD is a learned clause whose derivation used clauses containing a1, a2, a3,
then the literals a1 and a2 are in D, whereas a3 is resolved out of D. If a unit (a2) is
later added to the formula, then D is satisfied and is not used for further reasoning.

An alternative to the approach of [9], discussed extensively in [22], is to add as-
sumptions as temporary unit clauses to the SAT solver’s formula. To be usable for the
subsequent incremental invocations, the clauses learned from any of these units must be
extended with the negation of the assumption literals used to derive them. Although for
the applications discussed in [22] this post-processing step pays off, as we argue shortly
the approach of [9] appears to be the key to the efficient parallel MUS extraction.

3 Parallel MUS Extraction Algorithm

In this paper we describe a low-level parallelization of a particular MUS extraction al-
gorithm, that is, while the high-level flow of the algorithm is unchanged, we off-load
various satisfiability tests required by the algorithm to multiple threads. Clearly, such
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low-level parallelization can be further integrated into a high-level parallel MUS extrac-
tor, that would run different (parallelized on the low-level) MUS extraction algorithms
in parallel. Such high-level parallelization is a subject of future research.

The parallel MUS extraction algorithm proposed in this paper is based on the hybrid
MUS extraction algorithm [17] (a variant of the deletion-based algorithm, augmented
with the clause-set refinement and model rotation). The algorithm maintains a single
master thread, and one or more worker threads. The master keeps a current snapshot
of the working formula, and distributes the work items to the workers. A work item is
simply a clause (or a group) that needs to be tested for necessity with respect to the
current working formula. Thus, each worker owns a SAT solver, and given a work item
〈F,Ci〉, the responsibility of the worker is to invoke the SAT solver on the formula
F \ {Ci} and provide the result to the master. Once all available workers are started,
the master waits for some or all of the workers to finish processing their work item.
The results of finished workers are then aggregated, the master’s working formula is
updated, and any currently running workers whose work item’s status has already been
determined (the redundant workers) are aborted. Finally, the master proceeds to assign
the next work items to the available workers, until no more work items are left.

There is a number of degrees of freedom within this framework: (i) synchronous vs.
asynchronous execution — in the synchronous mode the master waits for all workers to
finish their current task before advancing to the next iteration, while in the asynchronous
execution the master processes the results as they come in from the workers; (ii) work
distribution — whether the workers test the necessity of the same or a different clause;
(iii) communication between workers — whether the workers are allowed to exchange
the learned clauses or not. In the rest of the paper we denote various configurations
by three letter acronyms: S (resp. A) for synchronous (resp. asynchronous) execution,
followed by S (resp. D) for same (resp. different) clause distribution, followed by N
(resp. C) for absence (resp. presence) of communication between the workers.

Perhaps the simplest reasonable configuration is the asynchronous execution on the
same clause, i.e. all workers are given the same task 〈F,Ci〉 (the AS configurations).
This configuration is akin to portfolio-like solutions for parallel SAT solving in that it
takes advantage of the fact that the run times of different incarnations of the same SAT
solver working on the same formula may vary significantly. Since all workers test the
same clause, once some workers are finished (there may be more than one), all others
become redundant. Clearly, this configuration should benefit from communication — a
comparison of the results for ASN and ASC configurations (Table 1 in Sec. 5) confirms
that this is the case. Since in ASC all workers work on exactly the same formula F \
{Ci}, they can freely exchange learned clauses. The main drawback of ASC is that,
despite the communication, the workers largely duplicate each other efforts. As a result,
and since the parallel execution incurs a non-trivial overhead on the system (mostly due
to memory accesses), this configuration performs worse than a sequential solution.

The next configurations we consider are those with synchronous execution on dif-
ferent clauses (the SD configurations). Here the workers are given the tasks 〈F,C1〉,
〈F,C2〉, . . . with the goal to distribute the work of checking the necessity of the clauses
between the workers. Note that since the master algorithm employs both the clause
set refinement and the model rotation, some of the workers will end up executing
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redundant tasks. We will address this drawback shortly, however meanwhile let us dis-
cuss the communication aspect of SDC. The main observation is that the communication
between workers is not sound. To be specific, consider two workers W1, W2 working on
the tasks 〈F,C1〉, and 〈F,C2〉, respectively. That is, W1 is running its SAT solver on the
formula F \ {C1}, while W2 is working on the formula F \ {C2}. The problem now is
that some clauses derived fromC1 by W2 might not be valid logical consequences of the
formula F \ {C1} solved by W1. One could envision a number of ways to circumvent
this problem. For example, we could prohibit W1 from sending any clause derived from
C2 to W2 (and vise versa), however in this case the workers need to be aware of what
other workers are doing. Another option would be to force W1 to refuse any clause de-
rived from C1 — this solution would require to augment every exchanged clause with
some information regarding its origin, and to analyze every received learned clause. Fi-
nally, one could resort to an (NP-complete) implication test for each received clause.
Clearly, neither of these solutions are satisfactory. Yet, a natural solution does exist:
use assumption-based incremental SAT solvers. Before we come back to this impor-
tant point, we note another drawback of SD configurations: due to the fact that the run
times of the SAT calls executed by workers may vary significantly, the algorithm waits
for the completion of the longest running call while other workers are idle. Worse, it
might be that the longest call is redundant given the results of some of the workers that
finished their SAT calls faster. Thus, SD configurations might be hampered by a low
CPU utilization, and a large percentage of “wasted” SAT calls.

It should be no surprise then, that a scalable parallel MUS extraction algorithm re-
quires both the asynchronous execution, a work distribution strategy that reduces the du-
plication of workers’ efforts, and sound communication — this the configuration ADC.
The problem of sound communication in the asynchronous context not only remains,
but becomes exacerbated, as we now might have a situation where W1 is processing a
work item 〈F,C1〉, while W2 is working on 〈F ′, C2〉 with F ′ ⊂ F , and so the clauses
derived from F \ F ′ by W1 might not be valid for W2.

We now argue that assumption-based incremental SAT solving (i.e. the approach in-
troduced in [9]), often seen as simply an implementation technique, is in fact a key
enabling technology for the scalable parallel MUS extraction algorithms. Recall from
Sec. 2 that in the incremental SAT setting the test of the satisfiability of some subfor-
mula F1 of an input formula F can be performed without removing any of the clauses
of F . Instead, the clauses outside of F1 can be temporarily disabled using assumptions.
As a result, clauses that are learned while analyzing a different subformula F2 of F are
valid (though might also be temporarily disabled) for the analysis of F1. Consider now
the organization of the parallel MUS extraction algorithm described above, whereby
the workers are provided with incremental SAT solvers. During the initialization, all
workers are given the same augmented formula FA = {(ai ∨ Ci) | Ci ∈ F} con-
structed by adding assumption literals to the clauses (or groups) of the input formula
F . The workers invoke their incremental SAT solvers on FA under a set of assumptions
that represent the subformula assigned to them by the master. As the construction of an
MUS of F progresses, the master determines that some clauses of F need to be either
permanently removed or finalized — to achieve this, the master adds the corresponding
unit clauses to the SAT solvers of the workers. Now, consider again the configuration
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SDC — notice that since the execution is synchronous, all workers have exactly the
same input formula FA ∪ U , where U is the set of unit clauses added to the formula
in order to delete and to finalize some clauses. Since the only difference between the
worker’s execution is the set of assumptions under which they test the satisfiability of
FA ∪ U , the workers are free to exchange the learned clauses, without any limitations
and any additional reasoning. In the asynchronous setting, ADC, the situation is not quite
straightforward, since then, while W1 is working on the formula FA ∪U , the worker W2,
which “ran ahead” of W1, might be working on the formula FA ∪ U ∪ U ′, where U ′ is
a set of unit clauses added by the master since the beginning of execution of W1. Since
the input formula of W1 is a subformula of the input formula of W2, the clauses learned
by W1 will be valid for W2. However, it is not clear that W2 can send its learned clauses
“back” to W1, since W2 has additional clauses in its formula. We will prove that fully
unrestricted communication is sound in the asynchronous setting as well.

Notice that in the assumption-based incremental SAT setting the assumption literals
provide an automatic way of tagging the learned clauses with the information of their
origins. At the same time, SAT solving under assumptions automatically ensures that
any clause previously learned from a currently disabled clause is disabled. The alterna-
tive approach to the incremental SAT, whereby the assumptions are added as temporary
unit clauses (cf. Sec. 2), would, in our setting, require the reconstruction step described
in [22] for every learned clause sent to another solver, which is not likely to scale.
Our observations suggest that the approach of [9] to the assumption-based incremental
SAT solving might be the key to the effective communication in more general scenarios
where the CDCL-based SAT solvers work on different related formulas in parallel.

Formal Description of the Algorithm. By F = {C1, . . . , Cn} we denote the input
CNF formula, whose MUS M is to be computed. Let AF = {a1, . . . , an} be a set
of fresh assumption variables (or, assumptions). Each assumption variable ai will be
implicitly associated with the clauseCi. As in Sec. 2, by FA we will denote the formula
FA = {(a1 ∨ C1), . . . , (an ∨ Cn)}. Given any A ⊆ AF , let cls(A) = {Ci | ai ∈ A}.
Throughout the execution, the master maintains two sets of assumptions: the set of
necessary assumptions Anec ⊆ AF that corresponds to clauses that are declared to
be necessary (i.e. part of the computed MUS), and the set of unnecessary assumptions
Aunnec ⊆ AF that corresponds to the clauses that will not be included in the computed
MUS. The sets Anec and Aunnec are disjoint. For convenience, we let Aunk = AF \
(Anec ∪ Aunnec) to denote the set of assumptions that correspond to clauses whose
status is unknown. The state of the master is described by a pair 〈Anec, Aunnec〉 of
the sets of the necessary and the unnecessary assumptions. Given such a state pair (or,
simply, a state) S = 〈Anec, Aunnec〉, by F (S) we denote the formula

F (S) = FA ∪ {(¬ai) | ai ∈ Anec} ∪ {(aj) | aj ∈ Aunnec}. (3.1)

The pseudocode of the algorithm is presented in Alg. 1. Each of the workers Ww, w =
1, . . . , nw, runs on its own thread, and has its own incremental SAT solver which is
initialized with the formula FA. As the master progresses, it adds negative units to
finalize the necessary clauses, and positive units to remove the unnecessary clauses
from the workers’ SAT solvers. Since in the asynchronous configurations the formulas
inside the SAT solvers may diverge, it will be convenient to view each worker Ww as
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Algorithm 1. Parallel MUS extraction algorithm (with incremental SAT)
Input : F — unsatisfiable CNF Formula; nw — number of worker threads
Output: M ∈ MUS(F )

1 initializeWorkers (F, {W1, . . . ,Wnw}) // each Wi is a worker
2 〈Anec, Aunnec〉 ← 〈∅, ∅〉 // initial state

3 while Aunk �= ∅ or there are running workers do // Aunk � AF \ (Anec ∪Aunnec)
4 if Aunk �= ∅ then // there are untested clauses
5 foreach idle Ww do
6 ai ← pickAssumption(Aunk)
7 Ww.updateState(〈Anec, Aunnec〉)
8 Ww.startTask(ai)

9 sleepUntilFinished()
10 Res = { Ww.getResult() | Ww is finished }
11 〈ΔAnec ,ΔAunnec〉 ← mergeResults(Res)
12 〈Anec, Aunnec〉 ← 〈Anec ∪ΔAnec , Aunnec ∪ΔAunnec〉
13 abortRedundantWorkers()

14 return M � cls(Anec) // M ∈ MUS(F )

having its own version of a state-pair Sw = 〈Aw
nec, A

w
unnec〉, with F (Sw) (as per 3.1)

being exactly the set of input clauses in Ww’s SAT solver. Details of the functions used
in Alg. 1 are discussed below:

pickAssumption(Aunk): for S configurations, the function picks ai ∈ Aunk,
and returns the same ai for each invocation in the foreach loop on line 5; for D con-
figurations, for each invocation the function returns a different ai ∈ Aunk, if possible,
and the last picked ai if not.

Ww.updateState(〈Anec, Aunnec〉): sets Sw to be identical to S; on the implemen-
tation level this causes the addition of unit clauses to Ww’s SAT solver.

Ww.startTask(ai): starts Ww’s SAT solver. If Sw = 〈Aw
nec, A

w
unnec〉 is the state of

the worker Ww at the moment of invocation, the set of clauses in Ww’s SAT solver is
F (Sw), and the SAT solver is invoked under assumptions {ai}∪{¬aj | aj 	=i ∈ Aunk}.
Thus, the worker tests whether the clause Ci, associated with the assumption ai, is
necessary for the formula cls(Aw

nec ∪ Aw
unk). We will say that ai is Ww’s task literal,

and that, until the SAT solver run has finished, Ww is processing its task.

sleepUntilFinished(): for synchronous configurations (S ) this function waits
until all workers finished their tasks; for asynchronous configurations (A ) this function
waits until at least one worker has finished its task (but there might still be more than
one finished worker when this function returns).

Ww.getResult(): retrieves the outcome of the SAT test performed by a finished
worker Ww. Since a worker’s state might be out of sync with the master’s, for notational
convenience we assume that the returned result is a tuple Rw = 〈Sw, ai, st, τ, A

w
core〉,

where Sw is the state of the worker, ai is the worker’s task literal, st is the outcome
of the SAT call (sat or unsat), τ is the model returned by the SAT solver in case
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st = sat, and Aw
core ⊆ Aw

unk is a set of assumption literals in the final conflict clause
in case st = unsat.
mergeResults(Res): is responsible for the analysis of the set Res of the results
of finished workers. The function returns a tuple 〈ΔAnec , ΔAunnec〉 of assumptions
that correspond to the newly discovered necessary and unnecessary clauses, initialized
with 〈∅, ∅〉. For each Rw = 〈Sw, ai, st, τ, A

w
core〉 ∈ Res with st = sat, the func-

tion appends ai to ΔAnec , and executes the model rotation algorithm on the formula
cls(Anec ∪ Aunk) with the assignment τ to detect additional necessary clauses. For
each such clause, the corresponding assumption variable is added to ΔAnec . For each
result tuple with st = unsat the function first checks whether Aw

core is a subset of
Aunk — in the asynchronous mode this might not be the case, since the state of the
worker Sw might be out-of-date with respect to the state of the master. All unsat re-
sults for which Aw

core �⊆ Aunk are discarded, and from the remaining unsat results
one set Aw

core is selected1. The function then setsΔAunnec to be Aunk \Aw
core.

abortRedundantWorkers(): aborts all workers whose task literal is not in Aunk.
The learned clauses accumulated by a worker’s SAT solver remain in the solver.

Proof of Correctness and the Soundness of Unrestricted Communication. The cor-
rectness of the presented algorithm hinges on the following loop invariant.

Invariant 3.1. For v = 1, . . . , let Sv = 〈Av
nec, A

v
unnec〉 denote the state of the mas-

ter prior to the v-th test of the main loop guard (line 3 of Alg. 1). Then, the formula
cls(Av

nec ∪ Av
unk) is unsatisfiable, and every clause in cls(Av

nec) is necessary for it.

To prove the invariant we need to establish a correctness property of the results returned
by the finished workers. The property holds trivially in the configurations without com-
munication, however a subtlety arises when the unrestricted communication is enabled.
This is best demonstrated by the following example.

Example 1. Let the (already augmented) formula FA be {(a1 ∨ ¬b ∨ ¬c ∨ ¬d), (a2 ∨
¬b∨c∨d), (a3∨b∨c∨¬d), (a4∨b∨c∨d), (a5∨¬c∨¬d), (a6∨c∨¬d), (a7∨¬c∨d)}.
Assume that there are three workers, and W1 already determined that C1 is unnecessary:

Ww Task Assumptions Aw
nec Aw

unnec

W1 a4 {¬a2,¬a3, a4,¬a5,¬a6,¬a7} { } {a1}
W2 a2 {¬a1, a2,¬a3,¬a4,¬a5,¬a6,¬a7} { } { }
W3 a3 {¬a1,¬a2, a3,¬a4,¬a5,¬a6,¬a7} { } { }
Assume W1 finishes its task first: it returns sat, and a model τ that witnesses the clause
C4. In mergeResults() the master applies model rotation, and determines that C2

is also necessary. The master now has Anec = {a2, a4} and Aunnec = {a1}. Since
W2’s task is a2, it becomes redundant and is aborted. Assume W1 is given a5, and W2

some other task (not shown). Note that the master adds the units {(¬a2), (¬a4)} to
W1’s solver, and the units {(a1), (¬a2), (¬a4)} to W2’s, prior to the call.

W1 a5 {¬a3, a5,¬a6,¬a7} {a2, a4} {a1}
Then, during conflict analysis the learned clause (c ∨ d) can be generated by W1 from
(a2 ∨ ¬b ∨ c ∨ d), (a4 ∨ b ∨ c ∨ d), and the two units (¬a2), (¬a4). When this clause

1 In our implementation we select a set Aw
core of the smallest size.
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is received by W3, it learns (a5 ∨ a6 ∨ a7) from F (S3) by resolving (c ∨ d) with (a5 ∨
¬c ∨ ¬d), (a6 ∨ c ∨ ¬d) and (a7 ∨ ¬c ∨ d), resulting in the set A3

core = {a5, a6, a7}.
But, the formula cls(A3

core) is satisfiable ! As we see shortly, the master must conjoin
A3

core with Anec to get the “real” unsatisfiable core. �

Lemma 1. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww at the time of the

invocation of the function Ww.startTask(ai). Let A be any subset of Aw
unk \ {ai},

andD be any set of clauses implied by the formula F (Sw)∪{(¬aj) | aj ∈ A}. Further-
more, let 〈st, τ, Aw

core〉 be the outcome of a SAT solver call on the formula F (Sw) ∪D
under the set of assumptions P = {ai} ∪ {¬aj | aj 	=i ∈ Aw

unk}. Then,

(i) if st = sat, then the formula F (Sw) is satisfiable P , and τ is a model of F (Sw)
(that respects P ).

(ii) if st = unsat, then the formula F (Sw) is unsatisfiable under the assumptions
P ′ = {¬aj | aj ∈ A ∪ Aw

core}.

The set D in Lemma 1 is intended to represent the set of “extra” clauses that a worker
Ww has received from other workers during the execution of its task, and the set A ⊆
Aw

unk of assumptions to correspond to the clauses that were discovered to be necessary
by the master since Ww started its task. Notice the addition of the set A to the set of
assumptions P ′ in part (ii) of the lemma (cf. Example 1). We now argue that all clauses
received by any worker Ww satisfy the condition of Lemma 1.

Lemma 2. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww that has suc-

cessfully completed its task ai (i.e. it has not been aborted by the master), and let
S = 〈Anec, Aunnec〉 be the state of the master by the time it calls Ww.getResult()
(line 10, Alg. 1). Then, for every clause C in Ww’s SAT solver,

F (Sw) ∪ {(¬aj) | aj ∈ Anec \Aw
nec} |= C. (3.2)

Proof (sketch). The complete proof involves an inductive argument on the global se-
quence of generated learned clauses. The base case is the non-trivial part of the proof
and is established using the following observations. Let W1 and W2 be two workers with
the states S1 and S2 respectively, such that S1

unk ⊃ Sw
unk ⊃ S2

unk, i.e. W1 is “behind”
Ww and W2 is “ahead” of Ww. Since F (S1) ⊂ F (Sw), any clause C learned by W1 from
its input formula satisfies (3.2). Let C be a clause learned by W2 from its input formula
F (S2), i.e. C is implied by the formula

F (S2) = F (Sw) ∪ {(¬aj) | aj ∈ A2
nec \Aw

nec} ∪ {(ak) | ak ∈ A2
unnec \Aw

unnec}.

The assumptions ak occur only positively in F (S2), so, due to the units (ak), clauses
with ak will not be used as conflict. Hence, ak do not occur inC, and so C is implied by

F (Sw) ∪ {(¬aj) | aj ∈ A2
nec \Aw

nec}.

We conclude that (3.2) holds by taking into account that A2
nec ⊆ Anec. ��

Lemma 3 below establishes the correctness of the results returned by the workers by
putting together Lemmas 1 and 2, and taking into account the fact that for any worker
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Ww with state Sw that has successfully completed a task ai, we have that ai ∈ Aunk, as
otherwise the master would have aborted Ww during abortRedundantWorkers()
call at the end of the previous iteration. In particular, ai /∈ (Anec \ Aw

nec), and so the
set Anec \ Aw

nec from (3.2) satisfies the condition imposed on the set A in Lemma 1.
Notice that in Example 1, if W2 was not aborted when a2 was found necessary, on the
reception of the clause (c ∨ d) from W1 it would return unsat, instead of sat.

Lemma 3. Let Sw = 〈Aw
nec, A

w
unnec〉 be the state of a worker Ww that has successfully

completed its task ai, and let S = 〈Anec, Aunnec〉 be the state of the master by the time
it obtains Ww’s result tuple R = 〈Sw, ai, st, τ, A

w
core〉. Then, if st = sat, then τ is

a model of the formula cls(Anec ∪ Aunk) \ {Ci}; if st = unsat, then the formula
cls(Anec ∪ Aw

core) is unsatisfiable.

Using Lemma 3 and the definition of mergeResults() we establish Invariant 3.1.

Theorem 1. Algorithm 1 terminates on any unsatisfiable input formula F , and the set
M = cls(Anec) returned by the algorithm is an MUS of F .

SAT Solver Modifications. To exchange the learned clauses, a globally accessible
clause pool, implemented as a ring buffer, is created. Each incremental SAT solver
incarnation adds its learned clauses to the pool and receives the clauses submitted by
other solvers. A solver incarnation sends a learned clause immediately after its gener-
ation if the clause passes the heuristic filters (discussed below). Clauses are received
from the pool prior to a decision on decision level 0.

Improving Communication. Although, as shown above, the unrestricted communica-
tion is sound, clause sharing has to be restricted due to following reasons: (i) the re-
ceived clauses might be redundant; (ii) additional clauses slow down the reasoning of a
SAT solver incarnation; (iii) the usefulness of the new clauses cannot be determined in
advance. Thus, we restrict the communication to the clauses that appear to be promising
by adding two sharing filters to the system: learned clauses are shared if (i) their size
or (ii) the literal block distance (LBD) [2] are less than a certain threshold. The de-
fault configuration uses a size limit of 10 literals and an LBD limit of 5. Following the
ideas in [11] we also added a configuration DYN, in which these sharing thresholds are
controlled dynamically. As previously discussed, the exchanged learned clauses may
include a large number of assumption literals, which affect both the size and the LBD
value of the clauses. For example, a clause with a single non-assumption literal and a
large number of assumption literals might be filtered out due to its size. Clearly, such
clause will be extremely useful to other solvers, as it might trigger unit propagation
once the assumptions are assigned. Thus, from the filtering point of view, the assump-
tion literals are superfluous, and so we added the configuration PRASS in which these
literals are ignored (“protected”) in the analysis by the sharing filters. Since the activity
of learned clauses is initialized, we also allow this for received clauses (BUMP).

Core-Based Scheduling. Work duplication remains an important problem in our algo-
rithm. To reduce the duplication we implemented a scheduling scheme based on the
analysis of unsatisfiable cores returned by the workers. The scheme relies on the intu-
itive observation that clauses that appear in the intersection of unsatisfiable cores during
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the execution of the algorithm (including those discarded by mergeResults()) are
likely to be necessary. In core-based scheduling CBS we prioritize clauses based on
their core membership count.

4 Related Work

To our knowledge the only published work on the parallelization of MUS extraction
algorithms is the recently published papers by Wieringa [26] and Wieringa and Hel-
janko [27]. In both papers an MUS extractor is built on top of a parallel incremental
SAT solver. As the focus of [26] is the analysis of model rotation, the parallelization
aspects, and importantly, the communication aspects, are not discussed in sufficient
detail. In [27] the authors present a parallel incremental SAT solver Tarmo, and use
the MUS extraction problem as a case study to demonstrate its effectiveness. To this
extent, the authors implemented the MUS extraction algorithm described in [26] on
top of Tarmo — we will refer to this combination as TarmoMUS, as this is the name
of the MUS extractor distributed by the authors. The essential difference between the
algorithm proposed in this paper, and TarmoMUS is that in our algorithm the commu-
nication is unrestricted (modulo the filtering techniques discussed above), whereas in
TarmoMUS the communication is restricted to be “forward” only. This restriction both
incurs an additional implementational overhead, and reduces the quality and usefulness
of exchanged clauses. In Sec. 5 we demonstrate that our algorithm scales significantly
better that of [27] — we attribute this difference to the unrestricted communication.
Additional important technique in our algorithm that is absent from TarmoMUS is the
assumption “protection” during clause filtering.

5 Experimental Evaluation

The algorithm described in this paper was implemented in C++ with pthreads, and
the resulting tool, pMUSer2, was evaluated on a subset of benchmarks used in the
MUS track of SAT Competition 2011. The subset consists of 175 MUS and 201 group-
MUS instances on which the sequential MUS extractor MUSer2 [5] takes more than
10 seconds of CPU time. The experiments were performed on an HPC cluster, where
each node is a dual quad-core Intel Xeon E5450 3 GHz with 32 GB of memory. All
tools were run with a timeout of 1800 seconds and a memory limit of 16 GB per input
instance. All communicating configurations use the PRASS option by default.

Table 1 summarizes the results of various configurations of the parallel, as well as the
sequential, algorithms. Clearly, adding communication to the asynchronous configura-
tions of the increases the performance in terms of solved instances and overall solving
time. The high average run time of the ADC configuration can be explained with the
overhead introduced of less useful shared clauses. The table also shows clearly that us-
ing incremental SAT as the basis for parallel MUS is essential – without this technique
only the configurations AS would be possible, but these two configurations show the
worst performance. For the AS and SD configurations, also a slight decrease in the
calls to the SAT solver can be recognized. Note, that this number of calls includes all
solved instances, so that the increase from ADN to ADC is still plausible: the additional
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Table 1. The table compares different algorithm configurations and shows the following statistic;
the number of solved instances from the benchmark set; the average run time for the full bench-
mark set (including timeout instances) and, for parallel solvers, the average CPU utilization; the
penalized runtime, i.e. the runtime of solving the full benchmark set with a penalty of factor 10
added for all instances that could not be solved; the total number of sent clauses shows how many
learned clauses are provided for other solver incarnations; the total number of SAT solver calls;
the percentage of SAT calls whose result has been ignored (wasted calls); the percentage of calls
that have been aborted. The last column indicates whether the results are for plain MUS or for
group MUS instances.
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MUSer2 144 186.46 100 590 K – 413 K – – –
ASN(4) 135 157.01 80.30 747 K – 1458 K 21.80 54.13 –
ASC(4) 137 146.37 80.65 709 K 433 K 1453 K 21.88 54.04 –
SDN(4) 143 154.93 47.27 603 K – 517 K 15.91 – –
SDC(4) 141 138.31 46.70 636 K 433 K 512 K 16.19 – –
ADN(4) 146 126.45 91.90 544 K – 488 K 5.76 11.70 –
ADC(4) 150 154.09 90.79 476 K 1186 K 602 K 5.84 12.26 –

ADC-PRASS(4) 148 104.95 90.15 504 K 548 K 585 K 5.15 12.12 –
ADC+DYN+BUMP(4) 153 133.98 91.55 419 K 7071 K 661 K 7.01 11.83 –

ADC(8) 151 128.05 87.76 454 K 867 K 672 K 7.78 13.30 –
ADC+CBS(8) 151 117.22 86.71 452 K 1283 K 552 K 4.10 3.53 –

ADC+DYN+BUMP+CBS(8) 155 136.35 88.27 383 K 5564 K 635 K 5.56 3.13 –
MUSer2 194 123.56 100 150 K – 325 K – – �
ADC(4) 198 106.92 90.19 75 K 487 K 530 K 14.35 33.39 �

ADC+DYN+BUMP+CBS(4) 197 110.11 93.79 94 K 1688 K 350 K 11.68 7.29 �
ADC(8) 198 100.76 86.99 74 K 333 K 692 K 20.93 33.26 �

ADC+DYN+BUMP+CBS(8) 198 88.52 88.39 71 K 1178 K 439 K 9.92 8.66 �

SAT solver calls depend on the additionally solved instances. Since the communication
speeds up single SAT calls, more solver calls are wasted, because a competing solver
has finished its task faster and thus aborts redundant solvers. Note, that the CPU uti-
lization of the SD (synchronous) configurations is almost half of that of asynchronous
configurations. Therefore, using asynchronous SAT solver calls is important to the scal-
ability of the parallel algorithm and further motivates the analysis of communication for
this setting. Comparing the results of the basic configurations with the sequential solver
MUSer2 we note that only the configurations AD improve the performance from 144
to 150 solved instances with an improved average run time.

In Sec. 3 we discussed several improvements of the algorithm, which are also evalu-
ated in Table 1. Disabling the PRASS option reduces the performance, and also reduces
the number of shared clauses significantly – underlining that ignoring assumption lit-
erals is a must for successful clause sharing. Optimizing clause sharing with BUMP
and DYN improves ADC further to 153 solved instances and an improved average run
time. Note that this configuration also shares significantly more clauses than ADC, but
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Fig. 1. Comparison of extractors on plain MUS instances

wastes more SAT calls. The core-based scheduling heuristic CBS does not improve the
performance on 4 cores. The best four core configuration ADC+DYN+BUMP is referred
as pMUSer2(4). In the eight core setting, the addition of CBS improves the number
of SAT calls and reduces the percentage of wasted and aborted calls, without improv-
ing the overall performance significantly compared to ADC. However, adding sharing
optimizations DYN and BUMP to ADC+CBS improves the overall performance: four
more instances can be solved, the average run time decreases and the number of wasted
and aborted SAT calls is also smaller than for any other eight core configuration. The
best eight core configuration we found is ADC+DYN+BUMP+CBS, which we refer to as
pMUSer(8). The behaviour of the parallel MUS extraction algorithm in the context
of group-MUS extraction is quite similar. Again, the configuration ADC gives the best
results and can solve already 198 out of 201 instances. For four cores, adding sharing
or scheduling optimizations does not increase the performance, but again CBS helps
to reduce the number of SAT calls as well as wasted and aborted SAT calls and DYN
increases the number of shared clauses. When adding more cores, also 198 instances
can be solved also by ADC+DYN+BUMP+CBS – suggesting that if the timeout were
increased slightly, the four core variant could have solved these instances as well.

Figure 1 depicts the comparative behaviour of MUSer2 and pMUSer with 4 and 8
cores on the plain MUS instances. In addition, we evaluated the parallel MUS extractor
TarmoMUS [27], discussed in Sec. 4. While in the sequential mode TarmoMUS is no-
tably faster than MUSer22, the plot demonstrates that our algorithm scales significantly
better with the number of cores, than TarmoMUS. For example, already a 4-core config-
uration of pMUSer2 outperforms the 4-core configuration of TarmoMUS. The statistics
to compare the scalability of the algorithms are presented in Table 2. For both average
and median speedup pMUSer2 gives much better results on plain instances. From se-
quential to four cores, MUSer2 scales linear in average. Obtained speedups range from
0.49 up to 132.59, showing that the parallelization can result in super-linear speedups

2 Our analysis suggests that this is due to different versions of the SAT solvers used by the tools.
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Table 2. Relative speedup with the addition of parallel resources: minimum, average, maximum
and median. As a basis for the calculation the commonly solved instances have been used.

Solver 1 Solver 2 Min. Avg. Max. Median Common Groups
TarmoMUS TarmoMUS(4) 0.55 1.44 4.40 1.17 141 –
TarmoMUS TarmoMUS(8) 0.41 1.74 6.92 1.29 141 –

MUSer2 pMUSer2(4) 0.49 4.09 132.59 2.94 143 –
MUSer2 pMUSer2(8) 0.28 4.01 97.66 3.38 142 –
MUSer2 pMUSer2(4) 0.46 1.41 4.07 1.33 194 �
MUSer2 pMUSer2(8) 0.44 1.88 9.20 1.49 194 �

Fig. 2. Wall-clock time, sequential vs. 4 cores: left — plain MUS; right – group MUS

(consider also the scatter plots in Figure 2). For TarmoMUS the average, maximum
and median speed-ups are lower, and when more resources are added, the performance
increases only slightly. Neither pMUSer2 nor TarmoMUS scale well to eight cores.

6 Conclusion

We argued that assumption-based incremental SAT solving is essential to ensuring the
scalability of the proposed parallel MUS extraction algorithm. We proved the soundness
of unrestricted communication in our algorithm, and proposed a number of optimiza-
tions focused on improving the quality of communication and job distribution. While
the algorithm scales extremely well from a single-core to the 4-core setting, we did not
observe similar improvements going from the 4-core setting to the 8-core. In our view,
the main obstacle to the scalability to a high number of cores is the fact that as the num-
ber of cores grows, the workers are more likely to duplicate each others efforts. While
the situation is somewhat improved by the core-based scheduling, the solution is not yet
satisfactory, and requires further research. Additional avenue for improvement might lie
in the high-level parallelization, whereby different (parallelized on the low-level) MUS
extraction algorithms are executed in parallel.
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Abstract. In this paper we present a novel “modular” approach for (weighted
partial) MaxSAT Modulo Theories. The main idea is to combine a lazy SMT
solver with a purely-propositional (weighted partial) MaxSAT solver, by making
them exchange information iteratively: the former produces an increasing set of
theory lemmas which are used by the latter to progressively refine an approxima-
tion of the final subset of the soft clauses, which is eventually returned as output.

The approach has several practical features. First, it is independent from the
theories addressed. Second, it is simple to implement and to update, since both
SMT and MaxSAT solvers can be used as blackboxes. Third, it can be interfaced
with external MaxSAT and SMT solvers in a plug-and-play manner, so that to
benefit for free of tools which are or will be made available.

We have implemented our approach on top of the MATHSAT5 SMT solver
and of a selection of external MaxSAT solvers, and we have evaluated it by means
of an extensive empirical test on SMT-LIB benchmarks. The results confirm the
validity and potential of this approach.

1 Introduction

MaxSAT [19] is the problem of determining the maximum number of clauses, of a given
Boolean formula, that can be satisfied by some assignment. Its weighted and partial
variants allow to associate fixed weights to clauses, and to search only for solutions
that satisfy a given subset of the clauses. (In this paper, unless otherwise specified,
by “MaxSAT” we always consider the general case of weighted partial MaxSAT; thus,
we often omit the adjectives “weighted” and “partial”.) In recent years, the solvers
for MaxSAT have demonstrated substantial improvements [20,6,17,18,21,3], and have
now important practical applications (e.g. Formal Verification, Automatic Test Pattern
Generation, Field Programmable Gate Array routing).

The MaxSAT problems can be generalized from the Boolean case to the case of
Satisfiability Modulo Theories (SMT) [8], where first order formulas are interpreted
with respect to some (combinations of) background theories. Theories of interest are,
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e.g., those of bit vectors (BV), of arrays (AR), of linear arithmetic (LA) on the rationals
(LA(Q)) or on the integers (LA(Z)).

Because of the increase in expressiveness of SMT, the MaxSAT Modulo Theory
problem (MaxSMT hereafter) has many important applications (e.g., formal verifica-
tion of timed & hybrid systems and of parametric systems, planning with resources,
radio frequency assignment problems.) However, MaxSMT—and, more generally, the
optimization problems in SMT— have received relatively little attention in the litera-
ture. To some extent, this can be explained with the technical difficulties associated with
the combination of two non-trivial components, namely an SMT engine (that requires
the integration of constraints into SAT) and a MaxSAT optimization procedure.

In this paper, we propose a novel and comprehensive approach to (weighted partial)
MaxSMT. The approach is highly modular, in that it combines, as black boxes, two
components: (i) a lazy SMT solver, and (ii) a purely-propositional (weighted partial)
MaxSAT solver. During the search, these two components exchange information itera-
tively: the SMT solver produces an increasing set of theory lemmas, which are used by
the MaxSAT solver to progressively refine an approximation of the final subset of the
soft clauses, which is eventually returned as output.

Basically, the SMT solver is used to dynamically lift the suitable amount of theory
information to the Boolean level, where the MaxSAT solver performs the optimization
process. We call the approach Lemma-Lifting (LL), similarly to the LL approach for the
extraction of unsatisfiable cores in SMT [13].

The approach has several interesting features. First, it is independent from the theo-
ries addressed: the lemmas returned by the SMT solver during the search are abstracted
into Boolean formulas before being passed to the MaxSAT solver. Second, the LL al-
gorithm is general and simple to implement: it imposes no restriction on the MaxSAT
solver, while the only requirement on the SMT solver is that it is able to return the lem-
mas constructed during search. Third, the LL algorithm can be realized by interfacing
external MaxSAT and SMT solvers in a plug-and-play manner. In this way, we can use
all the available approaches and tools, and benefit of future advances in lazy SMT and
MaxSAT technology.

We have proved the formal properties of the LL MaxSMT algorithm. We imple-
mented LL on top of the MATHSAT5 SMT solver [12], and of a selection of exter-
nal MaxSAT tools. We have evaluated and compared the performances of the various
LL configurations, and of every MaxSMT or MaxSMT-like solver we are aware of, by
means of an extensive empirical test on MaxSMT-modified SMT-LIB benchmarks. The
results confirm the validity and potential of this approach.

Content. The paper is organized as follows. After having provided some background
knowledge on SMT, MaxSAT and MaxSMT in §2, we present and discuss our new
approach and algorithm in §3. We proceed with a discussion of related work in §4.
In §5 we present and comment empirical tests. We conclude and suggest some future
developments in §6.
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2 Background

Terminology and Notation. We consider some decidable first-order theory T (or a
combination

⋃
i Ti of theories). We call T -atom (resp. -literal, -clause, -formula) a

ground atomic formula (resp. literal, clause, formula) in T . (Notice that a Boolean atom
can be seen as a subcase of T -atom, etc.) We distinguish the space of T -formulas (T )
from that of plain Boolean formulas (B) by denoting them with the “T ” and the “B” su-
perscripts respectively; we use no superscript when we make no such distinction. Given
a T -formula (-clause, -literal, -assignment etc.) ϕT , we call Boolean abstraction of ϕT

the formula ϕB def
= T 2B(ϕT ) obtained by rewriting each non-Boolean T -atom in ϕT

into a fresh Boolean atom; vice versa, ϕT def
= B2T (ϕB)

def
= T 2B−1(ϕB) is the refine-

ment of ϕB. (To this extent, if not otherwise specified, when some symbol 〈sym〉 is
used with both the ‘T ” and the “B” superscripts, then 〈sym〉B denotes the Boolean ab-
straction of 〈sym〉T , and vice versa.) We say that a truth assignment μT propositionally
satisfies ϕT , written μT |=p ϕ

T , iff μB |= ϕB .
In both the T - and B- spaces, we assume all formulas are in CNF, and we represent

them as sets of clauses; we represent truth assignments as sets of literals. The symbols
ϕ...
..., ψ

...

... , φ
...
... denote formulas, and μ......, η

...

... denote truth assignments, regardless their
subscripts or superscripts. A weighted clause is a clause C which is augmented with
a value w ∈ N ∪ {+∞}, which is called the weight of C, denoted by Weight(C); a
weighted clause is called hard, iff its weight is +∞, soft, otherwise. Sets of hard and
soft clauses are denoted with the subscript .h and .s respectively. Weight(ψs) denotes
the sum of the weights of the clauses in ψs.

2.1 Satisfiability Modulo Theories

We call a theory solver for T , T -Solver, a tool able to decide the T -satisfiability of a
conjunction/setμT of T -literals. If μT is T -unsatisfiable, then T -Solver returns UNSAT

and the subset η of T -literals in μT which was found T -unsatisfiable; (η is hereafter
called a T -conflict set, and ¬η a T -conflict clause.) if μT is T -satisfiable, then T -
Solver returns SAT; it may also be able to return some unassigned T -literal l �∈ μT s.t.
{l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ μT . We call this process T -deduction and
(
∨n

i=1 ¬li ∨ l) a T -deduction clause. Notice that T -conflict and T -deduction clauses
are valid in T . We call them T -lemmas.

In a lazy SMT(T ) solver, the Boolean abstraction ϕB of the input formulaϕ is given
as input to a CDCL SAT solver, and whenever a satisfying assignment μB is found s.t.
μB |= ϕB , the corresponding set of T -literals μT is fed to the T -Solver; if μT is found
T -consistent, then ϕ is T -consistent; otherwise, T -Solver returns the T -conflict set η
causing the inconsistency, so that the clause ¬ηB (the Boolean abstraction of ¬η) is
used to drive the backjumping and learning mechanism of the SAT solver.

Important optimizations are early pruning and T -propagation: the T -Solver is in-
voked also on an intermediate assignment μT : if it is T -unsatisfiable, then the pro-
cedure can backtrack; if not, and if the T -Solver is able to perform a T -deduction
{l1, ..., ln} |=T l, then l can be unit-propagated, and the T -deduction clause
(
∨n

i=1 ¬li ∨ l) can be used in backjumping and learning. Another technique is static
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learning, where T -lemmas expressing “obvious” constraints on T -atoms occurring in
the input formula (e.g. mutual-exclusion, transitivity constraints) are learned a priori.

The above schema is a coarse abstraction of the procedures underlying all the state-
of-the-art lazy SMT tools. The interested reader is pointed to, e.g., [23,8] for details and
further references.

2.2 MaxSAT

A (weighted partial)1 MaxSAT formula is a set of weighted clauses in the form ϕB def
=

ϕB
h ∪ ϕB

s , s.t. ϕB
h and ϕB

s are sets of hard and soft clauses respectively. A MaxSAT
problem consists in finding a maximum-weight clause set ψB

s s.t. ψB
s ⊆ ϕB

s andϕB
h∪ψB

s

is satisfiable. (Notice that such ψB
s is not unique in general.) MaxSAT(ϕB

h , ϕ
B
s ) denotes

a function computing one such ψB
s , and MaxWeight(ϕB

h , ϕ
B
s ) denotes Weight(ψB

s ).
Notice that Weight(CB) can be considered as the “cost” of non-satisfying the soft

clause CB, and MaxSAT can be seen as the problem of minimizing such cost over all
the soft clauses. To this extent, a MaxSAT Solver is a function s.t. MaxSAT(ϕB

h , ϕ
B
s )

returns a maximum-weight clause set ψB
s s.t. ψB

s ⊆ ϕB
s and ϕB

h ∪ ψB
s is satisfiable.

The MaxSAT problem can be generalized to the case in which ϕB
h and ϕB

s are sets of
arbitrary formulas rather than sets of single clauses.2 Let λs

def
= {Si}i be a set of fresh

selection variables, one for each constraint φBi in ϕB
s , let ϕ

′B
s

def
= {¬Si∨φBi | φBi ∈ ϕB

s },
and letψB

h be the set of clauses resulting from conversion ofϕB
h∪ϕ

′B
s into CNF. Thus the

generalized MaxSAT problem (ϕB
h , ϕ

B
s ) can be reduced to a standard MaxSAT problem

on the sets of clauses (ψB
h , λs), in which all soft clauses are unit clauses.

Current state-of-the-art MaxSAT solvers can be roughly divided into 3 categories.
Solvers based on branch & bound, such as [20,17], employ specialized inference rules
while performing a standard branch and bound search for MaxWeight(ϕB

h , ϕ
B
s ). Itera-

tive solvers, like e.g. [6], work by adding to each soft clause CB
j ∈ ϕB

s a fresh literal
Rj (called a relaxation literal), and by imposing bounds on the number of relaxation
literals that can be assigned to true, using cardinality constraints. The space of such
bounds is typically explored using binary search. Finally, core-guided solvers, such as
e.g. [18,21], improve upon iterative solvers by exploiting unsatisfiable cores to decide
if/when to add a relaxation literal to a soft clause, and to minimize the number of car-
dinality constraints needed.

2.3 MaxSAT Modulo Theories and SMT with Cost Optimization

The MaxSAT problem generalizes straightforwardly to SMT level. Given a background
theory T as before, a (weighted partial) MaxSAT Modulo Theories (MaxSMT) formula
is a set of weighted T -clauses in the form ϕT def

= ϕT
h ∪ϕT

s . A MaxSAT Modulo Theories

1 A MaxSAT formula is not “weighted” iff Weight(CB
j ) = 1 for every CB

j ∈ ϕB
s , and it is not

“partial” iff ϕB
h is empty. Hereafter, unless otherwise specified, we consider the general case

ignoring this distinction, hence dropping the adjectives “weighted” and “partial”.
2 This includes also the so-called Block MaxSAT problem, where each (weighted) soft constraint

is itself a conjunctions of clauses, representing a “block” of clauses subject to the same weight,
s.t. it suffices to violate one such clause to pay the cost of the constraint.
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(MaxSMT) problem consists in finding a maximum-weight clause set ψT
s s.t. ψT

s ⊆ ϕT
s

and ϕT
h ∪ ψT

s is T -satisfiable. As with the Boolean case, MaxSMT(ϕT
h , ϕ

T
s ) denotes

a function computing one such ψT
s , and MaxWeight(ϕT

h , ϕ
T
s ) denotes Weight(ψT

s ).
(The same considerations and conventions on “weighted”, “partial”, and “generalized”
MaxSAT in §2.2 hereafter apply for MaxSMT.)

Importantly, a MaxSMT problem can be encoded into an SMT problem with cost
minimization 〈ϕT ′

, cost〉, either with Pseudo-Boolean (PB) cost functions [22,10]:

ϕT ′
= ϕT

h ∪
⋃

CT
j ∈ϕT

s

{(Aj ∨ CT
j )}; cost

def
=

∑
CT

j ∈ϕT
s

wj ·Aj (1)

where wj
def
= Weight(CT

j ) and the Aj ’s are fresh Boolean atoms, or with LA cost
functions [22,24]:

ϕT ′
= ϕT

h ∪
⋃

CT
j ∈ϕT

s

({(Aj ∨CT
j ), (¬Aj ∨ xj = wj), (Aj ∨ xj = 0)});

cost
def
=

∑
CT

j ∈ϕT
s

xj . (2)

where the xj’s are LA variables.

3 A Novel Modular MaxSMT Algorithm

In what follows, we consider a MaxSMT problem ϕT def
= ϕT

h ∪ ϕT
s , and wmax denotes

MaxWeight(ϕT
h , ϕ

T
s ). The symbolsΘT and ΘT

i denote sets of T -lemmas on T -atoms
occurring in ϕT

h ∪ ϕT
s , whilst ΘT

∗ denotes the set of all such T -lemmas.
Observe that ΘT

∗ is a finite set, since ΘT , ΘT
i and ΘT

∗ are defined to be sets of T -
lemmas containing only atoms in the input formula. In general, modern SMT solvers
might introduce new atoms during search, which can thus appear in some T -lemmas.
This scenario is not considered here to keep the presentation simple. However, it can be
covered under the additional assumption that T -lemmas are generated from a finite set
of atoms, which is typically the case for modern SMT solvers (see e.g. [9,7]).

3.1 The Basic Algorithm

Algorithm 1 reports a “modular” procedure for MaxSMT. Intuitively, an SMT and a
MaxSAT solver are used as guided enumerators of, respectively:3

– a finite sequence of T -lemma sets ΘT
0 , Θ

T
1 , ..., Θ

T
n s.t. ΘT

0 = ∅,

ΘT
0 ⊆ ΘT

1 ⊂ ΘT
2 ⊂ ... ⊂ ΘT

n , (3)

ΘT
n ⊆ ΘT

∗ , (4)

which progressively rule out all the T -unsatisfiable truth assignments which propo-
sitionally satisfy ϕT

h and some subset ψT
s,i of ϕT

s s.t. Weight(ψT
s,i) > w;

3 When referring to Algorithm 1, the index “.i” in ΘT
i , ψT

s,i etc. refers to the values of ΘT , ψT
s

etc. at the end of the i-th cycle in the while loop.
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Algorithm 1. A Lemma-Lifting procedure for MaxSMT(ϕT
h , ϕ

T
s )

Input:
ϕT

h : a set of hard T -clauses;
ϕT

s : a set of (weighted) soft T -clauses;
Output:

a maximum-weight set of soft T -clauses ψT
s s.t. ψT

s ⊆ ϕT
s and ϕT

h ∪ ψT
s is T -satisfiable

1: 〈ϕB
h , ϕ

B
s 〉 ← T 2B (〈ϕT

h , ϕT
s 〉);

2: ΘT ← ∅;
3: ψT

s ← ϕT
s ;

4: while (SMT.Solve (ϕT
h ∪ ψT

s ∪ΘT ) = UNSAT) do
5: ΘT ← ΘT ∪ SMT.GetTLemmas ();
6: ΘB ← T 2B (ΘT );
7: ψB

s ←MaxSAT(ϕB
h ∪ΘB , ϕB

s );
8: ψT

s ←B2T (ψB
s );

9: end while
10: return ψT

s ;
11:
12: SMT.Solve (ϕT ) checks whether ϕT is T -satisfiable
13: SMT.GetTLemmas () returns the T -lemmas computed by the latest call to SMT.Solve

– (the Boolean abstraction of) a finite sequence of soft-clause sets
ψT
s,0, ..., ψ

T
s,i, ...ψ

T
s,n where ψT

s,0 = ϕT
s , ψT

s,i ⊆ ϕT
s for every i,

ψT
s,n = MaxSMT(ϕT

h , ϕ
T
s ), and

Weight(ψT
s,n) ≤ ... ≤Weight(ψT

s,i+1) ≤Weight(ψT
s,i) ≤ ... . (5)

MaxWeight(ϕT
h ∪ ϕT

s ) = Weight(ψT
s,n). (6)

Notice that neither ψT
s,i+1 ⊆ ψT

s,i nor Weight(ψT
s,i+1) <Weight(ψT

s,i) hold in general.
Each ΘT

i+1 results from adding to ΘT
i the T -lemmas computed by an SMT solver

to prove the T -unsatisfiability of ϕT
h ∪ ψT

s,i ∪ ΘT
i . Each ψT

s,i is obtained by invoking
a MaxSAT solver on the Boolean abstraction of ϕT

h ∪ ΘT
i and ϕT

s as hard and soft
component respectively.

The termination, correctness, and completeness of Algorithm 1 is formally proved
in [11]. Intuitively, at every loop i > 0 s.t. ϕT

h ∪ ψT
s,i ∪ΘT

i is found T -unsatisfiable by
SMT.Solve, since its Boolean abstraction ϕB

h ∪ψB
s,i ∪ΘB

i is satisfiable by construction
of ψB

s,i, then SMT.GetTLemmas returns at least one new T -lemma; thus (3) holds, (4)
holds by definition ofΘT

∗ , hence (5) holds by construction of ψB
s,. By (3), (4), and since

ΘT
∗ is finite and it contains all the possible theory information related to ϕT

h ∪ ϕT
s , we

have that, for some loop index n, ΘT
n ⊆ ΘT

∗ and ΘT
n contains all T -lemmas which

rule out all T -inconsistent truth assignments propositionally satisfying ϕB
h ∪ψB

s,n. Then
ϕT
h ∪ψT

s,n ∪ΘT
n is T -satisfiable, because ϕB

h ∪ψB
s,n ∪ΘB

n is satisfiable by construction
of ψB

s,n, so that the procedure terminates. From this, it is easy to show that (6) holds.
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Notice that, in general, in the call SMT.Solve (ϕT
h ∪ψT

s ∪ΘT ) the “∪ ΘT ” element
is not necessary from the logic viewpoint, but it prevents the SMT solver to re-generate
from scratch previously-computed T -lemmas in ΘT .

Example 1. Let ϕT
h , ϕT

s be as follows (values [v] denote clause weights):

ϕT
h

def
= ∅ ϕB

h
def
= ∅

ϕT
s

def
=

⎧⎪⎪⎨⎪⎪⎩
C0 : ((x ≤ 0)) [4]
C1 : ((x ≤ 1)) [3]
C2 : ((x ≥ 2)) [2]
C3 : ((x ≥ 3)) [6]

⎫⎪⎪⎬⎪⎪⎭ ϕB
s

def
=

⎧⎪⎪⎨⎪⎪⎩
(A0) [4]
(A1) [3]
(A2) [2]
(A3) [6]

⎫⎪⎪⎬⎪⎪⎭ where :
A0

def
= (x ≤ 0),

A1
def
= (x ≤ 1),

A2
def
= (x ≥ 2),

A3
def
= (x ≥ 3).

Notice that the set of all possible T -lemmas on the T -atoms of ϕT
h ∪ ϕT

s is:

ΘT
∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ1 : (¬(x ≤ 0) ∨ (x ≤ 1))
θ2 : (¬(x ≥ 3) ∨ (x ≥ 2))
θ3 : (¬(x ≤ 0) ∨ ¬(x ≥ 2))
θ4 : (¬(x ≤ 0) ∨ ¬(x ≥ 3))
θ5 : (¬(x ≤ 1) ∨ ¬(x ≥ 2))
θ6 : (¬(x ≤ 1) ∨ ¬(x ≥ 3))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
ΘB

∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(¬A0 ∨ A1)
(¬A3 ∨ A2)
(¬A0 ∨ ¬A2)
(¬A0 ∨ ¬A3)
(¬A1 ∨ ¬A2)
(¬A1 ∨ ¬A3)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
Then, one possible execution of the algorithm is:

i ΘT
i ψT

s,i Weight(ψT
s,i) SMT (ϕ

T
h ∪ ψT

s,i ∪ΘT
i )

0 {} {C0, C1, C2, C3} 15 UNSAT

1 {θ4} {C1, C2, C3} 11 UNSAT

2 {θ4, θ6} {C0, C1, C2} 9 UNSAT

3 {θ4, θ6, θ3} {C2, C3} 8 SAT

from which ψT
s = {C2, C3} and Weight(ψT

s ) = 8. A faster execution (which may be
obtained, e.g., by enforcing the generation of extra T -lemmas in the SMT solver) is:

i ΘT
i ψT

s,i Weight(ψT
s,i) SMT (ϕ

T
h ∪ ψT

s,i ∪ΘT
i )

0 {} {C0, C1, C2, C3} 15 UNSAT

1 {θ1, θ2, θ5} {C2, C3} 8 SAT

%

3.2 Optimizations

Algorithm 1 is very simple in principle, and it can be implemented using an SMT solver
and a MaxSAT solver as black boxes in a plug-and-play manner.4 Moreover, this allows
for benefiting for free of any advanced tool available from the shelf, or for choosing the
most suitable tools for a given problem.

Under the hypothesis of using the two solvers as black boxes, we consider some
implementation issues which may further improve its efficiency.

4 Provided that the SMT solver, like MATHSAT5, offers a way of retrieving the set of T -lemmas
which it used to prove the T -inconsistency of the input formula, or, like most lazy SMT
solvers, it can provide an SMT resolution proof, from which the latter set can be extracted.
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Incrementality of MaxSAT. Since MaxSAT is invoked sequentially on incremental
sets of hard clauses and on the same set of soft ones, it is natural to conjecture
that having an incremental implementation of MaxSAT, which “remembers” the
status of the search from call to call, should improve the efficiency of the overall
procedure.

Reuse of SMT calls. SMT.Solve is not invoked incrementally in the classic “push-
and-pop” sense because —apart from the fact that ψT

s,i ⊆ ϕT
s for every i—

there is no set-theoretic relation between the ψT
s,i’s. However, it is possible to use

SMT solving under assumptions: each soft clause CT
j in ϕT

s is augmented with

a fresh selection Boolean variable Sj (i.e., ϕT
s is rewritten into ϕ

′T
s

def
= {(¬Sj ∨

CT
j ) |CT

j ∈ ϕT
s }) and the proper set of selection variables λs

def
= {Sj |CT

j ∈ ψT
s }

is assumed at each call. This allows for “remembering” and reusing learned clauses
from call to call. (Notice that, as long as the T -lemmas are remembered from call
to call, it is possible to drop the “∪ ΘT ” in the call SMT.Solve (ϕT

h ∪ ψT
s ∪ΘT ).)

In a “white-box” integration scenario, in which it is possible to modify either or both
the solvers involved, the following considerations may be of interest.

Generation of extra T -lemmas. As illustrated in the second execution of Example 1,
generating and storing extra T -lemmas inside the SMT-solving phase —not only
these explicitly involved in the conflict analysis— enlarges the T -lemma pool and
may possibly reduce the number of cycles. This can be obtained by means of SMT
techniques like static learning and by storing all the T -deduction clauses inferred
by T -propagation5 (see [23,8]). Notice that, to avoid introducing overhead for the
underlying SAT solver, it suffices to store such T -lemmas, without learning them.

4 Related Work

Maximum satisfiability in SMT was first studied in [22], in the context of a general
framework for optimization in SMT using “progressively stronger theories”. An imple-
mentation for MaxSMT of this framework is described, but it is not publicly available.

An explicit reference to MaxSMT is found in [4], which describes the evaluation of
an implementation of the WPM procedure [6] based on the YICES [2] SMT solver. This
implementation is not publicly available. Another reference is in [5], where weighted
Constraint Satisfaction Problems are translated into weighted MaxSMT instances.

The YICES solver provides also native support for MaxSMT. The approach used
is based on incrementally invoking the solver in a mixed linear/binary-search fashion
onto an SMT encoding of the MaxSMT problem, similar to that described in §2.1. The
algorithm is not described in any publication, but we could obtain such information
from personal communications with the authors.

The source distribution of the Z3 [15] solver provides an example implementation
of an SMT version of the core-guided MaxSAT algorithm of [16], using the Z3 API.
The algorithm is based on enumerating and counting unsatisfiable subformulas.

5 In many SMT solvers implementing T -propagation, T -deduction clauses are generated on
demand, only if they are needed by the underlying CDCL SAT solver for conflict analysis.
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Also related are the works on optimization in SMT [10,24], that can be used to en-
code the various MaxSMT problems. The work in [10] introduces the notion of “Theory
of Costs” C to handle Pseudo-Boolean (PB) cost functions and constraints by an ad-hoc
and independent “C-solver” in the standard lazy SMT schema. MaxSMT can be han-
dled by encoding it straightforwardly into a PB optimization problem (see §2.1). The
implementation is available. The work in [24] introduced a wider notion of optimiza-
tion in SMT, OMT(LA(Q) ∪ T ), with cost functions on variables on the reals, which
allows for encoding also MaxSMT and SMT with PB cost functions (see §2.1). Some
OMT(LA(Q) ∪ T ) procedures combining lazy SMT and standard LP minimization
techniques are presented. The implementation, done on top of the MATHSAT5 [12]
SMT solver, is available.

Davies and Bacchus [14] proposed a MaxSAT algorithm (hereafter “DB”) which,
similarly to LL, works by iteratively ruling out subsets of the soft clauses of the input
problem. In particular, DB builds iteratively a set K of unsat cores for ϕB

h ∪ ϕB
s , i.e., at

each loop iteration: (i) computes a new subset of soft clauses hs to drop as minimum-
cost hitting set of K; (ii) computes a new unsat core κ of ϕB

h ∪ϕB
s \ hs; this is repeated

as long as ϕB
h ∪ ϕB

s \ hs is unsatisfiable.
Although [14] does not mention SMT, in principle this algorithm could be leveraged

to SMT level (hereafter “DB-SMT”), by substituting SAT-level solving and unsat-core
extraction with SMT-level ones. (Notice, however, that unlike with the SAT domain, ef-
ficiently finding minimal or nearly-minimal unsat cores in SMT is still an open research
problem, see [13].) If so, LL and DB-SMT would be based on similar principles:6

– both algorithms would be based on constraint generation, producing constraints at
every loop iteration which rule out subsets of the soft clauses;

– both would decouple solving and minimizing into two different subroutines.

The technical differences, however, would be manifold:

– Unlike with DB-SMT, LL is not a generalization of DB to SMT: unlike with DB,
if it is fed a pair of purely-Boolean formulas, then it terminates in one iteration.

– DB-SMT would be driven by the combinatorics of the unsat cores to rule out,
whilst LL is driven by the theory-information to be provided.

– The T -lemma sets ΘT
i in LL are not the SMT counterpart of the unsat cores κi in

DB-SMT: the former contain only novel clauses, the latter do not; there is not one-
to-one correspondence between the generated sets of T -lemmas and unsat cores. 7

– MaxSAT is not the SMT counterpart of minimum-cost hitting set extraction: the
latter starts from more fine-grained information, in the form of sets of unsat cores.

– It is easy to see that it would take at least N cycles to DB-SMT to rule out N
clauses from ψB

s . With LL the number of soft clauses discharged at each loop de-
pends only on the quantity and quality of the T -lemmas generated: in many cases
(see Fig. 1) one iteration is enough to generate all the necessary T -lemmas. 7

6 We are grateful to an anonymous reviewer who pointed out an analogy between DB and LL.
7 For example, consider the second execution in Example 1: with DB-SMT there would be no

unsat core κ1 “equivalent” to ΘT
1

def
= {θ1, θ2, θ5}, allowing to directly pass from step 0 to step

1, since one needs 2 cores (and hence 2 loops) to generate a minimum-cost hs of size 2.
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– the LL schema requires no SMT unsat-core extraction, nor minimum-cost hitting-
set computation. (The MaxSAT subroutine is not committed to any MaxSAT
schema.)

Finally, and importantly, DB/DB-SMT and LL radically differ in the context they were
conceived (MaxSAT vs. MaxSMT), in their usability (the two schemas would pose
very different constraints to a MaxSMT implementer) and goals (DB was conceived
to address some efficiency issues in MaxSAT solvers [14], whilst LL is proposed as a
modular approach to build MaxSMT solvers).

5 Experimental Evaluation

We have implemented our LL MaxSMT approach on top of our MATHSAT5 SMT
solver [12] and of a selection of external MaxSAT tools. We have evaluated and com-
pared the performances of the various LL instances and of every MaxSMT or MaxSMT-
like solver available we are aware of, by means of an extensive empirical test on
MaxSMT-modified SMT-LIB benchmarks.8 In this section we present such evaluation.

5.1 Test Description

Benchmarks. As benchmark problems, we took the unsatisfiable SMT instances in
the LA(Q) and LA(Z) categories of SMT-COMP [1], and we converted them into
two groups of MaxSMT problems —partial MaxSMT and weighted partial MaxSMT
respectively— by a random partition into hard and (weighted) soft clauses. In order
to handle both CNF and non-CNF formulas, for each instance, we created the set of
soft constraints by randomly selecting 20% assigning them a weight of 1 for the partial
MaxSMT experiments, and a weight uniformly selected in the range 1 . . . 100 for the
weighted partial MaxSMT ones, and then applied the process described in §2.2.

Competing MaxSMT Solvers. Before starting our evaluation, we have asked to the
main scientists of the MaxSAT community about the existence of incremental MaxSAT
procedures, obtaining a negative answer. Thus, we decided to produce ourselves an
implementation of the WPM MaxSAT algorithm [6] on top of MINISAT, and we also
tried to enhance it with some degree of incrementality. Recently, Carlos Ansótegui
has kindly sent us the code of a modified version of the WPM, which he had also
adapted to get some incrementality, which invokes the YICES-1.0.36 as an external
solver. Moreover, to guarantee a more interesting comparison, we have implemented on
top of MATHSAT5 the same MaxSMT extension of the core-guided algorithm of [16]
implemented in Z3. Finally, since the original implementation of SMT with PB cost
functions and constraints of [10] was implemented on top of MATHSAT4, and in order
to have a more significant comparison, we have recently ported it into MATHSAT5.

Thus, in this evaluation the first competitors were four instances of our Lemma-
Lifting (LL) implementation, each using a different external MaxSAT solver:

8 We also asked the authors of the related MaxSMT papers of §4 for other benchmarks, but none
provided any meaningful benchmark.
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LLWPM, which uses the publicly-available WPM [6] implementation used in the 2012
MaxSAT-evaluation (which uses PICOSAT);

LLYICES-WPM, which uses the above-mentioned non-public implementation of WPM
provided to us by Carlos Ansótegui;

LLOWPM, which uses our own incremental WPM implementation;
LLNI-OWPM , as before, non-incremental version.

Other competitors were the following MaxSMT solvers:

YICES, the MaxSMT extension of YICES (see §4);
Z3, the MaxSMT extension of Z3 (see §4);
MATHSAT5-MAX, our own implementation on top of MATHSAT5 of the core-guided

algorithm of [16], as with Z3.

Notice that the last two solvers handle only unweighted partial MaxSMT problems. The
final competitors were the following solvers based on SMT with cost optimization (see
§4), using the encodings described in §2.3:

MATHSAT4+C(L), the tool from [10], using linear-search mode;
MATHSAT5+C(L), the porting of the above procedure into MATHSAT5, using linear-

search mode;
MATHSAT5+C(B), as before, using binary-search mode;
OPTIMATHSAT, the OMT(LA(Q)∪T ) tool of [24] described in §4, using its adaptive

binary/linear search heuristics.

Notice that, if T is the LA(Z) theory, it is not possible to encode MaxSMT into
OMT(LA(Q)∪T ) because the current implementation of OPTIMATHSAT cannot han-
dle LA(Q) ∪ LA(Z).9

The Experiments. The experiments we performed can be divided into two groups. In
the first group, we tested and compared the performances of all the eleven MaxSMT
solvers on the benchmarks described above. This was performed on Intel(R)
Xeon(R) CPU E5650 2.67GHz platform, with a 4GB memory limit and a 20
minute time limit for each run. In the second group, we made some more accurate anal-
ysis of the behaviour of the LL implementations. This was performed on a Intel(R)
Xeon(R) CPU E5520 2.27GHz platform, using the same memory and time
limits.

Check of the Results. We have checked the correctness of the results of all our own
tools (i.e., those based on MATHSAT4 or MATHSAT5) by checking the models re-
turned and by independently proving the unsatisfiability of the formula ϕT ′ ∪ {cost <
k}, where ϕT ′

and cost are defined as in (2) and k is the value of the cost returned by
the tool. All results agreed with one another and were found correct by the above test.

9 This is due to the fact that the OMT(LA(Q)∪ T ) framework requires that LA(Q) and T are
signature-disjoint theories [24], which is not the case if T is LA(Z).
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Table 1. Results of the eleven MaxSMT solvers on partial MaxSMT instances

Solver
LA(Z) LA(Q) Total

#Solved time (sec) #Solved time (sec) #Solved time (sec)

MATHSAT5-MAX 95 / 106 6575.60 88 / 93 2274.69 183 / 199 8850.29
LLOWPM 92 / 106 5942.20 88 / 93 1785.48 180 / 199 7727.68
YICES 92 / 106 14478.43 87 / 93 5537.47 179 / 199 20015.9
LLNI-OWPM 89 / 106 4439.98 88 / 93 1780.97 177 / 199 6220.95
LLYICES−WPM 89 / 106 4937.91 87 / 93 1855.45 176 / 199 6793.36
LLWPM 88 / 106 7154.19 88 / 93 2071.27 176 / 199 9225.46
MATHSAT5+C(L) 84 / 106 7112.43 87 / 93 2175.34 171 / 199 9287.77
MATHSAT4+C(L) 83 / 106 5220.14 85 / 93 1944.48 168 / 199 7164.62
Z3 89 / 106 4066.92 76 / 93 2427.59 165 / 199 6494.51
MATHSAT5+C(B) 78 / 106 5030.85 87 / 93 2545.69 165 / 199 7576.54

OPTIMATHSAT — — 89 / 93 1360.05 — —

Table 2. Results of the eleven MaxSMT solvers on partial weighted MaxSMT instances

Solver
LA(Z) LA(Q) Total

#Solved time (sec) #Solved time (sec) #Solved time (sec)

LLWPM 90 / 106 5194.73 87 / 93 3033.66 177 / 199 8228.39
LLNI-OWPM 86 / 106 1672.41 88 / 93 2062.35 174 / 199 3734.76
MATHSAT5+C(L) 89 / 106 5501.38 84 / 93 2359.61 173 / 199 7860.99
LLOWPM 85 / 106 1304.13 87 / 93 1836.53 172 / 199 3140.66
MATHSAT4+C(L) 87 / 106 3105.01 85 / 93 2541.83 172 / 199 5646.84
LLYICES−WPM 82 / 106 1423.53 87 / 93 2350.02 169 / 199 3773.55
YICES 83 / 106 12305.88 80 / 93 9804.16 163 / 199 22110.04
MATHSAT5+C(B) 79 / 106 9482.61 83 / 93 2627.35 162 / 199 12109.96

OPTIMATHSAT — — 88 / 93 1947.06 88 / 93 1947.06
Z3 — — — — — —
MATHSAT5-MAX — — — — — —

5.2 Results

The results of the evaluation of the eleven MaxSMT solvers are presented in Tables 1
and 2, reporting for each solver the number of instances solved within the timeout and
the total runtime taken to solve them. (Rows are sorted according to total (LA(Q) +
LA(Z)) performance, best performances for each category are in bold.) Note that, for
the reasons highlighted above, Z3 and MATHSAT5-MAX were not run on weighted
instances, and OPTIMATHSAT was not ran on the LA(Z) instances (this is marked
with a “—”).

Looking at the data in Tables 1 and 2 some considerations are in order.

(i) MATHSAT5-MAX is the overall best performer on the unweighted group, whilst
LLWPM is the overall best performer on the weighted one. If we restrict to LA(Q)
theory, OPTIMATHSAT is the winner in both unweighted and weighted groups.
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Fig. 1. Number of while-cycles wrt. runtime for LLOWPM (left) and LLNI-OWPM (right).

However, there is no hands-down winner, and the performance gaps among the
eleven solvers are not dramatic.

(ii) Overall, the LL tools behave quite well, all being in the highest part of the ranking.
Among them, there is not an absolute winner: LLOWPM is the best performer on
the unweighted group, whilst LLWPM is the best performer on the weighted one.

(iii) There is no definite winner between LLOWPM and LLNI-OWPM : the former is better
on unweighted test, the latter on weighted ones, and the performance gaps are very
limited. Thus, incrementality does not seem to pay as much as one could expect.
Similarly, there is no definite winner between LLYICES-WPM and LLWPM. (Notice,
however, that these two call two different backend solvers, YICES and PICOSAT.)

Overall, the results are too limited and heterogeneous to infer the superiority of one
approach wrt. another. However, we can safely conclude that, despite its simplicity, the
LL approach is competitive wrt state-of-the-art ones.

In Figure 1 and Table 3 we analyze the behaviour of the LL solvers on all tests
(weighted/unweighted,LA(Q)/LA(Z)).

Figure 1 shows the number of while-cycles performed by the LL algorithm with
LLOWPM (left) and LLNI-OWPM (right), plotted against runtime. We notice that a very
high percentage of instances is solved at the first loop, and the vast majority of instances
is solved in less than 10 loops. This induces us to conjecture that SMT.Solve in many
cases is able to produce very soon all the T -lemmas which are necessary to MaxSAT
to rule out the wrong truth assignments.

Table 3 analyzes the percentage of CPU time spent inside MaxSAT calls for the four
LL tools.10 We notice that for most solvers and most instances, the solver spends less
than 20% and this fact is particularly evident in the easiest problems. Thus, the overall
CPU time is mostly dominated by the time spent inside SMT.Solve. In particular, in the
samples in which the solution is found in one loop, most time is taken by SMT.Solve
to enumerate the necessary T -lemmas in one shot.

This also explains in part the low effect of incrementality in our experiments, since
the cost of MaxSAT calls does not seem to represent the actual bottleneck of the process.

10 For instance (1st block, 3rd column): out of 116 instance problem for which LLOWPM took
less than one second to execute, with 81 instances MaxSAT calls required less than 20% 40%
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Table 3. An overview of runtime spent on MaxSAT calls compared to total runtime for LL solvers

Runtime LLOWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 81 41 15 5 13
20 ≤ p < 40 19 12 9 17 27
40 ≤ p < 60 10 6 5 19 12
60 ≤ p < 80 1 0 6 15 3
80 ≤ p ≤ 100 5 15 0 9 0

Total 116 74 35 65 55
Runtime LLOWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 115 53 43 49 59
20 ≤ p < 40 5 6 1 1 9
40 ≤ p < 60 1 1 2 0 1
60 ≤ p < 80 0 1 0 0 0
80 ≤ p ≤ 100 0 1 4 0 0

Total 121 62 50 50 69
Runtime LLNI-OWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 95 49 32 48 53
20 ≤ p < 40 11 9 8 2 4
40 ≤ p < 60 4 0 5 0 0
60 ≤ p < 80 8 1 0 0 1
80 ≤ p ≤ 100 4 2 11 0 4

Total 122 61 56 50 62
Runtime LLWPM (in seconds)

% Time
MaxSAT

[0, 1[ [1, 10[ [10, 100[ [100, 1000[ ≥ 1000
0 ≤ p < 20 115 58 16 43 57
20 ≤ p < 40 1 1 11 8 1
40 ≤ p < 60 4 1 9 2 0
60 ≤ p < 80 8 0 2 1 1
80 ≤ p ≤ 100 1 0 6 3 4

Total 129 60 44 57 63

Notice that, if we compare the data on LLOWPM and LLNI-OWPM in Table 3, we notice
that indeed in the incremental version the percentage of time spent inside MaxSAT is
smaller than in the non-incremental one. However, since the total cost is mostly domi-
nated by SMT.Solve, the benefits of this fact are not significant. (Also, we must recall
that, since we are not expert MaxSAT developers, our implementation of incrementality
is quite naive).

6 Conclusions and Future Work

In this paper we have presented a novel “modular” Lemma-Lifting approach for
MaxSMT, which combines a lazy SMT solver with a purely-propositional MaxSAT
solver. Despite its simplicitly, LL proves competitive with previous approaches.
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Depending on one’s expertise on and access to SMT and MaxSAT technology, we
see different ways the LL approach can be implemented into a MaxSMT tool.

– Whoever cannot or does not want to put the hands on either solver’s code, can
take both an SMT and a MaxSAT solver off-the-shelf and implement our algorithm
on top of their API (or even interface with them via file exchange). In this case,
implementation is straightforward.

– MaxSAT-solver developers can leverage to SMT level the expressiveness of their
own tool by interfacing with one SMT solver, without implementing any SMT func-
tionality in-house. They can also customize their own MaxSAT tool to improve the
synergy of the two tools (in particular, by making it as incremental as possible).

– SMT-solver developers can extend their own tool with MaxSMT functionality by
interfacing with one or more MaxSAT solvers off-the-shelf, with no need of im-
plementing MaxSAT functionalities in-house. They can also customize their own
solver (e.g., by maximizing the generation of theory lemmas).

– A person with access to, and enough expertise on, both SMT- and MaxSAT- solver
development can adopt our approach to produce a highly efficient MaxSMT tool,
with the possibility of customizing both tools. Notice that, in this case, our ap-
proach can also be combined with other SMT optimization techniques (e.g., those
described in [22,10,24,4]).

We believe that this paper opens novel research avenues in MaxSMT. In particular, we
see many directions along which the LL approach can be improved and extended.

Customizing SMT and MaxSAT solvers. The LL approach would strongly benefit
from more effective T -lemma generators and incremental MaxSAT solvers.

Interleaving of SMT- and MaxSAT-solving steps. Algorithm 1 interleaves complete
calls to SMT.Solve and MaxSAT. This can be generalized to more fine-grained
interleaving schemas, in which steps of such executions can be interleaved. For in-
stance, it is possible to interrupt SMT.Solve as soon as some amount of T -lemmas
has been generated, and invoke MaxSAT afterwords. Vice versa, it is possible to
interrupt MaxSAT as soon as a non-optimal ψB

s is generated, and feed it back to
SMT.Solve. (As an extreme case, one could feed to SMT.Solve only the assignment
μT produced by MaxSAT: if so, SMT.Solve would be simply used as a T -Solver.)

Combination with other approaches. The lemma-Lifting approach can be combined
with other approaches in various ways. For instance, one could enhance the
use of SMT by exploiting SMT with cost constraints [10] and extraction of T -
unsatisfiable cores [13] to further prune the search.

Overall, novel strategies and heuristics can be investigated to extend and improve
Algorithm 1 along the above directions.
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Abstract. maxsat is an optimization version of satisfiability. Since
many practical problems involve optimization, there are a wide range
of potential applications for effective maxsat solvers. In this paper we
present an extensive empirical evaluation of a number of maxsat solvers.
In addition to traditional maxsat solvers, we also evaluate the use of a
state-of-the-art Mixed Integer Program (mip) solver, cplex, for solving
maxsat. mip solvers are the most popular technology for solving opti-
mization problems and are also theoretically more powerful than sat
solvers. In fact, we show that cplex is quite effective on a range of
maxsat instances. Based on these observations we extend a previously
developed hybrid approach for solving maxsat, that utilizes both a sat
solver and a mip solver. Our extensions aim to take better advantage
of the power of the mip solver. The resulting improved hybrid solver is
shown to be quite effective.

1 Introduction

maxsat is an optimization version of satisfiability (sat). Both problems deal
with propositional formulas expressed in CNF. The goal of sat is to find a
setting of the propositional variables that satisfies all clauses. maxsat, on the
other hand, tries to find a setting of the variables that maximizes the number of
satisfied clauses.

maxsat is complete for the class FPNP (the set of function problems com-
putable in polynomial time using an NP oracle). FPNP includes many practical
optimization problems, and by completeness all of them can be compactly en-
coded into maxsat. Hence, maxsat solvers that are effective on a wide range
of inputs would be able to solve a variety of practical problems through the
simple device of encoding into maxsat. This is already the case with sat, where
many real-world problems in NP can be effectively solved by encoding into sat
and applying current sat solvers. Work on developing widely applicable maxsat
solvers is still ongoing, and this paper aims to make a contribution to this effort.

Many important industrial applications involve solving optimization prob-
lems, and many powerful solution techniques for such problems have been devel-
oped. Problems with Boolean or integer variables (like maxsat) are most often
solved using sophisticated Mixed Integer Program (mip) solvers. mip solvers solve
problems expressed as a set of linear inequalities and a linear objective function,

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 166–181, 2013.
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a representation that is more expressive than CNF. One common technique they
employ is to utilize linear programming algorithms to solve the linear relaxation
derived by allowing the integer variables to take on non-integral values. Cutting
plane computations are then used to drive the linear relaxation towards integral
solutions. The technique of cutting planes is theoretically more powerful than
resolution [5], and thus these solvers potentially have access to more powerful in-
ference methods than standard sat solvers. In contrast, current maxsat solvers
have almost exclusively used resolution-based sat technology.

In this paper we perform an extensive empirical evaluation of a number of
previous solvers. Our evaluation uses many more problem instances than any
previously reported study, in part because we are interested in widely appli-
cable maxsat solvers. We also evaluate the performance of a state-of-the-art
mip solver, IBM’s cplex system, on these instances. Our evaluation, reported
on in Sec. 3, provides a number of interesting insights. For example, we show
that cplex is a very effective solver for maxsat. We also show that in the cur-
rent state-of-the-art, the notion of a single best algorithmic approach for solving
maxsat is suspect, as is the notion of a single best solver. Our experiments do
however indicate that the solvers tested can be divided into two subsets with one
subset arguably dominating the other in terms of performance. However, within
the high performance subset no single solver dominates.

This variance in performance among the different solvers across the problem
instances indicates that each of these solvers embeds ideas that are effective on
some problems. Hence, one possible direction for future research is to investigate
ways of combining these ideas to uncover new algorithmic insights.1 In previous
work we had developed such a hybrid approach, maxhs [7], that utilized a mip
solver, cplex, along with a sat solver, minisat [8]. Each solver was given a
subset of the maxsat problem, and information was communicated between the
solvers so as to solve the combined problem. The strong performance of cplex
in our experiments lead us to investigate ways of taking better advantage of the
mip solver. In particular, in the second part of the paper, reported on in Sec. 4,
we develop a number of techniques for increasing the amount and effectiveness
of information supplied to cplex, thus allowing it to make stronger inferences.
Our new techniques yield a considerable performance improvement to the maxhs
solver (Sec. 6), and as shown in Sec. 3 the resulting improved maxhs+ solver
is clearly placed in the set of top performing maxsat solvers. We conclude the
paper with some ideas for further work.

2 Background

In this paper we address weighted partial maxsat problems (WPMS). This
is the most general type of maxsat problem and it includes as special cases
all of the other types of maxsat problems studied in the literature. (All of the
1 Our empirical evaluation shows that many instances remain unsolvable by any solver.

Hence, although portfolio approaches could yield useful performance improvements,
significant advances will also require new algorithmic ideas.
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solvers we experiment with can solve all of these special cases as well as general
WPMS problems). WPMS problems are CNF formulas in which some clauses
are classified as being hard while others are classified as being soft. Any solution
must satisfy all of the hard clauses, but can falsify the soft clauses. However,
each soft clause has a weight and a truth assignment will incur a penalty or cost
equal to the clause weight if it falsifies that clause.

More formally, a maxsat problem F is specified by a CNF formula in which
each clause has an associated weight.2 Let wt(c) denote the weight of clause c.
We require that wt(c) > 0 for every clause.3 If wt(c) = ∞ we say that c is a
hard clause, otherwise wt(c) < ∞ and c is a soft clause. We use hard(F) to
indicate the hard clauses of F and soft(F) to denote the soft clauses. Note that
F = hard(F) ∪ soft(F).

We define the function cost as follows: (a) if H is a set of clauses then cost(H)
is the sum of the weights of the clauses in H (cost(H) =

∑
c∈H wt(c)); and (b)

if π is a truth assignment to the variables of F then cost(π) is the sum of the
weights of the clauses falsified by π (

∑
{c | π 	|=c} wt(c)).

A solution to the maxsat problem F is a truth assignment π to the variables
of F with minimum cost that satisfies all of the clauses in hard(F). We let
mincost(F) denote the cost of a solution to F . If hard(F) is unsat then F has
no solution. Testing for this case is simply a sat problem, hence from here on
we will assume that hard(F) is satisfiable.

A core κ for a maxsat formula F is a subset of soft(F) such that κ∪hard(F)
is unsatisfiable. That is, all truth assignments falsify at least one clause of κ ∪
hard(F). Since every solution satisfies hard(F), every solution must falsify at
least one clause in κ.

A common technique in maxsat solving is to add a unique blocking variable
to each soft clause. Assigning true to a clause’s blocking variable (b-variable)
immediately satisfies the clause. This allows the solver to “turn off” or relax
various soft clauses as it tries to solve the maxsat problem.

Definition 1. If F is a maxsat problem, then its b-variable relaxation is a
sat problem Fb = {(ci ∨ bi) : ci ∈ soft(F)} ∪ hard(F) where all clause weights
are removed. The b-variable bi appears in the relaxed clause (ci ∨ bi) and no
where else in Fb.

Each truth assignment π to the variables of Fb has a cost bcost(π): if π �|= Fb

then bcost(π) = ∞, otherwise bcost(π) =
∑

bi:π|=bi
wt(ci). The minimum bcost

satisfying assignments for Fb correspond to solutions of F .

Proposition 1. mincost(F) = minπ bcost(π), where the minimum is taken over
all truth assignments π to the variables of Fb. Furthermore, if π achieves a
minimum value of bcost(π), then π restricted to the variables of F is a solution
for F .
2 Only integer clause weights are used in our experiments since most maxsat solvers

require this restriction.
3 Clauses with weight zero can be removed from F without impacting the solution.

Clauses with negative weight yield a different problem from maxsat.
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The observation behind the proposition is that for π to achieve a minimum value
of bcost(π) it must set bi to false whenever it satisfies the soft clause ci.

MIP Encoding: It is simple to encode a maxsat instance F as a mip4. First,
the clauses of the relaxed formula Fb are encoded as linear inequalities, us-
ing the standard method where a clause c is converted to the linear inequality∑

j:pj∈c pj +
∑

i:¬pi∈c(1 − pi) ≥ 1. For example, the clause (x ∨ y ∨ ¬z ∨ b1)
becomes the linear inequality x + y + (1 − z) + b1 ≥ 1. Second, the objective
function is to minimize

∑
i wt(ci)×bi. The mip thus tries to set the propositional

variables so as to satisfy all clauses of Fb with minimum bcost .

Assumption Reasoning: The sat solver minisat provides an assumption
interface to test whether a given set of literals can be extended to a satisfying
assignment. minisat can take as input a set of assumptions A, specified as a set
of literals, along with a CNF formula F and then determine if F∧A is satisfiable.
It will return a satisfying truth assignment for F ∧ A if one exists (this truth
assignment necessarily extends A). Otherwise it will report unsat and return a
learnt clause c which is a disjunction of negated literals of A. This clause has
the property that ¬c specifies a subset of A such that F ∧ ¬c is unsatisfiable.
This means F |= c.

2.1 Existing maxsat Solvers

There have been two main approaches to building maxsat solvers. The first
approach is to perform Branch and Bound search where a lower bound is com-
puted by exploiting the logical structure of the CNF input, e.g., [9,14]. The
second approach is to solve the maxsat problem as a sequence of sat problems.

In previous work these sat problems typically encode the decision problem:
“mincost(F) = k?”. This encoding is based on adding blocking variables to the
soft clauses, and then translating linear inequality constraints over the blocking
variables to CNF.5 Starting with k = 0, if the answer from the sat solver is
“no” (i.e., the formula is unsatisfiable), the next lowest possible value for k,
k+, is computed from information extracted from the core returned by the sat
solver. Then the decision problem mincost(F) = k+ is encoded as the next sat
problem to be solved. The previously computed cores are also exploited in this
decision problem by requiring that at least one clause from every previously
extracted core is falsified. Many variations on this concept have been recently
proposed [2,10,1]. The main disadvantage of these approaches is that as the sat
instances that need to be solved become larger and harder as the k gets larger.

maxhs: The maxhs solver attempts to reduce the burden placed on the sat
solver by also employing a mip solver (cplex) [7]. maxhs’s algorithm also in-
volves solving a sequence of sat problems, however, these sat problems are
always subsets of the original maxsat formula F and are thus usually easy for
4 The origins of this encoding are not clear. However, it is well known.
5 Some solvers, notably wbo [15], reason with these linear constraints directly instead

of converting them to CNF.
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the sat solver to refute. maxhs uses the assumptions mechanism of minisat to
test subsets of F and derive cores. minisat is given the formula Fb and some
setting of the b-variables as the assumptions. If minisat returns unsat, a clause
c = (bi1 ∨ · · · ∨ bik) such that Fb |= c will also be returned. Note that c will
only contain positive b-variables since the b-variables only appear positively in
Fb and thus no clause involving negative b-variables is entailed by Fb. It is easy
to see that the clause c corresponds to a core of F .

