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Abstract. This paper presents a new network-based classification tech-
nique using limiting probabilities from random walk theory. Instead of
using a traditional heuristic to classify data relying on physical features
such as similarity or density distribution, it uses a concept called ease
of access. By means of an underlying network, in which nodes represent
states for the random walk process, unlabeled instances are classified
with the label of the most easily reached class. The limiting probabilities
are used as a measure for the ease of access by taking into account the
biases provided by an unlabeled instance in a specific adjacency matrix
weight composition. In this way, the technique allows data classifica-
tion from a different viewpoint. Simulation results suggest that the pro-
posed scheme is competitive with current and well-known classification
algorithms.

Keywords: network-based learning, data classification, supervised
learning, random walk, limiting probabilities.

1 Introduction

Supervised machine learning comprises the construction of a model by using
information extracted from a training data set. The constructed model defines
decision borders that are used to classify unlabeled data [1]. An unlabeled in-
stance is classified depending on its relative position to the decision borders. Due
to its importance in various real applications, many classification techniques have
been developed, such as Neural Networks, k-Nearest Neighbors (kNN), Linear
Discriminate Analysis (LDA), Naive-Bayes Method, Support Vector Machines
(SVM) and Decision Tree [1, 2, 3, 4, 5]. These traditional classification tech-
niques divide the data space according to physical features (similarity, distance,
or distribution) of the training data. In this way, many intrinsic and semantic
relations among data items are ignored as, for example, topological structure
and pattern formation.

On the other hand, the usage of an underlying network can take into account
these previously mentioned relationships among data. In the machine learning
domain, many recent works have applied random walk processes to perform
semi-supervised learning. In this learning paradigm, just a few data compose
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the training data set, and so the classification processes makes use of the infor-
mation provided by the unlabeled data, which is most commonly represented by
nodes in a network. Many of these works share the regularization framework,
differing only in the particular choice of the loss function and the regularizer
[6, 7, 8, 9, 10, 11]. In these works, the concept of relationship among data is
the measurement of how easy labels propagate or how easy a random walker
reaches target nodes on a network structure. In these techniques, the underly-
ing link structure is responsible for giving the probabilities or weights between
two neighboring nodes to support the label propagation or the walker transition
between two linked nodes. Similarly, random walks have also been extensively
applied to unsupervised learning, in which there is no labeled data, such as
community detection and data clustering [12, 13, 14, 15, 16]. However, very few
efforts have been done for network-based supervised learning [17, 18, 19, 20],
and thus this work is also a contribution to the use of network-based techniques
in the supervised learning field.

Here, we propose a new network-based classification heuristic which consider
the ease of access of unlabeled instances to each class. Differently from previous
works, the proposed technique uses the dynamical process measure called ran-
dom walk limiting probabilities. Limiting probabilities are applied to random
walk processes to measure the limiting state transitions through an underlying
network [21]. In the proposed scheme, the training data set is used to construct
the network, in which instances (nodes) represent the states a random walker
visits during the process. An unlabeled instance is considered belonging to the
class that is most easily reached, that is, the limiting transition probability for
a random walker to that class, after the insertion of the unlabeled instance bias
in the underlying adjacency weight matrix, is large. As a consequence of the
dynamical processes, both local and global relationships among nodes are taken
into account.

This paper is organized as follows: section 2 describes the model for the super-
vised classification technique. In section 3, simulation results and comparisons
are presented. Finally, section 4 concludes the paper.

2 Supervised Inductive Classification Model

In this section, the technique is derived for a supervised inductive classification
model. To be classified, an unlabeled instance is first inserted into the network
of training data as a virtual state. The concept of virtual state means that the
probability of belonging to this state is not considered, that is, the random walker
can visit this virtual state, but only the information extracted directly from the
training data is used for classification. The insertion of an unlabeled instance as a
virtual state is carried out by a specific weight composition and aims to provide a
bias to the classification process by enhancing the probabilities of the unlabeled
instance’s network neighborhood. Therefore, the bias prioritizes near classes in
the state space (classes with the large transition probability) by adopting the
assumption that close instances belong to the same class. The mathematical
formulation is given next.
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Training Phase. We consider it is given a labeled data set X (l) = {x(l)
i , i =

1, . . . , n} containing only labeled instances, where each instance is described by
q attributes xi = {xi1, xi2, . . . , xiq}. A weighted undirected network N = {V , E}
without self-loops is constructed, in which data instances are represented by
nodes, V = X (l), and similarities among instances are represented by weights of
the edges, E = [Wij ], i, j = 1, . . . , n. The network similarity matrix W = {wij}
can be calculated by using any distance function. wij is the similarity between

the pair of instances x
(l)
i and x

(l)
j .

