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Abstract. The semi-supervised learning paradigm allows that a large
amount of unlabeled data be classified using just a few labeled data.
To account for the minimal a priori label knowledge, the information
provided by the unlabeled data is also used in the classification process.
This paper describes a semi-supervised technique that uses random walk
limiting probabilities to propagate label information. Each label is prop-
agated through a network of unlabeled instances via a biased random
walk. The probability of a vertex receiving a label is expressed in terms
of the limiting conditions of the walk process. Simulations show that the
proposed technique is competitive with benchmarked techniques.
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1 Introduction

Semi-supervised learning (SSL) is a machine learning paradigm that overcomes
the problem originated when labeling a training data set becomes expensive
and very time-consuming. The main idea behind this paradigm is to classify
data using just a few labeled instances and the information provided by many
unlabeled instances [1]. This is practicable due to three SSL assumptions: man-
ifold, smoothness and cluster. The manifold assumption states that the high-
dimensional data lies on a low-dimensional manifold whose properties ensure
more accurate density estimation and more appropriate similarity measures. The
smoothness assumption states that if two points are close to each other in a high
density region, then their correspondent labels should be close to each other as
well. Finally, the cluster assumption states that if two points are in the same
cluster, then they are likely to be of the same class (or, in other words, to have
the same label). In this way, the SSL approach can provide high classification
accuracies using less human effort and exploiting the unlabeled massive group
of data.

Random walk theory has been applied in many machine learning problems.
In image analysis, for example, a random walk process can be executed through
pixels represented by network vertices. Texture discrimination and edge detec-
tion were performed by comparing boundary distributions of such process [2, 3].
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As an alternative way to perform edge detection and image segmentation, other
measurements were derived. In [4], the first time passage probability is computed
when a random walker passes through a labeled vertex (pixel) after starting from
an unlabeled vertex. A similar approach applied to content-based image retrieval
can be found in [5]. An agglomerative network-based classification method was
introduced in [6]. In this work, the hierarchy is based on life-time of restricted
random walks, in which the steps of a random walker are limited by a distance
function of antecedent steps. The time approach was also used in [7], in which
classification is achieved by comparing commute times to labeled points of differ-
ent classes. In [8], an unlabeled instance is classified as the class which maximizes
a posterior probability by considering the time a walker starting in a vertex of
the same class reaches the unlabeled instance.

Despite many concepts of random walk processes were already applied to
classification and correlate tasks, limiting probabilities has never been directly
applied, to our knowledge, as is done in this work. To account for the usage of
the information provided by the unlabeled instances in the SSL task, the random
walk process takes into account the whole network, which is composed by the
unlabeled instances. The few labeled instances are inserted into the network by
a specific weight composition responsible for creating a bias to the classification
process. This bias is taken into account when the limiting probabilities are calcu-
lated. As simulation results showed, this is an effective measurement to capture
intrinsic relations among labeled and unlabeled vertices in a network.

2 Background: Random Walks and Limiting Probabilities

Random walks can be understood in terms of Markov chains [9]. Consider a
stochastic process Ω with a finite state space Γ . For each n ∈ N = {0, 1, 2, . . .},
Ωn ∈ Ω is an element from Γ . Then, the stochastic process Ω = {Ωn} is called
a Markov chain if probability P (Ωn+1 = i|Ω0, . . . , Ωn) = P (Ωn+1 = i|Ωn),
i ∈ Γ , that is, the process is independent of past states provided that the current
state Ωn is known. In this work, a time-homogeneous chain is considered: when
P (Ωn+1 = j|Ωn = i) = pij is independent of n [10]. The probabilities pij can be
arranged into a Markov matrix P = {pij}.

The probability for a random walk starting at state i0 to end at a state im is
given by the probability of the chain P (i0, im) = P (i0, i1)P (i1, i2) . . . P (im−1, im).
If an infinite number of transitions (m → ∞) is considered, then a limiting prob-
ability (stationary state) needs to be calculated. It can be shown that the limiting
probability P∞(im) = limn→+∞ Pn(i0, im) exists given a recurrent, non-null and
aperiodic state im. Therefore, considering |Γ | = q, one is able to calculate the
Markov matrix. The limiting probability of the final state im is independently
of the initial state i0 [10].