Proposition 2. If Fb |= (bi1 ∨ · · · ∨ bik) for some set of b-variables {bij}|kj=1,
then κ = {ci1 , ..., cik} is a core of F . We call (bi1 ∨ · · ·∨ bik) a core constraint.

Starting with an initial set of core constraints in the mip model (Sec. 5.2), cplex
is used to find a solution to them that minimizes the cost of the true b-variables.
The cplex solution (a setting of the b-variables) is then given to minisat as
the next set of assumptions. If minisat finds a satisfying solution πb then π (its
restriction to the variables of F) is an optimal solution for F . Otherwise minisat
will return another core constraint that is added to the cplex model and the
cycle is repeated.

The problem that cplex solves at each iteration can be interpreted as a
hitting set problem: find a minimum cost collection of soft clauses sufficient to
block all of the refutations (cores) that have been derived from F so far. In fact,
the maxhs approach is closely related to the implicit hitting set (IHS) problem
as described in [12,6]. In IHS problems one is trying to compute a minimum
cost hitting set without knowing ahead of time the collection of sets that need
to be hit. Instead, one is provided with an oracle that when given the current
candidate hitting set, either declares the candidate to be a correct hitting set or
returns a new un-hit set from the implicit collection. In the maxhs algorithm,
the cores of F form the collection of sets to be hit, cplex computes candidate
hitting sets, and the sat assumption test acts as the oracle deciding if the current
candidate hitting set is correct, returning a new un-hit core if it is not. However,
the sat assumption test may take exponential time, while the oracle in IHS is
assumed to run in polynomial time.

The disadvantage of the maxhs approach is that sometimes a large number
of iterations have to be performed during which cplex returns different hitting
sets. Each of these hitting sets must be ruled out by another core, which increases
the size of the mip model.

3 Empirical Evaluation of Current maxsat Solvers

We performed an empirical study of nine existing maxsat solvers: cplex (ver-
sion 12.2), wpm1 (with the latest 2012 improvements [1]), wpm2 (version 2 [2]),
bincd [10], wbo [15], minimaxsat [9], sat4j [4], akmaxsat [13], and maxhs-
Orig [7]. All of these solvers are able to solve maxsat in its most general form,
i.e., weighted partial maxsat, and thus have the widest range of applicability.
Our study included recently developed solvers utilizing a sequence of sat ap-
proach (bincd, wpm1, wpm2 and maxhs-Orig), some older solvers (sat4j and
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Fig. 1. Performance of solvers on all non-random problems

wbo), and two prominent Branch and Bound based solvers (akmaxsat and
minimaxsat). Also included was the mip solver cplex using the encoding of
maxsat specified in Sec. 2, and our original hybrid solver, maxhs-Orig. We also
compared against our newly developed solver maxhs+. maxhs+ extends the
original maxhs-Orig using the best overall combination of our newly developed
techniques described in Sec. 4.

We obtained all problems from the previous seven maxsat evaluations [3]. We
first discarded all instances in the Random category. After removing duplicate
problems (as many as we could find) we ended up with 4502 problems divided up
into 58 families. We then removed 17 of these families that in our judgement had
little practical application. These included random problems, graph problems on
random graphs, e.g., the maxcut, maxclique, “frb” and “kbtree” families, and pure
math problems, e.g., the Ramsey and spin glass problems.

The remaining 3826 problems either fell into the “industrial” category or were
problems that we felt had application to real problems. For example, maxsat
has applications in automated planning [17], so we kept the crafted planning
problems. Similarly, the “KnotPipatsrisawat” problems involve computing MPE
(most probable explanation) which is heavily used in areas like computer vision.
When in doubt we erred on the side of keeping the problems, as we are in general
interested in applying maxsat solvers as widely as possible. It should be noted
that our evaluation used many more non-random problems than any previously
reported evaluation (including the prior maxsat evaluations).

Figure 1 shows a cactus plot of the solvers running on the 3826 non-random
problem we kept. Our experiments were performed on 2.1 GHz AMD Opteron
machines with 98GB RAM shared between 24 cores (about 4GB RAM per core).
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Fig. 2. Performance of solvers on Crafted and Industrial problems

Each problem was run under a 1200 sec. timeout and with a memory limit of
2.5GB. The data shows that our new solver maxhs+ solved the most problems
and that it significantly outperforms our previous solver maxhs-Orig. The data
also shows that bincd, wpm1, and cplex have good performance in terms of
the number of problems solved. The performance of cplex is particularly note-
worthy. Although mip solvers have been widely available for some time (before
most maxsat solvers) very little has previously been reported about their per-
formance on maxsat. Our data shows that cplex is a surprisingly good maxsat
solver.

Figure 2 shows a break down between industrial and non-random crafted
problems. It should be noted, however, that despite the labeling the non-random
crafted problems also contain problems of practical (industrial) interest. The
data shows that bincd solves the most problems from the industrial class, with
our new solver maxhs+ and wpm1 having similar but not as good performance
on these problems. On these problems, which tend to involve large CNF formulas,
cplex does not perform as well. On the crafted problems the Branch and Bound
solver minimaxsat performed well, but interestingly cplex was best overall.

From this data we select maxhs+, cplex, minimaxsat, bincd, and wpm1
as being in our class of top performers. These solvers dominate the others either
on all problems, or on the industrial problems, or on the non-random crafted
problems. Hence, we restrict our further attention to these solvers.

One bias in counting the number of problems solved is that the problem fam-
ilies are not equally sized. Hence, this metric will be skewed if a solver is good
at solving a particular family and that family contains many problems. Table 1
shows for each of the top solvers and problem categories, the number of prob-
lems solved (from the cactus plots), the family score, and the number of families
the solver was the best on. The family score for solver s is the sum over all
families f of the percentage of problems in f that s solves (this attempts to
normalize for the size of the family). There are 41 families in the category All,
22 in Industrial, and 19 in Crafted, so these are the maximum possible family
scores. A solver s is best on a family f if it solves as many problems in f as
any of the other top solvers. (There can be more than one solver best on a family.)
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Table 1. The number of instances solved, Family Scores, and number of Families where
each solver is best categorized by all, industrial, and crafted (non-random) problems

All Industrial Crafted
Solver Solved F-Score F-Best Solved F-Score F-Best Solved F-Score F-Best
maxhs+ 2956 26.75 20 2165 13.98 9 791 12.77 11
wpm1 2863 25.92 13 2152 14.68 9 711 11.24 4
cplex 2798 25.69 17 1779 11.70 7 1019 13.98 10
bincd 2785 25.38 12 2251 14.97 7 534 10.41 5
minimaxsat 2570 22.80 13 1637 9.45 2 933 13.35 11

Table 1 shows, e.g., that although bincd solves more problems in the industrial
category and has the highest family score, it is best on fewer families than wpm1
and maxhs+. It also shows that although wpm1 solves almost as many crafted
problems as maxhs+ it is best on fewer families.

Finally, Table 2 shows that each of these top solvers has quite a diverse cov-
erage. The table shows for each pair of top solvers s and s′ how many problems
s solves that s′ fails to solve. This number is shown in the cell at row s and
column s′. In fact the table contains two number in each cell. The first is the
number of industrial problems s solves but s′ doesn’t while the second number is
the number of crafted problems s solves but s′ doesn’t. This metric is influenced
by the timeout, as s might have solved a problem in 1200 seconds that s′ would
have solved in 1210 seconds if it hadn’t timed out. To avoid this issue, to count
a problem p as solved by s and not solved by s′ we require that s solves p in less
than 600 seconds while s′ fails to solve p.

The data shows, e.g., that on this metric cplex dominates minimaxsat,
solving more problems that minimaxsat fails to solve in both the industrial
and crafted categories. Similarly maxhs+ dominates wpm1 on this metric, and
bincd dominates all other solvers on this metric for industrial problems. The
main message from this data, however, is that all of these solvers dominates each
other solver on some problems (typically a non-trivial number of problems).

Table 2. The entry (nI ,nC) located at row i and column j shows the number of
industrial problems nI (crafted problems nC) solved by solver i within 600 sec. that j
fails to solve

maxhs+ wpm1 cplex bincd minimaxsat
maxhs+ 191/208 420/19 61/264 547/37
wpm1 171/121 481/27 89/235 636/120
cplex 69/234 128/321 52/494 351/178
bincd 124/19 169/63 483/19 544/22
minimaxsat 18/169 115/342 192/97 11/410
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4 Exploiting CPLEX More Effectively

The maxhs algorithm decomposes the maxsat problem into a series of sat
problems and hitting set problems. Neither the sat solver nor cplex alone has
enough information to solve the entire maxsat problem, since the sat solver
does not have any information about the clause weights, and the cplex model,
which is only over b-variables, knows nothing about the original variables and
clauses. The cplex model is also restricted to constraints of a specific form, i.e.
core constraints which are clauses over positive b-variables. In the remainder of
the paper we propose several techniques to overcome these limitations, in order
to take better advantage of the mip solver.

Many sound constraints exist over the soft clauses that do not take the form
of core constraints, as illustrated by the following example.

Example 1. Let F = {(x), (¬x), (x ∨ y), (¬y), (¬x ∨ z), (¬z ∨ y)} where each
clause has weight 1.Fb is therefore the set of clauses {(b1∨x), (b2∨¬x), (b3∨x∨y),
(b4 ∨ ¬y), (b5 ∨ ¬x ∨ z), (b6 ∨ ¬z ∨ y)}. Suppose that the three cores κ1 = {(x),
(¬x)}, κ2 = {(¬x), (x ∨ y), (¬y)}, and κ3 = {(x ∨ y), (¬y), (¬x ∨ z), (¬z ∨ y)}
have been found. These cores correspond to the core constraints K = {(b1 ∨ b2),
(b2 ∨ b3 ∨ b4), (b3 ∨ b4 ∨ b5 ∨ b6)}. We see that to satisfy these core constraints at
least two b-variables in Fb must be set to true, and at least two soft clauses will
be falsified by the maxsat solution. Given this lower bound, we can use a sat
solver to search over truth assignments that assign at most two b-variables true,
looking for a cost-2 relaxation that satisfies Fb. The search will benefit from the
three core constraints, since they help to prune the search space. However, not
all cost-2 relaxations that satisfy the core constraints need to be considered. For
example, as soon as b1 is assigned on any branch, ¬b2 could be inferred because
it is impossible to falsify both (x) and (¬x) at the same time. Therefore, b1
and b2 can not both belong to a minimum cost relaxation. Unfortunately, unit
propagation in Fb ∪ K can not make this inference. Similarly, whenever ¬b2 is
assigned we obtain ¬x and b1 by unit propagation in Fb ∪ K. However, we do
not detect that ¬b5 must hold as well since its soft clause is now satisfied. These
two examples demonstrate that in addition to the core constraints K, F also
implies the constraints (¬b1 ∨ ¬b2) and (b2 ∨ ¬b5). If these constraints could
be discovered automatically, then the search over relaxations could be further
constrained and potentially made more efficient.

In [7] a realizability condition was introduced. Realizability requires that there
exists a truth assignment that falsifies all of the clauses in the hitting set and
satisfies the hard clauses. This condition can be used to enforce some non-core
constraints over the b-variables. However, it is insufficient to capture all con-
straints over the b-variables. For example, although the realizability condition
would enforce the first non-core constraint in Example 1, (¬b1 ∨ ¬b2), it would
not capture the second, (b2∨¬b5). Therefore, we must look beyond the realizabil-
ity condition for techniques to discover non-core constraints that the b-variables
must satisfy.
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4.1 b-Variable Equivalences

Relaxing a soft clause in Fb is not equivalent to falsifying it in F . Example 1
indicates that although the b-variables of Fb are intended to represent the soft
clauses of F this correspondence is not strictly enforced by Fb. That is, Fb admits
models that unnecessarily set b-variables to true even when the corresponding
soft clause is satisfied. This is the reason that the inference ¬b2 → ¬b5 was
missed in Example 1.

Proposition 1 shows, however, that minimum cost models of Fb do obey a
stricter correspondence of equivalence between the b-variable settings and the
soft clauses satisfied. Since maxsat solving involves searching for minimum cost
models, a natural and simple modification to Fb is to force the b-variables to be
equivalent to the negation of their corresponding soft clauses.

Definition 2. Let F be a maxsat formula. Then

Fb
eq = Fb ∪

⋃
ci∈soft(F)

{(¬bi ∨ ¬�) : � ∈ ci}

is the relaxation of F with b-variable equivalences.

We define a correspondence between the truth assignments for F and the truth
assignments for Fb

eq.

Definition 3. If π is a truth assignment to the variables of F we let πb denote
its corresponding truth assignment to the variables of Fb

eq, where

πb = π ∪ {¬bi : π |= ci, ci ∈ soft(F)} ∪ {bi : π �|= ci, ci ∈ soft(F)}.

If πb is a truth assignment to the variables of Fb
eq we let π denote its correspond-

ing truth assignment to the variables of F where π is simply πb restricted to the
variables of F .

In this definition πb is constructed so that it assigns each b-variable a truth value
equivalent to the negation of the truth value π assigns to the corresponding soft
clause. Thus πb models the b-variable equivalences. Under this correspondence
we obtain a 1-1 correspondence between the models of Fb

eq and the models of
hard(F).

Proposition 3. π |= hard(F) if and only if πb |= Fb
eq. Furthermore, if πb |= Fb

eq

then cost(π) = bcost(πb), and therefore π is a solution for the maxsat formula
F if and only if πb achieves minimum bcost over all satisfying truth assignments
for Fb

eq.

This proposition shows that we can solve the maxsat problem F by searching
for a bcost minimal satisfying assignment to Fb

eq.
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Algorithm 1. A maxsat algorithm that exploits non-core constraints
1 maxsat-solver

(
F
)

2 K = ∅
3 obj = wt(ci) ∗ bi + . . .+ wt(ck) ∗ bk
4 while true do
5 A = Optimize(K,obj )
6 (sat?,κ) = AssumptionSatSolver(Fb

eq,A)
// If sat, κ contains the satisfying truth assignment.
// If unsat, κ contains a clause over b-variables.

7 if sat? then
8 break // Exit While Loop, κ is a maxsat solution.

// Add new constraint to the optimization problem,
9 K = K ∪ {κ}

// and to the sat formula for better performance
10 Fb

eq = Fb
eq ∪ {κ}

11 return
(
κ, cost(κ)

)

4.2 Non-core Constraints in maxhs

The extension to utilize non-core constraints in maxhs is conceptually simple.
We simply substitute the encoding Fb

eq for the weaker encoding Fb. Now since
in Fb

eq the b-variables are no longer pure, the sat solver can return both core
and non-core constraints. Each constraint is passed to cplex which operates
as before. (A copy of the learnt constraint is also kept by the sat solver). The
resulting modified version of maxhs is shown in Algorithm 1.

Initially, the set of b-variable constraints (clauses), K, is empty (line 2). The
objective function is defined on line 3 as the sum of the clause weights for b-
variables that are assigned true. On line 5, an assignment to the b-variables, A,
is calculated that satisfies the current constraints K and minimizes the value of
the objective function obj . This setting of the b-variables is passed as the set of
assumptions to the sat solver on line 6, along with the sat instance Fb

eq. If the
sat solver returns unsat, κ will be a clause over negated literals from A. This
constraint is added to K on line 9 and the process iterates until the sat solver
reports a solution.

Theorem 1. Algorithm 1 returns a solution to the maxsat problem F .

Proof. First we observe if the κ returned by the sat solver at line 6 is a clause
then Fb

eq |= κ (as explained in Section 2). On the other hand, if κ is a satisfying
assignment then bcost(κ) is equal to the sum of the costs of the true b-variables
in A, the solution returned by the optimizer at line 5. This follows from the
fact that κ extends A which has already set all of the b-variables. Let κ be the
satisfying truth assignment causing the algorithm to terminate. All satisfying
assignments of Fb

eq satisfy the constraints in K as each of these is entailed by
Fb

eq. Furthermore, bcost(κ) is equal to the cost of an optimal solution to these
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constraints, thus κ achieves minimal bcost over all satisfying truth assignments
for Fb

eq, and by Proposition 3 κ restricted to the variables of F is a maxsat
solution for F .

Second, we observe that each iteration except the final one adds a constraint
to K that eliminates at least one more setting of the b-variables. Since there
are only a finite number of different settings, the algorithm must eventually
terminate.

The key difference with the original maxhs algorithm is that the optimizer no
longer deals with a pure hitting set problems as the constraints can now contain
negative b-variables. This means that the paradigm of maxhs changes from an
implicit hitting set problem to something like a logic based Benders decomposi-
tion approach [11]. In particular, the optimization problem is being solved only
over the b-variables while the sat solver is being used to add additional con-
straints to the optimization model until its solution also satisfies the feasibility
conditions. Although cplex is no longer solving a hitting set problem, we have
found that it remains very effective in the presence of non-core constraints.

5 Other Improvements

In addition to the ability to learn non-core constraints, we propose two additional
techniques that help to refine the constraints and exploit the strength of cplex.

5.1 Constraint Minimization

The first improvement is to more aggressively minimize the constraints before
adding them to the cplex model. In general, shorter clausal constraints are
stronger, so the quality of the constraints can be improved by using techniques
to minimize their length. Therefore, we ensure that the constraints we add to
cplex are minimal, in the sense that removing any literal from the clausal
constraint leaves a clause that is no longer entailed by Fb

eq. We use a simple
destructive MUS algorithm, as described in [16], to achieve this. Empirically, we
found that the minimization computation typically takes only a small percentage
of the solver’s runtime, so more sophisticated MUS algorithms are unlikely to
yield a significant benefit in the current solver.

5.2 Disjoint Phase

Similar to the original maxhs solver, we also use a disjoint core phase before
Algorithm 1 begins to supply cplex with an initial set of core constraints.
During this phase we run the sat solver on Fb (rather than Fb

eq) so that only
core constraints are derived. Initially, the sat solver is run under the assumption
that all b-variables are false. This generates a core constraint (unless the maxsat
problem has a solution of zero cost). After minimizing that constraint we run
the sat solver again under the assumption that all of the b-variables in the core
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constraints found so far are true and all other b-variables are false. This has the
effect of removing all soft clauses that have participated in cores from the theory.
Hence, the next core must be over a disjoint set of soft clauses. This process is
repeated setting more and more of the b-variables to true, until the sat solver
can no longer find a contradiction. The collection of cores found are all disjoint
and the corresponding linear constraints are initially added to cplex.

5.3 Seeding cplex with Constraints

Each call to cplex’s solve routine incurs some overhead so it is desirable to
reduce the number of calls to cplex. We propose to accomplish this by “seeding”
the cplex model with a number of initially computed b-variable constraints. In
this way each candidate solution (setting of the b-variables) returned by cplex
is more informed about the constraints of the problem and thus more likely to be
a true solution. We perform seeding after the disjoint core phase, but before the
iterations of Algorithm 1 begin. We now describe several techniques to cheaply
identify such additional b-variable constraints.

Eq-Seeding: In Fb
eq, literals that appear in soft unit clauses of F are actually

logically equivalent to their b-variables. To see this, recall that if ci = (x) ∈
soft(F) is a soft unit clause, then Fb

eq will contain clauses (x∨bi) and (¬bi∨¬x).
These two clauses together imply that bi ≡ ¬x. For a clause c of Fb, if each
variable in c has an equivalent b-variable (or is itself a b-variable), then we
can derive a new constraint from c by replacing every original variable by its
equivalent b-variable. This constraint is a clause over the b-variables that can be
added to cplex.

Example 2. In Example 1, b1 ≡ ¬x due to the soft unit clause (x) and its
relaxation by b1. Similarly, b4 ≡ y. Therefore, from the relaxed clause (b3∨x∨y) ∈
Fb we can obtain the b-variable constraint (b3∨¬b1 ∨ b4) by simply substituting
the equivalent b-variable literals for the original literals.

Imp-Seeding: In Fb
eq, each of the b-literals may imply other b-literals. We per-

form a trial unit propagation on each b-literal bi in order to collect a set of
implied b-literals imp(bi) = {b1i , ..., bki }. This represents a conjunction of k bi-
nary clauses bi → bji (1 ≤ j ≤ k) over the b-variables. Although these k clauses
could be individually added to cplex we can in fact encode their conjunction
in a single linear constraint that can be given to cplex:

−k × bi + b1i + · · ·+ bki ≥ 0

Note that these are b-literals, so as is standard a negative literal b is encoded as
(1 − var (b)) and a positive literal is encoded as var (b) (Sec. 2). To understand
this constraint note that if bi is true (equal to 1) then all of the bji variables must
be 1 to make the sum non-negative.

Imp+Rev-Seeding: During the trial unit propagation of each b-literal bi, we
can also keep track of every original literal that is found to be implied by bi in
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order to obtain sets of reverse implications: rev(x) ⊆ {bi : Fb
eq ∧ bi |= x}. Then,

for each clause ci ∈ Fb, we check if each of its original literals x ∈ ci has a
non-empty rev(¬x). If so, a b-literal b¬x ∈ rev(¬x) is chosen for each x and its
negation ¬b¬x is substituted for x in ci. The result is a new clause containing
only b-variables that can be added to cplex. It is easy to see that this clause is
sound by considering the following example.

Example 3. Suppose that (x ∨ y ∨ b1) ∈ Fb where x, y are original literals and
b1 is a blocking variable. Suppose that b¬x ∈ rev(¬x) and b¬y ∈ rev(¬y). This
means that clauses (¬b¬x ∨ ¬x) and (¬b¬y ∨ ¬y) are implied by Fb

eq. Therefore
(¬b¬x∨¬b¬y ∨ b1), which can be obtained in two resolution steps, is also implied
by Fb

eq and can be added to cplex.

Since the b-literal implications imp(bi) are also available, we add the Imp-Seeding
constraints as well if we are computing the Rev-Seeding constraints. Note that if
b ≡ x, as in Eq-Seeding, we obtain at least as many seeded constraints as would
be obtained by Eq-Seeding. If rev(¬x) contains more than one b-literal, we could
choose any one of them to form the new clause. We simply use an equivalent
b-literal if one exists, and otherwise we choose the first b-literal that was found
to imply ¬x. In future work we could investigate different ways of choosing the
member of rev(¬x), or methods for using them all.

6 Empirical Evaluation of Proposed maxhs
Improvements

In this section we examine the empirical behaviour of the improvements to the
maxhs algorithm proposed above. Our experiments with the original maxhs
algorithm showed that it spent most of its time in the mip solver and relatively
little in the sat solver. In the improved versions of maxhs, the mip solver still
dominates the CPU time. However, seeding and our other techniques provide
better information to cplex, which means that fewer calls are required to con-
verge on a solution.

We ran a number of different versions of maxhs on the problems described
in Sec. 3. Figure 3 shows a cactus plot of their performance running on all
non-random problems. The data shows a number of things. First, adding core
minimization (+min on the plot) yields a significant performance gain compared
to the original maxhs solver. When we add to this version the ability to generate
non-core constraints via the Fb

eq relaxation (+noncore), there is another jump
in the number of problems solved.

If we seed cplex with extra constraints (Eq, Imp and Imp+Rev Seeding) in
addition to the previous two techniques, performance improves again. However,
there is relatively little to choose in overall performance between the different
types of cplex seeding we developed. When we looked at the time taken to solve
various problems we did find that on some instances the more extensive seeding
(Imp+Rev) yields a factor of 10 improvement in solving time. However, on some
problems such seeding adds a very large number of additional constraints to
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Fig. 3. Performance of maxhs variants on all non-random problems

cplex, without much improvement in the solution candidates produced. These
extra constraints sometimes produce an increase in cplex’s runtime sufficient
to cause a time-out. Future work will require examining particular families or
problem instances to obtain understanding of the trade-offs involved with our
different levels of seeding.

maxhs+ The seeding method with a slight advantage in terms of overall num-
ber of problems solved is Eq-Seeding. We referred to the configuration that
uses Eq-Seeding (as well as non-core constraints, minimization, etc.) as maxhs+
throughout the paper.

7 Conclusion

We made two main contributions in this paper. First we have reported on the
results of an extensive evaluation of current maxsat solvers. These results pro-
vide a number of insights into current solvers. Second, inspired by one of these
insights, that the mip solver cplex is more effective than expected, we developed
a number of new techniques aimed at enhancing our previously developed hybrid
maxsat solver maxhs. These techniques were mainly aimed at improving the
information given to cplex so as to better exploit it.

In future work we aim to find out if some of the techniques used in other
solvers, e.g., the binary search used in bincd and the weight stratification
method used in wpm1, which help them solve a number of distinct problem
instances, can be exploited in our framework. We also plan to investigate the
trade-offs we observed with the different types of seeding in more detail.
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Abstract. Unsatisfiability-based algorithms for Maximum Satisfiability (Max-
SAT) have been shown to be very effective in solving several classes of problem
instances. These algorithms rely on successive calls to a SAT solver, where an
unsatisfiable subformula is identified at each iteration. However, in some cases,
the SAT solver returns unnecessarily large subformulas. In this paper a new tech-
nique is proposed to partition the MaxSAT formula in order to identify smaller
unsatisfiable subformulas at each call of the SAT solver. Preliminary experimen-
tal results analyze the effect of partitioning the MaxSAT formula into communi-
ties. This technique is shown to significantly improve the unsatisfiability-based
algorithm for different benchmark sets.

1 Introduction

Problem partitioning is a well-known technique used for general problem solving and it
has already been proposed for Boolean optimization [1,2] formulations. The main goal
of partitioning is to identify easier to solve subproblems such that it will help to solve
the overall problem.

In recent years, several algorithms and solvers have been proposed for
Maximum Satisfiability (MaxSAT). In particular, unsatisfiability-based MaxSAT
solvers [3,4,5,6,7] have been shown to be very effective in tackling real-world prob-
lems [8]. These solvers are based on iteratively calling a SAT solver enhanced with
the ability of providing a certificate of unsatisfiability. However, one drawback of these
algorithms results from the SAT solver returning unnecessary large unsatisfiable sub-
formulas as certificates. Instead of dealing initially with the whole formula, we start
with a smaller formula that is extended at each iteration of the algorithm. The goal is to
initially have smaller formulas that enable the SAT solver to provide smaller certificates
of unsatisfiability.

In this paper we propose a new method for formula partitioning in an unsatisfiability-
based algorithm for partial MaxSAT. A graph representation of the formula is used and
graph communities are identified based on a modularity measure, thus allowing to build
partitions of soft clauses in the MaxSAT formula. The paper is organized as follows. The
next section introduces MaxSAT and briefly reviews the main approaches for MaxSAT
solving. In section 3 an unsatisfiability-based algorithm with partitioning of soft clauses

� This work was partially supported by FCT under research projects iExplain (PTDC/EIA-
CCO/102077/2008) and ASPEN (PTDC/EIA-CCO/110921/2009), and INESC-ID multian-
nual funding through the PIDDAC program funds (PEst-OE/EEI/LA0021/2011).

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 182–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is described. Section 4 proposes partition methods for partial MaxSAT, in particular a
new approach based on the identification of graph communities. Experimental results
are presented in section 5 and the paper concludes in section 6.

2 Preliminaries

The Maximum Satisfiability (MaxSAT) problem is an optimization version of the
Propositional Satisfiability (SAT) problem which consists in finding an assignment to
the variables of the CNF formula such that the number of unsatisfied (satisfied) clauses
is minimized (maximized). In the remainder of the paper, it is assumed that MaxSAT is
defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and wei-
ghted partial MaxSAT. In a partial MaxSAT formula ϕ = ϕh ∪ ϕs, some clauses are
declared as hard (ϕh), while the rest are declared as soft (ϕs). The objective in partial
MaxSAT is to find an assignment to formula variables such that all hard clauses ϕh are
satisfied, while minimizing the number of unsatisfied soft clauses in ϕs. Finally, in the
weighted versions of MaxSAT, soft clauses can have weights greater than or equal to
1 and the objective is to satisfy all hard clauses while minimizing the total weight of
unsatisfied soft clauses.

2.1 MaxSAT Algorithms

In the last decade, several new techniques and algorithms for MaxSAT have been pro-
posed [9], resulting in significant improvements in MaxSAT solvers. More recently,
new algorithms have been devised that are more effective for solving industrial bench-
mark instances1, namely linear search on the objective value of the MaxSAT instance
and unsatisfiability-based algorithms.

In the linear search approach, a new relaxation variable is initially added to each
soft clause and the resulting formula is solved by a SAT solver. Whenever a solution is
found, a new constraint on the relaxation variables is added such that solutions with a
higher or equal value are excluded. This new constraint is usually translated into a set
of propositional clauses so that a SAT solver can handle the resulting formula [10]. Oth-
erwise, a pseudo-Boolean solver must be used. The algorithm stops when the resulting
formula becomes unsatisfied.

A different approach is trying to satisfy all hard and soft clauses using a SAT solver
enhanced with the ability to produce certificates of unsatisfiability [3]. At each call of
the SAT solver, an unsatisfiable subformula is identified and relaxed by adding a new
relaxation variable to each soft clause in the unsatisfiable subformula. Additionally, a
new constraint is added such that at most one of the new relaxation variables can be
assigned value true. Again, in order to continue using a SAT solver, this new constraint
must be encoded into a set of propositional clauses. Next, the SAT solver is called
with the resulting formula. The algorithm stops when the formula becomes satisfiable.
Several extensions of this approach have been proposed for solving MaxSAT and its
variants [5,4,6,7].

1 See results from MaxSAT Evaluations at http://maxsat.ia.udl.cat/

http://maxsat.ia.udl.cat/
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Algorithm 1. Unsatisfiability-based algorithm for partial MaxSAT enhanced with
partitioning of soft clauses

Input: ϕ = ϕh ∪ ϕs

Output: satisfiable assignment to ϕ or UNSAT
1 (st, ϕC) ← SAT(ϕh) // check if the MaxSAT formula is UNSAT
2 if st = UNSAT then
3 return UNSAT
4 γ ← 〈γ1, . . . , γn〉 ← partitionSoft(ϕs)
5 ϕW ← ϕh

6 while true do
7 ϕW ← ϕW ∪ first(γ)
8 γ ← γ \ first(γ)
9 (st, ϕC) ← SAT(ϕW )

10 while st = UNSAT do
11 VR ← ∅
12 foreach ω ∈ (ϕC ∩ ϕs) do
13 VR ← VR ∪ {r} // r is a new variable
14 ωR ← ω ∪ {r} // relax soft clause
15 ϕW ← ϕW \ {ω} ∪ {ωR}
16 ϕW ← ϕW ∪ {CNF(

∑
r∈VR

r = 1)}
17 (st, ϕC) ← SAT(ϕW )

18 if γ = ∅ then
19 return satisfiable assignment to ϕW

3 Partition-Based MaxSAT Algorithm

In this section we review an unsatisfiability-based MaxSAT algorithm that takes advan-
tage of partitioning. The original algorithm [2] was proposed for weighted variants of
MaxSAT where partitions are built considering the different weights of soft clauses.

Algorithm 1 starts by checking if the MaxSAT instance ϕ is satisfiable by calling a
SAT solver only with hard clauses ϕh. Next, the set of soft clauses ϕs is split into a
list of partitions (line 4) such that each soft clause is assigned to one partition. Initially,
the working formula only considers the hard clauses ϕh (line 5). At each iteration, a
partition γi of soft clauses is added to the working formula (line 7) and removed from
the partition list γ (line 8). A SAT solver is then applied to ϕW , returning a pair (st, ϕC)
where st denotes the outcome of the solver: SAT or UNSAT. While the outcome is
UNSAT, ϕC contains the unsatisfiable subformula identified by the SAT solver and
the unsatisfiable subformula is relaxed as in the original algorithm [3]. Next, the SAT
solver is applied to the modified working formula (line 17). After a given number of
relaxations, the working formula becomes satisfiable2 and a new partition of soft clauses
is added to the working formula. If there are no more partitions in γ, then the solver
found an optimal solution to the original MaxSAT formula (line 19).

2 Notice that initially we already confirmed that the MaxSAT formula is not unsatisfiable due to
the hard clauses. Since at each iteration at least one soft clause is relaxed, the working formula
at some point becomes satisfiable.
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In Algorithm 1, a partition method must be used to split the set of soft clauses.
For weighted variants of MaxSAT, it was already shown that splitting the soft clauses
according to its weight allows the solver to be much more effective [11,2]. However,
for partial MaxSAT this partition method cannot be used since all soft clauses have
weight 1. In the next section we present two graph-based methods for partitioning of
soft clauses for partial MaxSAT.

4 Partial MaxSAT Partitioning

It has already been shown that partitioning can greatly boost the performance of unsa-
tisfiability-based solvers for weighted MaxSAT [11,2]. However, using the weight of
soft clauses for partitioning is not useful for partial MaxSAT. As a result, other meth-
ods based on the structure of the formula must be used. Next, we briefly review the
hypergraph partitioning method first proposed for weighted MaxSAT. Afterwards, we
propose a new partition method for MaxSAT based on a graph representation of the
MaxSAT formula. The new partition method uses the graph representation to iden-
tify communities using a modularity measure. The methods described in this section
represent different implementations of the partitionSoft procedure in line 4 of
Algorithm 1.

4.1 Hypergraph Partitioning

Hypergraph partitioning has already been applied to SAT [12], as well as to weighted
MaxSAT solving [2]. A hypergraph is a generalization of a graph where an edge, also
called hyperedge, can connect any number of vertices. In our case, for each soft and hard
clause there is a corresponding vertex in the hypergraph. Moreover, for each formula
variable xj there is an hyperedge connecting all vertices that represent soft or hard
clauses containing variable xj .

After building the hypergraph, the tool hmetis [13] is used as a black box to iden-
tify the partitions. In the experiments, hmetis is configured to identify 16 partitions
in each problem instance [2]. Afterwards, for each partition only the soft clauses are
considered. As a result, partitions containing only hard clauses are removed.

4.2 Community-Based Partitioning

The identification of communities in SAT instances has been previously proposed [14]
and it was shown to be effective in characterizing industrial SAT instances. For that,
SAT instances are first represented as undirected weighted graphs and partitions of ver-
tices (communities) are identified using a modularity measure. In this paper we use
both graph representations described in [14] for SAT instances, namely the Variable
Incidence Graph (VIG) and the Clause-Variable Incidence Graph (CVIG) model. In
addition, a different weighting function is proposed in this paper.
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Graph Representations
We start by defining an incidence function I on the formula variables xj in the soft
clauses ϕs as follows:

I(xj) = 1 +
∑

xj∈ω ∧ ω∈ϕs

1

|ω| (1)

Notice that I(xj) = 1 if variable xj does not occur in any soft clause.
In the Variable Incidence Graph (VIG) model, a graph G is built such that for each

variable xj in the problem instance there is a corresponding vertex in G. Moreover, if
xj and xk belong to the same clause (hard or soft), then there is an edge between the
vertices corresponding to these variables with the following weight:

w(xj , xk) =
∑

xj,xk∈ω ∧ ω∈ϕ

I(xj) · I(xk)(
|ω|
2

) (2)

Observe that if we consider I(xj) = 1 for all variables, then this weight function corre-
sponds to the one proposed in [14], where all clauses are equally relevant. However, for
MaxSAT one has to consider both soft and hard clauses. In our graph representation,
more weight is given to clauses that establish edges between variables that occur in soft
clauses. The motivation is to fortify the relationship between variables that occur in soft
clauses.

In the Clause-Variable Incidence Graph (CVIG) model, for each variable xj and for
each clause ωi ∈ ϕ, there is a corresponding vertex in graph G. In this model, edges
only connect vertices representing a variable and a clause where the variable occurs.
Hence, if a variable xj occurs in clause ωi, then there is an edge between those vertices
with weight:

w(xj , ωi) =
I(xj)

|ωi|
(3)

Community Identification
After building a graph representation for the problem instance, we are interested in
making explicit the hidden structure of the MaxSAT formula by identifying partitions
in the graph. Clearly one can devise many different ways of partitioning. Therefore, it
is necessary to evaluate the quality of a given set of partitions.

In recent years, the use of modularity measures became common for the identifica-
tion of communities in graphs [15,16,17]. The main goal of the modularity measure is
to evaluate the quality of the communities in a graph where vertices inside a community
should be densely connected, while vertices assigned to different communities should
be sparsely connected. Let G = (V,w) denote a complete undirected weighted graph
where V is the set of vertices and w : V × V → R is a weight function for each pair of
vertices. If an edge does not occur inG, then it has weight 0. LetC = {C1, C2, . . . , Cn}
denote a set of communities such that every vertex u ∈ V is assigned to one and only
one community in C. Hence, the modularity value Q of the set of communities C in
graphG can be defined as follows [16]:
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Q =
∑

Ck∈C

⎡⎢⎣
∑

i,j∈Ck

w(i, j)

m
−

⎛⎜⎝
∑

i∈Ck

∑
j∈V

w(i, j)

2m

⎞⎟⎠
2 ⎤⎥⎦ (4)

wherem =
∑

i,j∈V w(i, j) denotes the sum of the weights of all the edges in G.
One drawback of community identification using modularity measures is that finding

a set of communities with an optimal modularity value is computationally hard [18]. As
a result, several approximation algorithms have been proposed [19,20,21]. In this paper,
the method proposed in [21] is used.

From Communities to Partitions
After identifying the communities in the graph, one must build the set of partitions to be
used in Algorithm 1. When using the CVIG model, building partitions of soft clauses is
straightforward since clauses are directly represented in the graph. For each community
with vertices representing soft clauses, there is a corresponding partition containing the
respective soft clauses in the community. After building the partitions, these are sorted
by ascending size with respect to the number of soft clauses. Therefore, partitions with
smaller size are considered first in Algorithm 1.

In the VIG model, only variables are represented in the graph. Therefore, given the
set of communitiesC, we define that a soft clause ω belongs to the community Ck that
maximizes |Ck ∩ ω|, i.e. Ck is the community with the most variables in ω. In case of
a tie, ω is assigned to the community of the lowest index variable in ω. After assigning
all soft clauses to communities, partitions to be used in Algorithm 1 are built as in the
CVIG model.

5 Experimental Results

All experiments were run on the partial MaxSAT instances from the industrial cate-
gory of the MaxSAT evaluation of 2012. The evaluation was performed on two AMD
Opteron 6276 processors (2.3 GHz) running Fedora 18 with a timeout of 1,800 seconds
and a memory limit of 16 GB.

The partitioning techniques described in the previous section were implemented on
top of WBO [5]. Figure 1 compares the different partitioning solvers against the origi-
nal WBO that does not use any partitioning techniques. The solver using hypergraph
partitioning is denoted by hyp. VIG and CVIG correspond to the community-based
partitioning using the VIG and CVIG graph representations described in section 4.2,
respectively. To assess the quality of the new partitions, we have also implemented a
random partitioning technique where each soft clause is placed randomly in one of the
partitions. We denote this solver by rdm. Similarly to the hypergraph partitioning, 16
partitions are used. The clauses are distributed uniformly among the partitions.

The table on the left of Figure 1 shows the number of instances solved in each bench-
mark set by each solver. Randomly partitioning the soft clauses can have a detrimental
effect on the performance of the solver for several classes of benchmarks. However, it
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Bench #I WBO hyp VIG CVIG rdm
aes 7 0 0 0 0 0
fir 59 40 26 28 29 18
simp 17 10 9 10 10 9
su 38 11 6 11 10 6
msp 64 4 5 4 6 1
mtg 40 18 39 38 36 19
syn 74 32 31 35 32 30
circuit 4 1 2 2 2 2
haplotype 6 5 5 5 5 5
nencdr 84 19 67 68 68 66
nlogencdr 84 24 71 70 75 68
routing 15 15 6 15 6 3
protein 12 1 2 1 1 2
Total 504 180 269 287 280 229  0
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Fig. 1. Comparison between different partitioning solvers

can also significantly improve the performance of the solver on other classes of bench-
marks, such as nencdr and nlogencdr. Nevertheless, other partition methods based
on structural information of the formula are clearly better.

Community-based partitioning outperforms hypergraph partitioning. Note that hy-
pergraph partitioning creates a fixed number of partitions. However, in community-
based partitioning, the number of partitions is dynamic and depends on the structure of
the formula. This may explain the effectiveness of community-based partitioning.

The cactus plot of Figure 1 results from the running times of the different solvers. The
x-axis shows the number of solved instances, whereas the y-axis shows the running time
in seconds. We can distinguish between three classes of solvers: (i) solvers that do not
use partitioning (WBO), (ii) solvers that use random partitioning (rdm) and (iii) solvers
that use the structure of the formula to create the partitions (hyp, CVIG and VIG). Even
random partitioning improves the overall performance of the solver. However, when the
structure of the formula is considered, the performance of the solver is further improved.

Even though partitioning approaches outperform WBO on most benchmarks, there
are some benchmarks where partitioning may lead to a detrimental effect on the per-
formance of the solver. Our motivation for partitioning is to identify easier to solve
subproblems. As a side effect, this may lead to finding smaller unsatisfiable subformu-
las at each call of the SAT solver. On average, WBO finds unsatisfiable subformulas
with 110 soft clauses, whereas unsatisfiable subformulas in VIG have 66 soft clauses.
The other solvers using partitions also behave similarly and find on average smaller un-
satisfiable subformulas than WBO. This behavior is particularly visible on the nencdr
and nloencdr benchmarks [22]. For these benchmarks, WBO finds on average unsat-
isfiable subformulas with 167 soft clauses, whereas unsatisfiable subformulas in VIG
have only 47 soft clauses.

However, if the partitions are not adequate, then we may split related soft clauses be-
tween different partitions. This may prevent the solver from finding small unsatisfiable
subformulas. For example, this behavior is observed in the routing benchmarks [23].
On average, WBO finds unsatisfiable subformulas with 7 soft clauses, whereas CVIG
finds unsatisfiable subformulas with 45 soft clauses. Due to an inadequate partitioning,
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CVIG is only able to solve 6 out of 15 instances of routing. Note that VIG can solve
all routing instances since the partitions used allowed to find on average unsatis-
fiable subformulas with 9 soft clauses. Example 1 shows the impact that inadequate
partitioning may have on the performance of the solver.

Example 1. Consider a partial MaxSAT formulaϕ = ϕh∪ϕs. Assume that ϕh contains
the hard clause ω1 = (x1 ∨ x2 ∨ x3) and that ϕs contains the soft clauses ω2, ω3 and
ω4, where ω2 = (x̄1), ω3 = (x̄2) and ω4 = (x̄3). If these soft clauses are placed
in the same partition then we can find a trivial unsatisfiable subformula with the hard
clause ω1. However, consider the worst case scenario where ω2, ω3 and ω4 are placed
in different partitions with other soft clauses. Let us assume that we first try to find
unsatisfiable subformulas in the partition that contains ω2. In this case, we may find
unsatisfiable subformulas formed by ω2 with other soft clauses. Note that each time a
new unsatisfiable subformulaϕC is found, all soft clauses in ϕC are relaxed. Therefore,
after several iterations, when the working formula finally contains ω2, ω3 and ω4, we
may have already relaxed these soft clauses several times. If this is the case, then we
will no longer be able to find the small unsatisfiable subformula that could be identified
if no partitioning was used.

It was observed that the inadequate partitioning presented in Example 1 occurs fre-
quently in some classes of benchmarks, such as fir and routing. Moreover, if a
random partitioning is used, then this problem is even more accentuated. This may ex-
plain why random partitioning deteriorates the performance of the solver for several
benchmark sets. On the other hand, this shows that an adequate partitioning of the for-
mula is essential for the effectiveness of the solver. Future work will focus on improving
partitioning techniques to further reduce the probability of inadequate partitioning.

WBO is a state-of-the-art solver for weighted partial MaxSAT but is not as
effective for partial MaxSAT. Even though partitioning significantly improves the
unsatisfiability-based algorithm of WBO, it is still not enough to match the performance
of state-of-the-art solvers for partial MaxSAT. However, the partitioning approaches
presented in this paper are not limited to the unsatisfiability-based algorithm of WBO
but can also be extended to other unsatisfiability-based algorithms [4,7]. As future work,
we propose to implement the partitioning techniques described in this paper on top of
other unsatisfiability-based algorithms for partial MaxSAT.

6 Conclusions

Partitioning the soft clauses has shown to significantly improve the unsatisfiability-
based algorithm of WBO for most classes of benchmarks. Moreover, if the structure
of the formula is taken into consideration when creating the partitions we can further
improve the effectiveness of the solver. This supports the idea that using the structure
of the formula to guide the search improves the performance of the solver and provides
a strong stimulus for future research.

As future work, we propose to extend our modularity-based partitioning for weighted
MaxSAT. Furthermore, the partitioning approaches proposed in this paper are not lim-
ited to the WBO algorithm and will be used in other unsatisfiability-based algorithms.
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Abstract. Reductions are perhaps the most useful tool in complexity
theory and, naturally, it is in general undecidable to determine whether
a reduction exists between two given decision problems. However, asking
for a reduction on inputs of bounded size is essentially a Σp

2 problem
and can in principle be solved by ASP, QBF, or by iterated calls to
SAT solvers. We describe our experiences developing and benchmarking
automatic reduction finders. We created a dedicated reduction finder that
does counter-example guided abstraction refinement by iteratively calling
either a SAT solver or BDD package. We benchmark its performance with
different SAT solvers and report the tradeoffs between the SAT and BDD
approaches. Further, we compare this reduction finder with the direct
approach using a number of QBF and ASP solvers. We describe the
tradeoffs between the QBF and ASP approaches and show which solvers
perform best on our Σp

2 instances. It turns out that even state-of-the-art
solvers leave a large room for improvement on problems of this kind. We
thus provide our instances as a benchmark for future work on Σp

2 solvers.

1 Introduction

Finding reductions between different decision problems is a central task in com-
plexity theory. Polynomial-time reductions are perhaps the most traditional, and
constructing such reductions generally involves creating certain gadgets or build-
ing some other form of structure on top of the instance that is to be reduced.
The intuition that finding reductions resembles structured constructions can be
captured formally: the reduction one finds is usually not only a polynomial-time
function, but often a log-space one, or even a quantifier-free projection.

The class of quantifier-free projections, defined formally in the next section,
is a very restricted subset of log-space functions. Still, they are sufficient to
capture important complexity classes (see Chapter 11 of [13]). For example1,
P=NP iff SAT ≤qfpCVP, and NL=NP iff SAT ≤qfpREACH. The hope when
focusing on weaker (but still sufficiently strong) reductions is that they will put
new complexity-theoretic results within reach, and there are examples where

� Supported in part by KAKENHI No. 25106501.
1 We write X ≤qfpY if there is a quantifier-free projection from X to Y. CVP is the
P-complete Circuit Value Problem, REACH is the NL-complete problem of directed
reachability, and SAT is the NP-complete propositional satisfiability problem.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Experiments with Reduction Finding 193

this has actually been accomplished [1]. Quantifier-free projections also have a
significant advantage when trying to derive them automatically. They are by
definition formulas of a simple form, so one can enumerate them easily once
their dimension is fixed. In fact, instead of enumerating, one can write them
in symbolic form using propositional variables. This opens the way for using
propositional solvers to find such reductions automatically.

The problem of determining whether a quantifier-free projection exists between
two given decision problems is still undecidable in general. But when we fix the
dimension of the reduction we are looking for and only ask for it to be correct on
inputs of bounded size, the question becomes essentially a Σp

2 problem – it is of
the form ∃X ∀Y ϕ where X and Y are sets of propositional variables and ϕ is a
quantifier-free propositional formula. This problem can then in principle be solved
by a QBF or ASP solver, or by iterated calls to a SAT solver.

This paper describes our experiments with this kind of automated reduction
finding. We present both a dedicated reduction finder called DE2 and a gen-
erator3 that allows to construct instances for QBF and ASP solvers that are
equivalent to the given reduction finding problem. It is therefore a source of
instances for which the hardness depends on the chosen parameters. To make
it easy to use these problems for benchmarking, we provide both the generator
(all source code is available as open-source) and the collection of qdimacs, qpro,
and lparse files for the set of parameters we used in our experiments.3

In the long term, automatic reduction finders may help obtain unexpected
complexity-theoretic results or re-discover stunning reductions. For example, the
coNL-to-NL reduction behind the Immerman-Szelepcsényi Theorem, awarded
the Gödel Prize in 1995, is in fact a dimension-8 quantifier-free projection and
can in principle be found by DE. But current solvers do not perform sufficiently
on high-dimensional instances: even dimension 3 is beyond reach of DE or any
other solver with the present approach. Still, none of these solvers has been tuned
for Σp

2 problems and DE is a young project. We believe that our benchmarks are
a source of meaningful, challenging SAT and 2QBF instances and we will work
to include them in the next SAT and QBF evaluations. If solvers can be tuned to
perform well on these kinds of instances, and improve their performance on Σp

2

problems in general, we may be able to obtain interesting complexity-theoretic
results in this way – so we encourage the community to experiment.

Related Work. The idea of automatic reduction finding, together with the first
automated ReductionFinder, was developed in [3]. ReductionFinder works on
a database of decision problems specified in stratified Datalog and attempts to
place the problems into classes based on the existence of reductions. It uses the
ASP solver cmodels to search for reductions, and it has not previously been
compared to other reduction-finding attempts nor is it publicly available. We
focus entirely on the problem of finding a reduction between two given problems,

2 DE is available at http://www-alg.ist.hokudai.ac.jp/~skip/de
3 The generator with instructions and the collection of generated files we used for
testing are available from http://toss.sf.net/reductGen.html

http://www-alg.ist.hokudai.ac.jp/~skip/de
http://toss.sf.net/reductGen.html
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and thanks to a private copy of ReductionFinder we also compare our results to
this previous approach.

2 Background in Descriptive Complexity

Classically, one defines a decision problem as a set of words and the complexity
of a problem as the amount of computational resources (time, space) required
to check on a Turing machine whether a word belongs to the set. In descriptive
complexity, we take a higher-level view of decision problems. Instances do not
need to be encoded as words, but are directly relational structures, for example
graphs. The role of a Turing machine is in turn played by a formula in some logic,
and the complexity of a problem is the expressive power required by the formula.
It turns out that different logics correspond to different complexity classes and
that all major complexity classes have logical characterizations.

Descriptive complexity provides a particularly convenient framework for auto-
matically finding reductions. The fact that instances do not need to be encoded
as words allows us to express interesting reductions succinctly, and formulas,
unlike Turing machines, have natural normal forms. In this section we introduce
the background in descriptive complexity necessary for this paper; refer to [13]
or Chapter 3 of [8] for a more detailed introduction and additional material.

A relational signature τ := (Ra1
1 , . . . , R

ar
r , c1, . . . , cs) is a tuple of predicate

symbols Ri with arities ai and constant symbols cj . A finite τ-structure

A := (U,R1 ⊆ Ua1 , . . . , Rr ⊆ Uar , c1 ∈ U, . . . , cs ∈ U)

consists of a finite universe U , an ai-ary relation for each predicate symbol of τ ,
and a definition – an element of U – for each constant symbol.

For example, the signature for directed graphs contains a single, binary
predicate symbol E and so a directed graph consists of a finite set of vertices
and a binary edge relation. For convenience, we generally identify an n-element
universe U with the set {0, . . . , n− 1}.

Formulas of first-order logic over a signature τ have the form

ϕ := Ri(x1, . . . , xai) | xi = xj | xi = cj | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xi ϕ | ∀xi ϕ,

where x1, x2, . . . are first-order variables, and the semantics, given an assignment
of the variables xi to elements ei of the structure, is defined in the natural way.
For example, ∃x1R(x1, x2) holds for an assignment x2 → e2 in A if, and only if,
there exists an element e1 of U such that (e1, e2) is in the relation R in A.

Formulas without free variables define properties in the natural way. For ex-
ample, ∀x, y ¬E(x, y) defines the property of having no edges, i.e. being an empty
graph. That is, the property defined by a formula ϕ is the set of all structures
on which ϕ holds. We use properties to specify decision problems.

Queries and Reductions. Reductions map σ-structures to τ -structures, defining
the universe, relations, and constants by means of logical formulas. Reductions
are a special kind of query, and so we begin by defining first-order queries.
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A first-order query from σ-structures to τ -structures is an r + s+ 2-tuple,

q := (k, ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs) .

The number k ∈ N is the dimension of the query. Each ϕi, ψj is a first-order
formula over the signature σ. Let A be a σ-structure with universe UA. The
formula ϕ0 has free variables x1, . . . , xk and defines the universe U of q(A),

U :=
{
(u1, . . . , uk) | ui ∈ UA,A |= ϕ0(u1, . . . , uk)

}
.

That is, the new universe consists of k-tuples of elements of the old universe,
where ϕ0 determines which k-tuples are included.

Each remaining ϕi has free variables x11, . . . , x
k
1 , x

1
2, . . . , x

k
ai

and defines

Ri :=
{
(u11, . . . , u

k
1), . . . , (u

1
ai
, . . . , ukai

) | A |= ϕi(u
1
1, . . . , u

k
ai
)
}
∩ Uai .

That is, ϕi determines which of the ai-tuples of U are included in Ri. Finally,
each ψi has free variables x1, . . . , xk and defines ci as the unique (u1, . . . , uk) ∈ U
such that A |= ψi(u1, . . . , uk).

First-order queries therefore transform σ-structures into τ -structures. Given a
property P of σ-structures and a property Q of τ -structures, a first-order reduc-
tion r from P to Q is a first-order query that satisfies an additional condition.
Namely, reductions must satisfy A ∈ P ⇐⇒ r(A) ∈ Q for all σ-structures A.

There are various kinds of first-order reductions (see [13]). Quantifier-free
projections are the weakest version usually considered. There, all formulas in the
reduction must be quantifier-free, and the reduction must also be a projection,
i.e., each bit of the output depends on at most one bit of the input, where the
bit is selected in first-order.

First-order reductions are weaker than, for example, polynomial-time reduc-
tions, and quantifier-free projections are even more restricted. However, natural
problems that are complete for natural complexity classes via polynomial-time
reductions tend to remain complete via these weaker reductions (see, e.g., [13]).
In this paper we consider parametrized classes of quantifier-free reductions where
all formulas are in disjunctive normal form (DNF). Therefore, all formulas in the
reductions we consider are quantifier-free, however, the reductions are not nec-
essarily projections. We also consider only formulas ψi that directly define the
constant ci (i.e., a fixed tuple of constant symbols from σ and UA) and require ϕ0

to be always true. These restrictions are for simplicity, and have minimal impact
from the complexity-theory perspective, given that constants can be omitted or
replaced by monadic relations.

Extending First-Order Logic. So far, we have focused only on first-order logic.
Although it is generally more than adequate for reductions, first-order logic has
several drawbacks when used to express properties. First of all, it is not expressive
enough to describe many relations that can easily be computed. This limitation
stems from the locality of first-order formulas. This property implies that it is
not possible to express the transitive closure of a relation in first-order logic, so,
e.g., also the property that a graph is connected.
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To remove this limitation of first-order logic, one extends it with various oper-
ators. For example, the transitive closure operator allows us to write formulas of
the form TC[x1, x2.ϕ(x1, x2)](y1, y2). This formula takes the transitive and re-
flexive closure of the (implicit) relation defined by ϕ(x1, x2) and then evaluates
it on (y1, y2). Adding the transitive closure operator removes some limitations
of FO, but how can we know what other problems remain? Let us review some
of the best-known correspondences between logics and complexity classes.

The oldest result [6] shows that the class NP is captured by existential second-
order logic. More practically, polynomial-time computations are captured by the
extension of FO by the least fixed-point operator (LFP) when a linear order rela-
tion is present [11,18]. The requirement of a linear order can be weakened when
a counting mechanism is added to the logic, and LFP with counting captures P
on many classes of structures, such as grids, planar graphs [9] and all classes
that exclude a fixed minor [10]. Although LFP is presumably more expressive
than the transitive closure logic (TC) we mentioned, TC captures all problems
solvable in non-deterministic logarithmic space (NL) on ordered structures [12].

Example 1. Having introduced the transitive closure operator and our notion of
reductions, let us give a simple example that our reduction-finding systems can
find4. Consider the following formulas,

Reach := TC[x, y.E(x, y)](s, t) AllReach := ∀x1, x2 (TC[y, z.E(y, z)](x1, x2)) .

Here, Reach expresses the NL-complete problem of reachability (there exists a
directed path from s to t) and AllReach expresses the NL-complete problem of
all-pairs reachability (there is a directed path from x to y for all vertices x, y).

Using the notation for reductions introduced above, a correct reduction from
Reach to AllReach is

(k := 1, ϕ0 := true, ϕ1 := x1 = s ∨ x2 = t ∨E(x2, x1)) .

This reduction reverses all edges in the original graph, adds directed edges from s
to all vertices and also adds directed edges to t from all vertices. It is not difficult
to see that the result is strongly connected if, and only if, the original graph has a
directed path from s to t. Note that a similar reduction exists without reversing
the edges – however the above is the actual output of our program.

3 Finding Reductions

The fundamental problem that we want to solve is the following. Given two
logical formulas ϕP and ϕQ, is there a reduction from the property defined by ϕP

to that defined by ϕQ? Unfortunately, this problem is undecidable. In fact, it is
also undecidable to determine whether a given reduction is correct for two fixed
properties, or even whether two given properties are logically equivalent.

4 With parameters k = 1, c = 3, n = 4 in < 3s.



Experiments with Reduction Finding 197

Our fundamental approach is to fix an “outline” of the reduction we hope
to find. For example, we may assume that all formulas5 in the reduction are
quantifier-free, in DNF, and are a disjunction of exactly c conjunctions. Once
the signatures are fixed, there is only a finite number of atoms that could occur
in these conjunctions. This is because there are only finitely many variables (we
cannot introduce new variables with quantifiers) and constants, and only finitely
many ways to combine these symbols with the relation symbols and equality.
For each atom and conjunction, we introduce a Boolean variable representing
whether or not the atom occurs in that conjunction of the reduction. Intuitively,
we can now express the existence of a reduction as a logical formula

∃r ∀A (A |= ϕP ↔ r(A) |= ϕQ) , (1)

where r is the finite set of Boolean variables defining the reduction, and A ranges
over all structures having the same signature as ϕP .

Of course, there are infinitely many such structures, which explains why the
problem is still undecidable. However, experience shows that it usually suffices
to consider structures of fairly small size, at least for natural problems and
natural classes of weak reductions. That is, although one can construct artificial
properties where arbitrarily large examples are needed, it seems that if a simple
reduction between natural problems is correct on all small instances, then it is
usually correct on all instances.

Therefore we focus, as did [3], on finding reductions that are correct on all
structures of size n. Here, n is a parameter and it is also possible to consider
ranges of n. Once n is fixed, as well as the outline for r, checking Formula (1)
becomes decidable. In fact, it is natural to represent A with Boolean vari-
ables, and so Formula (1) becomes a one-alternation quantified Boolean formula.
Satisfiability of such formulas6 is complete for Σp

2 .

Example 2. Let us show how the QBF for Formula (1) is constructed in the
following case. Let P be the class of non-empty graphs defined by ϕP =
∃x, y E(x, y) and let Q be the class of non-complete graphs given by ϕQ =
∃x, y ¬E(x, y). We ask whether there is a quantifier-free reduction from P to Q
of dimension k = 1, with c = 1 conjunctions, and that is correct on all graphs
of size n = 2.

First, let us fix the outline for our reduction with one conjunction. Note that
σ = τ = {E}, so in this case the reduction we are looking for has the follow-
ing form: (k := 1, ϕ0 := true, ϕ1(x1, x2)) for some formula ϕ1(x1, x2) which
is a conjunction of literals. What atoms are possible over the signature {E}
with variables x1, x2? There are exactly 5 atoms in the basic syntax: E(x1, x1),
E(x1, x2), E(x2, x1), E(x2, x2), and x1 = x2. So, in this most basic case, the
outline for ϕ1 has the form ϕ1(x1, x2) =

X1E(x1, x1) ∧ X2E(x1, x2) ∧ X3E(x2, x1) ∧ X4E(x2, x2) ∧ X5x1 = x2 ∧
Y1¬E(x1, x1) ∧ Y2¬E(x1, x2) ∧ Y3¬E(x2, x1) ∧ Y4¬E(x2, x2) ∧ Y5¬x1 = x2.

5 As mentioned above, we always fix ϕ0 = true and define constants by fixed tuples.
6 Note that Formula (1) has leading existential quantifiers; satisfiability of
one-alternation formulas with leading universal quantifiers is complete for Πp

2 .
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Above, Xi and Yi are propositional variables that determine whether the literal
after them will appear or not: X1E(x1, x2) means “E(x1, x2) if X1 is set and
true otherwise”, as becomes clear below. An outline is thus a formula with these
additional propositional variables used as guards.

In all our tests, we use an extended set of atoms, not only the basic ones
presented above for readability. In the extended set, in addition to relations
over variables and equality as above, we allow the following atoms: for a fixed
enumeration of the elements of the structure, we say that x is the minimal one,
the maximal one, or that x = y + 1. This allows to find more reductions with
the same outline parameters.

Having constructed the outline, let A be a 2-element structure and assume
that the tuple (i, j), for i, j ∈ {0, 1}, is in the relation E in A if, and only if, the
propositional variable Eij is set. Note that the part A |= ϕP of Formula (1), in
our case A |= ∃x, y E(x, y), can now be written as a purely propositional formula:∨

i,j∈{0,1} Eij . To express that r(A) |= ϕQ we need to use the definition of E in

r(A) given by ϕ1. In our case, for r(A) |= ∃x, y ¬E(x, y) we write
∨

i,j∈{0,1} ¬ϕij .
Here ϕij is derived from the outline of ϕ1 using the propositional variables Eij .
For the basic outline presented above, that means ϕij =

(¬X1 ∨Eii) ∧ (¬X2 ∨ Eij) ∧ (¬X3 ∨ Eji) ∧ (¬X4 ∨ Ejj) ∧ (¬X5 ∨ i = j) ∧
(¬Y1 ∨ ¬Eii) ∧ (¬Y2 ∨ ¬Eij) ∧ (¬Y3 ∨ ¬Eji) ∧ (¬Y4 ∨ ¬Ejj) ∧ (¬Y5 ∨ i �= j),

where i = j and i �= j get substituted by true or false depending on i and j.
In this way, we obtain the following propositional formula, which we call the

QBF corresponding to Formula (1) for k = 1, c = 1, n = 2.

∃X1 . . . X5 Y1 . . . Y5 ∀E00 . . . E11

⎛⎝ ∨
i,j∈{0,1}

Eij ↔
∨

i,j∈{0,1}
¬ϕij

⎞⎠ .
Observe that this formula is satisfied exactly if there is a reduction with the spec-
ified outline correct on all structures of the specified size. Moreover, if satisfied,
the outer-most existentially quantified variables allow to extract a reduction.

3.1 Approaches to Solving Σp
2 Problems

Several approaches have been used to solve problems in Σp
2 . Actually construct-

ing the QBF for Formula (1) as above is fairly tedious, but poses no serious
difficulty. This results in a QBF instance with one quantifier alternation where
a satisfying assignment of the existential variables gives a reduction, so QBF
solvers can be immediately applied.

Although they are perhaps not yet as mature as SAT solvers, in recent years
there has been a great deal of work on efficient QBF solvers. See, for example,
the QBFEVAL series of evaluations [17]. QBFEVAL’10 also included a 2QBF
track, and we believe our instances could be attractive candidates for inclusion
in that track. Still, as will be clarified below, in our case it is often more efficient
to present the formula as a 3QBF instance.
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In addition to QBF solvers, there are other approaches that have been used
to solve Σp

2 problems. For example, ASP solvers that support disjunctive logic
programs can solve such problems using the reduction to disjunctive logic pro-
grams given by [4,16]. Examples of such solvers are cmodels and claspd, and
some previous work [5] has indicated that ASP solvers may outperform QBF
solvers on Σp

2 problems.
Another option is to expand the universal quantifier block of the formula using

a conjunction over all possible assignments, resulting in a SAT instance. This
allows SAT solvers to be used directly, however it entails an exponential increase
in instance size. In our experience, this is impractical for large instances.

Finally, some recent work [3,14,15] has noted that one can use repeated calls to
SAT solvers to solve Σp

2 instances, essentially an application of counter-example
guided abstraction refinement (CEGAR) [2]. This approach is also a finitely-
truncated implementation of limit-learning [7], using guesses for the leading ex-
istential quantifiers as hypotheses and assignments to the universal quantifiers
as counter-examples. Our dedicated reduction finder DE uses this approach.

In our view, the connection to limit-learning gives a particularly nice perspec-
tive on our problem. For example, removing the finite-size restriction needed
for decidability results is exactly an attempt to learn reductions from counter-
examples in the limit. Of course, it is undecidable whether such a learner has
converged to a correct hypothesis. Techniques from inductive inference may pro-
vide valuable guidance on efficient learning, i.e., minimizing total computation
time, or number of counter-examples required.

4 Reduction Finding Using QBF and ASP Solvers

In this section, we compare the performance of various QBF and ASP solvers on
our problem. Our approach to generating QBF instances for reduction finding
was outlined above. Essentially, we view the problem from the perspective of
Formula (1) as a QBF instance and apply the above-mentioned approaches.

Note that Formula (1) is of the form ∃r ∀Aψ. The reduction r contributes
existential propositional variables, the structure A is the source of universal
variables, and ψ is a quantifier-free propositional formula. While it is quantifier-
free, in general this formula is not in conjunctive normal form (CNF). Most QBF
solvers require their input to be in CNF and CNF conversion usually involves
introducing new existentially quantified variables, which must be innermost.

We investigate three approaches to dealing with the conversion to CNF. First,
there are QBF solvers that only require the formula to be in negation normal
form (NNF), not CNF. The most common input format for such solvers is called
qpro and in this case we generate the formula directly.

The second approach is to convert the propositional part of Formula (1)
to CNF adding new existential variables.7 In this case, we produce output in

7 We used the standard Plaisted-Greenbaum technique for this, which in our tests
slightly outperformed the often used Tseitin method.
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qdimacs format. The resulting formula is of the form ∃X ∀Y ∃Z ψCNF – it has
one more quantifier alternation than strictly necessary.

The third approach is to first negate Formula (1), which then has the form
∀r ∃Aψ. We then convert ψ to CNF as above, and generate a qdimacs file with
only one quantifier alternation.

Finally, we also generate lparse files for ASP solvers, as described in
Subsection 3.1. This results in the following four cases that we test and benchmark.

qpro Constructing QBF for Formula (1) and using QBF solvers that
support non-CNF QBF (cirqit).

qdimacs Constructing QBF for Formula (1) and converting directly to CNF,
then using QBF solvers (rareqs, depqbf, qube7.2, skizzo, cirqit).

nqdimacs Negating Formula (1) before CNF conversion to avoid one quanti-
fier alternation, and using QBF solvers (rareqs, depqbf, qube7.2,
skizzo, cirqit).

lparse Constructing Formula (1) and using ASP solvers that support dis-
junctive logic programs (lparse or gringo, and cmodels, claspd
or gnt2).

Some of the combinations listed above performed quite poorly even on very
simple reduction finding instances. In particular, cmodels and gnt2 almost
always abort (but produce correct output if they do not abort), and using cirqit

with nqdimacs is very slow (but produces correct output). We therefore omit
these combinations from our experimental results.

4.1 Comparing the QBF Approaches

We first concentrate on the following question: which of the three approaches to
using QBF solvers, qdimacs, nqdimacs, and qpro, performs best? It turns out
that there is a clear answer: qdimacs is the best option.

Comparing qdimacs and nqdimacs. Given the explanation above, one might
think that nqdimacs is a more promising formulation for our instances – it
expresses the same problem but avoids one quantifier alternation. We were mildly
surprised to see that all QBF solvers we tested consistently performed worse on
nqdimacs than on qdimacs instances with one more quantifier alternation. In
Table 1 below we present the number of timeouts for qdimacs and nqdimacs

instances for the easiest set of parameters we tested: k = 1, c = 1, and n = 3.
Clearly, both depqbf and qube performed much better on qdimacs than on
nqdimacs, e.g. there were no timeouts (set to 120s in this section) on any qdimacs
instance for these two solvers but several hundred (out of 23048) for nqdimacs,
and the completed instances also took longer to finish. For skizzo the situation is
less clear but the general pattern is the same. The CEGAR-based solver rareqs

8 We used 48 decision problems from [3] to be able to compare to ReductionFinder.
They range from very simple, like the empty graph, to the NL-complete reachability
and coNL-complete unreachability problems.
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Table 1. Number of timeouts for qdimacs and nqdimacs solvers

qdimacs nqdimacs

depqbf 0 300
qube 10 285
skizzo 522 706

had only 2 timeouts on this instance, both in the negated setting, but exhibits
the same pattern for c = 2 (0 vs. 304 timeouts).

Comparing qdimacs and qpro. When comparing qdimacs and qpro we must
note that most QBF solvers accept qdimacs input while we found only one,
cirqit, that accepts qpro and is freely available. This is crucial: either depqbf
or qube reading qdimacs outperform cirqit uniformly, on all instances, with 1s
margin of error, and both these solvers have far fewer timeouts than cirqit. On
the other hand, when comparing only cirqit on qdimacs input with cirqit on
qpro input, neither has a clear advantage – there are numerous instances where
one times out and the other does not, and also instances where the opposite
occurs. In Table 2 we show the number of timeouts of different solvers on three
parameter sets of increasing difficulty.

Table 2. Number of timeouts for qdimacs and qpro solvers

k = 1 c = 1 n = 3 k = 1 c = 2 n = 3 k = 1 c = 3 n = 3

rareqs (qdimacs) 0 0 16
depqbf (qdimacs) 0 142 547
qube (qdimacs) 10 536 949
cirqit (qdimacs) 58 673 1138
cirqit (qpro) 157 523 903

The behavior of cirqit on qdimacs and qpro instances shows that one can
benefit from knowing the structure of the formula. Together with the fact that
qdimacs outperforms nqdimacs, these seem to indicate that a more careful
handling of the innermost formula could lead to more efficient solvers.

Comparing QBF Solvers. Having settled on qdimacs, we now compare the per-
formance of the five QBF solvers on different parameter sets. In Table 3 we
report the number of timeouts for each solver and each parameter set.

For non-CEGAR solvers, depqbf and qube outperform skizzo and cirqit.
Between depqbf and qube the situation is less clear, some instances work much
better with one of these solvers, others with the other. The comparison between
skizzo and cirqit is difficult as well. As to the dominance of depqbf and
qube over skizzo and cirqit, it holds for almost all queries. Still, there are a
few outliers on which depqbf and qube time out, but skizzo answers almost
immediately. This allows to hope that tailoring the strategies of QBF solvers
towards Σp

2 problems might still lead to significant performance gains.
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Table 3. Number of timeouts for different QBF solvers, k = 1

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4

rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
skizzo 522 1058 1156 975 1327 1434

4.2 Comparing Different Approaches to Reduction Finding

Having discussed the QBF approaches and chosen the best QBF solvers, let us
finally compare the QBF approach with the approach using ASP solvers, and
also with our reduction finder DE and ReductionFinder from [3].

Different ASP Solvers. We consider three different ASP solvers (cmodels,
gnt2, and claspd) and two different grounding programs (lparse and
gringo). Grounding is performed before the solver is started, and may take
significant time. However, we time the total of grounding and solving and so it
is possible for the grounding program to timeout before the solver begins.

Two of the solvers (cmodels and gnt2) abort very frequently, even on simple
instances and regardless of the choice of grounding program. Therefore we only
show results for claspd with lparse and gringo. Interestingly, while the total
number of timeouts was similar for the two grounders, there were numerous
instances where one timed out and the other finished quickly. This may give
some reason to hope that significantly better performance may be possible with
this approach with more careful grounding.

Results. In Table 4 we compare the different reduction finding approaches that
we tested. For the SAT-solver based DE runs, we have chosen de-gms

9 as it
performs best on hard instances. For BDD-based DE runs, we show de-cudd,
the only reduction finder we tested that used BDDs. For QBF solvers we have
chosen the two best performers, rareqs and depqbf. Note, that rareqs is a
CEGAR-based solver, more similar to de-ms than depqbf. For ASP solvers, we
show claspd both with lparse and gringo, as explained above.

We also include the results for ReductionFinder [3]. ReductionFinder only
considers reductions of a slightly different form – this usually results in a simpler
instance, so it is shown here only for comparison. All other approaches we present
find reductions of exactly the same form – naturally, the answers (whether there
is a reduction or not) agree on all parameter sets that we tested.

The CEGAR approach, whether in DE or in rareqs, outperforms the oth-
ers. Other QBF solvers (depqbf, qube) match the performance of the original
ReductionFinder and in general perform better than the ASP approach.

9 DE can use MiniSat2 (de-ms), GlueMiniSat (de-gms), CryptoMiniSat (de-cms) or
BDDs (de-cudd).
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Table 4. Number of timeouts (% solved) for tested reduction finding approaches, k = 1

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4

de-gms 0 (100.0%) 0 (100.0%) 10 (99.6%) 0 (100.0%) 5 (99.8%) 103 (95.5%)
de-cudd 0 (100.0%) 116 (95.0%) 537 (76.7%) 0 (100.0%) 186 (91.9%) 722 (68.7%)
rareqs 0 (100.0%) 0 (100.0%) 16 (99.3%) 19 (99.1%) 65 (97.1%) 204 (91.1%)
depqbf 0 (100.0%) 142 (93.8%) 547 (76.2%) 16 (99.3%) 297 (87.1%) 711 (66.1%)
gringo 40 (98.3%) 393 (82.9%) 590 (74.4%) 72 (96.9%) 593 (74.3%) 836 (63.7%)
lparse 51 (97.8%) 396 (82.8%) 605 (73.7%) 75 (96.7%) 635 (72.4%) 850 (63.1%)
RedFind 1 (99.9%) 152 (93.4%) 396 (82.8%) 2 (99.9%) 347 (84.9%) 547 (76.3%)

5 Reduction Finding Using CEGAR

We now compare CEGAR approaches to reduction finding. We begin by de-
scribing the reduction finding procedure used in DE and then compare the
reduction-finding implementations in DE with rareqs, focusing on difficult
instances.

5.1 Finding Reductions in DE

DE finds reductions by first choosing a candidate reduction r0, then searching
for a counter-example (i.e., a structure A such that A |= ϕP ⇐⇒ r0(A) �|= ϕQ).
If a counter-example is found, it searches for a reduction that is correct on all
examples seen so far, i.e., if we have seen examples {A0, . . . ,Ai}, then we search
for an assignment of the Boolean variables r such that

(A0 |= ϕP ↔ r(A0) |= ϕQ) ∧ · · · ∧ (Ai |= ϕP ↔ r(Ai) |= ϕQ) , (2)

and iterate until either no counter-example or no candidate reduction is found.
In Formula (2), whether Aj |= ϕP is known, so some simplifications can be eas-

ily performed. In our experience (and that of [3]), finding candidate reductions is
more difficult than finding counter-examples. We therefore focus mostly on find-
ing candidate reductions. However, we have optional heuristics to help choose good
counter-examples. The times reported for DE alternate greedy minimization and
maximization of counter-examples10, except for CryptoMiniSat.

We implement candidate-finding using incremental SAT solvers or BDDs (us-
ing CUDD). Formula (2) is a natural candidate for incremental SAT solving:
there are comparatively few Boolean variables r which are re-used, and at each
stage we simply add the restriction corresponding to the new counter-example.

Using BDDs for candidate-finding is similar. At each stage, we have a BDD
representing the set of candidate reductions that are consistent with the pre-
vious counter-examples. Given a new counter-example, we build a BDD of the
hypotheses consistent with it and take the intersection of the two sets. However,
to acquire a new counter-example, we must have a particular hypothesis.

10 Given a counter-example, we greedily remove or add tuples to relations while
checking that it remains a counter-example.
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We take the “simplest” candidate reduction as our hypothesis, i.e., we select
from the set of candidates consistent with the examples we have seen a candidate
with the minimal number of atomic formulas appearing. This has an advantage:
there are often several correct reductions in a search space. In this case, the
BDD implementation will give a simplest correct reduction. The difference in
size (and clarity) between this reduction and others can be substantial. We
therefore often prefer the output of the BDD version. However, it is usually slower
and much more memory-intensive than the SAT versions (see Subsection 5.2
below).

There is a known bug11 in MiniSat2 related to simplification. This affects us,
and so we disable simplification in MiniSat2. The same bug appears to be present
in Glucose, so we do not benchmark Glucose. CryptoMiniSat and GlueMiniSat
appear to be unaffected, and we leave simplification enabled for them.

5.2 Performance Results

In this subsection, we focus on a particular difficult instance, searching for re-
ductions from REACH (the coNL-complete problem of checking whether there is
no directed path from s to t in a graph) to REACH (the NL-complete problem
of checking whether there is such a path). Finding a (correct) reduction be-
tween these problems proves the Immerman-Szelepcsényi Theorem. It is known
that a dimension-8 QFP exists, it is interesting to determine whether k = 8 is
required.
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Our implementations do not approach k = 8. To begin, we fix simple pa-
rameters of k = 1, c = 1, n = 3 and examine performance when scaling k, c, n.
The results are in Figure 1 and Table 5, with a (minimum) timeout of four
hours. In our experience, rareqs performs best when scaling c and the GlueM-
iniSat version performs best when scaling n. This is due to differences in how
we handle common subformulas in DE and QBF generation – it is possible to
unify these.

11 https://github.com/niklasso/minisat/issues/3
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Table 5. Times (in seconds) as k increases

de-ms de-gms de-cms de-cudd rareqs

k = 1, c = 1, n = 3 0.05 0.06 0.08 0.07 0.03
k = 2, c = 1, n = 2 0.06 0.11 0.28 6.30 0.06
k = 2, c = 1, n = 3 3562.14 1696.26 1755.03 timeout 3267.10

When actually searching for reductions, we can range over counter-example
sizes (starting with n = 1 or n = 2). The small counter-examples exclude many
candidates, giving a large performance improvement12. For this example, no
reduction in this space exists for n = 5, so our implementations would stop at
that point. Increasing only n decreases the likelihood of a reduction existing,
making the instance more strongly negative.

Scaling only c is similar; a “reduction” (correct on graphs of size 3 but not
in general) exists at c = 4. In this example, the instance becomes more strongly
positive as c increases. However, scaling these parameters shows the limit of
our current approaches. Even with scaling, our implementations do not perform
reasonably on hard instances (properties which use transitive closure) with k > 2.

Above we considered baseline settings of k = 1, c = 1, n = 3 and scaled a
single parameter. In Figure 2, we scale n with a slightly-modified baseline of
k = 1, c = 2 to show performance with more than one conjunction.
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12 We do not include range benchmarks here. They give additional advantages to the
CEGAR approach.
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SAT vs BDD. The largest difference in performance between DE versions is
between the BDD implementation and the SAT implementations. The BDD
implementation maintains a structure explicitly representing all reductions con-
sistent with the examples seen so far. This is memory-intensive and slower than
the SAT versions, which only find a single explicit candidate at each stage.

However, the BDD version chooses a simplest candidate at each step. This
usually results in the BDD version requiring fewer iterations of the counter-
example/candidate loop, although each iteration is more expensive. For exam-
ple, if we look for a reduction from the query R(s) to the query ∃xR(x) with
parameters k = 3, c = 4, n = 6, DE with CryptoMiniSat uses 7 counter-examples
and finds a correct, but unnecessarily complicated, reduction. DE with CUDD
uses 3 examples and finds the simplest reduction in this search space.

Comparing SAT Solvers. The SAT-based DE implementations and rareqs out-
perform the other approaches we consider. However, differences between the SAT
solvers are visible in the results above. On the hardest examples we consider,
DE with GlueMiniSat is best for large n. Our generator handles common sub-
formulas better than DE, visible in the performance of rareqs when scaling c.

On easy instances, DE using MiniSat often outperforms the others. This is
likely because we disable simplification to avoid a bug in MiniSat and simplifica-
tion is not needed for these instances. However, in practice we prefer the BDD-
based implementation in such cases: any approach suffices for these instances
and we prefer the more-understandable reductions found by this version.

When searching over ranges of counter-example sizes, GlueMiniSat usually per-
forms best and we prefer GlueMiniSat on hard instances. CryptoMiniSat supports
parallel SAT-solving – we do not use this, but it may improve performance.

6 Conclusions

We have developed and benchmarked several approaches to the problem of au-
tomatically discovering reductions between decision problems13. For each ap-
proach, it is possible to find instances where it outperforms the others. However,
it is possible to state several clear conclusions. The dedicated CEGAR approach
is generally the best, and GlueMiniSat performs best on hard instances. Our
BDD-based approach gives the nicest output. The performance of QBF solvers
depends heavily on the way in which the innermost formula is converted to CNF.
For ASP solvers, much depends on the grounder used before the solver starts.

Our experiments show that each of the tested approaches – QBF solvers, ASP
solvers, and the CEGAR method – still leaves a large room for improvements.
We provide our testing instances and their generator, we will submit them to
relevant competitions, and we encourage the community to use them for testing
and optimization of all mentioned solvers. Moreover, we hope that it is possible
to combine the strengths of each approach together with new improvements, in
order to achieve better performance on hard, meaningful instances.

13 Visit http://toss.sf.net/reduct.html to test the CEGAR approach online.

http://toss.sf.net/reduct.html


Experiments with Reduction Finding 207

References
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A Constraint Satisfaction Approach for Programmable
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Abstract. This paper presents a Boolean SAT constraint satisfaction formulation
of the detailed placement problem for programmable logic. The detailed place-
ment problem is usually considered a poor candidate for a SAT-based solution due
to complex timing constraints and the large size of the problem space. To over-
come these challenges, we encode domain-specific knowledge into the problem
formulation and add new features to the SAT solver. First, a Boolean encoding
of timing constraints is presented that utilizes concepts from static timing anal-
ysis. Second, future cost clauses are added to the formulation to guide the SAT
solver in a manner similar to A* search. Third, a dynamic clause generation ap-
proach is described that keeps the working problem size small by adding clauses
on demand as the SAT solver explores the problem space. This includes dynamic
cardinality clauses and dynamic addition of literals to cardinality clauses.

1 Introduction

SAT has had a long history of use in semiconductor design automation tools. It is used
extensively in logic optimization, verification, and test generation [5,10,11,14] and has
been applied successfully on routing problems [16, 17, 21].

SAT-based placement has attracted less research interest. In the context of pro-
grammable logic, placers assign components from a netlist graph onto discrete sites
on a programmable fabric. The result must satisfy a variety of constraints such as tim-
ing and routability. Devadas described placement via SAT-based bipartitioning in [4]
but concluded that SAT solvers of the time were not yet powerful enough to solve more
general 2-D placement problems.

Simulated annealing has been used effectively for placement, but this technique has
disadvantages that can be addressed by a SAT-based approach. Given an initial place-
ment, annealers make small perturbations (e.g. swapping the positions of two compo-
nents) and measure the total delta cost reported by a set of cost functions. Downhill
moves are accepted, and uphill moves are accepted with a probability determined by
the magnitude of the cost increase and a decreasing temperature schedule. VPR is a
well-known example of this approach [2].

The disadvantages of annealing are a result of the simplicity of the move set and the
complexity of the cost functions. Any subproblem that requires a coordinated placement
change involving several components to repair requires several independent annealing
moves to be accepted sequentially. The cost functions must be carefully constructed
to ensure that partial progress towards the final goal is seen as gradual improvement.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 208–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This property can be difficult to arrange, especially if the repair requires moving
unrelated, non-violating components out of the way in order to make room for the
components that are actually violating constraints.

A constraint satisfaction approach can directly address this weakness. Instead of
searching for small changes that gradually approach an acceptable solution, a placer
based on constraint satisfaction could rearrange a large number of components simul-
taneously such that the final result satisfies all of the constraints. A SAT result directly
gives an acceptable placement and an UNSAT result proves that no solution exists. This
strategy has the potential to outperform simulated annealing if it can be made efficient.

There are numerous technical obstacles that make the placement problem appear to
be poorly-suited to a SAT-based formulation. One is the large size of the problem space
and the number of constraints. For example, a constraint that a particular netlist edge
has a legal routing is dependent, at a minimum, on the placements of both the source and
sink components of that edge. The number of constraints for this single edge thus grows
as the product of the number of placement options for the source and sink components.

Timing constraints involving paths composed of multiple edges add even more com-
plexity. The sum of placement-based routing and logic delays on a path between state
elements must be less than the desired clock period for the design. These constraints in-
volve numerous component placements, real numbers, addition, and inequalities which
can be difficult to encode into Boolean formulas. Path-based constraints are also prone
to deep searches where the solver discovers only after placing nearly the entire path that
the last edge has no valid options remaining.

We have found solutions to these challenges by encoding domain-specific knowl-
edge into the problem and by adding new SAT solver features to handle the large prob-
lem space. The general structure of our constraint satisfaction formulation is given in
Section 3. We then present a set of contributions that build on this formulation to make
a complete and efficient solution. Section 4 describes a technique for encoding tim-
ing constraints into Boolean clauses that uses concepts from static timing analysis.
Section 5 introduces a domain-specific variable selection order. Future cost clauses are
added using variables that occur early in this selection order to guide the solver away
from conflicts that would otherwise be found only late in the search. Section 6 describes
SAT solver extensions for dynamic clause generation that grow the problem formula on
demand as the solver searches the problem space.

A complete detailed placer based on SAT is currently deployed at Tabula. This
tool outperforms our previous placer based on simulated annealing both in run time
and quality of results. Experimental results comparing these approaches are given in
Section 7. We also measure the impact of each technique described in this paper in
isolation. To get started, the following section briefly introduces the detailed placement
problem for programmable logic.

2 Programmable Logic Detailed Placement

Programmable logic devices have long been compelling implementation platforms for
digital electronics. They provide low up-front design costs and bypass the complexities
of nanometer-scale transistor design. The general idea is that a prefabricated chip can
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Fig. 1. Generic Programmable Logic Device Architecture

be configured to implement any desired digital circuit by setting programmable bits on
the chip.

Figure 1 shows an array of n-input lookup tables interconnected by a rich network of
multiplexers. Each lookup table can implement any combinational function of n inputs
by programming the 2n bits of memory contained therein. Lookup tables are connected
together by programming memory bits that drive the select signals of the multiplexers.

