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Abstract. In this paper, the problem of adaptive neural output feed-
back control is investigated for a class of uncertain nonlinear pure feed-
back systems with unknown backlash-like hysteresis. In the design, RBF
neural networks are used to approximate the nonlinear functions of sys-
tems, and a neural state observer is designed to estimate the unmeasured
states. By utilizing the neural state observer, and combining the back-
stepping technique with adaptive control design, an observer-based adap-
tive neural output feedback control approach is developed. It is proved
that the proposed control approach can guarantee that all the signals in
the closed-loop system are semi-globally uniformly ultimately bounded
(SUUB), and both observer error and tracking error can converge to a
small neighborhood of the origin.

Keywords: Output feedback, adaptive neural control, backlash-like
hysteresis, backstepping design, stability analysis.

1 Introduction

In the past decades, the control of nonlinear systems preceded by hysteresis has
been a challenging and yet rewarding problem. The main reason is that hystere-
sis can be encountered in a wide range of physical systems and devices [1]. On
the other hand, since the hysteresis nonlinearity is non-differentiable, the sys-
tem performance is often severely deteriorated and usually exhibits undesirable
inaccuracies or oscillations and even instability [2].

Recently, in order to control uncertain nonlinear systems with unknown
backlash-like hysteresis, many adaptive controllers have been developed by back-
stepping technique. For example, [3-4] proposed adaptive state feedback control
designs for a class of uncertain nonlinear systems with unknown backlash-like
hysteresis, while, [5] proposed an adaptive fuzzy output feedback controller for
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a class of uncertain nonlinear systems preceded by unknown backlash-like hys-
teresis. However, the backstepping control methods in [3]-[5] all focus on the
uncertain nonlinear systems in strict-feedback form, there are few results avail-
able in the literature on the nonlinear systems in pure-feedback form. As stated
in [6], a nonlinear pure-feedback system has no affine appearance of the state
variables to be used as virtual controls and the actual control just like a strict-
feedback nonlinear systems, which makes the backstepping control design and
the stability of the closed-loop system are more difficult and challenging. Mo-
tivated by the above observations, an adaptive neural output-feedback control
approach is presented for a class of uncertain nonlinear pure feedback systems,
preceded by unknown backlash-like hysteresis and without the measurements of
the states.

2 Problem Formulations and Preliminaries

Consider a class of SISO n-th order nonlinear systems in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = F1(x2)

ẋ2 = F2(x3)
...

ẋn−1 = Fn−1(xn)

ẋn = Fn(xn) + φ(v)

y = x1

(1)

where xi = [x1, · · · , xi]
T ∈ Ri, (i = 1, · · · , n) is the state vector of the system, and

y ∈ R is the output, respectively. Fi(·) is an unknown smooth nonlinear function;
v ∈ R is the control input and φ(v) denotes hysteresis type of nonlinearity. This
paper assumes that the states of the system (1) are unknown and only the output
y is available for measurement.

According to [2], the control input v and the hysteresis type of nonlinearity
φ(v) in system (1) can be described by

dφ

dt
= α

∣
∣
∣
∣
dv

dt

∣
∣
∣
∣ (cv − φ) +B1

dv

dt
(2)

where a, c and B1 are constants, satisfying c > B1. Let

⎧
⎪⎪⎨

⎪⎪⎩

Fi(xi+1) = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 2

Fn−1(xn) = fn−1(xn−1,
1
cxn) +

1
cxn

Fn(xn) = fn(xn−1,
1
cxn)



262 Y. Li, S. Tong, and T. Li

The nonlinear pure-feedback system (1) is equivalent to the following system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 2

ẋn−1 = fn−1(xn−1,
1
cxn) +

1
cxn

ẋn = fn(xn−1,
1
cxn) + ϕ(v)

y = x1

(3)

Based on the analysis in [2], (2) can be solved explicitly as

φ(v) = cv(t) + d1(v),

d1(v) = [φ0 − cv0]e
−α(v−v0)sgnv̇ + e−αvsgnv̇

∫ v

v0
[B1 − c]eαηsgnv̇dη

(4)

where v(0) = v0 and φ(v0) = φ0.
Based on above solution it is shown in [2] that d1(v) is bounded. Thus using

(4), (3) can be reformulated as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 2

ẋn−1 = fn−1(xn−1,
1
cxn) +

1
cxn

ẋn = fn(xn−1,
1
cxn) + cv(t) + d1(v)

y = x1

(5)

Define {
χi = xi, i = 1, 2, . . . , n− 1

χn = 1
cxn

(6)

