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Preface

This book and its sister volume collect the refereed papers presented at the
10th International Symposium on Neural Networks (ISNN 2013), held in Dalian,
China, during July 4–6, 2013. Building on the success of the previous events,
ISNN has become a well-established series of popular and high-quality confer-
ences on neural network and its applications. The field of neural networks has
evolved rapidly in recent years. It has become a fusion of a number of research
areas in engineering, computer science, mathematics, artificial intelligence, oper-
ations research, systems theory, biology, and neuroscience. Neural networks have
been widely applied for control, optimization, pattern recognition, signal/image
processing, etc. ISNN aims at providing a high-level international forum for
scientists, engineers, educators, as well as students to gather so as to present
and discuss the latest progresses in neural network research and applications in
diverse areas.

ISNN 2013 received a few hundred submissions from more than 22 countries
and regions. Based on the rigorous peer reviews by the Program Committee
members and the reviewers, 157 papers were selected for publications in the
LNCS proceedings. These papers cover major topics of theoretical research, em-
pirical study, and applications of neural networks.

In addition to the contributed papers, three distinguished scholars (Cesare
Alippi, Polytechnic University of Milan, Italy; Derong Liu, Institute of Automa-
tion, Chinese Academy of Sciences, China; James Lo, University of Maryland
- Baltimore County, USA) were invited to give plenary speeches, providing us
with the recent hot topics, latest developments, and novel applications of neural
networks. Furthermore, ISNN 2013 also featured two special sessions focusing
on emerging topics in neural network research.

ISNN 2013 was sponsored by Dalian University of Technology and The Chi-
nese University of Hong Kong, financially co-sponsored by the National Natural
Science Foundation of China, and technically co-sponsored by the IEEE Compu-
tational Intelligence Society, IEEE Harbin Section, Asia Pacific Neural Network
Assembly, European Neural Network Society, and International Neural Network
Society.

We would like to express our sincere gratitude to all the Program Commit-
tee members and the reviewers of ISNN 2013 for their professional review of
the papers and their expertise that guaranteed the high qualify of the technical
program! We would also like to thank the publisher, Springer, for their cooper-
ation in publishing the proceedings in the prestigious series of Lecture Notes in
Computer Science. Moreover, we would like to express our heartfelt appreciation
to the plenary and panel speakers for their vision and discussion of the latest
research developments in the field as well as critical future research directions,



VI Preface

opportunities, and challenges. Finally, we would like to thank all the speakers,
authors, and participants for their great contribution and support that made
ISNN 2013 a huge success.

July 2013 Chengan Guo
Zeng-Guang Hou

Zhigang Zeng
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Nonlinear Systems with Approximation Errors
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Abstract. In this paper, we aim to solve an infinite-time optimal tracking con-
trol problem for a class of discrete-time nonlinear systems using iterative adaptive
dynamic programming (ADP) algorithm. When the iterative tracking control law
and the iterative performance index function in each iteration cannot be accu-
rately obtained, a new convergence analysis method is developed to obtain the
convergence conditions of the iterative ADP algorithm according to the prop-
erties of the finite approximation errors. If the convergence conditions are sat-
isfied, it is shown that the iterative performance index functions converge to a
finite neighborhood of the greatest lower bound of all performance index func-
tions under some mild assumptions. Neural networks are used to approximate
the performance index function and compute the optimal tracking control policy,
respectively, for facilitating the implementation of the iterative ADP algorithm.
Finally, a simulation example is given to illustrate the performance of the present
method.

Keywords: Adaptive dynamic programming, generalized value iteration, neural
networks, optimal control, reinforcement learning.

1 Introduction

Optimal tracking problems of nonlinear systems have always been the key focus in the
control field in the latest several decades. Adaptive dynamic programming (ADP), pro-
posed by Werbos [13, 14], is a powerful tool to solve optimal control problems forward-
in-time which is extensively applied to solve optimal tracking problems [7, 9, 15]. The
idea of ADP is to approximate the optimal performance index function and the opti-
mal control law by using function approximation structures. In recent years, ADP and
related research have gained much attention from researchers [1, 2, 6]. In [4], ADP
approaches were classified into several main schemes which are heuristic dynamic pro-
gramming (HDP), action-dependent HDP (ADHDP), also known as Q-learning, dual
heuristic dynamic programming (DHP) and action-dependent DHP (ADDHP), global-
ized DHP (GDHP), and ADGDHP. Iterative methods are also used in ADP to obtain
the solution of Hamilton-Jacobi-Bellman (HJB) equation indirectly and have received
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more and more attention [3, 5, 8, 10–12, 16, 17]. Value iteration algorithms are one class
of the most primary and important iterative ADP algorithms. In [15], Zhang proposed
a value iteration algorithm to solve optimal tracking problems which obtains good re-
sults. While in [15], the accurate performance index function and the accurate iterative
control law are required in each iteration to make the algorithm convergent. For most
real-world control systems, however, the accurate iterative control laws in the iterative
ADP algorithms cannot be obtained. When the accurate iterative control laws cannot be
obtained, the convergence properties in the accurate iterative ADP algorithms may be
invalid. This means that the system states may not track the desired trajectory under the
iterative control law. Till now, to the best of our knowledge, there are no discussions on
the convergence properties of the iterative ADP algorithms for optimal tracking prob-
lems with approximation errors.

In this paper, we will develop a new ADP scheme for infinite-time optimal tracking
control problems. The main contribution of this paper is that the optimal tracking con-
trol problems with finite approximation errors are solved effectively using the present
iterative ADP algorithms. A new convergence analysis method is established and the
least upper bound of the converged iterative performance index function is also pre-
sented. Furthermore, in order to facilitate the implementation of the iterative ADP al-
gorithm, we use neural networks to obtain the iterative performance index function and
the optimal tracking control law, respectively. Finally, a simulation example is given to
show the effectiveness of the present iterative ADP algorithm.

2 Problem Statement

Consider the following affine nonlinear system

x(k + 1) = f(x(k)) + g(x(k))u(x(k)) (1)

where x(k) ∈ �n, f(x(k)) ∈ �n, g(x(k)) ∈ �n×m and the input u(k) ∈ �m. Here
we assume that the system is controllable on �n.

For infinite-time optimal tracking problem, the control objective is to design optimal
control u(x(k)) for system (1) such that the state x(k) tracks the specified desired
trajectory η(k) ∈ �n, k = 0, 1, . . .. Define the tracking error as

z(k) = x(k)− η(k). (2)

Define the following quadratic performance index function

J(z(0), u0) =
∞∑
k=0

{
zT (k)Qz(k) + (u(k)− ue(k))

TR(u(k)− ue(k))
}
, (3)

whereQ ∈ �n×n,R ∈ �m×m are positive definite matrices and u0 = (u(0), u(1), . . .).
Let U(z(k), v(k)) = zT (k)Qz(k)+ vT (k)Rv(k) be the utility function, where v(k) =
u(k)− ue(k). Let ue(k) denote the expected control, which can be given as

ue(k) = g−1(η(k))(η(k + 1)− f(η(k))), (4)
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where g−1(η(k))g(η(k)) = I , I ∈ �m×m is the identity matrix. Combining (1) with
(2), we can get

z(k + 1) =f(z(k) + η(k)) − η(k + 1) + g(z(k) + η(k))

×
(
v(k) + g−1(η(k))(f(η(k)) − η(k + 1))

)
. (5)

Through the system transformation, we can see that the optimal tracking control prob-
lem for (1) has been changed into an optimal regulation problem for (5). The optimal
performance index function is defined as

J∗(z(k)) = inf
vk

{J(z(k), vk)} , (6)

where vk = (v(k), v(k + 1), . . .). According to Bellman’s principle of optimality,
J∗(z(k)) satisfies the discrete-time HJB equation

J∗(z(k)) = min
v(k)

{U(z(k), v(k)) + J∗(F (z(k), v(k)))} . (7)

Then the law of optimal single control vector can be expressed as

v∗(z(k)) = argmin
v(k)

{U(z(k), v(k)) + J∗(z(k + 1))} . (8)

Hence, the HJB equation (7) can be written as

J∗(z(k)) = U(z(k), v∗(z(k))) + J∗(z(k + 1)). (9)

In [15], a greedy HDP iteration algorithm is proposed to solve the optimal control prob-
lem for (5), where the performance index and control law are updated by iterations,
with the iteration number i increasing from 0 to ∞. First, the initial performance index
function V0(z(k)) ≡ 0. Then, for i = 0, 1, . . ., the iterative control law vi(z(k)) and
iterative performance index function Vi+1(z(k)) are be computed the following two
equations

vi(z(k)) = argmin
v(k)

{zT (k)Qz(k) + vT (k)Rv(k) + Vi(z(k + 1))} (10)

and

Vi+1(z(k)) = min
v(k)

{zT (k)Qz(k) + vT (k)Rv(k) + Vi(z(k + 1))}

= zT (k)Qz(k) + vTi (z(k))Rvi(z(k)) + Vi(z(k + 1)) (11)

In [15], it was proved that the iterative performance index function Vi(z(k)) converges
to J∗(z(k)), as i → ∞. For the greedy HDP iteration algorithm, we can see that for
∀i = 0, 1, . . ., the accurate iterative control law and accurate iterative performance
index function must be obtained which guarantee the convergence of the iterative per-
formance index function. In the real-world implementation, however, for ∀i = 0, 1, . . .,
the accurate iterative control law vi(z(k)) and the iterative performance index function
Vi+1(z(k)) are generally impossible to obtain. In this situation, the convergence of the
iterative performance index function and iterative control law may be invalid and the
iterative ADP algorithm may even be divergent. To overcome this difficulty, a new ADP
analysis method must be developed based on the approximation errors.
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3 Properties of the Iterative ADP Algorithm with Finite
Approximation Errors

3.1 Derivation of the Greedy HDP Iteration Algorithm with Finite
Approximation Errors

In the present iterative ADP algorithm, the performance index function and control law
are updated by iterations, with the iteration index i increasing from 0 to ∞. For i = 0,
let V0(z(k)) = 0. The iterative control law v̂0(xk) can be computed as follows:

v̂0(z(k)) = argmin
v(k)

{
zT (k)Qz(k) + vT (k)Rv(k) + V̂0(z(k + 1))

}
+ ρ0(z(k))

= argmin
v(k)

{
zT (k)Qz(k) + vT (k)Rv(k) + V̂0(z(k + 1))

}
+ ρ0(z(k))

(12)

where V̂0(z(k + 1)) = V0(z(k + 1)). The iterative performance index function can be
updated as

V̂1(z(k)) = zT (k)Qz(k) + v̂T0 (z(k))Rv̂0(z(k)) + V̂0(z(k + 1)) + π0(z(k)). (13)

For i = 1, 2, . . ., the iterative ADP algorithm will iterate between

v̂i(z(k)) = argmin
v(k)

{
zT (k)Qz(k) + vT (k)Rv(k) + V̂i(z(k + 1))

}
+ ρi(z(k))

= argmin
v(k)

{
zT (k)Qz(k) + vT (k)Rv(k) + V̂i(z(k + 1))

}
+ ρi(z(k))

(14)

and

V̂i+1(z(k)) = min
v(k)

{
zT (k)Qz(k) + vT (k)Rv(k) + V̂i(z(k + 1))

}
+ πi(z(k))

= zT (k)Qz(k) + v̂Ti (z(k))Rv̂i(z(k)) + V̂i(z(k + 1)) + πi(z(k)). (15)

3.2 Properties of the Iterative ADP Algorithm with Finite Approximation
Errors

From the iterative ADP algorithm (12)–(15), we can see that for ∀i = 1, 2, . . ., there ex-
ists an approximation error between the iterative performance index functions V̂i(z(k))
and Vi(z(k)). As the accurate iterative control law vi(z(k)) cannot be obtained which
means the iterative performance index functions Vi(z(k)) cannot be accurately ob-
tained, then the detailed value of each approximation error is unknown and nearly
impossible to obtain. It makes the property analysis of the iterative performance in-
dex function V̂i(z(k)) and iterative control law v̂i(z(k)) very difficult. So, in this sub-
section, a new “error bound” analysis method is established. The idea of the “error
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bound” analysis method is that for each iterative index i = 0, 1 . . ., the least upper
bound of the iterative performance index functions V̂i(z(k)) is analyzed, which avoids
to analyze the value of V̂i(z(k)) directly. Using the “error bound” method, it can be
proved that the iterative performance index functions V̂i(z(k)) can uniformly converge
to a bounded neighborhood of optimal performance index function.

Define a new iterative performance index function as

Γi(z(k)) = min
v(k)

{U(z(k), v(k)) + V̂i−1(z(k + 1))} (16)

where V̂i(z(k)) is defined in (15) and v(k) can accurately be obtained in �m. Then, for
∀i = 0, 1, . . ., there exists a finite constant σ ≥ 1 that makes

V̂i(z(k)) ≤ σΓi(z(k)) (17)

hold uniformly. Hence, we can give the following theorem.

Theorem 1. For ∀ i = 0, 1, . . ., let Γi(z(k)) be expressed as (16) and V̂i(z(k)) be
expressed as (15). Let γ <∞ and 1 ≤ δ <∞ are both constance that make

J∗(z(k + 1)) ≤ γU(z(k), v(k)) (18)

and

V0(z(k)) ≤ δJ∗(z(k)) (19)

hold uniformly. If there exists 1 ≤ σ <∞ that makes (17) hold uniformly, then we have

V̂i(z(k)) ≤ σ

⎛⎝1 +

i∑
j=1

γjσj−1(σ − 1)

(γ + 1)
j +

γiσi(δ − 1)

(γ + 1)
i

⎞⎠J∗(z(k)), (20)

where we define
i∑
j

(·) = 0, for ∀j > i and i, j = 0, 1, . . ..

Proof. The theorem can be proved by mathematical induction. First, let i = 0. Then,
(20) becomes

V̂0(z(k)) ≤ σδJ∗(z(k)). (21)

As V̂0(z(k)) ≤ δJ∗(z(k)), then we can obtain V̂0(z(k)) ≤ δJ∗(z(k)) ≤ σδJ∗(z(k)),
which obtains (21). So, the conclusion holds for i = 0.
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Next, let i = 1. We have

Γ1(z(k)) =min
v(k)

{
U(z(k), v(k)) + V̂0(F (z(k), v(k)))

}
≤min

v(k)
{U(z(k), v(k)) + σδJ∗(F (z(k), v(k)))}

≤min
v(k)

{(
1 + γ

σδ − 1

γ + 1

)
U(z(k), v(k))

+

(
σδ − σδ − 1

γ + 1

)
J∗(F (z(k), v(k)))

}
=

(
1 + γ

σδ − 1

γ + 1

)
min
v(k)

{U(z(k), v(k)) + J∗(F (z(k), v(k)))}

=

(
1 +

γ(σ − 1)

γ + 1
+
γσ(δ − 1)

γ + 1

)
J∗(z(k)). (22)

According to (17), we can obtain

V̂1(z(k)) ≤ σ

(
1 +

γ(σ − 1)

γ + 1
+
γσ(δ − 1)

γ + 1

)
J∗(z(k)), (23)

which shows that (20) holds for i = 1.
Assume that (20) holds for i = l − 1, where l = 1, 2, . . .. Then, for i = l, we have

Γi(z(k))

= min
v(k)

{
U(z(k), v(k)) + V̂l−1(F (z(k + 1)))

}
≤ min

v(k)

⎧⎨⎩U(z(k), v(k))+σ

⎛⎝1 + l−1∑
j=1

γjσj−1(σ − 1)

(γ + 1)
j +

γl−1σl−1(δ − 1)

(γ + 1)l−1

)
J∗(z(k))

⎫⎬⎭
≤

⎛⎝1 +

l∑
j=1

γjσj−1(σ − 1)

(γ + 1)
j +

γlσl(δ − 1)

(γ + 1)
l

⎞⎠min
v(k)

{U(z(k), v(k)) + J∗(z(k + 1))}

=

⎛⎝1 +

l∑
j=1

γjσj−1(σ − 1)

(γ + 1)
j +

γlσl(δ − 1)

(γ + 1)
l

⎞⎠ J∗(z(k)). (24)

Then, according to (17), we can obtain (20) which proves the conclusion for ∀ i =
0, 1, . . ..

From (20), we can see that for arbitrary finite i, σ and δ, there exists a bounded error
between the iterative performance index function V̂i(z(k)) and the optimal performance
index function J∗(z(k)). While as i → ∞, the bound of the approximation error may
increase to infinity. Thus, in the following part, we will give the convergence properties
of the iterative ADP algorithm (12)–(15) using error bound method.
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Theorem 2. Suppose Theorem 1 holds for ∀z(k) ∈ �n. If for γ < ∞ and σ ≥ 1, the
inequality

σ <
γ + 1

γ
(25)

holds, then as i→ ∞, the iterative performance index function V̂i(z(k)) in the iterative
ADP algorithm (12)–(15) is uniformly convergent into a bounded neighborhood of the
optimal performance index function J∗(z(k)), i.e.,

lim
i→∞

V̂i(z(k)) = V̂∞(z(k)) ≤ σ

(
1 +

γ(σ − 1)

1− γ(σ − 1)

)
J∗(z(k)). (26)

Proof. According to (24) in Theorem 1, we can see that for j = 1, 2, . . ., the sequence{
γjσj−1(σ − 1)

(γ + 1)
j

}
is a geometrical series. Then, (24) can be written as

Γi(z(k)) ≤

⎛⎜⎜⎜⎜⎝1+
γ(σ − 1)

γ + 1

(
1−
(

γσ

γ + 1

)i
)

1− γσ

γ + 1

+
γiσi (δ − 1)

(γ + 1)
i

⎞⎟⎟⎟⎟⎠ J∗(z(k)). (27)

As i→ ∞, if 1 ≤ σ <
γ + 1

γ
, then (27) becomes

lim
i→∞

Γi(z(k)) = Γ∞(z(k)) ≤
(
1 +

γ(σ − 1)

1− γ(σ − 1)

)
J∗(z(k)). (28)

According to (17), let i→ ∞, we have

V̂∞(z(k)) ≤ σΓ∞(z(k)). (29)

Taking (29) and (28), we can obtain (26).

Corollary 1. Suppose Theorem 1 holds for ∀z(k) ∈ �n. If for γ < ∞ and σ ≥ 1,
the inequality (25) holds, then the iterative control law v̂i(z(k)) of the iterative ADP
algorithm (12)–(15) is convergent, i.e.,

v̂∞(z(k)) = lim
i→∞

v̂i(z(k)) = argmin
v(k)

{
U(z(k), v(k)) + V̂∞(z(k + 1))

}
. (30)

4 Simulation Study

Our example is chosen as the example in [15]. Consider the following affine nonlinear
system

x(k + 1) = f(x(k)) + g(x(k))u(k) (31)
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Fig. 1. Performance index functions. (a) σ = 10−6. (b) σ = 10−4. (c) σ = 10−3. (d) σ = 10−1.
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Fig. 2. State trajectories. (a) σ = 10−6. (b) σ = 10−4. (c) σ = 10−3. (d) σ = 10−1.



Optimal Tracking Control Scheme 9

where x(k) =
[
x1(k) x2(k)

]T
, u(k) =

[
u1(k) u2(k)

]T
. Let the system function

f(x(k)) =

[
0.2x1(k) exp(x

2
2(k))

0.3x32(k)

]
, g(x(k)) =

[
−x1(k)x2(k) 0.1

x2(k) −0.8x1(k)x2(k)

]
.

The desired trajectory is set to η(k) = [ sin(k + π
2 ) 0.5 cos(k) ]T . The performance

index function is defined as (3), where Q = R = I .
We use neural networks to implement the iterative ADP algorithm. The critic net-

work and the action network are chosen as three-layer BP neural networks with the
structures of 2–8–1 and 2–8–2, respectively. We choose four approximation errors σ =
10−6, σ = 10−4, σ = 10−3, σ = 10−1, the iterative performance index functions are
shown in Fig. 1.

The state and corresponding control trajectories are shown in Figs. 2 and 3, respec-
tively. From the approximation errors σ = 10−6, σ = 10−4, we can see that the perfor-
mance index functions are monotonically increasing convergent. While for σ = 10−3,
the performance index function is not monotonically increasing but still is convergent.
While for σ = 10−1, we can see that the iterative performance index function is not
convergent any more and the system is not stable.
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Fig. 3. Control trajectories. (a) σ = 10−6. (b) σ = 10−4. (c) σ = 10−3. (d) σ = 10−1.

5 Conclusions

In this paper, an effective ADP algorithm is developed to solve optimal tracking con-
trol problems for infinite horizon discrete-time nonlinear systems. The iterative perfor-
mance index functions is proved to converge to the finite neighborhood of the
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optimal performance index function if the convergence conditions are satisfied. Finally,
a simulation example is given to illustrate the performance of the present algorithm.
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Abstract. This paper considers the distributed tracking control of un-
certain nonlinear multi-agent systems in the presence of unmeasured
states and unknown input of the leader over an undirected network.
By approximating the uncertain nonlinear dynamics via neural network
and constructing a local observer to estimate the unmeasured states, dis-
tributed output feedback tracking controllers, with static and dynamic
coupling gains, respectively, are proposed, based on the relative observed
states of neighboring agents. It is proved that with the developed con-
trollers, the state of each agent synchronizes to that of the leader for any
undirected connected graphs even when only a fraction of the agents in
the network have access to the state information of the leader, and the
distributed tracking errors are uniformly ultimately bounded. A suffi-
cient condition to the existence of the distributed controllers is that each
agent is stabilizable and detectable. Future works include an extension
to the directed network topologies.

Keywords: Distributed Control, Neural Networks, Nonlinear
Multi-agent Systems, Output Feedback.

1 Introduction

Recent years have witnessed a great interest in consensus problem of multi-agent
systems for its broad applications in engineering such as formation flight of satel-
lites, formation control of unmanned vehicles, sensor networks, and so on. The
key of consensus is to design a distributed control law based on local interac-
tions such that the group agree on some value of interest [1–3]. In literature,
a great deal of effort has been made on two consensus problems of multi-agent

� This work was supported in part by the National Nature Science Foundation of
China under Grants 61273137, 51209026, 61074017, and in part by the Funda-
mental Research Funds for the Central Universities under Grants 2682013CX016,
SWJTU11ZT06, 3132013037.
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systems. One is leaderless consensus, and the other is leader-follower consensus
where there exists an active leader who acts as a trajectory generator for the
group to follow [4, 5]. In literature, the leader-follower consensus is also known
as distributed tracking [11] or cooperative tracking [19].

During the past few years, distributed tracking control of multi-agent systems
has been extensively studied by many researchers from different perspectives. In
[6], a neighbor-based observer is proposed for tracking control of first-order lin-
ear multi-agent system under fixed and variable topologies. In [7], a consensus
algorithm is developed for first-order linear systems with a time-varying leader
dynamics. In [8, 9], distributed output regulation approaches are proposed for
linear multi-agent systems. In [10], consensus of linear multi-agent systems and
synchronization of complex networks are unified in a framework. In [11], coop-
erative tracking control for linear multi-agent systems with a leader of bounded
unknown input is considered. In [12], leader-follower consensus algorithms are
developed for both fixed and switching interaction topologies. In [13], a frame-
work for cooperative tracking is proposed, including state feedback, observer
and output feedback. Note that all aforementioned results are based on the ex-
act linear system model, which may not be adequate to describe the practical
agent dynamics in many real-world applications. Therefore, some researchers
considered the distributed tracking control problem of nonlinear systems [15–
20]. Distributed tracking of first-order nonlinear systems on strongly connected
graphs is investigated in [15], where neural network is employed to account for
the unknown nonlinear dynamics. This result is extended to second-order uncer-
tain nonlinear systems in [16]. Neural network-based leader-following control of
first-order multi-agent systems with uncertainties is presented in [17], and the
result is extended to second-order case using backstepping technique. Robust
consensus tracking of second-order nonlinear multi-agent systems is discussed in
[18], where continuous distributed consensus protocols are developed to enable
global asymptotic tracking performance. Distributed tracking control of high-
order nonlinear systems is provided in [19], where the communication graph does
not require to be connected. Synchronized tracking control of high-order non-
linear systems using state and output information is considered in [20]. Despite
these results, there are still no results on distributed tracking control of nonlin-
ear systems with non-Brunovsky canonical form, especially under the condition
that only the partial state information can be measured.

In this paper, we focus on the distributed output feedback tracking control
of uncertain nonlinear multi-agent systems with an unknown input of the leader
over an undirected network. It is assumed that a fraction of agents have access
to the state of the leader and the input of the leader is bounded. As for the
distributed state feedback tracking control of uncertain nonlinear systems, the
unknown input of the leader can be considered as a disturbance to be rejected
by the neural network. However, this cannot be done in the context of the out-
put feedback case due to the fact the unknown input cannot be merged into the
uncertain part. By approximating the uncertain nonlinear dynamics via neural
networks and constructing a local observer to estimate the unmeasured states,
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distributed output feedback tracking controllers, with static and dynamic cou-
pling gains, respectively, are developed. It is proved that with the developed
controllers, the state of each agent synchronize to that of the leader for any
undirected connected networks, and distributed tracking errors are guaranteed
to be uniformly ultimately bounded. A sufficient condition to the existence of
the distributed controllers is that each agent is stabilizable and detectable. It
is worth noting that the static tracking controller depends on the eigenvalues
of the communication graph and the upper bound of the leader’s control input.
This restriction is removed by using adaptive coupling strategy which results in
a fully distributed observer-based tracking controllers.

2 Preliminaries and Problem Formulation

2.1 Preliminaries

Notation. Throughout the paper, the Euclidean norm, Frobenius norm, min-
imum singular value, maximum singular value, and trace are denoted by || · ||,
|| · ||F , σ(·), σ(·), and tr{·}, respectively. A diagonal matrix is represented by
diag{λ1, ..., λN} with λi being the ith diagonal element. An identity matrix of
dimension N is denoted by IN . The Kronecker product is denoted by ⊗ with
the properties (A ⊗ B)T = AT ⊗ BT , α(A ⊗ B) = (αA) ⊗ B = A ⊗ (αB),
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), where A,B,C,D are matrices and α is a
scalar.

Graph Theory. Consider a network of multi-agent systems consisting of N
agents and one leader. If each agent is considered as a node, the neighbor relation
can be described by a graph G = {V , E}, where V = {n1, ..., nN} is a node set and
E = {(ni, nj) ∈ V×V} is an edge set with the element (ni, nj) that describes the
communication from node i to node j. The neighbor set of the node i is denoted
by Ni = {j|(nj , ni) ∈ E}. Define an adjacency matrix A = [aij ] ∈ R

N×N

with aij = 1, if (nj , ni) ∈ E , and aij = 0, otherwise. Define the in-degree
matrix as D = diag{d1, ..., dN} with di =

∑
j∈Ni

aij . The Laplacian matrix

L = [lij ] ∈ R
N×N associated with the graph G is defined as L = D − A. If

aij = aji, for i, j = 1, ..., N , then the graph G is undirected. A path in a graph
is an ordered sequence of nodes such that any two consecutive nodes in the
sequence are an edge of the graph. An undirected graph is connected if there is
a path between every pair of nodes. Finally, define a leader adjacency matrix as
A0 = diag{a10, ..., aN0}, where ai0 > 0 if and only if the ith agent has access to
the leader information; otherwise, ai0 = 0. For simplicity, denote L+A0 by H .

Lemma 1 [6]. Suppose that the graph G is undirected and connected, and
at least one agent has access to the leader. Then, H is positive definite.

2.2 Problem Formulation

Consider a network of uncertain nonlinear systems consisting of N agents and a
leader. The dynamics of the ith agent is given by
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ẋi = Axi +B[ui + fi(xi)],

yi = Cxi, (1)

where xi = [xi1, ..., xin]
T ∈ R

n is the system state; ui ∈ R
m is the control

input; fi(xi) ∈ R
m is an unknown matched uncertainty; A ∈ R

n×n, B ∈ R
n×m,

and C ∈ R
n×m are known matrices, and the triple (A,B,C) is assumed to be

stabilizable and detectable.
The dynamics of the leader is described by

ẋ0 = Ax0 +Br, (2)

where x0 ∈ R
n is the leader state, and r ∈ R

m is an unknown bounded input
that bounded by ‖r‖ ≤ rM with rM being a constant. For any initial conditions,
we assume that the solution x0 exists for all t ≥ 0.

The control objective of this paper is to design a distributed control law ui
for each agent (1) to track the leader (2) such that the state of each agent
synchronizes to that of the leader, i.e., xi → x0, with bounded synchronization
errors.

To move on, we make use of the following assumption.

Assumption 1 [14, 19, 21, 22]. The matched uncertainty fi(xi) can be linearly
parameterized by a neural network (NN) as

fi(xi) =WT
i ϕi(xi) + εi, ∀xi ∈ D, (3)

where Wi ∈ R
s×m is an unknown constant ideal weight matrix and satisfies

‖Wi‖ ≤ WiM with WiM ∈ R a positive constant; ϕi(·) : Rn → R
s is a known

vector of the form ϕi(xi) = [ϕi1(xi), ϕi2(xi), ..., ϕis(xi)]
T and satisfies ‖ϕi‖ ≤

ϕiM with ϕiM ∈ R a positive constant; εi is the approximation error satisfying
‖εi‖ ≤ εiM with εiM ∈ R a positive constant; D is a sufficiently large domain
D ⊂ R

n.

3 Distributed Output Feedback Tracking Control with
Static Coupling

3.1 Controller Design

To begin with, the following distributed controller is proposed

ui = uin − uiad. (4)

The first term uin is a nominal controller designed as

uin =c1Kêi + c2sgn(Kêi), (5)

where c1 ∈ R, c2 ∈ R are positive coupling gains;K ∈ R
m×n is a feedback matrix

with

K = −BTP, (6)
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where P is the unique positive definite solution to the following Riccati equation

ATP + PA+Q− PBBTP = 0, (7)

where Q ∈ R
n×n is positive definite; êi is defined as

êi =

N∑
j=0

aij(x̂i − x̂j), (8)

where x̂i is an estimate of xi obtained using a state observer described by

˙̂xi = Ax̂i +Buin + F (yi − ŷi),
ŷi = Cx̂i,

(9)

where F ∈ R
n×p is an observer gain matrix designed such that Ae = A− FC is

Hurwitz. Using (5), the observer dynamics of x̂i can be expressed by

˙̂xi = Ax̂i + c1BKêi + c2Bsgn(Kêi) + FC(xi − x̂i). (10)

The second term uiad is an adaptive term that tries to compensate for the
uncertainty fi(xi) and

uiad = ŴT
i ϕi(x̂i), (11)

where Ŵi is an estimate of Wi that updated as

˙̂
Wi =ΓiW [ϕi(x̂i)ỹ

T
i − 1

2κ
ϕi(x̂i)ϕ

T
i (x̂i)Ŵi − kW Ŵi], (12)

where ỹi = yi − ŷi; κ ∈ R, ΓiW ∈ R, and kW ∈ R are positive constants.
Denote an estimated error x̃i = xi − x̂i whose dynamics with (1) and (9) can

be written as

˙̃xi = Aex̃i +B[−W̃T
i ϕi(x̂i) +WT

i ϕ̃i + εi], (13)

where W̃i = Ŵi −Wi; W
T
i ϕ̃i =WT

i [ϕi(xi)− ϕi(x̂i)].
Let x̃ = [x̃T1 , ..., x̃

T
N ]T , W̃ = diag{W̃1, ..., W̃N},W = diag{W1, ...,WN},ϕ(x̂) =

[ϕT
1 (x̂1), ..., ϕ

T
1 (x̂N )]T , ϕ̃ = [ϕ̃T

1 , ..., ϕ̃
T
N ]T , ε = [εT1 , ..., ε

T
N ]T . Then the N subsys-

tem of (13) is written as

˙̃x = (IN ⊗Ae)x̃+ (IN ⊗B)[−W̃Tϕ(x̂) +WT ϕ̃+ ε], (14)

Define an estimated state tracking error δ̃i = x̂i−x0 whose time derivative along
(2) and (9) is

˙̃
δi = Aδ̃i + c1BKêi + c2Bsgn(Kêi) + FCx̃i −Br. (15)
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To facilitate stability analysis, define a tracking error δi = xi − x0 and let δ̃ =
[δ̃T1 , ..., δ̃

T
N ]T , x̃ = [x̃T1 , ..., x̃

T
N ]T , δ = [δT1 , ..., δ

T
N ]T . Then the dynamics of δ̃ can be

written as

˙̃δ =(IN ⊗A+ c1H ⊗BK)δ̃ + c2(IN ⊗B)sgn((H ⊗K)δ̃)

+ (IN ⊗ FC)x̃ − (1⊗B)r. (16)

Finally, introduce a parameter dependent Riccati equation

AT
e Pe + PeAe +Qe + κMMT = 0

M = CT − PeB, (17)

where Qe, Pe ∈ R
n×n are positive definite. 0 < κ ≤ κmax define the largest set

within which there exists a positive definite solution for Pe.

3.2 Stability Analysis

Theorem 3.1. Consider the multi-agent systems (1) with the leader node (2)
under Assumption 1. Suppose the network G is undirected and connected, and
at least one agent has access to the leader node. Select the control law (4) with
the coupling strength c1, c2 satisfying

c1 ≥ 1

2mini=1,...,N(λi)
, (18)

c2 ≥ rM , (19)

and the adaptive law (12), together with the state observer (10). Then, all sig-
nals in the closed-loop network are uniformly ultimately bounded, and the state
estimate error x̃, the estimated state tracking error δ̃ and the tracking error δ
satisfy limt→∞ ‖x̃‖ ≤ γ1, limt→∞ ‖δ̃‖ ≤ γ2, limt→∞ ‖δ‖ ≤ γ3 for some constants
γ1, γ2, γ3 ∈ R.

Proof. Omitted here due to the limited space.

4 Distributed Output Feedback Tracking Control with
Dynamic Coupling

In the previous section, the distributed controller design depends on the minimal
eigenvalue mini=1,...,N(λi) of H and the upper bound rM of the leader’s input.
However, the knowledge of minimal eigenvalue of the graph G belongs to the
global information in the sense that each agent has to know the topology of
the entire communication network to calculate it. On the other hand, the upper
bound rM depends on their own dynamics and may not be explicitly available
to the followers. Hence, the controller given in the previous section cannot be
implemented in a fully distributed manner. Accordingly, the objective of this
section is to develop a fully distributed controller without requiring knowledge
of mini=1,...,N(λi) and rM .
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4.1 Controller Design

Similar to Section 3.1, we propose the following fully distributed control law

ui = uif − uiad, (20)

with

uif =�iKêi + �isgn(Kêi), (21)

where �i ∈ R an adaptive coupling strength updated as

�̇i = Γi�[ê
T
i PBB

TP êi + ‖Kêi‖1 − k��i] (22)

where Γi� ∈ R, k� ∈ R are positive constants. K, P and uiad are defined in (6),
(7) and (11), respectively.

4.2 Stability Analysis

Theorem 4.1. Consider the multi-agent systems (1) with the leader node (2)
under Assumption 1. Suppose the network G is undirected and connected, and
at least one agent has access to the leader node. Select the control law (20) with
the adaptive law (12) and the adaptive coupling strength (22), together with the
state observer (10). Then, all signals in the closed-loop network are uniformly
ultimately bounded , and the state estimate error x̃, the estimated state track-
ing error δ̃, and the tracking error δ satisfy limt→∞ ‖x̃‖ ≤ γ4, limt→∞ ‖δ̃‖ ≤
γ5, limt→∞ ‖δ‖ ≤ γ6, for some constants γ4, γ5, γ6 ∈ R.

Proof. Omitted here due to the limited space.

5 Conclusions

This paper considered the distributed tracking control of uncertain nonlinear
multi-agent systems with unmeasured states and unknown input of leader. Dis-
tributed observer-based tracking controllers with static and dynamic coupling
gains are developed, based on the observed states of neighboring agents. It
is proved with the developed controllers, synchronization to the leader can be
reached for any undirected connected graphs, and all signals in the closed-loop
network are uniformly ultimately bounded. Further works includes an extension
to the directed network topologies.
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Abstract. Quadrotor is a type of rotor craft that consists of four rotors and two 
pairs of counter-rotating, fixed-pitch blades located at the four corners of the 
body. The flight control parameters optimization is one of the key issues for qu-
adrotor. Estimation of distribution algorithm is a new kind of evolutionary algo-
rithm developed rapidly recently. However, low convergence speed and  
local optimum of the EDA are the main disadvantages that limit its further ap-
plication. To overcome the disadvantages of EDA, a chaotic estimation of dis-
tribution algorithm is proposed in this paper. It is a combination of chaos theory 
and principles of estimation of distribution algorithm. Series of experimental 
comparison results are presented to show the feasibility, effectiveness and ro-
bustness of our proposed method. The results show that the proposed chaotic 
EDA can effectively improve both the global searching ability and the speed of 
convergence. 

Keywords: quadrotor, estimation of distribution algorithm, chaos, flight  
control. 

1 Introduction 

Quadrotor is a type of rotorcraft that consists of four rotors and two pairs of counter-
rotating, fixed-pitch blades located at the four corners of the body. The idea of using 
four rotors is realized as a full-scale helicopter as early as 1920s [1]. However, qua-
drotor is dynamically unstable and not widely developed in applications until the 
advance in computers and micro sensors. Flight control system of quadrotor is a com-
plex MIMO nonlinear system with time-varying, strong-coupling characteris-
tics[2].Though we can rely on small disturbance linearization equation to design the 
control system, the apparent coupling among the equations will make it difficult to set 
the parameters. 
                                                           
* Corresponding author. 



20 P. Chu and H. Duan 

 

Estimation of distributio
combination of genetic algo
a significant method dealin
flight control system. Besid
a significant issue in almo
CEC. Nevertheless, it can 
end up without finding a sa
chaos theory in jumping out
basic EDA algorithm, and t
posed method manifests be
applied the chaotic EDA to
AR.Drone. 

The remainder of this pa
eling of the quadrotor. Sub
distribution algorithm. Exp
remarks are contained in se

2 Modeling of the 

AR.Drone is a Wi-Fi-contro
oped by Parrot Inc [1]. It 
128M of RAM running the
plementary Metal Oxide Se
in size of 320*240. An ine
single-axis yaw precision g
vides vertical stabilization.
about 12 minutes with a spe
quadrotor. 

Fig. 1.

1. Transform from angle to

 

2. Transform from voltage 

n algorithm is novel kind of optimization algorithm. It 
orithms and statistical learning [3]. Nowadays it has beco
ng with programming problems such as the optimization
des, estimation of distribution algorithms was put forward
st every academic seminar such as ACMEVO, IEEE 
easily trap into the local optimum, hence would proba

atisfying result. Considering the outstanding performance
t of stagnation, we introduce it to improve the robustnes
the comparative experimental results testified that our p
etter performance than the basic EDA algorithm. We a
o flight parameters optimization of quadrotor, whose typ

aper is organized as follows. Section 2 introduces the m
bsequently, section 3 describes the chaotic estimation
perimental results are given in section 4. Our conclud
ction 5.Acknowledgements are contained at the end. 

Quadrotor 

olled quadrotor with cameras attached to it which is dev
uses an ARM9 468MHz embedded microcontroller w

e Linux operating system [4].The onboard downward Co
emiconductor (CMOS) color camera provides RGB ima
ertial system uses a 3-axisaccelerometer, 2-axis gyro an
gyro. An ultrasonic altimeter with a range of 6 meters p
 With a weight of 380g or 420git can maintain flight 
eed of 5m/s. Fig.1 shows the top view and side view of 

  

. Top view and side view of the quadrotor 

o voltage[5] 

1( ) ( )u t K tθ=

to torque 

is a 
ome 
n of 
d as 
and 

ably 
e of 
s of 
pro-
also 

pe is 

mod-
n of 
ding 

vel-
with 
om-
ages 
nd a 
pro-

for 
f the 

(1) 



 Quadrotor Flight Control Parameters Optimization Based on CEDA 21 

 

The relationship between voltage and torque is: 
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3. Transform from torque to pneumatic tension 
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4. Transform from pneumatic tension to the tilt angle of the quadrotor 
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From 1, 2, 3, 4 we can get the following result through Laplace transformation. 
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The PID controller architecture is shown in Fig. 2 [1]. 
The input of the controller is the errors, which can be obtained by our proposed 

chaotic EDA. The output of the controller is: 
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Considering there is no apparent relationship between the inputs and the outputs of 
the flight control system and in order to avoid the overshoot, we choose the following 
objective function [12]. 
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Where J is the objective function, e (t) represents the error, u (t) denotes the outputs 
of the controller, tu means the rising time and w1, w2,w3 and w4 are the weights and 
w4>>w1. 

( )pK e t

( )
d

de t
K

dt

0
( )iK e t dt

∞

 
( )dy t

 

Fig. 2. The PID controller architecture 

3 Chaotic Estimation of Distribution Algorithm(CEDA) 

3.1 Principles of CEDA 

The term of EDA alludes to a family of evolutionary algorithms which represents an 
alternative to the classical optimization methods in the area [6], [7], [8]. EDA gene-
rates new population by establishing probability distribution model and generate new 
individuals based on the model. Indeed, this distribution is responsible for one of the 
main characteristics of these algorithms. The basic procedures can be shown as  
follows. 

Given an n-dimensional probability vector model P(x) =P(x1, x2,…,xn) =(0.5, 
0.5,…,0.5). Then generate initial population based on the model. We conduct the 
selection operation and select m<n individuals to update the model by the  
following formula: 

 1

1

( )
( )

( )

l i
l i m

l i
i

P x
P x

P x
+

=

=


 (8) 

Where P means the probability, l represents the evolutionary times and m denotes the 
better m individuals selected from the former population. Repeat the selection and 
updating operation until reaching the stopping criteria. 
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Chaos is the highly unstable motion of deterministic systems infinite phase space 
which often exists in nonlinear systems [9].Chaos theory is epitomized by the  
so-called ‘butterfly effect’ detailed by Lorenz [10]. Until now, chaotic behavior has 
already been observed in the laboratory in a variety of systems including electrical 
circuits, lasers, oscillating chemical reactions, fluid dynamics, as well as computer 
models of chaotic processes. Chaos theory has been applied to a number of fields, 
among which one of the most applications was in ecology, where dynamical systems 
have been used to show how population growth under density dependence can lead to 
chaotic dynamics. Sensitive dependence on initial conditions is not only observed in 
complex systems, but even in the simplest logistic equation. In the well-known  
logistic equation: 

 1 4 (1 )n n nx x x+ = −  (9) 

Where 0<xn<1, a very small difference in the initial value of x would give rise to large 
difference in its long-time behavior, which is the basic characteristic of chaos. The 
track of chaotic variable can travel ergodically over the whole space of interest. The 
variation of the chaotic variable has a delicate inherent rule in spite of the fact that its 
variation looks like in disorder. Therefore, after each search round, we can conduct 
the chaotic search in the neighborhood of the current optimal parameters by listing a 
certain number of new generated parameters through chaotic process. In this way, we 
can make use of the ergodicity and irregularity of the chaotic variable to help the al-
gorithm to jump out of the local optimum as well as finding the optimal parameters. 
The experimental results in section 4 show the efficiency of our algorithm. 

3.2 CEDA Approach for Flight Control Parameters Optimization 

Chaotic estimation of distribution algorithm (CEDA) is a combination of chaos theory 
and basic EDA. The CEDA is superior to the basic EDA mainly in the following as-
pects. The introduction of chaotic theory into basic EDA is an important improve-
ment. EDA can converge fast, but sometimes the fast convergence happens in the first 
few iterations and relapses into a local optimum easily [11]. By introducing the chaos 
theory, we can avoid from the local optimum as well as to increase the speed of reach-
ing the optimal solution. The detailed procedure of our proposed CEDA approach to 
the optimization of flight control parameters can be described as follows. 

Step1: Initialize the detailed parameters of the estimation of distribution algo-
rithms (EDA) such as the population size, coding length and so on. 

Step2: Encode the variables in a proper way. 
Step3: Initialize the probability distribution model P0(x)=P0(x1,x2,…,xn) =(0.5, 

0.5,…,0.5). (l=0). Then generate the initial population including N individuals accord-
ing to the Pl(x). 

Step4: Calculate the fitness of every individual according to formula (7) and select 
the best M<=N individuals. 

Step5: Conduct the chaotic search around the best solution based on formula (9). 
Among the engendered series of solutions, select the best one and use it to replace the 
former best solution. 
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Step6: Update the probability distribution model to Pl+1(x) according to formula 
(8) and generate another population of new generation based on the model Pl+1(x). 

Step7: Echo the step4, step5 and step6 until reaching the stopping criteria.  
Step8: Decode the variables and output the results. 

4 Experimental Results 

In order to investigate the feasibility and effectiveness of the chaotic estimation of 
distribution algorithm to the optimization of parameters, a series of comparative expe-
riments have been conducted. 

Our control object is the formula (5). The detailed parameters are set as follows. 
w1=0.999, w2=0.001, w3=2.0, w4=100. The population size is 30. The evolutionary 
times are 100. By means of Matlab, we can easily obtain the comparative results in 
Fig.3 and Fig.4.  

It is noted that the‘EDA’ in Fig.3 and Fig.4 represents the simulation results of ba-
sic EDA while ‘CEDA’ denotes the results of chaotic EDA. It turns out that our me-
thod performs better than the basic EDA. As is shown in Fig.3, the objective function 
can converge to a smaller range with a faster speed by CEDA compared with basic 
EDA. While in Fig.4, we can see clearly that using CEDA can make the quadrotor to 
track the given signal faster and more steadily. 

From the experimental results, it is obvious that our improved EDA can jump outof 
the local optimum as well as speeding up the process of finding the optimal parame-
ters. The experimental results proves that our proposed method is a more feasible and 
effective approach in solving the problem of optimization of flight control parameters. 

 

Fig. 3. Comparative objective function response curves by using EDA and CEDA 
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Fig. 4. Comparative results of step response curves by using EDA and CEDA 

5 Conclusions 

In this paper, an improved estimation of distribution algorithm-CEDA is proposed. 
The chaos theory is introduced into the basic EDA, and a better performance can be 
attained in this way. Comparative experimental results of the proposed CEDA and-
basic EDA are also given to verify the feasibility and effectiveness of our proposed 
approach, which provide a more effective way for the optimization of flight control 
parameters.  

Our future work will focus on applying our proposed CEDA to the actual flight 
control system. 
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Abstract. This technical note introduces stability analysis on pattern-
based neural network (NN) control systems. Firstly, different control
situations are defined as dynamical patterns and are identified via deter-
ministic learning (DL). When the dynamical pattern is correctly classi-
fied, the corresponding NN learning controller with knowledge or
experience is selected. Secondly, by adopting a class of switching sig-
nals with average dwell time (ADT) property , it is shown that the
NN learning controller can achieve small tracking errors and fast conver-
gence rate with small control gains. These results will guarantee not only
stability of the closed-loop systems, but also better performance in the
aspects of time saving or energy saving. Finally, the theoretical analysis
is supported by simulations.

Keywords: Convergence, Pattern-based, Average Dwell Time, Deter-
ministic Learning, Uncertain Nonlinear System, RBF Neural Network.

1 Introduction

Pattern-based control is an interesting and challenging idea in control area. Pat-
tern recognition has been studied in the control literature in the 1960s together
with adaptive, learning and self-organizing systems, see for instance[1]. In that
time, a pattern in control was defined as a control situation which was rep-
resented by a set of state variables. Information of a control situation learned
during the process of closed-loop control was taken as a control experience. Pat-
tern recognition techniques were proposed to classify different control situations.
Based on the classification result, an experienced controller corresponding to the
specific control situation was selected to control the system[2].

The idea of combining pattern recognition with control might be motivated
naturally by human learning and control, in which pattern learning, recognition
and control together play important roles. It has been observed that with suf-
ficient practice a human can learn many highly complicated control tasks, and
these tasks can be performed again and again by a proficient individual with
little effort. The implementation of the idea in technology, however, is very diffi-
cult. One problem, which was indicated as early as in 1970 by Fu[2], is “learning

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 27–34, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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in nonstationary or dynamic environments”. This might be the most difficult
problem in the area of adaptive and learning control systems. Other problems
include representation, rapid recognition and classification of different patterns
in control, i.e., control situations. It is obvious that conventional pattern recog-
nition methods, e.g., representation of nonstationary state variables by using
a finite number of different stationary patterns, and recognition techniques for
identification and classification of stationary patterns, are not suitable to cope
with these problems. A new framework is required to implement pattern-based
learning, recognition and control in a unified way.

Recently, a deterministic learning (DL) theory was proposed for identification,
recognition and control of nonlinear dynamical systems undergoing periodic or
recurrent motions [5]. Elements of DL include (i) employment of the localized
radial basis function (RBF) network, (ii) satisfaction of a partial persistent ex-
citation(PE) condition along a periodic or recurrent orbit, and (iii) accurate
RBF network identification or approximation of unknown nonlinear dynamics
achieved in a local region along a recurrent orbit. This means that a partial true
system model can be accurately identified. Further, rapid recognition of a test
dynamical pattern from a set of training dynamical patterns is achieved by using
the locally accurate NN approximation of system dynamics. The idea of pattern-
based control is implemented as: First, for different training control tasks, the
system dynamics corresponding to the training control tasks are identified via
deterministic learning. Second, a set of training dynamical patterns is learned,
and set of pattern-based NN controllers are constructed accordingly. Third, in
a new control situation, a dynamical pattern is introduced that can be rapidly
recognized by the set of training dynamical patterns. Based as the recognition,
the corresponding pattern-based NN controller is selected to control the system.
This NN controller can be able to achieve guaranteed stability and improved
control performance. In fact, related researches mentioned above have already
been fully detailed in [3,4] and in monograph [5], however, stability issues on
pattern-based NN control systems have not yet been paid much more attention,
i.e., although every NN controller can guarantee the subsystem stable, whether
the overall closed-loop control systems are stable has remained unknown. This
observation motivates the present study.

The main contributions of this paper are given as follows. First, By adopting
a class of switching signals with ADT property, which means that the number
of switches in a finite interval is bounded and the average time between consec-
utive switching is not less than a constant [6], it is shown that the NN learning
controller can achieve better performance. Second, the synchronously switched
stabilization problem of NN control systems with ADT is studied by designing a
set of pattern-based NN controllers and by finding a set of switching signals with
admissible ADT. The minimal ADT is obtained by multiple lyapunov function
method.

The organization of this paper is as follows. In section 2, the problem for-
mulation is described. Section 3 presents that the pattern-based closed-loop NN
control systems constructed by NN controllers can be stabilized when satisfying
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the ADT property. In Section 4, simulation results are presented. Some conclu-
sions are given in Section 5.

2 Problem Formulation

Consider the system
ẋ1 = x2,
ẋ2 = fσ(x) + u,

(1)

where x = [x1, x2]
T ∈ R2 are the state variables. σ is a piecewise constant

function of time, called a switching signal, which takes values in a finite set
K = {1, . . . , N}; N > 1 is the number of subsystems. At arbitrary time t, σ is
dependent on t or x(t), or both, or other logic rules. For a switching time sequence
0 < t1 < t2 < · · · , σ is continues from the right everywhere. When t ∈ [tk, tk+1),
we say that σ(tk)th subsystem is activated and the trajectory x(t) of system (1)
is the trajectory of the σ(tk)th subsystem. fσ(x) are the unknown nonlinearities,
corresponding to different operating environments such as a normal state and
changes in system dynamics, faults in the system, sensor failures, and external
disturbances. Firstly, we design the subsystem state x(t) in all the environments
to track a set of periodic or periodic-like reference orbits xd(t) generated from
the following reference models

ẋd1 = xd2 ,
ẋd2 = fd(xd),

(2)

or
ẋd1 = xd2 ,
ẋd2 = fm

d (xd),
(3)

where xd = [xd1 , xd2 ]
T is the system state, fd(·) or fm

d (·)(m = 1, · · · ,M) is the
smooth nonlinear function and (2) is the case when the reference orbit remains
unchanged but system dynamics fσ(x) changes due to some reasons, whereas
(3) is another case when there are different reference tracking orbits xmd corre-
sponding to changes in initial conditions or system parameters. Both of the two
cases are taken into account in this paper. u ∈ R is the system input generated
by switching among a collection of NN controllers constructed as

uk = −z1 − c2z2 −W
kT
S(Z) + α̇, k ∈ K, (4)

and satisfies z1 = x1−xd1 , z2 = x2−α1, α = −c1z1+ẋd1 ,W = meant∈[ta,tb]Ŵ (t),

here, Ŵ is the estimate of NN optimal value W ∗ and meets
˙̂
W = Γ (S(Z)z2 −

σŴ ), where Z = [x1, x2]
T ∈ Ω ⊂ R2 is the NN input, Γ = Γ T is a design matrix

in diagonal form, σ > 0 is of small value and c1 > 0, c2 > 0 are control gains.
Then we aims to find a set of admissible switching signals such that all signals
in the closed-loop systems (1) remain bounded and the state tracking error
x̃ = x(t)−xd(t) converges to exponentially to a small neighborhood around zero
under the two cases described above.
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3 Main Results

It has been well accepted that the multiple Lyapunov-like functions is an efficient
stability analysis tool for switched systems [7], essentially for slowly switched sys-
tems with ADT. The key point on multiple Lyapunov-like functions is that each
Lyapunov-like function constructed for every subsystem is generally considered
to be decreasing. Our main results are based on this.

Assumption 1. There exist continually differentiable functions Vp : Rn →
R, p ∈ K, positive constants λ0, μ, and functions α, ᾱ of class K∞ such that
∂Vp

∂x Fp(x) ≤ −2λ0Vp, α(‖x‖) ≤ Vp(x) ≤ ᾱ(‖x‖), Vp(x) ≤ μVq(x), for each x ∈ Rn

and p, q ∈ K.

Assumption 2. Reference orbits generated by (2) and (3) are considered to be
covered by the RBF network we have constructed.

Lemma 1. ([8]) If assumption 1 hold, system ẋ = fσ(x) is globally asymptoti-
cally stable for any switching signal that has the average dwell time property with
τ > logμ/λ, where τ is the average dwell time.

Lemma 2. ([9]) System ẋ = fσ(x) is globally asymptotically stable if and only if
there exist a C∞ function V : Rn → [0,+∞) such that α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|),
∇V (ξ)fλ(ξ) < −α3(|ξ|), ∀ξ ∈ Rn, ∀λ ∈ Λ, where α1 and α2 are K∞ function,
α3 is a continues positive definite function.

Theorem 1. Consider the closed-loop system consisting of the plant (1), the
reference model(2), and the neural learning controller(4) with neural weights W

being given as W = meant∈[ta,tb]Ŵ (t). For initial condition xpd(0)(p ∈ K) which
generated the recurrent reference orbit, and with corresponding to initial condi-
tion xp(0) in a close vicinity of ϕdζ

, we have that (i) all signals in the closed-loop
subsystem remain bounded and the state tracking error x̃p = xp(t) − xpd(t) ex-
ponentially converges to a small neighborhood around zero. (ii) the closed-loop
systems (1) is locally asymptotically stable for any switching signal that has the
average dwell time property with τ > logμ/λ. (iii) all signals in the closed-loop
systems (1) remain bounded, and the state tracking error x̃ = x(t)− xd(t) expo-
nentially converges to a small neighborhood around zero.

Proof. (i) The derivatives of zp1 and zp2 of the pth subsystem are given as żp1 =

ẋp1−ẋ
p
d1

= −c1zp1+z
p
2 and żp2 = fp(x)+up−α̇p

1 = −zP1 −c2zp2−W
pT
S(x)+fp(x).

Consider Lyapunov function candidate: V P
z = 1

2z
p
1
2
+ 1

2z
p
2
2
, p ∈ K. We will

rewrite it as V P
z = 1

2zp1
2 + 1

2zp2
2, p ∈ K for concise. Then the derivative of

V P
z is V̇ p

z = −cp1z2p1 − cp2z
2
p2 − zp2(W

T
Sp(x) − fp(x)). Because − 1

2cp2z
2
p2 −

zp2(W
T
Sp(x) − fp(x)) ≤

∣
∣
∣W

T
Sp(x)−fp(x)

∣
∣
∣
2

2cp2
, we have V̇ p

z ≤ −cp1z2p1 − 1
2cp2z

2
p2 +∣∣∣W pT

S(x)− fp(x)
∣∣∣2, furthermore, xp1 − xd1 = zp1, xp2 − xd2 = zp2 − cp1zp1,

for all ‖xp(t) − xpd(t)‖ < dp, so there exists dp1 > 0 (with‖dp‖ − ‖dp1‖ small)
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such that ‖zd‖ < dp1, where zp = [zp1, zp2]
T . Using the local knowledge stored in

W corresponding to the training reference dynamical ϕd and the control system

dynamics fp(x),that is, dist(x, ϕd) < d ⇒
∣∣∣WT

S(x)− fp(x)
∣∣∣ < ξ∗i , we have

V̇ p
z ≤ −cp1z2p1 − 1

2cp2z
2
p2 +

ξ∗i
2

2cp2
, which holds in a local region when ‖zp‖ < dp1.

Choosing cp1 ≤ 1
2cp2 and denoting δp :=

ξ∗i
2

2cp2
, ρp := δp/2cp1 =

ξ∗i
2

4cp1cp2
, then

0 ≤ V p
z < δp + (V p

z (0) − δP )exp(−2cp1t), Hence, we have
2∑

k=1

1
2z

p
k
2
< δp +

(V p
z (0)− δP )exp(−2cp1t) < δp + V p

z (0)exp(−2cp1t).
Since ξ∗i is a small value thanks to the previous accurate learning as described

in Section 2, ρp can be made very small without high control gains cp1 and
cp2. Thus, for initial condition x

p
d(0) which generates the test reference pattern

and with initial condition xp(0) satisfying zp(0) = [xP (0) − xpd(0)] ∈ Ωzp0 :=
{zp
∣∣V p

z < 1
2d

2
p1 − ρp}, which guarantees that ‖zp(t)‖ < dp1 and thus ‖xp(t) −

xpd(t)‖ < dP . Consequently, the state xp will remain bounded in the local region,
in which the past experience is valid for use. Using (4), in which α̇ is bounded
since every term is bounded, and S(xp) is bounded for all values of the NN
input zP = xp, we conclude that control u is also bounded. Accordingly, all the
signals in the closed-loop system remain bounded. We can also prove that every
subsystem of the control systems (1) is locally exponentially stable in the same
way.

(ii) In light of [9], i.e., Lemma 2, because all the systems in the family (1)
are proved to be locally exponentially stable, then for each p ∈ K there ex-
ists a Lyapunov function Vp(x) that for some positive constants αp, βp and
γp satisfies αp(|x|) ≤ Vp(x) ≤ βp(|x|), and ∇Vp(x)fp(x) < −γp(|x|), ∀x ∈
Rn, p ∈ K. Undoubtedly, we obtain ∇Vp(x)fp(x) ≤ −λpVp(x), p ∈ K, where
λp = γp/βp. This implies that Vp(x(t0 + τ)) ≤ exp(−λpτ)Vp(x(t0)), p ∈ K.
Provided that σ(t) = p for almost all [t0, t0 + τ ], σ taking on the value on
[t0, t1), [t1, t2), · · · , [tk−1, tk), where ti+1 − ti ≥ τ, i = 0, 1, · · · , k − 1. From the
above inequalities and Vp(x(t0 + τ)) ≤ exp(−λpτ)Vp(x(t0)), p ∈ K we have

V1(tk) ≤ β1β2···βk

α1,α2···αk
exp(−(λ1 + λ2 + · · · + λk)τ)V1(t0). Then it is clear that

if τ is large enough, we can make sure that V1(tk) < V1(t0).We definite that

μ := sup
{

Vp(x)
Vq(x)

: x ∈ Rn, p, q ∈ K
}
. It is obvious that μ < ∞. Then the lower

bound on τ is guaranteed by Lemma 2 with λp = λ since K is a compact set.
(iii) We can immediately get the conclusion that the closed-loop system (1)

is locally exponentially stable using the result of (i) and (ii), and thus all signals
in the closed-loop system remain bounded, and the state tracking error x̃ =
x(t) − xd(t) converges to exponentially to a small neighborhood around zero.
This concludes the proof. ��
Remark 1. Indeed, accurate RBF network identification or approximation of un-
known nonlinear dynamics is achieved in a local region along a recurrent orbit,
thus only local exponentially stability can be established here.

Remark 2. Note that Theorem 1 implies, if a unknown pattern is recognized to
be similar with one of the patterns of systems (1) and resemble another pattern
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as a result of environment change later, the closed-loop systems remain stable
when satisfying the ADT property.

In practical systems, reference models sometimes may also happen to change for
some reasons, which produce several other cases, such as same system tracks dif-
ferent recurrent reference models, which is similar to Theorem 1, hence, remark
below describes another more complicated case.

Remark 3. Consider the closed-loop system consisting of the plant (1), the ref-
erence model(3), and the neural learning controller(4) with neural weights W

being given as W = meant∈[ta,tb]Ŵ (t). For initial condition xpd(0)(p ∈ K) which
generated the recurrent reference orbit ϕdζp

(p ∈ K), here, different reference
models are designed not by initial conditions but by system parameters, and
with corresponding to initial condition xp(0) in a close vicinity of ϕdζp

, we have

that all signals in the closed-loop systems (1) remain bounded, and the state
tracking error x̃ = x(t)− xd(t) exponentially converges to a small neighborhood
around zero when satisfying the ADT property.

4 Numerical Example

In this section, a numerical example in a neural learning control system will be
presented to demonstrate the potential and validity of our theoretical results. For
the first case, we design the dynamical systems to track the same reference model.
Another case will be designed to track different recurrent reference models.

In this simulation K = {1, 2, 3} and learning control systems (1) with f1(x) =
−x1 + 0.7(1 − x21)x2, f

2(x) = (1 + x22)x1, and f
3(x) = x1 − 1.5(1 + x21)x2. The

kth NN controller appropriately designed as (4), which is capable of learning
autonomously every system during tracking control to a recurrent reference orbit.
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Remark 4. The learning here can be achieved from tracking control in a
deterministic and autonomous way. The parameter convergence is trajectory-
dependent, and the NN approximation of the closed-loop system dynamics is
locally accurate along the tracking orbit. This kind of learning capability is very
desirable in the advanced intelligent control system.

In the first case, the reference model (2) is applied with fd = 1.1xd1 − x3d1 −
0.55xd2 + 1.498cos(1.8t), which has phase plane trajectory of a period-2 limit
cycle. Tracking convergence performance are showed in Fig. 1(a) and Fig. 2. In
the second, the reference model (3) with f1

d (xd) = 1.1xd1 − 1.0x3d1 − 0.4xd2 +
0.620cos(1.8t), f2

d(xd) = 1.1xd1−1.0x3d1−0.55xd2+1.498cos(1.8t), and f3
d (xd) =

1.1xd1−1.0x3d1−0.35xd2+1.498cos(1.8t). Tracking convergence performance are
presented in Fig. 1(b) and Fig. 3 in this case.
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Both of the cases satisfy that the first system is activated for 20s, the second
30s, and the last 50s. We can choose μ = 1.5 and λ = 1, so τ is calculated as
0.176, which is a small value. Then we can easily satisfy stability requirements.

5 Conclusion

Stability issues for pattern-based NN control systems via deterministic learning
were investigated in this paper. The main results describe that closed-loop sys-
tems can be stabilized if it has the ADT property. Results were presented with
three locally exponentially stable subsystems, which were designed to track the
same reference model and different recurrent reference models, respectively. The
simulation showed that the closed-loop systems were stable when the subsystem
was activated long enough. Moreover, the results in this paper might be the first
step towards pattern-based NN control via deterministic learning. In fact, there
are still many problems to be solved on this topic, e.g., whether the results can be
applied to more general nonlinear system, or how to deal with the asynchronous
switching problems. These issues prove to motivate our further study.
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Observer-Based H∞ Fuzzy Control for T-S Fuzzy

Neural Networks with Random Data Losses
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Abstract. This paper investigates the observer-based H∞ control prob-
lem for a class of discrete-time Takagi-Sugeno fuzzy neural networks with
both random communication packet losses. The random data losses are
described by a Bernoulli distributed white sequence that obeys a condi-
tional probability distribution. In the presence of random packet losses,
sufficient conditions for the existence of an observer-based feedback con-
troller are derived, such that the closed-loop control system is asymptot-
ically mean-square stable and preserves a guaranteed H∞ performance.
Finally, a numerical example is provided to illustrate the effectiveness of
the developed theoretical results.

Keywords: Observer-based H∞ control, Takagi-Sugeno fuzzy neural
networks, Random packet losses.

1 Introduction

Since the theory of H∞ control has proposed by Zames [1], much effort has
been made in H∞ controller design in order to guarantee desired stability [2].
However, this control is often based on the assumption that the entire state is
available, which may not hold in many systems. Therefore, it is necessary to
design observers that produce an estimate of the system state [3, 4].

Recently, networked control systems (NCSs) have been widely used in many
areas such as industrial automation, unmanned vehicles, remote surgery, robots
and so on, because of the lower cost of installation and implementation, sim-
pler installation and maintenance, etc. [3, 5]. On the other hand, in NCSs,
there are many new problems such as intermittent data packet losses, network-
induced time delays, and communication constraints, etc. This paper is focused
on observer-based feedback control of mixed delay systems subject to packet
losses. As in practical applications, temporal failures may happen to actua-
tors/sensors, therefore the delivered signals may be incomplete. Hence it is of
engineering significance to design reliable controllers in the presence of possible
actuator/sensor failures. The control problem of systems with packet losses has
been studied in many recent papers [6–10]. It should be pointed out that, in
the most of the existing literature, the random sensor-to-controller packet losses
and the random controller-to-actuator packet losses have not been simultane-
ously considered. Because of the random packet losses, the system performance

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 35–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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requirements such as the disturbance rejection attenuation have not obtained
sufficiently study. Therefore, in this paper, we are motivated to develop a more
reasonable model for a class of T-S fuzzy neural networks with packet losses in
both channels from the sensor to the controller and from the controller to the
actuator. And this will increase the difficulties in the controller design, because
in most of the observer-based controller design problem, the control input of the
observer is identical with the control input of the controlled objects, however,
in the proposed design methods of the observer-based H∞ control, these inputs
are different as the existence of the random packet losses in the communication
channel from the controller to the actuator.

Notation. N+ stands for the set of nonnegative integers; Rn and R
n×m denote,

respectively, the n dimensional Euclidean space and the set of all n × m real
matrices. In is an n dimensional identity matrix. The notation P > 0 (≥ 0)
means that P is positive definite(semi-definite). In symmetric block matrices or
complex matrix expressions, we use an asterisk (∗) to represent a term that is in-
duced by symmetry and diag{· · · } stands for a block-diagonal matrix. Matrices,
if their dimensions are not explicitly stated, are assumed to be compatible for
algebraic operations. Moreover, we may fix a probability space (Ω,F ,P) where,
P , the probability measure, has total mass 1. Prob{α} means the occurrence
probability of the event α, E{x} stands for the expectation of stochastic vari-
able x. L2[0,+∞) is the space of square integrable vectors. The notation ||.||
stands for the usual L2[0,+∞) norm while |.| refers to the Euclidean vector
norm. If A is a symmetric matrix, λmax(A)(respectively λmin(A)) denotes the
largest (respectively, smallest) eigenvalue of A.

2 Problem Formulation

Consider the following discrete-time fuzzy neural network with mixed delays:
Plant Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and · · · θp(k) is Mip, THEN⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = Aix(k) +Adix(k − d(k)) +Ali

+∞∑
m=1

μmx(k −m)

+Biω(k) +Diu(k),
y(k) = αkC1ix(k) + C2iω(k),
z(k) = E1ix(k) + E2iω(k),
x(k) = φ(k),−∞ < k ≤ 0,

(1)

where x(k) ∈ R
n is the state vector; y ∈ R

p is the measured output vector with
random communication packet loss, u(k) ∈ R

m is the control input; z(k) ∈ R
r

is the output; ω(k) ∈ R
q is the disturbance input, which belongs to L2[0,∞);

d(k) denotes the time-varying delay with lower and upper bounds d ≤ d(k) ≤
d̄, k ∈ N

+ where d, d̄ are known positive integers; φ(k) is the initial state of the
system. The constants μm ≥ 0(m = 1, 2, · · · ) satisfy the following convergence
conditions:
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ū :=

+∞∑
m=1

μm ≤
+∞∑
m=1

mμm < +∞. (2)

The stochastic variable αk ∈ R is a Bernoulli distributed white sequence with⎧⎨⎩Prob{αk = 1} = E{αk} := α,
Prob{αk = 0} = 1− E{αk} := 1− α,
var{αk} = E{(αk − ᾱ)2} = (1 − α)α = α2

1.
(3)

Ai, Adi, Ali, Bi, C1i, C2i, Di, E1i, E2i are known real constant matrices with ap-
propriate dimensions, i = 1, 2, · · · , r and r is the number of IF-THEN rules,
θk = [θ1(k), · · · , θp(k)] is known premise variable vector, Mij is the fuzzy set, p
is the premise variable number. Throughout the paper, it is assumed that the
premise variable do not depend on the input variable u(k) explicitly. Given a
pair of (x(k), u(k)), the final output of the fuzzy neural network is inferred as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) =
r∑

i=1

hi(θk)
[
Aix(k) +Adix(k − d(k)) +Ali

+∞∑
m=1

μmx(k −m)

+Biω(k) +Diu(k)
]
,

y(k) =
r∑

i=1

hi(θk)
[
αkC1ix(k) + C2iω(k)

]
,

z(k) =
r∑

i=1

hi(θk)
[
E1ix(k) + E2iω(k)

]
,

x(k) = φ(k),−∞ < k ≤ 0,

(4)

where hi(θk) =
wi(θ(k))∑r
i=1 wi(θ(k))

; wi(θ(k)) =
p∏

j=1

Mij(θj(k)), with Mij(θj(k)) repre-

senting the grade of membership of θj(k) inMij . Then, we will drop the argument

of hi(θk) for brevity. Therefore, for all k, hi ≥ 0,
r∑

i=1

hi = 1.

The design of observer-based H∞ controllers for system (4) is performed
through the parallel distributed compensation, and the overall observer-based
law is inferred as

Observer :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂(k + 1) =

r∑
i=1

hi(θk)
[
Aix̂(k) +Adix̂(k − d(k)) +Diū(k)

+Ali

+∞∑
m=1

μmx̂(k −m) + Li(y(k)− αC1ix̂(k))
]
,

ū(k) = βû(k),

(5)

Controller :

⎧⎨⎩ û(k) = −
r∑

i=1

hi(θk)Kix̂(k),

u(k) = βkû(k),
(6)

where x̂(k) ∈ R
n is the state estimate of system (4), ū(k) ∈ R

m is the control
input of the observer, û(k) ∈ R

m is the control input without packet dropout,
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u(k) ∈ R
m is the control input of the plant, Ki ∈ R

m×n and Li ∈ R
n×p are the

given controller and observer gains, respectively. Ki and Li are two parameters
to be determined. The stochastic variable βk ∈ R is a Bernoulli distributed
sequence with ⎧⎨⎩

Prob{βk = 1} = E{βk} := β,
Prob{βk = 0} = 1− E{βk} := 1− β,
var{βk} = E{(βk − β̄)2} = (1− β)β = β2

1 .
(7)

The stochastic variables αk and βk characterizes the possibilities of the links
from sensor to controller and from controller to actuator. Therefore, the larger
values of αk and βk, the higher the chances of successful transmission.

Remark 1. The packet losses from sensor to controller and from controller to
actuator are simultaneously considered to be two Bernoulli distributed white
sequences as described in [9, 11]. Recently, the control input of the observer
is considered to be different from that of the controller in [4, 11]. Based on
this new kind of observer, the observer-based H∞ fuzzy control of discrete-time
mixed delay systems with random packet losses will be investigated.

Now, define the state estimate error as

e(k) = x(k) − x̂(k). (8)

Substituting (5) and (6) into (4) and (8), then⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η(k + 1) =
r∑

i=1

r∑
j=1

hi(θk)hj(θk)
[
Āijη(k) + (βk − β)Ā1ijη(k) + Ādiη(k − d(k))

+ (αk − α)Ā2iη(k) + Āli

+∞∑
m=1

μmη(k −m) + B̄ω(k)
]
,

z(k) =
r∑

i=1

hi(θk)
[
Ē1iη(t) + E2iω(k)

]
,

(9)

where Ē1i = [E1i 0] ,

η(t) =

[
x(t)
e(t)

]
, Āij =

[
Ai − βDiKj βDiKj

0 Ai − αLiC1i

]
, Ā1ij =

[
−DiKj DiKj

−DiKj DiKj

]
,

Ā2i =

[
0 0

−LiC1i 0

]
, Ādi =

[
Adi 0
0 Adi

]
, Āli =

[
Ali 0
0 Ali

]
, B̄i =

[
Bi

Bi − LiC2i

]
.

The purpose of this paper is to design the observer (6) and the observer-based
controller (6) for system (4), such that, in the presence of the mixed delays,
random packet losses and stochastic nonlinearities, the closed-loop system (9) is
asymptotically mean-square stable and the H∞ performance constraint is also
satisfied. More specifically, we aim to establish some sufficient conditions under
which the following two conditions are satisfied.
(Q1) System (9) is asymptotically mean-square stable.
(Q2) Under the zero-initial condition, for all nonzero ω(k), the controlled output
z(k) satisfies
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∞∑
k=0

E{||z(k)||2} ≤ γ2
∞∑
k=0

E{||ω(k)||2}. (10)

3 Main Results

Theorem 1. Given a positive constant scalar γ > 0 and gain Li,Ki, system
(9) is asymptotically mean-square stable with its H∞ norm being less than γ, if
there exist matrices P,Q,R, L̂ satisfying⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ11 0 0 0 Γ18 Γ19 Γ10 Ē
T
1i

∗ −Q 0 0 Γ38 0 0 0
∗ ∗ − 1

μ̄R 0 Γ58 0 0 0

∗ ∗ ∗ −γ2I Γ78 0 0 ET
2i

∗ ∗ ∗ ∗ −P 0 0 0
∗ ∗ ∗ ∗ ∗ −P 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (11)

where P = diag{P1, P2}, Q = diag{Q1, Q2},R = diag{R1, R2} and P1 = PT
1 >

0, P2 = PT
2 > 0, Q1 = QT

1 > 0, Q2 = QT
2 > 0, R1 = RT

1 > 0, R2 = RT
2 > 0,

Γ11 = (d̄− d+ 1)Q+ μ̄R− P,

Γ18 =

[
AT

ijP1 − βK̂T
j P1 0

βK̂T
j P1i AT

ijP2 − αCT
1iL̂i

]
, Γ19 =

[
−β1K̂T

j P1 −β1K̂T
j P2

β1K̂
T
j P1 β1K̂

T
j P2

]
,

Γ10 =

[
0 −α1C

T
1iL̂i

0 0

]
, Γ38 =

[
AT

diP1 0
0 AT

diP2

]
,

Γ58 =

[
AT

liP1 0
0 AT

liP2

]
, Γ78 =

[
BT

i P1 B
T
i P2 − CT

2iL̂i

]
.

Moreover, if the above conditions are feasible, then Kj = D−1K̂j, Li = P−1
2 L̂T

i .

Proof. Define V (k) =
3∑

i=1

Vi(k), where V1(k) = ηT (k)Pη(k),

V2(k) =

k−1∑
i=k−d(k)

ηT (i)Qη(i) +

k−d∑
j=k−d̄+1

k−1∑
i=j

ηT (i)Qη(i),

V3(k) =
+∞∑
m=1

μm

k−1∑
l=k−m

ηT (l)Rη(l). Calculating the difference of V (k) along sys-

tem (9) and taking the mathematical expectation

E{�V (k)} =

3∑
i=1

E{�Vi(k)} =

3∑
i=1

E{Vi(k + 1)− Vi(k)},
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where

E{�V1(k)} = E

{ r∑
i=1

r∑
j=1

hi(θk)hj(θk)
[
ηT (k)

(
ĀT

ijPĀij + β2
1Ā

T
1ijPĀ1ij + α2

1Ā
T
2i

× PĀ2i − P
)
η(k) + ηT (k − d(k))ĀT

diPĀdiη(k − d(k)) + ωT (k)

× B̄T
i PB̄iω(k) + (

+∞∑
m=1

μmη(k −m))T ĀT
lijPĀli(

+∞∑
m=1

μmη(k −m))

+ 2ηT (k)ĀT
ijPĀdiη(k − d(k)) + 2ηT (k)ĀT

ijPB̄iω(k)

+ 2ηT (k)ĀT
ijPĀli(

+∞∑
m=1

μmη(k −m)) + 2ηT (k − d(k))ĀT
diPB̄iω(k)

+ 2ηT (k − d(k))ĀT
diPĀli(

+∞∑
m=1

μmη(k −m))

+ 2(
+∞∑
m=1

μmη(k −m))T ĀT
lijPB̄iω(k)

]}
,

E{�V2(k)} ≤ E

{
(d̄− d+ 1)ηT (k)Qη(k)− ηT (k − d(k))Qη(k − d(k))

]}
,

E{�V3(k)} ≤ E{μ̄ηT (k)Rη(k)− 1

μ̄
(

+∞∑
m=1

μmη(k −m))TR(

+∞∑
m=1

μmη(k −m))}.

Then,

E{�V (k)} ≤ E

{ r∑
i=1

r∑
j=1

hi(θk)hj(θk)
[
ζT (k)Πζ(k)

]}
, (12)

where

Π =

⎡⎢⎢⎣
Π11 Ā

T
ijPĀdi Ā

T
ijPĀli Ā

T
ijPB̄i

∗ Π22 ĀT
diPB̄i

∗ ∗ Π33 ĀT
liPB̄i

∗ ∗ ∗ B̄T
i PB̄i

⎤⎥⎥⎦ ,
Π11 = ĀT

ijPĀij + β2
1Ā

T
1ijPĀ1ij + α2

1Ā
T
2iPĀ2i + (d̄− d+ 1)Q+ μ̄R− P

Π22 = ĀT
diPĀdi −Q, Π33 = ĀT

l PĀli −
1

μ̄
R,

ζ(k) =

[
ηT (k) ηT (k − d(k)) (

+∞∑
m=1

μmη(k −m))T ωT (k)

]T
.

From system (9),

E{zT (k)z(k)} =

r∑
i=1

hi(θk)
{
ηT (k)ĒT

1iĒ1iη(k) + ηT (k)ĒT
1iE2iω(k)

+ ωT (k)ET
2iĒ1iη(k) + ωT (k)ET

2iE2iω(k)
}
. (13)
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From (12) and (13) and assuming zero initial condition,

JN = E{
N∑

k=0

(zT (k)z(k)− γ2ωT (k)ω(k))}

≤ E

{ r∑
i=1

r∑
j=1

hi(θk)hj(θk)
[ N∑
k=0

ζT (k)Φζ(k)
]}
, (14)

where

Φ =

⎡
⎢⎢⎣
Φ11 ĀT

ijPĀdi Ā
T
ijPĀli ĀTPB̄i + ĒT

1iE2i

∗ Φ22 ĀT
diPĀli ĀT

diPB̄i

∗ ∗ Φ33 ĀT
liPB̄i

∗ ∗ ∗ B̄T
i PB̄i +ET

2iE2i − γ2I

⎤
⎥⎥⎦ ,

Φ11 = ĀT
ijPĀij + β2

1Ā
T
1ijPĀ1ij + α2

1Ā
T
2iPĀ2i + (d̄− d+ 1)Q+ μ̄R + ĒT

1iĒ1i − P,

Φ22 = ĀT
diPĀdi −Q, Φ33 = ĀT

liPĀli −
1

μ̄
R.

Define Ψ = diag{I I I I P−1 P−1 P−1 I}, Pre- and Post-multiply (11) by
ΨT and Ψ , respectively. Then, from (9), Φ < 0, subsequently JN < 0. Therefore,
system (9) is asymptotically stable in the mean square sense. This completes the
proof.

Under the H∞ performance constraint (10) with minimum γ, to design the
observer-based H∞ control law (6) for system (4), the optimization problem is
min
Ω

γ, s.t.(11), where Ω ∈ {P1 = PT
1 > 0, P2 = PT

2 > 0, Q2 = QT
2 > 0, Q1 =

QT
1 > 0, R1 = RT

1 > 0, R2 = RT
2 > 0, and L̂}.

Remark 2. In Theorem 1, the observer-based H∞ control problem has been
solved for discrete-time mixed delay systems with random packet losses and
stochastic nonlinearities. And we can easily obtain the observer-based feedback
controller by solving the LMI equation given in (11) by the Matlab LMI Toolbox.

4 Numerical Example

In this section, a numerical example is used to demonstrate the effectiveness of
the proposed observer-based H∞ fuzzy control for a class of discrete-time mixed
delay systems with random packet losses. Consider the fuzzy neural network:

Model Rule i: IF x1(k) is hi(x1(k)), i = 1, 2, THEN⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(k + 1) = Aix(k) +Adix(k − d(k)) +Ali

+∞∑
m=1

μmx(k −m)

+Biω(k) +Diu(k),
y(k) = αkC1ix(k) + C2iω(k),
z(k) = E1ix(k) + E2iω(k),

(15)
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where

A1 =

[
−0.042 0.806
−1.040 0.100

]
, A2 =

[
−1.042 −0.006
0.040 1.000

]
, Ad1 =

[
0.200 −0.101
−0.101 0.100

]
,

Ad2 =

[
0.100 0.001
0.001 0.200

]
, Al1 =

[
−0.100 −0.010
−0.010 0.100

]
, Al2 =

[
0.100 −0.000
−0.000 0.300

]
,

B1 =
[
0.100 −0.100

]T
, B2 =

[
0.000 0.111

]T
, D1 =

[
0.005 −0.250

]T
,

D2 =
[
0.035 −0.550

]T
, C11 =

[
−0.200 0.200

]
, C12 =

[
−0.100 0.100

]
,

E11 =
[
0.100 −0.200

]
, E12 =

[
0.100 0.200

]
, E21 = 0.100, E22 = −0.100,

C21 = 0.200, C22 = 0.500, d(k) = 1 +
1 + (−1)k

4
, μm = 3−(3+m).

According to (2),ū =
+∞∑
m=1

μm = 1
54 <

+∞∑
m=1

mμm = 1
36 < +∞. And it is easy to

verify that d = 1, d̄ = 1.5.
The design of observer-basedH∞ controllers is performed through the parallel

distributed compensation, and the observer-based law is inferred as

Model Rule i: IF x1(k) is hi(x1(k)), i = 1, 2, THEN

Observer :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̂(k + 1) = Aix̂(k) +Adix̂(k − d(k)) +Ali

+∞∑
m=1

μmx̂(k −m)

+Diū(k) + Li(y(k)− αC11x̂(k))
]
,

ū(k) = βû(k),

(16)

Controller :

{
û(k) = −Kix̂(k),
u(k) = βkû(k),

(17)

In this example, two cases with different data loss probabilities have been
considered and two corresponding controllers have been designed as shown in
Table 1 by Theorem 1. Therefore the obtained results can be used to the system
with random data losses in [6, 8]. However, the results on considering either the
random sensor-to-controller packet losses or the random controller-to-actuator
packet losses in [7, 8] are not suitable for this problem investigated.

The membership function is assumed to be

h1(x1(k)) =

⎧⎨⎩1, x1(k) ≤ −1,
0.5− 0.5x1(k), − 1 ≤ x1(k) ≤ 1,
0, x1(k) ≥ 1,

h2(x1(k)) = 1− h1(x1(k)),

and the initial conditions of system (4) are supposed to be x(0) =
[
0.5 −0.5

]T
,

x̄(0) =
[
0 0
]T

, the disturbance input is chosen as 1
k2 . The state responses of

the controlled system with different data loss probabilities are shown in Figs. 1
and 2, which demonstrate that the closed-loop system is asymptotically stable
in the mean square sense and when the data losses become severer, the H∞
performance γ becomes larger.
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Table 1. Observer gain matrix L, controller gain matrix K and γ at the different data
loss probabilities

ß K1,  K2 L1,  L2

0.9 0.9

0.8 0.8

K1=[-7.5819 -4.2430]
K2=[-0.0136 -0.2216]

L1=[-2.2604  2.8479]
L2=[ 2.4555  8.1589]

K1=[ 1.9818 -0.6012]
K2=[-0.0178 -0.1555]

L1=[-1.5841  1.7970]
L2=[ 3.3389  5.4351]

0.7416

0.9220
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Fig. 1. The state responses of controlled system (4) with α = 0.9, β = 0.9, γ = 0.7416
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Fig. 2. The state responses of controlled system (4) with α = 0.8, β = 0.8, γ = 0.9220
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5 Conclusions

In this paper, the observer-based H∞ fuzzy control has been studied for a
class of discrete-time Takagi-Sugeno fuzzy neural networks with random packet
dropouts. A new Lyapunov-Krasovskii functional, which is introduced to account
for distributed and time-varying discrete-time delays, has been used to design
the observer and controller, such that the closed-loop system is asymptotically
mean-square stable. And the controller parameters can be obtained by solving
certain LMIs. An illustrative example has been used to show the effectiveness of
the proposed method.
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Robust Adaptive Neural Network Control for Wheeled 
Inverted Pendulum with Input Saturation* 
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Abstract. In this paper, a novel control design is proposed for wheeled inverted 
pendulum with input saturation. Based on Lyapunov synthesis method, back-
stepping design procedure and the Neural network (NN) approximation to the 
uncertainty of the system, the adaptive NN tracking controller is constructed by 
considering actuator saturation constraints. The stability analysis subject to the 
effect of input saturation constrains are conducted with the help of an auxiliary 
design system. The proposed controller guarantees uniformly ultimately 
bounded of all the signals in the closed-loop system, while the tracking error 
can be made arbitrarily small. Simulation studies are given to illustrate the  
effectiveness and the performance of the proposed scheme. 

Keywords: wheeled inverted pendulum, backstepping design, neural network 
(NN), input saturation. 

1 Introduction 

Inverted pendulum system is widely concerned by scholars and experts. Because of its 
characteristics of absolute instability, multivariable, high-degree, strong coupling and 
nonlinearity, it is proved to be an ideal model to test the control theory and applica-
tion. The research of control techniques for inverted pendulum has important practical 
meaning.  

In the past several years, there were many literatures to study the inverted pendu-
lum [1-3]. The main topic of this research was how to keep the pendulum balance at 
the upright position. The rail-cart structure was the most usual type in control experi-
ments. Nowadays, many studies of extensions of the inverted pendulum control sys-
tem have been proposed. The most popular problem is how to control a mobile 
wheeled inverted pendulum (WIP) system which the cart is no longer run on a guide 
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rail. In [4], Newtonian approach and linearization method was proposed to design a 
controller for a mobile inverted pendulum. In [5], a dynamic model of the WIP was 
derived with respect to the wheel motor torques as input while taking the nonholo-
nomic no-slip constrains into considerations. In [6], Jung S and Kim SS developed a 
mobile inverted pendulum using the neural network (NN) control combined with 
proportional integral derivative (PID) controller. In [7], a self-tuning PID control 
strategy, based on a deduced model, was proposed to stabilize a two-wheeled vehicle 
(TWV).  

Neural networks were used to construct the control design of dynamic systems in 
many recent studies [8-14]. It is well known that NNs are powerful building blocks 
for a wide class of complex nonlinear system control strategies when model informa-
tion is absent or when a controlled plant is a ‘‘black box’’ [8]. The ability of NNs to 
uniformly approximate arbitrary input–output linear or nonlinear mappings on closed 
subsets is extremely useful. Thus, NN-based controllers have been applied to com-
pensate for effects of nonlinearities and system uncertainties in a control system to 
improve system stability, convergence and robustness. In control engineering, RBF 
neural networks are usually used as a tool for modelling nonlinear functions because 
of their good capabilities in function approximation. 

Besides, in practice, actuator saturation is one of the most important non-smooth 
nonlinearities which usually appear in many industry control systems. This problem is 
of great importance because almost all practical control systems have limitations on 
the amplitudes of control inputs, and such limitations can cause serious deterioration 
of control performances and even destroy the stability of the control systems. If we 
ignore it, it can severely degrade the closed-loop system performance. In [15], Hyper-
bolic tangent function ( ) tanh( )M Mg v u v u= ×  was used to handle the input saturation in 
wheeled inverted pendulum.  But this method is based on the known control inputs. It 
will fail with the consideration of unobservable control inputs. 

This work is motivated by the wheeled inverted pendulum control with the input 
saturation constraint. Based on RBF neural networks, a new algorithm is designed for 
the wheeled inverted pendulum control system with input saturation constraints. Un-
like [15], this paper introduces the auxiliary design system to analyze and handle the 
effect of input saturation. The main objective in this paper is to design a novel con-
troller considering the effect of input saturation. 

2 Problem Formulation 

Different from the mathematical model in [15], with its three degrees of freedom, the 
dynamic equation of WIP system is described as following [4]: 

 

( ) ( )
( ) ( ) ( ) ( )

( )

1 2

2

1

( , ) , +

x t x t

x t f x t g x t u t d t

y x t

=


= +
 =



  (1) 
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where ( ) ( ) ( ) ( )1 2 1 1= , = ,
T T

x x t x t x t x t       is the state(angle) vector of the WIP system 
which is assumed to be available for measurement, ( , ) Rf x t ∈ is the nonlinear dy-
namic function, ( ), Rg x t ∈  denotes the control gain of the system and ( ), >0g x t  
for all x  and t ; ( ) Ru t ∈  is the control input and ( ) Rd t ∈  denotes the unknown 
external disturbance. 

Then let us recall the approximation property of the RBF neural networks. We can 
utilize )( 11

*
1 xT ϕθ to approximate the given function ( )xf  with the approximation 

error bounded by mε , i.e., 

 ( ) * *( )Tf x xθ ψ ε= +  (2) 

With *
mε ε≤ where *ε represents the network reconstruction error, i.e., 

 ( ) )(** xxf Tψθε −=  (3) 

Since *θ is unknown, we use the notation θ̂ to denote the estimation of *θ and devel-
op an adaptive law to update the parameter θ̂ . 

This paper considers the input saturation constraints on rudder u as follows: 

 m Mu u u− ≤ ≤  (4) 

where mu and Mu are the known lower limit and upper limit of the input saturation 
constrains of u , which satisfies, 

 
,        

( ) ,           

,       

M M

m M

m m

u if v u

u sat v v if u v u

u if v u

>
= = ≤ ≤
− < −

 (5) 

where v  is the designed control input of the system. 
The following assumptions are introduced: 
Assumption 1: The reference ( )ry t is a sufficiently smooth function of t , and ry , 

ry , ry  are bounded.  

Assumption 2: The unknown external disturbance ( ) Rd t ∈  is bounded, i.e., there 
is a positive constant ϖ which satisfies ( ) ϖ≤td .  

In this paper, we also use the following lemma to solve the problem of unknown 
external interference ( )td . 

Lemma 1. The following inequality holds for any 0>δ and for any R∈μ  

 δ
δ
μμμ 2785.0tanh-0 ≤





≤  (6) 

The proof of the above lemma follows after straightforward algebraic manipulation. 
The control objective is to design a state-feedback controller with input saturation 

for the system (1), such that all the signals in the closed-loop system remain uniform-
ly ultimately bounded (UUB), and the tracking error 1 1z ( ) ( )rx t y t= −  converges to a 
small neighborhood of the origin. 
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3 Controller Design and Stability Analysis 

In this section, we develop a novel design procedure for the system (1) under the con-
straint of input saturation, by employing backstepping technique. It mainly includes 2 
steps. 

Step 1: Define the error variable 1 1 rz x y= − , and choose the intermediate stabiliz-
ing function 2α  as a virtual control law for the first subsystem. At the same time, 
define error variable 2 2 2z x α= − , thus, considering(1), the time derivative of 1z is  

 1 2 2 rz z yα= + −   (7) 

The virtual control law is chosen as  

 2 1 1 rc z yα = − +   (8) 

where 1 0c > ,  substituting(8) into(7), we obtain 

 1 1 1 2z c z z= − +  (9) 

Consider the Lyapunov function candidate 2
1 1

1

2
V z= , the time derivative of 1V  is   

 2
1 1 1 1 2V c z z z= − +  (10) 

The first term on the right-hand side is negative, and the second term will be consi-
dered in the next step. 

Step2: Define 2 2 2z x α= − , and consider (1) and differentiate 2z with respect to 

time yields 

 ( ) ( )2 2 2 2g +z x f x x u dα α= − = + ⋅ −   (11) 

Where 

 2 1 1 rc z yα = − +   (12) 

For convenience of constraint effect analysis of the input saturation, the following 
auxiliary design system [16] is given as follows: 

 

( )
21 2

( ),

0,

f
c e e g u v e

ee

e

ε

ε

⋅
− − ⋅ + − ≥

= 
 <

  (13) 

where 21 0c > , ( ) 2
2 2

1
( , ) ( )

2
f f z u z g u u⋅ = Δ = ⋅ ⋅ ⋅ Δ + Δ , u u vΔ = − , ε  is a small 

positive design parameter and e  is a variable of the auxiliary design system intro-
duced to ease the analysis of the effect of the input saturation. Control law v  will be 
designed. 
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Consider the following Lyapunov function candidate 

 2 1 2
2 1 2

1 1 1

2 2 2
TV V z eθ θ−= + + Γ +   (14) 

Invoking (10) and (11), the time derivative of 2V  is 

 

( ) ( )

( )
( )( )

2 T 1
2 1 1 1 2 2 2

2 T T *
1 1 2 1 2

T 1

2 T *
1 1 2 1 2

1
2

ˆ

ˆ    = g

ˆ      
ˆ    = g

ˆ       T

V c z z z z z e e

c z z z x u d

ee
c z z z x u d

x z ee

θ θ
θ θ ψ ε α

θ θ
θ ψ ε α

θ θ ψ

−

−

−

= − + + − Γ + ⋅
 − + + + + + ⋅ + − 

− Γ +
 − + + + ⋅ + + − 

− Γ − Γ +

 
 

 


 

 (15) 

It is clear that 

 

2 2
2

2 2
21 2

1

2
z g u u g

e e c e e g u e
e

⋅ ⋅ Δ + Δ
⋅ = − − ⋅ + Δ ⋅  (16) 

 2 21 1

2 2
u e u eΔ ⋅ ≤ Δ +  (17) 

Substituting (16) and (17) into (15), we have 

 

( ) ( )
( )( )

( )
( )( ) ( )

2 T * 2
2 1 1 2 1 2 21

T 1
2 2

2 T *
1 1 2 1 2

T 1 2
2 21

ˆ 0.5

ˆ      )

ˆ   

ˆ      0.5  

V c z z z x gu d c e

x z z g u v

c z z z x gv d

x z c e

θ ψ ε α

θ θ ψ

θ ψ ε α

θ θ ψ

−

−

 ≤ − + + + + + − − − 
− Γ − Γ − ⋅ ⋅ −

 ≤ − + + + + + − 
− Γ − Γ − −

 





（
 (18) 

Consider the input saturation effect, the control law is proposed as 

 ( ) ( )
*

T * 2
20 2 1 1 1

1 ˆ( ) tanhd

d z
v c z e z x c z y d

g s
θ ψ

 
= − − − − + − + − 

  
  (19) 

where 20 0c > , mm dd += ε* , mεε ≤*  and ( ) mdtd ≤ . And it is clear that 

 2 2
2 2

1 1

2 2
z e z e⋅ ≤ +  (20) 

Substituting (19) and(20) into(18), Using 
2 2*ˆ2 T

i i i iθ θ θ θ≥ −   gives 

 
( )

( )

2 2 2 T 1
2 1 1 20 2 21 20

2 2 2 T 1 *T 1 *
1 1 20 2 21 20

ˆ0.5 0.5 0.5 + +0.2785

1 1
0.5 0.5 0.5 + +0.2785

2 2

V c z c z c c e s

c z c z c c e s

σθ θ

σθ θ σθ θ

−

− −

≤ − − − − − Γ

≤ − − − − − − Γ Γ



 
 (21) 
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Let  1 20 21 20

1
2 min , 0.5 , 0.5 0.5 ,

2
C c c c c σ = − − 

 
 , * 1 *1

0.2785
2

TM sσθ θ−= Γ +  then 

 2 2V CV M≤ − + ( )0
M

V t
C

≤ ≤  (22) 

Actually, the Equation (22) means that ( )V t is bounded. Thus, all signals of the 
closed-loop system are proved uniformly ultimately bounded. Moreover, we can ap-
propriately choose the design parameters 1, ,i ic σ−Γ etc. to make the tracking error 
arbitrarily small. This concludes the proof simply. 

4 Numerical Simulation 

In the simulation, the initial condition for )sin(5 td = . The initial conditions of 

1x , 2x are1 , 0 respectively. 
Choose the control parameters 1 77c = , 20 70c = , 21 15c = , =0.01ε , * 6d = , 

{ }2 diag 0.01Γ = , 60Mu = . The initial value of e is 30, Neural networks 

2 2 2
ˆ ( )T Zθ ξ contains 135 nodes (i.e., 2 135l = ), with centers 1( 1, , )l l lμ =  evenly 

spaced in [ ] [ ] [ ]4,4 4,4 6,6− × − × − and widths 22( 1, , )l l lη = =  . The initial weight 

2̂ (0) 0.0θ = . 
From Fig.1, we can see that after a short transit process, a good tracking and a 

small tracking error is obtained. Fig.2 is the trajectories of the control u  with input 
saturation. 

 

Fig. 1. Simulation results for wheeled inverted pendulum system: output y , reference and 
tracking error 
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Fig. 2. Simulation results for wheeled inverted pendulum system: Control u 

5 Conclusion 

In this paper, the adaptive tracking control for the wheeled inverted pendulum has-
been investigated. By employing the NN approximation to address the uncertainty of 
the system, an adaptive neural tracking controller has been explored. In addition, the 
effect of input saturation constrains is considered in this control design. All the sig-
nals of the closed-loop system are guaranteed to be uniformly ultimately bounded. By 
adjusting the parameters, the tracking error may be made arbitrarily small. Simulation 
results for the driven inverted pendulum system are presented to demonstrate the good 
tracking performance of the proposed scheme. 
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Abstract. In this paper, we present an improved learning scheme for extracting 
T-S fuzzy rules from data samples, whereby a neuro-fuzzy architecture 
implements the T-S fuzzy system using ellipsoidal basis functions. The salient 
characteristics of this approach are as follows: 1) A novel structure learning 
algorithm incorporating a pruning strategy into new growth criteria is 
developed. 2) Compact fuzzy rules can be extracted from training data. 3) The 
linear least squares (LLS) method is employed to update consequent 
parameters, and thereby contributing to high approximation accuracy. 
Simulation studies and comprehensive comparisons with other well-known 
algorithms demonstrate the effective and superior performance of our proposed 
scheme in terms of compact structure and promising accuracy. 

Keywords: extracting fuzzy rules, fuzzy neural networks, ellipsoidal basis 
function, structure learning, high approximation accuracy. 

1 Introduction 

Fuzzy logic can be used to express knowledge of domain experts, ill-defined and 
uncertain system and handle real-life situations that the classical control approach 
finds it difficult or impossible to tackle. Fuzzy system can approximate any 
continuous function on a compact set to any desired accuracy [1]. However, the 
conventional way of designing the fuzzy system has the following problems: 1) 
Parameter estimation, the determining of premise parameters and consequent 
parameters; 2) Structure identification, determining the membership function to 
partition input space and the numbers of the fuzzy rules. To circumvent these 
problems, many researchers merge neural networks into fuzzy systems, and thereby 
fuzzy neural networks (FNN) was proposed, which utilize the learning ability of 
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neural networks to extract fuzzy rules and optimize parameters. The famous adaptive-
network-based fuzzy inference system (ANFIS) [2] is known as a seminal work 
which takes advantages of both fuzzy logics and neural networks. However, the 
structure learning of ANFIS is mainly determined by expert knowledge. In [3]-[5],  
the author proposed the self-organizing learning scheme for structure learning. In  
the RAN [6], the method that adds new hidden neurons to the network based on the 
novelty of new data in the process of sequential learning. In addition, the RAN via the 
extended Kalman filter (RANEKF) [7] enhanced the performance of the RAN by 
adopting an extended Kalman filter instead of the LMS method. However, in the 
foregoing two approaches, inactive hidden nodes will be never removed once the new 
hidden units are sequentially generated. To overcome this drawback, the minimal 
resource allocation networks (MARN) [8] developed a pruning method to delete the 
inactive hidden neurons during the learning process. Chen et al. [9] proposed an 
orthogonal least squares (OLS) learning scheme to identify both structure and 
parameters. Recently, the dynamic fuzzy neural networks (DFNN) based on a RBF 
neural network [10] proposed a hierarchical on-line self-organizing learning 
algorithm. The parameters are adjusted by the LLS method and the structure can be 
self-adaptive by growing and pruning criteria. Furthermore, a generalized dynamic 
fuzzy neural networks (GDFNN) based on the ellipsoidal basis function (EBF) [11] 
was presented, which adopted a novel on-line parameter allocation mechanism based 
on Ɛ-completeness to allocate the initial widths for each dimension of the input 
variables. However, the improved performance of the GDFNN is at the cost of slower 
learning speed. Corresponding improvements have been made by a fast and accurate 
online self-organizing scheme for parsimonious fuzzy neural networks (FAOS-
DFNN) [12], whereby a novel structure learning algorithm incorporating a pruning 
strategy into new growth criteria was proposed, and in the parameter learning phase, 
all the parameter of hidden neurons are updated by the extended Kalman filter (EKF) 
method. However, the generalization capability is required to be enhanced. Lately, 
Wang et al. [13] further extended abovementioned fuzzy neural learning schemes to 
fast and parsimonious neuro-fuzzy systems employing generalized ellipsoidal basis 
functions (GEBF), whereby the promising performance of approximation and 
generalization is validated in system modeling and time-series prediction. 

In this paper, we deal with the neuro-fuzzy learning scheme for extracting T-S 
fuzzy rules from data samples. It can increase the accuracy of function approximation 
and speed up the learning process with compact structures. To be specific, a 
generating criteria combined with the pruning strategy is proposed to learn fuzzy 
rules. The system starts with no hidden neurons corresponding to fuzzy rules, and the 
neurons can be generated restrictively based on the combined generation criteria, and 
thereby contributing to a parsimonious structure. After structure learning, the LLS 
method is employed to identify parameters in each learning epoch. Finally, simulation 
studies on function approximation demonstrate the effective performance of our 
learning scheme. Comprehensive comparisons with other well-known methods like 
ANFIS, RAN, OLS, DFNN, GDFNN, and FAOS-PFNN have been conducted to 
evaluate the superiority of our algorithm in terms of high accuracy and compact 
structure. 
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2 System Architecture 

In this section, a four-layer fuzzy neural network, similar to [12], is employed to 
realize the T-S fuzzy system as follows:  

Rule Rj: IF x1 is A1j and …and xi is Aij…and xr is Arj; THEN y is wj, 

(j = 1,2,…,u; i=1,2,…,r.) 

Layer 1: Each node in layer 1 represents an input variable. Let r be the number of 
input variables. 

Layer 2: Each node in layer 2 represents a membership function (MF). Each input 
variable has u membership functions which are in the form of Gaussian functions: 
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where uij is jth membership function of xi; cij is center of the jth Gaussian function of 
xi 

;
 
σij is width of the jth Gaussian function of xi. 

Layer 3: Each node represents a possible IF-part (premise parameters) of fuzzy 
rules, if the T-norm selected to compute each rule’s firing strength is multiplication, 
the output of the jth rule Rj is obtained, 
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Layer 4: Each node represents an output variable as the weighted summation of 
incoming signals and is given by: 
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where y is the value of an output variable and wj is the THEN-part (consequent 
parameters) or connection weight of the jth rule as follows: 

.,...,2,1...22110 ujxkxkxkkw rjrjjjj =++++=  (4)

3 Learning Scheme for Extracting Fuzzy Rules 

In this section, the main idea of this system will be presented. Assume that there are n 
training data pairs, for each observation (Xk, tk). Xk is the kth input vector and tk   is the 
desired output, the output yk of this system can be obtained by (1)-(4). In the structure 
learning process, suppose that it has generated u hidden neurons in layer 3, to obtain a 
fast and accurate fuzzy neuron network, the online learning algorithm of the growth 
criteria incorporates into the pruning criterion is adopted. In parameter learning, the 
traditional LLS approach is used to adjust the consequent parameter. 
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3.1 Criteria of Rule Generation 

3.1.1 System Error 
System error is the deviation between output of this system and desired output, it’s an 
important factor for determining whether to recruit a new rule or not. When the kth 
observation (Xk, tk) incoming, the system error could be computed as follows: 

kkk yte −=  (5)

If 

{ }min

1

max ,max, eekke k

ee

k −=> β , (6)

It means that the performance of the fuzzy neural network unsatisfied, a new fuzzy 
rule should be recruited.  

Here, ke is a predefined threshold during the learning process where emax is the 
maximum error chosen, β∈(0,1) is the convergence constant and emin is the minimum 
error chosen which is the desired accuracy of output of this system. 

3.1.2 Input Partition 
The method of distance criteria will be adopted in this paper, distance criteria means 
the minimum distance between the new observation and the existing membership 
functions, the distance could be described as follows: 

.,...,2,1;,...,2,1, ujnkCXd j

k

kj ==−=  (7)

where Xk=[x1k,x2k,…,xrk]
T is the kth observation, Cj=[c1j,c2j,…,crj]

T is the center of the 
jth cluster. The minimum distance between kth observation and existing centers is 
obtained, 

.,...,2,1,minmin ujdd kjk ==  (8)

If 

{ }min

1

maxmin ,max, ddkkd k

dd

−=> γ  (9)

It implies that the input space cannot be partitioned by the existing input membership 
functions well, so a new cluster should be considered or the premise parameters of the 
existing membership functions should be adjusted. 

Where dmax is the maximum distance chosen; dmin is the minimum distance chosen, 
andγ is the decay constant and γ∈(0,1). 

3.1.3 Generation Criteria 
Assume that there are n input-output data pairs, consider (3) as a special case of the 
linear regression model: 
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Rewriting in a compact form: 

EWTWY +Ψ=Ψ= ;  (11)

where Y=[y1,y2,…,yn]T is the real output vector, T=[t1,t2,…,tn]T is the desired output 
vector, W=[w1,w2,…,wn] is the weight vector, E=[e1,e2,…,en]T is the error vector, 
Ψ=[ψ1, ψ2, …, ψu] is the output matrix of layer 3 which is given by: 
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For any matrix Ψ if its row number is larger than the column number, we can 
transform Ψ into a set of orthogonal basis vector which make it possible to calculate 
an individual contribution to the desired output energy from each basis vector. Thus Ψ 
is decomposed into: 

PQ=Ψ  (13)

where the n×u matrix P=[p1,p2,…,pu] has the same dimension as Ψ with orthogonal 

columns and Q is an upper triangular u×u matrix. 
Substituting (13) into (11) yields: 

EPGEPQWT +=+=  (14)

where G=[g1,g2,…,gu]
T, it could be calculated by the method of LLS. And each 

element is: 
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And an error reduction rate(ERR) due to pk can be defined as: 
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If errk has the largest value, the corresponding pk and T will be greatest, pk is the most 
significant factor to the output. 

Define the ERR an (r+1)×u matrix Δ=(δ1, δ2, …,δu) whose elements can be 
obtained by (16) and the kth column of Δ is the total ERR corresponding to the ith 

RBF unit. Simultaneously, define 
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r
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k
k

δδη  (17)

ηk represents the significance of the kth RBF unit. If 
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errk k<η  (18)

where kerr is the threshold chosen, it indicates that the RBF unit is less important and 
the unit will be pruned, otherwise the fuzzy neural network needs more hidden 
neurons and adjusts the free parameters to achieve high generation performance. 

3.2 Parameter Adjustment 

Note that after structure learning, the parameter learning is performed in the entire 
network regardless of whether the hidden neurons are newly generated or already 
existing.  

When there are new hidden neurons generated, the allocation of new RBF unit 
parameters could be described as: 
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where k is a predefined parameter which determines the overlapping degree.  
After structure learning, premise parameter of all the hidden neurons are updated as 

follow: 
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where kw is an overlap factor determining the overlap of responses of the RBF unites. 
Premise parameters are updated as above-mentioned, and the consequent parameter 

could be updated at the same time. For sake of LLS method can achieve fast 
computation and obtain optimal resolution. So it is adopted to adjust consequent 
parameters, it can be represented as follow: 

YTE

WY

−=
Ψ=

  (21)

In order to find an optimal coefficient vector W such that the error energy ETE is 
minimized as follows: 

.TW =Ψ∗  (22)

The optimal W* is in the following form: 

.+∗ Ψ= TW  (23)

Where Ψ+ is the pseudoinverse of Ψ, it could be calculated as follow: 

( ) .
1 TT ΨΨΨ=Ψ −+  (24)

It shows that LLS method provides a computationally simple but efficient procedure 
for determining the weights. 
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4 Simulation Studies 

In this section, the effectiveness of the proposed algorithm is demonstrated in function 
approximation. Some comparisons are made with other significant learning algorithm 
such as RBF-AFS, OLS, RAN, RANEKF, DFNN, GDFNN, FAOS-PFNN, etc. 
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      Fig. 1. Growth of neurons               Fig. 2. Hermite function and the system 

Table 1. Comparison of Structure and approximationPerformance of Different Algorithms 

Algorithms Numbers of rules RMSE 

Our method 7 0.0026 
D-FNN 6 0.0056 

GDFNN 6 0.0097 

OLS 7 0.0095 

M-RAN 7 0.0090 

RANEKF 13 0.0262 

 
Consider the Hermite polynomial, 
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Random sampling of interval [-4,4] is used to obtain 200 input-output data pairs for 
the training set. The parameters selected in this example are as follows: dmax = 2, dmin 
= 0.1, γ = 0.977, σ0 = 1.1, emax = 2, emin = 0.02, β = 0.95, k = 1.05, kw = 1.01, kerr = 
0.0035. The growth of hidden neurons is showed in Fig. 1. Fig. 2 depicts the target 
function curve and the system approximation output, from which we can see that the 
resulting fuzzy neural network can approximate the original function well. It is 
evident that good approximation performance has been achieved. Comparisons of 
structure and performance of different algorithm are listed in Table 1. It can be seen 
that our method preserves remarkable accuracy with compact structure. 
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5 Conclusions 

In this paper, a fast and accurate approach to extract fuzzy rules via neuro-fuzzy 
learning schemes is proposed. In structure learning, a novel growing criteria 
incorporating into the pruning strategy is presented, which decreases the 
computational burden and accelerate the learning speed. In addition, the LLS method 
has been applied to parameters identification in each learning epoch. Simulation 
studies show that a faster and more accurate fuzzy neural network could be self-
constructed by the proposed algorithm. Comprehensive comparisons with other 
learning scheme indicate that the proposed approach is likely to offer tremendous 
advantages in approximation performance and compact structure. 
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Abstract. This paper deals with the functional equivalence between
Generalized Ellipsoidal Basis Function based Neural Networks (GEBF-
NN) and T-S fuzzy systems. Significant contributions are summarized
as follows. 1) The GEBF-NN is equivalent to a T-S fuzzy system un-
der the condition that the GEBF unit and the local model correspond
to the premise and the consequence of the T-S fuzzy system. 2) The
normalized (nonnormalized) GEBF-NN is equivalent to a normalized
(nonnormalized) T-S fuzzy system using dissymmetrical Gaussian func-
tions (DGF) as univariate membership functions and local models as
consequent parts. 3) The equivalence between the normalized GEBF-
NN and the nonnormalized T-S fuzzy system is established by employ-
ing GEBF units as multivariate membership functions of fuzzy rules. 4)
These theoretical results would not only fertilize the learning schemes for
fuzzy systems but also enhance the interpretability of neural networks,
and thereby contributing to innovative neuro-fuzzy paradigms. Finally,
numerical examples are conducted to illustrate the main results.

Keywords: generalized ellipsoidal basis function, neural network, T-S
fuzzy system, functional equivalence.

1 Introduction

Many investigations have revealed that fuzzy inference systems (FIS) and neural
networks (NN) can approximate any function to any desired accuracy provided
that sufficient fuzzy rules or hidden neurons are available [1]. Innovative merger
of the two paradigms has resulted in a powerful technology termed fuzzy neural
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networks (FNN), which is designed to realize a FIS through the topology of NN,
and thereby incorporating generic advantages of NN like massive parallelism, ro-
bustness, and learning ability into FIS [2]. Actually, the FNN mechanisms stem
from the equivalence between FIS and NN. To our knowledge, Jang et al. [3] pro-
posed the seminal work on the functional equivalence between fuzzy logic and
radial basis function (RBF) neural networks under certain conditions, which ware
relaxed by Andersen et al. [4]. The modified set of restrictions was applicable for
a much wider range of FIS. Similarly, Hunt et al. [5] extended previous results
to a class of generalized Gaussian RBF networks by removing the restrictions
on standard RBF networks and fuzzy systems. Later on, Azeem et al. [6] devel-
oped the generalized ANFIS (GANFIS) by promising a generalized fuzzy model
and considering a generalized RBF (GRBF) network, whereby the functional
equivalent behavior was established. It is followed by the structure identification
for the GANFIS based on the abovementioned equivalence, whereby he mini-
mum number of fuzzy rules can be derived from corresponding GRBF units [7].
Furthermore, Li et al. [8] proved that any given FIS with the fuzzy partition sat-
isfying Kronecker’s property can be approximately represented by a feedforward
neural network, and vice versa. In addition, Kolman et al. [9] introduced a novel
Mamdani-type fuzzy model, referred to as the all-permutations fuzzy rule base,
and showed that it was mathematically equivalent to a standard feedforward
neural network. Aznarte et al. [10] disclosed functional equivalences between
neural autoregressive paradigms and fuzzy rule-based systems in the framework
of time series analysis. Besides, Barra et al. [11] demonstrated an exact mapping
between the Hopfield network and the hybrid Boltzmann machine, where the hid-
den layer is analog and the visible layer is digital. It should be noted that the
previous works mainly focus on various RBF-type neural networks and standard
fuzzy inference systems, which would inevitably undertake restrictive conditions
for equivalences. Lately, Wang [12] proposed a promising Generalized Ellipsoidal
Basis Function based Fuzzy Neural Network (GEBF-FNN) which implements a
T-S FIS. The GEBF-FNN algorithm could effectively partition the input space
and optimize the corresponding weights within the topology of GEBF-FNN. Ar-
guably, this method is an excellent candidate for nonlinear system modeling and
control with unmodeled dynamics and/or uncertainties. However, the functional
equivalence has not been explicitly revealed between GEBF-type networks and
T-S fuzzy systems.

In this paper, we establish the functional equivalence between the GEBF-NN
and T-S fuzzy systems, and thereby enhancing the their abilities of knowledge
extractions and insertions. Firstly, the novel GEBF-NN using dissymmetrical
Gaussian functions (DGF) with flexible widths and shapes, as well as employing
local models as weights between GEBF units and output nodes is formulated
in the MIMO form. Furthermore, normalized and nonnormalized GEBF-NNs
are reasonably related to corresponding normalized and/or nonnormalized T-S
fuzzy systems, whereby membership functions are relaxed to univariate or multi-
variate ones. Theoretical results demonstrate that the GEBF-NN is functionally
equivalent to T-S fuzzy systems with high freedom and less restrictions.
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2 Generalized Ellipsoidal Basis Function Neural Network

In this section, we briefly investigate the generalized ellipsoidal function neural
network (GEBF-NN) so as to present the general network architecture in multi-
input-multi-output (MIMO) form. The intuitive concept of the generalized ellip-
soidal basis function (GEBF) is incorporated into the GEBF-NN topology which
is expected to realize a T-S fuzzy system. The GEBF unit eliminates the sym-
metry restriction of previous RBF-based nodes projected into each dimension
and thereby increasing the clustering flexibility in the input space.

The four-layer architecture of the GEBF-NN is described as follows.

Layer 1. This layer accepts inputs xi, i = 1, · · · , r to the system via input
nodes without any other computations.
Layer 2. Each node in this layer represents an univariate local receptive unit
defined by the dissymmetrical Gaussian-like function (DGF) as follows:

DGF (xi; cij , σij(xi), bij) = exp

(
−
∣∣∣∣xi − cij
σij(xi)

∣∣∣∣bij
)

(1)

σij(xi) =

{
σR
ij , xi ≥ cij

σL
ij , xi < cij

(2)

where cij , σ
L
ij and σR

ij denote the center, left and right spreads of the jth DGF
unit for the input variable xi, respectively. And, bij controls the shape. Note
that the DGF node permits nonidentical spreads with regard to the center in
addition to shape freedom. As a consequence, the DGF unit can be preferably
used as local receptive node with properties of asymmetry and flexibility.
Layer 3. Each node represents a multivariate local receptive unit taking the
DGF units as inputs. The composed output for the GEBF unit is as follows:

GEBF (x; cj , σj(x),bj) =
r∏

i=1

DGF (xi; cij , σij(xi), bij) (3)

where, x = [x1, x2, · · · , xr]T, cj = [c1j , c2j , · · · , crj]T, σj = [σ1j(x1), σ2j(x2), · · · ,
σrj(xr)]

T and bj = [b1j , b2j, · · · , brj ]T denote the input, center, dissymmetrical
width and shape index vectors of the jth GEBF unit, respectively, and the
dissymmetrical width σij(xi) is defined by (2).
Layer 4. The output layer performs the summation of all the inputs weighted
with local model wkj(x) given by,

wkj(x) = a
(0)
kj + a

(1)
kj x1 + · · ·+ a

(r)
kj xr, j = 1, 2, · · · , u, k = 1, 2, · · · , s (4)

where a
(0)
kj , a

(1)
kj , · · · , a

(r)
kj are corresponding weights for input variables. The uni-

form formulation for weighted output could be described as follows:

y = f(x) � AΨ(x) (5)
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where,

A =

⎡⎢⎢⎢⎣
aT
11 aT

12 · · · aT1u
aT
21 aT

22 · · · aT2u
... · · · . . .

...
aT
s1 aT

s2 · · · aT
su

⎤⎥⎥⎥⎦
s×v

(6)

Ψ(x) =
[
ψT
1 (x),ψ

T
2 (x), · · · ,ψT

u (x)
]T

(7)

ψj(x) = [ϕj(x), ϕj(x)x1, · · · , ϕj(x)xr]
T

(8)

here, y = [y1, y2, · · · , ys]T is the output vector, aTkj = [a
(0)
kj , a

(1)
kj , · · · , a

(r)
kj ] is the

weight vector for the output variable yk related to the jth GEBF unit, r, s and
u are the numbers of input, output variables and GEBF units, respectively, and
v = (r + 1)u. ϕj(x) corresponds to the activation level of the jth GEBF unit
which is reasonably defined in two cases, i.e., nonnormalized and normalized,

ϕj(x) =

⎧⎪⎨⎪⎩GEBF (x; cj , σj ,bj)
/ u∑

j=1

GEBF (x; cj , σj ,bj) , normalized

GEBF (x; cj , σj ,bj) , nonnormalized

(9)

3 T-S Fuzzy System

Consider the r-input and s-output system, the general fuzzy rule base for T-S
fuzzy systems in the MIMO form is given by,

Rule j : IF x1 is A1j and ... and xr is Arj ,

THEN yk = āTkj x̄, j = 1, · · · , ū, k = 1, · · · , s (10)

where Aij is the fuzzy set of the ith input variable xi, x̄ = [1, x1, · · · , xr]T and

āTkj = [ā
(0)
kj , ā

(1)
kj , · · · , ā

(r)
kj ] are the augmented input and weight vectors for the

output variable yk in the jth fuzzy rule, r, s and ū are the numbers of input,
output variables and fuzzy rules, respectively.

Let μij(xi) be the membership function for fuzzy sets Aij , the fire strength
of the jth fuzzy rule in normalized and nonnormalized cases could be obtained,

φj(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r∧

i=1

μij(xi)
/ ū∑

j=1

r∧
i=1

μij(xi), normalized

r∧
i=1

μij(xi), nonnormalized

(11)

where “ ∧ ” denotes fuzzy conjunction operator, i.e., T-norm. Accordingly, the
overall output for the foregoing T-S fuzzy system is defined as follows:

y = f̄(x) � ĀΨ̄(x) (12)
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where,

Ā =

⎡⎢⎢⎢⎣
āT
11 āT

12 · · · āT1ū
āT
21 āT

22 · · · āT2ū
... · · · . . .

...
āT
s1 āT

s2 · · · āT
sū

⎤⎥⎥⎥⎦
s×v̄

(13)

Ψ̄(x) =
[
ψ̄T
1 (x), ψ̄

T
2 (x), · · · , ψ̄T

ū (x)
]T

(14)

ψ̄j(x) = [φj(x), φj(x)x1, · · · , φj(x)xr]T (15)

4 Equivalence between GEBF-NN and T-S Fuzzy System

We are now in a position to establish the functional equivalence between the
GEBF-NN and the T-S fuzzy system. Consider the overall outputs of the GEBF-
NN and the general T-S fuzzy systems in MIMO form defined by (5)-(9) and
(11)-(15), respectively, we present the preliminary result as follows.

Theorem 1. For the MIMO system with input x = [x1, x2, · · · , xr]T and output
y = [y1, y2, · · · , ys]T, the GEBF-NN defined by (5) is equivalent to T-S fuzzy
systems (12) if the following conditions are satisfied:

C1 : A = Ā, and C2 : ϕj(x) = φj(x), ∀x, j (16)

where matrices A and Ā are defined by (6) and (13), activation (fire strenth)
functions ϕj(.) and φj(.) are defined by (9) and (11), respectively. ��

Proof. From the condition C1 in (16), we acquire v = v̄ and u = ū in addition to
akj = ākj , k = 1, 2, · · · , s, j = 1, 2, · · · , u. It implies that the number of GEBF
units in the GEBF-NN is equal to the number of fuzzy rules in the T-S fuzzy
system.

Furthermore, under the condition C2 in (16), the vectors ψj(x) and ψ̄j(x) are
functionally equivalent. With u = ū, we obtain Ψ(x) ≡ Ψ̄(x).

As a consequence, one can get AΨ(x) ≡ ĀΨ̄(x), which implies f(x) ≡ f̄(x).
This concludes the proof. ��

Theorem 2. For the MIMO system with input x = [x1, x2, · · · , xr]T and output
y = [y1, y2, · · · , ys]T, the normalized (nonnormalized) GEBF-NN defined by (5)
is equivalent to normalized (nonnormalized) T-S fuzzy systems (12) taking T-
norm “ ∧ ” as multiplication if both activation and firing strength, i.e., (9) and
(11), use normalized (nonnormalized) method and the following conditions are
satisfied: ⎧⎪⎨⎪⎩

u = ū

akj = ākj , ∀k, j
μij(xi) = DGF (xi; cij , σij(xi), bij) , ∀xi, i, j

(17)
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where u and ū are numbers of GEBF units and fuzzy rules, akj and ākj are
vector elements in matrices A and Ā given by (6) and (13), respectively, and
μij(xi) is membership function of fuzzy set Aij . ��

Proof. From the first two equations of the condition (22), one can directly obtain
A = Ā satisfying the condition C1 in Theorem 1.

If the T-norm “∧” of T-S fuzzy system is selected as multiplication, the firing
strength for the jth fuzzy rule is defined as,

φj(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r∏

i=1

μij(xi)
/ ū∑

j=1

r∏
i=1

μij(xi), normalized

r∏
i=1

μij(xi), nonnormalized

(18)

Substituting the third equality of (22) into (18) and using (3), one can obtain

φj(x) =

⎧⎪⎨⎪⎩GEBF (x; cj , σj ,bj)
/ u∑

j=1

GEBF (x; cj , σj ,bj) , normalized

GEBF (x; cj , σj ,bj) , nonnormalized

(19)

Comparing with the activation levels of GEBF units ϕj(x) defined by (9), if both
activation and firing strength use normalized (nonnormalized) method, it holds
that ϕj(x) = φj(x), ∀x, j, which coincides with the condition C2 in Theorem 1.

It follows that the conditions C1 and C2 are satisfied simultaneously if the
equation (22) holds under minor constrains in the statement of Theorem 2. This
concludes the proof. ��

Furthermore, if T-norm “ ∧ ” is used as multiplication, the T-S fuzzy system
defined in (10) can be rewritten in the compact form:

Rule j : IF x is Aj , THEN yk = āTkj x̄, j = 1, · · · , ū (20)

where Aj = A1j ×A2j × · · · ×Arj is the jth multivariate fuzzy set. Accordingly,
the firing strength for the jth fuzzy rule is defined as follows:

φj(x) =

⎧⎪⎨⎪⎩μj(x)
/ ū∑

j=1

μj(x), normalized

μj(x), nonnormalized

(21)

where, μj(x) is the multivariate membership function of fuzzy set Aj .
In this case, we are in a position to obtain insightful equivalence between

GEBF-NN and T-S fuzzy system defined by (20).
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Fig. 1. (a) Five local models, and (b) GEBF-NN output

Theorem 3. For the MIMO system with input x = [x1, x2, · · · , xr]T and output
y = [y1, y2, · · · , ys]T, the normalized GEBF-NN defined by (5) is equivalent to
nonnormalized T-S fuzzy systems (20) if the following conditions are satisfied:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u = ū

akj = ākj , ∀k, j

μj(x) = GEBF (x; cj , σj ,bj)
/ u∑

j=1

GEBF (x; cj , σj ,bj) , ∀x, j
(22)

where u and ū are numbers of GEBF units and fuzzy rules, akj and ākj are
vector elements in matrices A and Ā given by (6) and (13), respectively, and
μj(x) is multivariate membership function of fuzzy set Aj . ��

Proof. Comparing (19) with (21), the proof of this theorem is straightforward
and omitted. ��

5 Numerical Examples

As the illustrative example, a GEBF-NN with arbitrarily selected paramters
(without optimization) is considered to demonstrate the equivalence between a
specific GEBF-NN and the counterpart of T-S fuzzy systems. Without loss of
generality, parameters of DGF units and weight vectors are chosen as follows:
u = 5, c11 = c21 = −0.8, c12 = c24 = −0.5, c13 = c23 = 0, c22 = c14 = 0.5,
c15 = c25 = 0.8, σL

ij , σ
L
ij ∈ {0.4, 0.5, 0.6}, bij ∈ [1, 5], i = 1, 2, j = 1, 2, · · · , 5; aT1 =
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Fig. 2. (a) Normalized T-S fuzzy system output, and (b) Nonnormalized T-S fuzzy
system output

[3.5, 0.3, 0.3], aT2 = [4.1, 0.1,−0.2], aT3 = [3.5,−0.1,−0.1], aT4 = [3.1, 0.3,−0.3],
aT5 = [3.7, 0.2, 0.1]. With the weight vectors aj , five local models shown in Fig.
1(a) correspond to GEBF units. The overall output of the normalized GEBF-NN
is steadily obtained by (5), which is shown in Fig. 1(b).

The overall output of equivalent normalized T-S fuzzy system with member-
ship functions and input space partitioning is shown in Fig. 2(a), from which
we can find that each fuzzy region partitioning the input space corresponds to
a GEBF unit, and thereby contributing to the functionally equivalent output.

The resulting output of the nonnormalized T-S fuzzy system with member-
ship functions directly partitioning the input space is shown in Fig. 2(b). Due to
the nonnormalized calculation, each multivariate membership function derived
from GEBF units is actually used as fuzzy partitions overlapped with each other.
In this case, the nonnormalized T-S fuzzy system using equivalent multivariate
fuzzy sets would reduce implication computations and preserve high flexibil-
ity. In addition, interpretable fuzzy rules could be directly extracted from the
GEBF-NN.

6 Conclusions

In this paper, we establish the functional equivalence between T-S fuzzy sys-
tems and a specific type of four-layer neural networks, termed as Generalized
Ellipsoidal Basis Function based Neural Network (GEBF-NN), under minor re-
strictions. To be specific, the GEBF-NN is equivalent to a T-S fuzzy system of
which the premise firing strength and the consequence part are identical to the
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GEBF unit and the local model simultaneously. Furthermore, we prove that the
normalized (nonnormalized) GEBF-NN is equivalent to the normalized (nonnor-
malized) T-S fuzzy system with DGF units as univariate membership functions
and local models as consequents. In addition, the equivalence between normal-
ized GEBF-NN and nonnormalized T-S fuzzy system is obtained by employing
GEBF units as multivariate membership functions. Finally, numerical examples
illustrate proposed theoretical results.
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Discrete-Time Nonlinear Systems with Input Saturation 
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Abstract. In this paper, an adaptive neural network (NN) control scheme is 
proposed for a class of strict-feedback discrete-time nonlinear systems with inp-
ut saturation. which is designed via backstepping technology and the approxi-
mation property of the HONNs, aimed to solve the the input saturation  
constraint and system uncertainty in many practical applications. The closed-
loop system is proven to be uniformly ultimately bounded (UUB). At last, a si-
mulation example is given to illustrate the effectiveness of the proposed  
algorithm.  

Keywords: input saturation, discrete-time, adaptive control, backstepping, 
high-order neural networks (HONNs). 

1 Introduction 

In recently years, the research on the neural network control of various nonlinear unc-
ertain systems has advanced significantly. In the literature of adaptive neural network 
control, neural networks (NNs) are primarily used as on-line approximators for the 
unknown nonlinearities due to their inherent approximation capabilities. By using the 
idea of backstepping design [1], several adaptive neural-networks control [2-6] have 
been presented for some classes of uncertain nonlinear strict-feedback systems.  

However, the above mentioned methods are limited to the continuous-time domain, 
they are not directly applicabled to discrete-time systems due to the noncausal prob-
lem in the controller design procedures. Recently, the adaptive control via the univer-
sal approximators for uncertain discrete-time nonlinear systems has obtained many 
results. For example, the approach proposed in [7] was given to achieve the tracking 
control of a class of unknown nonlinear dynamic systems using a discrete-time NN 
controller. Subsequently, several elegant adaptive control schemes were studied in [8-
13] for discrete-time nonlinear systems based on the approximation property of the 
                                                           
* This work was supported in part by the National Natural Science Foundation of China (Nos.5 

1179019, 61001090), the Natural Science Foundation of Liaoning Province (No.20102012), 
the Program for Liaoning Excellent Talents in University of (LNET)(Grant No.LR2012016) 
and the Applied Basic Research Program of Ministry Transport of China. 
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neural network. For instance, both the state and ouput feedback adaptive neural net-
work controllers were presented for a class of discrete-time nonlinear systems in the 
strict-feedback form [8]. A novel approach in designing neural network based adap-
tive controllers for a class of nonlinear discrete-time systems was presented in [9]. 

For practical perspective, the input saturation may cause serious influence on sys-
tem stability and performance[14]. Therefore, the effects of input saturation cannot be 
ignored in the controller design [15]. Recently, to solve the input saturation const-
raint, some adaptive continuous nonlinear systems with input saturtion has been ad-
dressed in [16-18]. But there are still little works for the discrete-time nonlinear  
system [19].  

In this paper, adaptive neural network controller via backstepping is presented for a 
class of discrete-time nonlinear system with input saturation. During the controller 
design process, the HONNs are used to approximate the unknown nonlinear function 
in the system. With an aided design system of the input saturation, the input saturation 
constraint of the discrete-time nonlinear system is solved in the controller design. By 
using the lyapunov analysis method, the closed-loop systems are proven to be UUB, 
and the tracking error converges to a small neigborhood of the origin. At last, the 
simulation results show the effectiveness of the proposed method.  

2 Problem Formulation and Preliminaries 

2.1 Problem Formulation 

Consider the following single-input single-output (SISO) discrete-time nonlinear 
system in strict-feedback form in [7]: 
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Where niRkxkxkxkx iT
ii  2,1,)](,),(),([)( 21 =∈= , Rku ∈)(  and  

Ryk ∈  are the state variables, system input and output respectively; ))(( kxf ii  
and nikxg ii ,,2,1)),(( =  are unknow smooth functions. 

