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Abstract. This paper studies the adaptive synchronization problem
for a kind of stochastic Markovian jump neural networks with
mode-dependent and unbounded distributed delays. By virtue of the
Lyapunov stability theory and the stochastic analysis technique, a gen-
eralized LaSalle-type invariance principle for stochastic Markovian differ-
ential delay equations is utilized to investigate the globally almost surely
asymptotical stability of the error dynamical system in the mean-square
sense.
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1 Introduction

Since the pioneering work [5] of Pecora and Carroll in 1990, control and syn-
chronization of chaotic systems have become an important topic during the past
decades. There exist many benefits of having synchronization or chaos synchro-
nization in some engineering applications, such as secure communication, chaos
generators design, chemical reactions, biological systems, information science,
and so on. Many excellent papers and monographs on synchronization of chaotic
systems with or without time delays have been published [2,6]. Variety of al-
ternative schemes for ensuring the synchronization have been proposed, such
as adaptive design control, feedback control, complete synchronization control,
impulsive control, anti-synchronization control, and projective synchronization
control. Because of the finite switching speed of amplifiers and the inherent com-
munication time of neurons, time delays are frequently encountered in various
engineering, biological, and economic systems. It has been revealed that time
delay may cause periodic oscillations, bifurcation and chaotic attractors and
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so on. Thus synchronization of delayed chaotic neural networks has become an
important research area.

Motivated by the preceding discussions, our objective in this paper is to study
the adaptive synchronization problem for a kind of stochastic Markovian jump
neural networks with mode-dependent and unbounded distributed delays. By
employing the Lyapunov stability theory, by virtue of stochastic analysis, a gen-
eralized LaSalle-type invariance principle for stochastic Markovian differential
delay equations is utilized to investigate the globally almost surely asymptotical
stability of the error dynamical system in the mean-square sense.

Notation. Throughout this paper, let WT ,W−1 denote the transpose and the
inverse of a square matrix W, respectively. Let W > 0(< 0) denote a positive
(negative) definite symmetric matrix, I denotes the identity matrix of appropri-
ate dimension, the symbol “*” denotes a block that is readily inferred by sym-
metry. The shorthand col{M1,M2, ...,Mk} denotes a column matrix with the
matrices M1,M2, ...,Mk. diag{·} stands for a diagonal or block-diagonal ma-
trix. For τ > 0, C([−τ, 0];Rn

)
denotes the family of continuous functions φ from

[−τ, 0] to R
n with the norm ||φ|| = sup−τ≤s≤0 |φ(s)|. Moreover, let (Ω,F,P) be

a complete probability space with a filtration {Ft}t≥0 satisfying the usual condi-
tions and E{·} representing the mathematical expectation. Denote by Cp

F0

(
[−τ, 0];

R
n
)
the family of all bounded, F0-measurable, C([−τ, 0];Rn

)
-valued random

variables ξ = {ξ(s) : −τ ≤ s ≤ 0} such that sup−τ≤s≤0 E|ξ(s)|p < ∞. || · ||
stands for the Euclidean norm; Matrices, if not explicitly stated, are assumed to
have compatible dimensions.

2 Problem Description and Preliminaries

We consider the following neural networks with mixed time delays

dx(t) =

[
− C(η(t))x(t) +A(η(t))f̂ (x(t))

+B(η(t))f̂ (x(t − τ(t, η(t))) +D(η(t))

∫ t

−∞
K(t− s)f̂(x(s))ds + J

]
dt,

(1)

x(t) =ϕ1(t), t ∈ (−∞, 0],

where x(t) = [x1(t), x2(t), ..., xn(t)]
T ∈ R

n denotes the state of the i-th neu-
ron at time t, the positive diagonal matrix C(η(t)) is the self-feedback term,
A(η(t)), B(η(t)), D(η(t)) ∈ R

n×n are the interconnection matrices represent-

ing the weight coefficients of the neurons. f̂(x(t)) = [f̂1(x1(t)), f̂2(x2(t)), ...,

f̂n(xn(t))]
T ∈ R

n denotes the neural activation function, the bounded func-
tion τ(t, η(t)) represents unknown time-varying delay with 0 ≤ τ(t, η(t)) ≤
τ̄ (η(t)) ≤ τ̄ , τ̇ (t, η(t)) ≤ τd(η(t)) ≤ τd, where τ̄ (η(t)), τ̄ are positive scalars.
J = [J1, J2, ..., Jn]

T is an external input, ϕ1(t) is a real-valued initial vector
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function that is continuous on the interval (−∞, 0]. K(t − s) = diag{k1(t −
s), k2(t− s), ..., kn(t− s)} denotes the delay kernel. It is assumed that ki(·) is a
real value non-negative continuous function defined in [0,∞) satisfying

∫ ∞

0

ki(s)ds = 1, i = 1, 2, ..., n.