A modern device may contain more than one million such lookup tables, allowing
very complex circuits to be realized. State elements such as flip-flops or latches are
usually interspersed amongst the lookup tables to simplify the construction of sequen-
tial circuits. Coarser resources such as memories, arithmetic units, and even complete
processor cores are sometimes included as well. Kuon et al. [12] provide a survey of
modern architectures.

Engineers create a design for implementation on programmable logic by writing a
register-transfer level circuit description in Verilog or VHDL. A suite of design au-
tomation tools provided by the programmable logic vendor compiles the design and
produces the programmable bit values for the chip. The compilation process has four
major phases: synthesis, global placement, detailed placement, and routing. Synthesis
compiles the circuit description into an optimized netlist of lookup tables. Placement
assigns the lookup tables in the netlist onto lookup tables on the physical chip. Routing
configures the multiplexers so that the connections specified in the netlist are made on
the chip. Each phase poses intriguing optimization challenges. Chen et al. [3] give a
broad survey of the techniques commonly used.
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This paper focuses on the detailed placement problem. Detailed placers assume that
the netlist already has a placement that satisfies some global optimization criteria but
still has problems of a more local nature that need to be repaired. For example, a global
placer could use an analytical algorithm with a continuous coordinate system and an
abstract geometric model of routing delay. The detailed placer refines this placement
by snapping components to overlap-free discrete placement sites using a more accurate
routing delay model based on actual paths through the interconnect network. We con-
sider three problems in this paper that are not specific to any particular programmable
logic architecture: placement overlaps, local routability, and timing.

2.1 Placement Overlaps

First, the placement must be free of overlaps. The global placer has already achieved a
global density target, but there may remain scattered placement sites with more than one
component. The detailed placer has to fix these problems by moving the overlapping
components to nearby unoccupied sites.

2.2 Local Routability

Second, the placement must be locally routable. The standard assumption is that the
router will be responsible for configuring multiplexers but will not consider moving
netlist components to different sites. If the detailed placer can deduce that two
netlist edges must use the same multiplexers with no possible detours, then the routing
will fail.

The netlist and fabric shown in Figure 2 demonstrate the issue in its simplest form.
Sites LUT1 and LUT2 are both directly driven by MUX3. If netlist components B and
D are placed on sites LUT1 and LUT2, then the signal from component A is going to
collide with the signal from component C at MUX3. The detailed placer must guarantee
that the placement is free of this type of problem.

A B

C D

(a) Netlist

M
U

X
3

LUT2

LUT1

(b) Fabric

Fig. 2. Routing Collision Example

Local routability constraints are limited to multiplexers in the close vicinity of the
source and sink. The detailed placer does not attempt to plan entire connections. After
a few multiplexer hops, enough detour possibilities are visible to infer that the routing
will be successful.
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2.3 Timing Constraints

Third, the placement must meet timing constraints. The user specifies that the sequential
logic must run at a particular clock frequency. This constraint requires that every netlist
path between state elements has a total delay less than or equal to the target clock
period τ.

Figure 3 shows a netlist with several such paths: ABCD, ABECD, ABEF, FEF,
and FECD. Each path has logic delays (e.g. DB) and routing delays (e.g. DAB) that are
dependent on the placement sites for the netlist components. The components on path
ABCD, for example, must be placed in a way that satisfies the constraint DAB + DB +

DBC + DC + DCD ≤ τ.
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A D
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DAB DBC DCD

DB DC

DBE

DFE

DE DEC

DEF

Fig. 3. Netlist Annotated With Delays

Paths that fail timing must be repaired by moving components to reduce routing
delays or by using retiming to move logic across state elements. The detailed placer can
assume that the global placer has already performed global delay optimization under
an abstract model of routing delay. When the paths are reassessed using actual routing
delays, some may violate timing. It is expected that only a minority of paths will require
repair and that components will only have to move a relatively short distance away from
their starting locations.

3 Constraint Satisfaction Formulation

In this section we describe the variables and constraints that make up the constraint
satisfaction formulation of the detailed placement problem. We begin with variables
that encode the placement of netlist components onto sites. The Boolean variable VAX

has the meaning that component A is placed on site X. These placement variables can
be arranged into a sparse matrix where the components are the rows and the sites are
the columns as follows:

W X Y Z · · ·
A VAW VAX VAY

B VBX VBY

C VCY VCZ
...

. . .

(1)
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The matrix is sparse because not every site is a candidate for every component. If the ar-
chitecture contains a heterogeneous set of resources, the different types of netlist com-
ponents (lookup tables, state elements, etc.) can be placed only on compatible sites.
Matrix entries can also be omitted for geometric reasons. The placer may limit each
component to consider only placement sites within a given radius of the initial location.
Since the detailed placer is expected to make local changes and not global changes, this
limitation is an acceptable way to bound the problem size.

For each row in the matrix, an exactlyOne constraint (a standard atMostOne cardi-
nality constraint combined with a standard Boolean clause) is added to ensure that each
component gets a placement. For each column in the matrix, an atMostOne constraint is
added to prevent placement overlaps. These basic constraints are sufficient to produce
legal placements.

Next, we define pin permutation variables. When a k-input LUT component is placed
on an n-input LUT site, there are nPk = n!/(n−k)! ways to assign the component’s inputs
to pins on the site. The configuration bits inside the LUT are correspondingly permuted
to maintain the same logic function.

Pin permutations are useful when the architecture has asymmetrical connectivity to
the pins. Given the placement sites for the source and sink components on a netlist
edge, it may be preferable to route to one sink pin over another for either timing or
routability reasons. The detailed placer therefore solves for pin placements in addition
to component placements.

The pin permutation variable PAπ has the meaning that component A is placed using
permutation π. An exactlyOne constraint for each component creates a one-hot encoding.
This encoding is reasonable because n and k are typically small numbers, e.g. 3.

To complete the problem formulation, routability and timing constraints for each
netlist edge AB are created following this pattern:

(VAX ∧ VBY ∧ PBπ)→ C (2)

Equation 2 states that a conjunction of placement decisions implies some consequence
C. Sets of consequences that are pairwise incompatible are ruled out using clauses of
the form atMostOne(Ci,C j, . . .).

A local routability constraint is made as follows. The conjunction (VAX ∧VBY ∧ PBπ)
fully defines the placement of a netlist edge. It gives the source and sink component
placements and the exact sink pin placement. We assume an algorithm that walks over
the interconnect network starting from these pins and identifies local multiplexers that
must be used to route the edge. We define a category of non-decision consequence
variables MNA to indicate that MUX N is occupied by the signal from component A. A
clause of the form (VAX ∧ VBY ∧ PBπ)→ MNA is then added to the formulation for each
multiplexer identified by the algorithm. These clauses state that particular placement
choices for netlist edge AB imply that certain multiplexers are occupied by signal A. For
each multiplexer N, an atMostOne clause over the consequence variables MNA,MNB, . . .
prevents local routability conflicts.

Timing constraints follow the same pattern. The complete placement of netlist edge
AB implies a routing delay DAB. We assume there exists a timing model of the target
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architecture that can provide this delay value given the source and sink pin placement.
This results in the clause:

(VAX ∧ VBY ∧ PBπ)→ (DAB = dXYπ) (3)

Logic delays depend only on the placement site and permutation choice for a single
netlist component. This results in a similar clause:

(VBY ∧ PBπ)→ (DB = dYπ) (4)

The clauses that rule out mutually incompatible timing consequences are the inequalities
DAB + DB + . . . ≤ τ for all paths between state elements in the netlist.

These clauses make a complete formulation of the detailed placement problem, but
there are two obvious practical problems. First, the timing consequences are not Bool-
ean variables and the timing constraints are not Boolean clauses. Second, the size of
the formulation grows impractically large as the size of the netlist and architecture
increases.

The number of timing constraint clauses grows with the number of paths in the
netlist, which can be exponential in the number of netlist components. The number
of local routability consequence variables is the product of the number of signals in the
netlist and the number of multiplexers in the architecture. Programmable logic inter-
connect networks are over-provisioned, so the number of multiplexers can be an order
of magnitude greater than the number of LUTs in the architecture.

The clauses that imply both types of consequence variables grow in number with the
size of the placement space for each edge: the number of source component placements
times the number of sink component placements times the number of sink component
permutations. The following sections describe our solutions to these problems.

4 SAT Encoding of Timing Constraints

In this section, we improve the formulation of timing constraints to reduce the number
of clauses and to produce a purely Boolean encoding. Previously, we described timing
constraints of the form DAB + DB + . . . ≤ τ. There is one such constraint for each path
between state elements in the netlist, which can be exponential in the size of the netlist.
Concepts from static timing analysis can be used to make a more efficient encoding.

Static timing analysis computes an arrival time and a required time at each com-
ponent in the netlist graph [9]. The arrival time is the maximum path length to state
elements backwards through the transitive fanin of a component. This value represents
the time it takes from the beginning of the clock cycle for the data to propagate through
the circuit and to become valid at the output of the component. The arrival time at the
output of a state element is defined to be zero.

The required time is the clock period τ minus the maximum path length to state el-
ements forwards through the transitive fanout of a component. This value is the latest
time at which the component output can become valid and still make it to the down-
stream state elements before the end of the clock cycle. The required time at the input
of a state element is defined to be τ.



A Constraint Satisfaction Approach for Programmable Logic Detailed Placement 215

The slack of a component is the required time minus the arrival time. A component
with negative slack is on a path that fails timing.

The concept of slack leads to a better formulation of timing constraints that avoids
enumerating all state-to-state paths in the netlist. Instead, we can simply constrain each
component to have non-negative slack with a clause ArrA ≤ ReqA.

The arrival time ArrA and required time ReqA are defined in terms of the immediate
fanin and fanout components:

ArrA = max
fanin Fi

(ArrFi + DFiA + DA) (5)

ReqA = min
fanout Fo

(ReqFo − DFo − DAFo) (6)

Using these formulas, equations 3 and 4 are rewritten as:

(VAX ∧ VBY ∧ PBπ)→ (ArrB − ArrA ≥ dXYπ + dYπ)

∧ (ReqA − ReqB ≤ −dXYπ − dYπ)
(7)

The result is a difference logic formulation. The only non-Boolean variables are the
arrival and required times ArrA and ReqA for each netlist component. The worst-case
exponential number of constraints is avoided because these constraints scale with the
number of netlist edges instead of the number of netlist paths.

To solve this formulation, a satisfiability-modulo-theory (SMT) solver that supports
difference logic constraints could be used. Alternatively, the difference logic constraints
can be encoded into an equivalent problem that is purely Boolean and then solved with
a standard SAT solver. We will continue on the second path and briefly discuss the SMT
option in the conclusion.

Two encoding options are the small-domain approach and the EIJ approach [19]. The
EIJ approach requires enumeration of cycles amongst the difference logic constraints,
which is undesirable because it is equivalent to enumerating paths between state ele-
ments in the netlist. The standard small-domain encoding approach requires instantia-
tion of Boolean clauses that represent adder and comparator circuits, which can also be
expensive.

Instead, we use a small-domain encoding variation due to Ohrimenko et al. [18]. The
key idea is to define Boolean variables that represent upper and lower bounds on the
difference logic variables instead of exact values of the variables. This approach is a
natural fit for modeling arrival and required times and detecting negative slack.

For each netlist component A we create a number line subdivided into T discrete
values representing times within the clock period τ. Each subdivision has an associ-
ated non-decision Boolean variable EAt. When true, this variable has the meaning that
ReqA ≤ t τT . When false, this variable indicates that ArrA > t τT .

Adjacent variables on the number line are related by binary clauses that implement
the transitivity property of inequalities:

EAti → EAti+1 (8)
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Fig. 4. Boolean Arrival/Required Variables

To see how this encoding works and how it enforces the timing constraint ArrA ≤ ReqA,
consider the following example. Figure 4(a) shows a netlist with a single component
between state elements. The placement state of edge AB determines the delays DAB and
DB and results in the clause:

(VAX ∧ VBY ∧ PBπ)→ (ArrB ≥ dXYπ + dYπ) (9)

The delay dXYπ + dYπ is rounded conservatively to a subdivision on the number line
for component B. The right-hand side of equation 9 can then be replaced with the
corresponding negative Boolean literal:

(VAX ∧ VBY ∧ PBπ)→ EBt where t =
⌈
(dXYπ + dYπ)T/τ

⌉
(10)

Figure 4(b) shows what happens to the number line variables when this negative lit-
eral becomes asserted. Boolean constraint propagation will use the clauses described in
equation 8 to cause all variables lower in the number line to become false as well. If the
arrival time is greater than some quantized value t, then it must also be greater than all
smaller values t − 1, t − 2, and so forth.

A similar sequence of events occurs for the required time at component B. The
placement state of edge BC determines the delay DBC:

(VBY ∧ VCZ ∧ PCπ)→ (ReqB ≤ τ − dYZπ)

→ EBt′ where t′ =
⌊
(τ − dYZπ)T/τ

⌋ (11)

When the literal on the right-hand side of equation 11 becomes true, then equation 8
causes all variables higher in the number line to become true. If the required time is less
than or equal to some quantized value t′, then it must also be less than or equal to all
higher values. We call equation 8 a vertical chain clause due to this cascading action.

Unassigned number line variables between the lowest true value and the highest
false value represent the slack at the component. If the solver ever makes decisions that
result in an arrival time becoming larger than a required time, then Boolean constraint
propagation will try to assign a number line variable to be both true and false. Negative
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Fig. 5. Propagation Across a Netlist Edge

slack (i.e. failure to satisfy the timing constraints) is therefore detected as an ordinary
Boolean SAT conflict.

Paths with more than one component are the most common case in practice and
require an additional category of clauses. In Figure 5(a), neither the source nor the sink
of edge AB is a state element. This case is handled by adding clauses that relate variables
on the number line for component A to variables on the number line for component B:

(VAX ∧ VBY ∧ PBπ)→
∧

t

(EAt → EB(t+Δ)) where Δ =
⌈
(dXYπ + dYπ)T/τ

⌉
(12)

This collection of Boolean clauses has the action of propagating arrival times forward in
the netlist and required times backward in the netlist with the addition of delay DAB+DB.
These clauses are called horizontal chain clauses due to the cascading action between
adjacent number lines. This is demonstrated graphically in Figure 5(b).

In summary, this approach mimics static timing analysis using Boolean constraint
propagation. Path-based timing constraints are reduced to ordinary Boolean variables
and clauses that scale linearly with the number of edges in the netlist.

5 Future Cost Clauses

The next technique addresses the issue of exploring the large problem space efficiently.
Our experimentation has shown that customizing the variable selection order heuristic
has a first-order effect on search efficiency.
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In Section 3, two different categories of decision variables were presented: placement
variables and pin permutation variables. In this problem domain it makes sense to select
a site for a netlist component before selecting a permutation for that netlist component.
The interconnect architecture is not necessarily translation invariant, so a permutation
with good timing and routability characteristics at one site might not be appropriate at a
different site. This selection order can also be seen as making coarse-grained decisions
first and then making refinements later.

We utilize a custom two-stage variable selection heuristic to implement this ordering.
All of the placement variables are selected first, followed by all of the pin permutation
variables. Each stage is implemented with an independent Variable State Independent
Decaying Sum (VSIDS) priority heap [15], so that the secondary selection criteria is
still based on recent appearance in a conflict.

The VSIDS activity metrics for these two categories are seeded so that the solver
initially favors placing netlist components on their original sites using their original
permutations. We find that this heuristic guides the solver to finding a solution that
makes fewer changes to the placement. Without this heuristic there is no other criteria
by which one SAT solution is preferred over another, and the placer develops a tendency
to move nonviolating components to different satisfactory locations in a way that causes
“churn” but does not improve the placement.

There is an additional benefit that can be derived from this custom variable selection
order. Recall that a complete netlist edge placement is described by the conjunction
(VAX ∧ VBY ∧ PBπ). This conjunction contains two variables from the first stage of the
variable selection order and one variable from the second stage. As an antecedent in a
clause, it will not become true and imply its consequence variables until the search has
entered the second stage. However, we know that exactly one permutation variable must
eventually be selected. Writing out all of the clauses starting with (VAX ∧VBY ∧PBπ) for
all n permutations, we have:

exactlyOne(PB1, PB2, . . .PBn) (13)

(VAX ∧ VBY ∧ PB1)→ C1

(VAX ∧ VBY ∧ PB2)→ C2

...

(VAX ∧ VBY ∧ PBn)→ Cn

(14)

Applying hyper-resolution [1], we produce the clause:

(VAX ∧ VBY)→ min
1≤i≤n

Ci (15)

The “min” operator applied to a set of consequences means, intuitively, the least restric-
tive consequence of the set. In the case of timing constraints where the consequences
are of the form (ArrB − ArrA ≥ d), this operator gives the minimum delay d. Although
the exact pin permutation is not yet known, the edge delay must be at least the minimum
delay of all the choices that will be available.
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If the consequences are local routability variables MAn, the “min” operator would
produce the conjunction of variables that are common to all Ci. In that scenario, there
is one or more routing MUXes that must be used for the edge regardless of which sink
component permutation is eventually chosen.

These clauses improve the search efficiency because they give the solver a lower
bound on the consequences of decisions made in the first search stage. The clauses
trigger conflicts that would otherwise only be found after the solver enters the second
search stage. This behavior is similar to how an admissible future cost function pro-
vides guidance to A* search. To highlight this similarity we name these clauses future
cost clauses.

6 Dynamic Clause Generation

The formulation described so far still requires an impractically large number of clauses.
It is overly expensive both in memory and clause generation runtime. Each equation that
starts with the antecedent (VAX∧VBY ∧PBπ) expands to a number of clauses equal to the
product of the number of source placement options, sink placement options, and sink
permutations. For the horizontal chain clauses described in equation 12, this number is
further multiplied by the number of subdivisions on the number line. This quantity is
the number of constraints for a single netlist edge AB.

A solution to this scalability problem is to avoid adding all of these clauses to the
formulation. Observe that the placement variable matrix (1) is mostly false due to the
exactlyOne constraint on each row. Also, each clause (VAX∧VBY ∧PBπ)→ C starts with
two negative literals (VAX + VBY + . . .). A majority of the clauses are therefore trivially
satisfied during the search.

Furthermore, note that the detailed placer is responsible for repairing only local con-
straint violations and does not attempt to make global changes to the initial placement. It
is expected that only a minority of netlist components will have to be moved to accom-
plish this task. The solver is likely to find a SAT or UNSAT solution after attempting
only a small fraction of the possible placement options VAX for each component.

Therefore, while all of the clauses are theoretically necessary for correctness, in prac-
tice most of them do not affect the search. We can take advantage of this fact to reduce
the working size of the problem. Clauses of the form (VAX + VBY + . . .) can be left out
until the search actually enters a subspace where VAX and VBY are both true.

We have constructed a SAT solver with support for dynamic clause generation based
on MiniSAT version 1.12b [6]. The solver calls a method decisionCallback after as-
signing a placement variable VAX = T and after all unit propagations have completed
without conflicts.

In the callback, the immediate fanin and fanout components B of component A are
checked to see if they are placed according to the current solver state. If so, then some
placement variable VBY will be true on the solver trail. The placer can now generate
clauses for fanin edge BA (or fanout edge AB) that are of the form (VAX + VBY + . . .).

The solver then processes the incoming clauses and makes its internal state consis-
tent. This is straightforward when the new clauses still have one or more unassigned
literals with respect to the current solver trail. If any one of the new clauses has all of
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its literals assigned false, the solver state needs to be repaired. The inconsistent clause
should have become unit at some decision level in the past and the solver should not
have entered the current subspace. We recover by backtracking.

6.1 Dynamic Cardinality Clauses

Our SAT solver also supports dynamic cardinality clauses and dynamic addition of lit-
erals to cardinality clauses. This feature is used to avoid creating the complete set of lo-
cal routability variables MNA with their associated atMostOne constraints. Because the
solver is expected to search only a small fraction of the placement space, and clauses are
only generated when necessary, only a small fraction of the possible MNA variables will
ever appear in any clause. The placer maintains a sparse matrix of these non-decision
Boolean variables and fills it in on demand.

We add a new dynamicAtMostOne clause type to MiniSAT that supports dynamic
addition of literals. MiniCARD’s extension of the two-watched-literal scheme to k−n+1
watched literals for an atMostN-of-K clause is used as a foundation [13]. Since new
literals appear in no clauses prior to the current decisionCallback call, dynamic addition
can be accomplished with a minimum of disruption to the solver’s internal state.

In the case where N existing literals are already true, the new literal must be false.
Without backtracking, the new literal’s assignment state is simply overwritten as if it
had been assigned false at the proper decision level. Instead of inserting the new as-
signment into the middle of the solver’s trail vector, MiniSAT’s undo mechanism is
re-purposed to perform this update lazily.

Assume that the new literal should have been assigned false at decision level d. An
undo is placed on the first literal at decision level d + 1. The function of this undo is
to push the new literal onto the trail when the solver cancels level d + 1. These steps
result in the correct functional behavior as if the new literal had been assigned false at
the proper time in the past.

6.2 Related Approaches

Eén and Sörensson describe a dynamic clause generation approach in [7] wherein the
solver is restarted with additional clauses after a complete solution has been produced
and examined. Our approach adds clauses while the solver is running and not only
between invocations of an incremental solver.

The Lynx SAT solver includes a similar callback method for adding clauses after
each propagation step [8]. That callback method examines the solver trail and adds
clauses that conflict with the current assignment. In comparison, our approach allows
clauses that do not conflict with the current assignment to be added as well.

Ohrimenko et al. [18] include lazy clause generation to reduce the number of Bool-
ean clauses created for difference logic propagation. Our approach performs dynamic
clause generation on a coarser level of abstraction. This is possible due to the natu-
ral subdivisions of the problem space and the low likelihood of actually searching the
majority of these subspaces.
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7 Experimental Results

Our SAT-based placer uses a search-and-repair strategy. Instead of turning the netlist
into one large SAT instance that tries to repair all placement problems simultaneously,
the placer runs a series of small instances that each try to repair a specific violation. Each
subproblem covers a subset of the netlist with approximately 100 netlist components in
the neighborhood of a violation. This subproblem size is sufficient to repair complex
violations that require coordinated motion of dozens of components. Each SAT instance
repairs not only the targeted violation but also other violations that are coincidentally
included in the neighborhood. The timing constraints are gradually tightened towards
the final target period τ over time as the placer makes progress.

To measure the improvement of the SAT-based approach over our previous simulated
annealing placer, we ran experiments placing netlists from the OpenCores [20] database
using both approaches. Table 1 compares the runtime and the achievable frequency of
the two placers. Both measures are normalized to the results of the annealing-based
placer. The SAT-based approach obtains better frequencies, and in general requires less
runtime. In the cases where the SAT-based placer runs longer, the extra effort is re-
warded with a better achievable frequency.

Table 2 measures the relative importance of the three main techniques described
in this paper that enable our problems to be solved efficiently: A*-style future cost
clauses, a domain-specific variable selection order, and dynamic clause generation. We
built three configurations of our placer that each remove one of these features. We then
compare the runtime and achievable frequency omitting one feature against the base-
line configuration which has all three features turned on. The runtime and frequency
numbers in Table 2 are normalized to the baseline SAT-based placer configuration. Our
expectation is that a configuration with more than one feature disabled would be im-
practical to evaluate due to high runtime.

Table 2 shows that dynamic clause generation has the biggest impact on runtime.
This is dominated by the time spent generating clauses. A comparison of the rightmost
columns of tables 1 and 2 shows that only a small fraction of the total number of clauses
are ever generated when dynamic clause generation is used. This improves the memory
footprint as well as the runtime.

Table 1. Constraint Satisfaction vs. Annealing: Runtime and Frequency

Annealing Placer SAT-Based Placer
Design Comps Runtime Freq Runtime Freq Avg Vars Avg Clauses
camellia256 89341 1.0 1.0 0.054 1.14 751k 30k
sudoku 17784 1.0 1.0 0.266 1.49 758k 31k
dct 17199 1.0 1.0 2.526 1.52 1512k 116k
wishbone 12775 1.0 1.0 0.028 1.03 1081k 25k
fpu double 12660 1.0 1.0 0.346 1.39 1598k 74k
aes 5818 1.0 1.0 2.179 1.20 908k 24k
r2000sc 5095 1.0 1.0 0.788 1.28 1404k 40k
sha256 3368 1.0 1.0 0.106 1.14 2100k 39k
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Table 2. Relative Contribution of the A* Clauses, Variable Ordering, and Dynamic Clauses

All Features No A* No Var Order No Dynamic
Design Runtime Freq Runtime Freq Runtime Freq Runtime Freq Avg Clauses
camellia256 1.0 1.0 1.18 1.00 5.31 0.89 30.29 1.01 8099k
sudoku 1.0 1.0 1.08 1.00 5.25 0.97 7.40 1.00 743k
dct 1.0 1.0 1.65 1.06 8.37 0.94 4.49 0.87 8153k
wishbone 1.0 1.0 1.45 1.00 5.00 0.99 25.53 1.00 17449k
fpu double 1.0 1.0 2.41 1.09 6.73 0.82 4.06 0.94 3730k
aes 1.0 1.0 1.17 1.00 7.45 0.99 2.71 0.93 5070k
r2000sc 1.0 1.0 1.84 1.00 8.71 0.99 7.95 0.93 22285k
sha256 1.0 1.0 1.19 1.00 10.96 1.00 11.68 1.00 16908k

8 Conclusions

Programmable logic detailed placement is a challenging problem domain for
Boolean satisfiability that has not been attempted before. Using the techniques de-
scribed in this paper, our formulation can be solved efficiently and used to construct a
practical tool.

This approach outperforms our previous annealing-based placer in both run time and
quality of results. All of the effort is focused on repairing actual violations instead of
randomly searching for downhill moves. This placer is also able to repair problems that
require coordinated changes to a large number of components. The annealing-based
placer frequently terminates with inferior results because it is not able to repair these
complex problems.

One drawback of our Boolean encoding of timing constraints is the quantization of
time. Each delay sum (DAB + DB) requires conservative rounding to discrete number
line variables EAt. On a long state-to-state path through the netlist, these rounding er-
rors accumulate and over-constrain the problem. This is especially problematic when
the target clock period τ approaches the maximum frequency supported by the target
architecture. The conservative rounding forces the placer to find a solution that exceeds
the actual target, but the architecture does not have interconnect routes that are fast
enough. Consequently, placements that would actually be acceptable are rejected.

To address this problem, our next project is to investigate the use of an SMT differ-
ence logic solver instead of a Boolean SAT solver. By natively supporting constraints
such as those in equation 7, such a solver would no longer require discrete number
line variables or horizontal and vertical chain clauses. This approach will increase the
accuracy of the formulation, leading to better placement quality with higher achiev-
able frequencies and faster run times. In order to be efficient, this solver would also
have to support our custom variable selection order and dynamic clause generation
techniques.

The recent advances in SAT solver capabilities have encouraged us all to apply SAT
to new problem domains. By leveraging domain-specific knowledge to improve both
the formulation and the solver, even a domain that was long considered unsuitable for
SAT can now be solved efficiently.
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Abstract. Many applications of SAT solving can profit from minimal
models—a partial variable assignment that is still a witness for sat-
isfiability. Examples include software verification, model checking, and
counterexample-guided abstraction refinement. In this paper, we exam-
ine how a given model can be minimized for SAT instances that have
been obtained by Tseitin encoding of a full propositional logic formula.
Our approach uses a SAT solver to efficiently minimize a given model, fo-
cusing on only the input variables. Experiments show that some models
can be reduced by over 50 percent.

1 Introduction

Many applications in logic and formal methods rely on SAT solvers as core
decision procedures, and in most cases the application is not only interested in
a yes/no answer, but also in a satisfying assignment (model) if one exists.

Models are used, for example, to represent counterexample traces in software
verification, steps leading to a goal in SAT-based planning, or to build candidate
conjunctions of theory atoms in SMT solving based on the DPLL(T) approach
[6]. The employment of models ranges from giving information to the user—
either directly or, more often, after some back-transformation to the application
domain—to guiding a search algorithm when a SAT solver is used to iteratively
enumerate solutions.

Minimized models try to strip off inessential information from a complete
solution produced by a SAT solver. Such reduced models allow, for example, the
user to focus on relevant parts of a counterexample trace, or to guide a SAT-
based search process more efficiently. E.g., in DPLL(T), smaller SAT models
alleviate the work of the theory solver(s), as they get passed smaller conjunctions
of theory atoms; by this, the refinement loop typically needs fewer iterations.

In many cases, formulas from the application domain are not in conjunctive
normal form (CNF) initially, which is, however, the input format that most SAT
solvers require. Thus, they have to be transformed to CNF. A number of efficient
procedures for this transformation are available [3,9,12,17]. But this transfor-
mation, which typically introduces additional encoding variables, increases the
gap between the SAT solver’s solution and its interpretation in the application
domain. The assignment to encoding variables is often not of interest on the
application domain level.
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To illustrate the problem, consider the formula F = a ∨ (b ∧ c), and assume
that we are interested in finding a model for F . One such model would be
{a → 0, b → 0, c → 1}, assigning true to a and b, and false to c. This model
is not minimal though, as setting a to true would already be sufficient to make
the whole formula F true. So how can we obtain minimal models? Computing
them on the CNF level is not sufficient to arrive at minimal models on the
level of full propositional logic, as can be seen from our small example. When
we convert it to CNF (using the Tseitin transformation), we obtain the clauses
{ (x̄ b) (x̄ c) (x b̄ c̄) (ȳ a x) (y ā) (y x̄) (y) }, where x represents the subformula
b ∧ c and y the complete formula F . A minimal model of this clause set would
be {x→ 0, c→ 0, a→ 1, y → 1} and, even after projecting it onto the original
problem variables, we would obtain {c → 0, a → 1}, which is not the minimal
model {a→ 1} that we would like to see.

In this paper, we present algorithms that allow to compute minimal models
(such as {a → 1} for F ) efficiently, using standard SAT solvers to compute an
initial (complete) model, which is then minimized. The main contribution of our
paper is to also take the CNF encoding into account during minimization.1

2 Theoretical Background

We denote the set of propositional formulas by F. Formulas in F are built from
a set of variable symbols V , operators {∧,∨,¬}, and constants {,⊥}. For each
F ∈ F, the set VF ⊆ V denotes the set of variables occurring in F . A variable
assignment for a given formula F is a (possibly partial) function α : VF � {0, 1}
that assigns a constant value to some variable in VF . We use dom(α) to denote
the set of variables for which α is defined. If dom(α) = VF , we say that the
assignment is complete; otherwise it is partial. Dealing with partial assignments
imposes the need for a three-valued interpretation. The interpretation of a for-
mula F under a (partial) assignment α is denoted by Iα and defined in Figure 1.
Here, 1, 0, and U stand for true, false, and undefined, respectively.

We now extend the standard definition of a model to partial assignments.

Definition 1 (Model). Given a formula F , a (partial) assignment α is a model
(or a satisfying assignment) for F iff Iα(F ) = 1. We use α |= F to denote that
α is a model of F .

In what follows, we use Mα to denote the set of true literals in an assignment
α for a formula F . That is, Mα = {v | v ∈ dom(F ) ∧ α(v) = 1} ∪ {¬v | v ∈
dom(F ) ∧ α(v) = 0}. Note that Mα uniquely defines α and vice versa.

Definition 2 (Model Minimization). Given a model α |= F , a model β |= F
is called α-minimized if Mβ ⊆Mα. An α-minimized model β is α-minimal if no
further subset Mγ ⊂Mβ is a model of F. An α-minimal model β is α-minimum
if for each α-minimal model γ it holds that |Mγ | ≥ |Mβ|. If α is clear from the

1 In this paper, we specifically consider the Plaisted-Greenbaum encoding [12], but
other encodings, such as the original Tseitin encoding [17], are also supported.
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Iα(⊥) = 0

Iα(v) =

⎧⎪⎨
⎪⎩
1, if α(v) = 1

0, if α(v) = 0

U, if v /∈ dom(α)

Iα(¬F ) =

⎧⎪⎨
⎪⎩
1, if Iα(F ) = 0

0, if Iα(F ) = 1

U, if Iα(F ) = U

Iα(�) = 1

Iα(F ∧G) =

⎧⎪⎨
⎪⎩
1, if Iα(F ) = 1 and Iα(G) = 1

0, if Iα(F ) = 0 or Iα(G) = 0

U, otherwise

Iα(F ∨G) =

⎧⎪⎨
⎪⎩
1, if Iα(F ) = 1 or Iα(G) = 1

0, if Iα(F ) = 0 and Iα(G) = 0

U, otherwise

Fig. 1. Interpretation of a formula under a (partial) assignment α

context we may write minimized instead of α-minimized, and similarly for the
other terms.

Now let Fcnf ⊆ F denote the set of formulas in conjunctive normal form (CNF).
Formulas F ∈ Fcnf are usually represented as sets of clauses, where a clause is a
set of literals. As is well known, each formula can be converted to a equisatisfiable
formula in CNF, e.g., by using Tseitin’s encoding.

Definition 3 (Tseitin Encoding). Given a formula F ∈ F, its Tseitin en-
coding, T (F ) ∈ Fcnf , is defined as below. Our definition uses the well-known
optimization of Plaisted and Greenbaum [12].2

T (F ) = dF ∧ T 1(F )

T p(F ) =

⎧⎪⎨⎪⎩
T p
def(F ) ∧ T p(G) ∧ T p(H), if F = G ◦H and ◦ ∈ {∧,∨}
T p
def(F ) ∧ T p⊕1(G), if F = ¬G
, if F ∈ V

T 1
def(F ) =

⎧⎪⎨⎪⎩
(¬dF ∨ dG) ∧ (¬dF ∨ dH), if F = G ∧H
(¬dF ∨ dG ∨ dH), if F = G ∨H
(¬dF ∨ ¬dG), if F = ¬G

T 0
def(F ) =

⎧⎪⎨⎪⎩
(dF ∨ ¬dG ∨ ¬dH), if F = G ∧H
(dF ∨ ¬dG) ∧ (dF ∨ ¬dH), if F = G ∨H
(dF ∨ dG), if F = ¬G

The Tseitin encoding works by introducing new propositional variables. In more
detail, given a formula F , its Tseitin encoding G = T (F ) introduces a new
variable symbol df for each sub-formula f of F . We call the variable dF , which
stands for the complete formula, the root variable. The set of variables VG can
be partitioned into input variables V inp

G that stem from the original formula F
and new encoding variables Venc

G .

2 Some modern implementations introduce no additional encoding variables for
negated formulas and inline the negation.
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3 Approach

The starting point of our approach is a Tseitin-encoded formula T (F ) ∈ Fcnf

and a complete satisfying assignment α |= T (F ) for it, as it can be obtained by
a standard SAT solver. It then computes a minimized model α′ of the original
formula F ∈ F. To do this, it takes structural information about the partitioning
of variables in T (F ) into input variables and encoding variables into account, as
well as the structural information from the Tseitin encoding.

Our minimization algorithm consists of two parts. The first works on the CNF
level, and is based on a transformation of the model minimization problem to a
hitting set problem, in which we search for a set Mα′ that contains at least one
literal from each clause that is assigned to true. We solve this hitting set problem
by converting it to SAT, and using iterative calls to a SAT solver to obtain a
minimal model α′.3 This part is done by procedures normalize and minimize

in Alg. 1. The second part, which works as a pre-processing step, exploits the
structure of a Tseitin-encoded formula to further minimize the model (procedure
prune in Alg. 1). A minimal model for the pruned formula P ⊆ T (F ) is a
minimized model for F that is often significantly smaller than a minimal model
for T (F ).

Algorithm 1. High-Level View of Model Minimization Algorithm

Input: Formula T (F ), complete model α of T (F ), root variable dF
Output: Minimized model α′ for F

1 P = prune(T (F ), dF )
2 N = normalize(P, α)
3 α′ = minimize(α,N)
4 return α′

The three main steps of our algorithm are explained in what follows, starting
with the normalize and minimize procedures that do not take information
about the initial formula’s structure into account.

3.1 Normalization

Given a formula F ∈ Fcnf and a model α |= F , the normalization step generates
a problem F ′ ∈ Fcnf which is an encoding of the hitting set problem mentioned
above. This problem is then solved in the minimization step of the algorithm.

The first step of normalization, called purification, consists of removing irrel-
evant literals from F , i.e. those literals which are assigned to false by α.

Definition 4 (Purification). Given a formula F ∈ Fcnf and a model α |= F ,
the purified formula pα(F ) is defined as follows.

3 Our main algorithm only computes an approximative solution for the hitting set
problem, but in a variant of it we can also compute minimum models (see Sec. 4).
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pα(F ) = {C ∩Mα | C ∈ F}
Lemma 1. Given a formula F ∈ Fcnf and a model α |= F , for any assignment
α′ for which Mα′ ⊆Mα, we have α′ |= F iff α′ |= pα(F ).
After purification we eliminate negated literals by flipping their signs. As all
literals in pα(F ) are pure (i.e. they occur only in one polarity), no new negations
are introduced by this step, and all literals are positive afterwards.

The whole process of purification followed by flipping negated literals we call
normalization. The formula obtained by normalization is denoted by να(F ) and
forms the basis for our minimization strategy.

3.2 Iterative Minimization

Computation of a minimal model for F is equivalent to finding a model for να(F )
with a minimal number of true variables. Since we are generally only interested
in models with a minimal number of input variables (i.e., from V inp

F ), we directly
minimize assignments to these.

Minimization works by adding a version of a cardinality constraint to να(F ),

which starts with a bound k = |V inp
F |, iteratively decreasing it, and checking by

calling a SAT solver whether still a satisfying assignment with this bound exists.

Algorithm 2. Iterative Minimization

Input: Formula F ∈ Fcnf , complete model α of F , input variables V inp
F

Output: Minimized model αmin as a set Mαmin of literals
1 F ′ = να(F ), M ′ = VF ′

2 repeat
3 C = ∅, E = ∅, M = M ′

4 for v ∈ V inp
F do

5 if v ∈ M then C = {¬v} ∪ C
6 else E = {{¬v}} ∪E

7 (r,M ′) = solve(F ′ ∪ {C} ∪E)

8 until r = ⊥
9 M+

αmin
= {v | v ∈ M, and v has not been flipped by να(F )}

10 M−
αmin

= {¬v | v ∈ M, and v has been flipped by να(F )}
11 return M+

αmin
∪M−

αmin

Algorithm 2 outlines the procedure. We use a “cardinality clause” C, which
forbids assigning all k variables to true. Moreover, we remember variables already
excluded from a minimal model in a set E. The SAT solver call solve in Line 7
is assumed to return both the satisfiability status r ( for satisfiable, ⊥ for
unsatisfiable) and a model M , if one exists. Construction of clause C ascertains
that the constraint is strengthened in each iteration. Finally, we obtain a minimal
model of να(F ), which we then map back to the original problem F by taking
back the variable flips that were made by the normalization procedure.
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Structural Pruning. Assuming that we know that our formula T (F ) uses an
encoding like in Definition 3, and given that we also know the root variable dF
and the input variables V inp

F , we can reconstruct the structure of the original
formula, by recursively following the definitions of the sub-formulas of dF until
we reach a definition that is solely based on input variables.

As of Definition 3, for each subformula S of F there exists a variable dS that is
defined by clauses T p

def(S) ⊂ T (F ). It is easy to see that an encoding variable dS
has the same polarity in all its defining clauses. All literals dX that are used to
define dS are either input variables or are themselves defined by clauses T p

def(X).
Now let Clauses(l, F ) = {C ∈ F | l ∈ C} denote all clauses in F containing the
literal l. If F is clear from the context, we may simply write Clauses[l].

Lemma 2 (Opposite Polarity). For allC ∈ T p
def(S) and all direct sub-formulas

dX /∈ V inp
T (F ) of S it holds that

dX ∈ C =⇒ T p
def(X) = Clauses(¬dX , T (F ))

¬dX ∈ C =⇒ T p
def(X) = Clauses(dX , T (F ))

It follows that by parsing the defining clauses of any formula S we can recur-
sively discover the defining clauses of its sub-formulas. Starting with the top-
level Tseitin literal dF we can thus reconstruct the syntax tree of the original
formula.

The idea of structural pruning is to create a new formula F ′ ⊆ T (F ) by purg-
ing all clauses that belong to definitions of sub-formulas that are not satisfied by
α. Algorithm 3 outlines the procedure. We start with an empty formula (Line 1)
and prepare the set of all satisfied encoding literals (Line 2). We reconstruct
parts of the structure of F by following only the definitions of satisfied sub-
formulas (Line 6), thus building a new formula that contains only the clauses
belonging to the satisfied sub-formulas of F (Line 5).

After pruning we can normalize the new formula F ′ ⊆ T (F ) and minimize α
with respect to the pruned formula as shown above.

4 Experimental Results

We implemented our approach as a patch on top of MiniSAT 2.2.0 and performed
the experiments on a PC (3.40GHz × 8 CPU, 8 GB Memory) running Linux
(Ubuntu 12.04). Our evaluation benchmarks consist of a collection of satisfiable
problems from (1) software checking problems that are shipped with the Alloy
Analyzer 4 [16], (2) AIG benchmarks from SAT-Race 2010 [1], and (3) program
verification problems generated by JForge [4]. In order to perform minimization,
one needs to know the set of input variables of a given CNF formula, which
usually occupy the first consecutive block of variable identifiers. Furthermore,
in order to perform structural pruning, one needs to know the identifier of the
root variable. We modified the CNF generators to produce this information as
additional CNF comments (“c input $n”) and (“c output $i”), respectively.
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Algorithm 3. Structural Pruning

Input: Formula F ∈ Fcnf , model α, input variables V inp
F , root encoding var. dF

Output: Pruned formula F ′ ⊆ F
1 F ′ = ∅
2 L = {l ∈ Mα | var(l) ∈ Venc

F }
3 Stack.push(Clauses[¬dF ])
4 while C = Stack.pop do
5 F ′ = F ′ ∪ C
6 for l ∈ C ∩ L do
7 L = L \ {l}
8 Stack.push(Clauses[¬l])

Table 1. Experimental results with and without structural pruning

w/o Pruning w/ Pruning

problem nInput nInput % time (sec) nInput % time (sec)

ibm18-len29-sat 983 764 22.3 0.03 575 41.5 0.04
ibm20-len44-sat 1493 1277 14.5 0.06 991 33.6 0.09
ibm22-len52-sat 2245 1932 13.9 0.11 1664 25.9 0.16
ibm23-len36-sat 1515 1308 13.7 0.06 1083 28.5 0.08
ibm29-len26-sat 362 211 41.7 0.01 134 63.0 0.02
intel-003-k-ind-30 1489 1477 0.8 0.05 1441 3.2 0.08
intel-016.aig.smv.kind-b20 27970 27833 0.5 0.49 26917 3.8 0.46
intel-019-k-ind-10 3786 3729 1.5 0.06 3587 5.3 0.10
intel-025.aig.smv.kind-b30 20399 20357 0.2 0.41 19939 2.3 0.40
intel-025-k-ind-20 13939 13895 0.3 0.50 13504 3.1 0.76
intel-032-k-ind-10 6521 6488 0.5 0.16 6188 5.1 0.24
intel-033.aig.smv.kind-b10 28428 28294 0.5 0.46 26376 7.2 0.42
itox-vc1033 57775 57040 1.3 0.37 56870 1.6 0.28
itox-vc1044 58776 58009 1.3 0.42 57822 1.6 0.29
opt-spantree Closure 673 668 0.7 0.00 201 70.1 0.00
opt-spantree SuccessfulRun 2664 2559 3.9 0.06 2559 3.9 0.07
peterson NotStuck 835 835 0.0 0.01 54 93.5 0.00
set.intersect.cegar 29497 29432 0.2 0.05 4290 85.5 0.03

In this section, we report on those benchmarks where at least 1% of their input
variables are don’t care. We present the quality and performance of our approach
with and without structural pruning. The results are given in Table 1. The first
column gives the problem name and the second column gives the number of
input variables. The next three columns give the final number of input variables,
percentage of reduction (of input variables), and the runtime of our minimization
approach without structural pruning. The last three columns give the results for
our approach with structural pruning.

As can be seen in the table, both approaches (with and without pruning)
run quickly; they actually take less than a second to perform minimization even
for large CNF formulas. The quality of the results, however, differs substan-
tially. In many cases, pruning can eliminate many more input variables without
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introducing much runtime overhead. This is because pruning takes advantage of
the structure of the Tseitin-encoded formulas and avoids all sub-formulas whose
encoding variable is a don’t-care.

Optimal Minimization. Since our iterative minimization approach does not
guarantee to find a minimum assignment, we performed a second set of experi-
ments in which we compared the outcome of iterative minimization to that of an
optimal algorithm. We computed the optimal minimization using a cardinality
encoding based on parallel counters [15], and iteratively calling a SAT solver to
check whether the number of input variables can be reduced.

In our experiments the simpler iterative minimization approach we presented
above was always able to find a minimum assignment. Moreover, its runtime
turned out to be much better than the optimal algorithm (up to a factor of 168
in our tests).

5 Related Work and Conclusion

Minimization of SAT models has been a research topic for many years. In litera-
ture the minimization goal usually is to reduce the number of positive literals in
a model (e.g. [2,10]). Thus the minimize function of Koshimura et al. [10] and
ours are almost identical. However their algorithm omits the normalization

step, which means that satisfiability according to their notion of minimality still
depends on the negative literals, while our approach guarantees that all negative
literals belong to don’t care variables.

Other work on model minimization is often directed towards a particular ap-
plication, such as model checking [11], bounded model checking [8,13,14], SMT
solving [5] or QBF solving [7]. None of the approaches seems to work on gen-
eral formulas, taking only the structural information of the CNF encoding into
account as in our approach.

This paper introduced an algorithm for minimizing a given model of a CNF
formula with respect to the original input variables (as opposed to the inter-
mediate encoding variables that are introduced during CNF conversion). We
transform the model minimization problem to a hitting set problem (also pre-
sented as a SAT problem), and solve it by iteratively calling a SAT solver. An
optional pruning preprocess can be applied when structural information about
the CNF encoding is available. Our experiments show that the algorithm per-
forms well with respect to both quality and runtime. Future work that we could
envisage is using our minimization approach in model counting.
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Abstract. Practical problems often combine real-world hard constraints
with soft constraints involving preferences, uncertainties or flexible re-
quirements. A probability distribution over the models that meet the
hard constraints is an answer to such problems that is in the spirit of
incorporating soft constraints.

We propose a method using SAT-based reasoning, probabilistic rea-
soning and linear programming that computes such a distribution when
soft constraints are interpreted as constraints whose violation is bound
by a given probability. The method, called Optimized Probabilistic Sat-
isfiability (oPSAT), consists of a two-phase computation of a probability
distribution over the set of valuations of a SAT formula. Algorithms for
both phases are presented and their complexity is discussed.

We also describe an application of the oPSAT technique to the
problem of combinatorial materials discovery.

1 Introduction

There are many proposals in the literature that combine logical and probabilistic
reasoning, e.g. [23,22,5]. Perhaps the earliest such proposal was made by Boole
himself, as a natural extension of Boolean satisfiability [1]. This framework is now
called probabilistic satisfiability (PSAT). The semantics is given by assigning a
probability distribution π over the set of all 2n truth assignments of n variables.
Given π, one can now assign a probability P to each compound formula by
considering the sum of the probabilities of all truth assignments (or models)
that satisfy the formula. It has been shown that such a formalization has a
number of desirable properties, such as the fact that it satisfies Kolmogorov’s
probability axioms [19,11].

A set of logical formulas, each assigned some probability value or a probability
bound (e.g., P (A∧B) ≥ 0.6), can be viewed as a set of probabilistic constraints.
A natural question is whether there exist any probability distribution over all
truth assignments that satisfies the probabilistic constraints. This is the consis-
tency problem for probabilistic satisfiability. Note that by assigning probability
0 or 1 to some of the logical formulas, they effectively act as standard logical
constraints. So, we can have a mix of logical and probabilistic constraints.

� On leave from Department of Computer Science, University of Sao Paulo.
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In the mid eighties and early nineties, the consistency problem for PSAT
became the focus of much attention because, in principle, it could be used to
determine whether expert system sets of rules (hard and soft constraints) were
consistent [19,7,12]. Unfortunately, the consistency problem for PSAT appeared
to be extremely hard [20]. In particular, since the probability distribution ranges
over all truth assignments, it was not even clear how to get a polynomial size
witness for a consistent set of PSAT formulas. However, there have been several
major breakthroughs in dealing with the complexity of this problem, such as
polynomial size witness [7], linear programming algorithms [11] and SAT-based
algorithms and the detection of PSAT phase-transition [4].

So, the recent progress has made PSAT a potentially relevant formalism for
practical applications, providing an alternative to other approaches. One ad-
vantage of the PSAT framework is that its foundations are quite natural and
well-grounded.

The goals of this work are three-fold:

(a) To enhance PSAT and introduce a method, called oPSAT, as a modeling
framework to deal with mixtures of (hard) logical and soft probabilistic
constraints.

(b) To propose a practical algorithmic strategy for solving oPSAT problems.
(c) To demonstrate the practical effectiveness of our proposed approach on a

real-world reasoning task in the domain of Materials Discovery.

In this approach, formulas that encode the existence of a soft violation in the
solution (sometimes called a defect) will be modeled by probabilistic constraints.
Consider the following underspecified example.

Example 1. There are m students and k summer courses. Each student has a
set of potential teammates, with whom coursework will be developed. We want
the course enrollment to respect the following constraints:

Hard. For each course, students must decide to develop their coursework alone
or in teams of 2 (pairs). A student may have different teammates in different
courses, and may work alone in some course and have a teammate in others.
Students must enroll in at least one and at most three courses. There is a
limit of � students per course.

Soft. Avoid having students with no teammate. A student’s enrollment in a
course with no team mate is seen as a “soft violation.” ��

Example 1 clearly shows the presence of hard and soft constraints. That problem
also has some other implicit, data-dependent hard constraints, such as the num-
ber of students, courses and list of possible pairs of team mates. An important
implicit hard constraint is the definition of a soft violation (“student in a course
with no teammates”) in terms of the variables present in the hard constraints.
There may be no solutions to the hard constraints; or there may be several ones,
in which case we are interested in computing a probability distribution over
them, which will allow one to answer questions such as “what is the expected
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number of enrollments?” or “what is the probability that two students will be
teammates?”.

Yet, Example 1 is underspecified, as no clear way to deal with the soft con-
straints has been provided. In our method, this additional specification will cor-
respond to a set of probabilistic constraints of the form P (softViolationi) ≤ pi,
1 ≤ i ≤ m, where for each student i there is a maximum probability pi that
i enrolls in some course with no teammate. Where do these probabilities come
from? There are three main sources:

(a) The probabilities are stipulated or given. In Example 1, the student may be
asked with which probability he or she accepts to be with no teammate. In
this work, we will assume that this is the case.

(b) The probabilities are learned. For instance, compute pi from previous
editions of the summer course.

(c) The probabilities are minimal. Assume that all pi are the same and compute
the minimal value for which the hard and soft probabilistic constraints are
satisfiable. This topic remains for further investigation.

Our method, called Optimized Probabilistic Satisfiability (oPSAT) consists of
two phases1. The first phase is the PSAT problem, which determines if the hard
constraints and probability constraints can be jointly satisfied; Section 2 will
formalize PSAT and briefly describe a solver method. The output of such a
problem, when satisfiable, is a probability distribution over a (small) class of
models of the hard constraints. As this solution may not be unique, a second
phase is needed to find a “reasonable” or “balanced” solution. By that we mean
a distribution with minimal variance of soft violation occurrences. In Section 3,
a novel SAT-based column generation method to compute such a distribution is
presented.

Then in Section 4 we demonstrate the effectiveness of this approach on a
complex real-world application involving the identification of crystallographic
structures from high-intensity X-ray diffraction patterns [16,3,15]. The problem
arises in the area of so-called combinatorial materials discovery [18].

2 Probabilistic Satisfiability

The PSAT problem is formalized as follows. Let L be the language of classical
propositional formulas. A PSAT instance is a set Σ = {P (αi) ��i pi|1 ≤ i ≤ k},
where α1, . . . , αk ∈ L are classical propositional formulas defined on n logi-
cal variables P = {x1, . . . , xn}, which are restricted by probability assignments
P (αi) ��i pi, ��i ∈ {=,≤,≥} and 1 ≤ i ≤ k.

There are 2n possible propositional valuations v over the logical variables,
v : P → {0, 1}; each such valuation is extended, as usual, to all formulas, v : L →
{0, 1}. A probability distribution over propositional valuations π : V → [0, 1], is
a function that maps every valuation to a value in the real interval [0, 1] such

1 This method should not be confused with OPTSAT [8].
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that
∑2n

i=1 π(vi) = 1. The probability of a formula α according to distribution
π is given by Pπ(α) =

∑
{π(vi)|vi(α) = 1}. We simply write P (α) when the

distribution is clear from the context.
The definition of PSAT involves linear algebraic notation. We assume a vector

b to be a column-vector and b′ its transpose, a row-vector. If A is anm×nmatrix,
Aj represents its j-th column, and if b is an m-dimensional column, A[j := b]
represents the matrix obtained by substituting b for Aj ; if A is square matrix,
|A| is A’s determinant.

From a PSAT instance, construct a k × 2n matrix A = [aij ] such that aij =
vj(αi). The probabilistic satisfiability problem is to decide if there is a probability
vector π2n×1 subject to:

Aπ �� p∑
πi = 1 (1)

π ≥ 0

A PSAT instance Σ is satisfiable if its associated PSAT restriction (1) has a
solution π; in that case, we say that π satisfies Σ. The last two conditions of (1)
force π to be a probability distribution. Usually the first two conditions of (1)
are combined: A is a (k+1)× 2n {0, 1}-matrix with 1’s at its first line, p1 is set
to 1 in vector p(k+1)×1, and the ��1-relation corresponds to “=”. In this case,
each column Aj , excluding its first position that is always 1, can be seen as a
Boolean valuation.

Example 2. We continue Example 1 and for simplicity assume that there is only
one course, three students whose enrollment is represented by variables x, y and
z, and two potential partnerships of the first student with either of the others,
represented by pxy and pxz. These partnerships are mutually exclusive, as x can
only have one partner. So we have the hard constraint

P (x ∧ y ∧ z ∧ ¬(pxy ∧ pxz)) = 1

and the soft constraints are probability restriction on the enrollment of a student
without partners, set for this example as:

P (x ∧ ¬pxy ∧ ¬pxz) ≤ 0.25, P (y ∧ ¬pxy) ≤ 0.6, P (z ∧ ¬pxz) ≤ 0.6.

Of all the 25 valuations, we consider π such that π(x, y, z,¬pxy,¬pxz) = 0.1,
π(x, y, z, pxy,¬pxz) = 0.4, π(x, y, z,¬pxy, pxz) = 0.5 and π(v) = 0 for the
remaining 29 valuations. This distribution satisfies the PSAT instance. ��

It is no coincidence that only a small number of valuations in Example 2 receive
non-zero probability. In fact, satisfiable PSAT instances always have a “small”
witness.

Proposition 1 ([7]). If an instance Σ = {P (αi) = pi|1 ≤ i ≤ k} has a solution
π ≥ 0, then there is a solution π′ ≥ 0 with at most k + 1 non-zero elements.
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From Proposition 1, it follows that PSAT is in NP. As SAT is a special case of
PSAT when all pi = 1, PSAT is NP-hard. As a result, PSAT is NP-complete.

There have been several proposed algorithms for PSAT [14,11,13], but its gen-
eral applicability in practice has only been established with the demonstration
that PSAT presents a phase transition [4], just like the SAT problem [17,6].

As in SAT, to display a phase transition the problem must be brought to
a normal form. A PSAT instance is in normal form if it is partitioned in
two sets, 〈Γ, Ψ 〉, where Γ = {P (αi) = 1|1 ≤ i ≤ m} and Ψ = {P (yi) =
pi|yi is a variable, 1 ≤ i ≤ k}. Every PSAT instance can be transformed in
a normal form instance 〈Γ, Ψ〉 in polynomial time, such that satisfiability is
preserved [4]. The set Ψ(y1, . . . , yk) contains probabilistic restrictions over vari-
ables y1, . . . , yk only, and the set Γ (y1, . . . , yk;x1, . . . , xn) is a SAT formulas.
A valuation v over y1, . . . , yk is Γ -consistent if there is an extension of v over
y1, . . . , yk, x1, . . . , xn such that v(Γ ) = 1. The following refines Proposition 1.

Proposition 2 ([4]). A normal form instance 〈Γ, Ψ〉 is satisfiable iff there is a
(k + 1) × (k + 1)-matrix A and π ≥ 0 such that Aπ = p and whenever πj > 0
then column j of A is Γ -consistent.

In this work, we will always consider instances to be in normal form. Based on
Proposition 2, two algorithms for PSAT solving were proposed in [4], and here
we are interested in the one that solves the following optimization problem

minimize c′π
subject to Aπ = p and π ≥ 0

(2)

where A is a (k + 1)× 2n {0, 1}-matrix in (1), π is the probability distribution
and c is a 2n×1 cost vector ; cj = 1 if A’s column j is a Γ -inconsistent valuation,
and cj = 0 otherwise. The PSAT instance is satisfiable iff the optimization leads
to a cost c′π = 0.

As A is exponentially large, we do not generate it explicitly. Instead, we use
a SAT-solver to generate Γ -consistent columns as the linear optimization sim-
plex algorithm requires [21]. The problem is solved iteratively; at each iteration
step i, Proposition 2 allows for storing A(i) with k + 1 columns and a column
generation method is employed in which a SAT-based auxiliary problem gener-
ates a Γ -consistent column that replaces some column in A(i) and decreases the
objective function; this method is detailed in Section 2.1. Accordingly, only the
components of c and π corresponding to the columns of A(i) are stored.

A feasible solution A(i) is a {0, 1}-matrix for which there exists a π(k+1)×1 ≥ 0
such that A(i)π = p. It is shown in [4] that an initial feasible solution A(0) always
exists and can be easily computed. The simplex method guarantees that the
cost function always decreases at each step, by computing the reduced cost c̄b of
inserting a column b in a feasible solution A and forcing it to be non-positive [14]:

c̄b = cb − cAA−1b ≤ 0 (3)
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Algorithm 2.1. PSATsolver(〈Γ, Ψ〉)
Input: A normal form PSAT instance 〈Γ, Ψ〉.
Output: Total solution A; or “No”, if unsatisfiable.

1: A(0) := initial feasible solution; i := 0; compute cost(i) ;

2: while cost(i) > 0 do
3: b(i) = GenerateColumn(A(i), p, Γ ); /* Described in Section 2.1 */

4: return “No” if b
(i)
1 < 0; /* PSAT instance is unsat */

5: A(i+1)=merge(A(i), b
(i));

6: increment i; compute cost(i);
7: end while
8: return A(i); /* PSAT instance is satisfiable */

where cb and cA are, respectively, the component of the cost vector corresponding
to the column b and the columns of A. In our case, cb = 0, so the goal is to find
a column b such that cAA

−1b ≥ 0.
Algorithm 2.1 presents a method that decides whether a PSAT instance is

satisfiable by solving Problem (2), with a positive answer if minimum cost is 0.
Let us see an example of Algorithm 2.1 at work.

Example 3. We express the instance of Example 2 in normal form 〈Γ, Ψ 〉 by
adding variables for each soft violation: sx, sy, sz. Thus

Γ =

{
x, y, z, ¬pxy ∨ ¬pxz,

(x ∧ ¬pxy ∧ ¬pxz)→ sx, (y ∧ ¬pxy)→ sy, (z ∧ ¬pxz)→ sz

}
Ψ = { P (sx) = 0.25, P (sy) = 0.6, P (sz) = 0.6 }

Note that the existence of a soft violation implies the truth of the corresponding
variable in sx, sy, sz, but the truth of some of these variables does not necessarily
imply the occurrence of a soft violation. We now apply Algorithm 2.1.

A(0) =

⎡
⎢⎢⎣
1 1 1 1
0 0 0 1
0 0 1 1
0 1 1 1

⎤
⎥⎥⎦

π(0) = [0.4 0 0.35 0.25]′

cost(0) = 0.4

b(0) = [1 0 1 0]′ : col 3

A(1) =

⎡
⎢⎢⎣
1 1 1 1
0 0 0 1
0 0 1 1
0 1 0 1

⎤
⎥⎥⎦

π(1)=[0.05 0.35 0.35 0.25]′

cost(1) = 0.05

b(1) = [1 1 0 1]′ : col 1

A(2) =

⎡
⎢⎢⎣
1 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1

⎤
⎥⎥⎦

π(2)=[0.05 0.35 0.4 0.2]′

cost(2) = 0

The initial feasible solution A(0) is a line permutation of an upper 1-triangular
matrix, has all but its first column Γ -consistent, with lines 2,3,4 corresponding
to Ψ -variables sx, sy, sz and leads to π(0) and cost 0.4. The first line is always 1 to
force the probabilities to add up to 1. Column generation (Section 2.1) produces
b(0) which the simplex merging determines to substitute A(0)’s third column.

This generates A(1), π
(1) and decreasing cost 0.05; column generation yields b(1)
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that substitutes A(1)’s first column. In A(2) there are no Γ -inconsistent columns

and the cost is 0, so the problem is satisfiable. At each step i, A(i) · π(i) = p.
The distribution here is distinct from that in Example 2, as here we consider

only the variables in Ψ ; this also illustrates that the satisfying distribution is not
unique. ��

2.1 SAT-Based Column Generation

The following describes procedure GenerateColumn(A(i), p, Γ ) used in
Algorithm 2.1 and adapted for optimization Algorithm 3.1.

A Γ -consistent column b that never increases the value of the objective func-
tion is obtained by solving a SAT problem as follows. Consider x1, . . . , xk taking
values in {0, 1}, a1, . . . , ak, c ∈ Q and

a1 · x1 + · · ·ak · xk �� c ��∈ {<,≤, >,≥,=, �=} (LR)

Linear restriction (LR) can be seen as a propositional formula ΔLR, in the sense
that a valuation v : xi �→ {0, 1} satisfies ΔLR iff v makes (LR) a true condition.
ΔLR can be obtained from (LR) in time O(k) [25].

Suppose 1, . . . , q ≤ k + 1 are the Γ -inconsistent columns of feasible solution
A. By (3), a column b = [1 y1 . . . yk]

′ that substitutes some Aj and enforces a
decreasing cost satisfies∑q

i=1 A
−1
i · [1 y1 · · · yk]′ ≥ 0 (LRcost)

A valuation that satisfies Γ ∧ΔLRcost instantiates b. If that formula is satisfiable,
A[j := b] is a feasible solution and cost never increases.

With respect to the termination of the simplex method, one must ensure that
Bland’s rule for fixed order of insertion/removal of columns is respected, and
thus termination of the simplex optimization is guaranteed [21].2

2.2 The Practical Feasibility of PSAT

Prior to the development of very efficient SAT solvers, PSAT was considered
“completely impractical” [20]. But the work of [4] has shown that PSAT presents,
in practice, the hard/easy phase transition behavior similar to that of SAT [17,6].
Among other things, this means that there are predominantly “easy” cases of
satisfiable and unsatisfiable PSAT instances. Of course, PSAT is still several
times slower than SAT due to the fact that a PSAT solver invokes a SAT solver
several times.

With the current technology of SAT solvers, an auxiliary formula Γ ∧ΔLRcost

with tens or even hundreds of thousands of variables can be mostly dealt without
problems. To keep the number of iterations of Algorithm 2.1 under control, it
is advisable to keep a small number k of probability restrictions. Several dimen-
sionality reduction techniques may be employed, such as the one described in
Example 4.

2 In practice, some SAT solvers, such as zchaff, have an internal behavior that obeys
Bland’s rule; others, such as minisat, need extra coding precautions to avoid loops.
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Example 4. Reconsider Example 1, assuming there are k > 1 courses for m
students to enroll, but with a limit of � students per course. Consider as a
soft violation now a course having any students with no partners, reducing the
number of probabilistic constraints from m to k ) m. The probability of a
violating course, pc, can be obtained from the previous one, adopting a simpli-
fying assumption of independence between soft violations, thus obtaining the
probability pc = 1− (1− pi)�. ��

3 Optimizing Probability Distributions with oPSAT

Solutions to a PSAT problem are not unique, and a second phase is needed to
obtain a distribution with desirable properties. This, in some sense, mirrors the
two steps of a linear optimization problem using the simplex algorithm. The
first phase searches for a feasible solution for the initial constraints, which is
what PSAT does; the second phase produces a solution to the constraints that
optimizes an objective function.

A first candidate for this objective function is the minimization of the expected
value of S, the number of soft violations:

E(S) =
∑

vi|vi(Γ )=1

S(vi)π(vi), where S(vi) =

k∑
j=1

vi(yj)

However, due to the following result, this initial idea is not applicable. Define a
(PSAT) model linear function over Ψ -variables y1, . . . , yk ∈ {0, 1}:

f(y1, . . . , yk) = a1y1 + · · ·+ akyk, where aj ∈ Q, 1 ≤ j ≤ k (4)

It is important that only variables in Ψ are arguments of f . Note that E(S)
is a model linear function with all aj = 1. Also note that the expected value
of a linear function f according to a probability distribution π is Eπ(f) =∑

j (a1vj(y1) + · · ·+ akvj(yk))π(vj).
Lemma 1. Consider a satisfiable normal form PSAT instance 〈Γ (y1, . . . , yk;
x1, . . . , xn), Ψ{P (yj) = pj|1 ≤ j ≤ k}〉; let f(y1, . . . , yk) be a model linear func-
tion. Then for every satisfying probability distribution π, the expected value of f
with respect to π is fixed, Eπ(f) =

∑
ajpj.

Proof. Directly from the definition of Eπ(f) and using linearity of Eπ:

Eπ(f) =
∑
v

(a1v(y1) + · · ·+ akv(yk))π(v)

= a1
∑
v

v(y1)π(v) + · · ·+ ak
∑
v

v(yk)π(v)

= a1Pπ(y1) + · · ·+ akPk(yk) =
k∑

j=1

ajpj.

Note that the use of normal form helped considerably to obtain this result. ��
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Lemma 1 shows that there is no point in minimizing the expected number of
soft violations, which is a constant for a given PSAT instance.

3.1 Variance Minimization

Lemma 1 implies that the model function to be minimized to obtain a “balanced”
probability distribution must be non-linear. The idea is to choose a function
that prioritizes assigning higher probability mass to distributions with smaller
number of soft violations.

One possible choice is then to minimize the expected value of the square
number of soft violations, E(S2). The minimal value of the expected value of
this function tends to assign more weight, that is, a greater probability, to the
models with smaller number of soft violations. It also seems a good choice of
function that a distribution must minimize to obtain a “balanced” distribution
due to the following property.

Theorem 1 (Minimal Variance). The probability distribution that minimizes
E(S2) is also the probability distribution that minimizes the variance of the
number of soft violations, Var(S).

Proof. We know from basic statistics that the variance of a function is given by

V ar(S) = E
(
(S − E(S))2

)
= E(S2)− (E(S))2 (5)

But, by Lemma 1, E(S) is fixed, so the distribution that minimizes E(S2), by
(5), is also the distribution that minimizes V ar(S). ��

So we take the view that a “balanced” distribution that respects soft constraints
is one that minimizes the variance of the number of soft violations.

To implement it, we also use a SAT-based column generation to minimize the
objective function. The generation of a column b is based on the encoding of the
reduced cost given by (3) as c̄b = cb − cAA−1b < 0, where c is the cost vector
and A is a feasible solution. In the PSAT case, the cost of the new column is
cb = 0, but here we do not know a priori its value.

However, there are only a few possible values of cb = (S(b))2. Thus we iterate
i = 0 to k, cb = i

2, at each step generating a Γ -consistent SAT formula encoding of
(3) with at most i soft violations. Assume VarianceDecreasingColumn(i, A, p, Γ )
is a column generation function that performs such encoding and submits it to a
SAT-solver, obtaining b; again a value b1 < 0 indicates unsatisfiability.

Algorithm 3.1 implements variance minimization and is a variation of Algo-
rithm 2.1. It takes as input the first phase solution to a satisfiable PSAT instance.
It contains two nested loops. The outermost one iterates over the computation
step (from 0 to k), to be able to compute columns that generate a reduced cost.
The inner loop actually performs the column generation optimization step; this
loop stops when it is not possible to further minimize the cost for a given number
of soft violations set by the outer loop, which may occur if no satisfiable instance
for the column generated is obtained.
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Algorithm 3.1. MinimizeVariance(Γ, Ψ,A, π)

Input: A PSAT instance 〈Γ, Ψ〉, satisfied by Aπ = p.
Output: 〈A′, π′〉 such that π′ has minimal variance of all solutions to 〈Γ, Ψ〉.
1: A(0) := A; π(0) = π; cost(0) = Eπ(S

2);
2: for i = 0 to k do
3: repeat
4: b(i) = VarianceDecreasingColumn(i, A(i), p, Γ );

5: if b
(i)
1 ≥ 0 then

6: A(i+1)=merge(A(i), b
(i));

7: compute π(i+1) and cost(i+1) = Eπ(i+1)(S2);
8: end if
9: until b

(i)
1 < 0 /* cost cannot be further minimized */

10: end for
11: return 〈A(k+1), π

(k+1)〉;

Example 5. We continue Example 3, optimizing its output, which had E(S) =
2·0.05+1·0.35+1·0.4+3·0.2 = 1.45 and E(S2) = 4·0.05+1·0.35+1·0.4+9·0.2 =
2.75 = cost(0). According to Algorithm 3.1, we iterate over the number of soft
violations allowed (i = 0 to 3). For i = 0 and i = 1, the computed SAT formula is
unsatisfiable; for i = 2, a new column is obtained to substitute the third column:

A(2) =

⎡
⎢⎢⎣
1 1 1 1
1 0 0 1
0 0 1 1
1 1 0 1

⎤
⎥⎥⎦

π(2) = [0.05 0.35 0.4 0.2]′

cost(2) = 2.75
b(2) = [1 0 1 1]′ : col 3

A(2)′ =

⎡
⎢⎢⎣
1 1 1 1
1 0 0 0
0 0 1 1
1 1 0 1

⎤
⎥⎥⎦

π(2)′ = [0.25 0.15 0.4 0.2]′

cost(2)
′
= 2.35

The remaining iterations all generate unsatisfiable formulas, so the minimum
variance obtained for i = 2 is V ar(S) = 2.35− 1.452 = 0.2475. ��

4 oPSAT and Combinatorial Materials Discovery

In this section, we present an application of the proposed oPSAT approach to
a practical problem in materials discovery. We first provide some background
on this motivating application, before formally defining the problem. Finally, we
present an oPSAT encoding for this problem and the experimental results for it.

4.1 Background

In combinatorial materials discovery, the goal is to find intermetallic compounds
with desirable physical properties by obtaining measurements on samples from
a thin film composition spread. This approach has been successfully applied for
example to speed up the discovery of new materials with improved catalytic
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activity for fuel cell applications [24,9]. Nevertheless, the analysis of these mea-
surements, also called the phase-field identification problem, requires a manual
and laborious data interpretation component, and our goal is to automate it and
reduce its processing time.

Combinatorial materials discovery, and in particular the problem of ternary
phase-field identification addressed in this paper, provides unique computational
and modeling challenges. While statistical methods and machine learning are
important components to address this challenge, they fail to incorporate rela-
tionships that are inherent to the basic physics and chemistry of the underlying
materials. In fact, a successful approach to materials discovery requires a tight
integration of statistical methods, to deal with noise and uncertainty in the mea-
surement data, and optimization and inference techniques, to incorporate a rich
set of constraints arising from the underlying materials physics and chemistry.
As a consequence, the proposed oPSAT framework seems particularly suited to
address this problem.

4.2 Problem Definition

In the composition spread approach, three metals (or oxides) are sputtered onto
a silicon wafer using guns pointed at three distinct locations, resulting in a
so-called thin film (Fig. 1). Different locations (or samples) on the thin film cor-
respond to different concentrations of the sputtered materials, based on their
distance to the gunpoints. X-ray diffraction (XRD) is then used to characterize
a number of samples on the thin film. For each sample point, it provides the in-
tensity of the electromagnetic waves as a function of the angle of diffraction. The
observed diffraction pattern is closely related to the underlying crystal structure,
which provides important insights into chemical and physical properties of the
corresponding composite material.

The goal of the phase-field identification problem is to identify regions of the
thin film that share the same underlying crystal structure. Intuitively, the XRD
patterns observed across the thin film can be explained as combinations of a
small set of basis patterns called phases. Finding the phase field corresponds to
identifying these phases as well as their concentration on the thin film. The main
challenge is to model the complex crystallographic process that these phases are
subject to (such as the expansion of the lattice, which results in a ’shift’ of the
XRD pattern), while taking into account the imperfection of the silicon wafer as
well as experimental noise of the data.

While it is natural to study the phase-field identification problem on the basis
of full XRD curves, constructive interference of the scattered X-rays occurs, by
nature, at specific angles and creates spikes (or peaks) of intensity. In addition,
experimental noise combined with variations of the Silicon substrate make the
measured intensity of the beam not reliable. As a result, materials scientists
mostly rely on peak angles when tackling the phase-field identification problem.
Therefore, we use a specialized peak detection algorithm [10] to extract the set
of peak angles Q(i) in the XRD pattern of a sample point i.
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Fig. 1. Example of a thin film. Each sample on the silicon wafer corresponds to a
different composition, and has an associated measured x-ray diffraction pattern. Col-
ors correspond to different combinations of the basis patterns α, β, γ, δ. On the right,
diffraction patterns of the sample points along the right side of the thin film illustrate
how the patterns combine and shift as one moves from one point to a neighboring one.

The goal is then to find a set of peak angles Ek for each phase k, as well as
phase-presence Boolean variables ai,k and scaling factors si,k ∈ R for each sample
i and phase k, such that each observed set of peaksQ(i) is explained. Namely, for
each peak q ∈ Q(i) we want to have at least one phase k and one peak e ∈ Ek of
that phase that can explain it, i.e. ∀q ∈ Q(i) ∃e ∈ Ek s.t. (ai,k ∧ |q − si,k · e| ≤ ε)
where ε is a parameter that depends on the accuracy of the peak detection
algorithm.

Moreover, no more than 3 basis patterns can be used to explain the peaks at
sample point i, which translates to |{k|ai,k = 1}| ≤ 3. Finally, the sample points
are embedded into a graph G, such that there is a vertex for every sample
and edges connect samples that are close on the thin film (eg. based on the
grid). Given this graph, we require that the subgraph induced by {i|ai,k = 1} is
connected in order for the basis patterns to appear in contiguous locations on
the thin film. In addition, the scaling factors si,k should be monotonic along the
paths of this graph, and cannot exceed a given value Smax.

An analogy with the student enrollment example would be to consider a sam-
ple as a student who is enrolling in at most 3 courses (phases assigned to peaks
of the sample) and is teaming up with other students (a peak paired with a
neighboring peak).

4.3 oPSAT Encoding

We now formulate the phase-field identification problem as an oPSAT encoding.
Let K be the set of phases. Also, let G be the set of sample points embedded in
a grid, such that each sample has neighbors in one or more of the four directions
{N,E, S,W}. We denote G(i) the peaks of sample point i and lp the angle of
peak p ∈ G(i). For a peak p ∈ G(i), we define Np,D ⊆ G(i′) the subset of peaks
of sample i′, where i′ is the sample in direction D from i (denoted i′ ∈ D(i)),
and such that p′ ∈ Np,D if lp ≤ l′p ≤ lp.Smax. In other words, Np,D is the set
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of p’s neighbor peaks that can be matched with p according to the direction D
and without exceeding the maximum allowed shift (see Fig. 2).

Variables. We define a Boolean variable xp,k, for p ∈ G(i), i ∈ G, k ∈ K,
to indicate whether peak p belongs to phase k. Similarly, zi,k indicates whether
sample point i contains some peak in phase k, i.e. zi,k =

∨
p∈G(i) xp,k. In addition,

a Boolean variable ypp′k indicates that peak p is paired with peak p′ for phase k.
Therefore, we have ypp′k → xpk ∧xp′k. Furthermore, we introduce two directions
D1k ∈ {N,S} and D2k ∈ {E,W} for each phase k. The direction of a phase is
used to impose that any peak of that phase shifts according to that direction.
Accordingly, we have:

∨
p′ 	∈Np,D1k

∪Np,D2k
ypp′k = 0 for all i ∈ G, p ∈ G(i), k ∈

K. Moreover, in order to introduce probability restrictions on the number of
unmatched peaks, we define a Boolean variable dp that corresponds to whether
peak p is paired with a peak of the neighboring samples. Similarly, di denotes
whether all peaks of sample i are paired, and are channeled to the dp variables
through the following propositional formula: ¬dp ∨ di for all i ∈ G, p ∈ G(i).

Propositional Formulas. A peak is assigned to at most one phase, i.e.
∑

k xpk ≤ 1.
An unassigned peak is considered unmatched (as illustrated by p0 in Fig. 2).
Namely, (

∨
k xpk) ∨ dp for all i ∈ G, p ∈ G(i). If a peak is assigned to a phase,

then it needs to be paired with a neighboring peak, otherwise it is considered un-

matched (see p1 in Fig. 2). This constraint translates to: xpk →
(∨

p′ ypp′k ∨ dp
)

for all i ∈ G, p ∈ G(i), k ∈ K. In addition, a phase should be consistent among
the samples in which this phase is involved. Namely, if two adjacent samples
share a phase, each peak of one must be paired with a peak of the other, other-
wise it is considered unmatched (as illustrated by p2 in Fig. 2). This translates

to: xpk ∧ zi′k →
(∨

p′∈G(i′) ypp′k ∨ dp
)

for all i ∈ G, p ∈ G(i), k ∈ K, i′ ∈
D1k(i) ∪D2k(i). Moreover, we enforce a relaxed form of convex connectivity of
a phase on the thin film, requiring that if any two samples that are two or more
columns (or rows) apart involve a given phase, then there should be a sample
in between them that involves this phase as well. In other words, we require
(xpk ∧ xp′k)→

∨
i′′∈NC(i,i′),p′′∈G(i′′) xp′′k, where NC(i, i

′) (resp. NR(i, i
′)) is the

set of samples on the grid between the columns (resp. rows) of i and i′. Finally,
we impose that a peak cannot be paired with more than one neighboring peak,
i.e.

∑
k,p′ 	=p ypp′k ≤ 1, for all i ∈ G, p ∈ G(i) and

∑
k,p′ 	=p yp′pk ≤ 1, for all

i ∈ G, p ∈ G(i).

Probability Restrictions. We limit the probability that all peaks of a sample i
remain unmatched by requiring P (di) ≤ pi, where pi is either given or refined
by dichotomy search.

Inference Method. For the experimental results described in the following, we
computed a probability distribution using oPSAT with variance minimization
and used, in order to obtain the accuracy of the computation, the model of the
hard (SAT) constraints in that distribution with the highest probability.
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Fig. 2. Examples of soft violations in the oPSAT encoding. Left: Grid of sample points.
Right: Pairing the peaks of sample points i, i′ and i′′. In the case of phase k of direction
North, the peak p of sample i can only be paired with peaks of i′ in Np,N . Also, this
example illustrates the three possible soft violations for peaks: 1) p0 is not assigned a
phase (assuming one single phase), 2) p1 is not paired with any other peak, and 3) p2,
assigned to phase k, has no matching peak in i′′, although i′′ involves phase k.

4.4 Experimental Validation

We evaluate the oPSAT approach on the synthetic data used in [3] and com-
pare with the SMT approach. Note that data from real experiments has to be
manually labeled, which unfortunately is not yet available. Data was synthesized
based on a known underlying phase map for the Al-Li-Fe system [16], a ternary
system composed of 6 phases (|K| = 6).

All experiments were conducted on the same machine and using the same
C++ implementation of an oPSAT solver, using minisat as the auxiliary SAT
solver. The SMT solver used in these experiments was Z3 [2]. For the oPSAT
approach, the model with highest probability in the computed distribution was
used to obtain the accuracy results. The maximum probability of a peak to be
unmatched, that is, a peak with no phase assigned, was fixed as 2%, and a soft
violation was defined as a sample point with some unmatched peak. This soft
violation probability was computed over all peaks at that sample point, assuming
that the probability of one peak to be unmatched is independent from that of
any other peak. Table 1 shows the results of the experiments.

In all cases, the accuracy of the model computed by the oPSAT solver, defined
as the percentage of peaks predicted with the same phase as in the synthetic data
set, was above 80% (compared to 100% for SMT). On the other hand, the oPSAT
implementation presents a dramatic increase of efficiency, of at least two orders
of magnitude in all cases, and of about 2,000 times in one case.

Overall, while materials scientists currently proceed to a manual analysis of
the high-throughput experimental data, our results provide solutions that are
good and useful from the point of view of materials scientists, especially as
these solutions are, by design of hard constraints, physically meaningful and
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Table 1. Runtime (in seconds) for both SMT and oPSAT approaches on 5 datasets,
as well as the accuracy of oPSAT (the accuracy of SMT being 100%). P is the number
of sample points, L∗ is the average number of peaks per phase, K is the number of
basis patterns, and #Peaks is the overall number of peaks.

Dataset SMT oPSAT

System P L∗ K #Peaks Time(s) Time(s) Accuracy

Al/Li/Fe 28 6 6 170 346 5.3 84.7%
Al/Li/Fe 28 8 6 424 10076 8.8 90.5%
Al/Li/Fe 28 10 6 530 28170 12.6 83.0%
Al/Li/Fe 45 7 6 651 18882 121.1 82.0%
Al/Li/Fe 45 8 6 744 46816 128.0 80.3%

comply with the crystallographic process. In addition, our approach is the first
automated method to exhibit short running times, and has great potential to be
used within an online setting that guides the data collection itself. Therefore, the
acceptable loss of accuracy is made up by a significant gain in speed. Finally,
these results advocate the practical feasibility of oPSAT for real applications
involving hard and soft constraints.

5 Conclusions

In this work we have described how to use the optimized probabilistic satis-
fiability (oPSAT) method to deal with problems that combine hard and soft
restrictions. We have shown how a probability distribution can be computed to
satisfy logic and probabilistic constraints and how it can be optimized to display
balanced properties via variance minimization. The technique was then applied
to the non-trivial problem of materials discovery with acceptable precision and
superior run times than existing methods.

Future work should address the computation of probability constraints that
minimize the expected value of soft violations, as well as inference methods that
employ the probability distribution computed by the oPSAT method, instead of
just considering the model with the largest probability in that distribution. With
respect to experimental results, we plan to measure the efficiency of the oPSAT
solver on real data, once a manually annotated data set becomes available. The
application of oPSAT to other problems combining hard and soft constraints is
also a direction to be explored.
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Abstract. In recent years, there have been significant improvements in algo-
rithms both for Quantified Boolean Formulas (QBF) and for Maximum Satisfia-
bility (MaxSAT). This paper studies the problem of solving quantified formulas
subject to a cost function, and considers the problem in a quantified MaxSAT set-
ting. Two approaches are investigated. One is based on relaxing the soft clauses
and performing a linear search on the cost function. The other approach, which
is the main contribution of the paper, is inspired by recent work on MaxSAT, and
exploits the iterative identification of unsatisfiable cores. The paper investigates
the application of these approaches to the concrete problem of computing small-
est minimal unsatisfiable subformulas (SMUS), a decision version of which is a
well-known problem in the second level of the polynomial hierarchy. Experimen-
tal results, obtained on representative problem instances, indicate that the core-
guided approach for the SMUS problem outperforms the use of linear search over
the values of the cost function. More significantly, the core-guided approach also
outperforms the state-of-the-art SMUS extractor Digger.

1 Introduction

When reasoning about quantified Boolean formulas (QBF), different optimization prob-
lems can be envisioned. MAX-QSAT [16] is a well-known example. Considering a QBF
as a game between the existential and universal players, if the existential player can guar-
antee that k clauses are satisfied independently of the universal player, then k clauses
are said to be simultaneously satisfiable. The MAX-QSAT problem is to find the maxi-
mum number of simultaneously satisfiable clauses. Original interest in MAX-QSAT was
motivated by work on non-approximability results for problems in the polynomial hier-
archy. A different optimization problem is to select a subset of clauses of a QBF such
that the resulting QBF is true. A related optimization problem assumes the first quantifier
to be existential, and asks for an assignment to those existential variables such that the
QBF is true and a cost function is optimized. Work in quantified CSP involves comput-
ing strategies that optimize some cost function or associating costs with strategies [14,8].
Besides the theoretical interest, there are a number of practical settings where quantified
optimization problems find application. This is for example the case when the goal is to
optimize a cost function subject to a quantified set of constraints (e. g. the iterative use
of QBF for optimizing target values in [13]). Many other concrete examples are given
by the optimization versions of decision problems in the polynomial hierarchy [35].

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 250–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This paper addresses the problem of optimizing a cost function subject to a quantified
set of constraints. The cost function will be represented as a set of soft clauses, and so
this problem is referred to as Quantified MaxSAT (QMaxSAT). Inspired by algorithms
for the non-quantified MaxSAT problem [19,2,23,9], this paper develops two novel ap-
proaches for QMaxSAT. The first one consists of relaxing all clauses and performing a
linear (or binary) search over the values of the cost function. The linear search can either
refine upper or lower bounds on the number of falsified soft clauses [19,9]. In contrast,
binary search refines both lower and upper bounds [19,23]. The second approach repre-
sents the main contribution of this paper, and is inspired by recent work on core-guided
MaxSAT, i.e. solving MaxSAT by iteratively computing unsatisfiable subformulas [19].
Thus, this new approach requires QBF solvers to be able to produce unsatisfiable cores.
As a result, the second contribution of this paper is to show how recent 2QBF solvers
based on abstraction refinement [25,24] can be modified to produce unsatisfiable cores.