The control objective is to design an adaptive NN controller for system (1) such 
that: (ⅰ) all the signals in the closed-loop system are UUB and (ⅱ) the system out-

put follows the desired reference signal )(kyd . The desired reference signal 

0,)( >∀Ω∈ kky yd  is smooth and known, where { }1: xy ==Ω χχ . 

Assumption 2. The signal of nikxg ii ,,2,1)),(( = are known and there exist  

co-nstants 0>ig  and 0>ig  such that iiii gkxgg ≤≤ ))(( ， Ω∈∀ )(kxn . 
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2.2 Input Saturation Constraint 

Considering the input saturation constraints u satisfies maxmin uuu ≤≤− , where 

minu  and maxu  are the known lower limit and up limit of input constraints. Thus, 
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where v  is the designed controller input of the system .  
Then , to be convenient to consider the affect of the input saturation constraint, the 

aided design system is considered as follows: 
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where e  is a state variable of the aided design system, θ  is a small positive design 

parameters, 01 >c  also a design paramaters. and +Δ⋅=Δ=⋅ uuff nn ηη ),()(  

 2

2

1
uΔ ( nη  is a error variable in control design) is a aided design function. 

3 Adaptive NN Control Design with Input Saturation 
Constraint 

Consider the strict-feedback SISO nonlinear discrete-time system described in (1). 
Since assumption 1 is only valid on the compact set Ω , it is necessary to guarantee 
the system’s states remaining in Ω  for all time. We will design an adaptive control 

)(ku  for system (1) which makes system output ky  follow the desired reference 

signal )(kyd , and simultaneously guarantees 0,)( >∀Ω∈ kkxn  under the condi-

tion that Ω∈)0(nx . 

The strict-feedback form (1) is transformed to n-step head function as follows:  
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Form the definition of ))(( kxG ni in each step, it is clear that the value of 

))(( kxG ni  is the same as ))(( kxG ii , therefore ))(( kxG ni satisfy: 

Ω∈∀≤≤ )(,))(( kxgkxGg ninii  

Now we can construct the controller for (4) via backstepping method without the 
problem of causality contradiction. For convenience of analysis and discussion, for 

1,,2,1 −= ni   let: 

))(()()),(()()),(()),(()( kxgkgkxfkfkxGGkxFkF nnnnnnniinii ====   

Before further going, let 12,1, −=+−= niinkki   

Step 1: For )()()( 11 kykxk d−=η , its n th difference is given by  

)()1()()()( 2111 nkynkxkGkFnk d +−−++=+η               (5) 

Considering )1(2 −+ nkx  as a fictitious control, if we choose 
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It is obvious that 0)(1 =+ nkη . Since )(1 kF  and  )(1 kG  are unknown, they 

are not available for constructing a fictitious control )(2 kx d
∗ . However, )(1 kF  and 

)(1 kG  are function of system state )(kxn , therefore we can use HONN to approxi-

mate )(2 kx d
∗  as follow: 
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Letting 1Ŵ  be the estimate of  ∗
1W , consider the direct adaptive fictitious control: 
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f ==−+                     (8) 

and the adaptive law as 
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substituting (6), (7) and (8) into (5) yields 
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Noting the fact that 1111111 )()1())(()(
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z
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Stepi : Simulated the procedure in step 1, for )()()( 1−−= iifii kxkxkη , we can get 

the following direct adaptive fictitious controller and its adaptive law 
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Step n: For )1()()( −−= kxkxk fnnη . its first difference is 

)()()()()()1()1( kxkukgkfkxkxk nfnnnfnn −+=−+=+η      (14) 

To deal with the affect of the input saturation constraint in this step, we employ the 
aided design system in (3). Now, consider the direct adaptive fictitious controller as 

)())((ˆ)( kekzSWku nn
T

n +=                               (15) 

and the adaptive law as follows: 

)1())(()(ˆ)1()1(ˆ +Γ−Γ−=+ kkzSkWkW nnnnnnnn ησ        (16) 

Substituting (15) and (16) into (14) , we can obtain 
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then 0≤Δ nV  once any one of the n  errors satisfies njj gk βη >)(  and 

nj ,,2,1 = , This demonstrates that the tracking error )(,),(),( 21 kkk nηηη   

are bounded for all 0≥k . 

Based on the procedure above, we can conclude that Ω∈+ )1(kxn  and )(ku  

are bounded if Ω∈)(kxn . Finally, if we initialize Ω∈)0(nx , and choose the 

design parameters as (20), there exists a ∗k , such that all errors asymptotically con-
verge to zero, and NN weight errors are all bounded. This implies that the closed-loop 

system is UUB. and niWkx in ...2,1,ˆ,)( =Ω∈  will hold for all 0>k . 

4 Simulation Studies 

Now , we can apply adaptive NN control for a class of discrete-time nonlinear syste-
ms with input saturation to the ship heading control, the discerte-time ship heading 
control plant described by 
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             (20) 

where 21 ,aa  denotes nonlinear coefficients of the ship, TK ,  are the parameter of 

rotary  and trackability. It can be checked that Assumption 1 and 2 are satisfied. In 
ship heading control, the input saturation restrictions of the rudder angle is 35°. 

The initial condition for ship heading control states is Tx ]0,30[0 = , and the H-

ONN codes is 22,22 21 == ll .The simulation results are presented in Figs 1 and 2. 
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Fig. 1. The output ky and the reference signal dy   Fig 2. The input of the controller u  

5 Conclusion 

By using the backstepping technique and the approximation property of the HONNs, 
as well as considering the input saturation, an adaptive control approach is proposed 
for a class of discrete-time nonlinear systems with input saturation. In this paper, the 
proposed controller solves the input saturation constraint and system uncertainty in 
practical applications, and all the signal of the resulting closed-loop system were 
guaranteed to be UUB, the tracking errors can be reduced to a small neighborhood of 
zero. The simulation example is proposed to show the performance of the presented 
scheme.  
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Abstract. In this brief, we consider the problem of tracking a desired trajectory 
for fully actuated autonomous underwater vehicle (AUV), in the presence of ex-
ternal disturbance and model errors. Based on the backstepping method and 
Lypunov stability theorem, we introduce the dynamic surface control (DSC) 
technique to tackle the problem of “explosion of complexity” which existing in 
the traditional backstepping algorithm. Furthermore, the norm of the ideal 
weighting vector in neural network (NN) systems is considered as the  
estimation parameter, such that only one parameter is adjusted. The proposed 
controller guarantees uniform ultimate bounded (UUB) of all the signals in the 
closed-loop system, while the tracking error converges to a small neighborhood 
of the origin. Finally, simulation studies are given to illustrate the effectiveness 
of the proposed algorithm. 

Keywords: underwater vehicle, function approximation, neural network,  
dynamic surface control, trajectory tracking. 

1 Introduction 

With the increased focus on subsea resources, activities are moving towards deeper 
and harsher ocean environments. The trajectory tracking of AUV has been required 
and developed for various applications such as scientific and environmental data ga-
thering, inspection and construction of underwater structures etc[1]. An important 
issue of tracking control of AUV is the handling of unknown perturbations and model 
errors. In many practical applications on the control of uncertain nonlinear systems, 
neural network-based control methods are shown to be more efficient compared with 
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other modern control techniques due to their universal approximation capabilities [2]. 
However, a common weakness of these control schemes is that the number of updated 
parameters depends on the number of the neural network nodes. With an increase of 
the nodes, the number of parameters to be estimated will increase significantly, i.e. 
the problem of “dimensionality curse”. This problem was first solved by Yang etc in 
there pioneering works [3-5]，where some kinds of so-called “minimal learning pa-
rameter(MLP)” algorithms containing much less online adaptive parameters. As a 
result, only one parameter needs to be estimated online regardless of the number of 
the NN nodes. So it can guarantees that the computational burden of the algorithm 
drastically be reduced and the algorithm is convenient to implement in applications. 
On the other hand, the effect of the environmental disturbance is addressed by using 
the property of hyperbolic tangent function, so the AUV dynamic model system has a 
strong robustness. 

Furthermore, with the development of a powerful recursive-design procedure, i.e., 
adaptive-backstepping technique, there are remarkable progresses for multi-input 
multi-output nonlinear systems [6], these schemes do not require matching conditions. 
But a major drawback with the backstepping technique is the problem of “explosion 
of complexity” [7], which is caused by the repeated differentiations of certain nonli-
near functions. That is, the complexity of the controller grows drastically as the sys-
tem order increases. To overcome this drawback, dynamic surface control technique 
was proposed by introducing a first-order filtering of the synthetic input at each step 
of the traditional backstepping approach [8-9]. There are also other means to elimi-
nate the calculations of derivatives of virtual controls in typical backstepping design, 
such as a command filtered approach in [10]. 

Inspired by the previous work, a novel NN based adaptive DSC approach was pro-
posed for tracking control of underwater vehicles with uncertainties. Especially, mod-
eling errors are taken into account in the governing mathematical model, which were 
ignored in the past research. The operation of differentiation is replaced by introduc-
ing first-order filter, which would eliminate the explosion of complexity in the  
traditional backstepping design. Moreover, to reduce considerably the number of 
adjustable parameters in the controller design, the norm of the ideal weighting vector 
in NN systems is considered as the estimation parameter in the proposed method. The 
proposed controller guarantees that the computational burden of the algorithm can 
drastically be reduced and the algorithm is convenient to implement in applications. 

2 Problem Formulation and Preliminaries 

By use of Newtonian or Lagrangian mechanics analysis, the mathematical model for 
underwater vehicle motion of six degrees of freedom can be obtained in the general 
form [11]: 

 
(1) ( ) )( ( ) ( ) ( ), , ,M C v G D v vη η η η η η η η ω τ+ + + + Δ + =  
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Where, [ ]Tzyx ψθφη =  is the position and Euler angles vector with 

respect to earth-fixed coordinate system; [ ]T
v u v w p q r=  is the velocity vec-

tor with respect to body-fixed coordinate system;ω  is an immeasurable environmen-

tal disturbance vector due to waves, sea current or cable traction etc. ( )η,vΔ  denotes 

the modeling errors vector or system perturbation; ),( ηvD  denotes the general 

damping coefficients matrix derived from potential damping, skin friction, wave drift 
damping and damping due to vortex shedding etc. )(ηM  is the inertia matrix, 

),( ηvC  is the so-called centripetal-Coriolis matrix. Both ( )ηM  and ),( ηvC  

are related to rigid-body dynamics and added mass forces and moments. )(ηG  is 

the gravitational or restoring forces vector, τ  denotes the external forces vector pro-
vided by rudders, thrusters or propellers etc. 

3 Controller Design 

The whole NN controller design procedure contains 2 steps, and the actual control 
law will be deduced at the second step. The norm of the ideal weighting vector in NN 
systems in considered as the estimation parameter instead of the elements of weight 

vector. Defining 
2*

22 WT =λ , since *
2W  is unknown, T

2λ  will be replaced by its 

estimation value in the following design procedure. Throughout this paper, let 

222

~ˆ λλλ =− . The detailed design procedure as follows. 

Choosing ηη == 21 ; xx . Eq.(1) can be rewritten as the following: 

21 xx =  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )τηηηωηηηηηηη 1111
2

1
2

1
2 ,,, −−−−−− +Δ−−−−−= MvMMGMxvDMxvCMx  

Step 1: 
Let 

 (2) 

which is called the error surface with dη  as the desired trajectory. Then 

 (3) 

Let 

 (4) 

which is called the second error surface. Where 2a  is a new state variable and can 

be obtained by introducing a first-order filter with a time constant 2e  as follows. 

 (5) 

1 1 dz x η= −

dd xxz ηη  −=−= 211

222 axz −=

( ) ( )00 222222 raraae ==+
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Substituting Eq.(6) and Eq.(4) into Eq.(3) gives 

 (7) 

Consider the following Lyapunov function candidate: 

 (8) 

The derivative of 1V  is 

 (9) 

Choose the virtual control 2r  as follows: 

 (10) 

Substituting Eq.(10) into Eq.(9) gives 

 

 
(11) 

Choosing 01 2 ak +≥ , where 0a  is a positive constant. 

The Eq.(11) can be rewritten as follows: 

 (12) 

Substituting Eq.(10) into Eq.(6) gives 
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 (16) 

Where ( )iB2  is a continuous function and has a maximum value ( )iM 2  i.e. 

( ) ( )iMiB 22 ≤
, 

please refer to [9] for details, 61 ≤≤ i . 

Substituting Eq.(16) into Eq.(15) gives 

 (17) 

Then Eq.(12) can be rewritten as the following: 

 (18) 

Let 

 (19) 

Where 0>b . 
Using Young’s inequality, it follows that  
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Step 2: consider the following Lyapunov function candidate: 
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where 02222 >Γ=Γ T . 
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If the RBFNN is used to approximate the ( ) ( )ηη ,1 vM Δ− − , we have 

 (25) 

 (26) 

The control law is proposed as 
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where 0s > , then   
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It is clear that 
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Noting the following fact: 

 (33) 

 (34) 

Let ( ) 01
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Invoking Eq.(32), Eq.(33) and Eq.(34), the Eq. (31) can be written as 

 (35) 

where ( )20
222

2

2
2
2

2

1
2785.0

222
λλσ

ε
−++++= s

bb
C . Then 

 (36) 

It follows that, for any ( ) 21
01 aC>μ , there exists a constant 0>T  such that 

( ) 11 μ≤tz  for all Ttt +≥ 0 , and the tracking error can be made small, since 

( ) 21
0aC  can arbitrarily be made small if the design parameters are appropriately 

chosen. 

4 Simulation Result 

In this section, an example is given to show the efficiency of the proposed scheme. 
We will use the nonlinear model of the Naval Postgraduate School AUV Ⅱ[11]. 

The reference trajectory is [ ]2sin( ) 2sin(2 ) 20sin(4 ) 10sin(0.25 ) 10sin(0.5 ) 20s i n(2 )
T

d t t t t t tη = , 

and the initial trajectory is assumed 30% deviation from the desired. Modeling error is 

assumed ( ) ξη sin6, =Δ v  ( 11 zz +=ξ ). The designed parameters of the above 

controller are given as 101 =k , 102 =k , 1.02 =e , 1.0=s , { }5.022 diag=Γ , 

5.02 =σ , the initial value of 2λ  is set zero. 

It can be observed that the tracking performance is satisfactory under the time-
varying disturbance and model errors using the proposed NN controller. 
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Fig. 1. Trajectory of AUV 

5 Conclusions 

In this brief, stable approximation-based tracking control has been designed for AUV 
in the presence of time-varying environmental disturbances, model errors. The con-
troller is obtained by using Lyapunov function design in combination with DSC and 
RBFNN techniques. It has been shown that the closed-loop signals under the pro-
posed control are uniformly ultimately bounded and the error signals can be made 
small through appropriate choice of control design parameters. On the other hand, the 
advantages of proposed algorithm are that the computational burden of the algorithm 
can drastically be reduced and the algorithm is convenient to implement in applica-
tions. Simulation results have demonstrated that the AUV is able to track a desired 
trajectory satisfactorily. 
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Abstract. This paper proposes to use a state feedback method to con-
trol the Hopf bifurcation for a fractional order Hindmarsh-Rose neuronal
model. The order of the fractional order Hindmarsh-Rose neuronal model
is chosen as the bifurcation parameter. The analysis shows that in the
absences of the state feedback controller, the fractional order model loses
stability via the Hopf bifurcation early, and can maintain the stability
only in a certain domain of the gain parameter. When applying the state
feedback controller to the model, the onset of the undesirable Hopf bi-
furcation is postponed. Thus, the stability domain is extended, and the
model possesses the stability in a larger parameter range. Numerical sim-
ulations are given to justify the validity of the state feedback controller
in bifurcation control.

Keywords: Fractional order Hindmarsh-Rose neuronal model, Hopf
bifurcation, State feedback, Bifurcation control.

1 Introduction

Recently, the applications of fractional calculus [1] have grown rapidly,
which has attracted fairly broad research activity, including viscoelastic
systems [2], dielectric polarization [3], electrode-electrolyte polarization [4],
electromagnetic waves [5], quantitative finance [6], and quantum evolution of
complex systems [7].

In this paper, we consider the following fractional order system as the extended
Hindmarsh-Rose neuronal model

Dα
t x = c(x− x3

3
− y + I),

Dα
t y =

x2 + dx− by + a

c
, (1)

where x and y denote the cell membrane potential and a recovery variable,
respectively. I represents the external stimulus. a, b, c and d are parameters. Dα

t

is the fractional derivative of x and y of order α (0 < α ≤ 1) and in the Caputo
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sense is defined as

Dα
t f(t) =

1

Γ (m− α)

∫ t

0

f (m)(s)

(t− s)α−m+1
ds, (2)

where m is the first integer larger than α, i.e., m− 1 < α ≤ m and Γ (·) is the
gamma function. Using the order α as the bifurcation parameter, it has been
found in [8] that a Hopf bifurcation may occur as the order α passes through
a critical value in model (1), where a family of oscillations bifurcate from an
equilibrium point.

Bifurcation control refers to the control of bifurcation properties of nonlinear
dynamic systems, thereby resulting in some desired output behaviors of the sys-
tems. Typical objectives of bifurcation control include delaying the onset of an
inherent bifurcation, stabilizing an unstable bifurcated solution or branch, and
changing the critical values of an existing bifurcation [9]. Bifurcation control
has attracted many researchers due to its promising potential applications in
various areas: the prevention of voltage collapse in electric power systems, the
stabilization of rotating stall and surge in axial flow compressors, the regula-
tion of human heart rhythms and neuronal activity behavior, the elimination of
seizing activities in human cerebral cortex, and so on [10]. Various bifurcation
control approaches have been proposed in the literature [11,12,13]. Particularly,
for the problem of relocating an inherent Hopf bifurcation, a dynamic state
feedback control law incorporating a washout filter was proposed [11]. Later,
a static state feedback controller with polynomial functions was developed to
control Hopf bifurcations in the Lorenz and Rossler systems [13].

In this paper, we will apply an effective state feedback scheme to the fractional
order Hindmarsh-Rose neuronal model (1) to control the Hopf bifurcation. We
will show that the state feedback controller can increase the critical value of
the Hopf bifurcation of the order, thereby guaranteeing the stability for large
values of the order. It should be noted that the state feedback controller has
been successfully used to autonomous systems on the Hopf bifurcation control
[11,13], however, we first apply the state feedback controller to a fractional order
system to realize the control of the Hopf bifurcation. To the best of the authors
knowledge, such Hopf bifurcation control problem has not been investigated yet.

2 Bifurcation of Uncontrolled Model

In this section, the results of the stability and Hopf bifurcation for the fractional
order Hindmarsh-Rose neuronal model (1) obtained in [8] are briefly reviewed
here for convenience of comparison as well as for completeness.

Let E0 = (x0, y0) be the equilibrium of (1), i.e., it is the solution of equation

x− x3

3
− y + I = 0,

x2 + dx− by + a = 0. (3)
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Theorem 1. ([8]) If n > 1
4m

2 and m < 0, the equilibrium E0(x0, y0) of (1) is
locally asymptotically stable when α ∈ (0, α∗), and unstable when α > α∗, where

m =
b

c
− c(1− x20), n = 2x0 + d− b(1− x20), (4)

and

α∗ =
2

π
arctan

−
√
4n2 −m2

m
. (5)

Theorem 2. ([8]) Suppose that n > 1
4m

2 and m < 0. Then (1) undergoes a
Hopf bifurcation at the equilibrium E0 when the fractional order α passes through
the critical value α∗, where α∗ is defined by (4) and (5).

Remark 1. For the fractional order Hindmarsh-Rose neuronal model (1), it can
be seen from Theorems 1 and 2 that the Hopf bifurcation may occur as the order
passes through the critical point α∗, where a family of oscillations bifurcate from
an equilibrium point. Thus, in this case the stability is not guaranteed, which
is in general not desirable. In this paper, we design a state feedback scheme to
postpone the undesirable onset of α∗. Hence, the stability domain is extended,
and model (1) possesses the stability in a larger parameter range.

3 Bifurcation Control by State Feedback

Following the general idea of the polynomial function controller [13], we propose
a linear state feedback controller for the first equation of model (1) as follows:

u = −γ(x− x0), (6)

where γ is a positive feedback gain parameter, which can be manipulated to
control the Hopf bifurcation so as to achieve desirable behaviors,

Remark 2. The nonlinear state feedback controller (6) preserves the equilibrium
point E0(x0, y0) of the fractional order Hindmarsh-Rose neuronal model (1).
Thus, the bifurcation control can be realized without destroying the properties
of the original model (1).

Remark 3. If the control objective is to relocate the onset of the Hopf bifurca-
tion to a desired location, then the linear term is used only. The higher order
terms can be added to influence the frequency and amplitude of the bifurcating
oscillations.

Remark 4. Although the state feedback controller with polynomial functions
has been successfully used to control the Hopf bifurcation in various autonomous
systems [11,13,?], this is the first time that the state feedback controller is applied
to a fractional order system to realize the control of the Hopf bifurcation.
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With the nonlinear state feedback controller (6), the controlled fractional
order Hindmarsh-Rose neuronal model (1) becomes

Dα
t x = c(x− x3

3
− y + I)− γ(x− x0),

Dα
t y =

x2 + dx − by + a

c
. (7)

The Jacobian matrix of (7) at equilibrium E0 is

J =

⎡⎢⎣ c(1− x20)− γ −c

2x0 + d

c
−b
c

⎤⎥⎦ , (8)

with the characteristic equation

λ2 +mcλ+ nc = 0, (9)

where

mc =
b

c
− c(1− x20) + γ, nc = 2x0 + d− b(1− x20) +

b

c
γ. (10)

Theorem 3. If nc >
1
4m

2
c and mc < 0, the equilibrium E0(x0, y0) of the con-

trolled model (7) is locally asymptotically stable when α ∈ (0, α∗
c), and unstable

when α > α∗
c , where

α∗
c =

2

π
arctan

−
√
4n2

c −m2
c

mc
. (11)

The proof of Theorem 3 is similar to the proof of Theorem 1 in [8]. Hence, we
omit the proof here.

Remark 5. If the controller u in (6) is removed from the controlled model (7),
i.e., γ = 0, then (11) can be identical with the expression of α∗ in Theorem
1. Therefore, α∗

c in (11) covers the value of α∗ in Theorem 1. That is, α∗ in
Theorem 1 is a special case of α∗

c in (11) in the absence of the control.

Theorem 4. Suppose that nc >
1
4m

2
c and mc < 0. Then the controlled model

(7) exhibits a Hopf bifurcation at the equilibrium E0 when the fractional order α
passes through the critical value α∗

c , where α
∗
c is defined by (11).

The proof of Theorem 4 is similar to the proof of Theorem 2 in [8]. Hence, we
omit the proof here.

Remark 6. Theorem 4 indicates that under the nonlinear state feedback control
(6), one can delay the onset of α∗ in Theorem 2 to α∗

c without changing the
original equilibrium E0 by choosing an appropriate feedback gain parameter
value of γ. It should be noted that if one only needs to change the onset of
the Hopf bifurcation, then a linear state feedback control with parameter γ is
sufficient.
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Fig. 1. Waveform plot and phase portrait of the uncontrolled model (1) with a = −1,
b = 1.4, c = 3, d = 1.8 and I = 0. The equilibrium E0 is asymptotically stable, where
α = 0.8 < α∗ = 0.810427838252199.

4 Numerical Simulations

In this section, we present numerical results to verify the analytical predictions
obtained in the previous section, using the state feedback scheme to control the
Hopf bifurcation of the fractional order Hindmarsh-Rose neuronal model (1).

For a consistent comparison, the same model (1) as used in [8] is discussed,
with a = −1, b = 1.4, c = 3, d = 1.8 and I = 0. From (3), the uncontrolled model
(1) has a unique nonzero equilibrium E0 = (0.7275, 0.5992). It follows from
(5) that

α∗ = 0.810427838252199.

The dynamical behavior of this uncontrolled fractional order Hindmarsh-Rose
neuronal model (1) is illustrated in Figures 1-3. From Theorems 1 and 2, it is
shown that when α < α∗, trajectories converge to the equilibrium E0 (see Figure
1), while as α is increased to pass through α∗, E0 loses its stability and a Hopf
bifurcation occurs (see Figures 2 and 3).

Now using our Theorems 3 and 4, we choose appropriate values of γ to control
the Hopf bifurcation.

It is easy to see from Theorems 3 and 4 that for the linear state feedback
control with an appropriate value of γ, we can delay the onset of the Hopf
bifurcation. For example, by choosing

γ = 0.5,

we can apply (11) to obtain

α∗
c = 0.915454296786782.

Note that the controlled fractional order Hindmarsh-Rose neuronal model
(7) has the same equilibrium point as that of the original fractional order
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Fig. 2. Waveform plot and phase portrait of the uncontrolled model (1) with a = −1,
b = 1.4, c = 3, d = 1.8 and I = 0. A oscillation bifurcates from the equilibrium E0,
where α = 0.88 > α∗ = 0.810427838252199.

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

 

 

x
y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3. Waveform plot and phase portrait of the uncontrolled model (1) with a = −1,
b = 1.4, c = 3, d = 1.8 and I = 0. A oscillation bifurcates from the equilibrium E0,
where α = 0.9 > α∗ = 0.810427838252199.
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Fig. 4. Waveform plot and phase portrait of the controlled model (7) with a = −1,
b = 1.4, c = 3, d = 1.8, I = 0 and γ = 0.5. The equilibrium E0 is asymptotically stable,
where 0.810427838252199 = α∗ < α = 0.9 < α∗

c = 0.915454296786782.
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Hindmarsh-Rose neuronal model (1), but the critical value α∗ increases from
0.810427838252199 to 0.915454296786782, implying that the onset of the Hopf
bifurcation is delayed.

Under the state feedback control with γ = 0.5, we choose α = 0.9 < α∗
c ,

which is the same value as that used in Figure 3. According to Theorem 4,
we conclude that instead of having a Hopf bifurcation, the controlled fractional
order Hindmarsh-Rose neuronal model (7) converges to the equilibrium point
E0, as shown in Figure 4.

Under the state feedback control with γ = 0.5, we choose α = 0.93 > α∗
c .

From Theorem 4, the equilibrium point E0 is unstable, as shown in Figure 5. It
is seen that when α passes through the critical value α∗

c = 0.915454296786782,
a Hopf bifurcation occurs.

It can be shown that if we choose a larger value of γ, then the fractional order
Hindmarsh-Rose neuronal model may not have a Hopf bifurcation even for larger
values of α. This indicates that the state feedback controller can delay the onset
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Fig. 5. Waveform plot and phase portrait of the controlled model (7) with a = −1, b =
1.4, c = 3, d = 1.8, I = 0 and γ = 0.5. A oscillation bifurcates from the equilibrium E0,
where α = 0.93 > α∗

c = 0.915454296786782.
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Fig. 6. Waveform plot and phase portrait of the controlled model (7) with a = −1, b =
1.4, c = 3, d = 1.8, I = 0 and γ = 0.8. The equilibrium E0 is asymptotically stable,
where α = 0.95 < α∗

c = 0.973122179012338.
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of Hopf bifurcation, thus guaranteeing the stability for larger values of α. For
example, when choosing γ = 0.8, the controlled fractional order Hindmarsh-
Rose neuronal model (7) converges to the equilibrium solution E0 if α < α∗

c =
0.973122179012338, as shown in Figure 6.

5 Concluding Remarks

In this paper, we have first applied the state feedback controller to a fractional
order system to realize the control of the Hopf bifurcation. The linear state feed-
back control may be enough to use only for the fractional order Hindmarsh-Rose
neuronal model in order to delay the onset of the Hopf bifurcation. Thus the
stability is guaranteed for the large values of the order. This state feedback con-
troller is valid for fractional order dynamical systems close to the bifurcation
point.

Acknowledgement. This work was supported in part by the National Natural
Science Foundation of China under Grant 61203232, and the Natural Science
Foundation of Jiangsu Province of China under Grant BK2012072.
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Abstract. This paper considers the problem of adaptive neural decen-
tralized control for pure-feedback nonlinear interconnected large-scale
systems. Radical basis function (RBF) neural networks are used to model
packaged unknown nonlinearities and backstepping is used to construct
decentralized controller. The proposed control scheme can guarantee that
all the signals in the closed-loop system are semi-globally uniformly ul-
timately bounded. A numerical example is provided to illustrate the
effectiveness of the suggested approach.

Keywords: Pure-feedback nonlinear large-scale systems, Neural net-
works, Adaptive decentralized control, Backstepping approach.

1 Introduction

Large-scale systems being considered as a set of interconnected subsystems of-
ten exist in many practical systems, such as electric power systems, aerospace
systems and multi-agent systems. Therefore, the study on stability analysis and
control design of large-scale systems is an active topic in the control community
in recent years. Because of the complexity of the control synthesis and physical
restrictions on information exchange between subsystems, decentralized control
strategy depending on local subsystem’s state information is an efficient and
effective way to achieve an objective for the whole large-scale systems. So far,
many significant results on adaptive decentralized control for large-scale non-
linear systems have been reported in [1–3] and the references therein. In [1],
an adaptive decentralized control scheme is proposed for a heating, ventilating,
and air conditioning (HVAC) system. Afterwards, several decentralized control
approaches are developed for interconnected nonlinear time-delay (or time-delay
free) systems [2, 3]. By combining the adaptive backstepping control technique
with fuzzy logic systems or neural networks, much research work has focused
on the control design of large-scale systems with unknown continuous nonlin-
ear functions [4–8]. In [9–11], some approximation-based adaptive decentralized
control schemes are presented for non-affine nonlinear large-scale systems.
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Based on the above discussion, the problem of adaptive neural decentralized
control is considered for a class of large-scale pure-feedback nonlinear systems.
RBF neural networks are used to model packaged unknown nonlinearities, then
an adaptive neural decentralized control scheme is constructed via backstepping.
The proposed adaptive controller guarantees that all the signals in the closed-
loop systems remain semi-globally uniformly ultimately bounded. In addition,
the presented control scheme requires only one adaptive parameter that needs
to be updated online for each subsystem. In this way, the computational burden
is significantly alleviated. The simulation results are provided to further validate
the effectiveness of the proposed control approach.

2 Problem Formulation and Preliminaries

In this paper, we consider a class of interconnected large-scale nonlinear pure-
feedback systems with N subsystems, the ith (i = 1, 2, . . . , N) subsystem is
described by: ⎧⎨⎩ ẋi,j = fi,j(x̄i,j , xi,j+1) + hi,j(ȳ), 1 ≤ j ≤ ni − 1,

ẋi,ni = fi,ni(x̄i,ni , ui) + hi,ni(ȳ),
yi = xi,1,

(1)

where x̄i,j = [xi,1, xi,2, . . . , xi,j ]
T and ȳ = [y1, y2, . . . , yN ]T . xi = [xi,1, xi,2,

. . . , xi,ni ]
T ∈ Rni , ui ∈ R and yi ∈ R are the state, the scalar control in-

put and the scalar output of the ith nonlinear subsystem, respectively. fi,j(·) :
Rj+1 → R, (j = 1, 2, . . . , ni) are unknown nonlinear functions, hi,j(·) : RN →
R(j = 1, 2, . . . , ni) are unknown interconnections with fi,j(0) = hi,j(0) = 0.

Using mean value theorem [12], fi,j(·) in (1) can be expressed as

fi,j(x̄i,j , xi,j+1) = fi,j(x̄i,j , x
0
i,j+1) + gμi,j (xi,j+1 − x0i,j+1),

fi,ni(x̄i,ni , ui) = fi,ni(x̄i,ni , u
0
i ) + gμi,ni

(ui − u0i ), (2)

where fi,j(·) is explicitly analyzed between fi,j(x̄i,j , xi,j+1) and fi,j(x̄i,j , x
0
i,j+1),

gμi,j := gi,j(x̄i,j , xμi,j ) =
∂fi,j(x̄i,j ,xi,j+1)

∂xi,j+1
|xi,j+1=xμi,j

, xi,ni+1 = ui, xμi,j = μi,j

xi,j+1 + (1− μi,j)x
0
i,j+1, 0 < μi,j < 1, i = 1, 2, . . . , N, j = 1, 2, . . . , ni.

Furthermore, substituting (2) into (1) and choosing x0i,j+1 = 0, u0i = 0 gives⎧⎨⎩
ẋi,j = gμi,jxi,j+1 + fi,j(x̄i,j , 0) + hi,j(ȳ), 1 ≤ j ≤ ni − 1,
ẋi,ni = gμi,ni

ui + fi,ni(x̄i,ni , 0) + hi,ni(ȳ),

yi = xi,1,
(3)

Assumption 1. The signs of gμi,j , 1 ≤ i ≤ N, 1 ≤ j ≤ ni, do not change and
without loss of generality, it is further assumed that there exist unknown con-
stants bm and bM such that 0 < bm ≤ |gμi,j | ≤ bM <∞.

Assumption 2 [13]. For uncertain nonlinear functions hi,j(ȳ) in (1), there
exist unknown smooth functions hi,j,l(yl) such that for 1 ≤ i ≤ N, 1 ≤ j ≤ ni,

|hi,j(ȳ)|2 ≤
∑N

l=1 h
2
i,j,l(yl), where hi,j,l(0) = 0, l = 1, 2, . . . , N.
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Remark 1. Noting hi,j,l(yl) in Assumption 2 are smooth functions with
hi,j,l(0) = 0, so there exist unknown smooth functions h̄i,j,l(yl) such that

|hi,j(ȳ)|2 ≤
N∑
l=1

y2l h̄
2
i,j,l(yl), (4)

In this note, the following RBF neural networks will be used to approximate any
continuous function f(Z) : Rn → R,

fnn(Z) =WTS(Z), (5)

where Z ∈ ΩZ ⊂ Rq is the input vector with q being the neural networks
input dimension, weight vector W = [w1, w2, ..., wl]

T ∈ Rl, l > 1 is the neu-
ral networks node number, and S(Z) = [s1(Z), s2(Z), ..., sl(Z)]

T means the
basis function vector with si(Z) being chosen as the commonly used Gaus-

sian function of the form si(Z) = exp[− (Z−μi)
T (Z−μi)
η2
i

], i = 1, 2, ..., l, where

μi = [μi1, μi2, ..., μiq]
T is the center of the receptive field and ηi is the width

of the Gaussian function. In [14], it has been indicated that with sufficiently
large node number l, the RBF neural networks (5) can approximate any contin-
uous function f(Z) over a compact set ΩZ ⊂ Rq to arbitrary any accuracy ε > 0
as f(Z) = W ∗TS(Z) + δ(Z), ∀z ∈ Ωz ∈ Rq, where W ∗ is the ideal constant
weight vector and defined as W ∗ := argminW∈R̄l{supZ∈ΩZ

|f(Z)−WTS(Z)|},
and δ(Z) denotes the approximation error and satisfies | δ(Z) |≤ ε.

Lemma 1. [15]. Consider the Gaussian RBF networks (5). Let ρ := 1
2 mini�=j

‖μi − μj‖, then an upper bound of ‖S(Z)‖ is taken as ‖S(Z)‖ ≤
∑∞

k=0 3q

(k + 2)q−1e−2ρ2k2/η2

:= s.

3 Adaptive Neural Control Design

In this section, a backstepping-based design procedure is proposed. Both virtual
control signals and adaption laws will be constructed in the following forms:

αi,j(Zi,j) = −ki,jzi,j −
1

2a2i,j
zi,j θ̂iS

T
i,j(Zi,j)Si,j(Zi,j), (6)

˙̂
θi =

ni∑
j=1

λi
2a2i,j

z2i,jS
T
i,j(Zi,j)Si,j(Zi,j)− γiθ̂i, (7)

where i = 1, 2, . . . , N, j = 1, 2, . . . , ni, ki,j , ai,j , λi and γi are positive design

parameters, Zi,1 = xi,1, Zi,j = [x̄Ti,j , θ̂i]
T with x̄i,j = [xi,1, xi,2, . . . , xi,j ]

T , and
zi,j satisfy the following variable transformation:

zi,j = xi,j − αi,j−1 (8)

with αi,0 = 0. θ̂i is the estimation of an unknown constant θi which will be
specified as

θi = max{ 1

bm
‖Wi,j‖2; j = 1, 2, · · · , ni}, (9)

where Wi,jwill be specified later. Specially, αi,ni is the actual control input ui.
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Step 1. According to zi,1 = xi,1, zi,2 = xi,2 − αi,1, it follows from (1) that

żi,1 = gμi,1zi,2 + gμi,1αi,1 + fi,j(x̄i,j , 0) + hi,1(ȳ). (10)

Consider Lyapunov function candidate as Vi,1 = 1
2z

2
i,1 = 1

2y
2
i . Then, the time

derivative of V1 along (10) is

V̇i,1 = yi(gμi,1zi,2 + gμi,1αi,1 + fi,1(x̄i,1, 0) + hi,1(ȳ)). (11)

With the help of (4) and the completion of squares, one has

yihi,1(ȳ) ≤
1

2
y2i +

1

2

N∑
l=1

y2l h̄
2
i,1,l(yl). (12)

Substituting (12) into (11) yields

V̇i,1 = yi

(
gμi,1zi,2 + gμi,1αi,1 + fi,1(x̄i,1, 0) +

1

2
yi

)
+

1

2

N∑
l=1

y2l h̄
2
i,1,l(yl). (13)

Step j(2 ≤ j ≤ ni − 1). Using the coordinate transformation (8) gives

żi,j = gμi,jzi,j+1 + gμi,jαi,j + fi,j(x̄i,j , 0) + hi,j(ȳ)− α̇i,j−1, (14)

where

α̇i,j−1 =

j−1∑
k=1

∂αi,j−1

∂xi,k
(fi,k(x̄i,k+1) + hi,k(ȳ)) +

∂αi,j−1

∂θ̂i

˙̂
θi. (15)

Take Lyapunov function Vi,j =
1
2z

2
i,j , then the time derivative of Vi,j is given by

V̇i,j = zi,j
(
gμi,jzi,j+1 + gμi,jαi,j + fi,j(x̄i,j , 0) + hi,j(ȳ)− α̇i,j−1

)
. (16)

Furthermore, similar to (12), we obtain

− zi,j

j−1∑
k=1

∂αi,j−1

∂xi,k
hi,k(ȳ) ≤

1

2
z2i,j

j−1∑
k=1

(
∂αi,j−1

∂xi,k
)2 +

1

2

j−1∑
k=1

N∑
l=1

y2l h̄
2
i,k,l(yl), (17)

zi,jhi,j(ȳ) ≤
1

2
z2i,j +

1

2

N∑
l=1

y2l h̄
2
i,j,l(yl), (18)

It immediately follows from (16) to (18) that

V̇i,j ≤ zi,j

(
gμi,j zi,j+1 + gμi,jαi,j + fi,j(x̄i,j , 0)−

j−1∑
k=1

∂αi,j−1

∂xi,k
fi,k(x̄i,k+1)

+
zi,j
2

+
zi,j
2

j−1∑
k=1

(
∂αi,j−1

∂xi,k
)2 − ∂αi,j−1

∂θ̂i

˙̂
θi

)
+

1

2

j∑
k=1

N∑
l=1

y2l h̄
2
i,k,l(yl). (19)
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Step ni. Similar to (14), the following result holds.

żi,ni = gμi,ni
ui + fi,ni(x̄i,ni , 0) + hi,ni(ȳ)− α̇i,ni−1, (20)

where α̇i,ni−1 is given in (15) with j = ni. Consider Lyapunov function as

Vi,ni = 1
2z

2
i,ni

+ bm
2λi

θ̃2i , where θ̃i = θi − θ̂i is the parameter error and λi is a
positive design constant. Repeating the same derivations as (16)-(19) yields

V̇i,ni≤zi,ni

(
gμi,ni

ui+fi,ni(x̄i,ni , 0)−
ni−1∑
k=1

∂αi,ni−1

∂xi,k
fi,k(x̄i,k+1)−

∂αi,ni−1

∂θ̂i

˙̂
θi

+
1

2
zi,ni

ni−1∑
k=1

(
∂αi,ni−1

∂xi,k
)2+

1

2
zi,ni

)
+
1

2

ni∑
k=1

N∑
l=1

y2l h̄
2
i,k,l(yl)−

bm
λi
θ̃i

˙̂
θi. (21)

Now, choose the Lyapunov function for the whole system as

V =

N∑
i=1

ni∑
j=1

Vi,j =

N∑
i=1

(
1

2
y2i +

ni∑
j=2

1

2
z2i,j +

bm
2λi

θ̃2i ). (22)

Subsequently, differentiating (22) and combining (13), (19) and (21), and using
the following two inequalities

1

2

N∑
i=1

ni∑
s=1

s∑
k=1

N∑
l=1

y2l h̄
2
i,k,l(yl) =

1

2

N∑
i=1

N∑
l=1

nl∑
s=1

s∑
k=1

y2i h̄
2
l,k,i(yi), (23)

and

−
N∑
i=1

ni∑
j=2

zi,j
∂αi,j−1

∂θ̂i

˙̂
θi

≤
N∑
i=1

ni∑
j=2

zi,j
∂αi,j−1

∂θ̂i
γiθ̂i−

N∑
i=1

ni∑
j=2

zi,j
∂αi,j−1

∂θ̂i

j−1∑
k=1

λi
2a2i,k

z2i,kS
T
i,kSi,k

+

N∑
i=1

ni∑
j=2

λi
2a2i,j

z2i,j(

j∑
k=2

|zi,k
∂αi,k−1

∂θ̂i
|), (24)

the result below holds.

V̇ ≤
N∑
i=1

yi
(
gμi,1αi,1 + f̄i,1(Zi,1)

)
+

N∑
i=1

ni−1∑
j=2

zi,j
(
gμi,jαi,j + f̄i,j(Zi,j)

)
+

N∑
i=1

zi,ni

(
gμi,ni

ui + f̄i,ni(Zi,ni)
)
− 1

2

N∑
i=1

ni∑
j=1

z2i,j −
N∑
i=1

bm
λi
θ̃i

˙̂
θi, (25)

where the functions f̄i,j(Zi,j), i = 1, 2, . . . , N are defined as

f̄i,1(Zi,1) = fi,1(x̄i,1, 0) + yi +
1

2
yi

N∑
l=1

nl∑
s=1

s∑
k=1

h̄2l,k,i(yi), (26)
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f̄i,j(Zi,j) = gμi,jzi,j−1 + fi,j(x̄i,j , 0)−
j−1∑
k=1

∂αi,j−1

∂xi,k
fi,k(x̄i,k+1) + zi,j

+
1

2
zi,j

j−1∑
k=1

(
∂αi,j−1

∂xi,k
)2 +

∂αi,j−1

∂θ̂i
γiθ̂i −

∂αi,j−1

∂θ̂i

j−1∑
k=1

λi
2a2i,k

z2i,kS
T
i,kSi,k

+
λi

2a2i,j
zi,j(

j∑
k=2

|zi,k
∂αi,k−1

∂θ̂i
|), j = 2, . . . , ni, (27)

Then, WT
i,jSi,j(Zi,j) is used to model f̄i,j(Zi,j), such that, for any εi,j > 0,

f̄i,j(Zi,j) =WT
i,jSi,j(Zi,j) + δi,j(Zi,j), (28)

where δi,j(Zi,j) refers to the approximation error and satisfies |δi,j(Zi,j)| < εi,j .
Furthermore, by Young’s inequality, one has

zi,j f̄i,j(Zi,j) ≤ bm
2a2

i,j
z2i,jθiS

T
i,jSi,j +

1
2a

2
i,j +

1
2z

2
i,j +

1
2ε

2
i,j , (29)

where i=1, 2, . . . , N, j=1, 2, . . . , ni and θi= max
{

1
bm

‖Wi,j‖2; j = 1, 2, · · · , ni}.
Now, choose the virtual control signals αi,j in (6). Then, we have

zi,jgμi,jαi,j ≤ −ki,jbmz2i,j −
bm
2a2i,j

z2i,j θ̂iS
T
i,jSi,j , 1 ≤ i ≤ N, 1 ≤ j ≤ ni, (30)

Further, combining (25) together with (29), (30)and (7) gives

V̇≤−
N∑
i=1

⎛⎝ ni∑
j=1

ki,jbmz
2
i,j+

γibm
2λi

θ̃2i

⎞⎠+

N∑
i=1

ni∑
j=1

(
1

2
a2i,j+

1

2
ε2i,j+

γibm
2λi

θ2i

)
, (31)

where the inequality θ̃iθ̂i ≤ − 1
2 θ̃i

2
+ 1

2θ
2
i has been used in the above inequality.

The main result of this paper will be summarized in the following theorem.

Theorem 1. Consider the large-scale nonlinear pure-feedback systems (1), the
controller (6), and adaptive law (7) under Assumptions 1-2. Assume that for
1 ≤ i ≤ N, 1 ≤ j ≤ ni, the packaged unknown functions f̄i,j(Zi,j) can be
well approximated by the neural network WT

i,jSi,j(Zi,j) in the sense that the
approximation errors δi,j(Zi,j) are bounded, then for bounded initial conditions

[zTi (0), θ̂i(0)]
T ∈ Ω0, all the signals in the closed-loop system remain bounded

and the error signals zi,j and θ̃i eventually converge to the compact set Ωs

defined by

Ωs =

{
zi,j , θ̃i

∣∣∣ |zi,j | ≤√2
b0
a0
, |θ̃i| ≤

√
2λi
bm

b0
a0
, 1 ≤ i ≤ N, 1 ≤ j ≤ ni

}
. (32)

Proof: Let a0 = min{2ki,jbm, γi, i = 1, 2, . . . , N, j = 1, 2, . . . , ni}, b0 =
∑N

i=1∑ni

j=1(
1
2a

2
i,j +

1
2ε

2
i,j +

γibm
2λi

θ2i ), then (31) can be rewritten as

V̇ ≤ −a0V + b0, t ≥ 0. (33)
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Next, from(33), the following inequality can be easily verified.

V (t) ≤
(
V (0)− b0

a0

)
e−a0t +

b0
a0
, ∀t > 0, (34)

which implies that V (t) ≤ V (0)+ b0
a0
, ∀t > 0. Therefore, based on the definition of

V in (22), we conclude that all the signals in the closed-loop system are bounded.
Furthermore, it is obtained that V (t) ≤ b0

a0
, t → +∞. Therefore, the error

signals zi,j and θ̃i eventually converge to the compact set Ωs specified in (32).

4 Simulation Example

Consider the following interconnected pure-feedback nonlinear system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = (1 + sin(x1,1))x1,2 + x31,2 + y32y1,
ẋ1,2 = (2 + cos(x1,1x1,2))u1 + 0.2 cos(u1) + y1y2,
y1 = x1,1,
ẋ2,1 = (3 + sin(x2,1))x2,2 + 0.5x52,2 + y1 cos(y

2
2),

ẋ2,2 = (1 + x22,1)u2 + 0.1 sin(u2) + y2 ln(1 + y21),
y2 = x2,1,

(35)

By using Theorem 1, choose the virtual control law αi,j in (6) and the adaptive

laws
˙̂
θi in (7). The simulation is run under the initial conditions [x1,1(0), x1,2(0),

x2,1(0), x2,2(0)]
T = [0.3,−0.2, 0.2, 0.4]T , and [θ̂1(0), θ̂2(0)]

T = [0, 0]T . The design
parameters are taken as k1,1 = k1,2 = k2,1 = k2,2 = 6, a1,1 = a1,2 = a2,1 =
a2,2 = 2, γ1 = γ2 = 1, and λ1 = λ2 = 2. The details are shown in Figures 1-2.
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Fig. 1. State variables x1,1, x1,2, x2,1
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5 Conclusion

In this paper, an adaptive neural decentralized control scheme has been pro-
posed for a class of large-scale pure-feedback nonlinear systems. The presented
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decentralized adaptive controller can ensure that all the signals in the closed-loop
systems are bounded. Compared with the existing results, the main of advantage
of the proposed controller is that it contains only one adaptive parameter needed
to be estimated online for each subsystems. Simulation example is provided to
further demonstrate the effectiveness of the proposed approach.
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of Uncertain Chaotic Systems via Neural Network-Based 

Dynamic Surface Control Design* 
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Abstract. In this paper, the adaptive synchronization problem is investigated 
for a class of uncertain chaotic systems. By using the RBF networks to approx-
imation unknown functions of the master system, an adaptive neural synchroni-
zation scheme is proposed with the combination of backstepping technique and 
dynamic surface control (DSC). This proposed method, similar to backstepping 
but with an important addition, can overcome the “explosion of complexity” of 
the traditional backstepping by introducing a first-order filtering. Thus, the 
closed-loop stability and asymptotic synchronization can be achieved. Finally, 
simulation results are presented to illustrate the effectiveness of the approach. 

Keywords: synchronization, backstepping, dynamic surface, neural networks, 
chaotic system. 

1 Introduction 

Since the pioneering work of chaos control by Ott, Grebogi and York [1] in 1990 and 
presentation of synchronization of chaotic systems with each other by Pecora and 
Carrol [2] in the same year, Chaos control and synchronization has received increas-
ing attention and has become a very active topic in nonlinear science. Various linear 
and nonlinear methods have emerged thereafter in search of more efficient algorithms 
for controlling and synchronizing identical and nonidentical chaotic systems [4-13]. 

In particular, backstepping design [3] have been recognized as one powerful design 
method to control and synchronize chaos, because it can guarantee global stabilities, 
tracking, and transient performance for a broad class of strict-feedback systems. In 
recent time, it has been employed for controlling, tracking and synchronization many 
chaotic systems [4-8] as well as hyperchaotic system [12]. However, a drawback with 
the backstepping technique is the problem of “explosion of complexity” [6]. This 
problem is caused by the repeated differentiations of certain nonlinear function. 
                                                           
*  This work was supported in part by the National Natural Science Foundation of China 

(Nos.51179019, 60874056), the Natural Science Foundation of Liaoning Province (No. 
20102012) , the Program for Liaoning Excellent Talents in University (LNET) (Grant 
No.LR2012016), the Fundamental Research Funds for the Central Universities 
(No.3132013005), and the Applied Basic Research Program of Ministry of Transport of China. 

** Corresponding author. 
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In this paper, we will further consider the problem of adaptive synchronization of 
uncertain nonlinear systems. The master system is any smooth, bounded, linear-
parameter nonlinear system with key parameter unknown, while the slave system can 
be any smooth, nonlinear strict-feedback systems. Thus, we consider using radial 
basis function (RBF) [15][17] to approximate the unknown function of the master 
system. Furthermore, we introduce a new method called dynamic surface control 
(DSC) [14][15][16] to eliminate the problem of explosion of complexity. Global sta-
bility and asymptotic synchronization between the master and slave systems can be 
achieved. We are not only eliminated the problem of “explosion of complexity” by 
using this method, but also we have given a stability analysis which shows that con-
trol law can guarantee the tracking error arbitrarily small. Finally, the results are dem-
onstrated in the simulation part. 

The presentation is organized as follows. The problem formulation is presented in 
section 2. Adaptive dynamic surface control design procedure is presented in section 3. 
In section 4, we will give a stability analysis. In section 5, the simulation results are 
given to illustrate the effectiveness of the proposed approach. Section 6 contains the 
conclusion. 

2 Problem Formulation 

We consider the master system in the form of any smooth, bounded nonlinear chaotic 
system as  

( , ) ( , )T
di di d di dx f x t F x tθ= + ,1 i m≤ ≤   (1)

where 1 2[ , , , ]T m
d d d dmx x x x R= ∈  is the state vector; ( )dif ⋅  and ( ), 1, ,diF i m⋅ =   

are unknown smooth nonlinear functions. 
The slave system is in the form of strict-feedback nonlinear chaotic system as 

1 1 1 2 1 1

1 1 1 1 1 1 1 1

( , ) ( , ),

( , , , ) ( , , , )
( , ) ( , ),

n n n n n n

n n n

x g x t x f x t

x g x x t x f x x t
x g x t u f x t n m

− − − − − −

= +

= +
= + ≤




  


 (2)

where 1 2[ , , , ]T n
nx x x x R= ∈  and u R∈  are the state and control action, respec-

tively; ( ) 0, ( ), 1, ,i ig f i n⋅ ≠ ⋅ =   are known smooth nonlinear functions. 

The control objective is to design an adaptive synchronization algorithm u , to 
guarantee global stability and force the state 1 ( )x t  of the slave system (2) to asymp-

totically synchronize with the state 1( )dx t  of the master system (1), to achieve 

1 1( ) ( ) 0,dx t x t− →  as t → ∞ . 

In this paper, we employ RBF networks to approximate the unknown function in 
the master system. Let us first recall the approximation property of the RBF neural 
networks. The RBF neural networks take the form ( )T xθ ξ where NRθ ∈  for some 

integer N  is called weight vector, and ( ) Nx Rξ ∈  is a vector valued function de-

fined in NR .Denote the components of ( )xξ  by ( ), 1, , ,i x i Nρ =   then ( )i xρ  is 
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called a basis function. A commonly used basis function is the so-called Gaussian 
Function of the following form. 

2

-
( ) exp , 0, 1, , ,i

i

x
x i N

ξ
ρ σ

σ
 − 

= ≥ = 
 

  (3)

where , 1, , ,N
i R i Nζ ∈ =  are constant vectors called the center of the basis function. 

According to the approximation property of the RBF networks, given a continuous 
real valued function :f RΩ → with NRΩ ∈ a compact set, and any 0,mδ >  by ap-

propriately choosing , , 1, , ,N
i R i Nσ ζ ∈ =  for some sufficiently large integer N , 

there exists an ideal weight vector * NRθ ∈  such that the RBF network * ( )T xθ ξ  can 

approximate the given function f  with the approximation error bounded by mδ . 

* *( ) ( ) ,Tf x x xθ ξ δ= + ∈ Ω  (4)

with * ,mδ δ≤  where *δ  represents the network reconstruction error, 

* *( ) ( ).Tf x xδ θ ξ= −  (5)

Since *θ  is unknown, we need to estimate *θ  online. We will use the notation θ̂  to 

denote the estimation of *θ  and develop an adaptive law to update the parameter θ̂ . 

3 Control Design 

Step 1: we define the tracking error as the first error space as follows: 

1 1 1dS x x= −  (6)

Give a compact set ,m
dx R∈ let *

1θ  and *
1δ  be such that for any m

dx R∈  

* *
1 1 1 1( ) ( )T

d d dF x xθ ξ δ= − −  (7)

with *
1 mδ δ≤ .The time derivative of (6) becomes 

* *
1 1 1 1 2 1 1 1 1 1( )T

d d dS x x g x f f xθ ξ δ= − = + − + +    (8)

Choose a virtual control 2x  as follows: 

2 1 2 1 1 1 1 1 1
1

1 ˆT
dx g x f f k S

g
θ ξ = − − + − −   (9)

where 1̂θ  is the estimation of *
1θ  and is updated as follows: 

1 1 1 1 1 1
ˆ ˆ( )dx Sθ ξ η θ= Γ − Γ

 (10)

with any constant matrix 1 1 0TΓ = Γ > . Introduce a new state variable 2z  and let 2x  

pass through a first-order filter with time constant 2∈  to obtain 2z . 
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2 2 2 2 2 2, (0) (0)z z x z x∈ + = =  (11)

Step i: a similar design procedures is employed recursively at each step, 
2, , 1,i n= −

 Let 

i i di iS x x z= − −  (12)

Give a compact set m
dx R∈ ,  for any m

dx R∈ let *
iθ  and *

iδ  be such that 

* *( ) ( )T
di d i i d iF x xθ ξ δ= − −  (13)

with *
i mδ δ≤ . The time derivative of (12) becomes 

i 1i di i i i i di di iS x x z g x f f F z+= − − = + − − −      (14)

Choose a virtual control 1ix +  as follows: 

1 ( 1)

1 ˆT
i i d i i di i i i i i

i

x g x f f z k S
g

θ ξ+ +
 = − − + + − −   (15)

where îθ  is the estimation of *
iθ  and is updated as follows: 

ˆ ˆ( )i i i d i i ix Sθ ξ η θ= Γ − Γ
 (16)

with any constant matrix 0T
i iΓ = Γ > . Introduce a new state variable 1iz +  and let 

1ix +  pass through a first-order filter with time constant 1i+∈  to obtain 1iz +  

1 1 1 1 1 1, (0) (0)i i i i i iz z x z x+ + + + + +∈ + = =  (17)

Step n: the final control law will be derived in this step. We consider the nth error 
surface as follows: 

n n dn nS x x z= − −  (18)

Give a compact set m
dx R∈  let *

nθ  and *
nδ  be such that for any m

dx R∈  

* *( ) ( )T
dn d n n d nF x xθ ξ δ= − −  (19)

with *
i mδ δ≤ . The time derivative of (18) becomes 

* *
n ( )T

n dn n n n dn n n d n nS x x z g u f f x zθ ξ δ= − − = + − + + −      (20)

We specify the control law as follows: 

1 ˆ ( )T
n dn n n d n n n

n

u f f x z k S
g

θ ξ = − + − + −   (21)

where n̂θ  is the estimation of *
nθ  and is updated as follows: 

n̂
ˆ( )n n d n n nx Sθ ξ η θ= Γ − Γ

 (22)

with any constant matrix 0T
n nΓ = Γ > . 
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4 Stability Analysis 

Theorem1. We consider a close-loop uncertain chaotic system consisting of the plant 
(1) (2), the virtual control function (9) (15), the adaptive laws (10) (16) (22), and the 
control law (22). Give a compact set m

dx R∈ , let *
iθ  and *

iδ  be such that (13) for 

any m
dx R∈  with *

i mδ δ≤  assume there exists a known positive number mθ  such 

that, for all 1, , ,i n=   *
i mθ θ≤ . 

In this section, we will establish that the closed-loop system possesses the uniformly 
ultimate boundedness property. To this end, we first define: 

*ˆ , 1, ,i i i i nθ θ θ= − =   (23)

, 2, ,j j jy z x j n= − =   (24)

Then  

j
j j

j

y
y B= − +

∈
  (25)

where j jB x= −  . 

Proof：We define the following Lyapunov function candidate 

2 1 2
1

1 1 1

1
( )

2

n n n
T

i i i i i
i i i

V S yθ θ−
+

= = =

= + Γ +     (26)

( ) ( )12 * 1
1 11 1 1

1 *
1 11

ˆ( )
n n n

i i i i i i i i i i i i i i i ii i i
n

n n n ni

V k S g S S g S y S S

y y S

δ θ θ ξ

δ

− −
+ += = =

−
+ ==

= − + + + + Γ − Γ

+ +
  





 (27)

Using the following inequality 2 2 2a b ab+ ≥ , then 

 
2

2 2 1
1 4

i
i i i i i

S
g S S g S +

+ ≤ + , 
2

2 2 1
1 4

i
i i i i i

y
g S y g S +

+ ≤ + , 

 
*2

* 2

4
i

i i iS S
δδ ≤ + ,

*2
* 2

4
n

n n nS S
δδ ≤ +

                           
 (28) 

( )
( )

2 2 *21
2 2 2 2 1 1

1 1
*21

1 2
1 1

1 1
1

2 2 2 2 2
1 1 1

2
1

1 1
1 1

2
4

ˆ
4

1 1
2 1 2 1 1

4 4

ˆ

n n
i i i

i i i i i
i i

n n
T n
i i i i i i n n n

i i
n

i i i n n
i

n n
T
i i i i

i i

S y
V k S g S S

S y y S

g k S g k S k S

y y

δ

δθ θ ξ

ηθ θ

−
+ +

= =
−

−
+ +

= =
−

=
−

+ +
= =

 + +
≤ − + + + 

 

+ Γ − Γ + + +

   = + − + + − + + + −   
   

− + +

 

 



 



 

 
2 21

1

1 14 4

n n
i i

i i

yδ −
+

= =

+ 

 (29)
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Define 2 2
1 1 0 0 0

1 1
2 1 ,2 1 ,1

4 4i i ng k g k kα α α+ − ≤ − + − + ≤ − + − ≤ − , where 0 0α >  and 

2, , 1i n= − . Since ( ) 2 2* *ˆ2 2T T T
i i i i i i iθ θ θ θ θ θ θ= + ≥ −    , then  

           
( )

2
22 1

0 1
1 max

4 22

n
T m

i i i i m
i i

V S n
δη ηα θ θ θ

λ
−

−
=

   
 ≤ − − Γ + +  Γ   

     

21
2 1

1 1 1
1 1

1

4

n
i

i i i
i i

y
y B y

−
+

+ + +
= +

 
+ − + ∈ 
                               (30) 

Let ( )
2 2

2 1 1
max 0 0

1

1 1
, 2 ,

4 2 4 2
m i

m M i
i

M
e

T

δ η θ η λ α α− +

+

+ = = Γ − + = −
∈

, and mentioning the 

inequation
2 2 2

21 1 1
1 1 12 2 2 2

i i i
i i i

y B yT T
B y M

T T
+ + +

+ + +≤ + < + , with 0T > . Then 

( ) ( )

( )

1
2 1 2

0 0 0 1
1 1

0

1

2
1

2
2

n n
T

i i i i M i
i i

M

n
V S ne T y

n
V ne T

α α θ θ α

α

−
−

+
= =

−
≤ − − Γ + + + −

−
= − + +

  
 (31)

Now, let 
( )

0

1
( ) 2

2M

n
ne T Vα

−
> + ,then one can conclude 0V < .  

5 Simulation Studies 

In the simulation studies, the master system is chosen as the chaotic Lorenz system, 
and the slave system is designed as the same Lorenz system as the master system 
except that systems parameters are different. 

Consider the Lorenz system as the master system described as: 

( )1 2 1

2 1 1 3 2

3 1 2 3

d d d

d d d d d

d d d d

x a x x
x bx x x x
x x x cx

= −
= − −
= −





 (32)

The slave system is chosen as: 

 

( )1 2 1

2 1 1 3 2

3 1 2 3

x d x x
x ex x x x
x x x fx

= −
= − −
= −



    

  (33)

where 2, 1, 2, 1a b c d e f= = = = = = . 
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Fig. 1. 1 ( )x t  and 1( )dx t  

 

Fig. 2. boundedness of the control u  

6 Conclusion 

An approach for adaptive synchronization of uncertain chaotic systems via neural 
network has been presented in this paper. The adaptive control law has been designed 
by utilizing the dynamic surface control method, which can overcome the “explosion 
of complexity” of the traditional backstepping by introducing a first-order filtering. 
The simulation examples show that global stability and asymptotic synchronization 
can be achieved. This method is suitable for adaptive synchronization of uncertain 
chaotic systems in the chaos research literature. 
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Abstract. Based on the dynamic surface control (DSC), an adaptive neural 
network control approach is proposed for a class of stochastic nonlinear strict-
feedback systems in this paper. This approach simplifies the backstepping  
design and overcomes the problem of ‘explosion of complexity’ inherent in the 
backstepping method. The Lyapunov Stability analysis given in this paper 
shows that the control law can guarantee the solution of the closed-loop system 
uniformly ultimate boundedness (UUB) in probability. The simulation example 
is given to illustrate the effectiveness of the proposed control system. 

Keywords: adaptive control, neural networks, dynamic surface control, 
stochastic nonlinear strict-feedback system. 

1 Introduction 

It is well known that stochastic disturbance often exist in many practical systems. 
Their existence is the source of instability for the control system. Efforts toward stabi-
lization of stochastic nonlinear systems have been initiated in the work of Florchinger 
[1]-[6]. Pan and Basar [7] first derived a backstepping design for the stochastic  
nonlinear strict-feedback system. Since then, many interesting control schemes have 
been proposed by using the backstepping technical for different stochastic systems. 
With the Itô differentiation rule Deng and Krsti¢[8] gave a backstepping design for 
stochastic strict-feedback system with the form of quartic Lyapunov function. 

Recently, the neural networks have been proved to be very useful tools for solving 
the control problem of uncertain systems. The main advantage is that the unknown 
nonlinear functions can be approximated by the neural networks. For this purpose, 
Chen [9] and Li [10] introduced the adaptive neural network control schemes to  
the output-feedback stochastic nonlinear strict-feedback systems, and designed a  
controller which was simpler than the existing results. Furthermore, in [11] a novel 
                                                           
 *  This work was supported in part by the National Natural Science Foundation of China 

(Nos.51179019, 60874056), the Natural Science Foundation of Liaoning Province (No. 
20102012) , the Program for Liaoning Excellent Talents in University(LNET)(Grant 
No.LR2012016), and the Applied Basic Research Program of Ministry of Transport of China, 
the Fundamental Research Funds for the Central Universities (No. 3132013005). 

** Corresponding author. 
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direct adaptive neural network controller was proposed to control a class of stochastic 
system with completely unknown nonlinear functions. However, it still inherited the 
drawback with the backstepping technique, that is, the problem of ‘explosion of com-
plexity’, which is caused by the repeated differentiations of certain nonlinear func-
tions. For the purpose of overcoming the drawback of backstepping technique the 
dynamic surface control (DSC) technique was proposed by introducing a first-order 
filter of the synthetic input at each step of the traditional backstepping approach in 
[12]. In [13], by approximating the unknown nonlinear functions with radial basis 
function (RBF), the dynamic surface control technique was incorporated into the ex-
isting neural networks based on adaptive control design framework. In [14], the dy-
namic surface technique was incorporated into the decentralized control for a class of 
large-scale interconnected stochastic nonlinear system. Chen [15] combined the DSC 
technique with the adaptive neural network control technique in the output feedback 
stochastic nonlinear strict-feedback systems. However, the DSC technique was not 
incorporated into the state-feedback stochastic nonlinear strict-feedback system.  

Motivated by the aforementioned discussion, in this paper, we will incorporate the 
DSC technique into the adaptive neural network control for the strict-feedback sto-
chastic nonlinear systems. The main contributions lie in the following. It eliminates 
the problem of ‘explosion of complexity’. The Lyapunov stability analysis is simpler 
than the former approaches. 

2 Preliminaries and Problem Formulation 

To establish stochastic stability as a preliminary, consider the following nonlinear 
stochastic system 

          ( ) ( )dx f x dt x dwψ= +                              (1) 

where nx R∈  is the system state, w is an r-dimensional standard Brownian motion 
defined on the complete probability space ( )F PΩ， ，  with Ω  be a sample  

space, F  being a σ -field. ( )f x : n nR R→ , ( )xΨ : n n rR R ×→ are locally Lipschitz 

continuous with ( )0 0f = , ( )0 0Ψ = .  

Assumption 1. In this paper, the following RBF NN is used to approximate the conti-
nuous function, such as ( ) ( )T

nnh Z W S Z= , where q
ZZ R∈ Ω ⊂ is the input vector, 

weight vector 1 2[ ]T l
lW w w w R= ∈， ， ， , 1l > is the neural networks node number, 

and [ ]1( ) ( ) ( )
T

lS Z s Z s Z= ， ，  means the basis function vector, ( )is Z  is the Gaus-

sian function of the form 2
is ( ) exp ( ) ( ) /T

i iZ z zμ μ ς = − − −  , 1,2, ,i l=  , where 

; 2[ , , , ]T
i i i iqμ μ μ μ=  is the center of the receptive field and 0ς > are the width of the 

basis function. 
It has been proven that neural network can approximate any continuous function over 
a compact set q

Z RΩ ⊂ to arbitrary any accuracy as *( ) ( ) ( )Th Z W S Z Zδ= + , where 
*W is the ideal constant weight vector and ( )Zδ  denotes the approximation error and 

satisfies ( )Zδ ε≤ . 



114 Z. Li, T. Li, and X. Gao 

 

Assumption 2 [17]. There exist constants mb and Mb such that for1 i n≤ ≤ , i
ix R∀ ∈ , 

( )0 m i i Mb g x b< ≤ ≤ < ∞ .  

Assumption 3 [11]. For simplicity, an unknown constant θ is introduced which is 
specified as  

                
{ }2*max i 1 2i mW b nθ = = / ； ，， ，                       (2) 

where *
iW  denotes the norm of the ideal weight vector of the neural network. 

Consider the following stochastic nonlinear strict-feedback system 

              

1

1

( ( ) ( ))   1 1
( ( ) ( ))

i i i i i i

n i i i i

dx g x x f x dt dw i n
dx g x u f x dt dw
y x

ψ
ψ

+= + + ≤ ≤ − = + +
=

，

 (3) 

where [ ]1 u R
T n

nx x x R= ∈ ∈， ， ， ，and y R∈ are the state variable, the control 

input, and the system output, respectively, [ ]1

T i
i ix x x R= ∈， ， , ( )if ⋅ , 

( ) : i
ig R R⋅ → , ( ) : , ( 1, , )i r

i R R i nψ ⋅ → =   are unknown smooth nonlinear functions 

with (0) 0if = , ( ) ( )0 0 1i i nψ = ≤ ≤ ( )1,2, ,i n=  . 

Lemma 1 [16]. For any given 2( ) ( )nV x C R R+∈ → , associated with the stochastic 

differential equation (1) we define the differential operator L as follows: 

 
2

2

1
( ) ( )

2
TV V

LV x f x Tr
x x

 ∂ ∂= + Ψ Ψ ∂ ∂ 
 (4) 

where
2

2

1

2
T V

Tr
x

 ∂Ψ Ψ ∂ 
is called Itô correction term, in which the second-order 

differential 2 2V x∂ ∂ makes the controller design much more difficult than that of the 

deterministic case.  

Lemma 2. Consider the stochastic system(1)and assume that ( )f x , ( )xΨ  are 1C  

in their arguments and (0)f , (0)g  are bounded uniformly in t . If their exist func-

tions 2( ) ( )nV x C R R+∈ → , 1(.)μ , 2 (.) Kμ ∞∈ ,two constant 0γ >  and 0ρ > , such 

that 1 2( ) ( ) ( )x V x xμ μ≤ ≤  and ( ) ( )LV x V xγ ρ≤ − +  for all nx R∈ , 0t > . Then the 

solution process of the system is bounded in probability.  

Lemma 3. For any continuous function ( ) : nf x R R→ , [ ]1

T

nx x x= ， ， , (0) 0f = , 

then there exist positive smooth functions ( )j jxη : R R+→ , 1, 2, ,j n=  , such that 

1( ) ( )n
j j j jf x x xη=≤  .  
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3 The DSC Controller Design 

Step 1: Define the first error surface 1 1 rz x y= − , where ry  is the desired trajectory. 

Then we have   

 1 1 2 1 1( )rdz g x f y dt dwψ= + − +  (5) 

Define the virtual controller 1α  as follows 

 3 2
1 1 1 1 1 1 1 1 1

ˆ ( ) ( ) / 2Tk z z S Z S Z aα θ= − −                 (6) 

where 1 0k >  is a design constant, 1a is also a design parameter, θ̂  is the estimated 
of θ  which has been defined in (2). Introduce a new state variable 1α  and let 1α  
pass through a first-order filter with time constant 1β  which will be chosen later to 
obtain 1α , which satisfies 1 1 1 1β α α α+ = , 1 1(0) (0)α α= .Then define the first filter 
error p , such as 1 1 1p α α= − . The differential of 1p is 

 1 1 1 1 1 1 1 1 1 1 1
ˆ ˆ( ( / ) ( , , , , , ) ( , , , , , )r r r rdp p B z S p y y dt C z S p y y dwβ θ θ= − + +        (7) 

where 1B and { }1 1
TTr C C  are smooth function, which have their maximum denoted 

by 1M  and 1N respectively. According Lemma 3 and 1(0) 0ψ = , thus there exist a 
function 11(.)φ  such that 1 1 1 11 1( ) ( )x z xψ φ≤ . Then, we have

1 1

2 4 2
1 1 11(3 / 2) (3 / 2)Tz zψ ψ φ≤ , 

define a smooth function 1f , let 2 (4/3)
1 1 1 1 1 1 11.5 0.75 rf f p z g z yφ= + + + −  . Then the RBF 

neural network can be used to approximate the unknown nonlinearities. This will be 
repeated in later design steps. Define 1 *

1 1 1 1 1 1 1 1 1( ) ( ) ( ) Th Z g f W S Z Zδ−= = + , 
1 1 1( )Zδ ε≤ , where 2

1 1[ , ]T
rZ x y R⊂ , and 1 1( )Zδ is the approximation error. Then, 

using the ‘Young’s inequality’, the following results can be gotten [11]  

 
1 1

3 6 2 2 (4/3) 4 4
1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) / 2 0.5 0.75 0.25T

m Mz g h Z b z S Z S Z a a b g zθ ε≤ + + +   (8) 

Step i  ( 2 1)i n≤ ≤ − : Define the i th error surface as 1i i iz x α −= − , the differential  

of it is 1 1( ) ( )i i i i i i idz g x f dt xα ψ+ −= + − + , Define the virtual controller iα  as follows 

 
3

2

ˆ ( ) ( )

2

T
i i i i i

i i i
i

z S Z S Z
k z

a

θα = − −                            (9) 

where 0ik >  is a design constant, ia is also a design parameter. Introduce a new 
state variable iα  and let iα  pass through a first-order filter with time constant  

iβ  which will be chosen later to obtain iα , which satisfies i i i iβ α α α+ = ,  
(0) (0)i iα α= . Then define the first filter error ip . Such as i i ip α α= −  . According 

to the differentiation operator mentioned above, the differential of ip is 

 ˆ ˆ[( ) ( , , , , , )] ( , , , , , )i
i i i i i i i i i i i i i

i

p
dp B z S p dt C z S p dwθ α α θ α α

β
= − + +   (10) 

Similar to the equation (7) mentioned above, iB and { }T
i iTr C C have their maximum, 

denoted by iM  and iN respectively. According to the lemma 3 it follows 

1 12 2( ) i i
l li i l l l lx x zψ ϕ φ= =≤ ≤  . Then we have 
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1 2 2 2

3 4 2 2 2 4 1
2

( )3 3
( ) ( ) [ ]

2 2

i

l ilT l
i i i i i i ii i i

i

z
z x x iz r i z

r

φ
ψ ψ φ

−

=≤ + + 
             (11) 

Define a smooth function if , let  

 
2 2 21

14 2 2 4 (4/3)
1 12

( )3 1
[ ] (3 )

2 4

i
l l il

i i i i ii i i i i i
i

z
f f p iz i z g z g z

r

φφ α
−
=

− −
= + + + + + −   (12) 

Since if , ig , iiφ and ilφ  are unknown smooth function. 1iα −
 is in fact a scalar  

unknown nonlinear function. RBF neural network can be used to approximate the 
unknown nonlinearities. This will be repeated in later design steps. Define 

1 *( ) ( ) ( ) T
i i i i i i i i ih Z g f W S Z Zδ−= = + , ( )i i iZδ ε≤ , where ( )i iZδ is the approximation 

error and 2
1 2 1[ , , , , ]T

i i iZ x x x Rα − ⊂  . At this step, by exploring the method utilized 

in (8), one has 3 6 2 2 (4/3) 4 4( ) ( ) ( ) / 2 / 2 (3 ) / 4T
i i i i m i i i i i M i i i iz g h Z b z S Z S Z a b g g z ε≤ + + + . 

Step n: This is the final step. The final control law will be derived in this step. Define 
the n th error surface as 1n n nz x α −= − , the differential of nz  is 

            1( ) ( )n n n n n ndz g u f dt x dwα ψ−= + − +                            (13)  

Finally, let the final control u  will be as follows 

 
3

2

ˆ ( ) ( )

2

T
n n n n n

n n
n

z S Z S Z
u k z

a

θ
= − −       (14) 

Similar to the equation (7), nB and { }T
n nTr C C have their maximum, denoted by nM  

and nN respectively. According to equation 1 12 2( ) n n
l ln n l l l lx x zψ ϕ φ= =≤ ≤  .Then 

 3 4 2 2 2 4 2 2 2 21
11.5 ( ) ( ) 1.5[ ( ) ]T n

ln n n n n n nn n n l nl nz x x nz r n z z rψ ψ φ φ−
=≤ + +        (15)  

define a smooth function nf , let  

 4 2 2 4 2 2 2 (4/3)1
1 1 12

3 1 1
[ ( ) ] (3 )

2 4
n
ln n n n nn n l nl n n n n n

n

f f p nz n z z g z g z
r

φ φ α−
= − −= + + + + + −   (16)  

So define a smooth function 1 *( ) ( ) ( ) T
n n n n n n n n nh Z g f W S Z Zδ−= = + , n ( )n nZδ ε≤  

where 2
1 2 1[ , , , , ]T

i n nZ x x x Rα − ⊂  ,and ( )n nZδ is the approximation error. Then  

 
2

3 6 2 (4/3) 4 41
( ) ( ) ( ) (3 )

2 2 4
Tm M

n n n n n n n n n n n n
n

b b
z g h Z z S Z S Z g g z

a
ε≤ + + +  (17)  

4 Stability Analysis 

Theorem 1[14]. Consider the system (5), and the above closed-loop systems, according 
to lemma 3, for any initial condition satisfying 

 { }4 4 21
1 1 0(0) (0) / 2n n

i ii i mz p b Mθ λ−
= =Π = + + <      (18)  
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where 0M  is any positive constant, then there exist the control parameters 

ik , iβ such that all the signals in the closed-loop system are UUB in forth moment. 

Moreover, the ultimate boundedness of the above closed-loop signals can be tuned 
arbitrarily small by choosing suitable design parameters.  

Proof  Consider the following Lyapunov function candidate 

 4 4 21
1 1( ) 4 2n n

i ii i mV z p b θ λ−
= == + +                       (19) 

According to the Itô’s differential rules, together with 1 1i i i ix z p α+ += + + , and the 

adaptive law can designed as 6
01

ˆ ˆ( ) ( ) 2
n T

i i i i i ii
z S Z S Z a kθ θ θ

=
= −   , the differential 

of the above function can be found as follows  

1 14 4 (4/3) 2 4

1 1
( 075.) [(1 (4 3)(( ) ( ) )]

n n

i m i n m n i i i i i ii i
LV k b z k b z M N pβ δ ζ− −

= =
≤ − − − − − −   

 
12 2 4 2 4 2

0 1 1 2
ˆ ( 2 4) (1 (2 ) 4) 3 2

n n n

m i M i i i ii i i
k b a b rθθ λ ε ζ δ−

= = =
− + + + + +    (20) 

where the design parameter 0 0k > . As for the term 0
ˆ /mk b θθ λ  , which satisfies 

2 2
0 0

ˆ / ( ) /m mk b k bθθ λ θ θ λ≤ − −  . Then  

1 14 4 (4/3) 2 4

1 1
( 3 / 4) [1 3( ) 4 3( ) / 4]

n n

i m i n m n i i i i i ii i
LV k b z k b z M N pβ δ ζ− −

= =
≤ − − − − − −   

 
12 2 2 2 4 2 4 2

0 1 1 2
( ) ( 2 4) (1 (2 ) 4) 3 2

n n n

m i M i i i ii i i
k b a b rθ θ λ ε ζ δ−

= = =
− − + + + + +     (21) 

Choose the design parameters 1 0, , , , , , , , ,i i i i i i i ik a M N r kβ δ ζ ε ( )1, , 1i n= − , such that 
(4/3) 2 01 3[( ) ( ) ] 4 0i i i i i iM Nβ δ ζ β− − = > , 0( 3 / 4) 0i m ik b k− = > , 0 0n nk k= > , 

12 2 2 4 2 4 2
0 1 1 2

/ ( / 2 / 4) (1 (2 ) / 4) 3 / 2
n n n

m i M i i i ii i i
k b a b rθ λ ε ζ δ ρ−

= = =
+ + + + + =   , subs-

tituting  the above equations into (21) yields 

 
10 4 0 4 2

01 1
/

n n

i i i i mi i
LV k z p k b Vβ θ λ ρ γ ρ−

= =
≤ − − − + ≤ − +    (22)  

where { }0 0
0min 4 ,4 , 2 0i ik kγ β= > . According to the lemma 2 the above analysis on 

the closed-loop system means that all the signals in the system (1) are UUB in the 
sense of probability. This completes the proof.            □ 

5 Simulation Example 

Consider the following third-order stochastic nonlinear system 

2
2

2 3`
1 1 2 1 1 1

2 3 3
2 2 3 2 2 1 1 1 2

2 2 2
3 1 2 3 3 2 3 1 1 1

1

((1 ) sin( ))
((1 ) 0.5 ) cos( )
((1.5 sin( )) 0.5 / 3 / (1 )) 3 x

dx x x x x dt x dw
dx x x x x x x dt x x dw
dx x x u x x x x x x dt x e dw
y x

−

 = + + +
 = + − − − − +


= + − − − − + +
=    
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Based on the DSC controller design proposed in section 3, the virtual control laws 

and the true control law are designed as follows 3 2
1 1 1 1 1 1 1 1 1

ˆ ( ) ( ) / 2Tk z z S Z S Z aα θ= − −  
3 2

2 2 2 2 2 2 2 2 2
ˆ ( ) ( )2Tk z z S Z S Z aα θ= − − , 3 2

3 3 3 3 3 3 3 3
ˆ ( ) ( ) / 2Tu k z z S Z S Z aθ= − − , where 1 1Z z= , 

2 1 2
ˆ[ , , ]TZ z z θ= , 3 1 2 3

ˆ[ , , , ]TZ z z z θ= , 1 1 rz x y= − , 2 2 1z x α= − , the first-order  

filter 1 1 1 1β α α α+ = , 3 3 2z x α= − , the second-order filter 2 2 2 2β α α α+ = , θ̂  is the  

adaptive law, which is designed as 
3 6

01
ˆ ˆ( ) ( ) / 2T

i i i i i ii
z S Z S Z k aθ θ θ

=
= −  . 

If we chose the desired trajectory sin( )ry t= , the suitable parameters were chosen 

as 1 20k = , 2 2.5k = , 3 15k = , 1 12a = , 2 10a = , 3 12a = , 1.5λ = , 0 0.2k = , 

1 0.002β = , 2 0.005β = . The initial conditions are given by 1 2 3[ (0), (0), (0)]Tx x x  

[0,0.6,0.4]T= , ˆ(0) 0.1θ = , 1(0) 0.3α = − , 2 (0) 1.2α = − .The simulation results are 

shown in Figs.1~4. 
 
 

 
 
 
 
 

       Fig. 1. The control input u                 Fig. 2. The output of system 

 
 
 
 
 
 
 
 

 
Fig. 3. The adaptive law θ̂                     Fig. 4. The state of 2x  

6 Conclusion 

In this paper, the DSC technique has been proposed for a class of stochastic  
nonlinear strict-feedback systems. Using the proposed technique we can eliminate the  
problem of ‘explosion of complexity’, this stability analysis is simpler than that  
based on the backstepping method. The closed-loop system has been proved UUB.  
The effectiveness of the proposed approach has been verified by the simulation 
example. 
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Cooperative Tracking of Multiple Agents
with Uncertain Nonlinear Dynamics

and Fixed Time Delays
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Abstract. In this paper, we focus on the cooperative tracking problem of multi-
agent systems with nonlinear dynamics and communication time delays. Only a
portion of agents can access the information of the desired trajectory and there are
communication delays among the agents. Through designing an adaptive neural
network based control law and constructing an appropriate Lyapunov-Krasovskii
functional, it is proved that the tracking error of each agent converges to a neigh-
borhood of zero. Simulation results are provided to show the effectiveness of the
proposed algorithm.

Keywords: cooperative tracking, time delay, multi-agent system, Lyapunov-
Krasovskii.

1 Introduction

Multi-agent systems (MAS), including multiple unmanned aerial vehicles (UAVs), au-
tonomous underwater vehicles (AUVs) and unmanned ground vehicles (UGVs), etc.,
have been widely employed for implementing complex tasks due to their great advan-
tages [1–5]. Various problems about MAS have been intensively investigated in the past
few years. Most of these work are focused on the consensus problems, whose tasks are
to find out an appropriate control law to make the system reach an agreement satisfying
some certain properties.

In practical applications, time delays often occur in the transmission of information
among the agents. There have been some works focusing on the consensus problem with
time delay [6, 7]. The effects of transmission delays in MAS with first-order dynamics
have been discussed in [6], which shows the relationship between the eigenvalue of the
Laplacian matrix and the stability of the first-order system with time delay. A second
order consensus problem in a directed graph with non-uniform time delay is presented
in [7]. The transmission delays in bilateral tele-operation systems have been discussed
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in [8, 9], which address specifically the stability analysis problem for a class of tele-
operation systems. Formation control of a class of UAVs is presented in [10], which
proposes different formation control schemes for various formation control situations
with delayed communication. The methods in these works are restricted to the control
of agents with known dynamics. For the agents with unknown dynamics, an adaptive
fuzzy control is designed for the synchronization of nonlinear teleoperators in [11].

In this paper, we consider that the multi-agent system having following features: (i)
the agent dynamics are high order with partially unknown dynamics; (ii) communica-
tion delays are exists among the agents; (iii) only portion of the agents can access the
desired trajectory; and (iv) the leadership of the leader itself is unknown to all the others,
and the leader can only affect the agents who can sense the leader. Under these condi-
tions, we aim to illustrate that the system can obtain expected cooperative tracking when
there exits time delays among the transmission. The previous work in [12] shows the
adaptive neural network based control law is able to make the multiple agents track the
desired trajectory in the case of ideal communication. In this work, we extend previous
result to the case with constant time delay.

The remainder of the paper is organized as follows. The preliminaries and problem
formulation are presented in Section 2 and Section 3, respectively. The control design
is presented in Section 4, followed by simulation results in Section 5. Conclusions are
drawn in Section 6.

2 Preliminaries

2.1 Agent Dynamics

The nonlinear dynamics of the agents studied in this work are described by

ẋi = xi+1, i = 1, . . . , n− 1

ẋn = f(x) + g(x)(u + d),

y = x1

(1)

where x = [x1, . . . , xn]
T ∈ R

n are the generalized state variables of each agent; n
shows the state dimension of the system; y ∈ R and u ∈ R are the system output
and input respectively; the smooth function f(·) indicates the unknown dynamics with
uncertainties; g : R

n → R is the open loop control gain of the system, which is an
unknown function with certain properties, and d represents the external perturbation
acting on the input channel.

Assumption 1. The external disturbance d is uncertain bounded functions d ∈ L∞.
That is, there exists unknown positive constant � such that |d(t)| ≤ � < ∞, where �
can be arbitrarily large.

Assumption 2. There exists a smooth function ḡ(x) and a positive constant g > 0,
such that ḡ(x) ≥ g(x) > g > 0, ∀(x) ∈ R

n. There exists a positive function g0(x)
satisfying |ġ(x)/2g(x)| ≤ g0(x), ∀(x) ∈ R

n as well. Without loss of generality, it is
further assumed that the function g(x) is positive ∀(x) ∈ R

n.
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2.2 Neural Network Approximation

In control engineering, neural networks are widely employed to approximate the un-
known nonlinear functions [13–16]. In this paper, linearly parameterized NN is used to
approximate the continuous function fi(Zi) : R

q → R for i−th agent [17]

fi(Zi) = θTi ψi(Zi) + εi(Zi), (2)

where the input vector ZT
i ∈ R

q, weight vector θi ∈ R
l, the NN node number l >

1, and ψi(Zi) ∈ R
l. Universal approximation results indicate that, if neural nodes

are chosen sufficiently large, θTi ψi(Zi) can approximate any continuous function over
a compact set ZT

i ∈ Ωxi to arbitrary degree of accuracy in the form of fi(Zi) =
θ∗Ti ψi(Zi) + εi(Zi), ∀Zi ∈ Ωxi ⊂ R

p, where θ∗i are the ideal constant weight
vector, and ε(Zi) is the approximation error which is bounded over the compact set,
i.e., |εi(Zi)| ≤ ε∗i , ∀Zi ∈ Ωxi where ε∗i > 0 is an unknown constant. The ideal
weight vector θ∗i is an artificial quantity required for analytical purposes. θ∗ is de-
fined as the value of θi that minimizes |εi| for all Zi ∈ Ωxi ⊂ R

p, i.e., θ∗i :=

argminθi∈Rl

{
supZi∈Ωxi

|fi(Zi)− θTi ψi(Zi)|
}

.

3 Cooperative Tracking of Multiple Agents

In this paper, a weighted directed graph is used to model information exchange among
the agents. In addition, we introduce a virtual agent, represented by v0, and it can obtain
the desired trajectory strictly. Then for the N agents network system, its graph G con-
tains a node set V = {v0, v1, . . . , vN}, and a weighted adjacent matrix A∗ = [a∗ij ] ∈
R

(N+1)×(N+1), where a∗ij > 0 indicates that agent i can receive the information from
agent j, otherwise aij = 0. Define a diagonal matrix Δ(G) ∈ R

(N+1)×(N+1) with
elements δii =

∑
k aik , and the normalized Laplacian of G as L = I − A, where the

elements in the normalized adjacent matrix A are defined as aij = a∗ij/δii, δii �= 0,
and aij = a∗ij , δii = 0. With adding a virtual agent in the system, we call the graph G
the extended communication graph. For each agent let Ni = {vj ∈ V|aij > 0} denotes
the neighbor set of vi.

Assumption 3. The extended communication graph G has a spanning tree with the
virtual agent as the root, and this virtual agent follows the desired trajectory strictly.

The cooperative tracking control problem of multi-agent systems with time-delay stud-
ied in this work is formulated as follows. For a group of agents, the desired trajec-
tory yd(t) and its derivations up to n-th order are bounded, and only a portion of the
agents can sense the signals. Considering that constant time delay appears in the signal
transmission among the agents, we design a control, using the full states of its neigh-
bors and itself, such that the tracking error converges to a neighborhood of zero, i.e.,
limt→∞ |yi(t)− yd(t)| = ε̄, where ε̄ > 0. At the same time, all closed-loop signals are
to be kept bounded.

The desired trajectory yd(t) is generated by the following reference model: ẋdj =
xdj+1, j = 1, . . . , n − 1, ẋdn = fd(xd, t), with yd = xd1, where n ≥ 2 is a constant
index, xd = [xd1, . . . , xdn]

T ∈ R
n are the states of reference system, yd ∈ R is the

system output.
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Assumption 4. The reference trajectory yd(t) and its n-th derivatives remain bounded,
i.e., xd ∈ Ωd ⊂ R

n, ∀t ≥ 0.

4 Cooperative Tracking Control Design

In this section, we design the cooperative tracking control for each agent based on its
neighbors’ states. Since only a portion of the agents can access the information of the
desired trajectory, the tracking control is designed based on the relative states with its
neighbors. We assume that the information exchange between the i-th and the j-th agent
is subject to a constant time delay τ ≥ 0.

Define the following error variables for each agent: zi,1 = yi,1(t) − yir(t), zi,2 =

żi,1 = xi,2(t) − ẏir(t), . . . żi,n = z
(n−1)
i,1 = xi,n−1(t) − y

(n−1)
ir (t), where yir(t) =∑

j∈Ni
aijyj(t− τ), y

(k)
ir (t) =

∑
j∈Ni

aijy
(k)
j (t− τ), k = 1, · · · , n, where aij is the

element of the normalized adjacent matrix A of the extended communication graph G.
For each agent, define a vector z̄i = [zi,1, . . . , zi,n]

T ∈ R
n, and a filtered tracking

error si(t) = [ΛT 1]z̄i, whereΛ = [λ1, . . . , λn−1]
T satisfies pn−1+λn−1p

n−2+ . . .+
λ1 is Hurwitz. The first derivative of si is written as

ṡi(t) = fi(xi, ηi) + gi(ui + di) + [0 ΛT ]z̄i − y
(n)
ir (t). (3)

Considering a scalar smooth function Vsi = 1
2gi
s2i (t) and a Lyapunov-Krasovskii

functional Vdi = τkiz

2

∫ 0
−τ

∫ t
t+υ

s2i (σ)dσdυ, then we have

V̇si + V̇di = −
(
g0 +

ġi
2g2i

)
s2i (t) + si(t)(ui + di)

+ si(t)
fi(xi, ηi) + [0 ΛT ]z̄i − y

(n)
ir + gig0si(t)

gi

+
τkiz
2

[
τs2i −

∫ t

t−τ

s2i (σ)dσ

]
.

Due to the existence of the uncertain items, we use linearly parameterized NN to ap-
proximate the unknown nonlinear function f̄i(xi, ηi, z̄i) = {fi(xi, ηi) + [0 ΛT ]z̄i −
y
(ρ)
ir (t)+ gig0si(t)}/gi, which can be described as f̄i(Zi) = θ∗Ti ϕi(Zi)+ ε̄i, where θ∗

is the ideal weighted vector, and Zi = [xi, ηi, z̄i]
T .

Considering the Lyapunov function candidate

Vi = Vsi + Vdi +
1

2γ2
θ̃Ti θ̃i +

1

2γ1
ϕ̃2
i , (4)

where γ1 and γ2 are the positive constants , θ̃i = θ̂i − θ∗i , and ϕ̃i = ϕ̂i − ϕ∗
i are the

estimated errors of parameters and the error bound,whereθ̂i and ϕ̂i are the estimation
of θ∗i and ϕ∗

i = (�i + ϕi)
2 respectively. Then we have
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V̇i = − ġi
2g2i

s2i (t) +
1

gi
si(t)ṡi(t) +

1

2γ2
θ̃Ti

˙̃
θi +

1

2γ1
ϕ̃i

˙̃ϕi

+
τkiz
2

[
τs2i −

∫ t

t−τ

s2i (σ)dσ

]
= −
(
g0 +

ġi
2g2i

)
s2i (t) + si(t)(ui + di) + si(t)[θ

∗T
i Ψi(Zi) + ε̄i]

+
1

2γ2
θ̃Ti θ̃i +

1

2γ1
ϕ̃2
i +

τkiz
2

[
τs2i −

∫ t

t−τ

s2i (σ)dσ

]
.

(5)

The NN is constructed to approximate f̄i(xi, ηi, z̄i, y
(n)
ir ) = {fi(xi, ηi) + [0 ΛT ]z̄i −

y
(n)
ir (t) + gig0si(t)}/gi on a whole, which avoids the possible singularity of the direct

approximation of gi. Select the following control ui for each agent

ui = −θ̂Ti ψi − kiz

∫ t

t−τ

si(σ)dσ − 1

2
ϕ̂isi − kisi, i = 1, . . . , N. (6)

The update laws for the parameters are designed as

˙̂ϕi = −γ1
[
−1

2
(1−�ϕ)s

2
i (t) + σ1ϕ̂i

]
˙̂
θi = −γ2

[
−ψisi(t) + σ2θ̂i

]
, (7)

where�ϕi = 0 if |ϕ̂i| ≤Mϕi with Mϕi is a designed positive constant, or 1 otherwise.

Remark 1. In this work, we assume that the time delay τ is constant and exactly known.
Each agent has a register to store the history information received from its neighbors.
The cases of unknown time delay or time-varying delay will be studied in future works.

By using Young’s inequality, we have −σ2θ̃Ti θ̂i ≤ −σ2

2 ‖θ̃i‖2 + σ2

2 ‖θ∗i ‖2, −σ1ϕ̃iϕ̂i ≤
−σ1

2 ϕ̃
2
i +

σ1

2 ϕ
∗2
i , and (�i + ε̄i)si(t) ≤ 1

2 + 1
2s

2
iϕ

∗
i Also Cauchy-Schwars’s inequality

lead us to write(
∫ t
t−τ

si(σ)dσ)
2 ≤ τ

∫ t
t−τ

s2i (σ)dσ. Considering (6) and (7), the time
derivative of Vi can be written as

V̇i ≤
kizs

2
i

2
+
kiz
2

(∫ t

t−τ

si(σ)dσ

)2

− kis
2
i −

σ1
2
ϕ̃2
i −

σ2
2
‖θ̃i‖2 + c2i

+
τkiz
2

[
τs2i −

∫ t

t−τ

s2i (σ)dσ

]
≤ kizs

2
i

2
+
kizτ

2

∫ t

t−τ

s2i (σ)dσ − kis
2
i −

σ1
2
ϕ̃2
i −

σ2
2
‖θ̃i‖2 + c2i

+
τkiz
2

[
τs2i −

∫ t

t−τ

s2i (σ)dσ

]
= −1

2
[ki − kiz(τ

2 + 1)]s2i −
σ1
2
ϕ̃2
i −

σ2
2
‖θ̃i‖2 + c2i,

(8)
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where c2i = σ2

2 ‖θ∗i ‖2 + σ1

2 ϕ
∗2
i + 1

2 .
Now choose constant positive parameters ki, kiz , and let λi = 1

2 [ki−kiz(τ2+1)] >
0. Define

Ωsi =
{
si

∣∣∣ |si| ≤√c2i/λi} ,
Ωθi =

{
(θ̃i, ϕ̃i)

∣∣∣‖θ̃i‖ ≤
√
2c2i/σ2, |ϕ̃i| ≤

√
2c2i/σ1

}
,

Ωei =
{
(si, θ̃i, ϕ̃i)

∣∣∣λis2i + σ2
2
θ̃Ti θ̃i +

σ1
2
ϕ̃2
i ≤ c2i

}
.

Since c2i, σ1, σ2, kid and ki are positive constants, we know that Ωsi, Ωθi and Ωei are
compact sets. Eq.(8) shows that V̇i ≤ 0 once the errors are outside of the compact set
Ωei. According to the standard Lyapunov theorem, we conclude that si, θ̃i, and ϕ̃i are
bounded. From (8), it can be seen that Vi is strictly negative as long as si is outside the
compact set Ωsi. Therefore, there exists a constant T1 such that for t > T1, the filtered
tracking error si converges to Ωsi, that is to say, si ≤ βsi(ki, kiz , γ1, γ2, σ1, σ2, θ

∗
i , ϕ

∗
i

, ε∗i ) =
√
c2i/λi.

Define the error between i-th agent and the desired trajectory as ỹi(t) = yi(t) −
yd(t) = yi(t)− y0(t), and the auxiliary states of each agent

ξi(t) = [ΛT 1]Yi, (9)

Yi = [yi, y
(1)
i , . . . , y

(n−1)
i ]T . The filtered error is denoted as ξ̃i(t) = ξi(t) − ξd(t) =

ξi(t)− ξ0(t). Also, define ỹ = [ỹ1, . . . , ỹN ]T , ξ̃ = [ξ̃1, . . . , ξ̃N ]T .
Using the fact that si(t) = ξi(t) −

∑
j∈Ni

aijξj(t), we have ξ̃i = ξi − ξ0 =∑
j∈Ni

aijξj + si− ξ0, i = 1, . . . , N , and in the vector form ξ̃ = Aξ+ s− ξ01, where
1 = [1, . . . , 1]T , s = [s0, s1, . . . , sN ]T , and A is the normalized adjacency matrix of
the extended communication graph. Through calculation,we can obtain ξ̃ = Aξ̃ + s.
Under Assumption 3, we know that L is an invertible matrix according to Theorem 1
in [12], then we have ξ̃ = L−1s.

5 Simulation Studies

In this section, a simulation example is presented to demonstrate the effectiveness of the
proposed synchronized tracking controller. Consider a network of four agents described
in Fig. 1, and the agent dynamics is given by

ẋ1 = x2, ẋ2 = x3

ẋ3 = 3 cosx1 − x3 sinx2 + x2x3 + (2− sinx3)(u+ d)

y = x1

(10)

The desired trajectory yd is generated by yd = 8
s3+6s2+12s+8yref , where

yref(t) =

⎧⎪⎪⎨⎪⎪⎩
1, if 0 ≤ t ≤ 10
0, if 10 < t ≤ 20
1, if 20 < t ≤ 30
0, if t > 30

(11)
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Fig. 1. Extended communication graph in the numerical example
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(e) Input of the agent 3.
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(f) Input of the agent 4.

Fig. 2. Outputs and tracking errors of each agent when time delay τ = 0.05

In the simulation, both the nonlinear item, f(x) = 3 cosx1 − x3 sinx2 +x2x3, and the
open-loop control gain, g(x) = (2 − sinx3), are considered as unknown. The external
disturbance in the input channel of each agent is generated as di(t) = 0.1 sin(πt2i ),
i = 1, . . . , 4. The control design parameters, and initial conditions are chosen as Λ =
[2, 3]T , ki = 3, kid = 2, i = 1, . . . , 4, γ̄1 = γ̄2 = 4, x1(0) = [2, 0, 0, 0]T , x2(0) =

[1, 0, 0, 0]T , x3(0) = [−1, 0, 0, 0]T , x4(0) = [−2, 0, 0, 0]T , θ̂i(0) = 0, and ψ̂i(0) = 0.
The saturation limits of the control are ±20. In this example, there are 8 inputs of the
NN for each agent, xi,k, zi,k, k = 1, 2, 3, and y(3)ir , and we employ two nodes for each
input dimension of θTi ψ(Zi); thus we end up with 256 nodes (i.e., l = 256) with centers
μk = 1.0, k = 1, . . . , l, evenly spaced in [−3.0, 3.0] × [−3.0, 3.0] × [−3.0, 3.0] ×
[−3.0, 3.0]× [−3.0, 3.0]× [−3.0, 3.0]× [−3.0, 3.0]× [−3.0, 3.0]. The other NN control
parameters are chosen as σ1 = 0.05, γ1 = 1, σ2 = 9 × 10−4, and γ2 = 103. In
the simulation, three cases with different time delays are considered, including 0.05s,
0.2s and 0.8s.
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(d) Input of the agent 2.
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(e) Input of the agent 3.
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(f) Input of the agent 4.

Fig. 3. Outputs and tracking errors of each agent when time delay τ = 0.2
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(d) Input of the agent 2.
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(f) Input of the agent 4.

Fig. 4. Outputs and tracking errors of each agent when time delay τ = 0.8
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Simulation results are shown in Fig. 2– Fig. 4. From these figures, we can find that
the output of the agents are bounded. At the same time, the trajectory tracking error of
each agent converges to a neighborhood of zero even though the time delay exists.

6 Conclusion

In this work, we have addressed the cooperative tracking problem of multiple agents
with constant time delay. Based on the previous work, we design a new adaptive neural
network based control and use a Lyapunov-Krasovskii functional to derive the delay-
dependent stability criteria. Then we obtain the analytical results that the cooperative
tracking of the controlled multi-agent systems with high order dynamics can be realized
under the designed controllers. It has been shown that the tracking error of each agent
asymptotically converges to an adjustable neighborhood of origin. Simulation results
have shown the the effectiveness of the proposed methods. Future works will focus on
the cooperative tracking control problem with unknown and stochastic time delays.
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Abstract. This paper presents an excellent software phase-locked loop speed 
control system of permanent magnet synchronous motor (PMSM). A loop-gain 
adaptation scheme is developed using model reference adaptive system 
(MRAS) theory to suppress the torque disturbance which effect on motor speed. 
The following three points including accurate steady-state speed, fast transient 
response, and insensitivity to disturbance are especially important for speed 
control of permanent magnet synchronous motor. The software phase-locked 
loop (SPLL) technique has the significant ability to obtain precise speed regula-
tion. When the feedback signal of the motor speed is synchronized with a refer-
ence signal, perfect speed regulation can be realized. The steady-state accuracy 
is about 0.02%~0.1% which is difficult to be obtained by conventional propor-
tion integral differentiation (PID) speed control. But phase-locked loop system 
suffers from pool dynamics and limited lock range. The gain of SPLL has great 
effect on the performance of system. As the loop gain becomes larger, both the 
maximum speed error and load increase. If the loop gain varies according to the 
values of phase error and speed error, the SPLL system will be adaptive be-
tween the accuracy and sensitivity to load disturbance. A model reference adap-
tive system is designed to confine the transient phase error within the range of 
[-2π 2π] at the present of torque disturbance. This means that the SPLL remains 
phase tracking. Also, in order to overcome the time varying and nonlinear  
of PMSM, and obtain the stable torque output, it is effective to utilize the neu-
ron to seek the optimum controller parameter on line. Experiment results are  
presented to verify the validity of the proposed system. 

Keywords: software phase-locked loop, model reference adaptive, single  
neuron control, permanent magnet synchronous motor. 

1 Introduction 

Phase-locked loop scheme has been widely used in control strategies of accurate mo-
tor speed control for its excellent characteristics, such as high steady state angular 
velocity, insensitivity to noise. A phase-locked regulator system, comprised of three 
                                                           
* Project Supported by National Natural Science Foundation of China. 
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major functional subsystems: frequency/phase detector (PFD), loop filter (LF), 
PMSM and encoder.  

The following three points are especially important speed control of PMSM:  
accurate steady-state speed; fast transient response; insensitivity to disturbance. 

When the feedback signal of the motor speed is synchronized with a reference sig-
nal, perfect speed regulation can be realized, about 0.02%~0.1% of the steady-state 
accuracy which is difficult to be obtained by conventional PID speed control[1]. But 
phase-locked loop system suffers from pool dynamics and limited lock range. Fur-
thermore, the motor speed is sensitive to torque disturbances[2]. In  [3] and [4] pre-
sented dual-mode speed control, which includes PLL control and speed closed-loop 
control, is an efficient method to realize accurate speed control and perfect transient 
performance, but it is still a possibility that PLL may be out of lock at the presence of 
disturbance. In [5] and [6] a disturbance observer is designed to estimate disturbance 
torque. However, the mechanical parameters of motor must be known[7-9]. 

In the paper, adaptive SPLL speed control using MRAS theory is employed while 
the control of motor torque is designed by single neuron proportion integral PI con-
trol. The SPLL can be adapted to suppress the effect of torque disturbance on PMSM 
speed. The arithmetic does not need motor parameters; what’s more, it is easy to be 
realized. Phase-locked steady speed control algorithm was realized with PMSM dis-
crete control system based on DSP controller, which was applied to high-speed per-
manent magnet synchronous motor. Experiment results are presented to verify the 
validity of the proposed system. 

2 Adaptive SPLL Control 

The control system is shown in Fig.1. This system is roughly classified into two parts: 
the single neuron PI torque controller and the adaptive SPLL speed control. If the 
error between the speed command and the feedback motor speed is larger than a pre-
set value, the single neuron PI torque controller operates in order to reduce the speed 
error quickly. When the error is smaller than preset value, system is switched to adap-
tive SPLL dual-closed loop control. An adaptation is used to suppress the effect of 
torque disturbance on motor speed.  

 

Fig. 1. Block diagram of the control system 
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2.1 SPLL Operation 

When controller operates at SPLL mode, the block diagram of the drive system is 
shown in Fig.2. It comprises a phase-frequency detector (PFD), a loop filter (LF), 
loop-gain adaptation, single neuron PI torque controller, a high-speed PMSM and 
encoder. The combination of controller, PMSM and encoder woks as a voltage-
controlled oscillator (VCO) in SPLL. 

 

Fig. 2. Block diagram of SPLL motor speed regulations system 

An adaptive SPLL controller in operation the transient phase error within the range 
of [-2π 2π], in another case single neuron PI torque controller is operated.  

2.2 SPLL Stability Analysis  

Since the PFD always operates under the locked or small frequency error condition, 
its continuous model can be represented by GPFD(s)= kd/s, where kd is the gain of PFD. 
In case a lead-lag filter is used, its transfer function is represented as 
GLF(s)=(τds+1)/(τfs+1), where τd and τf is time constants. It has been indicated that the 
transient process of motor torque can be omitted due to the moment of inertia of the 
motor if the torque response is fast enough. The model of the PMSM can then be 
represented as GPMSM(s) = KT/(Js+KD) , where J is the moment of inertia, KT is a tor-
que constant, KD is the damp constant, the gain of loop KA. The closed-loop transfer 
function of the system shown in Figure.2 is given by 
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By characteristic equation of matrix A 
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It can be proved by Lyapunov method that the system is evolution stable for any KA 
kd>0 as long as τd>τf, in the range of [-2π 2π]. 

2.3 Adaptive SPLL for PMSM Drive 

The gain of SPLL has great effect on the performance of system. As the loop-gain be-
comes larger, both the maximum speed error and load ability increase, vice versa. If the 
loop-gain varies according to the values of phase error and speed error, the SPLL sys-
tem will be adaptive between the accuracy and sensitivity to torque disturbance. The 
loop-gain will increase as the disturbance torque simultaneously. Thus, torque controller 
can provide enough torque command, and SPLL can be locked again quickly. Under 
even worse condition, the SPLL containing loop-gain adaptation can maintain locked at 
the torque which is too large for SPLL to be locked with original loop-gain. 

A MRAS is designed to confine the transient phase error within the range of  
[-2π 2π] at the present of torque disturbance. This means that the SPLL remains phase 
tracking and the linear model of PFD is still valid. The block diagram of the MRAS is 
shown in Figure 3. 
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-
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TR
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Fig. 3. Block diagram of the MRAS 

The adjustable system is represented by 

eddeAdafa kKkTT ωτθτ +=
′

+ **  (5) 

where KA is the gain to be adapted, θe is the phase error.  
Reference model is designed as 

eddeRdRfR kKkTT ωτϕτ +=
′

+ **

 
 (6) 
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where φe is the desired phase error which is a positive constant independent on the 
load torque. KR is the gain of reference model. Reference model (6) expresses the 
desired performance of the system, i.e. the torque command must vary simultaneously 
according to the change of load torque. For the conventional PLL system, it changes 
phase error while the loop-gain maintains invariable. However, the reference model 
adapts its loop-gain KR to provide the needed torque command while the phase  
error maintains unchanged. Although KR is updated during practical control, it can be  
treated as a constant within every control period.  

In order to derive the adaptive scheme of KA, Lyapunov's theorem is utilized.  

Theorem: Define the following Lyapunov function candidate 

* * 2 2 21
[( ) ( ) / ]

2 a R e A RV T T K Kφ ξ= − + −  (7) 

where ξ is a positive constant. The time derivative of V becomes (7) 

( ) ( ) ξθφφτ eeeAAfRa KKTTV −+−−=′ '2**

 
(8) 

During control process, θe >φe implies that the phase error of adjustable system is 
larger than desired, therefore KA should be increased to reduce such phase error, i.e. 

'
AK > 0. On the contrary, '

AK < 0 for θe <φe. This results in an negative value 
of ( )eeAK θφ −' . Thus V ′<0 is satisfied. **

Ra TT −  goes to zero according to Lyapu-
nov's theorem.  

3 Neuron PI Torque Control 

The basic component of neural network is single neuron, which is a kind of practical 
self-learning function of PI controller. The structure of the controller is shown  
in Fig.4. 

 

Fig. 4. The structure diagram of single neuron PI controller 

In Fig.4, Ta
* and Taf is the controller input and output value respectively. And the 

grey part is the single neuron PI controller. The regulator input, x1(k), x2(k), x3(k), 
which is the necessary error function to study, is represented integral and proportional 
coefficient of the neurons. Due to the incremental structure, it can get functions as 
following: 
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Through the adjustment of the weight value coefficient, the neurons can realize self 
learning function. And control algorithm is as follows, 
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where wi(k) =(i=1, 2) is the integral and proportional weight value, KCS is the control 
parameters gain of the single neuron PI controller. Usually, self learning of  
single neuron PI uses the algorithm of supervised Hebb learning method [10-12]. The  
specific learning algorithm of single neuron PI weights adjustment is as following: 

1 1 1 1

2 2 2 2

( ) ( 1) ( ) ( 1) ( )

( ) ( 1) ( ) ( 1) ( )

w k w k z k u k x k

w k w k z k u k x k

η
η

= − + −
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 (12)

where ηi ( i = 1, 2) is the learning rate of integral and proportional, z (k) is the signal 
of error. In formula (4), z (k) is a teacher signal. The input of the motor and controller 
input x1(k), x2(k), x3(k) are integral and proportional items of the weights of the exci-
tation input. According to the excitatory input, neurons can make the integral and 
proportional weights to reduce the error in the direction of the adjustment. Therefore, 
it can overcome the nonlinear and non-stationary in the course of adjustment of the 
motor speed control by using the self learning characteristics of neuron. But due to the 
structure characteristics of the learning algorithm, the integral term weights w1 (k) of 
the change process is relative with the square of error. When the error appears too big 
for a long time, this parameter will become oversize, which can affect the learning 
effect, even emerging the overflow phenomenon. 

4 Experiment Results 

Control system has been verified by experiment shown in Fig.3. Implementation of 
the SPLL controller is based on TMS320F2812 digital signal controller. The moment 
of inertia of PMSM is J=0.1Kg⋅m2, damping constant KD=0.001N⋅m/ 1000r/min, tor-
que coefficient KT=0.001178N⋅m/A. The high speed PMSM in 30000r/min steady 
speed curve in torque disturbance is revealed by Fig.5.  
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Fig. 5. PMSM 30000r/min steady speed curve in torque disturbance 

The process of phase locking is shown in Fig.6 to Fig.8.  

 

Fig. 6. Difference of output waveform when Feedback clock phase advance reference clock 

 

Fig. 7. Difference of output waveform when Feedback clock phase lags behind reference clock 
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Fig. 8. Linear difference output when feedback clock phase lags behind reference clock 

Fig.9 is the experiment curve of raising speed. 

 

Fig. 9. Experiment curve of raising speed  

5 Conclusion 

An excellent speed control system for PMSM drives was proposed and verified by 
experiments in this paper. Firstly, a torque controller was designed by single neuron 
PI control method to obtain torque characteristic. For the lock range of SPLL motor 
control system was analyzed to determine the switching point. The stability of the 
SPLL systems was analyzed. A loop-gain adaptation scheme was developed using 
MRAS theory to suppress the effect of torque disturbance on PMSM speed. The adap-
tation scheme is easy to be realized. Secondly, the loop-gain adaptation control sys-
tem possesses high performance including the precise steady-state speed regulation, 
quick dynamic response, robustness to the motor parameter variations and insensitivi-
ty to the torque disturbance. Finally, experiment results were accorded with theoreti-
cal analysis and verified the validity of the proposed system above. 
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Abstract. In this paper, the global tracking control problem for a class
of wheeled mobile robots is considered and a new adaptive position track-
ing control scheme is proposed where radial basis function (RBF) neural
network (NN) is utilized to model the uncertainty. The feedback com-
pensation scheme is obtained, where the information of reference posi-
tion and real position of robot are both used as the NN input. Compered
with the existing results, the main advantage is that the global stability
of the closed-loop system can be ensured and the NN approximation do-
main can be determined based on the reference signal a prior. Finally,
a simulation example is provided to demonstrate the effectiveness of the
proposed control scheme.

Keywords: Wheeled Mobile Robot, Global Tracking, Adaptive Neural
Network Control, Determination of Approximation Domain.

1 Introduction

Due to the well-known fact that neural networks (NNs), including radial basis
function (RBF) NNs [1], high-order NNs [2], multilayer NNs [3], ect., have good
approximation capabilities and adaptation abilities over a compact domain, they
paly an important role in the control community, especially in uncertain non-
linear system control. During the past several decades, adaptive neural network
control (ANNC) has evolved as a powerful methodology for uncertain nonlinear
systems. A large amount of progress in ANNC has been obtained in theory and
practical applications, see. e.g., [1,4,5] and the reference therein.

On the other hand, there exist many difficult problems in controlling mobile
robots because of the inevitable uncertainties in practical situations. Therefore,
ANNC schemes have widely been employed to solving the tracking control prob-
lem of mobile robots in the past several years and lots of interesting results
have been obtained (e.g., see [6-13]). In [11], the authors investigated asymp-
totic adaptive NN tracking control of nonholonomic mobile robot formations
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and proved the global asymptotic stability of the followers. Chaitanya [12] re-
solved the speed jump problem in the tracking control of a mobile robot using
a single layer neural networks (NNs) structure. Moreover, there are other ap-
proaches to study the control problem of robotic systems with uncertainties in
the existing literature (e.g., see [14],[15]).

However, the above adaptive control has inherent drawbacks, we know NN uni-
versal approximationproperty holds only over a compact set, so recently there are a
few results solving the global stability of closed-loop systems ( e.g., see [16]).Mean-
while, we can not find appropriate methods to determine the RBFNN approxima-
tion domain since it relies on the uncertain position information. Motivated by the
aforementioned discusses, wewill attempt to solve this problem. First, according to
the bound of reference signals, we determine the RBF NN approximation domain,
then designing a feedforward compensation scheme and a feedback compensation
scheme such that closed-loop systems reach to be globally stable, respectively.

2 Preliminaries and Problem Description

2.1 RBF NN Approximation

NNs have been found to be very useful for controlling nonlinear systems with
uncertainties. In particular, RBF NN is usually used as a tool for modeling non-
linear functions due to its simple structure and good approximation ability[14].
Therefore, in this paper, we employ the RBF NN to approximate an unknown
continuous function f(χ),χ ∈ Ω ⊆ Rl, where Ω is a compact set, i.e.,

f(χ) = ΦT(χ)W + ε(χ) (1)

where Φ(χ) : Ω → Rm is a vector-valued function and the neural node number
m > 1. The components of Φ(χ), denoted by sk(χ), 1 ≤ k ≤ m, are called the
basis functions that are commonly chosen as Gaussian functions with the form

sk(χ) = exp

[
− (χ− μk)

T(χ− μk)

η2k

]
, k = 1, 2, ...m (2)

where μk ∈ Ω is a constant vector which is called the center of sk(χ), and ηk > 0
is a real number which is called the width of sk(χ). The optimal weight vector
W = [w1 ... wm]T is defined as

W := arg min
Ŵ∈Rl

{
sup
χ∈Ω

|f(χ)− ΦT(χ)Ŵ |
}

(3)

and ε(χ) is the inherent neural networks approximation error, which can be
decreased by increasing the neural network number m.

2.2 Main Lemmas

The following four lemmas are critical and usually used to design ANNC scheme
and analyze the closed-loop system stability.

Lemma 1 [17]. Young inequality states that if a and b are nonnegative real
numbers and p and q are positive real numbers such that 1

p + 1
q = 1, then
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ab ≤ ap

p + bq

q , which also gives rise to the so-called Young’s inequality with ε

(valid for every ε > 0), sometimes called the Peter-Paul inequality: ab ≤ a2

2ε+
εb2

2 .

Lemma 2 [18]. Let function V (t) ≥ 0 be a continuous function defined ∀t ≥ 0
and bounded, and V̇ (t) ≤ −γ̄V (t) + κ̄, where γ and κ are positive constants,
then V (t) ≤ V (0)e−γ̄t + κ̄

γ̄ (1− e−γ̄t).

Lemma 3 [19]. The following inequality holds for any ε > 0 and for any η ∈ R
0 ≤ |η|−η tanh

(
η
ε

)
≤ κε where κ is a constant that satisfies κ = e−(κ+1),i.e.,κ =

0.2785.

Lemma 4. The function m(t) is a continuous switching function given by

m(t) =

⎧⎨⎩
0, ||t|| < ra
1, ||t|| > rb

||t||−ra
rb−ra

, ra ≤ ||t|| ≤ rb

with Ωp = {0 ≤ ||t|| ≤ rb} being the neural active region.

2.3 System Description and Problem Formation

In this paper, we consider a car-like wheeled mobile robot shown in Fig.1[20],
where Po denotes the midpoint between the two driving wheels, Pc denotes the

X

Y

θ
d

( ),x yp p

Driving wheel

Passive wheel

Fig. 1. The two-wheel-driven mobile robot

center of mass of the mobile robot, b is the half of the width of the mobile robot,
r is the radius of the wheel, d is the distance from Po to Pc, m is the mass of the
mobile robot, I0 is the moment of inertia of the body, (x, y) is the coordinates
of Pc, and θ is the heading angle of the mobile robot. If we take the center of
mass as the robot’s position, the dynamic of robot is expressed as

M(q)q̈ + V (q, q̇)q̇ + F (q̇) + τd = JT(q)λ+B(q)τ (4)

where q = [x y θ]T is the general coordinates of a robot moving on a plane,
M(q) ∈ R3×3 is a symmetric positive definite inertial matrix,V (q, q̇) ∈ R3×3

is the centripetal and coriolis matrix, F (q̇) ∈ R3 denotes the the surface fric-
tion, J(q) ∈ R3×1 is the matrix associated with the nonholonomic constraints.
B(q) ∈ R3×2 is the input transformation matrix, τd is a vector of disturbances
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including unmodeled dynamics, τ ∈ R2 is the torque vector, and λ is the scalar
of constraint forces. All these matrices are given by

M(q) =

⎡⎣ m 0 md sin θ
0 m −md cos θ

md sin θ −md cos θ I0 +md2

⎤⎦ , V (q, q̇) =

⎡⎣ 0 0 0
0 0 0

mdθ̇ cos θ mdθ̇ sin θ 0

⎤⎦ ,

τ = [τl τr]
T
, B =

⎡⎣ cos θ cos θsin θ sin θ
b −b

⎤⎦ , J(q) = [sin θ − cos θ d] .

Normally, the nonholonomic constraints can be expressed as J(q)q̇ = 0, or,

ẋ sin θ − ẏ cos θ + dθ̇ = 0. (5)

From constraint equations, we know that the mass center is regarded as position.
Therefore, from equation (5) we can express the second order derive of θ as:

θ̈ =
1

d
(ÿ cos θ − ẍ sin θ) +

1

2d2
(ẋ2 − ẏ2) sin 2θ − 1

d2
ẋẏ(cos2 θ − sin2 θ). (6)

We can easily find a full rank matrix S(q) which is formed by the vectors spanning
the null space of constraint matrix J(q) below

S(q)TJ(q)T = 0, (7)

where S(q) =

⎡⎣ cos θ −d sin θsin θ d cos θ
0 1

⎤⎦ . Multiplying both sides of equation (4) with ST

to eliminate nonholomic constraint forces λ, we can rewrite the dynamic equation

STM(q)q̈ + STV (q, q̇)q̇ + F̄ + τd = STB(q)τ, (8)

where F̄ (q̇, θ) = STF (q̇), τd = STτd.
On the left side of (8), the first two terms are rewritten as

STMq̈ + STV q̇ =

[
m cos θ m sin θ
− I

d sin θ
I
d cos θ

] [
ẍ
ÿ

]
+(ẋ sin θ − ẏ cos θ)

[
m
d sin θ −m

d cos θ
− I

d2 cos θ
I
d2 sin θ

] [
ẋ
ẏ

]
(9)

where I = I0 + md2. Then we define a new coordinate p = [x y]T which only

denotes the position of robot and further define T =

[
cos θ sin θ
− sin θ cos θ

]
,M0 =[

m 0
0 I

d

]
. Therefore, equation (8) can be rewritten as

M0T p̈+M0Ṫ ṗ = STBτ − F̄ − τd. (10)
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In the equation (10), the description of robot’s dynamics seems to be ignoring
the heading angle. In fact, all information of the robot is included in the equa-
tion (10). The control objective in this paper is formulated as follows. For a
given reference signal pr whose first and second derivatives are continuous and
bounded, design a neural-network-based torque τ such that the tracking error
e(t) = p(t)−pr(t) converges to a neighborhood around the origin whose size can
be made arbitrarily small by adjusting the design parameters.

3 Globally Stable ANNC Scheme by Using RBF NN as
Feedback Compensator

In this section, we develop a new ANNC scheme. Compered with the conven-
tional ANNC schemes where only the semi-globally stable results can be obtained
and the NN approximation domain cannot be determined, the main advantage
of this new control strategy is that the global stability of the closed-loop systems
can be ensured and the NN approximation domain can be determined based on
the reference signal a prior. Define z̃ = Tz where a filtered error z as

z = ė+ λe (11)

with λ being a positive design parameter. Then, the dynamic (10) can be further
transformed into

M0
˙̃z = STBτ + f(x)− τd (12)

where f(x) = [f1(x), f2(x)]
T is an unknown vector-valued function given by

f1(x) = −m[cos θ sin θ]Tp̈r −
m

d
[sin θ − cos θ]Tṗ[sin θ − cos θ]Tṗr, (13)

f2(x) = −I
d
[− sin θ cos θ]Tp̈r −

I

d2
[sin θ − cos θ]Tṗ[cos θ sin θ]Tṗr, (14)

with x = [ṗ θ p̈r ṗr]
T.

Next, we employ an RBF NN to approximate the unknown function f(x)
directly. To overcome the aforementioned drawbacks of the conventional ANNC
schemes, we adopt the switching approach. Firstly, considering p will ultimately
track pr, we use the bound of pr to determine the domain of p denoted by
Ωp. Furthermore, when p is inside Ωp, the ANNC scheme works, otherwise, the
control scheme will be switched to the robust adaptive scheme. Specifically, the
control law is given by

τ = (STB)−1

[
−kz̃ − (1−m(ṗ))ΦT(x)Ŵ −m(ṗ)

(
̂z̃ + ν̂ tanh

z̃

ς

)]
(15)

where k > 0 is a design parameter, ς > 0 is a constant, ̂ and ν̂ denote the
estimates of  and ν defined later; Φ(x) = diag{Φ1(x), Φ2(x)} and Ŵ denotes
the estimate of W = [WT

1 ,W
T
2 ]T. The adaptive laws are chosen as follows

˙̂
W = Γ [(1−m(ṗ))Φ(x)z̃ − σŴ ] (16)
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˙̂ = γ[m(ṗ)z̃2 − σ̂] (17)

˙̂ν = γ[m(ṗ)z̃T tanh
z̃

ς
− σν̂] (18)

where σ and γ are positive design parameters, Γ > 0 is an adaptation matrix.
Defining W̃ =W − Ŵ , ̃ = − ̂ and ν̃ = ν − ν̂, we have

ė = T−1z̃ − λe (19)

M0
˙̃z = −kz̃ −m(ṗ)

[
̂z̃ + ν̂ tanh

z̃

ς
− f(xr)−Δ(x)

]
+(1−m(ṗ))[ΦT(x)W̃ + ε(x)]− τd (20)

˙̃W = −Γ [(1−m(ṗ))Φ(x)z̃ − σŴ ] (21)

˙̃ = −γ[m(ṗ)z̃2 − σ̂] (22)

˙̃ν = −γ
[
m(ṗ)z̃T tanh

z̃

ς
− σν̂

]
. (23)

Theorem 1. Consider the closed-loop system consisting of the plant (10), the
practical law (15) and the adaptive laws (16)-(18). For bounded initial condi-
tions, all the closed-loop signals are globally uniformly ultimately bounded and
the position tracking error e(t) converges to a small neighborhood around the
origin by choosing appropriate design parameter.
Proof. Consider the following Lyapunov function

V =
1

2
eTe+

1

2
z̃TM0z̃ +

1

2
W̃TΓ−1W̃ +

1

2γ
̃2 +

1

2γ
ν̃2. (24)

The time derivative of (24) can be calculated as follows

V̇ = −λeTe+ eTT−1z̃ − kz̃Tz̃ −m(ṗ)z̃Tz̃ +m(ṗ)
[
z̃Tf(xr)− z̃Tν tanh

z̃

ς

]
+m(ṗ)z̃TΔ(x) + (1−m(ṗ))z̃Tε(x)− z̃Tτd + σW̃TŴ + σ̃̂+ σν̃ν̂. (25)

Using Young’s inequality, we easily have

eTT−1z̃ ≤ λ

4
eTe+

1

λ
z̃Tz̃ (26)

|z̃TΔ(x)| ≤ (ρ|ṗr|+ ρ2|ṗr|2)λz̃Tz̃ +
λ

4
eTe (27)

z̃T[ε(x)− τd] ≤
1

4
z̃Tz̃ + [ε(x)− τd]

2. (28)

Substituting (26)-(28) into (25) yields

V̇ ≤ −λ
2
eTe −

(
k − 1

2
− 1

λ

)
z̃Tz̃ − σ

2
W̃TW̃ − σ

2
̃2 − σ

2
ν̃2

+
[
2νczς + ε2(x) + τ2d +

σ

2
WTW +

σ

2
2 +

σ

2
ν2
]
≤ −ς̄V + δ̄ (29)
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where cz = 0.2785, ||f(xr)|| ≤ ν, ς̄ := min{λ, σ/λmax{Γ}, (2k−1− 2
λ)/λmax{M0},

σγ}, δ̄ = max{2νczς + ε2(x) + τ2d + σ
2W

TW + σ
2 

2 + σ
2 ν

2},  = max{ρ|ṗr| +
ρ2|ṗr|2}λ. Based on Lemma 2 and inequality (29), it can be easily seen that all
the closed-loop signals are bounded and the position tracking error e(t) converges
to a small neighborhood around the origin.

4 Simulation Study

In this section, choose the reference signal xr(t) = cos t, yr(t) = sin t, and the
design parameters used in this simulation are given as follows: m = 3.45 kg, d =
0.5 m, I = 2.59 kg ·m2, ra = 1.3, rb = 1.5, Γ = 2, γ = 1, σ = 0.0001, k =
2, λ = 1, ς = 0.1. NN node numbers N = 2187, the initial values of robot’s
position x(0) = 5, y(0) = −6 outside the neural active region. NN input χ =
[ẋ, ẏ, θ, ẋr, ẏr, ẍr, ÿr]

T. The simulation results are shown in Fig. 2. from which
it can be seen that indeed the position tracking error e(t) converges to a small
neighborhood around the origin.
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Fig. 2. Simulation curves of the control scheme with NN as feedback compensator

5 Conclusions

In this paper, a new adaptive position tracking control scheme is developed for a
class of wheeled mobile robots. The so-called feedback compensation scheme is
proposed. The main advantage of the obtained ANNC scheme is that the global
stability of the closed-loop systems can be guaranteed and the NN approximation
domain also can be determined based on the reference signal a prior.
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Abstract. In this paper, the adaptive control problem with input saturation is 
investigated for double inverted pendulums. Based on Lyapunov stability 
theory and backstepping technique, incorporating dynamic surface control 
(DSC) technique into neural network based adaptive control, an adaptive neural 
controller is developed by explicitly considering uncertainties, unknown distur-
bances and input saturation. An auxiliary system is presented to tackle input  
saturation, and the states of auxiliary design system are utilized to develop the 
tracking control. It is proved that all the signals in the closed-loop system are 
uniformly ultimately bounded (UUB) via Lyapunov analysis. Finally, simula-
tion studies are given to demonstrate the effectiveness of the proposed method. 

Keywords: double inverted pendulums (DIPs), nerural network, saturation. 

1 Introduction 

The double inverted pendulums system is the most typical representation of nonlinear 
control applications which appear in most existing physical systems. Considering its 
unique characteristics, it is used to verify new control schemes in many control labor-
atories [1]. The control objective consists of swinging up and balancing it (them) 
about the vertical [2-3]. However, they are applicable when the system model behaves 
with complicated certainty or completely known structures only. The research of in-
verted pendulum (s) has been studied greatly for investigating effectiveness of various 
kinds of control schemes and demonstrating ideas emerging in the area of nonlinear 
control [4-6]. In addition, actuator saturation is one of the most important non-smooth 
nonlinearities which usually appear in the applications. The limitations on the ampli-
tudes of control inputs can cause serious deterioration of control performances and 
even destroy the stability of the control systems. More recently, the analysis and de-
sign of control systems with input saturation nonlinearities have been studied in [7-8]. 
In [7], an auxiliary design system was introduced to ease the effect of input saturation 
constraints for vessels. 
Motivated by the above observations, based on DSC technique [9] and NN adaptive 
control, a neural adaptive controller is developed for DIPs with input saturation. The 
“explosion of complexity” and controller singularity problems are avoided by using of 
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DSC technique and utilizing a special property of the affine term, respectively. For 
handling the input saturation, the auxiliary design system is introduced to analyze the 
effect of input saturation, and states of auxiliary design system are used to design 
tracking control for DIPs. 

2 Problem Formulation and Preliminaries 

The DIPs system composed of two interconnected subsystems can be described by the 
following TITO systems [10]: 

                   

1,1 1,2

1 1 1
1,2 1,1 1,1 2,1

1 1 1 1 1

2,1 2,2

2 2 2
2,2 2,1 2,1 1,1

2 2 2 2 2

= ,    

= sin( )

= ,    

= sin( )

x x
m gr u vk k

x x x x
J J J J J

x x
m gr u vk k

x x x x
J J J J J

− + + +

− + + +









               (1) 

where, each pendulum may be positioned by a torque input 1u , 1, 2i = , applied by a 

servomotor at its base. iv , 1, 2i = , are the torque disturbances. It is assumed that both 

iθ  and iθ   are available to the i th controller for 1, 2i = . ,1i ix θ=  being the angular 

displacement of the i th pendulums from the vertical reference[10]. 
The torsional spring is relaxed when the pendulums are all in the upright position. 