{η(t), t ≥ 0} is a homogeneous, finite-state Markovian process with right con-
tinuous trajectories and taking values in finite set N = {1, 2, ..., N} with given
probability space (Ω,F,P) and the initial model η0. Let Π = [πij ]N×N denote
the transition rate matrix with transition probability:

P(η(t+ δ) = j|η(t) = i) =

{
πijδ + o(δ), i �= j,

1 + πiiδ + o(δ), i = j,

where δ > 0, limδ→0+
o(δ)
δ = 0 and πij is the transition rate from mode i to mode

j satisfying πij ≥ 0 for i �= j with

πii = −
N∑

j=1,j �=i

πij , i, j ∈ N .

For convenience, each possible value of η(t) is denoted by i(i ∈ N ) in the sequel.
Then we have

Ci = C(η(t)), Ai = A(η(t)), Bi = B(η(t)), Di = D(η(t)), τi(t) = τ(t, η(t)).

Throughout this paper, the following assumption is made on the neuron ac-
tivation functions:

Assumption 1. Each neural activation function f̂j(·) is bounded and there exist
real constants σ−

j , σ
+
j such that

σ−
j ≤ f̂j(ξ)− f̂j(ζ)

ξ − ζ
≤ σ+

j , ∀ ξ, ζ ∈ R, ξ �= ζ, j = 1, 2, ..., n.

For notational simplicity, we denote
Σ1 = diag{σ−

1 , σ
−
2 , ..., σ

−
n }, Σ2 = diag{σ+

1 , σ
+
2 , ..., σ

+
n }.

In order to observe the synchronization behavior of system (1), we construct
the response system as follows

dy(t) =

[
− Ciy(t) +Aif̂(y(t)) +Bif̂(y(t− τi(t))) +Di

∫ t

−∞
K(t− s)f̂(y(s))ds

+ J + u(t)

]
dt+ υi(t, y(t)− x(t), y(t − τi(t))− x(t− τi(t)))dω(t),

(2)

y(t) =ϕ2(t), t ∈ (−∞, 0],
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where u(t) is an appropriate control input that will be designed in order to obtain
a certain control objective. ω(t) is a one-dimensional Brown motion defined on
a complete probability space (Ω,F,P) with a natural filtration {Ft}t≥0, and
υi : R

+ × R
n × R

n → R
n is the noise intensity vector. This type of stochastic

perturbation can be regarded as a result from the occurrence of external random
fluctuation and other probabilistic causes.

Let e(t) = y(t) − x(t) be the error state, it yields the synchronization error
dynamical systems as follows:

de(t) =

[
− Cie(t) +Aif(e(t)) +Bif(e(t− τi(t)))

+Di

∫ t

−∞
K(t− s)f(e(s))ds+ Z(t)e(t)

]
dt+ υi(t, e(t), e(t− τi(t)))dω(t),

.
=ρi(t)dt + υi(t)dω(t), (3)

e(t) =ϕ(t), t ∈ (−∞, 0],

where f(e(t)) = f̂(y(t))− f̂(x(t)), ϕ(t) = ϕ2(t)− ϕ1(t). From Assumption 1, it
is easy to derive that

fj(0) = 0, σ−
j ≤ fj(s)

s
≤ σ+

j , ∀ s ∈ R, s �= 0, j = 1, 2, ..., n. (4)

Furthermore, we make the following assumption:

Assumption 2. The noise intensity vector is assumed to be of the form:

υi(t) = Eie(t) + Fie(t− τi(t)), (5)

where Ei, Fi are known real matrices.
Instead of the usual linear feedback, in this paper, we consider the following

feedback controller:

u(t) = Z(t)e(t), (6)

where the feedback strength Z(t) = diag{z1(t), z2(t), ..., zn(t)} is updated by the
following law:

żj(t) = −γje2j(t), (7)

where γj > 0 is an arbitrary constant, j = 1, 2, ..., n.

3 Main Result

As well known, Itô’s formula plays important role in the stability analysis of
stochastic Markovian systems and we cite some related results here [1]. Consider
a general stochastic Markovian delay system

dz(t) = f(t, z(t), z(t− κ), η(t))dt + g(t, z(t), z(t− κ), η(t))dω(t), (8)
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on t ≥ t0 with initial value z(t0) = z0 ∈ R
n, where κ > 0 is time delay, f :

R
+ × R

n × R
n ×N → R

n and g : R+ × R
n × R

n ×N → R
n+m. Let C2,1

(
R

+ ×
R

n ×R
n ×N ,R+

)
denote the family of all nonnegative functions V (t, z, v, η(t))

on R
+ × R

n × R
n × N which are continuously twice differentiable in z, v and

once differentiable in t. Let £ be the weak infinitesimal generator of the random
process {z(t), η(t)}t≥t0 along the system (8) (see [3]), i.e.