The new algorithms for QMaxSAT are evaluated on the problem of computing the
smallest minimally unsatisfiable subformula (SMUS) [29,32]. The SMUS decision
problem is well-known to be in the second level of the polynomial hierarchy (e. g. [20])
and studied in the context of formal verification. Computing SMUSes is also relevant
for assessing the quality of computed MUSes in practice. The third contribution of the
paper is a novel QMaxSAT formulation for the SMUS problem, and QMaxSAT-based
algorithm. Experimental results, obtained on representative problem instances, show
that the core-guided QMaxSAT algorithm outperforms Digger, a state-of-the-art algo-
rithm for the SMUS problem [26]. More importantly, these results validate the use of
core-guided approaches for QMaxSAT.

The paper is organized as follows. The next section overviews basic definitions on
SAT, MaxSAT, and QBF. Section 3 introduces the QMaxSAT problem, and Section 4
proposes several algorithms for QMaxSAT with an arbitrary number of quantification
levels. This is completemented by a description in Section 4.1 of how a CEGAR-
based 2QBF instrumented to generate unsatisfiable cores, and so used in QMaxSAT
algorithms. Section 5 shows the practicality of the framework: it models the SMUS
problem as QMaxSAT and describes improvements to the QMaxSAT for the concrete
problem of computing an SMUS. Section 6 presents the experimental results on
computing SMUSes. Section 7 concludes the paper.

2 Preliminaries

This section provides the notation and basic definitions related to SAT, MaxSAT
and QBF.

2.1 Boolean Satisfiability

Let us consider a set of Boolean variables X = {x1, . . . , xn}, n ∈ N. A literal for
variable xi, i ∈ {1, . . . , n}, is an atomic formula, denoted by li, which can be either
a positive literal xi, or its negation ¬xi. A set of literals connected by a disjunction is
called a clause. A conjunction of clauses ϕ = c1 ∧ c2 ∧ . . . ∧ cm, m ∈ N, is called
a formula in conjunctive normal form (CNF formula). Whenever convenient, a CNF
formula is treated as a set of sets of literals ϕ = {c1, c2, . . . , cm}.
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An assignment is a total mapping AX : X → {0, 1} defined on set X of variables.
The notion of assignment AX can be extended to literals by setting AX(¬xi) = 1 −
AX(xi) for xi ∈ X . Hereinafter, expression ϕ|AX denotes a formula obtained from
a Boolean formula ϕ by replacing each variable xi of X with its value AX(xi). The
same restriction notation c|AX is used with regard to a clause c of a CNF formula. Since
formula ϕ expresses some Boolean function f(x1, . . . , xn), ϕ|AX defines the value of
function f , which in what follows is denoted by f(AX). The same notation is used for
denoting values of pseudo-Boolean functions.

If AX(li) = 1 then literal li is said to be satisfied by assignment AX ; if AX(li) =
0 then li is falsified by AX . Assignment AX satisfies a clause c, i. e. c|AX = 1, if
it satisfies at least one of its literals; otherwise the clause is said to be falsified by
AX (c|AX = 0). If for a given CNF formula ϕ there is an assignment AX such that
ϕ|AX = 1, then formula ϕ is called satisfiable and AX is its satisfying assignment,
or model. In the remainder of the paper, the set of all models of a CNF formula ϕ is
denoted byM(ϕ).

2.2 Maximum Satisfiability

The Maximum Satisfiability (MaxSAT) is an optimization generalization of SAT for-
mulated as follows: for a given CNF formula ϕ = {c1, c2, . . . , cm}, m ∈ N, find
such an assignmentAX that satisfies the maximum number of clauses of ϕ. A standard
way of dealing with MaxSAT problems is to introduce a set R = {r1, r2, . . . , rm} of
additional variables (called relaxation variables) and consider a relaxed CNF formula
ϕR = {cR1 , . . . , cRm}, where cRi = ci ∨ ri. Observe that ϕR is satisfiable. The MaxSAT
problem for ϕ can be now formulated as follows: given a cost function f(r1, . . . , rm) =∑m

i=1 ri, find an assignment AX∪R ∈ M(ϕR) such that for any other assignment
BX∪R ∈M(ϕR)

f(AX∪R) ≤ f(BX∪R)

The partial MaxSAT problem generalizes MaxSAT and deals with CNF formulas of the
formϕ = ϕS∪ϕH , where all the clauses ofϕS are declared to be relaxable or soft while
the rest (clauses of ϕH ) are declared to be hard. The problem is to find an assignment
AX that satisfies all the hard clauses and maximizes the number of the soft clauses that
are satisfied. Analogously to the MaxSAT formulation given above, one can formulate
the partial MaxSAT problem by relaxing only the soft clauses and considering a cost
function using the corresponding relaxation variables.

2.3 Quantified Boolean Formula

Quantified Boolean formulas (QBFs) are an extension of propositional logic with
existential and universal quantifiers (∀, ∃) [11].

In this paper QBFs are assumed to be in prenex closed form Q1x1. . .Qnxn. ϕ,
where Qi ∈ {∀, ∃}, xi are distinct Boolean variables, and ϕ is a Boolean formula
using only the variables xi and the constants 0 (false), 1 (true). The sequence of quan-
tifiers in a QBF is called the prefix and the Boolean formula the matrix. The seman-
tics of QBF is defined recursively. A QBF ∃x1Q2x2. . .Qnxn. ϕ is true if and only if
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Q2x2. . .Qnxn. ϕ|x1=1 orQ2x2. . .Qnxn. ϕ|x1=0 is true. A QBF ∀x1Q2x2. . .Qnxn. ϕ
is true iffQ2x2. . .Qnxn. ϕ|x1=1 andQ2x2. . .Qnxn. ϕ|x1=0 are true. To decide whether
a given QBF is true or not, is PSPACE-complete [11].

Within a prefix, two adjacent quantifiers of different type, namely ∀xi∃xi+1 and
∃xi∀xi+1, are called a quantifier alternation. A QBF with k alternations has k + 1
quantification levels. Whenever possible, for variables x1, . . . , xn, xi ∈ Xj , under the
same quantifier Qj we write QjXj instead of Qjx1 . . . Qjxn. Therefore, a formula
with k quantification levels can be denoted byQ1X1 . . . QkXk. ϕ. Moreover, the prefix
Q1X1 . . .QkXk of a QBF with k quantification levels is usually denoted by

−→
Q .

In Section 5, devoted to the SMUS problem, we focus on QBFs with 2 levels of
quantification, i. e. formulas of the form ∀X∃Y. ϕ or ∃X∀Y. ϕ, commonly denoted by
2QBF. Deciding whether a formula in 2QBF is true is complete for the second level of
the polynomial hierarchy [11].

Section 3 uses the notion of solution of QBFs of the form ψ = ∃X0
−→
Q. ϕ. An as-

signment AX0 is a solution of ψ iff
−→
Q. ϕ|AX0

is true1. Analogously to the set of all
models of a CNF formula, the set of all solutions of a QBF ψ, where the first quantifier
is ∃, is denoted byM(ψ).

3 Quantified MaxSAT

In this section we consider an optimization formulation of the QBF problem, when one
should choose such a solution of the problem (among all solutions), that is optimal
with respect to some given criterion. This kind of problems is a natural generaliza-
tion of MaxSAT: instead of CNF formulas, we consider quantified formulas specified
in a general form. Moreover, the optimization criterion in this problem is generalized
as well. For example, it is possible to specify it as a minimization problem for some
pseudo-Boolean cost function (see [21]).

Consider sets of Boolean variablesX1, X2, . . ., Xk and a set of additional variables
E = {e1, . . . , el}. Let

ψ = ∃E−→Q. ϕ (1)

be a quantified Boolean formula, where its matrix ϕ is a propositional formula over the
set (

⋃k
i=1Xi) ∪ E given in a potentially non-CNF form. Consider a linear2

pseudo-Boolean function f(e1, . . . , el) =
∑l

i=1 ai · ei as a cost function. Then the
quantified MaxSAT (QMaxSAT) problem can be formulated as the problem of finding
an assignmentAE ∈M(ψ) such that for any other assignment BE ∈M(ψ)

f(AE) ≤ f(BE)

Example 1. Consider a 2QBF formula

ξ = ∃e1, e2 ∀x1, x2. ϕ,
1 Note that solution of a quantified formula defined in this way represents a “portion” of the

formula’s model, which is defined, for example, in [12].
2 Non-linear pseudo-Boolean formulas can be linearized with the use of auxiliary variables.

Some linearization techniques are described in [18,6].
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where ϕ = (¬e1 ∧ ¬e2) → (x1 ∨ x2); and a cost function f(e1, e2) = 2 · e1 + 3 · e2.
Formula ξ has three possible solutions: e1 = 0, e2 = 1; e1 = 1, e2 = 0; e1 = 1, e2 = 1.
However, the optimal solution which minimizes the cost function is e1 = 1, e2 = 0,
i. e. f(1, 0) = minM(ξ) f(e1, e2) = 2.

Let us show how the formulated QMaxSAT problem relates to classical (quantifier-free)
MaxSAT. First, we define another problem, which is a special case of QMaxSAT. Con-
sider a QBF

−→
Q. ϕ, which is false, and let its matrix ϕ be in CNF. Then the problem of

finding a maximal subset ϕ′ ⊂ ϕ such that
−→
Q. ϕ′ is true, can be easily expressed in

terms of QMaxSAT described above. To do this, one should consider a set R of relax-
ation variables and a CNF formula ϕR = {c1 ∨ r1, . . . , cm ∨ rm}, ci ∈ ϕ, ri ∈ R, and
choose f(r1, . . . , rm) =

∑m
i=1 ri as the cost function. Then the problem is to find the

best solution of QBF ∃R−→Q. ϕR subject to the cost function f . This problem is obvi-
ously a generalization of classical MaxSAT but also a special case of QMaxSAT. Note
that although variables E from the QMaxSAT formulation are replaced by relaxation
variables R here, they do not play the role of relaxation variables in general (e. g., see
the matrix of formula ξ in Example 1).

Due to the close relationship of the QMaxSAT problem to its classical version, an
interesting line of work is to apply to this problem the ideas and algorithms developed
for non-quantified MaxSAT. The next section gives an explanation of how MaxSAT
algorithms can be adapted to the QMaxSAT problem.

Related Work. Optimization problems subject to quantified constraints have been
studied elsewhere [16,14,8], but address more general formulations than QMaxSAT.
The Max-QSAT problem [16] can be viewed as computing a strategy that maximizes
the number of simultaneously satisfiable clauses. Other optimization problems have
been studied in the recent past [14,8]. The focus of [14] is approximation algorithms
for computing a winning strategy that minimizes some cost function, whereas [8] stud-
ies preferences over strategies. To our best knowledge, and besides our work, [8] is the
only other reference that proposes an exact algorithm for solving optimization problems
over quantified constraints.

4 QMaxSAT Algorithms

One of the simplest approaches to the QMaxSAT problem is to iteratively decide the
following formula with a QBF oracle:

∃E−→Q. ϕ ∧ (f(e1, . . . , el) ≤ k) (2)

Here one can start from a lower bound (e. g. k = 0) and increase k until formula (2)
becomes true, or decrease it from some upper bound (e. g. k = max{0,1}l f ) value
while (2) is true. This is analogous to the linear search for non-quantified MaxSAT [9],
which refines lower and upper bounds on the value of the cost function3. Although these

3 Instead of the linear search algorithms, one can use binary search [19,23]. Binary search
algorithms are not covered by this paper.
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algorithms are not the main contribution of the paper, we implemented and compared
them to our main algorithm for the concrete case of the SMUS problem (see Section 6).

The main goal of this paper is to construct an algorithm which is based on the
use of unsatisfiable cores (or simply cores) similar to the Fu&Malik’s algorithm for
MaxSAT [19]. Similarly to the linear search that refines lower bounds on the value of
the cost function, Fu&Malik’s algorithm (we refer to its original version as MSU1 [30];
some authors refer to this algorithm as WPM1 [1]) tests a series of unsatisfiable in-
stances until a satisfiable instance is found. However, instead of dealing with the con-
straint f(e1, . . . , el) ≤ k and increasing k with each call to a SAT solver, it identifies a
small unsatisfiable part of the current formula, which is called an unsatisfiable core. Se-
quential core computation in MSU1 increases the current cost value with each iteration,
i. e. with every new core computed. Thus, each unsatisfiable core increments a possible
minimum cost of an assignment that satisfies the constraints.

Recall that function f is linear, i. e. f(e1, . . . , el) =
∑l

i=1 ai · ei. Assume4, that

ai = 1, ∀i ∈ {1, . . . , l}. For each term ei of formula f(e1, . . . , el) =
∑l

i=1 ei create
a unit clause ¬ei. Denote CNF formula {¬e1,¬e2, . . . ,¬el} by ϕS . Observe that each
term ei of f incrementing its value (i. e. ei = 1) corresponds to a falsified clause ¬ei
of ϕS . This means that an assignment evaluates function f to some value y, 0 ≤ y ≤ l,
if and only if it satisfies l − y clauses of ϕS . Therefore, function f is evaluated to its
minimum value by such an assignment AE , that maximizes the number of satisfied
clauses of ϕS . Let #(ϕS |AE ) be a function that outputs the number of clauses of ϕS

that are satisfied by some assignment AE , i. e. #(ϕS |AE ) =
∑

c∈ϕS
c|AE . Instead of

QBF ψ (see (1)), consider the formula

ψ′ = ∃E−→Q. ϕ ∧ ϕS (3)

Now we can formulate another way to solve the QMaxSAT problem for QBF ψ subject
to the cost function f . It consists in finding an assignment AE ∈ M(ψ) such that for
any other assignment BE ∈ M(ψ) the following holds: #(ϕS |AE ) ≥ #(ϕS |BE ). On
the analogy of partial MaxSAT, CNF ϕS can be treated as a set of soft clauses while the
original QBF matrix ϕ is a hard part given in a potentially non-CNF form. Let us define
a core of formula ψ. This will enable us to extend the MSU1 algorithm to the case of
QMaxSAT.

Definition 1. A Boolean formula ϕC = ϕ ∧ ϕ′
S , ϕ′

S ⊆ ϕS , is called an unsatisfiable
core of formula ψ′, if and only if the following is false

∃E−→Q. ϕC

According to Definition 1, the hard part of formula ψ′ is included into any unsatisfiable
core ϕC of ψ′. However, similarly to the core-guided algorithms for the non-quantified
MaxSAT, in the algorithm described below we will need only the soft part ϕ′

S of the
core. The algorithm selects soft clauses from the core by calling a function Soft(ϕC).

Algorithm 1 shows the pseudo-code of the MSU1 algorithm adapted to QMaxSAT
(we refer to this algorithm as QMSU1). For a formula ψ′ given in the form (3), which is

4 Otherwise we have a weighted version of the problem, and all the ideas described in this
section, can be extended as is done for weighted MaxSAT algorithms [30,1].
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Algorithm 1. QMSU1 Algorithm

input : A QBF ψ = ∃E−→
Q. ϕ s. t. M(ψ) �= ∅, and a CNF ϕS

output : AE ∈ M(ψ), s. t. ∀BE ∈ M(ψ): #(ϕS |AE ) ≥ #(ϕS |BE )

1 Rall ← ∅ // set of all relaxation variables

2 while true do
3 ψ′

R = ∃E ∃Rall
−→
Q. ϕ ∧ ϕS

4 (st, ϕC ,AE) ← QBF(ψ′
R) // calling a QBF oracle

5 if st = true then
6 return AE

7 R ← ∅ // set of relaxation variables

8 foreach c ∈ Soft(ϕC) do
9 let r be a new relaxation variable

10 R ← R ∪ {r}
11 ϕS ← ϕS \ {c} ∪ {c ∨ r}
12 ϕ ← ϕ ∧ CNF(

∑
r∈R r ≤ 1)

13 Rall ← Rall ∪R

implicitly defined by a QBF ψ from (1) and a CNF formula ϕS , the QMSU1 algorithm
outputs such a solution AE of ψ that maximizes the number of satisfied clauses of ϕS

over the set M(ψ). One important pre-condition of the algorithm is that formula ψ
must have at least one solution, i. e.M(ψ) �= ∅. The set of all relaxation variables used
by the algorithm is denoted by Rall and initialized by ∅ (line 1). At each iteration of
the loop the algorithm constructs a relaxed copy ψ′

R of formula ψ′ (line 3) and asks a
QBF oracle to decide whether it is true or false (line 4). As an answer the oracle returns
a 3-tuple (st, ϕC ,AE). If st = false, then the algorithm considers a set of relaxation
variables R (initially set to ∅) and processes the unsatisfiable core ϕC returned by the
QBF oracle. This step consists of relaxing soft clauses of the core, i. e. the algorithm
introduces a new relaxation variable r ∈ R for each soft clause c of the core ϕC , and
replaces original clause c with its relaxed copy c ∨ r in ϕS . At the end of the iteration
QMSU1 adds a CNF encoding of a new cardinality constraint

∑
r∈R r ≤ 1 to the hard

part ϕ of ψ′. Note that since each relaxation variable r ∈ Rall is added only to a clause
of the form ¬ej , all of them can be quantified by the same ∃-quantifier as variables
ej ∈ E (see line 3). The algorithm iterates until formula ψ′

R is true and AE ∈ M(ψ′
R)

(line 6). By construction,AE maximizes the number of satisfied clauses of ϕS over the
set M(ψ), i. e. it is the solution of a QMaxSAT problem. Note that the algorithm is
analogous to the MSU1 algorithm for non-quantified MaxSAT. The only difference is
that QMSU1 uses not a SAT solver as an oracle but a QBF solver, and the hard part of
the formula can be in a non-CNF form. Thus, the correctness of the algorithm relies on
the corresponding result for the MSU1 algorithm [19].

Note that the only requirement imposed by the QMSU1 algorithm on the QBF oracle
is the ability to produce a certificate that could validate the answer true or false. While
providing a solution of a formula seems straightforward to implement, the oracle must
also be able to explain why the input formula is false, i. e. to extract an unsatisfiable core
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Fig. 1. Gradual strengthening of abstractions until a solution is found

from the formula. A simple solution is to include all the soft clauses in the core. How-
ever, the efficiency of the algorithm relies on producing small cores. There exist meth-
ods for extracting unsatisfiable cores from unsatisfiable QBF instances for DPLL-based
QBF solvers (e. g., see [37]). While the QMSU1 algorithm can use any QBF solver as
long as it produces cores, this work uses a CEGAR-based 2QBF solver [25,24] as an un-
derlying QBF oracle for a particular problem (the smallest MUS problem). Section 4.1
describes a method using a CEGAR-based 2QBF solver for extracting unsatisfiable
cores. Following the ideas of [24], the method can be easily extended to the case of for-
mulas with an arbitrary number of quantification levels. The task is further simplified
by the fact that the QMSU1 algorithm requires only soft part of the core, which depends
on variables quantified at the outermost level.

4.1 Extracting Cores in CEGAR-Based 2QBF

Among the many practical uses of the counterexample guided abstraction refinement
(CEGAR) [15], it can also be applied for solving 2QBF [25]. The key idea of CE-
GAR is to consider an approximate representation of a problem (called the abstraction)
instead of its explicit representation that could be too large to construct or unknown.
This section provides a basic overview of the algorithm5 and describes its modification,
which is able to extract an unsatisfiable core of a formula if the formula is false.

For the sake of succintness, in this section we denote assignments to variables of
X and Y by μ and ν, respectively. We also assume, that the matrix of the 2QBF is
presented as ϕH ∧ ϕS , where ϕS represents a set of soft clauses, and ϕH is a hard part
given in a possibly non-CNF form. The algorithm hinges on the idea that the problem
∃X∀Y. ϕH ∧ ϕS can be equivalently represented as

∃X.
∧

ν∈{0,1}|Y |

(ϕH ∧ ϕS)|ν (4)

where the universal quantifier is expanded using a conjunction. Since the full expan-
sion (4) of the problem can be exponentially large with respect to the original problem,

5 The reader is referred to [25] for further details and properties of the algorithm.
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Algorithm 2. CEGAR loop for 2QBF
input : ∃X∀Y. ϕH ∧ ϕS

output : (true, μ) if there exists μ s.t. ∀Y. (ϕH ∧ ϕS)|μ,
(false, ϕH ∧ ϕ′

S) s.t. ϕ′
S ⊆ ϕS otherwise

1 ω ← ∅
2 while true do
3 ϕ ← CNF(

∧
ν∈ω ϕH |ν) ∪

∧
ν∈ω ϕS |ν

4 (st1, μ, ϕC) ← SAT(ϕ) // candidate

5 if st1 = false then
6 ϕ′

S ← {c ∈ ϕS | c′ ∈ ϕC , ν ∈ ω, c′ = c|ν}
7 return (false, ϕH ∧ ϕ′

S) // no candidate found

8 (st2, ν) ← SAT (¬(ϕH ∧ ϕS)|μ) // counterexample

9 if st2 = false then
10 return (true, μ) // solution found

11 ω ← ω ∪ {ν} // refine

it is infeasible to construct such representation in practice. Instead of constructing the
full expansion (4), CEGAR constructs a partial expansion of the given problem, i. e.

∃X.
∧

ν∈W

(ϕH ∧ ϕS)|ν (5)

whereW ⊆ {0, 1}|Y |. We refer to formula (5) asW -abstraction. Observe that for any
W , the correspondingW -abstraction is weaker than the full expansion (4). This means
that the set of the W -abstraction’s solutions is a superset over the set of solutions of
the original problem, i. e. some of the W -abstraction’s solutions may not satisfy (4).
The idea of the CEGAR-based algorithm described below is to gradually strengthen the
abstraction until a solution of the original problem is found, or the abstraction is proved
to be false (see Figure 1).

Algorithm 2 shows the pseudocode of the algorithm. The algorithm maintains a set
of assignments W in the variable ω. We start with the abstraction equal to the for-
mula 1, any assignment μ to the variable of X satisfies the abstraction. Assume, that
the algorithm encodes the hard part ϕH into a CNF formula by calling a function
CNF(ϕH).

In each iteration of the loop, the algorithm first computes a solution to the abstrac-
tion, which is maintained in ϕ and constructed at line 3. We refer to this solution as a
candidate solution, because it is not guaranteed that it is indeed a solution to the orig-
inal problem. If a SAT oracle says (see line 4) that there is no candidate solution, i. e.
the abstraction has no solutions, the original problem does not have any solutions either
(recall that the abstraction is always weaker than the problem). In this case the algo-
rithm returns an unsatisfiable core of the input formula in the form ϕH ∧ ϕ′

S (line 7).
Observe that the soft part ϕ′

S of the QBF core can be easily extracted from the core
ϕC returned by the SAT oracle: ϕ′

S should include a clause c ∈ ϕS if there is a
clause c′ ∈ ϕC and an assignment ν ∈ ω such that c′ = c|ν . In other words, the
unsatisfiable core ϕC shows the falsity of the W -abstraction even if we consider the
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abstraction’s soft part to be ϕ′
S instead of ϕS , i. e. ∃X.

∧
ν∈W (ϕH ∧ ϕ′

S)|ν is false.
Note that there can be several clauses ci ∈ ϕS such that c′ = ci|ν . However, it is suffi-
cient to include just one of these clauses into ϕ′

S — by doing this one can get smaller
QBF cores.

If the SAT oracle says that there is a candidate solution, then the algorithm checks
whether it is indeed a solution of the problem or not. This is done by computing a
counterexample. For a candidateμ, a counterexampleν is an assignment to the variables
of Y such that ¬ϕ|μ,ν . A counterexample ν serves as a witness that μ is not a solution,
i. e. it is not the case that ∀Y. ϕ|μ because ϕ is false when y has the value ν. If no
counterexample is found, the current candidate is indeed a solution and can be returned.
If a counterexample is found, it is added to the set ω which effectively strengthens the
abstraction.

5 Smallest MUS Problem

This section considers a concrete application of the QMaxSAT problem — the problem
of finding a smallest MUS of a CNF formula. LetX = {x1, . . . , xn} be a set of Boolean
variables and ϕ = {c1, . . . , cm} be a CNF formula. Formula ψ ⊆ ϕ is called a minimal
unsatisfiable subformula (MUS) of ϕ, if ψ is unsatisfiable and ∀ci ∈ ψ formulaψ\{ci}
is satisfiable. The MUS problem is a subject of active research (e. g. [31]).

Definition 2. Formula ψ∗, ψ∗ ⊆ ϕ, is called a smallest MUS of ϕ if
1. ψ∗ is unsatisfiable;
2. for any MUS ψ, ψ ⊆ ϕ, the following holds |ψ∗| ≤ |ψ|.

The smallest MUS problem (SMUS) consists in finding a smallest MUS of a CNF for-
mula. An algorithm that computes an SMUS by searching the space of all unsatisfiable
subformulas was presented in [29]. A greedy genetic algorithm that finds approximate
solutions of the SMUS problem was proposed in [38]. A branch and bound algorithm
for computing SMUSes was described in [32,26]. The decision version of the SMUS
problem, i. e. the problem of determining whether a given formula has a smallest MUS
of size k, is known to be ΣP

2 -complete (e. g., see [20]). The Digger algorithm, which is
a state-of-the-art algorithm for computing an SMUS of a CNF formula, was proposed
in [32,26].

Let us formulate an optimization extension of SMUS in terms of QMaxSAT defined
in Section 3. First, we consider a set of selection variables S = {s1, . . . , sm}. Instead
of formula ϕ, we consider a formula ϕR = {c1 ∨ ¬s1, . . . , cm ∨ ¬sm}, ci ∈ ϕ. Let us
introduce a function f : {0, 1}m → N:

f(s1, . . . , sm) =

m∑
i=1

si.

Then the problem of finding a smallest MUS of ϕ consists in finding such an assignment
AS ∈ M(¬ϕR) that for any other assignment BS ∈ M(¬ϕR) the following holds:
f(AS) ≤ f(BS).
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As shown in Section 4, to solve this problem, one can use an iterative approach
calling a 2QBF oracle which decides whether the following quantified formula is true
or false:

∃S ∀X. ¬ϕR ∧ (f(s1, . . . , sm) ≤ k) (6)

However, one can apply algorithm QMSU1 to this problem as well. Similarly to
Section 4, we introduce a set ϕs = {¬s1,¬s2, . . . ,¬sm} of soft clauses instead of
considering constraint f(s1, . . . , sm) ≤ k and iteratively ask the QBF oracle to decide
the following QBF:

ψ = ∃S ∀X. ¬ϕR ∧ ϕS (7)

Observe that CNF formula ϕS is the set of soft clauses of ψ while ¬ϕR is the hard
part presented in a non-clausal form. Thus, the QMSU1 algorithm iteratively extracts
unsatisfiable cores of formula ψ and relaxes their soft parts, which are some subsets of
ϕS , until it finds an assignmentAS ∈ M(¬ϕR) that maximizes the number of satisfied
clauses of ϕS . AssignmentAS corresponds to an SMUS ψ∗, ψ∗ ⊆ ϕ, such that a clause
ci ∈ ψ∗ iff AS(si) = 1.

5.1 Improvements to the Algorithm

To increase the performance of the Digger algorithm, the authors of [26] use a prepro-
cessing technique — computing a set of disjoint MCSes. An MCS (or minimal correc-
tion set) of an unsatisfiable CNF formula ϕ is a subset of clauses δ ⊂ ϕ such that ϕ \ δ
is satisfiable while ϕ \ δ ∪ c is unsatisfiable for any clause c ∈ δ. There is an important
connection between MCSes and MUSes of CNF formulas (see [34,22,10,3,27,28]): any
MUS of formula ϕ is a minimal hitting set of the complete set of MCSes of ϕ. There-
fore, the enumeration of disjoint MCSes gives a lower bound of the size of an SMUS,
thus, reducing the search space of the Digger algorithm.

Due to the fact that the QMSU1 algorithm does not handle constraints ≤ k directly,
lower bounds for SMUS themselves cannot be directly used in QMSU1. However, the
enumeration of disjoint MCSes can be still helpful while solving SMUS by QMSU1.
For example, if a CNF formula ϕ has an MCS C = {c}, where c is a clause (so called
unit MCS), then each MUS of ϕ contains clause c. Therefore, one of the improvements
of QMSU1 for computing an SMUS of formula ϕ can be enumeration of all the unit
MCSes of ϕ.

Another technique we exploit in our approach is the use of MCSes, found during the
preprocessing stage, as unsatisfiable cores of formula (7). Let δ be an MCS of ϕ. By ϕδ

S

we denote a subformula of ϕS containing only clauses of ϕS that correspond to clauses
of δ, i. e. (¬si) ∈ ϕδ

S if ci ∈ δ. By definition of an MCS, formula ϕ \ δ is satisfiable.
This means that ϕR ∧ ϕδ

S is also satisfiable. Then formula

∃S ∀X. ¬ϕR ∧ ϕδ
S

is false. Given Definition 1, this means that ¬ϕR ∧ ϕδ
S is a core of (7). Therefore,

k MCSes computed by preprocessing give us k unsatisfiable cores of (7). Moreover,
since all the computed MCSes are disjoint, the cores are disjoint. In practice, the use
of this preprocessing technique significantly increases the performance of the QMSU1
algorithm.
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6 Experimental Results

A prototype of a solver for the SMUS problem implementing the QMSU1 algorithm
was developed with the use of a CEGAR-based 2QBF oracle described in Section 4.1.
The underlying SAT solver of our 2QBF oracle implementation is MINISAT 2.2 [17].
We refer to this prototype as MinUC (Minimum Unsatisfiable Core finder). Three ver-
sions of this solver were developed. The default one is the core-guided version. The
other two include MinUC-LB and MinUC-UB and implement iterative linear lower and
upper bound approaches respectively.

During the course of this research, we implemented a number of efficient algorithms
to enumerate disjoint MCSes of CNF formulas. These are beyond the scope of this
paper. However, to do a more comprehensive comparison between QMSU1 and Dig-
ger, we ran MinUC in three different modes (the corresponding names of the tools are
presented in the parentheses):

– without enumerating disjoint MCSes (MinUC-w);
– with the use of the Digger’s disjoint MCS enumerator (MinUC-d);
– with the use of the default built-in disjoint MCS enumerator (MinUC).
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The set of instances considered includes several sets of benchmarks described below.
The first set consists of automotive product configuration benchmarks [36]. Two other
sets of benchmarks come from circuit diagnosis. Additionally, we selected instances
from the complete set of the MUS competitions benchmarks6 as follows. Since the
SMUS problem is computationally harder than problem of extracting an MUS of for-
mula, we picked all the instances from the MUS competitions that can be solved by
muser-2 (see [7]) in 10 seconds. The total number of instances in the set is 682. All
experimental results were obtained on an Intel Xeon 5160 3GHz, with 4GB of memory,
and running Fedora Linux operating system. The experiments were made with a 800
seconds time limit and a 2GB memory limit. The detailed overview of the results is
presented in the following plots.

Figure 2a shows a cactus plot illustrating the performance of the core-guided version
of MinUC compared to Digger. The version of MinUC without enumerating disjoint
MCSes (MinUC-w) can solve 325 instances only. Digger solves 364 instances while
MinUC with the same MCS enumerator (MinUC-d) is able to solve 396 instances. This
is 8.8% more than by Digger’s result (4.7% of all the 682 instances). In the case of using
its own MCS enumerator MinUC demonstrates the best performance with 444 instances
solved, having 22% advantage over Digger (11.7% of the total 682 instances). Figure 2b
and Figure 2c show similar plots for linear search LB and UB modes respectively. Even
with the use of its own MCS enumerator, linear search modes of MinUC perform worse
than Digger: MinUC-LB solves 322 while MinUC-UB solves 294 instances. Figure 2d
gives a more graphic comparison between Digger and all the versions of MinUC using
Digger’s MCS enumerator. In this case, the time required to enumerate disjoint MCSes
is not taken into account (because it is the same for all the solvers) while in all the other
cases it is included in the runtime.

Figure 3 shows scatter plots comparing the QMSU1 versions of MinUC to Digger
(see Figure 3a and Figure 3b) and to its linear search versions (Figure 3c and Figure 3d).
Figure 4 gives an overview on how many instances are solvable either by Digger or by
core-guided MinUC only.

The results indicate that the core-guided version of MinUC has an advantage over
other approaches. Digger comes second. MinUC-LB and MinUC-UB have the worst
performance. Although the experiment results are quite positive for the current version
of the core-guided version of MinUC comparing to Digger, it is still has a potential of
possible improvements.

7 Conclusions

This paper studies optimization problems over quantified sets of constraints, and fo-
cuses on the concrete case of quantified MaxSAT (QMaxSAT). The main contributions
of the paper are: (i) a novel core-guided algorithm for QMaxSAT; (ii) generation of un-
satisfiable cores with CEGAR-based QBF solvers; (iii) a QMaxSAT-based approach for
solving the smallest MUS (SMUS) problem; and (iv) new pruning techniques for solv-
ing the SMUS problem. The novel core-guided algorithm for QMaxSAT is based on

6 http://www.satcompetition.org/2011/

http://www.satcompetition.org/2011/
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the original work of Fu&Malik [19]. Nevertheless, other algorithms for non-quantified
MaxSAT can also be adapted to the quantified case (e. g. [2,23]).

Experimental results on representative problem instances demonstrate that the novel
approach for computing SMUSes, based on core-guided QMaxSAT algorithms, sig-
nificantly outperforms Digger, a state-of-the-art algorithm for computing an SMUS.
These results motivate applying core-guided QMaxSAT algorithms to other optimiza-
tion problems with quantified constraints.

A number of future research directions can be envisioned. Investigating additional
optimization problems with quantified constraints will provide a larger set of problem
instances. Motivated by a larger universe of problems and problem instances, additional
core-guided algorithms can be developed for QMaxSAT. Finally, it will be important
to investigate how to extend the algorithms developed in this paper to settings more
general than QMaxSAT. For example, MAX-QSAT [16] among others [14,8]. Any QBF
solver can be integrated into the QMSU1 algorithm as an oracle as long as it produces
unsatisfiable cores. There are known techniques for extracting unsatisfiable cores from
unsatisfiable QBF instances for DPLL-based QBF solvers. One of these techniques
is proposed in [37] and then followed by recent works on certificate generation for
resolution-based QBF solvers (e. g. [4,5,33]). Thus, an interesting subject of future work
is integration of a DPLL-based QBF solver into the QMSU1 algorithm and comparison
of its performance (in terms of speed and a core size) with performance of the currently
implemented CEGAR-based core-producing QBF oracle.

For the concrete application of QMaxSAT, the SMUS problem, several optimizations
can be considered. Modern (and efficient) MUS solvers [7] can be used for computing
an upper bound on the size of the SMUS. If the lower bound (e. g. due to disjoint cores,
or by iterative core extraction) equals the upper bound, then an SMUS will by given
by any minimal hitting set of all the disjoint MCSes. Moreover, several preprocessing
approaches can be used, several of which are more efficient than the one used in Digger.
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Abstract. Nested Boolean functions or Boolean programs are an al-
ternative to the quantified Boolean formula (QBF) characterization of
polynomial space. The idea is to start with a set of Boolean functions
given as propositional formulas and to define new functions as composi-
tions or instantiations of previously defined ones. We investigate the rela-
tionship between function instantiation and quantification and present a
compact representation of models and countermodels of QBFs with and
without free variables as nested Boolean functions. The representation is
symmetric with respect to Skolem models and Herbrand countermodels.
For a formula with free variables, it can describe both kinds of models
simultaneously in one complete equivalence model which can be Skolem
or Herbrand depending on actual assignments to the free variables.

1 Introduction

The satisfiability problem for quantified Boolean formulas (QBF) is the canonical
PSPACE-complete problem. As an extension of propositional logic, QBF draws
its expressive power from the ability to have quantifiers over propositional vari-
ables, where universal quantification ∀x Φ(x) for a variable x and a propositional
or quantified Boolean formula Φ is defined to be true if and only if Φ(0) is true
and Φ(1) is true, and ∃y Φ(y) means that Φ(0) or Φ(1) is true.

Nested Boolean functions (NBF) or Boolean programs have been introduced
by Cook and Soltys [6] as an alternative characterization of polynomial space.
They extend propositional logic with the ability to define Boolean functions as
compositions or instantiations of previously defined functions, starting with a
set of initial functions given as propositional formulas. For example, let

f0(p1, p2) := (¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)

be an initial function which computes the parity of two binary variables. Then
the parity of four variables can be computed by reusing f0:

f1(p1, p2, p3, p4) := f0(f0(p1, p2), f0(p3, p4))

The parity of 16 variables can be expressed compactly by reusing f1, and so
on [6]. By replacing all occurrences of f0 with its definition, we can expand f1:

def (f1)(p1, ..., p4) :=(¬ ((¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)) ∧ ((¬p3 ∧ p4) ∨ (p3 ∧ ¬p4))) ∨
(((¬p1 ∧ p2) ∨ (p1 ∧ ¬p2)) ∧ ¬ ((¬p3 ∧ p4) ∨ (p3 ∧ ¬p4)))

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 267–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The semantics of nested Boolean functions can be defined by this fallback to
propositional formulas. But in order to evaluate a NBF sequence (f0, ..., fk), i.e.
to check whether fk(a1, ..., an) = 1 for given arguments a1, ..., an ∈ {0, 1}, it is
not necessary to actually create the propositional expansion def (fk). By imme-
diately replacing subterms whenever their values are known, the formula can be
simplified on-the-fly, and polynomial space is sufficient. It can be shown that
the evaluation and the satisfiability problem for NBF are PSPACE-complete [6].
Not surprisingly, there exist efficient transformations between QBF and NBF:
any NBF can be transformed in linear time into an equivalent QBF [4], while
the best known transformation in the other direction needs quadratic time [4].

In this paper, we want to further clarify the relationship between func-
tion instantiation and quantification. It is well known that in a closed
prenex QBF, e.g. Φ = ∀xn∃yn...∀x1∃y1 φ(x1, ..., xn, y1, ..., yn), every existen-
tially quantified variable yi can be associated with a Boolean function fi,
called Skolem function [13], which depends on the values of those univer-
sally quantified variables whose quantifiers are outer to ∃yi. For the given
Φ, these are xi, ..., xn. Then Φ is true if and only if there exist f1, ..., fn
so that ∀xn...∀x1 φ(x1, ..., xn, f1(x1, ..., xn), ..., fn(xn)) is true. That means
each occurrence of an existential variable is replaced with the corresponding
Skolem function, and the resulting matrix must be true for all values of the
universal variables. If that is the case, we call f1, ..., fn a Skolem model. Anal-
ogously, the universally quantified variables can be mapped to Herbrand func-
tions [8]. Φ is false if and only if there is a Herbrand countermodel g1, ..., gn
so that ∃yn...∃y1 φ(g1(y2, ..., yn), ..., gn−1(yn), gn(), y1, .., yn) is false. Recently,
Balabanov and Jiang have shown how to extract a Skolem model of a true
closed QBF from its cube-resolution proof and a Herbrand countermodel from
the clause-resolution proof of a false QBF [1]. Earlier approaches use explicit
skolemization techniques [2, 3, 9] and do not directly address Herbrand counter-
models, or the generated strategies are not explicitly represented as functions [7].
Both Skolem and Herbrand (counter)models are of great practical importance
when applications require solutions or explanations of unsatisfiability in addi-
tion to a mere decision of satisfiability. But the compact representation of these
(counter)models remains a great problem for practical applications [12].

We consider Skolem and Herbrand (counter)models from a more theoretical
viewpoint and show that we can compactly encode them by polynomial-size
NBFs. More importantly, we further study the duality between Skolem models
and Herbrand countermodels by considering QBFs with free variables. While
a closed QBF is either true or false, the valuation of a QBF Φ(z) with free
variables z = z1, ..., zr depends on the values of the free variables [10]. Consider
the example Φ(z) = ∀x∃y (x∨y)∧(¬x∨¬y)∧(¬z∨¬y). If z is 0, we have Φ(0) =
∀x∃y (x∨y)∧(¬x∨¬y)∧(¬0∨¬y), which is a closed QBF and is true with Skolem
model fy(x) = ¬x. If z is 1, Φ(1) = ∀x∃y (x∨y)∧(¬x∨¬y)∧(¬1∨¬y) is false with
Herbrand countermodel fx() = 0. The interesting observation here is that QBFs
with free variables can have Skolem models and Herbrand countermodels for
different values of the free variables. How are both kinds related when the formula
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remains the same and only the free variables change? We propose a unified
complete equivalence model, in which all variables are mapped to functions and
show how Skolem and Herbrand (counter)models are embedded in it and how
these functions can be computed from the formula matrix by NBFs.

For space considerations, we rely only on the above informal introduction of
NBF syntax and semantics and refer the reader to [4] for formal definitions. We
furthermore assume in the following that all QBFs are in prenex normal form,
i.e. all quantifiers appear in front of a purely propositional matrix. Two QBFs
Φ(z1, ..., zr) and Ψ(z1, ..., zr) with free variables z1, ..., zr are logically equivalent,
written Φ(z1, ..., zr) ≈ Ψ(z1, ..., zr) or simply Φ ≈ Ψ , if and only if for every
truth assignment τ to the free variables z1, ..., zr both formulas evaluate to the
same truth value [10]. We consider propositional formulas as QBFs in which all
variables are free. Furthermore, given a NBF (f0, ..., fk) where fk has arguments
a1, ..., an, we say fk(a1, ..., an) is logically equivalent to a QBF Φ(a1, ..., an),
written fk(a1, ..., an) ≈ Φ(a1, ..., an), if and only if the propositional expansion
def (fk)(a1, ..., an) is equivalent to Φ(a1, ..., an). When we evaluate a NBF, we
use “=” instead of “≈” for a more lightweight notation. The length of a QBF is
the number of variable occurrences, including the prefix. The length of a NBF
(f0, ..., fk) is |f0| + ... + |fk|, where |fi| is the total number of occurrences of
constants, variables and function symbols on the right-hand side of the defining
equation of fi . The parity example above has length 4 + 7.

2 Quantification as Iterated Function Composition

Definition 1. Let Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with Qi ∈ {∀, ∃} be a
QBF with bound variables v1, ..., vn (n ≥ 1 w.l.o.g), free variables z = z1, ..., zr
and propositional matrix φ.
Then we iteratively define Boolean functions F0, ..., Fn as follows:

1. F0(v1, ..., vn, z) := φ(v1, ..., vn, z)
2. For i = 1, ..., n:

Fi(vi+1, ..., vn, z) :=

{
Fi−1(Fi−1(0, vi+1, ..., vn, z), vi+1, ..., vn, z) , if Qi=∀
Fi−1(Fi−1(1, vi+1, ..., vn, z), vi+1, ..., vn, z) , if Qi=∃

For the example Φ(z) = ∀v2∃v1 (v1 ∨ v2) ∧ (¬v1 ∨ ¬v2) ∧ (¬z ∨ ¬v1) we obtain:

F0(v1, v2, z) := (v1 ∨ v2) ∧ (¬v1 ∨ ¬v2) ∧ (¬z ∨ ¬v1)
F1(v2, z) := F0(F0(1, v2, z), v2, z) = F0((¬v2 ∧ ¬z), v2, z) = ¬z ∨ v2
F2(z) := F1(F1(0, z), z) = F1(¬z, z) = ¬z

The main idea behind this definition is that we try to assign values to the
quantified variables, going from the outermost to the innermost quantifier (NBFs
are evaluated by recursion from the last function in the sequence back to the
initial functions). Similar to the DPLL algorithm for QBF (QDPLL) [5], we
might have to branch in the worst case for x = 0 and x = 1 on each variable x. If
x is universally quantified and the formula is false for x = 0, there is no need to
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try x = 1. Similarly, if x is existential and the formula is true for x = 1, we do not
try x = 0. In our NBF encoding, the result of the first branch determines where
the second branch is going. If the formula is false for x = 0, we stay with x = 0,
and if it is true for x = 1, we stay with x = 1. In either case, the arguments to
the inner call of Fi−1 are the same as for the outer call of Fi−1, which suggests
that it would be an important optimization for a real NBF solver to recognize
duplicate instantiations for the same arguments.

Lemma 1. For Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with associated functions
F0, ..., Fn as in Definition 1, it holds for all i = 1, ..., n that

Fi(vi+1, ..., vn, z) ≈ Qivi...Q1v1 φ(v1, ..., vn, z) .

Proof. Let i = 1, and consider the case that Q1 = ∀. Then we must show that
φ(φ(0, v2, ..., vn, z), v2, ..., vn, z) ≈ ∀v1 φ(v1, ..., vn, z). Assume that the left-hand
side is true for some truth value assignment τ to v2, ..., vn and z, that means
φ(φ(0, τ(v2), ..., τ(vn), τ(z)), τ(v2), ..., τ(vn), τ(z)) = 1. Then it is not possible
that the inner instantiation of φ is false. Because if we did substitute 0 for
the inner instantiation φ(0, τ(v2), ..., τ(vn), τ(z)), the outer instantiation of φ
would become the same and would thus also be false, which would contradict
our assumption that the whole left-hand side is true. If, on the other hand,
φ(0, τ(v2), ..., τ(vn), τ(z)) = 1 for the inner instantiation, the outer becomes
φ(1, τ(v2), ..., τ(vn), τ(z)). With this being true by the initial assumption, we
know that φ(v1, τ(v2), ..., τ(vn), τ(z)) is true for v1 = 0 and v1 = 1, and thus
also ∀v1 φ(v1, τ(v2), ..., τ(vn), τ(z)) = 1.

From right to left, ∀v1 φ(v1, τ(v2), ..., τ(vn), τ(z)) = 1 for some τ implies that
φ(0, τ(v2), ..., τ(vn), τ(z)) = 1 for the inner instantiation of φ on the left-hand
side, so the outer instantiation on the left becomes φ(1, τ(v2), ..., τ(vn), τ(z)),
which is also true by the universal quantification on v1.

If Q1 = ∃, we must show φ(φ(1, v2, ..., vn, z), v2, ..., vn, z) ≈ ∃v1 φ(v1, ..., vn, z).
For a truth assignment τ which satisfies the left-hand side, the inner instantiation
of φ on the left is either false or true. Accordingly, φ(0, τ(v2), ..., τ(vn), τ(z)) =
1 or φ(1, τ(v2), ..., τ(vn), τ(z)) = 1 on the left, and that implies the right-
hand side. In the other direction, let ∃v1 φ(v1, τ(v2), ..., τ(vn), τ(z)) = 1 for
some τ . Then φ(0, τ(v2), ..., τ(vn), τ(z)) = 1 or φ(1, τ(v2), ..., τ(vn), τ(z)) = 1.
If the latter holds, the inner instantiation on the left-hand side is also true,
and the left-hand side becomes φ(1, τ(v2), ..., τ(vn), τ(z)) and is thus true. On
the other hand, if φ(1, τ(v2), ..., τ(vn), τ(z)) = 0, the left-hand side becomes
φ(0, τ(v2), ..., τ(vn), τ(z)), which is true in this case.

For the induction step, assume Fi(vi+1, ..., vn, z) ≈ Qivi...Q1v1 φ(v1, ..., vn, z)
for i ≥ 1. Then Qi+1vi+1...Q1v1 φ(v1, ..., vn, z) ≈ Qi+1vi+1Fi(vi+1, ..., vn, z), and
we must show Fi(Fi(0, vi+2, ..., vn, z), vi+2, ..., vn, z) ≈ ∀vi+1Fi(vi+1, ..., vn, z)
resp. Fi(Fi(1, vi+2, ..., vn, z), vi+2, ..., vn, z) ≈ ∃vi+1Fi(vi+1, ..., vn, z). When we
let φ′(vi+1, ..., vn, z) := Fi(vi+1, ..., vn, z), the proof can be obtained in complete
analogy to the induction base when substituting φ′ for φ. ��
Corollary 1. Fn(z) ≈ Qnvn...Q1v1 φ(v1, ..., vn, z)
for Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with F0, ..., Fn as in Definition 1.
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The length of the NBF (F0, ..., Fn) is |φ|+Σi=1...n(2i+1+2|φ|), which is quadratic
in |Φ|. This is the same as for the existing transformation from QBF to NBF
in [4] which simulates quantifier expansion, while we now simulate QDPLL. An
important difference is that the expansion approach leads to definitions of the
form fi+1(...) := fi(fj1(...), ..., fjr (...)) and needs multiple initial functions, while
we now have definitions fi+1(...) := fi(fi(...), x2, ..., xr) where recursion occurs
only in the first argument of the outer fi, and we now only need one initial
function, which is exactly the matrix of the QBF. This is important for our
equivalence models. The following small technical lemma will be helpful later.

Lemma 2. For Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with F0, ..., Fn as in Def. 1,
we have Fi(vi+1, ..., vn, z) ≈ QiviFi−1(vi, ..., vn, z) for all i = 1, ..., n.

Proof. If i = 1, F0(v1, ..., vn, z) is φ(v1, ..., vn, z), and the claim follows
immediately from Lemma 1.

For i > 1, Qivi(Fi−1(vi, ..., vn, z)) ≈ Qivi(Qi−1vi−1...Q1v1 φ(v1, ..., vn, z)) by
Lemma 1. Again by Lemma 1, the latter is equivalent to Fi(vi+1, ..., vn, z). ��

3 Equivalence Models for Quantified Boolean Formulas

Equivalence models for QBFs Φ(z) = ∀xn∃yn...∀x1∃y1 φ(x1, ..., xn, y1, ..., yn, z)
with free variables z have been defined in [11] by an equivalence-preserving map-
ping of existential variables y1, ..., yn to functions h1(x1, ..., xn, z), ..., hn(xn, z)
with Φ(z) ≈ ∀xn...∀x1 φ(x1, ..., xn, h1(x1, ..., xn, z), ..., hn(xn, z), z). For a sym-
metric treatment of the quantifiers, we will now define the notion of complete
equivalence models where all quantified variables, including the universal ones,
are mapped to functions over the free variables.

Definition 2. Let Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with Qi ∈ {∀, ∃} be a
QBF with bound variables v1, ..., vn, free variables z = z1, ..., zr and propositional
matrix φ. A sequence of Boolean functions h1(z), ..., hn(z) is called a complete
equivalence model if and only if Φ(z) ≈ φ(h1(z), ..., hn(z), z).
It is easy to see that every QBF has a complete equivalence model: For formu-
las without free variables, the complete equivalence model consists of constants
h1, ..., hn ∈ {0, 1} such that Φ is true if and only if φ(h1, ..., hn) is true. Clearly,
every true (false, respectively) closed QBF has a satisfying (falsifying, respec-
tively) truth assignment to the matrix, and has thus a complete equivalence
model. For a QBF with free variables, a complete equivalence model could al-
ways be constructed in a naive way by considering all assignments τ(z) to the
free variables and choosing hi(τ(z)) := εi ∈ {0, 1} for all i = 1, ..., n such that
φ(ε1, ..., εn, τ(z)) is true if and only if Φ(τ(z)) is true.

The problem of deciding whether a sequence h1, ..., hn ∈ {0, 1} is a com-
plete equivalence model for a closed or open QBF is PSPACE-complete. It
is in PSPACE, since the equivalence problem for QBF is in PSPACE, and
the hardness follows from a similar reduction as in [11]: given a closed QBF
Φ = Qnvn...Q1v1 φ(v1, ..., vn), let Φ′ = ∃vn+1Qnvn...Q1v1 (φ(v1, ..., vn) ∧ vn+1).
Then h1 = ... = hn+1 = 0 is a complete equivalence model for Φ′ iff Φ is false.
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Lemma 3. If ΣP
2 �= ΠP

2 in the polynomial-time hierarchy, there must exist
quantified Boolean formulas with free variables for which every propositional rep-
resentation of the complete equivalence model requires super-polynomial length.

Proof. Consider a closed QBF Φ = ∀xn...∀x1∃ym...∃y1 φ(x1, ..., xn, y1, ..., ym)
for which the satisfiability problem is ΠP

2 -complete. Then let Φ′(x1, ..., xn) :=
∃ym...∃y1 φ(x1, ..., xn, y1, ..., ym). If Φ′ had a complete equivalence model with
polynomial-size propositional encoding, we could guess in polynomial time propo-
sitional formulas h1(x1, ..., xn), ..., hm(x1, ..., xn) and insert them into Φ. If aΠP

1 -
oracle accepts ∀xn...∀x1 φ(x1, ..., xn, h1(x1, ..., xn), ..., hm(x1, ..., xn)), we know
that Φ is true and that h1, ..., hm have been guessed correctly. In total, we would
be able to solve the formula in ΣP

2 , and thus ΣP
2 = ΠP

2 . ��
Lemma 3 holds analogously for the non-complete equivalence models from [11]
and for Skolem/Herbrand (counter)models, even for closed QBFs with only two
levels of quantification. Also in practical QBF applications, Skolem/Herbrand
(counter)models are often infeasibly large when represented as propositional for-
mulas. We are now going to represent complete equivalence models as NBFs
instead, allowing us to place a polynomial bound on the size of these models.

Definition 3. Let Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with Qi ∈ {∀, ∃} be a
QBF with bound variables v1, ..., vn (n ≥ 1 w.l.o.g), free variables z = z1, ..., zr
and matrix φ. Using the function representation from Definition 1, we map each
variable vk to a model function hk as follows:

1. hn(z) :=

{
Fn−1(0, z) , if Qn = ∀
Fn−1(1, z) , if Qn = ∃

2. For i = n− 1, ..., 1:

hi(z) :=

{
Fi−1(0, hi+1(z), ..., hn(z), z) , if Qi = ∀
Fi−1(1, hi+1(z), ..., hn(z), z) , if Qi = ∃

The intuition here is as follows: according to Definition 1, F1, ..., Fn are defined by
Fi(vi+1, ..., vn, z) := Fi−1(Fi−1(σi, vi+1, ..., vn, z), vi+1, ..., vn, z) with σi ∈ {0, 1}
according to the quantifier type of Qi. If we had already found model functions
hi+1, ..., hn (we omit their arguments z for simplicity), we could substitute them
for vi+1, ..., vn: Fi(hi+1, ..., hn, z) ≈ Fi−1(Fi−1(σi, hi+1, ..., hn, z), hi+1, ..., hn, z).
To write the latter as Fi−1(hi, ..., hn, z), we choose hi := Fi−1(σi, hi+1, ..., hn, z).

Consider again the example Φ(z) = ∀v2∃v1 (v1∨v2)∧ (¬v1∨¬v2)∧ (¬z∨¬v1)
with F1(v2, z) = ¬z ∨ v2 and F2(z) = ¬z (Section 2, p. 269). Then h2(z) =
F1(0, z) = ¬z and h1(z) = F0(1, h2(z), z) = ¬h2(z) ∧ ¬z = z ∧ ¬z = 0.

Lemma 4. For i = 1, ..., n:

Fn(z) ≈ Fi−1(hi(z), ..., hn(z), z)

Proof. The proof is by backward induction on i. For i = n, the right-hand side is
Fn−1(hn(z), z), which is Fn−1(Fn−1(0, z), z) if Qn = ∀ and Fn−1(Fn−1(1, z), z)
otherwise. By Definition 1 (from right to left), this is Fn(z).
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For the induction step, let i ∈ {1, ..., n − 1}. Assume the above equivalence
holds for i+1, that means Fn(z) ≈ Fi(hi+1(z), ..., hn(z), z). By Definition 1, the
right-hand side is Fi−1(Fi−1(σi, hi+1(z), ..., hn(z), z), hi+1(z), ..., hn(z), z) with
σi ∈ {0, 1} according to the quantifier type of Qi. By the above Definition 3,
hi(z) := Fi−1(σi, hi+1(z), ..., hn(z), z), so the last expression can be written as
Fi−1(hi(z), ..., hn(z), z), i.e. the right-hand side of the statement to be proven.

��

Theorem 1. For Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z), model functions h1, .., hn
constructed according to Definition 3 are a complete equivalence model.

Proof. We have to show that φ(h1(z), ..., hn(z), z) ≈ Qnvn...Q1v1 φ(v1, ..., vn, z).
With F0 := φ, φ(h1(z), ..., hn(z), z) is F0(h1(z), ..., hn(z), z). Using Lemma 4
(for i = 1), the latter is equivalent to Fn(z), which in turn is equivalent to
Qnvn...Q1v1 φ(v1, ..., vn, z) by Corollary 1. ��
The size of the complete equivalence model constructed according to Definition 3
is |F0|+ ...+ |Fn−1|+ |h1|+ ...+ |hn|. The first part is quadratic in |Φ| as observed
in Section 2, and |h1| + ... + |hn| ≤ Σi=1...n(i(1 + |φ|) + 1 + |φ|) (notice that z
stands for at most |φ| free variable symbols), so the whole model has cubic size
when it is written as a sequence of nested Boolean functions.

In [4], a linear-time transformation from NBF to QBF is presented. By ap-
plying this transformation to the above NBF representation of the complete
equivalence model, we obtain the following corollary:

Corollary 2. Every QBF Φ(z) = Qnvn...Q1v1 φ(v1, ..., vn, z) with Qi ∈ {∀, ∃}
has a complete equivalence model h1(z), ..., hn(z) where each hi(z) can again be
represented as a QBF with free variables z of size cubic in |Φ|.

By Lemma 3, if h1(z), ..., hn(z) are represented as propositional formulas, their
size cannot be bounded by a polynomial in |Φ| if ΣP

2 �= ΠP
2 . Since we do have

short QBF representations, a further consequence is that there must exist QBFs
Ψ(z) for which there are no logically equivalent propositional formulas ψ(z) of
length polynomial in |Ψ(z)|, unless ΣP

2 = ΠP
2 .

Consider again the example Φ(z) = ∀v2∃v1 (v1∨v2)∧ (¬v1∨¬v2)∧ (¬z∨¬v1)
with F1(v2, z) = ¬z ∨ v2, F2(z) = ¬z, h2(z) = ¬z and h1(z) = F0(1, h2(z), z) =
¬h2(z) ∧ ¬z = 0. If z = 0, Φ(0) is true and has a Skolem model. How is this
Skolem model embedded in the complete equivalence model (h1, h2)? Notice that
h1(0) = ¬h2(0). Assume we had not mapped the universal variable v2 (whose
quantifier is outer to that of v1) to h2 and instead kept v2 as a parameter to h1.
Then we would have h1(v2, 0) = ¬v2. Indeed, the Skolem model function for v1
is f1(v2) = ¬v2. This suggests that we obtain a Skolem model if we apply the
mapping from variables vi to functions hi only to existential variables and leave
the universals as parameters to the functions of existential variables that are
quantified further inside. So we modify Definition 3 to leave universal variables
untouched. W.l.o.g., we consider only QBFs with alternating quantifiers.

Definition 4. Let Φ(z) = ∃vn∀vn−1...∃v2∀v1 φ(v1, ..., vn, z) with even n ≥ 2
be a QBF with alternating quantifiers and free variables z. Using the function
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representation from Definition 1, we map each existentially quantified variable
vn, vn−2, ..., v2 to a Skolem function as follows:

1. fn(z) := Fn−1(1, z)
2. For i = n− 2, ..., 2 (if n > 2):
fi(vi+1, ..., vn−1, z) := Fi−1(1, vi+1, fi+2(vi+3, ..., vn−1, z), ..., vn−1, fn(z), z)

Lemma 5. For all even i with 0 ≤ i ≤ n− 2:

Fn(z) ≈ ∀vn−1...∀vi+1 Fi(vi+1, fi+2(vi+3, ..., vn−1, z), ..., vn−1, fn(z), z)

Proof. The proof is by backward induction on i. For i = n − 2, the right-
hand side is ∀vn−1 Fn−2(vn−1, fn(z), z). By Lemma 2, this is equivalent to
Fn−1(fn(z), z) := Fn−1(Fn−1(1, z)), and that is Fn(z) by Definition 1.
For the induction step, let i be even with i ∈ {0, ..., n−4} and assume the above
equivalence holds for i+ 2. We must show:

Fn(z) ≈ ∀vn−1...∀vi+1 Fi(vi+1, fi+2(vi+3, ..., vn−1, z), ..., vn−1, fn(z), z)

By Lemma 2:

∀vi+1Fi(vi+1, fi+2(vi+3, ..., vn−1, z), ..., vn−1, fn(z), z)
≈ Fi+1(fi+2(vi+3, ..., vn−1, z), ..., vn−1, fn(z), z)

The first argument of Fi+1 is

fi+2(vi+3, ..., vn−1, z) := Fi+1(1, vi+3, fi+4(vi+5, ..., vn−1, z), ..., vn−1, fn(z), z)

by Definition 4. If we substitute this into the right-hand side of the previous
equivalence, we obtain Fi+1(Fi+1(1, vi+3, ..., fn(z), z), vi+3, ..., fn(z), z), and that
is Fi+2(vi+3, ..., fn(z), z) by Definition 1, because vi+2 is existentially quantified.
By the induction hypothesis, ∀vn−1...∀vi+3 Fi+2(vi+3, ..., fn(z), z) ≈ Fn(z). ��
Corollary 3. Let Φ(z) = ∃vn∀vn−1...∃v2∀v1 φ(v1, ..., vn, z) with even n ≥ 2 be a
QBF with alternating quantifiers and free variables z. Then

Φ(z) ≈ ∀vn−1...∀v1 φ(v1, f2(v3, ..., vn−1, z), ..., vn−1, fn(z), z)

for functions f2, .., fn as in Definition 4. That means f2, ..., fn are a non-complete
equivalence model in the sense of [11] and a Skolem model if Φ is closed and true.

Analogously, it is possible to show that Herbrand countermodels can be obtained
when omitting the existential variables from the complete equivalence models.

4 Conclusion and Future Work

We have introduced complete equivalence models for QBFs as a generalization
of Skolem and Herbrand (counter)models by mapping all quantified variables to
Boolean functions, which we can compactly encode by NBFs. These NBFs are
essentially recursive instantiations of the propositional matrix of the QBF, which
raises the question for future work how restrictions on the matrix, e.g. 2-CNF
or Horn, affect the structure of the complete equivalence models. It would also
be interesting to investigate whether this recursive computation can be related
to the resolution-based (counter)model construction in [1].
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Factoring Out Assumptions

to Speed Up MUS Extraction�
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Abstract. In earlier work on a limited form of extended resolution for
CDCL based SAT solving, new literals were introduced to factor out
parts of learned clauses. The main goal was to shorten clauses, reduce
proof size and memory usage and thus speed up propagation and conflict
analysis. Even though some reduction was achieved, the effectiveness of
this technique was rather modest for generic SAT solving. In this paper
we show that factoring out literals is particularly useful for incremen-
tal SAT solving, based on assumptions. This is the most common ap-
proach for incremental SAT solving and was pioneered by the authors
of MINISAT. Our first contribution is to focus on factoring out only
assumptions, and actually all eagerly. This enables the use of compact
dedicated data structures, and naturally suggests a new form of clause
minimization, our second contribution. As last main contribution, we
propose to use these data structures to maintain a partial proof trace for
learned clauses with assumptions, which gives us a cheap way to flush
useless learned clauses. In order to evaluate the effectiveness of our tech-
niques we implemented them within the version of MINISAT used in the
publically available state-of-the-art MUS extractor MUSer. An extensive
experimental evaluation shows that factoring out assumptions in com-
bination with our novel clause minimization procedure and eager clause
removal is particularly effective in reducing average clause size, improves
running time and in general the state-of-the-art in MUS extraction.

1 Introduction

The currently most widespread approach for incremental SAT was pioneered by
the authors of MINISAT [1] in context of bounded model checking [2] and finite
model finding [3], and has seen many other important practical applications
since then. It can easily be implemented on top of a standard SAT solver based
on the conflict driven clause learning (CDCL) paradigm [4], as described in [1],
by modifying the heuristics for picking decisions, to branch on literals assumed
to be true first. In this paper we refer with assumptions to this set of literals
assumed to be true.

Another important application, which makes use of incremental SAT, is the
extraction of a minimal unsatisfiable set (MUS) of clauses from a propositional
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formula in conjunctive normal form (CNF). The current state-of-the-art in MUS
extraction [5] is based on incremental SAT. In the context of MUS extrac-
tion [6,7,8,9,10], the focus of this paper, and in similar or related applications of
incremental SAT [3,11,12,13,14,15,16], an additional analysis is required, which
learns sub-sets of assumptions, under which the formula is proven to be unsatis-
fiable. In these applications, the number of assumptions is usually not only quite
large, e.g. similar in size to the number of original variables and clauses in the
CNF, but also the SAT solver is called many times, while the set of assumptions
almost stays the same.

As it turns out, current SAT solvers have not been optimized for this actually
rather common usage scenario. We propose a new technique for compressing in-
cremental proofs for problems with many assumptions. Our technique is based on
the idea of factoring out literals of learned clauses by extended resolution steps,
which also forms the basis of related work on speeding up SAT solving in gen-
eral [17,18]. Clauses learned in those applications we are interested in typically
contain many literals which are the negation of original assumptions. We call
these negations of originally assumed literals also assumptions or more precisely
assumption literals, if the context requires to distinguish between originally as-
sumed literals (“assumptions”) used as decisions and their negations occurring
in learned clauses (“assumption literals”).

In our approach we factor out these assumption literals in order to shrink
learned clauses and reduce the number of literals traversed, particularly during
boolean constraint propagation (BCP). This idea, if implemented correctly, does
not change the search at all, but it is still quite effective in reducing the time
needed for MUS extraction. Further, factoring out assumptions enables the use of
compact dedicated data structures, and naturally suggests a new form of clause
minimization, which gives another substantial improvement. Recording factored
out assumptions explicitly, also gives us simple way to maintain a partial proof
trace for learned clauses with assumptions. The trace can be used to compute an
approximation of a “clausal core”. We can then discard learned clauses out-side
this clausal core eagerly, which empirically seems to be a useful strategy.

The authors of [19] observed a similar deficiency when using the assumption
based approach for incremental SAT solving in the context of bounded model
checking. They propose to use an additional SAT solver, to which assumptions
are added as unit clauses. This in turn allows to improve efficiency of preprocess-
ing and inprocessing under assumptions, but prohibits to reuse in the main solver
clauses learned by the additional solver. However, according to [19] it is possi-
ble, by selectively adding assumptions, to extract “pervasive clauses” from the
resolution proofs of clauses learned in the additional solver, with the objective
that adding these “pervasive clauses” to the main solver is sound.

While in [19] as in our approach some sort of resolution proof has to be
maintained, the main solver in [19] still uses the classical assumption based
approach and thus will benefit from our proposed techniques. Finally, the moti-
vations as well as the application characteristics considered in the experimental
part differ.
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2 Factoring Out Assumptions

In incremental SAT with many assumptions, learned clauses contain many as-
sumption literals too (see previous section for the definition of this terminology).
Accordingly the average size of learned clauses can become very large (as we will
see in Fig. 6). This effect increases the size of the working set (used memory), or
more specifically, the average number of traversed literals per visited clause dur-
ing BCP. The same argument applies to visited clauses during conflict analysis.
As a consequence, SAT solver performance degrades.

For every learned clause we propose to replace the “assumption part” by a
new fresh literal, called abbreviation literal. The replaced part consists of all
assumptions and previously added abbreviations. The connection between the
abbreviation and the replaced literals is stored in a definition map as follows.

(p1 ∨ · · · ∨ pn ∨ a1 ∨ · · · ∨ am)

is factored out into

(p1 ∨ · · · ∨ pn ∨ �) and � �→ a1 ∨ · · · ∨ am︸ ︷︷ ︸
G[�]

Fig. 1. Factoring out assumptions by introducing a new abbreviation literal �

Let p1 ∨ · · · ∨ pn ∨ a1 ∨ · · · ∨ am be a new learned clause, where p1, . . . , pn are
original literals and a1, . . . , am are either assumptions or abbreviations. We pick
a fresh abbreviation literal � and instead of the originally learned clause add the
clause p1 ∨ · · · ∨ pn ∨ � to the clause data base. Then we record a1 ∨ · · · ∨ am
as the definition G[�] of � in the definition map G (see Fig. 1). For m ≤ 1 this
replacement does not make sense and the original learned clause is kept instead.

Consider the example in Fig. 2 for an (incremental) SAT run under the as-
sumptions a1, . . . , a6. Conflict analysis might learn clauses α1, . . ., α7 depicted
on the left of Fig. 2(a), where p1, . . . , p7 are original literals and a1, . . . , a6 as-
sumption literals.1 Note that the run is not supposed to be complete. Only some
clauses are shown together with their antecedent clauses, and original clauses
are ignored too (to simplify the example). For instance α3 is derived through
resolution from α1 and from some other original clauses not shown (the “. . .”).

The result of introducing abbreviations to factor out assumptions is shown on
the right. The first clause α1 is factored into α′1 and the definition a1 ∨ a2 of the
new abbreviation literal �1. The definition is recorded in the definition map, as
shown in Fig. 2(b), where �1 has two incoming arcs, one from a1 and one from a2.
Further let us point out, that α′5 = α5, because it keeps a2 as single non-original
literal, which (as discussed above) reduces the overall number of introduced
abbreviations. Finally, note how definitions might recursively depend on other
definitions as for �3, �4 or �5, while factoring α3, α4, and α6 respectively.

1 Assumption literals are literals made of a variable which is currently used or was
used in an assumption. See again the introduction section for a precise definition.
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α1 : p2 ∨ p7 ∨ a1 ∨ a2

α2 : p2 ∨ a2 ∨ a3

α3 : p7 ∨ p4 ∨ p6 ∨ a1 ∨ a2 ∨ a4

α4 : p6 ∨ p8 ∨ a3 ∨ a2 ∨ a5

α5 : p2 ∨ p5 ∨ a2

α6 : p7 ∨ p4 ∨ a1 ∨ a2 ∨ a4 ∨ a5

α7 : p2 ∨ a6 ∨ a5

{. . .}
{. . .}
{α1, . . .}
{α2, . . .}
{. . .}
{α3, α4, . . .}
{. . .}

learned clauses antecedents

factoring

α′
1 : p2 ∨ p7 ∨ �1

α′
2 : p2 ∨ �2

α′
3 : p7 ∨ p4 ∨ p6 ∨ �3

α′
4 : p6 ∨ p8 ∨ �4

α′
5 : p2 ∨ p5 ∨ a2

α′
6 : p7 ∨ p4 ∨ �5

α′
7 : p2 ∨ �6

factored clauses

(a) Learned clauses (original version left, factored version right)

a6

a5

a3

a2

a1

a4

�1

�2

�3

�4

�5

�6

(b) Definition Map

Fig. 2. Factoring out assumptions

As briefly discussed above, assumptions are always assigned first and thus
assigning them can actually be seen as a preprocessing resp. initialization step
before the actual solving starts. Furthermore, the algorithm for MUS extraction,
as implemented in MUSer [9], to which we applied our technique, has the fol-
lowing property: the set of variables used in assumptions stays the same over
all incremental calls, with the exception of variables assigned at the top-level.
The techniques presented in this paper are sound, even if this property does not
hold, i.e. the set of assumptions changes (substantially) from one incremental
call to the next. However, if the property does not hold they are probably less
effective. We focus on the important problem of MUS extraction here and leave
it to future work to apply our techniques to other scenarios of incremental SAT.

Assigning in every incremental call the current set of assumptions during an
initialization phase, will imply a unique value for all the (previously introduced)
abbreviation literals, unless the set of assumptions turns out to be inconsistent,
in which case the solver returns immediately. For that reason we do not have
to encode definitions as part of the CNF. Abbreviations are assigned during an
initialization phase, as described in the next Section (see also Alg. 2).

2.1 Initialization

After factoring out assumptions and adding abbreviations instead, every learned
clause α contains at most one assumption or abbreviation. In this case we de-
note by r(α) this replacement literal. For other clauses we assume r(α) to be
undefined. The graph represented by the definition map G can be interpreted as
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Algorithm 1. assignAbbreviation

Input: �: literal; var I: interpretation; G: definition map
removeUnit(G[�]);1

while I(G[�]) unassigned do2

pick unassigned �′ ∈ G[�];3

assignAbbreviation(G, �′, I);4

if I(G[�]) = ⊥ then I ← I ∪ {¬�} else I ← I ∪ {�};5

a (non-cyclic) circuit, which computes consistent values for abbreviations after
all the assumption variables have been assigned. Special care has to be taken to
handle assumptions and abbreviations, which are fixed by the user in between
incremental calls. For instance, in MUS extraction, they are used to permanently
select transition clauses [9] to be part of the extracted MUS.

In order to assign an abbreviation, we need to assign assumption variables
and, recursively, every abbreviation in its definition. This is formulated in Alg. 1,
which has the following arguments: the literal � to be assigned, and (by reference)
the current interpretation I and the definition map G. First, literals assigned at
the top-level (units), are removed from G[�]. Next, while there is an unassigned
literal �′ in G[�] and G[�] is itself unassigned by the current interpretation I,
we assign �′, using the same algorithm recursively. As soon as the value of G[�]
under I is determined, we can also assign � to I(G[�]).

By construction the definitions in the definition map G are non-cyclic. Further,
we assume that every assumption is assigned by I, as discussed in the previous
section. Then this algorithm terminates and consistently assigns the value of
each abbreviation � to the value of its definition G[�].

2.2 Assigning the Set of Necessary Abbreviations

In the worst case, every learned clause resp. conflict requires a new abbreviation
to be added. Therefore, in principle, the definition map grows linearly in the
number of conflicts. This not only requires a huge amount of memory, but also
needs substantial running time to initialize all the abbreviations of the definition
map during incremental SAT calls.

However, since inactive [20] resp. less useful learned [21,22] clauses are fre-
quently collected during the main CDCL loop of the SAT solver anyhow, many
abbreviations turn out not to be referenced anymore after a certain point. They
become garbage abbreviations and could be collected too. Actually, only the
assignments of those abbreviations have to be initialized, which are still refer-
enced in learned clauses (recursively). Assigning additional abbreviations is not
harmful, but useless.

Algorithm 2 implements an initialization of abbreviations taking this argu-
ment into account. It returns an interpretation I, which assigns all abbreviations
recursively reachable from the clauses in the CNF Σ (which includes learned
clauses). First, the algorithm initializes I by assigning all assumptions. Next,
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Algorithm 2. initialization

Input: Σ: CNF formula; A: assumptions; G: a definition map
Result: I a partial interpretation
I ← A ∪ {top-level units};1

foreach α ∈ Σ with r(α) defined do2

if r(α) is unassigned by I then3

assignAbbreviation(G, r(α), I);4

if I(α) = ⊥ then break;5

return I;6

it traverses all clauses α to which a replacement r(α) has been added and then
calls Alg. 1 to assign the replacement literal. The resulting I consistently assigns
reachable abbreviations to the value of their definition in the definition map G,
unless a clause is found that has all its literals assigned to false.

2.3 Assumption Core Analysis

As discussed in the introduction, applications of incremental SAT with assump-
tions often make use of the SAT solver’s ability to return an assumption core,
i.e., a subset of the given assumptions, which in combination with the given
CNF can not to be satisfied. Intuitively, the assumption core exactly contains
the assumptions “used” by the SAT solver to derive the inconsistency. In con-
trast to the concept of MUS, these assumption cores are typically not required
to be minimal. As implemented in MINISAT [1] such an assumption core can
be computed by a separate conflict analysis routine called “analyzeFinal”, which
recursively goes through the implication graph to only collect assumptions in
contrast to the usual analysis routine of CDCL solvers which cuts off the search
for a learned clause as soon as possible, e.g., following the 1st UIP scheme [23].

After factoring out assumptions and adding abbreviations the “analyzeFinal”
procedure has to be adapted to care for abbreviations, which is described in
Alg. 3. The algorithm takes as input a CNF formula Σ, the current unsatisfiable
trail2 I, a clause α falsified under I, the definition map G, and returns the
set of assumptions C “used” to establish the unsatisfiability proof. It starts by
initializing C and the literals V already visited with the empty set. Next, the
stack T , containing the set of literals that must be further visited, is initialized
with the conflict clause α. Then, while there is still an unvisited literal � ∈ T , it
is marked. Depending on its type three different cases have to be distinguished.
First in line 5, if � is an assumption, then � is added to the conflict clause C.
Second in line 6, if � is an abbreviation its definition G[�] is added to T . This
is actually the only part where the algorithm has to be adapted to recursively

2 Every literal assigned to true, particularly those found during BCP, are added to
a stack, called trail, to record the order of assignments. The reason, also called
antecedent, of a forced assignment is saved too. Please refer to [1] for more details.
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Algorithm 3. analyzeFinal

Input: Σ: CNF; I: trail; α: clause; G: a definition map
Result: C, a subset of the assumptions
C = ∅; V = ∅;1

T ← α;2

while ∃� ∈ T \ V do3

V ← V ∪ {�};4

if � is an assumption then C ← C ∪ {�};5

else if � is an abbreviation then T ← T ∪ G[�];6

else T ← T ∪ reason(�,I);7

return C;8

explore the definition map. Third in line 7, � is neither an assumption nor an
abbreviation and the reason of its propagation is added to T (implication graph
exploration). Decision literals are assumed to have an empty set of antecedents.

Example 1. Consider again the example in Fig. 2. Given {a1, a2, a3, a4, a5, a6},
learning α′7 allows to conclude that the formula is unsatisfiable. Alg. 3 produces:

T V C �
p2, �6 ∅ ∅ undef
�6, �2 ∅ ∅ p2
�2, a5, a6 �5 ∅ �6
a5, a6, a2, a3 �5, �6 ∅ �2
a6, a2, a3 �5, �6, a5 a5 a5
a2, a3 �5, �6, a5, a6 a5, a6 a6
a3 �5, �6, a5, a6, a2 a5, a6, a2 a2
∅ �5, �6, a5, a6, a2, a3 a5, a6, a2, a3 a3

The resulting learned clause is (a5 ∨ a6 ∨ a2 ∨ a3). Note, neither a1 nor a4 were
actually “used” in deriving it. In the next section will make use of such an
analysis to eagerly reduce the learned clause data base.

2.4 Reduce Learned Clause Database

Keeping all learned clauses slows down the SAT solver considerably. Thus heuris-
tics to determine which learned clauses to keep resp. how and when to re-
duce the learned clause database are an essential part of state-of-the-art SAT
solvers [20,21,22]. After an incremental SAT call returned “unsatisfiable”, we
propose to only keep those learned clauses, which were used to show that the
assumed assumptions in this SAT call are inconsistent and discard all others.

Experiments in Sect. 3.2 will give empirical evidence for the effectiveness of
these heuristics. Even though it is not a solid argument, an intuitive explanation
could be that learned clauses are removed quite frequently anyhow. Further,
most likely exactly those learned clauses related to the last set of assumptions
are useful in the next SAT call too. This particularly applies to MUS extraction
where the assumptions do not change much.
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Algorithm 4. eagerLearnedClauseDatabaseReduction

Input: var Δ: set of learned clauses; var G: a definition map; V: literals;
foreach α ∈ Δ do1

if r(α) is an abbreviation and r(α) /∈ V then2

Δ ← Δ \ α;3

remove r(α) and its definition from G;4

However, in order to apply these heuristics we need to be able to determine
whether a certain clause was used in deriving the inconsistency. As it turns out,
our definition map can be interpreted as partial proof trace for learned clauses
(with assumptions) and thus gives us a cheap way to flush learned clauses and
definitions not required to show that the given set of assumptions is inconsistent.
Focusing on the remaining relevant learned clauses and definitions in this “core”
reduces run time, as our experiments in Sect. 3.2 will show.

Let us continue with Example 1 after learning α′7. Only α′2 and α′7 are re-
quired to show unsatisfiability under the given set of assumptions, while α′4
is not required and thus according to our heuristic should be removed. This
eager reduction of the learned clause database can be easily implemented as a
post-processing phase using V computed by analyzeFinal, which is shown
in Alg. 4.

2.5 Assumption Aware Clause Minimization

New learned clauses can often be minimized by applying additional resolution
steps with antecedent clauses in the implication graph. Two approaches are cur-
rently used to achieve this minimization: applying self-subsuming resolution, also
called local minimization, or applying recursive minimization[24]. In recursive
minimization several resolution steps are tried to determine whether a literal can
be removed from the learned clause. In both cases resolutions are only applied if
the resulting clause is a strict sub-clause. Sörensson and Biere [24] demonstrated
that clause minimization usually improves SAT solver performance. In the fol-
lowing we will either apply this classical recursive minimization, no minimization
at all, or a new form of recursive minimization, and thus do not consider local
minimization further.

In the incremental setting with many assumptions, our preliminary experi-
ments showed that classical clause minimization is not very effective. Usually
the number of literals deleted in classical clause minimizations is rather small.
As reason we identified the fact that assumptions are not obtained by unit prop-
agation, and thus cannot be removed from learned clauses through additional
resolution steps. Furthermore, non-assumption literals are often blocked by at
least one assumption pulled in by resolution steps. The classical minimization al-
gorithm requires that the resulting clause is a strict sub-clause. It is not allowed
to contain more assumptions.
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This situation is not optimal since assumptions, during one call of the in-
cremental SAT algorithm, are assigned to false and can thus be considered to
be irrelevant, at least for this call. Our new minimization procedure makes
use of this observation and simply ignores additionally pulled in assumptions
during minimization. The resulting “minimized” clause might even increase in
size. However, it will never have more non-assumption literals than the original
clause.

3 Experiments

The algorithms described above have been implemented within the SAT solver
MINISAT [1], starting from the original version, used in the current version of
the state-of-the-art MUS extractor MUSer [9]. It heavily makes use of incremen-
tal SAT solving with many assumptions following the selector variable-based
approach [25]. Our modified version of [1] is called MINISATabb (MINISAT with
abbreviation). We focus on MUS extraction and compare the performance of
MUSer for different versions of MINISAT.

For our experiments we used all 295 benchmarks from the MUS track of the
SAT Competition 2011 3 after removing 5 duplicates from the original 300 bench-
marks. These benchmarks4 have their origin in various industrial applications of
SAT, including hardware bounded model checking, hardware and software ver-
ification, FPGA routing, equivalence checking, abstraction refinement, design
debugging, functional decomposition, and bioinformatics. The experiments were
performed on machines with Intel R© CoreTM2 Quad Processor Q9550 with 2.83
GHz CPU frequency with 8 GB memory and running Ubuntu 12.04. Resource
limits are the same as in the competition: time limit of 1800 seconds, memory
limit of 7680 MB.

In the first experiment we apply our new approach of factoring out assump-
tions without changing clause learning. We then evaluate the impact of our new
learned clause reduction scheme and our new clause minimization procedure.
The experimental part concludes with more details on memory consumption.

3.1 Factoring Out Assumptions

Fig. 3 shows a comparison between MUSer with our new approach based on
factoring out assumptions, called MINISATabb, and the original version of MIN-
ISAT. First, in Fig. 3(a) the average size of learned clauses is compared. For
many problems, adding clause abbreviations reduces the average size of learned
clauses by an order of magnitude.

The main effect of our new technique is to reduce the size of learned clauses.
This should also decrease the number of literals traversed while visiting learned
clauses during BCP. In the scatter plot in Fig. 3(b) we focus on this metric and
compare the average number of traversed literals while running both versions

3 http://www.satcompetition.org/2011
4 The set of benchmarks is available at http://www.cril.univ-artois.fr/SAT11/

http://www.satcompetition.org/2011
http://www.cril.univ-artois.fr/SAT11/


Factoring Out Assumptions to Speed Up MUS Extraction 285

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000

(a) average size of learned clauses

 1

 10

 100

 1  10  100

(b) average number of traversed literals

 1

 10

 100

 1000

 1  10  100  1000

(c) running time (in seconds)

Fig. 3. Comparing MUSer on the 2011 competition instances from the MUS track,
using the original MINISAT without abbreviations (y axis) vs. using our new version
MINISATabb with abbreviations (x axis) w.r.t. three different criteria

on the same instance. This includes the literals traversed in clauses visited dur-
ing BCP, also including original clauses, but of course ignores clauses that are
skipped due to satisfied blocking literals [26]. As the plot shows, the reduction
in terms of the number of traversed literals is even more than the reduction of
the average size of learned clauses. Consequently also the running time reduces
considerably, see Fig. 3(c), but of course not in the same scale as in the previous
plots. Note that in essence the “same clauses” are learned and thus the number
of conflicts and learned clauses does not change.

The net effect of using abbreviations to factor out assumptions is that MUSer
based on MINISATabb solves 272 out of the 295 instances, and runs out of mem-
ory on 3 instances, whereas the version with the original MINISAT solves only
261 instances and runs out of memory in 13 cases. Our approach solves more
instances, but not, at least primarily, because it runs out of memory less often.

As it turns out in the context of MUS extraction, definition clauses actually
do not have to be watched. Further, abbreviation literals never have to be con-
sidered as decision and thus also do not have to be added to the priority queue
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Fig. 4. On the left we show the running time of MUSer using MINISAT+init, a version
of MINISAT, which initializes assumptions explicitly (x axis) vs. the original MINISAT
version, which does not initialize them explicitly before search (y axis), both without
abbreviations. Visiting each learned clause during initialization is time consuming with-
out abbreviations. In the experiment shown on the right we only modified the restart
mechanism to backtrack to the decision level of the last assigned assumption instead
of backtracking to the root level. The modified version MINISAT+assumption-level-
restarting (x axis) performs equally well as the original version of MINISAT (y axis).
Running time is measured in seconds with a time limit of 1800 seconds as always.

(implemented as heap in MINISAT) for picking decisions. Thus we need initial-
ization, by assigning all assumptions and abbreviations, the latter in incremental
calls only, at the first decision level.

In order to make sure that the improvement observed in the previous ex-
periment is independent from using our new optimized initialization phase, we
report in Fig. 4(a) the run times of MUSer using the original version of MINISAT
compared to the run times using a modified version of MINISAT, in which the
assumption variables are assigned up-front and removed from the priority queue
initially too, called MINISAT+init. The results show that using this modified
initialization scheme in the original version of MINISAT actually has a negative
effect on the performance of MUSer (MUSer using MINISAT solves 261 instances
whereas MUSer using MINISAT+init solves 257 instances) and thus can not be
considered to be the main reason for the witnessed improvements in the first
experiment. Our explanation for this effect is, that our initialization algorithm
in essence needs only one pass over the learned clauses, even just a subset of
all learned clauses, while initializing up-front BCP in MINISAT+init needs to
visit lots of clauses during initialization. Note, again, that initialization has to
be performed at the start of every incremental SAT call and might contribute a
substantial part to the overall running time.