And the origin 1,1 1,2 2,1 2,2 0x x x x= = = = is the equilibrium point of this system. The 

objective is to drive the angular position of each pendulum to track a reference  
signal ,i dy , 1, 2i =  under the torque disturbances. 

Before the beginning of controller design, we convert the system (1) into a more 
general TITO form as follows 

,1 ,1 ,1 ,1 ,1 ,2 ,1

,2 ,2 ,2 ,2 ,2 ,2

,1 ,1

= ( ) ( ) ( , )
= ( ) ( ) ( , ) 
= , 1,2

i i i i i i i

i i i i i i i

i i

x f x g x x t x
x f x g x u t x
y x i

+ + Δ
+ + Δ

=


  (2)

where ,2 1,1 1,2 2,1[ , , ]ix x x x Τ= , 1,1 1,2 2,1 2,2[ , , , ]x x x x x Τ=  are vectors of the system states. 

,1iy is the output of the system. This general system (2) will be used as a design model 

later. And we assumed that ,i jf  and ,i jg  represent unknown nonlinear smooth func-

tions, respectively, where ,i jg  is referred to as virtual control gain function. 

In this paper, considering the presence of input saturation constraints on iu as  

follows 

,   
( ) ,    

,  

iM i iM

i i i im i im

im i im

u if v u
u sat v v if u v u

u if v u

>= = − ≤ ≤
− ≤ −

 (3)
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where iv is the designed control input of thi  subsystem. imu and iMu are the known 

lower limit and upper limit of the input saturation constraints of iu , respectively. 

The control objective is to develop an adaptive NN controller such that all solu-
tions of the resulting closed-loop system are SGUUB, and the tracking error 

,1 ,1 ,( ) ( )i i i dz y t y t= − , 1, 2i =  can be rendered arbitrary small. 

In this paper, the following assumptions are made on the system (2). 

Assumption 1. There exist constants , 1 , 0 0i j i jg g≥ > and , 0i j dg > , such 

that , 1 , , 0i j i j i jg g g≥ ≥  and ( ), , ,i j i j i j dg x g≤ , ,
n

i jx R∀ ∈Ω ⊂ .  

Assumption 2. , ,i j i jdΔ ≤ with ,i jd  being some constants. 

Assumption 3. The given reference signal , ( )i dy t  is a sufficiently smooth function 

of t , , ( )i dy t , , ( )i dy t  and , ( )i dy t  are bounded, that is, there exists a known positive 

constant ,0iB , such that 2 2 2
,0 , , , , , , ,0: {( , , ) : }i i d i d i d i d i d i d iy y y y y y BΠ = + + ≤     with 1, 2i = . 

In this paper, the following RBF NN is used to approximate the continuous function. 
such as ( ) ( )T

nnh Z W S Z= ,where q
ZZ R∈ Ω ⊂ is the input vector, weight vector 

1 2[ ]T l
lW w w w R= ∈， ， ， , 1l >  is the neural networks node number, and 

[ ]1 2( ) ( ) ( ) ( )
T

lS Z s Z s Z s Z= ， ， ，  means the basis function vector, ( )is Z  is the 

Gaussian function of the form  as follows 
2

is ( ) exp ( ) ( ) /T
i iZ z zμ μ ς = − − −  , 1,2, ,i l=   (4)

where ; 2[ , , , ]T
i i i iqμ μ μ μ=  is the center of the receptive field, and 0ς >  is the 

width of the basis function. 
It has been proven that neural network can approximate any continuous function 

over a compact set q
Z RΩ ⊂ to arbitrary any accuracy as 

*( ) ( )Th Z S Zθ δ ∗= +  (5)

where *θ is the ideal constant weight vector and δ ∗  denotes the approximation error. 

3 Controller Design and Stability Analysis 

3.1 Controller Design 

Step 1: Define the error variable 1,1 1,1 1,dz x y= − , considering (2), the time derivative 

of 1,1z is 

( ) ( )1,1 1,1 1,1 1,1 1,1 1,2 1,1 1, .dz f x g x x y= + + Δ −   (6)

According to the neural network approximation in (5), we can define 
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( ) ( )*T *
1,1 1,1 1,1 1,1 1, 1,1 1,1 1,1 1,1 1,1( ) ( ) dh Z f x y g Zθ ξ δ= − = +  (7)

where 
T 2

1 1,1 1,, dZ x y R = ⊂  . Now, choose the virtual control as follows 

T
1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1

ˆ ( ) tanh( )c z Z D D z sα θ ξ= − − −  (8)

where design parameters 1,1 1,1,  s 0c > , 1,1 1,1 1,10/D d g= , 1,1θ̂   is the estimation of *
1,1θ  

and is updated as follows 

1,1 1,1 1,1 1,1 1,1 1,1 1,1
ˆ ˆ( )Z zθ ξ σ θ = Γ − 


 
 

(9)

where T
1,1 1,1 0Γ = Γ > , 1,1 0σ > .  

Introduce a first-order filter 1,2β with a time constant 1,2τ  as follows 

1,2 1,2 1,2 1,2 1,2 1,2   (0) (0)τ β β α β α+ = =  (10)

Define 1,2 1,2 1,2z x β= − , then 

( ) ( )1,1 1,1 1,1 1,1 1,1 1,2 1,2 1,1 1,( ) dz f x g x z yβ= + + + Δ −   (11)

And define 

1,2 1,2 1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,2
ˆ ( ) tanh( )T Z c z D D z sη β α θ ξ β= − = + + +  (12)

Substituting (12) and (16) into (15), we have  

( ) *
1,1 1,1 1,1 1,2 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,2 1,1( ( ) tanh( ) )Tz g x z Z c z D D z sθ ξ δ η= − − − + + + Δ (13)

By defining the filter output error 1,2 1,2 1,2η β α= − , it yields 1,2 1,2 1,2/β η τ= −  and 

1,2 1,2 1,2 1,2 1,2 1,2
1,2 1,1 1,1 1,1 1, 1,

1,2 1,1 1,1 1, 1,1,1

1,2
1,2 1,1 1,2 1,2 1,1 1, 1, 1,

1,2

ˆ
ˆ

ˆ    = ( , , , , , , )

d d
d d

d d d

x z y y
x z y y

B z z y y y

η α α α α α
η θ

τ θ
η

η θ
τ

 ∂ ∂ ∂ ∂ ∂
= − + − − − − −  ∂ ∂ ∂ ∂∂ 

− +

   


 
 (14)

where 1,2 ( )B ⋅ is a continuous function and has a maximum value 1,2M  . 

Step 2: In this step, the final control law will be derived. Consider 

1,2 1,2 1,2 1,2 1,2 1 1,2= ( ) ( )x f x g x u+ + Δ  (15)

Similarly, define 

( ) ( )*T *
1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2( ) ( )h Z f x g Zβ θ ξ δ= − = +  (16)

where 
T 4

1,2 1,1 1,2 2,1 1,2, ,Z x x x Rβ  ⊂ 
 , . 

For convenience of making constraint effect analysis of the input saturation, the 
following auxiliary design system  is given as follows. 
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( ) 2
1 1 1 1 1 1 1 1

1
1 1

( ) ( ),   
0,  

k e f e e u v e
e

e
ε

ε
− − ⋅ ⋅ + − ≥=  <

  (17)

where ( ) 2
1 2 1 2 1 1

1
( , )

2
f f z u z u u⋅ = Δ = ⋅ Δ + Δ

， ，

, 1 0k > , 1 1 1u u vΔ = − , 1ε  is a small 

positive design parameter and 1e is a variable of the auxiliary design system  

introduced to ease the analysis of the effect of the input saturation.  

Considering the input saturation effect, the control law is proposed as 
T

1 1,2 1,2 1 1,2 1,2 1,2 1,2 1,2 1,2 1,2
ˆ ( ) tanh( )v c z e Z D D z sθ ξ= − + − −  (18)

where 1,2 1,2,  s 0c > , 1,2 1,2 1,20/D d g= , 1,2θ̂ is the estimation of *
1,2θ  and updated as  

1,2 1,2 1,2 1,2 1,2 1,2 1,2
ˆ ˆ( )Z zθ ξ σ θ = Γ − 


 (19)

where T
1,2 1,2 0Γ = Γ > , 1,2 0σ > . 

From 1,2 1,2 1,2z x β= − , 

( ) ( ) ( )1,2 1,2 1,2 1,2 1,2 1 1 1,2 1,2z f x g x v u β= + + Δ + Δ −   (20)

Substituting (20), (22) into (24), we have  

( ) 1,2 1,2 *
1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1 1 1,2 1,2 1,2

1,2

( ( ) tanh( ) )

    

T D z
z g x Z c z e u D

s
θ ξ δ= − − + + Δ − + + Δ (21)

3.2 Stability Analysis 

Theorem1. Consider the closed-loop system, the final controller (18), auxiliary de-
sign system (17) and the updated laws (9), (19), under the Assumptions 1-3, there 

exist { }, ,2 max , ,, , , , ,i j i i j i j i ic s kτ λ εΓ  and ,i jσ  such that  all  the signals in the closed-

loop system are uniformly ultimately bounded. Furthermore, given any ,1 0iμ > , we 

can tune our controller parameters such that the output error ,1 ,1 i,( ) ( )i i dz y t y t= −  

satisfies ,1 ,1lim ( )t i iz t μ→∞ = . 

Proof. Choose the Lyapunov function candidate as 
2 22 T 1 2 2

, , , , , , ,21 1
( ( ) ) 2i j i j i j i j i j i j i ij j

V z g x eθ θ η−
= =

= + Γ + +     (22)

By mentioning ,2 ,2 ,2i i ix z β= + , ,2 ,2 ,2i i iβ η α= + , 2 2( ) 2i i i iu e u eΔ ⋅ ≤ Δ +  and 
2 2 2 2

,2( 2)i i i i i i i i i i ie e k e z u u e e u e⋅ = − − ⋅ Δ + Δ ⋅ + Δ ⋅ , the time derivative of V along 

the system trajectories is  
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2 * 2 2

,1 ,1 ,1 ,2 ,1 ,2 ,1 ,1 ,1 ,1 ,1 ,1 ,1( ) / 2 ( )      i i i i i i i i i i i i iV c z z z z z g x z g xη δ≤ − + + + −   

( ) ( )* 2 2 2 2
,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,20.5 ( ) / 2 ( ) 1   i i i i i i i i i i iz c z g x z g x k eδ+ − − − − −   

( ) ( ) ( )2 22 T
, ,2 ,2 ,2 ,2 , , ,1 1

ˆ   0.2785 i j i i i i i j i j i jj j
s Bη τ η σ θ θ

= =
+ + − + + −  

  
  (23) 

Let , , 0 , 1i j i j i jc c c= + , with , 0i jc  and , 1 0i jc > .

 

By choosing , 0i jc  such that 

( )* 2
, 0 , 0 , , , 0 ,( ) / 2 ( ) 0i j i j i jd i j i j i jc c g x g x= − > . After some  manipulation, one has 

( )
( ) ( ) ( )

2 2 2 2 *2 * 2
,11 ,1 ,1 ,2 ,2 ,1 ,10 ,1
*2 2 2 * 2 2 2
,2 ,2 ,21 ,2 ,20 ,2 ,2

2 22 T
, ,2 ,2 ,2 ,2 , , ,1 1

 3 4 4 4
       4 +0.5 1

ˆ       0.2785

i i i i i i i i

i i i i i i i i i

i j i i i i i j i j i jj j

V c z z z c z
z c z c z z k e

s B

η δ
δ

η τ η σ θ θ
= =

≤ − + + + + −
+ + − − − −
+ + − + + − 




 (24)

Choose * *
,11 0 ,10 ,21 0 ,203 ,  1.25 0.5i i i ic c c cα α= + − = + − + , where 0α is a positive constant, 

and noting that 
22T *

, , , ,
ˆ ˆ2 i j i j i j i jθ θ θ θ≥ −   , then one has 

( )
( ) ( ) ( )

22 2 1 T 1 *2 *
0 , , max , , , , , , ,1

2 2 2 2
, ,2 ,2 ,2 ,2 ,21

 ( 2 ( )) 4 2

      0.2785 4 1

i j i j i j i j i j i j i j i j i jj

i j i i i i i i ij

V z

s B k e

α σ λ θ θ δ σ θ

η η τ η

− −
=

=

≤ − − Γ Γ + +

+ + − + − −



 
 (25)

Let ( ) ( ) 2*2 *
, , , ,1 / 4 / 2i j i j i j i jeδ σ θ+ = , ( ) ( )2

,2 ,2 0 , 01 / 1 / 4 / 2i i i jM gτ κ α= + + . Noting 

the fact *
,i j mδ δ≤  and *

,i j Mθ θ≤  gives ( ) ( )2 2
, ,1 / 4 / 2i j m i j M Me eδ σ θ≤ + = . Also, 

for any positive number κ , ( ) ( )2 2
,2 ,2 ,2 ,2/ 2 / 2i i i iB Bη κ κ η+ ≥ . Since on the level set 

defined by ,2 ,2i iB M< ,  ( ),1 ,2 ,2 ,1 ,2, , , ,i i i i i iV z z pη θ θ =  . Then 

( )
( ) ( )

2 22 1 T 1
0 ,, , max , , , ,1 1

2 2 2
, 0 , 0 ,21

( 2 ( )) 2

       0.2785 2 1
i j i j i j i j i j i j Mj j

i j i j i i ij

V z e

s g k e

α σ λ θ θ
κ α η

− −
= =

=

 ≤ − + − Γ Γ + 
+ + − − −
 


 
 (26)

If we choose ( )0 , 0/ 2 i jC gα ≥ , where C  is a positive constant, and choose 

, ,i j ikσ and ( )max ,i jλ Γ such that ( ), max , ,  1 / 2,  1, 2i j i j iC k C iσ λ≥ Γ − ≥ =（ ） .Let 

( )2

,1
2 0.2785 2M i jj

D e s κ
=

= + + . Then from (26) we have the following inequality: 

 ( )2 22 T 1 2 2
, , , , , ,21 1

( ) 2  i j i j i j i j i j i ij j
V Cz g C C Ce D CV Dθ θ η−

= =
≤ − + Γ + + + ≤ − +     (27) 

Actually, the Equation (27) means that ( )V t is bounded. Thus, all signals of the 

closed-loop system are bounded. This concludes the proof simply. 

4 Simulation Results 

In the simulation, the system (1) is uses for simulation model, i.e., ,1 0if = , 

1,2 1 1,1 1,1 2,1 1( sin( ) )f m gr x kx kx J= − + , 2,2 2 2,1 2,1 2 1,1 1sin( )f m gr x kx J kx J= − + , ,1 =1ig , 
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,2 11 /ig J= , ,1 =0iΔ , ,2i i iv JΔ = , 1 2( ) ( ) 5sin(2 )v t v t tπ= = with 1, 2i = in (2), and the 

reference signals 1, 2, sin( )d dy y t= = . The parameters of the pendulums are 1 2m = kg, 

2 2.5m = kg, 1 2J = kg, 2 2.5J = kg 2k = Nm/rad, and 1r = m. 

We choose neural networks ,1 ,1 ,1
ˆ ( )T
i i iZθ ξ contains 25 nodes (i.e., ,1 25il = ), with cen-

ters ,1( 1, , )l il lμ =   evenly spaced in [ ] [ ]4,4 4,4− × − , and widths 

,12( 1, , )l il lη = =  . Neural networks ,2 ,2 ,2
ˆ ( )T
i i iZθ ξ contains 135 nodes (i.e., ,2 135il = ), 

with centers ,2( 1, , )l il lμ =  evenly spaced in [ ] [ ] [ ] [ ]4,4 4,4 4,4 6,6− × − × − × − and 

widths ,22( 1, , )l il lη = =  .The initial weights ,1 ,2
ˆ ˆ(0)= (0) 0i iθ θ = ( 1, 2i = ). The ini-

tial conditions [ ]T T

1,1 2,1(0), (0) 30 , 30x x  = ° − °  , [ ]T T

1,2 2,2(0), (0) 0,0x x  =  , 

1 2(0) (0) 7e e= = , [ ] [ ]1 2sat( ) 26,26 ,  sat( ) 30,30u u= − = − . 

The controllers parameters are chosen as { }, 0.01,  0.01,  0.01,  0.01i jΓ = , 

{ }, 10,  80,  10,  80i jc = , { }, = 15,  15,  15,  15i jσ , { }, 0.5,  0.5,  0.5,  0.5i js = with 1, 2i = , 

1,2j = , 1 2 5k k= =  , 1 2 0.001ε ε= =  and 1,2 2,2 0.5τ τ= = . The effectiveness and 

good performance of he proposed algorithm are illustrated in Figure 1-2. 
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        Fig. 1. DIPs angular positions                    Fig. 2. DIPs controllers 

5 Conclusions 

The trajectory tracking control problem has been studied for DIP under constraints of 
input saturation. A direct adaptive neural network control scheme has been proposed 
by combining DSC technique and the approximation of RBF NNs. With the help of 
an auxiliary design system, the effect of input saturation has been considered ade-
quately in the control design procedure. In addition, both the „explosion of complexi-
ty‰ problem and the controller singularity problem are removed in the proposed  
algorithm. And it is shown that the stability of the closed-loop system is guaranteed.  
Finally, simulation results are given to illustrate the effectiveness of the proposed  
tracking control scheme. 
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Identification and Control of PMSM  
Using Adaptive BP-PID Neural Network 
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Abstract. The control system of the permanent magnet synchronous motor 
(PMSM) has the characteristics of nonlinear and strong coupling. Therefore, In 
order to improve the control precision, the paper presents a novel approach of 
speed control for PMSM using adaptive BP (back-propagations)-PID neural 
network. The approach consists of two parts: on-line identification based on BP 
neural network and the adaptive PID controller. Lyapunov theory is used to 
prove the stability of the control scheme. Simulation results show that this 
control method can improve the dynamical performance and enhance the static 
precision of the speed system． 

Keywords: PMSM, adaptive, BP-PID, Lyapunov. 

1 Introduction 

Comparing with other motors, PMSM has its own excellent control properties. It has 
been applied to social activities popularly [1]. Hence the d,q model of the PMSM can 
be derived from the well-known model of the synchronous machine [2].Though PMSM 
have been widely used as precision control motors. There are certain limitations of 
PMSM drives such as lack of robustness, overload capability, narrow speed range.  

Neural Network is used effectively for the identification and control of nonlinear 
dynamical system [3-7]. The neural network plays a key role on system identification 
and speed control, as it has many advantageous features including parallel and 
distributed processing, efficient mapping between inputs and outputs without an exact 
system model [8]. An approach of speed control for PMSM using on-line self tuning 
artificial neural network is presented in [4]. An artificial neural network speed 
controller is developed and integrated with the vector control scheme of the PMSM 
drive. Different Topologies are used to identify the PMSM motor in [6, 7].Nonlinear 
dynamics of the motor and the load are captured by the neural network perfectly. In [9], 
a RBF neural network and model reference self-adaptive control method for PMSM is 
proposed. Compared with RBF neural network, the BP neural network can contain 
different hidden layers and it has the character of global convergence. In [10], based on 
the mathematical model of PMSM，a combination of an BP neural network and a 
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general PID controller is used in its speed control system, but in that paper the author 
only gives the calculation process. The convergence result of the control scheme is not 
proved. In this paper, we give the Lyapunov Stability Analyses of the control scheme. 

The paper is organized as follows. Section 2 explains the mathematical models of a 
PMSM and the volt-amper stator d, q equations in the rotor reference frame of the 
PMSM.  Section 3 presents the approach of speed control for PMSM using adaptive 
BP-PID neural network. It consists of two parts: on-line identification based on BP 
neural network and the adaptive PID controller. In section 4, we construct a Lyapunov 
function to prove the stability of the control scheme. The simulation results which show 
the effectiveness of the proposed control scheme are given in Section 5.  

2 PMSM Model 

The use of the neural network in any system does not require the model of the system 
under study. In this work, unlike the conventional approach of controlling the speed, 
the control technique is incorporated with the neural network to obtain highest torque 
sensitivity of the PMSM drive. The control strategy is formulated in the synchronously 
rotating reference frame.  

The mathematical models of a PMSM and the volt-amper stator d, q equations in the 
rotor reference frame of the PMSM are [5, 6]  

d d d r qu Ri pψ ω ψ= + − , (1) 

q q q r du Ri pψ ω ψ= + − , (2) 

where  

q q qL iψ = , (3) 

and  

d d d dfL iψ ψ= + . (4) 

qu and du are the ,d q -axis voltages, di and qi are the ,d q -axis stator currents, dL  
and 

q
L  are the ,d q -axis inductance, dψ and qψ are the-axis flux linkages, R is 

the stator resistance, dfψ  is the constant magnet flux linkage produced by permanent 
magnet rotor, rω is the motor speed and P is the number of pole pairs. 

The developed electric torque can be expressed as 

3
[ ( ) ]

2e df q d q d qT P i L L i iψ= + − , (5) 

3
[ ]

2e df q T qT P i K iψ= = , (6) 

T bK K、 are motor torque constants. 
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In order to derive the training data for the neural network and apply the control 
algorithms, a discrete-time PMSM model is developed by combining the equations (1) 
to (6). Then we derive the discrete-time model of PMSM.The resulting space  
equation is 

2 2( 1) ( ) ( 1) ( ) ( 1) ( )r r r r rk k k k k u kω αω βω χω δω ε ξ+ = + − + + − + +
.
 (7) 

Where , , , ,α β χ δ ε are constants based on motor parameter as well as sampling 

period T is given in the appendix. 

3 Adaptive BPNN-PID Control of PMSM 

The ability of BP neural network to approximate large classes of nonlinear functions 
accurately makes it prime candidate for use in dynamic models for the representation of 
nonlinear plants. The model of discrete-time PMSM introduced above can be described 
by the following nonlinear difference equations; 

( 1) [ ( ), ( 1)] ( )r r rk N k k u kω ω ω ε+ = − + , (8) 

where  

2 2[ ( ), ( 1)] ( ) ( 1) ( ) ( 1)r r r r r rN k k k k k kω ω αω βω χω δω− = + − + + − . (9) 

A BP neural network is a layered network consisting of an input layer, an output layer 
and at least one layer of nonlinear processing elements. The BPNN predictor estimates 
the motor speed as 

ˆ ( 1) [ ( ), ( 1)] ( )r r rk N k k u kω ω ω ε+ = − + . (10) 

The trained BP neural network is applied as series-parallel type identifier to estimate 

the value of the function N [.]. Where N [.] is a Neural Network with 1,10,1N .  

Once a design of the BP neural network structure is done, the next step is to 
determine the weights and biases of the BPNN through training to achieve the specific 
target with the given inputs. The back-propagation training algorithm is used for this 
purpose which is based on the principle of minimization of a cost function of the error 
between the outputs and the target. Consider the discrete-time system given by (8) 

The error index 1( )E k should be defined as  

2
1 1

1 1
ˆ( ) [ ( ) ( )] ( )

2 2r rE k k k e kω ω= − = , (11) 

where 1 ˆ( ) ( ) ( )r re k k kω ω= − is a learning error between the target and network 

output at time k .The partial derivatives of the error index ( )E k ,with respect to the 

weight of the network, is obtained using the dynamic neural model as following, 
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1

( )
( ) ( )

( ) i
i

E k
e k o k

kω
∂ = −
∂

. (12) 

The PID controller should be constituted by a dynamic neural network structure. It 

consists of numerical integrator, time delay link 1Z − , and adaptive linear neurons. The 
output ( )u k  can be represented as  

0

( )

( ) ( ) [ ( ) ( 1)]
k

p i d
j

u k

k e k k e j k e k e k
=

= + + − − , 

(13) 

( ) ( ) ( )re k r k kω= − , (14) 

Where ( )r k is the command input. The input of the adaptive linear neuron is given as  

1

2
0

3

( ) ( )

( ) ( )

( ) ( ) ( ) ( 1)

k

j

c k e k

c k e k

c k e k e k e k

=

=

=

= Δ = − −

 . 

(15) 

The output can be also represented as  

1 1 2 2 3 3( ) ( ) ( ) ( )u k v c k v c k v c k= + + . (16) 

( 1, 2,3)iv i =  is the weight of the PID controller. The error index 2 ( )E k  is defined 

as  

2 2
2 2

1 1
ˆ( ) [ ( ) ( )] ( )

2 2rE k r k k e kω= − = . (17) 

4 Lyapunov Stability Analyses  

In this section, Lyapunov theory is used to prove the stability of the control scheme 
[10,11].While the step size η  of neural network satisfy following requirement, 

12( ) 0TAA η− > > . (18) 

the tracking error between the system output and the reference command will converge 
to a specified constantε . The property of the control scheme can be proved.  

Proof. Let ( )J x  be a Lyapunov function  
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2

1

1
( ) ( )

2

k

i

J k e i
=

=  . 
(19) 

As the learning process lead to ( )V x  change as follows 

1
2 2 2 2

1 1 0 1

1 1
( ) [ ( ) ( )] [ ( 1) ( )]

2 2

k k k k

i i i i

J k e i e i e i e i
+

= = = =
Δ = − = + −    . 

(20) 

We define (0) 0e = .Then  

( )
( 1) ( ) ( ) ( ) [ ] ( )

( )
Te k

e k e k e k e k v k
kω

∂+ = + Δ = + Δ
∂

. 
(21) 

As 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

E k e k u k
v k e k

v k u k v k
η η∂ ∂ ∂ΔΔ = − = − ⋅

∂ ∂Δ ∂
. 

(22) 

( ) ( ) ( )
[ ] [ ]

( ) ( ) ( )
T Te k e k u k

A
v k u k v k

∂ ∂ ∂Δ= = ⋅
∂ ∂Δ ∂

. 
(23) 

Then  

( ) ( )Te k AA e kηΔ = − . (24) 

It can be concluded from equations (22) 

2

0

2

0

1
( ) ( 2 ( ) ( ) ( ( )) ( ( )))

2

1
( ( )) (2 )( ( ))

2

k
T T T T T

i

k
T T T T

i

v k e i AA e i AA A e i A e i

A e i AA A e i

η η

η η

=

=

Δ = − +

= − −




. 

(25) 

By the Lyapunov stability theory: if ( ) 0J kΔ < the whole system is stable, the system 

that satisfies the following properties: 

22 0TAAη η− > , (26) 

η should satisfies if the system is stable  

12( ) 0TAA η− > > . (27) 
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As ( ) 0J kΔ < ,we can conclude 

2 21 1
( 1) ( )

2 2
e k e k+ < , 

(28) 

then  

lim ( )
k

e k ε
→∞

≤ . (29) 

for some specified constants 0ε ≥ . 

5 Simulation Results of the PMSM System 

In this section, the simulation results of the PMSM drive system are presented to verify 
the feasibility of the proposed control scheme under the operating conditions. First, 
under no-load, the dynamic performance of the drive system is given the speed 
command of 1800(Rad/sec).  

 

Fig. 1. Rotor speed response for a reference speed of 1800 rad/sec when a load of 2N·m 

The disturbance rejection capabilities have been checked when a load of 2N·m is 
applied to the PMSM at t=0.75s-0.80s. The BP neural network adjusts its weights and 
biases to this changing circumstance of sudden load so that the system responses 
according to the reference speed.  

Unlike the conventional controller, the on-line adaptive property of BPNN-PID 
controller reduces the possibility of large speed oscillation due to the sudden 
application of load. Figure 2 show the contrast of the BPNN controller and the 
conventional PID controller. 
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Fig. 2. The contrast of the BPNN-PID controller and the traditional PID controller 

These figures clearly illustrate good dynamic performances in command tracking 
and load regulation performance which is realized by the controller. 

6 Conclusion 

In this paper, a novel approach of speed control for PMSM using adaptive BP-PID 
neural network is presented. To achieve accurate trajectory control of the speed of 
PMSM, the approach combine an on-line discrimination based on BP neural network 
with an adaptive PID controller. Lyapunov theory is used to prove the stability of the 
control scheme. Finally, Simulation results are used to validate the proposed approach. 
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Abstract. An adaptive control algorithm is applied to controlling a class of 
SISO continuous stirred tank reactor (CSTR) system in discrete-time. The 
considered systems belong to pure-feedback form where the unknown dead-
zone and it is first to control this class of systems. Radial basis function neural 
networks (RBFNN) are used to approximate the unknown functions and the 
mean value theorem is exploited in the design. Based on the Lyapunov analysis 
method, it is proven that all the signals of the resulting closed-loop system are 
guaranteed to be semi-global uniformly ultimately bounded (SGUUB) and the 
tracking error can be reduced to a small compact set. A simulation example is 
studied to verify the effectiveness of the approach.  

Keywords: Discrete-time system, CSTR control, adaptive predictive control, 
the neural networks, nonlinear systems. 

1 Introduction 

In the chemical engineering, the chemical reactor systems can be often found [1]. 
Recently, the control problem of the systems with unknown functions has been 
studied and many papers have been published one after the other [2-5] by using the 
fuzzy systems and the neural networks. Specifically, the stability of the CSTR 
systems has attracted much attention and obtained many achievements [6-8].  

However, the results proposed in [6-8] are focused on nonlinear continuous 
systems. They can not be used directly to stabilize the discrete-time systems. Some 
results have been obtained in [9] for nonlinear discrete-time systems by using the 
neural networks. The results in [9] ignored the effect of the input nonlinearity. The 
input nonlinearities are an important in the practice and the nonlinear continuous 
systems with dead zone were stabilized in [10,11]. For nonlinear discrete-time 
systems, an adaptive control algorithm has been obtained in [12]. However, these 
results are required to satisfy the matching condition or strict feedback form. 

This paper will study control problem for CSTR discrete-time systems in pure-
feedback. The systems contain the unknown functions, the external disturbance and 
unknown dead zone. The systems are transformed into a prediction form. An adaptive 
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NN controller and adaptation laws are constructed for transformed systems. The NNs 
are used to approximate the unknown functions and a compensator is used to 
compensate for the dead zone input. By constructing Lyapunov function, the stability 
of the closed-loop system is proven. The simulation example is given to verify that 
the approach is feasible for chemical process systems. 

2 Problem Statement 

Consider the SISO discrete-time CSTR system with unknown dead-zone 

 

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )

( )( )
( )
( )

( ) ( )( )( ) ( )
( )

2 2

2

2

1 1 1 1

/

2 2 2

1

2

1

1 + 1

1

1

a

z k z k

z k

z k
a

r

z k z k z k C z k

e T

z k z k z k

BC z k e

C z k D u k T d k

y z k

γ γ

γ
γ

+

+

 + = − + −
 × 
 + = + −

 + −
 − − + 
 =

 (1) 

where ( )1z k  is the dimensionless concentration at time instant k  and the 
dimensionless temperature at time instant k  is denoted by ( )2z k , aC  and B  are 
Damkohler Number and dimensionless heat of reaction, respectively; rC  denotes 
dimensionless cooling rate, and sampling period is T , the term ( )d k  is added to 
represent an external disturbance, which is bounded by its constant d , that is, 

( )d k d< . ( )( )D u k  denotes the dimensionless coolant temperature, which is 
related to the control input ( )u k  through the non-symmetric dead-zone. The non-
symmetric dead-zone ( )( )D u k  is described as 

( )
( )( ) ( )

( )
( )( ) ( )

,

0,

,

r r r

l r

l l l

m u k b if u k b

D u if b u k b

m u k b if u k -b

− ≥

= − < <

+ ≤  

(2)

where , ,r l rm m b  and lb  are positive. 

The parameters rm  and lm  stand for the right and left slope of the dead-zone 

characteristic and are known. The parameters rb  and lb  represent the breakpoints of 

the input nonlinearity. 
The dead-zone input can be written as: 

 ( ) ( ) ( ) ( )D u m k u k b k= +  (3) 

where  
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 ( ) ( ) ( )
( ) ( )

, 0

, 0
r

l

m k if u k
m k

m k if u k

 >=  ≤
 (4) 

and  

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

,

,

,

r r r

l r

l l l

m k b k if u k b

b k m k u k if b u k b

m k b k if u k b

− ≥


= − − < <
 ≤ −

 (5) 

It is obvious that ( )m k  is known, and let ( )max ,r r l lm b m b b= and 
( )min ,r r l lm b m b b= . In this paper, we will use RBFNN to approximate the unknown 

functions of the system and their approximation property is described in the following 
subsection. 

The control objective is to make an adaptive RBFNN control algorithm so that the 
tracking error converges to a small compact set and all the signals in the closed-loop 
are SGUUB. 

3 System Transformations 

In order to conveniently express, we denote 

( ) ( )( ) ( ) ( ) ( )( )
( )
( )

2

2

1 1 2 1 1 1, 1
z k

z k
aF z k z k z k z k C z k e T

γ
γ +


= + − + × − 

             (6) 

 

( ) ( ) ( )( )( )

( ) ( ) ( )( )
( )
( ) ( ) ( )( )( )

2

2

2 1 2

2 2 1 2

, ,

1
z k

z k
a

F z k z k D u k

z k z k BC z k e z k D u k T

γ
γ α+


= + − + − × − − 

 (7) 

Then, (1) can be expressed as: 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )( )

( )

1 1 1 2

2 2 1 2

1

1 ,

1 , ,

z k F z k z k

z k d k F z k z k D u k

y z k

 + =
 + = +


=

 (8) 

It is observed that the system as shown in the above becomes a pure-feedback 
discrete-time system. For the system (1) and the dead-zone (3), it is necessary for the 
reference trajectory to satisfy the following assumption. 

Assumption 1. There exist constants 0i iF F> >  such that , 1, 2i i iF F F i≤ ≤ = , 

where  
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( ) ( )( )
( )

1 1 2

1
2

,F z k z k
F

z k

∂
=

∂
   

( ) ( ) ( )( )( )
( )

2 1 2

2

, ,F z k z k D u k
F

u k

∂
=

∂
 

Similar to the transformed procedure, we obtain 

 ( ) ( ) ( )( )( ) ( )22 ,l ly k z k D u k d k+ = Ψ +  (9) 

where  

 
( ) ( )( )( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( )( ) ( ) ( )( )( )
2 2

2 2

, , ,0

, , , ,0

l

l

z k D u k z k D u k

d k z k D u k d k z k D u k

Ψ = Ψ

= Ψ − Ψ
 (10) 

There exists a certain finite constant dL  satisfies 

 ( ) ( )l d ld k L d k d≤ ≤  (11) 

where l dd L d= . 

According to Assumption 1, one has 

 
( ) ( )( )( )

( )( )
2 ,

0
l z k D u k

F F F
D u k

∂Ψ
< ≤ = ≤

∂
 (12) 

Define ( ) ( ) ( )dk y k y kη = −  and we obtain 

 ( ) ( ) ( )( )( ) ( ) ( )22 , 2l l dk z k D u k d k y kη + = Ψ + − +  (13) 

Due to (12), we have 

 
( ) ( )( )( ) ( )( )

( )( )
2 , 2

0
l dz k D u k y k

F
D u k

∂ Ψ − +
= >

∂
 (14) 

An ideal control is selected as 

 ( ) ( )( )( ) ( )*
2 , 2 0l l dz k D k y kξΨ − + =  (15) 

where ( ) ( ) ( ) 3
2 , 2

T

dk z k y k Rξξ = + ∈ Ω ⊂   . 

Substituting the ideal control as shown in (15) into (13) leads to 

 ( ) ( )2 lk d kη + =  (16) 

This implies that ( )2 0kη + =  if ( ) 0ld k = . Furthermore, it can be obtained that 
( )ld k  is bounded. Consider (15), subtracting and adding ( ) ( )( )( )*

2 ,l lz k D kξΨ  on 
the right side of (13) results in 
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 ( ) ( ) ( )( )( ) ( ) ( )( )( ) ( )*
2 22 , ,l l l lk z k D u k z k D k d kη ξ+ = Ψ − Ψ +  (17) 

By using the mean-value theorem, we obtain 

 ( )
( ) ( )( )( )

( )( )
( )( ) ( )( )

( )( ) ( )( )( ) ( )
0

2 *
,

2 l l

D u k D u k

z k D u k
k D u k D k d k
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η ξ
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+ = × − +

∂
 (18) 

where ( ) ( )( )( )2 ,z k D u kΨ  is differentiable and  

( )( ) ( )( ) ( ) ( )( )*
0 1 lD u k D u k D u kθ θ= + −  with 0 1θ≤ ≤ . Throughout this paper, 

for convenience, it has the following abbreviation 

( )
( ) ( )( )( )

( )( )
( )( ) ( )( )0

2 ,

D u k D u k

z k D u k
G k

D u k
=

∂Ψ
=

∂
 

Then, it has 

 ( ) ( ) ( )( ) ( )( )( ) ( )*2 l lk G k D u k D k d kη ξ+ = × − +  (19) 

Similarly, it can be shown that 

 ( ) ( )( ) ( )( )( ) ( ) ( )*
1 1 1 1 11 , 1l lk D u k D k G k d k k kη ξ+ = − × + = −  (20) 

We can use RBFNN to approximate the ideal control with dead-zone input as 

 ( )( ) ( )( ) ( )( )* *T
l lD k k kξ ω τ ξ ε ξ= +  (21) 

where ( )( ) lsk Rτ ξ ∈  and ( )( )kε ξ  is the RBFNN approximation error. As we all 

known, the error can be surely arbitrary small by increasing RBFNN neurons number 

ls . Because lω∗  is unknown, then, let ( )ˆ
l kω  estimate it and define the estimation 

error as ( ) ( )ˆ
l l lk kω ω ω∗= − . 

The controller is designed as 

 ( ) ( )( )
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1 1
ˆ T

lu k k
m F m

η ω τ ξ= +  (22) 

Chose the adaptive law as 

 ( ) ( ) ( )( ) ( ) ( )1 1 1ˆ ˆ ˆ1 1l l l l lk k k k kω ω γ τ ξ η σ ω+ = − × + −  (23) 
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Choose a positive-definite function ( )V k  as ( ) ( ) ( )1 2V k V k V k= +  where 
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Theorem 1. Consider the CSTR system (1). Under Assumption 1, consisting of the 
control law (22), and RBFNN adaptive law (23), we can conclude that all the signals 
in the closed-loop are SGUUB, and the tracking error and RBFNN weight estimation 
error are bounded. 

Proof. Let 
( )2

1

1

2
l

l l
l

F q
F F τ

σ
β γ λ σ

σ
+

= + + + −  and ( )2 1l l l τβ σ σ γ λ= − − . If we 
choose 1 0,β < 2 0,0 1cβ > < < , we have 

( ) ( ) ( ) ( )1 21 1 1 1l MV k cV k V k bσ+ ≤ + + − + +   

By using Lemma 1 in [9], the tracking error and the estimation error are bounded, i.e., 
( ){ }lim sup

1
M

k

b
V k

c→∞
≤

−
. 

4 Conclusion 

An adaptive predictive control algorithm is proposed for CSTR systems with dead-
zone input. The controller was developed to solve the problem of dimensionless 
coolant temperature for a class of uncertain nonlinear discrete time CSTR system in a 
pure-feedback form. RBFNN is used to approximate the unknown functions and the 
mean value theorem is exploited to transform the pure-feedback form into a predictor 
form. It is proven that all the signals of the resulting closed-loop system are 
guaranteed to be SGUUB and the tracking error can be reduced to a small compact 
set. A simulation example is studied to verify the effectiveness of the approach. 
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Application-Oriented Adaptive Neural Networks Design 
for Ship's Linear-Tracking Control 
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Abstract. By employing Radial Basis Function (RBF) Neural Networks (NN) 
to approximate uncertain functions, an application-oriented adaptive neural 
networks design for ship linear-tracking control was brought in based on dy-
namic surface control (DSC) and minimal-learning-parameter (MLP) algorithm. 
With less learning parameters and reduced computation load, the proposed al-
gorithm can avoid the possible controller singularity problem and the trouble 
caused by "explosion of complexity" in traditional backstepping methods is re-
moved, so it is convenient to be implemented in applications. In addition, the 
boundedness stability of the closed-loop system is guaranteed and the tracking 
error can be made arbitrarily small. Simulation results on ocean-going training 
ship 'YULONG' are shown to validate the effectiveness and the performance of 
the proposed algorithm. 

Keywords: RBF Neural Networks, DSC, MLP, Linear-Tracking Control, 
Backstepping. 

1 Introduction 

Out while a vessel is traveling via way-points at constant cruise speed, what we want 
to see the most is that the ship can sail along the predetermined tracking lines. So ship 
linear-tracking control has become the most urgent and direct desire for a long time 
[1]-[2]. Traditional heading autopilot can’t fully meet people's expectations for  
the reason that it can’t directly control ship tracking error during the voyage [3]. Au-
tomatic heading helm can be regarded as the middle excessive substitute of the  
automatic tracking helm. 

As we know, ship motion shows large inertia, long time delay, nonlinear characte-
ristics, and vulnerable to model parameter perturbation, load condition and outside 
interference effect such as the winds, waves and currents, so it makes the controller 
design much difficult. In order to solve the problem, intelligent control which has the 
ability of adaptive, self-learning, self-optimization, self-adjusting have received con-
siderable attention [4]- [6]. 

In this paper, based on DSC and MLP techniques proposed in [6]-[7], we devel-
oped an oriented adaptive neural networks design for ship linear-tracking control, 
which can circumvent the 'explosion of complexity' inherently in the conventional 
backstepping technique.  
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2 Problem Formulation 

According to the references [6], we introduce the nonlinear ship straight-line motion 
equation plus the rudder actuator dynamics in the following form: 

  (1) 

where denotes the sway displacement (cross-track error), denotes the heading 
angle, denotes the yaw rate, denotes the cruise speed respectively. denotes 
the control rudder angle, denotes uncertain external perturbations which is 
bounded, is an unknown nonlinear function for . is the control gain. One 
the other hand,we know that the ship's rudder actuator dynamics controller are de-
signed as the fourth equation shown, where  and are the time delay constant and 
the control gain of the rudder actuator, respectively. is the order angle of rudder. In 
order to make it  much easier, the coordinate transformation are defined as follows: 

                    (2) 

According to the formula above, where the parameters  is positive, we can see that 
if the system state  and the yaw angle can be stabilized, then cross-track error

 will be stabilized. Due to the equation transformation, we can obtain a class of 
nonlinear uncertain system as follows: 

                    (3) 

 ,  ,  ,  ,  ,

 , , , ,  and

is the system state vector.  are the system's input 

and the output, respectively. Now we bring in the following assumptions. 
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Assumption 1. 1) The absolute value of the unknown virtual control-gain function

is positive. 2) For the purpose of analysis easier, without loss of generality, we make 
further assumption that: 

                    (4) 

While and are the lower and upper bound of , respectively. 

Assumption 2. The reference signal  is a sufficiently smooth function of , 

and , ,and  are bounded, that means, there exists a positive constant  

such that: . 

Assumption 3.  is bounded which means, there exists a positive unknown con-

stant , . 

3 RBF Neural Network 

It has been proved that we can use the following RBF neural networks to approximate 

an arbitrary smooth function F(x): : 

                          (5) 

Where ,weight vector , , 

and the NNs node number . We usually choose  as the Gaussian  

function.  

            (6) 

where , and  is the center of the receptive field, is the 

width of the Gaussian function . Any continuous function with  can 

be approximated as 

                    (7) 

 

ig

maxming0 ggi ≤≤<

ming maxg ig

( )ry t t

ry ry ry 0Y

( ) ( ) ( ) ( ){ }2 2 2

0 r 0 y , , :r r r r ry y y y y YΠ = + + <   ：

w

iγ , 1, ,i iw i nγ< = 

qR R→

)(xSF(x) Τ=ϑ

q
xx R∈Ω ⊂ [ ]1......

l
l Rϑ ϑ ϑ Τ= ∈ [ ]1( ) ( ),...... ( )lS x S x S x

Τ=
1l > ( )iS x








 −−−=
2

)()(
exp

2

1
)(

i

i
T

i

i

i

uxux
xS

σσπ

1,....i l=
1
.. ..

li i iu u u
Τ

 =   iσ
q

xx R∀ ∈Ω ⊂

xxxSxF Ω∈∀+= Τ∗ ,)()( εϑ



 Application-Oriented Adaptive Neural Networks Design 173 

 

where  is the ideal weight vector,  is the approximation error with an assump-

tion of , where the unknown constant  for all . With the 

estimate value  minimizing  for all , the ideal weight vector  

can be typically defined as 

             (8) 

Now, we bring in an assumption and a very important lemma. 

Assumption 4. For the sake of simplicity, let  be an unknown upper bound of the 

approximation errors . 

Lemma 1[7]. For any given real continuous function  with , if the 

continuous function separation technique [8]and the RBF NN approximation tech-

nique are used, then  can be denote as 

                              (9) 

where , ,

 is a vector of the approximation error, and  is a weight  

matrix. 

 

4 Control Design 

In this part, we will incorporate the DSC-MLP technique and the RBF neural net-
works to develop an adaptive tracking control design scheme for the system (1). De-

fine , are estimates of , and choose the adaptive law 

for  as follows: 

           (10) 
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where , , , and are design constants.  

Step 1: According to Lemma 1, define the tracking error , we have  

                    (11) 

             (12) 

Where denote the approximation error. Let , the normalized term

, and , then we have  

                    (13) 

                      (14) 

where , then we have 

                    (15) 

where, and . It is obvious that

 is bounded, because the bound of , and . Now choose the virtual 

controller  for  as 

          (16) 

For the sake of avoiding calculation explosion caused by repeated derivations, the 
DSC technique is developed and virtual control law is replaced by its estimation using 

the following first-order filter with the time constant of . 

                    (17) 

By defining the output error of this filter as , it yields 
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  (18) 

Step 2: Define the error variable , Similar to step 1, we have 

                    (19) 

  (20) 

where , the normalized term ,  with 

, and , then we have 

                    (21) 

  (22) 

 and , also

is bounded. Then we choose virtual controller  for  as 

  (23) 

Similar to step 1, we have 

                      (24) 
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             (26) 

  (27) 

where , the normalized term ,  with 

, and , then  

             (28) 

  (29) 

 and , 

is also bounded. Then we choose virtual control law  as 

  (30) 

Remark 1: It can be observed that, for the closed-loop control system, there are only 
one learning parameter, which is independent of order of the subsystem, to be updated 
online in the controller  and the virtual controller , no matter how many input 
variables there are in the subsystem, thus the well-known curse of dimensionality is 
circumvented by the proposed algorithm in this paper. 

Proof. The proof is similar to that in [9] 

5 Application Examples 

In this section, simulation results are based on an ocean going training vessel 
YULONG. The initial conditions for , ,  and are . 
The desired reference signal , and design parameters are chosen as 

, , , . The external disturbance signal is cho-
sen as . , , 

. The initial values of the weights vectors  are zero. 
The simulation results are shown in Figs. 1 
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Fig. 1. (a)  heading , (b) cross-track error  

6 Conclusion 

In this paper, ship linear-tracking control problem has been considered. By combining 
the DSC technique and MLP algorithm, a scheme of adaptive neural networks control 
on ship linear-path following is developed based on Lyapunov stability theory. The 
proposed scheme can reduce the the computation load dramatically and force the ship 
to follow a desired path, so it is much easier to implement in applications. 
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Abstract. This paper studies the adaptive synchronization problem
for a kind of stochastic Markovian jump neural networks with
mode-dependent and unbounded distributed delays. By virtue of the
Lyapunov stability theory and the stochastic analysis technique, a gen-
eralized LaSalle-type invariance principle for stochastic Markovian differ-
ential delay equations is utilized to investigate the globally almost surely
asymptotical stability of the error dynamical system in the mean-square
sense.

Keywords: Adaptive synchronization, stochastic perturbation,
mode-dependent delay, Markovian jump.

1 Introduction

Since the pioneering work [5] of Pecora and Carroll in 1990, control and syn-
chronization of chaotic systems have become an important topic during the past
decades. There exist many benefits of having synchronization or chaos synchro-
nization in some engineering applications, such as secure communication, chaos
generators design, chemical reactions, biological systems, information science,
and so on. Many excellent papers and monographs on synchronization of chaotic
systems with or without time delays have been published [2,6]. Variety of al-
ternative schemes for ensuring the synchronization have been proposed, such
as adaptive design control, feedback control, complete synchronization control,
impulsive control, anti-synchronization control, and projective synchronization
control. Because of the finite switching speed of amplifiers and the inherent com-
munication time of neurons, time delays are frequently encountered in various
engineering, biological, and economic systems. It has been revealed that time
delay may cause periodic oscillations, bifurcation and chaotic attractors and
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so on. Thus synchronization of delayed chaotic neural networks has become an
important research area.

Motivated by the preceding discussions, our objective in this paper is to study
the adaptive synchronization problem for a kind of stochastic Markovian jump
neural networks with mode-dependent and unbounded distributed delays. By
employing the Lyapunov stability theory, by virtue of stochastic analysis, a gen-
eralized LaSalle-type invariance principle for stochastic Markovian differential
delay equations is utilized to investigate the globally almost surely asymptotical
stability of the error dynamical system in the mean-square sense.

Notation. Throughout this paper, let WT ,W−1 denote the transpose and the
inverse of a square matrix W, respectively. Let W > 0(< 0) denote a positive
(negative) definite symmetric matrix, I denotes the identity matrix of appropri-
ate dimension, the symbol “*” denotes a block that is readily inferred by sym-
metry. The shorthand col{M1,M2, ...,Mk} denotes a column matrix with the
matrices M1,M2, ...,Mk. diag{·} stands for a diagonal or block-diagonal ma-
trix. For τ > 0, C

(
[−τ, 0];Rn

)
denotes the family of continuous functions φ from

[−τ, 0] to R
n with the norm ||φ|| = sup−τ≤s≤0 |φ(s)|. Moreover, let (Ω,F,P) be

a complete probability space with a filtration {Ft}t≥0 satisfying the usual condi-
tions and E{·} representing the mathematical expectation. Denote by Cp

F0

(
[−τ, 0];

R
n
)
the family of all bounded, F0-measurable, C

(
[−τ, 0];Rn

)
-valued random

variables ξ = {ξ(s) : −τ ≤ s ≤ 0} such that sup−τ≤s≤0 E|ξ(s)|p < ∞. || · ||
stands for the Euclidean norm; Matrices, if not explicitly stated, are assumed to
have compatible dimensions.

2 Problem Description and Preliminaries

We consider the following neural networks with mixed time delays

dx(t) =

[
− C(η(t))x(t) +A(η(t))f̂ (x(t))

+B(η(t))f̂ (x(t − τ(t, η(t))) +D(η(t))

∫ t

−∞
K(t− s)f̂(x(s))ds + J

]
dt,

(1)

x(t) =ϕ1(t), t ∈ (−∞, 0],

where x(t) = [x1(t), x2(t), ..., xn(t)]
T ∈ R

n denotes the state of the i-th neu-
ron at time t, the positive diagonal matrix C(η(t)) is the self-feedback term,
A(η(t)), B(η(t)), D(η(t)) ∈ R

n×n are the interconnection matrices represent-

ing the weight coefficients of the neurons. f̂(x(t)) = [f̂1(x1(t)), f̂2(x2(t)), ...,

f̂n(xn(t))]
T ∈ R

n denotes the neural activation function, the bounded func-
tion τ(t, η(t)) represents unknown time-varying delay with 0 ≤ τ(t, η(t)) ≤
τ̄ (η(t)) ≤ τ̄ , τ̇ (t, η(t)) ≤ τd(η(t)) ≤ τd, where τ̄ (η(t)), τ̄ are positive scalars.
J = [J1, J2, ..., Jn]

T is an external input, ϕ1(t) is a real-valued initial vector
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function that is continuous on the interval (−∞, 0]. K(t − s) = diag{k1(t −
s), k2(t − s), ..., kn(t − s)} denotes the delay kernel. It is assumed that ki(·) is a
real value non-negative continuous function defined in [0,∞) satisfying

∫ ∞

0

ki(s)ds = 1, i = 1, 2, ..., n.

{η(t), t ≥ 0} is a homogeneous, finite-state Markovian process with right con-
tinuous trajectories and taking values in finite set N = {1, 2, ..., N} with given
probability space (Ω,F,P) and the initial model η0. Let Π = [πij ]N×N denote
the transition rate matrix with transition probability:

P(η(t + δ) = j|η(t) = i) =

{
πijδ + o(δ), i �= j,

1 + πiiδ + o(δ), i = j,

where δ > 0, limδ→0+
o(δ)
δ = 0 and πij is the transition rate from mode i to mode

j satisfying πij ≥ 0 for i �= j with

πii = −
N∑

j=1,j �=i

πij , i, j ∈ N .

For convenience, each possible value of η(t) is denoted by i(i ∈ N ) in the sequel.
Then we have

Ci = C(η(t)), Ai = A(η(t)), Bi = B(η(t)), Di = D(η(t)), τi(t) = τ(t, η(t)).

Throughout this paper, the following assumption is made on the neuron ac-
tivation functions:

Assumption 1. Each neural activation function f̂j(·) is bounded and there exist
real constants σ−

j , σ+
j such that

σ−
j ≤ f̂j(ξ)− f̂j(ζ)

ξ − ζ
≤ σ+

j , ∀ ξ, ζ ∈ R, ξ �= ζ, j = 1, 2, ..., n.

For notational simplicity, we denote
Σ1 = diag{σ−

1 , σ−
2 , ..., σ−

n }, Σ2 = diag{σ+
1 , σ+

2 , ..., σ+
n }.

In order to observe the synchronization behavior of system (1), we construct
the response system as follows

dy(t) =

[
− Ciy(t) +Aif̂(y(t)) +Bif̂(y(t− τi(t))) +Di

∫ t

−∞
K(t− s)f̂(y(s))ds

+ J + u(t)

]
dt+ υi(t, y(t)− x(t), y(t − τi(t))− x(t − τi(t)))dω(t),

(2)

y(t) =ϕ2(t), t ∈ (−∞, 0],
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where u(t) is an appropriate control input that will be designed in order to obtain
a certain control objective. ω(t) is a one-dimensional Brown motion defined on
a complete probability space (Ω,F,P) with a natural filtration {Ft}t≥0, and
υi : R

+ × R
n × R

n → R
n is the noise intensity vector. This type of stochastic

perturbation can be regarded as a result from the occurrence of external random
fluctuation and other probabilistic causes.

Let e(t) = y(t) − x(t) be the error state, it yields the synchronization error
dynamical systems as follows:

de(t) =

[
− Cie(t) +Aif(e(t)) +Bif(e(t− τi(t)))

+Di

∫ t

−∞
K(t− s)f(e(s))ds + Z(t)e(t)

]
dt + υi(t, e(t), e(t − τi(t)))dω(t),

.
=ρi(t)dt + υi(t)dω(t), (3)

e(t) =ϕ(t), t ∈ (−∞, 0],

where f(e(t)) = f̂(y(t))− f̂(x(t)), ϕ(t) = ϕ2(t)− ϕ1(t). From Assumption 1, it
is easy to derive that

fj(0) = 0, σ−
j ≤ fj(s)

s
≤ σ+

j , ∀ s ∈ R, s �= 0, j = 1, 2, ..., n. (4)

Furthermore, we make the following assumption:

Assumption 2. The noise intensity vector is assumed to be of the form:

υi(t) = Eie(t) + Fie(t− τi(t)), (5)

where Ei, Fi are known real matrices.
Instead of the usual linear feedback, in this paper, we consider the following

feedback controller:

u(t) = Z(t)e(t), (6)

where the feedback strength Z(t) = diag{z1(t), z2(t), ..., zn(t)} is updated by the
following law:

żj(t) = −γje
2
j(t), (7)

where γj > 0 is an arbitrary constant, j = 1, 2, ..., n.

3 Main Result

As well known, Itô’s formula plays important role in the stability analysis of
stochastic Markovian systems and we cite some related results here [1]. Consider
a general stochastic Markovian delay system

dz(t) = f(t, z(t), z(t− κ), η(t))dt + g(t, z(t), z(t− κ), η(t))dω(t), (8)
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on t ≥ t0 with initial value z(t0) = z0 ∈ R
n, where κ > 0 is time delay, f :

R
+ × R

n × R
n ×N → R

n and g : R+ × R
n × R

n ×N → R
n+m. Let C2,1

(
R

+ ×
R

n ×R
n ×N ,R+

)
denote the family of all nonnegative functions V (t, z, v, η(t))

on R
+ × R

n × R
n × N which are continuously twice differentiable in z, v and

once differentiable in t. Let £ be the weak infinitesimal generator of the random
process {z(t), η(t)}t≥t0 along the system (8) (see [3]), i.e.

£V (t, zt, vt, i) := lim
δ→0+

[
E
{
V (t+ δ, zt+δ, vt+δ,η(t + δ))

∣∣zt, vt, η(t) = i
}

− V (t, zt, vt, η(t) = i)
]
, (9)

then, by the Dynkin’s formula, one can get

EV (t, z(t), v(t), i) = EV (t0, z(t0), v(t0), i) + E

∫ t

t0

£V (s, z(s), v(s), i)ds.

Similar to Lemma 1 of [4], we can obtain a generalized LaSalle-type invari-
ance principle for stochastic Markovian differential delay equations (8) stated as
follows.

Lemma 1. Assume that system (8) exists a unique solution z(t, ξ) on t > 0 for
any given initial data {z(θ) : −κ ≤ θ ≤ 0} = ξ ∈ Cp

F0

(
[−τ, 0];Rn

)
, moreover,

both f(t, z, v, η(t)) and g(t, z, v, η(t)) are locally bounded in (z, v) and uniformly
bounded in t. If there are a function V ∈ C2,1

(
R

+ × R
n × R

n × N ,R+
)
, χ ∈

L1(R+,R+) and ψ1, ψ2 ∈ C
(
R

n,R+
)
such that

E£V (t, z, v, η(t)) ≤ χ(t)− ψ1(z) + ψ2(v), (t, z, v, η(t)) ∈ R
+ × R

n × R
n ×N ,

ψ1(z) ≥ ψ2(z), ∀z �= 0,

lim
||z||→∞

inf
0≤t<∞

V (t, z, v, η(t)) = ∞.

Then

lim
t→∞

z(t, ξ) = 0 a.s.

for every ξ ∈ Cp
F0

(
[−τ, 0];Rn

)
.

In order to get the main result, we propose the following lemma:

Lemma 2. For each i ∈ N , we have the following equalities

£

{∫ t

t−τ(t,η(t))

x(s)TQ(η(t))x(s)ds

}
=x(t)TQix(t) − (1− τ̇i(t))x(t − τi(t))

TQix(t − τi(t))

+

N∑
j=1

πij

{∫ t

t−τi(t)

x(s)TQjx(s)ds + τj(t)x(t − τi(t))
TQix(t − τi(t))

}
, (10)
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£

{∫ t

t−τi(t)

∫ t

θ

x(s)TRx(s)dsdθ

}

=τi(t)x(t)
TRx(t)− (1− τ̇i(t))

∫ t

t−τi(t)

x(s)TRx(s)ds

+

N∑
j=1

πijτj(t)

∫ t

t−τi(t)

x(s)TRx(s)ds. (11)

Now, we begin to state our main result.

Theorem 1. Consider the system (3) satisfying Assumption 1, the drive sys-
tem (1) and the response system (2) can be synchronized for any 0 ≤ τi(t) ≤
τ̄i ≤ τ̄ , τ̇i(t) ≤ τdi < 1, if there exist symmetric definite positive matrices
Q1i, Q3i, Q4i, R1, R3, R4, X,H, diagonal positive matrices Pi, Si, Ui,W and posi-
tive number α and any real matrices Q2i, R2 satisfying the following inequalities

Qi ≡
[
Q1i Q2i

∗ Q3i

]
> 0, (12)

R ≡
[
R1 R2

∗ R3

]
> 0, (13)

N∑
j=1

(πijQj + π′
ij τ̄jR) ≤ (1 − τdi)R, (14)

N∑
j=1

πijQ4j ≤ R4, (15)

Ωi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11i ET
i (Pi + τ̄H)Gi H Ω14i PiBi PiDi H

∗ Ω22i 0 0 Ω25i 0 0
∗ ∗ −Q4i −H 0 0 0 H
∗ ∗ ∗ Ω44i 0 0 0
∗ ∗ ∗ ∗ Ω55i 0 0
∗ ∗ ∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ ∗ ∗ −H

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (16)

where

Ω11i = − PiCi − CiPi − 2αPi + ET
i (Pi + τ̄H)Ei −H +X

+

N∑
j=1

πijPj −Σ1Σ2Si +Q1i + τ̄iR1 +Q4i + τ̄R4,

Ω14i =PiAi +
1

2
(Σ1 +Σ2)Si +Q2i + τ̄iR2,

Ω22i =GT
i (Pi + τ̄H)Gi −Σ1Σ2Ui −X − (1− τdi)Q1i +

N∑
j=1

π′
ij τ̄jQ1i,
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Ω25i =
1

2
(Σ1 +Σ2)Ui − (1− τdi)Q2i +

N∑
j=1

π′
ij τ̄jQ2i,

Ω44i =W − Si +Q3i + τ̄iR3, Ω55i = −Ui − (1− τdi)Q3i +

N∑
j=1

π′
ij τ̄jQ3i,

with π′
ij = max{πij , 0}.

Proof. Define the following Lyapunov-Krasovskii functional:

V (t, et, i) =e(t)TPie(t) +

n∑
j=1

wj

∫ ∞

0

kj(s)

∫ t

t−s

f2
j (ej(θ))dθds

+

∫ t

t−τi(t)

ξ(s)TQiξ(s)ds +

∫ t

t−τi(t)

∫ t

θ

ξ(s)TRξ(s)dsdθ

+

∫ t

t−τ̄

e(s)TQ4ie(s)ds +

∫ t

t−τ̄

∫ t

θ

e(s)TR4e(s)dsdθ

+

∫ t

t−τ̄

∫ t

θ

υi(s)
THυi(s)dsdθ +

n∑
j=1

pji
γj

(zj(t) + α)2,

with ξ(s) = col{x(s), f(x(s))}, W = diag{w1, w2, ..., wn}, and α being a large
positive constant which can be determined arbitrary.

Based on Lemma 2, by using the well-known Itô’s differential formula, calcu-
lating the weak infinitesimal generator along the trajectory of (3) results in

£Vi =2e(t)TPiρi(t) + trace
[
υi(t)

TPiυi(t)
]
+

N∑
j=1

πije(t)
TPje(t)

+ 2

n∑
j=1

pji
γj

(zj(t) + α)żj(t) +

n∑
j=1

wj

∫ ∞

0

kj(s)
[
f2
j (ej(t))− f2

j (ej(t − s))
]
ds

+ ξ(t)TQiξ(t)− (1 − τ̇i(t))ξ(t − τi(t))
TQiξ(t − τi(t))

+

N∑
j=1

πij

{∫ t

t−τi(t)

ξ(s)TQjξ(s)ds + τj(t)ξ(t − τi(t))
TQiξ(t − τi(t))

}

+ τi(t)ξ(t)
TRξ(t) − (1− τ̇i(t))

∫ t

t−τi(t)

ξ(s)TRξ(s)ds

+
N∑
j=1

πijτj(t)

∫ t

t−τi(t)

ξ(s)TRξ(s)ds + e(t)TQ4ie(t)

− e(t− τ̄ )TQ4ie(t− τ̄ ) +

N∑
j=1

πij

∫ t

t−τ̄

e(s)TQ4je(s)ds+ τ̄ e(t)TR4e(t)

−
∫ t

t−τ̄

e(s)TR4e(s)ds + τ̄υi(t)
THυi(t)−

∫ t

t−τ̄

υi(s)
THυi(s)ds.
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According to Assumption 1, by the Leibniz-Newton formula, we get

E£Vi ≤ ζi(t)
TΩiζi(t)− e(t)TXe(t) + e(t − τi(t))

TXe(t− τi(t)),

where

ζi(t) = col

{
e(t), e(t− τi(t)), e(t − τ̄ ), f(e(t)),

f(e(t− τi(t))),

∫ t

−∞
K(t− s)f(e(s))ds,

∫ t

t−τ̄

ρi(s)ds

}
.

The constant α plays an important role in making the matrix Ωi negative defi-
nite. In fact, it can be chosen so big that the matrix Ωi is negative definite.

From Eq. (16), we have

E£Vi ≤ −e(t)T (X + λiI)e(t) + e(t− τi(t))
T (X − λiI)e(t − τi(t))

.
= −ψ1(e(t)) + ψ2(e(t − τi(t))),

where λi denote the largest eigenvalue of the matrix Ωi. Obviously, ψ1(e(t)) >
ψ2(e(t)) for any e(t) �= 0. Therefore, applying Lemma 1, we can conclude that
the two coupled delayed neural networks (1) and (2) can be synchronized for
almost every initial data.

4 Conclusion

In this paper, an adaptive feedback controller is proposed for the complete syn-
chronization of stochastic Markovian jump neural networks with mode-dependent
and unbounded distributed delays. A generalized LaSalle-type invariance
principle for stochastic Markovian differential delay equations is employed to
investigate the globally almost surely asymptotical stability of the error dynam-
ical system, that is to say, the complete synchronization can be almost surely
achieved.
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Abstract. In this paper, an H∞ optimal tracking control scheme based
on generalized Hamilton-Jacobi-Isaacs (GHJI) equation is developed for
discrete-time (DT) affine nonlinear systems. First, via system transfor-
mation, the optimal tracking problem is transformed into an optimal
regulation problem with respect to the state tracking error. Second, with
regard to the converted regulation problem, in order to obtain the H∞
tracking control, the corresponding GHJI equation is formulated, and
then the L2-gain analysis of the closed-loop nonlinear system are em-
ployed. Third, an iterative algorithm based on the GHJI equation by
using neural networks (NNs) is introduced to solve the optimal control.
Finally, simulation results are presented to demonstrate the effectiveness
of the proposed scheme.

Keywords: H∞ tracking control, neural networks, generalized
Hamilton-Jacobi-Isaacs, reinforcement learning, infinite horizon.

1 Introduction

As is well known, H∞ optimal control has played an important role in modern
robust optimal control [1–3]. For solving H∞ nonlinear control problems, the
difficulty is the requirement to solve the nonlinear Hamilton-Jacobi-Isaacs (HJI)
equation which is usually too difficult to solve analytically. In recent years, in
order to solve the optimal tracking control and H∞ control problems, several
methods have been proposed to obtain approximate solutions of the HJI equa-
tion [4–10]. In [4], Zhang et al. gave a novel infinite-horizon optimal tracking
control scheme based on greedy heuristic dynamic programming (HDP) algo-
rithm for discrete-time (DT) nonlinear systems with the requirement of the
whole known system dynamics. In [5], Huang et al. developed an approximation
approach to solve the HJI equation in terms of the Taylor series, and computed
the corresponding coefficients by using a sequence of linear algebraic equations.
In [6], Mehraeen et al. proposed an iterative approach to obtain the optimal
solutions based on the generalized HJI (GHJI) equation for discrete-time (DT)
nonlinear system by using neural networks (NNs).

However, to the best of our knowledge, there is still no result for solving the
optimal tracking control problems for affine nonlinear DT systems via GHJI

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 186–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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method. Upon completion of the transformation, the tracking problem is con-
verted to a regulation problem, then, the corresponding HJI and GHJI equation
are formulated. In order to obtain the H∞ optimal control, an iterative algo-
rithm is used to solve the GHJI equation by using NNs. Moreover, additional
considerations are required when solving the GHJI equation to ensure the exis-
tence of a saddle-point in the zero-sum two-player game [3]. Finally, simulation
results are presented to confirm the validity of the proposed optimal tracking
control scheme.

2 Problem Formulation

Considering the affine DT nonlinear system given by

xk+1 = f(xk) + g(xk)uk + h(xk)wk, (1)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control input, and wk ∈ R
M is

the disturbance, f(·) ∈ R
n, g(·) ∈ R

n×m and h(·) ∈ R
n×M are smooth functions

defined in a neighborhood of the origin. Assume that f(·) and g(·) are Lipschitz
continuous on a set Ω in R

n with f(0) = 0, and there exists a matrix function
g−1(xk) ∈ R

m×n such that g−1(xk)g(xk) = I ∈ R
m×m where I is the identity

matrix.
For the optimal tracking control problem, the control objective is to find the

optimal control u∗
k, so as to make the nonlinear system (1) to track a reference

(desired) trajectory rk in an optimal manner. The reference trajectory rk is
generated by the following autonomous system as

rk+1 = φ(rk), (2)

where rk ∈ R
n and φ(rk) ∈ R

n, and it is assumed that the mapping between
the state xk and the desired trajectory rk is one-to-one. Then, we define the
state tracking error as ek = xk − rk. Based on [4], we define the steady control
corresponding to the desired trajectory rk as

udk = g−1(rk)(φ(rk)− f(rk)− h(rk)wk), (3)

where g−1(rk)g(rk) = I and I ∈ R
m×m is the identity matrix. Then, by

subtracting the steady control udk from the actual control uk, we define
u(ek) = uek as

uek = uk − udk. (4)

Considering (1)–(4), the tracking error ek+1 is expressed as

ek+1 = xk+1 − rk+1

= f(ek + rk) + g(ek + rk)uek + h(ek + rk)wk + g(ek + rk)g
−1(rk)(φ(rk)

− f(rk)− h(rk)wk)− φ(rk). (5)
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For the convenience of analysis, (5) is rewritten as

ek+1 = F (ek, uek) = fek + gekuek + hekwk, (6)

where fek = f(ek + rk) + g(ek + rk)g
−1(rk)(φ(rk) − f(rk) − h(rk)wk) − φ(rk),

gek = g(ek+rk) and hek = h(ek+rk). For H∞ optimal tracking control problem,
the control objective is to find the control which can minimize the infinite horizon
value or cost function

J(ek, uek, wk) =

∞∑
j=k

(eTj Qej + uT
ejRuej − γ2wT

j Pwj) (7)

in the presence of worst case disturbance wk, where r(xj , uej , wj) = xT
j Qxj +

uT
ejRuej − γ2wT

j Pwj with Q, R and P are positive definite matrices, and γ is
a constant. The quadratic value or cost function can not only force the system
state to follow the reference, but also force the system input to be close to the
steady control in maintaining the state to its reference value. Therefore, it is
reasonable to consider the problem of solving the optimal tracking control u∗

k of
the system (1) can be converted into solving the optimal feedback control u∗

ek

for the new system (6) with respect to (7). For the optimal control problem, it
should be noted that uek must not only stabilize the system (6) on Ω but also
guarantee that (7) is finite, i.e., the control must be admissible [7].

In the following, based on [2], the problem of disturbance attenuation can be
addressed by using the L2-gain of the nonlinear system. Meanwhile, from [3], the
two-player zero-sum differential game has a unique solution if a game theoretic
saddle point exists, i.e., if the Nash condition holds

min
uek

max
wk

J(e0, uek, wk) = max
wk

min
uek

J(e0, uek, wk). (8)

The H∞ control problem can be referred to as a two-player zero-sum differential
game where one player uek tries to minimize the cost function while the other
wk tries to maximize it. It is reasonable that the two policies u∗

ek and w∗
k are

the optimal control and worst case disturbance of (7), respectively, such that
J(u∗

ek, wk) ≤ J(u∗
ek, w

∗
k) ≤ J(uek, w

∗
k) for all uek and wk. The pair (u∗

ek, w
∗
k)

then becomes the saddle-point solution of the optimization problem. A solution
for HJI equation exists (saddle-point existence) if and only if there exists a
smooth function V ∗(ek) such that the HJI equation

V ∗(ek) = min
uek

max
wk

∞∑
i=k

r(xi, uei, wi) = max
wk

min
uek

∞∑
i=k

r(xi, uei, wi)

= eTk Qek + u∗T

ek Ru∗
ek − γ2w∗T

k Pw∗
k + V (fek + geku

∗
ek + hekw

∗
k). (9)

3 Solving H∞ Optimal Control Based on GHJI

Considering the optimization problem (9), the DT HJI equation becomes

V ∗(fek + geku
∗
ek + hekw

∗
k)− V ∗(ek) + eTk Qek + u∗T

ek Ru∗
ek − γ2w∗T

k Pw∗
k = 0, (10)
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where u∗
ek and w∗

k are the optimal control and worst disturbance, respectively.
Thus, the Hamiltonian function can be defined as

H(ek,uek, wk)

= V (fek + gekuek + hekwk)− V (ek) + eTk Qek + uT
ekRuek − γ2wT

k Pwk.
(11)

According to (9), u∗
ek and w∗

k can be obtained by applying the first-order neces-
sary conditions, i.e,

u∗
ek = −1

2
R−1gTek

∂V ∗(ek+1)

∂ek+1
, w∗

k =
1

2γ2
P−1hT

ek

∂V ∗(ek+1)

∂ek+1
. (12)

Then, substituting (12) into (11), the HJI equation becomes

0 =V ∗(ek+1)− V ∗(ek) +
1

4

∂V ∗T

(ek+1)

∂ek+1
(gekR

−1gTek − hekP
−1hT

ek)

· ∂V
∗(ek+1)

∂ek+1
+ eTk Qek. (13)

From (12), it is clear that u∗
k and w∗

k are solved if the optimal value func-
tion V ∗(ek+1) can be calculated from (13). However, it is generally difficult to
solve the optimal value function. In [7], a generalized Hamilton-Jacobi-Bellman
(GHJB) formulation-based NN approach is proposed to solve the single-player
HJB optimization problem [8–10]. In this paper, we extend the effort in [7] to
deal with the HJI equation.

In the following, based on [7], the DT GHJI equation is derived as

1

2
�eTk∇2V (ek)�ek +∇V (ek)

T�ek + eTk Qek + uT
ekRuek − γ2wT

k Pwk = 0

V (ek)|ek=0 = 0, (14)

where �ek = fek + gekuek + hekwk − ek, ∇V (ek) and ∇2V (ek) are the gradient
vector and Hessian matrix of V (ek), respectively. With regard to (14), in order
to obtain the optimal control u∗

ek and worst disturbance w∗
k, the pre-Hamiltonian

function for the system (6) is defined as

H(ek, uek, wk) =
1

2
�eTk∇2V (ek)�ek +∇V (ek)

T�ek + eTk Qek + uT
ekRuek

− γ2wT
k Pwk. (15)

Note that when H(ek, u
∗
ek.w

∗
k) = 0, the GHJI equation results where u∗

ek

and w∗
k are the optimal control and worse case disturbance to be obtained.

The optimal control input u∗
ek and worst case disturbance w∗

k can be found by
differentiating the pre-Hamiltonian function (15) with respect to uek and wk,
respectively, which yields

u∗
k = −

(
gTek∇2V ∗(ek)gek + 2R

)−1
gTek
(
∇V ∗(ek) +∇2V ∗(ek)(fek + hekw

∗
k − ek)

)
(16)
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and

w∗
k =

(
2γ2P − hT

ek∇2V ∗(ek)hek

)−1
hT
ek

(
∇V ∗(ek) +∇2V ∗(ek)(fek + geku

∗
ek − ek)

)
.

(17)

Before proceeding, the following theorem is required to demonstrate that the
optimal control and worst disturbance (16) can ensure the existence of a saddle-
point in the zero-sum two-player game.

Theorem 1. Let the pair (uek, w
∗
k) be an arbitrary admissible control and the

worst disturbance provided by (16) for system (6). In addition, let the pair
(u∗

ek, wk) be the optimal control provided by (16) and an arbitrary disturbance
for system (6). Then, the Hamiltonian function (15) satisfies H(ek, u

∗
ek, wk) ≤

H(ek, u
∗
ek, w

∗
k) ≤ H(ek, uek, w

∗
k).

Proof. The proof is shown in two steps. First, we show that H(ek, uek, w
∗
k) −

H(ek, u
∗
ek, w

∗
k) ≥ 0. Note that H(ek, uek, w

∗
k) and H(ek, u

∗
ek, w

∗
k) are nothing but

the pre-Hamiltonian function (15) rewritten in terms of u∗
ek and w∗

k, we obtain

H(ek, uek, w
∗
k)−H(ek, u

∗
ek, w

∗
k)

= (fek + hekw
∗
k − ek)

T∇2V (ek)gek(uek − u∗
ek) +

1

2
(gekuek)

T∇2V (ek)gekuek

− 1

2
(geku

∗
ek)

T∇2V (ek)geku
∗
ek +∇V (ek) · gek(uek − u∗

ek) + uT
ekRuek − u∗T

ek Ru∗
ek

(18)

Combining these terms, (18) can be rewritten as

H(ek, uek, w
∗
k)−H(ek, u

∗
ek, w

∗
k)

=
(
∇V (ek) + (fek + hekw

∗
k − ek)∇2V (ek)

)
gek(uek − u∗

ek) +
1

2
uT
ekΓuuek

− 1

2
u∗T
ek Γuu

∗
ek (19)

where Γu = gTek∇2V (ek)gek + 2R > 0. Considering (16), we have the relation(
gTek(∇2V (ek))gek + 2R

)
u∗
ek = −gTek

(
∇V (ek) +∇2V (ek)(fek + hekw

∗
k − ek)

)
.

(20)

Substituting (20) into (19), we have

H(ek, uek, w
∗
k)−H(ek, u

∗
ek, w

∗
k) =

1

2
(uek − u∗

ek)
TΓu(uek − u∗

ek). (21)

So, with Γu being positive definite, we have H(ek, uek, w
∗
k)−H(ek, u

∗
ek, w

∗
k) ≥ 0.

Second, we show that H(ek, u
∗
ek, wk) − H(ek, u

∗
ek, w

∗
k) ≤ 0. Similar to (18), we

have

H(ek, u
∗
ek, wk)−H(ek, u

∗
ek, w

∗
k)

=
(
∇V (ek) + (fek + geku

∗
ek − ek)

T∇2V (ek)
)
hek(wk − w∗

k)

+
1

2
wT

k Γwwk − 1

2
w∗T

k Γww∗
k (22)



Neural Network H∞ Tracking Control of Nonlinear Systems 191

where Γw = hT
ek∇2V (ek)hek − 2γ2P . Considering (17), we have

H(ek, u
∗
ek, wk)−H(ek, u

∗
ek, w

∗
k) =

1

2
(wk − w∗

k)
TΓw(wk − w∗

k). (23)

Since 2γ2P−hT
ek∇2V (ek)hek > 0, we obtain H(ek, u

∗
ek, wk)−H(ek, u

∗
ek, w

∗
k) ≤ 0.

Thus, based on the above analysis, we can get

H(ek, u
∗
ek, wk) ≤ H(ek, u

∗
ek, w

∗
k) ≤ H(ek, uek, w

∗
k). (24)

Next, an iterative algorithm is developed to update the control input and dis-

turbance which consists of a sequential set of updates for the disturbance w
(i,j)
k

in an inner loop with index j accompanied by a sequential set of updates for the
control input ui

ek in an outer loop with index i. Let u0
ek be an initial admissible

control. The algorithm starts with setting ui
ek = u0

ek and w
(i,0)
k = 0 for i = 0.

For convenience, in the sequel, denote Vk = V (ek). Then, the pre-Hamiltonian

equation (15) is solved for V
(i,j)
k as

∇V
(i,j)
k (fek + geku

i
ek + hekw

(i,j)
k − ek) +

1

2
(fek + geku

i
ek + hekw

(i,j)
k − ek)

T∇2V
(i,j)
k

· (fek + geku
i
k + hekw

(i,j)
k − ek) + eTkQek + uiT

ekRui
ek − γ2w

(i,j)T

k Pw
(i,j)
k = 0.

(25)

The disturbance w
(i,j)
k is updated by using (17) and written as

w
(i,j+1)
k =

(
2γ2P − hT

ek∇2V
(i,j)
k hek

)−1
hT
ek

(
∇V

(i,j)
k +∇2V

(i,j)
k (fek + geku

i
ek − ek)

)
.

(26)

The inner loop j proceeds until it converges such that V
(i,j)
k = V

(i,j+1)
k = V

(i,∞)
k .

Next, ui
k is updated according to (16) and written as

u
(i+1)
ek = −

(
gTek∇2V

(i,∞)
k gek + 2R

)−1
gTek

(
∇V

(i,∞)
k +∇2V

(i,∞)
k (fek + hekw

i
k − ek)

)
.

(27)

Then, the value function is found by solving (25) for V
(i,j)
k . Similar to the inner

loop, the outer loop i proceeds until it converges such that V
(i,∞)
k = V

(i+1,∞)
k =

V
(∞,∞)
k .

Theorem 2. Let ui
ek be an initial admissible control input for pair (i, j) for

system (6) on the set Ω. Then, iterating between (25) and (26) ensures V
(i,j)
k is

monotonically increasing until the worst disturbance for the control input ui
ek is

found, i.e., V
(i,j)
k ≤ V

(i,j+1)
k ≤ V

(i,∞)
k and limj→∞ V

(i,j)
k = V

(i,∞)
k .

Next, the convergence of the outer loop i is discussed.

Theorem 3. Let ui
ek be an initial admissible control input for pair (i, j) for the

system (6) on the set Ω. If the controller is updated by (27), then, the system

ek+1 = fek + geku
i+1
ek + hekw

(i,∞)
k has the L2-gain less than or equal to γ. Fur-

thermore, V
(i,∞)
k ≥ V

(i+1.∞)
k ≥ V ∗

k and limi→∞ V
(i,∞)
k = V ∗

k where V ∗
k solves

the GHJI equation (14).
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The satability of the system ek+1 = fek + geku
i+1
ek + hekw

j is shown in the
following theorem.

Theorem 4. Let ui
ek be an initial admissible control for pair (i, j) for system

(6) on the set Ω. Let the proposed successive approximation procedure of updates

for the disturbance w
(i,j)
k in the inner loop j and updates for the control ui

ek in
the outer loop i be performed. Then, for all j and i, ek+1 = fek+geku

i+1
ek +hekw

j

is asymptotically stable on Ω.

For space reasons, we will present the details of the proof of Theorems 2–4 in a
future paper.

4 H∞ Optimal Controller Design Using NNs

In this section, a multilayer feedforward NN is used to approximate the solution

V
(i,j)
k of the GHJI equation. Using the NN approximation property [8] in compact

set Ω, we can approximate V (i,j) with an NN as

V (i,j) ≈ VL(e) =

L∑
j=1

ωjσj(e) = WT
L σ̄L(e), (28)

where σj(e) is activation function, and σj(0) = 0. WL(e) = [ω1, ω2, · · · , ωL]
is the vector of NN weights, σ̄L(e) = [σ1(e), σ2(e), · · · , σL(e)] is the vector of
activation functions and L is the number of hidden layer neurons.

The NN weights are tuned to minimize the residual error in least square

method. With GHJI(V
(i,j)
k , ui

ek, w
(i,j)
k ) = 0, V

(i,j)
k is replaced by VL to obtain

the residual error, i.e, GHJI
(
V

(i,j)
L =

∑L
j=1 ωjσj(e), u

i
ek, w

(i,j)
k

)
= ξL.

To find the least squares solution, the method of weighted residuals is used [8].
We have

WL = −
〈
Θ,Θ

〉−1〈
eTQe+ uiT

e Rui
e − γ2w(i,j)T Pw(i,j), Θ

〉
, (29)

where Θ = ∇σ̄L�e+ 1
2�eT∇2σ̄L�e,

∇σ̄L =
[
∂σ1(e)/∂e, ∂σ2(e)/∂e, · · · , ∂σL(e)/∂e

]T
,

∇2σ̄L =
[
∂2σ1(e)/∂e

2, ∂2σ2(e)/∂e
2, · · · , ∂2σL(e)/∂e

2
]T

,

�e = fe(e) + ge(e)ue(e)
i + he(e)w(e)(i,j) − e.

Lemma 1. If the set {σj(e)}L1 is linearly independent and u ∈ Ωu, then the set
{∇σ̄L�e+ 1

2�eT∇2σ̄L�e}L1 is also linearly independent.
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From Lemma 1,
〈
Θ,Θ

〉
is invertible. Thus, a unique solution for WL exists.

In addition, the inner products in (29) can be approximated as 〈a(e), b(e)〉 =∫
Ω a(e)b(e)de =

∑N
i=1 a(e)b(e)δ(e) where δ(e) = ei − ei−1 is chosen small in Ω

and N is large. By employing a mesh in the set Ω where the mesh size is δ(e),
the NN weights can be found as

WL = −(XTX)−1XTY, (30)

where X and Y are defined as

X = [Θ|e=e1 , · · · , Θ|e=ep ]
T , (31)

Y =

⎡⎢⎢⎣
eTQe+ uiT

e Rui
e − γ2w(i,j)T Pw(i,j)

∣∣
e=e1

...

eTQe+ uiT

e Rui
e − γ2w(i,j)T Pw(i,j)

∣∣
e=ep

⎤⎥⎥⎦ , (32)

and p is the number of points of the mesh.

5 Simulation Study

In this section, the example is derived from [9] with some modifications. Con-
sidering the following nonlinear system:

xk+1 = f(xk) + g(xk)uk + hk(xk)wk, (33)

where xk = [x1k x2k]
T and uk = [u1k u2k]

T are the system state and the control
input, respectively, wk is the disturbance. The corresponding f(xk), g(xk) and
h(xk) are given as:

f(xk) =

[
− sin(0.5x2k)x

2
1k

− cos(1.4x2k) sin(0.9x1k)

]
,

g(xk) =

[
1 0
0 1

]
, h(xk) =

[
x1k

x1kx2k

]
.

The reference trajectory for the above system is selected as

rk =

[
sin(0.25k)
cos(0.25k)

]
.

The parameters of the cost function are chosen as Q = 0.8I, R = P = I, where
I denotes the identity matrix with suitable dimensions, γ = 20. The state of the
tracking system is initialized to be x0 = [0.8 0.5]T . In the simulation performed,
the NN is going to be trained on the region (−1.5 ≤ x1k ≤ 1.5,−1.5 ≤ x2k ≤ 1.5)
with the mesh size being chosen to be 0.05. Based on [7], the activation func-
tions of the NN are chosen as σ̄L = [e21k, e1ke2k, e

2
2k, e

4
1k, e

3
1ke2k, e

2
1ke

2
2k, e1ke

3
2k,

e42k, e
6
1k, e

5
1ke2k, e

4
1ke

2
2k, e

3
1ke

3
2k, e

2
1ke

4
2k, e1ke

5
2k, e

6
2k]. Select the initial admissible
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Fig. 1. Simulation results of the H∞ tracking control scheme

control u0
ek = [0.1e1k−0.6e2k,−0.2e1k+0.35e2k]

T and the disturbance w
(i,0)
k = 0,

then update the control input and the disturbance by (27) and (26), respectively,

while the value function V
(i,j)
k is approximated by the NN whose weights are

obtained from (30).
In addition, we set ε = 10−6 to terminate the iterations in i and j. Let i = 20

and j = 20. Then, after completing the offline training, the final NN weights
are WL=[1.330,0.268,-0.295,-0.026,1.569,2.453,-1.487,0.628,-0.058,-0.634,-0.767,-
0.068,-1.442,1.233,-0.382]T. Then, we apply the optimal tracking control policy
to the system with a disturbance wk = sin(10k)e−0.1k for 50 time steps and
obtain the relevant simulation results. The obtained state curves are shown in
Fig. 1(a) and Fig. 1(b), where the corresponding reference trajectories are also
plotted for assessing the tracking performance. The tracking control curves and
the tracking errors are shown in Fig. 1(c) and Fig. 1(d), respectively. These
simulation results verify the excellent performance of the H∞ tracking controller
developed based on GHJI method.

6 Conclusion

In this paper, an H∞ optimal tracking control scheme based on GHJI is
developed for affine nonlinear systems. Via system transformation, the
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optimal tracking problem is transformed into an optimal regulation problem
with respect to the state tracking error. For the converted regulation problem,
the corresponding GHJI equation is formulated, and then the L2-gain analy-
sis of the closed-loop nonlinear system are employed. In order to obtain the
H∞ tracking control, an iterative algorithm based on the GHJI by using NNs
is introduced. Simulation results demonstrate the effectiveness of the proposed
scheme.

Acknowledgment. This work was supported in part by the National Natural
Science Foundation of China under Grants 61034002, 61233001, and 61273140.
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Abstract. In this paper, the adaptive neural attitude control is devel-
oped for near-space vehicles with the oblique wing (NSVOW) via using
the sliding mode disturbance observer technique. The radial basis func-
tion neural network (RBFNN) is employed to approximate the unknown
system uncertainty. Then, the sliding mode disturbance observer is de-
signed to estimate the unknown external disturbance and the unknown
neural network approximation error. Using outputs of the sliding mode
disturbance observer and the RBFNN, the adaptive neural attitude con-
trol is proposed for NSVOWs. The stability of the closed-loop system
is proved using the Lyapunov analysis. Finally, simulation results are
presented to illustrate the effectiveness of the proposed adaptive neural
attitude control scheme.

Keywords: NSVOW, Attitude control, Sliding mode disturbance
observer, Adaptive neural control.

1 Introduction

The near-space vehicle (NSV) is one kind of new aerospace vehicles which at-
tracted much concern around the world in recent years. Since the NSV has
special characteristics compared with traditional flight vehicles, it has the po-
tential military and civilian dual-use values [1-3]. To implement various tasks,
the efficient flight control schemes need to be developed for the NSV. However,
the NSV has the highly coupled control channels, unknown time-varying distur-
bances and strong nonlinearity which will further increase the design difficulty
of the robust flight control scheme [3]. In the recent decade, many flight control
schemes have been developed for the NSV.

According to the flight speed of the NSV, the flight envelop can be divided into
the low-speed flight region and the high-speed flight region. To meet the different
requirements for aerodynamic characteristic at low speed and high speed, the
concept of oblique wing has been proposed by R.T. Jones in 1958 [4-6]. The
research results suggest that the aircraft with oblique wings can offer many
advantages at high transonic and low supersonic speeds. For example, the NSV

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 196–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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with an oblique wing (NSVOW) can change wing skew angle in accordance
with flight status and can achieve optimal aerodynamic efficiency in subsonic,
transonic and supersonic speeds in order to reduce the fuel consumption [7].
There are some literatures to address the concept of the oblique wing. However,
a few work has been reported for the NSVOW.

To tackle the unknown system uncertainty, neural networks (NNs) as the
universal function approximator have been widely used in the control system
design of uncertain nonlinear systems [8-10]. In this paper, the RBFNN is intro-
duced to approximate the unknown system uncertainty of the NSVOW. However,
the neural network approximation error and the time-varying external distur-
bance of the NSV need to be efficiently handled to achieve satisfactory control
performance. To improve the anti-disturbance ability of the NSVOW, the
disturbance-observer-based adaptive neural attitude control strategy needs to
be further investigated [11, 12]. Sliding mode disturbance observer (SMDO) has
been extensively studied due to without depending on complete knowledge of
the bounded disturbance mathematical model [13, 14]. In this paper, the sliding
mode disturbance observer is employed to estimate the compounded disturbance
and the adaptive neural control attitude control is designed using outputs of
disturbance observer and the RBFNN for the NSVOW.

This work is motivated by the adaptive neural attitude control for the NSVOW
with the unknown system uncertainty and the unknown time-varying external
disturbance. The organization of this paper is as follows. The problem statement
is given in Section 2. Section 3 describes the design of adaptive neural attitude
control for the NSVOW. Simulation studies are provided in Section 4 to demon-
strate the effectiveness of the adaptive neural attitude control approach of the
NSVOW, followed by some concluding remarks in Section 5.

2 Problem Statement

To design the adaptive neural attitude controller for the NSVOW, we firstly
consider the following general multi-input and multi-output nonlinear system:

ẋ = F (x) +ΔF (x) +G(x)u + d(t)

y = x (1)

where x ∈ Rn×1 and y ∈ Rn×1 are the system state and the system output,
respectively. F (x) ∈ Rn×1 and G(x) ∈ Rn×m are continuous function vector and
matrix, respectively. u ∈ Rm×1 is the system control input. ΔF (x) ∈ Rn×1 is
the system uncertainty and d(t) ∈ Rn×1 is the unknown external disturbance.

The system uncertainty ΔF (x) is approximated using the RBFNN which can
be expressed as

ΔF (x) = W ∗TS(x) + ε∗(x) (2)
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where W ∗ are the optimal weights and ε∗(x) is the smallest approximation
error. S(Z) = [s1(Z), s2(Z), . . . , sp(Z)]T ∈ Rp and the Gaussian radial basis
function is

si(x) = exp[−(x− ci)
T (x− ci)/b

2
i ], i = 1, 2, . . . , p (3)

where ci and bi are the center and width of the neural cell of the i-th hidden
layer.

Using the RBFNN to approximate the unknown system uncertainty ΔF (x)
and invoking (2), we have

ẋ = F (x) +W ∗TS(Z) + ε∗(Z) +G(x)u + d(t)

= F (x) +W ∗TS(Z) +G(x)u +D(t) (4)

where D(t) = ε∗(Z) + d(t) denotes the system compounded disturbance.
For the continuous desired attitude yd, the control objective is that the

adaptive neural attitude control u is proposed to ensure the tracking error
asymptotically convergent in the presence of system uncertainties and the time-
varying unknown external disturbances. To proceed the design of sliding mode
disturbance-observer-based adaptive neural attitude control for the uncertain
attitude dynamic of the NSVOW (4), the following assumption is required:

Assumption 1: There exists positive constants δi such that the system com-
pounded disturbance is bounded, i.e., |Di| ≤ δi, i = 1, 2, . . . , n where δi > 0.

3 Adaptive Neural Attitude Control Based on Sliding
Mode Observer

To develop the sliding mode disturbance observer based adaptive neural attitude
control, the tracking error is defined as

e = y − yd = x− yd (5)

Differentiating (5) and considering (4), we have

ė = F (x) +W ∗TS(Z) +G(x)u +D(t)− ẏd (6)

For the unknown compounded disturbance D(t) shown in (6), the sliding
mode disturbance observer is employed to estimate it. To design the sliding
mode disturbance observer, an auxiliary variable is proposed as

σ = z − e (7)

where σ = [σ1, . . . , σn]
T ∈ Rn×1 and z = [z1, . . . , zn]

T ∈ Rn×1.
The variable z is designed as

ż = −Λσ − Γ sign(σ) + ŴTS(Z) +G(x)u(t)− ẏd (8)
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where Λ = diag{Λi}n×n > 0 is a designed diagonal matrix, Γ = diag{δi +
|Fi|}n×n, sign(σ) = [sign(σ1), . . . , sign(σn)]

T and Fi is the ith element of F (x)
and i = 1, 2, . . . , n.

Utilizing the auxiliary variable σ, the disturbance estimate D̂ of the the sliding
mode disturbance observer is designed as

D̂ = −Λσ − Γ sign(σ)− F (x) (9)

Differentiating (7), and considering (6) and (8) yields

σ̇ = ż − ė = −Λσ − Γ sign(σ) + ŴTS(Z) +G(x)u(t)− ẏd

− (F (x) +W ∗TS(Z) +G(x)u +D(t)− ẏd)

= −Λσ − Γ sign(σ) − (F (x) +D(t)) + W̃TS(Z) (10)

where W̃ = Ŵ −W ∗.
Invoking (10) and the definition of the Γ , we obtain

σT σ̇ = −σTΛσ − σTΓ sign(σ) − σT (F (x) +D(t)) + σT W̃TS(Z)

≤ −σTΛσ −
n∑

i=1

Γi|σi|+
n∑

i=1

Γi|σi|+ σT W̃TS(Z)

= −σTΛσ + σT W̃TS(Z) (11)

Defining D̃ = D − D̂ and considering (6), (8) and (9), we have

D̃ = D − D̂

= ė− F (x) −G(x)u(t) −W ∗TS(Z) + ẏd − (−Λσ − Γ sign(σ)− F (x))

= ė− F (x) −G(x)u(t) −W ∗TS(Z) + ẏd

− (ż − F (x) −G(x)u(t) − ŴTS(Z) + ẏd)

= ė− ż + W̃TS(Z) = −σ̇ + W̃TS(Z) (12)

Using outputs of the RBFNN and the sliding mode disturbance observer, the
adaptive neural attitude control law is proposed as

u = −G†(Ke+ F (x) + ŴTS(Z) + D̂ − ẏd + τsign(e)) (13)

where G† = MG(x)T (G(x)MG(x)T )−1, K = KT > 0, τ = diag{|D̂i| + δi},
sign(e) = [sign(e1), . . . , sign(en)]

T and M is a design matrix.
Substituting (13) into (6) yields

ė = −Ke− ŴTS(Z) +W ∗TS(Z)− D̂(t) +D(t)− τsign(e)

= −Ke− W̃TS(Z) + D̃ − τsign(e) (14)

where D̃ = D − D̂.
Considering (10) and (12), (14) can be written as

ė = −Ke− W̃TS(Z)− D̂ +D(t)− τsign(e) (15)
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According to (15) and the definition of the τ , we have

eT ė = −eTKe− eT W̃TS(Z)− eT D̂ + eTD(t)− eT τsign(e)

≤ −eTKe− eT W̃TS(Z) (16)

The parameter updated law of θ̂i is designed as

˙̂
W i = γiS

T
i (x)(ei − σi) (17)

where γi > 0 is a design parameter.
Above analysis and design of the adaptive neural attitude control based on

the disturbance observer can be summarized in the following theorem.

Theorem 1. Considering the uncertain attitude dynamics (4) of the near-space
vehicle with oblique wing, the sliding mode disturbance observer is designed in
accordance with (7), (8) and (9). The updated law of the RBFNN is chosen as
(17). Based on outputs of the RBFNN and the sliding mode disturbance observer,
the adaptive neural attitude control law is proposed as (13). Then, the asymptot-
ical convergence of all closed-loop signals can be guaranteed under the designed
adaptive neural attitude control law.

Proof. Let the Lyapunov function candidate be

V =
1

2
σTσ +

1

2
eT e+

n∑
i=1

1

2γi
W̃ 2

i (18)

where W̃i = Ŵi −W ∗
i .

Invoking (11) and (16), the time derivative of V is given by

V̇ = σT σ̇ + eT ė+
n∑

i=1

1

γi
W̃i

˙̃W i

≤ −σTΛσ + σT W̃TS(Z)− eTKe− eT W̃TS(Z) +

n∑
i=1

1

γi
W̃i

˙̃W i (19)

Invoking the parameter updated law (17), we have

V̇ ≤ −σTΛσ − eTKe (20)

Form (20), we obtain that all signals of the closed-loop system are asymptoti-
cally convergent with t → ∞.

Remark 1. For developing the sliding mode disturbance observer to estimate
the system compounded disturbance, the bounded assumption of the system
compounded disturbance is needed. For the NSVOW, the neural network ap-
proximation error and the external disturbance are always bounded. Thus, the
Assumption 1 is reasonable.
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4 Simulation Example

In this section, we use the developed adaptive neural control scheme based
on sliding mode disturbance observer to design the attitude controller for the
NSVOW. Consider the attitude dynamics of the NSVOW with unknown system
uncertainty and the unknown external disturbance in the form of

ẋf = Ff (xf ) +ΔFf (xf ) +Gf (xf ) uf +Df

y1 = xf (21)

ẋs = Fs (xs1) +ΔFs (xs1) +Gs1 (xs1)us +Ds

y2 = xs (22)

where xf = [p, q, r]T , xs = [α, β, μ]T , xs1 = [V, γ, α, β, μ], uf = [δa, δe, δr, δy, δz],
xf = [T, V, γ, α, β, μ, p, q, r], xs2 = [p, q, r], us = [pc, qc, rc]. ΔFf and ΔFs are
system uncertainties.Df andDs are external disturbances. All definitions of vari-
ables and the detailed expressions of matrices Ff (xf ), Gf (xf ), Fs(xs1), Gs1(xs1)
and Gs2(xs1) can be founded in [1].

To illustrate the effectiveness of the developed adaptive neural attitude control
for the uncertain NSVOW (21) and (22), the sliding mode disturbance observer is
designed according to (7), (8) and (9). The updated law of the RBFNN is chosen
as (17). Using outputs of the RBFNN and the sliding mode disturbance observer,
the adaptive neural attitude law is proposed as (13). The initial conditions of
the attitude and the attitude angular velocity are arbitrarily chosen as α0 = 2◦,
β0 = 0◦, μ0 = 0◦ and p0 = q0 = r0 = 0 degree/s. We assume Ds = 0.2Df and
the unknown time-varying disturbance moments Df imposed on the NSV are
given by [1]
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Fig. 1. Attitude Angle Response of the NSVOW



202 M. Chen and Q. Wu

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

Time [s]

p
 [
D

e
g
re

e
/s

]

0 1 2 3 4 5 6 7 8 9 10
−5

0

5

Time [s]

q
 [
D

e
g
re

e
/s

]

0 1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

Time [s]

r 
[D

e
g
re

e
/s

]

Fig. 2. Attitude Angle Velocity Response of the NSVOW

Df1(t) = 180000(sin(6t) + 0.2))Nm

Df2(t) = 200000(sin(5t) + 0.25))Nm

Df3(t) = 200000(sin(6t) + 0.15))Nm

The attitude angle response and the attitude angle velocity response are given
in Fig.1 and Fig.2. In accordance with Fig.1 and Fig.2, we note that the tracking
performance is satisfactory and the tracking error converges to zero under the
developed neural attitude control for the uncertain NSVOW in the presence of
the time-varying external disturbance. Based on these simulation results, we can
obtain that the proposed disturbance-observer-based adaptive neural attitude
control is valid for the uncertain dynamics of the NSVOW with the time-varying
external disturbance and the unknown system uncertainty.

5 Conclusion

In this paper, the adaptive neural attitude control has been proposed for the
uncertain attitude dynamics of the NSVOW. To improve the disturbance at-
tenuation ability and attitude control robustness, the sliding mode disturbance
observer has been designed to estimate the compounded disturbance which com-
bines the external disturbance with the NN approximation error. Using outputs
of the RBFNN and the sliding mode disturbance observer, the adaptive attitude
control has been presented for the uncertain attitude dynamics of the NSVOW.
Simulation results have been presented to illustrate the effectiveness of the
proposed adaptive control scheme.
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Abstract. The paper presents the electromyogram (EMG)-based neural
network control of an upper-limb power-assist exoskeleton robot, which is
proposed to control the robot in accordance with the user’s motion inten-
tion. The upper limb rehabilitation exoskeleton is with high precision for
co-manipulation tasks of human and robot because of its backdrivabil-
ity, precise positioning capabilities, and zero backlash due to its harmonic
drive transmission (HDT). The novelty of this work is the development of
an adaptive neural network modeling and control approach to handle the
unknown parameters of the harmonic drive transmission in the robot to
facilitate motion control. We have conducted the experiments on human
subject to identify the various parameters of the harmonic drive system
combining sEMG information signals.

Keywords: Neural network control, sEMG, Harmonic Drive
Transmission.

1 Introduction

In several countries, the increasing aging population and the decreasing working
proportion has attracted much attention. In order to solve the problems asso-
ciated with elders, disabled and weak people, many kinds of robot-assisted ex-
oskeleton have been developed [1], [2]. The upper-limb robot-assisted exoskeleton
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has mainly focused on restoring arm functions to achieve many activities of daily
living (ADL) such as writing/typing, personal hygiene, with the use of devices
such as the MIT-MANUS [5], [3], the ARMguide [4], NeReBot[7] or the MIME
[6]. Numerous promising results has been yielded that illustrate the potential of
robots to complement traditional assist in physical rehabilitation. Moreover, it
is important for the robotic exoskeleton to be controlled in accordance with the
human bio-signal feedback. In order to activate the robot according to the user’s
motion intention in real time, the robot must to understand the motion intention
of the user [8]. In [9], the inverse model of the exoskeleton robot can be used
to derive the joint torques. For rehabilitation, designated motion is basically
generated with motion controller for the user before their motion.

The developed upper-limb robot-assisted rehabilitation is with high precision
for co-manipulation tasks between human and robot. However, the development
of an accurate dynamic model of the robot is extremely challenging because of
the compliance and oscillations inherent in harmonic drive systems. Modeling of
robot dynamics for the purpose of trajectory tracking using low-feedback gains
has been studied previously for industrial manipulators. The novelty of this work
is the development of rehabilitation robot and adaptive neural network modeling
the parameters of a harmonic drive transmission in the robot to facilitate motion
control. We have conducted the experiments on human body to identify the
various parameters of the harmonic drive system combining sEMG information
signals.

Fig. 1. Final version of exoskeleton

2 The Development of Upper Limb Exoskeleton

The developed robot follows the kinematic structure of the human upper limb
and spans the elbow and wrist joints ( see Fig. 1). It exhibits three degrees- of-
freedom corresponding to elbow flexion-extension, forearm pronation-supination,
and wrist flexion-extension, which is based upon the behavior of those physiolog-
ical joints as hinges. Articulation of the developed exoskeleton is achieved about
five single-axis revolute joints. The exoskeletal joints are labeled 1 through 5
from proximal to distal in the order.
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3 Boosting-Based EMG Patterns Classification

MCLPBoost is inherently of multi-class for the random decision tree. Combining
classifiers is a classic trick in pattern recognition field to make robust classifiers.
Data comes in records of form (X,Y ) = (x1, · · · , xn, Y ), where the dependent
variable, Y , is the target variable that we are trying to classify and the vector X
is composed of the input variables, x1, x2, x3 etc... A tree can be “learned” by
splitting the source set into subsets based on an attribute value test. The details
of train and prediction process are illustrated in Figs. 2 and 3, respectively.
Before training, we first get the feature vector of a sample, which is labeled
manually.

A Feature Vector
with Class Label

……

……

…
…

k11 k12

kN1 kN2

Linear
Programming

Weights

Fig. 2. The train process of MCLPBoost

A Feature Vector

…… ……
……

Prediction Confidence

w1 wN

Fig. 3. The prediction process of MCLP-
Boost

Then, each tree is updated by each sample k times, where k is generated
by Poisson distribution. Each tree is initialized as only one root node. A node
contains the label density of each class, denoted by p = {p1, · · · , pK}, where K
is the number of classes. As a result, the density set p will be separated into
two groups: pl = {pl1, · · · , plK} and pr = {pr1, · · · , prK}. In order to select the best

test, a measurement is given as Score = ml×
K∑
i=1

pli(1−pli)+mr ×
K∑
i=1

pri (1−pri ),

where Score represents the importance of the test inversely; ml and mr denote
the number of samples falling left and right respectively.

The linear programming problem in Fig. 2 is different from the original LP-
Boost algorithm for its ability of training online min

wt,ξ
C
∑
k �=y

ξk + ‖wt‖1, s.t. ∀n :

wt,n ≥ 0, ∀k �= y : ξk ≥ 0, ∀k �= y : (Gt(y, ·) − Gt(k, ·))wt + ξk ≥ 1, where
C is a designed parameter to limit the overfitting problem. In order to solve
the optimization problem, its augmented Lagrangian dual formulation can be
described in Eq. (3).

max
wt,d

n
y′
dny′ +

N∑
n=1

wt,n(1− dny′ΔGy′(n)− ζn)−
1

2θ

N∑
n=1

(1− dny′ΔGy′(n)− ζn)
2 (1)

s.t. ∀n : ζn ≥ 0, wt,n ≥ 0 (2)

0 ≤ dy′n ≤ C (3)

where ΔGy′(n) = G(y, n) − G(y′, n), dny′ is the sample weight corresponding
to the n-th weak learner which outputs the smallest margin on the non-target
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class y′, ζ is a new set of slack variables, and θ > 0 is a designed constant. In
an iterative way, when a new sample arrives, for the first weak learner, we just
assign a constant as its sample weight, but for training the n-th (n > 1) weak
learner, we compute dny′ by

qj = 1− dny′ΔGy′(j)− θwt,j (4)

f = dny′ + νd(1 +
1

θ

n−1∑
j=1,qj<0

qjΔGy′(j)) (5)

dny′ = max(0,min(C, f)) (6)

where qj and f are temporary variables for calculating dny′ , and νd is the dual
learning rate. Once the sample weight is obtained, we can calculate each weight
of the weak learners.

∀n : zn = wt,n − νp(1− dny′ΔGy′(j)) (7)

wt,n = max(0, zn) (8)

where zn is a temporary variable to calculate wt,n, νp is the learning rate for
the primal. In Eq. (8), it’s obvious that the weight of the weak learner, whose
margin ΔGy′(j)) is lager, will get a bigger weight.

In contrast to the classifier training process, the prediction (Fig. 3) is relatively
simpler. It can be summarized in the following equations.

pn(k|x) =
1

T

T∑
t=1

pt(k|x)p(k|x) =
1

N

N∑
n=1

wipn(k|x)O(x) = arg max
k

p(k|x) (9)

where T denotes the number of trees in a forest; pt and pn denote the confidence
of the output of a tree and a forest (i.e., one weak learner), respectively, p is the
confidence of final output, and O is the prediction.

4 Control Development

The MIMO nonlinear system dynamics can be described as

Y (r) = F (x) +G(x)U (10)

where F (x) and G(x) is unknown nonlinear function, U and Y is input and out-
put vectors. Assume that G(x) is a positive definite matrix, the desired position
is ydi(t) and its derivative of ηi order exists, thus define

ei(t) = ydi(t)− yi(t); (11)

Si(t) = (
d

dt
+ λi)

ηi−1ei(t), λi > 0; (12)
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and if Si(t) → 0, then we also have ei(t) → 0. According to Newton’s binomial
theorem, we can decompose Ṡi and get

Ṡ = ζ − F (x)−G(x)u; (13)

u = G−1(x)(−F (x) + ζ +K0S); (14)

where ζ = yridi
+

ri−1∑
j=1

(ri−1)!
(ri−j)!(j−1)!e

(j)
i (t)λri−j

i and K0 = diag[k01, k02, . . . , k0p],

k0i > 0. Substitute Eq.(13) with Eq.(14) we get Ṡ(t) = −K0S(t). The solu-
tion of the differential equation is si(t) = si(0)e

−k0it, with t → ∞, si(t) → 0.
If we known the nonlinear function F (x) and G(x), we can get the control
output u easily; If not, we can design a fuzzy function to approach the two
functions as y(x) = ξT (x)Θ; where Θ = [θ1, . . . , θM ]T is parameters vector,
ξ(x) = [ξ1(x), . . . , ξM (x)], and

ξl(x) =

n∏
i=1

μF l
i
(xi)

M∑
l=1

(
n∏

i=1

μF l
i
(xi))

(15)

The output of the system y(x) converges gradually to the unknown nonlinear
function fi(x) and gij(x). θfi and θgij are the corresponding adaptive regulator
parameters. Define the optimal approximation parameters as θ∗fi and θ∗gij . Then

we design the F̂ (x, θf ) and Ĝ(x, θg) to substitute the F (x) and G(x).
The adaptive control law Θ of the corresponding fuzzy system can be defined

as follows

Θ̇fi = −ηfiξfi(x)si; (16)

θ̇gij = −ηgij ξgij (x)siucj; (17)

where ηfi > 0, ηgij > 0. Then we substitute F̂ (x, θf ) and Ĝ(x, θg) into Eq.(14);
we have the control equation as

uc = Ĝ−1(x)(−F̂ (x) + ζ +K0S); (18)

To ensure the Ĝ(x, θg) is nonsingular, we substitute it with a generalized inverse

χ = ĜT (x, θg)[τ0Ip + Ĝ(x, θg)Ĝ
T (x, θg)]

−1; where τ0 is a small positive real
number randomly, Ip is a unit matrix; Thus, the control input can be expressed
as Eq.(19) and the control development is done.

uc = χ(−F̂ (x) + ζ +K0S); (19)

To reduce the modeling errors, we take robust control ur. Thus u = uc + ur.

Where ur =
s|sT |(ε̄f+ε̄g |uc|+|u0|)

σ0‖s‖2+δ ; u0 = ε0[ε0Ip+Ĝ(x, θg)Ĝ
T (x, θg)]

−1(−F̂ (x, θf )+

ζ +K0s); and the δ is a time-variable parameter.

δ̇ = −η0
|sT |(ε̄f + ε̄g|uc|+ |u0|)

σ0‖s‖2 + δ
; (20)

where η0 > 0, δ(0) > 0.
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5 Experiments

In this section, the human limb itself, can be used as control interface for the
exoskeletons. EMG signals correspond to muscle activity when the muscle con-
tracts. We can obtain sEMG signal from the sEMG sensor system which is fixed
with signal amplifier. The amplifier could receive 8 channel of sEMG signal at
the same time. The recorded sEMG signal of the wrist and elbow joint has been
pre-processde (e.g. amplification, filtering) and post-processed (e.g. smoothing).

5.1 Data Processing

The process of data processing in our experiment can be divided into three
phases: feature extraction, feature reduction and classification. In our experi-
ment, the data collected stored in the file folder of Record are used as training
data and the data collected online are used as test data. And the classification
result consists of three states which was labeled as 0, 1, 2 in the experiment. And
it’s can be concluded that all emg signals recorded in the procedure have been
classified correctly (see Fig. 4 and 5). Then we use the generated classification
to determine the motion of the corresponding motor. In the paper, the desired
trajectory is set qd = A ∗ (1 − cos t) when the muscle of corresponding joint
flexion flex and qd = −A ∗ (1 − cos t) when it extent, where qd is the desired
trajectory, A is the positive amplitude of the trajectory. The experiment results
using the neural network control are shown in Figs. 6–9. The trajectories of the
weights Θ are listed in Figs.11–13. For comparison, the experiments using PD
control are shown in Figs. 14–17. From these comparison, we can see the neural
network is with good performance.
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Fig. 6. The tracking of upward wrist
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Fig. 7. The tracking of upward elbow
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Fig. 8. The tracking of downward wrist
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Fig. 9. The tracking of downward elbow
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Fig. 10. The weights Θ of upward wrist
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Fig. 11. The weights Θ of upward elbow
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Fig. 12. The weights Θ of downward wrist
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Fig. 13. The weights Θ of downward
elbow
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Fig. 14. The PD tracking of upward wrist
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Fig. 15. The PD tracking of upward
elbow
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Fig. 16. The PD tracking of downward
wrist
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Fig. 17. The PD tracking of downward
elbow

6 Conclusions

In this paper, the electromyogram (EMG)-based neural network control of an
upper-limb power-assist exoskeleton robot has been developed. The develop-
ment of an adaptive neural network modeling and control approach to handle
the unknown parameters of the harmonic drive transmission in the robot to fa-
cilitate motion control. We have conducted the experiments on human subject to
identify the various parameters of the harmonic drive system combining sEMG
information signals.
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Abstract. Based on the backstepping method and the neural networks (NNs) 
technique, a direct adaptive controller is proposed for a class of nonlinear fin 
stabilizer system in this paper. This approach overcomes the uncertainty in the 
nonlinear fin stabilizer system and solves the problems of mismatch and  
controller singularity. The stability analysis shows that all the signals of the 
closed-loop system are uniformly ultimate boundedness (UUB). A simulation 
example is given to illustrate the effectiveness of the proposed method. 

Keywords: fin stabilizer, direct adaptive control, neural networks,  
backstepping. 

1 Introduction 

It is one of the dangerous phenomenon that ship rolls in moderate and rough beam 
seas with large amplitude rolling motion. This will reduce the comfort and safety of 
the voyage. So, how to reduce the rolling motion of ship has been a hotspot in the ship 
control area. In the past few decades, various devices were applied to reduce the large 
amplitude rolling motion of ship such as bilge keels, antiroll tanks, etc. Due to the 
limited effectiveness of these devices, the fin stabilizer became the popular device in 
use [1]. Numerous studies on ship stabilization by using fin controllers have been 
conducted since 1940s. For example, Allan [2] investigated the required moment 
against the upsetting moment of regular sea with model fin tests. The effectiveness of 
active stabilizers in the two trial ships was developed theoretically with reasonable 
accuracy by Conolly [3]. For the purpose of further improving the effectiveness of fin 
stabilizer which mainly depends on the control strategy, many researches were carried 
out. In [4], the conventional PID controller was extended to the nonlinear constrained 
optimization. By using this technique, the optimal PID could match the classical PID 
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in the low frequency (LF) ranges, and in the high frequency (HF) ranges it was able to 
substantially reduce the HF peak. However, the PID controller based on the linear 
model was difficult to control the rolling motion caused by the nonlinear dynamic in 
rough sea. In [5], based on the backstepping and the closed-loop gain shaping algo-
rithms a nonlinear robust controller was proposed, which solved the problems of 
mismatch of the system and nonlinearity of external disturbances. Nevertheless, the 
methods mentioned above could not avoid the model uncertainties of the system. 

Recently, neural networks(NNs) have received considerable attention for its ap-
proximation ability in ship control area. NNs were used to track the parametric per-
turbation in the functions of fin stabilizer system and showed good results in [6-8]. 
Recently, Hassan [9] presented a controller combined neural network and PID control 
for roll control of ship with small draught. These methods mentioned above overcame 
the effects of parameter perturbations on the fin stabilizer system. In addition, an indi-
rect adaptive backstepping based radial basis function (RBF) neural network method 
was proposed without building accurate mathematical model in [10], where the sys-
tem can obtain better anti-rolling effectiveness and robustness by using the control 
strategy, but it suffered from a potential risk of controller singularity.  

Motivated by the above observations, a direct adaptive NN controller for uncertain 
nonlinear fin stabilizer system is proposed in this paper by combining adaptive back-
stepping design method with NN control design framework. This method overcomes 
the problems of mismatch and controller singularity, and at the same time, avoids the 
model uncertainties in the fin stabilizer system. 

The rest of this paper is organized as follows. In section 2, the nonlinear model of 
the fin stabilizer and radial basic function neural network are introduced. The control-
ler design and stability analysis are presented in section 3. In section 4, simulation 
results are used to illustrate our approach. The conclusions are included in section 5. 

2 Problem Formulation 

2.1 Fin Stabilize Model 

The nonlinear model of the fin stabilizer 

 2( ) 1 ( / )xx xx N W v c WI J Wh M Mφ δ φ δ φ φ φ φ φ + + + + − = + 
     (1) 

where φ   is rolling angle of ship, xxI  and xxJ  are the inertia moments and the 

added inertia moments of the own ship, w,δδ N  are the damping factors, W is the 

tonnage of ship, h is initial metacentric height, vϕ  is flooding angle, cM  is control 

moment of the fin stabilizer, wM is the moment of sea wave act on ship. xxI  , xxJ  , 

w,δδ N  and cM  can be denoted 
2
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where g  is gravity acceleration, B  is the width of ship, L  is length between tow-

column of ship, d  is draught, 21,cc  are test coefficient, ρ  is the fluid density, v 

is the ship speed, fA  is the area of fin, fl  is the acting force arm of fin stabilizer, 

LCα  is the lift coefficient of fin stabilizer, fα  is the rotation angle of fin stabilizer. 

Then 

 Wf fbaaaa +++++= αϕϕϕϕϕϕ  43
3

21  (2) 

where 1a , 2a , 3a , 4a , b  are coefficients, Wf  is the disturbance of sea wave. 

2.2 The State Space Model of Fin Stabilizer 

Choosing [ ] [ ]TTxxx ϕϕ ,, 21 == as the state variable, 1xy == ϕ as the output variable, 

fu α=  as the input. We consider the uncertainties of the fin system, formula (2) can 

be transformed into the state space model as follows: 
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where )( 22 xf , )( 22 xg are the unknown functions, d  denotes the external distur-

bances. 
For the development of the control laws, the following assumptions are made. 

Assumption 1. )(2 ⋅g is unknown nonlinear smooth function. The signs of )(2 ⋅g is 

known, and there exist constants 02021 >> gg such that 20221 )( ggg >⋅> , 
n

i Rx ⊂Ω∈∀ . And there exist constants 02 >dg  such that idi gg ≤⋅)( , 
n

i Rx ⊂Ω∈∀ . So )(⋅ig are strictly either positive or negative. Without losing gene-

rality, we assume 0)( 202221 >>> gxgg , n
i Rx ⊂Ω∈∀ . 

Assumption 2. The disturbance d  has an upper bound, that is, there exists an un-
known constant ,0>ω which satisfies ω≤d . 

The following lemma is helpful to prove stability, we will use it later. 

Lemma 1. If ）（ xtV ,  is positive definite, and 21 kVkV +−≤ , where ,01 ≥k  

02 ≥k  are bounded constant, then 

tke
k

k
V

k

k
xtV 1

1

2

1

2 )0(, −








−+≤）（  



Neural Network Based Direct Adaptive Backstepping Method for Fin Stabilizer System 215 

2.3 RBF Neural Network 

RBF neural networks belong to a class of linearly parameterized networks. For com-
prehensive treatment of neural networks approximation, see [11]. RBF neural net-

works can be described as )(zSwT with input vector nRz ∈ , weight vector lRw∈ , 

node number l , and basis function vector lRzS ∈)( . Universal approximation results 

indicate that, if l  is chosen sufficiently large, then )(zSwT  can approximate any 

continuous function to any desired accuracy over a compact set. In this paper, we use 

the following RBF neural networks to approximate a smooth function RRzh q →:)( , 

 )()( zSwzh T
nn =  

where the input vector nRz ∈Ω∈ , weight vector lT
l Rwwww ∈= ],...,,[ 21 , the neural 

network node number 1>l , and T
l zszszszS )](),...,(),([)( 21= , with )(zsi  

being cho-

sen as the commonly used Gaussian functions, which have the form 

li
zz

zs
i

i
T

i
i ,...,2,1],

)()(
exp[)(

2
=−−−=

η
μμ

; where T
iniii ],...,,[ 21 μμμμ = is the center 

of the receptive field and iη  is the width of the Gaussian functions. 

It is well known that for an unknown continuous nonlinear function )(xf , by using 

RBF NNs approximation over the compact sets Ω, one can obtain 

 nT RxxSwxf ⊆Ω∈∀+= .)()( * ε  

Where )(xS is the basis function vector, ε  is the approximation error, which has an 

unknown upper bound *ε , and *w is an unknown ideal constant weight vector. 

The ideal weight vector *w is an "artificial" quantity required only for analytical 

purposes. Typically, *w is chosen as the value of w that minimizes ε
 

for all 

Ω∈x , where nR⊆Ω  is a compact set, i.e., 

 






 −=

Ω∈∈
)()(supminarg:* xSwxfw T

xRw n
 

3 Controller Design and Stability Analysis 

Step1.Consider the first equation of the system (3), define the error variable 11 xz = , 

and choose the intermediate stabilizing function 2α  as a virtual control law for  

the first subsystem. At the same time, define error variable 222 α−= xz , the time 

derivative of 1z  is  
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 221 α+= zz  (4) 

The virtual control law is chosen as 

 112 zc−=α  (5) 

where 01 >c , substituting(5) into (4), we obtain 

 2111 zzcz +−=  (6) 

Consider the Lyapunov function candidate 2
11 2

1
zV =  and the derivative of 1V  is 

 21
2
111 zzzcV +−=  (7) 

Step2. Define 222 α−= xz , and differentiate 2z with respect to time yields 

 2 2 2 2 2 2( ) ( )z g x u f x d α= + + −   (8) 

Since )( 22 xf  and )( 22 xg  are unknown, 2α  is in fact an unknown scalar nonli-

near function. Now, define )( 22 xh  and constructing an RBF neural network 

)( 22
*
2 x

T
ξθ  to approximate )( 22 xh  as follows 

 *
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*
2222

22
22 )())((
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)( δξθα +=−+=

Δ
xdxf
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T  (9) 

where *
2θ  denotes the ideal constant weights, and *

2δ  is the approximation error 

with constant 0*
2 >δ . Then, (8) becomes 

( )* *
2 2 2 2 2 2 2( ) ( )Tz g x u xθ ξ δ= + +        (10) 

Choosing the control law as 

 )(ˆ
22222 xzcu Tξθ−−=  (11) 

where 2θ̂ is the parameter estimate of *
2θ , Let *

222
ˆ~ θθθ −=  be the parameter error. 

Then, we have 

 ))(
~

)(( *
222222222 δξθ +−−= xzcxgz T  (12) 

Consider the following Lyapunov function candidate 
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where 022 >Γ=Γ T is an adaptation gain matrix. The derivative of 2V is 

 2
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zzzcVV

 +Γ−Γ++−= − ξθθδ  (14) 

Consider the following adaptation law: 

 )ˆ(ˆ
222222 θσξθ −Γ= z


 (15) 

where 02 >σ is a small constant. By using (7), (12) and (15), the derivative of 2V  

becomes 
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Mentioning the facts 
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Note that ))(2)(())(2)(( 2
2
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choose 2c  such that ( ) ( )* 2
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2 , we can get Dee MMimi ==+≤ 22 )2/()4/1( θσδ . Then 
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let 
211
C
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)(2 22

21 xg

C
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1
max 22 ( ) 2

Cσ
λ − =

Γ
, where 0>C  is a bound constant 

which satisfies 1
2 max 2( )Cσ λ −≥ Γ . Then, it follows 

 2 2V CV D≤ − +  (19) 
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Obviously, the Equation (19) means that )(2 tV  is bounded (please refer to [12] for 

details) according to the assumptions and lemma 1. So, it is clear that the bounded 
stability of the closed-loop system(3) is guaranteed, and the tracking error can be 
made arbitrarily small by appropriate selections of the design parameters[12]. 

4 Simulation Research 

The simulation is based on a container ship, the parameters of the ship, such as, the 
length is 175m, the width of ship is 25.4m, draught is 8.5m, tonnage 21120t, the area 

of fin is 20.2 2m , the acting force arm of fin stabilizer is 14.88m, flooding angle is 

43  , initial metacentric height is 1m, designed speed is 7.71m/s. the lift coefficient of 
fin stabilizer is 3.39. 

In simulation, the RBF NNs contains 135nodes, with centers evenly spaced 
in [ ] [ ]4444 ×−××− and widths )251(2 == iiη and )1351(2 == jjη . We choose 

the control system parameters: 31 =c , 52 =c , { }2.02 dig=Γ , 2.02 =σ , the distur-

bance is )5.0sin(*35.0 td = . Simulation results in Figure.1-2 illustrate the control 

performance of the proposed scheme. 

  

Fig. 1. Ship rolling angle                   Fig. 2. The fin angle 

5 Conclusions 

In this paper, a neural network-based direct adaptive control scheme is proposed for 
uncertain nonlinear fin stabilizer system. The proposed scheme can solve the prob-
lems of mismatch and controller singularity without building accurate mathematical 
model, and can obtain better anti-rolling effectiveness and robustness. All the signals 
in the closed loop of the nonlinear fin stabilizer system are guaranteed to be UUB in 
the sense of Lyapunov stability, and the tracking error can be made arbitrarily small 
by adjusting the parameters in the control law. The simulation shows that good track-
ing performance can be obtained by the proposed approach. 
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Abstract. In this paper, output feedback direct adaptive robust NN control is 
investigated for a class of nonlinear discrete-time systems in strict-feedback 
form. To construct output feedback control, the original strict-feedback system 
is transformed into a cascade form, which the output feedback of the nonlinear 
discrete-time system can be carried out. Then with employment of the inputs 
and outputs, the output feedback direct adaptive robust NN control is devel-
oped. The HONNs is exploited to approximate unknown function, and a stable 
adaptive NN controller is synthesized. The proposed algorithm improves the 
rubostness of the discrete-time nonlinear systems. It is proven that all the  
signals in closed-loop system are uniformly ultimately bounded (UUB). A  
simulation example is presented to illustrate the effectiveness of the proposed 
algorithm. 

Keywords: output feedback, rubostness, direct adaptive NN control,  
discrete-time nonlinear system. 

1 Introduction 

The last decade has witnessed an ever increasing research in adaptive neural network 
(NN) control, since the NNs have been proven to be particularly useful for controlling 
nonlinear systems with nonlinearly parameterized uncertainties owing to their univer-
sal approximation property [1]. In general, NNs are used as function approximators to 
approximate some suitable uncertainties appearing in controllers or systems. Through 
years of progress, much significant development has been achieved in continuous-
time nonlinear systems in strict-feedback form [2-9] via backstepping technology. For 
example, adaptive NN control via backstepping design was presented for a class of 
minimun phase nonlinear systems with known relative degree in [2]. and the dynamic 
surface control (DSC) technique was employed to simplify the the backstepping  

                                                           
*  This work was supported in part by the National Natural Science Foundation of China (Nos.5 

1179019, 61001090), the Natural Science Foundation of Liaoning Province (No.20102012), 
the Program for Liaoning Excellent Talents in University of (LNET)(Grant No.LR2012016) 
and the Applied Basic Research Program of Ministry Transport of China. 



 Output Feedback Adaptive Robust NN Control 221 

 

design for nonlinear systems in strict-feedback form by overcoming the problem of 
“explos-ion of complexity”  in [7]. 

Comparing to the nonlinear continuous-time systems indicated in the above men-
tioned papers, adaptive control is less developed for nonlinear discrete-time systems. 
The reason lies in that the linearity property of the derivative of a Lyapunov function 
in continuous-time is not persent in the difference of Lyapunov function in the dis-
crete-time [10]. As a consequence, many elegant control schemes for continuous-time 
systems may be not suitable for discrete-time systems. However, there are still consi-
derable advances in adaptive NN control for discrete-time systems, for example, see 
[11-14] and the references therein. To solve the noncausal problem, the approach that 
“looks ahead” was proposed in [11] for parameter strict-feedback discrete-time sys-
tems. In [12], adaptive NN backstepping design has been applied to the transformed 
strict-feedback discrete-time systems without noncausal problem. The result has also 
been extended to multi-input and multi-output (MIMO) systems in [14]. 

In the adaptive control domain, robustness has been an active topic of research in 
nonlinear systems. To enhance the robustness of the adaptive control system, the 
bound on approximation error will be estimated and the estimation can be adjusted in 
[15-17]. However, it is difficult to apply these results to control the discrete-time sys-
tems due to the noncausal problem. Very recently, in [18], a novel states-feedback 
robust NN algorithem was proposed to solve the obstacle of the application for ro-
bustness in discrete-time nonlinear systems. However, the control scheme becomes 
infeasible when some system states are unmeasurable. For such problems, several 
output feedback control schemes in discrete-time were developed by using the back-
stepping design in [19-23]. For example, the output feedback control for multiple-
input-multiple-output (MIMO) was successfully proposed in [19], and then the ideas 
was applied to MIMO systems with unknown control directions [20]. For pure-
feedback systems, the discrete-time system was transformed into an input-output pre-
dictor model by investigating the relationship between outputs and states, then the 
output feedback control was studied in [21-22], Similarly to above schemes, the out-
put feedback controller for NARMAX systems was also investigated in [23]. Then a 
novel observer output feedback for non-strict feedback systems was developed in 
[24], where the observer can estimate the states with a small bounded error by using 
the measured output.  

In this paper, we will study the output feedback direct adaptive robust NN control 
for a class of discrete-time nonlinear systems. Based on the previous research and 
study, the adaptive robust NN controller is proposed for output feedback discrete-time 
nonlinear systems, which marge the adaptive robust algorithm and adaptive neural 
network algorithm directly in the control law. By only utilizing the measurement of 
inputs and outputs, the output feedback adaptive control is relatively easy to imple-
ment and the controller structure is simple. During the controller design process, the 
HONNs are used to approximate the unknown nonlinear functions. All the signals in 
the closed-loop system are guaranteed to be UUB and the system output can track the 
reference signal within a bounded compact set. A simulation example is utilized to 
show the effectiveness of the proposed approach. 
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2 Problem Formulation and Preliminaries 

2.1 System Description 

Consider the following single-input-single-output (SISO) discrete-time nonlinear 
systems in the strict-feedback form: 
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      (1) 

where iT
ii Rkkkk ∈= )](,),(),([)( 21 ξξξξ  , ni ,,2,1 = , Rku ∈)(  and 

Ryk ∈  are the state variables, system input and output respectively; ))(( kf ii ξ  

and ))(( kg ii ξ , ni ,,2,1 =  are unknow smooth functions. 