Classification Phase. To perform the classification of an unlabeled instance
x(u), the set of nodes V is considered as a state space set, meaning that each
node is a possible state for a random walker. The transition probabilities among
states are given by a normalized transition matrix P , whose construction is
further explained.

First, the unlabeled instance x(u) is inserted into the network N . To do so,

a similarity vector S = [Si], i = 1, . . . , n, between x(u) and all other nodes x
(l)
i

is calculated by using a distance function. Next, a new asymmetric and n × n
modified similarity matrix Ŵ is constructed by composing the matrix of weight
biases Ŝ:

Ŵ = W + εŜ, (1)

where ε is a non-negative parameter and Ŝ is an n× n matrix composition:

Ŝ =

⎡
⎢⎢⎢⎣

ST

ST

...
ST

⎤
⎥⎥⎥⎦ ,

where ST is the transpose of vector S.
In Eq. 1, it can be observed that the weight biases of the virtual state x(u),

encoded in matrix Ŝ, are applied over all edges W of network N , that is, the
weight of each edge is linearly added up with the corresponding weight bias.
The idea behind this operation is that the distance between any pair of nodes is
reduced because of the new route introduced by the insertion of the unlabeled
data instance. The higher the proximity between the unlabeled instance and a
node, say node j, the more strengthened the connections from all other nodes
to node j are. The parameter ε controls the influence of weight bias provided
by matrix Ŝ on the original network. The larger is the value of parameter ε, the
greater will be the influence of the bias weights provided by the virtual state.

After the bias composition, the virtual state x(u) is effectively inserted into
network N as a virtual state. To do so, an (n + 1) × (n + 1) adjacency matrix
A = {aij} is constructed:

A =

[
Ŵ S
ST 0

]
. (2)

In this formulation, without loss of generality, the virtual state is inserted as the
last entry (n+ 1) of matrix A.
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Fig. 1. Illustration for supervised inductive classification of unlabeled instance xu. a)
An undirected and complete network N is formed by using 4 training instances of 2
classes: green and yellow; b) the similarities S are calculated for the unlabeled instance
xu; c) modified network N , directed with self-loops, after bias composition (Eq. 1) and
insertion of the unlabeled virtual state xu (Eq. 2).

The two steps described above can be easily understood by using the toy
example depicted in Fig. 1. In this example, a network is formed by 4 labeled
instances belonging to 2 distinct classes, blue and red, each one containing 2
representative instances (Fig. 1a). In the initial network, the links are undirected
and the similarity matrix is symmetric. Next, giving an unlabeled instance xu to
be classified, the similarity vector S between x and all other nodes is computed
(Fig. 1b). After this computation, the weight biases of xu are added up to the
original similarity matrix to form a biased similarity matrix for the same network
(Eq. 1). After that, the unlabeled instance xu is effectively inserted into the
network (Eq. 2). It can be seen from Fig. 1c that the network becomes directed
and with self-loops (except the virtual state, that has no self-loop) and the biased
weight matrix is no more symmetric.

After the virtual state insertion, we are able to compute the entries of the
transition matrix P = [Pij ] by scaling the entries of matrix A:

pij = aij/
n+1∑
j=1

aij .
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Algorithm 1. Classification Algorithm

Input:
X (l) : training data set
x(u) : unlabeled instance
Parameters:
t : number of largest probabilities to be selected
ε : bias weighting
Output:
c : estimated class (c ∈ {1, . . . , C}) for x(u)

Training:
1. N = Create a network from X (l)

Classification:
2. Ŵ = Compose bias weights into N (Eq. 1)
3. A = Insert the virtual state x(u) into N (Eq. 2)
4. p∞ = Compute limiting probabilities (Eq. 3)
5. T = Select the t largest limiting probabilities from p∞

6. c = Assign x(u) the most representative class in T

With the above matrix P at hand, the limiting probabilities can be calculated.
This calculation is performed by two ways: by finding the eigenvector correspond-
ing to the unit eigenvalue of matrix P or, as a faster manner, iterating the system

pi+1 = Ppi, (3)

to the stationary state, where p is an (n + 1) × (n + 1) normalized vector. It
results in the following vector:

p∞ = [p1 p2 . . . pn+1]

where each column represents a state, and each entry pi represents the proba-
bility of x(u) belonging to the class of state i.

As the final step, the classification of x(u) is accomplished by assigning it
the most representative label from the set of states. To achieve that, a set T
containing the t states with the largest limiting probabilities are selected in a
descend order and the most representative class in T is associated to x(u).

In a concise form, the proposed supervised inductive classification process can
be summarized by Algorithm 1.

