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Abstract. Common Spatial Pattern (CSP) and Support Vector Ma-
chine (SVM) are usually adopted for feature extraction and classification
of two-class motor imagery. However, in a motor imagery based BCI-FES
rehabilitation system, stroke patients usually are not able to conduct cor-
rect motor imagery like healthy people due to the injury of motor cortex.
Therefore, motor imagery EEG of stroke patients lacks of specific dis-
criminant features as appearances of healthy people, which significantly
blocks CSP to seek the optimal projection subspace. In this paper, a
method, which filters EEG into a variety of bands and improves per-
formance through boosting principle based on a set of weak CSP-SVM
classifiers, was proposed to solve the problem mentioned above and was
evaluated on the EEG datasets of three stroke subjects. The proposed
method outperformed the traditional CSP-SVM method in terms of clas-
sification accuracy. From data analysis, we observed that optimal spec-
tral band for classification had been changing along with rehabilitation
training, which may reveal mechanisms that dominant frequency band
may be changed along with rehabilitation training and spectral power
distribution may be changed in different stages of rehabilitation. In ad-
dition, this work also demonstrated the feasibility of our SJTU-BCMI
BCI-FES rehabilitation training system.

Keywords: EEG, Stroke, BCI-FES Rehabilitation System, Frequency
Boosting, Common Spatial Pattern, Support Vector Machine.

1 Introduction

Motor imagery based BCI-FES system is a very promising mean for rehabilita-
tion training of strokes[1], which provides an effective training way for patients
to link active motor imagery to movements of paralyzed limbs. Functional Elec-
trical Stimulation (FES) is given to patients according to their corresponding
motor imagery during training, helping patients learn external limbs controlling
through simulating normal limb controlling process of heathy people[2][3].
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Common Spatial Pattern (CSP)is one of the most successful approaches in
feature extraction of motor imagery EEG[4]. But it cannot seek the optional
projection subspace when applied to stroke patients’ data due to contamination
of strong noise caused by irregular patterns or wrong imagery which are fre-
quently found in the motor imagery EEG of stoke patients. In order to solve the
problem, our proposed method incorporates boosting principle which is quite
an effective method in dealing with series of weak learners[5]. It can improve
classification performance by combining base weak classifiers, even each of them
only has a performance that is slightly better than random.From data analy-
sis, we observed that optimal spectral band for classification had been changing
along with rehabilitation training, which may reveal mechanisms that dominant
frequency band may be changed along with rehabilitation training and spectral
power distribution may be changed in different staged of rehabilitation.

The rest of paper was organized as follows: SJTU-BCMI BCI-FES rehabilita-
tion training system was firstly introduced in Section 2. We present the details
of the frequency boosting approach in Section 3. A comparative results are given
when applying our method and traditional CSP-SVM on the dataset of stroke
subjects in Section 4.

2 Methodology

2.1 BCI-FES Rehabilitation Training System

Fig. 1 shows the framework of our multi-Neurofeedback BCI-FES Motor Func-
tion Rehabilitation System including data acquisition module, data server mod-
ule, model training module[6][7], online classification module, online data visu-
alization module[8] and multi-Neurofeedback module.

Raw data is recorded by 16 channels gtec EEG system with a sample rate
256Hz, among which we select medial frontal cortex and earlobe which are used
as ground and reference respectively. We can adopt a variety of EEG classifiers
in our framework. During our experiment, we used CSP-SVM as online classifier.
EEG signals after removing artifacts are then filtered into specific subband such
as 8-30Hz, detrended and converted into a format time × channel × window.
CSP will be applied to calculate the optimal projection subspace. However, we
noticed that the accuracy of CSP-SVM is not satisfactory. So we proposed a new
algorithm described in Setion 3 to improve the performance. In our experiment
each window (see details in subsection 2.2) of EEG is transformed into a 4-
dimensional feature spaces which fed to SVM.

2.2 Experiment Setting

In general, the subject is required to take part in our experiment cycle 3 times per
week, which consists of 3 phases: prior-training for model preparations, multi-
Neurofeedback BCI task for rehabilitation and post-training for assessment. All
experiments are monitored by a video camera to build tagged videos for further
analysis.
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Fig. 1. The framework of multi-Neurofeedback BCI-FES Motor Function Rehabilita-
tion System. BCI Tasks are a series of motor imagery based games giving both video
and audio feedback to subjects. The whole system gives a close loop feedback to subject
helping them reestablish their motor functional from stoke.