3 The Proposed Semi-Supervised Technique

Given a dataset X = {xi, i = 1, . . . , r}, the objective is to classify the subset of

unlabeled instances X ⊃ X (u) = {x(u)
i , i = 1, . . . , n} using the subset composed
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of just a few labeled instances X ⊃ X (l) = {x(l)
i , i = 1, . . . ,m}, l ∈ {1, 2, . . . , c}

(X (l) ∩ X (u) = ∅, X (l) ∪ X (u) = X ). To characterize a SSL task, m 	 n.
First, an undirected network N = {V , E} without self-loops is created. In

this network, instances are represented by vertices, V = X (u), and similarities
among instances are represented by edges, E = [Wij ], i, j = 1, . . . , n. The net-
work similarity matrix W = {wij} is calculated by using some sort of distance
function as, for example, the Euclidean distance. wij is the similarity between

a pair of instances x
(u)
i and x

(u)
j . wij = 0 means that there is no link between

x
(u)
i and x

(u)
j .

In the next step, an labeled instance x
(l)
j is inserted into the network N . To do

so, the similarities Sj = [sj1, sj2, . . . , sjn]
T , between x

(l)
j and all other vertices

x
(u)
i ∈ V are calculated by using a distance function, and a new asymmetric

n × n modified similarity matrix Ŵj is constructed by composing it with the

matrix of weight biases Ŝj :

Ŵj = W + εŜj , (1)

where ε is a non-negative parameter and Ŝj is the following n× n matrix com-
position:

Ŝj =

⎡
⎢⎢⎢⎣

ST
j

ST
j
...

ST
j

⎤
⎥⎥⎥⎦ , (2)

where ST
j is the transpose of vector Sj .

In Eq. 1, it can be observed that the weight biases of x
(l)
j , encoded in ma-

trix Ŝ, are applied over all edges wij of network N , that is, the weight of each
edge is linearly added up with the corresponding weight bias. The idea behind
this operation is that the distance between any pair of vertices is reduced be-
cause of the new route introduced by the insertion of the labeled data instance.
The higher the proximity between the labeled instance and a vertex, say vertex
i, the more strengthened the connections from all other vertices to vertex i are.
The parameter ε controls the influence of weight bias provided by matrix Ŝ on
the original network. The larger is the value of parameter ε, the greater will

be the influence of the bias weights provided by x
(l)
j .

After the bias composition, x
(l)
j is effectively inserted into network N . To do

so, an (n+ 1)× (n+ 1) adjacency matrix Aj = {aij} is constructed:

Aj =

[ Ŵ Sj

ST
j 0

]
. (3)

In this formulation, without loss of generality, x
(l)
j is inserted as the last entry

(n+ 1) of matrix Aj .
The two steps described above can be easily understood by using the toy

example depicted in Fig. 1. In this example, a network is formed by 4 unlabeled
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Fig. 1. Composition process for the modified similarity matrix Ŵj . a) An undirected
and complete network N is formed by using 4 unlabeled instances; b) similarities Sj

are calculated for the labeled instance x
(l)
j ; c) modified network Aj , directed with self-

loops, after bias composition (Eq. 1) and insertion of the labeled virtual state x
(l)
j

(Eq. 3).

instances (Fig. 1a). In this initial network, the links are undirected and the

similarity matrix is symmetric. Next, the similarity vector Sj between x
(l)
j and

all other vertices is computed (Fig. 1b). After this computation, the weight

biases of x
(l)
j are added up to the original similarity matrix to form a biased

similarity matrix for the same network (Eq. 1). After that, x
(l)
j is effectively

inserted into the network (Eq. 3). It can be seen from Fig. 1c that the network

becomes directed and with self-loops (except for x
(l)
j , that has no self-loops) and

the biased weight matrix is no more symmetric.

After the insertion of x
(l)
j , we are able to compute the entries of the transition

Markov matrix Pj = [pik] by scaling the entries of matrix Aj :

pik = aik/

n+1∑
k=1

aik. (4)

With the above matrix Pj at hand, the limiting probabilities are calculated.
This calculation can be performed by two ways: finding the eigenvector
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corresponding to the unit eigenvalue of matrix Pj or, in a faster way, iterating the
system

pj(t+ 1) = Pjpj(t), (5)

to the stationary state, where pj is an (n + 1) × (n + 1) normalized vector. It
results in the following vector:

p∞
j = [p1 p2 . . . pn+1] (6)

where each column represents an unlabeled vertex, and each entry pi represents

the probability that x
(u)
i belongs to the class l of the labeled vertex x

(l)
j (the

probability pn+1 is ignored as it represents x
(l)
j , which is inserted into N by

means of Eq. 3).
Finally, the classification is completed by repeating the above steps (Eq. 1

through 6) for all labeled instances x
(l)
j ∈ X (l). The classification of x

(u)
i is ac-

complished by assigning it the most representative label, that is, after averaging

all p∞
j for each label (each x

(l)
j ), the following matrix is constructed:

p∞ =

⎡
⎢⎢⎢⎣

p11 p21 . . . pn1
p12 p22 . . . pn2
...