From (5) and (6), we have

⎧
⎪⎪⎨

⎪⎪⎩

χ̇i = fi(χi
, χi+1) + χi+1, i = 1, 2, . . . , n− 1

χ̇n = 1
cfn(χn

) + v(t) + 1
cd1(v)

y = χ1

(7)

Assumption 1. There exists a known constant Li such that

∣
∣
∣fi(χi

)− fi(χ̂i
)
∣
∣
∣ ≤ Li

∥
∥
∥χ

i
− χ̂

i

∥
∥
∥ , i = 1, 2, . . . , n

where χ̂
i
= [χ̂1, χ̂2, . . . , χ̂i]

T is the estimate of χ
i
= [χ1, χ2, . . . , χi]

T.

Control Objective. Our control objective is to design an adaptive neural net-
works output control controller such that all the signals involved in the closed-
loop system are bounded, the observer error is as small as the desired, and the
output y tracks the reference signal yr(t) within a neighborhood of zero.
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Rewrite (7) as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇1 = f1(χ̂1, χ̂2,f ) + χ2 +Δf1

χ̇2 = f2(χ̂2
, χ̂3,f ) + χ3 +Δf2

...
χ̇n−1 = fn−1(χ̂n−1

, χ̂n,f ) + χn +Δfn−1

χ̇n = 1
cfn(χ̂n

) + v(t) + 1
cd1(v) +

1
cΔfn

y = χ1

(8)

where Δfi = fi(χi
, χi+1) − fi(χ̂i

, χ̂i+1,f ), i = 1, 2, . . . , n − 1, Δfn = fn(χn
) −

fn(χ̂n
); χ̂

i
is the estimates of χ

i
, χ̂i,f is the filtered signal defined by [6]

χ̂i,f = HL(s)χ̂i (9)

where HL(s) is a Butterworth low-pass filter (LPF), the corresponding filter
parameters of Butterworth filters with the cutoff frequency ωC = 1rad/s for
different values of n.

RBF neural networks are universal approximators, i.e., they can approximate
any smooth function on a compact space, thus we can assume that the nonlinear
terms in (8) can be approximated as

f̂i(χ̂i
, χ̂i+1,f |θi ) = θTi ϕi(χ̂i

, χ̂i+1,f ), 1 ≤ i ≤ n (10)

where χ̂
n+1,f

= 0. The optimal parameter vector θ∗i is defined as

θ∗i = arg min
θi∈Ωi

[ sup
(χ̂

i
,χ̂i+1,f )∈Ui

∣
∣
∣f̂i(χ̂i

, χ̂i+1,f |θi )− fi(χ̂i
, χ̂i+1,f )

∣
∣
∣]

where Ωi and Ui are compact regions for θi and (χ̂
i
, χ̂i+1,f ), respectively. Also

the minimum approximation error εi is defined as

εi = fi(χ̂i
, χ̂i+1,f )− f̂i(χ̂i

, χ̂i+1,f |θ∗i ), εn =
1

c
fn(χ̂n

)− f̂n(χ̂n
|θ∗n ) (11)

Assumption 2. There exist unknown constants ε∗i and τi (τn = 0), such that
|εi| ≤ ε∗i and |χ̂i+1 − χ̂i+1,f | ≤ τi, i = 1, 2, . . . , n.

By (10) and (11), System (8) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇1 = θ∗T1 ϕ1(χ̂1, χ̂2,f ) + ε1(χ̂1, χ̂2,f) + χ2 +Δf1

χ̇2 = θ∗T2 ϕ2(χ̂2
, χ̂3,f ) + ε2(χ̂2

, χ̂3,f) + χ3 +Δf2
...

χ̇n−1 = θ∗Tn−1ϕn−1(χ̂n−1
, χ̂n,f ) + εn−1(χ̂n−1

, χ̂n,f) + χn +Δfn−1

χ̇n = θ∗Tn ϕn(χ̂n
) + εn(χ̂n

) + v(t) + 1
cd1(v) +

1
cΔfn

y = χ1

(12)
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3 Neural State Observer Design

Note that the states x2, x3, . . . , xn−1 and xn in system (1) are not available
for feedback, therefore, a state observer should be established to estimate the
states, and then neural networks adaptive output feedback control scheme is
investigated.