The control objective is to design an adaptive robust NN controller for the system 

and the output ky  follows the desired reference signal )(kyd  within a small com-

pact set, where 0,)( >∀Ω∈ kky yd  is smooth and known bounded function with 

}{: 1ξχχ ==Ω y . 

Assumption 1. the signal of ))(( kg ii ξ , ni ,,2,1 =  are known and there exist 

constants 0>ig  and 0>ig  such that 
iiii gkgg ≤≤ ))((ξ , n

n Rk ⊂Ω∈∀ )(ξ . 

3 Output Feedback Adaptive Robust NN Controller Design 

If we consider the original system description as an one-step ahead predictor, we can 
transform the one-step ahead predictor into an equivalent maximum n -step ahead 
predictor, which can predict the future states )(1 nk +ξ , )1(2 −+ nkξ ,  , 

)1( +knξ ; then, the causality contradiction is avoided when the controller is con-

structed based on the maximum n -step ahead prediction [12]. The original system is 
transformed into the following form: 

knnk ukzgkzfkxy ))(())(()1( 00 +=+=+                  (2) 

where ),))]((,)),((),(([))((:))(( 2100
T

n kzkzkxfkzFkzf ψψ ==  

).))]((,)),((),(([))((:))(( 2100
T

n kzkzkxgkzGkzg ψψ ==  

Defining )()( kyyke dky −= , then the tracking error dynamics can given by: 

kdy ukzgkzfnkynke ))(())(()()( 00 +++−=+             (3) 
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This paper uses HONNs to approximate the known functions in (1). Supposing that 

the nonlinear function ))((0 kzf  and ))((0 kzg  are known exactly, we present a 

desired control ∗
ku , such that the output ky  follows the desired trajectory )(kyd  

in deadbeat step:    

))())(((
))((

1
0

0

nkykzf
kzg

u dk +−−=∗                (4) 

Substituting the desired control ∗
ku  into error dynamics equation (3), we obtain 

0)( =+ nkey . This means that after n steps, we have 0)( =key . Therefore, ∗
ku  

is a n -step deadbeat control. Accordingly, the desired control ∗
ku  can be expressed 

as   n
z

T
d

T
k Rnkykzkzkzuu 2)](),([)()),(( ⊂Ω∈+== ∗∗ .  

where  { }ydyukdkz ykykuyuky Ω∈Ω∈Ω∈=Ω −− ,)(,)(),),(( 11  

Since ))((0 kzf  and ))((0 kzg  are unknown, they are not available for construct-

ing control ∗
ku . However, ))((0 kzf  and ))((0 kzg  are function of )(kz , there-

fore, we can use HONN to approximate ∗
ku  as follows: 

zz
T zkzSkWzu Ω∈∀+= ∗∗ ,))(()()( ε                   (5) 

where zε  is the NN estimation error satisfying 0εε <z . )(ˆ),(ˆ kkW δ  denote the 

estimation of ∗W , δ .  Let )()(ˆ)(
~

kWkWkW ∗−= ,  δδδ −= )(ˆ)(
~

kk . 

If we choose the direct adaptive control law as follows 

)(ˆ))(()(ˆ kkzSkWu δ+=                           (6) 

and the updating law as follows 

)](ˆ)1([)(ˆ)1(ˆ

)](ˆ)1())(([)(ˆ)1(ˆ

kkeBkk

kWkekzSkWkW

y

y

δβδδ

σ

++−=+

++Γ−=+
                (7) 

Substituting (4), (5) and (6) into (3), we have  

])(ˆ))(()(
~

))[(()( 0 z
T

y kkzSkWkzgnke εδ −+=+             (8) 

Choose the following Lyapunov function candidate: 


−

=

−
−

=

− +++Γ++=
1

0

21
1

0

12 )(
~

)(
~

)(
~

)(
1

)(
n

j

n

j

T
y jkBjkWjkWke

g
kV δ     (9) 
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Based on the fact that z
yT k

kzg

ke
kzSkW εδ +−

+
= )(ˆ

))((

)1(
))(()(

~

0

. 

The difference of (9) along (7) and (8) is given: 

)(
~

)(
~

)1(
~

)1(
~

)]()1([
1 1122 kWkWkWkWkeke
g

V TT
yy

−− Γ−+Γ++−+=Δ  

)1()(ˆ)(
~
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T
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δδβδσ
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)(ˆ)1()(ˆ2 22 kBkekB y δβδβ +++  

Using the fact that: 

2
22

2
2

)(ˆ)1()1())(())(ˆ(2
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lkzSkzSlkzSkzS

yy
T

z
yyz

TT

γσγσ

γ
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we obtain  

θδββ

ωγσγσσρ

+−−−

+−−−−+−≤Δ

)(
1

)(ˆ)21(

)1(
2

)(ˆ)1()1(
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2

1

2
2
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ke
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    (10) 

where lgl γγγρ 2221 −−−= , gBB 421 −−=ω , and 

γ
εσβδδθ zg

kW
B

g +++= ∗ 222 )(  
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In (10), if we choose the design parameters to satisfy  

lgl 222

1

++
<γ ,

g
B

42

1

+
< ,

γγ
σ

g+
< 1

,
B2

1<β           (11) 

then it is obvious that 0<ΔV once θgkey >)( . This implies the boundedness 

of )(kV  for all 0≥k , which leads to the boundedness of )(key . Furthermore, 

the tracking error )(key will asymptotically converge to the compact set denoted by 

βε g≤ . Due to negativity of VΔ , we can conclude that yky Ω∈+1  if all past 

outputs 1,,0, −=Ω∈− njy yjk   and compact set ε  is small enough. 

We can use the same techniques as in [17] to show that the NN weight error stays 

in a small compact set weΩ , and ∞∈ Luk . Finally, if we initialize state 

00 yy Ω∈ , 0)0(
~

wW Ω∈ , and we choose suitable parameters γ , σ  according to 

(11) to make ε  small enough, there exists a contant ∗k  such that all tracking errors 

asymptotically converges to weΩ  for all ∗> kk . This implies that the closed-loop 

system is UUB [12]. Then yky Ω∈ and ∞∈ LkW )(ˆ will hold for all 0>k . 

4 Simulation 

To demonstrate the effectiveness of the proposed schemes, consider the following 
nonlinear discrete-time SISO plant described by [18]: 









=
+=+

+=+
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)())(()1(

)(3.0))(()1(

1

222

2111

ky

kukfk

kkfk

k ξ
ξξ

ξξξ
                     (12) 

where 
)(1

)(4.1
))((

2
1

2
1

11 k

k
kf

ξ
ξξ

+
=  and 

)()(1

)(
))((

2
2

2
1

1
2 kk

k
kf

ξξ
ξξ

++
= . It can be 

checked that Assumption 1 is satisfied. The tracking objective is to make the output 

ky  following a desired reference signal . 

The initial condition for system states is Tx ]0,7.0[)0( = , and the initial condi-

tions of the adaptive laws are 0)0(ˆ =W , 0)0(ˆ =δ . Other controller parameters are 

chosen as 29=l , I08.0=Γ , 4.0=B . The simulation results are presented in 
Fig.1, 2, 3 and 4.  
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Fig. 1. The output y and the reference signal dy      Fig. 2. The input of the controller u  

 
     Fig. 3. The tracking error dk yy −     Fig. 4. The trajectories of )(ˆ kW  and )(ˆ kδ  

5 Conclusion 

By using the approximation property of the neurel network, we have proposed a output 
feedback robust adaptive control scheme for a class of nonlinear discrete-time systems. 
The proposed direct adaptive robust NN control guarantees the boundedness of all the 
closed-loop signals and achieves perfect asymptotocal tracking performance. A simula-
tion example was used to demonstrate the feasibility of the proposed controller. 
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Robust Fin Control for Ship Roll Stabilization 
by Using Functional-Link Neural Networks 
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Abstract. To reduce the roll of a surface ship, a robust fin controller based on 
functional-link neural networks is proposed. The plant consists of the ship roll 
dynamics and that of the fin actuators. Modeling errors and the environmental 
disturbance induced by waves are considered in the cascaded roll system, which 
are identified by the neural networks. Lyapunov function is employed in the 
controller design, which guarantees the stability of the fin stabilizer. Numerical 
simulation demonstrates the good performance of the roll reduction based on 
the controller proposed. 

Keywords: Surface ship, roll reduction, fin stabilizer, functional-link neural 
networks, uncertainties. 

1 Introduction 

The ship motion is usually characterized by nonlinearity, large inertia, and time-delay. 
In addition, some unpredictable environmental disturbance might exert an influence 
on a moving ship, which includes wind, waves, current and obstacles such as the other 
ships, bridge piers, banks and floating or fixed offshore platforms. The nonlinearities 
and uncertainties in the system of ship dynamics make it challenging to achieve a 
robust and accurate control system, especially for the uncertainties. Generally, it is 
difficult to describe these uncertainties in accurate mathematical forms, which usually 
refer to parameter errors (e.g. the hydrodynamic derivative errors), ignored high-order 
modes (e.g. hydrodynamic forces or moments more than third-order), unmodelled 
dynamics (e.g. thrust and torque losses), and external disturbances (e.g. environmental 
forces and moments). Simple control strategies such as PID control and feedback 
linearization control can no longer satisfy the requirements of robustness and 
accuracy. During last decades, many advanced robust control schemes have been 
developed for ship control. For example, the sliding mode variable structure method 
was proposed to the nonlinear ship steering [1] and course-keeping control [2]. The 
parameter adaptive control was adopted in the trajectory tracking [3] and dynamic 
positioning of surface ships [4]. The H-infinity robust control strategy was proposed 
for the rudder roll controller [5] and dynamic ship positioning [6]. The fuzzy control 
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was adopted in the ship steering [7] and track-keeping [8]. The Line-of-sight based 
approach was proposed to the path-following control for surface ships [9],[10]. The 
generalized model predictive control was proposed for the path following of 
underactuated ships [11]. Artificial neural networks (ANN) were proposed to the roll 
stabilization [12] and autopilot of an autonomous surface vessel [13], etc. Among 
these control strategies, ANN technique presents a distinctive way to deal with the 
uncertainties in a ship motion model. First of all, it has the minimum requirement of 
mathematical model. The dynamics of ship motion can be described by a simple 
model. Secondly, owing to the excellent learning and nonlinear mapping abilities of 
ANN, uncertainties can be identified and compensated. The precision and robustness 
of controller can be guaranteed. 

Backpropagation neural networks (BPNN) and gradient descended algorithm are in 
common use when ANN is applied to the ship control. Such an ANN structure is 
time-consuming and the solution is apt to be a local optimal one. This paper proposes 
an on-line feedforward functional-link neural network (FLNN) to obtain a robust fin 
stabilizer for surface ship roll motion. Uncertainties in the ship motion dynamics are 
identified by FLNN. The characteristics of fin actuator are also considered for the 
sake of reasonable application of control force. To guarantee the stability, Lyapunov 
function is introduced in controller design. 

2 Problem Formulations 

During last decades, ship roll stabilization has been increasingly paid attention to in 
consideration of cargo safety, the effectiveness of the crew, and the passenger 
comfort. Usually, four measures for roll reduction are available, including bilge keels, 
anti-rolling tanks, passive and active fin stabilizer, and rudder-roll stabilization [3]. 
For high speed vessels, the fin stabilizer has been proved as effective way to reduce 
the roll motion. 

2.1 Ship Roll Dynamics 

Without loss of generality, a second-order roll equation with an active fin moment 
and wave induced moment is considered 

 1 2( ) ( , ) ( ) ,− + + = +x p w fI K f f M M
 φ φ φ φ  (1) 

where xI  is the inertia moment, pK−   the added inertia moment, φ  the roll angle, 

1( , )f φ φ  the damping moment, 2 ( )f φ  the restoring moment [14], wM  the wave 

induced moment. fM  the active fin moment, which can be expressed as  

 2 ,f f f LM U A l Cρ α= −  (2) 

where ρ is the water density, U  the ship speed, fA  the fin area, fl  the length of 

chord, LC the lift coefficient, α  the fin angle [15]. 
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Taking uncertainties into account, the equation (1) can be written as 

 1 2 1( ) ( , ) ( ) ( , , ) ,x p wI K f f M Kαφ φ φ φ Δ φ φ α α− + + + − =
    (3) 

where 2 ,f f LK U A l Cα ρ= − the uncertain term 1( , , )Δ φ φ α denotes the unknown 

modeling error, which might result from parameter perturbation, ignored higher 
modes, and some unmodelled dynamics. Usually, taking such an uncertainty into 
account is helpful for accurate modeling and control of ship motion, especially when 
the ship is sailing in a complicated sea condition. 

2.2 Fin Actuator Dynamics 

In the research on fin stabilizer, various advanced control schemes have been 
proposed, however many of them ignored the effect of fin actuator dynamics. It is 
reasonable for the case of a rapid response in fin actuator, which also means the time 
constant in fin actuator is much smaller than that in ship response. Nevertheless, 
suppose both time constants are approximated, ignoring the dynamics of fin actuator 
might not only degrade the performance of close-loop system, but also exert a bad 
influence on ship stability.  

Usually, the dynamics of a fin actuator can be described as a first-order linear 
system [15] 

 ,= −e e cT Kα α α  (4) 

where eT  is the actuator’s time constant, eK the control input gain, cα the demanded 

fin angle. Similar to the system (3), an uncertain term can be added to equation (4),  

 2 ( , ) ,+ + =e e cT K α α Δ α α α  (5) 

where 2 ( , )Δ α α denotes the unknown modeling error.  

For a cascaded system composed of the equations (3) and (5), it is obvious that the 
terminal or actual control input is cα  while the actual fin angle α is an interim state 

variable.  

3 Controller Design 

The control design adopts the backstepping method and Lyapunov stability theory, 
which can guarantee the robustness of close-loop system. For certainties in the plant, 
linearization feedback design is employed in consideration of the control accuracy; 
with regards to the uncertainties including the modeling errors and the environmental 
disturbance, i.e. the wave induced moment, an on-line functional-link neural network 
(FLNN) is adopted. 
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3.1 Feedback Linearization Design 

The feedback linearization control is applied to obtain a linear error system with 
respect to tracking errors. First of all, a virtual or desired control input to system (3) 
can be defined as 

 ( )1 2 1

1
( , ) ( ) ,d f f u

Kα

α φ φ φ= + −  (6) 

where 1u is introduced as an auxiliary controller to deal with the uncertainties 

including 1( , , )Δ φ φ α  and the wave induced moment wM . By defining a tracking 

error signal and a filtered error signal as 

 , ( 0),dξ α α η φ λφ λ= − = + ∀ >  

an error system w.r.t. the system (3) can be obtained as 

 1 1( ) ( ) ( , , ) .x p x p wI K I K K M uαη λ φ ξ Δ φ φ α− = − − − + − 
   (7) 

For the system (5), the control input is designed as 

 2

1
( ),= +c d

e

u
K

α α  (8) 

where 2u is also introduced as an auxiliary controller to deal with the uncertainties. 

Another error system w.r.t the system (5) can be obtained 

 2 2( , ) .= − + −e e dT T u  ξ α ξ Δ α α  (9) 

Thus, a cascaded error system composed of (7) and (9) is obtained. Obviously, it is a 
linear system with reference to the error signals aforementioned. Appropriate designs 
of the two auxiliary controllers, i.e. 1u , 2u , will answer for the performance of the 

tracking system. They can be obtained by using the method of Lyapunov recursive 
function method. 

3.2 Lyapunov Function Method 

Lyapunov stability theory is used to the controller design. By using this method, the 
controller design observes a systematic and simple procedure. Meanwhile, the 
robustness and stability of the tracking system can be guaranteed [16]. 

In consideration of the systems (7) and (9), a positively definite Lyapunov function 
candidate is given as 

 2 2 2
0

1 1 1
( ) .

2 2 2x p eV I K Tφ η ξ= + − +  (10) 
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The derivative of 0V is 

 ( ) ( )2
0 1 1 2 2( ) .x p w e dV I K K M u T uαλφ η λ φ φ ξ Δ ξ α ξ Δ= − + − + − − + − + − + −

   (11) 

For certainties in the right hand side of the above equation, the inverse dynamical 
compensation is preferable for the sake of simplicity and control accuracy. For 
uncertainties, including 1Δ , 2Δ  and wM , they will be compensated by NN. 

Furthermore, because it is tedious and difficult to obtain the explicit expression of d
α , 

it is also identified by NN.  

3.3 Functional-Link Neural Network Identification 

Functional-link neural network is a universal approximation of nonlinear functions 
with any accuracy provided the activation function is selected as basic or squashing 
one and appropriate number of the hidden layer nodes exist [17]. Compared to the 
popular backpropagation NN, FLNN provides a simpler structure and the on-line 
tuning algorithms of weight are available. 

Assume that the uncertainties in (11) are approximated by FLNN 

 T
1 1 1 1( ) ,wK Mαξ Δ ε− − + = +W g h  (12) 

 T
2 2 2 2( ) ,W g h+ = +e dT α Δ ε  (13) 

where ( 1,2)W =i i  is the “ideal” weight vector and satisfies ( 0)i iM iMF
≤ >W W W , 

F
⋅ denotes the Frobenius norm with the form 2

1 1

, ( )A A ×
= =

= ∀ =
m n

ij ij m nF
i j

a a , ( )g ⋅  is 

the activation function of hidden layer usually taken as squeeze functions, e.g. a 
sigmoid or radius basis function, etc. ih  is the preprocessed input vector, iε  is the 

reconstruction error and will satisfy ( 0)iη η η≤ >iN iN , ⋅ denotes the Euclidean 

norm. Note that since the ideal weight Wi is unknown beforehand, its approximation 

is used in the real-time control. The convergence of weight error can be guaranteed by 
the upcoming stability proof.  

The two auxiliary controllers can be designed as 

 T
1 1 1 1( ) ( ) ( ) ,x p e x pu I K I Kλ φ φ λ η= − + + + −W g h 

  (14) 

 T
2 2 2 2( ) ,W g h= − + +e eu Tξ λ ξ  (15) 

where iλ  is a positive control gain, ieW  the updated weight vector. Substituting the 

above two equations into (11) and incorporating the definitions (12) and (13), the 
derivative (11) becomes 

 2 2 2 T T
0 1 2 1 1 2 2 1 2( ) ( ) ( ) .x p eV I K Tλφ λ η λ ξ η ξ ηε ξε= − − − − + + + +W g h W g h
    (16) 
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where i i ie= −W W W is the weight error vector. To guarantee its convergence, a 

stepping Lyapunov function candidate is defined as 

 ( )T T
1 0 1 1 2 2

1

1
{ } { } .

2
W W W W= + +V V tr tr

k
     (17) 

where { }tr   is the trace of a matrix and satisfies 2T{ }A A A=
F

tr . And the tuning 

algorithm of the updated weight vector ieW  is designed as 

 1 1 1 2 1( ) ,e ek kη η= −W g h W  (18) 

 2 1 2 2 2( ) ,W g h W= −e ek k ξ σ  (19) 

where 1,2k are positive constants and an augmented error vector is introduced as 

 [ ]T
.=σ η ξ  (20) 

3.4 Stability Analysis 

The derivatives of the last two terms in the right-hand side of the equality (17) are 

 

( )

T T T T
1 1 2 2 1 1 2 2

1

T T2
1 1 1 2 2 2

1

1
( { } { }) ( ) ( )

2

{ ( )} { ( )} .

d
tr tr

dt k

k
tr tr

k

η ξ

η σ

 
+ = − − 

 

+ − + −

W W W W W g h W g h

W W W W W W

     

   
 (21) 

Introducing a constant 0 1≤ ≤μ , the last two terms in the right-hand side of the 

above equality result in the identity 

 

( )

( )

T T2
1 1 1 2 2 2

1

T T2
1 1 2 2

1

T T2
1 1 1 2 2 2

1

{ ( )} { ( )}

(1 ) ( { } { })

{ ( )} { ( )} .

k
tr tr

k

k
tr tr

k

k
tr tr

k

η σ

μ η σ

η μ σ μ

− + −

− − +

+ − + −

W W W W W W

W W W W
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The derivative of (17) becomes 
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where 1 2, .β η β σ= = Suppose { }0 1 2 2min (1 ) , (1 ) , (1 ) , (1 ) ikλ μ λ μ λ μ λ μ β= − − − − , 

and in consideration of the definition of 1V  in (17) and the above equality, the 

following inequalities hold true 
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   (24) 

 ( )2 22 2 2
1 1 2 2 1 2( ) , 0 ,x p eb I K T b b bμ λφ λ η λ ξ≤ + − + ≤ ∀ < <σ σ  (25) 
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 1 2 3 3, 0.b bηε ξε+ ≤ ∀ >σ  (27) 

where ( ) 0, 0x p eI K T− > > . Thus, it holds 
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 (28) 

Given a compact set { },U b bς ς ς
+= ≤ ∈σ σ , if σ  is in Uς  at any time, the above 

inequality can be reduced to 
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1 0 1 3
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4 iM
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≤ − + + 

 
  (29) 

It can be proven that the system is uniformly ultimately bounded (UUB) stable. If σ  
is out of Uς  at a time, by appropriate selection of parameters, one has 

 
2

2 32

11 1 1

,
4 iM

i

bk
b W

k b bς μ =

> > +σ  (30) 

The inequality (28) becomes 

 1 0 12 .V Vλ≤ −  (31) 

Obviously, the system is stable. 

4 Simulation 

Numerical simulation is conducted to verify the validity of the controller designed. 
The model is adopted as given in [15], in which the environmental disturbance 
induced by waves was described by 

 sin( ),w w eM F tω=  (32) 
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where wF is the wave amplitude, eω is the encounter frequency, in this paper, it is 

assumed stochastically distributing in 0.3~1.3rad/sec, the other model parameters in 
the (3) and (5) are 2s, 1, / ( ) 0.043e e x pT K K I Kα= = − = − . The sigmoid function is 

selected as the activation function ( )g   in NN. The input variable vector to the FLNN 

is selected as
T

1 2 1h h φ φ = =  
 , the initial weights are set zero. Suppose an initial 

roll deviation exists, i.e. (0) 10 ,φ =   and the modeling errors 1 20.1 , 0.1Δ η Δ ξ= = . By 

designing the controller gains 1 210, 1λ λ= = , the time histories of the roll angle, roll 

rate, fin angle and the disturbance induced by waves can be obtained, as shown in 
Figure 1. 
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Fig. 1. Simulation results 

As it can be seen from the simulation results, good performance of roll reduction is 
achieved by using the fin controller proposed. Comparatively, without fin, the roll 
response will oscillate and no convergence can be guaranteed.  
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5 Conclusions 

Study on the fin control for ship roll reduction is presented. Uncertainties including 
the environmental disturbance induced by waves and modeling errors are considered 
in a cascaded system consisting of the roll dynamics and the fin actuator dynamics. 
On-line functional-link neural networks are used to identify the uncertainties. Based 
on the NN compensation, a robust roll controller is obtained by using the Lyapunov 
function method. Numerical simulation results demonstrate the validity of the fin 
controller proposed. 
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DSC Approach to Robust Adaptive NN Tracking Control 
for a Class of SISO Systems* 
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Navigation College, Dalian Maritime University 
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Abstract. In this paper, by employing Radial Basis Function (RBF) Neural 
Networks (NN) to approximate uncertain functions, the robust adaptive neural 
networks design for a class of SISO systems was brought in based on dynamic 
surface control (DSC) and minimal-learning-parameter (MLP) algorithm. With 
less learning parameters and reduced computation load, the proposed algorithm 
can avoid the possible controller singularity problem and the trouble caused by 
"explosion of complexity" in traditional backstepping methods is removed, so it 
is convenient to be implemented in applications. In addition, it is proved that all 
the signals of the closed-loop system are uniformly ultimately bounded(UUB), 
and simulation results on ocean-going training ship 'YULONG' are shown to 
validate the effectiveness and the performance of the proposed algorithm. 

Keywords: RBF Neural Networks, DSC, MLP, Adaptive Control,  
Backstepping. 

1 Introduction 

In the past decades, there has been a rapid growth of research efforts aimed at the 
development of systematic design methods for the adaptive control of SISO non-
linear systems with parametric uncertainty. Many remarkable results have been 
obtained. It is shown that the backstepping approach has become a powerful tool in 
the adaptive control area for nonlinear systems,[1]-[3]. 

However, there exist two drawbacks in aforementioned works, which restrict their 
further uses in real applications. The first limitation is the “explosion of learning  
parameters”[4]-[6]. The other limitation is the “explosion of complexity” [7]. In  
this paper, based on DSC and MLP techniques proposed in [8]-[9], a robust  
adaptive neural networks design for a class of SISO systems is developed, which can 
circumvent the 'explosion of complexity' inherently in the conventional backstepping 
technique. Also the proposed algorithm is easily implemented and will guarantee the 
stability of the closed-loop control system. 

                                                           
*  This work was supported in part by the National Natural Science Foundation of China 

(No.51179019), the Natural Science Foundation of Liaoning Province (No. 20102012) and 
the Program for Liaoning Excellent Talents in University (LNET). 
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2 Problem Formulation 

Consider an uncertain nonlinear dynamic system in the following form 

( )
( ) ( ) ( )

1

1

,

,

i i i

n n n n n n

x x t x

x f x g x u t x

y x

+ = + Δ


= + + Δ
 =





 

(1)

where 1 2[ , ,..., ] n
nx x x x RΤ= ∈ is the system state vector. ,u y R∈  are the sys-

tem's input and the output, respectively. ( ),i t xΔ  indicates non-linear uncertain dis-

turbance, and ( )n nf x , ( )n ng x  represent unstructured non-linear smooth functions, 

respectively, where ( )n ng x  is referred to as virtual control gain function. Now we 

bring in the following assumptions. 

Assumption 1. 1) The absolute value of the unknown virtual control-gain func-

tion ng is positive. 2) For the purpose of analysis easier, without loss of generality, we 

make further assumption that: 

min max0 g ng g< ≤ ≤
 

(2)

Assumption 2. The reference signal ( )ry t  is a sufficiently smooth function of t , 

and ry , ry ,and ry  are bounded, that means, there exists a positive constant 0Y  

such that: ( ) ( ) ( ) ( ){ }2 2 2

0 r 0 y , , :r r r r ry y y y y YΠ = + + <   ： . 

Assumption 3. iΔ  is bounded which means, there exists a positive unknown con-

stant iγ ,  , 1, ,i i i nγΔ < =  . 

The control objective is to find an adaptive NN tracking controller for (4) such that all 
the solutions of the resulting closed-loop system are SGUUB and the tracking error 

1 1 rs y y= − can be rendered small. 

3 RBF Neural Network 

It has been proved that we can use the following RBF neural networks to approximate 

an arbitrary smooth function F(x): qR R→ : 

)( xSF(x) Τ= ϑ  (3)
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Where q
xx R∈Ω ⊂ , [ ]1......

l
l Rϑ ϑ ϑ Τ= ∈ , [ ]1( ) ( ),...... ( )lS x S x S x

Τ= , and the 

NNs node number 1l > . We usually choose ( )iS x  as the Gaussian function.  

2

( ) ( )1
( ) exp

2

T
i i

i
ii

x u x u
S x

σπ σ
 − − −=  
   

(4)

where 1,....i l= , and 
1
....

li i iu u u
Τ

 =    is the center of the receptive field, iσ is the 

width of the Gaussian function. Any continuous function with q
xx R∀ ∈Ω ⊂  can 

be approximated as 

xxxSxF Ω∈∀+= Τ∗ ,)()( εϑ  (5)

where *ϑ  is the ideal weight vector, ε  is the approximation error with an assump-

tion of
*ε ε≤ , where the unknown constant * 0ε >  for all ZZ ∈ Ω . With the 

estimate value ϑ̂  minimizing | |ε  for all , xx x ∈Ω , *ϑ  can be defined as 







= Τ

Ω∈∈
)(-(x)supmin arg

l
R

*
xSF 

ZZ

ϑϑ
ϑ  

(6)

Assumption 4: For the sake of simplicity, let iε ∗  be an unknown upper bound of the 

approximation errors , 1,2i iε = . 

Lemma 1[6]. For any given real continuous function ( )f x  with ( )0 0f = , if the 

continuous function separation technique [9]and the RBF NN approximation tech-

nique are used, then ( )f x  can be denote as 

( ) ( )f x S x Ax=
 (7)

where ( ) ( ) ( ) ( ) ( )1 21, 1, , , lS x S x s x s x s x= =       , [ ]1 2, , nε ε ε εΤ =  , ,A ε ϑΤ Τ =   , is 

a vector of the approximation error, and ϑ  is a weight matrix. 
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4 Control Design 

In this part, we will incorporate the DSC-MLP technique and the RBF neural  
networks to develop an adaptive tracking control design scheme for the system (1). 

Define { }1 2 2
min max ,i i ig bλ ξ−= , 1̂λ are estimates of iλ , and choose the adaptive 

law for îλ  as follows 

( )








−−+Γ= Τ )ˆ(

4
)()(

4

1ˆ 02
2

2
2

2 iiii

i

i
iiiii

i
ii s

x
sxSxS λλσ

β
ϕ

γ
λ

 
(8)

Step 1:  Define the tracking error 1 1 rs x y= − , its derivative is 

( )1 2 1 , rs x t x y= + Δ − 
 

(9)

According to Lemma 1 given above, we have 

 1 1 1 1 1 1 1 1 1 1 1 1 1 1( , ) ( ) ( ) ( ) rt x S x A x S x A s S x A yε εΔ = + = + +  (10) 

where 1ε denote the approximation error. Let 1 1b A= , the normalized 

term 1 1
1

1 1

m A A
A

A b
= = , and 1 1 1

mA sθ = , then we have  

1 1 1 1 1 1 1 1 1( , ) ( ) ( ) rt x b S x S x A yθ εΔ = + +
 (11)

1 2 1 1 1 1s rx b S w yθ= + + − 
 

(12)

*
1 1 1 1 1 min 1 1 1( ) )rw S x A y g xε ξ ϕ≤ + ≤ （

 
(13)

where, 1 *
1 min 1 1g max( , )rA yξ ε−= and 1 1 1) 1x Sϕ = +（ . It is obvious that 1w  

is bounded, because the bound of ry , 1ε ∗ . Now choose the virtual controller 2α  

for 2x  as 

( ) ( ) ( )
2

1 1
2 1 1 1 1 1 1 1 12 2

1 1

ˆ

4 4r

x
k s y s S x S x s

ϕ λα
β γ

Τ= − + − −
 

(14)

For the sake of avoiding calculation explosion caused by repeated derivations, the 
DSC technique is developed and virtual control law is replaced by its estimation using 

the following first-order filter with the time constant of 2τ . 

)0()0(, 222222 αατ ==+ zzz  (15)
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By defining the output error of this filter as 2 2 2y z α= − , it yields 

 

2 2 2 2 2
2 2 2 1 1 1 1

2 1 1 1 1

2
2 1 2 2 1

2

ˆ ˆ( )
ˆ ˆ

ˆ( , , , , , , )

d

r r r

y
y z s x y

s x

y
B s s y y y y

α α α αα λ ϑ
τ λ ϑ

λ
τ

∂ ∂ ∂ ∂= − = − + − − − − +
∂ ∂ ∂ ∂

= − +

    

 

 (16) 

where 2 ( )B ⋅  is a smooth bounded function and has  maximum value 2M  [7]. 

Step i: (2 1)i n≤ ≤ −  A similar procedure is recursively employed for each 

step i , 2,..., 1.i n= −  Similar to step 1, define the error variable i i is x z= − ,  

( )1 ,i i i is x t x z+= + Δ −
 

(17)
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2 2
1( , ) ( ) ( )
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i i i i i i i i i

i i
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s z
t x S x A b S x w
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ε θ

+ 
 + Δ = + = +
 
 + 



 

(18)

where i ib A= , the normalized term m i
i

i

A
A

A
= , m

i i iA sθ =  with 

[ ]1 2, ,...,i is s s s
Τ= , and 2( ) ( ) i

i i i i r i i j i j iw S x A y S x A z ε== +  + , then we have 

( )1si i i i i i i ix b S x w zθ+= + + − 
 

(19)

*
1 1 1 2 min( ) ( ) )i

i r i i j i j i i i iw S x A y S x A z g xε ξ ϕ=≤ +  + ≤ （
 

(20)

With 1 *
min 2max( , , )i

i i r j i j ig A y A zξ ε−
==   and ( )) 1i i i ix S xϕ = +（ . 

Now, choose the virtual controller iα  for ix  as 

( ) ( ) ( )
2

2
2 2

ˆ

4 4
i

i i i i i i i i i i
i i

x
k s z s S x S x s

ϕ λα
β γ

Τ= − + − −
 

(21)

Then, we introduce a first-order filter virtual iz  and let iα pass through it with time 

constant iτ ,  by defining the output error yi i iz α= − , it yields 

, (0) (0)i i i i i iz z zτ α α+ = =
 

(22)
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2( , , ..., , , , , )i

i i i i i i i r r r
i

y
y z B s y y y y yα λ

τ
= − = − +    (23) 

where ( )iB ⋅  is a smooth bounded function, and has a maximum value iM . 

Step n: Define the error variable n n ns x z= − , its derivative is 

( ) ( ) ( ),n n n n n n ns g x u f x t x z= + + Δ − 
 

(24)

Similarly to above, we approximate nh , ( ) ( ),n n n nh f x t x= + Δ , 
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(25)

where n nb A= , the normalized term m n
n

n

A
A

A
= , m

n n nA sθ =  with 

[ ]1 2, ,...n ns s s s
Τ= , and

*
2( ) ( ) i

n n n n r n n j i j nw S x A y S x Az ε== +  + , then we have 

( ) ( )sn n n n n n n n ng x u b S x w zθ= + + − 
 

(26)

*
1 1 1 2 m in( ) ( ) )i

n r n n j i j n n n nw S x A y S x A z g xε ξ ϕ=≤ +  + ≤ （
 

(27)

1 *
min 2g max( , , )i

n n r j i j nA y A zξ ε−
==   and ( )) 1n n n nx S xϕ = +（ , Then 

we choose virtual control law μ  as 

( ) ( ) ( )
2

2 2

ˆ

4 4
n n

n n n n n n n n n
n n

x
u k s z s S x S x s

ϕ λ
β γ

Τ= − + − −
 

(28)

Remark 1. It can be observed that, for the closed-loop control system, there are only 
one learning parameter, which is independent of order of the subsystem, to be updated 

online in the controller u  and the virtual controllers iα , no matter how many input 

variables there are in the subsystem and how many rules are used in the constructed 
RBF neural networks system. Thus, the well-known curse of dimensionality is  
circumvented by the proposed algorithm in this paper. 
 
Proof. The proof is similar to that in [10] 
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5 Application Examples 

In this section, we will validate the control performance of the proposed controller via 
an application example, i.e., the control design of a ship autopilot. Before designing 
the autopilots, we will describe the dynamics of the ship as follows [5]:   

 ( )
K K

H
T T

ψ ψ δ ′+ =                         (29) 

Where K  is the gain in per second and T denote time constant in seconds. 
( )H ψ is a nonlinear function of ψ . The function ( )H ψ  can be found from the 

relationship between δ ′ and ψ in steady state such that 0ψ ψ δ ′= = =  . It is 

known that the “spiral test” has shown that ( )H ψ can be approximated by 

 3 5
1 2 3( ) ...H a a aψ ψ ψ ψ= + + +                    (30) 

Where , 1,2,3,...ia i = , are real-valued constants. In this paper, let , 1,2,3,...ia i =  

be not equal to 0, and the nonlinear model (30) is used as the design model for design-
ing the proposed controller in the sequel. Also we have  

 1 E
E

E E

K

T T
δ δ δ′ ′ ′= − +

                       (31) 

Where ET and EK  are the time delay constant and the control gain of the rudder 

actuator. Eδ ′  is the order angle of the rudder. Also we have  

 ( ) 0 .1 ( ) 0.0025 ( ) 0.0025 ( )m m m rt t t tψ ψ ψ ψ+ + =              (32) 

Where mψ  specifies the desired system performance for the ship heading ( )tψ . 

Letting 1 2 3, ,x x xψ ψ δ ′= = =  and Eu δ ′=  one can obtain  

( )
( )

1 2

2 2 2 2 3

3 3 3 3

x x

x f x g x

x f x g u

 =


= +
 = +





 

(33)

Where 
2 2( ) ( )Kf H xT= − ,

2 ( )Kg T= − ,
3 3

1( )
E

f xT= − ,
3 ( )E

E

Kg T= − , 

1 1 11, ( ) 0g f x= = . We assume that 2f , 3f  are unknown. The parameters are  

chosen as 
1 0.1k = , 

2 40k = ,
3 5k = .. 

1 2 3 2Γ = Γ = Γ = , 1 2 3 0.001σ σ σ= = = , 

0.5γ =  2 3 100τ τ= = . The initial values of the weights vectors
0ˆ , 1,2,3i iλ =  

are zero. Simulation results are shown in Figs.1 
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Fig. 1. (a) ship’s heading ( )tψ  and its desired trajectory ( )m tψ ,  (b) tracking error. (a’) the 

control rudder angle Eδ ′ , (b’) ship’s heading rate ( )m tψ  

6 Conclusion 

In this paper, a robust adaptive neural networks design for a class of SISO systems 
was brought in based on dynamic surface control and minimal-learning-parameter 
algorithm. Simulation shows that the proposed scheme can reduce the the  
computation load dramatically and force the ship to follow a desired course, so it is 
much easier to implement in applications. 
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Abstract. Based on the data-driven modeling theory, the integrated modeling 
and intelligent control method of the coke oven collector pressure is carried out 
in the paper. The system includes the regression predictive model of coke oven 
global collector pressure based on support vector machine (SVM), the subtrac-
tive clustering algorithm based operation pattern extraction and migration re-
configuration strategy and the self-tuning PID decoupling controller based on 
the improved glowworm swarm optimization (GSO) algorithm of the coke oven 
collector pressure. Simulation results and industrial application experiments 
clearly show the feasibility and effectiveness of control methods and satisfy the 
real-time control requirements of the coke oven collector pressure system. 

Keywords: Coke Oven Collector Pressure, Support Vector Machine, Operation 
Pattern, Glowworm Swarm Optimization Algorithm, Subtractive Clustering, 
PID Controller. 

1 Introduction 

China is a big coke production country, in which the coke production accounts is 
about 36% of the total production of coke in the world, and the coke export accounts 
for more than 50% of total coke export trade in the world [1]. Coke oven collector 
pressures are important process parameters in the coke production process, which will 
be affected by many aspects, such as coal feed, reversing, gas amount, blower suction, 
valve opening degree, and so on. All factors will make the collector pressure fluctuate 
continuously. Meanwhile, this influence is dynamic and uncertain to make the collec-
tor pressure have the complex nature of the time-varying, nonlinear and coupling. 
When the collector pressure is negative, the outside air will enter into the furnace and 
directly affects the gas quality, the coke oven life and the environment. It also relates 
to the safe operation of the condensation blower equipment. When the pressure is too 
big, there will be the phenomenon of “run smoke sparkle” that reduces the shortage of 
gas recovery. 
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Domestic and foreign scholars have made many achievements in the field of the 
coke oven collector pressure control [2-6]. Based on the data-driven modeling theory, 
the integrated modeling and intelligent control method of the coke oven collector 
pressure is carried out in the paper. Simulation results and industrial application expe-
riments clearly show the feasibility and effectiveness of control methods and satisfy 
the real-time control requirements of the coke oven collector pressure system. 

2 Intelligent Control Strategy of Coke Oven Collector Pressure 

2.1 Technique Flowchart  

The technique flowchart of coke oven production process is shown in Figure 1. 
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Fig. 1. Technique flowchart of coke oven collector pressure 
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The metallurgical coke utilizes the large coke oven, whose furnace is divided into 
three parts of the combustion chamber, the carbonization chamber and the regenera-
tor. Large coke ovens generally have 40-100 carbonization chambers. Both sides of 
each carbonization chamber are the heating flues, and the regenerative chamber is 
under them. After air and gas entering into the regenerative chamber to be preheated, 
they enter the combustion chamber for combustion. The coal temperature is elevated 
and the chemical reaction is made to produce coal gas.  

In the coking process, a large amount of by-product coke oven gas is produced. 
The gas shortage of about 850℃ overflowing from the carbonization chamber enters 
into the rising tube, which is cooled to about 80-100℃ by spraying the circulating 
ammonia at the bridge tube. The gas is fed into the gas-liquid separator through the 
suction catheter and the collector pipe. Then the coal gas was exported from the top of 
the gas-liquid separator to enter into the primary cooler. After pressurizing by the gas 
blower from the primary colder, the gas is conveyed to the purification and recovery 
processes. 

2.2 Intelligent Control Strategy  

The block diagram of the data-driven integrated modeling and intelligent control 
strategy of the coke oven collector pressure system is shown in Figure 2. The system 
includes the regression predictive model of coke oven global collector pressure based 
on support vector machine, the subtractive clustering algorithm based operation pat-
tern extraction and migration reconfiguration strategy and the self-tuning PID de-
coupling controller based on the improved glowworm swarm optimization algorithm 
of the coke oven collector pressure. 
 

 

Fig. 2. Strategy diagram of pressure control system 
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The integrated modeling and intelligent control system of grinding process  
includes the adaptive wavelet neural network soft-sensor model of economic and 
technique indexes, the optimized set-point model utilizing case-based reasoning tech-
nology and the self-tuning PID decoupling controller based on the ISFLA. Firstly, the 
milling granularity and the discharge ratio predicted by the soft-sensor model are 
named as the input parameters of the set-point model. Then, through the case-based 
reasoning, the milling ore feed ratio and the water feed velocity of the pump pool are 
optimized. Finally, the self-tuning PID decoupling controller is adopted to achieve the 
optimized control on the milling discharge ratio and milling granularity ultimately. 

2.3 Regression Predictive Method of Coke Oven Global Collector Pressure 
Based on Support Vector Machine 

Because the coke oven gas pipeline brings the big lag, the change of the coke oven 
gas gathering in main-collector pressure has lagged far behind than the sub-collector 
pressure. So the butterfly valves can not be adjusted in time. According to the  
principle of empirical risk minimization (ERM) and structural risk minimization 
(SRM) for machine learning, Vapnik proposed a support vector machine (SVM) me-
thod shown in Figure 3 which can be used for pattern classification and nonlinear 
regression. 
 

 

 

Fig. 3. Skeleton of support vector machine 

SVM achieves the input space mapping to a high dimensional feature space based 
on the kernel functions. This paper puts forward a regression predictive method of the 
coke oven main-collector pressure based on SVM regression method. Complexity and 
lengthy of coke oven gas collector pipelines decided the obsoleteness of the main-
collector pipe pressure. Therefore, the selected main-collector pressure is predicted 
based on the pressures of 12 sub-collectors. The optimum parameters obtained by 
using K-CV method are used to train SVM model and the regression prediction was 
done for the original data. 
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2.4 Set-Point Optimization of Coke Oven Main-Collector Pressure Based on 
Subtractive Clustering  

On the basis of the collector pressure control characteristics, a large number of histor-
ical datum and the operating experiences in the production process, this paper pro-
posed an operation mode extraction and migration reconstruction method of coke 
oven collector pressure based on the subtractive clustering method. Mode discovery 
and mode rule acquisition were realized based on the subtraction clustering method to 
form the optimized operation mode database finally, which is used to optimize the 
pressure set-point. The operation mode reconstruction strategy based on the model 
migration thoughts is utilized to realize the correction of operation mode. The frame-
work of the operation mode optimization based on the subtractive clustering method 
is shown in Figure 4. 

 

 

Fig. 4. Skeleton of optimized operation pattern 

2.5 Self-tuning PID Controller Based on the Improved GSO Algorithm 

According to the technique of coke oven collector pressure control system, the struc-
ture of the identification model is selected as the first order inertia delay model. The 
structure of self-tuning multivariable PID decoupling controller based on the im-
proved GSO algorithm is shown in Figure 5. It is consisted of the system controller, 
the decoupling compensator based on the diagonal matrix method and the coupling 
controlled object. The parameters of the PID controller are optimized by the improved 
GSO algorithm [7]. The Z-N PID tuning method and the proposed improved GSO 
algorithm under the fitness functions of ISE, IAE, ITAE and ITSE are adopted to 
control the decoupled systems for comparison [8]. Through the comparison we can get 
the control performances of the proposed PID decoupling controllers under four dif-
ferent fitness functions. 
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Fig. 5. Schematic flowchart of multivariable PID decoupling controller 

3 Industrial Application Experiments 

The Figure 6 shows the real-time control curves of coke oven collector pressure under 
the control strategy proposed in this paper. 

 

 

Fig. 6. Real-time control curves of coke oven collector pressure 

It can be seen form the Figure 6 that the fluctuation of the coke oven collector 
pressure significantly reduced under the control of the proposed control strategy. The 
control accuracy has greatly improved. The pressure is controlled in the range of the 
technological requirements. The simulation and industrial application experiment 
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results indicated that the proposed control strategy has many characteristics of  
good dynamic and steady performance, strong robustness and the adaptability of the 
various working conditions. 

4 Conclusions 

Based on the technological characteristics, operation experience and the accumulated 
large number of historical datum of the coke oven collector pressure, a complex in-
dustrial controlled object, an integrated automation and control system is proposed. 
Simulation and industrial experimental results show that the proposed data-driven 
integrated modeling and intelligent control methods have better feasibility and effec-
tiveness for the coke oven collector pressure system. In future, this method could be 
extended to deal with the other industrial process. In addition, the design of a better 
optimization method is an important issue that merits for future study. 
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Abstract. The problem of ship linear path-keeping control is discussed. By  
employing radial based function neural network (RBF NN) to approximate  
uncertain nonlinear system functions, and by combining dynamic surface  
control (DSC) with backstepping technique and Nussbaum gain approach, the 
algorithm can not only overcome both the “explosion of complexity” problem 
inherent in the backstepping method and the possible “controller singularity” 
problem, but also reduce dramatically the number of on-line learning parame-
ters, thus the algorithm can reduce the computation load of the algorithm cor-
respondingly and make it easy in actual implementation. The stability analysis 
shows that all closed-loop signals will be semi-global uniformly ultimately 
bounded (SGUUB), when the tracking error converge to a small neighborhood 
around the origin through appropriately choosing design constants. Finally,  
simulation results are presented to show the effectiveness of the proposed  
algorithm. 

Keywords: ship, track-keeping control, dynamic surface control (DSC), neural 
network (NN), Nussbaum gain. 

1 Introduction 

On the marine transport, it is common that merchant ships keep a long straight navi-
gation to save time, distance and cost. In the early twenties of last century, classical 
control theory, namely, PID technique [1], was applied to course control of ship. Lat-
er, the autopilot based on model reference adaptive control and maximal variance 
self-tuning [3] was proposed to keep navigation straight. However, the movement of 
ship shows the characteristics of nonlinearity, large delay, uncertainties and so on, and 
can be effected by outside interference, such as wind, waves and flow. Considering 
the characteristics of ship, the above control schemes are not satisfactory. 
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(No.51179019), the Natural Science Foundation of Liaoning Province (No. 20102012) and 
the Program for Liaoning Excellent Talents in University (LNET). 



254 W. Li, Z. Li, and J. Ning 

 

In recent two decades, in [4], the presented backstepping method was used in the 
system that steers the ship on its course to secure course stabilization. Later, by com-
bining neural networks (NN) [5] or fuzzy [6] systems as approximators with the back-
stepping method, an adaptive fuzzy or NN control algorithm was applied on autopilot 
about the problem of uncertain nonlinear system functions [7]. However, there exists 
a drawback of ‘explosion of complexity’ within the conventional backstepping tech-
nique in all aforementioned works, which is caused by the repeated differentiations of 
certain non-linear functions as the order of the system increases. 

In this paper, by combining the DSC technique [8] with the Nussbaum function 
[9], an adaptive NN control algorithm is proposed to steer the ship. This proposed 
algorithm not only guarantees the stability of the closed-loop control system, but also 
is easily implemented.  The simulation results on the ocean-going training ship 
“YULONG” are given to demonstrate the performance of the proposed scheme. 

2 Problem Formulation 

In this passage, we introduce the nonlinear ship straight-line motion mathematical 

model equation in the following form: 

 

sin

1

y U

r

K
r r r u

T T T

ψ
ψ

α ω

=
=

= − − + +





.

 (1) 

Where y  denotes the sway displacement (cross-track error), ψ denotes the heading 

angle, r  denotes the yaw rate, U denotes the cruise speed respectively,u δ=  de-
notes the control rudder angle,T ,K and α  denote the parameter of ship model 
which is unknown,ω denotes the outside interference signal caused by wind, waves, 
and flow. In order to make the controller design work much easier, the coordinate 
transformation is defined as follows: 

 1 22
arcsin ,

1 ( )
ψ

 
 = + =
 + 

ky
x x r

ky
,  

where 0k > is the parameter designed by the author. If 1x and y could be calm, 

thenψ is also calm. In control designing for the system (1), we can ignore the subsys-

tem −y of the stable zero dynamic [10] and obtain the second order standard form as 

follows: 
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1x , 2x  denote the state variables, u and y  denote the input and the output, 

(.),if 1, 2=i is an unknown continuous function, 2 2( )g x is referred to as the  

virtual control gain function, ( ),t xω indicates non-linear uncertain disturbance. 

Assumption 1. The uncertain virtual control gain functions 2 2( )g x  are confined 

within a certain range such that 2 2≤g G . 2G is only for the need of analysis later. 

Assumption 2. ( ),ω t x is bounded which means there exists a positive unknown 

constant d, such that ( ),ω ≤t x d . 

Assumption 3. The reference signal ( )ry t  is a sufficiently smooth function of t . 

, , r r ry y y  are bounded, that is, there exists a positive constant 0B , such 

that ( ){ }2 2 2
0 0, , :∏ = + + ≤   r r r r r ry y y y y y B . 

3 Controller Design 

Definition 1. Continue function ( ) :κ →N R R is defined as Nussbaum-type  

function, if there are some properties as follows ( )
0

1
inflim κ κ

→+∞
= −∞

S

s

N d
s

, 

( )
0

1
inflim κ κ

→+∞
= −∞

S

s

N d
s

. 

Lemma 1. Suppose that functions (.), (.)κV are smooth in region[0, )ft and satisfy 

( ) 0,≥V t  the function (.)N is assumed as a smooth Nussbaum-type function, If 

 ( ) ( )( ) ( )1 1 1 1

.

0 0 0
,τ κ κ τ κ τ− − − −≤ + + t t t tt tc c c cV t c e g x N e d e e d  

where 0c is a constant, ( )( )1 0, τ>c g x is a time-varying function, 

(.), (.)κV and ( )( ) ( )
0

τ κ κ τ 
t
g x N d are bounded in region [0, )ft respectively. 
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Note 1. Basing on the proposition 2 in [11], if the closed-loop system is bounded, 

then, = ∞ft . 

Considering the nonlinearity of the system, we use the following RBF NN to approx-
imate a smooth function. 

Step 1. Consider the subsystem of 1 −x , and define the tracking error variable: 

 1 1 rs x y= −  .                     (3) 

ry is the tracking signal for 1x . 

 ( )2 1 1 1 1 1
ˆT

R rx x k s yθ ξ= − − +  ,                 (4) 

 ( )1 1 1 1 1 1 1 1
ˆ ˆx sθ ξ σ θ= Γ − Γ

.                 (5) 

where 1Γ is positive definite and symmetrical matrix, 1 1,σk are positive design con-

stants. 
 

Now, introduce a variable 2z and let 2Rx pass through a first-order filter : 

 2 2 2 2 , 2 2(0) (0)R Rz z x z xη + = = .                (6) 

Step 2: Define the tracking error variable: 

 2 2 2s x z= − .                             (7) 

Choose a controller lawu , and the updated laws are as follows: 

( ) ( )2
2

2 2 2 2 2 2 2 2
2

ˆ( ) T x
u N k s x s z

c

ρ
κ θ ξ

 
= + + − 

 


, 
(8)

( )( )2
2 2 2( ) (1/ 9) 2N cosκ κ π κ= , (9)

( ) ( )2
2

2 2 2 2 2 2 2 2 2
2

ˆT x
k s x s z s

c

ρ
κ θ ξ

 
= + + − 
 

 
, 

(10)

( ) ( )0
2 2 2 2 2 2 2 2
ˆ ˆx sθ ξ σ θ θ = Γ − − 


(11)

2( )N κ is Nussbaum-type function in this paper and 2κ is the variable for 2( )N κ . 
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4 Stability Analysis 

The output error is defined as follows: 

 2 2 2Ry z x= − .                (12) 

Consider the Lyapunov function candidate: 

 2 1 2
1 1 1 1 1 2

1 1 1

2 2 2
TV s yθ θ−= + Γ +   .                       (13) 

The derivate of the Lyapunov function can be found as follows: 
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where 01 1 3kα = − .Let
1
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2

2
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α
+

>
Me

P
 , then 1 0V < . 

Consider the situation of step 2, and choose the Lyapunov function candidate: 

 2 1
2 2 2 2 2

1 1

2 2
TV s θ θ−= + Γ   .              (15) 

The derivate of the Lyapunov function can be found as follows: 

 2 02 2 2 2 2 22 ( ( ) 1)V V g Nα κ κ δ≤ − + + +   .             (16) 

where 
2* 02 2 2

2 2 02 2 021
max 2

, ,
2 2 2 ( )

σ σθ θ α α
λ −+ − = = = =

Γn n M

C
e e k , 2 2δ = Me . 

Based on the lemma 1 and note 1, there exist , , , , 1, 2i i i i ik c iη σ Γ =， , so that the 

solution of the subsystem is uniformly ultimately bounded and all closed-loop signals 
are semi-global uniformly ultimately bounded (SGUUB). 

5 Application Examples 

In this section, the oceangoing training vessel YULONG is used as the simulation 
example to prove the proposed scheme above. The initial conditions are for 

0 0500 , 10ψ= = − °y m , the outside disturbed signal is 0.01ω = , the Nussbaum 

function is 2
2 2 2( ) (1 / 9) (( 2) )κ κ π κ=N cos ， (0) 0.4*κ π= . The simulation 

results on Matlab are shown on figure 1-4. 
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Fig. 1. (a) heading angleψ , (b) cross-track error y        Fig. 2. Control rudder angle u 

        

Fig. 3. (a) The variable of Nussbaum function,                 Fig. 4. The yaw rate r  

(b) Nussbaum function  

6 Conclusion 

In this paper, by employing radial based function neural network (RBF NN) to 
approximate the ship’s nonlinear system functions, and by employing Nussbaum 
gain approach to overcome the possible “controller singularity” problem for the 
uncertain virtual control gain function of the ship, and by combining dynamic sur-
face control (DSC) with backstepping technique to overcome the “explosion of 
complexity” problem inherent in the backstepping method, this method reduces 
dramatically the number of on-line learning parameters .This simulation results on 
ocean-going vessel not only prove the effectiveness of this method, but also show 
that it’s easy to be applied in actual implementation.   
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Abstract. In this paper, the problem of adaptive neural output feed-
back control is investigated for a class of uncertain nonlinear pure feed-
back systems with unknown backlash-like hysteresis. In the design, RBF
neural networks are used to approximate the nonlinear functions of sys-
tems, and a neural state observer is designed to estimate the unmeasured
states. By utilizing the neural state observer, and combining the back-
stepping technique with adaptive control design, an observer-based adap-
tive neural output feedback control approach is developed. It is proved
that the proposed control approach can guarantee that all the signals in
the closed-loop system are semi-globally uniformly ultimately bounded
(SUUB), and both observer error and tracking error can converge to a
small neighborhood of the origin.

Keywords: Output feedback, adaptive neural control, backlash-like
hysteresis, backstepping design, stability analysis.

1 Introduction

In the past decades, the control of nonlinear systems preceded by hysteresis has
been a challenging and yet rewarding problem. The main reason is that hystere-
sis can be encountered in a wide range of physical systems and devices [1]. On
the other hand, since the hysteresis nonlinearity is non-differentiable, the sys-
tem performance is often severely deteriorated and usually exhibits undesirable
inaccuracies or oscillations and even instability [2].

Recently, in order to control uncertain nonlinear systems with unknown
backlash-like hysteresis, many adaptive controllers have been developed by back-
stepping technique. For example, [3-4] proposed adaptive state feedback control
designs for a class of uncertain nonlinear systems with unknown backlash-like
hysteresis, while, [5] proposed an adaptive fuzzy output feedback controller for
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a class of uncertain nonlinear systems preceded by unknown backlash-like hys-
teresis. However, the backstepping control methods in [3]-[5] all focus on the
uncertain nonlinear systems in strict-feedback form, there are few results avail-
able in the literature on the nonlinear systems in pure-feedback form. As stated
in [6], a nonlinear pure-feedback system has no affine appearance of the state
variables to be used as virtual controls and the actual control just like a strict-
feedback nonlinear systems, which makes the backstepping control design and
the stability of the closed-loop system are more difficult and challenging. Mo-
tivated by the above observations, an adaptive neural output-feedback control
approach is presented for a class of uncertain nonlinear pure feedback systems,
preceded by unknown backlash-like hysteresis and without the measurements of
the states.

2 Problem Formulations and Preliminaries

Consider a class of SISO n-th order nonlinear systems in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = F1(x2)

ẋ2 = F2(x3)
...

ẋn−1 = Fn−1(xn)

ẋn = Fn(xn) + φ(v)

y = x1

(1)

where xi = [x1, · · · , xi]
T ∈ Ri, (i = 1, · · · , n) is the state vector of the system, and

y ∈ R is the output, respectively. Fi(·) is an unknown smooth nonlinear function;
v ∈ R is the control input and φ(v) denotes hysteresis type of nonlinearity. This
paper assumes that the states of the system (1) are unknown and only the output
y is available for measurement.

According to [2], the control input v and the hysteresis type of nonlinearity
φ(v) in system (1) can be described by

dφ

dt
= α

∣∣∣∣dvdt
∣∣∣∣ (cv − φ) +B1

dv

dt
(2)

where a, c and B1 are constants, satisfying c > B1. Let⎧⎪⎪⎨⎪⎪⎩
Fi(xi+1) = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n − 2

Fn−1(xn) = fn−1(xn−1,
1
cxn) +

1
cxn

Fn(xn) = fn(xn−1,
1
cxn)
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The nonlinear pure-feedback system (1) is equivalent to the following system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋi = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 2

ẋn−1 = fn−1(xn−1,
1
cxn) +

1
cxn

ẋn = fn(xn−1,
1
cxn) + ϕ(v)

y = x1

(3)

Based on the analysis in [2], (2) can be solved explicitly as

φ(v) = cv(t) + d1(v),

d1(v) = [φ0 − cv0]e
−α(v−v0)sgnv̇ + e−αvsgnv̇

∫ v
v0

[B1 − c]eαηsgnv̇dη
(4)

where v(0) = v0 and φ(v0) = φ0.
Based on above solution it is shown in [2] that d1(v) is bounded. Thus using

(4), (3) can be reformulated as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋi = fi(xi, xi+1) + xi+1, i = 1, 2, . . . , n− 2

ẋn−1 = fn−1(xn−1,
1
cxn) +

1
cxn

ẋn = fn(xn−1,
1
cxn) + cv(t) + d1(v)

y = x1

(5)

Define {
χi = xi, i = 1, 2, . . . , n− 1

χn = 1
cxn

(6)

From (5) and (6), we have⎧⎪⎪⎨⎪⎪⎩
χ̇i = fi(χi

, χi+1) + χi+1, i = 1, 2, . . . , n− 1

χ̇n = 1
cfn(χn

) + v(t) + 1
cd1(v)

y = χ1

(7)

Assumption 1. There exists a known constant Li such that∣∣∣fi(χi
)− fi(χ̂i

)
∣∣∣ ≤ Li

∥∥∥χ
i
− χ̂

i

∥∥∥ , i = 1, 2, . . . , n

where χ̂
i
= [χ̂1, χ̂2, . . . , χ̂i]

T is the estimate of χ
i
= [χ1, χ2, . . . , χi]

T.

Control Objective. Our control objective is to design an adaptive neural net-
works output control controller such that all the signals involved in the closed-
loop system are bounded, the observer error is as small as the desired, and the
output y tracks the reference signal yr(t) within a neighborhood of zero.
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Rewrite (7) as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇1 = f1(χ̂1, χ̂2,f ) + χ2 +Δf1

χ̇2 = f2(χ̂2
, χ̂3,f ) + χ3 +Δf2

...
χ̇n−1 = fn−1(χ̂n−1

, χ̂n,f ) + χn +Δfn−1

χ̇n = 1
cfn(χ̂n

) + v(t) + 1
cd1(v) +

1
cΔfn

y = χ1

(8)

where Δfi = fi(χi
, χi+1) − fi(χ̂i

, χ̂i+1,f ), i = 1, 2, . . . , n − 1, Δfn = fn(χn
) −

fn(χ̂n
); χ̂

i
is the estimates of χ

i
, χ̂i,f is the filtered signal defined by [6]

χ̂i,f = HL(s)χ̂i (9)

where HL(s) is a Butterworth low-pass filter (LPF), the corresponding filter
parameters of Butterworth filters with the cutoff frequency ωC = 1rad/s for
different values of n.

RBF neural networks are universal approximators, i.e., they can approximate
any smooth function on a compact space, thus we can assume that the nonlinear
terms in (8) can be approximated as

f̂i(χ̂i
, χ̂i+1,f |θi ) = θTi ϕi(χ̂i

, χ̂i+1,f ), 1 ≤ i ≤ n (10)

where χ̂
n+1,f

= 0. The optimal parameter vector θ∗i is defined as

θ∗i = arg min
θi∈Ωi

[ sup
(χ̂

i
,χ̂i+1,f )∈Ui

∣∣∣f̂i(χ̂i
, χ̂i+1,f |θi )− fi(χ̂i

, χ̂i+1,f )
∣∣∣]

where Ωi and Ui are compact regions for θi and (χ̂
i
, χ̂i+1,f ), respectively. Also

the minimum approximation error εi is defined as

εi = fi(χ̂i
, χ̂i+1,f )− f̂i(χ̂i

, χ̂i+1,f |θ∗i ), εn =
1

c
fn(χ̂n

)− f̂n(χ̂n
|θ∗n ) (11)

Assumption 2. There exist unknown constants ε∗i and τi (τn = 0), such that
|εi| ≤ ε∗i and |χ̂i+1 − χ̂i+1,f | ≤ τi, i = 1, 2, . . . , n.

By (10) and (11), System (8) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ̇1 = θ∗T1 ϕ1(χ̂1, χ̂2,f ) + ε1(χ̂1, χ̂2,f) + χ2 +Δf1

χ̇2 = θ∗T2 ϕ2(χ̂2
, χ̂3,f ) + ε2(χ̂2

, χ̂3,f) + χ3 +Δf2
...

χ̇n−1 = θ∗Tn−1ϕn−1(χ̂n−1
, χ̂n,f ) + εn−1(χ̂n−1

, χ̂n,f) + χn +Δfn−1

χ̇n = θ∗Tn ϕn(χ̂n
) + εn(χ̂n

) + v(t) + 1
cd1(v) +

1
cΔfn

y = χ1

(12)
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3 Neural State Observer Design

Note that the states x2, x3, . . . , xn−1 and xn in system (1) are not available
for feedback, therefore, a state observer should be established to estimate the
states, and then neural networks adaptive output feedback control scheme is
investigated.

In this paper, a neural state observer is designed for (12) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂χ1 = χ̂2 + θT1 ϕ1(χ̂1
, χ̂2,f ) + k1(y − χ̂1)

˙̂χ2 = χ̂3 + θT2 ϕ2(χ̂2
, χ̂3,f ) + k2(y − χ̂1)

...
˙̂χn−1 = χ̂n + θTn−1ϕn−1(χ̂n−1

, χ̂n,f ) + kn−1(y − χ̂1)

˙̂χn = v(t) + θTnϕn(χ̂n
) + kn(y − χ̂1)

ŷ = χ̂1

(13)

Rewriting (13) in the following form:{ ˙̂χ = Aχ̂+Ky + F̄ + Env(t)

ŷ = ET
1 χ̂

(14)

where χ̂ = [χ̂1, · · · , χ̂n]
T, A =

⎡⎢⎣ −k1
...

In−1

−kn · · · 0

⎤⎥⎦, F̄ = [θT1 ϕ1(χ̂1, χ̂2,f ), · · · , θTnϕn

(χ̂
n
)]T, K = [k1, · · · , kn]T, ET

1 = [1, 0, · · · , 0] and ET
n = [0, · · · , 0, 1].

The coefficient ki is chosen such that the polynomial p(s) = sn + k1s
n−1 +

· · ·+ kn−1s+ kn is a Hurwitz. Thus, given a QT = Q > 0, there exists a positive
definite matrix PT = P > 0 such that

ATP + PA = −Q (15)

Let e = χ − χ̂ = [e1, · · · , en]T be observer error, then from (11)-(12), we have
the observer errors equation

ė = Ae+ ε+ d +Δf + Θ̃ (16)

where Δf = [Δf1, · · · , 1/cΔfn]
T, ε = [ε1, · · · , εn]T and d = [0, · · · , 0, 1/cd1(v)]T;

Θ̃ = [θ̃T1 ϕ1(χ̂1
, χ̂2,f ), · · · , θ̃Tnϕn(χ̂n

)]T and θ̃i = θ∗i − θi (i = 1, . . . , n).
Consider the following Lyapunov candidate V0 for (16) as

V0 = eTPe (17)

The time derivative of V0 along the solutions of (16) is

V̇0 = −eTQe+ 2eTP (ε+ d +Δf + Θ̃) (18)
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Using Young’s inequality, Assumptions 1 and 1, we have

2eTPε+ 2eTPd ≤ 2‖e‖2 + ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗1‖
2

(19)

2eTPΘ̃ ≤ ‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l (20)

2eTPΔf ≤ ‖e‖2 + ‖P‖2(
n∑

i=1

L2
i ‖e‖

2
+

n−1∑
i=1

L2
i τ

2
i ) ≤ r0‖e‖2 +M0 (21)

where r0 = 1 + ‖P‖2
n∑

i=1

L2
i , M0 = ‖P‖2

n−1∑
i=1

L2
i τ

2
i , ε

∗ = [ε∗1, · · · , ε∗n]T and |d1| ≤

d∗1. with d∗1 is a positive unknown constant. Substituting the equations (19)-(21)
into (18), we obtain

V̇0 ≤ −eTQe+(r0+3)‖e‖2+‖P‖2‖ε∗‖2+‖P‖2‖d∗1‖
2
+M0+‖P‖2

n∑
l=1

θ̃Tl θ̃l (22)

4 Adaptive Neural Control Design and Stability Analysis

The n-step adaptive neural networks backstepping output feedback control de-
sign is based on the following change of coordinates:

z1 = y − yr

zi = χ̂i − αi−1, i = 2, · · · , n
(23)

where αi−1 is called the intermediate control function, which will be given later.
Step 1: Consider the following Lyapunov function candidate:

V1 = V0 +
1

2
z21 +

1

2γ1
θ̃T1 θ̃1 +

1

2γ̄1
ε̃21 (24)

where γ1 > 0 and γ̄1 > 0 are design constants. ε̂1 is the estimate of ε∗1 and
ε̃1 = ε∗1 − ε̂1.

Choose intermediate control function α1, adaptation functions θ1 and ε̂1 as

α1 = −c1z1 − z1 − θT1 ϕ1(χ̂1, χ̂2,f ) + ẏr − ε̂1 tanh(z1/κ) (25)

θ̇1 = γ1ϕ1(χ̂1, χ̂2,f )z1 − σθ1 (26)

˙̂ε1 = γ̄1z1 tanh(z1/κ)− σ̄ε̂1 (27)

where c1 > 0, κ > 0, σ > 0 and σ̄ > 0 are design parameters. We have

V̇1 ≤ −r1‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l − c1z
2
1 + z1z2 +

σ

γ1
θ̃T1 θ1 +

σ̄

γ̄1
ε̃1ε̂1 +M1 (28)
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where r1 = λmin(Q) − r0 − 7
2 − L2

1 and M1 = ‖P‖2‖ε∗‖2 + ‖P‖2‖d∗1‖
2 + M0 +

ε∗1κ
′ + (L1τ1)

2.
Step i (i = 2, · · · , n): The time derivative of χi is

żi = χ̂i+1 +Hi − ∂αi−1

∂y e2 − ∂αi−1

∂y (θ̃T1 ϕ1(χ̂1, χ̂2,f) + ε1 +Δf1)

+θ̃Ti ϕi(χ̂i
, χ̂i+1,f )− θ̃Ti ϕi(χ̂i

, χ̂i+1,f )
(29)

where χ̂n+1,f = 0 and Hi = kie1 + θTi ϕi(χ̂i
, χ̂i+1,f ) −

i−1∑
k=1

∂αi−1

∂χ̂k

˙̂χk − ∂αi−1

∂ε̂1
˙̂ε1 −

i−1∑
k=1

∂αi−1

∂θk
θ̇k −

i∑
k=1

∂αi−1

∂y
(k−1)
r

y
(k)
r − ∂αi−1

∂y [χ̂2 + θT1 ϕ1(χ̂1, χ̂2,f )].

Consider the following Lyapunov function candidate

Vi = Vi−1 +
1

2
z2i +

1

2γi
θ̃Ti θ̃i (30)

where γi > 0 is a design constant. We can obtain

V̇i ≤ −ri‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l +
i−1
2 θ̃T1 θ̃1 +

1
2

i∑
l=1

θ̃Tl θ̃l − c1z
2
1 −

i−1∑
l=2

clz
2
l

+
i−1∑
l=1

σ
γl

θ̃Tl θl +
σ̄
γ̄1

ε̃1ε̂1 +Mi + zi[zi−1 + zi+1 + αi +Hi

+2(∂αi−1

∂y )2zi)] +
1
γi

θ̃Ti (γiziϕi(χ̂i
, χ̂i+1,f )− θ̇i)

(31)

where ri = ri−1 − L2
1 − 1

2 and Mi = Mi−1 +
1
2ε

∗2
1 + L2

1τ
2
1 .

Choose αi (αn = v), adaptation function θi as

αi = −zi−1 − cizi − 2(
∂αi−1

∂y
)2zi −Hi (32)

θ̇i = γiziϕi(χ̂i
, χ̂i+1,f )− σθi (33)

Substituting (32)-(33) into (31), we have

V̇i ≤ −ri‖e‖2 + ‖P‖2
n∑

l=1

θ̃Tl θ̃l +
i−1
2 θ̃T1 θ̃1 +

1
2

i∑
l=1

θ̃Tl θ̃l − c1z
2
1

−
i∑

l=2

clz
2
l +

i∑
l=1

σ
γl

θ̃Tl θl +
σ̄
γ̄1

ε̃1ε̂1 +Mi + zizi+1

(34)

where zn+1 = 0. For i = n, we have

V̇n ≤ −rn‖e‖2 − c1
z2
1

k2
b1−z2

1
−

n∑
l=2

clz
2
l − ( σ

2γ1
− 1

2 − ‖P‖2 − n−1
2 )θ̃T1 θ̃1

−
n∑

l=2

( σ
2γl

− 1
2 − ‖P‖2)θ̃Tl θ̃l − σ̄

2γ̄1
ε̃21 + λ

(35)

where λ =
n∑

l=1

σ
2γl

θ∗Tl θ∗l +
σ̄

2γ̄1
ε∗21 +Mn.
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Let c = min{2rn/λmin(P ), 2ck, 2γ1(
σ

2γ1
− 1

2 − ‖P‖2 − n−1
2 ), 2γl(

σ
2γl

− 1
2 −

‖P‖2), σ̄}, k = 1, . . . , n, l = 2, . . . , n. Then (35) becomes

V̇n ≤ −cVn + λ (36)

By (36), it can be proved that all the signals in the closed-loop system are SUUB.

5 Conclusions

For a class of uncertain nonlinear pure feedback systems without the measure-
ments of the states and with unknown backlash-like hysteresis, an adaptive neu-
ral output feedback control approach has been developed. The proposed control
scheme mainly solved three problems. First, the proposed controlled system is
feedback nonlinear system. Second, the proposed control scheme does not require
that all the states of the system are measured directly. Third, the problem of un-
known backlash-like hysteresis can be overcome. It is proved that the proposed
control approach can guarantee that all the signals of the closed-loop system are
SUUB, and both the observer and the tracking errors can be made as small as
desired by appropriate choice of design parameters.
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Active Disturbance Rejection Control  
on Path Following for Underactuated Ships 

Ronghui Li1,* , Tieshan Li1, Qingling Zheng2, and Xiaori Gao1 

1 Navigation College of Dalian Maritime University 
No.1 Linghai Road, 116026, Dalian, China 

lironghui@163.com, tieshanli@126.com 
2 Center of Advanced Control Technologies Department of Electrical Computer Engineering, 

Cleveland State University Cleveland, Ohio, USA 
qinlingzheng@gmail.com 

Abstract. To solve the path following problem of underactuated surface ships 
with internal dynamic uncertainties and external disturbances, an Active-
Disturbance-Rejection Control (ADRC) controller is introduced to steer the ship 
to follow the desired path. Drift angle compensation is added to the controller 
by designing a coordinate transformation equation. The cross track static error 
caused by wind and current is overcome. Simulations were carried out on a ful-
ly nonlinear hydrodynamic model of a training ship to validate the stability and 
excellent robustness of the proposed controller. 

Keywords: underactuated surface ships, ADRC, path following. 

1 Introduction 

The surface ship usually has large inertia, large time lag, nonlinearity, and under-
actuated characteristics with a tracking motion that is strongly influenced by the mod-
el parameter perturbations as well as the effects of wind, waves, and current flow 
disturbances. So the design of a ship-tracking controller with high performance has 
been very challenging work.  

In recent years, significant research has paid much attention to surface ships since 
they have fewer actuators than degrees of freedom to be controlled, the constraint on 
the acceleration is non-integrable, and the system is not transformable into an equiva-
lent system without drifts[1]. In some literature, several methods have been proposed 
to deal with the uncertainties of the system and the external perturbations. An adap-
tive robust controller combining Nussbaum gain technique with a backstepping ap-
proach was developed in [2] to cope with ship straight-line tracking control system 
                                                           
*  This work is supported by National Natural Science Foundation of China (Grant 
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with parametric uncertainties and unknown control gain coefficients without a priori 
knowledge of its sign. Recently, output-feedback trajectory tracking control and stabi-
lization of an underactuated omni-directional intelligent navigator were addressed in 
[3]. A full state-feedback solution was obtained in [4] which removed the assumption 
that the mass and damping matrices of the ships are diagonal, although the nonlinear 
damping terms cannot be included. In [5], a global controller was presented without 
velocity measurements for feedback. To deal with nonlinear damping coefficients, an 
adaptive observer was used to estimate the inaccuracies. Integral actions are added to 
the controller to compensate for a constant bias of environmental disturbances. In 
order to avoid the need of explicit knowledge of the detailed ship dynamics, applica-
tion to the marine field of techniques of neural network, fuzzy logic control and other 
Artificial Intelligence (AI) were also investigated in recent years. 

However, in most of these works, the uncertainty of external perturbation of the 
non-negligible ocean current was seldom explicitly involved. When a surface ship is 
proceeding under perturbation of a cross ocean constant direction current or wind, it is 
necessary to maintain a deliberate deviation angle known as "drift angle and leeway".  

Based upon the above observations, this paper aims at developing a ship-tracking 
controller with improved performance in adaptation and robustness by employing the 
ADRC technique due to its independence on accurate mathematical model of the 
plant and its ability to compensate for the internal and external disturbances dynami-
cally [6,7,8]. In [9], a ship nonlinear ADRC tracking controller was designed by em-
ploying two nonlinear cascaded ADRC controllers]. In [10], a straight line tracking 
control scheme was accomplished by adding a tracking differentiator while the feed-
back control law comprised of the errors of the two controlled variables instead of 
only one in the usual ADRC scheme. However, in the work of [9] and[10], only the 
Norbbin model was used in the course of design and simulation while ignoring ship 
drift angle leaving the controller unable to deal with the cross track static error caused 
by the constant direction wind and current. 

In this paper, a new design method of ADRC controller based ship tracking control 
is proposed by using dynamic, nonlinear MMG model while considering the drift 
angle of ship. The drift angle compensation is added to the controller by means of 
designing a coordinate transformation equation. The controller can automatically seek 
“drift angle and leeway” and the input control quantity of rudder angle. The cross 
track static error resulting from constant direction wind and current was removed. 

2 Ship Motion Control Model 

In this paper, in order to design ADRC ship tracking controller, the following design 
model of ship tracking control is used, 

 

sin cos

( , , )

y u v

r

r f r w b

ψ ψ
ψ

ψ δ

= +
 =
 = +





 (1) 
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where, x, y and ψ are the longitudinal displacement, lateral displacement and heading 

angle, respectively, in the earth- fixed frame, u ,v and r are longitudinal, lateral veloci-

ties over ground, and yaw angular rate in the ship-fixed frame, respectively 
( , , )f r wψ  is a multivariable function of both the states and external disturbances as 

well as time. w  is the combined external disturbance from wind and current. b>0 is 

the design parameter. 
In practice, when an underactuated surface ship travels at sea, its rudder angle is 

the only control input used to follow a desired path and to steer a comparatively 
steady course. However, cross track cannot be regulated to zero by coordinate trans-
formation for the sake of rudder angle under drift caused by wind and current, and it 
must be compensated by a loxodrome (or sideslip compensation) since no sway con-
trol means are available. Because of this, the equilibrium point of the system is not at 
the origin of transformed coordinates but at a drifting point since the wind and current 
is time and regional variant. Moreover, the only measurable state variables are the 
ship’s position and heading in Earth fixed coordinates. The path following problem is 
rephrased as the stabilization to zero of a suitable scalar path error function based on 
basic knowledge of the steering feature.   

3 ADRC Controller Design 

3.1 ADRC Structure and Its Algorithm 

For the sake of simplicity, consider a second order plant 

 
1 2

2 1 2

1
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where, y and u are output and input, respectively, w is the external disturbances, b is 
control gain, 1 2( , , , )f x x w t is the total external and internal disturbances function. 

The plant in (2) is written in state equation form 
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where 3 1 2( , , , )x f f x x w t= = is added as an augmented state, and 3x h f= =  as un-

known disturbance. Now f can be estimated using a state observer based on the state 
space model 
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The state space observer, denoted as the linear extended state observer (LESO) of (4) 
is constructed as  
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Rewrite the differential equation (5) as 
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Selecting the observer gain vector 1 2 3[ ]TL β β β=    appropriately provides an  

estimate of the state of (6), 332211 ,, xzxzxz ≈≈≈ . Here with the use of  

linear gains, this observer is denoted as LESO which can estimate f with bounded 

error if either h f=   is bounded or f is bounded[11]. Moreover, to simplify the tuning 

process, the observer gains can be obtained using the parameterized pole placement 
technique as  

 2 3
0 0 03 3

T
L ω ω ω =    (7) 

where, the observer bandwidth, 0ω is the only turning parameter. With a well-tuned 

observer, the observer state 3z  will track 3x closely. Ignoring the estimation error in 

3z , the control law  

 0 3 0( ) /u u z b= −  (8) 

Then the plant is reduced to a unity-gain double integrator, 

 2 3 0 0( )x f z u u= − + ≈  (9) 

An example of such 0u is the common linear proportional and derivative control law 

 210 )( zkzku dp −−= ξ
 (10) 
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where ξ  is the set point, which is constant. Note that 
2dk z− , instead of ( )2dk zξ − , 

is used to avoid differentiation of the set point. The controller tuning is further simpli-

fied with  cdk ω2= and 2
cpk ω= , where cω is the closed loop bandwidth which is 

the tuning parameter. 

3.2 ADRC Based Ship Track Controller Design 

A linear combination of y and ψ , that is kyζ ψ= + , as a new control goal, is  

put forward in [2],  where k is a design parameter. Its idea is that both y→0 
andψ →0 while  z→0, which was proven to be correct. In this paper, the control 
structure borrows the idea from [2] using a new nonlinear combination of y and ψ , 
that is  

 1 0tanh( )k k yς ψ= +  (11) 

where, k0>0 and k1>0 are design parameters. k0 is used to coordinate compression  
and k1 is used to adjust ship track convergence rate. Meanwhile, k1 can restrict the 
maximum heading angle ψ  to be used when the ship returns to the planned route. 
When 0ς → , both y→0 and ψ →0. Accordingly, the physics meaning of parame-
ters is obvious and parameters would be tuned easily. But when ship is affected by 
constant wind and current, when ψ →0, y can not be convergent to zero due to lee-
way angle, so cross track error will always exist. In fact, the goals to implement path 
following is y→0, but heading angle ψ cannot be convergent to zero, and it should 
equal to the opposite of ship leeway angle. The ship leeway angle or drift angle is 
defined as  

 arctan( )v
u

β =  (12) 

So 0ψ β+ →  is the goal that can guarantee y→0. Therefore, the following trans-

formation can be defined 

 1 0tanh( ) [ ]k k yς ψ β= + +  (13) 

where, k0>0, k1>0. While 0ς → , y→0 and 0ψ β+ → . k0  has the same meanings as 

above, but k1 is used to restrict  the maximum value of ( )ψ β+ , so the maximum 

heading angle to be used is 1( )k β−  when ship travels  at sea. The goal of ship track-

ing control is that 0ς → . 

An ADRC controller can be designed with a 3rd order ESO. The structure of the 
ADRC ship track control is as fig.1. The reference input ξ  of ADRC controller is 

zero, and ship control rudder angle δ is the output of ADRC controller. The input of  
ESO is ς , so an estimate of the state of z, 1z ς→ ， 2z ς→ ， 3z  provides an  
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estimate of unknown parts in 1ς . Define 1 1pe z zξ= − = −  and 2de z= − , a PD con-

troller 0 p p d du k e k e= +  is obtained, so the final plant controller, 0 3 0( ) /u u z b= −  is 

also obtained. 
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Fig. 1. The structure of ADRC ship track control 

4 Simulation Study 

To demonstrate the practicality of the design, simulation on ship straight line  
path following were performed using an underactuated surface vessel ship under  
Manoeuvring Mathematical Model Group (MMG), a training ship Yulong. The  
principal particulars are as follows: full displacement 14,635 tonnes, length of ship 
126m, beam 20.8m, mean draft 8.0m, trim 0, diameter of propeller 4.6m, block  
coefficient 0.681. The parameters of ADRC below simulations in this paper was  
chosen as ωo =0.4, ωc =0.04 and bo =0.478/216.  

The initial states were chosen to be as following: the main engine was set to be 
103.4 revolutions per minute (RPM), x=0, y=500, 0ψ = , 7.2 m/su = . Planned route 

is a straight line of y=0 to the north. Disturbances of NE wind of 10m/s, and a SW 
current of 2 kn. The parameters of the transformation equation (14) were chosen as 
respectively k0 = 0.04, k1 = π/9, where k1 = π/9 indicates max( ) / 9ψ β π+ =  before 

ship is stable. 
By analyzing the results of Fig. 2 - Fig.3, the following conclusions can be summa-

rized: (1) The cross track static error resulting from wind and current has been re-
moved. The tracking control precision is high. Rudder and course response are 
smooth and the rudder-turning angle is small. (2) the ADRC controller has a powerful 
robustness to the environment disturbances and the internal dynamic uncertainties. 
And the ship tracking control is fast and smooth with lower energy consumption. 
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Fig. 2. Ship track of straight line following with wind and current disturbances 
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Fig. 3. Straight line path following results with wind and current disturbances 

5 Conclusion 

This paper has presented a novel path following control approach to underactuated 
vessels under environmental disturbances of ocean current and wind. ADRC has been 
applied to the control design of ship tracking utilizing the characteristic of ADRC 
independence of the plant’s mathematical model. The leeway angle compensation has 
been added to the controller by means of designing a coordinate transformation  
equation. The ADRC controller has guaranteed that the cross track error converges to 
the planned path, and parameters can be tuned easily according to the ship’s maneu-
verability. The high precision ship-tracking controller is robust to the ship motion 
nonlinearity and the external disturbances. 
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Abstract. Canonical correlation analysis (CCA) is a promising feature 
extraction technique of steady state visual evoked potential (SSVEP)-based 
brain computer interface (BCI). Many researches have showed that CCA 
performs significantly better than the traditional methods. In this paper, the 
neural network implementation of CCA is used for the frequency detection and 
classification in SSVEP-based BCI. Results showed that the neural network 
implementation of CCA can achieve higher classification accuracy than the 
method of power spectral density analysis (PSDA), minimum energy 
combination (MEC) and similar performance to the standard CCA method.  

Keywords: Canonical Correlation Analysis (CCA), Neural Network, Brain 
Computer Interface (BCI), Steady-State Visual Evoked Potential (SSVEP). 

1 Introduction 

Non-invasive BCIs have been widely investigated in recent decades. It provides an 
alternative communication and control channel between human and environment 
through electroencephalographic (EEG) produced by brain activities [1]. This 
communication channel brings great benefit to patients with severe motor disabilities, 
which enable them to express their wishes to caregivers or operate an intelligent 
wheelchair by a BCI without any brain’s normal pathway of peripheral nerves and 
muscles. A general BCI includes three working processes: signal acquisition, feature 
extraction and feature classification. The brain activity then is translated to a device 
command or message. Different types of EEG signals such as P300 evoked potential, 
sensorimotor mu/beta rhythms, slow cortical potential (SCP), movement-related 
cortical potential (MRCP) and visual evoked potential (VEP), have been paid much 
attention in the research of BCI [2].VEP is an evoked potential over occipital area 
elicited by an external visual stimulus. It can be classified into transient VEP (TVEP) 
and steady-state VEP (SSVEP). SSVEP is elicited by a consecutive, stable and 
periodic stimulus with repetition rate higher than about 4 Hz. The main characteristics 
of SSVEP are frequency-locked and phase-locked. SSVEP is highly spoken of among 
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all the BCI applications because of its high signal to noise ratio (SNR), relative 
immunity to artifacts, high information transfer rate (ITR) and low training 
requirements. Basically, most BCIs based on SSVEPs utilize the frequency 
information of SSVEPs for identification. It means that the computer can detect which 
target the subject desires to select by checking the frequency information of SSVEPs 
[3]. Up to now, the common feature extraction methods include power spectral 
density analysis (PSDA), minimum energy combination (MEC) and CCA. For PSDA 
method, PSD is estimated by fast Fourier Transform (FFT) and its peak is detected to 
recognize the target stimulus. MEC method combines multiple electrode signals to 
cancel the noise as much as possible, and then the target stimuli is recognized 
according to the maximum signal power. Researches have demonstrated that CCA 
method has lower deviation, higher detection accuracy and higher insensitive to SNR 
than the tradition method [3] [4].  

Although the standard CCA method has provided great performance on SSVEP-
based BCI, there are still many possible improvements. Neural network (NN) 
implementation for BCI is one of the promising research directions. The important 
characteristics of NN include its self-adaptive structure, universal function 
approximation and the expansibility of network. In other words, NN implementation 
for BCI provides a more flexible and extendable environment for researchers. 
Moreover, some researchers have applied the neural network based approaches to 
achieve excellent performance on the classification accuracy [6] – [8]. Inspired by 
their work, we aim to apply the NN based CCA (NNCCA) models proposed by Hsieh 
et al. [9] [10] in SSVEP-based BCI to recognize SSVEPs. The performance of 
NNCCA is verified with the real EEG data from five healthy subjects and compared 
with the standard CCA, PSDA and MEC method. The preliminary offline experiment 
results show that NNCCA can provide the similar classification accuracy to standard 
CCA and the better accuracy than MEC and PSDA. 

2 Methodology 

2.1 CCA 

CCA is a statistical technique that applied to two datasets which we believe there are 
some potential relationships between them. Their relationship is determined by 
correlation coefficient. Consider two multidimensional datasets ∈  and ∈  as well as their correlation is wanted to be found, in other points of view, 
two inputs are wanted to be reproduced each other through linear combination of their 
variables: T  (1) 

 (2) 
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∈  and ∈  denote the correlation coefficient that can maximize the 
correlation between the canonical variates U and V. Furthermore, the canonical 
correlation coefficient of the variates is defined by Eq. (3): ,, ,  

(3) 

2 1 2 ∑ 1  
(4) 

S denotes the sample covariance matrix. The maximum canonical correlation 
corresponds to the maximum canonical correlation coefficient. To solve the maximum 
canonical coefficient, Lagrange Multiplier method is applied to Eq. (3) and the cost 
function in Eq. (4) is obtained. The maximum correlation coefficient then is solved 
from the cost function. According to the method presented by Lin et al. [3], EEG 
signals from multiple channels are used to calculate the canonical correlation 
coefficients with all stimulus frequencies in the system. In other words, the EEG 
signal and stimulus signal are considered as X and Y. Assume there are I stimulus 
frequencies and all of them are square-wave periodic, the i th stimuli signal can be 
decomposed into Fourier series:   2 /2 / 2 /2 / 2 /2 /  6 /6 /  (5) 

where n is the number of sample and  is sampling rate. Since the analysis is based 
on temporal and spatial information, phase different between inputs is also the 
influence factor of correlation. Linear combination of sine and cosine signal in Eq. (5) 
can match the phase between X and Y and the phase information of X is reflected on 
W2. Finally the frequency with the largest coefficient is identified as the stimulus 
frequency. CCA provides several superiorities on feature extraction of SSVEP-based 
BCI. First, signal preprocessing and feature extraction can be simultaneously done by 
CCA. Second, it provides another technique for the feature extraction. Especially 
most of the analysis methods are performed in frequency domain. Those superiorities 
provide a strong interest on this research field.  

2.2 NNCCA 

The core of CCA is a maximization problem. The cost function as similar to Eq. (4) 
thus can be used to develop the learning rule of NN and construct the NN based CCA. 
The NNCCA model presented by Hsieh [9] [10] is showed in Fig. 1. Each functional 
network is a three layer feed forward network which contains two hidden layers and 
one output layer. From the figure it can be observed that the network is combined by 
three parts. The double-barreled network on the left maps the input {x, y} to {u, v}. 
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The neuron function of its first layer can be either performed by hyperbolic tangent 
function, as shown in Eq. (6) and Eq. (7), or the identity function. Second layer is 
usually the identity function. According to the choice of neuron function (in first 
layer), this network can perform either the linear (equivalent to standard CCA) or 
nonlinear CCA. In this study, we focus on the implementation of linear NNCCA. h tanh W x b  (6) 

h tanh W x b  (7) 

 

 

Fig. 1. NNCCA model proposed by the research of Hsieh [9] [10] 

The networks show on the right of figure try to inversely map {u, v} to the 
corresponded input {x’, y’}. However, the inverse mapping is unnecessary in the 
implementation of SSVEP based-BCI therefore it will be ignored. The cost function 
of the NNCCA model is given by Eq. (8). The second, third, fourth and fifth terms of 
Eq. (8) are normalization constraints that force u and v to have zero mean and unit 
variance; the sixth term is a weight penalty whose relative magnitude is controlled by 
the parameter P1. Larger values of P1 lead to smaller weights (i.e. fewer effective 
model parameters), which results in a more linear model. Compare to the cost 
function of standard CCA in Eq. (4), Eq. (8) provides more constraints to ensure the 
convergence of neural network model. Due to the effect of weight penalty and the 
convergence precision, linear NNCCA gives slightly different canonical correlation 
coefficient when compared with standard CCA. The difference of them can be found 
in the experiment, which is discussed in the later sections. 
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(8) 

3 Offline Experiment  

There were 5 healthy subjects ranging from the ages of 22 – 27 participated in this 
experiment. They were asked to continuously focus on the target stimulus (showed on 
a LCD monitor with 60 Hz refresh rate) for every 10 seconds, with 4 seconds of rest 
between each trial. There were 5 stimuli (flashing white squares) as shown on the 
LCD screen, with flashing frequency of 7.5 Hz, 8 Hz, 10Hz, 15Hz and 20Hz. Each 
subject carried out 9 trials for each stimulus. That is, each trial contains a 6 seconds 
useful EEG data and totally 45 trials were completed for each subject. All EEG 
signals were recorded by a g.USBamp biosignal amplifier at 600 Hz sampling rate 
(f 600 Hz  from six channels PO3, PO4, POz, Oz, O1 and O2 placed on the 
standard position of the 10-20 international system. In order to verify whether 
NNCCA can perform the same functions as standard CCA, NNCCA and standard 
CCA are compared on the above datasets. Moreover, PSDA and MEC are also 
compared here. 

4 Offline Experimental Result and Discussion 

There are 45 trials of EEG data for each subject. Standard CCA method and linear 
NNCCA method are first applied to those trials. After this, 225 pairs of canonical 
correlation coefficients are obtained (one EEG signal is calculated with 5 stimulus 
signal). To eliminate the effect of individual differences, those coefficients are 
grouped by subject. 100 samples are randomly drawn from each group and analysis of 
variance (ANOVA) is used to check the differences between the results of both CCA 
methods. Results of ANOVA from each group of samples are 0.8824, 0.8285, 0.8961, 
0.909 and 0.8709. Hence, there are no significant differences between the two 
methods (p > 0.05).  On the other hands, their consistency can be directly verified 
through the observation of data. Fig. 2 shows the average correlation coefficient for 
each group. It can be found that the average canonical correlations obtained by 
NNCCA have a slightly larger value than standard CCA. However, the difference 
between them is very small (no larger than 0.005). As we have introduced in  
the previous part, the difference is caused by the effect of weight penalty and the 
convergence precision (we will just call it ‘effect’ in later discussion). Due to the 
‘effect’, the canonical correlation calculated by NNCCA will not be same as the one 
calculated by standard CCA, but will be a similar value (can be larger or small) as the 
standard one. After all the average error percentage between the correlations 
calculated by the two methods is estimated, which is about 2 to 3%. This result 
indicates that linear NNCCA is a good estimator of standard CCA.  
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After considering the consistence of linear NNCCA and standard CCA, we then 
focus on the classification accuracy of linear NNCCA. Table 1 presents the 
classification accuracy (which successfully recognizes the SSVEP to its corresponded 
stimulus frequency, according to maximum canonical correlation coefficient or 
corresponded standard of the method) that obtains from the method of standard CCA, 
linear NNCCA, MEC and PSDA. The best average accuracy is given by both CCA 
method, where linear NNCCA method obtains 83.12% accuracy and standard CCA 
obtain 82.66% accuracy. The different of accuracy is induced by the ‘effect’. The 
interesting thing is the ‘effect’ might coincidentally generate correct (or wrong) 
classification but it rarely happens. Moreover, the average computation time of linear 
NNCCA method for single run is around 2 seconds on an Intel Core 2 Duo E8500 
CPU. The number of run depends on the complexity of the network. For instance, if 
the hidden layer of the network contains 5 neurons, it needs more run to obtain a 
convergence and true result than the 4 neurons case. In general, linear NNCCA with 
single neuron in each functional network (or in other words, for two data set input) 
can give a convergence result in about 5 to 8 runs, which means at least 10 seconds 
are needed to recognize SSVEP. This computation time is still too long for the online 
application. The computation rate is probably enhanced by the hardware that supports 
parallel computation. Recent work has used General-Purpose Graphic Processing 
Units (GPGPU) for the computation of BCI system [5], it has demonstrated that such 
hardware can efficiently increase the computation rate compared to the CPU system. 
With GPGPU receiving more and more attention, it will be the promising direction to 
increase the rate and enable the online application of NN implementation BCI. 

 

 

Fig. 2. Comparison of the average correlation coefficient for each group. The left bar is the 
average result of standard CCA and the right bar is the average result of linear NNCCA. 
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Table 1. The classification accuracy of feature extraction methods 

Subject  CCA  NNCCA MEC PSDA 
WCM 91.1% 91.1% 78.1% 77.8% 
YPY 93.3% 93.3% 76.2% 55.8% 
HCL 73.3% 75.6% 97.4% 73.3% 
CT 86.7% 88.9% 68.3% 88.9% 
ZBN 68.9% 66.7% 64.1% 55.6% 
Average 82.66% 83.12% 76.81% 70.27% 

5 Conclusion 

This study attempts to implement CCA algorithm with NN for the frequency 
detection in SSVEP-based BCI. Results have proposed that NNCCA method can be 
applied to SSVEP based-BCIs as it leads to higher classification accuracy than those 
with the methods of PSDA, MEC, and similar performance to the standard CCA 
method. For future research it would be interesting to make good use of the parallel 
computing characteristic of NN approach. By using the parallel computing-supported 
hardware, such as GPGPU, the computation speed can be enhanced and the online 
application of NN implementation BCI can hopefully be achieved. 
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Abstract. Common Spatial Pattern (CSP) and Support Vector Ma-
chine (SVM) are usually adopted for feature extraction and classification
of two-class motor imagery. However, in a motor imagery based BCI-FES
rehabilitation system, stroke patients usually are not able to conduct cor-
rect motor imagery like healthy people due to the injury of motor cortex.
Therefore, motor imagery EEG of stroke patients lacks of specific dis-
criminant features as appearances of healthy people, which significantly
blocks CSP to seek the optimal projection subspace. In this paper, a
method, which filters EEG into a variety of bands and improves per-
formance through boosting principle based on a set of weak CSP-SVM
classifiers, was proposed to solve the problem mentioned above and was
evaluated on the EEG datasets of three stroke subjects. The proposed
method outperformed the traditional CSP-SVM method in terms of clas-
sification accuracy. From data analysis, we observed that optimal spec-
tral band for classification had been changing along with rehabilitation
training, which may reveal mechanisms that dominant frequency band
may be changed along with rehabilitation training and spectral power
distribution may be changed in different stages of rehabilitation. In ad-
dition, this work also demonstrated the feasibility of our SJTU-BCMI
BCI-FES rehabilitation training system.

Keywords: EEG, Stroke, BCI-FES Rehabilitation System, Frequency
Boosting, Common Spatial Pattern, Support Vector Machine.

1 Introduction

Motor imagery based BCI-FES system is a very promising mean for rehabilita-
tion training of strokes[1], which provides an effective training way for patients
to link active motor imagery to movements of paralyzed limbs. Functional Elec-
trical Stimulation (FES) is given to patients according to their corresponding
motor imagery during training, helping patients learn external limbs controlling
through simulating normal limb controlling process of heathy people[2][3].
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Common Spatial Pattern (CSP)is one of the most successful approaches in
feature extraction of motor imagery EEG[4]. But it cannot seek the optional
projection subspace when applied to stroke patients’ data due to contamination
of strong noise caused by irregular patterns or wrong imagery which are fre-
quently found in the motor imagery EEG of stoke patients. In order to solve the
problem, our proposed method incorporates boosting principle which is quite
an effective method in dealing with series of weak learners[5]. It can improve
classification performance by combining base weak classifiers, even each of them
only has a performance that is slightly better than random.From data analy-
sis, we observed that optimal spectral band for classification had been changing
along with rehabilitation training, which may reveal mechanisms that dominant
frequency band may be changed along with rehabilitation training and spectral
power distribution may be changed in different staged of rehabilitation.

The rest of paper was organized as follows: SJTU-BCMI BCI-FES rehabilita-
tion training system was firstly introduced in Section 2. We present the details
of the frequency boosting approach in Section 3. A comparative results are given
when applying our method and traditional CSP-SVM on the dataset of stroke
subjects in Section 4.

2 Methodology

2.1 BCI-FES Rehabilitation Training System

Fig. 1 shows the framework of our multi-Neurofeedback BCI-FES Motor Func-
tion Rehabilitation System including data acquisition module, data server mod-
ule, model training module[6][7], online classification module, online data visu-
alization module[8] and multi-Neurofeedback module.

Raw data is recorded by 16 channels gtec EEG system with a sample rate
256Hz, among which we select medial frontal cortex and earlobe which are used
as ground and reference respectively. We can adopt a variety of EEG classifiers
in our framework. During our experiment, we used CSP-SVM as online classifier.
EEG signals after removing artifacts are then filtered into specific subband such
as 8-30Hz, detrended and converted into a format time × channel × window.
CSP will be applied to calculate the optimal projection subspace. However, we
noticed that the accuracy of CSP-SVM is not satisfactory. So we proposed a new
algorithm described in Setion 3 to improve the performance. In our experiment
each window (see details in subsection 2.2) of EEG is transformed into a 4-
dimensional feature spaces which fed to SVM.

2.2 Experiment Setting

In general, the subject is required to take part in our experiment cycle 3 times per
week, which consists of 3 phases: prior-training for model preparations, multi-
Neurofeedback BCI task for rehabilitation and post-training for assessment. All
experiments are monitored by a video camera to build tagged videos for further
analysis.
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Fig. 1. The framework of multi-Neurofeedback BCI-FES Motor Function Rehabilita-
tion System. BCI Tasks are a series of motor imagery based games giving both video
and audio feedback to subjects. The whole system gives a close loop feedback to subject
helping them reestablish their motor functional from stoke.

In the prior-training process, a different number of sessions ranged from 5
to 8 will be given to the subject. There are 5 minutes for subjects to relax
themselves between sessions. Each session contains 15-16 trials lasting 4 seconds
and balances the number of left and right motor imagery tasks. At the beginning
of each trial, a bold arrow and a vocal message are given to guide subjects to
concentrate on imagining movements of their corresponding part of arms. The
time sequence of each trial are cut into 25 sliding windows with width of 1s
and step length of 0.125s[6] for online classification. There is a 2-second interval
between trials in order to help subjects adjust their mental state to avoid fatigues.
The data collection of previous session is used to update model offline, and then
it is used for classifying following session data online.

After the prior-training, subjects are asked to finish one or two motor imagery
based games such as lifting balloons which appear at the left or right of screen
randomly, balancing a ball on a beam and so on. FES is triggered and is used
for stimulating one side of subjects’ muscles corresponding to current motor im-
agery, which results in a real movement of their hands or arms. The imagination-
stimulation process reconstructs the neuron feed loop between paralysed limbs
and corresponding pathological brain cortex of the subject, which takes effects in
the rehabilitation treatment[9]. At the end of experiment cycle, a post-training
section, two sessions and 16 trials in one session, is conducted to evaluate reha-
bilitation efficacy.

3 Algorithm Design

CSP cannot seek the right projection subspace when EEG signals are contam-
inated by strong noise. This is common phenomenon while EEG signals are
collected from stroke patients. Recent studies show that the brain functional
compensation of damaged brain tissue may be replaced by other part. Suppos-
ing this change in spatial may cause the frequency of EEG data changed in
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some patterns, we try to filter the pre-processed EEG signals into a specific
band which may reduce the impact of noisy and classify with SVM to produce
a weak learner. Using the framework of Adaboost, we boost each weak SVM
learner result by αm to produce a form of committee whose performance will be
better than any of the base classifiers. αm is give following equation

αm = ln
BestAccuracym

1−BestAccuracym + ε
. (1)

Where BestAccuracym is the accuracy for optimal model in round m during
iteration. ε is to avoid infinity causing by a high accuracy around 100%.

Algorithm 1 described a boost model for two-class classification problem with
data from stoke patients. A predefine BandSet contains N bands which use to
build model. data is also pre-filtered by band from BandSet[n], detrended and
splitted window into BandWindows1[n] in order to fasten our algorithm. Note
that there is square root

√
exp am which is designed for controlling the boosting

speed of incorrect classification data. DupNum(k) is the number of copies for
incorrect classification data k during boosting.

Algorithm 1. Frequency Boosting Model Training

1: for m = 1, 2, ..., M do
2: for n = 1, 2, ..., N do
3: Sample θ ∗ length(BandWindowsm[i]) data into Sample[n]
4: Update ModelSet[n] with

Band : BandSet[n]
SpatialF ilter: the CSP projection matrix on data of Sample[n]
SVM : SVM Model on CSP features from Sample[n] by SpatialF ilter

5: Use ModelSet[n].SpatialF ilter to extract features from BandWindows1[n],
classify with ModelSet[n].SV M and calculate Accuracy[n]

6: end for
7: Find optimal model K by argmax

k∈[1,n]

Accracy[k]

Let BestModel[m] = ModelSet[K] and αm = ln Accuracy[k]
1−Accuracy[k]+ε

8: BandWindowsm+1 = BandWindowsm
9: for all incorrect classification data k by BestModel[m] in BandWindows1[m]

do
10: numk = max

(
1, Round

(
DupNum(k) ∗

(√
exp am − 1

)))
11: for n = 1, 2, ..., N do
12: BandWindowsm+1[n]+=[numk’s copies of datak]
13: end for

(We boost this data numk times more in next iteration for all bands)
14: end for
15: end for

To improve the performance of our algorithm, the band in set should have
some overlap and be different in length and range to make weak learners more
selective and maximize the coverage. Parameter θ is used to limit the size of
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training set and make sampling result randomly enough. A larger θ indicates
a larger sample set which may decrease the generalization capability of model,
while a extreme small θ may harm the stability during iteration.

In two-class classification problem, we use label 1 to indicate which is belonged
to one class and label -1 for the other class. Algorithm 2 use the predictions of
M CSP-SVM classifiers in different band with weight αm to predict the label
y(x) of data x. y[m] ∈ {1,−1} is the prediction of weak learner m.

Algorithm 2. Frequency Boosting Classification

1: for all window segment x in test dataset do
2: for m = 1, 2, ..., M do
3: Let data = Filter x with BestModel[m].Band
4: Use ModelSet[m].SpatialF ilter to extract features from data
5: Let y[m] = Classification result by ModelSet[m].SV M
6: end for

7: y(x) = sign(
M∑

m=1

αmy[m])

8: end for

4 Result

Eight stroke patients from Zhejiang Taizhou Hospital participated in our study.
After two months training, five patients have achieved apparently improvements
while no significant improvements for the rest on three patients. We presume that
these three subjects may have missed the best rehabilitation period because they
suffered stroke more than eight months ago.

The algorithm is applied on the EEG datasets of three patients (out of the
five patients that have achieved apparently improvements) for evaluation. The
BandSet is shown in Table 1 according to the discussion in Section 3.

Table 1. Frequency Boosting parameters

Band Set
(Start Hz and End Hz)

5− 11 9− 15 13− 19 17− 23 21− 27 25− 31 29− 35
5− 13 9− 17 13− 21 17− 25 21− 29 25− 33 29− 37
5− 15 9− 19 13− 23 17− 27 21− 31 25− 35 5− 17
9− 21 13− 25 17− 29 21− 33 25− 37

Parameters M : 30 θ : 2/3 ε : 0.001

We run our algorithm on each pair of training and testing data for three times
to obtain an average accuracy. For comparisons, traditional CSP-SVM method
is also implemented on the dataset. We use the last session in prior-training
section for testing and remaining ones for training. six weeks out of two months
(three weeks per month) are chosen and the accuracy of last day in each week
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Table 2. Essential information and sliding window classification accuracies

Subject Age Sex Pathogenesis
week

1st 2nd 3rd 4th 5th 6th

1 62 female cortex injury 48% 56% 57% 59% 65% 62%

2 71 male basal ganglia injury 58% 60% 56% 67% 64% 67%

3 65 female basal ganglia injury 58% 57% 74% 66% 70% 79%

has been calculated on test data. Table 2 contains the essential information and
sliding window classification accuracies of three subjects.

Compared with traditional CSP-SVM method, frequency boosting gives a
better accuracy in the most cases (Fig. 2). It’s worthy to mention that the whole
experiment also provides a powerful evidence of the feasibility of our motor
imagery based BCI-FES rehabilitation system.
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Fig. 2. Comparing between Frequency Boosting and CSP-SVM on test dataset of 3
subjects. Obviously we can find that Frequency Boosting gives a better performance
in most cases.

To analyze the frequency changes, we choose the 14th and 57th day to sum up
the weight of each optimal weak classification in different frequency as Fig. 3(a)
and Fig. 3(b) shown. The importance of gamma-band frequency significantly
increased for classification over time.

At the same time we have acquired the motor imagery EEG data of a heathy
subject (25age, male), who is an engineer of our rehabilitation system. Apply
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Fig. 3. Comparisons of optimal spectral band for classification

frequency boosting on his EEG signals, a comparison for the weights of each
bands is shown as Fig5. 3(c) (use 1 as the weight of each round in this figure).
The figure of patients on the 57th day appears a more similar distribution and
outline to that of the heathy subject compared with the one at the beginning
of rehabilitation. It implies that the frequency of EEG changes along with brain
functional compensation and the gamma band (24-37 Hz) make contribution
to a high classification accuracy. This may reveal mechanisms that dominant
frequency band may be changed along with rehabilitation training and spectral
power distribution may be changed in different stages of rehabilitation. Oscilla-
tory activity in the gamma-band range is related to both gestalt perception and
to cognitive functions such as attention, learning, and memory[10].

Three other stroke patients were also trained with ordinary medical treat-
ments for two months as a control group which is observed and recorded during
the experiment. A much lower clinical rehabilitation parameters of the control
group is observed in post assessment, which indicates that our system promotes
the rehabilitation of impaired cerebral cortices and accelerates the reconstruction
of the neuron feed loop of stroke patients.

5 Summary

In this paper, we proposed an adaptive Adaboost method in frequency for classi-
fying 2-class motor imagery EEG of stroke patients. This method filtered training
data with different bands and produced weak CSP-SVM classifiers for following
boosted into a better one. Applying both the proposed method and traditional
CSP-SVM on the same datasets of stroke subjects, we compared their classi-
fication accuracies. The simulation results proved our method outperforms the
general CSP-SVM approach. By analyzing the weight of each optimal model, we
provide an evidence of the band of EEG frequency changed during rehabilitation,
which is also an evidence of feasibility of our BCI-FES rehabilitation system.

A shortcoming of the method is that we didn’t have an auto-adapt boundary
to control the number of boosting iterations to avoid over-fitting. Considering
the accuracy of pervious round and the accuracy gap between suboptimal models
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in each round, we may improve the performance of current algorithm by given
a better weight during boosting. A cross validation for choosing the best model
is more convincing than a greedy way for obtaining optimal model.

For future work, we plan to focus on the EEG changes in beta band during
rehabilitation to reveal the mechanism. Moreover, we plan to apply our BCI-
FES system to more post-stroke cases and collect more data of stroke patients
to provide generally evidence the effectiveness of our method or maybe adapt to
reach a better performance.

Acknowledgement. The work was supported by the National Natural Science
Foundation of China (Grant No. 90920014 and 91120305) and the NSFC-JSPS
International Cooperation Program (Grant No. 61111140019).
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Abstract. From the viewpoint of image processing, a spectral feature-
based TLS (Tikhonov-regularized least-squares) ensemble algorithm is
proposed for tumor classification using gene expression data. In the TLS
model, a test sample is represented as a linear combination of atoms of
an overcomplete dictionary. Two types of dictionaries, spectral feature-
based eigenassays and spectral feature-based metasamples, are proposed
for the TLS model. Experimental results on standard databases demon-
strate the feasibility and effectiveness of the proposed method.
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1 Introduction

Analysis of gene expression data has become an effective auxiliary measure for
disease diagnosis and treatment. In most of existing works, samples of gene ex-
pression data are treated as one-dimensional signals by means of some statistical
signal processing techniques, or intelligent computation algorithms.

As a powerful data analysis technique, the sparse representation (SR) has
been widely applied on signal processing. Specially, a metasample-based SRC
is proposed in [1] for tumor classification. Extensive experiments on publicly
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available gene expression data sets show that the proposed method can achieve a
competitive recognition performance to many existing classification approaches.

Although SRC has shown an excellent performance, it’s working mechanism
is still not clearly revealed at present. Most researchers think that its superior
classification ability is mostly due to the !1-norm sparsity constraint. However,
very recently, some researchers have started to doubt the function of sparsity
in image classification [2] [3]. Specially, the role of collaborative representation,
i.e., using the training samples from all classes to represent the query sample, is
regarded as the key factor in [3].

Information in the frequency domain is useful in image classification. In [4]
[5], a global feature of a scene, named “spatial envelope”, is proposed by ex-
ploring the dominant spatial structure of a scene. Although the spectral feature
is specially designed for scene classification, in this paper, from the viewpoint
of two-dimensional signal, i.e., image, we present a spectral feature-based TLS
(Tikhonov-regularized least-squares) ensemble algorithm for tumor classification
using gene expression data.

To explore the spectral feature of gene expression data, the samples are trans-
formed into two-dimensional images at first. Multi-resolution spectral images are
then extracted and used as representations of gene expression data by means of a
method similar to [4], thereby enlarging the size of the training set greatly. Two
types of dictionaries are investigated in the TLS model: spectral feature-based
eigenassays, i.e., statistically independent basis snapshots, and spectral feature-
based metasamples, which are both extracted via a two-stage approach. The
strategy of classifier committee learning (CCL) is designed further to combine
the results obtained from different spectral features to determine the classes of
the test images. Experimental results on some standard databases demonstrate
the feasibility and efficiency of the proposed method.

2 Spectral Feature-Based TLS Ensemble Algorithm

2.1 Spectral Feature Image Representation

The task of tumor classification is to correctly identify the categories of new test
samples given the labeled training samples. Let an p × n matrix X0 denote the
gene expression data with p genes and n samples. The element X0

ij of X0 is the
gene expression level of the ith gene in the jth assay (cell sample). The ith row
ri(ri = [X0

i1, · · · , X0
in]) of X

0 denotes the expression profile of the ith gene. And
the jth column cj(cj = [X0

1j , · · · , X0
pj ]) of X

0 is the snapshot of the jth assay.
To explore the spectral feature of gene expression data, the samples ci should

be transformed from one-dimensional signals into two-dimensional images Ii.
Although the images can have arbitrary sizes of rows and columns, for simplicity,
all samples are reshaped as square images here. Fig. 1 shows an illustration to
transform a gene sample c into an image I. Sections with the same length d are
drawn and put as columns of the image in sequence. When the length of the
last section is not enough, a symmetry filling operation is performed at first, as
shown in Fig. 1 (b).
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M
M

Fig. 1. An illustration to transform a gene sample into an image

After transformation, we then extract the spectral feature of these transformed
images. The image is first pre-filtered by using a local normalization method of
intensity variance [4]. Next, a set of Gabor filters with ns scales and no orien-
tations is applied on the Fourier transform of the prefiltered image via a dot
production operation. Finally, the amplitude of the resulting image is computed
as the spectral feature image. As a result, for the given Nf (i.e. ns ×no) filters,
Nf spectral feature images can be obtained for each training sample.

2.2 Dictionary Extraction of Spectral Feature Image

Dictionary extraction is a crucial component in the TLS model. The classification
performance is determined by the dictionary to a large extent. Here, we present
two types of spectral feature-based dictionary: metasample computed through
SVD (singular value decomposition), and eigenassay obtained via ICA (indepen-
dent component analysis). To utilize the statistical signal processing techniques
SVD or ICA, the spectral feature image F is stretched as a one-dimensional
signal with an inverse process shown in Fig. 1 (a).

Denote X the matrix that contains the spectral feature signals of X0 formed
from one filter, in which each row is the spectral feature vector corresponding to
the sample in X0. Suppose there are K object classes for the n samples of X0,
and each class includes ni samples, X can be divided into K data sets Xi(i =
1, · · · ,K), where Xi is a collection of the spectral feature vectors corresponding
to the ith class.

1) Spectral feature-based metasamples

The matrix singular value decomposition of Xi can be represented as:

Xi = UiSiV
T
i , (1)
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where Ui and Vi are unitary matrices, Si is a diagonal matrix with nonnegative
diagonal elements in decreasing order. Denote

Ai = SiV
T
i , (2)

(1) can be rewritten as:
Xi = UiAi (3)

Considering Ai as coefficients and the training samples of the ith class are suf-
ficient, any samples belong to this class can be represented via the subspace
spanned by the columns of Ui. Further, the bases of all categories are collected
together, denoted as U = [U1,U2, · · · ,UK ]. Regarding each column as one
atom, all columns of U consist of a dictionary of the TLS model. The atoms
formed by SVD are also called metasamples.

2) Spectral feature-based eigenassays

Assume that XT
i is a linear mixture of mi unknown statistically independent

basis snapshots (eigenassays) sj(sj = (s1j , · · · , spj)T , j = 1, · · · ,mi), the linear

mixing ICA model [6] of XT
i can be formulated as

XT
i = AiS

T
i (4)

where S = (s1, · · · , smi). The task of ICA algorithm is to find a linear transfor-
mation given by an mi × ni matrix Wi:

YT
i = WiX

T
i (5)

where Y = (y1, · · · ,ymi
), so that the random variables yj(j = 1, · · · ,mi) are as

independent as possible. The outputs yj of ICA algorithm are the estimates of
the independent eigenassay sj . In terms of Eqs. (4) and (5), the mixing matrix
A can be given by

Ai = W−1
i (6)

According to Eq. (4), the ith sample ci can be expressed as

ci = ai1y1 + · · ·+ aimiymi
(7)

It can be seen that ci can be represented via the subspace spanned by the
estimated eigenassays yj . Further, the eigenassays of all categories are put to-
gether, denoted as Y = [Y1,Y2, · · · ,YK ]. Regarding each column as one atom,
all columns of Y consist of a dictionary of the TLS model. In this paper, the well
known fast and robust fixed-point algorithm (FastICA) [7] is used to extract the
dictionary because of its efficiency and accuracy.

2.3 TLS Ensemble Model

Denote Φ a dictionary formed by SVD or ICA, given a test sample, its spectral
feature signal z can be modeled as a linear representation of the atoms of Φ:

z = Φα + v (8)
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where v ∈ Rp is the noise, and α is the coefficient vector. α can be determined
by solving the least squares problem with !2-regularization, i.e., the TLS model,

min
α

||Φα − z||22 + λ||z||22 (9)

where λ is the regularization parameter. The solution of the TLS model can be
analytically derived as [8]:

α = (ΦTΦ+ λI)−1ΦT z (10)

Denote P = (ΦTΦ + λI)−1ΦT , we can see that P depends on Φ. As described
in Section 2.2, the dictionary Φ is produced by the training samples. Therefore,
Φ is independent of z, and P can be regarded as a projection matrix [3]. As a
result, the solutions of the test samples can be obtained in a batch model. As
a comparison, the solution of the least-squares problem with !1-regularization,
i.e. the SR model

min
α

||Φα − z||22 + λ||z||1 (11)

is sparse but encounters a heavier computation burden. The reason for this is
that the solutions of the test samples must be computed one by one, i.e. the
optimization operation should be carried out for each test sample in sequence.
Hence, the computation burden is heavy when the size of the test samples is
large. Therefore, instead of using the SR model, the TLS model is adopted in
our proposed ensemble algorithm in view of its accuracy and efficiency.

We construct one weaker classifier for each filter. As a result, for each test
sample, Nf weaker classifiers are formed by means of the spectral features ex-
tracted via Nf filters. Finally, a classifier-combination strategy is adopted to
determine the class label of the test sample.

3 Experimental Results

To evaluate the performance of the proposed method, a series of experiments
are performed on four data sets: two two-class data sets and two multi-class
data sets [9] [10] [11] [12]. As in [1], the classification accuracy obtained via a
stratified 10-fold cross validation is adopted here to measure the classification
performance of different methods. For the stratified 10-fold cross validation, the

Table 1. Classification results of SVD-TLS and ICA-TLS

SVD-TLS ICA-TLS

Colon 0.8387 0.8387

Leukemia 0.9722 0.9722

Leukemia1 0.9444 0.9444

Leukemia2 0.9722 0.9583
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Table 2. Classification results of SVD-SR and ICA-SR

SVD-SR ICA-SR

Colon 0.8387 0.8548

Leukemia 0.9722 0.9722

Leukemia1 0.9444 0.9444

Leukemia2 0.9583 0.9583

Table 3. Classification results of MRS-SVD-TLS and MRS-ICA-TLS on four data sets

MRS-SVD-TLS MRS-ICA-TLS

Colon 0.9032 0.9032

Leukemia 0.9861 0.9861

Leukemia1 0.9861 0.9861

Leukemia2 0.9861 0.9861

data is divided into 10 folds at first, and then ten trials are performed. In the ten
trials, each fold is used as the test samples while the remained is adopted as the
training samples in sequence. The classifier performance is updated constantly,
and an accumulated result is obtained after ten trials. This evaluation method
can efficiently check the robustness of the algorithms.

We first investigate the classification performance of the TLS model. When the
dictionary is produced by SVD (SVD-TLS) or ICA (ICA-TLS), the classification
results of the TLS model are given in Table 1. We can see that the classification
accuracies of these two types of dictionaries are close. Further, as a comparison,
Table 2 shows the classification accuracies of the SR model when the dictionary
is produced by SVD (SVD-SR) [1] or ICA (ICA-SR). The results verify again on
the SR model that these two types of dictionaries have a similar classification
performance. Moreover, it can be seen from Tables 1 and 2 that, for the same
dictionary, the SR model and the TLS model have the nearly same classification
accuracies.

We then carry out the experiments on four data sets using our proposed TLS
ensemble algorithms with dictionaries produced by SVD (denoted as MRS-SVD-
TLS) and ICA (denoted as MRS-ICA-TLS). Table 3 shows the classification
results of MRS-SVD-TLS and MRS-ICA-TLS on two data sets. It can be seen
that MRS-SVD-TLS and MRS-ICA-TLS have a close classification performance.
Moreover, we can see from Tables 1, 2 and 3 that the classification accuracies of
MRS-SVD-TLS and MRS-ICA-TLS are higher than those of SVD-SR, ICA-SR,
SVD-TLS and ICA-TLS. The results indicate that the classification performance
is improved efficiently after introducing the spectral feature and CCL. Therefore,
the proposed spectral feature-based TLS ensemble classification framework is
feasible and efficient for tumor classification.
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4 Conclusion

From the viewpoint of image processing, in this paper we propose a spectral
feature-based TLS ensemble algorithm for tumor classification using gene ex-
pression data. Experimental results on four standard data sets demonstrated
the effectiveness and efficiency of the proposed algorithm.
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Abstract. P300 is a popular characteristic potential for electroencephalo-
gram(EEG) based brain-computer interface(BCI). In P300-BCI, the extraction 
of P300 is a very crucial operation. Independent component analysis(ICA) 
technique is suitable for P300 extraction. In this paper, aiming at the current 
large volume of EEG data, the applications of three ICA algorithms were pro-
posed for P300 extraction and were compared. The experiments ran on real 
EEG data respectively. PI and recognition accuracy were checked. The results 
show artificial fish swarm algorithm based ICA(AFSA_ICA) can extract P300 
faster, reducing the computation time for BCI with PI remaining better.  

Keywords: brain-computer interface(BCI), P300, computation time, 
AFSA_ICA. 

1 Introduction 

An electroencephalogram(EEG) based brain-computer interface(BCI) is a communi-
cation system in which messages that an individual sends to the computer do not pass 
through the peripheral nerve pathways but are detected through EEG activity[1]. P300 
potential is often used for BCI because of its independence from training and scathe-
less measurement[2,3]. In a P300-BCI, the first important step is to extract the P300 
potential accurately. Because of the mutual independence between spontaneous EEG, 
P300 and other artifacts, independent component analysis(ICA) technique is suitable 
for P300 extraction. 

ICA is a blind source separation(BSS) technique that can extract the relevant in-
formation buried within noisy signals and allow the separation of measured signals 
into their fundamental underlying independent component(IC) [4]. The ICA based 
algorithms used in BCI need to be fast enough to meet its real-time requirement. But 
the fact is that the EEG data size is very huge because of the numerous electrodes and 
repeated measurement, and facing such a large volume of EEG data, most presented 
ICA based algorithms run slow and do not satisfy the real-time BCI system. 
                                                           
* Corresponding author. 
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Aiming at above-mentioned current situation, the applications of three ICA based 
algorithms for P300 extraction, including FastICA, PSO_ICA and AFSA_ICA, and a 
comparison between the implementations of them were described. Based on real EEG 
data, the computation time efficiencies of three algorithms were investigated with 
respect to iteration number and iteration time. And then, the performances of the sepa-
ration were measured using performance index(PI). Our objective was to choose a 
better ICA based algorithm, ensuring the P300-BCI reducing the computation time 
with the recognition accuracy remaining unimpaired and to lay a foundation for the 
realization of real-time P300-BCI system. 

2 Dataset 

Our experiment data came from the BCI research group of Ecole Polytechnic Fede-
rale de Lausanne[5]. It contained EEG data from 4 disabled subjects and 4 healthy 
subjects, with measurements from 32 electrodes placed at standard sites(Standard 
Electrode Position Nomenclature, American Electroencephalographic Association 
1990) on the scalp. There were 6 images used to be the target stimulus. In the experi-
ment, every subject needed to finish 4 recording processes, with every process includ-
ing 6 flash sequences. 6 images each flash once called a block, and 16 blocks consti-
tute one flash sequences. 

3 The ICA Based Algorithms 

ICA can work well without any information about the mixing matrix. We denote the 
time varying observed signals(mixed signals) by x(t)=(x1(t), x2(t),…, xn(t))

T and the 
source signals consisting of ICs by s(t)=(s1(t), s2(t),…, sm(t))T, and therefore 
x(t)=As(t). Then there exists a de-mixing matrix w such that s(t)=wx(t). The object of 
ICA is to find w , while y(t) = w x(t) is the approximation for the source signals s(t).  

ICA is actually an optimization problem, depending on objective function and op-
timization algorithm. In this paper, according to negentropy maximum criterion [6], 
the objective function is defined by 


=

=
m

1i
i )J(yC(y)  .     (1) 

where yi= wix(t), J(yi) ≈ρ (E {Gi (yi)}-E {Gi (v)}) 2, ρ is a positive constant, Gi (·) is a 
non-quadratic function, E{·} is a mean function and v is a Gaussian variable having 
zero mean and unit variance. And then, three different ICA based algorithms were 
described according to different optimization algorithm. 

3.1 FastICA 

FastICA, proposed by Hyvärinen in 1999[7], is one of the more popular and refe-
renced ICA techniques which is based on its own unique fast fixed-point iterative 
algorithm. Using newton iteration method and choosing an initial weight vector w, the 
basic form of FastICA iteration algorithm is as follows: 
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 w=E{xG(wTx)}-E{G’(wTx)}w . 

 w= w/|| w|| .   (2) 

The algorithm calculates until convergence. The shortage of FastICA is that it traps 
easily into the local optimum if the initial value is a poor choice. 

3.2 PSO_ICA 

Particle swarm algorithm(PSO) is an optimization algorithm based on swarm intelli-
gence proposed in the mid-nineties of last century[8]. PSO algorithm, which tends to 
get the global optimal point by updating the speeds and positions of the particles 
gradually, can avoid heavy computational load and costing of time.  

The updating formulas in PSO for speeds and positions of the particles are: 

                 vi(k+1)=ηvi(k)+c1rand1(pi(k)-xi(k))+c2rand2(pg(k)-xi(k)) .  

 xi(k+1)=xi(k)+vi(k) .   (3)  

where η is inertia weight, c1 and c2 are acceleration constants, rand1 and rand2 are two 
random functions which values between 0 and 1, i=1,2,…,M, M is the number of 
particles in the swarm, k is the number of particle evolutionary steps, xi is the current 
position of the ith particle, pi indicates the best position that the ith particle have  
experienced and pg means the best position that all particles have experienced.  

The important problem for PSO is to look for a fitness objective function. When 
the negentropy of ICA technique is used to be the objective function of PSO, the 
PSO_ICA algorithm is built up. The steps of PSO_ICA algorithm are as follows: 

 
1) Center and whiten the observed sigals x(t), get z(t); 
2)Transform the m×n dimensional de-mixing matrix w to the 1×(m×n) dimensional 

particle matrix w’, and initialize all the particles, including their positions wi(0) and 
speeds vi(0); 

3) Using Eq.(1) to calculate the objective function values of all particles, specially 
y(t)=wz(t); 

4) Select the personal best point to pi and the best point of all particles to pg; 
5) Update the position and speed of each particle according to Eq.(3); 
6) Record every global optimum, if maximum iterations or minimum error is at-

tained, stop the evolutions, otherwise go back to the step 3. 
7) Transform the 1×(m×n) dimensional particle matrix w’ to the m×n dimensional 

de-mixing matrix w , so y (t)= w x (t) is the approximation for the source signals s(t). 

3.3 AFSA_ICA 

Artificial fish swarm algorithm(AFSA) is a newly emerging method for swarm  
intelligence optimization[9]. Every artificial fish(AF) in the whole swarm has the 
abilities to achieve four basic actions: preying, swarming, following and moving. 
AFSA algorithm begins with several initial points, having the capability of parallel 
search and information sharing.  
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The moving action is defined as follow: 

 uj=ui+visual·rand .  (4) 

where visual is its vision scope, rand is a random function which values between 0 
and 1, ui is the current position of AF while uj , the position it randomly moves to.  

The preying action allows the position of AF update as follow if the food  
concentration of uj is higher than ui: 

 ui=ui+
||uuuu||

uuuu

ibestij

ibestij

）（）（

）（）（

−+−
−+−

·step·rand .  (5) 

where ubest is the best position of all AFs, and step means the moving step length. 
The center position of all AFs in the swarm is defined as uc. The swarming action 

allows the position of AF update as follow if the food concentration of uc is higher 
than ui: 

 ui=ui+
||uuuu||

uuuu

ibestic

ibestic

）（）（

）（）（

−+−
−+−

·step·rand .  (6) 

The best position of all AFs in the swarm is defined as ub. The following action  
allows the position of AF update as follow if the food concentration of ub is higher 
than ui: 

 ui=ui+
||uuuu||

uuuu

ibestib

ibestib

）（）（

）（）（

−+−
−+−

·step·rand .  (7) 

When the negentropy of ICA technique is used to be the objective function of AFSA, 
the AFSA_ICA algorithm is built up. The steps of AFSA_ICA algorithm are as  
follows: 
 

1) Center and whiten the observed sigals x(t), get z(t); 
2)Transform the m×n dimensional de-mixing matrix w to the 1×(m×n) dimensional 

AF position matrix w’, and Initialize all the AF positions wi(0) and all dependent 
parameters ; 

3) Using Eq.(1) to calculate the objective function values of all AFs, specially 
y(t)=wz(t); 

4) Evaluate every AF, and then select one of the four basic actions to execute,  
updating its position;  

5) Record every global optimum, if maximum iterations or minimum error is  
attained, stop the evolutions, otherwise go back to the step 3. 

6) Transform the 1×(m×n) dimensional AF position matrix w’ to the m×n  
dimensional de-mixing matrix w , so y (t)= w x (t) is the approximation for the 
source signals s(t). 
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4 Results and Analysis 

For the real EEG data, the obtained ICs using FastICA, PSO_ICA and AFSA_ICA 
respectively were averaged between 0~600ms according to the same stimulus 
row/column. The ICs, which got their maximum amplitude at 250~400ms after the 
onset of stimulus and got their top two maxima amplitudes on channel Cz, C1 or C2, 
were kept, with the others abandoned. The kept ICs were inverse operated to the scalp 
electrode and then 0~10Hz filtered. Finally, the peak amplitude and the wave area in 
the 250~400ms time window were extracted to build a 2-dimensional feature vector, 
and a simple liner classifier was employed to implement the classification. 

Table 1. Iteration performances and PI using three algorithms 

 iteration 
number 

iteration 
time(s) 

PI 

FastICA - 45.3 0.11 
PSO_ICA 142 34.7 0.09 

AFSA_ICA 127 31.2 0.08 

 
To judge the performance of the separation of the mixed signals into ICs, we used 

PI of the permutation error[10]: 

PI=
M2
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where c= wA= ( cij ), and M is the number of variables. PI is zero when the desired 
subset of ICs is perfectly separated. 

The averaged iteration number and iteration time and PI for all eight subjects using 
three ICA based algorithms were listed in Table 1. The low PI and the small iteration  

 

 
Fig. 1. The averaged recognition accuracies using three algorithms with different averaged 
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number and time showed that AFSA_ICA had superior time efficiency and superior 
separation performance. These favorable properties could make the following classi-
fication more accurate. Fig.1 described the averaged recognition accuracies for all 
eight subjects using three algorithms with different averaged times. As we saw, three 
algorithms all achieved 100% recognition accuracy with 16 times averaged. While in 
the condition of less times, AFSA_ICA performed best, followed by PSO_ICA. 