In the prior-training process, a different number of sessions ranged from 5
to 8 will be given to the subject. There are 5 minutes for subjects to relax
themselves between sessions. Each session contains 15-16 trials lasting 4 seconds
and balances the number of left and right motor imagery tasks. At the beginning
of each trial, a bold arrow and a vocal message are given to guide subjects to
concentrate on imagining movements of their corresponding part of arms. The
time sequence of each trial are cut into 25 sliding windows with width of 1s
and step length of 0.125s[6] for online classification. There is a 2-second interval
between trials in order to help subjects adjust their mental state to avoid fatigues.
The data collection of previous session is used to update model offline, and then
it is used for classifying following session data online.

After the prior-training, subjects are asked to finish one or two motor imagery
based games such as lifting balloons which appear at the left or right of screen
randomly, balancing a ball on a beam and so on. FES is triggered and is used
for stimulating one side of subjects’ muscles corresponding to current motor im-
agery, which results in a real movement of their hands or arms. The imagination-
stimulation process reconstructs the neuron feed loop between paralysed limbs
and corresponding pathological brain cortex of the subject, which takes effects in
the rehabilitation treatment[9]. At the end of experiment cycle, a post-training
section, two sessions and 16 trials in one session, is conducted to evaluate reha-
bilitation efficacy.

3 Algorithm Design

CSP cannot seek the right projection subspace when EEG signals are contam-
inated by strong noise. This is common phenomenon while EEG signals are
collected from stroke patients. Recent studies show that the brain functional
compensation of damaged brain tissue may be replaced by other part. Suppos-
ing this change in spatial may cause the frequency of EEG data changed in
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some patterns, we try to filter the pre-processed EEG signals into a specific
band which may reduce the impact of noisy and classify with SVM to produce
a weak learner. Using the framework of Adaboost, we boost each weak SVM
learner result by αm to produce a form of committee whose performance will be
better than any of the base classifiers. αm is give following equation

αm = ln
BestAccuracym

1−BestAccuracym + ε
. (1)

Where BestAccuracym is the accuracy for optimal model in round m during
iteration. ε is to avoid infinity causing by a high accuracy around 100%.

Algorithm 1 described a boost model for two-class classification problem with
data from stoke patients. A predefine BandSet contains N bands which use to
build model. data is also pre-filtered by band from BandSet[n], detrended and
splitted window into BandWindows1[n] in order to fasten our algorithm. Note
that there is square root

√
exp am which is designed for controlling the boosting

speed of incorrect classification data. DupNum(k) is the number of copies for
incorrect classification data k during boosting.

Algorithm 1. Frequency Boosting Model Training

1: for m = 1, 2, ..., M do
2: for n = 1, 2, ..., N do
3: Sample θ ∗ length(BandWindowsm[i]) data into Sample[n]
4: Update ModelSet[n] with

Band : BandSet[n]
SpatialF ilter: the CSP projection matrix on data of Sample[n]
SVM : SVM Model on CSP features from Sample[n] by SpatialF ilter

5: Use ModelSet[n].SpatialF ilter to extract features from BandWindows1[n],
classify with ModelSet[n].SV M and calculate Accuracy[n]

6: end for
7: Find optimal model K by argmax

k∈[1,n]

Accracy[k]

Let BestModel[m] = ModelSet[K] and αm = ln Accuracy[k]
1−Accuracy[k]+ε

8: BandWindowsm+1 = BandWindowsm
9: for all incorrect classification data k by BestModel[m] in BandWindows1[m]

do
10: numk = max

(
1, Round

(
DupNum(k) ∗ (√exp am − 1

)))

11: for n = 1, 2, ..., N do
12: BandWindowsm+1[n]+=[numk’s copies of datak]
13: end for

(We boost this data numk times more in next iteration for all bands)
14: end for
15: end for

To improve the performance of our algorithm, the band in set should have
some overlap and be different in length and range to make weak learners more
selective and maximize the coverage. Parameter θ is used to limit the size of
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training set and make sampling result randomly enough. A larger θ indicates
a larger sample set which may decrease the generalization capability of model,
while a extreme small θ may harm the stability during iteration.

In two-class classification problem, we use label 1 to indicate which is belonged
to one class and label -1 for the other class. Algorithm 2 use the predictions of
M CSP-SVM classifiers in different band with weight αm to predict the label
y(x) of data x. y[m] ∈ {1,−1} is the prediction of weak learner m.

Algorithm 2. Frequency Boosting Classification

1: for all window segment x in test dataset do
2: for m = 1, 2, ..., M do
3: Let data = Filter x with BestModel[m].Band
4: Use ModelSet[m].SpatialF ilter to extract features from data
5: Let y[m] = Classification result by ModelSet[m].SV M
6: end for

7: y(x) = sign(
M∑

m=1

αmy[m])

8: end for

4 Result

Eight stroke patients from Zhejiang Taizhou Hospital participated in our study.
After two months training, five patients have achieved apparently improvements
while no significant improvements for the rest on three patients. We presume that
these three subjects may have missed the best rehabilitation period because they
suffered stroke more than eight months ago.