...
. . .

...
p1c p2c . . . pnc

⎤
⎥⎥⎥⎦ , (7)

where pil, l = 1, 2, . . . , c, is the averaged probability that instance x
(u)
i belongs

to class l. Then, the label pmax = argmax{pil}, corresponding to the largest

probability value, is assigned to x
(u)
i .

In a concise form, the proposed semi-supervised transductive classification can
be summarized by Algorithm 1.

4 Illustrative Toy Example

In this subsection, simulation results on a toy example are presented. It was used
a toy data set that captures different class characteristics, such as different shapes
and densities, to illustrate the behavior of the semi-supervised technique. The
toy example in Fig. 2 encompasses a challenging classification task. This data
set is composed of 3 different class distributions (from left to right): Gaussian,
Highleyman and Lithuanian. The data was generated by using the PRTools
toolbox [11]. Each class has 500 instances, totaling 2500 instances for the entire
data set. In addition, each class comprises 10 labeled instances, representing (2%)
of the entire data. Figure 2b shows that the proposed technique satisfactorily
detected the 5 classes.
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Algorithm 1. The proposed semi-supervised technique

Input:
c : number of classes
X (u) : unlabeled dataset
X (l) : labeled dataset
Parameters:
ε : bias weighting
Output:
Estimated class (l ∈ {1, . . . , c}) for x

(u)
i ∈ X (u)

Training:
1. N = Create a network from X (u)

Classification:
for each x

(l)
j ∈ X (l) do

2. Ŵj = Compose bias weights into N (Eq. 1)

3. Aj = Insert the virtual state x
(l)
j into N (Eq. 3)

4. p∞
j = Compute limiting probabilities (Eq. 5)

end for
5. p∞ = Averaged p∞

j

6. Assign x
(u)
i the most representative class in p∞
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(a) Black-filled stars represent labeled in-
stances.
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(b) Classification achieved by the proposed
technique.

Fig. 2. Mix of different cluster shapes for semi-supervised classification. This artificial
data set is composed of 2500 instances divided into 5 balanced and distinct clusters
shapes: Gaussian, Highleyman and Lithuanian. Each cluster contains 10 labeled in-
stances.

5 Benchmark Data Sets

The proposed semi-supervised technique was tested and compared using 7 bench-
mark data sets. Table 1 shows a brief description of them. Three artificial sets
(g241c, g241d and Digit1 ) were created in order to encompass some of the semi-
supervised assumptions: manifold, smoothness and cluster. The other four data
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Table 1. Meta-data of the datasets composing the SSL benchmark

Data Set Classes Dimension Points Type

g241c 2 241 1500 artificial
g241d 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 unbalanced
COIL 6 241 1500
BCI 2 117 400
Text 2 11960 1500 sparse discrete

Table 2. References for semi-supervised learning techniques used for comparisons

Abbreviation Technique Ref.

MVU + 1-NN Maximum Variance Unfolding [14]
LEM + 1-NN Laplacian Eigenmaps [15]
QC + CMR Quadratic Criterion and Class Mass Reg. [16]
Discrete Reg. Discrete Regularization [17]
TSVM Transductive Support Vector Machines [18]
SGT Spectral Graph Transducer [19]
Cluster-Kernel Cluster Kernels [20]
Data-Dep. Reg. Data-Dependent Regularization [21]
LDS Low-Density Separation [18]
Laplacian RLS Laplacian Regularized Least Squares [22]
CHM (normed) Conditional Harmonic Mixing [23]
LGC Local and Global Consistency [12]
LP Label Propagation [24]
LNP Linear Neighborhood Propagation [13]