Modern SAT solvers based on the CDCL paradigm restart often by frequently
backtracking to the root-level (also called top-level) [27,28,29,30] using a specific
restart schedule [31,32,33,34]. With assumptions it seems however to be more
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Fig. 5. Comparison MUSer using MINISATabb (y axis) vs. MINISATabb+g (x axis).

natural to backtrack to the highest decision level, where the last assumption
was assigned, which we call assumption-level. This technique is implemented in
Lingeling [35], since it can naturally be combined with the technique of reusing
the trail [36], but is not part of MINISAT. It might be conceivable, that forc-
ing MINISAT to backtrack to the assumption-level during restarts can give the
same improvement as initialization up-front. However, the experiment reported
in Fig. 4(b) shows, that at least in MUS extraction, this “optimization” is useless.

3.2 Learned Clauses Database Reduction

In this section, we study the impact on the performance of MINISATabb w.r.t our
new reduction algorithm for the learned clause database presented in Sect. 2.4.
Fig. 5 compares MUSer using MINISATabb with and without this more “ea-
ger garbage collector”, which we denote by MINISATabb+g resp. MINISATabb.
According to Fig. 5(b) eager garbage collection reduces memory consumption.
Moreover, as shown in Fig. 5(a), this memory reduction does not hurt perfor-
mance, since three more instances are solved (275 vs. 272) and only 1 instance
(instead of 3) runs out of memory (see also Tab. 1).

3.3 Minimization of the Learned Clauses

In this section, we compare our new clause minimization procedure to existing
variants of clause minimization. We consider three versions of MINISAT and
MINISATabb as back-end in MUSer [9]:

– without clause minimization (called without);
– the classical recursive clause minimization (classic) [24];
– our new clause minimization procedure (full) described in Sect. 2.5.

From the cactus plot in Fig. 6, which compares average size of learned clauses, we
can draw the following conclusions. First, classical minimization is not effective in
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Fig. 6. Cactus plot reporting the average size of learned clauses produced by MUSer
using MINISAT without abbreviations and MINISATabb with abbreviations, and differ-
ent clause minimization approaches. Factoring out assumptions (lower three curves) is
always better than the original scheme (upper three curves). Further, full minimization
gives a large improvement but only if assumptions are factored out. Without abbre-
viations full minimization actually turns out to be detrimental. Classic minimization
only gives a small advantage over not using any minimization.

terms of reducing the average size of learned clauses, neither for MINISAT nor for
MINISATabb, because it cannot remove assumptions during clause minimization.
Classical minimization is slightly more effective with abbreviations than without.
However, abbreviations might block self-subsumption during recursive resolution
steps and thus prevent further minimization.

Next, we study the impact of our new full clause minimization described in
Sect. 2.5 with and without using abbreviations. As reported in [24] for SAT
solving without assumptions, recursive clause minimization typically is able to
reduce the average size of learned clauses by one third. In the SAT solving with
assumptions, as previously noted, assumptions prevent this reduction. With full
clause minimization, however, we get back to the same reduction ratio of around
30% considering only literals that are neither assumptions nor abbreviations.
Nevertheless, since deleting one literal is often necessary to apply additional
resolutions, many new assumptions are added to the minimized clause. Using
full minimization in MINISAT without abbreviations increases the average size
of learned clauses by an order of magnitude, whereas MINISATabb does not have
this problem, since assumptions and abbreviations are factored out.
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Table 1. The table shows the number of solved instances by MUSer within a time limit
of 1800 seconds and a memory limit of 7680 MB, for different back-end SAT solver: the
original MINISAT, then MINISATabb with abbreviations, and finally MINISATabb+g
with abbreviations and eager learned clause garbage collection. For each version of
these three SAT solvers we further use three variants of learned clause minimization.
The approach with abbreviations, eager garbage collection and full learned clause min-
imization, e.g. using all of our suggested techniques, works best and improves the
state-of-the-art in MUS extraction from 261 solved instances to 281.

MINISAT MINISATabb MINISATabb+g
#solved(mo) #solved(mo) #solved(mo)

without minimization 259(15) 272(3) 273(3)

classic minimization 261(13) 272(3) 275(1)

full minimization 238(25) 276(0) 281(0)
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Fig. 7. Memory usage of MUSer based on the original MINISAT without abbreviations
and MINISATabb+g with both abbreviations and eager garbage collection. Both ver-
sions of the MINISAT are combined with three different clause minimization strategies.
Note, that even with eager garbage collection, which reduces memory consumption, e.g.,
see Fig. 5(b), the effect of our techniques on overall memory usage is not particularly
impressive and leaves room for further optimization.

Actually, our new full clause minimization procedure in combination with
MINISATabb is able to reduce the average size of learned clauses by two or-
ders of magnitude w.r.t the best version of MINISAT without abbreviations,
while already one order of magnitude is obtained by MINISATabb just by using
abbreviations alone (with or without using classical clause minimization
procedure).



290 J.-M. Lagniez and A. Biere

In another experiment we measured the effect of our new garbage collection
procedure Alg. 4. As it turns out, the average size is not influenced by adding
this procedure, but as Tab. 1 shows, it has a positive impact on the number
solved instances independent from the minimization algorithm used. Finally, this
tables also shows that the reduction of the average size of learned clauses directly
translates into an increase of the number of solved instances. The combination of
our new techniques improves the state-of-the-art of MUS extraction considerably.

3.4 Memory Usage

We conclude the experiments with a more detailed analysis of memory usage
for the various considered versions of MUSer. As expected, Fig. 7 shows that
shorter clauses need less memory. However, the effect in using our new tech-
niques on overall memory usage is less pronounced than their effect w.r.t. to
reducing average learned clause length. The main reason is that definitions have
to be stored too. However, MINISAT with full clause minimization but without
abbreviations produces a huge increase in memory consumption by an order of
magnitude. This shows that factoring out assumptions is the key to make full
clause minimization actually work. Also note, that our current implementation
for storing definitions is not optimized for memory usage yet, and we believe
that it is possible to further reduce memory consumption considerably.

4 Conclusion

In this paper we introduced the idea of factoring out assumptions, in the context
of incremental SAT solving under assumptions. We developed techniques that
work particularly well for large numbers of assumptions and many incremental
SAT calls, as it is common, for instance, in MUS extraction. We implemented
these techniques in the SAT solver MINISATabb and showed that they lead to a
substantial reduction in solving time if used in the SAT solver back-end of the
state-of-the-art MUS extractor MUSer [9].

More specifically, experimental results show that factoring out assumptions
by introducing abbreviations is particularly effective in reducing the average
learned clause length, which in turn improves BCP speed. Even though memory
usage is not reduced at the same level as average learned clause lengths, using
abbreviations leads to shorter running time. Furthermore, the ability to factor
out assumptions is crucial for a new form of clause minimization, which gave
another substantial improvement. In general, we improved the state-of-the-art
in MUS extraction considerably.

Our prototype MINISATabb uses rather basic data structures, which can be
improved in several ways. Memory usage could be reduced by a more sophisti-
cated implementation of managing abbreviations. Further, in the current imple-
mentation, identical definitions are not shared. A hashing scheme could cheaply
detect this situation and would allow to reuse already existing definitions in-
stead of introducing new ones. This should reduce memory usage further and
also speed up the initialization phase.
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Finally, it would be interesting to combine the techniques presented in this
paper with more recent results on MUS preprocessing [10] and preprocessing
under assumptions [19,37] resp. inprocessing [38]. We also want to apply our
approach to high-level MUS extraction [7,8,16].

Software and more details about the experiments including log files are
available at http://fmv.jku.at/musaddlit.
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1. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
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Abstract. This paper introduces a notational frame to characterize
the four basic product-based Message Passing (MP) heuristics currently
available for SAT: Belief Propagation (BP), Survey Propagation (SP),
Expectation Maximization BP Global (EMBPG) and Expectation Max-
imization SP Global (EMSPG). Using this framework, the paper intro-
duces indirect structural interpolation (ISI). Using this technique, we
create a hierarchy of heuristics – each new level in this hierarchy consists
of heuristics strictly more general than their predecessors. The final re-
sult is the ρσPMPi heuristic, which is able to mimic all product-based
MP heuristics and is hence a generalization for all them.

1 Introduction

SAT is one of the most studied combinatorial problems and the interest in prac-
tically applicable algorithms to solve this problem (called SAT solvers) has in-
creased during the past decades. Several classes of SAT solvers are available, like
CDCL, SLS, and look-ahead solvers. A similarity between all of them is their
application of variable and value selection heuristics to advance the search. Well
known examples for such heuristics are VSIDS and phase-saving [16, 17].

Message Passing (MP) is a comparatively new class of such heuristics [8,
2]. An MP heuristic creates estimations of variable assignments, called biases.
An MP-based SAT solver then uses these biases for assigning variables and
thus can simplify the formula under the assumption that these biases capture a
partial satisfying assignment. We call the simplification using biases MP-Inspired
Decimation (MID). Estimating biases and performing MID is repeated until
the formula is solved by the set of given assignments or a conflict occurs. If a
conflict occurs, the solver either reports the failure of the MID approach or,
in conjunction with a complete search strategy like CDCL, can learn from the
conflict, back-jump, and repeat the bias computation along with MID. SAT
solvers that apply an MP heuristic and MID are henceforth called MID solvers.

Two well known MP heuristics to solve large uniform random k-SAT formulas
are Belief Propagation (BP) and Survey Propagation (SP) [13, 4]. The compu-
tational cost of BP is comparatively low, but its ability to create biases that lead
to a satisfying assignment (called the success rate) is comparatively low as well.
An increased focus on MP heuristics came with SP which has a higher success
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rate than BP. Both BP and SP do, however, suffer from the fact that they might
not converge towards a stable configuration during their message passing (called
the convergence rate). Hence, BP and SP might fail to provide biases, and a
MID solver relying on them to advance the search would therefore fail as well.

The low convergence rates of BP and SP are a major issue when trying to
solve crafted formulas. Here, BP and SP fail to converge and are therefore unable
to provide biases at all. This inspired the development of two Expectation Maxi-
mization variants that are guaranteed to converge: EMBPG and EMSPG [9–11].
The guaranteed convergence in the EM variants allows them to always provide
biases, but their success rates are worse than those of the non-EM variants when
solving uniform random k-SAT formulas. All together, the non-EM variants are
helpful when solving random formulas, but they are not helpful when solving
crafted formulas. In contrast, the EM variants are helpful when solving crafted
formulas, but they are not helpful when solving random formulas.

While the main difference between the non-EM and the EM variants is their
convergence behavior, the main difference between the BP and SP variants is
how careful they provide biases. Intuitively, the SP variants favor variables that
are more unlikely to be assigned wrong, resulting in an increased success rate.
However, when decreasing the ratio of random formulas, the SP variants might
converge into a paramagnetic state where all variables appear unbiased. Here, the
SP variants converge but nonetheless fail to provide biases, and the less careful
BP behavior would be preferable. All together, the lack of flexibility of the MP
heuristics renders it difficult to design a robust MID solver. The situation can
be improved by designing MP heuristics with an increased flexibility as follows.

First, we propose the interpolation of the non-EM and the EM variants aim-
ing for an improved flexibility regarding convergence. We introduce σEMBPGi

(interpolating BP and EMBPG) and σEMSPGi (interpolating SP and EMSPG).
Using the interpolation parameter σ ∈ [0, 1], these heuristics can mimic the con-
vergence behavior of the non-EM variants (σ = 0), the EM variants (σ = 1), and
anything in between (σ ∈ (0, 1)). The σ heuristics can be seen as generalizations
regarding convergence of the non-EM and EM variants they interpolate.

Second, we propose the interpolation of the BP and SP variants aiming for
an improved flexibility regarding carefulness. We introduce ρSPi (interpolating
BP and SP) and ρEMSPGi (interpolating EMBPG and EMSPG). Using the
interpolation parameter ρ ∈ [0, 1], these heuristics can mimic the carefulness
of the BP variants (ρ = 0), the SP variants (ρ = 1), and anything in between
(ρ ∈ (0, 1)). The ρ heuristics can be seen as generalizations regarding carefulness
of the BP and SP variants they interpolate.

Finally, one can ask for an MP heuristic that has the flexibility to simulta-
neously adapt its convergence and carefulness behavior. We introduce ρσPMPi,
which uses two interpolation parameters ρ, σ ∈ [0, 1]. It interpolates between all
the above heuristics and is therefore the most flexible one. It can be seen as a
generalization of all the other MP heuristics presented in this paper. Hence, it
should be the most useful one to solve random and crafted formulas alike. The
empirical results presented in Section 5 do indeed support this intuition.
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Fig. 1. A conceptual overview of the MP heuristics presented in this paper. The arrows
indicate which heuristics are interpolated using indirect structural interpolation (ISI)
in order to derive the respective interpolation.

We call BP, SP, EMBPG, and EMSPG the level 0 (L0) heuristics. We intro-
duce indirect structural interpolation (ISI) to derive from the L0 heuristics the
L1 heuristics: ρSPi, ρEMSPGi, σEMBPGi, and σEMSPGi. From the L1 heuris-
tics, we derive the L2 heuristic ρσPMPi. The levels L0 to L2 define a hierarchy
of generality with ρσPMPi being the most general heuristic. See Fig. 1.

The contributions of this paper are summarized as follows. First, a notational
frame to present product-based MP heuristics is introduced and used to explain
the basic L0 heuristics along with a generic MID solver genMID. Second, a tech-
nique to interpolate two given MP heuristics into a new and more general one is
introduced. This technique, called ISI, is used to derive the L1 and L2 heuristics
mentioned above. The final result is the L2 heuristic ρσPMPi. The strength of
ρσPMPi is twofold. First, it can mimic the behavior of the L0 and L1 heuristics
which makes their separate implementation unnecessary. Second, ρσPMPi has
the ability to achieve an MP behavior that cannot be achieved using the L0 or
L1 heuristics. Using ρσPMPi in a MID solver increases its flexibility and allows
to improve its robustness using the new possibilities of parameter tuning.

2 A Notational Frame and a Generic MID Solver

In this section we first repeat some definitions regarding SAT. Afterwards, we
explain MP heuristics on a conceptual level and present a notational frame to ex-
plain them in more detail. Furthermore, we explain MID, and how MP heuristics
and MID are combined into a generic MID solver, called genMID.

Definition 1. Let V be a set of n Boolean variables. Let v ∈ V. A CNF formula
F is a set of m clauses. Each clause c ∈ F is a disjunction of literals, where a
literal is a variable v or its negation v̄. The sets C+

v , C
−
v , Cv = C+

v ∪C−
v comprise

the sets of clauses containing v as a positive, negative, or arbitrary literal. Let
� denote the empty clause. We call α : V → {0, 1} an assignment.

We continue by explaining the conceptual functioning of product-based MP
heuristics. Let F be a CNF formula. For convenience, assume that F does not
contain unit clauses, tautological clauses, or pure literals.
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Fig. 2. Top: A CNF formula and its factor graph representation. Bottom: The order
of computations that are performed for a clause update.

Definition 2 (Factor Graph). A factor graph [13] of a CNF F is an undi-
rected graph that contains two types of nodes and two types of edges. The nodes
are partitioned into variable nodes (one for each v ∈ V) and clause nodes (one
for each c ∈ F ). The edges are partitioned into positive (solid) edges and nega-
tive (dotted) edges. A positive (neg.) edge between a variable and a clause node
exists, if and only if the variable appears as positive (neg.) literal in the clause.

See Fig. 2 (top) for an example of a factor graph. Conceptually, an MP heuristic
H sends messages along the edges of the factor graph. The goal is to reach a
stable configuration of the messages. These messages are then used to derive
biases for the variables, which can be seen as suggestions for assignments. We
distinguish between warning messages and disrespect messages as follows.

Warning messages, ωH ∈ [0, 1], are send from clause nodes to variable nodes.
Intuitively, a warning message from clause c to variable v, denoted ωH(c, v),
tells variable v how much clause c is in need of this variable to satisfy it. In-
tuitively, we understand a ωH close to one as a strong warning, which means
that clause c wants v to be assigned in such a way that it satisfies its literal
occurrence in c.

Disrespect messages, δH ∈ [0, 1], are send from variable nodes to clause nodes.
Intuitively, a disrespect message from variable v along a solid line to a clause c,
denoted δH(v, c), tells clause c how likely it is that v will be assigned to false (and
hence not satisfy c). A disrespect message from variable v along a dotted line to a
clause c, denoted δH(v̄, c), tells clause c how likely it is that v will be assigned to
true (and hence not satisfy c). We combine both cases for δH messages (positive
or negative literal l ∈ c) by writing δH(l, c). Intuitively, we understand a δH close
to one as a strong disrespect, which means that variable v will most likely not be
assigned such that l ∈ c becomes satisfied. The exact computation of δH depends
on H, and will be introduced for each of these heuristics later. For a conceptual
overview it suffices to understand that ∀c ∈ F : ∀l ∈ c : δH(l, c) ∈ [0, 1].
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Fig. 3. The iterations performed in a cycle y with an arbitrary permutation π ∈ Sm

For all product-based MP heuristics it is ωH(c, v) =
∏

l∈c\{v,v̄} δH(l, c) and

SH(l, c) =

⎧⎪⎪⎨⎪⎪⎩
∏

d∈C−
v

1− ωH(d, v), l = v∏
d∈C+

v

1− ωH(d, v), l = v̄
UH(l, c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

d∈C+
v \{c}

1− ωH(d, v), l = v∏
d∈C−

v \{c}

1− ωH(d, v), l = v̄

H performs a clause update for clause c by computing the current δH(l, c) mes-
sages for all l ∈ c and, using these values, updates all ωH(c, v). Then, it updates
the SH(l, c) and UH(l, c) values using the updated ωH(c, v). See Fig. 2 (bottom).

Intuitively, the SH(l, c) ∈ [0, 1] value captures the freedom of variable v to be
assigned in such a way that it satisfies l (and hence satisfies c). Likewise, the
UH(l, c) ∈ [0, 1] value captures the freedom of variable v to be assigned in such
a way that it falsifies l (and hence does not satisfy c). We call the SH and UH

values the cavity freedom values. Clause c itself is called the cavity clause, since
it is ignored during the computation of SH and UH. Intuitively, a clause update
captures the tendency for an assignment to v in SH and UH, while assuming
c �∈ F . This is known as the cavity method (see [15] for details).

Performing a clause update with the above equations for all clauses c ∈ F
exactly once is called an iteration. The ordering of the clauses in which the
updates are performed is arbitrary (assume a random clause permutation π ∈
Sm). A cycle y is a finite tuple of iterations. Intuitively, the terms cycle and
iteration capture the notion of passing time during the computations of H, where
iteration z of cycle y is understood as a single point in time. In the following, we
denote by y

zδH(l, c) the disrespect message send by H from l to c in iteration z of
cycle y. Likewise we denote the warning and cavity freedom values of a specific
iteration z in cycle y with y

zωH(c, v),
y
zSH(l, c), and

y
zSH(l, c).

Conceptually, MP heuristics perform cycles of iterations starting in iteration
z = 0 with arbitrarily initialized y

0δH (assume random values in (0, 1)). The y
0ωH,

y
0SH, and

y
0UH values for iteration 0 then follow with the above equations.

In order to compute y
zδH with z > 0, H relies on the y

z−1SH, and
y

z−1UH values
of iteration z − 1. See Fig. 3. The equation δH used for this computation is
defined by H. For example in Belief Propagation, the equation looks as follows.

y
zδBP(l, c) =

y
z−1UBP(l, c)

y
z−1UBP(l, c) +

y
z−1SBP(l, c)
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Iterating in cycle y continues until the following abort condition holds: ∀c ∈ F :
∀v ∈ c :

∣∣y
zωH(c, v)−

y
z−1ωH(c, v)

∣∣ < ωmax (with ωmax being a parameter of H,
commonly ωmax = 0.01). Intuitively, H is said to be converged in cycle y as soon
as all warning messages do not change notably anymore. We denote the iteration
of cycle y in which H converged with ∗. The corresponding messages from this
iteration are called equilibrium messages, denoted y

∗δH(l, c) and
y
∗ωH(c, v).

It is possible that H does not converge in a cycle y. In case the above abort con-
dition never holds, H would not terminate. A straightforward way to circumvent
this is to use another parameter for H called zmax > 1 (commonly zmax = 1000),
such that H declares a failure and stops if iteration zmax is reached. We formally
define the terms introduced above as follows.

Definition 3 (Messages, Cavity Freedom, Cavity Clause). Let H be an
MP heuristic. Let v ∈ V , c ∈ F . Let literal l ∈ c correspond to variable v.
With iteration z in cycle y, we define the disrespect message of heuristic H as
a function y

zδH(l, c) ∈ [0, 1]. We define the warning message of heuristic H as

y
zωH(c, v) =

∏
l∈c\{v,v̄}

y
zδH(l, c)

We define the cavity freedom of l in cavity clause c in iteration z of cycle y as

y
zSH(l, c) =

⎧⎪⎪⎨⎪⎪⎩
∏

d∈C−
v

1− y
zωH(d, v), l = v∏

d∈C+
v

1− y
zωH(d, v), l = v̄

y
zUH(l, c)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏

d∈C+
v \{c}

1− y
zωH(d, v), l = v∏

d∈C−
v \{c}

1− y
zωH(d, v), l = v̄

Assume H converged in cycle y. The equilibrium messages y
∗ωH(c, v) are used

to derive variable biases. These biases are then used to make assignments and
simplify F (MID). The derivation of variable biases works as follows.

Definition 4 (Variable Freedom). Let H be converged in cycle y. We define
the freedom of v in cycle y to be assigned to true (T ) or false (F) as

yTH(v) =
∏

c∈C−
v

1− y
∗ωH(c, v) and yFH(v) =

∏
c∈C+

v

1− y
∗ωH(c, v)

An intuitive interpretation of a large yTH(v) is that the equilibrium messages
indicate that none of the clauses in which v appears as negative literal v̄ need
v̄ to become satisfied. Hence, v can be assigned to true (similar for yFH(v) and
assignment false). A large value for yTH(v) · yFH(v) means that the variable has
a strong global freedom, which indicates that v can be assigned arbitrarily.

Even though a variable can have large T and F values, it cannot be assigned
to both true and false simultaneously. The variable’s tendency to either true or
false is captured in the variable magnetization as follows.

Definition 5 (Variable Magnetization). We call yμ+H(v),
yμ−H(v),

yμ±H(v) ∈
[0, 1] the positive, negative, and total magnetization of v in cycle y. Additionally,
we call yμH(v) =

yμ+H(v)+
yμ−H(v)+

yμ±H(v) its global magnetization in cycle y.
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The μ functions are defined separately for each H. Intuitively, a large yμ+H(v)
value indicates that both yTH(v) and yFH(v) suggest an assignment to true. In
other words, the yμ+H(v) value will be large if

yTH(v) is large and yFH(v) is small.
The bias of a variable is computed using the magnetization values as follows.

Definition 6 (Variable Bias). We call yβ+H (v), yβ−H (v) ∈ [0, 1], and yβH(v) ∈
[−1, 1] the positive, negative, and total bias of variable v in cycle y. It is

yβ+H (v) =
yμ+H(v)
yμH(v)

yβ−H (v) =
yμ−H(v)
yμH(v)

yβH(v) =
yβ+H (v)− yβ−H (v)

If yβH(v) has a value close to −1 (+1) the variable is biased towards the assign-
ment false (true). Finally, we define the clause count of variables and literals.

Definition 7 (Clause Count). With v ∈ V let l correspond to v.

t(v) = |C−
v | f(v) = |C+

v | s(l) =

{
|C−

v |, l = v
|C+

v |, l = v̄
u(l) =

{
|C+

v |, l = v
|C−

v |, l = v̄

Assume that we are applying H in a MID solver genMID. Assume that H con-
verged in cycle y and has computed yβH(v) for all variables. The solver genMID
will use two parameters to decide what to do with those biases. First, βmin ∈
(0, 1) (commonly βmin = 0.01) that defines when the set of biases is strong
enough to be understood as meaningful. Second, p ∈ (0, 1) (commonly p = 0.05)
which defines the fractional amount of variables that will be assigned according
to their bias in case they are meaningful.

In case
∑n

i=1 max(yβ−H (vi),
yβ+H (vi)) ≥ βmin, solver genMID will assign the

p · n highest biased variables according to their bias and simplifies the formula
using unit propagation and pure literal elimination, resulting in F ′ (MID). It
then checks if F ′ ∈ SAT or if � ∈ F ′. In case F ′ ∈ SAT, genMID outputs the
assignment to all variables, declares satisfiability and stops. In case � ∈ F ′,
genMID either reports a failure and stops, or learns from the conflict and back-
jumps. If genMID did not stop, it continues by calling H in cycle y + 1 on F ′.

In case
∑n

i=1 max(yβ−H (vi),
yβ+H (vi)) < βmin, genMID declares a paramagnetic

state. All variables appear unbiased and no further meaningful MID is possible.
The remaining F must be solved by a different algorithm (e.g. SLS or CDCL).

Refer to Fig. 4 for the pseudo-code of a generic MID solver. The type of
search that genMID performs is solely based on the equations for heuristic H,
which are based on δH, μ

+
H, μ

−
H , and μ

±
H . In other words, if a MID solver is to

be derived, it suffices to define these equations and include them in the call to
genMID. For example, assume we set zmax, ωmax, βmin, p and the equations for
Belief Propagation are given: δBP, μ

+
BP, μ

−
BP, and μ

±
BP. A BP based MID solver

search on F is performed by genMID(F , zmax, ωmax, βmin, p, δBP, μ
+
BP, μ

−
BP, μ

±
BP).

The following section will provide the δ and μ equations for various product-
based MP heuristics. In conjunction with the genMID algorithm they explain
how the corresponding MID solvers work.
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genMID(CNF formula F , zmax, ωmax, βmin, p, δH, μ
+
H , μ

−
H , μ±

H )

α = {}; y := 0; //Initialize the empty assignment and the cycle

∀c ∈ F : ∀l ∈ c : 0
∗δH(l, c) ∈R (0, 1);//Initialize δ messages randomly

REPEAT

y := y + 1; z := −1;π ∈R Sm; //Where π is a random clause permutation

REPEAT //Perform cycle y

ω′ := 0; z := z + 1;

∀i ∈ {1, . . . ,m} ://Perform iteration z

c := cπ(i);//Get next clause according to clause permutation π

IF z = 0 //Initialize cycle y with previous equilibrium messages

∀l ∈ c : y
0δH(l, c) :=

y−1
∗δH(l, c);

∀v ∈ c : y
0ωH(c, v) :=

∏
l∈c\{v,v̄}

y
0δH(l, c);

∀l ∈ c : compute y
0SH(l, c) and

y
0UH(l, c) using

y
0ωH(c, v);

ELSE //Iteration z > 0 relying on values from iteration z − 1

∀l ∈ c : compute y
zδH(l, c) using

y
z−1SH(l, c),

y
z−1UH(l, c);

∀v ∈ c : y
zωH(c, v) :=

∏
l∈c\{v,v̄}

y
zδH(l, c);

IF ω′ <
∣∣y
zωH(c, v)− y

z−1ωH(c, v)
∣∣ //Retain largest

ω′ :=
∣∣y
zωH(c, v)− y

z−1ωH(c, v)
∣∣ ;//message difference

∀l ∈ c : compute y
zSH(l, c) and

y
zUH(l, c) using

y
zωH(c, v);

UNTIL (z > 0 AND ω′ < ωmax) OR z > zmax//Concludes cycle y

IF ω′ < ωmax //Check if convergence has been reached in cycle y

∀v ∈ V : compute yβH(v);//Uses the μH and the cycle equilibrium msgs

IF
∑n

i=1 max(yβ−
H (vi),

yβ+
H (vi)) < βmin//Check if paramagnetic

output PARAMAG,α; STOP;//Might call SLS(α(F )) or CDCL(α(F ))

sort(V); //Sort variables, highest bias first
α := α ∪ {p · n highest biased variables according to bias}; //Extend α

F := α(F ); //Perform MID, with unit propagation and pure literal removal

IF � ∈ F : output UNKNOWN; STOP;//Or learn and backjump like CDCL

ELSE IF F ∈ SAT: output SATISFIABLE,α; STOP;

ELSE output UNKNOWN; STOP;//Unconverged after zmax iterations

UNTIL TRUE //Perform MP and MID as long as possible

Fig. 4. The generic MID solver as conceptually introduced in [4]. Independent of
zmax, ωmax, βmin, and p, the type of search that genMID performs depends only on H.

2.1 A Summary of the Equations for the L0 Heuristics

In this section we briefly present the δ and μ equations for the L0 heuristics.
For the δ equations, we assume an arbitrary iteration z of cycle y (y, z > 0).
The cases y = 0 or z = 0 belong to the initialization (see the previous section).
For the μ (and β) equations, we assume convergence in iteration ∗ of cycle y.
The β equations follow from the μ equations with Definition 6. For brevity, we
use a simplified notation and write U = y

z−1UH(l, c), S = y
z−1SH(l, c), T =

yTH(v), F = yFH(v), as well as u = u(l), s = s(l), t = t(v), and f = f(v).
The equations for Belief Propagation (BP) [13], Survey Propagation (SP)

[4, 5], Expectation Maximization BP Global (EMBPG) [9, 10], and Expectation
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Maximization SP Global (EMSPG) [9, 10] are as follows.

y
zδBP(l, c) =

U

U + S
, yβBP(v) =

T − F
T + F ,

yμ±BP(v) = 0, yμ+BP(v) = T ,
yμ−BP(v) = F , yμBP(v) = T + F

y
zδSP(l, c) =

U(1− S)
U(1− S) + S ,

yβSP(v) =
T − F

T + F − T F ,
yμ±SP(v) = T F ,

yμ+SP(v) = T (1−F), yμ−SP(v) = F(1− T ), yμSP(v) = T + F − T F

y
zδEMBPG(l, c) =

uU + s

u(1 + U) + s(1 + S)
, yβEMBPG(v) =

f(1−F)− t(1− T )
t(1 + T ) + f(1 + F)

yμ±EMBPG(v) = 0, yμ+EMBPG(v) = tT + f,
yμ−EMBPG(v) = fF + t, yμEMBPG(v) = t(1 + T ) + f(1 + F)

y
zδEMSPG(l, c) =

uU + s(1− S)
(u+ s)(1 + US)

, yβEMSPG(v) =
f(1− 2F)− t(1 − 2T )

(t+ f)(1 + T F)
yμ±EMSPG(v) = (t+ f)T F , yμ+EMSPG(v) = tT + f(1−F),
yμ−EMSPG(v) = fF + t(1− T ), yμEMSPG(v) = (t+ f)(1 + T F)

Given the above equations, we derive the L1 heuristics using ISI as follows.

3 Indirect Structural Interpolation (ISI) – L1 Heuristics

In this section we explain the idea behind ISI and extend the notational frame
to define the term L1 heuristic. Furthermore, we present a detailed derivation
of ρSPi to show how ISI is applied in practice. We conclude this section by
summarizing the equations for all L1 heuristics as shown in Fig. 1.

3.1 The Idea behind Indirect Structural Interpolation

Given two L0 heuristics H1 and H2, we aim for an interpolation τHi using an
interpolation parameter τ , such that τHi is able to mimic H1 (with τ = 0) and
H2 (with τ = 1), and interpolate in between (with τ ∈ (0, 1)). The goal is to be
able to control a specific behavior in which H1 and H2 differ by adjusting τ . For
example, given BP and SP along with interpolation parameter ρ, heuristic ρSPi

is supposed to be able to adjust its carefulness for presenting biases. Here, ρ = 0
means least careful and mimics BP, and ρ = 1 means most careful and mimics
SP. Setting ρ ∈ (0, 1) is supposed to yield an intermediate carefulness, expressed
in biases that are between those computed by BP and SP.

In order to derive τHi, we need to derive the equations δiτH (which then
implicitly gives ωi

τH), as well as μ
i+
τH, μ

i−
τH, and μ

i±
τH (which then implicitly give

βi+τH, β
i−
τH, and β

i
τH). ISI is a technique to derive these equations. In order to

explain ISI, we extend our notational frame for L1 heuristics to capture an
application of τ . Compare the following definition to Definition 3.
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Definition 8 (L1 Messages, Cavity Values). Let τHi be an L1 MP heuristic
using interpolation parameter τ ∈ [0, 1]. Let v ∈ V , c ∈ F . Let literal l ∈ c
correspond to v. With iteration z in cycle y, we define the disrespect message of
τHi as y

zδ
i
H(l, c, τ) ∈ [0, 1], and its warning message as

y
zω

i
τH(c, v, τ) =

∏
l∈c\{v,v̄}

y
zδ

i
τH(l, c, τ)

We define the cavity freedom of l in cavity clause c similar to those given in
Definition 3, but with an extended signature to capture the application of τ .
Additionally, these functions rely on y

zω
i
τH(c, v, τ) instead of y

zωH(c, v).

Similarly, we extend the definitions for variable freedom, variable magnetization,
and variable bias. Compare the following definition to Definitions 4, 5 and 6.

Definition 9 (L1 Variable Freedom, Magnetization, Bias). Let τHi be
converged in cycle y. We define the freedom of v in cycle y to be assigned to
true (T ) or false (F) as

yT i
τH(v, τ) =

∏
c∈C−

v

1− y
∗ω

i
τH(c, v, τ) and yF i

τH(v, τ) =
∏

c∈C+
v

1− y
∗ω

i
τH(c, v, τ)

Additionally, we define the positive, negative, and total magnetization of v as
presented in Definition 5, but with an extended signature of the functions to
capture the application of τ . The positive, negative, and total bias are then

yβi+τH(v, τ)=
yμi+τH(v, τ)
yμiH(v, τ)

yβi−τH(v, τ)=
yμi−τH(v, τ)
yμiτH(v, τ)

yβiτH(v, τ) =

yβ+τH(v, τ)

− yβi−τH(v, τ)

For brevity we extend the simplified notation and write U i = y
z−1U

i
τH(l, c, τ),

Si = y
z−1S

i
τH(l, c, τ), T i = yT i

τH(v, τ), and F i = yF i
τH(v, τ).

ISI is a technique to derive the equations for τHi. For the δiτH equation, it
linearly interpolates the structure of the numerators and denominators of δH1

and δH2
separately, and combines both terms into a quotient. Additionally, it

replaces U with U i and S with Si to capture the application of τ . Regarding
ρSPi, the derivation of δiρSP using δBP and δSP from Section 2.1 works as follows.

y
zδ

i
ρSP(l, c, ρ) =

(1 − ρ)
{
U i
}
+ ρ

{
U i(1− Si)

}
(1 − ρ) {U i + Si}+ ρ {U i(1− Si) + Si} =

U i(1− ρSi)

U i(1 − ρSi) + Si
.

For the μiτH equations, ISI linearly interpolates the structure of the μH1
and μH2

equations. Additionally, it replaces T with T i and F with F i to capture the
application of τ . The resulting equations for ρSPi are as follows.

yμi±ρSP(v, ρ) = (1− ρ) {0}+ ρ
{
T iF i

}
= ρT iF i

yμi+ρSP(v, ρ) = (1− ρ)
{
T i
}
+ ρ

{
T i(1−F i)

}
= T i(1− ρF i)

yμi−ρSP(v, ρ) = (1− ρ)
{
F i
}
+ ρ

{
F i(1− T i)

}
= F i(1− ρT i)

⎫⎪⎪⎬⎪⎪⎭
⇒ yμiρSP(v, ρ)

= T i + F i

− ρT iF i
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The βiτH equations then follow from the μiτH equations (see Definition 9). For
ρSPi, it is yβiρSP(v, ρ) = (T i −F i)/(T i + F i − ρT iF i). Compare the equations

for ρSPi with the those of BP and SP in Section 2.1. The following definition
formalizes the term of an L1 heuristic.

Definition 10 (Level 1 Heuristic). Given two L0 heuristics H1 and H2 and
τ ∈ [0, 1]. We call τHi a level 1 heuristic of H1 and H2 using τ , if and only if

1. τHi is an MP heuristic that properly defines δiτH(l, c, τ), μ
i+
τH(v, τ), μ

i−
τH(v, τ),

μi±τH(v, τ) ∈ [0, 1]; the latter then give βiτH(v, τ) ∈ [−1, 1] via Definition 9.
2. If τ = 0 and ∀c ∈ F, l ∈ c : 0

∗δH1
(l, c) = 0

∗δ
i
τH(l, c, 0) (equal initialization),

then ∀v ∈ V : βH1
(v) = βiτH(v, 0) (τHi computes the same biases as H1)

3. If τ = 1 and ∀c ∈ F, l ∈ c : 0
∗δH2

(l, c) = 0
∗δ

i
τH(l, c, 1) (equal initialization),

then ∀v ∈ V : βH2
(v) = βiτH(v, 1) (τHi computes the same biases as H2)

In [14], an interpolation between BP and SP is given, called ρ-SP. On the first
glance, this interpolation looks similar to ρSPi, however, there is a subtle differ-
ence. While the computation of the magnetization function yμi±ρSP (and thereby

the computation of the bias yβiρSP) applies ρ in ρSPi, algorithm ρ-SP from [14]
ignores ρ in the computation for μ(∗) (see [14], Section 2.2.2, page 10). Hence,
ρ-SP always computes biases using the global freedom of the variables. In case
ρ = 0, this does not result in the same biases as BP would compute. Hence,
ρ-SP is missing Property 2 of Def. 10 and is therefore no L1 interpolation.

In [1], an interpolation is derived that is meant to be an interpolation be-
tween BP and SP. However, the very first equation regarding SP in that paper
(Equation 6) is wrong. It is claimed to be the transport-message of SP, which
should then be equal to the“interior of the product” of Equation 28 from [4].
However, in [4], Equation 27 clearly states how Πu

j→a looks like when applied in
the numerator of Equation 28. In [1], the numerator of Equation 6 is missing one
of the two products – it would need to apply both A1

i and A0
i . Hence, whatever

the resulting interpolation is, it is no interpolation between BP and SP.
Applying ISI as shown above in relation to Fig. 1 gives the L1 heuristics.

3.2 A Summary of the Equations for the L1 Heuristics

Similar to Section 2.1 we present the equations for the L1 heuristics. Applying
ISI on BP and SP using interpolation parameter ρ results in ρSPi:

y
zδ

i
ρSP(l, c, ρ) =

U i(1− ρSi)

U i(1− ρSi) + Si
, yβiρSP(v, ρ) =

T i −F i

T i + F i − ρT iF i

yμi±ρSP(v, ρ) = ρT iF i, yμi+ρSP(v, ρ) = T i(1− ρF i),

yμi−ρSP(v, ρ) = F i(1− ρT i), yμiρSP(v, ρ) = T i + F i − ρT iF i
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Applying ISI on EMBPG and EMSPG using parameter ρ results in ρEMSPGi:

y
zδ

i
ρEMSPG(l, c, ρ) =

uU i + s(1− ρSi)

u(1 + U i(1− ρ(1− Si))) + s(1 + Si(1− ρ(1− U i)))

yβiρEMSPG(v, ρ) =
f(1− (1 + ρ)F i)− t(1− (1 + ρ)T i)

t(1 + T i(1− ρ(1 −F i))) + f(1 + F i(1− ρ(1− T i)))
yμi±ρEMSPG(v, ρ) = ρ(t+ f)T iF i, yμi+ρEMSPG(v, ρ) = tT i + f(1− ρF i),

yμi−ρEMSPG(v, ρ) = fF i + t(1− ρT i),

yμiρEMSPG(v, ρ) = t(1 + T i(1− ρ(1 −F i))) + f(1 + F i(1− ρ(1− T i)))

Applying ISI on BP and EMBPG using parameter σ results in σEMBPGi:

y
zδ

i
σEMBPG(l, c, σ) =

U i + σ
[
(u− 1)U i + s

]
U i + Si + σ

[
(u− 1)U i + (s− 1)Si + u+ s

]
yβiσEMBPG(v, σ) =

T i −F i + σ
[
(t− 1)T i − (f − 1)F i + f − t

]
T i + F i + σ

[
(t− 1)T i + (f − 1)F i + f + t

]
yμi±σEMBPG(v, σ) = 0, yμi+σEMBPG(v, σ) = T i + σ

[
(t− 1)T i + f

]
,

yμi−σEMBPG(v, σ) = F i + σ
[
(f − 1)F i + t

]
,

yμiσEMBPG(v, σ) = T i + F i + σ
[
(t− 1)T i + (f − 1)F i + f + t

]
Applying ISI on SP and EMSPG using parameter σ results in σEMSPGi:

y
zδ

i
σEMSPG(l, c, σ) =

U i(1− Si) + σ
[
uU i + (s− U i)(1 − Si)

]
U i(1 − Si) + Si + σ

[
(s+ u+ 1)U iSi + u+ s− U i − Si

]
yβiσEMSPG(v, σ) =

T i −F i + σ
[
F i − T i + f(1− 2F i)− t(1− 2T i)

]
T i + F i − T iF i + σ

[
−T i − F i + T iF i + (t+ f)(1 + T iF i)

]
yμi±σEMSPG(v, σ) = T iF i + σ

[
T iF i(f + t− 1)

]
yμi+σEMSPG(v, σ) = T i(1−F i) + σ

[
T i(t+ F i − 1) + f(1−F i)

]
yμi−σEMSPG(v, σ) = F i(1− T i) + σ

[
F i(f + T i − 1) + t(1 − T i)

]
yμiσEMSPG(v, σ) = T i + F i − T iF i + σ

[
−T i −F i + T iF i + (t+ f)(1 + T iF i)

]
In reference to Fig. 1, parameter ρ can be understood as horizontal adaption that
controls the carefulness of the ρ-heuristics, while parameter σ can be understood
as vertical adaption that controls the convergence of the σ-heuristics. We derive
a heuristic that allows for both adaptations simultaneously in the next section.

4 Deriving the L2 Heuristic ρσPMPi

Given the L1 heuristics σEMBPGi and σEMSPGi, we will once more apply ISI
using a second interpolation parameter ρ to derive the L2 heuristic ρσPMPi.
Similar to the extension of the notational frame in the previous section, we will
extend the notation once again in a similar way to capture the application of ρ.
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Definition 11 (L2 Messages, Cavity Values). Let τ1τ2Hi be an L2 MP
heuristic using interpolation parameters τ1, τ2 ∈ [0, 1]. Let v ∈ V , c ∈ F . Let
literal l ∈ c correspond to v. With iteration z in cycle y, we define the disrespect
message of τ1τ2Hi as y

zδ
i
H(l, c, τ1, τ2) ∈ [0, 1], and its warning message as

y
zω

i
τ1τ2H(c, v, τ1, τ2) =

∏
l∈c\{v,v̄}

y
zδ

i
τ1τ2H(l, c, τ1, τ2)

We define the cavity freedom of l in cavity clause c similar to those given in
Definition 3, but with an extended signature to capture the application of τ1, τ2.
Additionally, these functions rely on y

zω
i
τ1τ2H

(c, v, τ1, τ2) instead of y
zωH(c, v).

The extension of the notation to capture the L2 variable freedom, magnetization
and biases is done in a similar way, but we refrain from presenting this here. The
definition for an L2 heuristic is similar to the one for L1 heuristics, except for
the usage of the extended functions above that capture the application of τ1, τ2.
Again, we extend the simplified notation and write U I = y

z−1U
i
τ1τ2H

(l, c, τ1, τ2),

SI = y
z−1S

i
τ1τ2H

(l, c, τ1, τ2), T I = yT i
τ1τ2H

(v, τ1, τ2), and FI = yF i
τ1τ2H

(v, τ, τ2).
Applying ISI once more using interpolation parameter ρ on the L1 heuristics

σEMBPGi and σEMSPGi results in the following equations for ρσPMPi.

y
zδ

i
ρσPMP(l, c, ρ, σ) =

UI + σ
[
(u− 1)UI + s

]
− ρSI

{
UI + σ(s− UI)

}
(1− σ) [UI + SI − ρUISI ] + σ [s(1 + SI(1− ρ+ ρUI)) + u(1 + UI(1− ρ+ ρSI))]
yβi

ρσPMP(v, ρ, σ) =

(1− σ)
[
T I − FI

]
+ σ

[
f(1− (1 + ρ)FI)− t(1− (1 + ρ)T I)

]
(1− σ) [T I + FI − ρT IFI ] + σ [f(1 + FI(1− ρ+ ρT I)) + t(1 + T I(1− ρ+ ρFI))]

yμi±
ρσPMP(v, ρ, σ) = ρ

{
T IFI + σ

[
(t+ f − 1)T IFI

]}
yμi+

ρσPMP(v, ρ, σ) = T I + σ
[
(t− 1)T I + f

]
− ρFI

{
T I + σ(f − T I)

}
yμi−

ρσPMP(v, ρ, σ) = FI + σ
[
(f − 1)FI + t

]
− ρT I

{
FI + σ(t−FI)

}
yμi

ρσPMP(v, ρ, σ)=

⎧⎪⎨
⎪⎩

(1− σ)
[
T I + FI − ρT IFI

]
+ σ

[
f(1 +FI(1− ρ+ ρT I)) + t(1 + T I(1− ρ+ ρFI))

]
This heuristic is therefore able to simultaneously adapt its carefulness and con-
vergence behavior with ρ and σ. The next section covers how the MP heuristics
mentioned in this paper are connected and how ρσPMPi performs in practice.

5 An MP Hierarchy and Practical Aspects of ρσPMPi

The main difference of heuristics from different levels L0 to L2 is their varying
application of interpolation parameters ρ, σ ∈ [0, 1]. Consider the parameter
space (ρ, σ) ∈ [0, 1]2 as a plane. Each point in this plane characterizes exactly
one MP behavior, even though this point might be covered by several heuristics.
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Benchmark S/U Solver Performance
Lingeling DimetheusJW DimetheusMP

% PAR10 % PAR10 % PAR10 ρ σ

battleship S 42.1 11641.9 47.4 10627.2 89.5 2130.1 0.5002 0.0025
battleship U 77.8 4645.4 55.6 8919.7 55.6 8890.4 0.4463 1.0000
em-all S 100.0 39.9 75.0 5263.7 100.0 75.4 0.8606 0.1295
em-compact S 25.0 15228.1 0.0 20000.0 37.5 12728.5 0.9229 0.7946
em-explicit S 100.0 127.3 75.0 5473.3 100.0 157.1 0.2932 0.2698
em-fbcolors S 12.5 17509.9 12.5 17723.3 37.5 12662.9 0.0000 0.1731
grid-pebbling S 100.0 5.7 100.0 16.5 100.0 8.0 0.9931 0.3890
grid-pebbling U 100.0 4.6 88.9 2226.9 100.0 4.7 0.5884 0.0035
sgen1 S 16.7 16667.4 16.7 16677.7 27.8 14460.9 0.0937 0.6563

k3-r4.200 S 0.0 20000.0 0.0 20000.0 100.0 22.7 0.9929 0.0004
k3-r4.237 S 0.0 20000.0 0.0 20000.0 75.0 5026.8 0.9961 0.0000
k4-r9.000 S 0.0 20000.0 0.0 20000.0 100.0 10.0 0.8592 0.0000
k4-r9.526 S 0.0 20000.0 0.0 20000.0 100.0 5.2 0.9530 0.0000

Fig. 5. The table shows an excerpt of results of the empirical study given in [7]. The
benchmark column indicates the types of formulas. The S/U column indicates if the
formulas are satisfiable. The % column shows the success rate for these formulas. The
PAR10 column gives the penalized avg. runtime. The timeout was set to 2000 seconds.

As an example, the point p0 = (ρ, σ) = (0, 0) is covered by BP. Hence, BP is
able to perform the MP behavior characterized by this point. However, p0 is also
covered by ρSPi when setting ρ = 0. This means, that the same MP behavior
can also be achieved with ρSPi. Furthermore, the heuristic σEMBPGi covers
p0 with σ = 0, and ρσPMPi covers p0 with ρ = σ = 0. All together, these
four heuristics are able to perform MP in a way commonly known as “Belief
Propagation” which is characterized by p0.

Other points in the parameter plane are, however, covered by different heuris-
tics. For example the point (0.5, 0) is exclusively covered by ρSPi and ρσPMPi.
Furthermore, the point (0.5, 0.5) is solely covered by ρσPMPi and the MP be-
havior it characterizes can only be achieved by this heuristic. The ability to cover
different types of MP behavior implies a hierarchy of generality for the L0 (least
general) to L2 (most general) product-based MP heuristics.

Even though ρσPMPi can mimic the behavior of all L0/L1 heuristics, a com-
parison of the update functions for the heuristics gives the impression that this
might result in a serious performance drawback due to the higher arithmetical
complexity. Empirical tests show that this is not as immense as initially ex-
pected. Even in the most extreme example of computing BP with ρσPMPi, the
additional CPU time required is less than 10%. We believe that this is due to
the fact that modern CPUs handle arithmetic operations very efficiently. A sep-
arate implementation of the L0 and L1 heuristics in a MID solver is therefore
unnecessary. The L2 heuristic can mimic them with a negligible overhead.

Using ρσPMPi in a MID solver increases the solver’s flexibility and allows for
a more sophisticated parameter tuning in order to adapt the solver to a wide
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range of formulas. Fig. 5 shows results of an empirical study that was conducted
on crafted and random formulas from the SAT Challenge 2012 to determine the
optimal settings to ρ and σ on these classes. The compared solvers are Lingeling
[3] for reference, and Dimetheus [6] which is a CDCL-based MID solver following
genMID. Dimetheus comes in two versions. The MP version uses ρσPMPi in order
to guide the decision making as shown in genMID. The JW version replaces MP
with the Jeroslow-Wang heuristic [12]. Both versions rely on VSIDS and phase-
saving to advance the search and merely use either MP or JW to initialize these
two heuristics. To state it clearly: both versions perform similar CDCL search
and only differ in the initialization of VSIDS and phase-saving.

Note the initially weak performance of DimetheusJW, and how DimetheusMP

improves this performance all across the board, sometimes being able to outper-
form even Lingeling. It is also important to note that the best performance in
the crafted domain requires ρ, σ �∈ {0, 1}, which implies that ρσPMPi gives a
better performance than the L0 and L1 heuristics. The parameter tuning on the
random domain clearly prefers the L1 interpolation ρSPi. Even though ρσPMPi

can gradually enforce convergence, the results show that it is not helpful to do
so – which is an insight that has not yet been provided. We refer the reader to
[7] for more details, additional results, and a discussion of the empirical study.

6 Conclusions and Future Work

This paper introduced a notational frame to present product-based Message
Passing heuristics, and explained four basic (L0) variants currently available for
SAT: BP, SP, EMBPG, and EMSPG. Furthermore, this paper explained how
MID solvers work and provided a generic implementation in algorithm genMID.

Using this framework, the paper introduced indirect structural interpolation
(ISI), which is a technique to derive an interpolation of two MP heuristics.
Applying ISI on the L0 heuristics resulted in the set of L1 heuristics. These
heuristics are strictly more general than the heuristics they interpolate since they
cannot only mimic their behavior but are also able to gradually adapt between
them. Depending on the interpolated heuristics, this adaption influences either
the carefulness of the L1 heuristics to present biases or how much they enforce
convergence. A second application of ISI on two of the L1 heuristics resulted
in the L2 heuristic ρσPMPi that can simultaneously adapt its carefulness and
convergence behavior. An important insight is that ρσPMPi can mimic the L0
and L1 heuristics but it is not confined to them, which renders the separate
implementation of the L0 and L1 heuristics unnecessary. Furthermore, as shown
in the empirical study given in [7], it increases the flexibility of MID solvers
and extends the possibilities for parameter tuning, which leads to an increased
robustness of CDCL-based MID solvers on various types of CNF formulas.

So far, the integration of MP and CDCL merely affects the way CDCL initial-
izes VSIDS and phase-saving. A tighter integration of MP biases might result in
new clause database maintenance schemes as well as new restart schedules, but
this remains a matter of future work.
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Abstract. Beside the important progresses observed in SAT solving, a number
of applications explicitly rely on incremental SAT solving only. In this paper,
we focus on refining the incremental SAT Solver Glucose, from the SAT en-
gine perspective, and address a number of unseen problems this new use of SAT
solvers opened. By playing on clause database cleaning, assumptions manage-
ments and other classical parameters, we show that our approach immediately
and significantly improves an intensive assumption-based incremental SAT solv-
ing task: Minimal Unsatisfiable Set. We believe this work could bring immediate
benefits in a number of other applications relying on incremental SAT.

1 Introduction

The Satisfiability (SAT) status of a propositional formula is one of the most fundamental
question in computer science, heavily studied since the 70’s, both theoretically and
practically. This problem captures the hardness of a large set of difficult – but practically
interesting –problems that could arise in many applications. Following the famous proof
of SAT NP-Completeness [1], a number of work have reduced many other problems to
SAT. In 2001 [2], based on the ideas of Marques-Silva and Sakallah [3], a new era of
SAT solvers was born, called “Modern” SAT Solvers [4]. The tremendous progresses
observed in SAT had an important impact in many other problems of computer science:
the State of the Art in solving a number of NP-Complete problems is now to use a SAT
solver engine. The efficiency of data structures used in SAT solvers also allows to work
with problems of millions of variables and clauses, which typically correspond to SAT
encodings of problems above NP [5,6].

However, since a few years, a new use of SAT solvers has emerged, called “Incre-
mental SAT Solving”. Even if this mechanism was already proposed in earlier versions
of Minisat [4], its importance has grown in the very last years. It is now the state
of the art to rely on this new paradigm in many applications, like in bounded model
checking [7], extraction of a Minimal Unsatisfiable Set (MUS) [8], Maximum Satisfi-
ability (MaxSAT) [9] or even inductive verification [10]. In this context, SAT solvers
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are not run on a single, potentially huge, SAT problem. They are rather called thou-
sands times on a number of instances close to each other (with removed/added clauses),
which allows to reuse as much informations as possible between successive SAT calls.
However, it is clear that, for some applications (when constraints can be removed), the
information held by the learned clauses can not be directly reused. For allowing the re-
moval of clauses, it is necessary to add “assumptions” to the SAT solver. Assumptions
are literals that are assumed to be true and which are always picked first for decisions
during a single run.

In this paper, we take a typical use of incremental SAT solving, heavily relying on
assumptions, hoping that our results will be immediately useful for other incremental
uses. We base our work on the highly tunable and open source Muser [11] (see also
[12,8,13] for MUS extraction). We focus here on the SAT engine and demonstrate how
we can improve the result of the overall incremental SAT solving by carefully taking
into account the essential ingredients of SAT solvers. In particular, we are interested
in pushing to the incremental case the solver glucose [14]. Memory consumption
is indeed a strong limitation of SAT solving with assumptions, because each clause
may contain hundreds of literals. Being able to remove useless clauses is essential and
successfully applying glucose strategies may be crucial.

2 SAT and Incremental SAT

So-called “modern SAT solvers” are based on the conflict driven clause learning para-
digm (CDCL) [2]. If they were initially introduced as an extension of the DPLL algo-
rithm [15], with a powerful conflict clause learning [3,16] scheme, it is acknowledged
that they must be described as a mix between backtrack search and plain resolution en-
gines. They integrate a number of effective techniques including clause learning, highly
dynamic variable ordering heuristic [2], polarity heuristic [17], clause deletion strat-
egy [18,14,19] and search restarts [20,21] (see [22] for a detailed survey).

2.1 Incremental SAT Solving with Selectors

In this paper, we focus on improving SAT engines for incremental SAT Solving (see
[23] for a detailed introduction). In incremental SAT solving, the same solver is ran on a
number of instances close to each others and the solver state is memorized between each
call. For instance, the final state of variable ordering [2], polarity cache [17] and clause
deletion/restarts strategies [18,14,19] can be easily saved for the next call. However,
in most of the cases, i.e. as soon as initial constraints can be removed, learned clauses
can not be directly reused. This is why it is necessary to add “assumptions” to the
SAT solver. Assumptions in SAT solvers were already proposed in early versions of
Minisat [4] and are daily used in many distinct applications (s.t. bounded model
checking [7], extraction of a minimal unsatisfiable set [8] . . . ). A set of assumptionsA is
defined as a set of literals that are assumed to be true and which are picked for decisions
first, always in the top of the search tree ([23] proposed another way of handling them,
which can be easily used with our approach). Then, if during the search, it is needed
to flip the assignment of one of these assumptions to false, the problem is unsatisfiable
under the initial assumptions.
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Fig. 1. Comparison of Glucose 2.1 performances against Minisat in Muser. Figure (Left)
us the loglog plot of Minisat (x-axis) against Glucose (y-axis) in CPU time (seconds). Figure
(Right) is the loglog plot of Minisat (x-axis) agains Glucose (y-axis) in number of calls to
the SAT solver by Muser.

When an assumption is used for activating/deactivating a clause (one fresh assump-
tion for each clause), it is called a selector for this clause: if the literal is false (resp. true)
under the current assumptions, then the clause is activated (resp. deactivated). There-
fore, since these additional literals appear only positively in the formula, the learned
clauses obtained during the search process keep track of all the initial clauses used
to produce them. Then, removing the set of clauses which are derived from an initial
clause with selector a can be easily performed by simply assuming a to true.

2.2 Using Glucose in Minimal UNSAT Set Extraction Problem

As a typical application of incremental SAT solving with selectors, we focus on the
minimal unsatisfiable set (MUS) extraction problem [24]. In this approach, a unique
selector is added to each clause and the SAT solver is incrementally called with most of
these additional literals as assumptions. This application is quite typical and challenging
for incremental SAT solvers: the number of assumptions is usually quite large (equal
to the number of clauses in the formula) and the SAT solver is called many times.
We rely our work on the highly tunable and open source Muser [11] but we focus
only on the SAT engine. Let us precise that we use Muser with default options, i.e.
the hybrid algorithm is used (essentially deletion-based) with clause-set refinement and
model rotation (see [11] for more details). Note also that we use the 300 benchmarks
from the MUS track of the SAT 2011 competition. Experiments are done on Intel XEON
X5550 quad-cores 2.66 GHz with 32Gb RAM. CPU time limit is 2400s.

If we want to be able to efficiently reuse learned clauses, it is essential to be able
to distinguish which clauses may be useful for futures calls. In this context, it may be
a good choice to use Glucose [14], a variant of Minisat [4] based on an efficient
scoring mechanism of clauses, called Literal Block Distance (LBD). So, as a starting
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point for our work, we compared the integration of Glucose against Minisat in
Muser. Our surprisingly bad results are summarized Fig. 2.2 (for each scatter plot of
the paper, we provide the number of benchmarks solved by each method, the number of
benchmarks solved by both methods (259 for Fig 1(a)) and the less points are located
in the area of a given method, the best this last one is). The two figures are quite inter-
esting, however. On one side, the CPU time comparison, Figure 1(a), is in clear favor
of Minisat. On the other side, Figure 1(b) shows this comparison from a number of
SAT calls point of view. On this last figure, the comparison is not so clear, and some in-
teresting points show that Glucose can sometimes require less SAT calls. Moreover,
we found that, over the 259 run both solved by Glucose and Minisat, 103 runs
of Glucose have fewer calls than Minisat, 68 runs of Glucose have more calls
than Minisat and 88 runs have the same number of calls. Using Glucose instead
of Minisat seems a good option if we can fix the CPU time problem. Intuitively,
we think that Glucose is able to derive proofs with fewer initial clauses, thus help-
ing Muser to quickly converge. Together with the idea of proposing a better clause
database management, this was our initial motivations for this work.

How can we explain such a disappointing result? Glucose is updating the scores
of clauses during unit-propagation. Thus, when clauses tend to have thousands of liter-
als, it adds a prohibitive penalty. However, it is also important to notice that, on hard
MUS problems, Minisat showed (not reported here) some limitations for scaling-
up, mainly due to memory consumption problems (6 Memory out). On hard MUS
problems, one may have to handle hundreds of hard UNSAT calls, and the ability of
Glucose to handle long runs with many learned clauses may be crucial here. In the
following, we will show how it is possible to adapt Glucose mechanisms to incre-
mental SAT solving.

3 Improving Incremental SAT Engines

3.1 Assumptions and LBD

In Minisat, each assumption has its own decision level, except when it was prop-
agated by other assumptions assignments. Thus, in most of the cases, the LBD score
will be dominated by the number of assumptions in the clause. For most of the learned
clauses, this value will be quickly approximating its size. Given the fact that, in addi-
tion, the LBD score is very discriminating (clauses of LBD n+ 1 are significantly less
important than clauses of LBD n), we must get rid of assumption literals during LBD
scoring. We propose to adapt the LBD by simply skipping assumption literals during
its computation. This new LBD scoring will be called hereafter “New LBD”.

Tab. 1 shows some statistics about the above remark. On four representative in-
stances, we detail the initial LBD score obtained and the new LBD score as previously
described. As we can see, it is clear that using the initial LBD score is not meaningful
in the context of SAT solving with selectors. The second part of Tab. 1 shows the same
statistics with the New LBD definition. As one may observe, the CPU time is signifi-
cantly improved. Moreover, LBD scores are smaller and are no more related to the size
of learned clauses (when counting assumptions). Furthermore, average size of learned
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Table 1. For some characteristics instances, we provide the number of clauses and, for each LBD
score, we also report the time to compute the MUS, the maximum and average size, and the LBD
of learned clauses

LBD New LBD

size LBD size LBD
Instance #C time avg max avg max time avg max avg max

fdmus b21 96 8541 29 1145 5980 1095 5945 11 972 6391 8 71
longmult6 8853 46 694 3104 672 3013 14 627 2997 11 61
dump vc950 360419 110 522 36309 498 35873 67 1048 36491 8 307
g7n 15110 190 1098 16338 1049 16268 75 1729 17840 27 160

clauses may be larger for the new LBD score than for the initial one: good LBD clauses
are not necessarily short ones.

However, as we can see Fig. 2, even if we increase Glucose performances, this
new version is very close to Minisat (in number of solved instances), but slower. At
this stage, such results are relatively disappointing: Glucose is supposed to be more
efficient than Minisat in non incremental SAT solving. In order to improve its overall
performances, we propose hereafter some very important improvements.
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(272 solved)
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(a) Glucose vs. Glucose with New LBD
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Fig. 2. Comparison of Glucose 2.1 performances against Glucose with a new LBD scoring
in Muser. Fig. 2(a) is the loglog plot of Glucose 2.1 (x-axis) against Glucose with New
LBD (y-axis) in CPU time (seconds). Fig. 2(b) is the loglog plot of Minisat (x-axis) against
Glucose with New LBD (y-axis) in CPU time (seconds).

3.2 Improving Performances

As pointed out Tab 1, the produced learned clauses can be quite large. For example,
the average size of learned clauses on instance g7n is 1729 (with clauses with more
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than 10,000 literals). Thus, even a simple operation like clause traversal may quickly
induce a prohibitive overhead when applied with selectors. This is very problematic
as fundamental operations of SAT solvers are based on clauses traversals, i.e. BCP, up-
dates of LBD scores or even simplification of clauses database (when removing satisfied
clauses). Considering this operation as one of the main bottleneck for SAT solving with
selectors, we propose several improvements specialized for these operations.

Efficient Traversal of Clauses with Many Selectors. As previously noticed, in most
of the cases, learned clauses will be dominated by selector literals but, as they are not
taken into account in the new LBD scoring, we do not have to check them during clauses
traversals. Moreover, since these literals can be used as watchers during the BCP pro-
cess, it is impossible to split the set of clause’s literals into two independent sets (se-
lectors/non selectors): we must be able to visit selector literals when needed. However,
it is possible to store, in each learned clause, the number of initial literals and the to-
tal size of the clause (obviously, the number of selectors is redundant). In addition, we
propose to push all the selectors at the end of the learned clauses. As a first, immediate,
impact of this new clause arrangement, we can hope to speed up LBD score updates:
we can stop the traversal as soon as all initial literals have been checked (number of
initial literals in the clause is known).

Improving BCP. If the above data structure modification allows to speed up LBD
updates, the BCP engine also needs to traverse clauses when looking for new watchers.
Suppose that, during the propagation of an assumption, the new watcher a for a clause
c is chosen among the other selectors of the clause. Then, if a is assigned to false, c
will be traversed again. This can be easily avoided: when propagating an assumption,
we always traverse the entire clause in order to find a new watcher which is true (the
clause is satisfied) or which is not a selector. Because Glucose is firing very frequent
restarts, we also limit any restart to backtrack only until the decision level of the first
non-selector decision level.

Database Simplification. The last important modification we introduced is related to
the removal of satisfied learned clauses. This is very important in the case of Muser:
each time a clause is known to be out of a MUS, its associated selector is definitively set
to true. Then, all learned clauses where it appears will be satisfied. However, scanning
all literals of all learned clauses to find these true literals can break the potential benefit
of this technique. In the new version of Glucose, we limit the search for satisfied
learned clauses to the two watched literals only. Since we changed the BCP process
(see above), we expect that this will be sufficient to find and remove most satisfied
clauses.

As a last small modification of Glucose, we keep current indicators for clause
database cleanings and restarts from one run to the other, allowing the behavior of the
solver to reflect the very high frequency of runs in most incremental SAT solving.

3.3 Overall Evaluation

We implemented all the above described techniques and called it GlucoseInc. Fig. 3
compares GlucoseInc against Minisat and Glucose. Results are clear: this new
version outperforms the other methods (see also Fig. 4).
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Fig. 3. Comparison of Glucose 2.1 (resp. Minisat) performances against GlucoseInc in
Muser. Fig. 3(a) (resp. 3(b)) use the loglog plot of Glucose (resp. Minisat), x-axis, against
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needed to solve them if they were ran in parallel

As we wrote in section 2.2, our goal was to improve performances of incremental
SAT solving, and thus, performances for each call to the SAT solver. Tab. 2 shows that
this goal is reached. It provides for Minisat, Glucose and GlucoseInc and for
the same previous 4 instances, the number of SAT calls and the average time needed
for each of them. Interestingly enough, one can notice that for each instance the total
time needed to extract a MUS is improved, even if more SAT calls may be necessary.
This is unfortunately a general remark: by dropping the quality of the LBD measure, we
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Table 2. For representative instances, we provide the number of clauses, and for each incremental
SAT engine, we provide the number of calls to the SAT solver and the average time needed for
each call. For GlucoseInc, we also provide the total time (for other methods, this is done in
Tab. 1)

Minisat Glucose GlucoseInc

Instance #C #SAT calls avg #SAT calls avg time #SAT calls avg

fdmus b21 96 8541 2103 0.009 2134 0.02 11 2153 0.004
longmult6 8853 706 0.01 1027 0.03 13 748 0.01
dump vc950 360419 7 135 11 11.5 65 9 7.2
g7n 70492 4791 0.02 4393 0.08 67 4779 0.01

loose the first observation we made. Now, using Glucose instead of Minisat does
not show any improvements in the number of SAT calls by Muser.

4 Conclusion

One of the reasons for the success of SAT solvers is certainly their ability to be used as
Black Boxes in many distinct applications. However, when a very specific new use is
proposed, it may be important to adapt SAT solvers technologies accordingly, directly
at the engine level. Incremental SAT solving is typically a new field of research for SAT
solvers technologies. In this paper, we proposed to focus on an intensive incremental
SAT solving task, Minimal UNSAT Set extraction, but by working only on the SAT
engine level. This study led to an impressive improvement in MUS extraction perfor-
mances, and we believe that our approach can also lead to substantial – and direct –
improvements in many other applications relying on incremental SAT solving.

By playing only on the SAT engine, we were able to drastically improve the per-
formances of glucose on MUS extraction. It has to be pointed out that the set of
problems we based our study on is now solved at 96% (on 2400s). So, there is a chance
that the remaining problems are very hard, and may not be a good set of problems for
further improvements. For instance, we were able to solve only 4 additional problems
by increasing the CPU time to 15000 seconds on the unsolved problems. Moreover, the
efficient handling of clauses by glucose allows it to have no Memory Out problems
where Minisat had 6 Memory Out under the same conditions.

This preliminary work has a lot of promising perspectives. For example, we plan to
study dependencies beween selectors and to take them into account in order to improve
performances. An other interesting future work is related to the adaptation of the SAT
solver (in term of heuristics, restarts, ...) with respect to previous calls.
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7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4), 543–560 (2003)

8. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proc. FMCAD 2010, pp. 221–
229 (2010)

9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.)
SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

10. Bradley, A.R.: IC3 and beyond: Incremental, inductive verification. In: Madhusudan, P., Se-
shia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, p. 4. Springer, Heidelberg (2012)

11. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In:
Proc. FMCAD 2011, pp. 37–40 (2011)
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Abstract. Clique-width is a graph invariant that has been widely stud-
ied in combinatorics and computer science. However, computing the
clique-width of a graph is an intricate problem, the exact clique-width
is not known even for very small graphs. We present a new method for
computing the clique-width of graphs based on an encoding to proposi-
tional satisfiability (SAT) which is then evaluated by a SAT solver. Our
encoding is based on a reformulation of clique-width in terms of parti-
tions that utilizes an efficient encoding of cardinality constraints. Our
SAT-based method is the first to discover the exact clique-width of vari-
ous small graphs, including famous graphs from the literature as well as
random graphs of various density. With our method we determined the
smallest graphs that require a small pre-described clique-width.

1 Introduction

Clique-width is a fundamental graph invariant that has been widely studied in
combinatorics and computer science. Clique-width measures in a certain sense
the “complexity” of a graph. It is defined via a graph construction process involv-
ing four operations where only a limited number of vertex labels are available;
vertices that share the same label at a certain point of the construction process
must be treated uniformly in subsequent steps. This graph composition mech-
anism was first considered by Courcelle, Engelfriet, and Rozenberg [10,11] and
has since then been an important topic in combinatorics and computer science.

Graphs of small clique-width have advantageous algorithmic properties. Al-
gorithmic meta-theorems show that large classes of NP-hard optimization prob-
lems and #P-hard counting problems can be solved in linear time on classes
of graphs of bounded clique-width [7,8]. Similar results hold for the graph in-
variant treewidth, however, clique-width is more general in the sense that graphs
of small treewidth also have small clique-width, but there are graphs of small
clique-width but arbitrarily high treewidth [9,6]. Unlike treewidth, dense graphs
(e.g., cliques) can also have small clique-width.

All these algorithms for graphs of small clique-width require that a certificate
for the graph having small clique-width is provided. However, it seems that
computing the certificate, or just deciding whether the clique-width of a graph
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is bounded by a given number, is a very intricate combinatorial problem. More
precisely, given a graph G and an integer k, deciding whether the clique-width of
G is at most k is NP-complete [16]. Even worse, the clique-width of a graph with
n vertices of degree greater than 2 cannot be approximated by a polynomial-
time algorithm with an absolute error guarantee of nε unless P = NP, where
0 ≤ ε < 1 [16]. In fact, it is even unknown whether graphs of clique-width
at most 4 can be recognized in polynomial time [5]. There are approximation
algorithms with an exponential error that, for fixed k, compute f(k)-expressions
for graphs of clique-width at most k in polynomial time (where f(k) = (23k+2−1)
by [30], and f(k) = 8k − 1 by [29]).

Because of this intricacy of this graph invariant, the exact clique-width is not
known even for very small graphs.

Clique-width via SAT. We present a new method for determining the clique-
width based on a sophisticated SAT encoding which entails the following ideas:

1. Reformulation. The conventional construction method for determining the
clique-width of a graph consists of many steps. In the worst case, the number
of steps is quadratic in the number of vertices. Translating this construction
method into SAT would result in large instances, even for small graphs. We
reformulated the problem in such a way that the number of steps is less
than the number of vertices. The alternative construction method allows us
to compute the clique-width of much larger graphs.

2. Representative encoding. Applying the frequently-used direct encoding [35]
on the reformulation results in instances that have no arc consistency [18],
i.e., unit propagation may find conflicts much later than required. We de-
veloped the representative encoding that is compact and realizes arc consis-
tency.

Experimental Results. The implementation of our method allows us for the first
time to determine the exact clique-width of various graphs, including famous
graphs known from the literature, as well as random graphs of various density.

1. Clique-width of small Random Graphs. We determined experimentally how
the clique-width of random graphs depends on the density. The clique-width
is small for dense and sparse graphs and reaches its maximum for edge-
probability 0.5. The larger n, the steeper the increase towards 0.5. These
results complement the asymptotic results of Lee et al. [27].

2. Smallest Graphs of Certain Clique-width. In general it is not known how
many vertices are required to form a graph of a certain clique-width. We
provide these numbers for clique-width k ∈ {1, . . . , 7}. In fact, we could
compute the total number of connected graphs (modulo isomorphism) with
a certain clique-width with up to 10 vertices. For instance, there are only 7
connected graphs with 8 vertices and clique-width 5 (modulo isomorphism),
and no graphs with 9 vertices and clique-width 6. There are 68 graphs with
10 vertices and clique-width 6. The smallest one has 18 edges.
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3. Clique-width of Famous Named Graphs. Over the last 50 years, researchers in
graph theory have considered a large number of special graphs. These special
graphs have been used as counterexamples for conjectures or for showing the
tightness of combinatorial results. We considered several prominent graphs
from the literature and computed their exact clique-width. These results
may be of interest for people working in combinatorics and graph theory.

Related Work. We are not aware of any implemented algorithms that compute
the clique-width exactly or heuristically. However, algorithms have been im-
plemented that compute upper bounds on other width-based graph invariants,
including treewidth [14,19,26], branchwidth [33], Boolean-width [24], and rank-
width [2]. Samer and Veith [31] proposed a SAT encoding for the exact compu-
tation of treewidth. Boolean-width and rank-width can be used to approximate
clique-width, however, the error can be exponential in the clique-width; in con-
trast, treewidth and branchwidth can be arbitrarily far from the clique-width,
hence the approximation error is unbounded [4].

Our SAT encoding is based on a new characterization of clique-width that is
based on partitions instead of labels. A similar partition-based characterization
of clique-width, has been proposed by Heggernes et al. [23]. There are two main
differences to our reformulation. Firstly, our characterization of clique-width uses
three individual properties that can be easily expressed by clauses. Secondly, our
characterization admits the “parallel” processing of several parts of the graph
that are later joined together.

Full Version. Because of space constraints some proofs have been omitted
or shortened. Detailed proofs can be found in the full version, available at
arxiv.org/abs/1304.5498.

2 Preliminaries

2.1 Formulas and Satisfiability

We consider propositional formulas in Conjunctive Normal Form (CNF formu-
las, for short), which are conjunctions of clauses, where a clause is a disjunction
of literals, and a literal is a propositional variable or a negated propositional vari-
ables. A CNF formula is satisfiable if its variables can be assigned true or false,
such that each clause contains either a variable set to true or a negated variable
set to false. The satisfiability problem (SAT) asks whether a given formula is
satisfiable.

2.2 Graphs and Clique-Width

All graphs considered are finite, undirected, and without self-loops. We denote a
graphG by an ordered pair (V (G), E(G)) of its set of vertices and its set of edges,
respectively. An edge between vertices u and v is denoted uv or equivalently vu.
For basic terminology on graphs we refer to a standard text book [13].

arxiv.org/abs/1304.5498
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Let k be a positive integer. A k-graph is a graph whose vertices are labeled
by integers from {1, . . . , k}. We consider an arbitrary graph as a k-graph with
all vertices labeled by 1. We call the k-graph consisting of exactly one vertex v
(say, labeled by i) an initial k-graph and denote it by i(v). The clique-width of
a graph G is the smallest integer k such that G can be constructed from initial
k-graphs by means of repeated application of the following three operations.

1. Disjoint union (denoted by ⊕);
2. Relabeling: changing all labels i to j (denoted by ρi→j);
3. Edge insertion: connecting all vertices labeled by i with all vertices labeled

by j, i �= j (denoted by ηi,j or ηj,i); already existing edges are not doubled.

A construction of a k-graph using the above operations can be represented by an
algebraic term composed of ⊕, ρi→j , and ηi,j , (i, j ∈ {1, . . . , k}, and i �= j). Such
a term is called a k-expression defining G. Thus, the clique-width of a graph G
is the smallest integer k such that G can be defined by a k-expression.

Example 1. The graph P4 = ({a, b, c, d}, {ab, bc, cd}) is defined by the 3-expres-
sion η2,3(ρ2→1(η2,3(η1,2(1(a)⊕ 2(b))⊕ 3(c)))⊕ 2(d)). Hence cwd(P4) ≤ 3. +

2.3 Partitions

As partitions play an important role in our reformulation of clique-width, we
recall some basic terminology. A partition of a set S is a set P of nonempty
subsets of S such that any two sets in P are disjoint and S is the union of all
sets in P . The elements of P are called equivalence classes. Let P, P ′ be partitions
of S. Then P ′ is a refinement of P if for any two elements x, y ∈ S that are in
the same equivalence class of P ′ are also in the same equivalence class of P (this
entails the case P = P ′).

3 A Reformulation of Clique-Width without Labels

Initially, we developed a SAT encoding of clique-width based on k-expressions.
Even after several optimization steps, this encoding was only able to determine
the clique-width of graphs consisting of at most 8 vertices. We therefore devel-
oped a new encoding based on a reformulation of clique-width which does not use
k-expressions. In this section we explain this reformulation, in the next section
we will discuss how it can be encoded into SAT efficiently.

Consider a finite set V , the universe. A template T consists of two parti-
tions cmp(T ) and grp(T ) of V . We call the equivalence classes in cmp(T ) the
components of T and the equivalence classes in grp(T ) the groups of T . For
some intuition about these concepts, imagine that components represent induced
subgraphs and that groups represent sets of vertices in some component with
the same label in a k-expression. A derivation of length t is a finite sequence
D = (T0, . . . , Tt) satisfying the following conditions.
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D1. |cmp(T0)| = |V | and |cmp(Tt)| = 1.
D2. grp(Ti) is a refinement of cmp(Ti), 0 ≤ i ≤ t.
D3. cmp(Ti−1) is a refinement of cmp(Ti), 1 ≤ i ≤ t.
D4. grp(Ti−1) is a refinement of grp(Ti), 1 ≤ i ≤ t.

We would like to note that D1 and D2 together imply that |grp(T0)| = |V |.
Thus, in the first template T0 all equivalence classes (groups and components)
are singletons, and when we progress through the derivation, some of these sets
are merged, until all components are merged into a single component in the last
template Tt.

The width of a component C ∈ cmp(T ) is the number of groups g ∈ grp(T )
such that g ⊆ C. The width of a template is the maximum width over its com-
ponents, and the width of a derivation is the maximum width over its templates.
A k-derivation. is a derivation of width at most k. A derivation D = (T0, . . . , Tt)
is a derivation of a graph G = (V,E) if V is the universe of the derivation and
the following three conditions hold for all 1 ≤ i ≤ t.
Edge Property: For any two vertices u, v ∈ V such that uv ∈ E, if u, v are in

the same group in Ti, then u, v are in the same component in Ti−1.
Neighborhood Property: For any three vertices u, v, w ∈ V such that uv ∈ E

and uw /∈ E, if v, w are in the same group in Ti, then u, v are in the same
component in Ti−1.

Path Property: For any four vertices u, v, w, x ∈ V , such that uv, uw, vx ∈ E
and wx /∈ E, if u, x are in the same group in Ti and v, w are in the same
group in Ti, then u, v are in the same component in Ti−1.

The neighborhood property and the path property could be merged into a single
property if we do not insist that all mentioned vertices are distinct. However,
two separate properties provide a more compact SAT encoding.

The following example illustrates that a derivation can define more than one
graph, in contrast to a k-expression, which defines exactly one graph.

Example 2. Consider the derivationD = (T0, . . . , T3) with universe V = {a, b, c, d}
and

cmp(T0) = {{a}, {b}, {c}, {d}}, grp(T0) = {{a}, {b}, {c}, {d}},
cmp(T1) = {{a, b}, {c}, {d}}, grp(T1) = {{a}, {b}, {c}, {d}},
cmp(T2) = {{a, b, c}, {d}}, grp(T2) = {{a}, {b}, {c}, {d}},
cmp(T3) = {{a, b, c, d}}, grp(T3) = {{a, b}, {c}, {d}}.

The width of D is 3. Consider the graph G = (V, {ab, ad, bc, bd}). To see that D is
a 3-derivation of G, we need to check the edge, neighborhood, and path proper-
ties. We observe that a, b are the only two vertices such that ab ∈ E(G) and both
vertices appear in the same group of some Ti (here, we have i = 3). To check
the edge property, we only need to verify that a, b are in the same component
of T2, which is true. For the neighborhood property, the only relevant choice of
three vertices is a, b, c (bc ∈ E(G), ac /∈ E(G), and a, b in a group of T3). The
neighborhood property requires that b, c are in the same component in T2, which
is the case. The path property is satisfied since there is no template in which
two pairs of vertices belong to the same group, respectively.
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a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

Fig. 1. All connected graphs with four vertices (up to isomorphism). The 3-derivation
of Example 2 defines all six graphs. The clique-width for all, but the first graph is 2.

Similarly we can verify that D is a derivation of the graph G′ = (V, {ab,
bc, cd}). In fact, for all connected graphs with four vertices, there exists an
isomorphic graph that is defined by D (see Figure 1). However, D is not a
derivation of the graphG′′ = (V, {ab, ac, bd, cd}) since the neighborhood property
is violated: bd ∈ E(G′′) and ad /∈ E(G′′), a, b belong to the same group in T3,
while a, d do not belong to the same component in T2. +
We call a derivation (T0, . . . , Tt) to be strict if |cmp(Ti−1)| > |cmp(Ti)| holds for
all 1 ≤ i ≤ t. It is easy to see that if two consecutive templates in a derivation
of a graph G have the same components, then one of the two templates can be
omitted, and we still have a derivation of G. This yields the next lemma, whose
detailed proof can be found in the full version of this paper.

Lemma 1. If G has a k-derivation, it has a strict k-derivation.

Lemma 2. Every strict k-derivation of a graph with n vertices has length at
most n− 1.

Proof. Let (T0, . . . , Tt) be a strict k-derivation of a graph with n vertices. Since
|cmp(T0)| = n and |cmp(T0)| = 1, it follows that t ≤ n− 1. ��
In the proofs of the next two lemmas we need the following concept of a k-expres-
sion tree, which is the parse tree of a k-expression equipped with some additional
information. Let φ be a k-expression for a graph G = (V,E). Let Q be the parse
tree of φ with root r. Consider a node x of Q and let φx be the subexpression of
φ whose parse tree is the subtree of Q rooted at x. Then x is labeled with the
k-graph Gx constructed by the k-expression φx. Thus the leaves of Q are labeled
with initial k-graphs and the root r is labeled with a labeled version of G. One
⊕-node of the parse tree can represent several directly subsequent ⊕-operations
(e.g., the operation (x ⊕ y) ⊕ z can be represented by a single node with three
children). Evidently, k-expressions and their k-expression trees can be effectively
transformed into each other.

We introduce some additional terminology on k-expression trees. We call a
non-leaf node of Q an ⊕-node, η-node, or ρ-node, according to the operation it
represents. We define the rank R(x) of node x of Q as the largest number of
⊕-nodes that appear on a path from a leaf of Q to x. Hence leaves have rank 0.
We denote the set of nodes of Q of rank i by Vi(Q).

Lemma 3. From a k-expression of a graph G we can obtain a k-derivation of G
in polynomial time.
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Proof. Let φ be a k-expression of G = (V,E) and let Q be the corresponding
k-expression tree. We let t := R(r) and define a derivation D = (T0, . . . , Tt)
by setting cmp(Ti) = {V (Gx)) : x ∈ Vi(Q) } and grp(Ti) =

⋃
x∈Vi(Q) grp(Gx)

where grp(Gx) denotes the partition of V (Gx) into sets of vertices that have the
same label. By construction, D is a derivation with universe V . Furthermore,
since φ is a k-expression, |grp(Gx)| ≤ k for all nodes x of Q. Hence D is a
k-derivation. It is not difficult to verify that D is a k-derivation of G by checking
the edge, neighborhood, and path properties. Due to space limitations, this part
of the proof is only in the full version of this paper. The above procedure for
generating the k-derivation can clearly be carried out in polynomial time. ��

Example 3. Consider the 3-expression φ for the graph P4 of Example 1. Applying
the procedure described in the proof of Lemma 3 we obtain the 3-derivation D
of Example 2. +

Lemma 4. From a k-derivation of a graph G we can obtain a k-expression of G
in polynomial time.

Proof. Due to space restrictions we only sketch the proof; a detailed proof can
be found in the full version of the paper. Given a k-derivation D = (T0, . . . , Tt)
of a graph G = (V,E), we first construct a k-expression φ⊕ that only contains
⊕-operations and initial graphs with label 1. These ⊕-operations reflect how
components are merged along the derivation D. Next we insert ρ-operations di-
rectly before ⊕-operations and obtain a k-expression φ⊕,ρ. These ⊕-operations
reflect how groups are merged along the derivation D. In a last step we insert
η-operations. For each edge uv ∈ E we take the smallest subexpression of φ⊕,ρ

that defines a graph containing both u and v (the outermost operation of this
subexpression is clearly ⊕). Let a, b be the labels of u, v in this graph, respec-
tively. It follows from the edge property that a �= b. Right after this subexpression
we insert the operation ηa,b. It follows from the neighborhood and path proper-
ties that this η-operation does not insert any edges not contained in E. ��
We note that we could have saved some ρ-operations in the proof of Lemma 4.
In particular the k-expression produced may contain ρ-operations where the
number of different labels before and after the application of the ρ-operation
remains the same. It is easy to see that such a ρ-operations can be omitted if we
change labels of some initial k-graphs accordingly.

Example 4. Consider the derivation D of graph G in Example 2. We construct
a 3-expression of G using the procedure as described in the proof of Lemma 4.
First we obtain φ⊕ = ((1(a)⊕ 1(b))⊕ 1(c)) ⊕ 1(d). Next we insert ρ operations
to represent how the groups evolve through the derivation: φ⊕,ρ = ρ1→2((1(a)⊕
ρ1→2(1(b))⊕ρ1→31(c)))⊕1(d). Finally we add η operations, and obtain φ⊕,ρ,η =
η1,2(ρ1→2(η2,3(η1,2(1(a)⊕ ρ1→2(1(b)))⊕ ρ1→31(c)))⊕ 1(d)). +
By Lemma 2 we do not need to search for k-derivations of length> n−1 when the
graph under consideration has n vertices. The next lemma improves this bound
to n − k + 1 which provides a significant improvement for our SAT encoding,
especially if the graph under consideration has large clique-width.
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Lemma 5. Let 1 ≤ k ≤ n. If a graph with n vertices has a k-derivation, then
it has a k-derivation of length n− k + 1.