In this paper, a neural state observer is designed for (12) as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂χ1 = χ̂2 + θT1 ϕ1(χ̂1
, χ̂2,f ) + k1(y − χ̂1)

˙̂χ2 = χ̂3 + θT2 ϕ2(χ̂2
, χ̂3,f ) + k2(y − χ̂1)

...
˙̂χn−1 = χ̂n + θTn−1ϕn−1(χ̂n−1

, χ̂n,f ) + kn−1(y − χ̂1)

˙̂χn = v(t) + θTnϕn(χ̂n
) + kn(y − χ̂1)

ŷ = χ̂1

(13)

Rewriting (13) in the following form:

{ ˙̂χ = Aχ̂+Ky + F̄ + Env(t)

ŷ = ET
1 χ̂

(14)

where χ̂ = [χ̂1, · · · , χ̂n]
T, A =

⎡

⎢
⎣

−k1
...

In−1

−kn · · · 0

⎤

⎥
⎦, F̄ = [θT1 ϕ1(χ̂1, χ̂2,f ), · · · , θTnϕn

(χ̂
n
)]T, K = [k1, · · · , kn]T, ET

1 = [1, 0, · · · , 0] and ET
n = [0, · · · , 0, 1].

The coefficient ki is chosen such that the polynomial p(s) = sn + k1s
n−1 +

· · ·+ kn−1s+ kn is a Hurwitz. Thus, given a QT = Q > 0, there exists a positive
definite matrix PT = P > 0 such that

ATP + PA = −Q (15)

Let e = χ − χ̂ = [e1, · · · , en]T be observer error, then from (11)-(12), we have
the observer errors equation

ė = Ae+ ε+ d+Δf + Θ̃ (16)

where Δf = [Δf1, · · · , 1/cΔfn]
T, ε = [ε1, · · · , εn]T and d = [0, · · · , 0, 1/cd1(v)]T;

Θ̃ = [θ̃T1 ϕ1(χ̂1
, χ̂2,f ), · · · , θ̃Tnϕn(χ̂n

)]T and θ̃i = θ∗i − θi (i = 1, . . . , n).
Consider the following Lyapunov candidate V0 for (16) as

V0 = eTPe (17)

The time derivative of V0 along the solutions of (16) is

V̇0 = −eTQe+ 2eTP (ε+ d+Δf + Θ̃) (18)
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Using Young’s inequality, Assumptions 1 and 1, we have

2eTPε+ 2eTPd ≤ 2‖e‖2 + ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗1‖2 (19)

2eTPΘ̃ ≤ ‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l (20)

2eTPΔf ≤ ‖e‖2 + ‖P‖2(
n∑

i=1

L2
i ‖e‖2 +

n−1∑

i=1

L2
i τ

2
i ) ≤ r0‖e‖2 +M0 (21)

where r0 = 1 + ‖P‖2
n∑

i=1

L2
i , M0 = ‖P‖2

n−1∑

i=1

L2
i τ

2
i , ε

∗ = [ε∗1, · · · , ε∗n]T and |d1| ≤
d∗1. with d∗1 is a positive unknown constant. Substituting the equations (19)-(21)
into (18), we obtain

V̇0 ≤ −eTQe+(r0+3)‖e‖2+‖P‖2‖ε∗‖2+‖P‖2‖d∗1‖2+M0+‖P‖2
n∑

l=1

θ̃Tl θ̃l (22)

4 Adaptive Neural Control Design and Stability Analysis

The n-step adaptive neural networks backstepping output feedback control de-
sign is based on the following change of coordinates:

z1 = y − yr

zi = χ̂i − αi−1, i = 2, · · · , n
(23)

where αi−1 is called the intermediate control function, which will be given later.
Step 1: Consider the following Lyapunov function candidate:

V1 = V0 +
1

2
z21 +

1

2γ1
θ̃T1 θ̃1 +

1

2γ̄1
ε̃21 (24)

where γ1 > 0 and γ̄1 > 0 are design constants. ε̂1 is the estimate of ε∗1 and
ε̃1 = ε∗1 − ε̂1.

Choose intermediate control function α1, adaptation functions θ1 and ε̂1 as

α1 = −c1z1 − z1 − θT1 ϕ1(χ̂1, χ̂2,f ) + ẏr − ε̂1 tanh(z1/κ) (25)

θ̇1 = γ1ϕ1(χ̂1, χ̂2,f )z1 − σθ1 (26)

˙̂ε1 = γ̄1z1 tanh(z1/κ)− σ̄ε̂1 (27)

where c1 > 0, κ > 0, σ > 0 and σ̄ > 0 are design parameters. We have

V̇1 ≤ −r1‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l − c1z
2
1 + z1z2 +

σ

γ1
θ̃T1 θ1 +

σ̄

γ̄1
ε̃1ε̂1 +M1 (28)
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where r1 = λmin(Q) − r0 − 7
2 − L2

1 and M1 = ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗1‖2 +M0 +
ε∗1κ

′ + (L1τ1)
2.