3 Results for Real Data Sets and Comparisons

We present classification results using the proposed supervised technique, as well
as a comparative study against some current classifiers. In the experiments, 15
data sets were selected from the UCI machine learning repository [22]. Table 1
shows the metadata for all data sets. As can be seen in this table, the selection
was made to encompass diversity on data domains as well as to consider different
number of classes, attributes and class sizes. They vary from 3 to 15, 4 to 91
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Table 1. Information of all data sets used in simulations

Domain Instances Attributes Classes

Zoo 101 16 7
Hayes-Hoth 132 5 3

Iris 150 4 3
Teaching 151 5 3
Wine 178 13 3
Image 210 19 7
Glass 214 9 6
E. Coli 336 8 8
Libras 360 91 15
Balance 625 4 3
Vehicle 846 18 4
Vowel 990 13 11
Yeast 1484 8 10

Wine Q. (Red) 1599 12 6
Segment 2310 19 7

and 101 to 1599, respectively. The Euclidean distance was used in all simulations
as a distance measurement. Eventual categorical attributes, in data sets such as
Balance and Zoo, were treated as numerical. As a data preparation, each instance
vector was normalized to have a magnitude of 1. Individual cases were normalized
by dividing each attribute of the instance by the square root of the sum of the
squares of the individual attributes. Thus, an instance xi = (xi1, xi2, . . . , xip)
was normalized by dividing each attribute xij by

∑p
j=1 xij

2.
The parameter optimization for the proposed technique was done as follows.

It was created a complete network N (Step 1 of Alg. 1) by using the Euclidean
measurement as a distance function. Parameter t (Step 5 of Alg. 1) ranged from
1 to the number of instances in the largest class of the training set. Parameter
ε (Eq. 1) was evaluated by the grid method with the values {0, 0.1, 0.2, . . . , 10}.

The influence of parameter ε in the classification accuracy was evaluated. As
stated before in Sec. 2, ε is responsible for weighting the biases provided by
the virtual state. Figure 2 depicts the accuracy in function of parameter ε for
eight selected data sets. The results were averaged over 50 simulations. Each
simulation was performed by using a 10-fold stratified cross-validation process
[23]. In this process, the data set is split in 10 disjoint sets and, in each run, 9
sets are used as training data and 1 set is used as the test data, resulting in a
total of 10 runs. Therefore, 50× 10 runs were executed. It can be seen on Fig. 2
that next to value 0 - where the biases influence are reduced because of a small
weight - the classification accuracies are poor. On the other hand, as ε becomes
larger, the accuracies increase and stabilize before it approaches 10. In this later
case, the biases play a main role due to the large weight applied to them (Eq. 1).
These scenarios configure a convergent behavior for parameter ε and can help in
the simulations by restricting the search space.
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Fig. 2. Classification accuracy in function of parameter ε. The curves show standard
deviations for each point in error bars. 50 simulations were averaged.

The proposed technique was compared to other 4 well-known multi-class clas-
sification algorithms: Weighted kNN (WkNN), Decision Tree C4.5 [24], Multi-
Class SVM (MSVM) [25] and the network-based k-Associated Optimal Graph
(kAOG) [17]. For the parametric algorithms (all of the algorithms except kAOG),
a repeated cross-validation [23] was done in order to optimize their respective
parameters. For the MSVM algorithm, we used the one-against-one multi-class
version, in which C(C − 1)/2 binary classifiers distinguishes between every pair
of classes by using a voting scheme. To avoid ties, the output of each MSVM
corresponded to the real valued decision functions. For reducing the parame-
ter search space in MSVM model selection, the only kernel in consideration
was the radial basis function, K(xi,xj) = e−γ||xi−xj ||2 , and the stopping crite-
rion for the optimization method was defined as the Karush-Kuhn-Tucker vi-
olation to be less than 10−3, the same condition used in [26]. In the WkNN,
the classification process was performed by using the sum of the weights be-
tween the instance to be labeled and its k-nearest neighbors. Specifically, the
weight between two instances xi and xj is defined by 1/μ(xi,xj), where μ is a
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Table 2. Classification accuracy (%) followed by standard deviation and rank for each
algorithm. Each result shows the adjusted parameters for model selection. Best result
for each data set is in bold face.