£V (t, zt, vt, i) := lim
δ→0+

[
E
{
V (t+ δ, zt+δ, vt+δ,η(t+ δ))

∣
∣zt, vt, η(t) = i

}

− V (t, zt, vt, η(t) = i)
]
, (9)

then, by the Dynkin’s formula, one can get

EV (t, z(t), v(t), i) = EV (t0, z(t0), v(t0), i) + E

∫ t

t0

£V (s, z(s), v(s), i)ds.

Similar to Lemma 1 of [4], we can obtain a generalized LaSalle-type invari-
ance principle for stochastic Markovian differential delay equations (8) stated as
follows.

Lemma 1. Assume that system (8) exists a unique solution z(t, ξ) on t > 0 for
any given initial data {z(θ) : −κ ≤ θ ≤ 0} = ξ ∈ Cp

F0

(
[−τ, 0];Rn

)
, moreover,

both f(t, z, v, η(t)) and g(t, z, v, η(t)) are locally bounded in (z, v) and uniformly
bounded in t. If there are a function V ∈ C2,1

(
R

+ × R
n × R

n × N ,R+
)
, χ ∈

L1(R+,R+) and ψ1, ψ2 ∈ C(Rn,R+
)
such that

E£V (t, z, v, η(t)) ≤ χ(t)− ψ1(z) + ψ2(v), (t, z, v, η(t)) ∈ R
+ × R

n × R
n ×N ,

ψ1(z) ≥ ψ2(z), ∀z �= 0,

lim
||z||→∞

inf
0≤t<∞

V (t, z, v, η(t)) = ∞.

Then

lim
t→∞ z(t, ξ) = 0 a.s.

for every ξ ∈ Cp
F0

(
[−τ, 0];Rn

)
.

In order to get the main result, we propose the following lemma:

Lemma 2. For each i ∈ N , we have the following equalities

£

{∫ t

t−τ(t,η(t))

x(s)TQ(η(t))x(s)ds

}

=x(t)TQix(t) − (1− τ̇i(t))x(t − τi(t))
TQix(t − τi(t))

+

N∑

j=1

πij

{∫ t

t−τi(t)

x(s)TQjx(s)ds + τj(t)x(t − τi(t))
TQix(t− τi(t))

}

, (10)
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£

{∫ t

t−τi(t)

∫ t

θ

x(s)TRx(s)dsdθ

}

=τi(t)x(t)
TRx(t)− (1− τ̇i(t))

∫ t

t−τi(t)

x(s)TRx(s)ds

+

N∑

j=1

πijτj(t)

∫ t

t−τi(t)

x(s)TRx(s)ds. (11)

Now, we begin to state our main result.

Theorem 1. Consider the system (3) satisfying Assumption 1, the drive sys-
tem (1) and the response system (2) can be synchronized for any 0 ≤ τi(t) ≤
τ̄i ≤ τ̄ , τ̇i(t) ≤ τdi < 1, if there exist symmetric definite positive matrices
Q1i, Q3i, Q4i, R1, R3, R4, X,H, diagonal positive matrices Pi, Si, Ui,W and posi-
tive number α and any real matrices Q2i, R2 satisfying the following inequalities

Qi ≡
[
Q1i Q2i

∗ Q3i

]
> 0, (12)

R ≡
[
R1 R2

∗ R3

]
> 0, (13)

N∑

j=1

(πijQj + π′
ij τ̄jR) ≤ (1 − τdi)R, (14)

N∑

j=1

πijQ4j ≤ R4, (15)

Ωi =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎣

Ω11i E
T
i (Pi + τ̄H)Gi H Ω14i PiBi PiDi H

∗ Ω22i 0 0 Ω25i 0 0
∗ ∗ −Q4i −H 0 0 0 H
∗ ∗ ∗ Ω44i 0 0 0
∗ ∗ ∗ ∗ Ω55i 0 0
∗ ∗ ∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ ∗ ∗ −H

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎦

< 0, (16)

where

Ω11i = − PiCi − CiPi − 2αPi + ET
i (Pi + τ̄H)Ei −H +X

+

N∑

j=1

πijPj −Σ1Σ2Si +Q1i + τ̄iR1 +Q4i + τ̄R4,

Ω14i =PiAi +
1

2
(Σ1 +Σ2)Si +Q2i + τ̄iR2,

Ω22i =G
T
i (Pi + τ̄H)Gi −Σ1Σ2Ui −X − (1− τdi)Q1i +

N∑

j=1

π′
ij τ̄jQ1i,
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Ω25i =
1

2
(Σ1 +Σ2)Ui − (1− τdi)Q2i +

N∑

j=1

π′
ij τ̄jQ2i,

Ω44i =W − Si +Q3i + τ̄iR3, Ω55i = −Ui − (1− τdi)Q3i +

N∑

j=1

π′
ij τ̄jQ3i,

with π′
ij = max{πij , 0}.