The experiment results show that ICA based algorithms can extract P300 satisfac-
torily, fitting to be the feature extraction tools in P300-BCI. Especially, AFSA_ICA 
ensures lower PI and the smaller iteration numbers and times, having the ability to 
reduce the computation time with the recognition accuracy remaining unimpaired. 

5 Conclusion 

The extraction of P300 potential is a very crucial operation in P300-BCI. ICA based 
algorithms can extract P300 accurately. As mentioned above, it worked well with just 
2-dimensional feature vector built according to the extracted P300 potential using 
ICA based algorithms sent to the simple liner classifier. In this paper, by comparing 
FastICA, PSO_ICA and AFSA_ICA on real EEG dataset, we get the conclusion that 
AFSA_ICA, which works based on swarm intelligence optimization, can extract P300 
faster. Meanwhile, the low PI of AFSA_ICA indicates its superior separation perfor-
mance. All these favorable properties of AFSA_ICA make it have the ability to re-
duce computation time with the recognition accuracy remaining unimpaired, giving 
impetus to the further research for real-time BCI. 
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Abstract. A crucial problem for the overall performance of steady-state visual 
evoked potentials (SSVEP)-based brain computer interface (BCIs) is the right 
choice of the time-window length since a large window results in a higher 
accuracy but longer detection time, making the system impractical. This paper 
proposes an adaptive time window length to improve the system performance 
based on the subject’s online performance. However, since there is no known 
methods of assessing the online performance in real time, it is also proposed a 
feedback from the user, through a speller, for the system to know whether the 
output is correct or not and change or maintain the time-window length 
accordantly. The system was implemented fully online and tested in 4 subjects. 
The subjects have attained an average information transfer rate (ITR) of 
62.09bit/min and standard deviation of 2.13bit/min with a mean accuracy of 
99.00% and standard deviation of 1.15%, which represents an improvement of 
about 6.50% of the ITR to the fixed time-window length system. 

Keywords: brain-computer interface (BCI), steady-state visual evoked 
potentials (SSVEP), adaptive time-window length, online performance 
assessment. 

1 Introduction 

A brain-computer interface (BCI) is a device that translates humans intentions into 
control signals to provide a direct communication pathway between the human brain 
and output devices. For instance, patients with severe motor disabilities, such as 
amyotrophic lateral scleroses (ALS), severe cerebral palsy, muscular dystrophies, etc., 
who are incapable of communicating with external environment (locked-in syndrome) 
[1], can express their will to other people or operate a wheelchair by BCI without any 
brain’s normal output pathways of peripheral nerves and muscles [2]. 

Presently, due to its ease of implementation and its non-invasive operation, 
electroencephalogram (EEG) recorded along the scalp is widely used for BCI [3]. 
Based on the different categories of EEG signals, EEG-based BCIs are divided in 
many different types, such as P300, mu and beta rhythms desynchronization/ 
synchronization (event-related desynchronization/synchronization, ERD/ERS), slow 
cortical potential (SCP), visual evoked potential (VEP), etc. [2]. However, nowadays, 
most BCI systems that are not based on SSVEP reached a low information transfer 
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rate (ITR) of around 10~35 bits/min [2][4]. It has been reported that the SSVEP 
scheme provides the fastest and the most reliable communication paradigm for the 
implementation of a non-invasive BCI system [5-7].  

The recorded EEG signals can undergo considerable changes between training and 
feedback mode as well as during feedback itself. These variations in the signals can 
be due to task differences between training and feedback, variability of the recording 
caused by drying gel or micro movements of the electrodes, plasticity of the brain, 
due to experience with the task, modulation of cognitive states like attention, 
motivation and vigilance [12-14]. Hence, the need for an adaptive BCI based on the 
approach of making the computer adapt to the human’s brain and not vice-versa, by 
constantly monitoring the system and the subject, calibrating according to the 
variations, thus enhancing/ optimizing the overall performance of the BCI system. 

Several adaptive BCIs have been developed to overcome problems related to non-
stationary in the signals and to improve the overall performance of the system. 
Beverina et al. developed two protocols used in an offline-learning phase for the 
system to record a set of signals from the user that should be similar to the ones it 
would have dealt during the online tests [9]. Volosyak adopted an online adaptation of 
the minimum energy combination (MEC) method and three user adaptive time 
segment lengths, achieving a mean ITR of 70.41±25.390 bit/min and accuracy of 
99.76±0.583 % [10]. Valbuena et al. designed a faster SSVEP classification 
methodcalled swift BCI to detect the exact time where users start to modulate their 
brain signals [11]. 

In order to extract the features of the signals and classify them it is needed to 
define the time-window length that it is used to process the signal. The classification 
accuracy increases with the increase of the window length; however, by choosing a 
large window length, it will take too long to make a selection, which may make the 
system not practical [15][16]. Therefore, the right choice of the window length is 
crucial for the overall performance of the system. Accordingly, a novel adaptive time-
window length based on an SSVEP-based BCI speller is introduced in this paper. The 
adaptive time-window length mechanism is used to increase the ITR, thus the 
system’s performance, by selecting the appropriate time-window length based on the 
subject’s online performance, which is assessed through a feedback from the user to 
the system. 

2 Methods 

2.1 Visual Stimulator 

The proposed spellerallows to input 48 characters (26 letters: ‘A-Z’, 10 digits: ‘0-9’ 
and 9 common used symbols) plus “Del” (delete) and “Undo”. It has four pages and 
16 targets in each page, 3 of the 16 buttons are reserved for turning page. The turning 
page buttons show the character arrangement of that page so that the users can easily 
find the correct position of characters. Figure 1 shows the stimuli layout of each page. 
The frequencies of these 16 targets range from 8Hz to 15.5Hz with increase steps of 
0.5Hz. The visual stimulator was programmed in Microsoft Visual C++ 2010 and 
DirectX SDK 2010.  
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(a) First Page (b) Second Page 

 
(c) Third Page (d) Fourth Page 

Fig. 1. Graphical User Interface of the SSVEP-based BCI Speller 

2.2 Feature Extraction 

Canonical correlation analysis (CCA) as a mathematical and statistical method has 
been utilized widely in many different fields. It deals with the data with linear 
combinations, for two certain data sets, such that the correlation between the variables 
is maximized. Consider two multidimensional random variables X, Y and their linear 
combinations x=XTWx and y=YTWy, respectively. CCA finds the weight vectors, Wx 
and Wy, which maximize the correlation between x and y, as shown in (1) ,  (1)

Usually, the CCA compares the EEG signals with the preinstalled reference signals in 
arithmetic to calculate the CCA coefficients in SSVEP-BCI. Defining the user’s 
command C in (2), 
 1,2, … ,  (2)
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where ρi are the CCA coefficients. The reference signals Yf are set as shown in (3) 2cos 222  (3)

where Nk is the harmonic number, for more details refer to [8]. 
In our system, the sampling points are used to calculate the CCA coefficients in 

intervals of 0.2s. 5 correlation coefficients (CCs) are obtained in a gazing time 
interval. If more than two CC command labels are the same, the value is selected; 
otherwise the EEG is detected again. If the CC criterion is satisfied, then the 
coefficients are selected to calculate the arithmetic mean. If it is larger than  
the default threshold value, the selected CC will be chosen as the final result and the 
system will output a selection command. The threshold values are used as auxiliary 
tools to reject the influence of noise. 

2.3 Adaptive Time-Window Length Mechanism 

Based on our previous work [15][16], after analysing the effects of the time-window 
length on the classification accuracy, it was found that the classification accuracy 
increased with the time window length until reaching a plateau at around 5s for the CCA 
used in our system. However, for some subjects it is possible to decrease the length of the 
time-window length, without compromising the accuracy, thus, decreasing the 
classification time and increasing the system’s overall performance. Thus, the system 
should be able to adaptively change the time-window length based on the subject’s 
online performance. Nevertheless, it is difficult and there are no known methods to 
evaluate the online performance in real time. Hence, in this paper, it is adopted a 
feedback from the user through two commands (“Del” and “Undo”) of the BCI Speller to 
inform the system whether the decision taken was correct or not and the system will 
increase or decrease the time-window length accordantly. Therefore making possible to 
achieve an online adaptive time-window length mechanism that selects the time-window 
length based on the performance of the subject. 

First, the command “Del” (delete) is used by the user to correct a misspelling, 
which may be a result of the user’s error. In other words, the user selects this 
command when he/she had selected a wrong target or the user has changed his mind 
about which word he/she initially wanted to write. The selection of this command 
doesn’t affect the behavior of the system. 

However, another command, “Undo”, is used as a feedback from the user, 
indicating that the last command is wrong, even though the user was gazing at the 
correct target. One of the reasons for this miss detection maybe the time window 
length to be short for the program to make the right decision. In this case, the solution 
would be to increase the time window length to prevent this miss detection.  

The “Undo” command allows the user to undo the last entered command, not like 
“Del”, the undone command can be not only a character but also the action of turning a 
page or even the delete. The user should only the “Undo” when he/she recognizes that 
he/she was gazing at a certain flicker but the resulted output command was wrong.  
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In addition, if the system does not receive "Undo" for a long period of time, it 
means that the time window length (or consecutive time) is good enough. The system 
can then reduce the time window length a little bit, thus enhancing the system 
performance. In order to prevent the time-window length to become too small, thus 
causing errors in the detection and not allowing the user to correctly select the 
“Undo”, to increase the time-window length, it is used two different windows (i.e., 
buffers) to analyze the data. A fixed one for the “Undo”, which will have a higher 
priority and a second window for the rest. Hence, the “Undo” can be selected even if 
the time-window length is too short. 
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Sometimes it takes too long for the system to make a decision but eventually, it 
takes that decision so if the system continues to get long correct decisions it counts 
them as normal correct decisions and decreases the time-window length. However, 
for the next selections it will take even longer to select. To prevent this problem, it 
was added a constraint of 5 seconds for the decision to be counted as a normal right 
decision, which will count towards decreasing the window length. 

The detailed flow-chart of the adaptive mechanism is shown in Figure 2 and  
Figure 3. 
 
 

 

Fig. 3. Flow Chart of the Output of the Adaptive Time-Window Length 
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3 Results 

3.1 Experimental Setup 

In this experiment, an LCD monitor was used as the visual stimulator (ViewSonic 
22”, refresh rate 120 Hz, 1680×1050 pixel resolution).  Four subjects, three males 
and one female (aged from 22 to 29 years old), with normal or corrected to normal 
vision participated in the experiment. The subjects were seated comfortably facing the 
monitor with a distance of about 60 cm, in a normal office circumstance. 6 standard 
EEG electrodes placed on POZ, PO3, PO4, OZ, O1, and O2 were used as input channels. 
EEG signals were collected by an amplifier (g.USBamp, Guger Technologies, Graz, 
Austria) and were filtered by 0.5Hz to 60Hz band-pass filter and sampling rate was 
256Hz. 

3.2 Procedures 

Before the experiments, the subjects took few minutes to get familiar with the Speller 
and the function of each flicker. None of the parameters were changed or adapted. 
The subjects were asked to input the word “SSVEP-BCI” one time in a total of 3 trials 
for each of the two cases: fixed time-window length and adaptive time-window 
length. The fixed time-window length was used as a comparison of the performance 
of the adaptive mechanism.  

3.3 Results 

The most widely used performance index of a BCI is the ITR, which measures the 
amount of subject information transferred per unit time in a BCI system. The ITR 
depends on the number of selections (N), detection speed (s) and accuracy rate (p). It 
provides a convenient way of measuring the performance of a BCI system without 
consideration of accuracy in a discrete message or a fixed time period [2][4].  60 1 1 1  (4)

First, it is important to notice that the number of flicker (N) in this system is 16, not 
the sum of the flicker of all the 4 pages. If a wrong command is detected, the user 
should correct this error. Thus, in this case the correction step is counted as a correct 
command classification. Hence the number of commands can increase depending of 
the subject's performance. In case of an incorrectly classified selection command, the 
wrongly spelled letter should be corrected. This results in one additional command to 
select the “Del” or “Undo”.  

The classification accuracy (p) is calculated as the number of correct command 
classifications divided by the total number of classified commands. Since all the 16 
frequencies can be (erroneously) classified, it could be assumed that all choices are 
equally probable.  
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Table 1 shows the contrast between the two time-window length types (adaptive 
and fixed) average measurable values for each subject as well as the mean (Mean) and 
standard deviation (S.D.) for the whole experiment. The detection time is measured 
between two consecutive detections and gives a good comparison between the two 
systems besides the usual ITR. 

Table 1. Adaptive Time-Window Length vs Fixed Time-Window Length 

Subject Time-Window Length Type Accuracy (%) Detection Time (s) ITR (bit/min) 

S1 Fixed 100.00 4.42 53.92 

 Adaptive 98.00 4.05 59.47 

S2 Fixed 100.00 3.89 60.89 

 Adaptive 100.00 3.76 64.32 

S3 Fixed 100.00 3.92 60.78 

 Adaptive 100.00 3.80 63.21 

S4 Fixed 100.00 4.11 57.83 

 Adaptive 98.00 3.73 61.34 

Mean Fixed 100.00 4.09 58.36 

 Adaptive 99.00 3.85 62.09 

S.D. Fixed 0.00 0.24 3.28 

 Adaptive 1.15 0.13 2.13 

 
It can be seen from the Table 1, the overall ITR of the adaptive system is 

62.09bit/min and a standard deviation of 2.13bit/min with a mean accuracy of 99.00% 
and a standard deviation of 1.15%, which represents an improvement of about 
6.50%of the ITR to the fixed time-window length system. All the subjects 
experienced an increase of the ITR, obtaining improvements of 10.29%,5.63%,4.00% 
and 6.07% for the subjects 1, 2, 3 and 4, respectively. This increase of the ITR is a 
result of the decrease of the time-window length of an average of 5.87% for each 
subject. However, for clearer conclusions it is needed to test it to a larger population 
and also observe the performance of the adaptive system in subjects that cannot attain 
good control of the SSVEP-based BCIs to confirm that by increasing the time-
window length it is possible to increase their performance. Moreover, the word used 
is short, a subject, with 100% accuracy, only needs 14 selections to write “SSVEP-
BCI”. Hence, it is needed to test the system for more complex sentences to see its 
performance in a long run.  

It is worth mentioning that the system is fully online and that offline calibration of 
the stimuli frequencies and the threshold of the CCA coefficients could improve the 
system. However, insisting in a fully online system the results presented in this study 
are satisfactory and very promising. 

4 Conclusions 

In this paper, an adaptive time-window length BCI system is proposed. The 
motivation of this work is to present a mechanism that adaptively selects the 
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appropriate time-window length based on the subject’s online performance to enhance 
the overall system performance.Since to evaluate the online performance is difficult, 
it was considered a feedback from the user to system to allow the system to know 
whether the output was correct or not and then make a decision to change the size of 
the time-window length or not. This project builds up on the existing system in our 
laboratory and uses an SSVEP-based BCI Speller as the core of the proposed 
algorithm. Even though this is an on-going project and we only present some 
preliminary results, these results are promising since the proposed mechanism 
allowed an increase of around to 6.50% of the ITR without compromising the 
accuracy.  

In further work, in order to reasonably increase or decrease the time-window 
length the system should also take into account the time interval to calculate the CCA 
coefficients, the number of correlation coefficients and the detection time. Besides, a 
more efficient and practical way of assessing the real time online performance is to be 
studied. 
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Abstract. In this paper, we propose a novel geodesic distance based
clustering approach for delineating boundaries of touching cells. In spe-
cific, the Riemannian metric is firstly adopted to integrate the spatial
distance and intensity variation. Then the distance between any two
given pixels under this metric is computed as the geodesic distance in a
propagational way, and the K-means-like algorithm is deployed in clus-
tering based on the propagational distance. The proposed method was
validated to segment the touching Madin-Darby Canine Kidney (MDCK)
epithelial cell images for measuring their N-Ras protein expression pat-
terns inside individual cells. The experimental results and comparisons
demonstrate the advantages of the proposed method in massive cell seg-
mentation and robustness to the initial seeds selection, varying intensity
contrasts and high cell densities in microscopy images.

Keywords: Cell Segmentation, Riemannian Metric, Distance
Propagation, Clustering Analysis.

1 Introduction

High content screening (HCS) has been popular for discovering novel drugs and
targets by investigating the morphological changes of interested proteins inside
individual cells [1–3]. Along with the advance of automated image acquisition
equipments, on one hand, researchers have the access to large scale cell images
with multiple fluorescent markers, whereas, on the other hand, great challenges
have been posed on the automatic quantification of individual cell morphology
due to their complex appearances, uneven intensity, low signal-to-noise ratio
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(SNR), and cell touching. Automated and accurate detection and segmentation
of touching cells is crucial for biological studies such as cell morphological analy-
sis, cell tracking and cell phase identification [4, 5]. However, it remains an open
problem due to the aforementioned challenges.

A set of approaches of automatic cell segmentation in various kinds of images
have been proposed [6]. In general, the widely used segmentation approaches,
for example,watershed [5, 7] and deformable models, such as the snake model,
and level set methods [8, 9], are sensitive to initializations(e.g., seeds selection),
and intensity variation inside cells. For example, the watershed algorithm is
frequently criticized for the over-segmentation problem, which requires further
processing. Active contour or level set based deformable models are very sensitive
to boundary initializations. In addition, the computational cost is heavy for
these approaches. Therefore they are unsuitable for processing large scale image
data sets in high content screening studies. Clustering methods and statistical
approaches have also been employed for cell segmentation [10–12]. This kind of
methods are efficient but usually provide incomplete segmentations because they
operate on the single pixel level and neglect the fact that cells are continuous
regions. Especially, these methods have limited ability in delineating boundaries
of touching cells in cell membrane segmentation [6]. Moreover, large intensity
variations both inside the cell membrane and across the whole cell have made
it a much more challenging problem to delineate cell boundaries, which usually
lead to biased segmentation results. To segment touching cells and delineate the
dividing boundaries, Jones et al. [13] proposed a new distance metric defined
on image manifolds which combined image gradients and inter-pixel distance.
This metric has demonstrated its effectiveness, but segmentation results heavily
depend on the initial selection of seeds. Centers of nuclei are adopted as seeds in
CellProfiler which implements the above idea [14]. However, this often fails due
to morphological variations of cells, and also requires accurate detection results
of cell nuclei, which takes extra computational cost and introduces errors from
the nuclear segmentation procedure. In addition, the nuclei image might not be
available in some HCS studies.

To improve the boundary delineation results of touching cells, in this paper, we
propose a geodesic distance based clustering method using the manifold distance.
Instead of requiring a seed point (e.g., detected cell nuclear center) for each
cell, seed points are iteratively updated in our method and will finally converge
to cell centers. Therefore, our method is robust to the initialization of seeds.
Moreover, it avoids the incomplete segmentation problem of clustering methods
mentioned before thanks to the spatial regularization term in the defined distance
metric.

The rest of this paper is organized as follows. In Section 2, we present the
geodesic distance based clustering method. Section 3 shows experimental results
on segmenting cell images with green fluorescent protein (GFP) tagged N-Ras
protein. Finally, a brief discussion of our findings is provided in Section 4.
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2 Methodology

2.1 The Riemannian Metric

We first introduce the Riemannian metric defined at each pixel in an image
I [13]. Specifically, G(·) is defined as

G(·) = ∇g(·)∇gT (·) + λE

1 + λ
, (1)

where E is the 2× 2 identity matrix, λ ≥ 0 is a regularization parameter and ∇
is a gradient operator. The function g is introduced to reduce the effect of noise
and usually set to be a weighted averaging function in certain neighborhood.
The infinitesimal distance at each pixel is then calculated by

‖ dx ‖2G(·)≡ dxTG(·)dx =

(
dxT∇g(·)

)2
+ λdxT dx

1 + λ
. (2)

The item
(
dxT∇g(·)

)2
increases greatly along directions which are parallel to

large gradients in the image and captures the boundary information. The op-
erator G(·) becomes Euclidean as λ increases to infinity and when λ = 0, the
operator considers only gradient information. More details can be found in [13].

2.2 The Geodesic Distance Based Clustering

Under the proposed Riemannian metric, the geodesic distance between any two
pixels can be obtained and utilized in cell segmentation. Specifically, the geodesic
distance from any pixel to another is calculated along the shortest path via
Dijkstra’s algorithm [13]. In general, the distance calculation propagates from a
smaller neighborhood of the starting pixel to a larger one, and finally reaches the
ending pixel. Similarly, the nonlinear dimensionality reduction method ISOMAP
also adopted the geodesic distance to discover the true structure of data [15].

Based on the geodesic distance introduced above, we propose a clustering
method to delineate cell boundaries. Inspired by the K-means algorithm [16],
which finds the optimal clustering result by iteratively updating cluster centers
and data’s belongingness until converged, we try to update cell seeds in a similar
way. Specifically, the algorithm can be abstracted as four steps:

1. Set initial seeds;
2. Compute pixels’ geodesic distances to each seed based on the Riemannian

metric and assign each pixel to the cell with the nearest distance;
3. Update each seed to the central point of its current enclosing cell;
4. Repeat step 2 and step 3 until the algorithm has converged or the maximum

number of iterations is reached.

Seeds will gradually converge to cells’ spatial centers. Thus the algorithm is
robust to the initial seeds selection. Moreover, since the algorithm is still based
on the Riemannian metric, it can accurately delineate touching cell boundaries
in images with high noise, low contrast, and large intensity variations.

After the algorithm has converged, cell boundaries are easy to draw according
to the current clustering result.



318 X. Chen et al.

3 Experimental Results

We applied the proposed algorithm on epithelial cells images from dog kidney
(MDCK) that were used to study the effects of drug compounds on regulating
Ras protein levels, which was determined by measuring the fluorescence inten-
sity of a GFP-tagged N-Ras reporter. Thus the accurate segmentation of cells
was crucial for the computation of GFP-tagged Ras level changes between the
controlled and drug-treated cells, as shown in green around cell boundaries in
images. The obtained images were with high noise, low contrast and varying
densities and morphologies, as illustrated in Fig. 1 and Fig. 2.

Images were first compressed and resized to 256×256 from 512×512, and then
transformed into gray scale images as the input images. Function g was taken
as the Gaussian low pass filter in 3×3 neighborhood and λ was set to 0.8 in our
experiments.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) The original cell image, (b) the corresponding gray scale image, (c) initial
seeds for the proposed method and K-means method, (d), (e), (f), segmentation results
of CellProfiler, K-means clustering and the proposed method, respectively. Red lines
were the detected cell boundaries.
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(a) (b) (c)

Fig. 2. Segmentation results on a low contrast image, (a) CellProfiler, (b) K-means,
(c) the proposed method. Red lines were the detected cell boundaries.

3.1 Adaptive Initial Seeds Selection

We proposed a simple adaptive method to initialize seeds for the algorithm using
local intensity variations. An approximately cell-sized square window was first
constructed. Then the window was slided in a zigzag way with certain sliding
step to scan the whole image. A seed was placed at the window center if and only
if there was no seed in the current window and that the average intensity inside
the window deviated from those of its already scanned neighboring window-
sized regions by a pre-set threshold value. In the following experiments, the size
of window was set to 20×20, the sliding step was set to 10, and the intensity
difference threshold was set to 0.5.

Fig. 1 (c) illustrated the seeds selection result on a sample image. Selected
seeds captured the variation of intensity in the image. However, they didn’t seem
to be good initial seeds in the way that they deviated from cell centers a lot and
several of them were even outside cells. We would show in the following part that
the proposed method could provide accurate delineation of cell boundaries even
under such an initialization and thus verify its robustness to seed initializations.

3.2 Clustering Results and Analysis

Fig. 3 demonstrated the evolution of cell seeds and corresponding distance maps
on a subregion of the image shown in Fig. 1 (a). Seeds quickly converged to
centers of corresponding cells. Cell morphologies were greatly recovered by the
distance map at the final iteration and true cell boundaries were then easy to
tell according to the clustering result.

Fig. 1 (f) showed the result of applying the proposed method on a MDCK
image. For comparison, results of CellProfiler and K-means algorithm were also
provided, as shown in Fig. 1 (d) and (e), respectively. For the K-means algo-
rithm, seeds initialization was the same as the proposed method and the feature
vector for each pixel was taken as (i, j, g(i, j)), where i and j were the row and
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Fig. 3. The original image (up left) and the corresponding maps of distances to nearest
seeds at the initial state (up right), iteration 5 (down left) and iteration 15 (down right).
The red * denoted the corresponding seed positions.

column number of the pixel in the image, and g(i, j) was the intensity in the
transformed gray scale image. The introduction of spatial coordinates in the
feature vector was inspired by the superpixel analysis to pursue integrate local
clustering [17].

CellProfiler generated a lot of false boundaries, especially in the low contrast
regions of the image. The result of K-means included some debris and more im-
portantly, the detected boundaries fluctuated a lot. While the proposed method
accurately delineated the smooth boundaries of cells. Moreover, K-means algo-
rithm took more than 100 iterations to converge. But our method converged
within 15 iterations, which saved a lot of time. Experiment results of the pro-
posed method on images with extreme low contrast and varying cell densities
were also satisfying, as illustrated in Fig. 2.

To quantitatively evaluate the segmentation results, comparisons with manual
segmentation results were made. The distance between the automatic segmenta-
tion results and manual segmentation results were calculated and the cumulative
distributions were presented in Fig. 4 [13]. 20 cell images were experimented with
and the average result was taken. The percentages of detected boundary pixels
in the accuracy of within 2 pixels from the manually delineated boundaries were
83.2%, 77.1% and 63.6% for the proposed method, CellProfiler and K-means al-
gorithm, respectively. Therefore, our method performed consistently better than
CellProfiler and K-means algorithm.

Considering the width and fuzziness of cell boundaries, we could get that
our method succeeded in delineating cell boundaries reliably. Since our seeds
selections were not good at initialization, as illustrated in Fig. 1 (c), the proposed
method was robust to the initialization of seeds. In addition, it overcame the
challenges of low contrast, high intensity variation and varying cell density.
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4 Conclusions and Discussions

In this paper, we have proposed a novel geodesic distance based clustering al-
gorithm that could well address the challenge of reliable segmentation of dense
and overlapping cells for discovering novel drugs regulating the spatial patterns
of the N-Ras protein inside single cells. Experimental results show that the pro-
posed algorithm is effective and robust. Compared with traditional methods, the
main advantages of our proposed method include multiple cell segmentation, dis-
tinct and smooth cell boundaries, high cell detection rates, robustness to initial
seeds selection and efficiency. Moreover, our method is successful in finding the
dividing boundaries between touching cells, even in very low contrast images.

Although the proposed method is robust to the initialization of seeds , the
availability of prior information, such as nuclei locations, may lead to faster
convergence and a better segmentation result. In addition, a fusion procedure
may be necessary in dealing with cells with irregular sizes, which are prone
to be segmented into several parts. Besides, the optimization of regularization
parameter λ would need further investigation, though our studies indicates that
a reference of proper λ for a gray scale image is in interval [0.2, 5].
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Abstract. Considering the EEG signals are nonlinear and nonstationary, the 
nonlinear dynamical methods have been widely applied to analyze the EEG 
signals. Directly extracted the approximate entropy and sample entropy as fea-
tures are efficient methods to analysis the EEG signals of epileptic parents. To 
detect the epilepsy seizure signals from epileptic EEG, choose an appropriate 
threshold value as the discrimination criteria is simplest. The experiment indi-
cated the approximate entropy provide a higher accuracy in distinguishing the 
epileptic seizure signals from the EEG than sample entropy. To improve the ac-
curacy of sample entropy, empirical mode decomposition (EMD) is used to de-
compose EEG into multiple frequency subbands, and then calculate sample en-
tropy for each component. The results show that the accuracy is up to 91%, 
which could be used to discriminate epileptic seizure signals from epileptic 
EEG. 

Keywords: epileptic EEG, approximate entropy, sample entropy, empirical 
mode decomposition (EMD). 

1 Introduction 

Epilepsy is a sudden neurological disorder characterized by the presence of recurring 
seizures. For the epileptic patients, the nerve cells in the brain usually discharge ex-
cessive electrical impulses. So the electrical activities of the brain during epilepsy 
seizure period are different from the normal. The EEG (Electroencephalogram) con-
tains important information about the conditions and functions of the brain, epilepsy 
can be assessed by the EEG. EEG is fundamental for diagnosing epilepsy disease, and 
useful for both physiological research and medical applications. 

Because the brain is a complex nonlinear dynamical system, the scalp EEG signals 
are complex, nonlinear and nonstationary. The nonlinear dynamical methods have 
been widely applied to analyze EEG signals [1-4]. Reference [1] analysis blanket 
dimension and fractal intercept features, and applies fractal intercept to epileptic EEG 
detection. Reference [2] proposes a method using subband nonlinear parameters and 
genetic algorithm for automatic seizure detection in EEG. Reference [3] analyses 
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seizure detection features and their combinations using a probability-based scalp  
EEG seizure detection framework. Reference [4] analysis EEG signals based on  
approximate entropy (ApEn) and discrete wavelet transform (DWT). 

Approximate entropy and sample entropy, which are studied in the past two  
decades [5-13], are believed to be effective methods to analysis nonlinear and nonsta-
tionary signals. In addition to the advantage of being less dependent on the length of 
data set, direct feature-based seizure detection is easier to understand and simplest. 
Fast computation of sample entropy and approximate entropy has been developed to 
speed up the computation for short data length [13]. So the two methods have been 
proved to apply to the nonlinear signals, such as EEG signals [6, 7, 8], heart rate va-
riability signal [9, 10], Measurement of cardiac synchrony [11], schizophrenic [12]. 

Studies have showed that individual EEG frequency subbands can provide more 
information than the entire EEG [2]. The empirical mode decomposition (EMD), 
introduced by huang et al. [14], has good performance in analyzing nonstationary 
signals [15, 16]. EMD decomposes a raw signal into a set of complete and almost 
orthogonal components called intrinsic mode functions (IMFs). IMFs represent the 
natural oscillatory modes embedded in the raw signal. Owing to the benefit of self-
adaptive capacity, it is widely used in physiological signals researches [17, 18]. In this 
work, each EEG signal is decomposed into three subbands by EMD. 

In this paper, firstly extract the approximate entropy (ApEn) and sample entropy 
(SampEn) as feature values to detect the epileptic signals. Considering the excessive 
discharge during seizure, we proposed the method of combination of EMD and sam-
ple entropy to distinguishing the epilepsy seizure EEG from EEG signals. 

2 Seizure Detection in Clinical EEG Based on Approximate 
Entropy, Sample Entropy and EMD Methods 

Approximate entropy and sample entropy are similar regularity or complexity mea-
surements of a time series. The epileptic seizure detection is directly based on the two 
entropies. They are less affected by data length and noise. Given an appropriate  
embedding dimension m  and tolerance r , they are easy to calculate approximate 
entropy and sample entropy values. 

The Approximate entropy algorithm can be defined as follows. For N points time 
series {u (i): 1≤ i≤ N}, the following vector sequence can be formed. 

 ( ) ( ) ( )}{ , 1 , , 1 ,1 1m
iX u i u i u i m i N m= + + − ≤ ≤ − +  (1) 

Here m
iX represents m consecutive u values, commencing with the ith point. The 

distance m
ijd between two vectors m

iX and m
jX is defined as: 

 
0~ 1

[ , ] max ( ) ( ) , , 1, , 1, jm m m
ij i j

k m
d d X X u i k u j k i j N m i

= −
= = + − + = − + ≠  (2) 
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Here Θ  is the Heaviside function  
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Then, calculate ( 1)m + dimensional embedding vectors 1m
iX +  and 1( )m r+Φ , exact-

ly the same way using 1m
iX + . Finally, the estimate approximate entropy of the time 

series (obtained in the limit of N→∞) is defined by: 

 1( , , ) ( ) ( )m mApEn m r N r r+= Φ − Φ  (6) 

For a N points time series {u (i): 1≤ i≤ N}, similar to the definition of approximate 
entropy, the sample entropy as following: 

Firstly, form the following vector sequence: 

 ( ) ( ) ( )}{ , 1 , , 1 ,1 1m
iX u i u i u i m i N m= + + − ≤ ≤ − +  (7) 

The distance m
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For finite data sets, the sample entropy can be estimated form the formula 

 ln( )m m
r rSampEn A B= −  (13) 

EMD is an adaptive and efficient method applied to analysis non-stationary signals. 
In this paper, each EEG signal is decomposed into a series of intrinsic mode  

function (IMF) by EMD. Each IMF must satisfy two conditions: in the whole data  
set, the number of extreme and the number of zero crossings must either equal or 
differ at most by one; and at any point, the mean value of the upper envelope and 
lower envelope is zero. The EMD algorithm for the signal ( )x t can be summarized 

as follows: 

(1) Identify the local maxima and minima of the original data ( )x t , then connect  

respectively by a cubic spline line to produce the upper and lower envelops: 

maxU  and minU . 

(2) Obtain the mean value of corresponding data point 

 max min
1 2

U U
m

+=  (14) 

(3) Define the difference between ( )x t and 1m  as the first component 

 1 1( )h x t m= −  (15) 

(4) Regard 1h  as new ( )x t  and repeat the operation above until 1h satisfies the IMF 

conditions, then obtain the first-order IMF, designate it as 1 1c h=  

(5) Defined the residue 1r as ( )x t minus 1c  

 ( )1 1r x t c= −  (16) 

(6) Taking the residue 1r as a new data and repeating (1) ~ (5) and the second  

IMF component is obtained. If 1c or 1r is smaller than a predetermined value, or 

1r becomes a monotone function, the sifting process is stopped, or else repeated as 

the last step. Thus, a series of IMF can be obtained. The signal ( )x t can be  

expressed as  



 Seizure Detection in Clinical EEG Based on Entropies and EMD 327 

 

 
1

( )
m

i m
i

x t c r
=

= +  (17) 

EMD decomposes each EEG signal into ( 1)m + frequency components. Here, m  
intrinsic mode functions (IMFs) represent the different higher frequency components 

of the original signals, while mr corresponding to the lower frequency residue. 

3 Experiment Results and Analysis 

The data used in this research were obtained from the six clinical diagnosed epilepsy 
cases in the Qilu Hospital of Shandong University. All EEG signals were sampled at a 
rate of 128 Hz. For the purpose of comparison, we select 200 episodes of epileptic 
data during a seizure free interval and 200 episodes of data during seizure, each  
episode of 1024 points. 

Fig.1. showed approximate entropy and sample entropy values of the epileptic 
EEG, the classification based on the features directly. Displayed in Fig.1.(a) are the 
Approximate Entropy analysis results of interictal EEG and epileptic EEG episodes. It 
could be found that the mean entropy value of interictal EEG was greater than that of 
ictal EEG. We chose a constant threshold value 0.25 as the discrimination criteria, 
represented by the dotted line in the picture. The classification results are displayed in 
the first row of Table 1.  

Similarity, the best threshold of sample entropy was determined as 0.75 which  
is shown in Fig.2.(b). The classification results using sample entropy method are  
displayed in the second row of table 1. 

 

 

Fig. 1. The ApEn (a) and SampEn (b) of epileptic EEG (‘+’represents interictal EEG, ‘o’ 
represents ictal EEG, the dotted horizontal line is the threshold) 

However, look at the Fig. 1(b), the sample entropy values have many overlapping. 
In order to improve the classification accuracy of sample entropy, we use the EMD 
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method to decompose every original signal into frequency subband components, and 
then make sample entropy value for every subband. The original EEG and three  
IMF components are showed in Fig.2, and the sample entropy values of the IMF 
components are displayed in Fig. 3. 

 
Fig. 2. Examples of a segment of EEG signals: (a) represent interictal EEG episodes;  
(b) represent ictal EEG episodes 

 

Fig. 3. Sample entropy of IMF1 (a) and IMF2 (b) (‘+’represents interictal EEG, ‘o’ represents 
ictal EEG) 

Table 1. The classification of ictal EEG and interictal EEG using ApEn and SampEn Analysis 

 thres- 
hold 

ictal EEG Interictal EEG Accu-
racy(%) Sensitivity Specificity Sensitivity Specificity 

ApEn 0.25 93.50 97.50 97.50 93.50 95.50 

SampEn 0.75 73.50 85.50 85.50 73.50 79.50 
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Table 2. The classification of ictal EEG and interictal EEG based on frequency subband 
components using SampEn Analysis 

 
Threshold 

ictal EEG interictal EEG Accuracy 
(%) Sensitivity Specificity Sensitivity Specificity 

IMF1 0.17 88.50 95.00 95.00 88.50 91.75 

IMF2 0.40 83.50 95.00 95.00 83.50 89.00 

 
For IMF1, determine the best threshold as 0.17 which is shown in Fig. 4(a). The 

classification results are displayed in the first row of table 2. For IMF2, as is showed 
in the Fig. 4(b), we choose the threshold 0.4. The classification results are displayed 
in the second row of table 2. It could be found that the accuracy of two frequency 
subband components is 91.75%, 89.0%, respectively. The accuracy is higher than 
using sample entropy directly 

4 Conclusions 

Nonlinear features have good discriminatory power for the analysis the EEG signal. 
In the paper, we extract approximate entropy and sample entropy as the non-linear 
features could distinguish epileptic EEG from interictal EEG. Only calculating a  
feature from the EEG signals and then threshold the feature to make detections is 
typically more transparent and easier to understand, but it is stricter to the feature. We 
propose a new method that combined sample entropy with EMD, the classification 
accuracy of the sample entropy of high frenquence subband compnoment is im-
proved. As a result, for scalp EEG, the approximate entropy and subband sample 
entropy as the classification features could be used to discriminate ictal EEG from 
interictal EEG for seizure detection.  
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Abstract. A major drawback of artificial neural network is long training time 
depending on a number of training data. Thus, the contribution of this work is 
to present the intelligent hybrid system for faster training on neural network. 
The concept of the proposed method is applying DBSCAN for removing noise 
and outliers then selecting the represented instances to form a smaller training 
set for further model training. The experimental results indicate that the 
proposed method can dramatically reduce a size of training set while the 
predictive performance of the classifiers are better or almost the same as models 
trained with original training sets. 

Keywords: data preprocessing, data reduction, data cleaning, DBSCAN, neural 
network, fast training. 

1 Introduction 

Neural network [1] is a machine learning algorithm that has been successful on data 
mining applications. Many real world data are modeled with neural network such as 
stock market [2-4], river flow forecast [5], and rainfall-runoff [6]. The advantages of 
neural network are high tolerance of noise, has ability to classify samples which it 
never been trained, and almost provides a better prediction performance than others 
learning algorithms especially for continuous-valued inputs and outputs. However, an 
important problem of neural network is long training time. If training data are more 
complex or larger, the training time is longer than a normal dataset. For this reason, 
the aim of this paper is to present an efficient method for reducing the size of training 
data by applying DBSCAN for removing outliers or noise and selecting represented 
data to generate a new smaller training dataset while the predictive performance of the 
trained models using preprocessed data are better or almost the same as original 
datasets.    

The rest of this paper is organized as follows; Section 2 briefly introduces data 
preprocessing and overviews some researches using data preprocessing before 
construct a neural network model, Section 3 provides a basic idea of the DBSCAN 
algorithm, Section 4 describes the proposed hybrid system, Section 5 explains the 
experiment and gives the experimental results. Finally, the conclusion of this work is 
summarized in Section 6. 
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2 Data Preprocessing in Neural Network 

Data preprocess is an important task in data mining. This process can improve the 
performances of a classifier both in time complexity for model construction and 
model accurate. For basically, there are four major tasks of data preparation [7], 
which are data cleaning, data integration, data reduction, and data transformation.  

Data cleaning is a useful step in data preprocessing. The tasks of this step are handling 
with missing values, detecting and removing outliers, and smoothing noise. Data 
integration relate to integrating multiple sources of data. This process may cause data 
inconsistency and data redundancy, thus in this step, redundant data must be detected and 
removed. Data reduction is the most frequently used in real world applications. It 
attempts to reduce the size of data by using two techniques: dimensionality reduction or 
numerosity reduction. For dimensionality reduction, it tries to reduce dimensions or 
attributes of data whereas numerosity reduction attempts to select some instances as the 
data representation of a training set. Finally, data transformation is used to transform data 
into a suitable format of specific mining algorithm such as nearest-neighbor, neural 
networks or clustering. The popular technique of data transformation is data 
normalization which attributes are scaled to a smaller range. 

Backpropagation (BP) neural network is a popular model for various data mining 
applications. Most of the researches on neural network applications must use data 
preprocessing step before training a neural network model. In [8] a neural network 
model was applied for flow stress prediction with plane strain compression (PSC) 
data. In data preprocessing, Yang used data cleaning approach to remove noise based 
on data rationalizing and then tried to smooth out the remaining noise with mean 
average and median average filtering techniques. 

For data reduction technique, there are many neural network application researches 
applied this step to improve a training set. In [9] used numerosity method by selecting 
minimal subset of the training set that would correctly classify the remaining samples 
from the training set by using the 1-NN algorithm. Other works applying numerosity 
method are [10] and [11]. At the first work [10], the k-mean clustering technique was 
used to select the representation of data to generate a new training set for financial 
time series prediction. For the second paper [11], there are two steps of data 
reduction. At the first step, dimensionality reduction was used to select a subset of 
attributes based on functional dependency, after that a numerosity technique was 
applied to remove the duplicated instances in a training set. 

The examples of works using data transformation before training a neural network 
model are [12] and [13]. In [12], a neural network was applied to forecast the river 
flow located in Italy. The authors investigated the effects of data transformation on 
model performance. The techniques used as data transformation in this paper are 
wavelet transforms and data discretization. The results showed that the neural 
networks trained with data preprocessing can improve the model performance 
especially for using the data discretization technique that was obtained the best 
results. In [13], the application on fault detection and prediction in Boiler of power 
plant was addressed based on neural network. The proposed preprocessing process are 
data reduction which using an average method, data elimination; remove noise and 
missing values, data transformation which using a min-max normalization technique, 
and data clustering. 
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3 The DBSCAN Algorithm 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a data 
clustering algorithm which uses density-based approach to find a group of data. This 
technique is different from partitioning or hierarchical clustering that it can find an 
arbitrary shape of clusters such as “S”, oval, interlocking, or spiral shape. In addition, 
DBSCAN can detect noise or outlier points and discard them to form clusters. 

There are two user-specified parameters in DBSCAN: Eps and MinPts. Eps is the 
maximum radius of a neighborhood, and MinPts is the minimum number of points in 
an Eps-neighborhood of that point. In DBSCAN, all points (objects or samples in a 
training set) are assigned into three types: core point, border point, or noise point. The 
core point is in the interior of a density-based cluster. A point is a core point if the 
Eps- neighborhood of the point contains at least Minpts points. The border point is a 
neighborhood of a core point, but it is not a core point. The noise point is a point that 
is neither a core point nor a border point. The pseudocode of the DBSCAN algorithm 
[7] is shown in Fig. 1. 
 
 

 

Fig. 1. The DBSCAN algorithm 

Algorithm DBSCAN: 
Input: 

- D: a dataset containing n objects 
- Eps: the radius parameter 
- MinPts: the neighborhood density threshold 

Output: A set of density-based clusters 
Method: 
 mark all objects as unvisited; 
 do  
   randomly select an unvisited object p; 

mark p as visited; 
if the Eps-neighborhood of p has at least MinPts objects 
 create a new cluster C, and add p to C; 
 let N be the set of objects in the Eps-neighborhood of p; 
 for each point p′ in N 
  if p′ is unvisited 
   mark p′ as visited; 
   if the Eps-neighborhood of p′ has at least MinPts points, 
     add those points to N; 
  if p′ is not yet a member of any cluster, add p′ to C; 
 end for 
 output C; 
else mark p as noise; 

 until no object is unvisited 
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4 The Proposed Hybrid System 

This paper applies DBSCAN for data cleaning and data reduction. The prominent 
characteristic of DBSCAN is that it can discover outliers or noise. In addition, this 
method can find an arbitrary shape of clusters depending on the density of data 
without determine k value (where k is the number of the clusters) in advances. For 
these reasons, DBSCAN is a suitable technique to detect the outliers in a training 
dataset, and select the represented data to form a new training set. 
 
 

 

Fig. 2. An overall process of the proposed method 

 
The proposed hybrid system as shown in Fig. 2 is a combination between 

DBSCAN and artificial neural network (ANN).  The proposed method consists of 
two parts. The first part is to preprocess data using DBSCAN and the second step is to 
construct a classification model based on ANN. At data preprocessing phase, data 
cleaning and data reduction techniques are used to handle with all training data. In 
data cleaning, this step tries to detect and remove outliers using DBSCAN. At the 
same time, the output from DBSCAN can identify all border points of each cluster. 
Thus in data reduction, these border points are selected to generate a new training set 
which has a smaller size than the original training set. At model construction phase, 
ANN is trained based on the new training set from the previous step. Finally, the 
trained model is used to classify a new example. 

Training Data 

Data Cleaning & Data Reduction 

DBSCAN 

Class 
Prediction 

Model 
Construction 

New 
Example Model 

ANN 



 A New Hybrid Intelligent System for Fast Neural Network Training 335 

 

 

Fig. 3.  Outlier detection by DBSCAN 

 
Fig. 3 and 4 illustrate the results from running DBSCAN. In Fig. 3, data points 

marked with the circle are outliers detected by DBSCAN. The results from 
DBASCAN provided two clusters, and the border points of each cluster are shown in 
Fig. 4. 

 
 

 

Fig. 4. Border points from DBSCAN 
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5 Experiments 

The datasets using in the experiments for evaluating the performance of the proposed 
model are from http://cs.joensuu.fi/sipu/datasets. There are three datasets which are 
Jain, Flame, and Aggregation. The dataset characteristics are shown in Table1 and 
data visualization of all datasets are shown in Fig. 5. 

Table 1. The characteristics of three datasets 

 
 

 
 
 
 
 

  

Fig. 5. Shape of datasets 

 
In the experiments, several models of neural networks are constructed depending 

on these parameters: learning rate and generation. Learning rate is set to 0.01, 0.05, 
0.1, and 0.5 respectively and the generation (epoch) is set to 100, 200, 300, 400 and 
500. The topology of all neural network models is set to three layers. The number of 
input node of each model varies by the number of attribute in the dataset, and the 
number of output node is equal to the number of class. Finally, the number of hidden 
node is (a+b)/2 where a and b are the number of input and output node. Each model is 
evaluated by 5-fold cross-validation technique. In addition, to run the original dataset, 
noisy data are also added to all training sets with 5%, 10%, and 15%. The 
experimental results are shown in Table 2 and Table 3. 

In Table 2, the accuracies of two methods are compared. The ANN column means 
the neural network models trained with the original dataset while the DBSCAN 
+ANN column represents the proposed models trained with data preprocessing step 
based on DBSCAN. The results in Table 2 show that most of the proposed models 

Dataset # Attribute # Instance # Class 
Flame 2 240 2 

Jain 2 373 2 

Aggregation 2 788 7 

Flame Jain Aggregation 
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produced better predictive performance than the ANN model with no data 
preprocessing step. Only Jain dataset with no noise of the ANN model can perform a 
higher accuracy than the proposed method. And the result of two methods has the 
same accuracy for Aggregation dataset with 5% of noise. 

Table 2. The predictive performance of two methods 

Dataset Add noise ANN DBSCAN+ ANN 

Flame 

0% 98.72 99.15 
5% 98.70 99.15 

10% 98.74 99.14 

15% 98.31 98.33 

Jain 

0% 95.70 94.90 

5% 95.20 95.47 

10% 96.18 97.00 

15% 96.51 96.78 

Aggregation 

0% 99.62 99.74 

5% 99.87 99.87 

10% 99.37 99.62 

15% 98.22 99.49 

 

Table 3. Running time of each model 
 

Dataset 
Add 
noise 

Running Time 

ANN1 ANN2 
Reducing 
time1 (%) 

DBSCAN
+ANN 

Reducing 
time2 (%) 

Flame 

0% 0.104 0.05 51.92 0.0864 16.92 

5% 0.098 0.048 51.02 0.0844 13.88 

10% 0.106 0.050 52.83 0.0664 37.36 

15% 0.114 0.044 61.40 0.0870 23.68 

Jain 

0% 0.146 0.044 69.86 0.0908 37.81 

5% 0.170 0.068 60.00 0.1148 32.47 

10% 0.162 0.054 66.67 0.1008 37.78 

15% 0.166 0.052 68.67 0.0988 40.48 

Aggregation 

0% 1.966 0.372 81.08 0.4344 77.90 

5% 2.050 0.404 80.29 0.4664 77.25 

10% 2.078 0.378 81.81 0.4404 78.81 

15% 2.056 0.376 81.71 0.4384 78.68 
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In Table 3, the ANN1 column represents the training time of neural network using 
the original training dataset and the ANN2 column indicates the training time of 
neural network with a reduced size of training set using DBSCAN. The 
DBSCAN+ANN column represents the training time of ANN2 including with 
preprocessing time (DBSCAN running time in the preprocessing step). The 
“Reducing time1” column shows the percentage of time reduction of ANN2 when 
compared with ANN1 whereas the “Reducing time2” column indicates the percentage 
of time reduction of DBSCAN+ANN when compared with ANN1. Considering only 
the training time, the model trained with data preprocessing by using DBSCAN are 
extremely faster than the original training set for all datasets. The proposed method in 
data preprocessing can reduce the training time more than 50%, particularly on 
Aggregation datasets which can reduce the training time up to 80%. In addition, the 
total time of the proposed method (including data preprocessing time) is also faster 
than ANN1 for all datasets and the time reduction of DBSCAN+ANN is up to 78%. 

The results in Table 4 show the percentage of data reduction using DBSCAN. The 
trend of the percentage of data reduction is increasing according to the volume of 
noise in the training sets except for Aggregation dataset. The experimental results in 
Table 4 indicate that using DBSCAN in the preprocessing step can reduce a huge 
number of instances yielding in faster training time while the predictive performance 
of the proposed models are greater than or almost the same as original neural network 
models. 

Table 4. Percentage of data reduction 
 

 

 
 
 

  

Dataset Add noise Data reduction (%) 

Flame 

0% 68.15 
5% 68.67 

10% 70.84 

15% 75.44 

Jain 

0% 75.54 
5% 77.89 

10% 77.78 

15% 79.43 

Aggregation 

0% 82.96 
5% 79.96 

10% 82.13 

15% 82.96 
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6 Conclusion  

This work proposes the intelligent hybrid system for an efficient of neural network 
training. The main idea of the proposed method is to apply DBSCAN in data 
preprocessing step for removing outliers or noise and then to selecting the represented 
data from all training set. In the experiments, three standard datasets were used to run 
with the proposed system. For model predictive performance, 5-fold cross-validation 
technique was used to evaluate the model. The experimental results show that the new 
set of training generated by DBSCAN can reduce the size of the original dataset up to 
82%. The sizes of the new training sets yield dramatically decrease in neural network 
training time. It can reduce training time up to 80% and up to 78% in total time 
(including data preprocessing step). In addition, the predictive performance of the 
proposed model is better or almost equal to the model trained with the original 
dataset. 
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Abstract. Estimation of distribution algorithms (EDAs) are a class of 
evolutionary optimization algorithms based on probability distribution model. 
This article extends the basic EDAs for tackling multi-objective optimization 
problems by incorporating multivariate Gaussian copulas for constructing 
probability distribution model, and using the concept of preference order. In the 
algorithm, the multivariate Gaussian copula is used to construct probability 
distribution model in EDAs. By estimating Kendall’s τ and using the 
relationship of correlation matrix and Kendall’s τ, correlation matrix R in 
Gaussian copula are firstly estimated from the current population, and then is 
used to generate offsprings. Preference order is used to identify the best 
individuals in order to guide the search process. The population with the current 
population and current offsprings population is sorted based on preference 
order, and the best individuals are selected to form the next population. The 
algorithm is tested to compare with NSGA-II, GDE, MOEP and MOPSO based 
on convergence metric and diversity metric using a set of benchmark functions. 
The experimental results show that the algorithm is effective on the benchmark 
functions.  

Keywords: EDA, Multi-objective optimization, Pareto optimal, Preference 
order ranking, Multivariate Gaussian copula. 

1 Introduction 

In various fields of science and technology, optimization problems have two or more 
objectives that we wish to optimize simultaneously. These are called multi-objective 
optimization problems (MOPs), and their solution involves the design of algorithms 
different from those adopted for dealing with single-objective optimization problems. 
In the absence of preference information, there does not exist a unique or 
straightforward way to determine if a solution is better than other in multi-objective 
optimization. The notion of optimality most commonly adopted is the one called 
Pareto optimality which leads to trade-offs among the objectives in MOPs. The 
solution of MOPs is usually a set of acceptable trade-off optimal solutions. The 
solution set is called the Pareto optimal set. Compared with traditional algorithms, 
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evolutionary algorithms are more suitable for solving MOPs. In the last decade, many 
evolutionary algorithms have been widely developed to solve MOPs, such as Non-
dominated Sorting Genetic Algorithm (NSGA-II)[1], and Strength Pareto 
Evolutionary Algorithm (SPEA2) [2], Pareto Archived Evolution Strategy (PAES)[3], 
Multi-objective optimization with artificial weed colonies[4], Generalized Differential 
Evolution(GDE) [5], Multi-Objective Evolutionary Algorithm based on 
Decomposition (MOEAD)[6], Multi-Objective Evolutionary Programming 
(MOEP)[7], Multi-Objective Particle Swarm Optimization(MOPSO) [8], etc. 

Recently, a class of novel evolutionary algorithm, called estimation of distribution 
algorithm (EDA) [9], has become a favorite topic in the field of evolutionary 
computation. With EDA an entirely new paradigm of evolutionary computation has 
been introduced, which is a combination of statistical learning theory and stochastic 
optimization algorithm without using conventional evolutionary operators such as 
crossover and mutation. EDA tries to estimate the probabilistic distribution of an 
entire population or to describe its evolutionary trend directly from a macroscopic 
point of view. It has been proven that EDA has some special characteristics of concise 
concept, good global searching ability and been successfully extended to multi-
objective optimization problems[10-11]. The performance of an EDA highly depends 
on how well it estimates and samples the probability distribution. A wide variety of 
EDAs using probabilistic graphical modeling techniques[12-14] to estimate and 
sample the probability distribution have been proposed and are the subject of active 
research. However, EDA using probabilistic graphical modeling techniques generally 
spend too much time on the learning about the probability distribution of the 
promising individuals. 

Since the introduction of copulas by Sklar as a tool for constructing multivariate 
distributions they have become more popular[15-16]. According to copula theory, a 
joint probability distribution can be decomposed into n marginal probability 
distributions and a copula function. So, the joint probability distribution of 
multivariate can be constructed utilizing a copula function and the marginal 
probability distributions of every variable. Gaussian copula is a member of the 
Elliptical copulas family which has attracted particular interest since they have a 
number of properties which make them simple to analyze. It can be applied to 
constitute the probabilistic model in multi-objective EDAs. In this paper, EDA is 
extended to multi-objective optimization problems by using preference order ranking 
and multivariate Gaussian copula. The algorithm employs multivariate Gaussian 
copulas to construct probability distribution model in EDA. By estimating Kendall’s τ 
and using the relationship of correlation matrix and Kendall’s τ, correlation matrix R 
in Gaussian copula are firstly estimated from the current population, and then is used 
to generate offsprings. And instead of Pareto dominance, preference order is used to 
identify the best individuals in order to guide the search process. The population with 
the current population and current offsprings population is sorted based on preference 
order, and the best individuals are selected to form the next population. The proposed 
algorithm is tested to compare with NSGA-II[1], GDE[5], MOEP[7] and MOPSO[8] 
using a set of benchmark functions. Convergence metric, diversity metric are used to 
evaluate the performance of the algorithm. The experimental results show that the 
algorithm is effective on the benchmark functions. 
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2 Background 

2.1 Multi-objective Optimization and Pareto Dominance 

The multi-objective optimization problem can be formally defined as the problem of 
finding all ),,,( 21 nxxx =x  which satisfy the m inequality constraints: 

migi ,...,2,1,0)( =≤x  
p equality constraints: pihi ,...,2,1,0)( ==x  

and optimize the vector function: ( ))(,),(),()(min 21 xxxxf kfff =  

where ),,,( 21 nxxx =x  is an n-dimensional decision variable vector. The 

constraints define the feasible region Ω and any vector x in the feasible region Ω is 
called a feasible solution. }),({ Ω∈==Π xxfyy  is referred to as objective space. The 

concept of optimum commonly adopted in multi-objective optimization is Pareto 
dominance.  

A feasible solution Ω∈1x  is said to strictly dominate another feasible solution 

Ω∈2x , denoted by 
21 xx  , if and only if (iff) },,2,1{ ki ∈∀ : )()( 21 xx ii ff ≤  and 

},,2,1{ kj ∈∃ : )()( 21 xx jj ff < . 

A feasible solution Ω∈x  is said to be Pareto optimal with respect to Ω  iff there 
is no other feasible solution that dominates x in Ω . The set of all Pareto optimal 
solutions in the feasible region Ω is called Pareto optimal set and the corresponding 
set of objective vector is called Pareto optimal front. An illustrative example of a 
multi-objective minimization problem with two objectives, f1 and f2 , that are plotted 
in the objective space ∏ mapped from the feasible region Ω is shown in Figure1. The 
bold part in the feasible region Ω indicates the Pareto optimal set. The bold curve in 
the objective space ∏ indicates the Pareto front. 

 

 

Fig. 1. An illustrative example 

2.2 Preference Order 

Among the multi-objective methods, the majority of research is concentrated on 
Pareto-based approaches. Pareto-based methods select a part of individuals based on 
the Pareto dominance notion as leaders. These methods use different approaches to 

f：Ω→∏  

x2   f2   

x1  

Ω  

∏ 

f1    
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select non-dominated individuals as leaders which are maintained in an external 
archive[17]. Preference order[18] is a generalization of Pareto optimality. It provides 
a way to designate some Pareto solutions superior to others when the size of the non-
dominated solution set is very large. An individual x is considered efficient of order k 
if it is not Pareto-dominated by any other individual for any of the k-element 
subspaces where are considered only k objectives at a time. Efficiency of order M for 
a MOP with exactly M objectives simply corresponds to the original Pareto optimality 
definition. If x is efficient of order k, then it is efficient of order k+1. Analogously, if 
x is not efficient of order k, then it is not efficient of order k-1. Efficiency of order can 
be used to reduce the number of points in a non-dominated set by retaining only those 
regarded as the ‘‘best compromise” [19]. 

2.3 Multivariate Gaussian Copula 

A copula is a distribution function with known marginals. Any continuous 
Multivariate joint distribution of n random variables nxxx ,...,, 21   

},...,,{Pr),...,,( 221121 nnn xXxXxXobxxxF ≤≤≤= , can be represented by a copula 

C as a function of the marginal distribution nixXobxF iiiXi
,,2,1},{Pr)( =≤= ;   i.e. 

))(),...,(),((),...,,( 221121 nnn xFxFxFCxxxF = ),...,,( 21 nuuuC
Δ
=         (1) 

Where nixFu iXi i
,,2,1),( ==  and ),...,,( 21 nuuuC  is the associated copula 

function. Furthermore, application of the chain rule shows that the corresponding 
density function ),...,,( 21 nxxxf  can be decomposed as 

n

n
n

n uuu

uuuC
xxxf

∂∂∂
∂

=
...

),...,,(
),...,,(

21

21
21

)(...)()(),...,,( 221121 nnn xfxfxfuuuc ⋅⋅⋅⋅=
Δ

   (2) 

From the above it may be seen that the joint density function is the product of the 
marginals nixf ii ,,2,1),( =  and copula densities function ),...,,( 21 nuuuc . 

Let njnir ji ,,2,1,,,2,1),( ,  ===R  be a symmetric, positive definite matrix 

with unit diagonal entries. The multivariate Gaussian copula is defined as 

))(,),(),(();,...,,( 1
2

1
1

1
21 nn uuuuuuC −−−= ϕϕϕ RΦR                (3) 

Where RΦ  denotes the standardized multivariate normal distribution with 

correlation matrix njnir ji ,,2,1,,,2,1),( ,  ===R . )(1 x−ϕ  denotes the inverse of 

the univariate standard normal distribution )(xϕ . 

The corresponding density is  







 −−= − ωIRω

R
R )(

2

1
exp

1
);,...,,( 1

2121
T

nuuuc              (4) 

with T
nuuu ))(,),(),(( 1

2
1

1
1 −−−= ϕϕϕ ω   
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3 The Proposed Algorithm 

3.1 Scheme of Algorithm 

The proposed algorithm is designed based on EDA. EDA estimate a probability 
distribution over the search space, and then sample the offspring individuals from this 
distribution. The main calculation procedure of the EDA is that (1) firstly, the M 
selected individuals are selected from the population in the previous generation. (2) 
Secondly, the probabilistic model is estimated from the genetic information of the 
selected individuals. (3) A new population with size N is then sampled by using the 
estimated probabilistic model. (4) Finally, the new population is evaluated. (5) Steps 
(1)-(4) are iterated until stopping criterion is reached. 

EDAs are undoubtedly a powerful search tool for solving single objective 
optimization problems. However, the original scheme has to be modified for solving 
multi-objective optimization problems. As we saw in Section 2, the solution set of a 
problem with multiple objectives does not consist of a single solution. Instead, in 
multi-objective optimization, we aim to find Pareto optimal set. In the proposed 
algorithm, besides using multivariate Gaussian copula for constructing probability 
distribution model in the multi-objective EDA, we have used the preference order 
ranking for selecting the next population. The algorithm steps are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

3.2 Initialization 

The population size N, M and the maximum number of iterations T are initialized 
according to the problem concerned. The individuals in P(0) are initialized randomly. 
The individuals in (0)P′  are generated by sampling Gaussian copula. 

t=0, Initialization 
1) Generate initial population P(0)with size N; 
2)  Estimate the correlation matrix of Gaussian copula from P(0); 
3) Sample Gaussian copula to generate (0)P′ with size N; 

WHILE  t < T  DO 
1) )(P)P()(S ttt ′∪←  

2) Rank )(S t  using preference order ranking algorithm; 

3) Select M best individuals from )(S t  to form )(Q t ; 

4) Estimate the correlation matrix of Gaussian copula from )(Q t ;  

5) Sample Gaussian copula to generate )(P t′ with size N;   

6） 1+← tt  
END WHILE 
Output the obtained Pareto optimal set; 
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3.3 Preference Order Ranking Algorithm 

According to preference order properties, the order of efficiency of an individual x is 
the minimum k value for which x is efficient. Formally: 

order(x) = ( )),(tisEfficienmin
1

kk
M

k
x

=
 

Where isEfficient(x, k) is to be true if x is efficient of order k. The order or efficiency 
can be used as the rank of individuals. The smaller the order of efficiency, the better 
an individual is. The resulting ranking scheme is as follows[20]: 

1). Identify the Pareto non-dominated solutions of P and group them into the subset 
(1)Q , which is given rank 1. 

2). Assign to the individuals of (1)Q  a rank according to preference order and the 

worst given rank is w. 
3). Identify the Pareto non-dominated individuals of (1)Q\P  and group them into the 

subset (2)Q , which will be given rank w+s. 

4). Iterate 2) and 3) until )(Q\P s , where )(Q s  is the subset that contains the worst 

individuals. 

3.4 Estimating Correlation Matrix of Gaussian Copula 

A simple method[16] based on Kendall’s tau for estimating the correlation matrix R  
in Gaussian copula. The method consists of constructing an empirical estimate of 
Kendall’s tau for each bivariate margin of the copula and then using relationship (5)  

),...,1,(),arcsin(
2

),( , Nmkr mkmk ==
π

τ xx            (5) 

To infer an estimate of the relevant element of R . More specifically we 
estimate ),( mk xxτ  by calculating the standard sample c coefficient 


≤<≤

=
nji

j,mi,mj,ki,kmk -xx-xx
nn 1

)])(sign[(
1)-(

2
),(ˆ xxτ        (6) 

From the original data samples ),...,1(),,...,,( ,,2,1 Nixxx iniii ==x , and write 

the jth component of the ith sample as 
jix , ; this yields an unbiased and consistent.  

An estimator of 
mkr ,

 is then given by )),(ˆ
2

sin(ˆ
, mkmkr xxτπ= . In order to obtain 

an estimator of the entire matrix R  we can collect all pairwise estimates 
mkr ,ˆ  and 

then construct the estimator 
 

NmNkmk ,,1,,1,)),(ˆ
2

sin(ˆ  ==





= xxR τπ           (7) 
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3.5 Sampling Gaussian Copula 

To simulate a random vector ),...,,( 21 nuuu  distributed according to a Gaussian 

copula with correlation matrix R, we start with the canonical representation: 

))(,),(),(();,...,,( 1
2

1
1

1
21 nn uuuuuuC −−−= ϕϕϕ RΦR  

Where RΦ  is the c.d.f. of an n-variate normal distribution function with linear 

correlation matrix R and )(xϕ  is the univariate standard normal c.d.f.. A 

multivariate random numbers ),...,,( 21 nxxx=x  with distribution function 

xF defined by assigning marginals nFFF ,,, 21  and a Gaussian copula function 

RΦ  can be generated as follows[16]. 

 
(1)  Find the Cholesky decomposition of R , so that RAA =T , with A  lower 

triangular; 
(2)  Generate a sample of n independent random variables ),...,,( 21 nzzz from N(0, 1); 

(3)  Set AZY =  with T
nzzz ),...,,( 21=Z and T

nyyy ),...,,( 21=Y ; and finally, 

(4)  Return ))(),...,(),((),...,,( 221121 nnn yFyFyFxxx ==x . 

4 Experimental Results 

To validate efficiency of the proposed algorithm(EDAMOPGC), the performance of 
the algorithm is compared with that of some multi-objective optimization algorithms. 
The two common metrics used to compare are (1) convergence metric, (2) divergence 
metric. For these metrics we need to know the true Pareto front for a problem. In our 
experiments we use 1000 uniformly spaced Pareto optimal solutions as the 
approximation of the true Pareto front. An introduction of these metrics is given here: 

Convergence metric γ was proposed by Deb[1], measures the distance between 
the obtained non-dominated front NF and optimal Pareto front PF. Mathematically, it 
may be defined as: 

N

d
N

i
i

== 1

2

γ                                (8) 

Where N is the number of non-dominated solutions found by the algorithm being 
analyzed and 

id  is the minimum Euclidean distance (measured in the objective 

space) between the ith solution of NF and the solutions in PF. 
Diversity metric Δ was proposed by Deb[1]. It measures the extent of spread 

achieved among the obtained solutions and is defined as: 
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Where s is the number of members in the set of non-dominated solution found so far, 
and the parameter 

fd  and 
id  are the Euclidean distances between the extreme 

solutions and the boundary solutions of the obtained non-dominated set. The 
parameter d  is the average of all distances )1,...,1( −= sidi

, assuming that there 

are s solutions on the best non-dominated front. 
Five test problems as examples are used to compare with the performance of 

NSGAII and MOPSO. Test problems are chosen from a number of significant studies 
in this area, including Schaer's study (SCH1and SCH2) [21] and Zitzler's test set 
(ZDT1, ZDT2, ZDT4) [22]. 

The smaller the value of these metrics is, the better the performance of the 
algorithm is. The initial population was generated from a uniform distribution in the 
ranges specified below. Population size N=100. All experiments were repeated for 40 
runs. The maximum number of iterations is set to 5000 in each running. The solutions 
accepted after iteration processes are used to calculate the performance metrics. The 
results of the performance metrics are shown in Tables1. Tables1 listed the mean and 
variances of the convergence and diversity metrics obtained using NSGA-II[1], 
GDE[5], MOEP[7], MOPSO[8] and the proposed algorithm on the multi-objective 
 

Table 1. Mean and variances of two metrics for the multi-objective benchmark functions 
 

 

Problem Algorithm Diversity Δ 
(mean ± variances) 

Convergence γ 
(mean ± variances) 

 
 

SCH1 

NSGA-Ⅱ 0.5792 ± 0.0113 0.0043 ± 0.0076 

GDE 0.7204 ± 0.0674 0.0072 ± 0.0039 
MOEP 0.9561± 0.0357 0.0095 ± 0.0014 
MOPSO 0.4915 ± 0.0134 0.0063 ± 0.0047 
EDAMOPGC 0.5006 ± 0.0108 0.0041 ± 0.0052 

 
 

SCH2 

NSGA-Ⅱ 0.6932 ± 0.0129 0.0068 ± 0.0017 

GDE 0.7102 ± 0.0262 0.0064 ± 0.0026 
MOEP 0.5912 ± 0.0274 0.0078 ± 0.0013 
MOPSO 0.6018 ± 0.0136 0.0032 ± 0.0038 
EDAMOPGC 0.5843 ± 0.0203 0.0029 ± 0.0024 

 
 

ZDT1 

NSGA-Ⅱ 0.5403 ± 0.0149 0.2033 ± 0.0069 

GDE 0.7283 ± 0.0171 0.3029 ± 0.0053 
MOEP 0.4807 ± 0.0476 0.4692 ± 0.0046 
MOPSO 0.3092 ± 0.0263 0.2015 ± 0.0017 
EDAMOPGC 0.3011 ± 0.0285 0.2029 ± 0.0002 

 
 

ZDT2 

NSGA-Ⅱ 0.5341 ± 0.0146 0.1266 ± 0.0064 

GDE 0.6813 ± 0.0743 0.3705 ± 0.0039 
MOEP 0.6237 ± 0.0521 0.4709 ± 0.0024 
MOPSO 0.2948 ± 0.0326 0.3206 ± 0.0018 
EDAMOPGC 0.2209 ± 0.0372 0.2021 ± 0.0006 

 
 

ZDT4 

NSGA-Ⅱ 0.6725 ± 0.0321 0.2062 ± 0.0029 

GDE 0.6254 ± 0.0637 0.3205 ± 0.0016 
MOEP 0.7318 ± 0.0183 0.4228 ± 0.0077 
MOPSO 0.5034 ± 0.0141 0.2153 ± 0.0058 
EDAMOPGC 0.5102 ± 0.0036 0.1924 ± 0.0029 
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benchmark functions SCH1, SCH2, ZDT1, ZDT2 and ZDT4. It can be known from 
Tables1, in both aspects of convergence and distribution of solutions, the proposed 
algorithms is effective on the benchmark functions. 

5 Conclusions 

We proposed an EDA-based multi-objective optimization algorithm using preference 
order ranking and multivariate Gaussian copula. The algorithm applies the 
multivariate Gaussian copulas to construct probability distribution model in EDA, and 
the new individuals are generated according to the probability distribution model by 
sampling Gaussian copula. The preference order ranking is incorporated into the 
algorithm for forming the next population. The proposed algorithm is tested to 
compare with NSGA-II, GDE, MOEP and MOPSO using a set of multi-objective 
benchmark functions SCH1, SCH2, ZDT1, ZDT2 and ZDT4. Both convergence and 
diversity metrics are used to evaluate the performance of the algorithm. The 
experimental results show that the algorithm is effective in two metrics. Future work 
for our investigation will focus on the design of algorithms with other copulas. 
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Abstract. According to the dynamic, distribution and complexity of cloud 
computing, resource scheduling effectively with users’ QoS demand and 
achieving maximum benefit is the unprecedented challenge. To solve the above 
problem, we propose to use genetic algorithm: design for the crossover operator 
and build a cloud resource optimization scheduling model that promised to 
address user needs while optimizing resource allocation. With the experiments, 
this paper verifies the superiority of models made in this paper. The results 
show that the use of genetic algorithm to optimize cloud resource scheduling 
has the rationality and feasibility. Meanwhile, using the genetic algorithm is 
useful for effectively scheduling of cloud resource meeting the users’ QoS. 

Keywords: cloud computing, QoS constraints, resource scheduling. 

1 Introduction 

In just a few years, cloud computing has become a very popular paradigm and a 
business success story. Having the characteristics of providing resource promptly, 
fewer inputs, less interaction with service providers and providing users with a 
powerful resource pool to meet their demand for resources, cloud computing resource 
allocation and scheduling has become the focus of cloud computing research. 

Nowadays, a lot of methods of cloud resource allocation are introduced. In [1-3], 
economics, game theory, auction model are used for analysis of cloud resource 
allocation problem. In [4,5] the interests of the cloud resource providers and the 
pricing of cloud resources are improved. However, due to the complexity of the cloud 
computing environment, one aspect of optimization and improvement does not satisfy 
the cloud resource scheduling requirements, some algorithms consider scheduling 
performance improvements, but ignore the load balancing [6,7].Therefore, scheduling 
algorithms and models about the cloud resource load balancing are proposed in [8,9], 
and solutions of load balancing about cloud resource in business application are 
included in [10], but, the balance in these papers doesn’t fully consider the needs of 
users’ QoS.  

The emphasis in cloud computing is on-demand service model. When allocating 
resource to users’ requests, many kinds of resources are proposed. While providing 
multiple resources to meet users’ needs, such as to satisfy the user for certain service 
proposed response time, energy consumption and cost, it needs integration, 
collaboration and optimize the execution in the cloud computing.  
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In this paper, with the superiority of genetic algorithm in solving the multi-
objective optimization, we introduce the resource scheduling policy and 
implementation process for cloud resource satisfying the QoS constraints. In addition, 
we redesign the operator which affects the genetic algorithm convergence, and 
establish the scheduling model for cloud resource optimization scheduling. Finally, 
experiments are carried out to verify the design of genetic algorithm in the 
convergence speed and efficiency, which has certain advantages comparing to the 
basic genetic algorithm. 

The remainder of this paper is organized as follows: section 2 describes the model 
structure and the design of the objective function, chromosome population 
initialization, the choice of the fitness function, and genetic manipulation of design. 
Evaluations are given in section 3 and conclusion is in the final section. 

2 Model Structure 

2.1 Description of the Problem 

For cloud resource scheduling problem, we give the following assumptions: 

1. The users’ requirements are divided into multiple sub-tasks, the granularity of 
sub-tasks is uniform, and these subtasks are independent task. 

2. Using the batch mode, that can give reasonable task mapping strategy taking 
advantage of the ample resources. 

3. The time of each user’s requirements in the standard resources to run is known. 

2.2 Objective Function 

For the emphasis of cloud service, we propose the standard for evaluation scheduling 
is as follows: 

{ , , }Q R E C=   (1)

Here, R, E, C indicate response time, energy consumption, cost, respectively. 
The created model is based on the goal that the effectiveness has the maximum 

value while various users’ target should be achieved after the cloud resources 
scheduling, as in order to evaluate a variety of resources, we need to establish the 
objective function, first, we should define a 0-1 variable. 

1. 0-1 Variable 

1       

1,2,..., 1,2,...,

0                         
ij

resource i is assigned to user j

D i n j m

else


= = =



 

    (2)

When the value is 1 in formula (2), it indicates the resource i is assigned to the user j, 
and 0 otherwise. 
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2. Design of Objective Function 
To ensure the response time, energy consumption and cost, set each objective 

function as follows: 

1 1

min( )      1, 2,...,    1, 2,...,
n m

ij ij
i j

R R D i n j m
= =

= = =   (3)

1 1

max( )      1,2,...,    1,2,...,
n m

ij ij
i j

E E D i n j m
= =

= = =   (4)

1 1

min( )      1,2,...,    1,2,...,
n m

ij ij
i j

C C D i n j m
= =

= = =   (5)

The constraint condition is: 

=1 =1

2       1,2,...,  1,2,...,
n m

ij
i j

n D n i n j m≤ ≤ = =   (6)

In the expressions of (3) - (5), ijR indicates the response time that the resource i is 

assigned to the user j, ijE represents the power consumption when the resource i 

providing service for the user j, ijC represents the costs of services provided by the 

resource i for user j. 
We use the single goal as the goal of genetic algorithm optimization function, and 

preferences of users to be considered for each target, using linear weighted way to 
construct the objective function, as follows:  

1 2 3= +G R E Cλ λ λ+   (7)

( )=1,2,3i iλ  as a weighted value, and 1 2 3+ + =1λ λ λ . 

2.3 Chromosome  

The design of chromosomes includes chromosome encoding and decoding. Based on 
the comparison of binary encoding and floating-point encoding, as well as the 
characteristics of the cloud resources scheduling, this paper uses binary encoding. 

1. Encoding Process 
Assumptions: 
a. Resource pool has n resources available for scheduling, there are m users.(m <n). 
b. Each resource can be assigned to any user for service, and each user can also 

accept two resources to provide service. 
c. In one scheduling, each resource can be assigned only once. 

Table 1. Encoding corresponding 

user 1 user 2 user 3 … user m 
u11u12…u1n u21u22…u2n u31u32…u3n … um1um2…umn 
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In table 1, umn indicates resource n is assigned to user m, for example, eight 
available resources can be allocated to the two users, randomly generated 
chromosome is encoded as: {10100000, 00010000}. This indicates resource 1 and 
resource 3 are allocated to user 1, and resource 4 is allocated to user 2. 

2. Decoding Process 
Every eight bits set to one, indicates one user, and 1 as the starting number, then, 

{10100000, 00010000} means that user 1 shares resource 1 and resource 3 
meanwhile, user 2 shares resource 4. 

2.4 Populations Initialization and the Selection of the Fitness Function 

1. Population Initialize 
The initial population is the search space of iterative evolution, also, it is generated 

by the random function. Taking into account the search speed and convergence of the 
algorithm, we use a randomly generated initial population M. In each iteration, the 
population size is not changed. 

2. Selection of the Fitness Function 
In this article, the goal of the objective function is to make the benefits maximum. 

The fitness function is as follows: 

min min,   

0

G T G T
F

− >
= 


  (8)

minT is the estimated value of lower limit to the objective function 

2.5 Genetic Manipulation Design 

1. Select the Operating 
Select or copy operation is to determine which individual can enter the next 

generation. Roulette selection method is chosen in this article. Selection formulas: 

1

i
i M

k
k

f
P

f
=

=


  
(9)

if  is the fitness of individuals in one population, iP  is the probability for individual 

i to be selected. 
Selecting step is as follows: 

a. In the tth generation, 
1

M

k
k

f
=
 and iP  is calculated by the formula (9). 

b. Generates a random number of [0,1] and
1

()
M

k
k

s rand f
=

=  . 

c. Find the smallest of the k in 
1

M

k
k

f s
=

≥ ,and the kth individual is selected. 
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d. Repeat the steps b and c for N times, the obtained N individuals become a new 
generation population, that is 1t t= + . 

2. Crossover 
We design probability of crossover considering the relevance. Definition: suppose 

tth population expressed as tP , size of population is M, individual i in tth population 
is expressed as t

iX , its fitness value is t
if , the relevance to the tth population is 

expressed as: 

( )
( )

2

1 1

1

M M
t t

i j
i j

t

f f

D
M M

= =
−

=
−


 . 

(10)

The relevance reflects the degree of dissimilarity of the individuals in a population. 
The value of tD  is larger and the individuals are more dissimilar, which indicates in 

order to save search time, should reduce the crossover operator, otherwise increase 
the crossover operator. Accordingly, the crossover operator of the tth population can 
be expressed as follows: 

1
1

1

0.8,   0

tDt
c

t

eP
D

 
+  + 


= 
 =

 . (11)

When tD is 0, t
cP is the traditional genetic algorithm fixed operator value of 0.8. 

With the increase of tD , the crossover operator is reduced accordingly, because  

the relevance of the population and the diversity is strong at this time, increasing the 
crossover probability may cause search time consuming, also is easy to destroy  
the excellent individuals. Contrary, to increase the crossover operator can enhance the 
diversity and improve the ability of the evolution of populations. 

3. Mutation Operation 
In this paper using basic bit mutation operator: that is a locus of original genetic 

value of 0, the mutation operation to 1. Conversely, if the original genetic value is 1, 
the mutation operator turns to 0. 

3 Experiments and Results Analysis 

3.1 Parameter Setting 

In this experiment, assuming the number of cloud resources is eight, the number of 
users is three, the initial population is randomly generated, the number of iterations is 
50, and selection operator is automatically given in accordance with the roulette. In 
this paper, the crossover probability model is given by equation (11), and the mutation 
probability is 0.001. The conventional genetic algorithm crossover probability is 0.8, 
and mutation probability is 0.001. The weight for 1 2 3= +G R E Cλ λ λ+  is 0.3, 0.3, 0.4.  

Evaluation as shown in Table 2, the initial population may produce populations, as 
shown in Table 3: 
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Table 2. Evaluation 

 user 1 user 2 user 3 

response time (s) 0.02 0.05 0.01 
energy consumption (kwh) 0.06 0.07 0.05 
cost ($/h) 1.1 1.4 1.7 

Table 3. The initial population 

user 1 user 2 user 3 

u11u12…u18 u21u22…u28 u31u32…u38 
00100000 00001000 01000000 
01100000 00000010 00100000 

… … … 
00000001 11000000 00100001 
00000100 00010000 10000000 
01000000 00101000 00000001 

3.2 Results Analysis 

As shown in Fig. 1 and Fig. 2, at the beginning, fitness improves quickly, because it is 
far from the ideal value. From Fig. 2, at about the 35th generation, there is a big leap 
 

 

Fig. 1. Changes in Fitness with Traditional Genetic Algorithm (population50) 

 

Fig. 2. Changes in Fitness with Modified Genetic Algorithm (population50) 
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degree. At about 40 generations, the improvement of the fitness in the modified 
algorithm in this paper is relatively slow. After the 45th generation, it stabilizes and 
reaches the solution relative. Then, in Fig. 1, the fitness of traditional genetic 
algorithm reaches stability after the 50 generation, from which it could indicate the 
modified algorithm is feasible, also, it can quickly improve calculation speed. 
 

 

Fig. 3. Changes in Fitness with Traditional Genetic Algorithm (population20) 

 

Fig. 4. Changes in Fitness with Modified Genetic Algorithm (population20) 

As shown in Fig. 3 and Fig. 4, obviously, when the population is small scale (the 
number of population is 20 in Fig. 3 and Fig. 4 and that is 50 in Fig. 1 and Fig. 2), the 
difference of the two algorithms is not very large, about at the 45th generation, they 
begin to stabilize. That indicates the modified algorithm in this paper with crossover 
operator changed and some improvement is rational, especially is suitable for large 
scale. Respect to the traditional genetic algorithm, the genetic algorithm proposed in 
this paper can shorten the overall execution time of the scheduling.  

4 Conclusion 

In this paper, considering the influence of genetic algorithm of multi-objective 
optimization, we solve the scheduling problem of cloud resources. We have described 
a resource scheduling model with genetic algorithm for QoS constrained cloud 
resource meanwhile design the factor-crossover operator. Experimental results show 
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that the algorithm have a better search speed, showing certain superiority. In next 
work, we consider the workflow and random optimization of resource allocation. 
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Abstract. This paper investigates the effectiveness of the Genetic Algo-
rithm (GA) and Simulated Annealing algorithm (SA) training artificial
neural network weights and biases for rainfall forecasting, namely GAS–
ANN. Firstly, a hybrid GA and SA method is used to train the begining
connection weights and thresholds of ANN. Secondly, the back propaga-
tion algorithm is used to search around the global optimum. Finally, a
numerical example of monthly rainfall data in a catchment located in a
subtropical monsoon climate in Linzhou of China, is used to elucidate
the forecasting performance of the proposed GASA–ANN model. The
forecasting results indicate that the proposed model yields more accu-
rate forecasting results than the autoregressive integrated moving av-
erage (ARIMA), back–propagation neural network (BP–NN) and pure
Genetic Algorithm training Artificial Neural Network model (GA–ANN).
Therefore, the GASA–ANN model is a promising alternative for rainfall
forecasting.

Keywords: Rainfall Forecasting, Artificial Neural Network, Genetic
Algorithm, Simulated Annealing.

1 Introduction

Accurate and timely rainfall forecasting has been a difficult subject in hydrol-
ogy due to the complexity of the physical processes involved and the variabil-
ity of rainfall in space and time [1, 2]. Recurrently, Artificial neural network
(ANN) have being used in rainfall modeling [3–5]. There were still certain is-
sues that need attention, such as optimal network structure, choice of training
algorithm and choice of input training subset from spatial rainfall information.
ANN model might be doing well in predicting past incidents, but unable to pre-
dict future events [6, 7]. Therefore, different operators with different experience
and knowledge may obtain different results for the same issue. That is, the net-
work is intelligent but capricious, which will greatly limit applications of ANN in
actually rainfall forecasting [8].

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 359–366, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Genetic Algorithm (GA) has been widely used in the last few years for training
and/or automatically designing neural networks. However, GA is diffcult to solve
optimization problems in a larger range of optimization problems because it is
easily trapped in local optimum in searching optimal solution [9]. Simulated
annealing (SA) has some institution to be able to escape from local minima and
reach to the global minimum [10]. However, SA costs more computation time.
In order to overcome these drawbacks from BP, GA and SA, it is necessary
to find some effective approach and improvement to avoid misleading to the
local optimum and to search optimum objective function efficiently. This paper
propose a novel and specialized hybrid optimization strategy by incorporating
SA into GA to train an optimal begining connection weights and thresholds of
ANN for rainfall modelling, then the BP algorithm is used to search around the
global optimum, namely HGASA–ANN.

The rest of this study is organized as follows. Section 2 describes the pro-
posed HGASA–ANN, ideas and procedures. For further illustration, this work
employs the method set up a prediction model for rainfall forecasting in Section
3. Discussions are presented in Section 4 and conclusions are drawn in the final
Section.

2 The Developed HGASA–ANN Approach

2.1 ANN Rainfall Forecasting Model

The most popular type of ANN, i.e. multilayer feed-forward neural network
(MFNN), the three-layer feed-forward neural network (TFNN), is shown in
Fig. 1. In general, the backpropagation method is used for training multilayer
perception neural network.

sum
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Output Layer
Neurons

Output Layer
Threshold

Output
Vector

Y1

Y2

Fig. 1. The structure of a three–layer feed–forward artificial neural network

Referring to Fig. 1, each neuron in the network operates by taking the sum of
its weighted inputs and passing the result through a nonlinear activation function
(transfer function). Each hidden neuron’s output is calculated using Equation
(1), while the output neuron’s output is calculated using Equation (2)

fi = tanh(

n∑
i=1

xiWji +Wj0) (1)
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Yi =

m∑
i=1

fjVkj + Vk0 (2)

where xi is the value of the input variable, Wji and Vkj are connection weights
between the input and hidden neuron, and between the hidden neuron and out-
put neuron, Wj0 and Wk0 are the threshold (or bias) for the ith and kth neuron,
respectively, and i, j and k are the number of neurons for the layers, respectively.

2.2 Methods and Hybrid GASA with ANN

Suppose we are given training data (xi, yi)
n
i=1, where xi ∈ Rn is the input vector;

yi is the output value and n is the total number of data dimension. The fitness
function is defined as follows:

ffitness = 1/[1 +

√√√√ n∑
i=1

(yi − ŷi)2/

n∑
i=1

(yi)2 ] (3)

In this paper, a real code genetic algorithm encoding strategy is used vector
encoding strategy, what we have to do is just to set each neuron’s connection
weights and bias to its correspondent gene segments. Each chromosome has four
genes, which represent four parameters Wji, Vkj , Wj0 and Vk0. For example,
for the TFNN with the structure of 3–4–1, the corresponding encoding style for
each chromosome can be represented as:

generation(i) = [w11w12w13w21w22w23w31w32w33w10w20w30v11v21v31v10] (4)

population = [generation(1); generation(2); · · · ; generation(M)] (5)

where M is the number of the total population, i = 1, ...,M .
In this encoding strategy, every chromosome is encoded for a matrix. We also

take the TFNN with the structure of 3–3–1 for an example, the encoding strategy
can be written as

generation(:, :, :, :, i) = [W,W0, V, V0] (6)

W =

⎡⎣w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤⎦ W0 =

⎡⎣w10

w20

w30

⎤⎦ V =

⎡⎣v11
v21
v31

⎤⎦ V0 =
[
v10
]

(7)

where W is the hidden layer weight matrix, V is the output layer weight matrix,
while W0 is the hidden layer bias matrix and of V0 is the output layer bias
matrix.

The hybrid GASA training ANN process consists of two stages: firstly employ-
ing GASA to search for optimal or approximate optimal connection weights and
thresholds for the network, then using the BP to adjust the final weights. Fig.2
shows flowchart of the proposed algorithm. The major steps of the proposed
algorithm are as follows:
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1. Generate initial population. The connection weights and thresholds are encoded as
float string, randomly generated within [−1, 1]. Input training data and calculate
the fitness of each chromosome according to Equation (4).

2. Perform GA process. The selection operator of genetic algorithm is implemented
by using the roulette–wheel algorithm to determine which population members are
chosen as parents that will create offspring for the next generation.

3. The crossover of connection weights and thresholds are operated with probability
pc at float string according to Equations (8) and (9)

xt+1
i = αxt

i + (1− α)xt
i+1 (8)

xt+1
i+1 = (1− α)xt

i + αxt
i+1 (9)

where xt+1
i stands for the real values of the ith individual of the (t+1)th generation,

xt
i and xt

i+1 are a pair of individuals before crossover, xt+1
i and xt+1

i+1 are a pair of
individuals after crossover, α is taken as random value within [0, 1].

4. The mutation of connection weights and thresholds are operated with probability
pm at float string according to Equation 10

xt+1
i = xt

i + β (10)

where xt
i stands for the real values of the ith individual of the tth generation, xt

i is
individual before mutation, xt+1

i is individual after mutation, β is taken as random
value within [0, 1].

5. Stop condition. If the number of generation is equal to a given scale, then the best
chromosomes are presented as a solution, otherwise go to the step 1 of the SA part.
GA will deliver its best individual to SA for further processing.

6. Perform SA operators. Generate initial current state. Receive values of the weights
and thresholds from GAs. The values of forecasting error, fitness, shown as Equa-
tion (3), is defined as the system state (E). Here, the initial state (E0) is obtained.

7. Provisional state. The existing system state is denoted by Sold, Make a random
move to change the existing system state to a provisional state, namled Snew.
Another set of weights and thresholds are generated in this stage Snew .

8. Metropolis criterion tests. The probability of accepting the new state is given by
the following probability function

P =

{
1 if E(Snew) > E(Sold)

exp(E(Snew)>E(Sold)
kT

) if E(Snew) > E(Sold)
(11)

T is the thermal equilibrium temperature, k represents the Boltzmann constant.
If the provisional state is accepted, then set the provisional state as the current
state.

9. Temperature reduction. After the new system state is obtained, reduce the tem-
perature. The new temperature reduction is obtained by the Equation (12)

Ti+1 = αTi (12)

where Ti is i-th temperature stage and determines the gradient of cooling,α is set
at 0.8 in this paper. If the pre-determined temperature is reached, then stop the
algorithm and the latest state is an approximate optimal solution. Otherwise, go
to step 8.

10. Perform GA process. Once the termination condition is met, output the final so-
lution, obtain the appropriate connection weights and thresholds. Input validation
data, compute fitness for all the individuals by a fitness function.

11. Input testing data and Output forecasting results by the GASA–ANN.
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Fig. 2. Flowchart of GASA–ANN algorithm

3 Experimental Results and Discussion

The platform adopted to develop the GASA–ANN approach is a PC with the
following features: Intel Celeron M 1.86 GHz CPU, 1.5 GB RAM, a Windows
XP operating system and the MATLAB development environment. GASA–ANN
algorithm parameters are set as follows: the iteration times are 100; the popula-
tion size is 20; the crossover probability is 0.5; the mutation probability is 0.05;
the initial temperature is 5000; the termination temperature is 0.9.

3.1 Study Area and Data

The data was collected from 18 stations of the Liuzhou Meteorology Adminis-
tration rain gauge networks for the period from 1991 to 2009, a total of 25 years.
Thus the training data set contains 252 data points, whose training set is 144
(1991–2002), validation set is 72 (2003-2008), and testing set is 36 (2007–2009).

3.2 Criteria for Evaluating Model Performance

Three different types of standard statistical performance evaluation criteria were
employed to evaluate the performance of various models developed in this pa-
per. These are average absolute relative error (AARE), root mean square error
(RMSE), and the Relative Coefficient (RC) which be found in many paper [11].

The input vector is represented by rainfall and runoff values for the preceding
6 monthly rainfall (i.e., t− 1, t− 2, t− 3, t− 4). Accordingly, the output vector
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represents the expected rainfall value for mothly ŷt . Through calculating auto-
correlation function, partial correlation function and AIC, The AR model is as
follows:

xt = 139.8 + 0.28xt−1 + 0.07xt−2 − 0.08xt−3 − 0.09xt−4 (13)

For the purpose of comparison by the same six input variables, we have also built
other three rainfall forecasting models: multi–layer perceptron neural network
model based on the back–propagation learning algorithm (BP–NN), and pure
genetic algorithm evolutionary neural network method(GA–ANN) [12] proposed
by Irani et al. In this paper data, the best NN architecture is: 4–6–1 (6 input
units, 6 hidden neurons, 1 output neuron), and the best ANN parameters is
chosen as a benchmark model for comparison by the trial–and–error method
with the minimum testing root mean square error. Before training and testing all
source data are normalized into the range between and 1, by using the maximum
and minimum values of the variable over the whole data sets.

3.3 Analysis of the Results

The well-trained models, AR(4), BP–ANN, GA–ANN and GASA–ANN, are
applied to forecast the monthly rainfall in Liuzhou. Fig.3 shows the actual values
and the forecast values obtained using various forecasting models at 36 testing
samples. From the Fig. 3, the output of the GASA–ANN model, simulated with
testing data, shows a good agreement with the target. We can find that the
GASA–ANN methods have better results than the methods only using AR(4),
BP–ANN or GA–ANN in accuracy. Especially GASA–ANN, it has the smallest
error rates and standard deviation. Table 1 illustrates the fitting, validation and
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testing accuracy and efficiency of the model in terms of various evaluation indices
for training, validation and testing samples, respectively.

From the Table 1, we can generally see that learning ability of GASA–ANN
outperforms the other three models under the same network input. As a con-
sequence, poor performance indices in terms of AARE, RMSE and PRC can
be observed in AR(4) model than other three model. Table 1 also shows that
the performance of GASA–ANN is the best in case study for training samples,
validation samples and testing samples. The more important factor to measure
performance of a method is to check its forecasting ability of testing samples
in order for actual rainfall application. Table 1 indicates that GASA–NN not
only has the smallest AARE, but also the smallest RMSE. This means that
GASA–ANN is the most stable method. In addition, the RC of GASA–ANN
is the maximum in all models. The results indicate that the deviations between
observed and forecasting value are very small, are capable to capture the average
change tendency of the mothly rainfall data.

Table 1. Performance statistics of the five models for rainfall fitting and forecasting

Model AR(4) BP–ANN GA–ANN GASA–ANN

Index Training data (from 1991 to 2002)
AARE(%) 47.29(%) 27.04(%) 27.07(%) 19.40(%)
RMSE 27.68 16.47 16.35 12.33
RC 0.958 0.966 0.9284 0.9736

Validation data (from 2003 to 2006)
AARE(%) 46.89 (%) 31.25(%) 29.85(%) 19.82(%)
RMSE 27.10 20.84 17.93 17.25
RC 0.947 0.930 0.942 0.9629

Testing data (from 2007 to 2009)
AARE(%) 49.58(%) 65.25(%) 31.26(%) 20.01(%)
RMSE 25.70 41.33 22.73 13.05
RC 0.967 0.889 0.972 0.989

4 Conclusion

In this paper, we use a novel technique for the automatic training of ANN be-
gining connection weights and thresholds by evolving to the optimal GSAS algo-
rithm for rainfall forecasting. The fundamental idea for this hybrid algorithm is
that at the beginning stage of searching for the optimum, the GASA is employed
to accelerate the training speed and helps to avoid trapping into local minimum.
When the fitness function value has not changed for some generations, or value
changed is smaller than a predefined number, the searching process is switched
to gradient descending searching according to this heuristic knowledge. The new
hybrid GASA–ANN approach is compared with the BP–ANN and GA–ANN
methods with a set of benchmark mathematical functions. The improved hy-
brid GASA–ANN method is shown to outperform both individual optimization
methods for rainfall forecasting.
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Abstract. The nonlinear constrained optimization problems have been widely 
used in many fields, such as engineering optimization and artificial intelligence. 
According to the deficiency of artificial fish swarm algorithm (AFSA), that the 
artificial fishes walk around aimlessly and randomly or gather in non-global 
optimal points, a hybrid algorithm-artificial fish swarm optimization algorithm 
based on mixed crossover strategy is presented. By improving the artificial fish’s 
behaviors, the genetic operation of mixed crossover strategy is used as a local 
search strategy of AFSA. So the efficiency of local convergence of AFSA is 
improved, and the algorithm's running efficiency and solution quality are 
improved obviously. Based on test verification for typical functions, it is shown 
that the hybrid algorithm has some better performance such as fast convergence 
and high precision. 

1 Introduction 

A great deal of the nonlinear constrained optimization problems have been often met in 
many fields, such as engineering optimization and artificial intelligence. Some of these 
problems belong to the NP-hard problem, and it is the normal way the constrained 
problem is transformed into the unconstrained problem. Intelligent algorithm has 
developed by analyzing biological evolutionary theory in recent years, such as genetic 
algorithm, artificial fish swarm algorithm and so on, which has been widely used in the 
optimization field because of its unique optimization mechanism, generalization and 
flexibility [1-2]. 

Artificial fish swarm algorithm (ASFA) is an optimizing method based on animal 
autonomy, which is proposed by simulating fish behavior, and it is a concrete 
application of swarm intelligence theory. The main feature of ASFA is that it is not 
need to learn special information of problems, but need to compare the advantages and 
disadvantages of problems, and the global optimal is finally emerged out by local 
optimizing behavior of every artificial fish individual [3]. The basic ASFA has 
characteristics of seizing search direction and avoiding the problem of the local optimal 
to some extent, but when the artificial fishes walk around aimlessly and randomly or 
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gather in non-global optimal points, or when the region of optimizing is large or tends 
to be flat, the convergence to the global optimum is slowed down and searching 
performance is deteriorated and even it can falls into the local minimum. The algorithm 
has generally fast convergence speed in initial of optimizing, but that is often relatively 
slow in late of optimizing. The solution attained is the satisfactory solution, which has 
the low precision [3-4]. 

In order to escape more easily the local optimal for the basic AFSA, and to improve 
searching efficiency and precision, the genetic operation of mixed crossover strategy 
and the Gaussian mutation operation are introduced into the basic ASFA in the article. 
The artificial fishes can effectively escape from the local optimal through rational 
allocation of parameters, and the diversity of artificial fish can be kept. Meanwhile 
local fields can be further searched and the searching efficiency is accelerated, so that 
the swarm converges quickly to the global optimum and the solution of high precision 
is attained.   

2 Treatment of Nonlinear Constrained Optimization Problems 

The nonlinear constrained optimization problem is mainly considered in the article, 
which is described as following [5]:  

)(min
],[

xf
ULDx ⊂∈

 

st. 0)( ≤xg i
, mi ,...,2,1=  

(1)

where [L, U] is n dimension vector field of the space domain Rn and [L , U] ={x = (x1, 
x2 , …, xn)| li≤xi≤ui, i =1,2, …, n}. The set D = {x| x∈[L,U], gi(x)≤0, i =1,2, …, m} is the 
feasible region of solution. If there exists in x*∈D and makes f(x*) ≤f(x) that is tenable to 
any x∈D, then x* is called as the global optimal solution and f(x*) is called as the global 
optimal. 

For nonlinear constrained optimization problems as formula (1), it is transformed 
into multi-objective optimization problem which has only two objectives [5]. 

)}(),(min{ 21 xfxf  (2)

In which f1(x) is the objective function of the original problem (1) and f2(x) = max (0, 
gi(x), i = 1, 2,…, m). Obviously, the minimization of the first objective function means 
to find x* which can make the objective function of the original problem to reach the 
minimum, while the second objective function is to select the maximum between zero 
and the constrained function value that the violation of the constraints is maximum in 
all constraints. So as long as f2(x) = 0, all constraints of the original problem must be 
less than zero, that is the minimization process of f2(x), in essence, is to try to find out 
the point x*, which meets all constraints. Therefore, the simultaneous minimizing of 
two objectives is to find the point meets all constraints and makes f1(x) to reach the 
minimum, namely the optimal solution of the original nonlinear constrained 
optimization problems. The relation of the model (1) and the model (2) is as follow [6]: 
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Theorem 1. The necessary and sufficient condition x* is the optimal solution: x* is 
efficient solution of model (2), that is 

)(min)(, 1
*

1
* xfxfDx

Dx∈
=∈ 且 , Dx ∈  (3)

Proof 1. See reference [6]. 

3 Artificial Fish Swarm Optimization Algorithm Based on 
Mixed Crossover Strategy 

3.1 Artificial Fish Swarm Algorithm 

Artificial fish swarm algorithm is a class of stochastic optimization algorithm based on 
swarm intelligence, and its mathematical model is described as follow [7]: supposed in 
a objective searching space of n-dimension, there has N artificial fishes which 
composed of a swarm, and the state of every artificial fish can be expressed as the 
vector X = (x1, x2, …, xn), in which xi (i =1, 2, …, n) is the variable of optimization. The 
food concentration of the current location of artificial fish is expressed as y = f(x), in 
which y is the objective function. The distances between individuals of artificial fish are 
expressed as dij =||Xi - Xj||. The feeling range of artificial fish and the crowded degree 
factor are expressed respectively as visual and σ. The step artificial fish moves and the 
maximum tentative number artificial fish preys each time are expressed respectively as 
step and try_number. 

In the process of iteration for each time, artificial fishes are renewed by preying 
behavior, gathering behavior, following behavior and so on, so the optimizing is 
realized. The concrete behaviors are described as follows [3]:  

①preying behavior: Supposed the current state of artificial fish is Xi, and a state Xj is 
selected randomly within its visual range (namely dij <=Visual). If the food 
concentration of this state is more than that of the current state, then the artificial fish 
forwards a step to the direction. Conversely, a state Xj is reselected randomly, and 
judges whether it meets the forward conditions. After repeated try_number times, if the 
forward conditions do not still be met, then artificial fish moves randomly a step.  
②gathering behavior: Supposed the current state of artificial fish is Xi, the number 

of partners within its visual range is nf . If nf /N is less than δ, which shows that the 
central position of partners is not too crowded, meanwhile, the food concentration of 
the central position is more than that of the current state, then the artificial fish forwards 
a step to the central position, otherwise, preying behavior is carried. 
③following behavior: Supposed the current state of artificial fish is Xi, an optimal 

partner within its visual range is Xmax. If the number of partners within its visual range is 
nf and meets nf /N<δ, meanwhile, the food concentration of Xmax position is more than 
that of the current state, then artificial fish forwards a step to Xmax position, otherwise, 
preying behavior is carried. 
④stochastic behavior: Supposed the current state of artificial fish is Xi, and a state Xj 

is selected randomly within its visual range, in order to enlarge search range. 
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⑤moving strategy: The current environment of artificial fish do be evaluated, that is 
gathering behavior and following behavior are simulated and executed, then the 
behavior that has high the food concentration value is executed, and the default 
behavior way is preying behavior.  
⑥constraint behavior: In the process of optimizing, the corresponding constraint 

conditions need to be added, in order to adjust the situation that the solved solution can 
be not feasible solution because of some operations, such as gathering behavior, 
stochastic behavior and so on.  
 
Finally, artificial fishes aggregate around the local optimal, and around the optimal 
fields of the better value can aggregate generally more artificial fishes. 

3.2 Genetic Operation of Mixed Crossover Strategy 

Mixed strategies are defined as follows [8]: In a normal game G ={S1,…,Sn; u1,…,un} 
with n players, set the strategy space Si for player i is Si ={si1,…,sik}. The player i selects 
a strategy randomly in the available k strategies based on a probability distribution pi= 
(pi1,…,pik). The strategies for every player obtained by this way are called mixed 
strategies, where j = 1,…,k, 0≤ pij ≤1 and pi1 +…+ pik = 1. Meanwhile, the original 
strategy is called pure strategy. 

Crossover operator is the most important genetic operator in GA, so the research on 
crossover operators reflects the research progress on GA. A new crossover operator, 
mixed crossover strategy, is proposed by mixing the four different crossover operators, 
including one-point, two-point, uniform and uniform two-point crossover [9]. Every 
crossover operator is called as pure crossover strategy in mixed crossover strategy, and 
has its own probability distribution for crossover. The probability distribution of every 
crossover strategy is adjusted by strengthen or weaken in current population so that the 
mixed strategy is adjusted. This algorithm implements the choice of crossover strategy 
automatically. The performance of the algorithm becomes more stable and effective.  

The crossover strategy is described as follows [9]: 
 

1) Initialization: 
Using pure crossover strategy h, h∈{1,2,3,4}, which expressed as the crossover 

strategy of one-point, two-point, uniform, and uniform two point crossover strategy, 
respectively. The probability distribution of mixed strategy vector ρ is initialized.            
2) Crossover operation based on mixed strategy 

(1) In every generation g, selects a crossover strategy h according to mixed strategies 
vector ρ, and uses crossover strategy h to cross to individuals, then generates offspring. 

(2) Calculate offspring fitness value, and rank according to fitness. 
(3) The method of adjustment of mixed strategy in offspring generation is as follow: 
 

If the number of offspring individuals, which fitness value greater than the parents 
fitness, is more than half of the number of parent after crossover then strengthens 
the crossover strategy, that is   
if hl ≠∀ then 



 Artificial Fish Swarm Optimization Algorithm Based on Mixed Crossover Strategy 371 

γρρρ ×−=+ )(
1

)(
1

)1(
1

kkk

   

else γρρρ ×−+=+ )1( )()()1( k
h

k
h

k
h            

Else weakens the crossover strategy, that is  

if  hl ≠∀  then    
γρρρ ××

−
+=+ )(

1
)(

1
)1(

1 )1_(

1 kkk

strategyno  

else γρρρ ×−=+ )()()1( k
h

k
h

k
h  

 
where γ∈(0,1) uses to adjust the probability distribution of mixed strategies, 
“no_strategy” is the number of mixed pure crossover strategy, where γ = 1/2. 

3.3 Artificial Fish Swarm Optimization Algorithm Based on Mixed Crossover 
Strategy（MCSG-AFSA） 

Artificial fish swarm optimization algorithm based on mixed crossover strategy 
(MCSG-AFSA) is proposed by introducing the genetic operation of mixed crossover 
strategy in basic ASFA. The algorithm can make effectively artificial fishes to get rid of 
the limitation of the local optimal, and the local field is further searched, so the 
searching efficiency is accelerated. Meanwhile the diversity of population is increased 
by introducing mutation operator [10], so the swarm converges quickly to the global 
optimal and the solution of high precision is attained finally. 

The algorithm flow of MCSG-AFSA algorithm as follow [1]: 

(1) Initialization: 
The iteration number of the initial bulletin board Beststep is equal to 0 when the state 

of the optimal artificial fish does continuously not change or change little, and set the 
initial iteration number Num is equal to 0 and the maximal threshold of the times that 
the optimal do not continuously change maxbest is equal to 5. n artificial fishes are 
generated randomly in feasible region of control variable, so the initial fish swarm is 
formed. 

(2) The initialization of genetic parameters: 
The initial probability of mixed strategy vector is set at 0.25, and the crossover 

probability and the maximum times of running are set.           
(3) The initial value of the bulletin board assignment: 
The formula (1) is selected to calculate function value y of the current state of individual 

artificial fish for the initial fish swarm. Then the size of y is compared, the minimum of y is 
selected into the bulletin board, and the fish is assigned to the bulletin board. 

(4) Behavior selection: 
Every artificial fish simulates following behavior and gathering behavior, and the 

behavior that y value is less is executed actually after behavior selected (the default 
behavior is preying behavior). 

(5) Renew the bulletin board: 
After every behavior for every artificial fish, y of its own and that of the bulletin 

board are tested. If the former is better than the latter, then y of the bulletin board is 
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substituted by that of its own and Beststep is set as 0. Otherwise, the behavior of 
artificial fish that the minimum y is calculated by formula (2) is executed actually, and 
the default behavior is preying behavior. Then the step (5) is executed. 

(6)The condition judgment that mixed crossover strategy and mutation operator of 
genetic algorithm introduced: 

Judge whether the value of Beststep reaches Maxbest. If the value of Beststep 
reaches Maxbest, then mixed crossover strategy and mutation algorithm of the step (7) 
are executed, otherwise, the algorithm is transformed to execute the step (8). 

(7) Mixed crossover strategy and mutation operation: 
All artificial fishes in swarm execute operations as follows, except the optimal 

individual of the bulletin board. 
①mixed crossover operation: 
According to the crossover probability Pc , the corresponding individuals are 

selected from artificial fish swarm, and execute the genetic operation of mixed 
crossover strategy in 3.2 section, so function values y of new individuals are calculated 
out and every y is compared with the optimal of the bulletin board. If the current y is 
better than the optimal of the bulletin board, so y of the bulletin board is substituted by 
the current y. 
②mutation operation: 
The corresponding individuals are selected randomly from artificial fishes swarm 

according to the mutation probability Pm, and execute Gaussian mutation. Then 
function values of new individuals are calculated out and every y is compared with the 
optimal of the bulletin board. If the current y is better than the optimal of the bulletin 
board, so y of the bulletin board is substituted by the current y. 
③ Beststep is set as 0. 
(8) The terminal condition judgment: 
Judge whether Num reaches the maximum iteration number Maxnumber or whether 

the optimal reaches within satisfactory error. If the both do not meet, then Num is set as 
Num+1, Beststep is set as Beststep+1, and the algorithm is transformed to execute the 
step (4). Otherwise, the algorithm is transformed to execute the step (9). 

(9) The algorithm terminal and the optimal output, namely the state and function 
value of artificial fish in the bulletin board. 

4 Optimization Test 

Five group typical functions are selected to test verification in the paper, and  
the running result of the algorithm in the paper is compared with that of other 
algorithms. 

Based on test verification for typical functions, it is shown that the hybrid algorithm 
has some better performance such as fast convergence and high precision, as shown in 
table1. 
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Table 1. The Comparison the running result of test functions between MCSG-AFSA and other 
algorithms 

Test function F1 F2 F3 F4 F5 
The optimal 0.25000 -6961.814 13.59084 1.00000 3.791340 

MCSG-AFSA 0.25000 -6961.814 13.59084 1.00000 3.791340 
Other algorithms [see 

reference1] 
0.25000 -6961.814 13.59085 0.95825 3.791340 

The average result of 
reference[1] 

0.25004 -6961.352 13.59393 0.99999 3.791297 

The average result of 
MCSG-AFSA 

0.25001 -6961.669 13.59065 0.99999 3.791331 

 
 
The results of table show that MCSG-AFSA is better than other algorithms 

obviously, and embodies the certain superiority. MCSG-AFSA is programmed to 
realize on Matlab7.0 language platform. Test functions F1-F5 are shown as follows: 
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5 Conclusion 

According to the deficiency of AFSA, that the artificial fishes walk around aimlessly 
and randomly or gather in non-global optimal points, artificial fish swarm optimization 
algorithm based on mixed crossover strategy is presented, in order to solve the 
nonlinear constrained optimization problems. The genetic operation of mixed 
crossover strategy and the Gaussian mutation operation are used in the algorithm, 
which can jump out the local optimization and avoid the limitation of early maturity 
when the optimal that the algorithm solves does continuously not change or change 
little. Based on test verification for typical functions, it is shown that new algorithm has 
some better performance such as fast convergence and high precision, and can solve 
very well this kind of optimization problems.  

However, in order to improve the precision and the convergence speed of this kind 
of problems, AFSA will be fused with other algorithms, and some concepts will be 
introduced into AFSA such as multi-population, synergetic algorithm and so on, and 
how to use these to solve actual problems, so these will to be done in the next step 
research work. 
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Abstract. This paper presents a new network-based classification tech-
nique using limiting probabilities from random walk theory. Instead of
using a traditional heuristic to classify data relying on physical features
such as similarity or density distribution, it uses a concept called ease
of access. By means of an underlying network, in which nodes represent
states for the random walk process, unlabeled instances are classified
with the label of the most easily reached class. The limiting probabilities
are used as a measure for the ease of access by taking into account the
biases provided by an unlabeled instance in a specific adjacency matrix
weight composition. In this way, the technique allows data classifica-
tion from a different viewpoint. Simulation results suggest that the pro-
posed scheme is competitive with current and well-known classification
algorithms.

Keywords: network-based learning, data classification, supervised
learning, random walk, limiting probabilities.

1 Introduction

Supervised machine learning comprises the construction of a model by using
information extracted from a training data set. The constructed model defines
decision borders that are used to classify unlabeled data [1]. An unlabeled in-
stance is classified depending on its relative position to the decision borders. Due
to its importance in various real applications, many classification techniques have
been developed, such as Neural Networks, k-Nearest Neighbors (kNN), Linear
Discriminate Analysis (LDA), Naive-Bayes Method, Support Vector Machines
(SVM) and Decision Tree [1, 2, 3, 4, 5]. These traditional classification tech-
niques divide the data space according to physical features (similarity, distance,
or distribution) of the training data. In this way, many intrinsic and semantic
relations among data items are ignored as, for example, topological structure
and pattern formation.

On the other hand, the usage of an underlying network can take into account
these previously mentioned relationships among data. In the machine learning
domain, many recent works have applied random walk processes to perform
semi-supervised learning. In this learning paradigm, just a few data compose
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the training data set, and so the classification processes makes use of the infor-
mation provided by the unlabeled data, which is most commonly represented by
nodes in a network. Many of these works share the regularization framework,
differing only in the particular choice of the loss function and the regularizer
[6, 7, 8, 9, 10, 11]. In these works, the concept of relationship among data is
the measurement of how easy labels propagate or how easy a random walker
reaches target nodes on a network structure. In these techniques, the underly-
ing link structure is responsible for giving the probabilities or weights between
two neighboring nodes to support the label propagation or the walker transition
between two linked nodes. Similarly, random walks have also been extensively
applied to unsupervised learning, in which there is no labeled data, such as
community detection and data clustering [12, 13, 14, 15, 16]. However, very few
efforts have been done for network-based supervised learning [17, 18, 19, 20],
and thus this work is also a contribution to the use of network-based techniques
in the supervised learning field.

Here, we propose a new network-based classification heuristic which consider
the ease of access of unlabeled instances to each class. Differently from previous
works, the proposed technique uses the dynamical process measure called ran-
dom walk limiting probabilities. Limiting probabilities are applied to random
walk processes to measure the limiting state transitions through an underlying
network [21]. In the proposed scheme, the training data set is used to construct
the network, in which instances (nodes) represent the states a random walker
visits during the process. An unlabeled instance is considered belonging to the
class that is most easily reached, that is, the limiting transition probability for
a random walker to that class, after the insertion of the unlabeled instance bias
in the underlying adjacency weight matrix, is large. As a consequence of the
dynamical processes, both local and global relationships among nodes are taken
into account.

This paper is organized as follows: section 2 describes the model for the super-
vised classification technique. In section 3, simulation results and comparisons
are presented. Finally, section 4 concludes the paper.

2 Supervised Inductive Classification Model

In this section, the technique is derived for a supervised inductive classification
model. To be classified, an unlabeled instance is first inserted into the network
of training data as a virtual state. The concept of virtual state means that the
probability of belonging to this state is not considered, that is, the random walker
can visit this virtual state, but only the information extracted directly from the
training data is used for classification. The insertion of an unlabeled instance as a
virtual state is carried out by a specific weight composition and aims to provide a
bias to the classification process by enhancing the probabilities of the unlabeled
instance’s network neighborhood. Therefore, the bias prioritizes near classes in
the state space (classes with the large transition probability) by adopting the
assumption that close instances belong to the same class. The mathematical
formulation is given next.
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Training Phase. We consider it is given a labeled data set X (l) = {x(l)
i , i =

1, . . . , n} containing only labeled instances, where each instance is described by
q attributes xi = {xi1, xi2, . . . , xiq}. A weighted undirected network N = {V , E}
without self-loops is constructed, in which data instances are represented by
nodes, V = X (l), and similarities among instances are represented by weights of
the edges, E = [Wij ], i, j = 1, . . . , n. The network similarity matrix W = {wij}
can be calculated by using any distance function. wij is the similarity between

the pair of instances x
(l)
i and x

(l)
j .

Classification Phase. To perform the classification of an unlabeled instance
x(u), the set of nodes V is considered as a state space set, meaning that each
node is a possible state for a random walker. The transition probabilities among
states are given by a normalized transition matrix P , whose construction is
further explained.

First, the unlabeled instance x(u) is inserted into the network N . To do so,

a similarity vector S = [Si], i = 1, . . . , n, between x(u) and all other nodes x
(l)
i

is calculated by using a distance function. Next, a new asymmetric and n × n
modified similarity matrix Ŵ is constructed by composing the matrix of weight
biases Ŝ:

Ŵ = W + εŜ, (1)

where ε is a non-negative parameter and Ŝ is an n × n matrix composition:

Ŝ =

⎡⎢⎢⎢⎣
ST

ST

...
ST

⎤⎥⎥⎥⎦ ,

where ST is the transpose of vector S.
In Eq. 1, it can be observed that the weight biases of the virtual state x(u),

encoded in matrix Ŝ, are applied over all edges W of network N , that is, the
weight of each edge is linearly added up with the corresponding weight bias.
The idea behind this operation is that the distance between any pair of nodes is
reduced because of the new route introduced by the insertion of the unlabeled
data instance. The higher the proximity between the unlabeled instance and a
node, say node j, the more strengthened the connections from all other nodes
to node j are. The parameter ε controls the influence of weight bias provided
by matrix Ŝ on the original network. The larger is the value of parameter ε, the
greater will be the influence of the bias weights provided by the virtual state.

After the bias composition, the virtual state x(u) is effectively inserted into
network N as a virtual state. To do so, an (n + 1) × (n + 1) adjacency matrix
A = {aij} is constructed:

A =

[
Ŵ S
ST 0

]
. (2)

In this formulation, without loss of generality, the virtual state is inserted as the
last entry (n + 1) of matrix A.
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Fig. 1. Illustration for supervised inductive classification of unlabeled instance xu. a)
An undirected and complete network N is formed by using 4 training instances of 2
classes: green and yellow; b) the similarities S are calculated for the unlabeled instance
xu; c) modified network N , directed with self-loops, after bias composition (Eq. 1) and
insertion of the unlabeled virtual state xu (Eq. 2).

The two steps described above can be easily understood by using the toy
example depicted in Fig. 1. In this example, a network is formed by 4 labeled
instances belonging to 2 distinct classes, blue and red, each one containing 2
representative instances (Fig. 1a). In the initial network, the links are undirected
and the similarity matrix is symmetric. Next, giving an unlabeled instance xu to
be classified, the similarity vector S between x and all other nodes is computed
(Fig. 1b). After this computation, the weight biases of xu are added up to the
original similarity matrix to form a biased similarity matrix for the same network
(Eq. 1). After that, the unlabeled instance xu is effectively inserted into the
network (Eq. 2). It can be seen from Fig. 1c that the network becomes directed
and with self-loops (except the virtual state, that has no self-loop) and the biased
weight matrix is no more symmetric.

After the virtual state insertion, we are able to compute the entries of the
transition matrix P = [Pij ] by scaling the entries of matrix A:

pij = aij/
n+1∑
j=1

aij .



Bias-Guided Random Walk for Network-Based Data Classification 379

Algorithm 1. Classification Algorithm

Input:
X (l) : training data set
x(u) : unlabeled instance
Parameters:
t : number of largest probabilities to be selected
ε : bias weighting
Output:
c : estimated class (c ∈ {1, . . . , C}) for x(u)

Training:
1. N = Create a network from X (l)

Classification:
2. Ŵ = Compose bias weights into N (Eq. 1)
3. A = Insert the virtual state x(u) into N (Eq. 2)
4. p∞ = Compute limiting probabilities (Eq. 3)
5. T = Select the t largest limiting probabilities from p∞

6. c = Assign x(u) the most representative class in T

With the above matrix P at hand, the limiting probabilities can be calculated.
This calculation is performed by two ways: by finding the eigenvector correspond-
ing to the unit eigenvalue of matrix P or, as a faster manner, iterating the system

pi+1 = Ppi, (3)

to the stationary state, where p is an (n + 1) × (n + 1) normalized vector. It
results in the following vector:

p∞ = [p1 p2 . . . pn+1]

where each column represents a state, and each entry pi represents the proba-
bility of x(u) belonging to the class of state i.

As the final step, the classification of x(u) is accomplished by assigning it
the most representative label from the set of states. To achieve that, a set T
containing the t states with the largest limiting probabilities are selected in a
descend order and the most representative class in T is associated to x(u).

In a concise form, the proposed supervised inductive classification process can
be summarized by Algorithm 1.

3 Results for Real Data Sets and Comparisons

We present classification results using the proposed supervised technique, as well
as a comparative study against some current classifiers. In the experiments, 15
data sets were selected from the UCI machine learning repository [22]. Table 1
shows the metadata for all data sets. As can be seen in this table, the selection
was made to encompass diversity on data domains as well as to consider different
number of classes, attributes and class sizes. They vary from 3 to 15, 4 to 91
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Table 1. Information of all data sets used in simulations

Domain Instances Attributes Classes

Zoo 101 16 7
Hayes-Hoth 132 5 3

Iris 150 4 3
Teaching 151 5 3
Wine 178 13 3
Image 210 19 7
Glass 214 9 6
E. Coli 336 8 8
Libras 360 91 15
Balance 625 4 3
Vehicle 846 18 4
Vowel 990 13 11
Yeast 1484 8 10

Wine Q. (Red) 1599 12 6
Segment 2310 19 7

and 101 to 1599, respectively. The Euclidean distance was used in all simulations
as a distance measurement. Eventual categorical attributes, in data sets such as
Balance and Zoo, were treated as numerical. As a data preparation, each instance
vector was normalized to have a magnitude of 1. Individual cases were normalized
by dividing each attribute of the instance by the square root of the sum of the
squares of the individual attributes. Thus, an instance xi = (xi1, xi2, . . . , xip)
was normalized by dividing each attribute xij by

∑p
j=1 xij

2.
The parameter optimization for the proposed technique was done as follows.

It was created a complete network N (Step 1 of Alg. 1) by using the Euclidean
measurement as a distance function. Parameter t (Step 5 of Alg. 1) ranged from
1 to the number of instances in the largest class of the training set. Parameter
ε (Eq. 1) was evaluated by the grid method with the values {0, 0.1, 0.2, . . . , 10}.

The influence of parameter ε in the classification accuracy was evaluated. As
stated before in Sec. 2, ε is responsible for weighting the biases provided by
the virtual state. Figure 2 depicts the accuracy in function of parameter ε for
eight selected data sets. The results were averaged over 50 simulations. Each
simulation was performed by using a 10-fold stratified cross-validation process
[23]. In this process, the data set is split in 10 disjoint sets and, in each run, 9
sets are used as training data and 1 set is used as the test data, resulting in a
total of 10 runs. Therefore, 50× 10 runs were executed. It can be seen on Fig. 2
that next to value 0 - where the biases influence are reduced because of a small
weight - the classification accuracies are poor. On the other hand, as ε becomes
larger, the accuracies increase and stabilize before it approaches 10. In this later
case, the biases play a main role due to the large weight applied to them (Eq. 1).
These scenarios configure a convergent behavior for parameter ε and can help in
the simulations by restricting the search space.
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Fig. 2. Classification accuracy in function of parameter ε. The curves show standard
deviations for each point in error bars. 50 simulations were averaged.

The proposed technique was compared to other 4 well-known multi-class clas-
sification algorithms: Weighted kNN (WkNN), Decision Tree C4.5 [24], Multi-
Class SVM (MSVM) [25] and the network-based k-Associated Optimal Graph
(kAOG) [17]. For the parametric algorithms (all of the algorithms except kAOG),
a repeated cross-validation [23] was done in order to optimize their respective
parameters. For the MSVM algorithm, we used the one-against-one multi-class
version, in which C(C − 1)/2 binary classifiers distinguishes between every pair
of classes by using a voting scheme. To avoid ties, the output of each MSVM
corresponded to the real valued decision functions. For reducing the parame-
ter search space in MSVM model selection, the only kernel in consideration
was the radial basis function, K(xi,xj) = e−γ||xi−xj ||2 , and the stopping crite-
rion for the optimization method was defined as the Karush-Kuhn-Tucker vi-
olation to be less than 10−3, the same condition used in [26]. In the WkNN,
the classification process was performed by using the sum of the weights be-
tween the instance to be labeled and its k-nearest neighbors. Specifically, the
weight between two instances xi and xj is defined by 1/μ(xi,xj), where μ is a
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Table 2. Classification accuracy (%) followed by standard deviation and rank for each
algorithm. Each result shows the adjusted parameters for model selection. Best result
for each data set is in bold face.

Data set Proposed (ε, t) kAOG WkNN (k) C4.5 (cf , m) MSVM (cp, γ)

Zoo 96.2 ± 0.3 (7.8, 1) 97.0 ± 5.2 96.2 ± 5.8 (1) 95.8 ± 5.3 (0.1, 0) 96.3 ± 6.4 (21, 21)

Hayes-Hoth 57.0 ± 1.7 (3.5, 1) 55.7 ± 12.6 56.8 ± 13.2 (3) 46.7 ± 10.5 (1, 0) 45.4 ± 13.1 (212, 213)

Iris 98.1 ± 0.2 (3.1, 29) 97.4 ± 3.2 97.9 ± 3.3 (19) 95.0 ± 5.8 (0.25, 2) 97.0 ± 4.6 (2−2, 23)

Teaching 63.1 ± 2.0 (6.0, 1) 62.5 ± 11.6 63.0 ± 12.3 (9) 58.2 ± 14.9 (1, 0) 52.5 ± 7.9 (26, 23)

Wine 84.6 ± 1.8 (9.4, 1) 83.5 ± 8.5 84.1 ± 8.2 (1) 91.7 ± 6.7 (0.5, 1) 94.4 ± 5.8 (211, 22)

Image 75.5 ± 1.0 (1.8, 1) 75.3 ± 7.5 75.4 ± 8.2 (3) 80.7 ± 7.6 (0.8, 3) 86.7 ± 7.4 (210, 2−3)

Glass 72.5 ± 1.2 (10.0, 2) 72.5 ± 8.1 71.8 ± 9.0 (1) 66.9 ± 9.4 (0.1, 3) 69.5 ± 5.6 (210, 24)

E. Coli 87.5 ± 0.6 (4.4, 9) 85.8 ± 6.4 87.4 ± 5.4 (9) 83.6 ± 6.1 (0.25, 3) 86.7 ± 8.2 (212, 2−9)

Libras 84.9 ± 0.7 (9.0, 1) 85.4 ± 5.3 84.8 ± 5.4 (1) 71.6 ± 7.5 (0.8, 1) 86.6 ± 5.0 (27, 22)

Balance 96.3 ± 0.5 (4.1, 9) 94.9 ± 2.5 96.7 ± 2.1 (11) 89.6 ± 3.7 (0.5, 1) 98.2 ± 0.9 (27, 20)

Vehicle 67.6 ± 0.7 (10, 4) 67.9 ± 4.4 67.6 ± 4.1 (5) 70.7 ± 3.5 (0.5, 2) 84.4 ± 3.4 (210, 23)

Vowel 97.5 ± 0.9 (10.0, 1) 98.9 ± 0.7 98.8 ± 0.9 (11) 78.6 ± 4.3 (0.5, 0) 97.5 ± 1.9 (27, 20)

Yeast 59.4 ± 0.4 (10.0, 12) 53.6 ± 3.8 60.9 ± 3.6 (16) 55.8 ± 3.6 (0.1, 5) 58.9 ± 4.8 (211, 20)

Wine Q. Red 61.0 ± 0.3 (10.0, 1) 61.8 ± 3.6 64.0 ± 3.8 (19) 59.8 ± 2.4 (1, 0) 60.4 ± 3.2 (29, 21)

Segment 93.1 ± 0.5 (10.0, 1) 93.7 ± 1.5 93.6 ± 1.4 (5) 95.4 ± 1.2 (1, 0) 96.6 ± 1.2 (211, 20)

Avg. Rank 2.67 ± 1.50 3.33 ± 1.80 2.80 ± 1.26 5.00 ± 1.96 3.13 ± 2.20

distance measurement. The number of neighbors k ranged from 1 to the num-
ber of instances in the largest class of the training set. For the C4.5 algorithm,
two parameters were adjusted, the confidence factor which assumes the values
cf ∈ {0, 0.1, 0.25, 0.5, 0.8, 1}, where smaller values incur more pruning (1 is for
no pruning), and the minimum number of instances that a set must have in order
to be further partitioned is m ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20, 50}.

Table 2 presents the classification accuracy on the test set followed by the
standard deviation. Best results are in bold face. At the last line, the average rank
for each algorithm is shown. The calculation procedure for the rank measurement
is as follows: i) for each data set, the algorithms were ranked according to their
average performance, that is, the best algorithm was ranked as first, the second
best was ranked as second, and so on; and ii) for each algorithm, the average
rank was based on the rank values on all the data sets. It can be seen that
the proposed technique achieved the best average ranking amongst all simulated
techniques. Moreover, it is worth emphasizing that our technique exhibited the
smallest deviation values over all results.

4 Conclusions

This paper has presented a new network-based classification technique which ap-
plies limiting probabilities from random walk theory. In the supervised model,
these probabilities represent the ease of access an unlabeled instance has to the
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classes in the training set in an underlying network. Unlabeled nodes are classi-
fied with the label of the class most easily reached. Simulations have suggested
that the proposed technique is competitive with the current well-known classi-
fication techniques. As future works, mathematical models could be studied to
describe and shed more light to the proposed technique. We hope this research
contributes to the network-based learning area, specially to development of new
supervised classification heuristics.
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Abstract. In the next generation of recommender systems, multi-
criteria recommendation could be regarded as one of the most important
branches. Compared with traditional recommender systems with usually
one single rating, multi-criteria recommender systems have several rat-
ings from different aspects, and generally describe users’ interests more
accurately. However, owing to the cost of ratings, multi-criteria recom-
mender systems meet more severe data sparsity problem than traditional
single criteria recommender systems.

In this paper, We design a new approach to compute the similarity
between users, which tackles the challenge posed by data sparsity that
one cannot obtain the similarity between users with no common rated
items. With a new method of data preprocessing, the features of items are
combined to eliminate the effect of noise and evaluation scale. We model
the aggregation function using support vector regression which is more
accurate and robust than linear regression. The experiments demonstrate
that our method produces a better performance, while providing more
powerful suitability on sparse and noisy datasets.

Keywords: recommendation, multi-criteria, support vector regression,
sparsity, preference.

1 Introduction

While the Internet gives users easy access to a lot of resources, information
overload has become a big challenge to us. There are a huge amount of movies,
books, CDs, articles published every day, hour and minute, it is impossible for
an individual to find interesting items just by himself. Recommender systems
can tackle this problem by helping users to find information or items that they
may like the best.

The problem of recommendation has been identified as the way to help indi-
viduals in a community to find information or items that are most likely to be
interesting to them or to be relevant to their needs[1][2][3]. A utility function f :
Users×Items → R is defined to measure the interests of users to items, where R
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is typically represented by non-negative integers or real numbers within a certain
range. For each user, we want to find items that maximize his utility. Unfortu-
nately, utility function is just defined on some subset of Users × Items space.
Therefore, the crucial problem of recommendation systems is to extrapolate the
missing values of the utility function to the whole Users× Items space.

In most existing recommender systems, utility function is usually considered
to be a single rating, named as overall rating. However, a single rating is some-
times not sufficient to illustrate the users’ preference. For example, many fans
of “Transformers” like the movie because of the scenes, but others chase it for
the story. So drilling down the overall rating to find out the explicit preference
in each aspect can help to understand users’ interests more accurately.