The algorithm is applied on the EEG datasets of three patients (out of the
five patients that have achieved apparently improvements) for evaluation. The
BandSet is shown in Table 1 according to the discussion in Section 3.

Table 1. Frequency Boosting parameters

Band Set
(Start Hz and End Hz)

5− 11 9− 15 13− 19 17− 23 21− 27 25− 31 29− 35
5− 13 9− 17 13− 21 17− 25 21− 29 25− 33 29− 37
5− 15 9− 19 13− 23 17− 27 21− 31 25− 35 5− 17
9− 21 13− 25 17− 29 21− 33 25− 37

Parameters M : 30 θ : 2/3 ε : 0.001

We run our algorithm on each pair of training and testing data for three times
to obtain an average accuracy. For comparisons, traditional CSP-SVM method
is also implemented on the dataset. We use the last session in prior-training
section for testing and remaining ones for training. six weeks out of two months
(three weeks per month) are chosen and the accuracy of last day in each week
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Table 2. Essential information and sliding window classification accuracies

Subject Age Sex Pathogenesis
week

1st 2nd 3rd 4th 5th 6th

1 62 female cortex injury 48% 56% 57% 59% 65% 62%

2 71 male basal ganglia injury 58% 60% 56% 67% 64% 67%

3 65 female basal ganglia injury 58% 57% 74% 66% 70% 79%

has been calculated on test data. Table 2 contains the essential information and
sliding window classification accuracies of three subjects.

Compared with traditional CSP-SVM method, frequency boosting gives a
better accuracy in the most cases (Fig. 2). It’s worthy to mention that the whole
experiment also provides a powerful evidence of the feasibility of our motor
imagery based BCI-FES rehabilitation system.
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Fig. 2. Comparing between Frequency Boosting and CSP-SVM on test dataset of 3
subjects. Obviously we can find that Frequency Boosting gives a better performance
in most cases.

To analyze the frequency changes, we choose the 14th and 57th day to sum up
the weight of each optimal weak classification in different frequency as Fig. 3(a)
and Fig. 3(b) shown. The importance of gamma-band frequency significantly
increased for classification over time.

At the same time we have acquired the motor imagery EEG data of a heathy
subject (25age, male), who is an engineer of our rehabilitation system. Apply
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Fig. 3. Comparisons of optimal spectral band for classification

frequency boosting on his EEG signals, a comparison for the weights of each
bands is shown as Fig5. 3(c) (use 1 as the weight of each round in this figure).
The figure of patients on the 57th day appears a more similar distribution and
outline to that of the heathy subject compared with the one at the beginning
of rehabilitation. It implies that the frequency of EEG changes along with brain
functional compensation and the gamma band (24-37 Hz) make contribution
to a high classification accuracy. This may reveal mechanisms that dominant
frequency band may be changed along with rehabilitation training and spectral
power distribution may be changed in different stages of rehabilitation. Oscilla-
tory activity in the gamma-band range is related to both gestalt perception and
to cognitive functions such as attention, learning, and memory[10].

Three other stroke patients were also trained with ordinary medical treat-
ments for two months as a control group which is observed and recorded during
the experiment. A much lower clinical rehabilitation parameters of the control
group is observed in post assessment, which indicates that our system promotes
the rehabilitation of impaired cerebral cortices and accelerates the reconstruction
of the neuron feed loop of stroke patients.

5 Summary

In this paper, we proposed an adaptive Adaboost method in frequency for classi-
fying 2-class motor imagery EEG of stroke patients. This method filtered training
data with different bands and produced weak CSP-SVM classifiers for following
boosted into a better one. Applying both the proposed method and traditional
CSP-SVM on the same datasets of stroke subjects, we compared their classi-
fication accuracies. The simulation results proved our method outperforms the
general CSP-SVM approach. By analyzing the weight of each optimal model, we
provide an evidence of the band of EEG frequency changed during rehabilitation,
which is also an evidence of feasibility of our BCI-FES rehabilitation system.

A shortcoming of the method is that we didn’t have an auto-adapt boundary
to control the number of boosting iterations to avoid over-fitting. Considering
the accuracy of pervious round and the accuracy gap between suboptimal models
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in each round, we may improve the performance of current algorithm by given
a better weight during boosting. A cross validation for choosing the best model
is more convincing than a greedy way for obtaining optimal model.

For future work, we plan to focus on the EEG changes in beta band during
rehabilitation to reveal the mechanism. Moreover, we plan to apply our BCI-
FES system to more post-stroke cases and collect more data of stroke patients
to provide generally evidence the effectiveness of our method or maybe adapt to
reach a better performance.
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