Proof. Due to space restrictions we sketch the proof only, a detailed proof can
be found in the full version of this paper. Let D = (T0, . . . , Tt) be a k-derivation
of a graph G = (V,E) with |V | = n. By Lemma 1 we may assume that D is
strict. Let i be the largest index 1 ≤ i ≤ t where all components of Ti have size
at most k and put � = t − i. It is not difficult to see that � ≤ n− k. We define
a new template T ′

i with cmp(T ′
i ) = cmp(Ti) and grp(T ′

i ) = grp(T0), and we set
D′ = (T0, T

′
i , Ti+1, . . . , Tt). It can be verified that D′ is a k-derivation of G. ��

Example 5. Again, consider the derivation D of Example 2. D defines P4 which
has clique-width 3 [9]. According to Lemma 5, it should have a derivation of
length n− k + 1 = 4− 3 + 1 = 2. We can obtain such a derivation by removing
T1 from D, which gives D′ = (T0, T2, T3). +
By combining Lemmas 3, 4, and 5, we arrive at the main result of this section.

Proposition 1. Let 1 ≤ k ≤ n. A graph G with n nodes has clique-width at
most k if and only if G has a k-derivation of length at most n− k + 1.

4 Encoding a Derivation of a Graph

Let G = (V,E) be graph, and t > 0 an integer. We are going to construct a CNF
formula Fder(G, t) that is satisfiable if and only if G has a derivation of length t.
We assume that the vertices of G are given in some arbitrary but fixed linear
order <.

For any two distinct vertices u and v of G and any 0 ≤ i ≤ t we introduce a
component variable cu,v,i. Similarly, for any two distinct vertices u and v of G
with u < v and any 0 ≤ i ≤ t we introduce a group variable gu,v,i. Intuitively,
cu,v,i or gu,v,i are true if and only if u and v are in the same component or group,
respectively, in the ith template of an implicitly represented derivation of G.

The formula Fder(G, t) is the conjunction of all the clauses described below.
The following clauses represent the conditions D1–D4.

(c̄u,v,0) ∧ (cu,v,t) ∧ (cu,v,i ∨ ḡu,v,i) ∧ (c̄u,v,i−1 ∨ cu,v,i) ∧ (ḡu,v,i−1 ∨ gu,v,i)
for u, v ∈ V , u < v, 0 ≤ i ≤ t.

We further add clauses that ensure that the relations of being in the same group
and of being in the same component are transitive.

(c̄u,v,i ∨ c̄v,w,i ∨ cu,w,i) ∧ (c̄u,v,i ∨ c̄u,w,i ∨ cv,w,i) ∧ (c̄u,w,i ∨ c̄v,w,i ∨ cu,v,i) ∧
(ḡu,v,i ∨ ḡv,w,i ∨ gu,w,i) ∧ (ḡu,v,i ∨ ḡu,w,i ∨ gv,w,i) ∧ (ḡu,w,i ∨ ḡv,w,i ∨ gu,v,i)

for u, v, w ∈ V , u < v < w, 0 ≤ i ≤ t.
In order to enforce the edge property we add the following clauses for any two
vertices u, v ∈ V with u < v, uv ∈ E and 1 ≤ i ≤ t:

(cu,v,i−1 ∨ ḡu,v,i).
Further, to enforce the neighborhood property, we add for any three vertices
u, v, w ∈ V with uv ∈ E and uw /∈ E and 1 ≤ i ≤ t, the following clauses.
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(cmin(u,v),max(u,v),i−1 ∨ ḡmin(v,w),max(v,w),i)

Finally, to enforce the path property we add for any four vertices u, v, w, x, such
that uv, uw, vx ∈ E, and wx /∈ E, u < v and 1 ≤ i ≤ t the following clauses:

(cu,v,i−1 ∨ ḡmin(u,x),max(u,x),i ∨ ḡmin(v,w),max(v,w),i)

The following statement is a direct consequence of the above definitions.

Lemma 6. Fder(G, t) is satisfiable if and only if G has a derivation of length t.

5 Encoding a k-Derivation of a Graph

In this section, we describe how the formula Fder(G, t) can be extended to encode
a derivation of width at most k. Ideally, one wants to encode that unit propa-
gation results in a conflict on any assignment of component and group variables
representing a derivation containing a component with more than k groups. First
we will describe the conventional direct encoding [35] followed by our represen-
tative encoding. Only the latter encoding realizes arc consistency [18].

5.1 Direct Encoding

We introduce new Boolean variables lv,a,i for v ∈ V , 1 ≤ a ≤ k, and 0 ≤ i ≤ t.
The purpose is to assign each vertex for each template a group number between 1
and k. The intended meaning of a variable lv,a,i is that in Ti, vertex v has group
number a. Let F (G, k, t) denote the formula obtained from Fder(G, t) by adding
the following three sets of clauses. The first ensures that every vertex has at
least one group number, the second ensures that every vertex has at most one
group number, and the third ensures that two vertices of the same group share
the same group number.

(lv,1,i ∨ lv,2,i ∨ · · · ∨ lv,k,i) for v ∈ V , 0 ≤ i ≤ t,
(l̄v,a,i ∨ l̄v,b,i) for v ∈ V , 1 ≤ a < b ≤ k, 0 ≤ i ≤ t,
(l̄u,a,i ∨ l̄v,a,i ∨ c̄u,v,i ∨ gu,v,i) ∧ (l̄u,a,i ∨ lv,a,i ∨ ḡv,w,i) ∧ (lv,a,i ∨ l̄v,a,i ∨ ḡu,v,i)

for u, v ∈ V , u < v, 1 ≤ a ≤ k, 0 ≤ i ≤ t.
Together with Lemma 6 this construction directly yields the following statement.

Proposition 2. Let G = (V,E) be graph and t = |V | − k + 1. Then F (G, k, t)
is satisfiable if and only if cwd(G) ≤ k.

Example 6. Let G = (V,E) and k = 2. Vertices u, v, w ∈ V in template Ti,
are in one component, but in different groups. Hence the corresponding com-
ponent variables are true, and the corresponding group variables are false. The
clauses containing the variables lu,a,i, lv,a,i, lw,a,i with a ∈ {1, 2} after removing
falsified literals are: (lu,1,i ∨ lu,2,i), (lv,1,i ∨ lv,2,i), (lw,1,i ∨ lw,2,i), (l̄u,1,i ∨ l̄v,1,i),
(l̄u,1,i ∨ l̄w,1,i), (l̄v,1,i∨ l̄w,1,i), (l̄u,2,i∨ l̄v,2,i), (l̄u,2,i ∨ l̄w,2,i), (l̄v,2,i ∨ l̄w,2,i). These
clauses cannot be satisfied, yet unit propagation will not result in a conflict.
Therefore, a SAT solver may not be able to cut off the current branch. +
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5.2 The Representative Encoding

To overcome the unit propagation problem of the direct encoding, as described
in Example 6, we propose the representative encoding which uses two types of
variables. First, for each v ∈ V and 1 ≤ i ≤ t we introduce a representative
variable rv,i. This variable, if assigned to true, expresses that vertex v is the
representative of a group in template Ti. In each group, only one vertex can be
the representative and we choose to make the first vertex in the lexicographical
ordering the representative. This results in the following clauses:

(rv,i ∨
∨

u∈V,u<v gu,v,i) ∧
∧

u∈V,u<v(r̄v,i ∨ ḡu,v,i) for v ∈ V , 0 ≤ i ≤ t

Additionally we introduce auxiliary variables to efficiently encode that the num-
ber of representative vertices in a component is at most k. These auxiliary vari-
ables are based on the order encoding [34]. Consider a (non-Boolean) variable
Lv,i with domain D = {1, . . . , k}, whose elements denote the group number of
vertex v in template Ti. In the direct encoding, we used k variables lv,a,i with
a ∈ D. Assigning lv,a,i = 1 in that encoding means Lv,i = a. Alternatively, we
can use order variables o>v,a,i with v ∈ V , a ∈ D \ {k}, 0 ≤ i ≤ t. Assigning
o>v,a,i = 1 means Lv,i > a. Consequently, o

>
v,a,i = 0 means Lv,i ≤ a.

Example 7. Given an assignment to the order variables o>v,a,i, one can easily
construct the equivalent assignment to the variables in the direct encoding (and
the other way around). Below is a visualization of the equivalence relation with
k = 5. In the middle is a binary representation of each of the k labels by con-
catenating the Boolean values to the order variables.

Lv = 1 ↔ lv,1,i = 1 ↔ 0000 ↔ o>v,1,i = o
>
v,2,i = o

>
v,3,i = o

>
v,4,i = 0

Lv = 2 ↔ lv,2,i = 1 ↔ 1000 ↔ o>v,1,i = 1, o>v,2,i = o
>
v,3,i = o

>
v,4,i = 0

Lv = 3 ↔ lv,3,i = 1 ↔ 1100 ↔ o>v,1,i = o
>
v,2,i = 1, o>v,3,i = o

>
v,4,i = 0

Lv = 4 ↔ lv,4,i = 1 ↔ 1110 ↔ o>v,1,i = o
>
v,2,i = o

>
v,3,i = 1, o>v,4,i = 0

Lv = 5 ↔ lv,5,i = 1 ↔ 1111 ↔ o>v,1,i = o
>
v,2,i = o

>
v,3,i = o

>
v,4,i = 1 +

Although our encoding is based on the variables from the order encoding, we use
none of the associated clauses. We implemented the original order [34], which
resulted in many long clauses and the performance was comparable to the direct
encoding.

Instead, we combined the representative and order variables. Our use of the
order variables can be seen as the encoding of a sequential counter [32]. We
would like to point out that if u and v are both representative vertices in the
same component of template Ti and u < v, then o

>
u,a,i = 0 and o>v,a,i = 1 must

hold for some 1 ≤ a < k. Consequently, o>u,k−1,i = 0 (vertex u has not the highest

group number in Ti), o
>
v,1,i = 1 (vertex v has not the lowest group number in

Ti), and o
>
u,a,i → o>v,a+1,i: These constraints can be expressed by the following

clauses.

(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,k−1,i) ∧ (c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ o>v,1,i) ∧∧
1≤a<k−1(c̄u,v,i ∨ r̄u,i ∨ r̄v,i ∨ ō>u,a,i ∨ o>v,a+1,i) for u, v ∈ V , u < v, 0 ≤ i ≤ t.
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Example 8. Consider a graph G = (V,E) with u, v, w, x ∈ V and the represen-
tative encoding with k = 3. We will show that if u,v,w, and x are all in the same
component and they are all representatives of their respective group numbers in
template Ti, then unit propagation will result in a conflict (because there are four
representatives and only three group numbers). Observe that all corresponding
component and representative variables are true. This example, with falsified
literals removed, contains the clauses (ō>u,2,i), (ō

>
u,1,i ∨ o>

v,2,i), (o
>
v,1,i), (ō

>
u,2,i),

(ō>u,1,i∨o>
w,2,i), (o

>
w,1,i), (ō

>
u,2,i), (ō

>
u,1,i∨o>x,2,i), (o>x,1,i), (ō>v,2,i), (ō>

v,1,i ∨ o>
w,2,i),

(o>w,1,i), (ō
>
v,2,i), (ō

>
v,1,i∨o>x,2,i), (o>x,1,i), (ō>w,2,i), (ō

>
w,1,i∨o>x,2,i), (o>x,1,i). Literals

that are falsified by unit clauses are shown in bold. Notice that (ō>v,1,i ∨ o>w,2,i)
is falsified, i.e., a conflicting clause. +

Both the direct and representative encoding require n(n + k − 1)(n − k + 2)
variables. The number of clauses depends on the set of edges. In worst case, the
number of clauses can be O(n5 − n4k) due to the path condition.

6 Experimental Results

In this section we report the results we obtained by running our SAT encoding
on various classes of graphs. Given a graph G = (V,E), we compute that G has
clique-width k by determining for which value of k it holds that F (G, k, |V | −
k+1) is satisfiable and F (G, k−1, |V |−k+2) is unsatisfiable. We used the SAT
solver Glucose version 2.2 [1] to solve the encoded problems. Glucose solved the
hardest instances about twice as fast (or more) as other state-of-the-art solvers
such as Lingeling [3], Minisat [15] and Clasp [17]. We used a 4-core Intel Xeon
CPU E31280 3.50GHz, 32 Gb RAM machine running Ubuntu 10.04.

Although the direct and representative encodings result in CNF formulas of
almost equal size, there is a huge difference in costs to solve these instances.
To determine the clique-width of the famous named graphs (see below) using
the direct encoding takes about two to three orders of magnitude longer as
compared to the representative encoding. For example, we can establish that
the Paley graph with 13 vertices has clique-width 9 within a few seconds using
the representative encoding, while the solver requires over an hour using the
direct encoding. Because of the huge difference in speed, we discarded the use
of the direct encoding in the remainder of this section.

We noticed that upper bounds (satisfiable formulas) are obtained much faster
than lower bounds (unsatisfiable formulas). The reason is twofold. First, the
whole search space needs to be explored for lower bounds, while for upper
bounds, one can be “lucky” and find a solution fast. Second, due to our en-
coding, upper bound formulas are smaller (due to a smaller t) which makes
them easier. Table 1 shows this for a random graph with 20 vertices for the
direct encoding and the representative encoding.

We examined whether adding symmetry-breaking predicates could improve
performance. We used Saucy version 3 for this purpose [25]. After the addition of
the clauses with representative variables, the number of symmetries is drastically
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Table 1. Runtimes in seconds of the direct and representative encoding on a random
graph with 20 vertices and 95 edges for different values of k. Up to k = 9 the formulas
are unsatisfiable, afterwards they are satisfiable. Timeout (TO) is 20,000 seconds.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16

direct 1.39 14.25 101.1 638.5 18,337 TO TO TO TO 30.57 0.67 0.50 0.10 0.10
repres 0.62 2.12 8.14 12.14 33.94 102.3 358.6 9.21 0.40 0.35 0.32 0.29 0.29 0.28

reduced. However, one can generate symmetry-breaking predicates for Fder(G, t)
and add those instead. Although it is helpful in some cases, the average speed-up
was between 5 to 10%.

Our experimental computations are ongoing. Below we report on some of the
results we have obtained so far.

6.1 Random Graphs

The asymptotics of the clique-width of random graphs have been studied by Lee
et al. [27]. Their results show that for random graphs on n vertices the following
holds asymptotically almost surely: If the graphs are very sparse, with an edge
probability below 1/n, then clique-width is at most 5; if the edge probability is
larger than 1/n, then the clique-width grows at least linearly in n. Our first group
of experiments complements these asymptotic results and provides a detailed
picture on the clique-width of small random graphs. We have used the SAT
encoding to compute the clique-width of graphs with 10, 15, and 20 vertices, with
the edge probability ranging from 0 to 1. A plot of the distribution is displayed
in Figure 2. It is interesting to observe the symmetry at edge probability 1/2,
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Fig. 2. Average clique-width of random graphs with edge probabilities between 0 and 1.
Each dot in the graph represents the average clique-width of 100 graphs.
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and the how the steepness of the curve increases with the number of vertices.
Note the “shoulders” of the curve for very sparse and very dense graphs.

6.2 The Clique-Width Numbers

For every k > 0, let nk denote the smallest number such that there exists a
graph with nk vertices that has clique-width k. We call nk the kth clique-width
number. From the characterizations known for graphs of clique-width 1, 2, and 3,
respectively [5], it is easy to determine the first three clique-width numbers (1, 2,
and 4). However, determining n4 is not straightforward, as it requires nontrivial
arguments to establish clique-width lower bounds. We would like to point out
that a similar sequence for the graph invariant treewidth is easy to determine,
as the complete graph on n vertices is the smallest graph of treewidth n − 1.
One of the very few known graph classes of unbounded clique-width for which
the exact clique-width can be determined in polynomial time are grids [23]; the
k× k grid with k ≥ 3 has clique-width k+1 [20]. Hence grids provide the upper
bounds n4 ≤ 9, n5 ≤ 16, n6 ≤ 25, and n7 ≤ 36. With our experiments we could
determine n4 = 6, n5 = 8, n6 = 10, n7 = 11, n8 ≤ 12, and n9 ≤ 13. It is known
that the path on four vertices (P4) is the unique smallest graph in terms of the
number of vertices with clique-width 3. We could determine that the triangular
prism (3-Prism) is the unique smallest graph with clique-width 4, and that there
are exactly 7 smallest graphs with clique-width 5. There are 68 smallest graphs
with clique-width 6 and one of them has only 18 edges. See Figure 3 for an
illustration. Additionally, we found several graphs of size 11 with clique-width 7
by extending a graph of size 10 with clique-width 6.

Fig. 3. Smallest graphs with clique-width 3, 4, 5, and 6 (from left to right)

Proposition 3. The clique-width sequence starts with the numbers 1, 2, 4, 6,
8, 10, 11.

We used Brendan McKay’s software package Nauty [28] to avoid checking iso-
morphic copies of the same graph. There are several other preprocessing methods
that can speed up the search for small graphs of prescribed clique-width k ≥ 2.
Obviously, we can limit the search to connected graphs, as the clique-width of a
graph is clearly the maximum clique-width of its connected components. We can
also ignore graphs that contain twins—two vertices that have exactly the same
neighbors—as we can delete one of them without changing the clique-width.
Similarly, we can ignore graphs with a universal vertex, a vertex that is adjacent
to all other vertices, as it can be deleted without changing the clique-width.
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All these filtering steps are subsumed by the general concept of prime graphs.
Consider a graph G = (V,E). A vertex u ∈ V distinguishes vertices v, w ∈ V
if uv ∈ E and uw /∈ E. A set M ⊆ V is a module if no vertex from V \M
distinguishes two vertices from M . A module M is trivial if |M | ∈ {0, 1, |V |}.
A graph is prime if it contains only trivial modules. It is well-known that the
clique-width of a graph is either 2 or the maximum clique-width of its induced
prime subgraphs [9]. Hence, in our search, we can ignore all graphs that are
not prime. We can efficiently check whether a graph is prime [21]. The larger

Table 2. Number of connected and prime graphs with specified clique-width, modulo
isomorphism

clique-width

|V | connected prime 2 3 4 5 6

4 6 1 0 1 0 0 0
5 21 4 0 4 0 0 0
6 112 26 0 25 1 0 0
7 853 260 0 210 50 0 0
8 11,117 4,670 0 1,873 2,790 7 0
9 261,080 145,870 0 16,348 125,364 4,158 0
10 11,716,571 8,110,354 0 142,745 5,520,350 2,447,190 68

Table 3. Clique-width of named graphs. Sizes are reported for the unsatisfiables.

graph |V | |E| cwd variables clauses UNSAT SAT

Brinkmann 21 42 10 8,526 163,065 3,932.56 1.79
Chvátal 12 24 5 1,800 21,510 0.40 0.09
Clebsch 16 40 8 3,872 60,520 191.02 0.09
Desargues 20 30 8 7,800 141,410 3,163.70 0.26
Dodecahedron 20 30 8 7,800 141,410 5,310.07 0.33
Errera 17 45 8 4,692 79,311 82.17 0.16
Flower snark 20 30 7 8,000 148,620 276.24 3.9
Folkman 20 40 5 8,280 168,190 11.67 0.36
Franklin 12 18 4 1,848 21,798 0.07 0.04
Frucht 12 18 5 1,800 20,223 0.39 0.02
Hoffman 16 32 6 4,160 64,968 8.95 0.46
Kittell 23 63 8 12,006 281,310 179.62 18.65
McGee 24 36 8 13,680 303,660 8,700.94 59.89
Sousselier 16 27 6 4,160 63,564 3.67 11.75
Paley-13 13 39 9 1,820 22,776 12.73 0.05
Paley-17 17 68 11 3,978 72,896 194.38 0.12
Pappus 18 27 8 5,616 90,315 983.67 0.14
Petersen 10 15 5 1,040 9,550 0.10 0.02
Poussin 15 39 7 3,300 50,145 9.00 0.21
Robertson 19 38 9 6,422 112, 461 478.83 0.76
Shrikhande 16 48 9 3,680 59,688 129.75 0.11
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the number of vertices, the larger the fraction of non-prime graphs (considering
connected graphs modulo isomorphism). Table 2 gives detailed results.

6.3 Famous Named Graphs

The graph theoretic literature contains several graphs that have names, some-
times inspired by the graph’s topology, and sometimes after their discoverer.
We have computed the clique-width of several named graphs, the results are
given in Table 3 (definitions of all considered graphs can be found in Math-
World [37]). The Paley graphs, named after the English mathematician Ray-
mond Paley (1907–1933), stick out as having large clique-width. Our results on
the clique-width of Paley graphs imply some upper bounds on the 9th and 11th
clique-width numbers: n9 ≤ 13 and n11 ≤ 17.

7 Conclusion

We have presented a SAT approach to the exact computation of clique-width,
based on a reformulation of clique-width and several techniques to speed up the
search. This new approach allowed us to systematically compute the exact clique-
width of various small graphs. We think that our results could be of relevance for
theoretical investigations. For instance, knowing small vertex-minimal graphs of
certain clique-width could be helpful for the design of discrete algorithms that
recognize graphs of bounded clique-width. Such graphs can also be useful as
gadgets for a reduction to show that the recognition of graphs of clique-width 4
is NP-hard, which is still a long-standing open problem [16]. Furthermore, as
discussed in Section 1, there are no heuristic algorithms to compute the clique-
width directly, but heuristic algorithms for related parameters can be used to
obtain upper bounds on the clique-width. Our SAT-based approach can be used
to empirically evaluate how far heuristics are from the optimum, at least for
small and medium-sized graphs.

So far we have focused in our experiments on the exact clique-width, but for
various applications it is sufficient to have good upper bounds. Our results (see
Table 1) suggest that our approach can be scaled to medium-sized graphs for
the computation of upper bounds. We also observed that for many graphs the
upper bound of Lemma 5 is not tight. Thus, we expect that if we search for
shorter derivations, which is significantly faster, this will yield optimal or close
to optimal solutions in many cases.

Finally, we would like to mention that our SAT-based approach is very flex-
ible and open. It can easily be adapted to variants of clique-width, such as
linear clique-width [22,16], m-clique-width [12], or NLC-width [36]. Hence, our
approach can be used for an empirical comparison of these parameters.

Acknowledgement. The authors acknowledge the Texas Advanced Computing
Center (TACC) at The University of Texas at Austin for providing grid resources
that have contributed to the research results reported within this paper.
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15. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

16. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-
complete. SIAM J. Discrete Math. 23(2), 909–939 (2009)

17. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

18. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) 15th European
Conference on Artificial Intelligence (ECAI 2002), pp. 121–125. IOS Press (2002)

19. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Pro-
ceedings of the Proceedings of the Twentieth Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI 2004), Arlington, Virginia, pp. 201–208.
AUAI Press (2004)



334 M.J.H. Heule and S. Szeider

20. Golumbic, M.C., Rotics, U.: On the clique-width of perfect graph classes extended
abstract. Internat. J. Found. Comput. Sci. 11(3), 423–443 (2000); Selected papers
from In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665,
pp. 135–443. Springer, Heidelberg (1999)

21. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Computer Science Review 4(1), 41–59 (2010)

22. Heggernes, P., Meister, D., Papadopoulos, C.: Characterising the linear clique-
width of a class of graphs by forbidden induced subgraphs. Discr. Appl.
Math. 160(6), 888–901 (2012)

23. Heggernes, P., Meister, D., Rotics, U.: Computing the clique-width of large path
powers in linear time via a new characterisation of clique-width. In: Kulikov, A.,
Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 233–246. Springer, Hei-
delberg (2011)

24. Hvidevold, E.M., Sharmin, S., Telle, J.A., Vatshelle, M.: Finding good decompo-
sitions for dynamic programming on dense graphs. In: Marx, D., Rossmanith, P.
(eds.) IPEC 2011. LNCS, vol. 7112, pp. 219–231. Springer, Heidelberg (2012)

25. Katebi, H., Sakallah, K.A., Markov, I.L.: Conflict anticipation in the search for
graph automorphisms. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS,
vol. 7180, pp. 243–257. Springer, Heidelberg (2012)

26. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computa-
tional experiments. Electronic Notes in Discrete Mathematics 8, 54–57 (2001)

27. Lee, C., Lee, J., Oum, S.-I.: Rank-width of random graphs. J. Graph Theory 70(3),
339–347 (2012)

28. McKay, B.D.: Practical graph isomorphism. In: Proceedings of the Tenth Manitoba
Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man.,
1980), Winnipeg, Man, vol. 30, pp. 45–87 (1981)

29. Oum, S.-I.: Approximating rank-width and clique-width quickly. ACM Transac-
tions on Algorithms 5(1) (2008)

30. Oum, S.-I., Seymour, P.: Approximating clique-width and branch-width. J. Com-
bin. Theory Ser. B 96(4), 514–528 (2006)

31. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT
2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009)

32. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

33. Cole Smith, J., Ulusal, E., Hicks, I.V.: A combinatorial optimization algorithm for
solving the branchwidth problem. Comput. Optim. Appl. 51(3), 1211–1229 (2012)

34. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

35. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000)

36. Wanke, E.: k-NLC graphs and polynomial algorithms. Discr. Appl. Math. 54(2-3),
251–266 (1994); Efficient algorithms and partial k-trees

37. Weisstein, E.: MathWorld online mathematics resource, mathworld.wolfram.com

mathworld.wolfram.com


Cliquewidth and Knowledge Compilation

Igor Razgon1, and Justyna Petke2

1 Department of Computer Science and Information Systems,
Birkbeck, University of London

igor@dcs.bbk.ac.uk
2 Department of Computer Science,

University College London
J.Petke@cs.ucl.ac.uk

Abstract. In this paper we study the role of cliquewidth in succinct
representation of Boolean functions. Our main statement is the following:
Let Z be a Boolean circuit having cliquewidth k. Then there is another
circuit Z∗ computing the same function as Z having treewidth at most
18k+2 and which has at most 4|Z| gates where |Z| is the number of gates
of Z. In this sense, cliquewidth is not more ‘powerful’ than treewidth for
the purpose of representation of Boolean functions. We believe this is
quite a surprising fact because it contrasts the situation with graphs
where an upper bound on the treewidth implies an upper bound on the
cliquewidth but not vice versa.

We demonstrate the usefulness of the new theorem for knowledge
compilation. In particular, we show that a circuit Z of cliquewidth k can
be compiled into a Decomposable Negation Normal Form (dnnf) of size
O(918kk2|Z|) and the same runtime. To the best of our knowledge, this
is the first result on efficient knowledge compilation parameterized by
cliquewidth of a Boolean circuit.

1 Introduction

Statement of the Results. Cliquewidth is a graph parameter, probably best
known for its role in the design of fixed-parameter algorithms for graph-theoretic
problems [2]. In this context the most interesting property of cliquewidth is
that it is ‘stronger’ than treewidth in the following sense: if all graphs in some
(infinite) class have treewidth bounded by some constant c, then the cliquewidth
of the graphs of this class is also bounded by a constant O(2c). However, the
opposite is not true. Consider, for example, the class of all complete graphs. The
treewidth of this class is unbounded while the cliquewidth of any complete graph
is 2. Thus, classes of bounded cliquewidth contain dense graphs, unlike the case
of bounded treewidth.

In this paper we essentially show that, roughly speaking, cliquewidth of a
Boolean function is not a stronger parameter than its treewidth. In particular,
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the structural graph parameters.
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given a Boolean circuit Z, we define its cliquewidth as the cliquewidth of the
DAG of this circuit and the treewidth as the treewidth of the undirected graph
underlying this DAG. The main theorem of this paper states that for any circuit
Z of cliquewidth k there is another circuit Z∗ computing the same function
whose treewidth is at most 18k + 2 and the number of gates is at most 4 times
the number of gates of Z. Moreover, if Z is accompanied with the respective
clique decomposition then such a circuit Z∗ (and the tree decomposition of width
18k + 2) can be obtained in time O(k2n). The definition of circuit treewidth is
taken from [14] and the definition of circuit cliquewidth naturally follows from
the treewidth definition. In fact, the relationship between circuit treewidth and
cliquewidth is put in [14] as an open question.

We demonstrate that the main theorem is useful for knowledge compilation.
In particular, we show that any circuit Z of cliquewidth k can be compiled into
decomposable negation normal form (dnnf) [3] of size O(918kk2|Z|) (where |Z|
is the number of gates) by an algorithm taking the same runtime. To the best of
our knowledge, this is the first result on space-efficient knowledge compilation
parameterized by cliquewidth. We believe this result is interesting because the
parameterization by cliquewidth, compared to treewidth, allows to capture a
wider class of inputs including those circuits whose underlying graphs are dense.

This bound is obtained as an immediate corollary of the main theorem and
the O(9tt2|Z|) bound on the dnnf size for the given circuit Z, where t is the
treewidth of Z. The intermediate step for the latter result is an O(3p(|C| +
n)) bound of the dnnf size of the given cnf where C and n are, respectively
the number of clauses and variables of this cnf and p is the treewidth of its
incidence graph. All these 3 bounds significantly extend the currently existing
bound O(2rn) of [3] where r is the treewidth of the primal graph of the given
cnf. For example, if the given cnf has large clauses (and hence a large treewidth
of the primal graph) then the O(2rn) bound becomes practically infeasible while
the O(3p(C + n)) bound may be still feasible provided a small treewidth of the
incidence graph and a number of clauses polynomially dependent on n.

Related Work. The algorithmic power of cliquewidth stems from the meta-
theorem of [2] stating that any problem definable in Monadic Second Order
Logic (mso1) can be solved in linear time for a class of graphs of fixed cliquewidth
k. The cliquewidth of the given graph is NP-hard to compute [8] and it is not
known to be fpt. On the other hand, cliquewidth is fpt approximable by an fpt

computable parameter called rankwidth [13,11]. As said above, there are classes
of graphs with unrestricted treewidth and bounded cliquewidth. However, it has
been shown in [10] that the only reason for treewidth to be much larger than
cliquewidth is the presence of a large complete bipartite graph (biclique) in the
considered graph. In fact, we prove the main theorem of this paper by applying
a transformation that eliminates all bicliques from the dag of the given circuit.

dnnfs have been introduced as a knowledge compilation formalism in [3],
where it has been shown that any cnf on n variables of treewidth t of the
primal graph can be compiled into a dnnf of size O(2ttn) with the same run-
time. A detailed analysis of special cases of dnnf has been provided in [6]. In
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particular, it has been shown that Free Binary Decision Diagrams (fbdd) and
hence Ordered Binary Decision Diagrams (obdd) can be seen as special cases of
dnnf. In fact, there is a separation between dnnf and fbdd [4]. This additional
expression power of dnnf has its disadvantages: a number of queries that can be
answered in polynomial time (polytime) for fbdd and obdd are NP-complete
for dnnf [6]. This trade-off led to investigation of subclasses of dnnf that, on
the one hand, retain the succinctness of dnnf for cnfs of small treewidth and,
on the other hand, have an increased set of queries that can be answered in
polytime. Probably the most notable result obtained in this direction are Sen-
tential Decision Diagrams (sdd) [5] that, on one hand, can answer in polytime
the equivalence query (possibility to answer this query in polytime for obdds
is probably the main reason why this formalism is very popular in the area of
verification) and, on the other hand, retain the same upper bound dependence
on treewidth as dnnf.

In fact the size of obdd can also be efficiently parameterized by the treewidth
of the initial representation of the considered function. Indeed, there is an obdd

of size O(n2p) where p is the pathwidth of the primal graph of the given cnf

and of size (nO(t)) where t is the treewidth of the graph, see e.g. [9]. It is shown
in [14] that similar pattern retains if we consider the pathwidth and treewidth
of a circuit but in the former case p is replaced by an exponential function of p
and in the latter case, t is replaced by a double exponential function of t.

Important Remark. Due to space constraints, proofs of some statements are
either omitted or replaced by sketches. A complete version of this work is avail-
able at http://arxiv.org/abs/1303.4081.

2 Preliminaries

A labeled graph G = (V,E,S) is defined by the usual set V (G) of vertices and
a set E(G) of edges and also by S(G), a partition of V (G). Each element of
S(G) is called a label. A simplified clique decomposition (scd) is a pair (T,G)
where T is a rooted tree and G is a family of labeled graphs. Each node t of
T is associated with a graph G(t), which is defined as follows. If t is a leaf
node, then G(t) = ({v}, ∅, {{v}}). Assume that t has two children t1 and t2
and let G1 = G(t1) and G2 = G(t2). Then V (G1) ∩ V (G2) = ∅ and G(t) =
(V (G1) ∪ V (G2), E(G1) ∪ E(G2),S(G1) ∪ S(G2)). Finally, assume that t has
only one child t1 and let G1 = G(t1). Graph G(t) can be obtained from G1 by
one of the following three operations:

– Adding a New Vertex. There is v /∈ V (G1) such that G(t) = (V (G1) ∪
{v}, E(G1),S(G1) ∪ {{v}}).

– Union of Labels. There are S1, S2 ∈ S(G1) such that G(t) =
(V (G1), E(G1), (S(G1) \ {S1, S2}) ∪ {S}). We say that S1 and S2 are the
children of S.

– New Adjacency. There are S1, S2 ∈ S(G1) such that G(t) =
(V (G1), E(G1) ∪ {{u, v}|u ∈ S1, v ∈ S2},S(G1)). We say that S1 and S2
are adjacent.

http://arxiv.org/abs/1303.4081
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The width of a node t of T is |S(G(t))|. The width of (T,G) is the largest width
of a node t of T . Let r be the root of T . Then we say that (T,G) is an scd of
G(r) and of (V (G(r)), E(G(r))) (the unlabeled version of G(r)). The simplified
cliquewidth (scw) of a graph G is the smallest width among all scds of G. The
definition of scd is closely related to the standard notion of clique decomposition.
In fact scw of a graph G is at most twice larger than the cliquewidth of G. The
details are provided in the complete version.

Clique decomposition and scd are easily extended to the directed case. In fact
the notion of cliquewidth has been initially proposed for the directed case, as
noted in [7]. The only change is that the new adjacency operation adds to G(t)
all possible directed arcs from label S1 to label S2 instead of undirected edges.
In this case we say that there is an arc from S1 to S2.

We denote
⋃

t∈V (T ) S(G(t)) byS = S(T,G) and call it the set of labels of (T,G).
The setS is very important for our reasoning. In fact, we use scd becausewe believe
it allows amore intuitive definition of setS than the stadard clique deocmposition.

A tree decomposition of a graph G is a pair (T,B) where T is a tree and the
elements of B are subsets of vertices called bags. There is a mapping between the
nodes of T and elements of B. Let us say a vertex v of G is contained in a node
t of T if v belongs to the bag B(t) of t. Two properties of a tree decomposition
are connectedness (all the nodes containing the given vertex v form a subtree of
T ), adjacency (each edge {u, v} is a subset of some bag), and union (the union
of all bags is V (G)). In this paper we consider the treewidth of a directed graph
as the treewidth of the underlying undirected graph.

Boolean circuits considered in this paper are over the basis {∨,∧,¬} with the
unbounded fan-in. In such a circuit there are input gates (having only output
wires) corresponding to variables and constants true and false. The output of
each gate of a circuit Z computes a function on the set of input variables. We
denote by functions(Z) the set of all functions computed by the gates of Z. The
number of gates of Z is denoted by |Z|.

A clique or tree decomposition of a circuit Z is the respective decomposition
of the DAG of Z. In our discussion, we often associate the vertices of the DAG
with the respective gates. De Morgan circuits are a subclass of circuits where the
inputs of all the not gates are variables (i.e. the outputs of not gates serve as
negative literals). For a gate g of Z, denote by V ar(g) the set of variables having
a path to g in the DAG of Z. A circuit Z has the decomposability property if
for any two in-neighbours g1 and g2 of an and gate g, V ar(g1) ∩ V ar(g2) = ∅.
dnnf is a decomposable De Morgan circuit. When we consider a general circuit
Z, we assume that it does not have constant input gates, since these gates can
be propagated by removal of some gates of Z, which in turn does not increase
the cliquewidth nor the treewidth of the circuit. However, for convenience of
reasoning, we may use constant input gates when we describe construction of a
dnnf. If the given circuit Z is a cnf then its variables-clauses relation can be
represented by the incidence graph, a bipartite graph with parts corresponding
to variables and clauses and a variable-clause edge representing occurrence of a
variable in a clause.
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3 From Small Cliquewidth to Small Treewidth

The central result of this section is the following theorem:

Theorem 1. Let F be a circuit of cliquewidth k over n variables Then there is a
circuit F ∗ of treewidth at most 18k+2 and |F ∗| ≤ 4|F | such that functions(F ) ⊆
functions(F ∗). Moreover, given F and a clique decomposition of F of width k
there is an O(k2n) algorithm constructing F ∗ and a tree decomposition of F ∗ of
width at most 18k + 2 having at most 2|F | bags.

The rest of this section is the proof of Theorem 1. The main idea of the proof is to
replace ‘parts’ of the given circuit forming large bicliques by circuits computing
equivalent functions where such bicliques do not occur. As an example consider
a cnf of 3 clauses C1 = (a1 ∨ a2 ∨ a3 ∨ b1), C2 = (a1 ∨ a2 ∨ a3 ∨ b2) and
C3 = (a1 ∨ a2 ∨ a3 ∨ b3). The circuit of this graph contains a biclique of order 3
created by C1, C2, C3 on one side and a1, a2, a3 on the other one. This biclique
can be eliminated by the introduction of an additional or gate C4 having input
a1, a2, a3 and output c4 so that the clauses C1, C2, C3 are transformed into (b1∨
c4), (b2 ∨ c4), (b3 ∨ c4), respectively. It is not hard to see that the new circuit
computes the same function as the original one. This is the main idea behind
the construction of circuit F ∗. The formal description of the construction is given
below.

For the purpose of construction of F ∗ we consider a type respecting scd (T,G)
of F where each non-singleton label is one of the following:

– A unary label containing input gates and negation gates.
– An and label containing and gates.
– An or label containing or gates.

The following lemma essentially follows from splitting each label of the given
clique decomposition into three type respecting labels.

Lemma 1. Let k be the cliquewidth of F and let k∗ be the smallest width of an
scd of F that respects types. Then k∗ ≤ 6k.

Given a type respecting scd (T,G), let us construct the circuit F ∗. In the first
stage, we associate each label S ∈ S with a set of gates as follows:

– If S is non-singleton then it is associated with an and gate denoted by
oand(S) and an or gate denoted by oor(S).

– If S is non-singleton and does not contain input gates then it is associated
with an additional gate called in(S) whose type is determined as follows:
If S is an and or or label then in(S) is an and or or gate, respectively.
If S is a unary label then in(S) is a circuit (perceived as a single atomic
gate) consisting of two not gates, the output of one of them is the input
of the other. So, the input of the former and the output of the latter are,
respectively, the input and output of in(S).
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– Each singleton label {g} is associated with the gate g of F . We call the gates
associated with singleton labels original gates because they are the gates
of F ∗ appearing in F . For the sake of uniformity, for each original gate g
associated with a singleton label S, we put g = oand(S) = oor(S) = in(S).

The wires of F ∗ are described below. When we say that there is a wire from gate
g1 to gate g2, we mean that the wire is from the output of g1 to the input of g2.

– Child-Parent Wires. Let S1 and S2 be labels of (T,G) such that S1 is a
child of S2. Then there is a wire from oand(S1) to oand(S2) and a wire from
oor(S1) to oor(S2).

– Parent-Child Wires. Let S1 and S2 be as above and assume that S2 does
not contain input gates. Then there is a wire from in(S2) to in(S1). That is,
the direction of child-parent wires is opposite to the direction of parent-child
wires.1

– Adjacency wires. Assume that in (T,G) there is an arc from S1 to S2
(established by the new adjacency node). Then the following cases apply:
• If S2 is an and label then put a wire from oand(S1) to in(S2).
• If S2 is an or label then put a wire from oor(S1) to in(S2).
• If S2 is a unary label consisting of negation gates only then put a wire
from an arbitrary one of oand(S1) or oor(S1) to in(S2).

Finally, we remove in(S) gates that have no inputs. This removal may be iterative
as removal of one gate may leave without input another one.

It is not hard to see by construction that F and F ∗ have the same input gates.
This gives us possibility to state the following theorem with proof in Section 3.1.

Theorem 2. F ∗ is a well formed circuit (that is, F ∗ satisfies the definition of
a Boolean circuit). The output of each original gate g of F ∗ computes exactly
the same function (in terms of input gates) as in F .

In Section 3.2, we prove that the treewidth of F ∗ is not much larger than the
width of (T,G).

Theorem 3. There is a tree decomposition of F ∗ with at most 2|F | bags having
width at most 3k + 2, where k is the width of (T,G).

Proof of Theorem 1. Due to Theorem 2, functions(F ) ⊆ functions(F ∗). If
we take (T,G) to be of the smallest possible type respecting width then the
treewidth of F ∗ is at most 18k+2 by combination of Theorem 3 and Lemma 1.

To compute the number of gates of F ∗, let n be the number of gates of F ,
which is also the number of singleton labels of (T,G). Since each non-singleton
label has two children (i.e. in the respective tree of labels each non-leaf node is
binary), the number of non-singleton labels is at most n − 1. By construction,
F ∗ has one gate per singleton label plus at most 3 gates per non-singleton label,
which adds up to at most 4n. The technical details of the runtime derivation are
omitted due to space constraints.

1 We would like to thank the anonymous referee, for helping us to identify a typo in
this definition that occurred in the first version of the manuscript.
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3.1 Proof of Theorem 2

We start with establishing simple combinatorial properties of F ∗ (Lemmas 2,3,
4,5). A path in a circuit is a sequence of gates so that the output of every gate
(except the last one) is connected by a wire to the input of its successor. Let us
call a path a connecting path if it contains exactly one adjacency wire.

Lemma 2. – Any path P of F ∗ starting at an original gate and not containing
adjacency wires contains child-parent wires only.

– Any path P of F ∗ ending at an original gate and not containing adjacency
wires contains parent-child wires only.

Proof. The only possible wire to leave the original gate is a child-parent wire.
Any path starting from an original gate and containing child-parent wires only
ends up in an oand or oor gate. This means that the next wire (if not an ad-
jacency one) can be only another child-parent wire. Thus the correctness of the
lemma for all the paths of length i implies its correctness for all such paths of
length i+ 1, confirming the first statement.

For the second statement, we start from an original gate and go back against
the direction of wires. The reasoning similar to the previous paragraph applies
with the in gates of non-singleton labels replacing the oor and oand ones. �

Lemma 3. Let g1 and g2 be gates of F such that g2 is an and or an or gate.
Then there is a wire from g1 to g2 in F if and only if F ∗ has a connecting path
from g1 to g2 such that all the gates of this path except possibly g1 are of the
same type as g2.

Proof. We prove only the case where g2 is an and gate, the other case is sym-
metric. Let P be a connecting path of F ∗ from g1 to g2 of the specified kind.
Let g′1 and g′2 be, respectively, the tail and the head gates of the adjacency wire.
Then either g1 = g′1 or the suffix of P ending at g′1 consists of child-parent wires
only according to Lemma 2. It follows that g′1 corresponds to a label contain-
ing g1. Analogously, we conclude that either g2 = g′2 or the suffix of P starting
at g′2 contains only parent-child labels and hence the label corresponding to g′2
contains g2. Existence of the adjacency wire from the label of g′1 to the label of
g′2 means that the scd introduces all wires from the gates in the label of g′1 to
the gates in the label of g′2. In particular, there is a wire from g1 to g2 in F .

Conversely, assume that there is a wire from g1 to g2 in F . Then there are
labels S1 and S2 containing g1 and g2, respectively, such that (T,G) introduces
an adjacency arc from S1 to S2. By construction of F ∗ there is a gate g′1 corre-
sponding to S1 and a gate g′2 corresponding to S2 such that F ∗ has an adjacency
wire from g′1 to g′2. Moreover, by the definition of a type respecting scd, S2 is
an and label, hence g′2 = in(S2) is an and gate. Furthermore, by construction
of F ∗ either g2 = g′2 or there is a path from g′2 to g2 consisting of parent-child
arcs only and and gates only. Indeed, if S2 is not a singleton then there is a
wire from in(S2) to in(S3) containing g2 since S2 is partitioned by its children.
Iterative application of this argument produces a path from g′2 to g2. Since g2
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is an and gate, all gates in this path are and gates by construction. Thus the
suffix exists. What about the prefix? By construction, g′1 = oand(S1). Since S1
contains g1, either g

′
1 = g1 or there is a path from g1 to g′1 involving child-parent

wires and and gates only: just start at g1 and go every time to the oand-gate of
the parent until S1 has been reached. Thus we have established existence of the
desired prefix.

It remains to be shown that the prefix and suffix do not intersect. However,
this is impossible due to the disjointness of S1 and S2. �

Lemma 4. Let g1 and g2 be the gates of F such that g2 is a not gate. Then F
has a wire from g1 to g2 if and only if there is a connecting path P in F ∗ from g1
to g2 with the adjacency wire (g′1, g

′
2) such that g1 = g′1 and all the intermediate

vertices in the suffix of P starting from g′1 are in-gates of unary labels containing
negation gates only.

Proof. Let P be a connecting path of F ∗ of the specified form. Then either
g′2 = g2 or g′2 corresponds to a label containing g2. In both cases this means that
F has a wire from g1 to g2.

Conversely, assume that F has a wire from g1 to g2. Then there are labels S1
and S2 containing g1 and g2 such that (T,G) sets an adjacency wire from S1 to
S2. Observe that S1 cannot contain more than one element because in this case
g2, a not gate, will have two inputs. Furthermore, either S2 contains g2 only or
S2 is a unary label containing negation gates only (because the input gates do
not have input wires). In the latter case, the desired suffix from the head of the
adjacency arc to g2 follows by construction. �

Lemma 5. Any path of F ∗ between two original gates that does not involve
other original gates is a connecting path.

Proof. First of all, let us show that any path of F ∗ between original gates
involves at least one adjacency wire. Indeed, by Lemma 2, any path leaving an
original gate and not having adjacency wires has only child-parent wires. Such
wires lead only to bigger and bigger labels and cannot end up at a singleton one.
It follows that at least one adjacency wire is needed.

Let us show that additional adjacency wires cannot occur without original
gates as intermediate vertices. Indeed, the head of the first adjacency wire is
an in gate of some label S. Unless S is a singleton, the only wires leaving
in(S) are parent-child wires to the in gates of the children of S. Applying this
argumentation iteratively, we observe that no other wires except parent-child
wires are possible until the path meets the in gate of a singleton label. However,
this is an original gate that cannot be an intermediate node in our path. It follows
that any path between two original gates without other original gates cannot
involve 2 adjacency wires. Combining with the previous paragraph, it follows
that any such path involves exactly one adjacency wire, i.e. it is a connecting
path. �
Using the lemmas above, it can be shown that any cycle in F ∗ involves at
least one original gate and that this implies that F contains a cycle as well, a
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contradiction showing that F ∗ is acyclic. The technical details of this derivation
are omitted due to space constraints. By construction, each wire connects output
to input and there are no gates (except the input gates of course) having no input.
It follows that F ∗ is a well formed circuit.

For each gate g of F ∗ denote by f(g, F ∗) the function computed by a subcircuit
of F ∗ rooted by g. We establish properties of these functions from which Theorem
2 will follow by induction. In the following we sometimes refer to f(g, F ∗) as the
function of g.

Lemma 6. For each not gate g of F ∗, f(g, F ∗) is the negation of f(g′, F ∗),
where g′ is the input of g in F .

Proof. According to Lemma 4, F ∗ has a path from g′ to g where all vertices
except the first one are not gates. Since all of them but the last one are doubled,
there is an odd number of such not gates. Each not gate has a single input,
hence the function of each gate of the path (except the first one) is the negation
of the function of its predecessor. Hence these functions are, alternatively, the
negation of the function of g′ and the function of g′. Since the number of not
gates in the path is odd, the function of g is the negation of the function of g′,
as required. �
In order to establish a similar statement regarding and and or gates we need
two auxiliary lemmas.

Lemma 7. For each label S, f(oand(S), F ∗) is the conjunction of f(g, F ∗) of
all original gates g contained in S. Similarly, f(oor(S), F ∗) is the disjunction of
the functions of such gates.

Proof. We prove the lemma only for the oand gates as for the oor gates
the proof is symmetric. The proof easily goes by induction. For an original
gate this is just a conjunction of a single element, namely itself, and this is
clear by construction. For a larger label S, it follows by construction that
f(oand(S), F ∗) = f(oand(S1), F

∗) ∧ f(oand(S2, F ∗)), where S1 and S2 are the
children of S. For S1 and S2 the rule holds by the induction assumption. Hence,
f(oand(S), F ∗) is the conjunction of all the functions of all the original gates
in the union of S1 and S2, that is, the conjunction of the functions of all the
original gates contained in S, as required. �
Let us call a path of F ∗ semi-connecting if it starts with an adjacency wire and
the rest of the wires are parent-child ones.

Lemma 8. Let S be an and label. Then f(in(S), F ∗) is the conjunction of the
functions of all gates from which there is a semi-connecting path to in(S). For the
or label the statement is analogous with the conjunction replaced by disjunction.

Proof. We provide the proof only for the and label, for the or label the proof is
analogous with the corresponding replacements of and by or and conjunctions
by disjunctions.
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The proof is by induction on the decreasing size of labels. For the largest and
label S, all the input wires are the adjacency wires. Clearly the considered function
is the conjunction of the functions of the gates at the tails of these adjacency wires.
It remains to see if there are no more gates to arrive at in(S) by semi-connected
paths. But any such gate, after passing through the adjacency wire must meet an
ancestor of S and, by the maximality assumption, S has no ancestors.

The same reasoning as above is valid for any label S without ancestors. If S
has ancestors, then f(in(S), F ∗) is the conjunction of the functions of the gates
at the tails of the adjacency wires incident to in(S) and the function of the in
gate of the parent of S . By the induction assumption, this function is in fact a
conjunction of the gates at the tails of the adjacency wires incident to in(S) plus
those connected to in(S) by semi-connected paths through the parent. Since any
semi-connected path either directly hits in(S) at the head of an adjacency wire
or approaches it through the parent, the statement is proven. �

Lemma 9. The function of any original and gate g of F ∗ is the conjunction of
the functions of the singleton gates whose outputs are the inputs of g in F . The
same happens for the or gate and the disjunction.

Proof.Asbefore,we prove the statement for theandgate, for theorgate it is anal-
ogous with the respective substitutions. By construction and Lemma 8, f(g, F ∗)
is the conjunction of functions of all oand gates (since there are no other ones)
connected to g by semi-connected paths. Let us call the labels of these oand gates
the critical labels. Combining this with Lemma 7, we see that f(g, F ∗) is in fact a
conjunction of the functions of all original gates contained in the critical labels. It
remains to show that these gates are exactly the in-neighbours of g in F . Let us
take a particular in-neighbour g′. By Lemma 3, there is a connecting path from g′

to g and by Lemma 7, the tail of the adjacency wire of this path is the oand gate of a
critical label, so g′ is in the required set. Conversely, assume that g′ is a gate in the
required set. Specify a critical label S g′ belongs to. Clearly, there is a child-parent
path from g′ to oand(S) which, together with a semi-connected path from oand(S)
to g, makes a connecting path. The latter means that in F there is a wire from g′

to g according to Lemma 3, as required. �
Proof of Theorem 2. Let us order the gates of F topologically and do induction
on the topological order. The first gate is an input gate and the function of the
input is just the corresponding variable both in F and in F ∗. Otherwise, the
gate is and or or or not gate. In the former two cases, according to Lemma
9 the function of g in F ∗ is the conjunction (or disjunction, in case of or) of
the functions of its inputs in F , the same relation as in F . The theorem holds
regarding the inputs by the induction assumption, hence the function of g in F ∗

is the same as in F . Regarding the not gate, the argumentation is analogous,
employing Lemma 6. �

3.2 Proof of Theorem 3

Let us define the undirected graph H = H(T,G) called the representation graph
of (T,G) as follows. The vertices of this graph are the labels of (T,G) and two
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vertices S1 and S2 are adjacent if and only if either S1 is a child of S2 (or vice
versa of course) or S1 and S2 are adjacent in (T,G) (meaning that the new
adjacency operation is applied on S1 and S2). We call the first type of edges
child-parent edges and the second type adjacency edges.

Lemma 10. Let t be the treewidth of H. Then the treewidth of F ∗ is at most
3t+ 2.

Proof (Sketch). Observe that if we contract the gates in F ∗ of each label into
a single vertex, eliminate directions and remove multiple occurrences of edges,
we obtain a graph isomorphic to H . The desired tree decompositom is obtained
from the tree decomposition of H by replacing the occurrence of each vertex
of H in a bag by the gates corresponding to this vertex. Thus, there is a tree
decomposition of F ∗ with at most 3(t + 1) elements in each bag, that is the
treewidth of F ∗ is at most 3t+ 2. �

Lemma 11. The treewidth of H is at most k, where k is the width of (T,G).

Proof. For each node t of T , let S(t) be the set of labels of G(t) and let B(t) be
the set of vertices of H corresponding to S(t). Denote the set of all B(t) by B.
We are going to show that (T,B) is a tree decomposition of graph H ′ obtained
from H by removal of all child-parent edges.

First of all, observe that for each v ∈ V (H), the subgraph Tv of T consisting
of all nodes containing v is a subtree of T . Indeed, let us consider T as a rooted
tree with the root t being the same as in (T,G). Let t1 and t2 be two nodes
containing v. Then one of them is an ancestor of the other. Indeed, otherwise t1
and t2 are nodes of two disjoint subtrees T1 and T2 whose roots t′1 and t′2 are
children of some node t∗. By the definition of scd, G(t′1) is disjoint with G(t

′
2)

and it is not hard to conclude from the definition that V (G(t1)) ⊆ V (G(t′1))
and V (G(t2)) ⊆ V (G(t′2)) are disjoint. Since any label is a subset of the set
of vertices of the graph it belongs to, S(t1) and S(t2) cannot have a common
label and hence B(t1) and B(t2) cannot have a joint node. Furthermore, it is
not hard to observe, if t1 is ancestor of t2 and S ∈ S(t1) ∩ S(t2) then S belongs
to S(t′) of all nodes t′ in the path between t1 and t2. It follows that the node of
H corresponding to S belongs to B(t′) of all these nodes t′. Thus we have shown
that if t1 and t2 contain v they cannot belong to different connected components
of Tv, confirming the connectedness of Tv.

Next, we observe that if v1 and v2 are incident to an adjacency edge then
there is a node t containing both v1 and v2. Indeed, let S1 and S2 be the labels
corresponding to v1 and v2, respectively. Let t be the node where the adjacency
operation regarding S1 and S2 is applied. Then both S1 and S2 belong to S(t)
and, consequently, t contains both v1 and v2. Finally, by construction, each
vertex of H is contained in some node.

To obtain the desired tree decomposition of H , we are going to modify (T,B)
to acquire two properties: that the number of nodes of the resulting tree is at
most 2|F | and that each parent-child pair u, v is contained in some node t. For
the former just iteratively remove all nodes whose operations are new adjacency.
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If the node t being removed is not the root then make the parent of t to be the
parent of the only child of t (since t has only one child the tree remains binary).
The latter property can be established by adding at most one vertex to each
bag of the resulting structure (T ′,B′). Indeed, for each non-singleton label S,
let t(S) be the node where this label is created by the union operation. Then
both children of S belong to the only child of t(S). Let (T ′,B∗) be obtained from
(T ′,B′) as follows. For each non-singleton label S, add the vertex corresponding
to S to the bag of the child of t(S). Since at most one new label is created per
node of T ′, at most one vertex is added to each bag. It is not hard to see both
of the modifications preserve properties stated in the previous paragraphs and
achieve the desired properties regarding the child-parent edges. Since each bag
of (T,B′) contains at most k+1 elements, we conclude that the treewidth of H
is at most k. Since the number of bags is at most as the number of labels, we
conclude that the number of bags is at most 2|F | �
Proof of Theorem 3. Immediately follows from the combination of Lemma 10
and Lemma 11. �

4 Application to Knowledge Compilation

In this section we demonstrate an application of Theorem 1 to knowledge com-
pilation by showing the existence of an algorithm compiling the given circuit
Z into dnnf. Both the time complexity of the algorithm and the space com-
plexity of the resulting dnnf are fixed-parameter linear parameterized by the
cliquewidth of Z. More precisely, the statement is the following:

Theorem 4. Given a single-output circuit Z of cliquewidth k, there is a dnnf

of Z having size O(918kk2|Z|). Moreover, given a clique decomposition of Z of
width k, there is a O(918kk2|Z|) algorithm constructing such a dnnf.

Theorem 4 is an immediate corollary of Theorem 1 and the following one:

Theorem 5. Given a circuit Z of treewidth p, there is a dnnf of Z having size
O(9pp2|Z|). Moreover, such a dnnf can be constructed by an algorithm of the
same runtime that gets as input the circuit Z and a tree decomposition of Z of
width p having O(Z) bags.

The rest of this section is a proof of Theorem 5. Our first step is Tseitin trans-
formation from circuit Z into a cnf F ′. For this purpose we assume that Z does
not have paths of 2 or more not gates. Depending on whether this path is of
odd or even length, it can be replaced by a single not gate or by a wire, without
treewidth increase. In this case the variables y1, . . . , ym of F ′ are the variables
of Z and the outputs of and and or gates of Z. Under this assumption, it is
not hard to see that the inputs of each gate are literals of y1, . . . , ym. Then the
output x of Z is either yi or ¬yi for some i. Let us call x the output literal.

The cnf F ′ is a conjunction of the singleton clause containing the output
literal and the cnfs associated with each and and or gate. Let C be an and
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gate with inputs t1, . . . , tr and output z. Then the resulting cnf is (t1 ∨ ¬z) ∧
. . . ∧ (tr ∨ ¬z) ∧ (¬t1 ∨ . . . ∨ ¬tr ∨ z). If C is an or gate then the resulting cnf

is (¬t1 ∨ z) ∧ . . . ∧ (¬tr ∨ z) ∧ (t1 ∨ . . . ∨ tr ∨ ¬z). We call the last clause of the
cnf of C the carrying clause w.r.t. C and the rest are auxiliary ones w.r.t. C
and the corresponding input.

To formulate the property of Tseitin transformation that we need for our
transformation, let us extend the notation. We consider sets of literals that do
not contain a variable and its negation. For a set S of literals, V ar(S) is the
set of variables of S. Let V ′ ⊆ V ar(S). The projection Pr(S, V ′) of S to V ′ is
the subset S′ of S such that V ar(S′) = V ′. Let S be a family of sets of literals
over a set V of variables. Then the projection Proj(S, V ′) of S to V ′ ⊆ V is
{Proj(S, V ′)|S ∈ S}. Denote by V ar(Z) and V ar(F ′) the sets of variables of Z
and F ′, respectively. Let us say that a set S of literals with V ar(S) = V ar(Z)
is a satisfying assignment of Z if Z is true on the truth assignment on V ar(Z)
that assigns all the literals of S to true. For a cnf, the definition is analogous.
The well known property of Tseitin transformation is the following:

Lemma 12. Let S1 and S2 be the sets of satisfying assignments of F ′ and Z,
respectively. Then Proj(S1, V ar(Z)) = S2.

Lemma 12 is useful because of the following nice property of dnnf.

Lemma 13. (Theorem 9 of [3]). Let Z be a DNNF let V ′ ⊆ V ar(Z) and let
Z ′ be the dnnf obtained from Z by replacing the variables of V ar(Z) \ V ′ with
the true constant. Let S and S′ be sets of satisfying assignments of Z and Z ′,
respectively. Then S′ = Proj(S, V ′).

Thus it follows from Lemmas 12 and 13 that having compiled F ′ into a dnnf D′,
a dnnf D of Z can be obtained by replacing the variables of V ar(F ′) \ V ar(Z)
with the true constant. Clearly, this does not incur any additional gates. In order
to obtain a dnnf of F ′, we observe that the treewidth of the incidence graph of
F ′ is not much larger than the treewidth of Z.

Lemma 14. Let (T,B) be a tree decompositoion of Z of width p. There is a
O(p2|T |) time algorithm (|T | is the number of nodes of T ) transforming (T,B)
into a tree decomposition (T ∗,B∗) of the incidence graph G′ of F ′ having width
at most 2p+ 1 and with |T ∗| = O(p2|T |).

Proof (Sketch). Let F ′′ be the cnf obtained from F ′ by removal of all the
clauses but the carrying ones and let G′′ be the respective incidence graph.
Transform (T,B) into (T,B′′) as follows:

– Replace each occurrence of an and or or gateX with the respective carrying
clause and the variable corresponding to the output of X .

– Replace each occurrence of a not gate with the variable corresponding to
the input of the gate (it may either be an input variable of Z or the output
variable of some and or or gate).



348 I. Razgon and J. Petke

It can be observed by a straightforward inspection that (T,B′′) is indeed a tree
decomposition of G′′ of width 2p+ 1.

Next, we observe that for each and or or gate X of Z and for each variable u
of F ′ corresponding to an input of X and for variable y of F ′ corresponding to
the output of X , there is a node t of (T,B′′) containing both y and u. Indeed,
let C be the carrying clause corresponding to X . By construction, whenever t
contains C, t also contains y. By the adjacency property, there is at least one
t containing C and u. Since this last t contains also y, this is a desired clause.
Pick one node with the specified property and denote it by t(y, u). Add to T a
new node t′ with t(y, u) being its only neighbour. The bag of t′ will contain y, u,
and C(y, u) the auxiliary clause of X corresponding to the input u. Do so for
all the auxiliary clauses. Finally, properly add a node whose bag contains the
variable y of the output literal and the singleton clause containing this literal
(the neighbour of this new node should be an existing node containing y). Let
(T ∗,B∗) be the resulting structure. It is not hard to observe by construction
that (T ∗,B∗) satisfies the statement of the lemma. �
It remains to show that a space-efficient dnnf can be created parameterized by
the treewidth of the incidence graph.

Theorem 6. Let F be a cnf and let (T ′,B′) be a tree decomposition of the
incidence graph of F . Then F has a dnnf of size O(3t|T ′|) where t is the width
of (T ′,B′). Moreover, given F and (T ′,B′) such a dnnf can be constructed by
an algorithm having the same runtime.

We omit the proof of Theorem 6 due to space constraints. It is similar to the
proof of Theorem 16 of [3], essentially based on dynamic programming. The
difference is that in addition to branching on assignments of variables of the
given bag, the algorithm also needs to branch on the clauses of that bag that are
not satisfied by the currently considered assignment of variables. Three choices
need to be considered for each clause: to not satisfy the clause at all (this choice
is needed for ‘coordination’ with the ‘parent bag’), to satisfy the clause by the
variables of the left child and to satisfy the clause by the variables of the right
child. These 3 choices increase the base of the exponent from 2 to 3.

Remark. It is not hard to see that any tree decomposition can be transformed
(without the increase of width) into another one whose number of nodes is at
most as big as the number of vertices. Having this in mind, Theorem 6 canbe
reformulated with O(3t(CL + n)) istead O(3t|T ′|), where CL and n are, re-
spectively the number of clauses and the number of variables of F . With this
reformulation, Theorem 6 becomes of an independent interest because it extends
the result of Darwiche [3] from the primal to the incidence graph of the given
CNF without increasing much the base of the exponent.

Proof of Theorem 5. The construction of a dnnf for Z consists of 4 stages:
transform Z into F ′ by the Tseitin transformation; transform the tree decompo-
sition of Z into a tree decomposition of the incidence graph of F ′; obtain a dnnf

of F ′ as specified by Theorem 6 and obtain a dnnf of Z as specified in Lemma
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13. The correctness of this procedure follows from the above discussion. The time
and space complexities easily follow from the combination of the complexities of
intermediate stages. �

5 Discussion

In this paper we presented a theorem that shows that a circuit of cliquewidth
k can be transformed into, roughly speaking, an equivalent circuit of treewidth
18k + 2 with at most 4 times more gates. A consequence of this statement is
that any space-efficient knowledge compilation parameterized by the treewidth
of the input circuit can be transformed into a space efficient knowledge compi-
lation parameterized by the cliquewidth of the input circuit. We elaborated this
consequence on the example of dnnf. As a result we obtained a theoretically
efficient but formidably looking space complexity of (918kk2n). Therefore, the
first natural question is how to reduce the base of the exponent.

The next question for further investigation is to check if the proposed upper
bound can be applied to sdd [5] which is more practical than dnnf in the sense
that it allows a larger set of queries to be efficiently handled. To answer this
question positively, it will be sufficient to extend Theorem 6 to the case of sdd,
the ‘upper’ levels of the reasoning will be applied analogously to the case of
dnnf.

It is important to note that rankwidth is a better parameter for capturing
dense graphs than cliquewidth in the sense that rankwidth of a graph does not
exceed its treewidth plus one [12] as well as cliquewidth [13], while cliquewidth
can be exponentially larger than treewidth (and hence rankwidth) [1]. Also,
computing of rankwidth, unlike cliquewidth, is known to be FPT [11]. There-
fore, it is interesting to investigate the relationship between the rankwidth and
the treewidth of a Boolean function. For this purpose rankwidth has to be ex-
tended to directed graphs [15]. It is worth saying that if the question is answered
negatively, i.e. that the treewidth of a circuit can be exponentially larger than
its rankwidth, it would be an interesting circuit complexity result.

Finally, recall that all the upper bounds on the dnnf size obtained in this
paper are polynomial in the size of the circuit which can be much larger than
the number of variables. On the other hand, the upper bound on the dnnf

size parameterized by the treewidth of the primal graph of the given cnf is
polynomial in the number of variables [3]. Can we do the same in the circuit
case?
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Abstract. Ramsey’s Theorem is a cornerstone of combinatorics and
logic. In its simplest formulation it says that there is a function r such
that any simple graph with r(k, s) vertices contains either a clique of
size k or an independent set of size s. We study the complexity of prov-
ing upper bounds for the number r(k, k). In particular we focus on the
propositional proof system cutting planes; we prove that the upper bound
“r(k, k) ≤ 4k” requires cutting planes proof of high rank. In order to do
that we show a protection lemma which could be of independent interest.

1 Introduction

The Ramsey’s Theorem for simple graphs claims that if a graph is big enough, it
has either a clique or an independent set of moderate size. To be more specific,
for any k and s there is a number r(k, s) which is the smallest such that any graph
with at least r(k, s) vertices contains either a clique of size k or an independent
set of size s.

Discovering the actual value of r is challenging, and so far only few points
have been computed exactly. For this reason there is great interest in asymptotic
estimates. Erdős and Szekeres proved in [14] that

r(k, s) ≤
(
k + s− 2

k − 1

)
.

Erdős [13] proved a lower bound for the diagonal numbers (i.e. k = s):

r(k, k) ≥ (1 + o(1))
k√
2e

2k/2,

as one of the first applications of his probabilistic method. Of course there have
been some improvements since: to the author’s knowledge the current state of
the art regarding diagonal numbers r(k, k) is represented by a lower bound of
Spencer [28] and an upper bound of Conlon [11].

For the off-diagonal Ramsey numbers (i.e. r(k, s) for k �= s) the state of
the art is by Bohman and Keevash (lower bound [3]) and Ajtai, Komlós and
Szemerédi (upper bound [1]). The maximally unbalanced numbers r(3, t) got
further attention (see [22,1]).

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 351–364, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The study of Ramsey theorem in proof theory is well established in literature.
In bounded arithmetic there are papers attempting to classify the power of
a theory in comparison with Ramsey Theorem. It is also considered a good
candidate for separating low levels of bounded depth Frege [25].

A propositional statement of the form “r(k, k) ≤ N” become easier to prove
as N increases. In particular if m = r(k, k) then the statement “r(k, k) ≤ m” is
the hardest possible. Krishnamurthy and Moll [24] proposed this statement as
a candidate of a hard formula to prove. They also proved a lower bound on the
width of the clauses appearing in its resolution refutations. Kraj́ıček later proved
an exponential lower bound on the length of bounded depth Frege proofs [23],
for the same statement.

Proving a weaker bound should be easier. Indeed it is possible to give a short
proof that “r(k, k) ≤ 4k” in a relatively weak fragment of sequent calculus
(namely, any formula in the proof has bounded depth) [25,23]. It is not clear
how strong the proof system must be in order to prove efficiently this statement.
Recently Pudlák has shown that resolution is not enough, since the length of
a resolution proof of “r(k, k) ≤ 4k” must be exponential in the length of the
formula itself (see [27]). The propositional complexity of off-diagonal Ramsey
upper bounds has received less attention, and the only known results are from [8].

In the context of proof complexity research, cutting planes is one of the most
studied proof systems after resolution, so it is natural to ask whether Ramsey’s
Theorem is hard for it. Cutting planes has been originally introduced as a tech-
nique to solve integer programs (see [17,9]). The original idea is to do a canonical
linear programming optimization. If the optimum is at a fractional point, it is
possible to get an valid inequality which can be “rounded” in order to remove
that point from the set of feasible solutions.

Cutting planes was later proposed as a proof system [12], indeed it is possible
to view the previous process as a sequence of inferences: a new inequality is
either as positive combination or as a rounding of previously derived inequalities.
Another way to describe the rounding rule is the following: if the inequality∑

i aixi ≤ A is valid and all ai are integers divisible by c, then any integer
solution would also satisfy

∑
i
ai

c xi ≤ ,
A
c -, which is not valid for fractional

solutions if A is fractional.
Studying the length of proofs in cutting planes is a way to study the running

time for integer linear programming solvers based on the rounding rule. Unfor-
tunately this seems to be difficult. The only lower bound known for unrestricted
cutting planes refutations is due to Pudlák [26], and it deals with a relatively
artificial formula. Lower bounds for more natural formulas exist for cutting plane
proofs of restricted forms (e.g. when the numeric coefficients are small [6] or the
proof is tree-like [19]). Another restricted form of cutting planes is the one where
every proof line has small “degree of falsity” (a complexity measure introduced
in [16]). If the degree of falsity is sufficiently small, then the proof system has
a sub-exponential simulation in resolution [18]. This implies that most strong
resolution lower bounds generalize to this limited version of cutting planes. In
particular this is true for [27].
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Ramsey’s Theorem is a natural is probably difficult for cutting planes. Since
length lower bound are out of reach with the current techniques, we focus on the
“rank” of a refutation: that is the depth (in term of rounding rule applications) of
the refutation. The focus on auxiliary complexity measures in not new in proof
complexity, and it is not limited to cutting planes. Well known examples are
“width” in resolution, “degree” in polynomial calculus, and “rank” in geometric
proof systems like Lovász-Schrijver and sum-of-squares. These measures relate
with the actual proof length, in the sense that there are proof search algorithms
which runs in time nO(r) on formulas with n variables and measure r. Indeed
Chvátal et al. [10] prove that under some technical conditions if there is a cutting
planes proof of rank r then there is one of size nO(r). For further information
about cutting planes refutations and the notion of rank (also called Chvátal
rank) we suggest the reader to refer to [21, Chapter 19].

In this paper we are going to prove that Ramsey’s Theorem requires rank
Ω(2k/2). The result does not follow from the classic protection lemma for cutting
planes [7, Lemma 3.1], so we need to prove a different one which could be of
independent interest.

The rest of the paper has the following structure. In Section 2 we give neces-
sary preliminaries: we formally introduce the cutting planes proof system in Sec-
tion 2.1 and we describe the integer inequalities encoding the Ramsey’s theorem
in Section 2.2. We then define the rank of a cutting planes proof in Section 2.3.
In Section 3 we give the proof of the main theorem (Theorem 2), and in Section 4
we discuss about improvements and related open problems.

2 Preliminaries

2.1 Cutting Planes Proof System

Cutting planes is a technique to solve mixed integer linear programs. In this pa-
per we consider an inference system for refuting unsatisfiable CNFs based on the
cutting planes technique. We encode propositional clauses as affine inequalities
which have 0–1 solutions if and only if the corresponding assignments satisfy the
original clauses. A clause ∨ili translates to the inequality

∑
i fi ≥ 1 where

fi =

{
x if li = x

1− x if li = ¬x
(1)

For example the clause
¬x ∨ y ∨ ¬z (2)

translates as
−x+ y − z ≥ −1 (3)

after summing the constant terms.
After such encoding, any proof that there are no integer solutions for the

linear program is a refutation of the corresponding CNF, so we can define a
proof system for the Unsat language by the means of cutting planes.
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A proof system for Unsat is a polynomial time machine P which has in input
a CNF φ and a candidate refutation Π . If the formula φ is unsatisfiable there
must be some refutation Π for which P (φ,Π) accepts. If φ is satisfiable then P
does not accept any pair (φ,Π).

The study of proof systems was initially motivated by the fact that NP is
the class of languages with short proof of membership. So in order to separate
NP from coNP we may show that all proof systems for Unsat require super-
polynomial length refutations for some formulas.

Nowadays the study of proof systems focuses in large part on those systems
which model actual SAT solvers, automatic theorem provers and algorithms for
combinatorial optimization. This is because the study of complexity measures
of the refutation process usually gives insight about the performance of such
algorithms. In particular most of these algorithms use heuristics to solve what
computer science considers hard problems; a proof system has nondeterministic
nature, so it models the best possible heuristic and any lower bound on (for
example) proof length usually translates to a lower bound on the running time
of all such algorithms.

A refutation in cutting planes (as defined in [12]) is an inference process which
starts with the inequalities encoding the CNF, and ends with a false inequality
1 ≤ 0. Two inference rules are available.

Positive linear combination

aT · x ≤ A bT · x ≤ B
(αa+ βb)

T · x ≤ (αA+ βB)

for any non negative α, β.

Integer division with rounding

(c · a)T · x ≤ A
aT · x ≤ ,Ac -

.

Positive linear combination is sound in general. Integer division with rounding
is only sound on integer solutions. The rule says that if the integer coefficients
of the variables have a common factor c, then dividing everything by c keeps the
left side of the inequality to be integer. Thus it is possible to strengthen the right
side to the closest integer. Such proof system is complete, since it is possible to
transform any resolution refutation of a CNF into a cutting planes refutation of
the same CNF.

2.2 Ramsey Statement

Informally, the classical “Ramsey’s Theorem” claims that any big enough struc-
ture, however complicated, contains an instance of a regular substrucure. A spe-
cific instance of Ramsey’s theorem on graphs claims that for any two numbers k
and s there is an integer number r(k, s) such that any graph with r(k, s) vertices
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has either a clique of size k or an independent set of size s. In [14] it was proved
that r(k, k) ≤ 4k or, equivalently, that any graph with n vertices has either a
clique or an independent set of size � logn

2 ..
Theorem 1 (Erdös, Szekeres 1935 [14]). Any graph with 4k vertices has
either a clique of size k or an independent set of size k.

We study cutting planes proofs of this Ramsey statement. Actually we study
refutations of its negation, encoded as a CNF. For any unordered pair of vertices
we indifferently denote by either xi,j or xj,i the propositional variable whose
intended meaning is that an edge in the graph connects vertices i and j. Let U
be a set of vertices, we have two types of clauses.

NoCli(U) :=
∨

{i,j}∈(U2)
¬xi,j (4)

NoInd(U) :=
∨

{i,j}∈(U2)
xi,j (5)

We encode “r(k, k) > 4k” as the following CNF, which has
(
4k

2

)
variables and

2
(
4k

k

)
clauses of width

(
k
2

)
.

Ramk :=

⎛⎜⎝ ∧
U∈([4

k]
k )

NoCli(U)

⎞⎟⎠ ∧
⎛⎜⎝ ∧

U∈([4
k]
k )

NoInd(U)

⎞⎟⎠ . (6)

In cutting planes refutations the clauses are represented as follows:

NoCli(U) :
∑

{i,j}∈(U2)

xi,j ≤
(
k

2

)
− 1 (7)

NoInd(U) :
∑

{i,j}∈(U2)

xi,j ≥ 1 (8)

which can be succinctly represented as

1 ≤
∑

{i,j}∈(U2)

xi,j ≤
(
k

2

)
− 1. (9)

In the rest of the paper we keep everything expressed as a function of k. To get a
picture on the proof complexity of this formula it is useful to state it at least once
in term of the number n of vertices in the graph. This customary for propositional
formulas related to graph theory. Here n = 4k: the formula has Θ(n2) variables
and nΘ(log n) clauses of width Θ(log n), so it has quasi-polynomial length with
respect to the number of variables. In this paper we prove a rank lower bound
of roughly Ω( 4

√
n).

2.3 The Rank of a Cutting Planes Refutation

One complexity measure for cutting planes is the “rank” of an inference. Other
geometric proof systems, with specific inference rules, have similar notions of
rank. The rank of cutting planes proof system is also called Chvátal Rank.
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The linear program that we use to encode the CNF does not take into account
the fact that we care about integer solutions only. Indeed the initial polyhedron
contains fractional solutions that we want to ignore.We do that by adding further
inequalities which are valid on integer solutions but may remove fractional ones.
The “integer division with rounding” inference rule is the way employed by
cutting planes to add such inequalities. All initial inequalities have rank 0. A line
obtained applying the “positive linear combination” rule from two inequalities
of rank r1 and r2 has rank max{r1, r2}. A line obtained from an inequality of
rank r using the division rule has rank r + 1.

Thus the rank represents the nesting of integer division applications in the
refutation. The rank of a refutation is the largest rank among the refutation
lines. The rank of an unsatisfiable CNF is the smallest rank among all possible
refutations.

The notion of rank has also a geometric interpretation: a point p has rank r
if there is an inequality of rank r+1 which is not satisfied by p, and such that p
satisfies all inequalities of rank r. More concretely we can think the inequalities
to define a chain of polyhedrons P0 ⊇ . . . ⊇ Pi ⊇ . . . ⊇ PI , where Pi contains all
points of rank ≥ i, and PI is the convex hull of all integer solutions of the linear
program. It is a well known fact that there is r ≥ 0 such that Pr = PI . If the
CNF has no solution then PI = ∅, and the rank of PI corresponds to such r.

To show that the rank of a refutation is at least r, is sufficient to show that
there is a point in Pr. To do that the only known technique is the use of protec-
tion lemmata, which roughly say that if some points in a structured set (called
“protection set”) have rank i, then another point has rank i+ 1.

In particular it is possible to define a prover-delayer game as follows: prover
challenges the delayer to exhibit a protection set for a point p0. Delayer either
gives up or shows a set S0. At the next round the prover picks a point p1 ∈ S0
and asks again for a protection set. If the Delayer has a strategy to play the
game for r rounds, then the point p0 has rank at least r.

3 A Protection Lemma for Fractional Graphs

The fractional points that we will use in this paper have a peculiar structure.
We only use half integral points (i.e. each coordinate is either 0, 1

2 , or 1), which
in turn is a natural encoding of partially specified graphs: 0 encodes non-edges,
1 encodes edges, 1

2 encodes unspecified edges. The points we are interested in
have additional structure, as described by the following definition.

Definition 1 (Fractional graph). A “fractional graph” is a pair G = (V,E)
on the vertex set V when E is a function E :

(
V
2

)
→ {0, 12 , 1}. Consider U ⊆ V

such that for all {u, v}

E({u, v}) = 1

2
if and only if {u, v} �⊆ U,

then we say that G is integral on the vertex set U . U is called the integral part
of G.
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It is clear that a fractional graph is an half-integral point in the space [0, 1](
V
2),

thus the notion of rank applies to fractional graphs. The integral part of a frac-
tional graph is unique.

Remark on Notation: in the following we use xi,j to denote the variables
referring to edges in the graph, and we denote an inequality as “a · x ≤ b” or
“ax ≤ b”. We denote as G both the fractional graph and the corresponding
point in the space. Indeed for a fractional graph G = (V,E) the notation “a ·G”
indicates the value ∑

{u,v}∈(V2)

au,vE({u, v}).

Fractional graphs are actually vectors with coordinates in [0, 1], so we can make
convex combination of them. For this paper we just need the average between
two graphs.

Definition 2 (Graph average). Given two fractional graphs G1 = (V,E1)
and G2 = (V,E2) we consider the average of them (denoted as 1

2G1 +
1
2G2) to

be the graph H = (V, E1+E2

2 ).

The average of two fractional graphs is not necessarily a fractional graph ac-
cording to our definition. It is in the particular conditions that we enforce in the
definition of protection sets and in the rest of the paper.

Definition 3 (Protection set). Consider a fractional graph G which is inte-

gral on the vertices in I and a set of graph pairs
(
G

′

{u,v}, G
′′

{u,v}

)
, one graph pair

for each vertex pair {u, v} disjoint from I. The set of graph pairs is a protection
set for G if for all pairs it holds that:
– both G

′

{u,v} and G
′′

{u,v} are integral on I ∪ {u, v};
– G = 1

2G
′

{u,v} +
1
2G

′′

{u,v}.

If p is a point in [0, 1](
V
2) we denote pa,b has the value of the coordinate of

p corresponding to edge {a, b}. In particular if p represents a fractional graph
G = (V,E) then pa,b = E({a, b}). The following simple lemma highlights the
peculiar structure of a protection set for G.

Lemma 1. Consider a graph G with integral part I and choose a pair (G
′

{u,v},

G
′′

{u,v}) from some protection set for G. Let p, p′, p′′ to be the points representing

G,G
′

{u,v}, G
′′

{u,v}, respectively. The following hold:

1. for any {a, b} ⊆ I, pa,b = p′a,b = p′′a,b;
2. for any {a, b} � I and {a, b} ⊆ I ∪ {u, v}, pa,b = 1

2 and p′a,b = 1− p′′a,b.
Proof. Point (1) holds because edge {a, b} is in the integral part: pa,b must be

integer and equal to
p′
a,b+p′′

a,b

2 , so the values of p′a,b and p′′a,b must be equal to

pa,b; to prove (2) notice that {a, b} �⊆ I immediately implies that pa,b = 1
2 .

Both G′
{u,v} and G′′

{u,v} have integral edge {a, b}, so the values p′a,b, p
′′
a,b must

be opposite in order to average to 1
2 . ��
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We show a protection lemma for fractional graphs which essentially states that
the previous definition of protection set is meaningful, and thus will be useful
to get rank lower bounds. This protection lemma is different from the ones
already known: every point in a protection set has additional integer values
in the coordinates, and in constructions from literature such coordinates must
be disjoint and independently settable (see [7]). In our construction this is not
needed, which allows us to use protection sets made by fractional graphs.

We now focus on the sequence of polytopes [0, 1](
V
2) ⊇ P0 ⊇ P1 ⊇ · · · ⊇ Pi ⊇

· · · , where Pi is the set of points of rank at least i.

Lemma 2 (Protection Lemma). Let G be a fractional graph with an even
number of vertices and an integral part of even size. If G has a protection set
contained in Pi, then G ∈ Pi+1.

Proof. The fractional graph G is the average of two points in Pi by construction,
so G ∈ Pi as well. Assume by contradiction that G �∈ Pi+1, then it holds that
a·G > b where ax ≤ b is an inequality of rank i+1. We can derive such inequality
by integer division from an inequality a′x ≤ b′ of rank i, where

a′u,v = qau,v b′ = qb + r for some q, r ∈ Z with 0 < r < q. (10)

Since G ∈ Pi we have a′ · G ≤ b′ < q(b + 1). Putting all together we have that
b < a ·G < b+ 1.

Fix I to be the integral vertices of G, and J = V (G) \ I. The value of a ·G is
strictly less than b + 1 but it is strictly larger than b, so it must be b + 1

2 . The
coefficient vector a is integral, thus it follows that∑

{u,v}∈J

au,v +
∑

u∈J,w∈I

au,w ≡ 1 (mod 2) (11)

because otherwise a ·G would be integral.
We now show that equation (11) implies that we can find at least one pair

{u, v} ⊆ J for which it holds that:

au,v +
∑
w∈I

au,w +
∑
w∈I

av,w ≡ 1 (mod 2). (12)

To see this denote bu :=
∑

w∈I au,w for all u ∈ J . Equations (11) and (12) can
be rewritten as ∑

{u,v}∈J

au,v +
∑
u∈J

bu ≡ 1 (mod 2) (13)

and

au,v + bu + bv ≡ 1 (mod 2). (14)

We partition J in two classes J0 = {u ∈ J : bu ≡2 0} and J1 = {u ∈ J : bu ≡2 1}.
If there is a pair {u, v} such that bu ≡ bv (mod 2) and au,v ≡ 1 (mod 2) we are
done; if there is a pair {u, v} such that bu �≡ bv (mod 2) and au,v ≡ 0 (mod 2)
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we are also done. If neither happens then we can manipulate equation (13) as
follows

1 ≡
∑

{u,v}∈J

au,v +
∑
u∈J

bu ≡
∑
u∈J0

∑
v∈J1

au,v +
∑
u∈J1

bu ≡ |J0||J1|+ |J1| (mod 2),

which is a contradiction: |J0||J1| + |J1| = (|J0| + 1)(|J | − |J0|) and since |J | is
even, the right hand side is always even.

Fix any pair {u, v} such that equation (12) holds. We consider a · G as the
sum of three contributions: the sum over the integral edges of G, the sum over
the edges enumerated in equation (12) for the chosen pair {u, v}, and the sum
over the rest of the edges. Let us call these sums A,B and C respectively: clearly
A + B + C = b + 1

2 . All edges in G corresponding to the sum B have value 1
2 ,

so by equation (12) B is half integral, and in particular follows that A + C is
integer.

Consider the two graphs G′
{u,v} and G′′

{u,v} in the protection set. By definition
they must differ from G only on the edges which coefficients are in the summa-
tion (12), thus a ·G′

{u,v} = A+B′ +C and a ·G′′
{u,v} = A+B′′ +C for some B′

and B′′. On these edges the two graphs have integral values, so B′ and B′′ are
integer numbers.

It follows that numbers a · G′
{u,v} and a · G′′

{u,v} are integral and (being the

two graphs in Pi) they are strictly smaller than b + 1. Thus the two values are
at most b. G is the average of the two graphs, so it follows that a ·G ≤ b, which
contradicts the assumption that G �∈ Pi+1. ��
We are now ready to prove the lower bound on rank of cutting planes proof of
the Ramsey number upper bound.