Therefore, with growing number of real-world applications, extending recom-
mendation techniques to incorporate multi-criteria ratings has been regarded
as one of the most important issues for the next generation of recommender
systems[4]. There already exist some applications of multi-criteria recommender
systems: TripAdvisor 1 provides five criteria for evaluating hotels from “Overall”,
“Food”, “Service”, “Value” and “Atmosphere”; DianPing.Com 2 provides four
criteria for restaurants from “Overall”, “Taste”, “Environment” and “Service”.
The utility function of multi-criteria recommendation can be defined as follows:

f : Users× Items → R0 ×R1 × · · · ×Rk (1)

where R0 is the overall rating, Ri (i = 1, 2, · · · , k) is the rating of each individ-
ual criterion, named sub-criterion in this paper. In addition to the overall rating,
sub-criteria ratings provide more information about users’ preference over differ-
ent aspects of items. Recommender systems could benefit from leveraging this
additional information since it could potentially increase the recommendation
accuracy.

With the development of e-commerce in service domain, multi-criteria rec-
ommendations get more and more attention. Adomavicius and Kwon[5] pro-
pose a framework named as aggregation-function-based approach, which assumes
the overall rating serves as an aggregation function of the sub-criteria ratings.
They also extend the traditional collaborative filtering(CF)[6] approaches to
multi-criteria recommender systems with distance-based similarity[5]. Tang and
McCalla[7] think that the users’ similarity can be represented as a weighted
sum of users’ similarities over individual criteria. Liu et al.[8] consider the over-
all rating can be represented as a linear combination of ratings of sub-criteria.
But these methods mentioned above all involve decomposing the multi-criteria
problems into several single criterion problems, which ignore the relationship
among criteria. Xin et al.[9] propose an algorithm named CMAP, which com-
bines quality-based and relevance-based algorithms together. Li et al.[10] pro-
pose a novel approach to improve a traditional CF algorithm by utilizing the
MSVD[11](Multilinear Single Value Decomposition) technique.

Despite the significant research progress in multi-criteria recommendations,
the existing techniques draw lessons from CF which calculates similarity between

1 www.tripadvisor.com
2 www.dianping.com

www.tripadvisor.com
www.dianping.com
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users by integrating the ratings of the common rated items. That makes data
sparsity more severe, since most users have no common rated items. In most
existing recommender systems, such as Amazon, BestBuy, there are a great
many of categories of items. It is quite inaccurate to use the rating of an old lady
assigns to ipad to estimate the rating of an enthusiastic apple fan. So we need to
verify the neighbors of the target user by checking whether they have common
shopping records in the past. Due to difficulties to find a set of uniform criteria for
different kinds of items, in existing multi-criteria recommender systems, usually
the items are in the same category, such as movies or restaurants. Any user in
these systems can give a relatively accurate evaluation to items in this unique
category. Therefore, we design a preference-based similarity, by which we can
obtain similarities between any users.

In this paper, our approach falls into the framework of aggregation-function-
based approach. We construct a preference-based similarity formulation, by
which we can obtain the similarity value between any users without decom-
posing the multi-criteria problems. Then we design a set of methods to pre-
process the original ratings to get the user preference. Finally, support vector
regression(SVR)[12] is used to model the aggregation function for each user,
which is more accurate and robust than linear regression(LR) employed in [8].

The rest of the paper is organized as follows: our approach is detailed in
section 2. Relevant experiments and results are included in section 3. Section 4
contains the conclusions of the paper and the future work.

2 Multi-criteria Recommendation with Preference-Based
Similarity and SVR

2.1 Framework

The framework of our approach is shown in figure 1, which falls into aggregation-
function-based approach framework. In aggregation-function-based approach[5],
it is assumed that the overall rating can be represented by an aggregation
function of sub-criteria ratings. i.e.

r0 = f (r1, ..., rk) (2)

The aggregation function which is chosen based on domain expertise or machine
learning techniques, has three scopes: total, user-based, item-based. For the total
scope, different users share the same aggregation function which is learned from
the entire dataset; for user-based or item-based, a separate aggregation function
is learned for each user or item.

In this paper, aggregation functions are learned for every user, it is more
individualised than total scope. We state our approach as following steps:

1. Predict sub-criteria ratings r1, r2, ..., rk;
2. Learn an aggregation function f for each user;
3. Synthesize overall ratings r0 = f (r1, ..., rk).

Then we can recommend items to users with r0 as traditional recommendation
systems.
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Fig. 1. The Framework of Our Approach

2.2 Predict Sub-criteria Ratings

In this section, we first formulate the users’ preference, and then propose
preference-based similarity with multi-dimensional distance metrics. Lastly, we
design a formulation to generate the sub-criteria ratings r1, r2, ..., rk of the
target user by integrating the information of his neighbors.

Obtain Preference. It is noticed that original ratings cannot express users’
evaluations and preference exactly. Due to different evaluation scales, a strict
user may give 3/5 points to an item which he considers good, while a loose user
may give 4/5 points to an item which he considers not good. Also we cannot
get the conclusion that one user is strict just because his average rating is lower
than the public, since it is possible that all items he rated are low quality. So we
combine the features of items and evaluation scales to preprocess the original
data. Here, we use a simple method: the average ratings, to represent the features
of items.

fic =
1

|U |
∑
u∈U

rcui, c ∈ [1, k] (3)

where fic is the feature of c-th criterion of item i, U is the set of users who rated
the item i and rcui is the rating of c-th criterion that user u assigns to item i.
In order to reflect one user’s preference over each criterion from the rating he
assigns to an item, features of this item should be combined to transform the
original ratings. So we give the following formulation, where rtcui represents the
transformed rating of c-th criterion that user u assigns to i, fij represents the
feature of j-th criterion of item i.

rtcui = rcui ∗ ((
k∑

j=1

fij)/fic), c ∈ [1, k] (4)

We still need to normalize the ratings to eliminate the effects of evaluation scale.
User preference can be measured by averaging normalized ratings of all items
that he rated. puc is the preference of user u over c criterion, I is the set of items
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that user u rated, and r̃t
c

ui is the normalized rating of c criterion that user u
give to item i.

r̃t
c
ui = rtcui/

√√√√ k∑
j=1

(rtjui)
2
, c ∈ [1, k] (5)

puc =
1

|I |
∑
i∈I

r̃t
c
ui, c ∈ [1, k] (6)

Preference-Based Similarity. Due to the reasons discussed in section 1, we
can compute the similarities between users with preference instead of ratings of
common rated items. The similarity formula can be defined as

sim(u, v) =
1

1 + dist(−→pu,−→pv)
(7)

−→pu and −→pv, which are calculated by Eq.6, represent the preference vectors of user
u and v, and dist(−→pu,−→pv) is the euclidean distance between preference vectors −→pu
and −→pv.

We are delighted to find that operands are just two k -dimensions vectors in
(6), in contrast to |I| ∗ k-dimensions vectors, where I represents the common
rated items of two users. More importantly, we can obtain the similarities of
users without common rated items, so we could integrate more information to
predict the unknown ratings.

Preference Order Based Cluster. In traditional CF, the neighbors of the
target user are identified by similarity of them. Here, we assume neighbors also
should share similar preference over each criterion. For the target user who takes
“Taste” as the most important criterion and “Service” as the least important
criterion, any users have the same opinion and high similarity with him should
be considered as his neighbors. It is noticed that the criterion highly valued by
one user gets a small number in his preference. Therefore, we cluster the users
by their similarity and the order of the criteria in preference. However, users
whose preferences include k criteria, will be divided into factorial of k clusters,
there will be not enough data to utilize in each cluster. So, we can cluster users
according to the order of their significant criteria. Here, we choose top-n(n≤k)
important criteria as the significant criteria, and cluster users into factorial of n
clusters according to the order of significant criteria.

Predict Ratings of Sub-criteria. When we get the neighbors of user u, we can
predict the ratings of the sub-criteria that u gives to an item i based on the rat-
ings of i rated by neighbors of u. The similarity-based weighted sum approaches
are often used in CF. However, using these methods, the ratings we obtained
are between the lowest and highest ratings given by neighbors. Thereby, for one
user whose rating is lower or higher than his neighbors, the rating predicted is
inaccurate. We need to take evaluation scale into consideration. So given a user
u and his neighbors U = {u1, u2, ..., un}, we predict the sub-criteria rating of u
as follows:

Cui
c =
c=1....,k

1

N
(
∑
v∈U

uc

vc
∗ Cc

vi) (8)
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uc and vc are the average ratings of c th criterion of user u and v. Cc
vi represents

the rating of item i on criteria c rated by user v. N is the size of user u’s
neighbors.

2.3 Model Aggregation Function

In order to synthesize the overall rating, we should model an aggregation func-
tion for each user in advance. Aggregation function is considered as linear func-
tion of sub-criteria rating in [8]. It is well known that LR is vulnerable to
singular points. In recommender systems, there always exist a large amount
of noise and random factors due to diverse collection of ratings. Sometimes users
may give random ratings for bad mood or saving time; the rivals may give ab-
normal ratings deliberatively. So we model aggregation functions by another
approach: SVR.

Support Vector Regression. SVR is a supervised model used for regression
analysis. It’s aimed at maximizing the margin which is the distance of training
samples that are closest to separating hyperplane. More detailed explanations
can be found in [13]. Here we present the final formulation of the model.

max − 1
2

∑
i,j=1

(ai − a∗i )
(
aj − a∗j

)
K (xi, xj)

− ε
l∑

i=1

(ai + a∗i ) +
l∑

i=1

yi (ai − a∗i )

s.t.
l∑

i=1

(ai − a∗i ) = 0, ai, a
∗
i ∈ [0, C]

(9)

a∗i , ai are named dual variables, which represent the weights of every sample,
K (xi, x) is the kernel function. Only a few training samples, namely Support
Vectors, obtain non-zero weights, determine the prediction. This basic nature
of SVR makes it not sensitive to singular points and tackle the disadvantage
of overfitting. We could obtain dual variables from the solution of Quadratic
Programming.

We can get the prediction by the following function, where b is a constant
threshold.

f (x) =
N∑
i=1

(a∗
i − ai)K (xi, x) + b (10)

where f (x) is the aggregation function we want to model for each user. At last,
we can synthesize the overall ratings with sub-criteria ratings and aggregation
functions, then recommend items to users according to the overall ratings.

3 Experimental Results

In order to evaluate the performance of our approach, we conduct a set of exper-
iments where we compare the proposed methods with some existing techniques.
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All experiments were implemented based on PC with Windows 7, with AMD
Phenom X4 CPU, 3.20GHz and 4GB RAM.

3.1 Dataset

The ratings dataset which is an example of service domain is collected from Di-
anPing.Com. There are three sub-criteria ratings, from “Taste”, “Environment”,
“Service”, and an overall rating. These three sub-criteria ratings range from 0 to
4, with 4 as the excellent, and overall rating ranges from 1 to 5. There are 422,284
records in our dataset, with 5,484 restaurants and 6,503 users. We discard the
users who have rated less than 20 restaurants and the restaurants which have less
than 20 users’ ratings, and the records with all sub-criteria ratings equal to zero.
After cleaning, there are 163,057 records left with 3,560 restaurants and 2,939
users. The sparsity level of data is 1.56%. 80% records are selected randomly as
the training set, and 20% records as the testing set.
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Fig. 2. Distribution of Restaurant Ratings in Dataset

The number of ratings of each criterion in our dataset is ploted in Fig. 2. It
shows the distribution of restaurant ratings in our dataset. In order to bring
the overall rating in accordance with sub-criteria ratings, we rescale the overall
rating range from 1-5 to 0-4. We can observe that the data distribution is very
concentrated, so it is conclude that the results could be very good.

3.2 Evaluation Metric

Mean Absolute Error(MAE)[14] is one of the most commonly used statistical
accuracy metric. It measures the accuracy by the average absolute deviation
between predicted ratings and true ratings.

MAE =

∑n
i=1 |pi − qi|

n
(11)

where pi is the predicted rating of testing sample i, qi is the true rating of testing
sample i, n is the size of testing set. The lower the MAE is, the more accurate
predictions are[15].
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3.3 Performance of Four Methods

In the framework of our algorithm, the first step is to predict the ratings of
sub-criteria with Preference-Based Similarity(PBS). In order to validate the ef-
fective of our new similarity formulation, we show not only the results of overall
rating prediction, but the results of sub-criteria ratings prediction. We choose
the traditional user-based CF as the baseline named Single in Fig. 3, by decom-
posing multi-criteria problem into 4 single criteria problems and solving them
separately. ExtendedCF[4] is the method extended from traditional CF with
euclidean-distance-based similarity. PBS-Cluster and PBS-NoCluster correspond
to two variations of our method detailed in Section 2.2, where PBS-NoCluster
does not cluster users by preference order, while PBS-Cluster involves clustering
users with preference order.
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As is shown in Fig. 3, our approaches outperform the Single and ExtendedCF.
With PBS-Cluster, the accuracy improves around 10% on sub-criteria ratings
prediction and 16% on overall rating prediction, compared with Single and Ex-
tended CF. It is proved that our framework with preference-based similarity is
very effective. An interesting observation is that the method PBS-Cluster per-
forms poorer than PBS-NoCluster. This is because after clustering, we can only
utilize the information in same cluster, which worsens the data sparsity prob-
lem. However, PBS-Cluster has superiority in time cost over PBS-NoCluster, as
is shown in table 1.

Table 1. Time Cost

Method PBS-NoCluster PBS-Cluster ExtendedCF

Time 4783s 411s 2269s

The results demonstrate that with clustering, PBS-Cluster provides a more
than ten times speed than the method PBS-NoCluser, which indicates a
tradeoff between accuracy and time-complexity. For time-consuming problem,
PBS-Cluster method may be a better choice.
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3.4 SVR versus LR

As we discussed in section 2.3, there always exists a large amount of noise and
random factors in multi-criteria recommender systems. So we use the more ro-
bust method SVR to learn the aggregation functions instead of LR which is used
in [8]. The result is shown in Figure 4. According to the result, the aggregation
function learned by SVR have a better performance, the accuracy is improved
by 5%-6% compared with aggregation function learned by LR.

In order to check the robustness of SVR, we add outliers to training set, and
conduct another set of experiments based on the ratings of sub-criteria predicted
by PBS-NoCluster. we add some records as outliers, of which sub-criteria ratings
generated from [0,2] and overall rating generated from [4,5] randomly, or vice
verse. We notice that, the performance of the both two algorithms get worse
as the number of outliers increase. But compared with LR, SVR performs more
stably. The comparison of LR and SVR is shown in figure 5. The X axis represents
the percentage of outliers in training set.

4 Conclusion and Future work

In this paper, we are motivated by three facts: original ratings cannot express pref-
erence of users exactly; multi-criteria recommender systems usually recommend
items in the same category; the data is sparse and noisy in multi-criteria recom-
mender systems. So we propose a new method to preprocess the original data, to
alleviate the issues of evaluation scale and ignorance of items feature. Similarity
is calculated by users’ preference instead of ratings of common rated items, which
tackles the data sparsity problem. To speed up the predicting process we cluster
the users with their preference order, at some cost of accuracy. In order to improve
the accuracy and robustness, we learn the aggregation function by SVR instead of
LR. In the end, we prove that our methods provide a good performance compared
with othermethods. Thus, from a technical standpoint, we believe that the work in
this paper will be helpful in improving recommender system in real applications.

Compared with ratings, reviews are not affected by evaluation scales, can
express users’ feelings more straightforwardly and objectively. Therefore, more
information can be obtained by mining and summarizing customer reviews[16].
In our future work, we plan to exploit reviews to improve the performance of
the proposed technique.
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Abstract. The semi-supervised learning paradigm allows that a large
amount of unlabeled data be classified using just a few labeled data.
To account for the minimal a priori label knowledge, the information
provided by the unlabeled data is also used in the classification process.
This paper describes a semi-supervised technique that uses random walk
limiting probabilities to propagate label information. Each label is prop-
agated through a network of unlabeled instances via a biased random
walk. The probability of a vertex receiving a label is expressed in terms
of the limiting conditions of the walk process. Simulations show that the
proposed technique is competitive with benchmarked techniques.

Keywords: network-based learning, semi-supervised learning, random
walk, limiting probabilities, stationary distribution.

1 Introduction

Semi-supervised learning (SSL) is a machine learning paradigm that overcomes
the problem originated when labeling a training data set becomes expensive
and very time-consuming. The main idea behind this paradigm is to classify
data using just a few labeled instances and the information provided by many
unlabeled instances [1]. This is practicable due to three SSL assumptions: man-
ifold, smoothness and cluster. The manifold assumption states that the high-
dimensional data lies on a low-dimensional manifold whose properties ensure
more accurate density estimation and more appropriate similarity measures. The
smoothness assumption states that if two points are close to each other in a high
density region, then their correspondent labels should be close to each other as
well. Finally, the cluster assumption states that if two points are in the same
cluster, then they are likely to be of the same class (or, in other words, to have
the same label). In this way, the SSL approach can provide high classification
accuracies using less human effort and exploiting the unlabeled massive group
of data.

Random walk theory has been applied in many machine learning problems.
In image analysis, for example, a random walk process can be executed through
pixels represented by network vertices. Texture discrimination and edge detec-
tion were performed by comparing boundary distributions of such process [2, 3].
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As an alternative way to perform edge detection and image segmentation, other
measurements were derived. In [4], the first time passage probability is computed
when a random walker passes through a labeled vertex (pixel) after starting from
an unlabeled vertex. A similar approach applied to content-based image retrieval
can be found in [5]. An agglomerative network-based classification method was
introduced in [6]. In this work, the hierarchy is based on life-time of restricted
random walks, in which the steps of a random walker are limited by a distance
function of antecedent steps. The time approach was also used in [7], in which
classification is achieved by comparing commute times to labeled points of differ-
ent classes. In [8], an unlabeled instance is classified as the class which maximizes
a posterior probability by considering the time a walker starting in a vertex of
the same class reaches the unlabeled instance.

Despite many concepts of random walk processes were already applied to
classification and correlate tasks, limiting probabilities has never been directly
applied, to our knowledge, as is done in this work. To account for the usage of
the information provided by the unlabeled instances in the SSL task, the random
walk process takes into account the whole network, which is composed by the
unlabeled instances. The few labeled instances are inserted into the network by
a specific weight composition responsible for creating a bias to the classification
process. This bias is taken into account when the limiting probabilities are calcu-
lated. As simulation results showed, this is an effective measurement to capture
intrinsic relations among labeled and unlabeled vertices in a network.

2 Background: Random Walks and Limiting Probabilities

Random walks can be understood in terms of Markov chains [9]. Consider a
stochastic process Ω with a finite state space Γ . For each n ∈ N = {0, 1, 2, . . .},
Ωn ∈ Ω is an element from Γ . Then, the stochastic process Ω = {Ωn} is called
a Markov chain if probability P (Ωn+1 = i|Ω0, . . . , Ωn) = P (Ωn+1 = i|Ωn),
i ∈ Γ , that is, the process is independent of past states provided that the current
state Ωn is known. In this work, a time-homogeneous chain is considered: when
P (Ωn+1 = j|Ωn = i) = pij is independent of n [10]. The probabilities pij can be
arranged into a Markov matrix P = {pij}.

The probability for a random walk starting at state i0 to end at a state im is
given by the probability of the chain P (i0, im) = P (i0, i1)P (i1, i2) . . . P (im−1, im).
If an infinite number of transitions (m → ∞) is considered, then a limiting prob-
ability (stationary state) needs to be calculated. It can be shown that the limiting
probability P∞(im) = limn→+∞ Pn(i0, im) exists given a recurrent, non-null and
aperiodic state im. Therefore, considering |Γ | = q, one is able to calculate the
Markov matrix. The limiting probability of the final state im is independently
of the initial state i0 [10].

3 The Proposed Semi-Supervised Technique

Given a dataset X = {xi, i = 1, . . . , r}, the objective is to classify the subset of

unlabeled instances X ⊃ X (u) = {x(u)
i , i = 1, . . . , n} using the subset composed
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of just a few labeled instances X ⊃ X (l) = {x(l)
i , i = 1, . . . ,m}, l ∈ {1, 2, . . . , c}

(X (l) ∩ X (u) = ∅, X (l) ∪ X (u) = X ). To characterize a SSL task, m � n.
First, an undirected network N = {V , E} without self-loops is created. In

this network, instances are represented by vertices, V = X (u), and similarities
among instances are represented by edges, E = [Wij ], i, j = 1, . . . , n. The net-
work similarity matrix W = {wij} is calculated by using some sort of distance
function as, for example, the Euclidean distance. wij is the similarity between

a pair of instances x
(u)
i and x

(u)
j . wij = 0 means that there is no link between

x
(u)
i and x

(u)
j .

In the next step, an labeled instance x
(l)
j is inserted into the network N . To do

so, the similarities Sj = [sj1, sj2, . . . , sjn]
T , between x

(l)
j and all other vertices

x
(u)
i ∈ V are calculated by using a distance function, and a new asymmetric

n × n modified similarity matrix Ŵj is constructed by composing it with the

matrix of weight biases Ŝj :

Ŵj = W + εŜj , (1)

where ε is a non-negative parameter and Ŝj is the following n × n matrix com-
position:

Ŝj =

⎡⎢⎢⎢⎣
ST
j

ST
j
...

ST
j

⎤⎥⎥⎥⎦ , (2)

where ST
j is the transpose of vector Sj .

In Eq. 1, it can be observed that the weight biases of x
(l)
j , encoded in ma-

trix Ŝ, are applied over all edges wij of network N , that is, the weight of each
edge is linearly added up with the corresponding weight bias. The idea behind
this operation is that the distance between any pair of vertices is reduced be-
cause of the new route introduced by the insertion of the labeled data instance.
The higher the proximity between the labeled instance and a vertex, say vertex
i, the more strengthened the connections from all other vertices to vertex i are.
The parameter ε controls the influence of weight bias provided by matrix Ŝ on
the original network. The larger is the value of parameter ε, the greater will

be the influence of the bias weights provided by x
(l)
j .

After the bias composition, x
(l)
j is effectively inserted into network N . To do

so, an (n + 1)× (n + 1) adjacency matrix Aj = {aij} is constructed:

Aj =

[
Ŵ Sj

ST
j 0

]
. (3)

In this formulation, without loss of generality, x
(l)
j is inserted as the last entry

(n+ 1) of matrix Aj .
The two steps described above can be easily understood by using the toy

example depicted in Fig. 1. In this example, a network is formed by 4 unlabeled
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Fig. 1. Composition process for the modified similarity matrix Ŵj . a) An undirected
and complete network N is formed by using 4 unlabeled instances; b) similarities Sj

are calculated for the labeled instance x
(l)
j ; c) modified network Aj , directed with self-

loops, after bias composition (Eq. 1) and insertion of the labeled virtual state x
(l)
j

(Eq. 3).

instances (Fig. 1a). In this initial network, the links are undirected and the

similarity matrix is symmetric. Next, the similarity vector Sj between x
(l)
j and

all other vertices is computed (Fig. 1b). After this computation, the weight

biases of x
(l)
j are added up to the original similarity matrix to form a biased

similarity matrix for the same network (Eq. 1). After that, x
(l)
j is effectively

inserted into the network (Eq. 3). It can be seen from Fig. 1c that the network

becomes directed and with self-loops (except for x
(l)
j , that has no self-loops) and

the biased weight matrix is no more symmetric.

After the insertion of x
(l)
j , we are able to compute the entries of the transition

Markov matrix Pj = [pik] by scaling the entries of matrix Aj :

pik = aik/

n+1∑
k=1

aik. (4)

With the above matrix Pj at hand, the limiting probabilities are calculated.
This calculation can be performed by two ways: finding the eigenvector
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corresponding to the unit eigenvalue of matrix Pj or, in a faster way, iterating the
system

pj(t+ 1) = Pjpj(t), (5)

to the stationary state, where pj is an (n + 1) × (n + 1) normalized vector. It
results in the following vector:

p∞
j = [p1 p2 . . . pn+1] (6)

where each column represents an unlabeled vertex, and each entry pi represents

the probability that x
(u)
i belongs to the class l of the labeled vertex x

(l)
j (the

probability pn+1 is ignored as it represents x
(l)
j , which is inserted into N by

means of Eq. 3).
Finally, the classification is completed by repeating the above steps (Eq. 1

through 6) for all labeled instances x
(l)
j ∈ X (l). The classification of x

(u)
i is ac-

complished by assigning it the most representative label, that is, after averaging

all p∞
j for each label (each x

(l)
j ), the following matrix is constructed:

p∞ =

⎡⎢⎢⎢⎣
p11 p21 . . . pn1
p12 p22 . . . pn2
...

...
. . .

...
p1c p2c . . . pnc

⎤⎥⎥⎥⎦ , (7)

where pil, l = 1, 2, . . . , c, is the averaged probability that instance x
(u)
i belongs

to class l. Then, the label pmax = argmax{pil}, corresponding to the largest

probability value, is assigned to x
(u)
i .

In a concise form, the proposed semi-supervised transductive classification can
be summarized by Algorithm 1.

4 Illustrative Toy Example

In this subsection, simulation results on a toy example are presented. It was used
a toy data set that captures different class characteristics, such as different shapes
and densities, to illustrate the behavior of the semi-supervised technique. The
toy example in Fig. 2 encompasses a challenging classification task. This data
set is composed of 3 different class distributions (from left to right): Gaussian,
Highleyman and Lithuanian. The data was generated by using the PRTools
toolbox [11]. Each class has 500 instances, totaling 2500 instances for the entire
data set. In addition, each class comprises 10 labeled instances, representing (2%)
of the entire data. Figure 2b shows that the proposed technique satisfactorily
detected the 5 classes.
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Algorithm 1. The proposed semi-supervised technique

Input:
c : number of classes
X (u) : unlabeled dataset
X (l) : labeled dataset
Parameters:
ε : bias weighting
Output:
Estimated class (l ∈ {1, . . . , c}) for x

(u)
i ∈ X (u)

Training:
1. N = Create a network from X (u)

Classification:
for each x

(l)
j ∈ X (l) do

2. Ŵj = Compose bias weights into N (Eq. 1)

3. Aj = Insert the virtual state x
(l)
j into N (Eq. 3)

4. p∞
j = Compute limiting probabilities (Eq. 5)

end for
5. p∞ = Averaged p∞

j

6. Assign x
(u)
i the most representative class in p∞
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(a) Black-filled stars represent labeled in-
stances.
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(b) Classification achieved by the proposed
technique.

Fig. 2. Mix of different cluster shapes for semi-supervised classification. This artificial
data set is composed of 2500 instances divided into 5 balanced and distinct clusters
shapes: Gaussian, Highleyman and Lithuanian. Each cluster contains 10 labeled in-
stances.

5 Benchmark Data Sets

The proposed semi-supervised technique was tested and compared using 7 bench-
mark data sets. Table 1 shows a brief description of them. Three artificial sets
(g241c, g241d and Digit1 ) were created in order to encompass some of the semi-
supervised assumptions: manifold, smoothness and cluster. The other four data
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Table 1. Meta-data of the datasets composing the SSL benchmark

Data Set Classes Dimension Points Type

g241c 2 241 1500 artificial
g241d 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 unbalanced
COIL 6 241 1500
BCI 2 117 400
Text 2 11960 1500 sparse discrete

Table 2. References for semi-supervised learning techniques used for comparisons

Abbreviation Technique Ref.

MVU + 1-NN Maximum Variance Unfolding [14]
LEM + 1-NN Laplacian Eigenmaps [15]
QC + CMR Quadratic Criterion and Class Mass Reg. [16]
Discrete Reg. Discrete Regularization [17]
TSVM Transductive Support Vector Machines [18]
SGT Spectral Graph Transducer [19]
Cluster-Kernel Cluster Kernels [20]
Data-Dep. Reg. Data-Dependent Regularization [21]
LDS Low-Density Separation [18]
Laplacian RLS Laplacian Regularized Least Squares [22]
CHM (normed) Conditional Harmonic Mixing [23]
LGC Local and Global Consistency [12]
LP Label Propagation [24]
LNP Linear Neighborhood Propagation [13]

sets (USPS, COIL, BCI and Text) were derived from real data. The benchmarks
were developed to evaluate the power of different algorithms as neutral as possi-
ble [1]. For each data set, 24 independent splits of labeled data for the training
set are available. 12 splits contain 10 labeled instances for each data set and
the other 12 splits contain 100 labeled instances. For each split, at least 1 in-
stance of each class is labeled. A more detailed explanation of each data set can
be found in [1]. The proposed technique was compared to 16 well-known and
established SSL techniques. Table 2 shows a brief description and the related
references for them. All simulation results were extracted from the reference [1],
where it can be found values for parameter optimization and model selection in
order to minimize test errors. For LGC, LP and LNP, σ was selected from the set
{0, 1, . . . , 100} and α was fixed to α = 0.99 (the same setup done in [12] and [13]).
For the LNP, k was evaluated for the values in {1, 2, . . . , 100}. The configuration
and parameter optimization for the proposed technique was done as follows. For
the network construction (Step 1 of Alg. 1), the k-nearest neighbor technique
was used: each vertex was linked with its k most similar neighbors. Parameter k
was evaluated for the values in {1, 2, . . . , 100} and parameter ε was evaluated for
the values in {0, 0.1, 0.2, . . . , 10}. In all simulations, no data preprocessing was
performed by the techniques and the Euclidean distance was used as a distance
function.
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Tables 3 and 4 shows the simulations results for 10 and 100 labeled instances,
respectively. For 10 labeled instances, the proposed technique achieved an av-
erage rank of 5.86 (2nd place) and, for 100 labeled instances, an average rank
of 9.29 (11th place). Overall, it achieved an average rank of 7.57 (5th place) -
preceded by LP (7.21), LDS (6.93), Laplacian RLS (5.43) and SGT (5.33). In-
terestingly, it achieved a very high position (2nd) in the case of only 10 labeled
instances, a very challenging semi-supervised task in which as only as a small
portion of 0.67% of the dataset is labeled. Hence, concerning the 17 techniques
and the 7 benchmark datasets, we conclude that the proposed technique is at
least comparable to the best known semi-supervised techniques.

Table 3. Classification error rate (%) and the corresponding average rank of each
technique. Best results are in bold face. Data sets with 10 labeled points.

g241c g241d Digit1 USPS COIL BCI Text Avg. Rank

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12 9.57
SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37 14.00
MVU + 1-NN 47.15 45.56 14.42 23.34 62.62 47.95 45.32 9.86
LEM + 1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44 10.00
QC + CMR 39.96 46.55 9.80 13.61 59.63 50.36 40.79 7.71
Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37 10.57
TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21 10.71
SGT 22.76 18.64 8.92 25.36 N/A 49.59 29.02 6.17
Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72 10.86
Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 N/A 9.83
LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15 8.29
Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68 6.00
CHM (normed) 39.03 43.01 14.86 20.53 N/A 46.90 N/A 7.20
LGC 45.82 44.09 9.89 9.03 63.45 47.09 45.50 7.29
LP 42.61 41.93 11.31 14.83 55.82 46.37 49.53 5.57
LNP 47.82 46.24 8.58 17.87 55.50 47.65 41.06 7.14

Proposed Method 40.30 41.74 13.94 19.98 59.40 46.69 34.32 5.86

Table 4. Classification error (%) and the corresponding average rank of each technique.
Best results are in bold face. Data sets with 100 labeled points.

g241c g241d Digit1 USPS COIL BCI Text Avg. Rank

1-NN 43.93 42.45 3.89 5.81 17.35 48.67 30.11 12.57
SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45 9.29
MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 47.89 32.83 11.71
LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77 12.00
QC + CMR 22.05 28.20 3.15 6.36 10.03 46.22 25.71 7.43
Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00 8.14
TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52 8.71
SGT 17.41 9.11 2.61 6.80 N/A 45.03 23.09 4.50
Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38 6.71
Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 N/A 6.83
LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15 5.43
Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57 4.86
CHM (normed) 24.82 25.67 3.79 7.65 N/A 36.03 N/A 8.80
LGC 41.64 40.08 2.72 3.68 45.55 43.50 46.83 9.86
LP 30.39 29.22 3.05 6.98 11.14 42.69 40.79 8.86
LNP 44.13 38.30 3.27 17.22 11.01 46.22 38.48 12.14

Proposed Method 27.92 26.19 3.57 9.59 20.01 44.11 25.54 9.43
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6 Conclusions

This paper has presented a new network-based semi-supervised classification
technique. The set of unlabeled instances compose a network in which vertices
represent the state space for a random walker. Via a specific matrix composi-
tion, each labeled instance is inserted into the network to provide a bias to the
classification process. This label bias is propagated through the unlabeled ver-
tices of the network by means of the limiting probabilities. The local and global
topology are taken into account by the random walk process and thus both
clustering and smoothness SSL assumptions are satisfied, making the usage of
the unlabeled instances information effective. Simulations have showed that the
proposed technique is capable of detecting classes that present different shapes
and distribution. The technique has also been demonstrated to be competitive
with some well-known semi-supervised techniques using benchmark data sets.

Acknowledgments. The authors would like to acknowledge the São Paulo
State Research Foundation (FAPESP) and the Brazilian National Council for
Scientific and Technological Development (CNPq) for the financial support given
to this research.
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Abstract. The increasing on the human ability to gather data has led
to an increasing effort on labeling them to be used in specific applica-
tions such as classification and regression. Therefore, automatic labeling
methods such as semi-supervised transdutive learning algorithms are of
a major concern on the machine learning and data mining community
nowadays. This paper proposes a graph-based algorithm which uses the
purity measure to help spreading the labels throughout the graph. The
purity measure determines how intertwined are different subspaces of
data regarding its classes. As high values of purity indicate low mix-
ture among patterns of different classes, its maximization helps finding
well-separated connected subgraphs; which facilitates the label spreading
process. Results on benchmark data sets comparing to state-of-the-art
methods show the potential of the proposed algorithm.

Keywords: Graph-based Transduction, Purity Measure, KNN Mutual
Graph, Semi-supervised Learning.

1 Introduction

Semi-supervised learning concerns the problem of automatic classification with
the restriction that only a small portion of the available data patterns present la-
bels [4], [14]. With the increasing capacity of collecting data, it also has increased
the demand of labeled data in order to develop applications such as classification
and prediction. Regular labeling data process though, is generally associated to
some drawbacks, such as time and monetary costs, not to mention the reliability
on a manual process [3]. Facing to this scenario, transductive learning methods
provide an automatic way to spread the labels from a very small portion of
the data to the whole data set. As a consequence, the expert needs to classify
only a small portion of the data, which decreases the aforementioned costs and
enhances reliability.

Transductive learning is a branch of semi-supervised learning which concerns
the task of labeling a finite set of data; differently from inductive learning algo-
rithms, whose aim is to determine a prediction function from the available data
(labeled and unlabeled) defined on the entire data space [7]. Among other trans-
ductive models such as generative [10], co-training [3] and low-density separation
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[12], the techniques based on graphs have been receiving a special attention over
the last years, see [6], [8], [13], [11]. In graph-based methods, each vertex of the
graph represents a data pattern and the edges stand for some relation of sim-
ilarity between vertices. In general, the higher the similarity among data, the
higher the probability of connection between them. Therefore, similar patterns
tend to be heavily linked together while non-similar patterns may hardly be con-
nected. As a result, the graph obtained from data represents arbitrary shapes
of data classes and it can be viewed as a natural structure to spread the labels.
However, most of the graph-based techniques present cubic order of complexity,
which limits its applications to small and middle sized data sets [14].

In this paper, we propose a new graph-based transductive algorithm, which
bases on the purity measure to aid spreading the labels throughout the graph.
The so called Purity Measure based Transductive Learning Algorithm (PMTLA)
resembles the KAOGSS algorithm [2], which is a semi-supervised inductive algo-
rithm. Therefore, the KAOGSS builds a classifier, named K-associated optimal
graph, which is a graph structure that, allied to the purity measure, is used
to classify new unlabeled data. Here we propose a version proper to cope with
transductive tasks, whose objective is to classify the already existing patterns.
Similar to the K-associated optimal graph construction, the PMTLA algorithm
does not depend on the parameter K, since it also constructs a KNN graph
incrementally; i.e. K, initially set to 1, is increased by one until all vertices are
labeled. The labels are spread as the components are being merged with the
increasing of K. Purity is then used along with a Monte Carlo method to best
separate the components with more than one class.

The remainder of the paper is organized as follow. Section 2 presents an
overview on the purity measure. Section 3 details the proposed graph-based
transducive algorithm. Section 4 presents some experimental results on an impor-
tant semi-supervised learning benchmark. At last, Section 5 concludes the paper
and gives prospective development directions regarding the algorithm proposed
in this paper.

2 The Purity Measure

This section presents an overview on the purity measure, further details can be
found in Refs. [1], [9]. Prior to introduce the purity measure, let G = (V,E) be
a graph, with a set of vertices V and a set of edges E. A maximal connected
subgraph of G is called component, an isolated vertex is also a component.
Consider also a vector-based data set X = {x1, . . ., xN} where a data pattern
xi = (xi1, xi2, . . . , xip, ci) described by p attributes and a class label ci, where
ci ∈ Ω = {ω1, ω2, . . . , ωM} and M is the number of classes in the problem.
A K-associated graph is a directed graph built from a vector-based data set
by abstracting each pattern to a vertex and connecting each vertex vi to the
set Δvi,K = {vj |vj ∈ Λvi,K ∧ ci = cj}, where Λvi,K is the set of K nearest
neighbors of vi. The resulting K-associated graph can be viewed as a set of
disjoint components, G = {C1, . . . , Cα, . . . , CR}, where each component Cα is
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composed by vertices of a single class. The number of components R varies in
the range N ≥ R ≥ M accordingly to the magnitude of K; where N is the
number of patterns in the training set and M the number of classes.

The total number of edges among the vertices of a component Cα is pro-
portional to K and can be at most equal to KNα, where Nα is the number of
vertices in component Cα. This maximum value is only achieved if all vertices in
the neighborhood of any vertex of the component have the same class. Likewise,
nearby vertices of other classes decrease the number of connections of the given
component. Thus, a measure of “purity” can be defined as: Given a component
Cα of a K-associated graph with number of vertices Nα > 1, given also the
average degree Dα, the purity measure of the component Cα, denoted as Φα, is
defined by Eq. (1).

Φα =
Dα

2K
. (1)

In this way, Φα = 1, if and only if, for every vi in the component Cα, all the K
neighbors have the same class label of vi. On the other hand, if there exist noise
or two or more classes are mixed together, vertices in this region are unable to
make their K connections due to the existence of vertices of other classes in the
neighborhood of some vertices. Indeed, the more mixing the components are,
the lower their average degrees Dα and consequently their respective purities.
This paper take the definition of purity less severe; basically to conform to the
KNN mutual graph, purity might not reach high values as in the K-associated
graph but it is sufficient to the aimed applications, once here we do not compare
components formed with different K.

3 The Proposed Purity Measure Based Transductive
Learning Algorithm

The problem addressed here regards the classification of a set of known unlabeled
patterns in a given data set. Considering the constraint that there exist too
few labeled data to employ a regular supervised method. In such scenario, it is
necessary to consider a transductive semi-supervised method in order to spread
the labels from the labeled to the unlabeled patterns. Hence, consider the data
set X = {(x1, c1), . . . , (xL, cL),xL+1, . . . ,xN} with L labeled patterns (xi, ci)
and N − L unlabeled patterns x (or (xj , ∅)).

The Purity Measure Transductive Learning Algorithm (PMTLA) proposed
here, relies on iteratively building a mutual KNN graph while spreading the
labels within those formed components where there exist a labeled vertex. Similar
to its counterpart, the inductive semi-supervised K-associated algorithm, which
constructs a sequence of graphs to end up with a optimal graph proper to perform
classification. The PMTLA algorithm, however, builds one graph by increasingK
and adding edges correspondingly, up to the point where all vertices have label.
The PMTLA algorithm consider a mutual KNN graph, defined as a undirected
graph G = (V,E) which consists of a set of labeled vertices V = {v1, . . . , vN}
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matching the given vector-based data set X ; i.e. vertex vi represent pattern xi

with its corresponding label ci or without label (ci = ∅). The set of edges E
is formed incrementally as K increases along time. Therefore, at every value of
K, and for each pattern xi it is verified if its Kth nearest neighbor, represented

as x
(K)
i , not only have xi as one of its K nearest neighbors, but also present

the same label. Then, supposing vj represents x
(K)
i , the {vi, vj} connection is

performed. In other words, vi connects to those vertices which also have vi as
a K nearest neighbor and belong to the same class of vi or do not have label.
If vi itself does not have a class label, it connects to all its K mutual nearest
neighbors without considering their classes.

As a consequence of connecting unlabeled vertices to labeled vertices, com-
ponents with more than one class may be formed. Since each component ideally
represents a local group of data, thus, it should not have more than one class.
Therefore, to overcome this problem, it is necessary to split those components
with vertices belonging to different classes. Intuitively, several methods can be
employed for such task. For instance, a cut procedure can be addressed to sepa-
rate components into well-connected clusters of vertices, such as the min-cut [5]
or the cut procedure for multi-class problems proposed in Ref. [2]. Basically, it
is possible to consider cutting a component before or after spreading the labels.
By cutting before spreading, it can be said that the process relies strongly on
the graph structure, which can be thought to be the natural order to proceed.
However, depending on the cutting criterion, components with no class can be
isolated and even last through various interactions of K without being labeled.
On the other hand, by spreading the labels before cutting, one can guaran-
tee that no vertex will be left unlabeled. In this case, the problem is how to
spread the labels consistently to the graph structure. The PMTLA employ the
purity measure to help finding a suitable configuration of labels for the unla-
beled vertices. As high values of purity indicate low mixture of data patterns
regarding their classes, the idea is that, by maximizing the sum of the purities of
the formed components, we can obtain components to represent well-separated
smooth groups of data patterns. The details on the proposed algorithm is given
in the Algorithm 1.

In the algorithm, the graph evolves by increasingK while considering connect-
ing each of the vertices to its Kth nearest neighbor. To establish the connections,

at a given value of K, the Kth nearest neighbor of each pattern xi, noted as x
(K)
i ,

is found. Suppose x
(K)
i correspond to pattern xj , then the connection {vi, vj}

is established if and only if xj also has xi as one of its K nearest neighbors
and they do not belong to different classes, i.e. they can have the same label
or at least one may be unlabeled (see line 7 of Algorithm 1). After performing
all possible connections for a given K, the function findComponents() returns
a set of disjoint components, represented as G(K) = {C1, . . . , Cα, . . . , CR}. The
algorithm proceeds by considering a component Cα at a time. If there exist la-
beled vertices in Cα and if they belong to the same class (verified by function
hasOneClass()), then this label is spread throughout the whole component by
the spreadLabel() function. Those vertices will no longer have its label changed.
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Algorithm 1 .PurityMeasure basedTransductiveLearningAlgorithm -PMTLA

Input: X = {(x1, c1), . . . , (xL, cL),xL+1, . . . ,xN}; L - Number of labeled patterns;

Symbols: G(K) - KNN Mutual graph, x
(K)
i - Kth nearest neighbor of pattern xi;

itMax - Maximum of steps for the algorithm to test labels configurations;
C̄ - A subset of disjoint components; Nu

α - number of unlabeled vertices in
component; Cα; Λxj ,K - Set of K nearest neighbors of pattern; xj

1: K ⇐ 1, C ⇐ ∅
2: G(K) = (V,E);V = {v1, . . . , vN}, E ⇐ ∅
3: purity ⇐ 0, higherPurity ⇐ 0
4: repeat
5: for all xi ∈ X do
6: Find xj such that xj = x

(K)
i {Kth nearest neighbor of xi}

7: if (xi ∈ Λxj ,K and (cj = ci or ci = ∅ or cj = ∅)) then
8: E ⇐ E ∪ {vi, vj}
9: end if
10: end for
11: G(K) ⇐ findComponents(V ,E) {Graph is composed of disjoint components}

12: for all Cα ∈ G(K) do
13: if hasOneClass(Cα) then
14: Cα ⇐ spreadLabel(Cα)
15: L ⇐ L+Nu

α

16: else if hasMoreThanOneClass(Cα) then
17: for it = 1 to itMax do
18: Cα ⇐ spreadRandomLabel(Cα)
19: sum ⇐ 0
20: for all vi ∈ Cα do
21: for all vj ∈ Λvi,K do
22: if ci = cj then
23: sum ⇐ sum+ 1
24: end if
25: end for
26: end for
27: purity ⇐ (sum/Nα)/2K
28: if purity > higherPurity then
29: higherPurity ⇐ purity
30: Caux

α ⇐ Cα {Caux
α stores best label configuration}

31: end if
32: end for
33: C̄ ⇐ separateComponent(Caux

α )
34: G(K) = G(K) − Cα

⋃
C̄

35: L ⇐ L+Nu
α

36: end if
37: end for
38: K ⇐ K + 1
39: until L = N {Ends when all patterns are labeled}
40: Output: All patterns in X labeled.
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Figure 1 shows an example of the label propagation process. Figure 1(a) shows
the original data patterns, note that only two vertices presents labels. Then the
algorithm starts to connect the vertices, Fig. 1(b) stands for K = 2, at this stage
there are three components and each of then presents one class (or no class),
therefore the label is spread without problem.

Fig. 1. Label spreading and component division process examples. Figure (a) Raw data
vertices (b) PMTLA at K = 2 (c) PMTLA at K = 3, a component with more than
one class arises (d) A possible configuration of labels and the component separation.

Although direct connections between vertices of different classes are not al-
lowed, components presenting vertices of more than one class might appear as a
result of an unlabeled component eventually merge with components of different
classes (such as in Fig. 1(c)). If this is the case, the algorithm sets random labels
to the unlabeled vertices (in a multiclass situation, of course, only labels that
are presented in the component are considered). Once random labels are set it
is necessary to verify if it consists of a valid configuration. This is necessary to
guarantee the smoothness of the classes distributions. A configuration of labels
is accepted only if for every recent labeled vertex there exist a path, with vertices
of the same label, connecting it to some vertex that has been labeled in a previ-
ous step, i.e. in a previous K. Consider that the function spreadRandomLabel()
returns only valid configurations, then for each obtained valid configuration of
labels, the purity measure is estimated for each of the formed components as
stated in lines 20 to 27. The final configuration is the one with the highest sum
of purity obtained after some steps (itMax = 100 in the experiments). The
components are then separated by cutting off the connections between vertices
of different classes, as shown in Fig. 1(d). Afterwards, the new obtained compo-
nents from Cα, noted as C̄, substitutes the old component Cα in the graph (lines
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33-34 of the Algorithm). At last, K is increased by one and the whole process
takes place again, until all vertices are labeled.

4 Experiments Results

This section reports the obtained results on the benchmark1 introduced by
Chapelle et al. [4] and compare to 13 state-of-the-art algorithms. Further de-
tails on the comparison algorithms as well as their corresponding references can
be found in Ref. [4]. The results were obtained through a 12-fold cross valida-
tion process. Each fold considered 100 labeled patterns whose indices was set as
the same as used in Ref. [4]. Table 1 shows the test errors percentages for the
proposed algorithm along with the 13 algorithms under comparison.

Table 1. Comparison results concerning the proposed algorithm (PMTLA) and 13
state-of-the-art algorithms. The results are the test error percentage averaged over a
12-fold cross-validation process considering 100 labeled patterns.

Algorithm g241c g241d Digit1 USPS COIL BCI Text

PMTLA 43.13 43.50 1.94 5.77 9.98 34.12 25.52

1-NN 43.93 42.45 3.89 5.81 17.35 48.67 30.11

SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45

MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 47.89 32.83

LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77

QC + CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71

Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00

TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52

SGT 17.41 9.11 2.61 6.80 - 45.03 23.09

Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38

Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 -

LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15

Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57

CHM (normed) 24.82 25.67 3.79 7.65 - 36.03 –

As can be seen from Table 1, no algorithm is the best concerning all the tested
data sets. According to Chapelle et al. [4], the domains g241c, g241d and Text are
cluster-like data sets, and the rest are manifold-like data sets, regarding their
respective data distribution. Though, as one can expect the proposed graph-
based algorithm PMTLA had good results when considering the manifold-like
data sets. Moreover, it had ranked in the first place in the Digit1 domain and
in the second place in COIL. Regarding the cluster-like data sets, the PMTLA
algorithm performed at about average in the Text domain, but it presented bad
results for g241c and g241d when compared to others algorithms. Summarizing,
evidences have showed that the PMTLA algorithm is a very sound choice for
some domains, in special manifold-like domains.

1 The benchmark data sets can be found in
http://olivier.chapelle.cc/ssl-book/benchmarks.html

http://olivier.chapelle.cc/ssl-book/benchmarks.html
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5 Conclusions

This paper presents a new graph-based transductive algorithm based on the
purity measure, named PMTLA. Results on expressive benchmark has show the
potential of the algorithm, in special when considering manifold-like applications
domains, such as image classification. What needs to be emphasised is that
the PMTLA algorithm presents performance comparable to the state-of-the-art
semi-supervised algorithms, with low computational cost compared to regular
graph-based approaches. Some future works include employing other method
to construct the graph, extend purity to more levels of neighborhood in order
to better address cluster-like domains, develop mechanisms to detect possible
initially incorrectly labeled patterns and consider more data sets and less labeled
data for future experiments.
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Abstract. Traditional data stream classification techniques are not capable of 
recognizing new classes emerged in data stream. Recently, an ensemble classi-
fication framework focused on the new challenge. But the novel class detection 
technique is limited to the numeric data in the framework. And, both the lower 
process speed and the larger model size of base classifier trouble the framework. 
In this paper, a novel class instance detection technique is proposed to deal with 
mixed attribute data and the VFDTc is adopted as base classifier to speed up the 
process and reduce the model size. Experimental results showed that the  
algorithm outperformed the previous one in both classification accuracy and 
processing speed. 

Keywords: Data Stream, Novel Class Detection, Classification, Data Mining. 

1 Introduction 

Data stream classification task is an important research field of data stream mining. 
There are four major problems in data stream classification. (1) Limited training data, 
infinite storage and infinite running time. (2) Upper accuracy and real-time result. (3) 
The potential concept-drift. (4) Novel classes emerged. Most of the existing solutions 
just pay close attention to the first three problems, such as single model incremental 
learning algorithm and ensemble techniques (e.g. SEA, WCE and KBS et al.). The 
capability of detecting novel classes is not be involved in them. 

Spinosa et al. [1] described a clustering approach to detect both concept-drift and 
novel class. It assumed only one existing class. Masud et al. [2] presented an ensemble 
classification framework called MineClass, which could handle any number of existing 
classes. It handled concept-drift by using WCE (Weighted Classifier Ensemble), and 
detected novel classes by applying k-means clustering. WCE used C4.5 decision tree 
and K-NN as base classifier. In their follow-up work [3], the novel class detection 
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technique was enhanced by using adaptive decision boundary and Silhouette Gini 
coefficient. They detected multiple novel classes by constructing a graph and identi-
fying the connected components in the graph. 

But to learn C4.5 model requires scanning and sorting data for many times, and the 
model expends lots of storage. The traditional k-means deals with numerical attribute 
only. It is sensitive to initial centers and “noise”. The method may lead to lower ac-
curacy of novel detection and classification. In order to improve the accuracy and 
efficiency of classification, we adopted VFDTc (an extension of Very Fast Decision 
Tree) [4-5] as base learner, and proposed k-prototypes++ algorithm to deal with the 
mixed attribute data and initial centers. All these elements were assembled to an im-
proved framework DTNC (Detecting Novel Classes in Data Streams). 

2 Novel Class Detection within Classification Framework 

MineClass and MCM [3] have a similar framework. Data stream is divided into equal 
sized chunks. The latest unlabeled chunk is the input of WCE with M classification 
models E={E1, E2, ..., Em}. Data will be estimated whether it belongs to existing class 
first, if yes, WCE will vote and determine the label, if no, it will be used to detect and 
generate novel class. If the chunk is classified, a new classifier E0 can be trained to 
update the ensemble. The concepts of stream are real-time updated in models. 

2.1 Novel Class Detection 

Definition 1. if at least one of the ensemble models Ei ϵ E has been trained with the 
instances of class c, c is an existing class. Otherwise, c is a novel class [2]. 

The data of the same class should be closer to each other (cohesion) and farther apart 
from the data belonging to any other classes (separation) [3]. The instances close to 
each other can reasonably be supposed to belong to the same class. Introduce the notion 
of used space to denote feature space occupied by instances of existing classes, and the 
unused space to denote feature space not be occupied. Novel class instances must fall in 
the unused space with strong cohesion. Thus, the two basic principles to detect novel 
class are keeping track of the used space and finding strong cohesion among the in-
stances that fall into the unused space.  

2.2 The Used Spaces Construction 

MineClass and MCM built K clusters with the training data chunk, and save the useful 
information as pseudopoints (“p-points” for short) to describe the used space. Each 
p-point ψi corresponds to a hypersphere RE(ψi) in the feature space. The union of the 
regions covered by all p-points is the union of used space, which forms a decision 
boundary B(Ej) =∪ψi ϵ ψj RE(ψi), for a classifier Ej. The decision boundary of the en-
semble is the union of all models’ decision boundary.  

If instance falls into the decision boundary, then it is classified using the ensemble of 
models. Otherwise, it is an F-outlier. F-outliers are temporarily stored in a buffer buf to 
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observe whether they also satisfy the cohesion property. It is done by computing a 
metric called q-Neighborhood Silhouette Coefficient (q-NSC). which is a unified 
measure of cohesion and separation. 

2.3 The Novel Class Detection Approach 

Algorithm 1 outlines the novel class detection approach. K0 clusters and F-p-points are 
built with F-outliers. For each F-p-point h, q-NSC(h) is computed with the weighted 
average distance from h to the n-nearest p-points of h, and the weighted average dis-
tance from h to the r-nearest F-p-points of h(including itself). The q-NSC of h is the 
approximate average of the q-NSC value of each instance x in h. If the q-NSC(x) value 
is negative, x is regarded as an existing class instance. 

The q-NSC value may be different in different classifier, maximum value is saved. If 
tp, the total number of instances having positive q-NSC value, is greater than the 
threshold q, then the corresponding classifier votes in favor of a novel class. If all the 
classifiers vote for novel class, then we find the positive novel class instances.  

Nscore(x) for all instances x with positive q-NSC is declared to measure the cohe-
sion with other F-outliers, and the separation from the existing class instances. G(s) is 
the discrete Gini Coefficient of Nscore. If Nscore(x) > G(s), instance x is stored in a 
buffer N-List. The last step is to detect multiple novel classes by clustering with N-List, 
constructing a graph and identifying the connected components in the graph. Finally, 
instances will be labeled with component number. 

Algorithm 1.  Detect-Novel(E,Buf) 
Input: Current ensemble classifiers E={E1, E2, ..., Em}, F-outlier instances set Buf 
Output: The novel class instances identified, if found 
1: K0←(K*|Buf|/S)      // K is the number of p-points per chunk 
2: H←K-means(Buf, K0) 
3: for each classifier EiϵE do tp←0 
4:  for each hϵH do h.sc←q-NSC(h) 
5:     if h.sc>0 then tp += h.w 
6:       for each instance xϵh do x.sc ← max(x.sc,h.sc) 
7:     end if 
8:  end for 
9:  if tp > q then vote++ 
10: end for 
11: if vote == m 
12:   for all x if x.sc > 0 do X←x 
13:   for all xϵX do x.ns←Nscore(x) 
14:     if x.ns > G(s) then N_list←N-list∪x 
15:   end for 
16:  Detect-Multinovel(N_list) 
17: end if 
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3 Using VFDTc as Base Learner 

Domingos and Hulten [5] put forward one of the most successful algorithms for mining 
data streams named VFDT. It is an incremental, online, and any-time decision tree 
learning algorithm. The main innovation of VFDT is using the Hoeffding bounds to 
decide the necessary examples to be observed before installing a split-test at leaf. 

VFDT uses a subset of all training data and only once scan to split leaves and pro-
duce an approximate classification model. Compute is reduced rapidly, and a similar 
accuracy is provided. It has good noise immunity and multifarious concept processing 
performance. The memory of model is independent of the processing sample size, 
occupied with the leaf number, the number of attributes and attribute values and labels 
only. But the ability to deal with numerical attributes and concept-drift in data stream 
are not been considered in VFDT. VFDTc proposed two major extensions to VFDT: a 
condition of the form attri ≤ cut_point in split-test for numeric attribute, and naive 
Bayes classifier applied in tree leaves. 

4 Improving the Cluster Algorithm for Novel Class Detection 

K-means is a clustering technique partitioning n points set χ in Rd into k homogenous 
clusters efficiently. It aims at choosing k centers so as to minimize the sum of dissi-
milarity measure between each point and the closest center. But its use is limited to 
numeric data, and the empirical speed and simplicity come to the price of accuracy. 
K-means++ [6] proposed a way to initialize k-means by choosing starting centers. 
K-prototypes [7] presented a measure similar to the squared distances to deal with both 
numeric and categorical attributes. We will combine the two technique, the new algo-
rithm is named as k-prototypes++. 

4.1 Seeding the Initial Centers 

The k-means++ chooses a point c as an initial center with probability proportional to c’s 
contribution to the overall potential [7]. Let D(x) denote the shortest distance from a 
data point x to the closest center, which is already chosen. The algorithm 2 is the 
summary of this seeding technique. It is O(log k)-competitive with the optimal clus-
tering. The seeding technique of k-means++ is O(log k)-competitive with the optimal 
clustering. It is as simple and fast as k-means. More introduce and discussion for the 
seeding technique in [7]. 

Algorithm 2. Seed the initial centers for cluster algorithm 
Input: a set of n data points χ in Rd , an integer k 
Output: a set of k initial centers C 
1: Choose an initial center x1 → C uniformly at random from χ 
2: for each point x ϵ χ do compute the distance D(x) from x to the closest center 

3: choose the next center x’ → C, with probability 2 2( ') ( )
x

D x D x
χ∈  

4: repeat step 2 and step 3 until |C| == k 
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4.2 Dealing with Both Numeric and Categorical Attributes 

K-modes extends k-means to categorical domains. It uses a simple matching dissimi-
larity measure for categorical points and replaces means of clusters by modes found by 
a frequency-based method. K-prototypes based on k-modes and k-means extending 
their domains with mixed numeric and categorical values whilst preserving efficiency. 

Let χ = {X1,X2,…,Xn} denote a set of n data points and Xi = [xi1,xi2,…,xim] be a point x 
represented by m attribute values combined with the first r numeric attribute values and 
the last m-r categorical attribute values. The mixed dissimilarity measure is: 

 
2

1 1
( , ) ( ) ( , )

r m

p j j s sj s r
d X Y x y x yγ δ

= = +
= − +   (1) 

Where 
0 ( )

( , )
1 ( )

s s
s s

s s

x y
x y

x y
δ

=
=  ≠

. The first part is the Euclidean distance measure, 

and the second is the simple matching dissimilarity measure. The weight γ is used to 
avoid favouring type of attribute. [8] showed that when γ ranged in (1.5, 2.5), clustering 
performance was favorable. Here the value of γ defaults to 2. 

5 Experiments 

Weka is a famous data mining tool implemented in Java. MOA based on Weka im-
plements algorithms and running experiments for online learning from data streams. 
Experiments were done in Weka and MOA. The parameter settings are as follows, 
unless mentioned: K (number of p-points per chunk) = 50, S (chunk size) = 2000, L 
(ensemble size) = 6, q (minimum number of F-outliers to declare a novel class) = 50. 
These values of parameters are turned to achieve an overall satisfactory performance. 
About the setting’ discussion of these parameters see [9]. 

5.1 Clustering Algorithm Performance Comparison 

The credit approval dataset is chosen to test the k-prototypes++ algorithm in Weka. It 
has 690 instances described by 6 numeric, 9 categorical attributes and 2 classes. As to 
k-means, we removed all categorical attributes. Obviously, as to all attributes of data 
points are numeric, k-prototypes++ is the same as k-means. In the case of all attributes 
categorical, k-prototypes++ is equal to k-modes with the seeding technique.  

Table 1. Summary of three clustering algorithms performance comparison 

The algorithm 
Error Rate Iterations Time(sec × 0.01) 

μ σ Cv μ σ Cv μ σ Cv 
k-means 37.97 0.20 0.01 9.56 3.50 0.37 2.5 0.8 32.7 
k-prototypes 25.88 6.80 0.26 5.27 1.72 0.33 2.6 0.8 30.2 
k-prototypes++ 22.06 3.55 0.16 4.57 1.34 0.29 2.7 0.5 19.5 
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Table 1 shows the result of three algorithms applied to the dataset for 100 times in 
three aspects, namely, error rate, iterations and running time. Each aspect is represented 
by μ mean value, σ standard deviation and Cv coefficient of variance. Cv is a normalized 
measure of dispersion around the mean. K-prototypes++ outperforms k-means and 
k-prototypes at error rate and iterations. K-means deals with the 6 numeric attributes 
only, hence it takes the least time. K-prototypes and k-prototypes++ obtains a higher 
dispersion around the mean and an unstable accuracy. Contrast with k-prototypes, the 
seeding technique of k-prototypes++ increases the time, but decreases the error rate and 
iterations. 

5.2 Modeling Performance Comparison with C4.5 or VFDTc as Base Learner 

RandomTreeGenerator in MOA can generate a stream favouring decision tree learners. 
The generator has parameters to control the number of classes and attributes, we used 
the default settings. WCE ensemble classification model with different base learner 
was evaluated by the generated data stream in MOA. 

Fig. 1(a) describes the curves about the time learning ensemble classification model 
when M = 6 and S ranges from 1K to 10K. When S comes to 10K, the modeling time 
with VFDTc learner is one third of C4.5. Fig. 1(b) shows the curves about the ensemble 
size with M range from 5 to 120 and S = 4000. When M comes to 120, the ensemble 
model size with VFDTc learner is one-eleventh of C4.5. The faster model is learned 
and the smaller the model size is, the less depth is needed to pass by the instance, the 
greater advantage is achieved in classification of data stream. 
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Fig. 1. The modeling time (a) and model size (b) with different parameters 

5.3 Performance Comparison of Classification and Novel Detection 

KDDCup 99 network intrusion detection: The dataset is extracted from a simulating 
intrusions network at MIT Lincoln Labs. The 10% version (about 49.4W records) 
consists of 34 numeric attributes, 8 categorical attributes and 23 different classes. 
Different classes appear and disappear frequently, making the new class detection very 
challenging. 
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Forest cover dataset (UCI repository): The dataset (about58.1W records) is ex-
tracted from USFS RIS containing geospatial descriptions of different types of forests. 
Each record consists of 12 numeric attributes and, 42 categorical attributes and 7 
classes. The dataset was arranged so that in each chunk at most 3 and least 2 classes 
co-occur, and new class appears randomly. 

Because the categorical attributes cannot be processed by k-means, we combine the 
k-means and k-modes for MineClass or MCM. The performance metrics are defined 
first. Ne = % of novel class instances misclassified as existing class, En = % of existing 
class instances falsely identified as novel class, ERR = % Total misclassification error 
(including Ne, En and misclassifications within the existing classes themselves) [3]. 

Fig. 2(a,b) show the total error for each approach throughout the stream in different 
datasets. Each approach gets a high error rate in the early chunks because of insufficient 
training of model, and gradually tends to stable. On the whole, the improved framework 
DTNC, which assembles k-prototypes++ and VFDTc, achieves a lower error rate than 
MineClass and MCM throughout two data streams. 
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Fig. 2. ERR rates in (a) KDDCup 99, (b) Forest cover 

Table 2. Summary of performance about each approach in KDD and forest 

Dataset Approach Time(s) Ne En ERR 

KDD 
MineClass 632.49 9.42 3.57 8.39 

MCM 610.06 8.75 3.01 8.21 
DTNC 540.54 8.43 2.12 7.66 

Forest Cover 
MineClass 698.42 13.26 5.18 10.70 

MCM 671.94 10.01 4.33 8.15 
DTNC 460.74 7.30 2.54 6.60 

Table 2 shows the overall performance about each approach in KDD and forest 
dataset with running time (training time and classification time), Ne, En, and ERR. 
Generally, DTNC is 1.17 and 1.52 times faster than MineClass in KDD and forest 
Cover dataset. Also, DTNC is 1.13 and 1.45 times faster than MCM in KDD and forest 
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Cover dataset. The classification accuracy of DTNC is better than MineClass and 
MCM in KDD and forest Cover dataset. It is the result of the better base learner and the 
more precise novel detection. 

6 Conclusion 

Traditional data stream classification techniques are not capable of recognizing new 
classes emerged in concept-drift data stream. Recently, an ensemble classification 
framework focused on the new question. But, the framework is limited by numeric 
data, lower process speed, higher error rate and larger model size. We applied VFDTc 
as the base learner of ensemble model to accelerate the classification of data stream and 
decrease the model size. We also proposed k-prototypes++, a modified clustering 
method, to improve the technique of novel class detection by combining the seeding 
technique and mixed attribute dissimilarity measure. Experimental results on several 
datasets show that our approach obtains much better performance than existing tech-
niques. In the future, we want to improve the dissimilarity measure to obtain stable 
result in k-prototypes++ and reduce the complexity of novel detection. 
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Abstract. Spatial pyramid match scheme (SPM) is an important scheme in 
local feature based image classification which effectively adopts geometric 
structure information into image classification. Most previous approach 
formulized Spatial Pyramid in unsupervised manner by hierarchical splitting 
images into separate bins. We found that weak supervised information exists in 
this process totally unused. We cannot use information directly, because those 
information corresponding to the combination of all bins, thus we can use those 
weakly supervised information for bins selection. In this paper, we proposed to 
select those bins with better discriminative properties .The discriminative 
property can be well defined from neighborhood entropy. We incorporate local 
sensitive hash for fast neighborhood identification. We set those bins with 
higher neighborhood entropy weight zero. Analysis shows that our approach 
can down weight those non-discriminative bins, in contrast highlighting those 
discriminative bins. Experiments show that our approach can improve the 
performance of spatial pyramid match, especially for those categories with 
complex background. We also proof that under our scheme, result kernel matrix 
can still preserve positive semi-definite, which can guarantee that our algorithm 
will coverage. 

Keywords: Spatial Pyramid Match, Local Sensitive Hash, Weakly Supervised.  

1 Introduction 

Image Classification is one of the most important and fundamental problems in 
computer vision area. Image classification mainly focuses about determining which 
category given image may belong based on classifiers trained on labeled datasets.[1]  

Based on features used in classification, image classification can be generally 
divided into two categories: global feature based and local feature based methods. 
Global feature based methods employ features like color, texture to describe image. 
And classify images based on those descriptions. One major weakness of global 
feature based image classification called Semantic gap, which means that visual 
similarity cannot infer semantic similarity. One reason for Semantic Gap is that global 
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features only concern about global statistics in image and discard local structures in 
image. 

Local feature based image classification methods represent image as a collection of 
local features. Local features can be feature representation of local patch features after 
image segmentation, or can be collection of local consistency features. SIFT is the 
most popular two local features widely used in various computer vision applications. 
SIFT is based on theory of scale space, aims at generate scale invariance features. 

Traditional classification approaches focus on vector representation, where single 
training vector corresponds to single label.  In local feature setting, a collection of 
local features correspond to single label, where traditional classifiers don’t work. We 
either need classifiers deal with classify collections of local features, or we need a 
transform from collection representation to vector representation. Bag of visual words 
(BOVW) model is a realization of second ideas.  BOVW aims at transform from a 
collection of local features into the frequency of visual words. Visual words are 
usually generated by clustering local features. Local feature can be quantified by 
finding nearest visual word of it. Then image can be described by frequency of visual 
words. We can use traditional multi class classifier for image classification. 

BOVW well captures local features of image, thus it totally ignores geometric 
relationships between local features. So BOVW model can be further improved by 
taking geometric constrains into consideration. Spatial pyramid match kernel capture 
geometric information between local features by partition the image into increasing 
fine bins. Final histograms will be generated by concatenate histogram of local bins. 
BOVW model is only an approximation of global geometric representation while 
keep the computation efficiency without consideration about the discriminative ability 
of bins. 

In image, many bins contain little discriminative information, thus damn the 
performance of classification. In this paper, we further improve spatial pyramid match 
by identify those bins and remove the effect of those bins. We measure the 
information of an instance by calculating information entropy or other information 
measure of its neighborhood. We identify the neighborhood of an instance by local 
sensitive hash.  

The structure of our paper as follows: Section 2 gives a brief introduction about 
related works .Section 3 proposes our method and gives out our proof about coverage 
of our algorithm. Section 4 describes our experiments. 

2 Related Works 

Bag of visual words model is an extension of bag of words model in computer vision, 
which represent images as a collection of unordered vision words. Bag of visual 
words model represent image as a collection of visual words generated by clustering. 
In Bag of visual words model spatial information is discarded. Similarity between 
different images can be calculated by distance between histograms. Thus, BOVW 
represents images as a bag of unordered visual word, totally neglects geometric 
information widely exist in original image. 
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2.1 Spatial Pyramid Match 

Spatial pyramid match [3] is an extension of pyramid match[2] considering geometric 
information. Geometric information is approximated by split image into bins 
hierarchically, histogram is calculated on each region, and final histogram is formed 
by concatenate histograms of all bins. Informally, pyramid matching works by place a 
sequence of increasing coarser grids over the feature space and taking a weighted sum 
of the number of matches that occur at each level of resolution. Consider a pyramid 
represented as a sequence of grids at resolution 0,1,...., L , such that grid at 

level l has 2l cells along each dimensions. Let l
XH and l

YH denote the histograms of 

X and Y at resolution l , so that l
XH and l

YH denote the histograms of X and Y at 

resolution l , so that l
XH and l

YH denote the numbers of local features fall into the 

i th− cell of the grid. Then the number of match at level l is given by the histogram 

intersection kernel 
1

( , ) min( , )
D

l l l l
X Y X Y

i

I H H H H
=

= .Note from the definition that, the 

number of match at level l  include the finer level match ,the number of new match 

can be defined as 1l lI I +− for 0,1,... 1l L= − ,and we further gives weight associate 

level l as1/ (2 )L l− ,the final pyramid match kernel can be defined as  

 0 1

1

( , ) (1/ 2 ) (1/ 2 )
L

L L L l l

i

k X Y I I− +

=

= +  (1) 

Illustration of Spatial pyramid match can be illustrate as in Fig 1 

2.2 Analysis 

Spatial pyramid match incorporate geometric information into image classification 
process. Thus it gives equal weight to each bin without considering the difference 
between bins. Those bins have strong tendency to appear in small number  
of categories should be highlighted. The tendency can be reflected by distribution  
of neighborhood labels. We measure the tendency with Information Entropy of 
neighborhood label distribution. The purer the neighborhood labels, the lower the 
neighborhood label entropy. 

Thus, in image classification, labels are provided on images level. No specific label 
is provided on bins level. Image label is just a weak supervise information for 
particular bin. But those weakly supervised information can still reflect the categories 
tendency of given bins. Traditional spatial pyramid process is totally unsupervised, 
which is a waste of useful information. 

So we need a framework which well incorporates geometric information and 
weakly supervised information from image labels. 
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Fig. 1. Illustration of spatial pyramid match kernel. Match in finer grid will receive more 
weight, while coarser match will get less weight. Final kernel will be obtained by calculating 
the sum of weighted match over every level[3]. 

In this paper, we combine geometric information and weak supervised information 
through neighborhood information entropy, which reflect category tendency of given 
bins, details of our framework is given in Section 3. 

3 Our Approach 

 

Fig. 2. Neighborhood is identified through local sensitive hash. Weakly supervised information 
is incorporated in Neighborhood Information Entropy calculation process. Final histograms is 
generated by remove those non-informative bins and reweighted each histograms through 
pyramid weighting scheme. 

3.1 Neighborhood Identification  

Naïve method for neighborhood identification is k nearest neighbor algorithm. Thus 
for large scale dataset, computation cost for k-nn can be extremely unbearable. Tree 
based approximate nearest neighbor algorithm such as kd-tree,rp-tree organize data 
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through tree based space partition. Queries will traverse from root node to leaf for 
nearest neighbor search. Tree based structure has been proved to be approximate for 
nearest neighbor search. But for high dimensional data ,tree based structure will not 
approximate. 

Local sensitive hash [5][6] become popular for large scale high dimensional 
approximate nearest neighbor search. Similarity between instances can be measured 
by hamming distance which can be obtained by bitwise operation. In this paper, we 
only concern about the neighborhood of given instance. To avoid boundary effect, we 
adopt several hash tables and select neighbors from candidates returned by each hash 
table. 

Assume after hash, we adopt k  neighbors for each query, the conditional 
distribution of query given its neighbor inn can be given by normalized distance of 

query and inn its neighbor 

 
1

( | ) ( , ) / ( , )
k

i i jj
p q nn dist q nn dist q nn

=
=   （2） 

3.2 Neighborhood Entropy 

In information theory, Entropy[4] is used as a measure of information contained in 
data. The purer the data, the smaller code we need for data description. In 
classification, information entropy can be used as a measure of complexity of data. 
Information entropy can be defined as in eq 3 

 2( ) log ( )i i
i

I p w p w= −  (3) 

Where ( )ip w represent the frequency of instances belong to class iw .It is easy to 

verify that if all instances belong to the same class, the value of I achieve its 
minimum zero. If all classes have the same frequency, the information entropy 
achieves its maximum. 

With neighborhood in previous step, we can calculate neighborhood information 
entropy through eq 4 

 2( ) ( ( | )) log ( ( | ))NE
c C nn c nn c

I q p q nn p q nn
∈ ∈ ∈

= −    (4) 

3.3 Non-informative Bins Removal  

After neighborhood identification and neighborhood entropy computation, we need to 
identify non-informative bins, and setting those histograms to zero. We intuitively set 
threshold to remove 10%  of bins.  
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Fig. 3. Distribution of neighborhood entropy at pyramid level 2,we can learn from the image 
that , most instances have a pure neighborhood, while few have a complex neighborhood. 

3.4 Analysis 

Through remove those non-informative bins, histograms corresponding to those bins 
will be down weighted or totally removal. Different from original spatial pyramid 
match is that our method treats different regions with different weights according to 
their neighborhood information entropy. Define {0,1}l

iInd = represents whether 

bin i at layer l is informative. Weight of bins can be calculated through  

 
#

#

0

2 * ( )
Layers

l Layers l
i j i j

l

w Ind where Bin Bin−

=

=  ⊆  (5) 

We can easily find those patches never appear as non-informative bins will get 
biggest weight in final histogram. Those often appear in non-informative bins will get 
less weight. Thus traditional spatial pyramid match treat those bins equally. 

 

Fig. 4. Illustration of non-informative bins removal based bins weighting 

From the theory of support vector machine, we know that kernels we used for 
support vector machine training and testing must preserve positive semi-definite. 
Traditional pyramid match kernel has been proved to be positive semi-definite, we 
will prove that our kernel also satisfy the positive semi-definite condition. 
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Theorem 1. With non-informative bins removal, spatial pyramid kernel can still 
preserve positive semi-definite (PSD). 

Proof. 1 Basic Kernels we use such as Histogram Intersection Kernels is PSD 
       2 We don’t remove any bins in layer 0, so its kernel matrix is PSD 
       3 For layers 0≠ , assume layer l .bin’s index b , assume indices of images 
preserve bin b in layer l are ( )lbI P ,indices of images remove bin b in layer l  are 

( )lbI R , | ( ) | | ( ) | | |lb lbI P I R I+ =  

       4. Kernel matrix for bin b in layer l can be transform into  

       ( )

( )

0

0
lb P

lb
lb R

K
K

K

 
=  
 

 Where ( )lb RK is zero matrix of | ( ) | | ( ) |lb lbI R I R×  

       5.for any | |I dimensional vector z  

       
( ) ( )

( )

T T T
lb lb P lb R

T
lb P

z K z zp K zp zr K zr

zp K zp

= +

=

     

 
Where zp is vector of | ( ) |lbI P  and 

zr is vector with dimension | ( ) |lbI R  

 From line 1, we can learn that ( ) 0T
lb Pzp K zp >=  , so kernel matrix of layer l  bin 

b is PSD. 
      6, Final Kernel matrix is a weighted addition of single kernel matrix will 
preserve PSD .So we can be guarantee that our algorithm will coverage. 

4 Experiments 

We do image classification on two commonly used datasets, Caltech 101[7] and 
Scene 15 which was also used in original spatial pyramid match paper. 

We remove 10% bins in layer 2 and layer 3 of pyramid .We use chi-square kernel 
for histogram comparison. With multi class SVM for classification, we get 
comparable result precision on two datasets. 
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Fig. 5. Mean Precision of Image Classification 
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For scene-15 we training a vocabulary with length 400,for that larger vocabulary 
will not increase performance so much .Mean precision of BOVW,SPM and Our 
Methods are 73.8%,80.3%and82.1%. 

5 Conclusion 

In this paper, we propose a new method which incorporates weakly supervised 
information into spatial pyramid scheme. We give out our scheme and proof that 
under our scheme result kernel matrix can still preserve Positive Semi-definite which 
can guarantee our algorithm will coverage. Similar algorithms can be found in text 
classification areas, stop words such as ‘the’,’a’, is removed for better performance. 
Different from stop words removal, we do the removal on bins level instead of words 
level. 
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Abstract. This paper aims to verify the capability of fuzzy inference system in 
establishing time series model for ship manoeuvrability. The traditional 
modeling approaches are usually based on a unified framework. Due to the 
presence of outliers or noises in ship sailing records, it is difficult in achieving 
satisfactory performance directly from data. In this paper, we propose a 
combined time series modeling method by the use of data mining technique and 
fuzzy system theory. Data mining concepts are introduced to improve the fuzzy 
rule extraction algorithm to make the resulting fuzzy inference system more 
robust with respect to the noises or outliers. A ship 20°/20° zig-zag test is 
simulated. The data point records in time series are obtained from an actual 
manoeuvring test. With comprehensive robustness analysis, our fuzzy inference 
system using data mining technology is proved to be a robust and accurate tool 
for ship manoeuvring simulation. 

Keywords: Fuzzy modeling, data mining, optimization, robustness, time series. 

1 Introduction  

The ship maneuvering model characterizes the ship dynamic behaviors. It is vital to 
construct an accurate model. There are two kinds of ship maneuvering models: the 
hydrodynamic model and the response model. Most of the ship manoeuvrability 
predictors use the hydrodynamic model, such as the Abkowitz model [1], the MMG 
model [2], etc. Nowadays, it is popular and effective to build a response model of ship 
maneuvering motion based on the full-scale trials or the actual ship tests [3] [4]. To 
apply this method, standard maneuvers are conducted to obtain system inputs (rudder 
angle, propeller revolution, etc) and outputs (ship velocity, heading, yaw rate, location 
of ship center, etc). Given the input-output data, the ship maneuvering models can be 
determined by using system identification. The key point for using above two kinds of 
models is to accurately determine the hydrodynamic derivatives. Although the existing 
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models work well for some cases, they have a limitation in that they can only be used to 
characterize the ship manoeuvrability in a unified framework. This drawback often 
constructs a mismatched model. Therefore, it is significant to explore a data-driven 
approach to model the ship maneuvering characteristics with a structure adaptation 
mechanism. 

On the other hand, ship maneuvering characteristics are often affected by the 
complex flow, wind and wave. Lots of unavoidable noise and outliers are mixed in ship 
time series records. In order to deal with this kind of data, we will establish a robust 
fuzzy inference system with data mining concepts. The introduction of data mining 
concepts enhances the fuzzy inference system to be flexible to data description and 
prediction [5]-[9]. Our improved algorithm employs the degree of support and 
confidence defined by association rule to mine fuzzy rules and reduce the rule number. 
Acquisition of time series records in real ship zig-zag test 

To identify the time series model of ship manoeuvrability with fuzzy inference 
systems, we need to collect some experimental data and then employ our improved data 
mining algorithm to extract a set of fuzzy rules. In this paper, the time series data is an 
actual zig-zag test record from the Training Ship Yukun of Dalian Maritime University, 
China. Assume that we are given M data points of this time series. These data points 
can be easily rearranged into M-m input-output data pairs:   

 {x(t+(M-m)*△), … ,x(t+(M-1)*△);  x(t+M*△)} 

                              …                                      (1) 
                      {x(t), … ,x(t+m*△);  x(t+(m+1)*△)} 

Then, the time series modeling problem could be transformed into train a fuzzy 
inference system with these desired M-m data pairs to match the mapping function Fm: 

x̂ (k+p*△)=Fm{ x(k-(m-1)*△), … , x(k)} (2)

2 Extraction Fuzzy Rules for Ship Manoeuvring Model 

The M-m sampled data pairs of ship heading variation could be simplified as: 

(X(n), y(n)),    n=1,2,…,N (3)

where X(n)=(x1(n), x2(n), …, xm(n))∈Rm, and xm+1(n)∈R; N is the total number of the 
data pairs. Then, our proposed approach consists of the following steps: 

Step 1 Partition the input-output spaces into fuzzy regions 
As both the input and output variables are the ship heading variation, the domain 
intervals of x1, x2, … , xm and y could be set with the same range: [ , ]x x− + . Then the 
domain interval [ , ]x x− +  is divided into p regions. The lengths of these regions can 
be equal or unequal. And each fuzzy region is a fuzzy set denoted by an linguist label 
Ak∈{ A1, A2, …, Ap}. 
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Step 2 Convert ordinary records into fuzzy records 
Each dimension of input-output data pair (i.e. each data point in the time series) could 
be represented by an expression of the linguist label and its membership function value. 
For instance, AK (k∈{1, 2, 3, 4, 5}) is one of the linguistic labels associated with a 
triangular fuzzy membership function. And the triangular membership function is 
defined as: 

 (4)

where 1σ ， 2σ and the center location xc are determined in step 1.  

Step 3 Generating fuzzy rule base with the degree of support 
In order to emphasize and to clarify the basic ideas of our improved approach, a simple 
two-input one-output case is chosen here. The divisions of input and output spaces are 
show in fig. 1. And the fuzzy IF-THEN rules are described as:  Rule i: IF x1 is 1lA  and x2 is 2lA , THEN y is 3Al , (5)

where l1∈[1,2,…,p], l2∈[1,2,…,p] and l3∈[1,2,…,p] denote the current division. The 
task of this step is to determine the fuzzy rule’s THEN part which could suit the IF part 
in the most reasonable way by the use of the degree of support. The support degree of 
rule i is calculated as follow: 
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where M-m is the total number of the input-output data pairs, l1 and l2 are fixed 
according to the grid into which the data pairs are put, and l3 is a variable belonging to a 
set of [1,2,…,p]. We choose the linguistic label Bk as the fuzzy rule’s THEN part, 
whose sup ( )kB

Ri  k∈[1,2,…,p3] is the maximum value among the p values for rule i. 
When the data pairs have traversed through all the input grids, a “complete” fuzzy rule 
base is generated. (In some grids 
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=  is zero, then no rule will be 
generated.) The flow chart of the traversal algorithm is shown in fig.2.  

Step 4 Reduce the rule number with the degree of confidence 
A “complete” rule base is generated from the above three steps. In some cases, the input 
variable is a high-dimensional variable and a huge number of rules are obtained in the 
rule base. Then the degree of confidence should be used to remove some trivial rules 
from the rule base:  
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The degree of confidence is an index of the density of data pairs. If few data pairs are 
covered in some of the input grid, the degree of confidence for these rules is very low. 
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Although this reduction may result in a worse approximation performance, it is very 
necessary to make such a tradeoff between the complexity and the accuracy in practice. 
 

  

Fig. 1. Divisions of the input and output 
spaces into fuzzy regions and the 
corresponding membership functions 

Fig. 2. Tthe flow chart of traversal algorithm 

Step 5 The centroid defuzzification strategy 
We use the following centroid defuzzification formula to determine the output y for the 
given input X: 
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  (8)

R is the total number of fuzzy rules.ωis the combination of the antecedents in the ith fuzzy 
rule using product operation. 

i
cy denotes the center value of output fuzzy region i.  

Thus, a fuzzy inference system could be built by the simple five steps. Our new 
method is straightforward: it is a one-pass build-up procedure which does not require 
time-consuming training. 

Remark: The Robustness of Fuzzy Inference System 
The success of fuzzy modeling relies heavily on the quality of fuzzy rule base [10] [11]. 
To identify the fuzzy basis function model, Wang and Mendel proposed a simple and 
practical algorithm for the extraction of fuzzy rules directly from numerical data in 
paper [12][13]. 

A further study of these algorithms revealed that there is further opportunity to 
improve the robustness of the fuzzy rule base [14]. To make the fuzzy system more 
robust against input noise or outliers in modeling tasks, we improved the algorithm for 
the extraction of fuzzy rules in section 3. The sampling output values were replaced by 
its membership function values in computing the weighted average output values for 
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each fuzzy rule. Since the membership function values are regularized into an interval 
of [0, 1], the noisy error could be easily averaged with enough sample data. 

3 Simulation of the Manoeuvrability Characteristics of Ships 

In the actual experiment, the training ship was sailing at 15 knots. In order to obtain an 
accurate record, the heading angle deviations are taken record every 8 seconds by three  
 

 

Fig. 3. The refined membership function 

 

 (a)The curve of observing heading angle deviation 

 
 (b)The curve of forecasting heading angle deviation 

 

 (c)The Prediction error of DM data mining method  

Fig. 4. The curves of heading angle deviation forecasting 
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test clerks. The heading angle deviations values took the mean values of these three 
records. According to the test record, the domain intervals of heading angle variation is 
[-20°, 20°].  And the m in expression (1) is set as 4. I.e. the sample data points are 
rearranged into a four-input and single-out pattern. And 10 fuzzy sets are employed to 
divide this range interval equally. By optimizing with the partition refinement 
strategy[15][16], the locations of the fuzzy membership functions are adjusted. The 
final membership function structure is shown in Fig.3. The modeling errors are less 
than 3° in all test data points. And the forecasting curves in fig.4 certify that our fuzzy 
inference system is a suitable tool for robust time series modeling of ship 
manoeuvrability. 

4 Conclusions 

This paper develops a framework of time series modeling for ship manoeuvrability. 
Firstly, we employ an improved data-mining algorithm for the extraction of fuzzy rules. 
Then, the membership functions are optimized with the sample I/O data pairs. And the 
adjusting process is operated in an autonomous way. At last, a real ship zig-zag test 
record is introduced in simulation test. The results prove that our robust fuzzy modeling 
algorithm is effective in dealing with noisy records in practice. 
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Abstract. In this work we utilize the social messages to construct an extensible 
event ontology model for learning the experiences and knowledge to cope with 
emerging real-world events. We develop a platform combining several text 
mining and social analysis algorithms to cooperate with our stream mining 
approach to detecting large-scale disastrous events from social messages, in 
order to achieve the aim of automatically constructing event ontology for 
emergency response First, we employ the developed event detection technique 
on Twitter social-messages to monitor the occurrence of emerging events, and 
record the development and evolution of detected events. Furthermore, we store 
the messages associated with the detected events in a repository. Through the 
developed algorithms for analyzing the content of social messages and ontology 
construction the event ontology can be established, allowing for developing 
relevant applications for prediction of possible evolution and impact evaluation 
of the events in the future immediately, in order to achieve the goals for early 
warning of disasters and risk management.  

Keywords: Text Mining, Information Retrieval, Data Mining, Machine 
Learning, Social Mining. 

1 Introduction 

For emergency response of disastrous events, the decision making process particularly 
concerns the real-time information need for situational awareness, and a well-established 
and suitable standard operating procedure the people can follow. Event related social 
messages, produced by local people and their friends, truthfully depict the actual 
disastrous process and detailed information of the event development. The corpus of such 
information contains fruitful learning materials for establishing standard operating 
procedures to the domain of emergency response. One of the valuable applications might 
be an event ontology extracted from the social messages regarding the events. Motivated 
by this, in this work we make use the potentials of social messages for learning the 
experiences to cope with emerging real-world events.  

By analyzing the publicly available social streams, most of the large accidents or 
disasters could be immediately detected for investigation [1, 2]. Our approach identifies 
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and extracts candidate terms and event ontologies from social media streams. It is worth 
mentioning that, the focus of this study is not to create a new structure of ontology from 
scratch; instead, we expected to design a way to support constructing the entities of 
extended event-ontology. As a result, our work started with the development of a real-
time event detection system which is able to detect emerging events from tweets. 
Subsequently, we incorporate the system with an event-ontology construction module to 
mining temporal, spatial, topical and potential relational entities to dynamically create 
the ontology upon the collected social data sets. Through the developed algorithms for 
analyzing the content of social messages and ontology construction the event ontology 
can be established, allowing for developing relevant applications for prediction of 
possible evolution and impact evaluation of the events in the future immediately, in 
order to achieve the goals for early warning of disasters and risk management. 

2 Related Work 

Several ontology-based approaches have been developed to support crisis 
management and decision making [3]. In Ye’s work, three categories of ontologies 
including static ontology, dynamic ontology, and social ontology [4], were developed 
to tackle challenging issues in different perspectives for crisis contagion management 
in financial institutions. Kang proposed a knowledge level model (KLM), which 
integrates top-level and domain-level ontologies, for systemic risk management in 
financial institutions [5]. Wang [6] proposed a conceptual modeling approach which 
was developed to detect real time quality problems and support quality information 
sharing between agents in the whole milk supply-chain. Still, lots of developed 
ontology applications mainly rely on people with domain expertise to construct the 
ontology manually. In modern dynamic environments, how to keep up with real-time 
information and quickly formulate the data sets into a structured/semi-structured 
format (i.e. event-ontology form) from unstructured data like social text streams has 
been becoming a challenging application issue. In general, ontology construction 
could be categorized in three ways including manual, semi-automatic and automatic 
ontology constructions [7] as follows:  

(i) Manual Ontology Construction 

Ye [3] proposed three types of ontology, including static ontology, dynamic ontology 
and social ontology, for crisis management in financial institutions. Ye [5] proposed a 
knowledge level model which integrates domain level ontology, top level ontology 
and problem solving model for systemic risk management in financial institutions. 
Wang [6] proposed an approach of manual ontology construction which based on 
conceptual modeling for supply chain management.  

(ii) Semi-Automatic Ontology Construction 

Wei [8] proposed an approach that utilizes HTML parser to crawl the information 
about agriculture from web, and then utilizes webpage wrapper to capture the 
information and translate these data to structure data for storing in database. 
Subsequently, the top taxonomy and defined the attribute of these data are constructed 
by experts. Finally, the architecture of top-down hierarchical ontology could be 
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constructed based on top taxonomy with OWL language. Maedche [9] proposed an 
architecture and system, named Text-To-Onto, to extract entities and relations from 
text which places several natural language processing and information extracting 
approaches within a coherent framework. [10] is a completely re-design and re-
engineering of KAON-TextToOnto combining machine learning approaches with 
basic linguistic processing, such as tokenization or lemmatizing and shallow parsing.  

(iii) Automatic Ontology Construction 

Dahab [11] proposed a semantic pattern-based approach to construct ontology 
automatically from natural domain documents. Navigli [12] proposed an approach, 
OntoLearn, that extracts a domain terminology from available documents. Gacitua 
[13] provided a framework, OntoLancs, for ontology learning form text to support 
and evaluate the usefulness and accuracy of different techniques as well as the 
possible combinations of techniques into specific processes. Narayan [14] utilized 
twitter API to collect tweets and categorized events from these messages with 
keyword query. Finally, there are five attributes which include name, time, location, 
type and url for construction the social event ontology. However, the ontology-
construction work mentioned above mainly using news, literature, and web 
information. In this work, we propose a novel method to construct event ontology by 
using user generated content from social media. 
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3 System Framework 

In this section, the system framework for event mining and construction process of 
event ontology is described. As shown in Fig. 1, in this work we develop a self-
adaptive stream clustering algorithm which combines several technical modules, 
including a Dynamic Term Weighting process, a Social Event Detection technique, an 
Event-Entity Attribute Extractor and an Emergent Event-Ontology Builder. More 
detailed description of our developed model is described as follows. 

(i) Dynamic Term Weighting Process 

To process texts with a chronological order, a fundamental problem we concerned is 
how to find the significant features in collected streams. The design of weighting 
process of real-time message should be constantly updated. Here we apply the term 
weighting scheme BursT which was proposed in [1, 2, 15]. The experimental results 
indicate that has a better performance in weighting words of messages than 
incremental TFIDF & TFPDF of the word w at time t in BursT will be constituted as 
BS (Burst Score) and TI (Term Importance) as equation (1) [16]: 

, , ,  (1)

(ii) Self-adaptive Stream Clustering 

This study uses a self-adaptive window to extract event clusters and then calculates 
the message intensity within such clusters to estimate the evolving stage and detect 
the potential incident in real-time. Each cluster will be decided to survive or phase out 
by checking its decay factor. As same as the message intensity, we not only consider 
the evolvement of a cluster but also the number of messages in it. Even with a high 
similarity, a new message would not be joined into the cluster which is going to fade 
away. Here a time-decay function d(·) is implemented to determinate the lifecycle of 
an event cluster and to erase slack messages which is denoted as equation (2) [16]: 

, ′ , , ′

 
(2)

Where α>1 is the power factor and η=1+ln  controls the slope and optimizes our 
scheme according to the number of real-time posts. The similarity between message 
mr and selected cluster ci would be determined by a threshold θ. The mr is considered 
dissimilar to ci and cannot be joined to ci accurately if as equation (3) [16]: , ·  (3)

(iii) Social Event Detection 

The key to catch the hot event is to detect spread messages fast and efficiently, and 
two major processes need to be accomplished including: 1) monitoring the temporal 
variability of a term and the intensity of online message, 2) tracing the evolvement of 
an incident according to its density and life-cycle. Here, we first extract the event 
threat by tracing the evolvement of event clusters. Let , , … ,  be 
the set of clusters of the collected event thread  and   , and  
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′

, , ′, , ′  (4)

 , , , , (5)

where θ  is the threshold determining the extracted cluster ct belongs to a existed 
thread or a new event.  

(iv) Event-Entity Attribute Extractor 

The clustered online event provides precious information such as the distribution of 
temporal evolution, spatial factor (region or geoName), message density, and word 
bursting score. Such information facilitates to construct necessary entities of event 
ontology. van Hage [17] illustrates an example of a simple event ontology model. 
There are four core classes: sem:Event (what happens), sem:Actor (who or what 
participated), sem:Place (where), sem:Time (when). These entities can be fulfilled by 
combining clues of online event collected form our online detection process. 

 Temporal Feature Extractor 

The temporal features were extracted from clustered events. The starting time could be 
set as the creating time point of first cluster, and vice versa the ending time is the last 
updating time point of the last cluster. Moreover, compared to traditional approaches, 
our method can also record the density distribution of messages which can support to 
discover the potential relations among different events, e.g. a sub-event. 

 Spatial Named Entity Extractor 

Users of microblogs often use a limited vocabulary in the messages, including names 
of objects are used in singular and plural; a smaller number of words are used to 
produce many of the compound terms and phrases. For instance, in the event of 
Mar.11 2011 Japan Earthquake, we can find out that the terms tokyo and japan were 
used more intensively than other spatial words in the messages, and the importance of 
each word could be represented as the bursty score. Here, the candidate of spatial 
entity (Espatial) for a selected event can be obtained by calculating the product of 
message number and bursty score of each keyword. Then we can get the most 
possible candidate of Espatial. 

∈ ∈  (6)

where S is collected terminology of spatial entity, e.g. GeoNames geographical 
database[18], TF is the time frame of event ,  is the number of messages 

containing a specific geographical name and in the event  at time t. 

 Topic Extractor 

Similar to spatial entity, the most possible topic words of event  can be selected 
by weighting their number and bursty score as: 
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max∈ ∈  (7)

where D is the collection of domain specific terminology, e.g. natural disaster, and the 
candidate topic entity can be constructed as the combination of spatial entity and topic 
word: 

 (8)

 Relation Attribute Extractor 

Relation attribute extractor mainly extracts the possible relationships among real-time 
events and the past events, by analyzing the temporal and spatial relationships from 
all related event content which have been stored in the event ontology database. We 
generalized some specific attributes which can be extracted from real-time events, by 
using the relation entity defined by some important ontology, such as sub-events, 
dependent events, continues event, derived events and novel events. 

(v) Emergent Event-Ontology Builder 

The entity attributes of real-time events will be automatically tagged by the ontology 
constructor. These attributes are being encapsulated into appropriate structured 
document to fit various ontology forms. To allow users quickly locate and track the 
historical information associated with some real-time events, a module is designed to 
map keywords of existing events by an index table. This is the key for implementing a 
social search system. In real-time event detection phase, our system encapsulates the 
bursty scores which correspond to the event-message clusters. The event index 
module can perform sorting events via the intensity of keywords. 

4 Experimental Result 

In the experiment, the test data set were collected through Twitter Stream API. We 
analyze the message corpus collected from Oct 26, 2012 to Nov 2nd, 2012. There 
were totally about more than 2 million tweets utilized for this study. During the 
period, the Hurricane Sandy event is selected for investigation as our case study. Fig. 
2 illustrates the spatio-temporal impacts of the case event. In the beginning, the spatial 
tags of tweets were wildly spread around large regions and getting concentration as 
the storm made more damages day by day.  

Subsequently, we also use the Japan earthquake event to verify our proposed 
event-entity extraction method. The earthquake event was detected at 14:03:28, and 
then the tsunami event follows the earthquake at 14:28:12. Fig. 3 illustrates the partial 
result of entity extraction for “311 Japan earthquake” event. We can found that where 
and when the tsunami happened by detecting messages posted from social media 
stream, and then the topic was drifted from earthquake to tsunami. Hence, the 
proposed event-entity extraction method can extract the correct entity of event topic 
accurately. 
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method is implemented to detect online events. Subsequently, we incorporate the 
system with an event-ontology construction module to mining temporal, spatial, topical 
and potential relational entities to dynamically create the ontology upon the collected 
social data sets. Through the developed algorithms for analyzing the content of social 
messages and ontology construction the event ontology can be established, allowing 
for developing relevant applications for prediction of possible evolution and impact 
evaluation of the events in the future immediately, in order to achieve the goal for risk 
management. 
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Abstract. In this paper, we provide a revised inference for correlated
topic model (CTM) [3]. CTM is proposed by Blei et al. for modeling
correlations among latent topics more expressively than latent Dirichlet
allocation (LDA) [2] and has been attracting attention of researchers.
However, we have found that the variational inference of the original
paper is unstable due to almost-singularity of the covariance matrix when
the number of topics is large. This means that we may be reluctant to
use CTM for analyzing a large document set, which may cover a rich
diversity of topics. Therefore, we revise the inference and improve its
quality. First, we modify the formula for updating the covariance matrix
in a manner that enables us to recover the original inference by adjusting
a parameter. Second, we regularize posterior parameters for reducing a
side effect caused by the formula modification. While our method is based
on a heuristic intuition, an experiment conducted on large document sets
showed that it worked effectively in terms of perplexity.

Keywords: Topic models, variational inference, covariance matrix.

1 Introduction

Topic modeling is one of the dominant trends of recent data mining research.
This approach uses latent variables for modeling topical diversity in document
data and represents the data in a lower-dimensional “topic” space. This line of
thinking reminds us that multilayer undirected graphical models also extract a
lower-dimensional data representation. In fact, neural network researchers also
propose a topic model, e.g. by using restricted Boltzmann machines [12] or by a
hybridization [13], where we can find an affinity between both approaches.

However, many topic models, including latent Dirichlet allocation (LDA) pro-
posed by the inaugural paper of Blei et al. [2], do not consider correlations among
latent topics explicitly. It is natural to assume that latent topics interwoven into
a semantic content of each document are correlated to some extent. For example,
articles on worldwide energy consumption may often mention geopolitical con-
flicts among countries. Therefore, Blei et al. [3] have proposed correlated topic
model (CTM) to offer an established way to model correlations among latent
topics. While we know that recent sophisticated approaches can also model topic
correlations [11,4], we here concentrate on CTM.

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 445–454, 2013.
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In CTM, per-document topic distributions are obtained from a corpus-wide
logistic normal distribution, where a covariance matrix Σ models correlations
among latent topics. More precisely, we draw a K-dimensional vector md for
document d from a Gaussian distribution N (μ,Σ), where K is the number of
topics, and obtain a topic distribution θd as θdk = exp(mdk)/

∑
k′ exp(mdk′).

This construction makes CTM more expressive than LDA.
In the variational inference for CTM proposed in the original paper [3], the

covariance matrix Σ is estimated by maximizing the variational lower bound of
the log evidence. Further,Σ needs to be inverted in every iteration. Therefore,Σ
should be kept less singular all through the iterations of the inference. However,
our preliminary experiment conducted on large document sets has shown that
the inference often gets unstable due to the fact that Σ is almost singular. When
we apply CTM to a large data set, we would like to set the number of topics to
a large value, say 300. Under that situation, the original inference gives a result
disastrous in terms of perplexity [2]. Therefore, we have revised the inference.
Through trying several heuristic methods for making the covariance matrix less
singular, we have found an effective one, which is given in this paper.

However, after revising the inference, we have found another problem. It is
known that variational inference for topic models is likely to give worse perplexity
than inference by sampling [1], though it is not known whether there are any
efficient sampling methods for CTM like collapsed Gibbs sampling (CGS) for
LDA [6]. Therefore, for achieving as good perplexity as possible, we can take the
following strategy: run CGS for LDA first and then run the variational inference
for CTM. Fortunately, we can initialize the parameters of CTM based on a result
of CGS for LDA. Therefore, we can start the variational inference for CTM
with the parameter values giving a good perplexity. However, a preliminary
experiment has shown that our revised inference is likely to make the initial
perplexity, which is achieved by CGS for LDA, worse as the inference proceeds.
Therefore, we regularize some of the variational posterior parameters so that
they are kept close to their initial values inherited from CGS for LDA.

In sum, our method consists of the following two features: 1) Keep the covari-
ance matrix less singular; and 2) Keep the values of some posterior parameters
close to their values initialized based on a result of CGS for LDA. With respect
to the former, we modify the update formula of the covariance matrix by taking
an approach similar to shrinkage estimation. With respect to the latter, we add
a regularization term so that the parameter values do not deviate significantly
from their initial values. The rest of the paper is organized as follows. Section 2
describes the details of the original variational inference for CTM. Section 3
presents our proposal. Section 4 contains the results of an experiment conducted
over large document sets. Section 5 concludes the paper with discussions.

2 Correlated Topic Models

With correlated topic model (CTM) [3], we can explicitly model correlations
among latent topics. The variety of correlations that can be modeled in CTM is
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richer than that in LDA, because Dirichlet prior distribution used in LDA is not
that powerful in modeling correlations among drawn multinomial probabilities.
To make the paper self-contained, we describe CTM in detail. In the following,
we denote the number of topics, different words, and documents by K, W , and
D, respectively, and identify each entity with its index number.

As in latent Dirichlet allocation (LDA) [2], we represent each document d as
a mixture of K latent topics by using a multinomial distribution Multi(θd) de-
fined over topics, also in CTM. The multinomial parameters θd = (θd1, . . . , θdK)
satisfy

∑
k θdk = 1, where θdk is a probability that topic k is expressed by a word

token in document d. Topic k is in turn represented by a multinomial distribu-
tion Multi(φk) defined over words. The parameters φk = (φk1, . . . , φkW ) satisfy∑

w φkw = 1, where φkw is a probability that a token of word w expresses topic
k. Both in LDA and in CTM, we assume that φks are drawn from a corpus-
wide Dirichlet prior distribution Dir(β), where β = (β1, . . . , βW ) is a set of
its hyperparameters. However, with respect to per-document topic multinomial
distributions Multi(θd), LDA and CTM show a difference.

In LDA, per-document topic distributions are drawn from a corpus-wide
Dirichlet distribution Dir(α). However, Dirichlet distribution can only model a
restricted variety of correlations among topics. Therefore, CTM adopts logistic-
normal distribution as the prior for θds. We below describe CTM generatively.

1. For each topic k ∈ {1, . . . ,K}, draw parameters φk = (φk1, . . . , φkW ) of a
multinomial distribution Multi(φk) defined over words {1, . . . ,W} from the
corpus-wide Dirichlet prior distribution Dir(β).

2. For each document d ∈ {1, . . . , D},
(a) Draw a K-dimensional vector md = (md1, . . . ,mdK) from the corpus-

wide K-dimensional Gaussian distribution N (μ,Σ).

(b) Obtain a topic distribution θd = (θd1, . . . , θdK) as θdk = exp(mdk)∑
k′ exp(mdk′) .

(c) Let nd be the length (i.e., the number of word tokens) of document d.
For the ith word token in document d, where i ∈ {1, . . . , nd},
i. Draw a topic from the topic multinomial distribution Multi(θd). Let

the drawn topic be the value of a latent variable zdi, which gives the
topic to which the ith word token in document d is assigned.

ii. Draw a word from the word multinomial distribution Multi(φzdi).
Let the drawn word be the value of an observed variable xdi, which
gives the word appearing as the ith word token of document d.

Based on this description, we obtain the full joint distribution of CTM as follows:

p(x,z,φ,m|β,μ,Σ) = p(φ|β)p(m|μ,Σ)p(z|m)p(x|φ,z)

=
∏
k

Γ (
∑

w βw)∏
w Γ (βw)

φβw−1
kw ·

∏
d

1

(2π)K/2|Σ|1/2 exp
{
− 1

2
(md − μ)TΣ−1(md −μ)

}

·
∏
d

∏
i

exp(mdzdi)∑
k exp(mdk)

φzdixdi . (1)

The variational inference proposed in the original paper [3] approximates the pos-
terior p(z,φ,m|x,β,μ,Σ) by a factorized variational posterior q(z)q(φ)q(m).
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Consequently, a lower bound of the log evidence ln p(x|β,μ,Σ) is obtained by
applying Jensen’s inequality as follows:

ln p(x|β,μ,Σ) ≥
∫ ∑

z

q(z)q(m) ln p(z|m)dm+

∫
q(φ) ln p(φ|β)dφ

+

∫ ∑
z

q(z)q(φ) ln p(x|φ, z)dφ+

∫
q(m) ln p(m|μ,Σ)dm

−
∑
z

q(z) ln q(z)−
∫

q(φ) ln q(φ)dφ−
∫

q(m) ln q(m)dm .

(2)

We denote the right hand side of Eq. (2) by L, which needs to be maximized.
With respect to each variational posterior distribution, we assume the followings.

– q(z) is factorized as
∏

d

∏
i γdizdi , where γdik is an approximated probability

that the ith word token in document d expresses topic k.
– q(φ) is factorized as

∏
k q(φk|ζk), where q(φk|ζk) is the density of an ap-

proximated Dirichlet posterior whose parameters are ζk = (ζk1, . . . , ζkW ).
– q(m) is factorized as

∏
d

∏
k q(mdk|rdk, sdk), where q(mdk|rdk, sdk) is a den-

sity of a univariate Gaussian distribution whose mean and standard deviation
parameters are rdk and sdk, respectively.

The variational parameters γdiks, ζkws, and νds can be updated by a closed for-

mula: γdik ∝ exp(rdk) ·
expΨ(ζkxdi

)

expΨ(
∑

w ζkw) ; ζkw = βw +
∑

d

∑
i

∑
k γdik; and νd =∑

k exp(rdk + s2dk/2), where νds are the parameters introduced to make the in-
ference tractable. Details of the derivation are referred to the original paper [3].

However, the parameters rdks and sdks cannot be updated by any closed
formulas. In this paper, we use L-BFGS [10,7] for maximizing the relevant terms
in L and update these parameters. The target functions are given below.

L(rdk) = ndkrdk −
nd

νd
exp(rdk + s2dk/2)

+
1

2
r2dk(Σ

−1)kk − rdk
∑
k′

(rdk′ − μk′ )(Σ−1)kk′ (3)

L(sdk) = −nd

νd
exp(rdk + s2dk/2)−

1

2
s2dk(Σ

−1)kk + ln sdk (4)

Since the parameters rd1, . . . , rdK and sd1, . . . , sdK for a fixed d are dependent
on each other, we update them not separately but in concert by using L-BFGS.

The mean parameter μ of the K-dimensional Gaussian distribution N (μ,Σ),
which models the correlation among latent topics, can be updated as μ =
1
D

∑
d rd. The covariance matrix Σ can be updated as

Σ =
1

D

∑
d

Sd +
1

D

∑
d

(rd − μ)(rd − μ)T , (5)
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where Sd is a K×K diagonal matrix whose kth diagonal entry is s2dk. However,
Eq. (5) is likely to give an almost singular matrix when K is large. This is a
serious problem, because we need the inverse of Σ in Eqs. (3) and (4). When we
apply CTM to a large document set, we would like to set the number of topics
K to a large number, say 300. This type of situation is likely to make Σ almost
singular and thus to make the entire inference unstable. Therefore, we propose
a revised inference for CTM.

3 A Revised Inference for CTM

Our proposal aims to achieve a stable inference for CTM by making the covari-
ance matrix Σ far from singular. The proposal has the following two features:

– We modify the update formula Eq. (5) in a manner that we can recover the
original inference by adjusting a parameter called interpolation parameter.

– We initialize the parameters of CTM by using a result of collapsed Gibbs
sampling (CGS) for LDA and regularize some parameters lest they deviate
substantially from their initial values. The strength of regularization can be
adjusted by a parameter called regularization parameter.

3.1 Covariance Matrix Update

First, we discuss a revised update of Σ. We focus on the K×K matrix appearing
as the second term of the right hand side of Eq. (5), i.e., T̂ = 1

D

∑
d(rd−μ)(rd−

μ)T . We can view T̂ as the maximum likelihood estimator of the covariance
matrix T of a Gaussian distribution N (μ,T ), from which r1, . . . , rD are drawn.
Chen et al. [5] give the following matrix as a “naive but most well-conditioned

estimate” for T : F̂ = Tr(T̂ )
K I, where Tr(·) is the trace of a matrix and I is the

identity matrix. F̂ is a diagonal matrix whose diagonal entries are all equal to the
average of the diagonal elements of T̂ . Our approach uses F̂ in place of the first

term of the right hand side of Eq. (5) and update Σ as Σ = Tr(T̂ )
K I+T̂ . Further,

we obtain a linear interpolation of this equation and Eq. (5) by introducing an
interpolation parameter π as follows:

Σ =
{
(1− π) · 1

D

∑
d

Sd + π · Tr(T̂ )

K
I
}
+

1

D

∑
d

(rd − μ)(rd − μ)T . (6)

When π = 0, we can recover the original inference. It can be said that we use
F̂ to conduct a shrinkage operation on the average of the covariance matrices
S1, . . . ,SD of the variational Gaussian posteriors q(md|rd,Sd), d = 1, . . . , D.

3.2 Variational Mean Regularization

Second, we discuss a regularization of parameters. We update the variational
means, i.e., rdks, in a regularized manner, because rdks are likely to deviate from
their initial values when we use Eq. (6), in place of Eq. (5), for updating Σ.
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Table 1. Document set specifications

# docs # words # training tokens (# test tokens)

CORA1 36,183 8,542 2,127,005 (235,566)
MOVREV2 27,859 18,616 8,145,228 (905,427)
TDT43 96,246 15,153 15,070,250 (1,674,304)
NSF4 128,181 19,066 12,284,568 (1,366,399)

MEDLINE5 2,495,210 134,615 225,844,065 (25,097,215)

The probability of topic k in document d is calculated as exp(mdk)∑
k′ exp(mdk′ ) , and

rdk is of the same dimension with mdk. Therefore, based on a result of CGS
for LDA, we can initialize rdk as follows: rdk = log(ndk + αk), where ndk is the
number of the word tokens in document d that are assigned to topic k. αk is a
Dirichlet hyperparameter corresponding to topic k and is updated by Minka’s
method [8,1] in our experiment. To keep rdks close to their initial values, we add
a regularization term to the right hand side of Eq. (3) as follows:

Lreg(rdk) = ndkrdk − nd

νd
exp(rdk + s2dk/2)

+
1

2
r2dk(Σ

−1)kk − rdk
∑
k′

(rdk′ − μk′)(Σ−1)kk′

− πρ
{
rdk − log(ndk + αk)

}2
. (7)

We call ρ regularization parameter, which determines the strength of the regu-
larization and takes a non-negative value. We maximize Lreg(rdk) in Eq. (7) in
place of L(rdk) in Eq. (3). Note that ρ is multiplied by the interpolation param-
eter π. Therefore, even when ρ > 0, the inference is reduced to the original one
as long as π = 0. When ρ takes a large positive value, rdks are kept close to
their initial values. This means that we keep staying close to the result of CGS
for LDA. When we applied this regularization to our revised inference in our
experiment, we always set ρ to 1.0, because other settings gave no interesting
differences. Therefore, we have only one parameter π to be adjusted by hand.

Consequently, π = 0.0 means that we use the original inference for CTM and,
at the same time, do not regularize rdks. Further, π = 1.0 means that we use the
revised inference for CTM in its full capacity and, at the same time, regularize
rdks with strength 1.0. However, we needed to directly apply the regularization
to the original inference in our experiment for comparison. Therefore, in this
case, we set ρ to 1.0 after eliminating π from Eq. (7).

1 http://people.cs.umass.edu/~mccallum/data.html
2 http://www.cs.cornell.edu/people/pabo/movie-review-data/

polarity html.zip
3 http://projects.ldc.upenn.edu/TDT4/
4 http://archive.ics.uci.edu/ml/datasets/NSF+Research+

Award+Abstracts+1990-2003
5 This is the set of the abstracts extracted from the XML files whose names range
from medline12n0600.xml to medline12n0699.xml.

http://people.cs.umass.edu/~mccallum/data.html
http://www.cs.cornell.edu/people/pabo/movie-review-data/polarity_html.zip
http://www.cs.cornell.edu/people/pabo/movie-review-data/polarity_html.zip
http://projects.ldc.upenn.edu/TDT4/
http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003
http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+1990-2003


A Revised Inference for Correlated Topic Model 451

Fig. 1. Comparing the revised inference with the original one on CORA document set

4 Comparison Experiment

We compared our revised inference with the original one on the document sets in
Table 1. For each document set, we conducted a series of appropriate preprocess-
ings, e.g. changing text case to lower case, stemming, removing high and low fre-
quency words, etc. The evaluation measure is test perplexity [2], which represents

predictive power of topic models and is defined as exp(−
∑

d

∑
i log

∑
k λdkζkxdi

Ntest
),

where Ntest is the number of the word tokens used for calculating perplexity,
called test word tokens. λdk is defined as

∑nd

i=1 γdik. We randomly select 90%
word tokens from every document for running inference and use the rest for
calculating test perplexity. Note that smaller perplexity is better.

Fig. 1 gives test perplexities of the revised and the original inferences con-
ducted on CORA document set under various settings. The horizontal axis rep-
resents number of iterations, and the vertical axis represents perplexity. For each
setting, we repeated inference 10 times and calculated a mean and a standard
deviation of the corresponding 10 perplexities. The mean and the standard de-
viation, which is depicted by the error bar, are given at every iteration.

First, we clarify when the original inference gave a better perplexity. The top
left panel of Fig. 1 presents the result obtained when the number of topics was
30, a fairly small number, and we ran only 10 iterations of CGS for LDA before
initiating the revised or the original inference for CTM. The number of iterations
of the inference for CTM was set to 1,000, because CGS for LDA iterates only
10 times and could not reduce perplexity enough. The interpolation parameter
π was set to 1.0 for the revised inference and to 0.0 for the original inference.
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Since 10 iterations of CGS for LDA led to a perplexity nearly equal to 1,320,
both of the line graphs, each corresponding to the revised inference (green solid
line) and the original one (red dashed line), start from the perplexity of around
1,320. Obviously, the original inference is significantly better. It can be said that
the original inference works without any modification when we set the number
of topics to be relatively small and start the variational inference for CTM after
a small number of iterations of CGS for LDA.

Second, we increased the number of iterations of CGS for LDA. The top right
panel of Fig. 1 gives the result when we ran 1,000 iterations of CGS for LDA
and then ran 200 iterations of the revised or the original inference for CTM.
π was set to 1.0 for the revised inference and to 0.0 for the original inference.
1,000 iterations of CGS reduced perplexity to around 780. In this manner, CGS
for LDA reduced perplexity significantly before we initiated the inference for
CTM. Consequently, both of the revised and the original inferences could not
improve the perplexity achieved by CGS for LDA,6 though they behave a little
differently. However, it is clear that the original inference gave almost the same
perplexity with the revised inference, and thus that the revised inference could
show no advantage also in this case.

Third, we increased the number of topics to 300. The bottom panel of Fig. 1
gives the corresponding result, where we ran 1,000 iterations of CGS for LDA and
ran 200 iterations of the revised or the original inference for CTM. This panel
contains five line graphs, each corresponding to the following cases: 1) π = 1.0
(green solid line), 2) π = 0.5 (blue dotted line), 3) π = 0.1 (magenta dash-dot
line), 4) the original inference (red dashed line), and 5) the original inference
with regularization (black pixel marker). The regularization parameter ρ was
set to 1.0 for the revised inferences. We also applied our regularization to the
original inference by setting πρ = 1.0 in Eq. (7) and, at the same time, by setting
π = 0.0 in Eq. (6). As this panel shows, the perplexities for the cases π = 1.0
and π = 0.5 gave almost the same perplexity, which is a little better than that
achieved by CGS for LDA. However, the case π = 0.1 and the original inference
gave significantly worse perplexities than those two cases. Further, even when
we apply the regularization to the original inference, the improvement was not
remarkable.7 That is, our regularization did not work for the original inference.
At the same time, this result also shows that the regularization with πρ = 1.0
is not so strong to forcibly keep rdks almost the same with their initial values.

In sum, the original inference for CTM works if we set the number of topics
to be fairly small. However, note that the bottom panel in Fig. 1 contains the
best perplexity among the three panels in this figure. Therefore, it is better to
choose the revised inference when we would like to make topic models fully show
their predictive power. In contrast, if we are under a situation where perplexity
hardly matters for some reasons, the original inference may find relevance.

6 Needless to say, if we do not conduct the inference for CTM, we just have a result
of CGS for LDA and cannot consider correlations among topics.

7 When we conduct the revised inference without regularization, we consistently ob-
served worse perplexities, though we do not present the corresponding results here.
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Fig. 2. Comparing the revised inference with the original one on MOVREV (top left),
TDT4 (top roght), NSF (bottom left), and MEDLINE (bottom right) document sets

We obtained similar results also for the other document sets in Table 1. Fig. 2
contains all results. As in case of the bottom panel of Fig. 1, we ran 1,000
iterations of CGS for LDA and then started 200 iterations of the revised or
the original inference for CTM. For MOVREV and TDT4 document sets, we
tested the following four settings: π = 1.0, 0.5, 0.1, and 0.0. The regularization
is applied only to the revised inference with ρ = 1.0 in Eq. (7). As the top left
panel shows, for MOVREV document set, the three settings π = 1.0, 0.5, and
0.1 gave almost the same perplexity, which is slightly better than the perplexity
achieved by CGS for LDA. In contrast, the original inference led to a far larger
perplexity. For TDT4, we obtained almost the same perplexity when π = 1.0
and 0.5, and the two other cases resulted in worse perplexities, as the top left
panel depicts. The bottom left and the bottom right panels present the results
for NSF and MEDLINE document sets, respectively. For these relatively large
document sets, we only provide the results for the two extreme cases, i.e., the
case π = 1.0 and the original inference. Obviously, the revised inference achieved
a better perplexity by a large margin.

In the end, we add comments on implementation. With respect to matrix
inversion, we used dgetrf () and dgetri () in CLAPACK. As a byproduct of
dgetrf (), we can calculate the determinant of the covariance matrix. When we
ran the original inference, the absolute value of the determinant went to a value



454 T. Masada and A. Takasu

close to zero in case the number of topics was relatively large. Consequently,
L, i.e., the lower bound of the log evidence, decreased by a large amount in
earlier iterations, though L needed to be maximized. While we knew that there
was an implementation by the authors of the original paper [3], it consumed
main memory by a considerable factor when compared with our implementation
and thus could not load any document sets in a reasonable time. Therefore, we
evaluated the original inference by setting π to 0.0 in our own implementation.

5 Conclusion

In this paper, we provide a revised inference for CTM. We modify diagonal
elements of the covariance matrix lest it be almost singular and regularize vari-
ational mean parameters lest they deviate from their initial values. However, as
long as the model is described by using a K × K covariance matrix, it seems
difficult to completely avoid the problem of matrix singularity, because K needs
to be larger for a topic analysis over larger document sets. Therefore, recent
proposals [11,4] may find their relevance. However, CTM has an advantage in
its simplicity and efficiency of inference. We tried to make such CTM to be uti-
lized in a wider range of situations. An important future work is to compare our
revised inference with the original one in terms of other evaluation measures [9].
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Abstract. Adaptive fault estimation problems of coupling connections
for a class of complex networks have been studied in the concept of
drive-response synchronization. By constructing a suitable response net-
works and designing the adaptive control laws and adaptive estimator of
coupling connections, the coupling connections in drive networks can be
estimated and correspondingly monitored online, which can be as indica-
tors to judge whether a fault connection occurs or not. Meanwhile, when
the actuator fault occurs, a passive fault tolerant controller is designed
to guarantee the synchronization between drive and response networks.

Keywords: Complex interconnected networks, fault estimation,
synchronization, adaptive coupling.

1 Introduction

Recently, complex networks have become an important part in our daily life.
Analysis and control of the behaviors of complex networks consisting of a large
number of dynamical nodes have attracted wide attention in different fields in
the past decade. In particular, special attention has been focused on the con-
trol and synchronization of large scale complex dynamical networks with certain
types of topology.[3–8]. Neuronal systems are the prototypic examples where
synchronization plays an important role in their functions. Neurons in a popula-
tion get into synchrony and this process causes binding, cognition, information
processing, and computing in the brain [9]. Various brain disorders have been
linked to the abnormal levels of synchronization in the brain [10, 11]. Recently,
arrays of coupled neural networks or complex interconnected neural networks
have attracted much attention of researchers in different research fields. They
can exhibit many interesting phenomena, such as spatio-temporal chaos [12].
Moreover, experiment and theoretical analysis have revealed that a mammalian
brain not only displays in its storage of associative memories, but also modu-
late oscillatory neuronal synchronization by selective perceive attention [13, 14].
Therefore, the study of synchronization of complex interconnected neural net-
works is an important step for both understanding brain science and designing
complex neural networks for practical use [15, 16].
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The most significant difference between a dynamical network and an isolated
dynamical system is that the function of a network is implemented through the
connections between the nodes systems. Through connections the nodes systems
in a network can impact each other to achieve the desired objectives. However,
the network may fail occasionally, for example, traffic jam makes the vehicles
change their routes; the extinction of some species of animals These kinds of ac-
cidents are sure to destroy parts of the connections or even all of the connections
in the network. There are also some other situations when the networks become
disconnected on purpose for economical reasons or others. Network failure refers
to the case when partial or all connections in the network become disconnected;
as a result, the objective of the network cannot be fulfilled if the network is not
recovered. There is no doubt that network failures will affect the synchronization
behavior of the complex dynamical networks. In general, there are two ways to
solve this problems. One is to use the adaptive adjusting methods to update
the coupling connections adaptively. Another way is to use the external control
law to compensate the fault effect of the coupling connections. Unfortunately
there are few works on this topic to our knowledge. Therefore, in this paper,
fault synchronization of complex dynamical networks with network failures is
studied.

Fault tolerant control has been an active research topic during the past three
decades for increasing the safety and reliability of complex dynamical systems
[17–20]. In the literature, faults normally occur at two places: the actuators and
sensors. Actuator faults are faults that act on the system, resulting in the devi-
ation of the process variables. The result is the command (control) signal sent
to this device has no effect. Fault tolerant control includes the controller design
and parameter updating laws in order to guarantee the proper dynamics of the
controlled systems during both normal and faulty conditions [21–24]. For the
controlled synchronization of complex interconnected neural networks with de-
lay, fault tolerant synchronization is essential to achieve the synchronization no
matter whether a fault happens or not. Based on above discussion, we will study
the adaptive fault estimation of coupling connections and then using the esti-
mated information to be fault indicator to produce alarm. Then a fault tolerant
synchronization control law is designed for the case of actuator fault.

2 Problem Description and Preliminaries

In this paper we will discuss the following complex networks with N identical
nodes,

ẋi(t) =f(xi(t)) +

N∑
j=1

c1ij(t)Γ1xj(t) +

N∑
j=1

c2ij(t)Γ2xj(t − τ), (1)

where xi(t) = (xi1(t), · · · , xin(t))
T ∈ �n is the state vector of the ith node,

f(xi(t)) = (f1(xi1(t)), f2(xi2(t)), · · · , fn(xin)(t))
T , fi(·) is a smooth vector field,

node system is ṡ(t) = f(s(t)), Γ1 and Γ2 are the inner-coupling connections,
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C1 = (c1ij)N×N and C2 = (c2ij)N×N are the outer-coupling connections, which
are easily effected by accidental faults, i, j = 1, · · · , N .

In order to estimate the outer-coupling connections, we construct a response
system as follows,

˙̂xi(t) =f(x̂i(t)) +
N∑
j=1

ĉ1ij(t)Γ1x̂j(t) +
N∑
j=1

ĉ2ij(t)Γ2x̂j(t− τ) + ui(t), (2)

where x̂i(t) = (x̂i1(t), · · · , x̂in(t))
T ∈ �n is the response system state vector of

the ith node, ui(t) is the control input to be designed, Ĉ1 = (ĉ1ij)N×N and

Ĉ2 = (ĉ2ij)N×N are the estimations of outer-coupling connections C1 and C2,
respectively. Γ1 = diag(γ11, γ12, · · · , γ1n), Γ2 = diag(γ21, γ22, · · · , γ2n), i, j =
1, · · · , N .

Assume that x̃i(t) = x̂i(t)−xi(t), c̃1ij(t) = ĉ1ij(t)−c1ij , and c̃2ij(t) = ĉ2ij(t)−
c2ij , then we have the following error system,

˙̃xi(t) =f(x̂i(t)) − f(xi(t)) +

N∑
j=1

c̃1ij(t)Γ1x̂j(t) +

N∑
j=1

c1ij(t)Γ1x̃j(t)

+

N∑
j=1

c̃2ij(t)Γ2x̂j(t − τ) +

N∑
j=1

c2ij(t)Γ2x̃j(t − τ) + ui(t), (3)

where i, j = 1, · · · , N .
In order to derive the main result, the following preliminaries are required.

Assumption 3. The activation function fi(xi(t)) is bounded and continuous,
which satisfies |fi(xi(t))| ≤ Gb

i , G
b
i > 0 is a positive constant,

0 ≤ fi(η)− fi(v)

η − v
≤ δi, (4)

for any η �= v, η, v ∈ �, and δi > 0, i = 1, · · · , n. Let Δ = diag(δ1, · · · , δn).

Lemma 1. ( see [1, 2]): For a dynamic system Ẋ(t) = f(X(t)), f(·) : �n → �n,
is a C1 continuous map. If function V (X(t)) : �n → �+ exists, for each X(t) ∈
�n, V̇ (X(t)) ≤ 0 and definition E := {X(t) ∈ �n : V̇ (X(t)) = 0}. Given that
B0 is the largest invariant set in E, then each bounded solution will converge to
B0 when t → ∞.

3 Main Results

In this section, we will establish some conditions to guarantee the fault tolerant
synchronization for the drive network (1) and response network (2).
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Theorem 1. Suppose that Assumption 3 holds. Response complex networks
(2) can be fault tolerantly synchronized to the drive complex networks (1) under
the following control law and coupling updating laws,

ui(t) =− di(t)x̃i(t), (5)

ḋi(t) =kix̃
T
i (t)P x̃i(t),

˙̂c1ij(t) =− x̃T
i (t)PΓ1x̂j(t), (6)

˙̂c2ij(t) =− x̃T
i (t)PΓ2x̂j(t − τ). (7)

Moreover, the coupling connections C1 and C2 of complex networks (1) can be
estimated asymptotically by the coupling adjusting laws (6) and (7), where P is
a given positive diagonal matrix, ki is a known positive constant, i = 1, · · · , N .

Proof. Let us consider the Lyapunov functional V (t) = V1(t) + V2(t), where

V1(t) =
1

2

N∑
i=1

x̃T
i (t)P x̃i(t) +

1

2

N∑
i=1

N∑
j=1

c̃21ij(t) +
1

2

N∑
i=1

N∑
j=1

c̃22ij(t), (8)

V2(t) =
1

2

N∑
i=1

1

ki
(di(t)− d∗)2 +

n∑
m=1

pm

∫ t

t−τ

eTm(s)Mem(s)ds, (9)

where P = diag(p1, · · · , pn) is a positive diagonal matrix, d∗ is a sufficiently
large positive constant, M is a positive definite symmetric matrix, and em(t) =
(x̃1m(t), x̃2m(t)), · · · , x̃Nm(t))T ∈ �N , m = 1, · · · , n.

The derivative of V1(t) is as follows

V̇1(t) =

N∑
i=1

x̃T
i (t)P

[
f(x̂i(t))− f(xi(t)) +

N∑
j=1

c̃1ij(t)Γ1x̂j(t) +

N∑
j=1

c1ijΓ1x̃j(t)

+

N∑
j=1

c̃2ij(t)Γ2x̂j(t − τ) +

N∑
j=1

c2ijΓ2x̃j(t − τ) + ui(t)
]

+
N∑
i=1

N∑
j=1

c̃1ij(t) ˙̂c1ij(t) +
N∑
i=1

N∑
j=1

c̃2ij(t) ˙̂c2ij(t)

≤
N∑
i=1

x̃T
i (t)P

[
Δx̃i(t) +

N∑
j=1

c1ijΓ1x̃j(t) +

N∑
j=1

c2ijΓ2x̃j(t − τ)− di(t)x̃i(t)
]

+
N∑
i=1

N∑
j=1

[
x̃T
i (t)P c̃1ij(t)Γ1x̂j(t) + c̃1ij(t) ˙̂c1ij(t)

]
N∑
i=1

N∑
j=1

[
x̃T
i (t)P c̃2ij(t)Γ2x̂j(t − τ) + c̃2ij(t) ˙̂c2ij(t)

]
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=

n∑
m=1

pmδmeTm(t)em(t) +

n∑
m=1

pmγ1meTmC1em(t) +

n∑
m=1

pmγ2meTmC2em(t − τ)

−
N∑
i=1

x̃T
i (t)Pdi(t)x̃i(t)

]
. (10)

The derivative of V2(t) is as follows,

V̇2(t) =

N∑
i=1

1

ki
(di(t)− d∗)ḋi(t) +

n∑
m=1

pm[eTm(t)Mem(t)− eTm(t − τ)Mem(t − τ)].

(11)

Combining (10) and (11), it yield,

V̇ (t) ≤
n∑

m=1

pm(eTm(t) eTm(t − τ))Ξ(eTm(t) eTm(t − τ))T , (12)

where

Ξ =

[
δmI + 0.5γ1m(C1 + CT

1 ) +M −D∗ 0.5γ2mC2

0.5γ2mCT
2 −M

]
,

D∗ = diag(d∗, · · · , d∗).
According to Schur Complement, Ξ is negative definite if and only if δmI +
0.5γ1m(C1+CT

1 )+M−D∗+0.25γ2
2mC2M

−1CT
2 < 0. Obviously, if d∗ is sufficiently

large positive constant, Ξ is negative definite. Therefore, we have V̇ (t) ≤ 0 for
em(t) �= 0 and em(t − τ) �= 0 or em(t) = 0 and em(t − τ) �= 0. V̇ (t) = 0 if and
only if em(t) = 0. That is, the set B0 = {x̃(t) = 0, C̃1 = 0, C̃2 = 0, di(t) = d∗}
is the largest invariant set of the set E = {V̇ (t) = 0} for the error system (3).
According to Lemma 1, starting with arbitrary initial values, the trajectories of
the error system (3) asymptotically converges to the set B0. Therefore, one gets
limt→∞ Ĉ1 = C1 and limt→∞ Ĉ2 = C2. As a result, the coupling connections C1

and C2 have been estimated by the adaptive updating laws. Thus, the proof is
complete.