Data set Proposed (ε, t) kAOG WkNN (k) C4.5 (cf , m) MSVM (cp, γ)

Zoo 96.2 ± 0.3 (7.8, 1) 97.0 ± 5.2 96.2 ± 5.8 (1) 95.8 ± 5.3 (0.1, 0) 96.3 ± 6.4 (21, 21)

Hayes-Hoth 57.0 ± 1.7 (3.5, 1) 55.7 ± 12.6 56.8 ± 13.2 (3) 46.7 ± 10.5 (1, 0) 45.4 ± 13.1 (212, 213)

Iris 98.1 ± 0.2 (3.1, 29) 97.4 ± 3.2 97.9 ± 3.3 (19) 95.0 ± 5.8 (0.25, 2) 97.0 ± 4.6 (2−2, 23)

Teaching 63.1 ± 2.0 (6.0, 1) 62.5 ± 11.6 63.0 ± 12.3 (9) 58.2 ± 14.9 (1, 0) 52.5 ± 7.9 (26, 23)

Wine 84.6 ± 1.8 (9.4, 1) 83.5 ± 8.5 84.1 ± 8.2 (1) 91.7 ± 6.7 (0.5, 1) 94.4 ± 5.8 (211, 22)

Image 75.5 ± 1.0 (1.8, 1) 75.3 ± 7.5 75.4 ± 8.2 (3) 80.7 ± 7.6 (0.8, 3) 86.7 ± 7.4 (210, 2−3)

Glass 72.5 ± 1.2 (10.0, 2) 72.5 ± 8.1 71.8 ± 9.0 (1) 66.9 ± 9.4 (0.1, 3) 69.5 ± 5.6 (210, 24)

E. Coli 87.5 ± 0.6 (4.4, 9) 85.8 ± 6.4 87.4 ± 5.4 (9) 83.6 ± 6.1 (0.25, 3) 86.7 ± 8.2 (212, 2−9)

Libras 84.9 ± 0.7 (9.0, 1) 85.4 ± 5.3 84.8 ± 5.4 (1) 71.6 ± 7.5 (0.8, 1) 86.6 ± 5.0 (27, 22)

Balance 96.3 ± 0.5 (4.1, 9) 94.9 ± 2.5 96.7 ± 2.1 (11) 89.6 ± 3.7 (0.5, 1) 98.2 ± 0.9 (27, 20)

Vehicle 67.6 ± 0.7 (10, 4) 67.9 ± 4.4 67.6 ± 4.1 (5) 70.7 ± 3.5 (0.5, 2) 84.4 ± 3.4 (210, 23)

Vowel 97.5 ± 0.9 (10.0, 1) 98.9 ± 0.7 98.8 ± 0.9 (11) 78.6 ± 4.3 (0.5, 0) 97.5 ± 1.9 (27, 20)

Yeast 59.4 ± 0.4 (10.0, 12) 53.6 ± 3.8 60.9 ± 3.6 (16) 55.8 ± 3.6 (0.1, 5) 58.9 ± 4.8 (211, 20)

Wine Q. Red 61.0 ± 0.3 (10.0, 1) 61.8 ± 3.6 64.0 ± 3.8 (19) 59.8 ± 2.4 (1, 0) 60.4 ± 3.2 (29, 21)

Segment 93.1 ± 0.5 (10.0, 1) 93.7 ± 1.5 93.6 ± 1.4 (5) 95.4 ± 1.2 (1, 0) 96.6 ± 1.2 (211, 20)

Avg. Rank 2.67 ± 1.50 3.33 ± 1.80 2.80 ± 1.26 5.00 ± 1.96 3.13 ± 2.20

distance measurement. The number of neighbors k ranged from 1 to the num-
ber of instances in the largest class of the training set. For the C4.5 algorithm,
two parameters were adjusted, the confidence factor which assumes the values
cf ∈ {0, 0.1, 0.25, 0.5, 0.8, 1}, where smaller values incur more pruning (1 is for
no pruning), and the minimum number of instances that a set must have in order
to be further partitioned is m ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20, 50}.

Table 2 presents the classification accuracy on the test set followed by the
standard deviation. Best results are in bold face. At the last line, the average rank
for each algorithm is shown. The calculation procedure for the rank measurement
is as follows: i) for each data set, the algorithms were ranked according to their
average performance, that is, the best algorithm was ranked as first, the second
best was ranked as second, and so on; and ii) for each algorithm, the average
rank was based on the rank values on all the data sets. It can be seen that
the proposed technique achieved the best average ranking amongst all simulated
techniques. Moreover, it is worth emphasizing that our technique exhibited the
smallest deviation values over all results.

4 Conclusions

This paper has presented a new network-based classification technique which ap-
plies limiting probabilities from random walk theory. In the supervised model,
these probabilities represent the ease of access an unlabeled instance has to the
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classes in the training set in an underlying network. Unlabeled nodes are classi-
fied with the label of the class most easily reached. Simulations have suggested
that the proposed technique is competitive with the current well-known classi-
fication techniques. As future works, mathematical models could be studied to
describe and shed more light to the proposed technique. We hope this research
contributes to the network-based learning area, specially to development of new
supervised classification heuristics.
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