Theorem 2. For all even k ≥ 4, cutting planes rank of formula Ramk is at
least 2k/2−1.

Proof. Consider the following Prover-Delayer game:

Initial choice (round 0): let P0 be the polytope described by the linear system
of Ramk, and let G0 a fractional graph with empty integral part (i.e. all edges
have value 1

2 ).

Delayer choice (round i > 0): delayer shows a protection set forGi−1 contained
in P0.

Prover choice (round i > 0): prover sets Gi to be an arbitrary element of the
protection set of Gi−1 shown by delayer.

For k ≥ 4, fractional graph G0 satisfies all equations (9), thus it is a point of
the initial polytope P0. Lemma 2 says that if delayer reaches round i, then G0

has rank at least i. To prove the theorem it is sufficient to show a strategy for
Delayer for playing up to round 2k/2−1.

At each step i in the prover-delayer game Gi is a fractional graph with an
integral part of 2i vertices, since each application of Lemma 2 adds exactly two
vertices. Furthermore at each step we keep a bijection σi between the integral
part of Gi and {1 . . .2i}.
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We are going to build the protection sets using a model graph H on vertex set
{1 . . .2k/2}. The indicator variable hi,j is either 1 if {i, j} ∈ E(H) or 0 otherwise.
We call “diagonal pair” any pair of the form {2m−1, 2m}, for somem ∈ [2k/2−1].
We need H to have properties in the following claim:

Claim 1. There exists a graph H such that
– H has neither a clique nor an independent set of size k;
– for every H ′ obtained from H by arbitrarily changing the diagonal edges,

the previous property holds for H ′;
– given any diagonal pair {2m − 1, 2m} and any vertex a < 2m− 1, it holds

that

ha,2m−1 = 1− ha,2m.

This graph H has 2m = 2k/2 vertices, so the fact that it has no clique and no
independent set of size k does not necessarily violate the Ramsey’s theorem.
Indeed we will show later that such graph H exists.

Delayer Strategy: delayer uses such H to define its strategy against prover.
The main idea is that at each round a new pair of vertices in G0 is mapped to
some diagonal pair of H . Each Gi in the trace of the game is almost a copy of
the graph induced by the vertices {1 . . .2i} on H . We say “almost”, because the
value on the diagonal pair will be changed arbitrarily. We call σi the mapping
at round i, and we define σ0 to be the empty mapping.

At round i we want to show a protection set for Gi, with integral part I. For
each u and v not in I, we define the two graphs G′

u,v and G′′
u,v by adding {u, v}

to the integral part in the following way: for every a ∈ I

p′a,u := hσi(a),(2m−1)

p′a,v := hσi(a),2m

p′′a,u := hσi(a),2m

p′′a,v := hσi(a),(2m−1)

p′u,v := 0

p′′u,v := 1,

where p, p′, p′′ are the point representing fractional graphs Gi, G
′
u,v and G′′

u,v,
respectively. The other coordinates of p′ and p′′ keep the values of p. By con-
struction the defined graphs make a protection set, because they satisfy the
conditions of Definition 3.

After Prover Choice: prover can choose either G′
u,v or G′′

u,v for some pair
{u, v}. If prover chooses G′

u,v then we extend σi to σi+1 by adding the mapping
u �→ (2m − 1) and v �→ 2m. Otherwise we add the mapping u �→ 2m and
v �→ (2m− 1).

Finally we show that the player can play for e = 2k/2−1 rounds. In order
to play that many rounds we need to argue that Ge is contained in P0, or
equivalently that it satisfies equations (9). Take an arbitrary set of vertices K ⊆
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V (Ge) of size k ≥ 4: if there is even a single vertex out of the integral part, then
the sum contains at least two half-integral variables. None of the bounds in (9)
is violated.

If K is contained in the integral part of Ge, notice that the latter is isomorphic
to some H ′ which is obtained from H by arbitrarily changing the edges on the
diagonal pairs. By Claim 1 graph H ′ does not contain homogeneous vertices of
size k. Thus Equation (9) on K is satisfied.

We have proved that Ge ∈ P0. That means (using Lemma 2) that Ge−1 ∈ P1,
Ge−2 ∈ P2, . . . , and so on until G0 ∈ Pe. This shows that Pe is not the empty
polytope, and that inequality 0 ≤ −1 has rank larger than e. This concludes the
proof of the theorem. ��

Proof (of Claim 1). Consider any i ≤ 2k/2−1. We determine independently at
random the 0–1 values of hv,(2i−1) for all vertices v < 2i−1, and we set h(v,2i) :=
1 − hv,(2i−1). This definition immediately enforces the third condition of the
claim. We get the first and the second condition by probabilistic method: we
show that with positive probability any set of vertices of size k contains both an
edge and a non-edge which are not on diagonal pairs. This is true by construction
for any set K containing a diagonal pair {2m− 1, 2m} plus some other vertex
v < 2m − 1. Let K0 the family of sets of size k with no diagonal pair, and K1

the family of sets of size k such that the two smallest elements form a diagonal
pair. The size of the families are

|K0| = 2k
(
n/2

k

)
|K1| = 2k−2

(
n/2

k − 1

)
.

Families K0 and K1 are empty unless k ≥ 8, and the graph H has no homoge-
neous sets of size k by construction. Consider k ≥ 8. There are

(
k
2

)
independent

random edges in sets from K0, and
(
k
2

)
− 1 in sets from K1. Fix n = 2k/2, and

notice that n is even. Then

Pr[H has a homogeneous set of size k] ≤
∑
K∈K

Pr[K is homogeneous] ≤

≤ |K0|
2

2(
k
2)

+ |K1|
2

2(
k
2)−1

≤ 2

2(
k
2)

[
2k
(
n/2

k

)
+ 2k−1

(
n/2

k − 1

)]
< 1, (15)

for n = 2k/2. ��

4 Conclusion

We have seen that Ramsey’s Theorem requires refutations of large rank. Of
course the actual rank depends on the value of r(k, k) itself: the proof may focus

on the first r(k, k) vertices and the corresponding
(
r(k,k)

2

)
variables. Thus in

order to improve the rank lower bound it is necesessary to understand better
the Ramsey number itself, in particular its lower bounds.
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Rank is just an auxiliary complexity measure: the interest of proof complexity
revolves around the length of proofs. Unfortunately there is very little under-
standing about the length of cutting planes refutations: the only lower bound
known is based on the interpolation technique [26]. This means that the formula
for which the lower bound is proved has ad-hoc structure and is not interesting
per se. Such lower bound has been proved by harnessing the connection between
cutting planes inferences and monotone computation [26,5]. It is an open prob-
lem how to prove length lower bounds for natural formulas, in particular using
combinatorial techniques which allow to study more general CNFs.

A natural question is whether the rank has a role here. In other proof systems
(e.g. resolution and polynomial calculus) a good lower bound on an auxiliary
complexity measure implies proof length lower bounds [2,20]. It is interesting to
notice that even if this implication is true then it must have some limitations,
since there are formulas with large rank (i.e. the square root of the number of
variables) and small refutations [7]. The latter also happens in resolution and
polynomial calculus (with width and degree complexity measure, respectively.
See [15,4]). Still the study of such auxiliary measures allowed proof size lower
bounds.

In order to understand the relation between rank and length of cutting planes
proof the following question is unavoidable:

Open Problem 1. Is there any k-CNF formula on n variables with polynomial
length refutations and cutting planes rank Ω(n)?

As mentioned before there is a formula on n variables, polynomial length refu-
tation and rank Ω(

√
n) (see [7]). Thus any rank-length connection which holds

in general would not be useful to prove a length lower bound for Ramsey’s The-
orem, given the current knowledge. So even if a rank-length trade-off is proved,
that would not solve the following problem:

Open Problem 2. Does Ramk have a cutting planes refutation of polynomial
length?

For further open problems about cutting planes refutations we suggest to refer
to the book [21, Chapter 19].
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49–56. Birkhäuser, Boston (1987)

15. Galesi, N., Lauria, M.: Optimality of size-degree tradeoffs for polynomial calculus.
ACM Transaction on Computational Logic 12, 4:1–4:22 (2010)

16. Goerdt, A.: The cutting plane proof system with bounded degree of falsity. In:
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The Complexity of Theorem Proving

in Autoepistemic Logic�

Olaf Beyersdorff
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Abstract. Autoepistemic logic is one of the most successful formalisms
for nonmonotonic reasoning. In this paper we provide a proof-theoretic
analysis of sequent calculi for credulous and sceptical reasoning in propo-
sitional autoepistemic logic, introduced by Bonatti and Olivetti [5]. We
show that the calculus for credulous reasoning obeys almost the same
bounds on the proof size as Gentzen’s system LK . Hence proving lower
bounds for credulous reasoning will be as hard as proving lower bounds
for LK . This contrasts with the situation in sceptical autoepistemic rea-
soning where we obtain an exponential lower bound to the proof length
in Bonatti and Olivetti’s calculus.

1 Introduction

Autoepistemic logic is one of the most popular nonmonotonic logics which is
applied in a diversity of areas as commonsense reasoning, belief revision, plan-
ning, and reasoning about action. It was introduced by Moore [19] as a modal
logic with a single modal operator L interpreted as “is known”. Semantically,
autoepistemic logic describes possible views of an ideally rational agent on the
grounds of some objective information. Autoepistemic logic has been intensively
studied, both in its semantical as well as in its computational aspects (cf. [18]).
The main computational problems in autoepistemic logic are the credulous and
sceptical reasoning problems, formalising that a given formula holds under some,
respectively all, views of the agent. Thus these problems can be understood as
generalisations of the classical problems SAT and TAUT. However, in autoepis-
temic logic, these tasks are presumably harder than their propositional counter-
parts as they are complete for the second level of the polynomial hierarchy [12].

In this paper we target at understanding the complexity of autoepistemic
logic in terms of theorem proving. Traditionally, the main objective in proof
complexity has been the investigation of propositional proofs [7, 16]. During
the last decade there has been growing interest in proof complexity of non-
classical logics, most notably modal and intuitionistic logics [14, 15], and strong
results have been obtained (cf. [1] for an overview and further references). For
autoepistemic logic, Bonatti and Olivetti [5] designed elegant sequent calculi for
both credulous and sceptical reasoning. In this paper we provide a proof-theoretic
analysis of these calculi. Our main results show that (i) the calculus for credulous
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autoepistemic reasoning obeys almost the same bounds to the proof size as the
classical sequent calculus LK and (ii) the calculus for sceptical autoepistemic
reasoning has exponential lower bounds to the size and length of proofs.

These results are interesting to compare with previous findings for default
logic—another principal approach in nonmonotonic logic. In a wider attempt
to a proof-theoretic formalisation of nonmonotic logics, Bonatti and Olivetti [5]
also devise calculi for default logic which were proof-theoretically analysed in
[2, 10]. Default logic is known to admit a very close relation to autoepistemic
logic via translations [13], but these are not directly applicable to transfer proof
complexity results from default logic to the autoepistemic calculi. Our findings
on autoepistemic logic in the present paper confirm results from [2] where the
authors establish a similar polynomial dependence between proof lengths in LK
and credulous default reasoning. Combining results from [2] with Theorem 4 of
this paper, we can infer that credulous reasoning in default and in autoepistemic
logic have the same complexity in theorem proving. On the other hand, [2]
also provides an unconditional exponential lower bound for sceptical default
reasoning. This reveals an interesting general picture for nonmonotonic logics:
while credulous reasoning is equivalent to classical reasoning in terms of lengths
of proofs, lower bounds are easier to obtain for sceptical reasoning. We comment
further on the broader picture in Section 5.

This paper is organised as follows. In Sect. 2 we start with some background
information on autoepistemic logic and proof systems. Our results on the proof
complexity of credulous and sceptical autoepistemic reasoning follow in Sects. 3
and 4, respectively. In Sect. 5, we conclude with a discussion and open questions.

2 Preliminaries

We assume familiarity with propositional logic and basic notions from complexity
theory (cf. [16]). By L we denote the set of all propositional formulas over some
fixed standard set of connectives. By  and ⊥ we denote the logical constants
true and false, respectively. For formulas ϕ, σ, θ, the notation ϕ[σ/θ] means that
all occurrences of subformulas σ in ϕ are replaced by θ.

Autoepistemic Logic. Autoepistemic logic is an extension of classical logic
that has been proposed by Moore [19]. The logic is non-monotone in the sense
that an increase in information may decrease the number of consequences. The
language of autoepistemic logic Lae consists of the language L of classical propo-
sitional logic augmented by an unary modal operator L. Intuitively, for a formula
ϕ, the formula Lϕ means that ϕ is believed by a rational agent. We emphasize
that L-operators could be nested. Classical propositional formulas without oc-
currence of L are called objective formulas. A set of premises is a finite set of
Lae formulas.

Propositional assignments are extended to assignments for autoepistemic logic
by considering all formulas of the form Lϕ as propositional atoms, i.e., in au-
toepistemic logic an assignment is a mapping from all propositional variables and
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formulas Lϕ to {0, 1}. This yields an immediate extension of the consequence
relation to autoepistemic logic: if Φ ⊆ Lae and ϕ ∈ Lae, then Φ |= ϕ iff ϕ is true
under every assignment which satisfies all formulas from Φ. As in classical logic
we define Th(Φ) = {ϕ ∈ Lae | Φ |= ϕ}.

The main semantical notion in autoepistemic logic are stable expansions which
correspond to all possible views an ideally rational agent might adopt on the
knowledge of some set of premises Σ ⊆ Lae. Formally, a stable expansion of
Σ ⊆ Lae was defined by Moore [19] as a set Δ ⊆ Lae satisfying the fixed-point
equation

Δ = Th (Σ ∪ {Lϕ | ϕ ∈ Δ} ∪ {¬Lϕ | ϕ �∈ Δ}) .

Informally, a stable expansion corresponds to a possible view of an agent, allow-
ing him to derive all statements of his view from the given premises Σ together
with his believes and disbelieves.

A set of premises Σ can have none or several stable expansions. A sentence
ϕ ∈ Lae is credulously entailed by Σ if ϕ holds in some stable expansion of Σ.
If ϕ holds in every expansion of Σ, then ϕ is sceptically entailed by Σ. We give
some examples which will be important later on.

Example 1. (a) If the premises Σ only consist of objective formulas, then Σ has
exactly one stable expansion, namely the deductive closure of Σ (together with
closure under L) if Σ is consistent and Lae if Σ is inconsistent. (b) The set
{p ↔ Lp} has two stable expansions, one containing p and Lp and the other
containing both ¬p and ¬Lp. (c) The set {Lp} has no stable expansion.

Proof Systems. Cook and Reckhow [8] defined the notion of a proof system for
an arbitrary language L as a polynomial-time computable function f with range
L. A string w with f(w) = x is called an f -proof for x ∈ L. Proof systems for
L = TAUT are called propositional proof systems. The sequent calculus LK of
Gentzen [11] is one of the most important and best studied propositional proof
systems. It is well known that LK and Frege systems mutually p-simulate each
other (cf. [16] for background information on proof systems and definitions of
LK and Frege).

There are two measures which are of primary interest in proof complexity. The
first is the minimal size of an f -proof for some given element x ∈ L. To make
this precise, let s∗f (x) = min{|w| | f(w) = x} and sf (n) = max{s∗f (x) | |x| ≤ n}.
We say that the proof system f is t-bounded if sf (n) ≤ t(n) for all n ∈ N. If t is a
polynomial, then f is called polynomially bounded. Another interesting parameter
of a proof is the length defined as the number of proof steps. This measure only
makes sense for proof systems where proofs consist of lines containing formulas
or sequents. This is the case for LK and most systems studied in this paper.
For such a system f , we let t∗f (ϕ) = min{k | f(π) = ϕ and π uses k steps} and
tf (n) = max{t∗f(ϕ) | |ϕ| ≤ n}. Obviously, it holds that tf (n) ≤ sf (n), but the
two measures are even polynomially related for a number of natural systems as
extended Frege (cf. [16]).
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The Antisequent Calculus. Bonatti and Olivetti’s calculi for autoepistemic
logic use three main ingredients: classical propositional sequents and rules of
LK , antisequents to refute formulas, and autoepistemic rules. In this section we
introduce Bonatti’s antisequent calculus AC from [4]. In AC we use antisequents
Γ � Δ, where Γ,Δ ⊆ L. Semantically, Γ � Δ is true if there exists an assignment
satisfying

∧
Γ and falsifying

∨
Δ. Axioms of AC are all sequents Γ � Δ, where

Γ and Δ are disjoint sets of propositional variables. The inference rules of AC
are shown in Fig. 1. Bonatti [4] shows soundness and completeness of the calculus

Γ � Σ, α
(¬ �)

Γ,¬α � Σ

Γ, α � Σ
(� ¬)

Γ � Σ,¬α

Γ, α, β � Σ
(∧ �)

Γ, α ∧ β � Σ

Γ � Σ,α
(� •∧)

Γ � Σ,α ∧ β

Γ � Σ, β
(� ∧•)

Γ � Σ,α ∧ β

Γ � Σ,α, β
(� ∨)

Γ � Σ,α ∨ β

Γ, α � Σ
(•∨ �)

Γ, α ∨ β � Σ

Γ, β � Σ
(∨• �)

Γ, α ∨ β � Σ

Γ,α � Σ, β
(�→)

Γ � Σ,α → β

Γ � Σ,α
(• →�)

Γ, α → β � Σ

Γ, β � Σ
(→ • �)

Γ, α → β � Σ

Fig. 1. Inference rules of the antisequent calculus AC

AC . Proofs in the antisequent calculus are always short as observed in [2] (the
bounds are not stated explicitly, but are implicit in the proof):

Proposition 2 (contained in [2]). sAC (n) ≤ n2 and tAC (n) ≤ n.

The polynomial upper bounds on the complexity of AC are not surprising, since,
to prove Γ � Δ we could alternatively guess assignments to the propositional
variables in Γ and Δ and thereby verify antisequents in NP.

3 Proof Complexity of Credulous Autoepistemic
Reasoning

We can now describe the calculus CAEL of Bonatti and Olivetti [5] for cred-
ulous autoepistemic reasoning. A credulous autoepistemic sequent is a 3-tuple
〈Σ,Γ,Δ〉, denoted by Σ;Γ |∼Δ, where Σ, Γ , and Δ are sets of Lae-formulas.
Moreover, all formulas of Σ are of the form Lα or ¬Lα and are called provability
constraints. Semantically, the sequent Σ;Γ |∼Δ is true, if there exists a stable
expansion E of Γ which satisfies all of the constraints in Σ (i.e., E |= Σ) and∨
Δ ∈ E. The calculus CAEL uses credulous autoepistemic sequents and extends

LK and AC by the inference rules shown in Fig. 2. Bonatti and Olivetti [5] show
soundness and completeness of CAEL.
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Γ � Δ(cA1) (Γ ∪Δ ⊆ L)
; Γ |∼Δ

Γ � α Σ; Γ |∼Δ
(cA2) (α ∈ L)

Lα, Σ; Γ |∼Δ
Γ �� α Σ; Γ |∼Δ

(cA3) (Γ ∪ {α} ⊆ L)¬Lα, Σ; Γ |∼Δ

¬Lα, Σ; Γ [Lα/⊥]|∼Δ[Lα/⊥]
(cA4)

Σ; Γ |∼Δ

Lα, Σ; Γ [Lα/�]|∼Δ[Lα/�]
(cA5)

Σ; Γ |∼Δ

In rules (cA4) and (cA5) Lα is a subformula of Γ ∪Δ and α ∈ L.

Fig. 2. Inference rules for the credulous autoepistemic calculus CAEL

Theorem 3 (Bonatti, Olivetti [5]). A credulous autoepistemic sequent is true
if and only if it is derivable in CAEL.

We now investigate the complexity of proofs in CAEL, showing a very tight
connection to proof size and length in the classical sequent calculus LK .

Theorem 4. CAEL obeys almost the same bounds on proof size and number of
proof steps as LK , more precisely: sLK (n) ≤ sCAEL(n) ≤ n(sLK (n) + n2 + n)
and tLK (n) ≤ tCAEL(n) ≤ n(tLK (n) + n+ 1).

Proof. In the following we will explain all sequent proofs “backwards”, i.e., we
start the description with the rule that is immediately applied to derive the
proven sequent and progress bottom up until we reach initial sequents or axioms.
For the first inequality sLK (n) ≤ sCAEL(n) (and similarly tLK (n) ≤ tCAEL(n))
it suffices to observe that each CAEL-proof of a sequent Γ |∼Δ with Γ ∪Δ ⊆ L
consists of one application of rule (cA1) followed by an LK -derivation of Γ / Δ.
This holds as rules (cA2) to (cA5) are only applicable if Γ |∼Δ contain at least
one occurrence of the L-operator.

We will now prove the remaining upper bounds, starting with tCAEL(n) ≤
n(tLK (n)+n+1). For α ∈ Lae we denote by LC(α) the number of occurrences of
L in α. We extend this notation to Δ ⊆ Lae by defining LC(Δ) =

∑
α∈Δ LC(α).

Let Σ;Γ |∼Δ be a true credulous autoepistemic sequent of total size n (as a
string). We will construct a CAEL-derivation of Σ;Γ |∼Δ starting from the bot-
tom with the given sequent. We first claim that we can normalise the proof such
that we start (always bottom-up) by eliminating all subformulas Lα in Γ ∪Δ by
using rules (cA4) and (cA5) and then use rules (cA2) and (cA3) to eliminate
all provability constraints. Finally, one application of rule (cA1) follows. Thus
the normalised proof will look as in Fig. 3. Let us argue that this normalisation
is possible. By Theorem 3 there exists a proof Π of Σ;Γ |∼Δ. At its top Π must
contain exactly one application of (cA1). The rest of the proof are applications
of (cA2) to (cA5). As (cA2) and (cA3) do not alter the part Γ |∼Δ of the
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LK/AC

LK/AC

LK
(cA1)

Γ ′|∼Δ′
(cA2) or (cA3)

σ;Γ ′|∼Δ′
(cA2) or (cA3)

...

Σ′′;Γ ′|∼Δ′
(cA2) or (cA3)

Σ′;Γ ′|∼Δ′
(cA4) or (cA5)

...
Σ;Γ |∼Δ

Fig. 3. The structure of the CAEL-proof in Theorem 4. LK/AC denotes a proof in
either LK or AC , LK denotes an LK -derivation, and σ is the last remaining constraint
from Σ′ after applications of (cA2) and (cA3).

sequent, they can be freely interchanged with applications of (cA4) and (cA5).
This yields a normalised proof of the same size as Π .

We now estimate the length of this normalised proof. Eliminating all sub-
formulas Lα in Γ ∪ Δ needs at most LC(Γ ∪ Δ) applications of rules (cA4)
and (cA5). The number of steps needed could be less than LC(Γ ∪Δ) as one
step might delete several instances of Lα. After this process we obtain a sequent
Σ′;Γ ′|∼Δ′ with Γ ′ ∪Δ′ ⊆ L and |Σ′| ≤ |Σ|+ LC(Γ ∪Δ) < n. From this point
on we use rules (cA2) and (cA3) until we have eliminated all constraints and
then finally apply rule (cA1) once. This will result in |Σ′|+ 1 ≤ n applications
of rules (cA1) to (cA3). Each of these applications will invoke either an LK or
an AC derivation of the left premise, but all these derived formulas are either
from Σ or subformulas of Γ or Δ. Therefore all these LK and AC -derivations
are used to prove formulas of size ≤ n. To estimate the lengths of AC -proofs we
use Proposition 2. In total this gives ≤ n(tLK (n)+n+1) steps to prove Σ;Γ |∼Δ.

The bound for sCAEL follows as each of the < n applications of (cA4) and
(cA5) leads to a sequent of size ≤ n and therefore this part of the proof is
of size ≤ n2. Each of the (cA2) and (cA3) applications shortens the sequent
Σ′;Γ ′|∼Δ′ which is of size≤ n and incurs an LK or AC -derivation of a sequent of
size ≤ n. Using Proposition 2 and taking account of the final (cA1) application
this contributes at most n(sLK (n) + n2) to the size of the overall proof. ��

In the light of this result, proving either non-trivial lower or upper bounds to
the proof size of CAEL seems very difficult as such a result would directly imply
a corresponding bound for LK which is know to be equivalent with respect to
proof size to Frege systems. Showing any non-trivial lower bound for Frege is
one of the hardest challenges in propositional proof complexity and this problem
has been open for decades (cf. [4, 16]).

The connection between proof size in classical LK and credulous autoepistemic
logic has further consequences. In particular, it allows to transfer intractability
results from classical logic to autoepstemic reasoning. Automatizability asks
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whether proofs can be efficiently constructed, i.e.,whether a proof of ϕ in a
proof system P can be found in polynomial time in the length of the shortest
P -proof of ϕ [6]. Of course automatizability of a proof system is very desirable
from a practical point of view. However, most known classical proof systems are
not automatizable under cryptographic or complexity-theoretic assumptions. In
particular, Bonet, Pitassi, and Raz [6] showed that Frege systems are not autom-
atizable unless Blum integers can be factored in polynomial time (a Blum integer
is the product of two primes which are both congruent 3 modulo 4). Frege sys-
tems are known to be equivalent to LK [8]. As credulous autoepistemic reasoning
extends LK this result easily transfers to credulous autoepistemic reasoning:

Corollary 5. CAEL is not automatizable unless factoring integers is possible
in polynomial time.

The same result also holds for the sceptical autoepistemic calculus analysed in
the next section.

4 Lower Bounds for Sceptical Autoepistemic Reasoning

Bonatti and Olivetti [5] also introduce a calculus for sceptical autoepistemic
reasoning. In contrast to the credulous calculus, sequents are simpler as they
only consist of two components Γ,Δ ⊆ Lae. An SAEL sequent is such a pair
〈Γ,Δ〉, denoted by Γ |∼Δ. Semantically, the SAEL sequent Γ |∼Δ is true, if

∨
Δ

holds in all expansions of Γ .
To give the definition of the SAEL calculus of Bonatti and Olivetti [5] we

need some notation. An L-subformula of an Lae-formula ϕ is a subformula of ϕ
of the form Lθ. By LS(ϕ) we denote the set of all L-subformulas of ϕ. ELS(ϕ)
denotes the set of all external L-subformulas of ϕ, i.e., all L-subformulas of ϕ
that do not occur in the scope of another L-operator. The notation is extended
to sets of formulas Φ by LS(Φ) =

⋃
ϕ∈Φ LS(ϕ) and ELS(Φ) =

⋃
ϕ∈ΦELS(ϕ).

We say that a set Γ ⊆ Lae is complete with respect to Σ ⊆ Lae if for all ϕ ∈ Σ,
either ϕ ∈ Γ or ¬ϕ ∈ Γ .

Bonatti and Olivetti’s [5] calculus SAEL consists of the defining axioms and
inference rules of LK and AC together with the rules shown in Fig. 4. Bonatti
and Olivetti show soundness and completeness of this calculus for sceptical au-
toepistemic reasoning:

Theorem 6 (Bonatti, Olivetti [5]). An SAEL sequent Γ |∼Δ is derivable in
SAEL if and only if it is true.

Let us comment a bit on the rules in Fig. 4. In rule (sA2), if ¬Lα, Γ |∼α is
true, then ¬Lα, Γ has no stable expansion and thus ¬Lα, Γ |∼Δ vacuously holds.
The same applies to rule (sA3). If Lα, Γ �/ α holds, then Lα, Γ does not have
any stable expansion and Lα, Γ |∼Δ is true (cf. [5, Theorem 5.14] for a detailed
argument). Thus, to derive a sequent Γ |∼Δ where the antecedent Γ has a stable
expansion, we can only use one of the rules (sA1) or (sA4) to immediately
get Γ |∼Δ. Note that rule (sA1) is quite powerful. Not only can it be used to
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Γ � Δ(sA1)
Γ |∼Δ

¬Lα, Γ |∼α
(sA2) ¬Lα, Γ |∼Δ

Lα, Γ �� α
(sA3)

Lα, Γ |∼Δ

where Γ ∪ {Lα} is complete wrt. ELS(Γ ∪ {α}) in rule (sA3)

Lα, Γ |∼Δ ¬Lα, Γ |∼Δ
(sA4) (Lα ∈ LS(Γ ∪Δ))

Γ |∼Δ

Fig. 4. Inference rules for the sceptical autoepistemic calculus SAEL

derive sequents Γ |∼Δ with Γ and Δ comprising of only classical formulas, but
it also applies to autoepistemic sequents Γ |∼Δ if L-subformulas are treated as
propositional atoms. We give an example.

Example 7. Let Γn be the sequence p1 ↔ Lp1, . . . , pn ↔ Lpn, q and Δn =
p1∨Lq. We obtain the derivation in Fig. 5. Neither Γn nor Δn consist of classical
formulas and Γn / Δn are no true classical sequents, but still (sA1) together
with the omitted LK -derivations guarantee short proofs. Note that Γn has 2n

stable expansions (cf. also Example 1), but still the overall proofs of Γn|∼Δn are
of linear length.

LK
Lq, (pi ↔ Lpi)i∈[n], q � p1 ∨ Lq

(sA1)

Lq, (pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq

LK
¬Lq, (pi ↔ Lpi)i∈[n], q � q

(sA1)

¬Lq, (pi ↔ Lpi)i∈[n], q |∼ q
(sA2)

¬Lq, (pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq
(sA4)

(pi ↔ Lpi)i∈[n], q |∼ p1 ∨ Lq

Fig. 5. Derivation of Γn|∼Δn in Example 7

In our next result we will show an exponential lower bound to the proof length
(and therefore also to the proof size) in the sceptical calculus SAEL.

Theorem 8. There exist sequents Sn of size O(n) such that every SAEL-proof
of Sn has 2Ω(n) steps. Therefore, sSAEL(n), tSAEL(n) ∈ 2Ω(n).

Proof. Let Γn consist of the formulas pi ↔ Lpi, pi ↔ qi with i = 1, . . . , n
and Δn =

∧n
i=1 (Lpi ↔ Lqi). We will prove that each SAEL-proof of Γn|∼Δn

contains 2n applications of rule (sA4). Consider now sequents

(Lpi : i ∈ I+p ), (¬Lpi : i ∈ I−p ), (Lqi : i ∈ I+q ), (¬Lqi : i ∈ I−q ), Γn |∼Δn (1)

where I+p , I
−
p , I

+
q , I

−
q ⊆ [n] and I+p ∩ I−p = I+q ∩ I−q = ∅. If additionally I+p ∩

I−q = I−p ∩ I+q = ∅, we call a sequent of the form (1) a k-sequent for k =∣∣[n] \ (I+p ∪ I−p ∪ I+q ∪ I−q )
∣∣.
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For a variable p let us denote by p1 the variable p while p−1 stands for ¬p.
We first note that each antecendent Γ of a k-sequent Γ |∼Δ has exactly 2k stable
expansions. Let J = [n] \ (I+p ∪ I−p ∪ I+q ∪ I−q ) be the index set corresponding
to the L-subformulas which are not already fixed by the antecedent. Then the
stable expansions of Γ are generated by p

ej
j , q

ej
j with j ∈ J (together with

(pi, qi : i ∈ I+p ∪ I+q ) and (p−1
i , q

−1
i : i ∈ I−p ∪ I−q )) where the variables (ej)j∈J

range over all 2k elements of {−1, 1}k.
We will now prove the following claim:

Claim. For all k = 1, . . . , n, each SAEL-proof Π of Γn|∼Δn contains at least 2k

(n− k)-sequents. Moreover, all of these (n− k)-sequents appear as a premise of
an application of (sA4) which has a (n− k + 1)-sequent as its consequence.

For k = n this claim yields the desired lower bound.
We prove the claim by induction on k. For the base case k = 1 observe

that Γn|∼Δn is an n-sequent. We first determine which rule which was used in
the proof Π to derive Γn|∼Δn. The antecedent Γn has 2n stable expansions.
Therefore, Γn|∼Δn cannot have been derived by either rule (sA2) or (sA3) (cf.
the discussion before Example 7). Likewise, Γn|∼Δn is not derivable by (sA1).
This is so because even considering all subformulas Lpi, Lqi as propositional
atoms, Γn|∼Δn is not a true propositional sequent. Therefore Γn|∼Δn is derived
by an application of (sA4) by branching over some L-subformula Lpi or Lqi.
This yields two distinct (n− 1)-sequents.

For the inductive step let Γ ′|∼Δ′ be a (n − k)-sequent in Π which appears
as a premise of an application of (sA4) and has a (n − k + 1)-sequent as its
consequence. Let us determine which rule which was used in the proof Π to
derive Γ ′|∼Δ′. As Γ ′|∼Δ′ is a (n− k)-sequent, its antecedent Γ ′ has 2n−k stable
expansions (see above). Therefore, Γ ′|∼Δ′ cannot have been derived by either
rule (sA2) or (sA3) (cf. the discussion before Example 7). Likewise, Γ ′|∼Δ′

is not derivable by (sA1). This is so because even considering all subformulas
Lpi, Lqi as propositional atoms, Γ ′|∼Δ′ is not a true propositional sequent. Its
succedent Δ′ contains subformulas Lpi ↔ Lqi, i ∈ [n] \ (I+p ∪ I−p ∪ I+q ∪ I−q )
which are not propositionally implied by the antecedent Γ ′. Therefore Γ ′|∼Δ′

is derived by an application of (sA4) branching over an L-subformula Lxi of
Γ ′ ∪Δ′ where xi stands for either pi or qi. There are three cases according to
the choice of variable xi.

Case 1: i ∈ I+p ∩ I+q or i ∈ I−p ∩ I−q . In this case applying (sA4) yields two
sequents, one of them a sequent with contradictory formulas in the antecedent,
the other one again a (n − k)-sequent which deviates from Γ ′|∼Δ′ only in that
Lxi occurs repeatedly in Γ ′. As this only increases the size of the overall proof,
Case 1 does not occur in proofs of minimal size.

Case 2: i ∈ I+p 0I+q or i ∈ I−p 0I−q .1 As both cases are symmetric let us assume
i ∈ I+p 0I+q . Then (sA4) yields the two sequents Lxi, Γ

′|∼Δ′ and ¬Lxi, Γ ′|∼Δ′.
The latter sequent ¬Lxi, Γ ′|∼Δ′ contains either both ¬Lpi and Lqi (if xi = pi)
or both of Lqi and ¬Lpi (if xi = qi) in its antecedent. Therefore the antecedent

1 Here � denotes symmetric difference, defined as A�B = (A \B) ∪ (B \A).
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is even propositionally unsatisfiable and hence the sequent ¬Lxi, Γ ′|∼Δ′ can be
proven by an LK -derivation followed by (sA1).

The first sequent Lxi, Γ
′ ∪ Δ′ is again a (n − k)-sequent (which, however,

does not fulfil the second sentence of the inductive claim). We apply again our
previous argument to this sequent: it must have been derived by (sA4). This
application might fall again under Case 2, but this can only occur a constant
number of times and eventually we will get an application of (sA4) to a (n−k)-
sequent according to the only remaining Case 3.

Case 3: i ∈ [n]\ (I+p ∪I−p ∪I+q ∪I−q ). In this case (sA4) produces two ancestor
sequents Lxi, Γ

′|∼Δ′ and ¬Lxi, Γ ′|∼Δ′. Both of these are (n − k − 1)-sequents
and also fulfil the second condition of the inductive claim.

As we have seen, all three cases start with a (n − k)-sequent and lead to
two (n− k− 1)-sequents, and all of these sequents fulfil the second condition of
the inductive claim. By the induction hypothesis, Π contains 2k many (n− k)-
sequents. All of these are derived by one or more applications of (sA4) from
prerequisite (n− k − 1)-sequents which are mutually distinct. Thus Π contains
2k+1 many (n− k − 1)-sequents, completing the argument. ��

We point out that our argument does not only work against tree-like proofs,
but also rules out sub-exponential dag-like derivations for Γn|∼Δn. Thus, while
dag-like derivations are typically shorter we also obtain an exponential lower
bound in this stronger model.

5 Conclusion and Discussion

In this paper we have shown that with respect to lengths of proofs, proof sys-
tems for credulous autoepistemic reasoning and for propositional logic are very
close to each other. On the other hand, we demonstrated exponential bounds for
sceptical autoepistemic reasoning in the natural calculus of [5]. Such bounds are
completely out of reach for the calculus LK in propositional logic. This situa-
tion closely resembles our findings for propositional default logic [2]. Credulous
reasoning is Σp

2-complete for both default logic and autoepistemic logic while
the sceptical reasoning tasks are both Πp

2-complete as shown by Gottlob [12] (cf.
also [3,9] for a refined analysis). Can this common underlying complexity of the
decision problems serve as explanation for the similarities in proof complexity
of these logics?

Let us dwell a bit on this theme. Although deciding credulous autoepis-
temic sequents is presumably harder than deciding tautologies (the former is
Σp

2-complete [12], while the latter is complete for coNP), the difference disap-
pears when we want to prove these objects. This becomes most apparent when
we consider polynomially bounded proof systems: by the classical theorem of
Cook and Reckhow [8], polynomially bounded propositional proof systems exist
if and only if NP = coNP, while credulous autoepistemic reasoning (or any logic
with a Σp

2-complete decision problem) has polynomially bounded proof systems
if and only if NP = Σp

2. However, the assertions NP = coNP and NP = Σp
2 are

equivalent and this also extends to other proof lengths:
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Proposition 9. Let L be a language in Σp
2 and let f be any monotone function.

Then TAUT ∈ NTIME(f(n)) implies L ∈ NTIME(p(n)f(p(n))) for some polyno-
mial p. In other words, for each propositional proof system P with sP (n) ≤ f(n)
there exists a proof system P ′ for L with sP ′(n) ≤ p(n)f(p(n)).
Proof. If L ∈ Σp

2, then there exists a polynomial-time nondeterministic oracle
Turing machine M which decides L under oracle access to TAUT. Assume now
TAUT ∈ NTIME(f(n)) via NTMN . We build an NTMN ′ for L by simulatingM
and replacing each oracle query θ to TAUT by the following nondeterministic
procedure. Guess the answer to query θ. If the answer is yes, then simulate
N(θ) and check that it accepts. Otherwise, if the answer is no, then guess an
assignment α and verify that α satisfies ¬θ. If p is the polynomial bounding
the running time of M , then each oracle query is of size ≤ p(n) and there can
be at most p(n) such queries. Therefore the running time of N ′ is bounded by
p(n)f(p(n)). The second claim follows as each nondeterministic machine for L
can be converted into a proof system for L (and vice versa). ��
This observation implies that from each propositional proof system P we can
obtain a proof system for credulous autoepistemic logic which obeys almost the
same bounds on the proof size. Theorem 4 tells us that the proof system for
credulous autoepistemic reasoning constructed by this general method from LK
is essentially the sequent calculus CAEL of Bonatti and Olivetti [5].

For sceptical autoepistemic (or default) reasoning—both of them Πp
2-complete

[12]—the situation is less clear. To the best of our knowledge it is not known
whether a similar result as Proposition 9 holds for L ∈ Πp

2. While sceptical au-
toepistemic reasoning has polynomially bounded proof systems if and only if this
holds for TAUT (because NP = coNP iff NP = Πp

2), we leave open whether this
equivalence between extends to other bounds. Thus it is conceivable that lower
bounds for sceptical reasoning are generally easier to obtain. This phenomenon
particularly occurs with non-classical logics of even higher complexity as modal
and intuitionistic logics which typically are PSPACE-complete and where expo-
nential lower bounds are known for Frege and even extended Frege systems in
these logics [14, 15].

In conclusion, the sequent calculi of Bonatti and Olivetti for credulous rea-
soning (both default and autoepistemic) are as good as one can hope for from
a proof complexity perspective, whereas the calculi for sceptical reasoning call
for stronger versions. This presents the double challenge of designing systems
which are both natural and elegant and allow concise proofs. We remark that
Kraj́ıček and Pudlák [17] introduced very elegant sequent calculi Gi for quan-
tified propositional logic, thus for logics with decision complexity ranging from
Σp

2 and Πp
2 through all the polynomial hierarchy up to PSPACE. However, no

nontrivial lower bounds are known for these systems. As sceptical autoepistemic
reasoning is Πp

2-complete one could translate SAEL-sequents into propositional
∀∃-formulas and use the sequent calculus G2 from [17] (cf. also [7]).

Acknowledgements. I am grateful to the anonymous referees for useful com-
ments on how to improve this article.
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Abstract. A backbone of a propositional CNF formula is a variable whose truth
value is the same in every truth assignment that satisfies the formula. The no-
tion of backbones for CNF formulas has been studied in various contexts. In
this paper, we introduce local variants of backbones, and study the computa-
tional complexity of detecting them. In particular, we consider k-backbones,
which are backbones for sub-formulas consisting of at most k clauses, and itera-
tive k-backbones, which are backbones that result after repeated instantiations of
k-backbones. We determine the parameterized complexity of deciding whether a
variable is a k-backbone or an iterative k-backbone for various restricted formula
classes, including Horn, definite Horn, and Krom. We also present some first em-
pirical results regarding backbones for CNF-Satisfiability (SAT). The empirical
results we obtain show that a large fraction of the backbones of structured SAT
instances are local, in contrast to random instances, which appear to have few
local backbones.

1 Introduction

A backbone of a propositional formula ϕ is a variable whose truth value is the same
for all satisfying assignments of ϕ. The term originates in computational physics [24],
and the notion of backbones has been studied for SAT in various contexts. Backbones
have also been considered in other contexts (e.g., knowledge compilation [5]) and for
other combinatorial problems [25]. If a backbone and its truth value are known, then we
can simplify the formula without changing its satisfiability, or the number of satisfying
assignments. Therefore, it is desirable to have an efficient algorithm for detecting back-
bones. In general, however, the problem of identifying backbones is coNP-complete
(this follows from the fact that a literal l is enforced by a formula ϕ if and only if ϕ∧¬l
is unsatisfiable).

A variable can be a backbone because of local properties of the formula (such back-
bones we call local backbones). As an extreme example consider a CNF formula that
contains a unit clause. In this case we know that the variable appearing in the unit clause
is a backbone of the formula. More generally, we define the order of a backbone x of
a CNF formula ϕ to be the cardinality of a smallest subset ϕ′ ⊆ ϕ such that x is a
backbone of ϕ′, and we refer to backbones of order ≤ k as k-backbones. Thus, unit
clauses give rise to 1-backbones.

A natural generalization of k-backbones are variables whose truth values are en-
forced by repeatedly assigning k-backbones to their appropriate truth value and sim-
plifying the formula according to this assignment. We call variables that are assigned
� Supported by the European Research Council (ERC), project COMPLEX REASON, 239962.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 377–393, 2013.
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by this iterative process iterative k-backbones (for a formal definition, see Section 2.1).
For instance, iterative 1-backbones are exactly those variables whose truth values are
enforced by unit propagation. The iterative order of a backbone x is the smallest k such
that x is an iterative k-backbone.

Finding Local Backbones. For every constant k, we can clearly identify all k-backbones
and iterative k-backbones of a CNF formulaϕ in polynomial time by simply going over
all subsets of ϕ of size at most k (and iterating this process if necessary). However, if ϕ
consists of m clauses, then this brute-force search requires us to consider at least mk

subsets, which is impractical already for small values of k. It would be desirable to
have an algorithm that detects (iterative) k-backbones in time f(k)||ϕ||c where f is a
function, ||ϕ|| denotes the length of the formula, and c is a constant. An algorithm with
such a running time would render the problem fixed-parameter tractable with respect
to parameter k [7]. In this paper we study the question of whether the identification of
(iterative) k-backbones of a CNF formula is fixed-parameter tractable or not, consider-
ing various restrictions on the CNF formula. We therefore define the following template
for parameterized problems, where C is an arbitrary class of CNF formulas.

LOCAL-BACKBONE[C]
Instance: a CNF formula ϕ ∈ C, a variable x of ϕ, and an integer k ≥ 1.
Parameter: The integer k.
Question: Is x a k-backbone of ϕ?

The problem ITERATIVE-LOCAL-BACKBONE is defined similarly. It is not hard to see
that LOCAL-BACKBONE[C] is closely related to the problem of finding a small un-
satisfiable subset of a CNF formula (this is proven below in Lemmas 1 and 2). More
precisely, for every class C, the problem LOCAL-BACKBONE[C] has the same parame-
terized complexity as the following problem, studied by Fellows et al. [10].

SMALL-UNSATISFIABLE-SUBSET[C]
Instance: a CNF formula ϕ ∈ C, and an integer k ≥ 1.
Parameter: The integer k.
Question: Is there an unsatisfiable subset ϕ′ ⊆ ϕ consisting of at most k clauses?

This problem is of relevance also for classes C for which the satisfiability is decidable in
polynomial time. For instance, given an inconsistent knowledge base in terms of an un-
satisfiable set of Horn clauses, one might want to detect the cause for the inconsistency
in terms of a small unsatisfiable subset.

Results. We draw a detailed parameterized complexity map of the considered problems
LOCAL-BACKBONE[C], ITERATIVE-LOCAL-BACKBONE[C], and SMALL-UNSATISFI-
ABLE-SUBSET[C], for various classes C. Table 1 provides an overview of our complex-
ity results (FPT indicates that the problem is fixed-parameter tractable, W[1]-hardness
indicates strong evidence that the problem is not fixed-parameter tractable; see Sec-
tion 2.2 for details). It is interesting to observe that the non-iterative problems tend to
be at least as hard as the iterative problems. Somewhat surprising is the W[1]-hardness
of LOCAL-BACKBONE[KROM] and SMALL-UNSATISFIABLE-SUBSET[KROM] (which
also implies the NP-hardness of the unparameterized versions of these problems). On
the one hand, this seems to contrast with the fact that a shortest tree-like resolution
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Table 1. Map of parameterized complexity results. (The classes C of formulas are defined in
Section 2.1).

C LOCAL-BACKBONE[C] ITERATIVE-LOCAL-BACKBONE[C]
CNF W[1]-c (Thm 2) W[1]-h (Cor 3)
DEFHORN W[1]-c (Thm 2) P (Thm 7)
NUHORN W[1]-c (Thm 3) W[1]-h (Cor 3)
KROM W[1]-c (Thm 4) P (Thm 8)
VOd FPT (Thm 5) FPT (Thm 6)

refutation of an unsatisfiable Krom formula can be found in polynomial time [4]. On
the other hand, this is in line with the result that deciding whether a CNF formula can
be refuted within k resolution steps (parameterized by k) is W[1]-complete [10]. The
polynomial time solvability of finding iterative local backbones in Krom and definite
Horn formulas is also interesting, especially in the light of the intractability of the cor-
responding problems of finding (non-iterative) local backbones.

We also provide some first empirical results on the distribution of local backbones
in some benchmark SAT instances. We consider structured instances and random in-
stances. For the structured instances that we consider we observe that a large fraction
of the backbones are of relatively small iterative order. In contrast, the backbones of the
random instances that we consider are of large iterative order. The results suggest that
the distribution of the iterative order of backbones might be an indicator for a hidden
structure in SAT instances.

Related Work. The notion of backbones has initially been studied in the context of op-
timization problems in computational physics [24]. The notion has later been applied to
several combinatorial problems [25], including SAT. The relation between backbones
and the difficulty of finding a solution for SAT has been studied by Kilby et al. [18],
by Parkes [22] and by Slaney and Walsh [25]. The complexity of finding backbones
has been studied theoretically by Kilby et al. [18]. The notion of backbones has also
been used for improving SAT solving algorithms by Dubois and Dequen [8] and by
Hertli et al. [14]. The problem of identifying unsatisfiable subsets of size at most k has
been considered by Fellows et al. [10], who proved that this problem is W[1]-complete.
Furthermore, they showed by the same reduction that finding a k-step resolution refuta-
tion for a given formula is W[1]-complete as well. Related notions of locally enforced
literals have also been studied, including a notion of generalized unit-refutation [13,19].

Full Version. Because of space constraints some proofs have been omitted or shortened.
Detailed proofs can be found in the full version, available at arxiv.org/abs/1304.5479.

2 Preliminaries

2.1 CNF Formulas, Unsatisfiable Subsets and Local Backbones

A literal is a propositional variable x or a negated variable ¬x. The complement x of a
positive literal x is ¬x, and the complement ¬x of a negative literal ¬x is x. A clause

arxiv.org/abs/1304.5479
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is a finite set of literals, not containing a complementary pair x, ¬x. A unit clause is a
clause of size 1. We let ⊥ denote the empty clause. A formula in conjunctive normal
form (or CNF formula) is a finite set of clauses. We define the length ||ϕ|| of a formulaϕ
to be

∑
c∈ϕ |c|; the number of clauses of ϕ is denoted by |ϕ|. A formula ϕ is a k-CNF

formula if the size of each of its clauses is at most k. A 2-CNF formula is also called
a Krom formula. A clause is a Horn clause if it contains at most one positive literal. A
Horn clause containing exactly one positive literal is a definite Horn clause. Formulas
containing only Horn clauses are called Horn formulas. Definite Horn formulas are
defined analogously. We denote the class of all Krom formulas by KROM, the class of
all Horn formulas by HORN and the class of all definite Horn formulas by DEFHORN.
We let NUHORN denote the class of Horn formulas not containing unit clauses (such
formulas are always satisfiable). Let d be an integer. The class of CNF formulas such
that each variable occurs at most d times is denoted by VOd.

For a CNF-formula ϕ, the set Var(ϕ) denotes the set of all variables x such that
some clause of ϕ contains x or ¬x; the set Lit(ϕ) denotes the set of all literals l such
that some clause of ϕ contains l or l. A formula ϕ is satisfiable if there exists an as-
signment τ : Var(ϕ) → {0, 1} such that every clause c ∈ ϕ contains some variable x
with τ(x) = 1 or some negated variable ¬x with τ(x) = 0 (we say that such an as-
sigment τ satisfies ϕ); otherwise, ϕ is unsatisfiable. ϕ is minimally unsatisfiable if ϕ
is unsatisfiable and every proper subset of ϕ is satisfiable. It is well-known that any
minimal unsatisfiable CNF formula has more clauses than variables (this is known as
Tarsi’s Lemma [1,20]). For two formulas ϕ, ψ, whenever all assignments satisfying ϕ
also satisfy ψ, we write ϕ |= ψ. The reduct ϕ|L of a formula ϕ with respect to a set
of literals L ⊆ Lit(ϕ) is the set of clauses of ϕ that do not contain any l ∈ L with all
occurrences of l for all l ∈ L removed. For singletons L = {l}, we also write ϕ|l. We
say that a class C of formulas is closed under variable instantiation if for every ϕ ∈ C
and every l ∈ Lit(ϕ) we have thatϕ|l ∈ C. For an integer k, a variable x is a k-backbone
of ϕ, if there exists a ϕ′ ⊆ ϕ such that |ϕ′| ≤ k and either ϕ′ |= x or ϕ′ |= ¬x. A
variable x is a backbone of a formula ϕ if it is a |ϕ|-backbone. Note that the definition
of the backbone of a formula ϕ that is used in some of the literature includes all literals
l ∈ Lit(ϕ) such that ϕ |= l. For an integer k, a variable x is an iterative k-backbone
of ϕ if either (i) x is a k-backbone of ϕ, or (ii) there exists y ∈ Var(ϕ) such that y is
a k-backbone of ϕ, and for some l ∈ {y,¬y}, ϕ |= l and x is an iterative k-backbone
of ϕ|l.

For a Krom formula ϕ, we let impl(ϕ) be the implication graph (V,E) of ϕ, where
V = { x,¬x : x ∈ Var(ϕ) } andE = { (a, b), (b, a) : {a, b} ∈ ϕ }. We say that a path p
in this graph uses a clause {a, b} of ϕ if either one of the edges (a, b) and (b, a) occurs
in p; we say that p doubly uses this clause if both edges occur in p.

2.2 Parameterized Complexity

Here we introduce the relevant concepts of parameterized complexity theory. For more
details, we refer to text books on the topic [7,11,21]. An instance of a parameterized
problem is a pair (I, k) where I is the main part of the instance, and k is the parameter. A
parameterized problem is fixed-parameter tractable if instances (I, k) can be solved by
a deterministic algorithm that runs in time f(k)|I|c, where f is a computable function
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of k, and c is a constant (algorithms running within such time bounds are called fpt-
algorithms). If c = 1, we say the problem is fixed-parameter linear. FPT denotes the
class of all fixed-parameter tractable problems. Using fixed-parameter tractability, many
problems that are classified as intractable in the classical setting can be shown to be
tractable for small values of the parameter.

Parameterized complexity also offers a completeness theory, similar to the theory
of NP-completeness. This allows the accumulation of strong theoretical evidence that
a parameterized problem is not fixed-parameter tractable. Hardness for parameterized
complexity classes is based on fpt-reductions, which are many-one reductions where
the parameter of one problem maps into the parameter for the other. More specifically, a
parameterized problemL is fpt-reducible to another parameterized problemL′ (denoted
L ≤fpt L

′) if there is a mapping R from instances of L to instances of L′ such that (i)
(I, k) ∈ L if and only if (I ′, k′) = R(I, k) ∈ L′, (ii) k′ ≤ g(k) for a computable
function g, and (iii)R can be computed in timeO(f(k)|I|c) for a computable function f
and a constant c.

Central to the completeness theory is the hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆
para-NP. Each intractability class W[t] contains all parameterized problems that can
be reduced to a certain parameterized satisfiability problem under fpt-reductions. The
intractability class para-NP includes all parameterized problems that can be solved by
a nondeterministic fpt-algorithm. Fixed-parameter tractability of any problem hard for
any of these intractability classes would imply that the Exponential Time Hypothesis
fails [11,16] (i.e., the existence of a 2o(n) algorithm for n-variable 3SAT).

3 Local Backbones and Small Unsatisfiable Subsets

The straightforward reductions in the proofs of the following two lemmas, illustrate the
close connection between LOCAL-BACKBONE and SMALL-UNSATISFIABLE-SUBSET.

Lemma 1. SMALL-UNSATISFIABLE-SUBSET ≤fpt LOCAL-BACKBONE.

Proof. Let (ϕ, k) be an instance of SMALL-UNSATISFIABLE-SUBSET. We construct an
instance (ϕ′, z, k) of LOCAL-BACKBONE, by letting ϕ′ = { c∪ {z} : c ∈ ϕ } for some
z �∈ Var(ϕ). We claim that (ϕ, k) ∈ SMALL-UNSATISFIABLE-SUBSET if and only if
(ϕ′, z, k) ∈ LOCAL-BACKBONE. A complete proof of this claim can be found in the
full version of the paper. ��
Lemma 2. LOCAL-BACKBONE ≤fpt SMALL-UNSATISFIABLE-SUBSET.

Proof. Let (ϕ, z, k) be an instance of LOCAL-BACKBONE. We construct an instance
(ψ, k) of SMALL-UNSATISFIABLE-SUBSET. For every variable x ∈ Var(ϕ) we take
two copies x1, x2. For i ∈ {1, 2} we let ϕi be a copy of ϕ using the variables xi. Now
we define ψ = ϕ1|z1 ∪ ϕ2|¬z2 . In other words, ψ is the union of two disjoint copies
of the reducts of ϕ with respect to z and ¬z. We claim that (ϕ, z, k) ∈ LOCAL-BACK-
BONE if and only if (ψ, k) ∈ SMALL-UNSATISFIABLE-SUBSET. A complete proof of
this claim can be found in the full version of the paper. ��
Theorem 1. LOCAL-BACKBONE is W[1]-complete.

Proof. Since SMALL-UNSATISFIABLE-SUBSET is W[1]-complete [10], the result fol-
lows from Lemmas 1 and 2. ��
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4 Local Backbones of Horn Formulas

Restricting the problem of finding backbones in arbitrary formulas to Horn formulas re-
duces the classical complexity from co-NP-completeness to polynomial time solvabil-
ity. It is a natural question whether the parameterized complexity of finding local back-
bones decreases in a similar way when the problem is restricted to Horn formulas. We
will show that this is not the case. In order to do so, we define the parameterized prob-
lem SHORT-HYPERPATH, show that it is W[1]-hard, and then provide fpt-reductions
from SHORT-HYPERPATH.

For a Horn formula ϕ and s, t ∈ Var(ϕ), we say that a subformula ϕ′ ⊆ ϕ is a
hyperpath from s to t if (i) t = s or (ii) c = {x1, . . . , xn, t} ∈ ϕ′ and ϕ′\c is a hy-
perpath from s to xi for each 1 ≤ i ≤ n. If |ϕ| ≤ k then ϕ is called a k-hyperpath.
The parameterized problem SHORT-HYPERPATH takes as input a Horn formula ϕ, two
variables s, t ∈ Var(ϕ) and an integer k. The problem is parameterized by k. The ques-
tion is whether there exists a k-hyperpath from s to t. For a more detailed discussion on
the relation between (backward) hyperpaths in hypergraphs and hyperpaths as defined
above, we refer to a survey article by Gallo et al. [12].

For the hardness proof of SHORT-HYPERPATH, we reduce from the W[1]-complete
problem MULTICOLORED-CLIQUE [9]. The MULTICOLORED-CLIQUE problem takes
as input a graph G, some integer k, and a proper k-coloring c of the vertices of G.
The problem is parameterized by k. The question is whether there is a properly colored
k-clique in G.

Lemma 3. SHORT-HYPERPATH is W[1]-hard, even for instances (ϕ, s, t, k) where
ϕ ∈ 3CNF.

Proof. We give a reduction from MULTICOLORED-CLIQUE. Let (G, k, c) be an in-
stance of MULTICOLORED-CLIQUE, where G = (V,E) and V1, . . . , Vk are the equiv-
alence classes of V induced by the k-coloring c. We construct an instance (ϕ, s, t, k′)
of SHORT-HYPERPATH, where k′ = k +

(
k
2

)
+ 1 and

Var(ϕ) = {s, t} ∪ V ∪ { pi,j : 1 ≤ i < j ≤ k };
ϕ = ϕV ∪ ϕp ∪ ϕt;
ϕV = { {¬s, v} : v ∈ V };
ϕp = { {¬vi,¬vj , pi,j} : 1 ≤ i < j ≤ k, vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ E };
ϕt = {{¬pi,j : 1 ≤ i < j ≤ k } ∪ {t}}.

This construction is illustrated for an example with k = 3 in Figure 1. We claim
that (G, k, c) ∈ MULTICOLORED-CLIQUE if and only if (ϕ, s, t, k′) ∈ SHORT-
HYPERPATH. A complete proof of this claim can be found in the full version of the
paper.

To see that clauses of size at most 3 in the hyperpath suffice, we slightly adapt the
reduction. The only clause we need to change is the single clause e ∈ ϕt. This clause e
is of the form {¬p1, . . . ,¬pm, t}, form =

(
k
2

)
. We introduce new variables v1, . . . , vm

and replace e by them+1 many clauses {¬p1, v1}, {¬vi−1,¬pi, vi} for all 1 < i ≤ m
and {¬vm, t}. Clearly, the resulting Horn formula only has clauses of size at most 3.
This adapted reduction works with the exact same line of reasoning as the reduction
described above, with the only change that k′ = k + 2

(
k
2

)
+ 1.
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a clique (in black)
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(b) The B-hyperpath in H of size k′ = 3 +
(
3
2

)
+ 1 from

s to t corresponding to the clique

Fig. 1. Illustration of the reduction in the proof of Lemma 3 for the case of a 3-colored clique

Note that even the slightly stronger claim holds that G has a properly colored
k-clique if and only if there exists a (subset) minimal k′-B-hyperpath ϕ′ ⊆ ϕ for which
we have |ϕ′| = k′. ��
We are now in a position to prove the W[1]-hardness of LOCAL-BACKBONE[HORN].
In fact, we show that finding local backbones is already W[1]-hard for definite Horn
formulas with a single unit clause. We also show that this hardness crucially depends
on allowing unit clauses in the formula, since for definite Horn formulas without unit
clauses the problem is trivial. In fact, the complexity jumps to W[1]-hardness already
when allowing a single unit clause.

Theorem 2. LOCAL-BACKBONE[DEFHORN ∩ 3CNF] is W[1]-hard, already for in-
stances (ϕ, x, k) where ϕ has at most one unit clause.

Proof. We show W[1]-hardness by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k)
be an instance of SHORT-HYPERPATH. We can assume that ϕ ∈ 3CNF. We construct
an instance (ψϕ, t, k

′) of LOCAL-BACKBONE. Here k′ = k + 1. For each ϕ′ ⊆ ϕ
we define a formula ψϕ′ , by letting Var(ψϕ′) = Var(ϕ′) and ψϕ′ = {{s}} ∪ ϕ′.
Clearly ψϕ ∈ DEFHORN ∩ 3CNF and ψϕ has only a single unit clause. We claim that
(ψϕ, t, k

′) ∈ LOCAL-BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH. A
complete proof of this claim can be found in the full version of the paper. ��
Also, restricting the problem to Horn formulas without unit clauses unfortunately does
not yield fixed-parameter tractability.

Theorem 3. LOCAL-BACKBONE[NUHORN ∩ 3CNF] is W[1]-hard.

Proof. We show the W[1]-hardness of LOCAL-BACKBONE[NUHORN ∩ 3CNF]
by reducing from SHORT-HYPERPATH. Let (ϕ, s, t, k) be an instance of SHORT-
HYPERPATH. We can assume without loss of generality that ϕ ∈ 3CNF, and that each
clause in which t occurs positively is of size 3. We construct an instance (ψϕ, xs, k) of
LOCAL-BACKBONE. For each ϕ′ ⊆ ϕ we define a formula ψϕ′ .

ψϕ′ = { {¬xa,¬xb, xc} : {¬a,¬b, c} ∈ ϕ′, c �= t } ∪
{ {¬xa,¬xb} : {¬a,¬b, t} ∈ ϕ′ }
{ {¬xa, xb} : {¬a, b} ∈ ϕ′ }
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Clearly we have thatψϕ ∈ HORN∩3CNF and thatψϕ has no unit clauses. We claim that
(ψϕ, xs, k) ∈ LOCAL-BACKBONE if and only if (ϕ, s, t, k) ∈ SHORT-HYPERPATH. A
complete proof of this claim can be found in the full version of the paper. ��

5 Local Backbones of Krom Formulas

We have seen that finding local backbones is already fixed-parameter intractable for
Horn formulas, for which finding backbones is tractable. We show that Krom formulas
have a similar property: even though finding backbones in Krom formulas is tractable,
finding local backbones is fixed-parameter intractable.

Theorem 4. LOCAL-BACKBONE[KROM] is W[1]-hard.

Proof. We reduce from MULTICOLORED-CLIQUE. Let (G, k, c) be an instance of
MULTICOLORED-CLIQUE, where G = (V,E) and V1, . . . , Vk are the equivalence
classes of V induced by the k-coloring c. We construct an instance (ϕ, x, k′) of LOCAL-
BACKBONE[KROM]. Intuitively, we introduce a gadget for each Vi (see Figure 2a) and
additionally a gadget for each pair (i, j) for 1 ≤ i < j ≤ k (see Figure 2b), and se-
quentially link these gadgets together (see Figure 2c). In the definition of (ϕ, x, k′) for
each 1 ≤ i ≤ k we define a formula ϕguess

i that corresponds to the gadget for Vi, and
for each 1 ≤ i < j ≤ k we define a formula ϕcheck

i,j that corresponds to the gadget for

the pair (i, j). In the construction of ϕ we use variables σji,v and τ ji,v that are used to
encode the choice of vertex v in Vi for the clique, and that are used to verify whether v
and the choice for Vj are connected. We let x = g1 and k′ = k(2k+1)+ 3

(
k
2

)
+2 and

we define

Var(ϕ) = {g1, . . . , gk+1} ∪ {c1,1, c1,2 . . . , ck−1,k, ck,k+1} ∪
{ σji,v, τ

j
i,v : 1 ≤ i ≤ k, 1 ≤ j ≤ k, v ∈ Vi }, and

ϕ =
⋃

1≤i≤k

ϕguess
i ∪

⋃
1≤i<j≤k

ϕcheck
i,j ∪ {{¬gk+1, c1,1}, {¬ck,k+1,¬g1}}.

For each 1 ≤ i ≤ k, we define ϕguess
i , where Vi = {v1, . . . , vn}, by letting

ϕguess
i = { {¬gi, σ1i,vl} : 1 ≤ l ≤ n } ∪

{ {¬σji,vl , τ
j
i,vl
} : 1 ≤ j ≤ k, 1 ≤ l ≤ n } ∪

{ {¬τ ji,vl , σ
j+1
i,vl
} : 1 ≤ j < k, 1 ≤ l ≤ n } ∪

{ {¬τki,vl , gi+1} : 1 ≤ l ≤ n }.

Similarly, for each 1 ≤ i < j ≤ k we define the subformula ϕcheck
i,j as follows. Here

we let E ∩ (Vi × Vj) = {(v1, v′1), . . . , (vm, v′m)}. Also, we define the function next by
letting next(i, j) = (i, j + 1) if j �= k and next(i, j) = (i+ 1, i+ 2) if j = k.

ϕcheck
i,j = { {¬ci,j ,¬τ ji,vl} : 1 ≤ l ≤ m } ∪

{ {τ ji,vl ,¬σ
j
i,vl
}, {σji,vl ,¬τ

i
j,v′

l
}, {τ ij,v′

l
,¬σij,v′

l
} : 1 ≤ l ≤ m } ∪

{ {σij,v′
l
, cnext(i,j)} : 1 ≤ l ≤ m }.
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(b) Gadget ϕcheck
i,j for partitions i and j and

E ∩ (Vi × Vj) = {(v1, v′1), . . . , (vm, v′m)}
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(c) Linking the gadgets together in ϕ

Fig. 2. Gadgets for the reduction in the proof of Theorem 4

Intuitively, this reduction works as follows. Note that since g1 occurs only negatively
in ϕwe know that g1 can only be a k′-backbone ofϕ if there exists a path from g1 to ¬g1
in impl(ϕ) that uses at most k′ clauses. A path of length 2k + 1 through impl(ϕguess

i )
corresponds to guessing a vertex in the equivalence class Vi. Additionally, a path of
length 5 through impl(ϕcheck

i,j ) corresponds to verifying whether there is an edge in the

graph that is in Vi × Vj . So clearly, there exists a path of length k(2k + 1) + 5
(
k
2

)
+ 2

in impl(ϕ) from g1 to ¬g1. However, many clauses in impl(ϕcheck
i,j ) can be doubly used

clauses, already used before in paths through impl(ϕguess
i ). Concretely, there exists a

path through impl(ϕcheck
i,j ) that uses only 3 clauses that have not yet been used in paths

through impl(ϕguess
i ) if and only if the paths through impl(ϕguess

i ) and impl(ϕguess
j ) have

selected vertices vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ E. In other words, there exists
a path in impl(ϕ) from g1 to ¬g1 that uses k′ clauses if and only if G has a properly
colored k-clique.

In the full version of the paper, we formally prove that G has a properly colored
k-clique if and only if g1 is a k′-backbone of ϕ. ��
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We would like to point out that all complexity results for the various restrictions of
LOCAL-BACKBONE also hold for SMALL-UNSATISFIABLE-SUBSET under the corre-
sponding restrictions. This is because the reduction in the proof of Lemma 2 works
for all classes of formulas that are closed under variable instantiations. For instance,
the reduction in the proof of Lemma 2 together with Theorem 3 tells us that SMALL-
UNSATISFIABLE-SUBSET[HORN∩3CNF] is W[1]-hard. This does not follow from the
reduction that Fellows et al. [10] use to prove the W[1]-hardness of SMALL-UNSATISFI-
ABLE-SUBSET. In particular, the following previously unstated results hold.

Corollary 1. SMALL-UNSATISFIABLE-SUBSET[C] is W[1]-hard for each C ∈ {DEF-
HORN ∩ 3CNF,NUHORN ∩ 3CNF,KROM}.

In fact, these fixed-parameter intractability results for SMALL-UNSATISFIABLE-
SUBSET give us the following NP-hardness results. Interestingly, for the case of KROM

formulas this result contrasts with the known result that finding minimal resolution
refutations for KROM formulas can be done in polynomial time [3,4].

Corollary 2. Let C ∈ {KROM, 3CNF ∩DEFHORN, 3CNF ∩NUHORN}. Given a for-
mula ϕ ∈ C and an integer k, deciding whether ϕ contains an unsatisfiable subset of
size ≤ k is NP-hard.

6 Local Backbones of Formulas with Bounded Variable
Occurrence

When considering the restriction of LOCAL-BACKBONE to formulas where variables
occur a bounded number of times, we get a fixed-parameter tractability result at last.
This fixed-parameter tractability result is closely related to the result that SMALL-
UNSATISFIABLE-SUBSET is fixed-parameter tractable for instances restricted to classes
of formulas that have locally bounded treewidth [10]. Fellows et al. used a meta the-
orem to prove this. We give a direct algorithm to solve SMALL-UNSATISFIABLE-
SUBSET[VOd] in fixed-parameter linear time.

Let (ϕ, k) be an instance of SMALL-UNSATISFIABLE-SUBSET[VOd]. The following
procedure decides whether there exists an unsatisfiable subset ϕ′ ⊆ ϕ of size at most
k, and computes such a subset if it exists. We let ϕ = { c ∈ ϕ : |c| < k }. It suffices
to consider subsets of ϕ, since any unsatisfiable subset ϕ′ ⊆ ϕ contains a minimally
unsatisfiable subset ϕ′′ ⊆ ϕ′, and by Tarsi’s Lemma we know that ϕ′′ contains only
clauses of size smaller than k.

Without loss of generality, we assume that the incidence graph of ϕ is connected.
Otherwise, we can solve the problem by running the algorithm on each of the connected
components. We guess a clause c ∈ ϕ, we let F1 := {c}, and we let all variables be
unmarked initially. We compute Fi+1 for 1 ≤ i ≤ k by means of the following (non-
deterministic) rule:

1. take an unmarked variable z ∈ Var(Fi);
2. guess a non-empty subset F ′

z ⊆ Fz for Fz = { c ∈ ϕ : z ∈ Var(c) };
3. let Fi+1 := Fi ∪ F ′

z ;
4. mark z.
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If at any point all variables in Fi are marked, we stop computing Fi+1. For any Fi, if
|Fi| > k we fail. For each Fi, we check whether Fi is unsatisfiable. If it is unsatisfiable,
we return with ϕ′ = Fi. If it is satisfiable and if it contains no unmarked variables, we
fail. It is easy to see that this algorithm is sound. If some ϕ′ ⊆ ϕ is returned, then ϕ′

is unsatisfiable and |ϕ′| ≤ k. In order to see that the algorithm is complete, assume
that there exists some unsatisfiable ϕ′ ⊆ ϕ with |ϕ′| ≤ k. Then, since we know that
the incidence graph of F ′ is connected, we know that F ′ can be constructed as one of
the Fi in the algorithm.

To see that this algorithm witnesses fixed-parameter linearity, we bound its running
time. We have to execute the search process at most once for each clause of ϕ. At
each point in the execution of the algorithm, Fi contains at most k variables. Therefore,
there are at most k choices to take an unmarked variable z. Since each variable occurs
in at most d clauses, for each Fz used in the rule we know |Fz| ≤ d. Thus, there are
at most 2d possible guesses for F ′

z in each execution of the rule. Since we iterate the
rule at most k times, we consider at most (k2d)k sets F ′, each of size O(k2). Thus each
(un)satisfiability check can be done in O(2k) time. Therefore, the total running time of
the algorithm is O(kk2dkn), for n the size of the instance.

This algorithm also gives us a direct algorithm that shows that LOCAL-BACK-
BONE[VOd] is fixed-parameter linear.

Theorem 5. LOCAL-BACKBONE[VOd] is fixed-parameter linear.

Proof. The result follows directly by using the reduction in the proof of Lemma 2 in
combination with the above algorithm. ��

7 Iterative Local Backbones

We now consider the (parameterized) complexity of finding iterative local backbones. It
is easy to see that ITERATIVE-LOCAL-BACKBONE is in para-NP. This is witnessed by a
straightforward nondeterministic fpt-algorithm, that guesses a sequence of n witnesses
(ϕi, li) with |ϕi| ≤ k, and that verifies whetherϕi ⊆ ϕ|{l1,...,li−1} and whetherϕi |= li.

Some of the results we obtained for the problem of finding local backbones can be
carried over.

Theorem 6. Let C be a class of formulas such that LOCAL-BACKBONE[C] is fixed-
parameter tractable and C is closed under variable instantiation. Then ITERATIVE-
LOCAL-BACKBONE[C] is fixed-parameter tractable.

Proof. We give an algorithm to solve ITERATIVE-LOCAL-BACKBONE[C] that calls a
subroutine to solve instances of SMALL-UNSATISFIABLE-SUBSET[C]. This algorithm
is given in the form of pseudo-code as Algorithm 1. By the fact that C is closed under
variable instantiations we are able to apply the reduction in the proof of Lemma 2. Thus,
we can assume that the question of whether some ϕ ∈ C contains an unsatisfiable subset
of size at most k can be solved in f(k)||ϕ||c time, for some computable function f and
some constant c. Then, the entire algorithm runs in O(f(k)||ϕ||c+2) time. This proves
the claim. ��
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input : an instance (ϕ, x, k) of ITERATIVE-LOCAL-BACKBONE

output: yes iff (ϕ, x, k) ∈ ITERATIVE-LOCAL-BACKBONE

ψ ← ϕ; conseq ← ∅;
for i ← 1 to |Lit(ϕ)| do

foreach literal l ∈ Lit(ψ) do
if (ψ|l, k) ∈ SMALL-UNSATISFIABLE-SUBSET then

conseq ← conseq ∪ {l};
ψ ← ψ|conseq;

return {x,¬x} ∩ conseq �= ∅

Algorithm 1. Deciding ITERATIVE-LOCAL-BACKBONE with a SMALL-
UNSATISFIABLE-SUBSET oracle

Corollary 3. ITERATIVE-LOCAL-BACKBONE[NUHORN ∩ 3CNF] is W[1]-hard.

Proof. Observe that the proofs of Lemma 3 and Theorem 3 imply that it is already
W[1]-hard to determine whether a formulaϕ ∈ NUHORN∩3CNF has a subset ϕ′ ⊆ ϕ
of size exactly k witnessing that any x ∈ Var(ϕ) is a k-backbone. From this, it immedi-
ately follows that determining whether (ϕ, x, k) ∈ ITERATIVE-LOCAL-BACKBONE is
W[1]-hard as well. ��
We identify several tractable cases for ITERATIVE-LOCAL-BACKBONE. The prob-
lem of finding iterative local backbones in definite Horn formulas is polynomial time
solvable. Similarly, finding iterative local backbones in Krom formulas is solvable in
polynomial time as well. Interestingly, for these restrictions the problem of finding
(non-iterative) local backbones remains W[1]-hard. In order to show that finding it-
erative local backbones in definite Horn formulas is tractable, we will use the following
observation.

Observation 1 Let ϕ be any propositional formula, let l be any literal such that there
exists a ϕ′ ⊆ ϕ with |ϕ′| ≤ k and ϕ′ |= l, and let ψ = ϕ|l. Then x ∈ Var(ψ) is an
iterative k-backbone of ψ if and only if it is an iterative k-backbone of ϕ.

Theorem 7. ITERATIVE-LOCAL-BACKBONE[DEFHORN] is in P.

Proof. We show that for any definite Horn formula ϕ and any k ≥ 1 the set of iterative
k-backbones of ϕ coincides with the set of variables x ∈ Var(ϕ) such that ϕ |= x. The
claim then follows, since the entailment relation |= can be decided in linear time for
definite Horn formulas [6].

Fix an arbitrary integer k ≥ 1 and an arbitrary definite Horn formulaϕ. Since definite
Horn formulas cannot entail negative literals, we know that each iterative k-backbone x
of ϕ is also a semantic consequence of ϕ. Now, let x ∈ Var(ϕ) be an arbitrary atom and
assume that ϕ |= x. So there exist variables x1, . . . , xm ∈ Var(ϕ) such that xm = x
and for each xi we have either (i) {xi} ∈ ϕ or (ii) {¬xi1 , . . . ,¬xil , xi} ∈ ϕ for some
i1 < · · · < il < i. We prove by induction onm that each xi is an iterative k-backbone.
Take an arbitrary xi. By the induction hypothesis, we can assume that every xj for j < i
is an iterative k-backbone of ϕ. We proceed by case distinction for the justification of
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xi in the sequence. In case (i), we know that {xi} ∈ ϕ. Therefore, it directly follows
that xi is a k-backbone of ϕ, and thus is an iterative k-backbone too. In case (ii), we
know that {¬xi1 , . . . ,¬xil , xi} ∈ ϕ for some i1 < · · · < il < i. By the induction
hypothesis, we know that each xij is an iterative k-backbone of ϕ. By assumption,
we have that ϕ |= xij for each xij . By Observation 1, we get that xi is an iterative
k-backbone of ϕ if and only if it is an iterative k-backbone of ϕ{xi1 ,...,xil

}. It holds that
{xi} ∈ ϕ{xi1 ,...,xil

}. Thus, xi is an iterative k-backbone of ϕ. ��

Theorem 8. ITERATIVE-LOCAL-BACKBONE[KROM] is in P.

Proof. We show that the iterative k-backbones of a Krom formulaϕ coincide with those
backbones of ϕ that can be identified by iterated application of the following rule: if the
implication graph of ϕ contains a path from a literal l ∈ {x,¬x} to its complement l
of length at most k, conclude that x is a backbone and set ϕ := ϕ|l. Detection of such
a path can be done in polynomial time. Also, at most O(|Var(ϕ)|) iterated applications
of this rule suffice to reach a fixpoint. All that remains is to show the correspondence.

The correspondence claim follows from the following property. Let l ∈ Lit(ϕ). If
impl(ϕ) contains a path l →∗ l that uses at most k clauses and that doubly uses m of
these clauses, then there exist literals l1, . . . , lm+1 ∈ Lit(ϕ) such that (i) lm+1 = l and
(ii) for each 1 ≤ i ≤ m + 1 the graph impl(ϕ|{l1,...,li−1}) contains a path li →∗ li
that uses at most k clauses and does not doubly use any clause. We prove this claim by
induction on m. The case for m = 0 is trivial. Consider the case form ≥ 1. Since the
path l →∗ l doubly uses some clause, we know that l →∗ a → b →∗ b → a →∗ l,
for some a, b ∈ Lit(ϕ). We can assume without loss of generality that the path b →l b
does not doubly use any clause. If this is not the case, the path b →l b contains a
subpath c →∗ c that does not doubly uses any clauses, and we could select c instead
of b. Also, we know that l ≤ k. It is easy to see that impl(ϕ|b) contains the path
l →∗ a → a →∗ l, which uses at most k clauses and doubly uses m − 1 of these
clauses. By the induction hypothesis, we obtain that there exist l′1, . . . , l

′
m such that

l′m = l and for each 1 ≤ i ≤ m the graph impl(ϕ|{l′1,...,l′i−1}) contains a path l′i →∗ l′i
that uses at most k clauses and does not doubly use any clause. Now let l1 = b and
li = l

′
i−1 for all 2 ≤ i ≤ m+ 1. It is straightforward to verify that l1, . . . , lm+1 satisfy

the required properties. ��
Somewhat related to our mechanism of computing enforced assignments via iterated
k-backbones is the mechanism used to define unit-refutation complete formulas of
level k [13,19]. This mechanism is based on mappings rk from CNF formulas to CNF
formulas. For a nonnegative integer k, the mapping rk is defined inductively as follows.
In the case for k = 0, we let r0(ϕ) = {⊥} if ⊥ ∈ ϕ, and r0(ϕ) = ϕ otherwise. In
the case for k > 0, we let rk(ϕ) = rk(ϕ|l) if there exists a literal l ∈ Lit(ϕ) such that
rk−1(ϕ|l) = {⊥}, and rk(ϕ) = ϕ otherwise. In particular, the mapping r1 computes
the result of applying unit propagation. Note that the result of rk(ϕ) is the application
of a number of forced assignments to ϕ, i.e., rk(ϕ) = ϕ|L for some L ⊆ Lit(ϕ) such
that for all l ∈ L we have ϕ |= l. We let LUC

k (ϕ) denote the set of forced literals that
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are computed by rk, i.e., LUC
k (ϕ) = L ⊆ Lit(ϕ) such that rk(ϕ) = ϕ|L. Similarly,

we let LILB
k (ϕ) denote the set of forced literals that are found by computing iterative

k-backbones.
The following observations relate the two mechanisms. Let ϕ be an arbitrary CNF

formula. We have that LUC
1 (ϕ) = LILB

1 (ϕ). In fact, this set contains exactly those en-
forced literals that can be found by unit propagation. Also, for any k ≥ 2 we have
that LILB

k (ϕ) � LUC
k (ϕ). The inclusion follows from the fact that each minimal sub-

set ϕ′ of size at most k that enforces a literal l has at most k literals (which is a direct
result of Tarsi’s Lemma). Whenever l is identified as an enforced literal in iterative
k-backbone computation, it can then also be computed by rk by first guessing l, and
subsequently obtaining a contradiction for each instantiation of the other variables in
Var(ϕ′). In order to see that the inclusion is strict, consider the family of formulas
(ϕn)n∈N, where ϕn = { {¬xi, xi+1} : 1 ≤ i < n } ∪ {¬xn,¬x1}. For each ϕn, we
know that ϕn |= ¬x1. Furthermore, we have that ¬x1 ∈ LUC

2 (ϕn), but x1 is not an
iterative k-backbone of ϕn for any k < n.

8 Experimental Results

In order to illustrate the relevance of the concept of local backbones and iterative lo-
cal backbones, we provide some empirical evidence of the distribution of (iterative)
local backbones in instances from different domains. We considered both randomly
generated instances (3CNF instances with various variable-clause ratios around the
phase transition) and instances originating from planning [15,17], circuit fault analy-
sis [23], inductive inference [23], and bounded model checking [26]. We considered
only satisfiable instances. For practical reasons, we used a method that gives us a
lower bound on the number of k-backbone variables. By reducing the separate LOCAL-
BACKBONE problems to SMALL-UNSATISFIABLE-SUBSET, we can use algorithms
computing subset-minimal unsatisfiable subsets to approximate the number of iterative
local backbones (we used MUSer2 [2]). In order to get the exact number, we would have
to compute cardinality-minimal unsatisfiable subsets, which is difficult in practice.

The experimental results are shown in Figure 3. For each of the instances, we give
the percentage of backbones that are of order k (dashed lines) and the percentage of
backbones that are of iterative order k (solid lines), as well as the total number of back-
bones and the total number of clauses. There are instances with several backbones, most
of which have relatively small order. This is the case for the instances from the domains
of planning (logistics), circuit fault analysis (ssa7552) and bounded model checking
(bmc-ibm). It is worth noting that already more than 75 percent of the backbones in
all the considered bmc-ibm instances are of iterative order 2. We also found instances
that have no backbones of small order or of small iterative order. This is the case for
the instances from the domain of inductive inference (ii32) and the randomly generated
instances. Some of these instances do have backbones, while others have no backbones
at all. It would be interesting to confirm these findings by a more rigorous experimental
investigation.
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Fig. 3. Percentage of backbones that are of order at most k (dashed) and of iterative order at
most k (solid), for SAT instances from planning (logistics.[a–d], 828–4713 variables, 6718–
21991 clauses, 437–838 backbones), circuit fault analysis (ssa7552-[038,158–160], 1363–1501
variables, 3032–3575 clauses, 405–838 backbones), bounded model checking (bmc-ibm-[2,5,7],
2810–9396 variables, 11683–41207 clauses, 405–557 backbones), inductive inference (ii32[b–
e][1–3], 222–824 variables, 1186–20862 clauses, 0–208 backbones) and random 3SAT instances
(random, 200 variables, 820–900 clauses, 1–131 backbones).

9 Conclusions

We have drawn a detailed complexity map of the problem of finding local backbones
and iterative local backbones, in general and for formulas from restricted classes. Ad-
ditionally, we have provided some first empirical results on the distribution of (itera-
tive) local backbones in some benchmark SAT instances. We found that in structured
instances from different domains backbones are of quite low (iterative) order. This sug-
gests that the notions of local backbones and iterative local backbones can be used to
identify structure in SAT instances.

Some of our findings are somewhat surprising. (1) Finding local backbones in Horn
and Krom formulas is fixed-parameter intractable, whereas backbones for these classes
of formulas can be found in polynomial time. (2) In certain cases finding iterative lo-
cal backbones is computationally easier than finding (non-iterative) local backbones.
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(3) Local backbones and iterative local backbones seem to be a better indicator of struc-
ture than backbones. Random instances do have backbones, but these are of high order
and iterative order.

Backbones and local backbones are implied unit clauses. It might be interesting to ex-
tend our investigation to implied clauses of larger fixed size, binary clauses in particular.
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Abstract. We obtain upper and lower bounds for running times of exponential
time algorithms for the detection of weak backdoor sets of 3CNF formulas, con-
sidering various base classes. These results include (omitting polynomial fac-
tors), (i) a 4.54k algorithm to detect whether there is a weak backdoor set of at
most k variables into the class of Horn formulas; (ii) a 2.27k algorithm to detect
whether there is a weak backdoor set of at most k variables into the class of Krom
formulas. These bounds improve an earlier known bound of 6k. We also prove
a 2k lower bound for these problems, subject to the Strong Exponential Time
Hypothesis.

1 Introduction

A backdoor set is a set of variables of a CNF formula such that fixing the truth val-
ues of the variables in the backdoor set moves the formula into some polynomial-time
decidable class. Backdoor sets were independently introduced by Crama et al. [2] and
by Williams et al. [16], the latter authors coined the term “backdoor.” The existence of
a small backdoor set in a CNF formula can be considered as an indication of “hidden
structure” in the formula.

One distinguishes between various types of backdoor sets. Let B denote the base
class of formulas under consideration. A weak B-backdoor set of a CNF formula F is a
set S of variables such that there is a truth assignment τ of the variables in S for which
the formula F [τ ], which is obtained from F by assigning the variables of S according
to τ and applying the usual simplifications, is satisfiable and F [τ ] ∈ B. A strong B-
backdoor set of F is a set S of variables such that for each truth assignment τ of the
variables in S, the formula F [τ ] is in B.