Let K = diag(K1,K2, · · · ,Kn), Ki = 1 represents the normal case while Ki = 0
represents the fault case, i = 1, · · · , n. When actuator fault K occurs in the
control channel, that is, ui(t) = −di(t)Kx̃i(t), we have the following result.

Theorem 2. Suppose that Assumption 3 holds. Response complex networks
(2) can be fault tolerantly synchronized to the drive complex networks (1) under
the actuator fault,

1) for given Km, if there exists positive definite symmetric matrix M such
that the following conditions hold, m = 1, · · · , n,[

δmI + 0.5γ1m(C1 + CT
1 ) +M −KmD∗ 0.5γ2mC2

0.5γ2mCT
2 −M

]
< 0, (13)
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2) the following control laws and coupling updating laws are chosen,

ui(t) =− di(t)Kx̃i(t), (14)

ḋi(t) =kix̃
T
i (t)PKx̃i(t),

˙̂c1ij(t) =− x̃T
i (t)PΓ1x̂j(t), (15)

˙̂c2ij(t) =− x̃T
i (t)PΓ2x̂j(t − τ). (16)

Moreover, the coupling connections C1 and C2 of complex networks (1) can be
estimated asymptotically by the coupling adjusting laws (15) and (16), where P
is a given positive diagonal matrix, ki is a known positive constant, i = 1, · · · , N .

For the case of no delayed coupling, we can have the following corollary.

Corollary 1. Suppose that Assumption 3 holds. For the case of no delayed
coupling, response complex networks (2) can be fault tolerantly synchronized
to the drive complex networks (1) under the following control law and coupling
updating laws,

ui(t) =− di(t)x̃i(t), (17)

ḋi(t) =kix̃
T
i (t)P x̃i(t),

˙̂c1ij(t) =− x̃T
i (t)PΓ1x̂j(t), (18)

Moreover, the coupling connections C1 of complex networks (1) can be estimated
asymptotically by the coupling adjusting laws (18), where P is a given positive
diagonal matrix, ki is a known positive constant, i = 1, · · · , N .

Remark 1. From the proof procedure of Theorem 1, it is obvious that the pa-
rameter d∗ always exist if their magnitudes are large enough. Therefore, the
adopted adaptive laws can guarantee the synchronization of the whole nodes.

Remark 2. Similar research on the estimation of coupling connections have been
found in [25–28]. From the view point of topology identification, the authors have
discussed the estimation problems of the coupling connections. In this paper,
we stand at the point of reliable or fault tolerant synchronization of complex
networks under parameter fault and actuator faults. In the fault case, some
measures should be take to prevent the performance deterioration. For example,
fault detection should first be conducted and an alarm should be evoked. In
this point, estimation problems of the coupling connections can be converted
to the fault detection problems. More importantly, if some active fault tolerant
control laws are adopted, the estimation of the coupling connections may be
used to compensate the incomplete action. Therefore, the background and the
motivation of the present research are different from those in [25–28], which may
lead to different application of the related results.
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Remark 3. In the simulations of [25, 27], the initial conditions of the drive system
and response system are in the complex-value space. This selection contradicts
with the elementary requirements of the complex networks, which belong to the
real space. While in the present simulation, the initial conditions are chosen
randomly in [0, 1], which belong to the real space.

Remark 4. Theorem 2 presents a passive fault tolerant synchronization scheme
for the case of actuator fault. This scheme can determine which control channel
of node network is important and then some preventive measure can he taken.

4 Conclusions

For a class of complex interconnected networks with delayed coupling, a fault
tolerant control scheme is proposed to guarantee the synchronization when the
coupling connections are fault. The adaptive estimation laws of coupling connec-
tions are designed, which can monitor the status of coupling connection on line,
which can act as an indicator to make an alarm of fault. At the same time, for
the case of actuator fault, an adaptive fault tolerant controller is design, which
is on the basis of adaptive parameter estimation.
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Abstract. This paper presents a model of Elman recurrent neural network 
(ERNN) for time series fault prediction in semiconductor etch equipment. 
ERNN maintains a copy of previous state of the input in its context units, as 
well as the current state of the input. Derivative dynamic time warping 
(DDTW) method is also discussed for the synchronization of time series data 
set acquired from plasma etcher. For each parameter of the data, the best ERNN 
structure was selected and trained using Levenberg Marquardt to generate  
one-step-ahead prediction for 10 experimental runs. The faulty experimental 
runs were successfully distinguished from healthy experimental runs with one 
missed alarm out of ten experimental runs.  

Keywords: Time series prediction, recurrent neural network, derivative 
dynamic time warping. 

1 Introduction  

As semiconductor device technology moves toward a few tens of nanometer scale, no 
more process margin is allowed in manufacturing environment. Small amount of 
process shift or drift can jeopardize the product quality, and it may increase the 
quantity of wafer scrap. In order to improve production yields, it is essential to detect 
process and tool faults in a timely manner. On time detection of any suspicious run in 
the semiconductor processes is crucial to guarantee productivity and reliability [1].  

Semiconductor manufacturing processes usually show complex interactions with 
multiple input signals and multiple output variables. Previous research suggested that 
neural networks (NNs) have emerged as a powerful means of obtaining quantitative 
models for input–output mapping, and NNs have been successfully and widely 
applied for modeling semiconductor processes [2-8]. In this paper, we employed 
Elman’s recurrent neural network (ERNN) to detect fault using a healthy data set 
collected from an industrial plasma etcher. The ERNN is trained using Levenberg 
Marquardt back-propagation (LMBP) algorithm.  

Section 2 describes data collection and preprocessing and Section 3 provides 
background information of the employed ERNN. In Section 4, the implementation of 
ERNNs for semiconductor equipment data has been presented. Finally, discussion and 
summary are followed in Section 5. 
                                                           
* Corresponding author. 
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Table 1. Experimental runs and the type of perturbation added 

Run No. Added Perturbation 
1 None 
2 -0.5mT from base pressure 
3 +0.5mT from base pressure 
4 -1% MFC conversion shift 
5 +1% MFC conversion shift 
6 Source RF Cable: loss simulation 
7 None 
8 Bias RF Cable: power delivered 
9 None 

10 Added chamber leak by 1.3 mT/min 

2 Semiconductor Equipment Data 

2.1 Data Acquisition and Preprocessing 

The data for time series modeling was acquired from Applied Materials’ DPS-II 
Centura dielectric etcher. It consists of 10 repeated normal, herein called ‘healthy,’ 
runs and 10 experimental runs with some arbitrary perturbations as shown in Table 1. 
Among the experimental runs, no perturbation was added to Run No. 1, 7 and 9. 

Table 2. List of parameters selected through PCA for fault detection 

Par.  Par. Name Par.  Par. Name 
1 Throttle Gate Valve Current 9 RF Probe Phase 
2 RF Source Forward 10 E-chuck Voltage 
3 RF Matcher Current 1 11 Flow Splitter- Flow 1 
4 RF Matcher Current 2 12 Flow Splitter – Total Flow 
5 RF Bias Forward 13 Gas Flow – 12 
6 RF Bias Shunt 14 RF Probe Vp-p 
7 RF Probe Voltage 15 RF Probe DC Bias 
8 RF Probe Current   

Data Reduction: The original data set contains 55 parameters, collected from the 
semiconductor manufacturing equipment hardware through System V Interface 
Definition (SVID) with 10 Hz data collection frequency. Key success for correct fault 
detection and classification (FDC) depends on selecting useful parameters that 
containing effective information on equipment status. To alleviate the concern, 
principle component analysis (PCA) was employed for the selection of statistically 
significant parameters [9]. The parameters which carry the most useful information 
were selected by choosing the top 15 most statistically significant parameters 
presented in Table 2. 
 
Data Normalization and Synchronization: The data acquired consists of different 
parameters each having a different range of values including negative values as well, 
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depending on the measured property and its units. In addition, 10 Hz of data 
acquisition speed over 55 parameters requires precise data synchronization to avoid 
Type I error and Type II error from established FDC models. Min-max normalization 
(using Equation 1) was initially performed, and derivative dynamic time warping 
(DDTW) was employed for the time series data synchronization.  minmax min  (1)

Where xi is the un-scaled value from matrix X to be scaled, min X  is the minimum 
value in X, max X  is the maximum value in X and xi’ is the resulting normalized 
value of xi. When the multi-parameter time series data set is not synchronized, 
established model may suffer from Type I and Type II errors induced by time delay 
from equipment hardware system. We make use of the Derivative Dynamic Time 
Warping (DDTW) algorithm [10] to synchronize the data runs. DDTW is modified 
form of Dynamic Time Warping (DTW) which was originally developed in 1960s by 
Bellman [11] for recognition of speech. The use of this technique has been extended 
for the purpose of similarity measurement [12].  

 

Fig. 1. The warping path is shown as an example for two sample time sequences, X and Y with 
number of data samples N=24 and M=41 respectively 

The DDTW algorithm compares two independent time sequences in order to find 
the right alignment, a path consisting of a set of coordinates across the map is 
computed which is called the warping path W as shown in Fig. 1. Kassidas showed 
the use of DTW for synchronization of batch. In this research a modified form of this 
methodology was used for our application [13]. We fixed a reference run from the 
healthy data set and synchronized all other runs from healthy and test data set to this 
reference. Hence we obtained the synchronized runs each having total data samples 
equal to those of the reference run. 
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a2(k) = F2 (W
3a1(k)+ b2) (5)

where F2 is a linear transfer function for the hidden layer, w3 is the weight matrix of 
hidden to output layer synapses, and b2 is the bias matrix for the output layer. Using 
(4), the output of ERNN,Y can be expressed as 

Y = a2(k) = F2 (W
3a1(k)+ b2) (6)

or, 

Y = F2 (W
3 F1 (W

1x +W2a1(k-1)+ b1)+ b2) 
(7)

As evident from the implemented ERNN structure shown in Fig. 3, the input and 
output layers have one neuron each. This is because a separate one-input, one-output 
ERNN was constructed for each of the 15 parameters of the equipment data.  

Table 3. Comparison of candidate ERNN structures for each parameter 

 
 
The structure for each of the ERNNs, in terms of the number of hidden layer 

neurons, n1, n2 … n15, was individually defined for each parameter. The number of 
hidden neurons is varied to choose the best architecture that suits our tool dataset. The 
candidate structures evaluated for the selection of the best ERNN model are (1-4-1), 
(1-6-1), (1-8-1), (1-10-1) and (1-12-1). Each of the parameters was trained using the  
 

 

Fig. 4. Training response of two sample parameters, Par. 1and 8, by batch training 
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candidate models and the best one was selected considering the least value of root 
mean square error (RMSE). For the purpose of this comparison, the maximum 
number of epochs was fixed at 6 and the performance of each model was compared 
after being trained for 6 epochs. The result is presented in Table 3. For each 
parameter, the selected model has been highlighted in the table. 

Network Training: The data for each parameter from the healthy data set was used 
to train each corresponding ERNN model selected for that parameter. The input series 
was set as the combined sequence of each parameter, from all healthy runs, while the 
target was set as the same input shifted ahead by one sample in time, so that the 
network is trained to predict the next data sample, for a given input sample. For 
example, for a data sample xi presented at the input, xi+1 is set as the target. 

The networks were trained using previously explained, Levenberg Marquardt 
algorithm but there were two different well known approaches followed in order to 
train the network; batch training and incremental training. In batch training, the 
weights are updated after all the training data input has been presented to the network. 
On the other hand, in incremental training the weights are updated each time an input 
is presented [22-23]. 

For both types of approaches, the training stopping criteria included the error goal 
of RMSE=0.01. Also the maximum number of epochs was fixed at 40. Fig. 5 shows 
the network training response for Par. 1 and Par. 8 for batch training algorithms. 

 

 

Fig. 5. ERNN result on two sample parameters from Run No. 10 

The results for the two kinds of training have shown that batch training has 
improved the training performance by 52.7% as compared to incremental training for 
the same training data and conditions. Hence batch training was used for the 
subsequent steps. 
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4 Application to Equipment Fault Detection 

Once the networks were trained for each parameter, they were applied on the test runs 
from the experimental data set, in order to give a one-step-ahead prediction. Fig. 6 
shows the test response of networks, for Par. 1 and Par. 8 by batch training. 

Table 4. ERNN results in terms of RMSE for each parameter of each experimental run 

 

Par. 1 Par. 2 Par. 3 Par. 4 Par. 5 Par. 6 Par. 7 Par. 8 Par. 9 Par. 10 Par. 11 Par. 12 Par. 13 Par. 14 Par. 15
Run No. 1 0.0168 0.0612 0.0634 0.0636 0.0536 0.0292 0.0413 0.0378 0.0555 0.0257 0.0390 0.0355 0.0457 0.0505 0.0504
Run No. 2 0.0169 0.0584 0.0614 0.0623 0.0559 0.0287 0.0420 0.0378 0.0587 0.0267 0.0417 0.0353 0.0458 0.0527 0.0614
Run No. 3 0.0164 0.0611 0.0598 0.0631 0.0530 0.0284 0.0411 0.0382 0.0582 0.0274 0.0403 0.0354 0.0462 0.0520 0.0555
Run No. 4 0.0169 0.0637 0.0615 0.0621 0.0546 0.0288 0.0414 0.0369 0.0588 0.0280 0.0405 0.0354 0.0459 0.0509 0.0535
Run No. 5 0.0173 0.0611 0.0656 0.0628 0.0554 0.0286 0.0411 0.0375 0.0575 0.0290 0.0420 0.0353 0.0457 0.0513 0.0561
Run No. 6 0.0167 0.0601 0.0576 0.0628 0.0562 0.0282 0.0435 0.0370 0.0586 0.0264 0.0403 0.0356 0.0460 0.3088 0.0538
Run No. 7 0.0166 0.0635 0.0617 0.0628 0.0610 0.0289 0.0420 0.0385 0.0601 0.0288 0.0404 0.0354 0.0458 0.0509 0.0603
Run No. 8 0.0168 0.0652 0.0604 0.0637 0.0479 0.0293 0.0428 0.0408 0.0558 0.0289 0.0404 0.0353 0.0456 0.0548 0.0587
Run No. 9 0.0171 0.0654 0.0608 0.0616 0.0512 0.0289 0.0408 0.0374 0.0571 0.0279 0.0404 0.0353 0.0458 0.0516 0.0511
Run No. 10 0.0170 0.0644 0.0645 0.0643 0.0537 0.0296 0.0452 0.0432 0.0602 0.0285 0.0390 0.0355 0.0457 0.0511 0.0601  
 

Using the residuals for each of the parameters for test runs, the computed RMSE is 
summarized in Table 4. For each parameter in Table 2, the batches with highest fault 
probability have been highlighted. Observing the values closely we can notice the 
primary and secondary effects of the perturbations mentioned in Table 1. For example 
in Run No. 6 ‘Loss in source RF cable’ was simulated. This fault is clearly indicated 
by the high value of RMSE for Run No. 6 in Par. 7: RF Probe Voltage and Par. 14: 
RF Probe Peak to Peak Voltage. Similarly Run No. 4 and 5 which had been induced 
with ‘Conversion shift in mass flow controllers,’ have high value of fault probability 
for Par. 11: Flow Splitter – Flow 1.  

In order to find the combined probability of fault in each run, the RMSE values for 
each parameter in Table 4 were normalized and combined to form a run-wise result 
represented in the chart in Fig. 7(a). The perturbed runs, Run No. 2-6, 8 and 10 have 
resulted in high values of error providing evidence for fault in these runs. Also 
considering the low error values for the unperturbed runs, Run No. 1 and 9, they can 
be regarded as controlled runs.  
 

 
 

Fig. 6. (a) ERNN combined RMSE and (b) FFNN combined RMSE 
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Table 5. FFNN results in terms of RMSE for each parameter of each experimental run 

Par. 1 Par. 2 Par. 3 Par. 4 Par. 5 Par. 6 Par. 7 Par. 8 Par. 9 Par. 10 Par. 11 Par. 12 Par. 13 Par. 14 Par. 15
Run No. 1 0.012164 0.046638 0.045821 0.045935 0.048850 0.018638 0.034899 0.028124 0.041252 0.018446 0.029584 0.029569 0.033831 0.042641 0.060228
Run No. 2 0.012383 0.046629 0.045804 0.045396 0.041669 0.017746 0.035778 0.027933 0.042443 0.017183 0.029513 0.029498 0.033464 0.042940 0.062637
Run No. 3 0.012382 0.046642 0.045977 0.045936 0.041948 0.023554 0.035935 0.028146 0.045274 0.020438 0.029589 0.029563 0.033019 0.042457 0.060020
Run No. 4 0.011696 0.046653 0.044525 0.044780 0.131238 0.019713 0.035306 0.027603 0.043109 0.024776 0.029417 0.029369 0.032949 0.042669 0.060184
Run No. 5 0.012072 0.046653 0.045322 0.045066 0.043678 0.019323 0.035664 0.027567 0.043096 0.021684 0.029731 0.029673 0.032570 0.042778 0.060613
Run No. 6 0.012004 0.046626 0.049030 0.069089 0.119201 0.028630 0.062278 0.027210 0.050671 0.017303 0.029548 0.029534 0.031981 0.045115 0.061118
Run No. 7 0.012498 0.046642 0.046583 0.045686 0.047469 0.018020 0.035678 0.027481 0.045826 0.021229 0.029550 0.029548 0.032572 0.042386 0.061991
Run No. 8 0.012136 0.046630 0.046518 0.046030 0.038603 0.018790 0.035881 0.028925 0.045121 0.021349 0.029573 0.029574 0.032656 0.038418 0.057644
Run No. 9 0.012021 0.046651 0.044988 0.045488 0.046205 0.017672 0.034867 0.027704 0.042186 0.019251 0.029553 0.029532 0.032430 0.042269 0.059698
Run No. 10 0.012347 0.046661 0.045708 0.046100 0.053719 0.018795 0.038008 0.029811 0.046009 0.021193 0.029582 0.029553 0.031162 0.043778 0.064028 
 

However, Run No. 7 which was performed without adding any perturbation was 
detected as a faulty run. It could be argued that although no perturbation was added to 
Run No. 7 intentionally, yet, a fault may have occurred during the process, generating 
variations in its data when compared to the model runs. 

In order to compare the performance of ERNN, feed forward neural network 
(FFNN) was also applied with similar criteria and specifications to make a fair 
comparison. The RMSE results for FFNN are shown in Table 5 and the combined 
probability results are represented in Fig 7(b). The results show that FFNN could not 
distinguish well between faulty and healthy runs and using the same standard as for 
ERNN, the accuracy was found to be 60%. 

5 Summary 

The ERNN has been applied on semiconductor etch data. It has been showed that 
ERNNs are useful for detecting faults in semiconductor etch equipment condition 
data. Assuming that the controlled run (Run No. 7) was actually flawless, this 
misdetection of controlled run as a fault brings down the accuracy of this technique to 
90%. Currently, we are investigating uncertain information inference with Bayesian 
networks, and the ERNN prediction will be employed for the priori fault probability 
for real-time fault detection and classification in semiconductor manufacturing 
equipment. 
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Abstract. Human behaviors monitoring by using wireless sensor networks has 
gained tremendous interest in recent years from researchers in many areas.  
To distinguish behaviors from on-body sensor signals, many classification 
methods have been tried, but most of them lack the relearning ability, which is 
quite important for long-term monitoring applications. In this paper, a 
relearning probabilistic neural network is proposed. The experimental results 
showed that the proposed method achieved good recognition performance, as 
well as the relearning ability. 

Keywords: Behavior monitoring, classification method, relearning ability, 
probabilistic neural network. 

1 Introduction 

So far, studies on using wireless sensor networks to monitor human behaviors have 
grown up rapidly in many health-related applications [1]. To recognize human 
behaviors from on-body sensor data, a range of classification methods have been tried 
[2], including hidden Markov models (HMMs) [3][4], decision trees [5], k-nearest 
neighbor (kNN) [6], artificial neural networks (ANNs) [7][8] and support vector 
machines (SVMs) [9][10]. The primary limitation of these methods is the lack of 
relearning ability, which is quite important for long-term monitoring applications. 

To distinguish human behaviors reliably, a classifier should be easily updated from 
new training data. First, because the characteristics of human behaviors are various, 
even for the same person, sensor data collected from a short time period is usually not 
enough to train a classifier. Second, annotation of training instances is a hard work 
and easy to lead label errors, so the trust of one training dataset is dangerous. 

In this study, a relearning method based on probabilistic neural network (PNN) is 
proposed. The method has good relearning features, including: 1) it can be easily 
updated from new training data to improve its accuracy; 2) it can improve the 
robustness against label errors. The experimental results from realistic sensor data 
have shown that the proposed method obtained good recognition performance, as well 
as the relearning ability. 
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2 Theories 

2.1 Brief Introduction of PNN 

PNN [11] is a model based on Bayes strategy [12] for making decision, and Parzen’s 
theorem [13] for estimating probability density functions (PDFs). Bayes strategy 
identifies an unknown instance x  into class a , if inequality (1) holds, 

( ) ( ) ,a a a ap f x p f x a a′ ′ ′> ∀ ≠  (1)

where ap  is the prior probability of class a , and af  is the PDF. Parzen’s theorem 
is a common tool to estimate a univariate PDF from training instances. Cacoullos [14] 
suggests that the unknown PDF can be estimated according to (2), 
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where aq  is the number of classification patterns of class a , σ  is the smoothing 
parameter, p  is the dimension of the measurement space, and ,a ic  is the thi  
classification pattern. 

PNN usually consists of four layers. The input layer just distributes the input to the 
pattern layer. The neurons in pattern layer are used to store classification patterns. A 
common way to find classification patterns from training instances is by using 
clustering algorithm. The center vectors of clusters could be used as classification 
patterns [15]. The output of a pattern neuron is a Gaussian function of the input, as the 
exponential part in (2). In the summation layer, the number of neurons is equal to the 
number of classes. By averaging the outputs from pattern neurons belonging to a 
same class, a summation neuron calculates the likelihood of an input being classified 
into each class. There is only one neuron in the decision layer, deciding which class 
an input vector should be classified into. Detailed introduction of PNN can be found 
in the paper of Specht [11]. 

2.2 Brief introduction of FCM 

Fuzzy c-means (FCM) [16] is a clustering method, which partitions a set of instances 
S  into q  clusters. The thi  ( , ,i 1 q=  ) cluster is supposed to have a center vector 

ic . For each s S∈ , there is a membership ( )iu s  ( [ ]0,1∈ ) indicating with what 
degree s  belongs to the thi  cluster. The objective function J  of FCM is defined 
as follows: 
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where m  is the fuzzy degree member. FCM is briefly described as follows: 

Step 1: Choose appropriate integer q  and threshold value ε . Initialize each ( )iu s  
by a random value within interval [0,1] . 

Step 2: Compute ic  according to (4). 
Step 3: Compute ( )iu s  according to (5). 
Step 4: Compute the J  according to (5). If the difference between two adjacent 

values of J  is less than ε , terminate. Otherwise, go to step 2. 

3 The Proposed Method 

3.1 Establish a New PNN 

Let the first training dataset be represented by Ω . Suppose there are A  behaviors 
in Ω . The proposed method first divides Ω  into A  subsets. The subset aΩ  
( )1, ,a A=   consists of instances belonging to behavior a . FCM is then carried 
out to aΩ  to generate aq  clusters. Each center vector ,a ic  ( )1, , ai q=   is stored 
in the pattern layer. Given an unlabelled instance x , the unknown PDF ( )af x  is 
calculated according to (6). 
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The weighting coefficient ,a ir , which is calculated according to (7), is used to reduce 
the impact of label errors in training instances, where ,a in  denotes the number of 
instances in aΩ  belonging to thi  cluster. 
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The decision neuron makes a final decision according to (1). 
After established a new PNN, the reconstruction error of thi  cluster of tha  

behavior is calculated according to (8), 
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j

i x c xΩ = = − ∈ Ω , and x̂  is calculated according to (9). 
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The distance between x  and x̂  constitutes a viable measure of the quality of 
clusters [17]. The reconstruction error of each cluster is used for updating process. 
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3.2 Update a PNN from New Training Data 

Let the new training data be represented by newΩ . In this section, only consider that 
there is no new behaviors in newΩ . The proposed method first divides newΩ  into A  
subsets new

aΩ . For behavior a , the reconstruction error of existing aq  clusters are 
re-calculated according to (8) and (9), but aΩ  is replaced by new

aΩ  at this time. Let 
the new reconstruction error of thi  cluster of tha  behavior be denoted by ,ˆa iv . 

If { } { }1 , ,ˆmax maxa i a iv vτ < − , where 10 τ≤ , the proposed method splits 0thi  
{ }( )0 ,ˆarg max a i

i
i v=  cluster into two clusters to lower { },ˆmax a iv . Then, the 

corresponding pattern neuron is replaced by two new pattern neurons. The calculation 
of two new center vectors ,

new
a hc  ( ),h 1 2=  are carried out iteratively according to (10) 

and (11), 

( )( ) ( )( )
, ,0 0

, , ,
new new
a i a i

m mnew new new
a h a h a h

x x

c u x x u x
∈Ω ∈Ω

=    (10)

( ) ( ) ( )
1

1

0

12

, , , ,
1

mnew new new
a h a i a h a j

j

u x u x x - c x - c −

−

=

 =   
  (11)

where { }0, 0 ,arg maxnew new
a i a a j

j
x i x cΩ = ∈ Ω = − . The splitting process is repeated until 

{ } { }, , 1ˆmax maxa i a iv v τ− ≤ . 
If { } { }, , 2ˆmax maxa i a iv v τ− < , where 2 1τ τ< , the proposed method merges 1thi  

and 2thi  clusters, where ( )
( )

{ }, ,
,

, arg min1 2 a j a k
j k

i i c c j k= − ≠ . Then, the corresponding 
two pattern neurons are replaced by a new pattern neuron. The new center vector new

ac  
is calculated according to (12). 

( ) ( )( )

( ) ( )( )
1 2

1 2

, ,

, ,

1 2
new new
i i

1 2
new new
i i

m
a i a i

xnew
a m

a i a i

x

u x u x x

c
u x u x

∈Ω Ω

∈Ω Ω

+
=

+








 (12)

The merging process is repeated until { } { }2 , , 1ˆmax maxa i a iv vτ τ< − < . 
After splitting and merging processes, the weighting coefficient of each pattern 

neuron is re-calculated according to (7), where , , ,
new

a i a i a in n n= + . 

4 Experiment and Results 

4.1 Experiment Design and Data Collection 

The experiment data used in this study is from Lab of Intelligent System in Dalian 
University of Technology [18]. The experiment platform consisted of five signal 
collection nodes placed at five body locations (lower left forearm, lower right 
forearm, waist, left ankle, and right ankle), as well as a signal reception node 
attaching to a computer. A tri-axial accelerometer (ADXL330) was integrated in a 
signal collection node, which could measure acceleration with a minimum full-scale 



 Relearning Probability Neural Network for Monitoring Human Behaviors 477 

 

range of ±3g. Accelerometry was regarded as a practical method of objectively 
monitoring human movements [19]. The frequency of wireless transmission of 
acceleration signals was 50Hz which achieved a good trade-off between sampling 
density and packet loss rate. 

Four subjects (4 males, ages from 25-28) took part in this experiment. Each subject 
was asked to perform a range of daily behaviors during a two-hour period, including 
standing (A1), sitting on a couch (A2), lying on a bed (A3), walking around (A4), 
going upstairs (A5), going downstairs (A6), sweeping the floor (A7), wiping a table 
(A8), putting on a vest (A9), and taking off a vest (A10). 

4.2 Pre-processing of Sensor Data 

In the pre-processing step, raw signals are first cut into small segments. The length of 
sliding window was 256 samples (about 5.12 second), and there is also a 50% overlap 
between adjacent windows. Five kinds of features were extracted from each window 
to characterize corresponding behavior, including mean, variance, correlation, energy 
and entropy. These features have shown their efficiency of representing the 
characteristics of human behaviors [5]. Extracted features from a window form a feature 
vector. All the feature vectors along with their labels are used as training/testing 
instances. 

4.3 Simulation 1: Update an Existing PNN 

The collected eight-hour acceleration dataset was divided into sixteen half-hour 
subsets. Each subset included all ten behaviors. The first dataset was used to establish 
a new PNN, and the other fifteen datasets were used to update it. To establish a new 
PNN, the initial number of clusters, iteration-stopping threshold and fuzzy parameter 
used in FCM were selected to be 20, 0.5 and 2. To update a PNN, the thresholds used 
in splitting and merging processes were selected to be 2.8 and 0.4 on the optimal 
result among a range of trials. The detection accuracy of the proposed method was 
shown in Figure 1. Five other classification methods, including HMMs, SVMs, MLP, 
kNN and C4.5, were also carried out for comparison. At each step, the new subset and 
all previously used subsets were combined together to re-train the above classifiers. 
The detection results of the five classification methods were also shown in Figure 1. 

At the first testing step, the accuracy rates of HMMs, SVMs, MLP, kNN, C4.5 and 
the proposed method were 80.72%, 90.21%, 90.82%, 80.52%, 81.29% and 80.15% 
respectively. At the sixteenth step, the accuracy rates were 89.24%, 93.45%, 91.01%, 
90.48%, 86.89% and 93.14% respectively. The improvement of the proposed method 
was the largest. The experiment results showed that the proposed method achieved 
good performance of “updating from new training data to improve the accuracy”. 

4.4 Simulation 2: Involve Label Errors in Training Data 

The eight-hour acceleration dataset was divided into sixteen half-hour subsets. Two 
simulations were carried out. In the first simulation, 80% of instances in the sixth subset  
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Fig. 1. Detection accuracy rate of six classifiers 

were mislabelled on purpose. In the second simulation, the label errors were equally 
distributed into all sixteen subsets, and each subset had 5% of mislabelled training 
instances. The calculation results of two simulations were also shown in Figure 1. 

In the first simulation, the detection accuracy of all classifiers dropped sharply at the 
sixth testing. At the sixteenth testing step, the accuracy rates of HMMs, SVMs, MLP, 
kNN, C4.5 and the proposed method decreased by 5.38%, 8.19%, 8.29%, 4.64%, 4.30% 
and 1.81 % respectively. In the second simulation, there was no sharp reduction of 
accuracy rate, but the accuracy of each classification method was decreased at all the 
testing. The average drop percent of HMMs, SVMs, MLP, kNN, C4.5 and the proposed 
method were 4.95%, 6.06%, 4.07%, 5.06%, 3.69% and 3.67% respectively. The results 
of both simulations showed that the proposed method gained the most impressive 
performance of both recovery speed and recovery quality against label errors. 

5 Conclusion 

In this paper, a relearning method is proposed for monitoring human behaviors. The 
proposed method is based on PNN and FCM algorithm. The experimental results have 
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shown that the proposed method may obtain a satisfactory performance for long-term 
monitoring applications. 
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References 

1. Atallah, L., Yang, G.Z.: The use of pervasive sensing for behaviour profiling-a survey. 
Pervasive and Mobile Computing 5(5), 447–464 (2009) 

2. Preece, S., Goulermas, J., Kenney, L., Howard, D., Meijer, K., Crompton, R.: Activity 
identification using body-mounted sensors-a review of classification techniques. 
Physiological Measurement 30, R1–R33 (2009) 

3. Jamie, A.W., Lukowicz, P., Troster, G., Starner, T.E.: Activity recognition of assembly 
tasks using body-worn microphones and accelerometers. IEEE Transactions on Pattern 
Analysis and Machine Intelligence 28(10), 1553–1567 (2006) 

4. Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.: Learning and detecting activities from 
movement trajectories using the hierarchical hidden Markov models. IEEE Computer 
Society Conference on Computer Vision and Pattern Recognition 2, 955–960 (2005) 

5. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: 
Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, 
Heidelberg (2004) 

6. Zhang, T., Wang, J., Liu, P., Hou, J.: Fall detection by embedding an accelerometer in 
cellphane and using KFD algorithm. International Journal of Computer Science and 
Network Security 6(10), 277–284 (2006) 

7. Wang, N., Ambikairajah, E., Lovell, H.N., Celler, G.B.: Accelerometry based 
classification of walking patterns using time-frequency analysis. In: Proceedings of the 
29th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society, pp. 4899–4902 (2007) 

8. Sun, Z.L., Mao, X.C., Tian, W.F., Zhang, X.F.: Activity classification and dead reckoning 
for pedestrian navigation with wearable sensors. Measurement Science and 
Technology 20, 1–10 (2009) 

9. Zhang, T., Wang, J., Xu, L., Liu, P.: Using wearable sensor and NMF algorithm to realize 
ambulatory fall detection. In: Jiao, L., Wang, L., Gao, X.-b., Liu, J., Wu, F. (eds.) ICNC 
2006. LNCS, vol. 4222, pp. 488–491. Springer, Heidelberg (2006) 

10. Yin, J., Yang, Q., Pan, J.J.: Sensor-based abnormal human-activity detection. IEEE 
Transactions on Knowledge and Data Engineering 20(8), 1082–1090 (2008) 

11. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990) 
12. Mood, A.M., Graybill, F.A.: Introduction to the theory of statistics. Macmillan, New York 

(1962) 
13. Parzen, E.: On estimation of probability density function and mode. Annals of 

Mathematical Statistics 33, 1065–1076 (1962) 
14. Cacoullos, T.: Estimation of a multivariate density. Annals of the Institute of Statistical 

Mathematics 18(2), 179–189 (1966) 



480 M. Jiang and S. Qiu 

 

15. Musavi, M.T., Ahmed, W., Chan, K.H., Hummels, D.M., Kalantri, K.: A probabilistic 
model for evaluation of neural network classifiers. Pattern Recognition 25, 1241–1251 
(1992) 

16. Dunn, J.C.: Some recent investigations of a new fuzzy partition algorithm and its 
application to pattern classification problems. Cybernetics and Systems 4(2), 1–15 (1974) 

17. Pedrycz, W.: A dynamic data granulation through adjustable fuzzy clustering. Pattern 
Recognition Letters 29, 2059–2066 (2008) 

18. http://ei.dlut.edu.cn/lis 
19. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Accelerometry: providing an 

integrated, practical method for long-term, ambulatory monitoring of human movement. 
Physiological Measurement 25, R1–R20 (2004) 



Different ZFs Leading to Various ZNN Models

Illustrated via Online Solution of Time-Varying
Underdetermined Systems of Linear Equations

with Robotic Application

Yunong Zhang�, Ying Wang, Long Jin, Bingguo Mu, and Huicheng Zheng

School of Information Science and Technology,
Sun Yat-sen University, Guangzhou 510006, China

zhynong@mail.sysu.edu.cn

Abstract. Recently, by following Zhang et al.’s design method, a spe-
cial class of recurrent neural network (RNN), termed Zhang neural net-
work (ZNN), has been proposed, generalized and investigated for solving
time-varying problems. In the design procedure of ZNN models, choos-
ing a suitable kind of error function [i.e., the so-called Zhang function
(ZF) used in the methodology] plays an important role, and different
ZFs may lead to various ZNN models. Besides, differing from other error
functions such as nonnegative energy functions associated with the con-
ventional gradient-based neural network (GNN), the ZF can be positive,
zero, negative, bounded, or unbounded even including lower-unbounded.
In this paper, different newly-designed ZNN models are proposed, de-
veloped and investigated to solve the problem of time-varying underde-
termined systems of linear equations (TVUSLE) based on different ZFs.
Computer-simulation results (including the robotic application of the
newly-designed ZNN models) show that the effectiveness of the proposed
ZNN models is well verified for solving such time-varying problems.

Keywords: Recurrent neural network (RNN), Zhang function (ZF),
time-varying, underdetermined system of linear equations.

1 Introduction and Problem Formulation

Recently, a special class of recurrent neural network, Zhang neural network
(ZNN), has been proposed, generalized and investigated for a number of time-
varying problems solving. In the last decade, ZNN method/models have been
applied to effectively solving many time-varying problems. In the design pro-
cedure of ZNN models, choosing a suitable Zhang function (ZF) is very im-
portant. Usually, different ZFs lead to various ZNN models by employing the
Zhang et al.’s design method. According to such reasoning, we are motivated
to propose and investigate two types of ZFs to construct the ZNN models for
time-varying underdetermined system of linear equations (TVUSLE) solving in
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this paper. Now, let us consider the following problem formulation of TVUSLE
with smoothly time-varying vector b(t) ∈ Rm known or measurable for any time
instant t ∈ [0,+∞):

A(t)x(t) = b(t), (1)

where coefficient matrix A(t) ∈ Rm×n (with m < n) with full rank are smoothly
time-varying and known or measurable. The unknown vector x(t) ∈ Rn is to be
found in an error-free and real-time manner. Note that (1) can be viewed as a
general time-varying system of m real-valued time-varying linear equations and
n real-valued time-varying variables. For further discussion, we employ the right
Moore-Penrose inverse A+ = AT(AAT)−1 of full-rank coefficient matrix A(t)
with the consideration of m < n in this paper.

2 ZNN Solvers

In this section, by employing two different ZFs [denoted by e(t)], the specific steps
of constructing the ZNN models with different activation function arrays F (·)
are established. According to Zhang et al.’s design method, any monotonically-
increasing odd activation function f(·) can be used to construct the ZNN models
[3]. Note that f(·) denotes the element of vector-to-vector activation function ar-
ray F (·). For the convenience of further discussion, the following three activation
functions are used in this paper.

1) linear activation function (LAF) f(ei) = ei;
2) power-sigmoid activation function (PSIAF)

f(ei) =

{
epi , if |ei| ≥ 1
1+exp(−ζ)
1−exp(−ζ) ·

1−exp(−ζei)
1+exp(−ζei)

, otherwise

with the suitable design parameters ζ > 2 and p ≥ 3;
3) power-sum activation function (PSUAF) f(ei) =

∑N
k=1 e2k−1

i .

Note that ei denotes the ith element of e(t) in the research.

2.1 ZNN Models Derived from ZF I

In this subsection, we present the ZNN models which are derived from a usually-
used ZF, and the corresponding design steps are established as follows.

Step 1 (Choose a suitable ZF). It follows from our previous work [1] that the
following usual error-monitoring function (which is termed ZF I) is used:

e(t) := A(t)x(t) − b(t) ∈ Rm. (2)

Step 2 (Use Zhang design formula). The following ZNN design formula is then
adopted [1,2,3]:

ė(t) =
de(t)

dt
:= −γF (e(t)), (3)
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where design parameter γ > 0, being the reciprocal of a capacitance parameter
in the analogue-circuit implementation, should be large enough and is used to
scale the convergence rate of the network. As mentioned at the beginning of this
section, F (·) : Rm → Rm denotes the activation function array used now in (3).

Step 3 (Generate ZNN models). Expanding Zhang formula (3) yields firstly the
following implicit dynamic equation of a ZNN model solving TVUSLE (1):

A(t)ẋ(t) = ḃ(t)− Ȧ(t)x(t) − γF (A(t)x(t) − b(t)), (4)

and then the following explicit dynamic equation of the ZNN model:

ẋ(t) = A+(t)ḃ(t)−A+(t)Ȧ(t)x(t) − γA+(t)F (A(t)x(t) − b(t)), (5)

where x(t), starting from initial condition x(0) ∈ Rn, is the neural state cor-
responding to theoretical time-varying solution x∗(t) of (1). Besides, if LAF is
applied directly to (4), then we have the following implicit linear ZNN model:

A(t)ẋ(t) = ḃ(t)− Ȧ(t)x(t) − γ(A(t)x(t) − b(t)). (6)

2.2 ZNN Models Derived from ZF II

In this subsection, a new ZF is proposed and investigated for constructing new
ZNN models. For such a new ZF, the right Moore-Penrose inverse A+(t) of
time-varying coefficient A(t) is employed, and its time-derivative dA+(t)/dt (i.e.,
Ȧ+(t) for short) is approximated in the following proposition.

Proposition. For time-varying matrix A(t) ∈ Rm×n (with m < n) and its time-
varying right Moore-Penrose inverse A+(t), we approximately have Ȧ+(t) =
−A+(t)Ȧ(t)A+(t).

Proof. Since A(t)A+(t) = I with I ∈ Rm×m being the identity matrix, we have
d(A(t)A+(t))/dt = dI/dt = 0. Expanding the left hand side of the equation, we
obtain

dA(t)

dt
A+(t) +A(t)

dA+(t)

dt
= 0,

A(t)
dA+(t)

dt
= −dA(t)

dt
A+(t) = −Ȧ(t)A+(t).

It follows approximately that dA+(t)/dt = −A+(t)Ȧ(t)A+(t), which, via a sim-
pler notation, is Ȧ+(t) = −A+(t)Ȧ(t)A+(t). The proof is now complete. �
Based on the above result and the several similar steps mentioned in the last
subsection, new ZNN models can be established. That is, firstly the following
new error-monitoring function (which is termed ZF II) is designed by exploiting
the time-varying Moore-Penrose inverse A+(t):

e(t) := x(t)−A+(t)b(t) ∈ Rn. (7)
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Fig. 1. State trajectories x(t) of ZNN (5) and (8) using different activation functions

Then, by expanding Zhang formula (3), the explicit dynamic equation of a new
ZNN model for TVUSLE (1) solving is obtained as follows:

ẋ(t) = A+(t)ḃ(t)−A+(t)Ȧ(t)A+(t)b(t)− γF (x(t) −A+(t)b(t)). (8)

Besides, by using the LAF array and x(t) = A+(t)b(t), another new explicit
linear ZNN model is generalized from (8) for solving the same TVUSLE (1):

ẋ(t) = A+(t)ḃ(t)−A+(t)Ȧ(t)x(t) − γ(x(t)−A+(t)b(t)). (9)

In addition, from (9), we have the following implicit linear ZNN model:

A(t)ẋ(t) = ḃ(t)− Ȧ(t)x(t) − γ(A(t)x(t) − b(t)). (10)

Evidently, derived from different ZFs, ZNN models (6) and (10) are the same.
Thus, comparing ZNN models (4)-(6) and (8)-(10), we draw a conclusion that
different ZFs lead to various ZNN models (including the different and same).
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3 Simulations and Verifications

In this section, two illustrative examples are presented and analyzed for
comparisons among the ZNN models for the online solution of TVUSLE (1).

Example 1. The time-varying coefficients of TVUSLE (1) are as follows:

A(t) =

[
sin(0.6t) cos(0.6t) − sin(0.6t)

− cos(0.6t) sin(0.6t) cos(0.6t)

]
, b(t) =

[
1.5 cos(t)
sin(2t)

]
.

The corresponding MATLAB-simulation results are shown in Fig. 1. In the time
period t ∈ [0, 10]s, state trajectories of the elements x1(t), x2(t) and x3(t) (de-
noted by blue solid curves) synthesized by ZNN models (5) and (8) with γ = 1
are illustrated. Evidently, starting from ten randomly-generated initial states
x(0) ∈ [−2, 2]3, some of the simulated state trajectories synthesized by ZNN
model (5) [e.g., x1(t) of Fig. 1(a) and (b)] do not converge to the trajecto-
ries of the referenced theoretical solution x∗(t) = A+(t)b(t) (denoted by red
dash-dotted curves), but run in parallel with the theoretical-solution trajecto-
ries. The reason is that there are multiple time-varying solutions satisfying the
TVUSLE (1) with different initial states x(0) used. In contrast, other simulated
state trajectories of ZNN model (5) and all simulated state trajectories of ZNN
model (8), starting from randomly-generated initial states x(0) ∈ [−2, 2]3, rel-
atively fast converge to the trajectories of the referenced theoretical solution
x∗(t) = A+(t)b(t), as shown in the subplots of Fig. 1. Furthermore, comparing
Fig. 1 (a) and (b) or Fig. 1 (c) and (d), we see that, for a same ZNN model, the
state trajectories synthesized by the model using PSIAF converge slightly faster
than those synthesized by the model using LAF.

Moreover, Fig. 2 depicts the residual errors ‖A(t)x(t)− b(t)‖2 of ZNN models
(5) and (8) with γ = 1 used, where ‖ · ‖2 denotes the 2-norm of a vector.
As seen from the figure, the residual errors ‖A(t)x(t) − b(t)‖2 of the proposed
ZNN model (5) using LAF and the proposed ZNN model (8) using PSIAF fast
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Fig. 2. Residual errors of ZNN (5) and (8) using different activation functions
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(c) x(t) of ZNN model (5) using PSUAF
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Fig. 3. State trajectories x(t) of ZNN (5) and (9)

converge to zero. Note that, due to results similarity and space limitation, the
corresponding figures of ZNN model (5) using PSIAF and ZNN model (8) using
LAF are omitted.

Example 2. The time-varying coefficients of TVUSLE (1) are now

A(t) =

[
sin(t) cos(2t) sin(2t)
cos(2t) sin(2t) − cos(2t)

]
, b(t) =

[
sin(0.5t)
cos(t)

]
.

The corresponding MATLAB-simulation results are shown in Fig. 3, where phe-
nomena are similar to those of the previous example. Note that, corresponding
to x(t) in the figure, the residual errors of the ZNN models all converge to zero,
whose figures are omitted due to results similarity and space limitation.

In summary, the above computer-simulation results of the two examples sub-
stantiate the effectiveness of the proposed ZNN models on solving TVUSLE (1).

4 Application to Robotic Motion Planning

In this section, the proposed ZNN models (5), (8) and (9) activated by different
functions are applied to the inverse-kinematics motion planning of a four-link
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Fig. 4. The end-effector of the four-link planar robot manipulator tracks different end-
effector paths synthesized by the proposed ZNN models with γ = 104

planar robot manipulator. For such a robot, its joint-angle vector is generally
written as θ = [θ1, θ2, θ3, θ4]

T ∈ R4. Besides, according to [4,5], the relation
between the end-effector velocity ṙ(t) ∈ R2 and the joint velocity θ̇(t) is

J(θ(t))θ̇(t) = ṙ(t), (11)

where J(θ) ∈ R2×4 is the Jacobian matrix defined as J(θ) = ∂f(θ)/∂θ [with
f(θ) denoting the forward-kinematics mapping]. Evidently, when the velocity-
level expression (11) equals zero, the path-tracking task can be achieved. In
other words, the motion planning of the four-link planar robot manipulator
can be achieved by solving (11) via the proposed ZNN models. The simulation
results of tracking different end-effector paths via the proposed ZNN models
using different activation functions are shown in Fig. 4. Specifically, Fig. 4(a)
shows the robot motion trajectories synthesized by ZNN model (8) using LAF
when the end-effector of the four-link planar robot manipulator tracks a three-
leafed rose path; and Fig. 4(b) presents the corresponding positioning error ε(t) =
rd(t) − f(θ), with rd(t) as well as εX and εY denoting respectively the desired
end-effector path as well as the X- and Y-axis components of ε(t). Note that
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the maximal positioning error synthesized by ZNN model (8) using LAF is of
order 10−4m, and that, due to space limitation, the figures about the positioning
errors synthesized by ZNN (8) using PSIAF and ZNN (9) are omitted.

In summary, this application to the inverse-kinematics control of the four-link
planar robot manipulator demonstrates (again) the effectiveness of the proposed
ZNN method/models on solving the TVUSLE and its related robotic problem.

5 Conclusions

In this paper, by following Zhang et al.’s design method and defining two Zhang
functions, six ZNN models (with two models happening to be the same) have
been proposed and investigated for solving the TVUSLE. In addition, two non-
linear activation functions have been applied to the ZNN models for faster con-
vergence speed in solving the TVUSLE problems. Computer-simulation results
have further demonstrated the efficacy of the proposed ZNN models for the on-
line solution of TVUSLE. Besides, the proposed ZNN models have been applied
to the inverse-kinematics motion planning of a robot manipulator with good
performance shown.
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Abstract. In this paper we presents an observer based on artificial neuro-fuzzy 
networks approach to estimate the indicated torque of a diesel engine from 
crank shaft angular position and velocity measurements. These variables can be 
measured by low-cost sensors, since the indicated torque is an important signal 
for monitoring and/or control of a diesel engine; however, it is not practical to 
measure it, due to it is not easily measured and need expensive sensors. A 
model of average value of a diesel engine is used in the simulation to test the 
estimator of the indicated torque, these results are presented. This estimator 
may be useful in the implementation of control strategies or diagnostic where 
the indicated torque measurements are required.  

Keywords: Diesel engines, indicated torque, neuro-fuzzy networks. 

1 Introduction 

The indicated torque in a diesel engine is very important for monitoring and/or control 
of combustion in a vehicle in order to achieve the designed performance, lead to 
lower fuel consumption and have a better comfort. The indicated torque could be 
measured indirectly by measuring the pressure in the cylinders using high 
performance pressure sensors in each cylinder. However, high performance pressure 
sensors have high cost, beside that can be an uncertainty in error when measure 
indirectly. An alternative option is therefore to estimate indicated torque using low 
cost sensors based on a model. It has been developed and tested new models for 
estimating indicated torque [3, 4 and 12]. 

On the other hand, today diesel engines are typically equipped with control and 
post-treatment devices [6, 10 and 13] in order to comply with the environmental 
requirements currently imposed. These entire devices make the indicated torque 
affected by a large number of variables, it is impossible to consider the interaction of 
all these variables when building a model, especially when wanted to keep it simple. 
A viable option would be to develop an observer to estimate the indicated torque 
using available signals that are easy to measure. In this work we present the design of 
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the indicated torque estimator based in a recurrent neuro-fuzzy networks and evaluate 
it using computer simulations. First, we use a mean value model [6, 10 and 13] to 
describe the dynamics of the system in crank angle domain, which is used later to 
evaluate the indicated torque estimator. Then we presented a technique based on 
neuro-fuzzy networks for diesel engine indicated torque estimation. The network is a 
recurrent neural network, obtained by adding a feedback in the input network. 
Simulations results are presented in order to compare estimator whit the real behavior. 

2 Model of Production of Torque and Crankshaft Dynamics 

In this part, we describe the dynamics of the combustion torque, also referred as the 
indicated torque. A nonlinear dynamic crankshaft rotational equation can be derived 
from the Lagrangian or Newtonian equations.  0 (1)

where combustion torque  is the indicated torque in a diesel engine,   refers to extended load torque (load torque more friction torque) and 
load torque and friction torque can be determined if we know the crankshaft speed 
[7].  The mass torque  is derived from the kinetic energy  of the masses 
moving in the engine as described in Figure 1. 12  (2)

 
 

Fig. 1. Mass Model (source: Chauvin, 2004) 

The mass torque  can be expressed as 12  (3)

Solving the equation (3) for , (1) can be expressed as 

 (4)

 
Center of gravity
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This depends of the crankshaft velocity , over a engine cycle. We built our 
simulation model based on empirical data available in the literature [7,11,14].  The 
indicated torque response being observed, the inputs to the simulation are the fuel 
command and the load torque, the engine speed response is used as one of the inputs 
to the network, due to this variable is observable as shown in (4). 
 

Fig. 2(a). Fuel command input 

 

Fig. 2(b). Load torque input 

Fig. 2(c). Engine speed response Fig. 2(d). Indicated torque response 

3 Indicated Torque Estimator Design 

In this section, a neuro fuzzy network is used as an observer which calculates the 
response of the indicated torque, using only two signals, the engine craft speed and 
the mass flow of fuel, which are available to measure. The network is of type 
perception with three layers, one input layer, one hidden layer and one output layer. It 
has been used the feed-forward back-propagation algorithm to train the networks 
using the data obtain in the simulation. This algorithm uses a sequential method based 
on the gradient, to adjust the weights of the neurons with the purpose of minimize the 
error and approximate the real response. There are  fuzzy IF-THEN rules for vector 
mapping linguistic input , … ,  ∈  to a linguistic output variable. 
Consider a fuzzy logic system given by  fuzzy IF-THEN rules :    …    …  

 

(5)
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where  denotes the th rule, 1 ,  , … , ∈   and  , … , ∈    are the input (  inputs) and the output (  outputs) of the 
neuro-fuzzy observer,  is the fuzzy singleton for the th output in the th rule, and …  are fuzzy sets with Gaussian membership functions 
 

 (6)

 
with  and  design parameters. Using the product-inference rule, singleton 
fuzzifier, center average defuzzifier, and Gaussian membership function given by the 

 fuzzy IF–THEN rules, the th output is given by 
 , 1, … ,  (7)

Π∑ Π , 1, … ,  (8)

where , … ,  is the vector that contain the weight  where 1. Therefore, the equation (7) can be seen as the internal product of two vectors 

   (9)

The equation (9) is known as a universal approximator in the sense that given any real 
continuous function  in a compact set  ∈    and any 0 there exist a 
system (9) such that ∈  (10)

where ·  denotes Euclidean norm or its induced matrix norm. In light of this result, 
the function   can be rewritten as , ∈  (11)

where the  approximation error depends on some factor like the numbers of rules, 
membership functions or design parameters. In the practice, the weights may be 
unknown. Several methods based the gradient of an error function are available to 
estimate it. 

3.1 Recurrent Neuro-fuzzy Observer 

Figure 3 shows the model of identification for diesel engine using the recurrent neuro-
fuzzy observer in its process of training, which uses the variables of the input fuel 



 Estimation of Indicated Torque for Performance Monitoring in a Diesel Engine 493 

 

Fuel command

command  and the response of engine speed  as inputs to the observer, the 
dynamics network consists in add one input that fed back from the output for 
minimizing the convergence error to zero; the difference between the indicated torque 
response of the engine  and the output of the network . 

 

 

Fig. 3. Training process of recurrent neuro-fuzzy observer 

The neuronal network adopted in this section has three inputs, one hidden layer 
with 32 neurons and one output layer. The transfer functions used at the hidden are 
Gaussian. The extra input just has two levels, low or high, and then it have 32 fuzzy 
IF-THEN rules that are given by :       (12)

with  defined by 1 1 ; 0 (13)

where  denotes -th rule, 1  32, , , ∈  are the inputs (  

= 3 inputs) and the ∈  is the output (  = 1 output),  is the value 
for the -th output in the -th rule,  is a constant. 

,  and  are fuzzy sets with Gaussian membership functions 
given by (6), where  and  are design parameters of the levels established for each 
function and denotes like previous network as the levels established for the first two 
inputs are the same and each parameter has been established and tuned according to the 
error so that the difference between  and  is minimized. For each input it defines 
four levels: low, medium low, medium high and high. Each parameter has been 
established given the results of engine model, and tuned according to the error so that  
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the difference between  and  is minimized. Table 1 lists the centers and widths for 
each input variable. The Indicated torque premium  only has two levels, low and 
high. 

Table 1. Design parameters 

 
 

Engine 
speed 

Level center width  
 

Fuel 
rate 

Level center width 
Low 168 4 Low 230 11 

Medium low 173.5 1.5 Medium low 244 3 
Medium high 176.5 1.5 Medium high 253 6 

High 184 6 High 283 24 

 
then from the equation (7) the output  can be rewritten as following , ·  (14)

and the final output   can be calculated as the sum of each th output and it can be 
rewritten as the internal product of the two vectors as (9) 

,  (15)

The final output   is calculated as (14), and is fed back to the network; consequently, 
the neuronal model is a dynamic model. Figure 4 shows the neuronal network 
architecture used in this section. Like the previous network this network is trained so 
that the difference between  and  is as small as possible, and as static network all 
antecedent parameters have been established and only the consequence parameters are 
trained on-line.   
 

 

Fig. 4. Neuronal network architecture 
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The network is trained so that the difference is as small as possible, all antecedent 
parameters have been established and only the consequence parameters are trained 
on-line. Several methods based the gradient error of an error function are available to 
estimated it [15]. During the training, the data of the engine are collected in the 
laboratory, where the combustion , the craft speed  and the indicated torque  
are measured. The error is given by 

 (16)

The singleton vector is updated by  

 (17)

where  is a constant define like design parameter. Figure 5 shows the compact set of 
system (16).   

Modeling error 15  has been used to train the fuzzy neural networks the equation 
(14) such that  can approximate to , according to the theory of function 
approximation of fuzzy logic [13] and neural network [2] identification process can 
be represented as , , ·  (18)

where  is the approximation error, and  is the vector that contains the weights  that 
can minimize . 

 
 

 

Fig. 5. Compact set of system 
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Theorem 1. If it has take that the neuronal fuzzy networks the equation (15), the next 
descent algorithm of gradient with a proportion of learning of variant time can be the 
identification of error is bounded. 

 (19)

where , 0 1. The standard identification error satisfies the 

following average performance 
 1 máx  

 lim sup 1  

 
where max . 
 
We have used the inputs  and , data collected of the performance engine, and we 
use the fuzzy set as Table 2 as well as the number of fuzzy set for each input variable. 
In this simulation we let 600 , the same time as engine model, so the observer 
can be training on-line with the data engine. We use the equation (18) to update the 
weights for online identification. From Theorem 1 we have a necessary condition for 
a stable learning of η, with η ≤ 1. In this case, we find that learning is stable with η = 
1 and if η ≥ 1.65 the learning process becomes unstable. The result of identification is 
show in Figure 6(a)  and quadratic mean error is expressed in Figure 6(b). 
 
 

  

Fig. 6(a). Approximation of Indicated Torque 
of engine using recurrent network 

Fig. 6(b). Mean square error 

 
After training there are 16 fuzzy rules that are validated by Indicated Torque 

response. Table 2 shows the rules used in this section. 
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Table 2. Rules for recurrent network 

Engine speed Fuel rate Indicated torque prima Indicated torque 

Low Low Low Low 
Low Low High Medium high 
Low Medium low Low Medium low 
Low Medium low High Medium high 
Low Medium high Low Medium low 
Low Medium high High Medium high 
Low High Low Medium high 
Low High High Medium high 

Medium low Low Low Low 
Medium low Low High Medium low 
Medium low Medium low Low Low 
Medium low Medium low High Medium low 
Medium low Medium high Low Medium low 
Medium low Medium high High Medium high 
Medium low High Low Medium high 
Medium low High High High 
Medium high Low Low Medium high 
Medium high Low High High 
Medium high Medium low Low Low 
Medium high Medium low High Medium low 
Medium high Medium high Low Medium high 
Medium high Medium high High High 
Medium high High Low Medium high 
Medium high High High High 

High Low Low Medium low 
High Low High Medium high 
High Medium low Low Medium high 
High Medium low High High 
High Medium high Low Medium high 
High Medium high High High 
High High Low Medium high 
High High High High 

4 Neuronal Networks Validation 

Figures 6(a) show the response of observer output, respectively, these responses are 
the results of training process for the observers; then, we had use the final data 
training for validation, in order to show the capacity of the observers to predict the 
indicated torque. Figure 7 shows the output recurrent neuro-fuzzy observer using the 
data training. 
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Fig. 7. Recurrent neuro-fuzzy observer (red) using the data training 

The results are in good agreement with the output of the indicated torque in the 
model, calculated in the first section. The static network has a behavior similar to the 
simulation in the model, however would require more neurons to achieve 
performance closer to the exact values, when these are required. This required a more 
complex structure and faster computational algorithm. The recurrent network gets 
faster to the behavior of the output variable of the indicated torque, this has more 
neurons and consequently their algorithm is larger. The simulations results are 
compared with8 results generate by experiments [14], and then the neuronal network 
used in this work can help like a tool of identification. 

5 Conclusion 

First, the model used for simulation of the interest variable can be use like a mean 
value model for a turbocharged diesel engine, the simulation results are in good 
agreement with the experimental data. The model can be expanded to cover other 
variables when this are need, or the state variables can be change in the sense of 
expand the no linear of the model, however, increasing the number of variables can 
lead to uncertainty in the model when not have the data of the constants. Finally, we 
suggested a neural fuzzy network for identification that are capable of predicting the 
behavior of indicated torque that can be applied to the engineÊs control and that can be 
easily integrated in a control then. The weights and design parameter can be replaced 
in the neural network for a particular engine. 
 

Acknowledgements. This work was supported in part by CONACyT under grant 
129800 and by PAPIIT 116412. 

References 

1. Dobner, D.J.: Int. J. of Vehicle Design, Technological Advances in Vehicle Design Series, 
SP4, Application of Control Theory in the Automotive Industry, pp. 54–74 (1982) 

2. Haykin, S.: Neural Networks, A Comprehensive Foundation, 2nd edn. Prentice Hall U.S. 
(1999) 

3. Heywood, J.B.: International Combustion Engine Fundamentals. McGraw-Hill (1988) 

0 100 200 300 400 500 600
0

200

400

600

800

time (s)

In
di

ca
te

d 
T

or
qu

e 
(N

m
)

APPROXIMATION INDICATED TORQUE

 

 

real Indicated Torque
Estimate Indicated Torque



 Estimation of Indicated Torque for Performance Monitoring in a Diesel Engine 499 

 

4. Horlock, J.H., Winterbone, D.E.: The Thermodynamics and Gas Dynamics of Internal- 
Combustion Engines, vol. II. Clarendon Press (1986) 

5. Ledger, J.D., Benson, R.S., Whitehouse, N.D.: Dynamic modelling of a turbocharged 
diesel engine. SAE Transactions, paper number 710177, pp. 1-12 (1971) 

6. Amman, M., Fekete, N.P., Guzzella, N., Glattfelder, A.H.: Model based control of the 
VGT and EGR in a turbocharged common rail diesel engine: Theory and passenger car 
implementation. Presented at the SAE World Congr. Exhib., Detroit, MI, 2003-01-0357 
(2003) 

7. Kao, M., Moskwa, J.J.: Turbocharged Diesel Engine Modeling for Nonlinear Engine 
Control and State Estimation. Transactions of the ASME 117 (March 1995) 

8. Moskwa, J.J., Hedrick, J.K.: Modeling and Validation of Automotive Engines for Control 
Algorithm Development. ASME Journal of Dynamic System, Measurement, and Control 
(June 1992) 

9. Palmer, C.A.: Dynamics Simulation of a Solid Fueled Gas Turbine System. Department of 
Mechanical Engineering, University of Wisconsin Madison, Ph.D. thesis (1991) 

10. Mital, R., Li, J., Huang, S.C., Stroia, B.J., Yu, R.C., Howden, K.C.: Diesel exhaust 
emissions control for light duty vehicles. Presented at the SAE World Congr. Exhib., 
Detriot, MI, 2003-01-0041 (March 2003) 

11. Omran, R., Younes, R., Champoussin, J.-C.: Optimal Control of a Variable Geometry 
Turbocharged Diesel Engine Using Neural Networks: Applications on the ETC Test 
Cycle. IEEE Transactions on Control Systems Technology 17(2) (March 2009) 

12. Watson, N., Janota, M.S.: Turbocharging the Internal Combustion Engine. Wiley,  
New York (1982) 

13. Leu, Y.G., Lee, T.T., Wang, W.Y.: Observer-based adaptive fuzzy-neural control for 
unknown nonlinear dynamical systems. IEEE Trans. Syst., Man, Cybern. B 29, 583–591 
(1999) 

14. Yanakiev, D., Kanellakopoulos, I.: Engine and Transmission Modeling for Heavy-Duty 
Vehicles, Institute of Transportation Studies University of California, Berkeley, Path 
Technical Note 95-6 (August 1995) 

15. Tang, Y., Vélez-Díaz, D.: Robust Fuzzy Control of Mechanical Systems. IEEE 
Transactions on Fuzzy Systems 11(3), 411 (2003) 



Blind Single Channel Identification Based on

Signal Intermittency and Second-Order
Statistics

Tiemin Mei

School of Information Science and Engineering,
Shenyang Ligong University, Shenyang 110168 China

meitiemin@163.com

Abstract. For intermittent channel output signal, namely, the active
periods followed by nonactive periods alternatively, the blind single-input
single-output (SISO) system identification problem can be transformed
into a blind multichannel identification problem. It is possible and feasi-
ble to blindly identify the channel using only second-order statistics from
the channel output signal. A two-stage approach is proposed in this pa-
per. At the first stage, two or more segments of channel input signal are
estimated from the single channel observation; at the second stage, the
channel impulse response is identified by exploiting the estimated chan-
nel input signal segments and their corresponding channel output signal
segments. Simulations show that the proposed approach works well.

Keywords: Blind channel identification, SISO system, Signal
intermittency, Second-order statistics.

1 Introduction

In many cases, we need to identify a channel so as to equalize it to cancel the
inter-symbol interference [1], to reshape it to cancel the reverberation effect [2],
to estimate the environmental scale [3] [4], or to improve the recognition percent-
age in human-machine interface applications. Blind channel identification means
that the channel parameters are estimated by exploiting only the received sig-
nals. For non-minimum phase and finite impulse response (FIR) SISO systems,
second-order statistics have been proved to be insufficient for blind channel iden-
tification without further assumptions on the input signal, such as cyclostation-
arity [5]. For multichannel or multirate models, the situation is different, second
order statistics are sufficient for the channel identification. Mathematically, mul-
tichannel and multirate models are equivalent to each other [1].

For comparison, we review the multichannel model [1] [6] [7]:

xi(n) =

L−1∑
k=0

hi(k)s(n − k), (i = 1, 2), (1)

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 500–505, 2013.
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where xi(n) and hi(n) (i = 1, 2) are the multichannel output signals and impulse
responses, respectively; s(n) is the single-channel input signal; L is the length of
hi(n). If the input signal is unknown and the channel impulse responses are co-
prime to each other, the cross-relation between the outputs of different channels
can be exploited to estimate the channel impulse responses by following the fact
that,

x1(n) ∗ h2(n) = x2(n) ∗ h1(n), (2)

where ‘*’ is the convolution operator. For the estimation of hi(n) (i = 1, 2),
the corresponding LMS algorithm is as follows.

Let e(n) = xT
1 (n)h2 − xT

2 (n)h1, where xi(n) = [xi(n), xi(n − 1), . . . , xi(n −
L + 1)]T (i = 1, 2) and hi = [hi(0), hi(1), . . . , hi(L − 1)]T (i = 1, 2), the
conditioned objective function is defined as

J(h) = E[e2(n)] = hTRh, subject to ‖h‖ = 1, (3)

where h = [hT
2 ,hT

1 ]
T, x(n) = [xT

1 (n),−xT
2 (n)]

T, R = E[x(n)xT(n)], and ‖h‖ is
the 2-norm of h.

The corresponding LMS algorithm is

hn+1 = hn − μe(n)x(n), subject to ‖h‖ = 1. (4)

In this paper, we try to tackle the SISO case. If the channel output signal is
of the property of intermittency, i.e., the active and nonactive intervals of the
channel output signals are alternatively following each other, then this problem
turns out to be mathematically a multichannel identification problem.

2 Problem Formulation

Let x(n) be the output of the unknown nonminimum FIR time-invariant system
h(n), and let s(n) be the unknown input signal. Then the input-output relation
is as follows,

x(n) =

L−1∑
k=0

h(k)s(n− k) + υ(n), (5)

where υ(n) is the received noise, but for simplicity, it will not be considered in
the following deduction.

We suppose that the channel input signal s(n) is intermittent in time, and
further, we suppose that there are at least two active segments, which are denoted
by s1(n) and s2(n), the periods of the nonactive segments before and after these
two active segments are longer than the duration of the impulse response h(n).
The corresponding segments of the channel output signal, which are denoted
by x1(n) and x2(n), will be complete convolutions of the channel input signal
segments and the impulse response of the system,

xi(n) =
L−1∑
k=0

h(k)si(n − k) (i = 1, 2). (6)
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If we exchange the positions of h(n) and si(n) in (6), then we have

xi(n) =

Li−1∑
k=0

si(k)h(n − k) (i = 1, 2). (7)

Comparing (7) with (1), they are mathematically equivalent if we replace hi(n)
and s(n) in (1) with si(n) and h(n), respectively. So the identification of s1(n)
and s2(n) is equivalently a multichannel identification problem, all approaches
proposed for tackling the multichannel problem can be used to estimate the
channel input signal segments s1(n) and s2(n).

The cross-relation between different segments of the channel output signal is
as follows,

x1(n) ∗ s2(n) = x2(n) ∗ s1(n). (8)

This relation is the basis for s1(n) and s2(n) estimation.
After the estimation of s1(n) and s2(n), the channel impulse response h(n)

will be easily identified with the observed channel output signal segments x1(n)
and x2(n) and the estimated channel input signal segments s1(n) and s2(n).

3 Algorithm Development

The two-stage algorithm will be formulated in the following two subsections.

3.1 The Identification of Channel Input Signal Segments

We suppose that the lengths of the input signal segments are L1 and L2, respec-
tively. Let

s1 = [s1(0), s1(1), ..., s1(L1 − 1)]T,

s2 = [s2(0), s2(1), ..., s2(L2 − 1)]T

and s = [sT2 , sT1 ]
T. As shown in Fig. 1, the error signal is

e(n) = xT(n)s, (9)

where x(n) = [x1(n), x1(n−1), ..., x1(n−L1+1),−x2(n),−x2(n−1), ...,−x2(n−
L2 + 1)]T.

To avoid the trivial solution s = 0, the conditioned least mean squares
objective function is defined as

J(s) = E[e2(n)] = sTRs, subject to MAX{|s|} = 1, (10)

where R = E[x(n)xT(n)] is the correlation matrix of x(n); MAX{|s|} represents
the maximum absolute component of vector s.

Let dJ(s)
ds = 0, then we have

Rs = 0, subject to MAX{|s|} = 1. (11)
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Fig. 1. The estimation of the channel input signal segments s1(n) and s2(n) from the
observed intermittent channel output signal segments x1(n) and x2(n) in SISO system
identification

The solution of equation (11) is the least mean square estimation of the channel
input signal segments si (i = 1, 2) if s1(n), s2(n) are coprime to each other in Z
domain.

But often, similar to that of (4), we have the online learning algorithm:

sn+1 = sn − μe(n)x(n), subject to MAX{|s|} = 1. (12)

In practice, the channel output signal segments are used repeatedly until the
algorithm converges. In addition, the vector s is normalized to MAX{|s|} = 1 in
each iteration.

3.2 The Channel Identification

After the channel input signal segments s1(n) and s2(n) being estimated, h(n)
can be easily estimated according to the relationship (6). The LMS algorithm is

hn+1
i = hn

i + μei(n)si(n) (i = 1, 2), (13)

where ei(n) = xi(n) − sTi (n)h
n
i ; hi = [hi(0), hi(1), ..., hi(L − 1)]T; si(n) =

[si(n), si(n − 1), ..., si(n − L + 1)]T. Lastly, the average h = (h1 + h2)/2 is
taken as the single channel estimation.

Alternatively, we can estimate the h(n) directly in frequency domain. When
the Fourier transform is applied to both sides of equation (6),we have

Xi(e
jω) = H(ejω)Si(e

jω) (i = 1, 2). (14)

This yields

hi(n) = FT−1

[
Xi(e

jω)

Si(ejω)

]
(i = 1, 2), (15)

2s

1s

( )e n

1( )x n

2 ( )x n

LMS

MAX(| |) 1s

+

-
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where FT−1[.] is the inverse Fourier transform operator. In the same way, we
take h = (h1 + h2)/2 as the single channel estimate.

The LMS algorithm (13) gives a better estimation than the direct frequency-
domain algorithm (15), especially when observation noise exists.

4 Simulation Results

In the experiment, the two input signal segments are two Gaussian white noise
processes of lengths L1, L2 = 1250. The original channel impulse response h(n)
is generated with the image method [8] and of length L = 1000. The channel
input and output signals are shown in Fig. 2.
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The time disjoint channel input signal.

0 1000 2000 3000 4000 5000 6000
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The time disjoint channel output signal.

Fig. 2. The time intermittent channel input and output signals. Top: the channel input
signal: the two active segments are s1(n) and s2(n), respectively; Bottom: the channel
output signal: the two active segments are x1(n) and x2(n), respectively.

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a)

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b)

The estimaed channel impulse response

The original channel impulse response

Fig. 3. The normalized original and the estimated channel impulse response, SNRh =
17.4dB: (a) the estimated channel impulse response; (b) the original channel impulse
response
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The estimation result is shown in Fig. 3. The signal-to-noise ratio (SNR) of the

estimated channel impulse response is as SNRh = 10 log
∑L

n=0 h2(n)
∑L

n=0(ĥ(n)−h(n))2
, where

ĥ(n) represents the estimated channel impulse response. In this experiment,
SNRh = 17.4 dB.

The SNR of the estimated input signal is as SNRsi = 10 log
∑Li

n=0 s2i (n)∑Li
n=0(ŝi(n)−si(n))2

,

where ŝi(n) represents the estimated channel input signal. In this experiment,
SNRs1 = 18.3 dB; SNRs2 = 19.9 dB, respectively.

5 Conclusion

Theoretic analysis and simulation results show that blind identification of SISO
systems is possible on the basis of second-order statistics if the observed channel
output signal is intermittent in time.
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Abstract. The determination of concrete mix ratio is known as the concrete mix
design which involves many theories and practice knowledge and must satisfy
some requirements. In order to get high performance concrete, the mix design
should be tuned using optimization. However, a lot of concrete experiments are
needed to correct models which are very time-consuming and expensive. In this
paper, a neural network surrogate model based method is proposed to optimize
concrete mix design. This approach focuses on the optimization of compressive
strength. Experimental results manifest that the optimum design which achieves
high compressive strength can be found by employing the novel approach.

Keywords: Neural Network, Concrete, Surrogate Model, Genetic Algorithm.

1 Introduction

Concrete mix ratio refers to the mass ratio of components in concrete per unit of vol-
ume. The determination of concrete mix ratio is known as the concrete mix design.
Commonly, concrete mixture ratio design involves many theories and practice knowl-
edge. Concrete mix design must satisfy the following four basic requirements. It should
meet the compressive strength requirements of structural design, should meet the re-
quirements of concrete construction and ease of use, should meet the requirements for
durability in particular environment, and should save the cost.

The optimization of concrete mix design, which searches for the best concrete mix
ratio using optimization method, was proposed by Cannon J P and Krishna Murti G
R[1]. They adopted the simplex method as optimizer. The regression and multi objective
optimization were also introduced and achieved good results in practice. In recent years,
the combination of artificial neural network and nonlinear optimization has become a
new pathway for concrete mix design. I-Cheng Yeh [2] presented a novel Computer
Aided Design tool for undertaking the design of concrete mixes incorporating Super
Plasticizer, fly ash, and slag to attempt to insure that the resulting concrete product will
not only be economical and strong enough for the intended purpose, but will have some
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assurance of adequate workability characteristics as well. However, in order to build a
satisfactory computer aided design tool, a lot of real experiments are needed to correct
models. These experiments are very time-consuming and expensive.

When an outcome of interest cannot be easily directly measured or calculated, the
surrogate model can be used instead. Surrogate model refers to a simple mathemati-
cal model built from a small number of samples. It is used to take place of original
experiment or simulation. However, its precision is very close to original one. It has
become a hot issue in the study of simulation and optimization. The calculation results
of surrogate model are very close to the results of experiment or to the results of simu-
lation. Therefore, in optimization problems, this simple surrogate model can be used in
place of the complex and time-consuming experiment or simulation. Furthermore, it is
updated during the process of optimization to improve accuracy. The surrogate model
reduces computational complexity and computational time, and increases the efficiency
of design optimization. It has been widely used in agricultural[3], manufacturing[4],
airplane[5], investment and emergency[6].

The difficulties faced by time and cost in real experiments and the progress achieved
by surrogate model promoted us to explore constructing surrogate model for optimum
concrete mixtures using neural network. This work focuses on the optimization of com-
pressive strength.

This paper is arranged as follows. Section 2 describes the details of how to imple-
ment constructing surrogate model for optimum concrete mixtures using neural net-
work. Section 3 outlines and discusses our experimental results followed by conclusions
in Section 4.

2 Methodology

In concrete mix design, the amount of each component (such as cement, fly ash, slag,
water, superplasticizer, coarse aggregate and fine aggregate) produces different effects
on the final compressive strength. It is a complex process with multicomponent factors.

…
… …

…
 

 

m1 

m2 

mn 

…
…

Strength

Fig. 1. The feedforward neural network surrogate model. mi represents the weight of ith
component
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Conventionally, in order to get the best mix ratio, scientists have to do a great deal
of experimentations to find the best solution. It requires huge amounts of money to
finish these experiments. Furthermore, it will also take a long time to wait for the slow
hydration until predefined ages.

Therefore, the surrogate model is adopted to accelerate the searching process for con-
crete mix design. Surrogate models are integrated methods which involve experimental
design and approximate method. Approximate method is the core. We use surrogate
model instead of time-consuming and expensive concrete strength test, and use opti-
mization algorithm to search for the best design in the space of constructed model. In
addition, the searched best design in each searching and its measured strength will be
fed back to the data and further enhance the model.

Many surrogate models including response surface method[7], Kriging method[8],
and neural networks[9,10] etc. have been proposed. Among these techniques, neural
network model has been proven to be a practical approach with lots of success stories in
several tasks. Feedforward neural networks have ability to approximate any nonlinear
functions, it is very suitable for them to play the role of surrogate model instead of
concrete experiments. In the input layer, each neuron corresponds to the weight of a kind
of component. The number of neurons in input layer is set to the number of components
n. In output layer, there is only one neuron, the compressive strength. Therefore, one
feedforward neural network is enough to approximate the concrete experiment. Fig. 1
illustrates the adopted feedforward neural network with n input neurons and one output
neuron.

In this research, neural network can be viewed as a simple model of mapping rela-
tionship which transforms the mix design to compressive strength in place of concrete
experiments. It is constructed according to a given data set which collected by experi-
ments and is trained using Levenberg-Marquardt algorithm (LM). Once the model has
been built, it can calculates the approximate compressive strength by inputting new mix
ratio.

The task to find the best solution is in charge of genetic algorithm which is a proce-
dure inspired in biologic evolution[11]. It was formally introduced by John Holland in
the United States in the 1970s and is performed in computers. It has ability to find global
best solutions for problems that have been difficult to solve with classical approaches.

In the initial stage, we need only provide a small amount of measured data. When
finished a searching, the optimal solution is tested by concrete experiments. Then, the
results are added into data set for the next modeling and searching. The flow chart of
searching algorithm is shown in Fig. 2.

The problem of concrete mixture optimization should subject to several constraints
related to absolute volume, component contents, and component ratios. Absolute vol-
ume method assumed that the volume of mixture of concrete is equal to the sum of
absolute volume of its components. That is to say, the sum of volume of components is
equals to 1000 litre.

n

∑
i=1

mi

di
= 1000 (1)
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Fig. 2. The flow chart of searching algorithm

where mi is the unit weight of ith component, di is specific gravity of this component, n
is the number of components. However, in practice, it is hard to achieve this objective.
We can make the sum approximate 1000 by setting lower bound V lower and upper bound
V upper around 1000.

V lower ≤
n

∑
i=1

mi

di
≤V upper (2)

The weight of each component must be kept within bounds.

Mlower
i ≤ mi ≤ Mupper

i (3)
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where mi is the unit weight of ith component, Mlower
i is lower bound of this component,

and Mupper
i is upper bound. Furthermore, the ratio of components should also be kept

within bounds.

Rlower ≤ mi

m j
≤ Rupper (4)

where mi is the weight of ith component (or the sum of some components), m j is the
weight of jth component (or the sum of some components). Rlower and Rupper represent
the lower bound and upper bound of this ratio, respectively.

3 Experiment

This concrete compressive strength data set is selected from the UCI machine learning
repository, which are available from the web site: http://archive.ics.uci.edu/ml/. This
data set is a highly nonlinear function of age and ingredients. These ingredients include
cement, blast furnace slag (Slag), fly ash, water, superplasticizer (SP), coarse aggregate,
and fine aggregate. There are 1030 instances and 9 attributes. The number of input
variables is 8 while the number of output variable is one.

However, since we only focus on the 28 days strength which is the standard, the at-
tribute age is deleted and the 28 days samples are extracted. Therefore, the number of
input variables is 7 while the number of instances is 425. A three-layered feedforward
neural network with 5 hidden neurons learns from the whole data set to replace strength
experiment. Then, another neural network, which is the same as the above mentioned
network, is used as surrogate model. To better illustrate the performance of proposed
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Fig. 3. The evolution process of compressive strength of the best mix ratio design for concrete
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method, only 30 samples whose strength are lowest in the whole data set are extracted
as the initial set. The highest compressive strength in the subset is 17.34MP. The max-
imum iteration is set to 100. In each iteration, genetic algorithm is used for searching.
The population size is set to 20. Maximum generation is set to 100. The constraints of
concrete design are shown in Table 1.

Table 1. The concrete design constraints

Lower Bound Upper Bound

Cement (kg) 102 540
Slag (kg) 0 360
Fly Ash (kg) 0 200
Water (kg) 122 247
SP (kg) 0 32
Coarse Aggregate (kg) 801 1145
Fine Aggregate (kg) 594 993
Volume (L) 949 1046
Water / Cement 0.27 1.88
Water / Binder 0.24 0.9
Water / Solid 0.05 0.13

Fig. 3 shows the evolution process of compressive strength of the best mix ratio
design for concrete. It can be observed in the figure that we can get good results by a
few times of strength experiments. The best concrete mix design is achieved after 62
times of compressive strength experiments. Taking the initial strength experiments into
account, only 92 times of compressive strength experiments are needed. The proposed
method greatly reduces cost and what is more important, the time. The surrogate model
in design optimization can be considered as a guide to the the best location. Actually,
it is the predictor which is enhanced during iteration. Table 2 shows the best design of
concrete mix ratio after searching.

Table 2. The best design of concrete mix ratio

Cement Slag Fly Ash Water Sp
Coarse

Aggregate
Fine

Aggregate

467 50 59 235 30 873 654

The evolution of landscape are shown in Fig. 4. The weight of first five components
are fixed to (475,118,0,181,9) while coarse aggregate and fine aggregate increases
from 500 to 1000. It can be observed that the landscape generated at each iteration is
gradually closed to the landscape generated from all of samples.
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Fig. 4. The evolution of landscape on coarse aggregate and fine aggregate. The weight of first five
components are fixed to (475,118,0,181,9).

4 Conclusion

In this paper, we proposed a surrogate model based method to optimize concrete mix
design using neural network and focused on the optimization of compressive strength.
In the initial stage, a small amount of measured data are feeded to the method. When
finished a circle of searching, the optimal solution is tested by concrete experiments.
Then, the results are added into data set for the next modeling and searching. The pro-
posed method reduces computational complexity and computational time, and increases
the efficiency of design optimization.

To evaluate the performance of the proposed approach, the concrete compressive
strength data set is selected from the UCI machine learning repository. Experimental
results manifest that the better design which achieves high compressive strength can be
found by employing the novel approach.
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Abstract. The boom of Flickr, a photo-sharing social tagging system, leads 
to a dramatical increasing of online social interactions.  For example, it offers 
millions of groups for users to join in order to share photos and keep relations. 
However, the rapidly increasing amount of groups hampers users’ participation, 
thus it is necessary to suggest groups according to users’ preferences. By 
analyzing user-generated tags, one can explore users’ potential interests, and 
discover the latent topics of the corresponding groups. Furthermore, users' 
behaviors are affected by their friends. Based on these intuitions, we propose a 
topic-based group recommendation model to predict users’ potential interests 
and conduct group recommendations based on tags and social relations. The 
proposed model provides a way to fuse tag information and social network 
structure to predict users’ future interests accurately.  The experimental results 
on a real-world dataset demonstrate the effectiveness of the proposed model. 

Keywords: Group recommendation, topic model, social tagging. 

1 Introduction 

With the dramatic development of Web 2.0, social media become more and more 
important as a way for users to access to valuable information, express individual 
opinions, share one’s experiences as well as keep in touch with others. Flickr as a 
typical representative of social media websites is an online photo-sharing tagging 
system with over 6 billion images1 . On Flickr, social actions consist of tagging 
photos, building contacts and joining interested groups, etc. Groups are self-organized 
community formation based on common thematic interests to collect similar photos 
and users of common interests. Joining groups facilitates flexibility in managing self 
photos, making them more accessible to the public and seeking photos and users of 
similar interests. However, huge amounts of groups hamper users’ participation, it is 
necessary to recommend appropriate groups for users to help their social interactions. 

The user-generated tags, one of the main factors in Flickr, provide large scale 
meaningful data for photo retrieval and management. Meanwhile, a user’s list of tags 

                                                           
1 http://news.softpedia.com/news/Flickr-Boasts-6-Billion-Photo-
Uploads-215380.shtml 
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can be considered as a description of the interests he/she holds [1]. As a group 
consists of photos associated with tags, the aggregation of tags for photos in a group 
pool provides descriptions to the group. Thus, tags are good indications of both users’ 
preferences and the hidden topics of the corresponding groups.  

Flickr allows users to designate others as “contacts”, and delivers the latest photos 
that their contacts upload instantly. By adding contacts, users can track others whose 
photos are of interest to them, and also keep relation with their family and friends on 
Flickr. In recent years, some research has tended to focus on recommendation based 
on social relations, and their work demonstrated the effectiveness of friendship 
relations in representing users’ interests [2, 3]. In this paper, we aim to predict a 
user’s interests by analyzing both tag and contact information. 

In particular, we simultaneously model the interests of users and the hidden topics 
of groups by considering tag usage patterns through a generative model. Based on  
the model, semantic associations between users and groups can be captured through 
the same hidden topics. Then groups can be recommended to users according to the 
semantic associations. On the other hand, the preferences of users’ contacts can also 
be calculated according to the hidden topics, and then group recommendations can be 
conducted according to contact preferences. A hybrid algorithm is then proposed to 
provide final group recommendations. To evaluate the effectiveness of the proposed 
method, we perform experiments on a real-world dataset crawled from Flickr. 
Experimental results verify the usefulness of the proposed model which indicate the 
importance of both tag and contact information when predicting users’ preferences. 

2 Related Work 

With the number of social tagging grows, personalized recommendation has gradually 
become a critical technique for users to efficiently find resources in folksonomies. For 
example, traditional user-based and item-based collaborative filterings (CF) have 
been applied in CiteULike for recommending scientific articles to users, and the 
results showed that user-based CF performed better than item-based CF in CiteULike 
[4]. To estimate the latent topics across the communities through the number of user’s 
posts, Kang and Yu [5] applied Latent Dirichlet Allocation (LDA) for community 
recommendations, where each user was treated as a document, and each community 
the user joins was treated as a word in the document. Their research inspires us to 
emphasize topic models in group recommendations; however, they ignored the usage 
of tags, which is one of the most important factors in folksonomies. More recently, 
Krestel and Fankhauser [6] investigated language models and LDA for personalized 
tag recommendation and demonstrated their method outperformed state-of-the-art tag 
recommendation algorithms. J schke et al. proposed FolkRank, a modification of 
PageRank, to deal with undirected triadic hyperedges in social tagging systems 
instead of directed binary edges [7]. As the users, tags and resources can naturally be 
represented as a three-mode tensor, tensor decompositions have been applied to solve 
recommendation problems in social tagging systems. For example, Symeonidis et al. 
presented a unified model based on Higher-Order Singular Value Decomposition 
(HOSVD), which could recommend resources, tags and users simultaneously [8].  
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In our previous work [9], we proposed a Non-negative CANDECOMP/ PARAFAC 
(NNCP) decomposition-based recommendation model to discover latent associations 
among the three entities in social tagging systems and demonstrated its effectiveness 
in recommending Flickr groups. In a recent work, a generalized latent factor model 
was built to model user behaviors in social tagging system and showed the user-
comment-item and user-tag-item relations could be mutually inferred based on 
common latent factors and thus improved prediction performance [10]. This line of 
research indicates the importance and necessity to integrate tag information when 
conducting personalized recommendations in social tagging systems. 

As related people in a social network influence each other to become more similar, 
recent research have paid great attentions to recommendations by considering social 
relations. For example, Ma et al. [11] studied the relationship between the trust 
network and the user-item matrix and proposed a probabilistic factor analysis 
framework that integrated the user’s characteristics and the user’s trusted friends’ 
recommendations. Jamali et al. [12] proposed SocialMF model by incorporating trust 
propagation into a matrix factorization for movie recommendations. Guy et al. 
proposed a probability method for recommending social media items, and showed a 
combination of directly used tags and tags applied by others was effective in 
representing the user’s topics of interest [13]. Konstas, et al. adopted Random Walk 
with Restarts to represent social networks by considering both the social annotations 
and friendships [14]. They evaluated their approach using data from Last.fm and 
gained better performance in item recommendations. Yang et al. established a joint 
friendship-interest propagation model and showed that the interest and friendship 
information were highly relevant and mutually helpful [3]. These work indicate that 
adding friendship can discover more reliable semantic associations. Suggesting 
groups to users was recently studied in [15] by exploring image visual contents and 
users’ group participation activity through a joint topic model. However, the approach 
neglects the friendship relation in social media, which is a focus in our work. Overall, 
in this paper, we provide Flickr group recommendations by considering both tag and 
contact information via a topic model. 

3 Proposed Approach 

In this section, we illustrate how to fuse tag and contact information in our model to 
suggest groups for Flickr users. In particular, we propose a computational approach by 
following three steps. First, we extract hidden topics of users and groups simultaneously 
by tag usage patterns via a probabilistic generative model. Second, based on the same 
hidden topics, groups can be suggested according to user’s own preferences. Third, by 
considering users’ contacts, groups can be recommended according to contacts’ topic 
distributions. Finally, a linear fusion function is applied to combine user’s own 
preferences and contacts’ preferences to conduct group recommendations. 

3.1 Hidden Topic Extraction 

On Flickr, users participate in groups according to their own interests, and the 
aggregation of users provides descriptions to the group. Users also annotate photos 
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with tags and share photos in groups, and the aggregation of tags for photos in a group 
pool provides descriptions to the group. Formally, each group g contains a Ug-vector 
of users ug={u1g, …, uig, …uUgg}, where each uig takes the value of 1 indicating user i 
has joint group g, and a Ng-vector of tags tg={t1g, …, tig, …,tNgg}, where tig is the times 
of occurrence of tag i in group g. All the unique tags in the collection constitute a 
vocabulary of size V, and all the unique users in the collection constitute a set of users 
of size U. A collection of G groups is defined by G={(t1,u1), …, (tG,uG)}. Given this 
collection of G, we aim to extract the hidden topics automatically to model both the 
themes of groups and the interests of users. 

The author-topic (AT) model [16], a generative model for documents that extends 
LDA to include authorship information, has been proved to be effective in 
simultaneously modeling the content of documents and the interests of authors. Here, 
we extract the hidden topics in group participation activity for Flickr users based on 
AT model. Each user is associated with a mixture of different topics, and each topic is 
represented by a probabilistic distribution over tags. A group with multiple users is 
modeled as a distribution over topics each of which is a mixture of the distribution 
associated with the users. Let z1, …, zT be T topics to be extracted, the generative 
process for a corpus G is given below: 

                                                                                     
For each user u=1, …, U: 

   Draw a multinomial distribution over topics, uθ , from Dirichlet prior α ; 
For each topic z=1, …, T: 

Draw a multinomial distribution over tags, zφ , from Dirichlet prior β ; 
For each group g=1, …, G: 

For each tag token i=1, …, Ng in group g: 
Sample a user ui uniformly from group g’s members ug; 
Sample a topic zi from multinomial distribution uθ  conditioned on ui; 
Sample a tag ti from multinomial topic distribution zφ  conditioned on zi.                                                                                      

The user-topic distribution θ  and the topic-tag distribution φ  are two main 
variables of interest. They are estimated using the Gibbs sampling method [17], a 
Markov chain Monte Carlo algorithm to sample from the posterior distribution over 
parameters. The probability of assigning the current tag token ti to each topic zi with 
group member ui, conditioned on all other variables, is calculated as:  
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where zi = j and ui = k represent the assignments of ti to topic j and user k respectively, 
ti = m represents the observation that ti is the mth word in the lexicon, and i−z , i−u  
represent all topic and user assignments not including ti. 

VTC is the tag-topic matrix of 
counts with dimensions V T× , and VT

mjC is the number of times tag m being assigned 
to topic j, excluding the current instance. Similarly, UTC is the user-topic matrix of 
counts with dimensionsU T× , where UT

kjC is the number of times user k is assigned to 
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topic j, excluding the current instance. From the count matrices VTC and UTC , we can 
easily estimate the topic-tag distributions φ  and user-topic distributions θ  by: 
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where mjφ  is the probability of using tag m in topic j, and kjθ  is the probability of 
using topic j by user k. A group with multiple users is modeled as a distribution over 
topics each of which is a mixture of the distribution associated with the corresponding 
users. The probability of using topic j by group g is given by: 

( | ) ( | )
g
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u
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3.2 Group Recommendations Based on User’s Own Preferences 

The hidden topics govern the associations between users and groups through tag 
usage patterns. For user k, [P(zi=1|ui=k), …, P(zi=T|ui=k)] provides an additive linear 
combination of factors which indicates the latent preferences of user k. The higher 
weight user k is assigned to a factor, the more interests user k has in the relevant topic. 
For group g, [P(zi=1|gi=g), …, P(zi=T|gi=g)] provides an additive linear combination 
of factors which indicates the topics of group g. The higher weight a group is assigned 
to a factor, the more related the group is with the relevant topic. Consequently, groups 
can be recommended according to the captured associations as follows:  
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A high score indicates that user k has a great probability to join group g in the future. 
Therefore, for user k, groups can be recommended according to the scores. 

3.3 Group Recommendations Based on Contacts’ Preferences 

If a user is interested in others’ photo streams, he/she may add others as contacts, and 
Flickr will deliver the latest photos that their contacts upload instantly. The contact 
relation is asymmetric. That is, if user u1 designates u2 as a contact, u1 can see the 
photo stream of u2, but not vice versa. By adding contacts, users can track others 
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whose photos are of interest to them. To some extent, user k’s list of contacts Fk is a 
good indication of the user’s latent preferences. Thus, user k’s topic distributions can 
be calculated by aggregating his/her contacts’ distributions over topics: 

1
( | ) ( | )

k

f i i i i
h Fk

P z j u k P z j u h
F ∈

= = = = =  
 

(6)

where ( | )f i iP z j u k= =  is the probability of using topic j by user k according to 
his/her contacts’ topic distributions, and kF  is the total number of user k’s contacts. 
Groups can be recommended according to the captured associations as follows:  

1

1

( | ) ( | ) ( | )

( | )
( | )

( )

T

f i i i i f i i
j

T
i i

f i i
j i

P g g u k P g g z j P z j u k

P z j g g
P z j u k

P z j

=

=

= = = = = = =

= =
∝ = =

=




. 

(7)

3.4 Combining User’s Own and Contacts’ Preferences 

As ( | )u i iP g g u k= =  and ( | )f i iP g g u k= = both constitute probability 
distributions, we can combine these two by straightforward linear interpolation:  

( | ) ( | ) (1 ) ( | )i i u i i f i iP g g u k P g g u k P g g u kλ λ= = = ⋅ = = + − ⋅ = =
 (8)

where parameter λ is introduced to adjust the significance of the two parts, and the 
impact of λ will be examined experimentally in section 4. 

4 Experiments 

4.1 Dataset 

We use Flickr API to gather our dataset with an arbitrary user as the seed then 
crawling by contacts. For each user, we collect all his/her public photos with photos’ 
tags and groups as well as his/her contact information before Sep 28th, 2012. After 
removing the users who have annotated with less than 10 tags and joint less than 5 
groups, we end up with 193 users, 16,499 tags, 663 groups and 159,341 {user, tag, 
group} triples. The total number of contact relation among 193 users is 3465. 

In our experiments, the hyper-parameters α  and β  are set at 50/T and 0.01, 

which have been widely adopted in the literature [17]. The number of topics T is set at 
25 on the basis of human judgment of meaningful topic plus measured models with 
the lower the best. Gibbs sampling is repeated for 50 iterations. 

4.2 Evaluation Metric 

In this paper, we choose the top-k recommendations metric [18] as the evaluation 
metric, which measures the position of the correct group in the top-k recommendation 
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list. We randomly select one joined group and k-1 unjoined groups for each user to 
form the test set and the remaining joined groups form the training set. In the 
recommendation result, there are k possible ranks for the joined group and the best 
result is that no unjoined groups appear before the joined one. We have repeated the 
procedure of training/test partition 20 times with different random seeds. The reported 
numbers are the mean performance averaged over the 20 runs. In addition, we set k to 
be 201 in the experiments. 

4.3 Results and Discussions 

Topic Extraction Results. Before performing group recommendations, we first 
discuss if our model could reasonably identify the latent user-topic and topic-tag 
distributions. Table 1 illustrates 3 different topics out of 25, discovered from the 50th 
iteration of a particular Gibbs sampler run. The tags associated with a topic are quite 
intuitive and precise in the sense of conveying a semantic context of a specific kind of 
photos. Also, by analyzing the users’ photo streams on Flickr, we find that the users 
associated with each topic are quite representative. For example, the tags from TOPIC 
1 express the topic related to portrait, and by examining the photos of users in TOPIC 
1, we find the users uploaded a certain amount of photos related to portrait and shared 
many photos annotated with high probability tags in TOPIC 1. As shown, our model 
can successfully discover the latent topics. 

Table 1. Three example topics extracted from the Flickr dataset. Each topic is shown with the 
top 10 tags and users that have highest probability conditioned on that topic.  

TOPIC 1 TOPIC 2 TOPIC 3 
Tags           Prob. Tags           Prob. Tags           Prob. 
film         0.07999 
portrait         0.05961 
pretty         0.05111 
girl         0.03298 
female         0.03197 
model         0.02579 
hair         0.01694 
cute         0.01403 
skin         0.01290 
fashion         0.01284 

playa         0.04534 
beach         0.04397 
mar         0.04305 
sea         0.03540 
verde         0.02695 
horizon         0.01542 
yellow         0.01439 
rocks         0.01428 
sky         0.01256 
fly         0.01222 

nikon         0.04638 
d3000         0.03625 
light         0.02585 
sky         0.02010 
bn         0.01855 
camera         0.01838 
bw         0.01675 
white         0.01563  
luz         0.01495 
colours         0.01477 

Users           Prob. Users           Prob. Users           Prob. 
43903625@N02 0.38157 
20989422@N03 0.11086 
32749946@N04 0.11080 
41418433@N06 0.09954 
42319899@N06 0.08095 
53088693@N08 0.03678 
22272810@N06 0.02628 
46893049@N07 0.02469 
29363336@N03 0.01455 
29233834@N00 0.01056 

81974018@N00 0.35598 
38822352@N07 0.04422 
36766265@N03 0.03943 
29233834@N00 0.03876 
22840406@N05 0.03698 
34771988@N03 0.02640 
38432971@N07 0.02562 
48339866@N05 0.02328 
41384867@N08 0.02038 
23770762@N06 0.01816 

26199251@N05 0.20541 
46497476@N06 0.20482 
53088693@N08 0.05504 
44194025@N06 0.04939 
46788954@N06 0.03995 
49941824@N02 0.02849 
38512579@N08 0.02166 
49557553@N06 0.02040 
26362046@N05 0.01913 
49259990@N04 0.01652 
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Parameter Settings. Parameter λ in Equation 8 should be decided in the experiments. 
We range it from 0 to 1 by an interval of 0.1, where λ=1 and λ=0 practically switch 
off the group recommendation results based on user’s own topic distributions and 
his/her contacts’ topic distributions. Table 2 shows the percentage of cumulative 
quantity of ranks for the test joined groups at the first N position @N by different 
parameter settings. We can find that model with both user’s own and contacts’ topic 
distributions achieves a higher performance than model with one’s own (λ=1) or one’s 
contacts (λ=0) preferences alone. Comparing with the two parts, model with personal 
interests gets a higher performance than model with only friends’ interests, which 
indicates tags can express one’s preferences more accurately than social relations in 
our dataset. The best precision achieves when λ=0.7, so we set λ=0.7 in the following 
experiments. 

Table 2. The variation of top-k recommendation results of different λ 

 λ=0 λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 λ=1 
@1 0.0375 0.0373 0.0368 0.0398 0.0418 0.0423 0.0470 0.0557 0.0522 0.0490 0.0470 
@5 0.1025 0.1080 0.1097 0.1139 0.1035 0.1199 0.1097 0.1363 0.1281 0.1199 0.1159 
@10 0.1736 0.1731 0.1654 0.1587 0.1806 0.1881 0.1990 0.2100 0.2005 0.1990 0.1821 
@15 0.2199 0.2199 0.2090 0.2005 0.2266 0.2333 0.2450 0.2567 0.2650 0.2450 0.2374 
@20 0.2529 0.2587 0.2498 0.2413 0.2654 0.2721 0.2851 0.2980 0.2851 0.2721 0.2682 

Group Recommendation Results. In this sub-section, to demonstrate the usefulness 
and effectiveness of our proposed model, we compare it with three other models: 

1) User-based (UB) CF [4]: This is a memory-based CF that first finds the 
neighborhood of a target user by similar group-participation patterns. Then all groups 
that neighbors have participated but have not been joined by the target user are sorted 
and considered to be possible recommendations. We use the jaccard similarity metric 
to determine similarity between users. The neighborhood size is set to be 25. 
2) Non-negative Matrix Factorization (NMF) model [19]: This is a model-based CF, 
which predicts unobserved user-group pairs by the non-negative low-rank factors 
learned from the observed data in the user-group matrix. We set number of topics to 
be 25 and times of iteration to be 50. 
3) Non-negative CANDECOMP/ PARAFAC (NNCP) decomposition model [9]: This 
model-based CF first represents interactions among users, tags and groups into a 
three-mode tensor, and then discovers the latent factors via tensor decomposition, and 
finally recommends relevant groups to users based on the latent factors. This method 
has been applied to Flickr group recommendations, and shown to achieve the best 
result. We set number of factors to be 25 and times of iteration to be 50. 

Figure 1 shows the comparison results, in which we can clearly see the competitive 
results of our approach compared with other methods. More specially, UB gets the 
worst performance, due to the low coverage of memory-based models under sparse 
data. However, NMF, which models users’ preferences using the latent factors, 
performs much better than UB. The manner can extract more discriminative and 
informative features and remove useless information for relation mining, therefore 
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better reflect users’ preferences than UB. As shown, NNCP achieves better 
performances than NMF, which indicates that adding tags can improve the quality of 
recommendations. Our model is more capable to model the problem and gains the 
best results. Because both semantic tags and social relations are involved in mining 
associations between users and groups, which may address the problem of sparsity 
and deal with the cold-start problem to some extent. 

 

Fig. 1. Top-50 ranks of recommendation performances 

5 Conclusions 

In this paper, we propose a new approach to predict users' interests to offer better 
personalized services in Flickr. The proposed model makes use of collaborative 
information, user-generated tags and social relations in an integrated framework. The 
experimental results on a real-world dataset show that our approach is more effective 
compared with the state-of-the-art group recommendation methods. Our future work 
aims at proposing a unified topic model which combines both collaborative 
information and social interactions.  
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Abstract. For granular computing in discrete space, the inclusion relation 
between two granules is partially ordered. How to measure the fuzzy inclusion 
degree is one of the key issues. We proposed a fuzzy inclusion relation between 
two hyperbox granules using an inclusion measure function based on a linear 
positive valuation function induced by the longest diagonal a hyperbox granule. 
The fuzzy algebraic system is formed by the granule set and fuzzy inclusion 
relation between two granules, and used to guide the design of algorithms in 
granular computing. 

Keywords: Hyperbox granule, fuzzy inclusion relation, positive valuation 
function, granular computing.  

1 Introduction 

Granular Computing is a novel intelligent computation theory and method based on 
partition of the problem apace[1]. Recently, GrC is widely used in pattern recognition, 
information systems and other areas. GrC fusion of research fields of artificial 
intelligent, such as rough set, fuzzy set. Representation of granules, relation between 
two granules, and operation between two granules are mainly researched in GrC. 
Professor Yao explored the motivation for people to study granular computing from a 
philosophical point of view, the granular represented as a hierarchy structure[2,3]. In 
the quotient space model proposed by Zhang Bo, a granule is represented as an 
equivalence class[4]. T. Y. Lin Professor represented the granule as the point’s 
neighborhood[5]. The relationship between two granule is an important research field 
in granular computing, and the base of forming granular computing, the different 
relation can form the different granular computing model. Granular computing model 
based on equivalence relation is a major granular computing model. Quotient space 
model and the traditional rough set are the partition of space based on equivalence 
relation. Cover model based on compatibility relation is another important granule 
computing model, which partitions the space by compatible relation. Professors 
Zhang Bo and Zhang Ling researched granularity model according to fuzzy 
compatible relation [6]. Professor Zadeh proposed organization process, the 
granulation process and the causal relationship reflects the interchange and 
interconnection among the granular space [7], moreover, it also presents the capability 
of the transformation from one granule space to another one without difficulty [6]. 
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In this paper, the measure method of fuzzy inclusion relation between two 
hyperbox granules fuzzy granules is proposed. Firstly, the granule is represented as 
the vector including the beginning point and the end one. Secondly, a linear positive 
valuation function is introduced to form the fuzzy inclusion function. Thirdly, the 
theorems are proposed by the fuzzy inclusion function. 

2 Lattice Algebraic Systems 

For classification problems 
{( , ) | , {1,2,..., }, 1,2,..., }N

i i i iS lab R lab N i= ∈ ∈ =x x   

is the training set composed by  input variables of N dimensional and  output 
variable of one dimensional. Two points 1 2( , ,..., )Nx x x=x and 1 2( , ,..., )Ny y y=y  

are used to represent granule ( , )G = Tx y ,which x y ,the granule G is the hyperbox 

including the beginning point x  and end of y . Such as the two-dimensional 

space, (0.1,0.2,0.4,0.6)TG = denotes the beginning point (0.1,0.2) , the end point 

(0.4,0.6) ,and the hyperbox granules with length 0.4 and width 0.3. In particular, in 

the one-dimensional space hyperbox granule is in the form of the interval. If the 
beginning point and the end point are the same one,the hyperbox granule is called the 
atomic hyperbox granule. 

For the hyperbox granules 1 1 1( , )G = x y and 2 2 2( , )G = x y ,Design join operator ∨  

1 2 1 2 1 2( , )G G∨ = ∧ ∨x x y y  (1)

Where  

1 2 11 21 12 22 1 2( , ,..., )N Nx x x x x x∧ = ∧ ∧ ∧x x  

1 2 11 21 12 22 1 2( , ,..., )N Ny y y y y y∨ = ∨ ∨ ∨y y  

are the operators between the vectors. For join operator, two smaller hyperbox 
granules are united into one larger hyperbox granule. Join operator and inclusion have 
the following relationship: 

1 1 2G G G⊆ ∨ , 2 1 2G G G⊆ ∨  

Design meet operator ∧  

1 2 1 2 1 2 1 2
1 2

( , ) if  

otherwise
G G

∨ ∧ ∨ ∧
∧ =  ∅

x x y y x x y y
 (2)

The lager granule size of the two hyperbox granules is divided into smaller hyperbox 
granules. Meet operation and inclusion have the following relationship: 

1 2 1G G G∧ ⊆ , 1 2 2G G G∧ ⊆  

Definition 1. The inclusion relation between two hyperbox granules 1 1 1( , )G = x y  

and 2 2 2( , )G = x y  is 1 2 2 1 1 2&G G⊆ ⇔ x x y y   
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Theorem 1. Inclusion relation between two hyperbox granules is a partial order 
relation. 
For granule space induced by N dimensional space, hyperbox granules with length 
2N  1 1 1( , )G = x y  and 2 2 2( , )G = x y  

where 1 11 12 1( , ,..., )Nx x x=x , 1 11 12 1( , ,..., )Ny y y=y . If 1 2G G⊆ , then 

1 1 2 2( , ) ( , )x y x y , namely 

1 2 21 11 22 12 2 1

11 21 12 22 1 2

& &...&

& & &...&
N N

N N

G G x x x x x x

y y y y y y

⊆ ⇔ ≤ ≤ ≤
≤ ≤ ≤

 (3)

For a length 2N vector space, relation between the two vectors is  

1 1 2 2 11 21 12 22 1 2

11 21 12 22 1 2

( , ) ( , ) & &...&

& & &...&
N N

N N

x x x x x x

y y y y y y

⇔ ≤ ≤ ≤
≤ ≤ ≤

x y x y
 (4)

Relations (3) and (4) are partial order relations. it is very obvious that the two partial 
order relations is inconsistent. How to eliminate this inconsistency, the isomorphic 
function ( )Gθ  is introduced to eliminate the inconsistency between (3) and (4). 

Definition 2. For ( , )G = x y , ( ) ( ( ), )Gθ θ= x y , if 1 2 1 1( ) ( ( ), )G Gθ θ⊆ ⇔ x y  

2 2( ( ), )θ x y , then  ( )Gθ  is called the isomorphic function between the granule 

space and vector space. 

Because ,NR ≤ and ,NR ≥ are the dual, 1 2x x  such that 1 2( )  ( )θ θx x , in order 

to ensure 1 2G G⊆ , ( )θ ⋅ is an isomorphic mapping between lattice ,NR ≤ and the 

dual lattice ,NR ≥ . 

If ( )Gθ is a decreasing function in the one-dimensional, then formula (3)and (4) 

has the consistency of partial order relation under ( )Gθ . Combining operator (1) and 

(2), the following relation can be outlined that is based on between the hyperbox 
granule inclusion relations and hyperbox granules operator. 

1 2 1 1 2 2 1 2,G G G G G G G G⊆ ⇔ = ∧ = ∨  (5)

For classification problem S  of N -dimensional space, GS is the hyperbox granule 

set, the algebraic system , , ,GS ⊆ ∨ ∧  can be formed by the inclusion function, join 

operator, meet operator, and can be expressed as ,GS ⊆ . The following theorem is 

easy to be proved. 

Theorem 2. ,GS ⊆ is a lattice. 
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3 Fuzzy Inclusion Function between Two Hyperbox Granules 

For classification problems the training set S , the hyperbox granule is a subset of S, 
namely the hyperbox granule is a set. The traditional inclusion relation between two 
sets can not reflect the inclusion relation between two hyperbox granules. In Fig.1, 
from (a) to (b), the granularity of two hyperbox granules have not changed, because 
their relative position is different, the inclusion relation is different. The inclusion 
degree G1 G2 in (b) is greater than that in (a). Therefore, the inclusion relation 
between two hyperbox granules is fuzzy, and the fuzzy inclusion relation must be 
discussed.  

 

Fig. 1. The fuzzy inclusion relation between two granules 

We can construct the fuzzy inclusion function between hyperbox granules.  

: [0,1]GS GSσ × →  

The fuzzy inclusion degree function satisfies the following four conditions 

1 2 1 2

1 2 1 1 2

(1) , , ( , ) 0

(2) ( , ) 1

(3) ( , ) ( , )

(4) ( , ) 1

G GS G G

G G

G G G G G G

G G G G G

σ
σ

σ σ
σ

∈ ≠ ∅ ∅ =
=

⊆  ≤
∧ ⊂  <

 

The fuzzy inclusion degree is a scalar, while the hyperbox granule of the N  
dimensional space is the vector of length 2N . In order to construct the fuzzy 
inclusion function, the mapping between the high dimensional space and one-
dimensional space is formed to reflect the size of hyperbox granules, namely 
granularity. References[8] defines a linear positive valuation function ( )υ x to 

measure the granularity of hyperbox granule 

1

( )
N

i
i

xυ
=

=x  (6)
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Where ( )υ x satisfies the nonnegative、equality and inequality properties, namely 

( ) 0υ ≥x  (for ≥x 0 ), ( ) ( ) ( ) ( )υ υ υ υ∧ + ∨ = +x y x y x y , and ( ) ( )υ υ⇔ <x y x y . 

This paper constructs a nonlinear positive evaluation function as follows 

1

( ) sin
2

N
i

i

xπυ
=

 =  
 

x  (7)

Because the space [0,1] and R  are isomorphic, we can map NR to [0,1]N . In the one-

dimensional space , [0,1],≤  is a lattice, the greatest lower bound is 0, the minimum 

upper bound of 1. We know by Theorem 1, the algebra system ([0,1]),  G ⊆ induced 

by the algebra  system [0,1],≤  is the lattice. 

Theorem 3.  Let ( ) 1x xθ = − is the isomorphic mapping from lattice [0,1],≥  to its 

dual lattice [0,1],≤ , then the function 

([ , ]) ( ( )) ( )a b a bυ υ θ υ= +                                  (8) 

is a mapping of the granule set ([0,1])G to one-dimensional space R, where ( )υ ⋅ is 

the function (7). 

Proof:  
(1) nonnegative property. One dimensional hyperbox granule [ , ]G a b= , for 

0 1a b≤ ≤ ≤ , 0 ( ) 1 1a aθ≤ = − ≤  

(1 )
( ) ([ , ]) ( ( )) ( ) sin sin 0

2 2

a b
G a b a b

π πυ υ υ θ υ −   = = + = + ≥   
   

 

(2) equality property 

In hyperbox granule space ([0,1])G , 1 2, ([0,1])G G G∈ is hyperbox granules, Let  

1 2[ , ], [ , ]G a b G c d= =  

    1 2( ) ([ , ] [ , ]) ([ , ]) ( ( )) ( )G G a b c d a c b d a c b dυ υ υ υ θ υ∧ = ∧ = ∨ ∧ = ∨ + ∧  

By ( ) 1x xθ = − is a linear decreasing function 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a c c a c c
a c a c a c

c a a c c

θ θ
θ θ θ

θ θ θ θ θ
∨ =  ∨ =

≤   ∨ = ∧ ≤  ∧ =
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a c a a c a
a c a c a c

c a a c a

θ θ
θ θ θ

θ θ θ θ θ
∧ =  ∧ =

≤   ∧ = ∨ ≤  ∨ =
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a c a a c a
c a a c a c

a c a c a

θ θ
θ θ θ

θ θ θ θ θ
∨ =  ∨ =

≤   ∨ = ∧ ≤  ∧ =
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a c c a c a
c a a c a c

a c a c a

θ θ
θ θ θ

θ θ θ θ θ
∧ =  ∧ =

≤   ∧ = ∨ ≤  ∧ =
 

That is 
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([ , ] [ , ]) ([ , ]) ( ( )) ( )

( ( )) ( ( )) ( ( ) ( )) ( ) ( ) ( )

([ , ]) ([ , ]) ( ( ) ( )) ( )

a b c d a c b d a c b d

a c a c b d b d

a b c d a c b d

υ υ υ θ υ
υ θ υ θ υ θ θ υ υ υ
υ υ υ θ θ υ

∧ = ∨ ∧ = ∨ + ∧
= + − ∨ + + − ∨
= + − ∨ − ∨

 

The same method 

1 2( ) ([ , ] [ , ]) ([ , ]) ( ( )) ( )

( ( ) ( )) ( ) ( )

G G a b c d a c b d a c b d

a c b d

υ υ υ υ θ υ
υ θ θ υ υ

∨ = ∨ = ∧ ∨ = ∧ + ∨
= ∨ + +

 

The two formulae 

([ , ] [ , ]) ([ , ] [ , ]) ([ , ]) ([ , ])a b c d a b c d a b c dυ υ υ υ∧ + ∨ = +  

That is 

1 2 1 2 1 2( ) ( ) ( ) ( )G G G G G Gυ υ υ υ∧ + ∨ = +  

That is function ([ , ]) ( ( )) ( )a b a bυ υ θ υ= + satisfies the equality. 

(3) inequality property 

If 1 2G G⊂ (that is [ , ] [ , ]a b c d⊂ ),there are c a< and b d≤ 、 c a≤ and b d< 、

c a< and b d< three cases, by ( ) 1x xθ = − know of ,when c a≤ , ( ) ( )a cθ θ≤ ,when 

c a< , ( ) ( )a cθ θ<  

If c a< and b d≤ ,then ([ , ]) ( ( )) ( ) ( ( )) ( ) ([ , ])a b a b c d c dυ υ θ υ υ θ υ υ= + < + =  

If c a≤ and b d< ,then ([ , ]) ( ( )) ( ) ( ( )) ( ) ([ , ])a b a b c d c dυ υ θ υ υ θ υ υ= + < + =  

If c a< and b d< ,then ([ , ]) ( ( )) ( ) ( ( )) ( ) ([ , ])a b a b c d c dυ υ θ υ υ θ υ υ= + < + =  

That is 1 2( ) ( )G Gυ υ< , function satisfies the equality. 

Theorem 4. Only discussed the partial order relation between the space of the one-
dimensional and one-dimensional space induced the hyperbox granule, and the 
algebra system ([0,1]),G k  is form as following by the fuzzy inclusion function 

induced by the nonlinear positive valuation function.  

Theorem 5. ([0,1]), , ([0,1]),G k G s  are the fuzzy lattice, in which 

([ , ])
([ , ],[ , ])

([ , ] [ , ])

([ , ] [ , ])
([ , ],[ , ])

([ , ])

c d
k a b c d

a b c d

a b c d
s a b c d

a b

υ
υ
υ

υ

=
∨
∧=

 (9)

are the fuzzy inclusion function between two hyperbox granules. 

Proof: Verify ([ , ],[ , ])k a b c d  satisfies four conditions of fuzzy inclusion function 

(1) [ , ] ([0,1])a b G∀ ∈ , [1,0]O =  
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([1,0]) ( (1)) (0)

(1 1) (0)

(0) (0)

sin 0 sin 0

0

υ υ θ υ
υ υ
υ υ

= +
= − +
= +
= +
=

 

Namely     ([ , ], ) 0k a b O =  

(2) [ , ] ([0,1])a b G∀ ∈ , [ , ] [ , ] [ , ], ([ , ] [ , ]) ([ , ])a b a b a b a b a b a bυ υ∨ = ∨ =  

Namely   ([ , ],[ , ]) 1k a b a b =  

(3) [ , ],[ , ],[ , ] ([0,1]),[ , ] [ , ]x y a b c d G a b c d∀ ∈   

[ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

x y a b x y c d

x y a b x y c d

∨ ∨
∧ ∧




 

Known by the positive evaluation function inequality 
([ , ] [ , ]) ([ , ] [ , ])

([ , ] [ , ]) ([ , ] [ , ])

x y a b x y c d

x y a b x y c d

υ υ
υ υ

∨ ≤ ∨
∧ ≤ ∧

 

Namely 
([ , ] [ , ]) ([ , ] [ , ])

([ , ] [ , ]) ([ , ] [ , ]) ([ , ] [ , ]) ([ , ] [ , ])

x y c d x y a b

x y c d x y a b x y c d x y a b

υ υ
υ υ υ υ

∨ − ∨
≤ ∨ − ∨ + ∧ − ∧

 

Known by positive evaluation function equation  
([ , ] [ , ]) ([ , ] [ , ]) ([ , ] [ , ]) ([ , ] [ , ])

([ , ]) ([ , ]) ([ , ] [ , ]) ( ([ , ]) ([ , ]) ([ , ] [ , ]))

  ([ , ] [ , ]) ([ , ] [ , ])

([ , ]) ([ , ])

x y c d x y a b x y c d x y a b

x y c d x y c d x y a b x y a b

x y c d x y a b

c d a b

υ υ υ υ
υ υ υ υ υ υ

υ υ
υ υ

∨ − ∨ + ∧ − ∧
= + − ∧ − + − ∧

+ ∧ − ∧
= −

 

  ([ , ] [ , ]) ([ , ] [ , ])  ([ , ]) ([ , ])x y c d x y a b c d a bυ υ υ υ∨ − ∨ ≤ −  can be transformed into 

([ , ] [ , ])  ([ , ]) ([ , ]) ([ , ] [ , ])x y c d c d a b x y a bυ υ υ υ∨ ≤ − + ∨  

Namely 
([ , ]) ([ , ] [ , ]) ([ , ])( ([ , ]) ([ , ]) ([ , ] [ , ]))

([ , ]) ([ , ])

([ , ])( ([ , ]) ([ , ])) ([ , ]) ([ , ] [ , ]))

([ , ])

([ , ] [ , ])( ([ , ]) ([ , ])) ([ , ]) ([ , ] [ , ]))

a b x y c d a b c d a b x y a b

c d c d

a b c d a b a b x y a b

c d

a b x y c d a b a b x y a b

υ υ υ υ υ υ
υ υ

υ υ υ υ υ
υ

υ υ υ υ υ
υ

∨ − + ∨≤

− + ∨=

∨ − + ∨≤
([ , ])

([ , ] [ , ])( ([ , ]) ([ , ]) ([ , ]))

([ , ])

([ , ] [ , ])

c d

a b x y c d a b a b

c d

a b x y

υ υ υ υ
υ

υ

∨ − +=

= ∨

 

Therefore          
([ , ]) ([ , ])

([ , ] [ , ]) ([ , ] [ , ])

a b c d

a b x y c d x y

υ υ
υ υ

≤
∨ ∨

 

Namely  ( ) ( )[ , ],[ , ] [ , ],[ , ]k x y a b k x y c d≤  
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(4) [ , ],[ , ] ([0,1]),[ , ] [ , ] [ , ]a b c d G a b c d a b∀ ∈ ∧  ,have [ , ] [ , ]a c b d a b∨ ∧   

≤  is a partial order relation         ,c a c b d d≤ ∨ ∧ ≤  

([ , ])
([ , ],[ , ])

([ , ] [ , ])

( ( )) ( ) ( ( )) ( )

([ , ]) ( ( )) ( )

c d
k a b c d

a b c d

c d c d

a c b d a c b d

υ
υ

υ θ υ υ θ υ
υ υ θ υ

=
∨

+ += =
∧ ∨ ∧ + ∨

 

By decrease of ( )xθ and increase of ( )xυ  

( ) ( )

( ( )) ( ( ))

( ) ( )

c a c

c a c

d b d

θ θ
υ θ υ θ
υ υ

≤ ∧
≤ ∧

≤ ∨
 

That is ([ , ],[ , ]) 1k a b c d ≤  

Discussed above is the granular set lattice in the one-dimensional space ,for the 
N  dimensional space ,the following theorem can be obtained. 

Theorem 6. The classification problems in N  dimensional space straining set S  
induced the hyperbox granule set and the fuzzy inclusion relations based on hyperbox 
granules construct a algebraic system, the algebraic system is a fuzzy lattice, that 

,GS k and ,GS s are fuzzy lattice,  

2 1 2
1 2 1 2

1 2 1

( ) ( )
( , ) , ( , )

( ) ( )

G G G
k G G s G G

G G G

υ υ
υ υ

∧
= =

∨
 (10)

4 Conclusions 

In the paper, we proposed a novel fuzzy inclusion function by the nonlinear valuation 
function compounded by the function with the form of sin. The fuzzy inclusion 
function reflects the fuzziness of inclusion relations between two hyperbox granules. 
The fuzzy inclusion functions are proved by the four properties. How to design the 
classification algorithms based on the fuzzy inclusion function is the future work. 
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Abstract. Recently, Zhang dynamics (ZD) and gradient dynamics (GD)
have been used frequently to solve various kinds of online problems. In
this paper, the output tracking of time-varying linear (TVL) systems is
considered. Then, for such a problem, three different types of tracking
controllers (i.e., Z0G0, Z1G0 and Z1G1 controllers) are designed by ex-
ploiting the ZD and GD methods. Simulation results on different TVL
systems show that such three types of controllers can be feasible and
effective for the output-tracking problem solving. Especially, the Z1G1
controller is capable of conquering the control-singularity of systems.

Keywords: Zhang dynamics (ZD), Gradient dynamics (GD),
Time-varying linear system, Output tracking, Control-singularity.

1 Introduction and Problem Formulation

In order to solve online problems efficiently and effectively, a novel type of dy-
namic method termed Zhang dynamics (ZD) has recently been proposed [1–4].
Meanwhile, another type of dynamic method termed gradient dynamics (GD),
which is intrinsically feasible and efficient to solve time-invariant problems, has
been generalized to solve time-varying problems as well [5].

Output tracking control of time-invariant or time-varying linear systems are
extensively encountered in many fields and they have attracted a lot of interest
of researchers [6, 7]. Most of the control theory, including the output-tracking
control, is devoted to the study of time-invariant linear (TIL) systems, and the
key reason is of course that the TIL systems are simpler. However, it is known
that in reality almost nothing is time-invariant. As a matter of fact, general
time-varying linear (TVL) systems are normally too hard to analyze and study
due to the difficulties (e.g., control-singularity) existing in TVL systems. Hence,
the output-tracking control of TVL systems is an issue worthy of research.

Recent studies have shown that ZD and GD are two types of powerful
methods for online problems solving [1–5]. Inspired by that, in this paper, the
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output-tracking control of TVL systems is considered and three different types
of tracking controllers (i.e., Z0G0, Z1G0 and Z1G1 controllers) are designed by
exploiting the ZD and GD methods.

The description of a general TVL system is given as{
ẋ(t) = A(t)x(t) +B(t)u(t),
y(t) = C(t)x(t) +D(t)u(t),

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, y(t) ∈ Rl

is the system output, and A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rl×n and D(t) ∈
Rl×m are system matrices. For tracking the desired output trajectory yd(t) ∈ Rl,
the output-tracking error of system (1) is defined as

e(t) := y(t)− yd(t) ∈ Rl. (2)

Note that the conventional output tracking control problem [6, 7] is described as
follows: given the desired output trajectory yd(t), a control input in the general
form of u(t) [or termed, u(t)-form] is to be designed such that it can drive
the system output y(t) to track the desired output trajectory yd(t) as close as
possible [i.e., e(t) asymptotically approaching zero]. In addition, the output-
tracking error e(t) is actually nonzero in the computer simulation due to various
kinds of errors (e.g., truncation errors and round-off errors).

2 Zhang-Gradient Controllers Design

Corresponding to the TVL system (1) mentioned above, in this section, three
different types of tracking controllers (i.e., Z0G0, Z1G0 and Z1G1 controllers),
termed Zhang-gradient controllers, are designed and depicted in detail for the
output tracking control problem solving.

2.1 Z0G0 Controller

From the TVL system (1), the output-tracking error e(t) and the basic thought
of output-tracking control, it follows that

e(t) = y(t)− yd(t) = C(t)x(t) +D(t)u(t) − yd(t) = 0,

which can be rewritten as

D(t)u(t) = yd(t)− C(t)x(t).

Then, the (conventional) Z0G0 controller in the u(t)-form is designed as below:

u(t) = D+(t) (yd(t)− C(t)x(t)) , (3)

where D+(t) denotes the pseudoinverse of D(t) [8]. Note that, if D(t) ≡ 0, this
Z0G0 controller becomes inapplicable in this case.
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2.2 Z1G0 Controller

For more complex and general situations to be handled, the following Zhang
function (or termed, Zhangian) is constructed as

z(t) := e(t) = y(t)− yd(t) = C(t)x(t) +D(t)u(t)− yd(t) (4)

so that the tracking process can be monitored and controlled. Note that the
Zhangian z(t) can generally be matrix-, vector-, or scalar-valued, in addition
to being positive, zero, negative, bounded or unbounded (even including lower-
unbounded). Via ZD method [1–4], the following ZD design formula is used:

ż(t) =
dz(t)

dt
:= −γz(t), (5)

where the design parameter γ > 0 ∈ R is used to scale the exponential conver-
gence rate of the ZD solution.

It follows from (4) and (5) that

Ċ(t)x(t) + C(t)ẋ(t) + Ḋ(t)u(t) +D(t)u̇(t)− ẏd(t)

= −γ(C(t)x(t) +D(t)u(t)− yd(t)).

Manipulating the above equation, we thus obtain

Ċ(t)x(t) + C(t)A(t)x(t) + C(t)B(t)u(t) + Ḋ(t)u(t) +D(t)u̇(t)
−ẏd(t) + γ(C(t)x(t) +D(t)u(t)− yd(t)) = 0,

(6)

which can be rewritten as

D(t)u̇(t) = −(Ċ(t)x(t) + C(t)A(t)x(t) + C(t)B(t)u(t) + Ḋ(t)u(t)
−ẏd(t) + γ(C(t)x(t) +D(t)u(t)− yd(t))).

Then the Z1G0 controller in the u̇(t)-form, which is quite different from the
conventional u(t)-form, is designed as below:

u̇(t) = −D+(t)(Ċ(t)x(t) + C(t)A(t)x(t) + C(t)B(t)u(t) + Ḋ(t)u(t)
−ẏd(t) + γ(C(t)x(t) +D(t)u(t) − yd(t))).

(7)

2.3 Z1G1 Controller

From (6), we can further define

h := Ċ(t)x(t) + C(t)A(t)x(t) + C(t)B(t)u(t) + Ḋ(t)u(t) +D(t)u̇(t)
−ẏd(t) + γ(C(t)x(t) +D(t)u(t)− yd(t)),

(8)

which should be zero theoretically. Based on the GD method [5], a norm-based
scalar-valued nonnegative energy function is defined as ε := ‖h‖22, where ‖ · ‖2
denotes the two-norm of a vector.
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Fig. 1. Output-tracking performance of the TVL system (10) equipped with the Z0G0
controller for the desired output trajectory yd(t) = sin (0.5t)

Then, by the GD method [5], we can adopt the GD design formula v̇(t) :=
−λ∂ε/∂v(t), where v(t) := u̇(t), and the design parameter λ > 0 ∈ R is used to
scale the convergence rate of the GD solution.

Finally, substituting (8) into the GD design formula yields the following Z1G1
controller in the ü(t)-form:

ü(t) = −2λDT(t)(Ċ(t)x(t) + C(t)A(t)x(t) + C(t)B(t)u(t) + Ḋ(t)u(t)
+D(t)u̇(t)− ẏd(t) + γ(C(t)x(t) +D(t)u(t) − yd(t))),

(9)

where superscript T denotes the transpose of a matrix/vector.

3 Simulations and Verifications

In order to verify the effectiveness of Z0G0, Z1G0 and Z1G1 controllers, this
section compares the performance of three controllers for two TVL systems.
Such two systems are different, as the control-singularity does not exist in the
first system, while it exists in the second one.

3.1 Example 1: TVL System without Control-Singularity

In Example 1, the following TVL system is considered:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎣−2 1 0
1 −1− t 0
0 0 −0.1t2

⎤⎦ x(t) +

⎡⎣ 1 t 1
cos t 3 2
t t 0

⎤⎦u(t),

y(t) =
[
sin t t2 t

]
x(t) +

[
t+ 1 sin t cos t

]
u(t),

(10)

where control-singularity (or say, zero-crossing) does not exist for the coefficient
before u(t). In the simulation, for controllers of Z1G0 and Z1G1 types, design



Zhang-Gradient Controllers for Output Tracking of TVL Systems 537

0 10 20 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

t (s)

y(t)
yd(t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t (s)

|e(t)|

Fig. 2. Output-tracking performance of the TVL system (10) equipped with the Z1G0
controller for the desired output trajectory yd(t) = sin (0.5t)
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Fig. 3. Output-tracking performance of the TVL system (10) equipped with the Z1G1
controller for the desired output trajectory yd(t) = sin (0.5t)

parameters γ = 1 and λ = 1000. Besides, the desired output trajectory and
the running time are yd(t) = sin (0.5t) and 30 seconds, respectively. It is worth
mentioning that the initial values [e.g., x1(0), x2(0) and x3(0)] are set to 0.5.
Corresponding to the Z0G0, Z1G0 and Z1G1 controllers, the simulation results
on the tracking control of system (10) are shown in Figs. 1-3, respectively.

Specifically, Figs. 1-3 show that the outputs of the TVL system (10) equipped
with the three controllers are capable of tracking the desired output trajectory
yd(t) = sin (0.5t). Besides, compared with the output-tracking errors in Figs. 1
and 3, the output-tracking error in Fig. 2 is larger and decreases slower. This
illustrates that the tracking performance of the TVL system (10) equipped with
the Z0G0 or Z1G1 controller is better than that of the TVL system (10) equipped
with the Z1G0 controller.
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Fig. 4. Output-tracking performance of the TVL system (11) equipped with the (con-
ventional) Z0G0 controller for the desired output trajectory yd(t) = 10 sin (2t) + 0.5t
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Fig. 5. Output-tracking performance of the TVL system (11) equipped with the Z1G0
controller for the desired output trajectory yd(t) = 10 sin (2t) + 0.5t

3.2 Example 2: TVL System with Control-Singularity

In Example 2, another TVL system is considered as follows:⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

[
−(t − 10)2 1

−1 −(t − 20)4

]
x(t) +

[
1
2

]
u(t),

y(t) =
[
1 5

]
x(t) +

[
t − 2

]
u(t).