sets (USPS, COIL, BCI and Text) were derived from real data. The benchmarks
were developed to evaluate the power of different algorithms as neutral as possi-
ble [1]. For each data set, 24 independent splits of labeled data for the training
set are available. 12 splits contain 10 labeled instances for each data set and
the other 12 splits contain 100 labeled instances. For each split, at least 1 in-
stance of each class is labeled. A more detailed explanation of each data set can
be found in [1]. The proposed technique was compared to 16 well-known and
established SSL techniques. Table 2 shows a brief description and the related
references for them. All simulation results were extracted from the reference [1],
where it can be found values for parameter optimization and model selection in
order to minimize test errors. For LGC, LP and LNP, σ was selected from the set
{0, 1, . . . , 100} and α was fixed to α = 0.99 (the same setup done in [12] and [13]).
For the LNP, k was evaluated for the values in {1, 2, . . . , 100}. The configuration
and parameter optimization for the proposed technique was done as follows. For
the network construction (Step 1 of Alg. 1), the k-nearest neighbor technique
was used: each vertex was linked with its k most similar neighbors. Parameter k
was evaluated for the values in {1, 2, . . . , 100} and parameter ε was evaluated for
the values in {0, 0.1, 0.2, . . . , 10}. In all simulations, no data preprocessing was
performed by the techniques and the Euclidean distance was used as a distance
function.
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Tables 3 and 4 shows the simulations results for 10 and 100 labeled instances,
respectively. For 10 labeled instances, the proposed technique achieved an av-
erage rank of 5.86 (2nd place) and, for 100 labeled instances, an average rank
of 9.29 (11th place). Overall, it achieved an average rank of 7.57 (5th place) -
preceded by LP (7.21), LDS (6.93), Laplacian RLS (5.43) and SGT (5.33). In-
terestingly, it achieved a very high position (2nd) in the case of only 10 labeled
instances, a very challenging semi-supervised task in which as only as a small
portion of 0.67% of the dataset is labeled. Hence, concerning the 17 techniques
and the 7 benchmark datasets, we conclude that the proposed technique is at
least comparable to the best known semi-supervised techniques.

Table 3. Classification error rate (%) and the corresponding average rank of each
technique. Best results are in bold face. Data sets with 10 labeled points.

g241c g241d Digit1 USPS COIL BCI Text Avg. Rank

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12 9.57
SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37 14.00
MVU + 1-NN 47.15 45.56 14.42 23.34 62.62 47.95 45.32 9.86
LEM + 1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44 10.00
QC + CMR 39.96 46.55 9.80 13.61 59.63 50.36 40.79 7.71
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37 10.57
TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21 10.71
SGT 22.76 18.64 8.92 25.36 N/A 49.59 29.02 6.17
Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72 10.86
Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 N/A 9.83
LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15 8.29
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68 6.00
CHM (normed) 39.03 43.01 14.86 20.53 N/A 46.90 N/A 7.20
LGC 45.82 44.09 9.89 9.03 63.45 47.09 45.50 7.29
LP 42.61 41.93 11.31 14.83 55.82 46.37 49.53 5.57
LNP 47.82 46.24 8.58 17.87 55.50 47.65 41.06 7.14

Proposed Method 40.30 41.74 13.94 19.98 59.40 46.69 34.32 5.86

Table 4. Classification error (%) and the corresponding average rank of each technique.
Best results are in bold face. Data sets with 100 labeled points.

g241c g241d Digit1 USPS COIL BCI Text Avg. Rank

1-NN 43.93 42.45 3.89 5.81 17.35 48.67 30.11 12.57
SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45 9.29
MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 47.89 32.83 11.71
LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77 12.00
QC + CMR 22.05 28.20 3.15 6.36 10.03 46.22 25.71 7.43
Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00 8.14
TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52 8.71
SGT 17.41 9.11 2.61 6.80 N/A 45.03 23.09 4.50
Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38 6.71
Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 N/A 6.83
LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15 5.43
Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57 4.86
CHM (normed) 24.82 25.67 3.79 7.65 N/A 36.03 N/A 8.80
LGC 41.64 40.08 2.72 3.68 45.55 43.50 46.83 9.86
LP 30.39 29.22 3.05 6.98 11.14 42.69 40.79 8.86
LNP 44.13 38.30 3.27 17.22 11.01 46.22 38.48 12.14

Proposed Method 27.92 26.19 3.57 9.59 20.01 44.11 25.54 9.43
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6 Conclusions

This paper has presented a new network-based semi-supervised classification
technique. The set of unlabeled instances compose a network in which vertices
represent the state space for a random walker. Via a specific matrix composi-
tion, each labeled instance is inserted into the network to provide a bias to the
classification process. This label bias is propagated through the unlabeled ver-
tices of the network by means of the limiting probabilities. The local and global
topology are taken into account by the random walk process and thus both
clustering and smoothness SSL assumptions are satisfied, making the usage of
the unlabeled instances information effective. Simulations have showed that the
proposed technique is capable of detecting classes that present different shapes
and distribution. The technique has also been demonstrated to be competitive
with some well-known semi-supervised techniques using benchmark data sets.
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