The challenging problem is to find a weak or strong B-backdoor set of size at most k
if it exists. These problems are NP-hard for all reasonable base classes. However,
if k is assumed to be small, an interesting complexity landscape evolves, which can be
adequately analyzed in the context of parameterized complexity, where k is considered
as the parameter (some basic notions of parameterized complexity will be reviewed in
Section 2). This line of research was initiated by Nishimura et al. [14] who showed that
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Table 1. Upper bounds (UB) and lower bounds (LB) for the time complexity of WB(3CNF,B)
for various base classes B (polynomial factors are omitted). The 2k and n

k
2
−ε lower bounds are

subject to the Strong Exponential-Time Hypothesis, and the 2o(k) lower bounds are subject to the
Exponential-Time Hypothesis. Results marked [�] are obtained in this paper.

B: HORN KROM 0-VAL FOREST RHORN QHORN MATCH

UB: 4.54k [�] 2.27k [�] 2.85k [15] f(k) [7] nk [triv] nk [triv] nk [triv]

LB: 2k [�] 2k [�] 2o(k) [�] 2k [�] n
k
2
−ε [8] n

k
2
−ε [6] n

k
2
−ε [�]

for the fundamental base classes HORN and KROM, the detection of strong backdoor
sets is fixed-parameter tractable, whereas the detection of weak backdoor sets is not
(under the complexity theoretic assumption FPT �= W[1]). However, if the width of the
clauses of the input formula is bounded by a constant, then these hardness results do
not hold any more and one achieves fixed-parameter tractability [8]. In order to discuss
these results, we introduce the following problem template which is defined for any two
classes A,B of CNF formulas.

WB(A,B)
Instance: A CNF formula F ∈ A with n variables, a non-negative integer k.
Parameter: The integer k.
Question: Does F have a weak B-backdoor set of size at most k?

Thus, one could think of this problem as asking for a small weak backdoor “from A
to B.” In this paper we focus on the special case where A = 3CNF. In particular,
we aim to draw a detailed complexity landscape of WB(3CNF,B) for various base
classes, providing improved lower and upper bounds. An overview of our results in the
context of known results is provided in Table 1. The definitions of these classes appear
in Section 2.

Gaspers and Szeider [8] showed that WB(3CNF,B) is fixed-parameter tractable
for every base class B which is defined by a property of individual clauses, such
as the classes HORN, KROM, and 0-VAL. Their general algorithm provides a run-
ning time of 6k (omitting polynomial factors). We improve this to 4.54k for HORN

and to 2.27k for KROM. These results fit nicely with the recent 2.85k algorithm for
WB(3CNF, 0-VAL) by Raman and Shankar [15].

There are base classes for which the detection of weak backdoor sets remains fixed-
parameter intractable (in terms of W[2]-hardness), even if the input is restricted to
3CNF. In particular, the W[2]-hardness of WB(3CNF,B) is known for the base class
RHORN [8] and for the base class of QHORN [6]: We extend this line of results with
another example. We consider the class MATCH of matched CNF formulas [5], which
are CNF formulas F where for each clause C ∈ F one can select a unique variable
xC that appears in C positively or negatively, such that xC �= xD for C �= D. Since
all matched formulas are satisfiable, this class is particularly well suited as a base class
for weak backdoor sets. It is known that WB(CNF,MATCH) is W[2]-hard, but the case
WB(3CNF,MATCH) has been open. We show, that WB(3CNF,MATCH) is W[2]-hard
as well.
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We contrast the algorithmic upper bounds for the considered backdoor set detection
problems by lower bounds. These lower bounds are either subject to the Exponential
Time Hypothesis (ETH), or the Strong Exponential Time Hypothesis (SETH), see Sec-
tion 4. Consequently, any algorithm that beats these lower bounds would provide an
unexpected speedup for the exact solution of 3SAT or SAT, respectively. In particular,
we explain how the W[2]-hardness proofs can be used to get lower bounds of the form
n

k
2−ε under the SETH.

Full Version. Proofs of statements marked with (!) are shortened or omitted due
to space restrictions. Detailed proofs can be found in the full version, available at
arxiv.org/abs/1304.5518.

2 Preliminaries

CNF Formulas and Assignments We consider propositional formulas in conjunctive
normal form (CNF) as sets of clauses, where each clause is a set of literals, i.e., a literal
is either a (positive) variable or a negated variable, not containing a pair of comple-
mentary literals. We say that a variable x is positive (negative) in a clause C if x ∈ C
(x ∈ C), and we write var(C) for the set of variables that are positive or negative in
C. A truth assignment τ is a mapping from a set of variables, denoted by var(τ), to
{0, 1}. A truth assignment τ satisfies a clause C if it sets at least one positive variable
of C to 1 or at least one negative variable of C to 0. A truth assignment τ satisfies
a CNF formula F if it satisfies all clauses of F . Given a CNF formula F and a truth
assignment τ , F [τ ] denotes the truth assignment reduct of F under τ , which is the CNF
formula obtained from F by first removing all clauses that are satisfied by τ and then
removing from the remaining clauses all literals x, x with x ∈ var(τ). Note that no
assignment satisfies the empty clause. The incidence graph of a CNF formula F is the
bipartite graph whose vertices are the variables and clauses of F , and where a variable
x and a clause C are adjacent if and only if x ∈ var(C).

We consider the following classes of CNF formulas.

– 3CNF: the class of CNF formulas where each clause contains at most 3 literals.
– KROM: the class of CNF formulas where each clause contains at most 2 literals

(also called 2CNF).
– HORN: the class of Horn formulas, i.e., CNF formulas where each clause has at

most 1 positive literal.
– RHORN: the class of renameable (or disguised) Horn formulas, i.e., formulas that

can be made Horn by complementing variables.
– QHORN: the class of q-Horn formulas [1] (RHORN,KROM ⊆ QHORN).
– 0-VAL: the class of 0-valid CNF formulas, i.e., formulas where each clause con-

tains at least 1 negative literal.
– FOREST: the class of acyclic formulas (the undirected incidence graph is acyclic).
– MATCH: the class of matched formulas, formulas whose incidence graph has a

matching such that each clause is matched to some unique variable.

arxiv.org/abs/1304.5518
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All our results concerning the classes HORN and 0-VAL clearly hold also for the dual
classes of anti-Horn formulas (i.e., CNF formulas where each clause has at most 1
positive literal), and 1-valid CNF formulas (i.e., formulas where each clause contains
at least 1 positive literal), respectively.

Parameterized Complexity. Here we introduce the relevant concepts of parameterized
complexity theory. For more details, we refer to text books on the topic [3,4,12]. An
instance of a parameterized problem is a pair (I, k) where I is the main part of the
instance, and k is the parameter. A parameterized problem is fixed-parameter tractable
if instances (I, k) can be solved in time f(k)|I|c, where f is a computable function
of k, and c is a constant. FPT denotes the class of all fixed-parameter tractable prob-
lems. Hardness for parameterized complexity classes is based on fpt-reductions. A
parameterized problem L is fpt-reducible to another parameterized problem L′ if there
is a mapping R from instances of L to instances of L′ such that (i) (I, k) ∈ L if and
only if (I ′, k′) = R(I, k) ∈ L′, (ii) k′ ≤ g(k) for a computable function g, and
(iii) R can be computed in time O(f(k)|I|c) for a computable function f and a con-
stant c. Central to the completeness theory of parameterized complexity is the hierarchy
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . . Each intractability class W[t] contains all parameterized
problems that can be reduced to a certain parameterized satisfiability problem under
fpt-reductions.

The problem HITTING SET is well-known to be W[2]-complete. This problem takes
as input a family S of finite sets S1, . . . , Sm and an integer k > 0, k is the parameter.
The question is whether S has a hitting set of size at most k, i.e., a setH ⊆

⋃
1≤i≤m Si

such thatH ∩ Si �= ∅ for every 1 ≤ i ≤ m and |H | ≤ k?
However, the restricted variant where all sets Si are of size at most 3, is fixed-

parameter tractable and can be solved in time 2.270k, omitting polynomial factors [13].

3 Upper Bounds

Theorem 1. WB(3CNF,KROM) can be solved in time 2.270k (omitting polynomial
factors).

Proof. Let F and k be the given 3CNF formula and non-negative integer, respec-
tively. Let S be the family of sets { var(C) : C ∈ F, |C| = 3 }. We can find a
weak KROM-backdoor set of size at most k by finding a hitting set H of S of size at
most k and checking whether there is an assignment τH to the variables in H such that
F [τH ] is satisfiable. The correctness follows from the fact that if F [τH ] is satisfiable for
some τH , then we clearly have the desired backdoor set. On the other hand, if F [τH ] is
not satisfiable for any τH , then F was not satisfiable to begin with, and does not admit
a weak backdoor set of any size. As F [τH ] ∈ KROM, the satisfiability of F [τH ] can
be checked in polynomial-time. It follows that if we omit polynomial factors then the
running time of this algorithm is the time required to find a hitting set of S of size at
most k, i.e., 2.270k [13], plus the time required to go over the at most 2k assignments
of the variables in the hitting set. ��

Theorem 2 (!). WB(3CNF,HORN) can be solved in time (12 (1 +
√
65))k < 4.54k

(omitting polynomial factors).
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Proof. Let F and k be the given 3CNF formula and non-negative integer, respectively.
If F ∈ HORN then there is nothing to do. So suppose that F /∈ HORN and let NH(F ) be
the set of all clauses ofF that are not horn. Then NH(F ) can contain the following types
of clauses: (C1) clauses that contain only positive literals (and at least two of them),
and (C2) clauses that contain exactly two positive literals and one negative literal.

An assignment τ is minimal with respect to a formula F or to a clause C if F [τ ] ∈
HORN or {C[τ ]} ∈ HORN, respectively, but F [τ ′] /∈ HORN or {C[τ ′]} /∈ HORN for
every assignment τ ′ that agrees with τ but is defined on a strict subset of var(τ). Our
algorithm uses the bounded search tree method to branch over all possible minimal
assignments τ that set at most k variables of F such that F [τ ] ∈ HORN. The algo-
rithm then checks for each of these assignments whether F [τ ] is satisfiable (because
F [τ ] ∈ HORN this can be done in polynomial-time). If there is at least one such as-
signment τ such that F [τ ] is satisfiable, then the algorithm returns var(τ) as a weak
HORN-backdoor set of F with witness τ . Otherwise, i.e., if there is no such assign-
ment, the algorithm outputs that F does not have a weak HORN-backdoor set of size at
most k.

At the root node of the search tree we set τ to be the empty assignment. Depend-
ing on the types and structure of the clauses of the formula F [τ ], the algorithm then
branches as follows: If F [τ ] contains at least one clause of type (C1), then the al-
gorithm branches on one of these clauses according to branching rule (R1). If F [τ ]
contains at least two clauses of type (C2) that are not variable-disjoint, then the al-
gorithm branches on such a pair according to branching rule (R2). Otherwise, i.e., if
NH(F [τ ]) merely consists of clauses of type (C2) which are pairwise variable-disjoint
the algorithm branches according to branching rule (R3).

We will now describe the branching rules (R1)–(R3) in detail. In the following let τ ′

be the assignment obtained before the current node in the search tree, and let x, x′, y,
y′, z and z′ be 6 pairwise distinct variables. Every branching rule will lead to a new
assignment τ (extending the current assignment τ ′) where the parameter k decreases by
|var(τ) \ var(τ ′)|.

Let C ∈ F [τ ′] be a clause of type (C1). Then branching rule (R1) is defined as
follows. If C = {x, y, z} then {C[τ ]} ∈ HORN if and only if τ(x) = 1 or τ(y) = 1
or τ(z) = 1 or τ(x) = 0 = τ(y) or τ(x) = 0 = τ(z), or τ(y) = 0 = τ(z). Hence,
there are 3 cases for which the parameter (the number of variables set in the backdoor)
decreases by 1 and 3 cases for which the parameter decreases by 2. This leads to the
recurrence relation T (k) = 3T (k − 1) + 3T (k − 2) = (12 (3 +

√
21))k < 4.54k.

Similarly, if C = {x, y} then {C[τ ]} ∈ HORN if and only if τ(x) = 0 or τ(x) = 1
or τ(y) = 0 or τ(y) = 1. Hence, there are 4 cases and in each of them the parameter
decreases by 1. This leads to the recurrence function T (k) = 4T (k−1) = 4k < 4.54k.

Let C ∈ F [τ ′] and C′ ∈ F [τ ′] be two distinct clauses of type (C2) that share at least
one variable. Then branching rule (R2) is defined as follows.

We distinguish the following cases (due to space limitations we will only list the
cases here; for a full description of the cases we refer to the full version of the paper).
(1A) var(C) ∩ var(C′) = {x}, x ∈ C and x ∈ C′, (1B) var(C) ∩ var(C′) = {x},
x̄ ∈ C and x̄ ∈ C′, (1C) var(C) ∩ var(C′) = {x}, x̄ ∈ C and x ∈ C′, (2A) var(C) ∩
var(C′) = {x, y}, x, y ∈ C and x, y ∈ C′, (2B) var(C) ∩ var(C ′) = {x, y}, x, ȳ ∈ C
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and x, ȳ ∈ C′, (2C) var(C) ∩ var(C′) = {x, y}, x, ȳ ∈ C and x̄, y ∈ C′, and (3)
var(C) ∩ var(C′) = {x, y, z}.

Taking the maximum over the above cases we obtain the recurrence function T (k) =
T (k − 1) + 16T (k− 2) = (12 (1 +

√
65))k < 4.54k for branching rule (R2).

Recall that after applying branching rule (R2) exhaustively all pairs of clauses of
type (C2) are pairwise variable-disjoint. We will describe branching rule (R3), which
makes use of this fact. Let C = {x, y, z̄}. We set either τ(x) = 0 or τ(x) = 1.
This leads to the recurrence function: T (k) = 2T (k − 1) = 2k < 4.54k. Note
that in contrast to the branching rules (R1) and (R2) the branching rule (R3) is not
exhaustive. Indeed for every clause C = {x, y, z̄} of type (C2) there are 5 possible
minimal assignments τ such that {C[τ ]} ∈ HORN, i.e., the assignments τ(x) = 0,
τ(x) = 1, τ(y) = 0, τ(y) = 1, and τ(z) = 0. Because each of these assignments τ
sets only 1 variable this would lead to a recurrence function T (k) = 5T (k − 1) = 5k

and hence T (k) > 4.54k. It follows that in contrast to the branching rules R1 and R2
where we could exhaustively branch over all possible minimal assignments, this cannot
be done for clauses of type (C2). However, because branching rule (R2) ensures that
the remaining clauses of type (C2) are pairwise variable-disjoint it turns out that this is
indeed not necessary (see Claim 1).

This concludes the description of our algorithm. The running time of the algorithm
is the maximum branching factor over the cases described above, i.e., (12 (1+

√
65))k <

4.54k as required. To see that the algorithm is correct we need to show that it outputs
an assignment τ if and only if the set var(τ) is a weak HORN-backdoor set of F of size
at most k. Because the branching rules R1 and R2 branch exhaustively over all minimal
assignments τ such that the corresponding clause(s) are reduced to Horn clauses, it only
remains to show the correctness of branching rule R3. This is done by the following
claim whose proof can be found in the full version of the paper.

Claim 1 (!). LetF be a 3CNF formula, P be a set of pairwise variable-disjoint clauses
of type (C2) such that F \ P ∈ HORN. Furthermore, let L be a set of variables that
consists of one positively occurring variable from each of the clauses in P . Then F has
a weak HORN-backdoor set of size at most |P | if and only if L is a weak HORN-back-
door set of F . ��

4 Lower Bounds

For our lower bounds we use the Exponential Time Hypothesis (ETH) and the Strong
Exponential Time Hypothesis (SETH), introduced by Impagliazzo et al. [9,10], which
state the following:

ETH: There is no algorithm that decides the satisfiability of a 3CNF formula
with n variables in time 2o(n), omitting polynomial factors.
SETH: There is no algorithm that decides the satisfiability of a CNF formula
with n variables in time (2− ε)n, omitting polynomial factors.

An implication chain is a CNF formula of the form {{x0}, {x̄0, x1}, {x̄1, x2},. . . ,
{x̄n−1, xn}, {x̄n}}, n ≥ 1 where the first {x0} and the last clause {x̄n} can be missing.
Let CHAINS denote the class of formulas that are variable-disjoint unions of implication
chains.
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Theorem 3. Let B be a base class that contains CHAINS. Then WB(3CNF,B) cannot
be solved in time (2− ε)k (omitting polynomial factors) unless SETH fails.

Proof. We show that an (2−ε)k algorithm for WB(3CNF,CHAINS) implies an (2−ε)n
algorithm for SAT contradicting our assumption. Let F be a CNF formula with n
variables. We will transform F into a 3CNF formula F3 such that F is satisfiable if and
only if F3 has a weak CHAINS-backdoor set of size at most n. We obtain F3 from F
using a commonly known transformation that transforms an arbitrary CNF formula into
a 3CNF formula that is satisfiability equivalent with the original formula. In particular,
we obtain the formula F3 from F by replacing every clause C = {x1, . . . , xl} where
l > 3 with the clauses {x1, x2, y1}, {ȳ1, x3, y2}, . . . , {ȳl−3, xl}, where y1, . . . , yl−3

are new variables. This completes the construction of F3. Now, if F is satisfiable and τ
is a satisfying assignment of F , then the variables of F form a weak CHAINS-backdoor
set of size n of F3 with witness τ . The reverse is immediate since F3 is satisfiable, by
virtue of having a weak backdoor set, and F is satisfiable if F3 is satisfiable. ��
As the classes HORN,KROM, and FOREST contain CHAINS, we have the following
result.

Corollary 1. Let B ∈ {HORN,KROM, FOREST}. The problem WB(3CNF,B) cannot
be solved in time (2− ε)k (omitting polynomial factors) unless SETH fails.

Interestingly, in the case of KROM the above result even holds if a hitting set for all
clauses containing 3 literals is given with the input. The next lower bound is based on
the observation that the VERTEX COVER problem can be considered as a special case
of WB(KROM, 0-VAL), and on a corresponding lower bound for VERTEX COVER [11].

Theorem 4 (!). WB(KROM, 0-VAL), and hence also WB(3CNF, 0-VAL), cannot be
solved in time 2o(k) (omitting polynomial factors) unless ETH fails.

Let B be a base class. We say that a polynomial-time algorithm A is a canonical HS
reduction for B ifA takes as input an instance (S, k) of HITTING SET over n elements
and m sets and outputs an instance (F, k) of WB(3CNF,B) such that: (a) F has at
most O(nm) variables, and (b) S has a hitting set of size at most k if and only if F has
a weak B-backdoor set of size at most k .

Lemma 1 Let B be a base class. If there is a canonical HS reduction for B, then the
following holds:

1. WB(3CNF,B) is W[2]-hard, and
2. there is no algorithm that solves WB(3CNF,B) in time O(n

k
2−ε) unless SETH

fails.

Proof. Because HITTING SET is W[2]-complete and a canonical HS reduction is also
an fpt-reduction, the first statement of the theorem follows. To see the second statement,
we first note that it is is shown in [11, Theorem 5.8] that the DOMINATING SET problem
cannot be solved in timeO(nk−ε) for any ε > 0 unless SETH fails (here n is the number
of vertices of the input graph and k is the parameter). Using the standard reduction
from DOMINATING SET to HITTING SET it follows that HITTING SET restricted to
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instances where the number of sets is at most the number of elements, cannot be solved
in time O(nk−ε) for any ε > 0, where n is the number of elements of the hitting set
instance and k is the parameter. Now suppose that for some base class B it holds that
WB(3CNF,B) can be solved in time n

k
2−ε and B has a canonical HS reduction. Let

(S, k) be an instance of HITTING SET with nh elements andmh sets. As stated above
we can assume thatmh ≤ nh. We use the canonical HS reduction to obtain an instance
(F, k) of WB(3CNF,B) where F has at most O(nhmh) ∈ O(n2h) variables. We now
use the algorithm for WB(3CNF,B) to solve HITTING SET in time O((n2h)

k
2−ε) ≤

O(n
k− ε

2

h ) which contradicts our assumption that there is no such algorithm for HITTING

SET. ��
Lemma 2 (!) There is a canonical HS reduction for MATCH.

Proof. Let (S, k) be an instance of HITTING SET with S = {S1, . . . , Sm} and V =⋃m
i=1 Si = {x1, . . . , xn}. We write Si = {x1i , . . . , x

qi
i }, where qi = |Si|. We construct

in linear-time a 3CNF formula F with |V | +
∑

1≤i≤m(qi − 1) ≤ n + nm ∈ O(nm)
variables such that S has a hitting set of size at most k if and only if F has a weak
MATCH-backdoor set of size at most k.

The variables of F consist of the elements of V and additional variables yji for every
1 ≤ i ≤ m and 1 ≤ j < qi. We let F =

⋃m
i=0 Fi where the formulas Fi are

defined as follows. F0 consists of n binary clauses {x̄1, x2}, {x̄2, x3}, . . . , {x̄n−1, xn},
{x̄n, x1}. For i > 0, Fi consists of the clauses {y1i , x1i }, {ȳ1i , y2i , x2i }, {ȳ2i , y3i , x3i }, . . . ,
{ȳqi−2

i , yqi−1
i , xqi−1

i }, {ȳqi−1
i , xqii }. This completes the construction of F .

We can show that S has a hitting set of size at most k if and only if F has a weak
MATCH-backdoor set of size at most k. Hence the lemma follows. ��
We observe that the known W[2]-hardness proofs for WB(3CNF,RHORN) and
WB(3CNF,QHORN) [8,6] are in fact canonical HS reductions. Hence, together with
Lemmas 1 and 2 we arrive at the following result.

Theorem 5. LetB ∈ {MATCH,RHORN,QHORN}. Then WB(3CNF,B) is W[2]-hard
and cannot be solved in time O(n

k
2−ε) for any ε > 0 unless SETH fails.

5 Conclusion

We have initiated a systematic study of determining the complexity of finding weak
backdoor sets of small size of 3CNF formulas for various base classes. We have given
improved algorithms for some of the base classes through the bounded search tech-
niques.

Our lower bounds are among the very few known bounds based on the (Strong)
Exponential-Time Hypotheses for parameterized problems where the parameter is the
solution size (as opposed to some measure of structure in the input like treewidth).

Closing the gaps between upper and lower bounds of the problems we considered
in this paper, and studying WB(A,B) for classes A other than 3CNF are interesting
directions for further research.
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Abstract. The extensive research on SAT solving and the development of soft-
ware for applications have not been matched by the development of educational
materials for introducing students to this field. LEARNSAT is a SAT solver de-
signed for educational purposes. It implements the DPLL algorithm with CDCL
and NCB. LEARNSAT produces detailed output of the execution of the algo-
rithms. It generates assignment trees and the implication graphs of CDCL which
are rendered by DOT. LEARNSAT is written in PROLOG so that the algorithms
are concise and easy to read.

Keywords: education, CDCL SAT solver, Prolog.

1 Introduction

The literature on SAT solving is extensive: the Handbook [2] of almost one thousand
pages covers theory, algorithms and applications. Since SAT solvers are widely used, it
is essential that quality learning materials be available for students, even those who do
not intend to become researchers, for example, undergraduate students taking a course
in mathematical logic. Such learning materials will also be helpful for people using
SAT solvers in applications.

Instructors should be enabled to create learning materials that demonstrate the central
algorithms in detail. Furthermore, these demonstrations should use real problems in
place of the artificial examples that appear in research papers.

LEARNSAT is a SAT solver designed for educational use. Design considerations
include: (a) the student and instructor should be provided with maximum flexibility
in specifying the trace output when running the SAT solver; (b) it should be simple
to install and run on the vanilla computers used by students (Windows and Mac); (c)
given the wide variety of programming languages taught to undergraduates, the program
should be usable with only a superficial knowledge of a particular language; (c) the
source code should be concise and very well documented so that advanced students can
easily understand it.

2 The LEARNSAT SAT Solver

LEARNSAT implements the core algorithms of many modern SAT solvers: DPLL with
conflict-driven clause learning (CDCL) and non-chronological backtracking (NCB).

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 403–407, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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LEARNSAT can be run in three modes—plain DPLL, DPLL with CDCL, and DPLL
with both CDCL and NCB—so that the student can examine the improvements obtained
by each refinement. The user can specify the order in which literals are assigned. CDCL
is implemented by backwards resolution from a conflict clause to a unique implication
point (UIP). It is also possible to compute dominators in the implication graph although
this computation is just displayed and not used.

3 The Output of LEARNSAT

The key to learning sophisticated algorithms like SAT solving is a trace of the step-
by-step execution of the algorithm. The user of LEARNSAT can choose any subset
of 25 display options in order to tailor the output to a specific learning context. The
display options include elementary steps like decision assignments, unit propagations
and identifying conflict clauses, as well as the advanced steps of CDCL: the resolution
steps used to obtained a learned clause and the search for UIPs. The Appendix shows
the (default) output for the example in [4] run in NCB mode.

LEARNSAT can generate two types of graphs that are rendered using the DOT tool
(Figure 1): a tree showing the search through the assignments and the implication
graphs that display the process for learning clauses from conflicts.1 It is also possi-
ble to generate these graphs incrementally after each step in the algorithm that modifies
the graphs.

4 Examples

The LEARNSAT archive includes the examples used in [3,4,5] to help advanced stu-
dents read these articles. The archive also includes encodings of the following problems:
(i) 4-queens,2 (ii) Tseitin clauses associated with the graphs K2,2 and K3,3,3 (iii) two
and three-hole pigeonhole problems, and (iv) two- and three-level grid pebbling. With
experience we will learn which of these problems is best for educational purposes.

The input to the program is a formula in clausal form written in a readable symbolic
form; the 2-hole pigeonhole problem is:

hole2 :-
dpll(
[

% Each pigeon in hole 1 or 2
[p11, p12], [p21, p22], [p31, p32],

% No pair is in hole 1
[˜p11, ˜p21], [˜p11, ˜p31], [˜p21, ˜p31],

% No pair is in hole 2
[˜p12, ˜p22], [˜p12, ˜p32], [˜p22, ˜p32],
], _).

1 In the Figure, the default color decoration for decision and conflict nodes has been changed to
bold for black-and-white printing.

2 The encoding and its solution by DPLL are explained in detail in [1, Section 6.4].
3 See [1, Section 6.5].
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Fig. 1. Assignment tree for DPLL mode (left) and implication graph for NCB mode (right)
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A program is provided to convert from DIMACS format to this symbolic form (and
conversely) in order to faciliate the student’s transition to more advanced SAT solvers.

5 Implementation

LEARNSAT is implemented in PROLOG which was chosen because PROLOG programs
are extremely concise: the core algorithms take only 150 lines. The source code itself
reads almost like pseudo-code (although making extensive modifications to the code
would require mastery of the language). Furthermore, students are likely to know some
PROLOG since it is often taught in a course on logic. Finally, the widely used high-
quality SWI-PROLOG compiler is distributed with installers for Windows and Mac. Its
default interface is minimal and easy to use.

The source code is extensively commented and the documentation in the archive
includes: a user’s guide, a tutorial using the example from [4], and documentation of
the software.

6 Future Plans

LEARNSAT is not meant as a research tool nor even to train graduate students in the
latest implementation techniques (MinSAT and Sat4j are more appropriate for this). In-
stead, the focus of future development will be on improving the pedagogical aspects of
the tool. This will include expanding the user interface and the graphical features, and—
perhaps more important—developing extensive tutorials. The tutorials will be based on
standard puzzles like the 4-queens and hopefully also on actual applications.

7 Availability

LEARNSAT is open source and is available at http://code.google.com/p/mlcs/.

Acknowledgements. I would like to thank the anonymous referees for their comments
and suggestions concerning LEARNSAT.
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A Output for the Example in [4]

LearnSAT v1.3.2. Copyright 2012-13 by Moti Ben-Ari. GNU GPL.
Decision assignment: x021=0@1
Decision assignment: x031=0@2
Decision assignment: x1=0@3
Propagate unit: ˜x2 derived from: 1. [x1,x031,˜x2]
Propagate unit: ˜x3 derived from: 2. [x1,˜x3]
Propagate unit: x4 derived from: 3. [x2,x3,x4]
Propagate unit: ˜x5 derived from: 4. [˜x4,˜x5]
Propagate unit: ˜x6 derived from: 5. [x021,˜x4,˜x6]
Conflict clause: 6. [x5,x6]
Not a UIP: two literals are assigned at level: 3
Clause: [x5,x6] unsatisfied
Complement of: x5 assigned true in the unit clause: [˜x4,˜x5]
Resolvent of the two clauses: [x6,˜x4] is also unsatisfiable
Not a UIP: two literals are assigned at level: 3
Clause: [x6,˜x4] unsatisfied
Complement of: x6 assigned true in the unit clause: [x021,˜x4,˜x6]
Resolvent of the two clauses: [x021,˜x4] is also unsatisfiable
UIP: one literal is assigned at level: 3
Learned clause: [x021,˜x4]
Non-chronological backtracking to level: 1
Skip decision assignment: x1=1@3
Skip decision assignment: x031=1@2
Decision assignment: x021=1@1
Decision assignment: x031=0@2
Decision assignment: x1=0@3
Propagate unit: ˜x2 derived from: 1. [x1,x031,˜x2]
Propagate unit: ˜x3 derived from: 2. [x1,˜x3]
Propagate unit: x4 derived from: 3. [x2,x3,x4]
Propagate unit: ˜x5 derived from: 4. [˜x4,˜x5]
Propagate unit: x6 derived from: 6. [x5,x6]
Satisfying assignments:
[x021=1@1,x031=0@2,x1=0@3,x2=0@3,
x3=0@3,x4=1@3,x5=0@3,x6=1@3]

Statistics: clauses=6,variables=8,units=10,decisions=6,conflicts=1
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Abstract. Existing algorithms for minimal unsatisfiable subset (MUS)
extraction are defined independently of any symbolic information, and
in current implementations domain experts mostly do not have a chance
to influence the extraction process based on their knowledge about the
encoded problem. The MUStICCa tool introduces a novel graphical user
interface for interactive deletion-based MUS finding, allowing the user to
inspect and influence the structure of extracted MUSes.

The tool is centered around an explicit visualization of the explored
part of the search space, representing unsatisfiable subsets (USes) as
selectable states. While inspecting the contents of any US, the user
can select candidate clauses to initiate deletion attempts. The reduc-
tion steps can be enhanced by a range of state-of-the-art techniques such
as clause-set refinement, model rotation, and autarky reduction. MUS-
tICCa compactly represents the criticality information derived for the
different USes in a shared data structure, which leads to significant sav-
ings in the number of solver calls when multiple MUSes are explored.
For automatization, our tool includes a reduction agent mechanism into
which arbitrary user-implemented deletion heuristics can be plugged.

1 Introduction and Motivation

With a remarkable amount of recent work (e.g. [13,3,17]) on algorithms for com-
puting minimal explanations of SAT formula unsatisfiability and a broad range
of applications (e.g. [15,12]), the field of minimal unsatisfiable subset (MUS) ex-
traction has become an emerging research field in the SAT community, leading
to the introduction of a MUS track in the SAT competition 2011 [16].

The algorithms for MUS extraction can be characterized as constructive, de-
structive or dichotomic [6,14], but they all focus solely on the amount of clauses
or clause sets (called groups) [2] present in the minimal explanation.

We introduce a completely new approach to guiding the destructive MUS
extraction algorithm by Nadel [11]. The central idea of destructive MUS ex-
traction, which was first proposed more than 20 years ago [4,1], is to perform
a series of reduction steps, moving into smaller unsatisfiable subsets F ′ until

� This work was supported by DFG-SPP 1307, project “Structure-based Algorithm
Engineering for SAT-Solving”.
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c© Springer-Verlag Berlin Heidelberg 2013



MUStICCa: MUS Extraction with Interactive Choice of Candidates 409

all subsets F ′′ ⊂ F ′ are satisfiable. The idea of interactive MUS extraction
is to give a user full control over the individual reduction steps, providing an
interface for interactively focusing on or eliminating parts of the search space.
Within our MUStICCa tool, this is done by reverting to intermediate results, the
non-minimal unsatisfiable subsets, and exploring new parts of the search space
by choosing alternative deletion candidates. This feature will not only help do-
main experts (who usually have good intuitions about the clauses relevant for
good explanations) to find meaningful explanations of unsatisfiability, but also
researchers and students in analysing unsatisfiable instances and evaluating the
effects of different heuristics for selecting deletion candidates.

By default, MUStICCa’s graphical user interface (see Figure 1) consists of
three main view components. The central view is a representation of the current
knowledge about the search space. Explored USes are inspected in a separate US
view which also provides the interface for starting reduction steps. The third view
is responsible for administering automated reduction agents. Our tool automati-
cally avoids unnecessary deletion tests by efficiently representing and reusing all
the clause criticality information that was gained anywhere in the search space.
The paper is organized as follows: Section 2 introduces the user interface, de-
scribes the main features, and gives some pointers to interesting implementation
details. Section 3 describes some of our practical experiences with using the tool
for an application. We conclude with a short summary in Section 4. The tool can
be downloaded from http://algo.inf.uni-tuebingen.de/?site=forschung/

sat/MUStICCa.

Fig. 1. Screenshot of MUStICCa’s default user interface
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2 The Application

2.1 The MUStICCa User Interface

The interface is based on the open-source Kahina framework [7] for graphical
debugging, which was chosen because it already provided the needed view com-
ponents and native support for managing a database of computation steps as
nodes in a graph structure. Since deletion-based MUS extraction can be framed
as a downward traversal of the powerset lattice for an unsatisfiable clause set
F , the explored part of the search space is modeled by means of a reduction
graph, which is a subsemilattice of the powerset lattice whose edges represent
successful reduction attempts. In the visualization of this reduction graph, the
number on each node gives the size of the corresponding US, followed in brackets
by the number of clauses of unknown criticality. MUSes are marked in red, dark
green marks non-MUSes where all reduction options have been explored, and
light green color marks USes where all clauses are known to be either critical or
unnecessary1, but some unexplored reduction options remain.

Whenever a node in the reduction graph view is selected, MUStICCa derives
which clauses in it are implied to be critical, and the US corresponding to the
node is displayed in the US view. The default format for clauses in the US view
consists of the clause ID (numbered according to the order in the input DIMACS
file) and the set of integers representing its literals. If the file contains comment
lines of the format c [variable] [symbol] between the header and the clause
list, these are imported as a symbol table, and the respective symbols are
displayed instead of the variable IDs. The clauses in the US view are colour-coded
to reflect their criticality status: critical clauses are displayed in red, explicitly
reduced clauses in a dark green, other unnecessary clauses in a lighter green,
and clauses of unknown status in black. The colour codes make it easy to spot
interesting deletion candidates for reduction steps, which are started by double-
clicking on clauses in the US view. By default, clause set refinement is performed
after each successful reduction, which results in much faster reduction at the cost
of making parts of the search space unaccessible.

For advanced interactions, one or more clauses in the US view can be selected,
and are then highlighted by a yellow background colour. The selection of inter-
esting clauses is supported by a powerful selection refinement interface in the
form of a hierarchy of submenus in the US view’s context menu. This menu also
provides the options of manually executing autarky reduction [8] or reduction
attempts followed by model rotation, and two different options for executing re-
duction operations on sets of clauses. Semi-automatization initiates a batch
processing of deletion attempts for all the clauses in the current selection. This
helps to quickly open up several new branches in the reduction graph at once, or
to speed up series of criticality checks. Simultaneous reduction is an attempt
to delete all the currently selected clauses at once. If the attempt was success-
ful, the new node (or link) will appear in the reduction graph, just like in the

1 Note that not every unnecessary clauses is unusable. For an unnecessary clause C,
we merely know that there is at least one MUS which does not contain C.
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case of deleting a single clause. If a simultaneous reduction attempt fails, this
only yields very weak criticality information, since it might have been possible
to delete some of the clauses under the condition that others stay in.

Internally, the meta instance is compressed using an inferred block structure
over the input clauses. In the development version, this block structure is exposed
and used for visualizing the overlaps between encountered USes, often revealing
interesting structural features of the input instance. These experimental features
are described in Chapter 5 of the first author’s master thesis [5].

2.2 Automatization through Reduction Agents

During a process of interactive extraction, a user will often want to quickly ex-
plore parts of the search space without having to manually execute hundreds
of reduction attempts, especially in contexts where domain knowledge has not
yet become relevant. For this purpose, MUStICCa includes an automated re-
duction mechanism in the form of reduction agents which in essence act like
autonomous additional users who were given sets of simple instructions. In addi-
tion to predefined reduction agents which emulate standard deletion-based MUS
extraction algorithms, user-defined reduction agents can be implemented as Java
classes by inheriting from a plug-in interface for custom deletion heuristics. This
interface is defined in Section 4.3 of the user’s guide.

The most important option in the dialog for creating and starting new reduc-
tion agents serves to select one of the predefined heuristics from a drop-down
menu. Each new agent is initialized with a random signal colour that can freely
be redefined. Model rotation and autarky pruning can be activated or deacti-
vated. The new reduction agent starts at the US that is currently selected in the
reduction graph, and runs until it has determined a MUS. The downward path
of an agent through the powerset lattice is visualized in the form of an agent
trace highlighted in its signal colour.

2.3 Implementation details

Internally, MUStICCa stores its knowledge of the search space in a reduction
table indexed by Vi ∈ US and C ∈ Vi, where special values are used to represent
that C was found to be critical in Vi, that C is known to be unnecessary, or
that no criticality information about C is known yet. A positive integer value
expresses that the deletion of the clause C in Vi has led to the US with that ID.

In the case of a successful reduction step that has led us from a subset V1 to
another unsatisfiable subset V2 ⊂ V1 by deletion of the clause C, we add a node
v2 and the edge (v1, v2) to the reduction graph. Since we typically use clause set
refinement, we will often have |V1\V2| > 1. In this case, we additionally know that
all clauses C ∈ V1\V2 are unnecessary. If the reduction step was unsuccessful, i.e.
V1\{C} was found to be satisfiable, we store the information that C is critical
in V1. In the case of model rotation [17], we store this information for the entire
set of clauses that was determined to be critical.
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If the search space is explored in more than one direction, it becomes possible
to reuse the criticality information derived for one US in other branches of the
reduction graph. If a clause C is critical in some US V1, it is also critical in all
other USes V2 ⊂ V1. This suggests a simple downwards propagation of criticality
information, but this would not be complete, since there can be subset relations
between encountered USes that are not reflected in the reduction graph. For this
reason, MUStICCa includes a mechanism for systematically sharing the derived
criticality information across reduction graph nodes. The information is opti-
mally exploited if we can quickly determine for any subset whether it is included
in a set that is already known to be satisfiable as a result of failed reduction
attempts. This leads to the concept of an upward wedge of satisfiable subsets
or sat wedge through the powerset lattice which is created by every such at-
tempt. The task of sharing criticality information now reduces to storing the sat
wedges in a data structure that allows a quick check of sat wedge membership
for any subset. The solution implemented in MUStICCa stores sat wedges as
clauses over positive selector literals in an additional meta instance. Any sub-
set can be expressed in terms of unit assumptions over selector literals. Solving
the meta instance under these assumptions tells us whether the subset is implied
to be satisfiable by sat wedge membership. The idea is very similar to the Map
formula used for storing information about the search space in the recently pro-
posed MARCO algorithm [10] for quick extraction of multiple MUSes. The meta
instance allows us to quickly derive all the clauses implied to be critical in some
subset Vi by merely propagating the corresponding selector assumptions. The
resulting selector units correspond to the clauses which are implied to be critical
in Vi. This allows us to quickly update the critical entries in the reduction table
for any US. A formal description of this procedure, and a proof of its correctness,
can be found in Chapter 4 of the mentioned thesis.

3 Experimental Results

Because of the general unavailability of MUS extraction instances that contain
semantic information, we have only been able to evaluate MUStICCa as a tool for
semantically guided MUS extraction in a single application from the first author’s
area of knowledge. Since the motivation and context of this application can only
be outlined here due to space constraints, the interested reader is referred to the
discussion in Chapter 6 of the thesis.

The application is based on a SAT encoding of context-free parsing, which is
used to encode classical problems in the field of symbolic grammar engineering,
a branch of computational linguistics which attempts to define formal models of
natural languages. Unfeasibilities in the resulting SAT instances represent inad-
equacies and bugs in these models, and MUSes can be interpreted as containing
instructions for minimal repairs. The number of different MUSes in the resulting
instances turned out to be extremely high, making the enumeration of all MUSes
by means of CAMUS [9] or similar tools entirely infeasible. Given the variable
symbols generated by the SAT conversion tool as guidance, the manual selection
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of reduction candidates made it possible to narrow down bugs in the grammar
to very small MUSes which were interpretable as minimal repairs, whereas the
results returned by a simple MUS extractor were generally much larger and
harder to interpret. Moreover, MUS extraction proved to be extremely useful
for finding bugs already during the development of the SAT encoding, since it
gave the developer direct access to problematic interactions in flexibly definable
constraint subsets.

Beyond this application, we have used MUStiCCa to explore the search spaces
of other unsatisfiable benchmark instanced which are known to contain multiple
MUSes, in particular the Daimler testset for automotive product configuration
[15]. On these and similar test instances, MUStiCCa proved useful for comparing
the performance of different deletion candidate heuristics, and for analyzing
properties of MUS extraction search spaces. For larger industrial instances, the
large size of the resulting MUSes and the long duration of each reduction attempt
makes interactive MUS extraction a less attractive option.

4 Summary

We present our tool MUStICCa that was designed to provide the user with the
possibility to guide the well-known deletion-based MUS extraction algorithm
[11] through the powerset lattice towards different MUSes. MUStICCa reuses
criticality information from other parts of the search space to avoid unnecessary
execution steps.

The main features of our tool can be summarized as follows:

– interactive execution of the deletion-based MUS extraction algorithm
– exploration of the search space starting at any already encountered US
– global reuse of clause criticality information
– well-structured graphical user interface
– automatized extraction of MUSes via reduction agents

We are confident that MUStICCa will be helpful to domain experts in analysing
inconsistencies in SAT formulae. Moreover, our tool can be used to create and
evaluate new deletion candidate selection heuristics. We are looking forward
to receiving feedback from experts in different application domains about their
experience with the tool, and are grateful to our anonymous reviewers for their
many suggestions about interface improvements and feature requests. In the
future, we plan to extend the concept to insertion-based and dichotomic MUS
extraction by also representing satisfiable subsets in the reduction graph and
allowing the user to work upwards in the powerset lattice. Furthermore, we are
planning to provide support for the extraction of GMUSes as well as minimal
unsatisfiable subformulae of propositional formulae in negation normal form.
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Abstract. SCSat is a SAT solver aimed at quickly finding a model for
hard satisfiable instances using soft constraints. Soft constraints them-
selves are not necessarily maximally satisfied and may be relaxed if they
are too strong to obtain a model. Appropriately given soft constraints
can reduce search space drastically without losing many models, thus
help find a model faster. In this way, we have succeeded to obtain sev-
eral rare Ramsey graphs which contribute to raise the known best lower
bound for the Ramsey number R(4,8) from 56 to 58.

Keywords: soft constraint, constraint relaxation, Ramsey number.

1 Introduction

We have been tackling hard combinatorial problems using theorem provers and
SAT solvers [5,6,12]. In many cases we can hardly find a single model because the
number of models, if any, is extremely small. For this, streamlining [10,11,18]
and tunneling [14] appear to be promising. In both methods, providing good
additional constraints, called streamliners and tunnels respectively, should be
the key to a success.

Here we present yet another method based on soft constraints, that can easily
be implemented on an off-the-shelf SAT solver such as MiniSat [1]. We prepare
an additional set of constraints S which seemingly is suited for restricting search
to preferable directions. The search with S may end with UNSAT very soon if it
is too strong. Then, we will not immediately give up the constraints as a whole
but take a relaxed Sr (⊂ S), and restart a new search. A series of relaxations
and restarts should be automated easily in a simple iterative procedure. In this
setting, the initial constraints S can be arbitrarily strong, and is not required to
be satisfied perfectly. So, we call it soft constraints (SC in short). Soft constraints
are not required to be maximally satisfied as in MaxSAT [13]. We just require
SC to be able to speed up finding a single model if relaxed adequately.

2 System Description

Outline of the SCSat Procedure. Given a CNF file (hard clauses) for the
problem and a WCNF file [15] (soft clauses) for the soft constraints, which

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 415–421, 2013.
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should be specified as a command line option “-sc-file=<filename>”, repeat
the MiniSat search enhanced with the following SC handling until a model is
found or the set of SC-clauses becomes empty.

– SC-UP: Handle SC-clauses exactly in the same way as hard clauses for unit
propagation.

– SC-conflict: If a SC-clause causes a conflict during a search, disregard the
conflict, increase the penalty score for the SC-clause, and continue the search.

– SC-restart: When the search reaches UNSAT, pick up some portions of SC-
clauses having higher penalty score, remove or tentatively deactivate them,
and restart a new search with the relaxed SC-clauses.

Where penalty score for a SC-clause is quite similar to activity for a learnt clause
in MiniSat. The higher penalty score a SC-clause has the earlier it would be
deactivated or removed, while the higher activity a learnt clause has the longer
it would be kept.

How to Provide Soft Constraints. In view of our experience, it seems suffi-
cient to consider only binary clauses as soft constraints, which is often induced
by equivalence of pairs of the variables appearing in the hard clauses, such as Z-
SC described below. However, there is no reason to avoid non binary SC-clauses,
and SCSat now properly handles any SC-clauses with arbitrary size except unit
SC-clauses for which our design choices have not yet been fixed.

New variables, called SC-variables, that do not appear in the hard clauses
but only in SC-clauses are allowed. The intention of SC-variables is described in
the Ramsey Package section. SC-variables need not be assigned a value just as
a SC-clause need not be satisfied. So, it is marked as “non decision variable.”
Also an SC-variable is currently inhibited to appear in a unit SC-clause.

How to Give Penalty Scores for Soft Constraints. To decide which por-
tions of SC-clauses should be deactivated or removed at a SC-restart, we need
to somehow discriminate bad SC-clauses from good ones. Here we take a con-
flict driven clause degrading (CDCD) approach, where a SC-clause is considered
bad if it causes a conflict, directly or indirectly. Currently SCSat provides two
options for the CDCD based SC-penalty scoring:

– loose (default): Only the conflict SC-clause, i.e. the direct reason of a
conflict, will have a penalty. Take an arbitrary one if there exist more than
one conflict SC-clauses at a single conflict.

– severe: Every SC-clause that is the reason of a literal in a learned clause
created at each conflict, i.e. the indirect reason of the conflict, will have a
penalty. Specify “-sc-penalty=2” in the command line to use this setting.

Generally speaking, taking severe may be better since more SC-clauses would be
targeted, while taking loose may apt to concentrate very often on a very limited
portions of SC-clauses. However, we consider that it would be better to take
loose as default because it is a bit more efficient than severe.
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The penalty score for a target SC-clause is calculated based on its weight and
the decision level where a conflict occurred using the following formula:

penalty(SC) += (weight(SC) ∗ (1 + decisionLevel()))−1,

where the value of weight(SC) should be specified in the input WCNF file. Note
that this weight value is used differently from MaxSAT.

Why this particular form? The intuition behind the formula is the following.
On one hand, from the viewpoint of fairness, some kind of normalization has to
be considered. As for decisionLevel(), for example, the exponent -1 seems better
than 1. Because, the authors think, the more deeper level where a SC-clause is
used on some search path, the more often it would be used at similar depth on
other search paths as well. The decisionLevel()−1 would cancel the effect of this
tendency. On the other hand, from the viewpoint of symmetry breaking, such
normalization might be unnecessary, or even harmful. There is no definite theory
deciding which should be better.

How to Relax Soft Constraints. How much portions of SC-clauses should
be deactivated or removed at each SC-restart? In some cases the higher rate
may be better because of the fewer iterations. In other cases the things may be
quite opposite. So, it is basically up to the user, who should specify preferable
reduction rate for SC in a command line option like “-sc-rr=0.2”. This value
can have a large impact on the performance of the solver. In fact, 10 % was
better than 20 % for obtaining R(5, 5, 42), whereas 40 % was better than 20 %
for R(4, 8, 57). The current default 20 % seems a fairly good choice.

How to Handle Learned Clauses. Currently, SCSat clears all the leaned
clauses at each SC-restart. Unit clauses accumulated in the previous SC-restart
are to be canceled either. This is just for simplicity, and a future release should
employ more sophisticated handling. See discussions below.

3 Ramsey Package

Ramsey Problem. The classical Ramsey number R(s, t) is the smallest integer
n such that in any two-coloring of the edges of Kn there is a monochromatic
copy of Ks in the first color or a monochromatic copy of Kt in the second color
[3]. A Ramsey graph R(s, t, n) is a graph with n vertices, no clique of size s,
and no independent set of size t [16]. Then, Ramsey theory tells us that there
are only a finite number of Ramsey graphs for each s and t and for some n,
but finding all such graphs, or even determining the largest n, i.e. the Ramsey
number R(s, t) minus one, for which they exist, is a famously difficult problem
[2]. Some of the interesting instances can be found at several websites [4,8,16].
A recent summary of the state of the art for Ramsey numbers can be found in
the Dynamic Survey [17].
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Here we try to obtain a Ramsey graph denoted by R(s, t, n) by encoding the
condition for it to exist into a CNF, called Ramsey clauses, as follows:

C(s,t,n) :
( ∧

Ks⊂Kn

∨eij∈Ks ¬eij
)
∧
( ∧

Kt⊂Kn

∨eij∈Kt eij

)
,

where each eij is the propositional variable for the edge between vertices i and j,
and assigning true to it means the edge is colored in the first color, otherwise the
second. If C(s,t,n) is unsatisfiable, then no R(s, t, n) exists. Otherwise a model
representing a R(s, t, n) can be obtained.

Z-SC. The most straightforward yet remarkably effective soft constraints, called
Zebra-SC (Z-SC in short) is:

eij ≡ zd (0 ≤ i < j < n, j − i = d),

where zd (1 ≤ d ≤ n − 1) are new propositional variables. The name zebra
derives from the stripe like pattern observed in the adjacency matrix of the
corresponding Ramsey graph. The intuition of Z-SC is the following. Since the
general requirement for a Ramsey graph is highly symmetric in terms of vertex
renaming, it seems natural to think that a special symmetry requirement like
Z-SC, in which renaming every vi to v(i+d) mod n becomes the identity mapping,
might be met. The Z-SC with zd variables is represented in CNF as follows:

Zn :
∧

0≤i<j<n

(
(¬eij ∨ zj−i) ∧ (eij ∨ ¬zj−i)

)
.

We try to solve C(s,t,n)∧Zn. If it is satisfiable then C(s,t,n) is also satisfiable, and
the obtained model should represent a Ramsey graph R(s, t, n), which is called
a Z-Ramsey graph and is denoted by RZ(s, t, n). Assignment for an eij quickly
propagates to the corresponding ekl (l−k=j−i) via zd (d=j−i). That is, you only
need to decide the coloring for n− 1 number of stripes.

U-SC. Some Ramsey graph R(s′, t′, n′) can be obtained easily using a smaller
R(s, t, n), such that s ≤ s′, t ≤ t′, n < n′, typically s = s′, t = t′ − 1.

As shown in Figure 1, one of the author has succeeded to find a R(4, 8, 57)
using a R(4, 7, 48) [7] where the edges eij (0 ≤ i < j < 48) in the R(4, 8, 57)
are colored exactly in the same color as in the R(4, 7, 48). The rest of edges
eij (0 ≤ i < 57, 48 ≤ j < 56) were colored adequately by using SCSat with a
simple Z-SC.

The constraints that will impose a fixed truth value for each propositional
variable (a fixed color for each edge) is called a Unit-SC (U-SC in short). For
instance, the coloring above can be represented as a set of unit clauses

∧
lij

(0 ≤ i < j < 48), where lij = eij (¬eij) if eij is true (false) for the R(4, 7, 48).
Although SCSat is able to relax U-SCs as well as Z-SCs mechanically, the

U-SC was not relaxed at all in the above case. Because the set of hard clauses
is too large for SCSat input, we could not do without simplifying them with the
exact U-SC in advance, thus making the input clauses small enough.
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(a) Edges of the first color (b) Adjacency matrix

Fig. 1. A Ramsey graph R(4, 8, 57)

4 Experimental Results

As shown in Table 1, U-SCs work remarkably well compared to Z-SCs for
smaller Ramsey graphs such as R(3, 8, 27) and R(3, 10, 39). The similar results
on R(3, 6, 17) and R(3, 7, 22). It is quite the contrary for larger instances such
as R(4, 6, 33) and R(5, 5, 42). The similar results on R(4, 7, 47) and R(4, 7, 48).
As for R(4, 8, 57), only a combination of a U-SC and a Z-SC was successful.

Table 1. Results on Ramsey instances

Inst. Cn Cn ∧ Zn Cn ∧ Un′ Cn ∧ Un′ ∧ Zn

R(3, 8, 27) 43.7 13022 2.4 11.1

R(3, 10, 39) — — 0.624 5.31

R(4, 6, 33) — 27.8 4942 15574

R(5, 5, 42) — 799 — —

CPU time (sec.), — denotes for time out (>24 hrs).
Parameter settings: “best effort” (not optimal) for each entry.

Note that once a Ramsey graph R(s, t, n) is obtained, any smaller R(s, t, n′),
(n′ < n) becomes unimportant in the sense that it does not by itself improve
lower bound of the Ramsey number R(s, t). Nevertheless, it may be useful for
searching greater R(s, t′, n′′), (t < t′, n′ < n′′) if used as a U-SC.

5 Related Work

Streamlining [10,11,18] reforms the given problem by separating it into two
disjoint subproblems with a streamliner constraint S and its complement S
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respectively so that the former becomes easy to solve. Our method does not
employ S but just a relaxed Sr (Sr ⊂ S) instead.

The target problem of the tunnels method [14] as well as the essential idea
of using additional constraints is indeed very close to ours. However, theirs is
so deeply specialized to the specific problems on Van der Waerden Numbers
that the method, as it is, seems hardly be applied even to the relative problems
including those on Ramsey Numbers.

6 Discussions

There are many discussions about SCSat. We list only a few of them as follows.

– Other alternatives could be used for soft constraint removal. For example, if
the formula is unsatisfiable then we can extract an unsatisfiable subformula
that explains the reason of unsatisfiability.

– In practice we do not need to remove all learned clauses. The conflict analysis
procedure can be extended to keep track of learned clauses that depend on
soft constraints. Therefore, only soft learned clauses need to be removed.
This may improve the overall performance of the solver.

– The relaxation scheme (governed by the reduction rate) is currently overlook
the interaction between the soft constraints, as it simply deactivates the most
conflicting soft clauses, and never puts them back again. In particular, when
two sets of soft constraints are mostly incompatible, this approach would
tend to remove both, while both of them (separately) could potentially speed
up the search. It might become more problematic when one legitimately adds
additional soft constraints, such as symmetry breaking constraints.

7 Conclusions

SCSat should be useful mainly for those who are interested in Ramsey prob-
lems. SCSat (ver.1 series) together with the companion tools would help find
interesting Ramsey graphs using U-SC, Z-SC and its variations, and more. For
those who wish to solve hard problems in general but other than Ramsey and
those who are developing similar ideas or implementations, SCSat would pro-
vide some hints or data useful for comparative studies. In any case, the key
to a real success depends essentially on how one can design a good recipe by
making/selecting/combining appropriate SCs.

The tool can be found at SCSat homepage [9].

Acknowledgements. We would like to thank all the reviewers and meta-
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Special thanks are due to Professor Bart Selman for his help and support in
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Abstract. Algorithm portfolios try to combine the strength of indi-
vidual algorithms to tackle a problem instance at hand with the most
suitable technique. In the context of SAT the effectiveness of such ap-
proaches is often demonstrated at the SAT Competitions. In this paper
we show that a competitive algorithm portfolio can be designed in an
extremely simple fashion. In fact, the algorithm portfolio we present does
not require any offline learning nor knowledge of any complex Machine
Learning tools. We hope that the utter simplicity of our approach com-
bined with its effectiveness will make algorithm portfolios accessible by a
broader range of researchers including SAT and CSP solver developers.

1 Introduction

Algorithm portfolios [cf. 6, 8, 10] for combinatorial problems such as Boolean
Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs) have emerged
as a highly successful approach for combining the strength and effectiveness of a
variety of core solution techniques (“base solvers”) that excel on various subsets
of problem instances. By using Machine Learning based data-driven methods to
select the most promising algorithm (or a schedule of several promising ones)
based on past performance of each base solver on hundreds or even thousands
of instances, such portfolios often achieve much more robust performance across
a broad range of problem domains than any single base solver. In the context of
SAT, a regression based portfolio called SATzilla2009 [16] showcased the benefits
of algorithm portfolios by dominating several categories at annual SAT Competi-
tions (www.satcompetition.org) in the past. Over the years, researchers work-
ing on portfolio algorithms have employed a number of techniques with their own
benefits, including Scheduling based approaches [11, 15], Decision Forests [18],
Nearest Neighbor classification [9], and Collaborative Filtering [14].

Unfortunately, despite the existence of such techniques for several years, port-
folio algorithms have not truly been adopted by the SAT and CSP research
communities. The users of these portfolios are often none other than their own
creators, and sometimes a few other research groups working on competing port-
folios. In other words, portfolios have not been embraced by the community as
a generic tool. This is in sharp contrast with base solvers such as Minisat [13],
Glucose [2], CryptoMinisat [12] and Lingeling [3], just to name a few, which are
widely used by a large subset of the SAT community on a regular basis. Similarly,
CSP solvers such as Gecode [5] and Choco [4] are commonly used.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 422–428, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.satcompetition.org


Snappy: A Simple Algorithm Portfolio 423

Our hope is that the availability of an easy to use portfolio tool would en-
courage SAT and CSP researchers to explore new avenues. E.g., if there was a
new restart strategy for Glucose that made it work better on some instances but
worse on others, a simple 2-solver portfolio could be employed to try to achieve
the best of both worlds.

The motivation for this work is the belief that a key reason for the lack of
common adoption of portfolio solvers is usability. For example, the “portfolio
builder” or trainer of some existing portfolios such as 3S is not publicly available
due to proprietary reasons, while that of others such as SATzilla2012 requires
a license to a relatively new version of MATLAB as well as enough familiarity
with the offline training aspect of the code to be able to effectively adapt it
to every new benchmark. Further, training can be expensive: it can take a few
minutes to hours for SATzilla2009 and 3S, and much more for SATzilla2012 due
to quadratic scaling in the number of base solvers [1]. The resulting effort and
time investment often deters most researchers from benefiting from powerful
portfolio technology.

The goal of this work is to develop an algorithm portfolio that (a) is simple
to use and experiment with, (b) is data-driven and can thus exploit years of ex-
perience with various base solvers, (c) has no offline training phase or “portfolio
builder”, and (d) can improve its own performance through online learning.

To this end, we propose a training-less algorithm portfolio called snappy (Sim-
ple Neighborhood-based Algorithm Portfolio in PYthon). Packaged as a single
file written in Python (www.python.org), it relies on a relatively simple predic-
tion mechanism based on base solver performances on nearest neighbors. The
availability of an extensive set of Python libraries allows the user to easily exper-
iment with various aspects of interest such as distance measures, neighborhood
size, weighting, cost function, feature reduction, etc. By skipping the traditional
training phase altogether, snappy opens up the possibility of learning and im-
proving itself on-the-fly when run on a number of test instances.

Our aim is not to create the best portfolio approach to date but to pro-
vide a tool that is effective and has a low barrier to being adopted by a wide
range of algorithmic researchers. We provide empirical evidence that the simple,
training-less approach embodied by snappy can be competitive with the current
state of the art in portfolios for SAT. This is not to say that more sophisticated
approaches to portfolios do not have value. For example, the SAT/UNSAT pre-
dictor in SATzilla is a powerful tool in itself, and so is the mixed integer pro-
gramming based algorithm scheduler of 3S. Nonetheless, the sophisticated ap-
proaches also have a higher barrier to entry, which we hope to overcome through
the simple yet competitive approach of snappy.

2 Background

We assume familiarity with the basics of SAT and CSP solvers, and briefly
discuss algorithm portfolios in this context. The main concept behind any solver
portfolio is to utilize data (collected offline) on the performance of various base

www.python.org
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solvers on a relatively large set of “training” instances in order to predict, given
a new “test” instance, which single base solver or schedule of base solvers is
most cost-effective for solving the test instance. The cost of interest is often
the runtime, but may be other quantities such as solution quality in case of
an optimization problem. The various portfolios referred to earlier differ in how
they go about using training data to make this prediction. One aspect common
to them is the abstract representation of instances in terms of a (small) set of
“features”, such as instance size, constraint density, etc.

Once the training data is collected, state-of-the-art portfolios such as 3S and
SATzilla (winners of the past two SAT Competitions) go through an extensive
offline training and internal cross-validation phase in order to learn the param-
eters of their prediction model. This phase typically requires understanding the
portfolio builder well and can often be costly [1]. In the interest of space, we
refer the reader to Xu et al. [16, 17] and Kadioglu et al. [9] for details.

3 Portfolio Tool Description

Our portfolio, snappy, is packaged as one Python file available at: http://

researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip Its ba-
sic usage is reported by running python snappy.py -h.

The tool can be run in two modes, analysis (ana) and execution (exe). In both
modes, like all portfolio solvers, it expects “training data” which consists of a
.times file specifying, in a header-less comma-separated format, the runtime of
each base solver (columns) on a number of instances (rows), and a .features

file specifying the features (columns) of each instance. Additionally, the desired
timeout is specified for performance evaluation purposes. Options in both modes
include what neighborhood size to consider, what penalty to use for performance
evaluation when hitting the timeout, what distance measure to use (e.g., Eu-
clidean or Minkowski), and whether to use distance-based weighting.

In the analysis (ana) mode, the tool expects a set of test instances and evalu-
ates the performance of the portfolio on this test dataset in relation to the single
best base solver (SBS) or the virtual best solver (VBS). The intent is that users
can use the analysis mode to experiment with and tune the parameters of the
portfolio for their benchmark of interest. One may optionally specify a given
pre-schedule of base solvers, which is taken into account in all performance eval-
uations. Enabling the online “learning” mode makes snappy alter its behavior
based on the runtimes it has observed on test instances.

In the execution (exe) mode, the tool expects a comma-separated list of fea-
tures. Alternatively, the user may specify the name of a feature extraction tool
and a test instance such that executing the tool will produce a comma-separated
list of features of the instance.

The main components of snappy are:

Data Normalization: All feature values are cut off at a fixed maximum/minimum
value and features are scaled to the same unit (e.g., [0..1]). This is motivated by
the fact that we use distance to select nearest neighbors.

http://researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip
http://researcher.watson.ibm.com/researcher/files/us-samulowitz/snappy.zip
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Fig. 1. A sample of the PAR score of various algorithms for varying k

Feature Space and Distance Measures: There exist various ways of computing the
distance between feature vectors besides the Euclidean distance, such as stan-
dardized Euclidean, Minkowski, and Canberra, which are available through the
scipy.spatial.distance Python package. More sophisticated measures such
as the Mahalanobis distance impose requirements on the underlying data (e.g.,
being able to take the inverse of the Covariance matrix). To enable such mea-
sures we also support a PCA based Eigenvector representation of the data where
features with low variance are eliminated. This allows the approach to stay some-
what more robust against uninformative and potentially misleading features.

Aggregation Schemes and Solver Selection: Since we do not fix a single neigh-
borhood size k a priori but choose it dynamically (see e.g., [7]), we employ an
aggregation scheme based on the performance of each base algorithm for each
possible k ≤ kmax. Essentially we have a kmax ×#Algorithms matrix and each
entry (k,A) contains a performance measure, namely the average penalized run-
time, of algorithm A on the first k neighbors of the test instance. A sample
visualization of such a matrix is shown in Figure 1 where we plot the penalized
average runtime (PAR) per k ∈ [0..20] and algorithm (1 to 18) including the
(unknown) performance of each algorithm on the test instance (k = 0). The line
corresponding to the selected algorithm is marked with crosses.

Based on this data one can deploy various aggregation schemes to select a
solver. One simple scheme, which is the “default” setting and underlies all ex-
periments reported in this paper, is one that selects the base algorithm that has
the minimum PAR score for some k ∈ [kmin, kmax]:

arg min
A∈Algorithms

min
k∈[kmin,kmax]

PAR(A, k nearest neighbors of the test instance)

One can also consider various other aggregation schemes such as distance-based
weighted voting. Some of these are also available in snappy.
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Online-Learning: Since we do not perform any offline learning, it gives us the
liberty to easily incorporate knowledge that becomes available as the portfolio
is run. To this end we consider the following ways of adding knowledge incre-
mentally. First, every time a test instance is considered we add its feature vector
to the current set of training instances and re-normalize the entire data again
before selecting the next algorithm. We noticed that re-normalizing has a posi-
tive impact on performance. Second, after we select an algorithm for a given test
instance, we add the actual runtime information for the selected algorithm on
this instance to our data set. This means that, over time, the k-neighborhood of
different algorithms might differ as some algorithms will be selected more often
than others. This simple addition also seemed to have a positive effect.

4 Empirical Demonstration

We demonstrate the effectiveness of snappy by comparing it with two state-
of-the-art algorithm portfolios for SAT that won in the last two competitions:
3S [9] and SATzilla2012 [18]. Our comparison does not rely on generating any
new runtime or feature data, or running any base solver, but is based entirely
on benchmarks used previously by the respective portfolio designers to showcase
the merits of 3S and SATzilla, resp. Being competitive on these benchmarks thus
speaks to the strength of our simple approach.

Our Python based tool is expected to work well across multiple platforms. All
experiments reported here were conducted on a Linux machine with Python 2.6.6
installed with the following packages: Numpy 1.6.2, Scipy 0.11, and Matplotlib
1.2. All performance numbers of snappy are based on one, fixed, “default” setting
of various parameters. We note that the performance of snappy varies with dif-
ferent settings of the command-line parameters and we expect the users of this
tool to experiment with parameter settings that work best in their domain. Fi-
nally, all comparisons are performed on exactly the same datasets (in particular
identical solver base) the results for 3S and SATzilla were obtained on.

We begin with a comparison with 3S using no scheduler1 in Table 1. The first
benchmark is the one with challenging training/test splits used in the original
paper on 3S [9]. The other four benchmarks are based on an updated set of solvers
and instances used to train the ISS solver (a information-sharing extension of 3S)
for SAT Challenge 2012. These four benchmarks are divided into two categories
based on the original 48 SATzilla features (“f1”) and a new set of more efficiently
computed 32 features (“f2”) used by ISS. Within each category, there are cross-
validation splits (“10-fold”) and a competition-style split (“comp”).

While we trained and evaluated 3S on all of these benchmarks, we were un-
successful in doing so with SATzilla2012 as this appeared to require significant
familiarity with the underlying MATLAB code and a need to adapt the code for
every benchmark so as to give it a fair chance of success. Instead we compare the
performance of snappy directly with the results reported by Xu et al. [17]. The

1 When 3S and snappy use the same schedule, the relative difference in performance
remains similar to what is reported in Table 1.
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Table 1. 3S vs. snappy (with default settings): average percentage of instances solved
and average PAR-1 score in seconds

Benchmark 3S snappy

Name #Alg #Feat. Timeout % PAR-1 % PAR-1

SAT-2011-splits 37 48 5000 91.23 772.8 94.52 512.5

SAT-2012-10fold-f1 72 48 2000 96.59 174.3 96.48 161.8
SAT-2012-comp-f1 72 48 2000 83.05 556.4 83.77 560.5

SAT-2012-10fold-f2 72 32 2000 97.23 146.1 96.17 167.5
SAT-2012-comp-f2 72 32 2000 85.42 499.1 85.42 526.3

Table 2. SATzilla vs. snappy (with default settings): average percentage of instances
solved and average PAR-1 score in seconds

Benchmark SATzilla snappy

Name #Alg #Feat. Timeout % PAR-1 % PAR-1

Industrial 18 125 5000 75.3 1685 72.6 1789
Crafted 15 125 5000 66.0 2096 63.3 2198
Random 9 125 5000 80.8 1172 80.3 1221

corresponding benchmark is available at the SATzilla webpage2 and is comprised
of three categories: application, crafted, random. The results are shown in Ta-
ble 2. It is worth noting that this version of SATzilla employs a scheduler before
selecting a long-running algorithm. While this data set comprises 125 features
we only consider the first 48 features in snappy.

As the performance numbers in both tables demonstrate, snappy, despite its
simplicity and ease of use, is quite competitive with the state of the art.

5 Conclusion

We presented a new algorithm portfolio approach that we hope will be easy to
adopt by a broad range of researches, including those designing the base solvers
that underlie any such portfolio. Our tool, snappy, does not only provide a strong
baseline, but can also be easily extended by its users. For instance, if portfolio
performance becomes an issue3 one could use a priori k-means clustering to
reduce the number of instances one needs to consider—which can be done by
adding just few lines of code using the scipy library. Similarly, if one wants to
automatically tune the high level parameters (e.g., distance measure), one can
also add cross-validation using one line of Python. We believe this kind of ex-
perimentation flexibility can be immensely valuable from a research perspective.

2 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla. We thank Lin Xu for pro-
viding the cross-validation splits used in prior work [17] on this dataset.

3 On the largest dataset used in this paper with about 5, 000 instances, it takes around
1,5 seconds to select an algorithm.

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla
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Abstract. In this paper, we present the Scarab system which is a pro-
totyping tool for developing SAT-based systems. It provides a rich con-
straint modeling language on Scala and enables a programmer to rapidly
specify problems and to experiment with different modelings. Scarab also
provides a simple way to realize incremental solving, solution enumer-
ation, and dynamic addition and/or removal of constraints. In Scarab,
we can use integer variables and arithmetic constraints, and all of them
are encoded into SAT without the need of developing dedicated encoder.
SAT solvers are then used for finding solutions.

1 Introduction

Remarkable improvements in the efficiency of SAT solvers have been made over
the last decade [1]. Such improvements have enabled a programmer to develop
SAT-based systems for planning, scheduling, and hardware/software verification.
However, for a given problem, we usually need to develop a dedicated program
that encodes it into SAT. We therefore cannot focus on problem modeling that
plays an important role in the system development process.

In this paper, we present the Scarab system which is a prototyping tool for
developing SAT-based systems. It provides a rich constraint modeling language
on Scala [2, 3] and enables a programmer to rapidly specify problems and to
experiment with different modelings. Scarab also provides a simple way to re-
alize incremental solving, solution enumeration, and dynamic addition and/or
removal of constraints. Scarab is implemented in Scala and consists of Constraint
Programming Domain-Specific Language (DSL [4]), SAT encoding module, and
interface to the back-end SAT solvers. The major design principle of Scarab is
to provide an expressive, efficient, customizable, and portable workbench for
SAT-based system developers.

Expressiveness: Scarab DSL can concisely write constraint modelings with
the help of rich functionalities of Scala. The expressiveness of Scarab will be
also shown by some prototyping examples of Square Packing, Latin Square,
and an optimization version of Square Packing.

M. Järvisalo and A. Van Gelder (Eds.): SAT 2013, LNCS 7962, pp. 429–436, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1: import jp.kobe_u.scarab.csp._
2: import jp.kobe_u.scarab.solver._
3: import jp.kobe_u.scarab.sapp._
4:
5: val n = 15; val s =36
6:
7: for (i <- 1 to n)
8: { int(’x(i),0,s-i) ; int(’y(i),0,s-i) }
9: for (i <- 1 to n; j <- i+1 to n)

10: add((’x(i) + i <= ’x(j)) || (’x(j) + j <= ’x(i)) ||
11: (’y(i) + i <= ’y(j)) || (’y(j) + j <= ’y(i)))
12:
13: if (find) println(solution)

Fig. 1. Scarab Program of SP (15, 36)
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Fig. 2. Solution of SP (15, 36)

Efficiency: Scarab can be efficient in the sense that it uses an optimized version
of the order encoding [5, 6] which an award-winning CSP solver Sugar [7]
adopts. Scarab also can utilize current state-of-the-art SAT techniques.

Customizability: Scarab allows a programmer to customize his/her own con-
straints and to customize the search strategies. Scarab itself can be also
customizable since it is 500 lines long without any comments. In particular,
our core part of order encoding module is only 25 lines long.

Portability: The current version of Scarab adopts Sat4j [8] as the back-end
SAT solver. The combination of Scarab and Sat4jmakes it possible to develop
portable SAT-based systems that run on any platform supporting Java.

2 Modeling in Scarab

Scarab DSL is implemented as an embedded DSL on Scala. Let T, V, C and B
be the Scarab objects of Term, Var, Constraint, and Bool. Let Int, String, Seq,
and Any be categories of integers, strings, sequences, and any objects of Scala
respectively. The following shows the syntax of Scarab DSL. Note that Scarab
programs are not restricted to this DSL, we can combine it with Scala program
as is shown later by alldiff used in the Latin Square example.

T ::= V
∣∣ - T

∣∣ T + Int
∣∣ T + T

∣∣ T - Int
∣∣ T - T

∣∣ T * Int
∣∣

Sum(V, . . . )
∣∣ Sum(Seq(V, . . . ))

V ::= Var(String, String, . . . )
∣∣ V (Any, . . . )

C ::= B
∣∣ T op T

∣∣ ! C
∣∣ C && C

∣∣ C || C
∣∣ alldiff(Seq(T, . . . )) ∣∣

And(C, . . . )
∣∣ And(Seq(C, . . . )) ∣∣ Or(C, . . . ) ∣∣ Or(Seq(C, . . . ))

op ::= <=
∣∣ < ∣∣ >= ∣∣ > ∣∣ === ∣∣ !==

B ::= Bool(String, String, . . . )
∣∣ B(Any, . . . )

Let us consider Square Packing SP (n, s), which is a problem of packing a set
of squares of sizes 1× 1 to n× n into an enclosing square of size s× s without
overlapping. For a given SP (n, s), a direct model would be using integer vari-
ables xi, yi ∈ {0, . . . , s − i} for each square i (1 ≤ i ≤ n) such that each pair
(xi, yi) represents the lower left coordinates of the square i. We then enforce the
constraint (xi + i ≤ xj) ∨ (xj + j ≤ xi) ∨ (yi + i ≤ yj) ∨ (yj + j ≤ yi) to ensure
that there is no overlapping for any distinct squares i and j (1 ≤ i < j ≤ n).
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1: var n: Int = 5
2: for (i <- 1 to n; j <- 1 to n) int(’x(i,j),1,n)
3: for (i <- 1 to n) {
4: add(alldiff((1 to n).map(j => ’x(i,j))))
5: add(alldiff((1 to n).map(j => ’x(j,i))))
6: add(alldiff((1 to n).map(j => ’x(j,(i+j-1)%n+1))))
7: add(alldiff((1 to n).map(j => ’x(j,(i+(j-1)*(n-1))%n+1))))}
8:
9: if (find) println(solution)

Fig. 3. Scarab Program of LS(5)
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Fig. 4. Solution of LS(5)

This modeling can be concisely written in Scarab (Fig. 1). In Scarab, we can
use integer variables and arithmetic constraints, and all of them are encoded
into SAT without the need of developing dedicated encoder. SAT solvers are
then used for finding solutions. Fig. 2 shows a solution of SP (15, 36).

Let us consider the Latin Square problem used in International CSP Solver
Competition [9]. Latin Square LS(n) is a problem of placing different n numbers
into n× n matrix such that each number is occurring exactly once in each row,
column, diagonally down right, and diagonally up right. For a given LS(n),
we use a n × n matrix of integer variables xi,j ∈ {1, . . . , n} (1 ≤ i, j ≤ n).
The exact one constraints can be expressed by using alldiff constraints [10] that
is one of the best known and most studied global constraints in Constraint
Programming [11].

This modeling can be concisely written in Scarab with the help of map

method of Scala (Fig. 3). For example, in line 4, alldiff((1 to n).map(j =>

’x(i,j))) corresponds to alldiff (xi,1, xi,2, . . . , xi,n). Fig. 4 shows a solution of
LS(5).

3 SAT Encoding Module

Before encoding constraints to SAT, Scarab normalizes comparisons to be in the
form of

∑n
i=1 aixi ≤ c, where ai’s are non-zero integers, c is an integer, and xi’s

are integer variables. Constraints are then converted to be in CNF by introducing
new Boolean variables as is known to Tseitin transformation [12, 13].

Order Encoding. In order encoding [6], we introduce a Boolean variable p(x ≤
c) for each integer variable x and each integer c ∈ {lb(x)− 1, . . . , ub(x)}, where
lb(x) and ub(x) are the lower and upper bounds of x, respectively. We also

introduce
∧ub(x)−1

c=lb(x)+1(¬p(x ≤ c− 1) ∨ p(x ≤ c)) to encode an integer variable x.

To encode a comparison literal
∑n

i=1 aixi ≤ c, we use the translation (1). By
recursively applying this translation, any normalized comparison can be con-
verted to a CNF formula over Boolean variables.
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1: def encodeLe(axs: Seq[(Int,Var)], c: Int):
2: Seq[Seq[Literal]] = axs match {
3:
4: case Seq((a,x)) =>
5: if (a > 0) Seq(Seq(le(x, floorDiv(c, a))))
6: else Seq(Seq(le(x, ceilDiv(c, a)-1).neg))
7: case Seq((a,x), axs1 @ _*) => {
8: if (a > 0) {
9: for {

10: b <- lb(x) to ub(x)
11: clause <- encodeLe(axs1, c-a*b)
12: } yield le(x, b-1) +: clause
13: } else {
14: for {
15: b <- lb(x) to ub(x)
16: clause <- encodeLe(axs1, c-a*b)
17: } yield le(x, b).neg +: clause
18: }}}

Fig. 5. Implementation of Order Encoding
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Fig. 6. Support and Conflict
Region of x1 + 1 ≤ x2

n∑
i=1

aixi ≤ c =
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x1 ≤ �c/a1� (n = 1, a1 > 0) (1a)

¬ (x1 ≤ �c/a1� − 1) (n = 1, a1 < 0) (1b)

ub(x1)∧
b=lb(x1)

(
(x1 ≤ b− 1) ∨

n∑
i=2

aixi ≤ c− a1b

)
(n ≥ 2, a1 > 0) (1c)

ub(x1)∧
b=lb(x1)

(
¬(x1 ≤ b) ∨

n∑
i=2

aixi ≤ c− a1b

)
(n ≥ 2, a1 < 0) (1d)

Implementation of Order Encoding. Fig. 5 shows an implementation of
the translation (1) in Scarab. The inputs are a sequence {(a1, x1), . . . , (an, xn)},
and an integer c (line 1). Lines 5 and 6 correspond to the translation (1a) and
(1b), respectively. Lines 9 to 12 correspond to the translation (1c). In line 11,
encodeLe is recursively called with {(a2, x2), . . . , (an, xn)} and c−a1b. Similarly,
lines 14 to 17 correspond to the translation (1d).

For instance, let us consider a part of non-overlapping constraint x1 +1 ≤ x2
in Square Packing SP (2, 6), where x1 ∈ {0, . . . , 5} and x2 ∈ {0, . . . , 4}. At first,
x1 + 1 ≤ x2 is converted to a comparison literal x1 − x2 ≤ −1. By calling
encodeLe in Fig. 5 with arguments of {(1, x1), (−1, x2)} and −1, we obtain the
following CNF formula that represents the support and conflict region in Fig. 6:
¬p(x2 ≤ 0) ∧ (p(x1 ≤ 0)∨¬p(x2 ≤ 1)) ∧ (p(x1 ≤ 1)∨¬p(x2 ≤ 2)) ∧ (p(x1 ≤
2) ∨ ¬p(x2 ≤ 3)) ∧ p(x1 ≤ 3) ∧ p(x1 ≤ 4).

Actual implementation of encodeLe is written in less than 25 lines. It is so
compact that order encoding module can be modified to meet the developers’
requirements. Developers also can implement a variety of encoding methods
[14–19, 6, 20] by using the encoding interface of Scarab. Developers only need to
implement methods of encoding integer variables, encoding clauses, and
decoding.
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1: def myalldiff(xs: Seq[Var]) = {
2: And(And(for (Seq(x, y) <- xs.combinations(2)) yield x !== y))
3: }

(a) myalldiff version 1

1: def myalldiff(xs: Seq[Var]) = {
2: var lb = for (x <- xs) yield csp.dom(x).lb
3: var ub = for (x <- xs) yield csp.dom(x).ub
4: And(And(for (Seq(x, y) <- xs.combinations(2)) yield x !== y),
5: And(for (num <- lb.min to ub.max) yield Or(for (x <- xs) yield x === num)))
6: }

(b) myalldiff version 2

1: def myalldiff(xs: Seq[Var]) = {
2: var lb = for (x <- xs) yield csp.dom(x).lb
3: var ub = for (x <- xs) yield csp.dom(x).ub
4: And(And(for (Seq(x, y) <- xs.combinations(2)) yield x !== y),
5: And(for (num <- lb.min to ub.max) yield Or(for (x <- xs) yield x === num)),
6: Or(for (x <- xs) yield !(x < lb.min+xs.size-1)),
7: Or(for (x <- xs) yield !(x > ub.max-xs.size+1)))
8: }

(c) myalldiff version 3

Fig. 7. Customizing alldiff Constraints

4 System Development in Scarab

In Scarab, constraint models and search strategies are intended to be modeled
and/or customized to meet developers’ requirement. This section provides ex-
amples of customizing constraint models and search strategies.

Customizing Constraint Model. We present how to model and customize
developers’ own alldiff constraint by tracing a prototyping process in Scarab.
Suppose that the first version of alldiff is given by Fig. 7 (a). Line 2 exactly
corresponds to the original definition of alldiff constraint:

∧
i<j(xi �= xj).

You can use this myalldiff for the Latin Square program (Fig. 3) by replacing
alldiff with myalldiff. However, you probably encounter that your Latin
Square program does not scale to LS(8). Some improvement is then necessary.

Considering Latin Square, all integer variables x1, . . . , xn have the
same domain {1, . . . , n}. Then, permutation constraints would be helpful:∧ub

i=lb

∨n
j=1(xj = i), where lb and ub are the lower and upper bounds of

{x1, . . . , xn}. In fact, myalldiff version 2 in Fig. 7 (b) scales up to LS(12)
but LS(13) cannot be solved within one hour. Thus, more improvements should
be considered.

In the literature [7], Sugar adds extra pigeon hole constraints to alldiff con-
straints: ¬

∧
(xi < lb+ n− 1) and ¬

∧
(xi > ub− n+1). Then, we finally obtain

myalldiff version 3 in Fig. 7 (c). In our environment, this version can solve
LS(13) within a second while other versions could not solve within an hour.
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1: var lb = 15; var ub = s; int(’m, lb, ub)
2:
3: for (i <- 1 to n)
4: add((’x(i)+i <= ’m) && (’y(i)+i <= ’m))
5:
6: while(lb <= ub && find(’m <= ub)) {
7: add(’m <= ub); ub -= 1
8: }
9:

10: while(find)
11: println(solution)

(a) Decremental Search

1: var lb = 15; var ub = s; commit
2:
3: while(lb < ub) {
4: var size = (lb + ub) / 2
5: for (i <- 1 to n)
6: add((’x(i)+i<=size)&&(’y(i)+i<=size))
7: if (find) {
8: ub = size; commit
9: } else {
10: lb = size + 1; rollback
11: }}

(b) Binary Search

Fig. 8. Search Strategies for Solving OSP

Customizing Search Strategy. Currently, Scarab supports the following solv-
ing techniques: (i) incremental SAT solving (in default), (ii) find method with
assumption constraints, and (iii) commit and rollback of the addition of con-
straints. Also, solution enumeration is possible by multiple calls of find method.
Using them, we show how to specify search strategies and customize them for
an optimization version of Square Packing (OSP), which is a problem of finding
the minimum size enclosing square capable of packing all squares of sizes 1× 1
to n× n without overlapping.

Suppose that all constraints of Square Packing are defined. Then, the most
direct model for OSP would be using an integer variable m ∈ {lb, . . . , ub} and
the constraint

∧n
i=1(xi+i ≤ m)∧(yi+i ≤ m), where lb and ub are the lower and

upper bounds of the enclosing square size. Then, the objective is to minimize m
such that encoded problems are satisfiable.

For solving OSP, a decremental search can be considered (Fig. 8 (a)). We can
run this program by adding it to the bottom of the program of Fig. 1. In line
6, find method is called with an assumption m ≤ ub. If a solution exists, a
constraint m ≤ ub is permanently added and ub is decremented (line 7). If it
is necessary, we can enumerate all optimal solutions by multiple calls of find
method (line 10). In addition, Fig. 8 (b) shows a binary search by using com-
mit/rollback methods of Scarab, which dynamically removes constraints added
since the last commit point. As is shown in these programs, search strategies can
be simply written, which allows us to focus on modeling those strategies.

Interface to Sat4j. Scarab provides an interface to the back-end SAT solver
Sat4j [8]. Since Java libraries can be directly called from Scala, Scarab cooperates
with Sat4j without generating CNF files, invoking outer processes, and parsing
output logs. This interface module is also customizable and it is possible to
introduce more advanced SAT technologies from Sat4j, which also provides Max-
SAT, Pseudo-Boolean, and Minimal Unsatisfiable Subsets solvers.
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5 Related Work and Future Work

Numberjack [21] is a modeling package written in Python for Constraint Pro-
gramming. It is well designed and shares common features with Scarab. A dif-
ference is that Scarab adopts Scala, which is type-safe and has an advantage
to Python in performance. There are other tools for Constraint Programming
integrated in Scala [22–26]. In particular, Copris [22] is a Constraint Program-
ming DSL embedded in Scala, which also adopts SAT solvers in its back-end.
Differences from Copris are that Scarab is more compact and easier to customize.

An interesting extension is to introduce more advanced SAT technologies from
Sat4j. It allows us to further SAT applications with the state-of-the-art technolo-
gies. The source code and information of Scarab is available in:
http://kix.istc.kobe-u.ac.jp/~soh/scarab/.
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