Proof. Define the following Lyapunov-Krasovskii functional:

V (t, et, i) =e(t)
TPie(t) +

n∑

j=1

wj

∫ ∞

0

kj(s)

∫ t

t−s

f2
j (ej(θ))dθds

+

∫ t

t−τi(t)

ξ(s)TQiξ(s)ds+

∫ t

t−τi(t)

∫ t

θ

ξ(s)TRξ(s)dsdθ

+

∫ t

t−τ̄

e(s)TQ4ie(s)ds+

∫ t

t−τ̄

∫ t

θ

e(s)TR4e(s)dsdθ

+

∫ t

t−τ̄

∫ t

θ

υi(s)
THυi(s)dsdθ +

n∑

j=1

pji
γj

(zj(t) + α)2,

with ξ(s) = col{x(s), f(x(s))}, W = diag{w1, w2, ..., wn}, and α being a large
positive constant which can be determined arbitrary.

Based on Lemma 2, by using the well-known Itô’s differential formula, calcu-
lating the weak infinitesimal generator along the trajectory of (3) results in

£Vi =2e(t)TPiρi(t) + trace
[
υi(t)

TPiυi(t)
]
+

N∑

j=1

πije(t)
TPje(t)

+ 2

n∑

j=1

pji
γj

(zj(t) + α)żj(t) +

n∑

j=1

wj

∫ ∞

0

kj(s)
[
f2
j (ej(t))− f2

j (ej(t− s))
]
ds

+ ξ(t)TQiξ(t)− (1 − τ̇i(t))ξ(t− τi(t))
TQiξ(t− τi(t))

+

N∑

j=1

πij

{∫ t

t−τi(t)

ξ(s)TQjξ(s)ds+ τj(t)ξ(t − τi(t))
TQiξ(t− τi(t))

}

+ τi(t)ξ(t)
TRξ(t) − (1− τ̇i(t))

∫ t

t−τi(t)

ξ(s)TRξ(s)ds

+
N∑

j=1

πijτj(t)

∫ t

t−τi(t)

ξ(s)TRξ(s)ds+ e(t)TQ4ie(t)

− e(t− τ̄ )TQ4ie(t− τ̄ ) +

N∑

j=1

πij

∫ t

t−τ̄

e(s)TQ4je(s)ds+ τ̄ e(t)TR4e(t)

−
∫ t

t−τ̄

e(s)TR4e(s)ds+ τ̄υi(t)
THυi(t)−

∫ t

t−τ̄

υi(s)
THυi(s)ds.
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According to Assumption 1, by the Leibniz-Newton formula, we get

E£Vi ≤ ζi(t)
TΩiζi(t)− e(t)TXe(t) + e(t− τi(t))

TXe(t− τi(t)),

where

ζi(t) = col

{
e(t), e(t− τi(t)), e(t− τ̄ ), f(e(t)),

f(e(t− τi(t))),

∫ t

−∞
K(t− s)f(e(s))ds,

∫ t

t−τ̄

ρi(s)ds

}
.

The constant α plays an important role in making the matrix Ωi negative defi-
nite. In fact, it can be chosen so big that the matrix Ωi is negative definite.

From Eq. (16), we have

E£Vi ≤ −e(t)T (X + λiI)e(t) + e(t− τi(t))
T (X − λiI)e(t− τi(t))

.
= −ψ1(e(t)) + ψ2(e(t− τi(t))),

where λi denote the largest eigenvalue of the matrix Ωi. Obviously, ψ1(e(t)) >
ψ2(e(t)) for any e(t) �= 0. Therefore, applying Lemma 1, we can conclude that
the two coupled delayed neural networks (1) and (2) can be synchronized for
almost every initial data.

4 Conclusion

In this paper, an adaptive feedback controller is proposed for the complete syn-
chronization of stochastic Markovian jump neural networks with mode-dependent
and unbounded distributed delays. A generalized LaSalle-type invariance
principle for stochastic Markovian differential delay equations is employed to
investigate the globally almost surely asymptotical stability of the error dynam-
ical system, that is to say, the complete synchronization can be almost surely
achieved.
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