Step i (i = 2, · · · , n): The time derivative of χi is

żi = χ̂i+1 +Hi − ∂αi−1

∂y e2 − ∂αi−1

∂y (θ̃T1 ϕ1(χ̂1, χ̂2,f) + ε1 +Δf1)

+θ̃Ti ϕi(χ̂i
, χ̂i+1,f )− θ̃Ti ϕi(χ̂i

, χ̂i+1,f )
(29)

where χ̂n+1,f = 0 and Hi = kie1 + θTi ϕi(χ̂i
, χ̂i+1,f ) −

i−1∑

k=1

∂αi−1

∂χ̂k

˙̂χk − ∂αi−1

∂ε̂1
˙̂ε1 −

i−1∑

k=1

∂αi−1

∂θk
θ̇k −

i∑

k=1

∂αi−1

∂y
(k−1)
r

y
(k)
r − ∂αi−1

∂y [χ̂2 + θT1 ϕ1(χ̂1, χ̂2,f )].

Consider the following Lyapunov function candidate

Vi = Vi−1 +
1

2
z2i +

1

2γi
θ̃Ti θ̃i (30)

where γi > 0 is a design constant. We can obtain

V̇i ≤ −ri‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l +
i−1
2 θ̃T1 θ̃1 +

1
2

i∑

l=1

θ̃Tl θ̃l − c1z
2
1 −

i−1∑

l=2

clz
2
l

+
i−1∑

l=1

σ
γl
θ̃Tl θl +

σ̄
γ̄1
ε̃1ε̂1 +Mi + zi[zi−1 + zi+1 + αi +Hi

+2(∂αi−1

∂y )2zi)] +
1
γi
θ̃Ti (γiziϕi(χ̂i

, χ̂i+1,f )− θ̇i)

(31)

where ri = ri−1 − L2
1 − 1

2 and Mi = Mi−1 +
1
2ε

∗2
1 + L2

1τ
2
1 .

Choose αi (αn = v), adaptation function θi as

αi = −zi−1 − cizi − 2(
∂αi−1

∂y
)2zi −Hi (32)

θ̇i = γiziϕi(χ̂i
, χ̂i+1,f )− σθi (33)

Substituting (32)-(33) into (31), we have

V̇i ≤ −ri‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l +
i−1
2 θ̃T1 θ̃1 +

1
2

i∑

l=1

θ̃Tl θ̃l − c1z
2
1

−
i∑

l=2

clz
2
l +

i∑

l=1

σ
γl
θ̃Tl θl +

σ̄
γ̄1
ε̃1ε̂1 +Mi + zizi+1

(34)

where zn+1 = 0. For i = n, we have

V̇n ≤ −rn‖e‖2 − c1
z2
1

k2
b1−z2

1
−

n∑

l=2

clz
2
l − ( σ

2γ1
− 1

2 − ‖P‖2 − n−1
2 )θ̃T1 θ̃1

−
n∑

l=2

( σ
2γl

− 1
2 − ‖P‖2)θ̃Tl θ̃l − σ̄

2γ̄1
ε̃21 + λ

(35)

where λ =
n∑

l=1

σ
2γl

θ∗Tl θ∗l +
σ̄

2γ̄1
ε∗21 +Mn.
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Let c = min{2rn/λmin(P ), 2ck, 2γ1(
σ

2γ1
− 1

2 − ‖P‖2 − n−1
2 ), 2γl(

σ
2γl

− 1
2 −

‖P‖2), σ̄}, k = 1, . . . , n, l = 2, . . . , n. Then (35) becomes

V̇n ≤ −cVn + λ (36)

By (36), it can be proved that all the signals in the closed-loop system are SUUB.

5 Conclusions

For a class of uncertain nonlinear pure feedback systems without the measure-
ments of the states and with unknown backlash-like hysteresis, an adaptive neu-
ral output feedback control approach has been developed. The proposed control
scheme mainly solved three problems. First, the proposed controlled system is
feedback nonlinear system. Second, the proposed control scheme does not require
that all the states of the system are measured directly. Third, the problem of un-
known backlash-like hysteresis can be overcome. It is proved that the proposed
control approach can guarantee that all the signals of the closed-loop system are
SUUB, and both the observer and the tracking errors can be made as small as
desired by appropriate choice of design parameters.
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