(11)

Similarly, for controllers (specifically, Z1G0 and Z1G1 controllers), design pa-
rameters γ = 1 and λ = 1000 are set, and the running time is 30 seconds. In
addition, all initial values [e.g., x1(0) and x2(0)] are set to be 0.5. For further
verification, a different desired output trajectory yd(t) = 10 sin (2t) + 0.5t is in-
tentionally selected in the simulation. Note that, for the conventional controller
design of the system, there exists a singularity (i.e., zero-crossing) problem when
t approaches 2 seconds, which hinders the Z0G0 and Z1G0 controllers in this
example. The corresponding simulation results are shown in Figs. 4-6.

Specifically, Fig. 4 shows that the output-tracking process of the closed-loop
system with the Z0G0 controller stops when t is near 2 seconds. In detail, as time
t approaches 2 seconds, the magnitude of the closed-loop system output equipped
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Fig. 6. Output-tracking performance of the TVL system (11) equipped with the Z1G1
controller for the desired output trajectory yd(t) = 10 sin (2t) + 0.5t

with the (conventional) Z0G0 controller becomes extremely large, which leads to
system crash. As observed from Fig. 5, the output-tracking process of the closed-
loop system with the Z1G0 controller stops also at around t = 2 seconds, and the
crash of this system is similar to that of the closed-loop system with the Z0G0
controller. The reason is that, when time t approaches 2 seconds, the magnitude
of the term D+(t) of the Z0G0 or Z1G0 controller tends to be extremely large,
which makes the control input u(t) or u̇(t) become too large to implement, and
consequently the closed-loop system crashes with its output being out of control.

By contrast, as observed from Fig. 6, the output of the closed-loop system
with the Z1G1 controller is capable of tracking the desired output trajectory
yd(t) = 10 sin (2t) +0.5t successfully. More specifically, as time t approaches 2
seconds, the control input becomes large and the system state start to fluctuate,
which drives the output to deviate the trajectory, but after 2 seconds (i.e., t > 2
seconds), the closed-loop system can adjust itself and the output is able to track
the desired output trajectory automatically again. This well illustrates that the
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Z1G1 controller conquers the singularity problem successfully while the other
two controllers (i.e., Z0G0 and Z1G0 controllers) fail.

In summary, the simulation results of Examples 1 and 2 demonstrate that the
Z0G0, Z1G0 and Z1G1 controllers are effective for the output-tracking control
of TVL systems. More importantly, the Z1G1 controller shows its superiority for
conquering the control-singularity of the system.

4 Conclusions

In this paper, the output tracking of TVL systems has been formulated and
investigated. By exploiting and combining the ZD and GD methods, three types
of tracking controllers (i.e., Z0G0, Z1G0 and Z1G1 controllers), termed Zhang-
Gradient controllers, have been designed to solve such a tracking-control prob-
lem. Illustrative and comparative simulation results have been presented and
the results have well verified the effectiveness of these three controllers for the
output tracking of TVL systems. In particular, the controller of Z1G1 type has
successfully conquered the troublesome control-singularity problem.
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Abstract. As a successful and effective technique, recommendation
systems have been widely studied. Recently, with the popularity of
social networks, some researchers have proposed the social recommen-
dation, which considers the social relations between users besides the
rating data. However, in real world scenarios, both the social relations
and ratings are very sparse, how to combine them together to improve the
performance becomes a critical issue. To that end, in this paper, we pro-
pose a unified three-stage recommendation framework named Random
Walk Neighborhood-aware Matrix Factorization(RWNMF), which can
effectively integrate the social and rating data together and alleviate the
sparsity problem. Specifically, we first perform random walk on
social graph to find potential neighbors of each user, then select be-
havioral neighbors based on the rating data. Lastly, both the social
neighbors and behavioral neighbors can be incorporated into traditional
SocialMF, leading to more accurate recommendations. Experimental re-
sults on Epinions and Flixster datasets demonstrate our approach
outperforms the state-of-the-art algorithms.

Keywords: Recommendation Systems, Social Network, Matrix
Factorization.

1 Introduction

Recommendation systems, which aim at helping users overcome the problem
of information overload, have been popular in recent years. Among all the
techniques for building recommendation systems, Collaborative Filtering has
received significant attention and empirical success. Typically in collaborative
filtering, there is a set of users and a set of items respectively. Users’ ratings
for the items are expressed in a two-dimensional user-item rating matrix, where
only some of the elements are observed, and the goal of CF is to predict the
missing values.

In general, there are two categories of successful approaches in CF: Neigh-
borhood methods(also namely K Nearest Neighbor, or KNN) [2,12] and Matrix
Factorization [5,10,11]. Neighborhood methods mainly include user-oriented
KNN(UKNN) [2] and item-oriented KNN(IKNN) [12] methods. UKNN assumes
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that similar users will have similar preference on the same item. While, IKNN
assumes that a user will have similar preference on similar items. On the other
hand, matrix factorization exploits the sparse user-item rating matrix to learn
the characteristics of users and items in a low dimensional feature space, and
then use the resulting feature vectors to do further rating prediction. In recent
years, researchers have tried lots of sophisticated techniques to improve the rec-
ommendation accuracy, but the results are still unsatisfactory due to the extreme
sparsity of the rating matrix. For example, in the Netflix Prize, the sparsity of the
data is less than 1%, while in real-world recommendation systems, the sparsity
of data is even worse.

Recently, with the popularity of social networks, it is easy to find users’ social
friends from the social based websites (for example, facebook.com). Based on
the intuition that a user’s preference is similar to her friends, a lot of work has
incorporated the social information into traditional CF, named social recom-
mendation. Social recommendations are based on the effects of social selection
and social influence that have long since been assumed by sociologists. Social
selection means that people tend to contact with people with similar attributes,
and due to social influence the related people in a social network influence
each other to become more similar [13]. Recent work on social recommendation
includes [3,6,7].

Among these methods, SocialMF [3] has received a lot of attention. SocialMF
is a matrix factorization method, in which the feature vector of each user is
dependent on the feature vectors of her direct neighbors in the social network.
This allows SocialMF to handle the transitivity of trust and trust propagation.
The Epinions dataset published by the authors in [8] show that, lots of users
have no more than ten social friends, and it is too rough to treat each neighbor
equally. Therefore in this paper we propose a method to increase the number
of social friends. At the same time, relying only on social friends is far from
satisfactory. In order to integrate the other information, other neighbors should
aslo be exploited, such as the behavioral neighbors, which refer to the neigh-
bors whose behavior is similar to the users. It has been shown that the social
interaction and behavioral similarity graphs have little overlap [1], sharing fewer
than 15% of their edges. In order to improve the performance of recommenda-
tion, the similarity of the user-item rating matrix can be exploited to obtain
behavioral neighbors due to the fact that the user-item rating matrix provides
an independent source of information.

Following the work in SocialMF [3], we propose a fusion of social and be-
havioral neighbors for more accurate recommendation. The framework is com-
posed of three steps: 1)Discovery of Social Neighbors: we perform random
walk on these users to discover their potential social neighbors since most users
have only a few direct friends on the social network. 2)Discovery of Behav-
ioral Neighbors: user-item rating matrix is used to calculate the users(items)’
behavioral neighbors and the neighbors are recorded. 3)Neighborhood Fu-
sion: in this step, we fuse the social neighbors and the behavioral neighbors to
form the neighbors set for each user in the recommendation systems, and the
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behavioral neighbors of the items are also incorporated into the method. After
that we can incorporate the more accurate neighbors into the SoicalMF frame-
work. Experiments on two large real world datasets demonstrate the effectiveness
of our method, especially when the social relations are very sparse.

The remainder of this paper is organized as follows. In Section 2 we pro-
vide an overview of social recommendation. Section 3 presents our method.
The experimental results are reported in Section 4, followed by conclusions in
Section 5.

2 Social Recommendation Method

In a social recommendation service systems, there is a user set U , an item set
I, a trust network among users and some ratings of users. The task of recom-
mendation systems is to predict the missing rating ru,i for the user u on the
item i, given the user u and the item i. The predicted rating is denoted by r̂u,i.
Generally, users rate only on a small fraction of the items, and ru,i is unknown
for most pairs of (u, i).

Because SocialMF[3] is the state-of-the-art way in social recommendation, we
focus on introducing the SocialMF method. In SocialMF, the mechanism of trust
propagation is introduced into the framework since trust propagation has been
shown to be a crucial factor in social network analysis and social recommen-
dation. Based on the assumption that the behavior of the user u is affected by
her direct neighbors Nu, the latent feature vector of the user u is dependent on
the latent feature vectors of all her direct neighbors. This is formulated as in
SocialMF:

Ûu =

∑
v∈Nu

Tu,vUv∑
v∈Nu

Tu,v
=

∑
v∈Nu

Tu,vUv

|Nu|
(1)

where u and v denote two users, Ûu is the estimated latent feature vector of the
user u , Uu and Uv denote the feature vectors of the user u and v respectively.
Moreover, Nu represents the direct trusted neighbors of the user u, and Tu,v

is the weight that quantifies how much the user u trusts the user v. Since all
none-zero values of Tu,v are 1 in binary social networks, we normalize each row
of the trust matrix so that

∑
v∈Nu

Tu,v = 1 [3].
In general, the performance of the existing method will be limited only con-

sidering social neighbors, so we put forward our method, which can not only find
the potential social neighbors but also integrate the information of the behavioral
neighbors.

3 Random Walk Neighborhood-Aware Matrix
Factorization

3.1 Discovery of Social Neighbors in Social Graph

As is revealed in the real world datasets, most users have only a few direct friends.
For example, there are respectively 36% and 48% users who have no more than
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10 social neighbors in the Epinions and Flixster datasets, which makes it hard to
discover users’ social neighbors based on their direct relationships. To alleviate
this problem, we perform RandomWalk with Restart (RWR) [9] to discover their
potential friends and select the top K social neighbors based on the stationary
distribution of each user.

To get the users’ top K potential social neighbors, each time we cast a random
walker which starts from each user node. Firstly the random walker goes back
to the starting user with the same probability and chooses randomly among
the available edges every time. Assuming that the random walker which starts
from user node p, we use the probability that it reaches a user node q to denote
the trust weight that quantifies how much the user p trusts the user q, which
is expressed as a element of the trust weight vector up(q). For further details,
please refer to [9]. The detailed algorithm for discovery of social neighbors can
be summarized as Algorithm 1.

Algorithm 1. Random Walk with Restart.

Input:
The number of users, n;
The social network graph, Gn×n;
The number of random walk steps, m;
The n-dimensional trust weight vector uq, the n-dimensional restart vector vq for
each user;

Output:
The n-dimensional trust weight vector uq for each user

1: Make sure vq(q) = 1 and vq(i) = 0, i �= q in vq ;
2: Normalize the adjacency matrix A by column, make the out-degrees sum to 1;
3: Initialize uq = vq;
4: While(iterations < m);

uq = (1− α)Auq + αvq;
5: Select the top K neighbors;
6: Normalize the trust weights of the neighbors, make them sum to 1.

3.2 Discovery of Behavioral Neighbors

Besides social information, user behavior can also be used to find similar users.
For example, if two users have seen similar movies, they may be similar. Since the
adjusted cosine similarity can achieve better performance than cosine similarity
and pure cosine similarity [12], we choose the the adjusted cosine similarity to
obtain the similarity between users or items. The metric equation of similarity
between users could be expressed as:

sim(i, j) =

∑
v∈ICi,j

(ri,v − rv)(rj,v − rv)√∑
v∈ICi

(ri,v − rv)
2
√∑

v∈ICj
(rj,v − rv)

2
(2)

where ICi,j is the set of common items who users i and j have both rated, and
r̄v denotes the average of ratings item v received, sim(i, j) denotes the similarity
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between user i and j. The metric equation of similarity between items can be
obtained similarly.

After obtaining similarity between users, the K nearest neighbors of the user
i, MUi

can be easily selected. Identical procedures can be used to characterize the
similarity of each pair of item j and k, and the K nearest neighbors of the item
j is expressed as MVj

. For notational convenience in later sections, we normalize
the similarities between each user i and her neighbors MUi

, and those between
each item j and its neighborsMVj

to ensure
∑

k∈MUi
Si,k = 1 and

∑
l∈MVj

Wj,l = 1.

3.3 Fusion of the Social Neighborhood and Behavioral
Neighborhood

In order to define the model more realistically, the feature vectors of the users
should reflect both of the two factors of social neighbors and behavioral neigh-
bors as stated in Section 1. Similarly, the latent feature vectors of the items
should rely on the weighted average of their behavioral neighbors. Based on this
intuition, the following equations are formulated as:

Ûi = α
∑

l∈NUi

Ti,lUl + (1− α)
∑

k∈MUi

Si,kUk + θP ,

θP ∼ N(0, σ2
P I) (3)

V̂j =
∑

l∈MVj

Wj,lVl + θQ,

θQ ∼ N(0, σ2
QI) (4)

The terms in the two equations above can be classified into two parts:
1) In Eq. (3), the first term and the second term together characterize the

group feature of a user, which is the weighted average of the fusion of her social
neighbors and behavioral neighbors. They are smoothed by the parameter α. In
Eq. (4), the first term characterizes the group feature of an item, which is the
weighted average of its behavioral neighbors.

2)The third term in Eq. (3) and the second term in Eq. (4) emphasize
the uniqueness of each user(item)’s feature vectors, which could diverge from
her(its) neighbors to some extent. The divergence is controlled by the variance
parameters σ2

P and σ2
Q.

Based on Eq. (3) and Eq. (4), the latent feature of user and item can be
reformulated to the following:

p(U |T, S, σ2
U , σ

2
P ) ∝ p(U |σ2

U ) ∗ p(U |T, S, σ2
P )

=

M∏
i=1

N(Ui|0, σ2
UI) ∗

M∏
i=1

N(Ui|α
∑

l∈N
Ui

Ti,lUl + (1− α)
∑

k∈MUi

Si,kUk, σ
2
P I) (5)

p(V |W,σ2
V , σ2

Q) ∝ p(V |σ2
V ) ∗ p(V |W,σ2

Q)

=
N∏

j=1

N(Vj |0, σ2
V I) ∗

N∏
j=1

N(Vj |
∑

l∈MVj

Wj,lVl, σ
2
QI) (6)
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where we add a zero-mean Gaussian prior as in Eq. (5) and Eq. (6) to avoid
over-fitting and the regularization is controlled by the variance parameters σ2

U

and σ2
V .

Therefore, the conditional probability equation of observed rating is as
follows:

p(R|U,V, σ2
R) =

M∏
i=1

N∏
j=1

[N(Ri,j |UT
i Vj), σ

2
R]

IRi,j (7)

Then through Bayesian inference, the log of the posterior distribution over the
user and item latent feature is given as:

p(U, V |R, T, S,W,σ2
R, σ

2
U , σ

2
V , σ2

P , σ
2
Q)

∝ p(R|U,V, σ2
R) ∗ p(U |T, S, σ2

U , σ
2
P ) ∗ p(V |W,σ2

V , σ2
Q) (8)

Keeping the parameters fixed, maximizing the log posterior in Eq. (8) is equiv-
alent to minimizing the following sum-of-squared cost function:

E =
1

2

M∑
i=1

N∑
j=1

IRi,j(Ri,j − UT
i Vj)

2

+
λU

2

M∑
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2
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2

M∑
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∥∥∥∥∥∥Ui − α
∑

l∈NUi

Ti,lUl − (1− α)
∑

k∈MUi

Si,kUk

∥∥∥∥∥∥
2

F

+
λQ

2

N∑
j=1

∥∥∥∥∥∥Vj −
∑

l∈MVj

Wj,lVl

∥∥∥∥∥∥
2

F

(9)

In the equation above, λU = σ2
R/σ

2
U , λV = σ2

R/σ
2
V , λP = σ2

R/σ
2
P and λQ = σ2

R/σ
2
Q

are the parameters to smooth the five terms in the objective function, which
naturally fuses social and behavioral neighborhood information with matrix fac-
torization in social recommendation. The parameters λU and λV control the
strength of fitting on the training data. The parameter λP controls how much
the user neighbors influence the user feature vectors, while the parameter λQ

controls how much the item neighbors influence the item feature vectors.
Then a local minimum of the objective function Eq. (9) can be found by

performing gradient descent on Ui and Vj for all users u and all items i given the
derivatives below.

∂E

∂Ui
=

N∑
j=1

IRi,jVj(U
T
i Vj −Ri,j) + λUUi

+ λP (Ui − α
∑

l∈N
Ui

Ti,lUl − (1− α)
∑

k∈M
Ui

Si,kUk)
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}
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}
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IRi,jUi(U
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i Vj −Ri,j) + λV Vj

+ λQ(Vj −
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l∈MVj

Wj,lVl)

− λQ

∑
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}
Wl,j(Vl −

∑
k∈MVl

Sl,kVk) (11)

To reduce the model complexity, λU is set equal to λV in our experiments. In
each iteration, we update U and V based on the latent feature vectors from the
previous iteration.

4 Experiments

We conduct several experiments on two real world datasets and demonstrate
the following: 1) the comparison of effectiveness between RWNMF and other
state-of-the-art methods; 2) the influence of parameter settings in RWNMF; 3)
the performance of the RWNMF on the cold-start users.

4.1 Datasets

We briefly introduce the two public datasets used in our experiments: the Epin-
ions dataset 1, and the Flixster dataset 2. Both datasets contain user-item rating
data and user relation data. We remove users who rate less than 5 times, and
also remove items that have less than 5 rating scores. Then we leave only the
corresponding relation data of these users in the social relation data. Overall
ratings of the Epinions dataset range from 1 to 5. Possible ratings values in the
Flixster dataset are 10 discrete numbers in the range [0.5,5] with step size 0.5.
More statistics of two datasets are listed in Table 1.

4.2 Baselines and Evaluation Metric

We compare our model with the following methods. We choose these models
as baselines because they are proven to be the state-of-art methods for social
recommendation which shows good results on the social rating datasets.

PMF: This method is the baseline matrix factorization method proposed in
[11], which only uses rating matrix to conduct recommendation.

1 www.trustlet.org/wiki/Downloaded_Epinions_dataset
2 www.cs.sfu.ca/~sja25/personal/datasets/

www.trustlet.org/wiki/Downloaded_Epinions_dataset
www.cs.sfu.ca/~sja25/personal/datasets/
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Table 1. General statistics of the Epinions and Flixster

Statistics Epinions Flixster

Sparsity of rating records 0.10% 0.45%

# of users 20397 69367

# of items 21901 25678

# of rating records 446892 8000204

# of relation records 350012 970288

Average ratings per user 21.9 115.33

Average ratings per item 20.4 311.55

Average trust times per user 22.02 15.65

Average trusted times per user 18.38 15.36

STE: This method is proposed in [6], which combines the users’ tastes and
their trusted friends’ interests together by a linear combination of the basic
matrix factorization approach and the social recommendation approach.

SocialMF: This is a method proposed in [3], which takes the trust propagation
for recommendation in social network into account. On the other hand, this can
be seen as a special case of RWNMF when both the behavioral neighbors of the
user and the behavioral neighbors of the item are unknown, specifically, when
we set α=1, λQ =0.

In the experiments of our proposed method RWNMF, we set λU = λV =0.1,
K=30. Discovery of social neighbors is done on the users who have no more
than 30 social neighbors and select the top 30 social neighbors. The evaluation
metric we use in our experiments is Root Mean Squared Error(RMSE) [4], which
is widely used to measure the performance of rating prediction accuracy in CF
and Social Recommendation. For each dataset, we take 80% of the data as the
training data and the remaining 20% as the testing data.

4.3 Experimental Results

Overall Performance. In this section, we compare the performance of our
model with the baseline methods. The dimensionality of the latent feature vec-
tors D in matrix factorization methods is set to 5, 10, 20, 30 respectively. As
to the other parameters, we perform parameter selection in advance for each
method and use the best settings found in all the experiments for fairness.

Table 2. RMSE comparisons for different latent feature dimension D

Model
D=5 D=10 D=20 D=30

Epinions Flixster Epinions Flixster Epinions Flixster Epinions Flixster

PMF 1.1064 0.9085 1.1034 0.9047 1.1014 0.9023 1.0971 0.9015

STE 1.0961 0.8901 1.0912 0.8885 1.0872 0.8847 1.0815 0.8824

SocialMF 1.0784 0.8810 1.0735 0.8792 1.0729 0.8744 1.0704 0.8726

RWNMF 1.0487 0.8512 1.0439 0.8459 1.0414 0.8426 1.0402 0.8414
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Table 2 reports the RMSE values of all the algorithms under different settings
of latent feature dimension D respectively. From the comparison, we have the
following conclusion: our method RWNMF performs the best comparing to other
methods. Generally, RWNMF improves the RMSE of the best results of PMF,
STE and SocialMF about 5.91%, 4.40%, 3.20%.

Different Parameter Setting. In our model, parameters λP and λQ control
the divergence of the active users’ and items’ latent features from the fusion of
their behavioral neighbors and social neighbors or their behavioral neighbors set
respectively.

Figure 1 compares RMSE of our model with different range of regularization
parameters on two datasets. For convience, we set λP = λQ = λ , and λ is
set to 0, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 20, 30 respectively. And we set D=30.
It is easy to observe that the value of λ impacts the recommendation results
significantly, which demonstrates that incorporating neighborhood information
into social recommendation improves the recommendation accuracy. Clearly in
Figure 1, the best regularization parameters setting for both datasets is λP =
λQ = 0.1 .
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Fig. 1. Impact of regularization parameters on two different data sets
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Fig. 3. Performance of the cold-start users in two different data sets

Figure 2 compares RMSE score of our model with different range of parameter
α on two datasets. Parameter α controls extent of the influence of the social
neighbors and similarity neighbors on the behavior of users. We set λP = λQ =
0.1, and we set D=30. In fact the fusion of social neighbors and the behavioral
neighbors achieves better prediction due to a combination of two different factors.

4.4 Performance on the Cold-Start Users

We remove 90% of the user relationship in the user relation data. Figure 3
compares the RMSE of our model with the other methods on the cold-start users
with different range of the dimension of the feature vectors on the Epinions and
Flixster datasets. For convience, the dimension of the feature vectors is set to
5, 10, 20, 30 respectively. As shown in Figure 3, our method still achieve good
results owing to the discovery of social neighbors and the neighbors fusion.

5 Conclusion

In this paper, we present a novel approach for recommendation in social net-
works. Through the random walk in the first step of RWNMF, it is effective
to find the potential social neighbors, and they could be adopted in the follow-
ing matrix factorization framework. Next it is necessary to find the behavioral
neighbors of the users and items. Lastly we take into consideration the fact that
the latent feature of each user is dependent on the feature vectors of her social
neighbors and behavioral neighbors and the latent feature of each item is de-
pendent on the feature vectors of its behavioral neighbors. This allows RWNMF
to exploit the information of both the social network and the similarity network
to improve the recommendation accuracy. Experiments on the public real world
datasets of Epinions and Flixster demonstrate that RWNMF outperforms the
existing methods for social recommendation.

Acknowledgments. Research supported by the National Natural Science
Foundation of China (No. 61003135).
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Abstract. In this paper we present Artificial Fish Swarm Algorithm (AFSA) 
applying to a two-dimensional non-guillotine cutting stock problem. 
Meanwhile, we use a converting approach which is similar to the Bottom Left 
(BL) algorithm to map the cutting pattern to the actual layout. Finally, we 
implement Artificial Fish Swarm Algorithm on several test problems. The 
simulated results show that the performance of Artificial Fish Swarm Algorithm 
is better than that of Particle Swarm Optimization Algorithm. 

Keywords: Artificial Fish Swarm Algorithm; Cutting Stock Problem; Bottom 
Left Algorithm. 

1 Introduction 

The two-dimensional cutting stock problem can be stated as the problem of fitting 
rectangular pieces of predetermined sizes onto a large but finite rectangular plate (the 
stock plate); or equivalently, the problem of cutting small rectangular pieces of 
predetermined sizes from a large rectangular plate. Non-guillotine cut means that the 
cuts need not go from one edge of a rectangle to the opposite edge in a straight line. 
The aim is to minimize the unused area. Because of the need to reduce the costs of 
raw material and the need to avoid material wastage, the cutting stock problem is of 
great interest in various production processes in the glass, steal, wood, paper and 
textile industries. This problem belongs to the class of combinatorial optimization 
problems, so a solution among all possible solutions has to be found, which optimizes 
or quasi-optimizes a criterion function subject to a set of constraints. 

Gilmore and Gomory [1, 2] used linear programming to solve such kind of a 
problem exactly. But because of the complexity of the cutting stock problem, the 
exact algorithm only fits the case in which fewer pieces are being cut. These 
algorithms fail if there are more pieces to be cut. A problem of cutting more than 20 
pieces would cause some difficulty. Recently, with the extended application of 
various optimization methods, some methods such as heuristic searching algorithms 

                                                           
*  Supported by the National Natural Science Funds of China under Grant No. 61163034. 
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[3], evolutionary algorithms [4-6], swarm intelligence algorithm [7-9] and simulated 
annealing approach [10] have been applied to this kind of problems. Artificial Fish 
Swarm Algorithm (AFSA) was presented by Li in 2002 [11]. It is a kind of the swarm 
intelligence optimization methods based on fish behaviors. It has been used to deal 
with some combinatorial optimization problems [12-13], but it is rarely applied to 
cutting stock problem. In this paper, we will consider applying Artificial Fish Swarm 
Algorithm to a two-dimensional cutting stock problem.  

2 Artificial Fish Swarm Algorithm 

The details of the artificial fish behavior are as follows [11]: 
An artificial fish denotes a vector ),...,,( 21 iniii pppX =  Ni ,...,2,1= , where N 

denotes the size of fish swarm, ),...,2,1( nkpik =  is the variable that needs to be 

optimized, n denotes the dimension of the problem space. The food consistence of the 
position which an artificial fish locate is denoted by )(XfY = . The distance between 

two artificial fishes is denoted by
jiji XXd −=,

. The other properties of an artificial 

fish are the visual field ( visual ), the crowded factor ( δ ), the largest number of every 
trying ( trynumber ). 

Behavior of an artificial fish is described as follows: 
In a water field, a fish could find the most nutrition position by itself or following 

other fishes. The most nutrition position has more fishes. The Artificial Fish Swarm 
Algorithm implements the optimization by simulating preying behavior, swarming 
behavior and following behavior. 

(1) Preying behavior: Set the current position of the ith  artificial fish is iX . Select 

a position jX  in its visual field randomly. If jYiY <  (forward condition) then 

move a step to this direction. Otherwise randomly select a position jX  in its visual 

field randomly again, and then judge whether it satisfies the forward condition. Try  
trynumber  times. If the forward condition is not yet satisfied then perform random 

moving behavior. 
(2) Swarming behavior: Explore the partner number fn in an artificial fish’s 

neighborhood. If δ<Nfn , ( )10 << δ , it shows that the center of the partners has 

more foods and not crowded. In this case, if jYiY <  then the artificial fish moves a 

step to the center cX . Otherwise perform random preying behavior. 

(3) Following behavior: Explore the optimal neighbor maxX in its neighborhood. 

If maxYiY <  and the partner number 
fn in the neighborhood of maxX  satisfies 

δ<Nfn , ( )10 << δ , it shows that the position maxX  have more food and not 

crowded.  Then the artificial fish move a step to the position maxX . Otherwise 

performs preying behavior. 
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(4) Random behavior: The artificial fish selects a random position in its visual field 
and then moves a step to this direction. It is a default behavior of preying behavior. It 
provides a random swimming in preying behavior when the trynumber is small. It 
also increases the variety of the swarm so that the artificial fish could jump out of the 
local optimal value. 

(5) Bulletin board: Bulletin board is used to record the optimal artificial fish. In the 
optimization process, each artificial fish compares its position with the bulletin board 
after a moving. If its position is better than the bulletin board, the bulletin board is 
rewritten by this artificial fish. So the historical optimal position is written in bulletin 
board. 

3 Stock Cutting Algorithm 

3.1 Some Constrains 

For the sake of simplicity, the following assumptions are adopted [5]: 

   (1) All the pieces have fixed orientation, i.e. a piece with length lk and width wk is 
different from the piece with length wk and width lk if lk does not equal to wk. 
   (2) The pieces must be placed into the stock plate orthogonally, thus the sides of 
the small rectangles are parallel to the stock plate. In other words, there is no rotation 
when placing the pieces into the plate. 
   (3) The length and width of each piece does not exceed the corresponding 
dimension of the stock plate. 
   (4) All cuts on the stock plate are infinitesimally thin, i.e. the edges of the pieces 
do not occupy any area. 
   (5) Each piece may be positioned at any place in the stock plate and in proximity 
to any other piece in the plate, i.e. there is no restriction that two pieces can not be put 
together. 

3.2 Encoding Mechanism 

To describe a layout of pieces on a stock plate, we must first specify the piece list and 
the stock plate available for the placement of the pieces. The stock plate to be used is 
a rectangle with specified dimension. The pieces cutting from the stock plate are also 
rectangular in shape. We describe the stock plate and the pieces in a free coordinates. 
The left bottom corner of the stock plate is placed at the origin. Each piece is denoted 
by a four-dimension vector pk = (xk, yk , lk, wk), where (xk, yk ) is the position of the left 
bottom corner of the piece on the stock plate,  lk  and wk are the length and width of 
the piece, respectively. The pieces are generated within the following ranges: 

0≤xk , lk ≤ Length  

0≤yk ,wk ≤ Width  



 Artificial Fish Swarm Algorithm 555 

 

where Length and Width are the stock plate length and width. 
Each fish in the swarm denotes a cutting pattern. A cutting pattern is consisted of a 

set of pieces pk. 

3.3 Actual Layouts 

In order to place the pieces on the stock plate, we should convert the cutting pattern to 
an actual layout. In this paper, we use a converting approach which is similar to the 
Bottom Left (BL) algorithm [5]. It is called the Coordinate-based Bottom Left 
Algorithm (CBL) [8]. In the BL algorithm, the piece is firstly put at the right upper 
corner of the stock plate and then it is moved to the left. In this paper, in order to use 
the coordinates of the piece’s left bottom corner, we place the piece according to the 
coordinate then move it. We sort the pieces on the xk to reduce the probability of 
overlapping. The steps of the CBL are as follows: 

Step 1. Sort the pieces in ascending order of xk. 
Step 2. Place the pieces on the stock plate according to the coordinates of the left   

bottom orderly. For each piece, if it is placed entirely on the plate and does 
not overlap the pieces that have been placed on the plate, then try to move it 
down (as long as it is not blocked by another piece). Then move it to the left 
and then repeat to move it down and left again, until it cannot be moved. The 
finial position is where the rectangular piece stays. When placing a piece if it 
overlaps any of the pieces which have been placed entirely on the stock place 
or if it cannot be placed onto the stock plate completely, we do not place it on 
the stock plate temporarily. If all of the pieces have been tried to place, go to 
step 3.    

Step 3. For the pieces that have not been placed on the stock plate, we put each piece 
on the right upper corner of the stock plate, then try to move it down and to 
the left repeatedly until it cannot be moved. If the piece is placed entirely on 
the plate, the final position is where the piece stays. Otherwise the piece will 
be discarded. 

4 AFSA for Cutting Stock Problem  

The cutting algorithm deals with the fishes. Each fish denotes a cutting pattern. 
),...,,( 21 iniii pppX =  is a fish, where Ni ,...,2,1= . N denotes the size of fish swarm. 

ikp  is a piece denoted by a four-dimension vector pik = (xik, yik , lik, wik), where 

nk ,...,2,1= . n is the number of pieces that should be cut from the given stock plate. 
(xik, yik ) is the position of the left bottom corner of the piece on the stock plate,  lik  

and wik are the length and width of the piece, respectively. The distance between a 
fish

iX and a fish 
jX is denoted by  
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In AFSA, the food consistence f(X) of the position which an artificial fish X located is 
taken as the ratio of the summed areas of the pieces completely placed on the stock 
plate to the total area of the stock plate, i.e.  

      T

Xs
Xf

)(
)( =   

where X denotes a cutting pattern, )(Xs  is the summed area of the pieces which area 

placed completely on the stock plate using the CBL corresponding to the cutting 
pattern X, and T =Length*Width denotes the designated area of the stock plate.  

The steps of Artificial Fish Swarm Algorithm for cutting stock problem are as 
follows: 

Step 1. Initialize the left bottom coordinates of each piece in each artificial fish 
randomly.  

Step 2. Calculate the food consistence of each fish and record the best fish on the 
bulletin board.  

Step 3. For each artificial fish, perform one of the three behaviors: Perform following 
behavior. If the new position is better than the bulletin board, update bulletin 
board and go to step 4. Otherwise perform swarming behavior. If the new 
position after swarming is better than the bulletin board, update bulletin board 
and go to step 4. Otherwise perform preying behavior. If the new position after 
preying is better than the bulletin board, then update the bulletin board. 

Step 4: If the maximum number of iterations is reached or the designated fitness is 
achieved, the process is stopped. Otherwise go to step 3. 

5 Simulation Results 

Five cutting stock problems are used to examine Artificial Fish Swarm Algorithm. 
Each of the five test problems has its own optimal solution of zero trim loss. Thus we 
can estimate easily the performance of the algorithm. The number of the rectangular 
pieces in each stock plate ranges from 10 to 30. The population size of the swarm N is 
taken as 60, and the parameters in artificial fish swarm algorithm are taken as 

3.0=δ , trynumber=10, visual=20,50,20,30,50 for the five test problems respectively. 
The algorithms are written in C and run in a DELL Optiplex 380 computer. The 
maximum number of iterations is taken as 1000. For comparison, Particle Swarm 
Optimization (PSO) is used to the same five cutting stock problem. Fig. 1 shows one 
of the five test problems, where 30 pieces will be cut from the stock plate. Fig. 2 
shows the actual layout generated using Artificial Fish Swarm Algorithm.  
Twenty-eight pieces are cut from the stock pieces. The shade in the stock plate is the 
lost area. 
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Fig. 1. A test problem with 30 pieces to be cut from the stock plate 

 loss area

 
Fig. 2. Cutting results using Artificial Fish Swarm Algorithm 

Table 1 shows the simulation results for the five test cases of the two-dimensional 
cutting problems. Table 2 shows the size of the five test cases. From the simulation 
results it can be seen that the performance of Artificial Fish Swarm Algorithm is 
better than that of Particle Swarm Optimization in dealing with the cases with more 
pieces to be cut.  

Table 1. Simulated results for the five test cases  

No. 1 2 3 4 5 

Trim loss of PSO (%) 0 0 7.5 6.3 7.1 

Trim loss of AFSA(%) 0 0 0 3 6.6 
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Table 2. The size of the five test cases  

No. 
Number of 
pieces 

Size of 
stock plate 

Sizes of pieces 

1 10 80100 ×  2)4030( ×× , )4010( × , 3)4020( ×× , 

)5020( × , )3020( × , 2)2030( ××  

2 10 2040 ×  )420( × , )416( × , 2)610( ×× , )616( × , 

)104( × , 2)510( ×× , )1010( × , )1020( ×  

3 15 2040 ×  4)65( ×× , )310( × , 2)512( ×× , 2)710( ××  
2)420( ×× , 3)510( ×× , )108( ×  

4 20 4040 ×  4)1511( ×× , 4)517( ×× , 4)412( ×× , 

4)93( ×× , 4)155( ××  

5 30 4565 ×  )617( × , 3)96( ×× , 5)126( ×× , 4)129( ××  
2)69( ×× , 2)156( ×× , )1217( × , 2)912( ××  

)1211( × , )159( × , )189( × , )914( × , )614( ×  
)99( × , )915( × , )615( × , )1215( × , )66( × , 

6 Conclusions and Discussions 

From the results of the test problems it can be seen that Artificial Fish Swarm 
Algorithm has better ability to search for the global optimum for the two-dimensional 
cutting stock problem. When the number of the pieces is smaller, both Particle Swarm 
Optimization and Artificial Fish Swarm Algorithm work well. With larger number of 
pieces, the performance of Artificial Fish Swarm Algorithm is better than the PSO’s. 
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Abstract. Job scheduling in hadoop is a hot topic, however, current research 
mainly focuses on the time optimization in scheduling. With the trend of pro-
viding hadoop as a service to the public or specified groups, more factors 
should be considered, such as time and cost. To solve this problem, we present 
a utility-driven share scheduling algorithm. Considering time and cost, algo-
rithm offers a global optimization scheduling scheme according to the workload 
of the job. Furthermore, we present a model that can estimate job execute time 
by cost. Finally, we implement the algorithm and experiment it in a hadoop 
cluster.  

Keywords: scheduling, hadoop, utility, QoS. 

1 Introduction 

Recently years, with the development of network applications, The explosive growth 
of personal data and enterprise data caused many effective data storage and data 
processing problems. Just increasing the number of computer in the cluster does not 
fundamentally solve these problems. Google released GFS [1], BigTable [2] and Ma-
pReduce [3] to solve this problem. 

MapReduce is a distributed programming model focus on large data sets on  
clusters of computers. Apache Hadoop [4] is a software framework that supports data-
intensive distributed applications, which implements MapReduce and GFS. Compa-
nies, such as Facebook and Yahoo, are using Hadoop and a variety of applications 
around the Hadoop platform has been developed. Companies rely more and more on 
big data when making their decisions. Amazon, Cloudera, and IBM have announced 
their Hadoop-as-a-Service offerings, while Microsoft promises to do the same job 
recently. Amazon was the first company to provide Hadoop-as-a-Service. Liking 
many other IaaS service coming from Amazon, this service provides the minimum 
hardware and software necessary to run analytics on big data. 

Commercialization Hadoop need to pay more and more attention to user satisfac-
tion. Previous studies on Hadoop scheduling only use job running time as optimiza-
tion objective. User satisfaction not only depends on the job running time, but also 
related to other factors, such as cost. 

In this paper, we present a utility-driven share scheduling algorithm in Hadoop. We 
have set up a model which could estimate the job running time by the users bid and 



 Utility-Driven Share Scheduling Algorithm in Hadoop 561 

job workload. We designed an algorithm which maximum the whole user satisfaction 
by adjusting user fees. 

2 Relate Works 

There are some schedulers released with hadoop. FIFO is the default scheduler in 
hadoop. It select job according to the priority of the job and then the arrival time. 
Capability scheduler [5] supports multi queues which are allocated a fraction of the 
total resource capability. Fair scheduler [6] allows jobs to obtain the resource fairly 
with the passage of time. 

Many researchers present there schedulers. Thomas Sandholm and Kevin Lai [7] 
present the Dynamic Priority (DP) parallel task scheduler for hadoop. It allows users 
to control their allocated capacity by adjusting their spending over time. But there 
work was not related to user satisfaction. Xicheng Dong et al. [8] present a mixed 
real-time and non-real-time job scheduler in hadoop. They try to meet users' QoS 
demands, but only consider the time factor. Jord`a Polo et al. [9] present a model to 
estimates individual job completion times given a particular resource allocation, and 
uses these estimates as to meeting job's performance goal. Kamal Kc and Kemafor 
Anyanwu [10] present a scheduler to meet the deadlines of jobs in hadoop. Hsin-Han 
You [11] and his team proposed the Load-Aware scheduler for heterogeneous envi-
ronments with dynamic loading which could modify slot number according to the 
environment. 

3 Design 

3.1 Scheduling in Hadoop 

MapReduce in hadoop consists of four processes: JobTracker, TaskTracker, JobClient 
and Task. A hadoop MapReduce job usually submitted by JobClient to the JobTrack-
er, then JobTracker received the request and added it into the job queue. TaskTracker 
send a heartbeat to JobTracker regularly to ask for job. If the job queue is not empty, 
JobTracker selected a suitable task from a suitable job send to TaskTracker .All sche-
duling in hadoop are on the task level. 

3.2 Problem Formulation 

Time is the primary optimization objective of any scheduling problems, so our sche-
duling algorithm should take it into account. Any system providing service should 
consider problems such as priority, resource allocation and how to measure system 
workload and user satisfaction. Economic-based approach is an effective mean in the 
scheduling and price is a commonly used indicator. So we believe that users mainly 
focus on job running time and cost in a hadoop as a service environment. we assume 
that the user is not just concerned about price, but about his satisfaction. 
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We define a utility function described as equations (1) to describe the users’  
satisfaction. 

0 * *U U T Costα β= − −  . (1)

0U  represents the maximum satisfaction, which is a pre-defined. α and β represent 

the weight of time and cost which determined by the user. 

First, we formulate the system. We defined job as iJob , it related to the following 

parameters: 

iAT : job arriving time. 

iMW : map workload. we define the workload of MapReduce WordCount pro-

gramme process a map task which have 64MB data as 1 unit. 

iRW : reduce workload. 

iRN : number of reduce task. 

iMN : number of map task. 

iα : the weight of time. 

iβ : the weight of cost. 

iFinMN : the number of completed map. 

iP : the price of unit time. 

ismT : single map time. 

irate : the proportion of resources should be allocated to iJob . It can be calcu-

lated as equations (2). 

1

i
i n

i
i

P
rate

P
=

=


 . 
(2)

*i iam rate SlotM= : assigned map slot number. 

iT : running time. 

The cost of user include cost of the map phase and cost of reduce phase. In the map 
phase, each maptask must be paied and we assume each maptask spend the same 
time. In the reduce phase, the number of reduce task is defined by user, but cost can 
be caluculate by workload. The equation (3) describes the cost calculation method. 

* * *i i i i i iCost smT MN P RW P= +  . (3)
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There are some parameters about cluster. CurrT  represent the current time. 

SlotM  represent the number of map slot in the cluster. SlotR  represent the num-

ber of reduce slot in the cluster. maxP and minP represent the system defined max and 

min price. 
Our algorithm is a share scheduling algorithm which allocated to each Job a certain 

percentage of the resources and the proportion of resources is decided by the bid. The 
time of map stage time can be determined by the number of map task and allocated 
resources. It can be calculated using the equation (4). 
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 . (4)

The time of reduce phase can by calculated as equation (5). 

i
i

i

RW
rT

RN
=  . 

(5)

The job running time can by calculated as equation (6). 

1*( )
*

i i i
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i
i i i i i

i
i i

T mT rT

P
smT MN FinMN RW

CurrT AT
SlotM P RN

=

= +

−= − + +
  . (6)

We can use the equation (7) to calculate the utility of the job. 

0

1
0

* *

*( )
*( * ) *( * * * )

i i i i i
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i i i i i

i i i i i i i i
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U U T Cost
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U CurrT AT smT MN P RW P
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α β=

= − −

−
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 . 

(7)
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For simplicity, we define three coefficients for each job which are described as equa-
tion (8) (9) (10). 

* *( )i i i i
i

smT MN FinMN
a

SlotM

α −= −  . (8)

*( * )i i i i ib smT MN RWβ= − +  (9)

*
*( )i i

i o i i
i

RW
c U CurrT AT

RN

α α= − − −  (10)

Finally, the utility is defined as equation (11) 

1* *
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i i i i i
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P
U a b P c

P
== + +


 . 
(11)

The utility of the system can be calculated using equation (12) when the number of 
jobs is n. 
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 . (12)

Our Scheduling goal is to maximize U  by calculating the iP . So, the optimization 

model defined as equation (13). 

1 1 1 1

max min
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∀ > >

  
 . (13)

3.3 Genetic Algorithm 

We use genetic algorithm to solve the optimization problem. The implementation of 
genetic algorithm can be detailed as following steps. 
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1. Encoding. Suppose there are n job, we use a 5*n length binary code to represent 

decision variables 1 2, ...... np p p . When decoding we split the binary code into n 

binary series with five bit, the convert them to decimal code and plus 1. 
2. Fitness. Since the optimization goal is to seek maximum value, so we defined 

the individual fitness to the corresponding utility function value, if the value is less 
than 0 then fitness is 0. 

3. Selection. Using selection operator based on fitness ratio. 
4. Crossover. Using one point crossover operator. 
5. Mutation. Using bit mutation operator. 

3.4 Scheduling Algorithm 

The scheduling algorithm consists of three functions: jobadded and assigntask. They 
would be called when a job added and response the heartbeat request of TaskTracker. 

When a new job arrives, first of all, we calculated a set of decision variables 

1 2{ , ... }nP p p p=  using the utility as the optimization objective. Then, if the new 

utility greater than before, we recalculated the resource should be allocated to each 
job depending on P  . Otherwise, the new job will be rejected. 

When idle slot appears, calculate the hungry degree which is defined as the number 
of assigned slot divided by the number of required slot of each job and allocate the 
slot to the hungriest job. Algorithm pseudo-code is shown below. 

Pseudo-code of function assigntask 

void assigntask(newslot){ 
  int selected 
  float minHungry = Float.maxFloat 

  For each ijob
in job queue{ 

    int desire stands for the desired slot 
    int due stands for slot should be allocated 
    int alc stands for slot already allocated 

    if( ijob
is running and desire>0){ 

      float hungry=alc/min(desire,due) 
      if(hungry< minHungry) 
      selected=i 
    } 
  } 
   Assign new slot to job selected 
}     
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4 Performance Evaluation 

We set up Hadoop on a computer cluster which has 1 NameNode and 4 DataNodes. 
Both NameNode and 4 DataNodes are composed of 2.93GHz Intel Core2 Duo CPU 
and 2GB memory, All nodes were connected by a gigabit switch. In terms of soft-
ware, we implement the application using jdk-6u26-windows-i586 and eclipse-SDK-
3.6.1. The operating system is Ubuntu10.04 and the Hadoop version is Hadoop-1.0.3. 

We configure 4 map slot and 2 reduce slot in each tasktracker. Genetic algorithm 
settings: Crossover probability is 0.35, mutation probability is 0.05, iteration time is 
5000 and initial population size is 10. 

We executed 3 real job to experiment out scheduling algorithm. The parameters of 
the three jobs are shown in Table 1. We defined workload of one map task in word-
count as workload unit. In this experiment, we first submit a wordcount job and a 
sencondarySort job 30 seconds later and then a TeraSort job 50 seconds later. The 
maximum satisfaction was defined as 100. 

Table 1. Information of jobs 

Job 
name 

Job type Map task 
number 

Reduce 
task 
number 

Map 
workload 

Reduce 
workload 

α β 

Job1 wordcount 58 1 58 2.48 0.1 0.9 
Job2 secondarySort 59 1 29 11.96 0.9 0.1 
Job3 TeraSort 58 1 43.07 16.5 0.5 0.5 

 
Fig. 1 shows the number of slot allocated to the three job changes over time. In the 

beginning, Job1 as the only job got all slots. There is no idle slot when Job2 was sub-
mitted until the running map tasks were finished one by one at the 45th second. Job1 
and Job2 were assigned part of slots. Slots were re-allocated because Job3 was sub-
mitted at the 50th second. Job2 was finished at the 253th second and the idle slots 
were assigned to the other jobs. Job3 was finished at the 287th second and Job1 got 
all the slots. 

 

Fig. 1. The number of slot allocated to the three job changes over time 
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Table 3 shows the running time, cost and utility of the three jobs. 

Table 2. Information of jobs 

Job name cost Map running 
time(second) 

Running 
time(second) 

utility 

Job1 60.48 380 485 44.5 
Job2 188.96 223 921 62.6 
Job3 128.5 237 743 27.25 

5 Conclusion and Future Work 

In this paper, we presented a scheduling algorithm in hadoop environment. Assume 
that the user focus on satisfaction, rather than just time or cost. The proportion of the 
allocation of resources is determined by the user bid which determined by the system. 
The user's preferences will affect their charges. Algorithm charge more to reduce the 
job running time; to the contrary, extend the running time to reduce costs to the users. 
Price also will float with the utilization of the resources which making the system a 
high satisfaction. 

Experimental shows that more resources are allocated to jobs emphasizing on time 
than cost which improve the satisfaction of the entire system by adjusting the propor-
tion of resources. 

In future work, we will consider the satisfaction both system and individual job and 
solve it using game theory. 
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Abstract. Recent interest in line-tracking methods using UAV has been intro-
duced in the research of pattern recognition and diagnosis of transmission sys-
tem. A fault diagnosis method for transmission line based on Scale Invariant 
Feature Transform (SIFT) is proposed in this paper, which recognizes fault im-
ages by comparing aerial images with model images. The reliability and effi-
ciency of the system is effectively improved by pro-calculating local 
scale-invariant features of models. The research can provide a new method for 
predictive maintenance of the transmission line. 

Keywords: Transmission line, scale invariant feature transform (SIFT), feature 
matching, fault diagnosis. 

1 Introduction1 

Taking into account China’s vast territory and geographical structure, development of 
regional economies is imbalance. Energy bases in the mainland are far away from 
load centers loaded along the coast and especially in South China, which gradually 
formed a complex topology structure of transmission system. The running state di-
rectly affects the security and stability of power grid. Because of long exposure to the 
nature, transmission lines constantly suffer from mechanical tension, aging of mate-
rials, artificial damage, natural disasters and other factors, which produce some dam-
ages as collapse of tower, broken of strand, abrasion and corrosion. Table 1 shows the 
statistics of fault types in Sichuan province during 2005-2010[1]. It will eventually 
lead to severe accidents without timely maintenance and replacement, which cause 
widespread blackouts and huge economic losses. Therefore, conducting regular 
transmission line inspection and timely detecting equipment’s defects that endanger 
the safe operation are important to power system. 

                                                           
1 This work was supported by the National Natural Science Foundation of China under Grant 

51177109. 
* Corresponding author. 
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Table 1. Statistics of fault types in Sichuan province during 2005-2010 

Year Icing Fire Birds 
Pollution 

Flasfover 

Product 

Quality 

Artificial 

Damage 

Unknown 

Causes 
Others Total 

2005 2 3 1 3 2 0 1 0 12 

2006 1 3 5 0 0 2 2 0 13 

2007 7 0 4 0 0 0 0 0 11 

2008 29 2 1 0 1 3 0 0 36 

2009 1 4 4 2 0 1 1 5 18 

2010 4 2 3 1 2 2 0 0 14 

Total 44 14 18 6 5 8 4 5 104 

Ratio 42 13 17 6 5 8 4 5 100 

 
Currently, the inspection method widely used in transmission system is artificial 

method. This method has disadvantages of heavy workload, high risk, great adminis-
tration costs, low detecting precision and poor reliability, etc[2]. In the 1950’s, some 
developed western countries started to use helicopters for rush repairs of overhead 
transmission lines. After decades of research and exploration, helicopters’ application 
in overhead transmission lines has expanded to inspection, maintenance of live wires, 
and line construction. Recent research on Unmanned Aerial Vehicles (UAVs) inspec-
tion system becomes a hot topic about smart grid[3,4]. 

The new transmission system inspection method with helicopter or UAV is a good 
way to solve the problems in artificial inspection, but meanwhile bring some new 
challenges. There are a huge number of aerial images need to be selected after each 
inspection, which will spend a lot of labor power. Thus how to identify fault images 
from the whole set of aerial images becomes the key and difficult point in the smart 
inspection system. Utal state university published a white paper Aerial Surveillance 
System for Overhead Power Line Inspection in 2003, in which the feasibility and 
technical requirements of transmission line automatic inspection based on aerial im-
ages were discussed. This paper also pushed forward the application of image 
processing in transmission system inspection[5]. 

Transmission system inspection based on image processing is an emerging indus-
try, still in its infancy at the present. The research on identification of transmission 
equipment and fault localization has rarely involved at home and abroad. Li et al.[6] 
presented an algorithm of automatic extraction of 550kV transmission lines from in 
cluttered backgrounds. The potential power line pixels are acquired by Ratio operator, 
and then part Radon transform is used to acquire and link the segments. A PCNN 
filter is developed to remove background noise from the images prior to the Hough 
transform being employed to detect straight lines in [7]. The image segmentation is 
applied to S component in HSI space by Huang and Zhang[8] using the maximum 
entropy threshold method based on genetic algorithm. 

In 1999, Lowe[9] proposed a new feature descriptor Scale Invariant Feature Trans-
form (SIFT) based on image gradient distribution. The features are invariant to image 
scale and rotation, and provide robust matching across a substantial range of affine 
distortion. This paper presents a new method for aerial images recognition and fault 
diagnosis of transmission system based on SIFT features matching, which provides a 
basis for follow-up maintenance. 
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2 Fault Diagnosis for Transmission System 

Camera shake in the course of aerial photography causes distortion, blurring and 
anamorphous of aerial images. And illumination variation can lead to brightness va-
riance problems as well. The image features extracted by conventional feature extrac-
tion algorithms will be changed with the deformation of the target object, which will 
generate failure or fault in the step of image matching. 

SIFT is an algorithm in computer vision to detect and describe local features in 
images. The SIFT features are local and based on the appearance of the object at par-
ticular interest points, and are invariant to image scale and rotation[10]. They are also 
robust to changes in illumination, noise, and minor changes in viewpoint. In addition 
to these properties of SIFT algorithm, it is highly distinctive, predictably easy to 
match electrical equipment and hardware fittings such as steel towers, insulators, 
vibration dampers and spacers[11]. In this study, the aerial images of transmission line 
malfunctions are extracted via matching, correction, detection and diagnosis. The 
SIFT algorithm is used in the step of matching, which means finding a one-to-one 
correspondence between sample images and template images. 

2.1 The SIFT Algorithm 

As described in [12], the SIFT algorithm has four major stages: (1) scale-space peak 
selection; (2) keypoint localization; (3) orientation assignment; (4) keypoint descrip-
tor. The main idea of SIFT is detecting local peaks in difference-of-Gaussian (DoG) 
images, and acquiring their locations, scales and orientations. The scale space L(x, y, 
σ) of an image I(x, y) is defined as (1). 

 ( ) ( ) ( ), , , , ,L x y G x y I x yσ σ= ∗  (1) 

where G(x, y, σ) is Gaussian function with variable scale σ. 
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In order to detect stable keypoints in L(x, y, σ), the DoG function, D(x, y, σ), com-
puted from the difference of two nearby scales, is used[12]. 
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Scale extrema are obtained by comparing each sample point to its 26 neighbors in a 
3×3 cube which is centered on the sample point. In fact, these extrema that are close 
together are quite unstable to small perturbations of the image. We can determine the 
best choices through experiments of sampling frequencies. 
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By assigning a consistent orientation to each keypoint based on local image proper-
ties, the keypoint descriptor can be represented relative to this orientation and therefore 
achieve invariance to image rotation. An orientation histogram is formed from the 
gradient orientations of sample points within a region around the keypoint. The orien-
tation histogram has 36 bins covering the 360 degree range of orientations. As shown 
in Fig.1, the highest peak in the histogram is detected to assign its orientation to  
keypoint. 

 

Fig. 1. Orientation histogram of sample points 

The previous operations have assigned an image location, scale, and orientation to 
each keypoint. These parameters impose a repeatable local coordinate system in which 
to describe the local image region, and therefore provide invariance to these parame-
ters. The next step is to compute a descriptor for the local image region that is highly 
distinctive yet is as invariant as possible to remaining variations. A keypoint descriptor 
is created by first computing the gradient magnitude and orientation at each image 
sample point in a region around the keypoint location. Then these samples are then 
accumulated into orientation histograms with 8 orientation bins. The descriptor is 
formed from a vector containing the values of all the orientation histogram entries, 
corresponding to the lengths of the arrows. The best results are achieved with a 4×4 
array of histograms. Therefore, the experiments in this paper use a feature vector in-
cluding 128 elements for each keypoint[13]. 

 

Fig. 2. SIFT features matching for transmission system 

The Euclidean distance between two feature vectors is used to determine whether 
the two vectors correspond to the same keypoint in different images. The principle of 
correctly matching can be determined by the ratio among distance of the closest 
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neighbor and the distance of the second closest[14]. A threshold is given in advance. If 
the ratio is lower than threshold, the matching is accepted. Smaller ratio threshold 
means less matching feature points but more reliability. Figure 2 shows that SIFT al-
gorithm can get and match the features of the transmission line accurately, and is inva-
riant to the scale and rotation changes to meet the requirements of transmission system 
inspection. 

2.2 Image Registration Based on FMT 

The model images and sample images are obtained in previous and next transmission 
system inspection respectively, which are different both in space and time. Usually 
the images of 3D objects are very complex[15]. In practice, the movement of objects 
such as zoom and rotation can be simplified to planar motion approximately, just like 
the case proposed above[16]. Following, FMT is used to realize calibration and regis-
tration on model and sample images after SIFT match[17]. 

Assume that after translations of f1(x, y) by x0 and y0 in directions x and y respec-
tively, we get f2(x, y): 

 ( ) ( )2 1 0 0, ,f x y f x x y y= − −  (4) 

Assume that the Fourier transforms of f1(x, y) and f2(x, y) are F1(u, v) and F2(u, v) 
respectively, the relationship of F1(u, v) and F2(u, v): 

 ( ) ( ) ( )0 0

2 1, , j ux vyF u v F u v e− +=  (5) 

So the cross-power spectrum of f1(x, y) and f2(x, y) can be written in (6): 

 
( ) ( )
( ) ( )

( )0 01 2

1 2

, ,

, ,
j ux vyF u v F u v

e
F u v F u v

∗
+

∗

⋅
=

⋅
 (6) 

where, F1
*(u, v) and F2

*(u, v) are complex conjugates of F1(u, v) and F2(u, v) respec-
tively. In space (x, y), there will be a unit impulse function at (x0, y0) by inverse Fourier 
transform of (6), as shown in Fig. 3(a). The impulse localization is just the relative 
translations x0 and y0

[18]. Because of the partial occlusion of model and sample as well 
as noise and error, the correlation value distribution of inverse Fourier transform of (6) 
is shown in Fig. 3(b). On the contrary, if the planar motion transform of model and 
sample is not satisfied, there will not be an obvious peak of inverse Fourier transform of 
(3), as shown in Fig. 3(c). 

For rotation and scale transform, the same results can be achieved through polar 
coordinate and logarithm change. Fig. 4(a) and Fig. 4(b) are the model image and the 
sample image respectively, and Fig. 4(c) is the image after calibration, where the 
angle correction and scale transform are both executed. 
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    (a) Idea peak      (b) Real peak     (c) Mismatching peak 

Fig. 3. Correlation value distribution of FMT image 

 

  (a) Model image   (b) Sample image  (c) Calibration image 

Fig. 4. FMT calibration for image of transmission system 

2.3 Fault Image Recognition 

After the image matching and accurate registration, in order to improve the computa-
tion speed, we get the image variation using the difference of two images. Allowing for 
the recognition reliability, the fault images can be recognized via setting proper thre-
shold. Because of the accuracy error, model image and calibration image usually are 
not complete registration, as shown in Fig. 4. The calculated zoom coefficient is 
1.0967, while the real zoom coefficient is 1.10. Fig. 5(a) shows the difference binary 
image of model image and calibration image. 

    

  (a) Original Binary Image    (b)Processed Binary Image 

Fig. 5. Difference of Model and Calibration binary images 

Tiny line segments are detected through Hough transform in difference image[21]. 
And then, the necessary changes in difference image are left after deleting tiny line 
segments. Figure 5(b), which indicates a vibration damper loss, is the binary image of 
difference image after deleting tiny line segments. 
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3 Fault Diagnosis System 

3.1 System Test 

The fault diagnosis system of transmission system inspection contains 4 basic mod-
ules: image matching, image calibration, fault diagnosis and display[22-23]. System 
processing diagram is shown in Fig. 6. 

 

Fig. 6. System processing diagram 

 

Fig. 7. GUI of fault diagnosis system 

As shown in Fig. 7, model images and sample images are listed in listboxes 1 and 2 
respectively, as well as matching result in listbox 3 and fault images in listbox 4. The 
fault image and corresponding model image are displayed on the right when we select 
the image name in listbox4. 
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3.2 Result Analysis 

The whole sample set contains 500 aerial images obtained on UAV, and there are 50 
fault samples and 450 normal samples respectively. The result shows that 55 samples 
are regarded as fault images by system, including 6 normal samples misdiagnosed. 
The great variation of those samples causes the misdiagnosis. One damaged cable 
fault is regarded as normal sample because of its linearity feature which is hardly 
detected. 

Table 2. Test result of real UAV aerial images 

Fault 

Samples 

Fault Samples 

Recognized 

Fault Samples 

Missed 

Samples 

Misdiagnosed 

Reliability 

Rate 

Accuracy 

Rate 

50 55 1 6 98% 98% 

 
As shown in Table 2 reliability rate of the fault diagnosis is 98% while accuracy 

rate is 89%. Since the fundamental principle of the system is pick up the potential 
fault samples reliably from plenty of aerial images, the method mentioned in this 
paper is significant to the research on fault diagnosis of transmission system based on 
pattern recognition. 

4 Conclusion 

Contrast to artificial detection, transmission system inspection using UAVs has nu-
merous advantages. However, it brings huge amounts of aerial images, which will 
also need intensive labor. A fault diagnosis method using SIFT and FMT is developed 
for solving this problem. The experiment of diagnosis system shows that the fault 
images can be recognized accurately and quickly, and the accuracy of the proposed 
method reaches 98% on real UAVs aerial images, which will assist pipeline riders to 
obtain the information of transmission lines condition in time. 
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Abstract. In this paper, a pneumatic actuator fault diagnosis method based on GA 
optimized BP neural network and fuzzy logic is proposed. First of all, the Genetic 
algorithm is used to optimize the weights of BP neural network, overcoming the 
shortcoming of neural network including over learning and local optimum. Then 
the normal actuator model is trained by the GA optimized BP neural network 
using the health data of actuator. The residual is generated by comparing the 
output of the BP trained actuator model and the actual actuator, which is used to 
detect the fault. Finally, fuzzy logic reasoning is used to isolate the fault type of 
actuator. The simulation results based on DAMADICS valve model and Lublin 
Sugar Factory failure data indicate that the proposed method can detect and 
diagnosis fault of actuator fast and accurately.  

Keywords: pneumatic actuator, fault diagnosis, GA, BP neural network, fuzzy 
logic. 

1 Introduction 

Pneumatic actuator relies on compressed air as its power, which can be simple to 
realize rapid linear circular movement, with its simple structure, convenient 
maintenance, no pollution, and can be used in all kinds of bad working environment 
such as an explosion protection requirements, dust or wet condition, is widely used in 
the field of industrial automation. It plays an important role in the process industry. 
As most actuators work in high temperature, high pressure and corrosive 
environment, and the movement is frequent, each component is prone to failure, so 
the research on actuator fault diagnosis technology is very important to the reliability 
of the whole system. Due to its own structure and materials problems, there are some 
characteristics such as the inherent nonlinear, time delay, parameter drift, static 
friction and dynamical friction and mechanical initial return error of pneumatic 
actuator [1]. Therefore, there are many difficulties and challenges in the research of 
pneumatic actuator fault diagnosis method. 

All kinds of pneumatic actuator fault diagnosis methods have been proposed, 
mainly divided into three categories, namely, the methods based on the analytical 
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model, neural network and signal processing [2]. These methods have themselves 
advantages and the combination of many different kinds of intelligence technologies 
will be a trend of actuator fault diagnosis, especially the combination of neural 
network, fuzzy logic and expert system [3]. In this paper, it takes the DAMADICS 
valve simulation model and Lublin Sugar Factory industrial control system as the 
application background, pneumatic actuator fault diagnosis method based on GA 
optimized BP neural network and fuzzy logic is proposed. Firstly, using GA to 
optimize weights and thresholds of BP neural network. Then training the health 
actuator by the optimized BP neural network, and compared with the output of actual 
actuator to get residuals of fault and completed fault detection. Finally, using the 
method of fuzzy logic reasoning to complete fault isolation. 

2 BP Neural Network Optimizing Using Genetic Algorithm 

At present, BP neural network is one of the most mature neural network models. With 
the abilities of self-learning, self-adaptability, robustness and generalization, the BP 
neural network has been widely used in pattern recognition, function approximation, 
image processing and other fields. But the BP neural network converges very slowly 
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Fig. 1. The flow chart of BP neural network optimizing based on genetic algorithm 
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and is likely to fall into local minimum point. The genetic algorithm which can finish 
global parallel random search and converge to the global optimum, is a kind of bionic 
algorithm in macro significance. Thus, the combination of genetic algorithm and BP 
neural network is helpful to improve the global search ability and get stable network. 
The rate of convergence can be increased by using genetic algorithm to optimize 
weights and thresholds of BP neural network. Also it is able to overcome the 
disadvantage of easily getting into local minimum point, the number of the hidden 
layer neuron is solved according to optimizing the network structure. Then the 
optimized BP neural network based on genetic algorithm is established [4]. 

The step of the combination of genetic algorithm and BP neural network is as 
follows: 

Step 1: The optimization parameters are encoded to generate initial population; 
Step 2: The population is optimized by genetic algorithm; 
Step 3: Computing the corresponding parameters and to see whether or not they 

meet the conversion condition between BP algorithm (in this paper, the conversion 
condition gm=100), if meet them step 4 will be carried out. Otherwise, step 2 is 
continued; 

Step 4: The chromosome is decoded and the population is optimized by BP 
algorithm; 

Step 5: Computing the target error of network. And the training will finish if the 
error satisfies the end condition. Otherwise, the population is optimized by BP 
algorithm unceasingly. The flow chart is shown in Fig. 1. 

3 Fault Diagnosis of Pneumatic Actuator 

3.1 The Structure and Common Fault Description of Pneumatic Actuators  

Pneumatic actuator consists of three parts, pneumatic actuator, positioner and control 
valve [5], as shown in Fig. 2. Actuator keeping continuous and completing the given 
functional requirements in a certain period of working time, so that making the given 
 

 

Fig. 2. The structure of pneumatic actuator 
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parameter value to maintain within the limits prescribed and this kind of performance 
is called the trouble-free performance, when the performance is damaged it will 
generate a fault. Literature [6] summarized the 19 kinds of typical fault, such as Table 
1 shows: 

Table 1. The 19 kinds of typical fault 

Fault Description Fault Description 
f1 valve clogging f11 servomotor spring fault 

f2 valve or valve seat sedimentation f12 
electro-pneumatic transducer 

fault 
f3 valve or valve seat erosion f13 stem displacement sensor fault 
f4 increase of valve friction, f14 pressure sensor fault 

f5 
external leakage (leaky bushing, 

covers, terminals) 
f15 positioner spring fault 

f6 internal leakage (valve tightness) f16 
positioner supply pressure 

drop 

f7 medium evaporation or critical flow f17 
unexpected pressure change 

across valve 

f8 twisted servo-motor stem f18 
fully or partly opened bypass 

valves 

f9 
servomotor housing or terminal 

tightness 
f19 flow rate sensor fault 

f10 servomotor diaphragm perforation   

3.2 Fault Detection  

Fig. 2 shows that the input and output of the pneumatic actuator have the following 
parameters: 

Input: CV (Control Value): valve position command signal; P1 (Press inlet): 
pressures on valve: inlet; P2 (Press outlet): pressures on valve: outlet. 

Output: X: valve plug displacement; F (Flow): actuator flow rate signal. 
According to the principle of actuator action, it is known that there are some 

function relationships between the input and output of the actuator. Therefore, to 
establish the mathematical model as follows. 

( )X f CV
∧

=                                       (1) 

( ), 1, 2F f X P P
∧

=                                    (2) 

( ), 1, 2F f CV P P
∧

=                                   (3) 

( )F f X
∧

=                                        (4) 

( )F f CV
∧

=                                       (5) 
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When fault occurs, fluid flow F or valve plug displacement X will be abnormal, the 
function relationships above will change. Actuator failures can be detected by 
detecting these changes. The intuitive method of abnormality detection is to detect the 
residuals of output of fault actuator and normal actuator. From the above five models 
draw the residuals as follows: 

( )
1
r X X CV

∧

= −                                        (6) 

( )
2

, 1 2r F F X P P
∧

= − −                                  (7) 

( )
3

, 1 2r F F CV P P
∧

= − −                                (8) 

( )
4

r F F X
∧

= −                                       (9) 

( )
5

r F F CV
∧

= −                                     (10) 

DAMADICS model is a classic valve fault simulation model [6], it can produce various 
types and intensities fault data, and also can import the actual industrial data into the 
simulation model. The model can generate the fault as in Tab.Ⅰ. In this paper, actual 
industrial data which import into DAMADICS model is come from Lublin Sugar 
Factory, These data are produced in trouble-free operation. We conduct research for the 
valve of the Lublin Sugar Factory, and import P1, P2, X, F into model, and then add 19 
kinds of fault to simulation model so as to get fault data. Each fault runs 100 times, each 
time runs 2000 seconds, and eventually we got the 100 samples. 

Using GA-BP network to process the data sample, and choose appropriate neurons 
of hidden layer and output layer, and construct five neural networks. Using trouble-
free sampling data of actuator as learning samples to train the network, and the GA 
was used to optimize the weights of neural network, so that the neural networks 
approach above five actuator models. Comparing the difference of the actual output 
and network output to produce residuals, and if one or a plurality of r1 ~ r5 
abnormality, it suggests that there is a fault occurs. 

For example, f7 and f13, its trend graph of r1 ~ r5 are shown in Fig.3 and Fig.4. 
From Fig. 3 and Fig. 4 we can see, when f1 or f7 occurs, r1 ~ r5 is abnormal, but the 
symbol of residuals is different. Some simulations were carried out for 19 kinds of 
fault, through analysis carefully. We found that once one or more of the residual 
signals abnormality, there must be a fault occurs. 

3.3 Fault Isolation  

When a fault occurs, the residuals will be abnormal, the absolute value of residuals 
will be larger. Thus, we put forward the fuzzy rules as follows: 

If ir  is “big” then ir =+1; (when ir >0) 

If ir  is “small” then ir =-1; (when ir <0) 

If ir  is “appropriate” then ir =0; 
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Through the analysis of the fault residuals, found that the combination of abnormal 
residuals is different, so the type of fault is different. For example, when the fault f7 
and f13 respectively occurs, the trend performance of r1 ~ r5 is different (see Fig.3 
and Fig.4). When f7 occurs, r1=-1, r2=r3=r4=r5=1. However, when f13 occurs, r1=0, 
r2=r3=r4=r5=-1. Thus, the fault isolation can be completed. According to the value of 
each group of residuals to separate the fault and get fault isolation table (see Table 2). 
 

0 1000 2000
-1

-0.5

0

0.5
r1

0 1000 2000
-0.5

0

0.5

1
r2

0 1000 2000
-0.5

0

0.5

1
r3

0 1000 2000
-0.5

0

0.5

1
r4

0 1000 2000
-0.5

0

0.5

1
r5

 

Fig. 3. r1 ~ r5 trend graph of fault f7 
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Fig. 4. r1 ~ r5 trend graph of fault f13 

With r1, r2, r3, r4, r5 as input, FGN0, FGN1...FGN9 as output, constructing Fault 
Detection Diagnosis and Fuzzy Inference System (FDDFis) in Matlab FIS Editor. 
According to the discussion of residual fuzzification, using trapezoidal membership 
functions to fuzzy the input. According to the fault isolation table (see Table 2), can 
get the following diagnosis rules: 
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RULE1:IF r1=0 AND r2=0 AND r3=0 AND r4=0 AND r5=0 THEN FGN0=1 
FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=0;RULE2:IF r1=-1 AND r2=1 AND r3=1 AND r4=1 AND r5=1 THEN 
FGN0=0 FGN1=1 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=0;RULE3:IF r1=0 AND r2=0 AND r3=0 AND r4=0 AND r5=1 THEN 
FGN0=0 FGN1=0 FGN2=1 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=0;RULE4:IF r1=0 AND r2=1 AND r3=0 AND r4=0 AND r5=1 THEN 
FGN0=0 FGN1=0 FGN2=0 FGN3=1 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=0; 

RULE5:IF r1=0 AND r2=0 AND r3=0 AND r4=0 AND r5=-1 THEN FGN0=0 
FGN1=0 FGN2=0 FGN3=0 FGN4=1 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=0;RULE6:IF r1=0 AND r2=-1 AND r3=-1 AND r4=-1 AND r5=-1 THEN 
FGN0=0 FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=1 FGN6=0 FGN7=0 FGN8=0 
FGN9=0;RULE7:IF r1=0 AND r2=1 AND r3=1 AND r4=1 AND r5=0 THEN 
FGN0=0 FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=1 FGN7=0 FGN8=0 
FGN9=0;RULE8:IF r1=0 AND r2=1 AND r3=1 AND r4=1 AND r5=1 THEN 
FGN0=0 FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=1 FGN8=0 
FGN9=0; 

RULE9:IF r1=0 AND r2=0 AND r3=0 AND r4=1 AND r5=1 THEN FGN0=0 
FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=1 
FGN9=0;RULE10:IF r1=1 AND r2=-1 AND r3=-1 AND r4=-1 AND r5=-1 THEN 
FGN0=0 FGN1=0 FGN2=0 FGN3=0 FGN4=0 FGN5=0 FGN6=0 FGN7=0 FGN8=0 
FGN9=1; 

Table 2. Fault isolation table 

Fault Isolation Group r1 r2 r3 r4 r5 Fault Type 

FGN0 0 0 0 0 0 fault free 

FGN1 -1 1 1 1 1 f1,f7,f10,f16 

FGN2 0 0 0 0 1 f2,f3,f5,f6 

FGN3 0 1 0 0 1 f4 

FGN4 0 0 0 0 -1 f8,f9 

FGN5 0 -1 -1 -1 -1 f11 

FGN6 0 1 1 1 0 f12 

FGN7 0 1 1 1 1 f13,f17f18,f19 

FGN8 0 0 0 1 1 f14 

FGN9 1 -1 -1 -1 -1 f15 

Remark: FGN0(Fault Group Number 0), meaning fault isolation group 0. 
 
Put these rules input the rule editor to generate FDDFis system. For f7, as an 

example, shows the working condition of the system. Making the fault residuals input 
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to the fuzzy system FDDFis, got the fault diagnosis result. The output of FGN1 is 1, 
according to our fault separation matrix, f7 is belong to the type of FGN1. For other 
faults also made a similar simulation test, the result is consistent with the idea. It 
indicates that the algorithm is effective. 

4 Conclusion 

In this paper, a pneumatic actuator fault diagnosis method based on GA optimized BP 
neural network and fuzzy logic is presented. Firstly, it puts forward five actuator 
models and fault residuals models, then using BP network optimized by GA to 
structure the five models, and got the fault residuals, through detecting the residuals 
found that whether actuator failure or not, namely fault detection. Through the 
analysis of the fault residuals obtained the fault isolation matrix, according to the 
matrix abstracted out fuzzy rules of the fault isolation, then constructed Fault 
Detection Diagnosis and Fuzzy Inference System with the residuals for input and fault 
isolation group for output. Using GA to optimize the BP neural network improved the 
convergence speed and accuracy of network effectively. By a lot of simulation tests, 
the result shows the method can realize fault detection and fault isolation. But this 
method also has some deficiencies, to some faults such as f10, f16, the separation 
effect is ineffective, so the parameters of input membership function and neural 
network should be further improved. 
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Abstract. We apply the radial basis functions (RBF) decoder adopting Gaussian 
function for the Turbo product codes (TPC). An extrinsic information extraction 
scheme based on RBF neural networks (NN) is suggested, and a novel RBF 
NNs decoding algorithm is proposed. The extrinsic information transfer (EXIT) 
charts have been used to analyze the convergence property of the TPCs. The 
EXIT chart analyses show that the proposed decoding algorithm could achieve 
convergence with about 5 iterations, and improve BER performance in low 
Eb/N0 regions. Simulation results show that the proposed algorithm achieves 
promising BER performance while decreasing decoding computation compared 
with the maximum a posterior (MAP) algorithm. 

Keywords: Artificial neural networks (ANN), iterative decoding, radial basis 
functions (RBF), Turbo product codes (TPC). 

1 Introduction 

In 1993, Berrou et al. proposed a class of powerful error-correction codes, Turbo 
codes, which make it possible to transmit data with code rate approaching channel 
capacity [1][2]. Turbo codes are capable of achieving exceptionally low bit error rate 
(BER) with the signal-to-noise ratio (SNR) per information bit (Eb/N0), which is close 
to Shannon’s theoretical limit over Gaussian channel [2][3]. In 1994, Pyndiah et al. 
proposed the class of block Turbo codes (BTC) [4][5], which attain low BER over 
Gaussian channels at a high code rate. Their studies were the extended to the other 
classes of codes, such codes as Reed-Solomon (RS) codes [6] and extended Hamming 
codes [6]. The applications of Turbo product codes (TPC) in wireless and optical 
communications were considered in [8] [9] [10].  
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However, all the above mentioned investigations were in the case of long codes 
associated with the decoding algorithm of maximum a posterior (MAP) or its 
modified versions, such as the algorithm proposed in [11]. Therefore, the complexity 
of the decoding algorithms is rather high and decoding delay is also long. In order to 
meet different requirements of Quality of Service (QoS), it is necessary to provide a 
decoding algorithm to get a trade-off between low BER and short decoding delay.  

Employing artificial neural networks (ANN) for channel decoding is a smart 
technique to reduce decoding complexity for short and medium-sized TPC codes. El-
Khamy et al. proposed an ANN for decoding block codes [12]. Due to their inherent 
parallel processing capability, ANN is recognized as a kind of promising techniques 
for error correction to meet the requirement of high data-rate transmission. Based on 
the error back propagation (EBP) algorithm, in [13] Annauth et al. proposed a scheme 
for decoding Turbo codes. However, the proposed approach in [13] yields poor error 
performance, though the decoding complexity is low. The ANN based decoder for 
Turbo codes is more reliable to get a better BER value in wireless channels [14]. 
Besides decoding, ANN has been applied in channel equalization [15][16]. 

The hidden layers of radial basis function (RBF) networks [12][17] are capable of 
transforming the input vectors from a lower-dimensional vector space to the 
corresponding vectors in a higher-dimensional space, where they can be classified, 
even though they are unable to be classified in the lower-dimensional one. The 
applications of RBF in communications are explored. For example, for channel 
equalization, Yee and Hanzo et al. [17] proposed an algorithm in which the 
information exchange between Soft-Input Soft-Output RBF (SISO-RBF) equalizer 
and SISO channel decoder was implemented to accomplish iterative processing. Deng 
et al. [18] proposed a complex-valued minimal RBF NN in channel equalization of 
QAM. Liu et al. [19] proposed a decoding algorithm for BTC based on RBF NN since 
the decoding algorithm for these codes has become a focus in the area [20].  

In this paper, the decoding of TPCs using the RBF NNs is further considered. 
Since the RBF NNs have the characteristics of simple model and parallel 
computation, employing the RBF NNs for decoding Turbo product codes is capable 
of simplifying the decoding model and decreasing the decoding complexity compared 
with MAP algorithm. Furthermore, EXIT analyses and experiments show that the 
proposed algorithm can achieve promising BER performance. 

2 Traditional Extrinsic Information Computation 

TPCs are based on product codes. The product codes P(n, k, d) is constructed by two 
component codes C1(n1, k1, d1)  and C2(n2, k2, d2), forming P = C1⊗C2, where n= 
n1×n2, k= k1×k2 and d= d1×d2 [5]. The code rate R of P(n, k, d) is R = R 1×R 2, where R i 
is the code rate of Ci(ni, ki, di) (i=1, 2). Provided that a SISO decoder for decoding the 
rows and columns of P(n, k, d), we can iterate the sequential decoding of P(n, k, d) 
and thus reduce the BER by more iterations.  

At each iteration of the iterative decoding, the extrinsic information is forwarded to 
the followed iterations to improve the performance [2][5]. For TPCs, the traditional 
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method of extrinsic information computation was proposed by Pyndiah et al. [4][5]. 
Hence, the notations used in [4] are adopted here for convenience. 

Consider a transmitted codewords vector E encoded by using a linear block code C 
with parameters (n, k, d). Suppose the code vector is transmitted over Additive White 
Gaussian Noise (AWGN) channels using binary phase-shift keying (BPSK), such that 
0 1→ −  and 1 1→ + . Then, for the transmitted codeword sequence E=(e1,…,ei,…en), 
the received sequence R=(r1,…ri,…,rn) at the output of the Gaussian channels can be 
expressed by  

= +R E G , (1)

where G=(g1,…,gl,…,gn) and its components gl are AWGN samples with mean zero 
and standard deviation σ. Denote the decoded codeword at the decoder output as 
D=(d1,…, dj,…dn). Assuming that different codewords are uniformly distributed and 
applying Bayes’ rule, the reliability of dj is measured by log-likelihood ratio (LLR) of 
decision dj as 
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where 1
jS +  and 1

jS −  are the sets containing the indices of codewords with cij = +1 and 

cij = -1, respectively, Ci=(ci1,…, cil,…cin) is the ith (i=1, 2,…, 2k) codeword of C, and 
Pr {E=Ci | R} is the probability of E=Ci when the received sequence R is given. 
Pr{ | }i=R E C  is the probability density function of R conditioned on E = Ci, 

expressed by Eq.(9) in [4]. Combining the Eq. (2) and the approximation used in Eqs. 
(10) to (13) in [4] and, an approximation expression for the LLR of decision dj is 
obtained by 
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where zj is referred to as extrinsic information and its value can be computed by the 
formula 
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Let us now consider the iterative decoding algorithm designed based on the RBF 
NNs. 
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3 Iterative Decoding Algorithm Based on RBF NNs 

Based on Eq. (4) of the previous section, a novel extrinsic information computation is 
firstly derived after considering the characteristics of RBF NNs. A modified RBF NN 
model is proposed for the decoding algorithm. Then, a novel iterative decoding 
algorithm for TPCs, based on RBF NNs is presented in detail. Finally, EXIT charts 
are used to analyze the proposed decoding algorithm. 

In this correspondence, the RBF model is considered as a multi-layer feed-forward 
NN which with structure shown in the 1st figure in [19] (i.e., Fig. 1 in [19]). For (n, k) 
linear block codes, there are 2k centers denoted as tmi ( 1, 2, ... ,m n= , 1, 2, ... ,i n= ). 

The connection weights between the hidden layer and the output layer are denoted as 
ωij ( 1, 2, ... ,2ki = , 1, 2, ... ,j n= ). Hence, as shown in the 1st figure in [19] (i.e., Fig. 1 

in [19]), the input layer in the RBF model has n neurons, indexed by m. The hidden 
layer has 2k neurons, which are indexed by i, and the “Basis Function” of the ith 
hidden neuron is denoted by (R, ti). Assume that the “Basis Function” consists of the 
Gaussian function, which is represented as 

2 2( , ) ( ) exp( / 2 )i i i iGϕ σ= − = −R t R t R t 2 2

1

exp ( ) / 2
n

m im i
m

r t σ
=
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where 1[ ,..., ,..., ]m nr r r=R is the input vector of the RBF network, 1 2 ,[ , ,..., ]i i i i nt t t=t  is the 

RBF center receiving the values of the permissible codewords of the (n, k) linear block 
codes, and 2

iσ  is the variance of the AWGN noise. The output of the RBF NN is given by 

' = ⋅R G W , (7)

where, the 1×n matrix ' ' ' '
1[ ,..., ,..., ]m nr r r=R is the output of the RBF NN, G=[ (R, t1),…, (R, 

ti),… (R, tI)] is a 1×2k matrix containing the “Basis Functions” of RBF NN in the form of 
Eq. (6), and W=[ωij] is the 2k×n dimensional weight matrix of the RBF NN. 

Note that in our previous research [19], the RBF decoder shown in the 1st figure in 
[19] is used instead of the traditional decoder for Turbo codes, and a RBF NNs 
assisted decoding scheme for BTC is proposed in [19]. In that scheme, the weights of 
the RBF NNs were obtained by training or by computing (fixed). By contrast, for the 
decoding algorithm using fixed weights, the weights-matrix can be constructed by the 
centers of the RBF networks, with their values set to +1 or -1. In the following, the 
extrinsic information computation and the decoding algorithm will be considered. 

3.1 Extrinsic Information Computation Based on RBF NNs 

As shown in Eq. (6), the “Basis Function” of RBF NNs is assumed to be the Gaussian 
function, so 
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Therefore, the reliability of dj can be denoted in terms of the “Basis Function” of RBF 
NNs. Combining Eqs. (3) (8) then rearranging the result, the extrinsic information zj, 
can be obtained as 
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Based on [5], the normalized LLR jr '  can be taken as the soft output of the decoder, 

which is the sum of rj of the soft input of the decoder and zj of the extrinsic 
information. jr '  is expressed by 
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So far, the soft output '
jr of decoder and the extrinsic information zj have been 

expressed by the “Basis Function”. However, Eq. (10) is not the output of traditional 
RBF NNs, and here can not be implemented by traditional RBF NNs. Therefore, it is 
required to modify the model of traditional RBF networks to construct new RBF NNs 
for implementing Eq. (10), which are now analyzed. 

From Eq. (7), we can see that the weight matrix W is constructed by the centers of 
the RBF networks. In other words, the matrix W can be constructed with the 
permissible codeword Ci, with its components equaling to +1 or -1. In Eq. (10), 
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Similarly, the denominator of Eq. (10) is equal to the sum of all the RBF NNs’ “Basis 
Functions” with their weights equaling -1, 
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Upon splitting each neuron at output layer of the 1st figure in [19] into two neurons, 
the soft outputs of the RBF decoder are  
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yj,+1 and yj,-1 are the outputs of two neurons, where one deals with the weights 
equaling +1 and the other one with the weights equaling -1. From Eq. (10) the 
extrinsic information can be expressed as  

2
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j j

j

y
z r
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σ +

−

 
= −  

 
. (14)

In summary, a novel RBF NNs for SISO decoding and extrinsic information 
computation can be shown as Fig. 1. Compared with the previous model of the 1st 
figure in [19] (i.e., Fig. 1 in [19]), there are two different components in the novel 
model shown in Fig. 1. First, each of the neurons at the output layer is split into two 
sub neurons. Second, dividers are applied to compute the extrinsic information. The 
next part details the iterative decoding algorithm. 
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Fig. 1. The novel RBF NNs decoding mode 

3.2 Iterative Decoding Algorithm Based on RBF NNs 

The iterative RBF NNs decoding algorithm for TPCs is illustrated in Fig. 2. As shown 
in Fig. 2, the notations LC and LR are used to denote the LLR reliability values output 
by the RBF column decoder and the RBF row decoder, respectively. The subscripts e, 
s, a, and p are used to specify the extrinsic LLR, the combined channel and extrinsic 
LLR, the a priori LLR and the a posteriori LLR, respectively. Le, Ls and Lp are 
defined as 1[ ,..., ,..., ]e j nz z z=L , Ls = 1 j nr r r[ , ..., , ..., ] and Lp = 1 j nr r r' ' '[ , ..., , ..., ] , respectively. 

Referring to Fig. 2, the RBF column decoder processes the channel outputs R and the 
a priori information of the column decoder C

aL  which is provided by the extrinsic 

information of row decoder R
eL  multiplied by the scaling factor α which is called 

scaling factor (or weighting factor) as explained in [4], generating the a posteriori 
LLR values of the column decoder C

pL . Therefore, the input of column decoder C
sL  

and row decoder R
sL are given separately by 
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C C R
s a eα= + = + ⋅L R L R L , (15a)

R R C
s a eα= + = + ⋅L R L R L . (15b)

From Eq. (8), the “Basis Function” of the RBF column decoder can be denoted as 
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Let the output of the RBF column decoder be ' ' '
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p j nr r r=L . From Eqs. (13) and 
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Before passing the a posteriori LLR C
pL  generated by the RBF column decoder to the 

RBF row decoder, as shown in Fig. 2, the contribution of the row decoder denoted by 
C
sL  in Eq. (15b) accruing from the previous column decoding must be removed, in 

order to yield the extrinsic information C
eL  of the RBF column decoder. In other 

words, the a priori information C
aL  of column decoder and the channel output R are 

removed at this stage in order to prevent the decoder from processing its own output 
information again, which would result in excessive influence on the decoder’s current 
reliability estimation for the coded bits. So, after the RBF column decoding, with the 
aid of Eq. (15a) and Eq. (15b) the extrinsic information C

eL  of the RBF column 

decoder and R
eL  of the RBF row decoder can be given separately as 
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Fig. 2. Iterative decoding of BCH(n, k)2 Turbo product codes with RBF NNs 
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C C C C R
e p s p eα= − = − ⋅ −L L L L L R , (18a)

R R R R C
e p s p eα= − = − ⋅ −L L L L L R . (18b)

Here, C
aL , which is yielded by multiplying R

eL with the scaling factor α, is used as the 

a priori information in the next iteration of decoding as shown in Fig. 2. By now, the 
first iteration of decoding is completed. 

It is important to note that only the extrinsic information, R
eL  in R

pL , is fed back to 

the RBF column decoder in order to minimize the inter-dependence between the a 
priori information C

aL  used by the column decoder and the previous decoding 

information. Furthermore, after the final iteration, the a posteriori LLR R
pL  of an 

information symbol is computed and the hard decision is yielded according to Eq. (5). 
By comparing of the RBF NN decoding scheme with the traditional Turbo 

decoding scheme, the major difference in the RBF NN decoding processes lies in the 
fact that the RBF column and row decoders employ the RBF NNs assisted decoding. 

3.3 EXIT Charts of RBF NN Based on Iterative Decoding 

The Extrinsic Information Transfer (EXIT) chart technique is very useful in 
performance analysis of iterative decoding [21], which can be employed for 
predicting the convergence behavior of Turbo codes. Compared with Monte Carlo 
simulations of the BER vs Eb/N0 performance, the EXIT charts need much fewer 
frames to predict the three regions which are the low Eb/N0 region, the “waterfall” 
region and the error-floor region [22] in the respective BER performance figures. The 
EXIT chart is beneficial to the analysis of the bit error rate prediction of Turbo codes 
[23]. In this part, the EXIT chart is applied to analyze the performance and 
convergence behaviors of the TPCs with proposed decoding algorithm. 

As shown in the previous sections, the extrinsic information C
eL  of the RBF column 

decoder and R
eL of the RBF row decoder are computed based on Eq. (18a) and Eq. 

(18b), respectively. The extrinsic information Le, representing C
eL  or R

eL , of the RBF 

column decoder or row decoder are considered as a prior input to the decoder. The 
method proposed in [22] could be applied to compute mutual information in decoding. 
The extrinsic information, R

eI  or C
eI  computed according to [22] is the mutual 

information of the RBF row decoder or the RBF column decoder. 
In this paper, the mutual information of the TPC BCH code (15, 7)2 is considered, and 

hence shown in Table 1, as well as in Fig. 3. Based on the results shown in Table 1, the 
three performance regions mentioned before can be roughly identified for the BCH (n, k)2

 

product codes according to the change tendency of mutual information [22]. 
The EXIT charts in different iterations with different Eb/N0 are constructed to find the 

number of iterations at which the convergence occurs, as shown in Fig. 3. The trajectory 
indicates how mutual information changes during decoding. If the mutual information in 
some iteration is close to the one in some other iteration, we predict that the iterative 
decoding is to converge. For BCH (15, 7)2 product code, the iterative decoding trajectories 
are shown in Fig. 3. At Eb/N0=1dB, the decoding is to converge after 5 iterations, as shown 
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in the small figure located at the lower right corner in Fig. 3. In error-floor region, the 
number of iterations for convergence is less than 5. For BCH(8, 4)2 product code, iterative 
decoding experiments were carried out and similar results could be obtained. The related 
details of this TPC are ignored here due to the limited space. 

The EXIT analyses show that the proposed decoding algorithm could achieve fast 
decoding convergence, which needs about five iterations in “waterfall” region. When 
meeting low Eb/N0, the proposed decoding algorithm could improve BER 
performance as the “waterfall” region begins from a low Eb/N0.  

According to [19], there are 2k hidden neurons and n output in proposed decoding 
network. For each hidden neuron, there are n additions/subtractions and n+2 
multiplications/divisions. For each output, there are 2k additions and 2k 
multiplications. The comparison of the number of operations between the MAP and 
the proposed decoding algorithm is shown in Table 2.  

The performance gap between the MAP decoding algorithm and proposed 
decoding algorithm over the same channel is very narrow. Considering the 
complexity of the MAP algorithm employed in [7], the proposed algorithm has a 
better trade-off between BER performance and computation complexity. 

Table 1. Mutual info of RBF NN row decoder, R
eI , for BCH (15, 7)2  

Eb/N0 -2 dB -1 dB 0 dB 1.0 dB 1.5 dB 2.5 dB 
Itr 1 0.444  0.508 0.619 0.689 0.739 0.822 
Itr 2 0.533  0.630 0.755 0.828 0.858 0.890 
Itr 3 0.617  0.723 0.831 0.879 0.887 0.900 
Itr 5 0.871  0.890 0.904 0.907 0.908 0.909 
Itr 8 0.896  0.903 0.908 0.909 0.910 0.910 

Table 2. The number of operations of the MAP and the proposed algorithm 

Algorithms MAP Proposed 
Additions/Subtractions 4×2n 2n×2k 

Multiplications/Divisions 6×2n+1 (2n+2) ×2k 
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Fig. 3. Extrinsic information transfer characteristics of Turbo BCH code (15, 7)2 for a set of 
Eb/N0 values, and two decoding trajectories at -1.0dB and 1dB 
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Fig. 5. BER performance of BCH (15, 7)2 Turbo codes 

4 Conclusion 

A novel iterative decoding algorithm based on RBF NNs assisted by the Gaussian 
function has been proposed for decoding (n, k)2 TPCs, and the EXIT charts have been 
used to analyze the convergence property of the TPCs. The EXIT chart analyses show 
that the proposed decoding algorithm could achieve convergence with about 5 iterations, 
and improve BER performance in low Eb/N0 regions. Simulation results show that for the 
BCH(15, 7)2 TPC, the BER performance of 3.3×10-6 can be achieved at Eb/N0=1.0dB 
after 5 iterations. The proposed decoding algorithm provides at least 50% reduction in 
computation compared with the MAP algorithm [7]. The ratio of computation reduction 
of proposed decoding algorithm is larger as the code length increases. For BCH(8, 4)2 
TPC, the similar results could be obtained based on our experiments performed. Hence, 
our proposed decoding algorithm is of lower computation complexity and is capable of 
providing a better trade-off between BER performance and decoding complexity. This 
characteristic makes the proposed decoding algorithm a good candidate for 
communications, where real-time requirements are necessary. 
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Abstract. This paper proposed a new BP Neural Network (BPNN) based 
method for load harmonic current assessment where the nonlinearities of 
electricity loads have been modeled based on differential equations. With the 
trained BPNN, the load current due to fundamental voltage inputs can be well 
estimated and used to assess the harmonics components subsequently. The 
simulation results demonstrate that the proposed method can effectively 
estimate the total harmonic distortion of the load current when the supplied 
voltage is within the normal range of harmonic limits. The results also prove 
that the load harmonic current is nearly independent of load capacity and 
applied voltage, indicating its effectiveness to distinguish the responsibilities of 
harmonic pollution between the grid and load.  

Keywords: Neural network, load harmonic current, harmonic control. 

1 Introduction 

Along with the widespread use of nonlinear load such as rectifier equipment, 
frequency conversion device, electric arc furnace, calcium carbide furnace and gas 
discharge based electric light, harmonic pollution in distribution systems is becoming 
more and more serious, which has caused increased attentions by power utilities and 
relevant industries[1], [2]. The harmonic current injected by the loads can be 
influenced by the network capacity and the harmonics of the supplied voltage. In 
order to facilitate the management of harmonic pollution by both the power utilities 
and the electricity users, , an assessment system should be developed to effectively 
quantify the level of the harmonics injected by the electricity loads. 

In literature [3], [4], [5], [6], with the voltage and current measured within a 
practical system, the harmonic impedance of the system is obtained based on 
regression analysis, and then the harmonic voltage contribution from the load is 
determined. In literatures [7], [8], a difference time domain load model is established 
to estimate its linear component, and the load’s nonlinear component can be estimated 
using the difference between the actual measured current and the estimated load 
current based on the linear model. In principle, the total harmonic distortion of load 
current under a pure sinusoidal voltage supply is an appropriate indicator of the load’s 
harmonic contribution. 
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In this paper, a BPNN is trained with the measured voltage and current data from a 
practical distribution system, so that the nonlinear response of the load can be well 
estimated by the BPNN, taking the fundamental voltage as the ideal sinusoidal 
voltage source applied to the load. Through proper training, the load current and its 
total harmonic distortion factor under various voltage supply conditions can then be 
effectively obtained by the BPNN. 

2 The Difference Equations Based Load Model 

An electricity load can generally consist of resistive, inductive and capacitive 
components as shown in Fig. 1.  

( )Ri t ( )Li t ( )Ci t

( )u t

( )i t

R LR C

L

 

Fig. 1. A typical load model 

The parameters R, RL, L, C in Fig. 1 are constant, and the load can then be 
mathematically modeled in many ways including but not limited to the models based 
on state equations, transfer function, or difference equations etc[9]. In this paper, the 
difference equations based model is used since it can facilitate harmonics analysis 
using the practical measured voltage and current of electricity loads.  

According to Fig. 1, the voltages and currents of the load should fulfill the 
following 
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Takes u(t) as the independent variable, i(t), iR(t), iL(t), iC(t) as dependent variable, then 
i(t) and u(t) should fulfill the following  
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Based on the implicit trapezoid integration method, the Equation (2) can then be 
reformulated into a difference equation with a time step of Δt,  

1 0 1 2( ) ( 1) ( ) ( 1) ( 2)i k a i k b u k bu k b u k= − + + − + −  , (3) 

where 
1
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As seen from Equation (3), i(k) is a linear function of i(k-1), u(k), u(k-1), u(k-2), 
where the current response of the load at time k are affected by the coefficients a1, b0, 
b1, b2. When R, RL, L, C are related to i(k), i(k-1), u(k), u(k-1), u(k-2), Equation (3) can 
be rewritten as  

( ) ( ( 1), ( ), ( 1), ( 2))i k f i k u k u k u k= − − −  . (4) 

For the load model with higher complicities, Equation (4) can be used instead as  

( ) ( ( 1), ( 2),..., ( ),

( ), ( 1), ( 2),..., ( ))
i

u

i k f i k i k i k N

u k u k u k u k N

= − − −
− − −

 , 
(5) 

where Ni and Nu are the delay steps of the current i and voltage u respectively. 

3 BPNN for Load Harmonics Current Assessment 

BP (Back Propagation) neural network is firstly proposed by the research group led 
by Rumelhart and McCelland in 1986, and it is the mostly frequently used NN 
algorithm due to its many advantages such as excellent generalization capability. 

Through iterative learning procedure, BP neural network (BPNN) is able to 
approximate the complex mapping relationship between the inputs and outputs given 
sufficient amount of training samples, without explicit knowledge of the mapping 
beforehand[10]. To apply BPNN for load harmonic current assessment, the task is 
then for a BPNN to learn according to the load model in Equation (5)，where i(k-1), 
i(k-2), ..., i(k-Ni), u(k), u(k-1), u(k-2), ..., u(k-Nu) are the inputs, and i(k) is the output 
of the BPNN. 

A BPNN is basically a feed-ward neural network consisting of several layers of 
perceptrons or neurons which are connected through weighting factors between 
adjacent layers. The training of BPNN adopts a backward approach to propagate the 
errors between the BPNN outputs and the targets backward through layers to update 
the weights so that the errors can eventually be minimized through iterations. Notably 
to ensure the best performance, the cost function of BPNN training is usually a 
quadratic function based on the actual errors between the outputs and the targets. 
However, there can be many solutions of weights if the training objective is the 
minimization of errors alone. Generally speaking, to ensure BPNN to have better 
generalization capability over unseen data and to avoid the over-fitting problem, the 
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values of weights should be minimized. Therefore in order to minimize the training 
errors and weights of BPNN simultaneously, the training objective function can be 
formulated as 

D WF E Eβ α= +  , (6) 

where 
2

1

1 ˆ( )
2

p

D k k
k

E i i
=

= −
, 

2
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2
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W j
j

E w
=

= 
. 

ik and î k are the target and actual output of BPNN for the kth training sample, p is 
the number of training samples, wj stands for the jth weights of BPNN, m is the 
number of weights. α and β are so-called super parameters, which actually can control 
the training preference over the weighs and errors. If α<<β, the training will prioritize 
the minimization of training error; ifα>>β, the training algorithm will prioritize the 
minimization of BPNN’s weights otherwise. 

David Mackay pointed out that both the training samples and BPNN’s weights 
should fulfill a normal distribution, then the super parameters α, β can be determined 
using the Baye rule[11], [12] as follows, 

,
2 2W D

m

E E

γ γα β −= =  , (7) 

where ( ) 12 −

∇⋅−= Ftrm αγ . 

The above BP neural network training method is called the Baye rule based 
regularization algorithm, which is a iterative algorithm. Training using the Baye rule 
can start with supposing α=0, β=1, then solve for the smallest wMP to minimize the F 
in Equation (6). Subsequently, calculate the α, β given the wMP, and then use resultant 
α, β to again solve Equation (6) to obtain BPNN’s weights. The above procedure is 
repeated until the changes of αand β between iterations become small enough. In 
solving the wMP, the L-M method[13] can be used, which can effectively guarantee 
satisfactory convergence speed at the vicinity of the optimal solution. Furthermore, 
use (βJTJ+2αI) to replace the term F2∇  in Equation (7) can largely improve the 
computation speed forγ, where J is the Jacobian of (ik- î k) at wMP, and I is the unitary 
matrix. 

4 Load Harmonics Current Estimation under Ideal Voltage 
Supply 

With the measured voltage and current data from practical distribution network, a 
BPNN can be trained using the Baye regularization method so that the knowledge of 
the load harmonics can be well captured by the BPNN weights. The training data 
inputted to BPNN includes the fundamental component of the measured voltage from 
practical network, as well as the corresponding load current. By doing so, the load 
harmonics current due to an ideal voltage supply can be well estimated. 
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Assuming the load parameters are constant or only dependable on suits voltage and 
current, i(k) can be solely determined based on i(k-1), i(k-2), ..., i(k-Ni), u(k), u(k-1), 
u(k-2), ..., u(k-Nu). However, the actual load is varying in real time which indicates 
the model (5) may not be applied directly. As such, using practical measurement data 
for training BPNN can result in unreliable outputs due to the load variations caused 
inconsistencies in the training data. In order to deal with the inconsistencies of 
training data, the proposed BPNN based load harmonics current assessment method 
can be trained and implemented in cycles. The detailed algorithm includes the 
following steps: 

Step 1: Measure the voltage and current data from a practical distribution network 
for a fixed time duration; 

Step 2: Based on the measured voltage data, estimate the fundamental frequency of 
the distribution system; 

Step 3: Check if the voltage and current data are valid to be used for training 
BPNN. If not, go to Step 1; 

Step 4: Use the measured data to train the BP neural network; 
Step 5: Extract the fundamental voltage from the measurement data; 
Step 6: Estimate the load current due to the fundamental wave voltage based on the 

trained BPNN; 
Step 7: Carry out the total harmonics distortion (THD) analysis for the estimate 

load current, and then go to Step 1 for the next cycle. 
More details about Step 2, Step 3, Step 5, and Step 6 will be provided in the 

following. 
The fundamental frequency of the distribution system can be using the windowed 

discrete Fourier transform and double spectral line based interpolation algorithm[14]. 
Supposes the sampling rate is fs, the sampled voltage is u(n), the sample length  is 

N, the sampling window function can be represented as w(n) in time domain,  then 
the discrete Fourier transform of the voltage can be expressed as 

1
2

0

( ) ( ) ( )
N

j nk f

n

U k w n u n e π
−

− Δ

=
=   , 

(8) 

where Nff s /=Δ . 

Because the fundamental frequency fb should be close to system nominal frequency 
fN, therefore the sampling rate can be selected as fs=pfN (p is an integer), the sample 
length N=qp (q is an integer). If │fb-fN│<fN/q (q≥2) , fb must locate between the (q-
1)th and  (q+1)th spectral lines. When │U(q-1)│>│U(q+1)│, let k1=q-1, k2=q, or 
k1=q, k2=q+1. If the window function is the Blechman window function, fb can be 
estimated as, 

3
1

5 7

( 0.5 1.96043163 0.15277325

        +0.07425838 0.04998548 )
bf k

f

β β
β β

= + + ⋅ + ⋅
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(9) 
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where 
)()(

)()(
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kUkU

+
−

=β . 

If the measured voltage varies periodically at the fundamental frequency, then the 
training samples for BPNN according to the Equation (5) should not have any 
inconsistencies, i.e. the measured data is qualified to be the training samples. 

Perform linear interpolation[15] to )(nu  with the sampling frequency 
bs pff =' , 

new voltage samples )(' nu  can be obtained. To determine if )(' nu  is periodical, we 

can split the samples into q groups with each group containing p samples. Then 
calculate the Pearson's correlation 

jρ  between the sample groups )('1 mu , )('2 mu , 

…, )(' muq
, according to the following 
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(10) 

when 0.98<ρj<1.02, )(' nu  can be considered periodical. 

Similarly, the same interpolation procedure can be repeated for )(ni  to obtain new 

current sample series )(' ni . Subsequently, the similar procedure to determine if the 

)(' ni  is periodical can be carried out. 

For the measured voltage series that are verified periodical, its fundamental voltage 
can be extracted according to )2sin( ϕπ +tfA b

, where 

1 2 2

4 6

( ) ( )
(2.70205774 1.07115106

0.23361915 0.04017668 )

U k U k
A

N
α

α α

+
= + ⋅

+ ⋅ + ⋅
 , 

(11) 

1arg[ ( )] / 2 ( 0.5)U kϕ π π α= + − ⋅ −  , (12) 

where 5.0/ 1 −−Δ= kffbα . 

The resulted )2sin( ϕπ +tfA b
 can then be sampled at 'sf  to obtain the 

fundamental voltage series )(' nub
. To obtain the load current under fundamental 

voltage, e.g. )0('bi  at t=0, we need not only the fundamental voltage samples 

including )0('bu , )1(' −bu , )2(' −bu , …, )(' ub Nu − , but also )1(' −bi , )2(' −bi , …, 

)(' ib Ni − , which are however unknown at t=0. As a compromise, we can use )1(' −i , 

)2(' −i , …, )(' iNi −  to replace )1(' −bi , )2(' −bi , …, )(' ib Ni −  as the inputs to BPNN. 

Consequently, after the initial several cycles, )(' nib
 can become precisely the current 

due to the fundamental voltage inputs. 
Because )(' nib

 is sampled current data, it can be used to calculate the total 

harmonic distortion by simply performing the discrete Fourier transform. 
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5 Simulation Analysis 

For a practical distribution system with three phases, the load characteristic can still 
be described using difference equations for each phase respectively, 

( ) ( ( 1), ( 2),..., ( ), ( ),

                 ( 1), ( 2),..., ( ))
abc abc abc abc i abc

abc abc abc u

i k f i k i k i k N u k

u k u k u k N

= − − −
− − −

 , (13) 

Because of three phases, the BPNN for three-phase load harmonics current 
assessment can have a large size than the single phase case. There can be more 
neurons inside the hidden layer, the input and output layers. In our case study, the 
delay orders for voltage and current are set as 3. To the knowledge of the load 
characteristics can be well acquired, a BPNN with two hidden layers is implemented, 
where each hidden layer consists of 10 neurons.  

The method can be implemented to learn and estimate the load harmonics current 
in separate time intervals for online application. Because the fundamental frequency 
determined by the windowed discrete Fourier transform and the double special 
interpolation method can have slight difference, the averaged value of the two results 
is used as the fundamental frequency of the distribution network.  

To test the proposed method, a three-phase full-controlled bridge rectifier is 
modeled and simulated according to Fig. 2.  

 

Fig. 2. Three-phase full-controlled bridge rectifier circuit 

In Figure 2, the triggering pulses for the rectifier are generated using six group 
synchronization control method, and the load parameters are R=100Ω，L=3mH, the 
three phase voltages of the distribution network are 

1 2

1 2

1 2

311sin sin
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309.5sin( 2.01 / 3) sin( 2 / 3)
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c

u t A t

u t B t
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ω ω
ω π ω π
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= +
 = − + −
 = + + +

 , 
(14) 

where ω1=100π+sin(10πt), ω2=500π+5sin(10πt). 
By changing the capacity of the power supply system and the harmonics in voltage, 

as well as the firing angle of the rectifier, the voltage and current singles at the 
connection point can be measured at the sampling frequency fs=10kHz. The sample 
length is 4000 data points. If the obtained samples are qualified, apply them for 
BPNN training, and also determine the fundamental voltage of the distribution 
system. The fundamental voltage can be used to train a BPNN with characteristics of 
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nonlinear load which can output the estimated load current. Further, the fundamental 
voltage as an ideal voltages supply can be used to train another BPNN. The resultant 
current is then the load current under the ideal voltage supply accordingly. Next the 
THDs of the obtained currents and the voltage measured at the connection of the load 
are calculated and listed in Table 1 below, where all THDs are expressed in %. 

Table 1. Calculative results of current and voltage total harmonic distortion 

the 
system 
internal 
resistance 

the 
firing 
angle

the power 
harmonic 
amplitude 

the measured 
current THD 

the ideal load 
current THD 

the estimated 
load current 
THD 

the 
distribution 
network 
voltage THD 

Rs=0.05Ω 
Ls=0.4mH 

0° 
A=B=C=0 29.05/29.40/29.62 30.30/31.22/30.46 30.39/31.32/30.55 1.86/1.59/1.69 
A=B=C=5 30.82/28.76/29.77 30.30/31.22/30.46 30.41/31.33/30.56 2.35/2.01/2.33 
A=B=C=10 32.46/26.52/30.86 30.30/31.22/30.46 30.45/31.37/30.61 4.25/4.32/4.02 

30° 
A=B=C=0 38.48/37.28/38.31 36.87/38.05/37.86 36.98/38.16/37.94 3.86/3.99/3.95 
A=B=C=5 37.63/37.37/38.34 36.87/38.05/37.86 37.01/38.17/37.96 4.21/4.08/4.27 
A=B=C=10 38.51/37.68/38.22 36.87/38.05/37.86 37.45/38.50/38.32 5.60/5.26/5.65 

Rs=0.03Ω 
Ls=0.2mH 

0° 
A=B=C=0 32.48/30.36/31.16 30.30/31.22/30.46 30.38/31.29/30.52 3.47/3.55/3.50 
A=B=C=5 31.70/29.19/31.41 30.30/31.22/30.46 30.39/31.30/30.53 3.70/3.84/3.72 
A=B=C=10 32.55/27.37/32.47 30.30/31.22/30.46 30.58/31.68/30.72 5.04/5.29/5.14 

30° 
A=B=C=0 38.59/36.22/38.98 36.92/38.09/37.91 37.01/38.20/38.02 3.07/2.45/2.59 
A=B=C=5 37.66/37.40/38.37 36.92/38.09/37.91 36.99/38.21/38.03 2.64/2.54/2.68 
A=B=C=10 37.69/37.48/38.94 36.92/38.09/37.91 37.05/38.25/38.10 4.54/4.35/4.58 

It can be seen from Table 1, under certain load situations, when the voltage 
distortion of the distribution network does not exceed 5%, the difference between the 
THDs based on the directly estimated load current and the estimated current due to 
fundamental voltage supply have very limited difference which is no more than 1%. 
When the voltage distortion goes above 5%, the differences between the two THDs 
become larger. This can be explained as the difference between the actual voltage and 
its fundamental component is too large to be ignored, so that different current THDs 
can be resulted when using directly estimated current and the current due to 
fundamental voltage supply in load current harmonics analysis respectively.  

6 Conclusion 

The simulation results demonstrate that the total harmonic distortion of the load 
current based on BP neural network which is proposed in this article is almost 
independent of power capacity and harmonic voltage within the range of utility grid 
harmonic voltage limits, which is beneficial to the division of harmonic responsibility 
and harmonic control.  
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Abstract. In the reconstructed phase space, based on the nonlinear time series 
local prediction method and the relevance vector machine model, the local re-
levance vector machine prediction method was proposed in this paper, which 
was applied to predict the small scale traffic measurements data. The experi-
ment results show that the local relevance vector machine prediction method 
could effectively predict the small scale traffic measurements data, the predic-
tion error mainly concentrated on the vicinity of zero, and the prediction accu-
racy of the local relevance vector machine regression model was superior to 
that of the feedforward neural network optimized by PSO. 

Keywords: small-time scale network traffic measurements data, nonlinear time 
series local prediction method, relevance vector machine. 

1 Introduction 

Network traffic analysis and modeling play a major role in charactering network per-
formance, so it has been a focus of many researches. Models that accurately capture 
the salient characteristics of the traffic is useful for analysis and simulation, and they 
further our understanding of network dynamics. Complexity is a key issue in network 
geometry and information traffic. The complexity revealed from the traffic measure-
ments has led to the suggestion that the network traffic cannot be analyzed in the 
framework of available traffic models[1]. Alternative reliable traffic models and tools 
for quality assessment and control should be developed[2]. 

In recent years, communication and network technologies are developing rapidly, 
which brings the traffic characteristics to change greatly. The research emphasis of 
the network traffic analysis and modeling has change from the large-time scale to  
the small-time scale. The researches have shown that the traffic characteristics of  
the small-time scale were different from those of the large-time scale[3]. So the  
large-time scale network traffic models can not suited to the small-time scale network 
traffic. 
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There is growing evidence that the nonlinear deterministic component is exist in 
the network traffic series[4][5]. This paper apply the local prediction method to pre-
dict the small-time scale traffic data. The local prediction method can be successfully 
used for a deeper understanding of main features of the traffic data. 

The nonlinear time series prediction methods can be grouped into two major 
classes: global prediction methods[6][7] and local prediction methods[13-17]. Recent-
ly, various golbal models, for example the neural networks [6] and the support vector 
machine SVM[7], have been used to predict nonlinear time series successfully. Refer-
ence [8] has applied the feed-forward neural network to predict the traffic measure-
ments data. The flexible neural tree (FNT) was a special multi-layer feed-forward 
neural network which has drastically changed the neural network’s optimizing and 
designing problem [9]. Reference [10] had applied the flexible neural tree (FNT) 
model to predict the traffic measurements data. 

The relevance vector machine (RVM) was the sparse probability model based on a 
general Bayesian framework for obtaining sparse solutions to regression and classifi-
cation tasks, which was proposed by Tipping [11], and attracted increasing attention 
in the field of statistical learning. The relevance vector machine model has been ap-
plied to the field of time series prediction and classification[12]. 

Based on the local prediction method and the relevance vector machine regression 
model, the local relevance vector machine prediction method was proposed in this 
paper and was applied to predict the small scale traffic measurements data. 

2 Local Prediction of the Small-Time Scale Network Traffic 
Data 

2.1 The Relevance Vector Machine (RVM) Model 

Given a data set of input-target pairs 1{ , }N
n n nx t = , considering scalar-valued target 

functions only, we follow the standard probabilistic formulation and assume that the 
targets are samples from the model with additive noise: 

 n

N

i
iinnn wxwwxyt ξϕξ ++=+= 

=
0

1

)();(  (1) 

where ),,,( 10 Nwwww = , nξ  are independent samples from some noise process 

which is further assumed to be mean-zero Gaussian with variance 2σ , )(xiϕ  are 

the nonlinear basis function and ),()( ii xxKx ≡ϕ , )(•K  is the kernel function. 

Thus )),(()( 2σnnn xytxtp Ν= , where the notation specifies a Gaussian distribu-

tion. Due to the assumption of independence of the nt , the likelihood of the complete 

data set can be written as 
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We encode a preference for smoother (less complex) functions by making the pop-
ular choice of a zero-mean Gaussian prior distribution over w : 

 ∏
=

−Ν=
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0

1),0()( αα  (3) 

with α  a vector of 1+N  hyperparameters. Importantly, there is an individual 
hyperparameter associated independently with every weight, moderating the strength 
of the prior thereon. 

Having defined the prior distribution, Bayesian inference proceeds by computing, 
from Bayes’ rule, the posterior distribution over the weights is thus given by: 

 { })()(
2

1
exp )2(),,( 1212)1(2 μμπσα −Σ−−⋅Σ= −−+− wwtwp TN  (4) 

where the posterior covariance and mean are respectively: 

 12 )( −− +ΦΦ=Σ ATσ  (5) 

 tTΣΦ= −2σμ  (6) 

with ),,,(diag 10 NA ααα = . 

Based on the hyperparameter estimation, including alternative expectation-

maximisation-based re-estimates, values of α  and 2σ  can be obtained by the iterative 
re-estimation, that is: 

 2
i

inew
i μ

γα =  (7) 

Where iμ  is the i-th posterior mean weigh from (6) and we have defined the quanti-

ties iγ  by iiii Nαγ −≡ 1 , with Nii the i-th diagonal element of the posterior weight 

covariance from (5) computed with the current α  and 2σ  values. 

For the noise variance 2σ , differentiation leads to the re-estimate: 
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Note that the N in the denominator refers to the number of data examples and not the 
number of basis functions. 

At convergence of the hyperparameter estimation procedure, we make predictions 
based on the posterior distribution over the weights, conditioned on the maximizing 

values MPα  and 2
MPσ . Given a new input point *x , predictions are made for the 

corresponding target *t , and we can compute the predictive distribution: 

 ),(),,( 2
***

2
* σσα ytNttp MPMP =  (9) 

With )( ** xy T Φ= μ  and )()( **
22

* xx T
MP ΦΦ+= σσ . Then *y  can be the 

prediction value of  *t  . 

2.2 The Nonlinear Time Series Local Prediction Method 

Various nonlinear time series prediction methods have been proposed [6-7][13-17], 
which can be grouped into two classes: global and local. The global methods[6][7] 
use the whole time series to model the true function on the whole attractor. This kind 
of method has the disadvantage that if new information is taken into account then all 
the parameters of the model may change, and that a long parameter estimation time 
may be required. The local prediction methods[13-17] overcome this drawback by 
building model only on the local attractor and utilizing only part of the past informa-
tion. Farmer and Sidorowich have proved that the prediction performance of the local 
prdiction methods is superior than the global prdiction methods with the same em-
bedding dimension[13].  

The first step of the local prediction is to find the neighbor points of the current 
state ( )X n in the reconstructed phase space. According to the reconstructed trajecto-

ry, we first compute the distances between the current delay vectors ( )X n and its n-1 

preceding delay vectors ( )X i (i=1,2,…,n-1) with an imposed metric, 

 
2

)()()( nXiXid −=  (10) 

and then find the k nearest neighbouring points ),,2,1)(( kinX i =  of the current 

state ( )X n . The local linear prediction model in an m-dimensional delay embedding 

space is an m-order autoregressive model, and the prediction model is a linear super-
position of the m elements of delay vector, i.e. 

 nnTn bnXax +=+ )(ˆ  (11) 
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The coefficients an and bn are determined by using the least squared criterion. 
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2.3 The Small-Time Scale Network Traffic Data’s Local Prediction 

Most researchers only used the linear model in the local prediction method [13]. 
However, in recent years researchers have tried to use the nonlinear model to displace 
the linear model in the local prediction method[15][16]. 

In this paper we used the relevance vector machine model to displace the linear 
model and have proposed the local relevance vector machine prediction method, us-
ing the neighbor points to train this local relevance vector machine regression model. 
That was, we train the relevance vector machine, where the input was 

),,2,1)(( kinX i =  and the output was ),,2,1( kix Tni
=+ , and gets the corres-

ponding relevance vector and weighting coefficient, then exploited this local relev-

ance vector machine to compute the prediction value Tnx +ˆ  of the future value. 

In this paper, we applied the proposed local relevance vector machine regression 
model to predict the small-time scale network traffic data, and we applied the neigh-
bor point selection method of local method[17], which was based on Bayesium in-
formation criterion, to choose the number of nearest neighbor points for the local 
relevance vector machine prediction method, which could be formulated as follows: 

 
N

N
kkkN

ln
)1()(ln)( 2 ++= ε  (13) 

where 2)(kε  was the normalized variance of the prediction error. Then the proposed 

local relevance vector machine prediction method whose neighbor points have been 
optimized was applied to predict the small-time scale network traffic data. 

3 Experiment Results and Analysis 

In this paper we used the TCP traffic data which was issued by the Lawrence Berke-
ley Laboratory, DEC-Pkt1[18]. The traffic data aggregated with time bin 0.1s, that 
was the arrived package’s amount within the 0.1s time interval. 

Generally we may consider the traffic measurements as a sum of a regular process 
and a stochastic part, related to the high-frequency noise. In order to separate the reg-
ular component of the dynamical process from the stochastic noise component, we 
apply the wavelet soft threshold noise reduction method to the traffic measurements 
data. The filtered traffic measurements data were normalized to the interval [0, 1]. 
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We applied the BIC-based neighbor point selection method[17] to choose the number 
of nearest neighbor points for the local relevance vector machine prediction method.  
The results were shown in Fig.1. One could see that when k=40, N(k) take the minimum, 
therefore, the number of nearest neighbor points should be 40. 

We applied the proposed local relevance vector machine prediction method whose 
neighbor points have been optimized to predict the small-time scale network traffic 
measurements data, where the number of nearest neighbor points k was 40. The 
length of this traffic measurements data was 36000. The front 33000 data points were 
used as the training set, and the last 3000 data points were used as the test set. The 
normalized mean squared error was used to evaluate the prediction accuracy, 
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Here L=3000, N=33000. The kernel function of the relevance vector machine model 
choose the Gauss kernel, the width value was 0.015 and the number of iterations was 
100. The prediction results were shown in Fig.2. From Fig.2, it could be clearly seen 
that the local relevance vector machine prediction method whose neighbor points 
have been optimized could effectively predict the small-time scale traffic measure-
ments data, the prediction accuracy was well, and the normalized mean squared error 
NMSE was very small and only equaled 0.0088. 

 

Fig. 1. N(k)-k for the traffic measurements data 

For comparison purpose, the feed-forward neural network with the structure [10-
12-1], trained by using PSO algorithm was also used to predict the same network 
traffic data. The NMSE for testing data sets was 0.0732. It could be seen that the  
prediction performance of the proposed local relevance vector machine model was 
better than the feed-forward neural network model. 
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          (a) Actual values             (b) Prediction values           (c) Prediction errors 

Fig. 2. Prediction results of the local relevance vector machine prediction method for the traffic 
measurements data, k=40 

 
         (a) The traffic measurements data          (b) The generated time series 

Fig. 3. The statistical distributions of the traffic data and the generated time series 

From Fig.3, it could be clearly seen that the time series generated by the local  
relevance vector machine prediction method had very similar probability distribution 
with the actual traffic time series. So the local relevance vector machine prediction 
method could reproduce quite well the statistical distribution of the real traffic data. 

4 Conclusion 

In summary we applied the local prediction method to the small-time scale traffic 
measurements data. The local relevance vector machine prediction method was  
proposed and used to predict the small-time scale traffic measurements data. The 
experiment results show that the local relevance vector machine prediction method 
whose neighbor points have been optimized could effectively predict the small-time 
scale traffic measurements data, the normalized mean squared error NMSE was very 
small, and the prediction accuracy of the proposed method was superior to that of the 
feedforward neural network optimized by PSO. 
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Abstract. The data gathering optimization of the large-scale, collaborative and 
concurrent multi-task in the sensing layer of internet of things is very important, 
especially in the environments where multiple geographically overlapping 
wireless sensor networks are deployed. In order to support large-scale, 
collaborative and concurrent multi-task monitoring, in this paper, we propose a 
massive sensor sampling data gathering optimization strategy in formed virtual 
sensor networks to meet various monitoring requirements from different kinds 
of application deployment and simplify the complexity of dealing with 
heterogeneous sensor nodes. Then, for the massive sensor sampling data 
gathering on the virtual sensor networks framework, the CH nodes set and 
update MinMax hierarchical thresholds to restrict the data transmission. Finally, 
the simulation results show that proposed strategy achieves more energy 
savings and increase the sensing layer lifetime of internet of things.  

Keywords: Concurrent multi-criteria target monitoring, Massive sensor data 
gathering, Wireless sensor networks, Energy consumption optimization. 

1 Introduction 

The Wireless Sensor Network (WSN) is an important fundamental component in 
sensing layer of internet of things. For energy efficient optimization of the monitoring 
queries, the data collection task should be selectivity-aware. Physical phenomena are 
characterized by their spatial correlation; hence, when monitoring a physical 
phenomenon, some optimization schemes were proposed to minimize the use of  
non-selected parts of a WSN to achieve overall energy efficiency and extend the 
lifetime. Jabeen Farhana and Femandes Alvaro A. A. proposed an algorithmic 
strategy for in-network distributed spatial analysis in wireless sensor networks. The 
approach taken is algebraic, i.e., analyses are expressed as algebraic expressions that 
compose primitive operations. The main contributions are distributed algorithms for 
the operations in the proposed algebra and an empirical evaluation of their 
performance in terms of bit complexity, response time, and energy consumption [1]. 
In order to provide efficient monitoring service in a large scale sensor network, the 



 A Massive Sensor Sampling Data Gathering Optimization Strategy 615 

 

hierarchical organization of the sensors, grouping them and assigning those specific 
tasks into the group before transferring the information to higher levels, is one the 
mechanisms proposed to deal with the sensors limitations and is commonly referred 
to as clustering. In the last few years, a lot of clustering algorithms have been 
proposed in WSN. Most of these algorithms aimed at generating the minimum 
number of clusters that maximize the network lifetime and data throughput [2-5].The 
essential operation in such monitoring applications is data gathering, i.e., to collect 
the physical information from sensor nodes and transmit to the base station and 
control server for processing [6]. In Ref.[7], an energy-efficient hybrid data-gathering 
protocol based on the dynamic switching of reporting schemes was proposed. The 
novel aspect of their approach is that sensor nodes that seem to detect an event of 
interest in the near future, as well as those nodes detecting the event, become engaged 
in the time-driven data-reporting process. Although there are some research fruits, 
they are still immature and have wide unfathomed problem [8]. In this paper, our 
approach to cost reduction is through reducing the amount of data sent by each node 
where the accuracy can be pre-configured. The strategy implemented a multi-criteria 
target monitoring using MinMax operator in formed virtual sensor networks. Users 
can easily query and monitor the correlative data through this virtual sensor network. 
In this paper, we consider the problem of cooperation for heterogeneous WSN 
deployed on a physical monitoring domain but implementing different tracking tasks. 
We propose a massive sensor sampling data gathering optimization strategy for 
concurrent multi-criteria target monitoring using MinMax operator in formed virtual 
sensor networks.  

The remainder of the paper is organized as follow: In Section 2, we describe and 
discuss implementation of the massive sensor sampling data gathering optimization 
strategy. The experimental setup and analytical results are discussed in Section 3. 
Finally, we conclude the paper in Section 4.  

2 Implementation of Massive Sensor Sampling Data Gathering 
Optimization Strategy 

Multi-Criteria target monitoring implies a making selection process of the most 
interested alternatives based on a series of monitoring target with multi-attribute. The 
Massive Sensor Sampling Data Gathering Optimization strategy includes three 
phases: distributed clustering process, the virtual CH tree formation and the 
implementation of the sensor data gathering optimization strategy using MinMax 
hierarchical thresholds. The distributed clustering process has introduced in the 
previous research works[9].   

2.1 The Virtual CH Tree Formation 

A virtual CH tree can be formed by providing logical connectivity among these 
collaborative communication CH nodes (the CH nodes can communicate directly 
each other). It is called virtual sensor networks (VSN). CH nodes can be grouped into 
different VSN based on the phenomenon they track (e.g., rockslides vs. animal 
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crossing) or the task they perform. If the CH node detect the interested enent, it will 
send a virtual tree formation message to neighbor CHs and allows all the neighbors to 
join its child CH set. Each of those neighbor CHs then forwards the broadcast to the 
next set of neighbors. This process continues until the entire network is covered. The 
process achieved a virtual tree backbone.The second phase: whenever a node detects 
an interested event for the first time, it sends a discovery message towards the parent 
node, indicating that it apperceives the event and wants to collaborate with similar 
nodes. If cluster member node sent the message, the CH checks its array of VSN 
entries to determine whether it is already aware of the VSN. If not, the CH marks 
itself as being part of the VSN. The message is sequentially forwarded to its parent 
CH until the message is forwarded up to the root node. Note that, it is possible for a 
CH to be part of multiple VSN. The main message of CH nodes include the cluster 
members list ( _Clu members ) , the number of VSN ( _VSN number ), the type 

array of VSN ( _VSN IDs ), the routing entries of VSN ( _ _VSN REntries number ), 

the routing table of VSN ( _VSN RTable ). Algorithm 1 shows the pseudocode 

description of the VSN formation at the CH node. 
 

Algorithm 1. the VSN formation function 

CH_Function(message)   
//initialize the number of VSN and the routing entries of VSN 
{ 
VSN_number=0; VSN_REntries_number=0; 
if( message_S∈Clu_members) 
 // if the messages are from the cluster member nodes 
｛ 

if(message_type!∈VSN_IDs)  
// if the message type does not belong to a known VSN 

{  
VSN_IDs(VSN_number)=Message_type; // flag the type array of VSN 
VSN_number++; //the increments of VSN number  
Forward_message(message,Parent_CH) 
 // forward the message to the perant CH node 
 }  
VSN_RTable(VSN_REntries_number)=(message_S,message_type); 
VSN_REntries_number++; 
// update the routing table of VSN 
 }  
else               // if the messages are from the CH nodes 
if(message_type!∈VSN_RTable)  
// if the message type does not belong to a known VSN 
Forward_message(message,Parent_CH);  
// forward the message to the perant CH node 

VSN_RTable(VSN_REntries_number)=(Child_CH,message_type); 
VSN_REntries_number++;  // update the routing table of VSN 

} 
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2.2 The Implementation of the Sensor Data Gathering Optimization Strategy 
Using MinMax Hierarchical Thresholds 

We formed the VSN as the target detection continuance in designing the multi-criteria 
monitoring strategy, every CH node installs a threshold that is n dimensional point 
( n is monitoring attribute number). Whenever the sensor node detects a relevant 
overstepping threshold event for the first time it sends the message towards the root 
node of the virtual CH tree. In order to further promote efficiency of threshold 
computation, we present method of threshold maintenance by using the MinMax 
operator in formed VSN backbone. We can monitor in real time all the most 
dangerous sites in terms of high temperature and low humidity. The definition of the 
MinMax operator described as equation (1). The input is a point set with the same 
monitoring attribute dimensionality and the output is a single point. Suppose data set  

1 2{ , ,..., }nD d d d=  , ( )MinMax D is defined as follow. 

1

1
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                (1) 

Where j denotes the monitoring attribute dimensionality [2]. An example of the 

MinMax operator was shown in Fig.1. Point set D consists of five 2-dimensional 
points. The five measurements are: (21,51), (28,45), (32,25), (41,20) and (53,18), 
according to the equation (1), we observe [ ]i imax d y= when 1, 2i = and 

[ ]i imax d x=  when 3,4,5i = .  

That is, 
1 2 3 4 5 3{ [ ], [ ], [ ], [ ], [ ]} [ ]minmax MIN d y d y d x d x d x d x= = , namely: 

( )MinMax D = ( 3[ ]d x , 3[ ]d x )= (32,32). 

 

Fig. 1. The computation illustration of the MinMax operator 
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The implementation of the sensor data gathering optimization strategy using MinMax 
hierarchical thresholds can be illustrated by setting VSN with nine sensor node for 
monitoring the same interested enent. Fig. 2 shows the first phase, there is no historical 
information on each CH node, which gathering data toward the central monitoring node. 
Once the VSN was formed, the hierarchical threshold is initialized as the corresponding 
MinMax operator. The parent CH node computes ( )MinMax D among its own point and 

the reported points from its child node. Setting n =2, the sensor data set D is (28,45), 
(33,27), (25,41), (56,35), (38,43), (23,31), (48,25), (29,35) and (51,35), then  

 {45,33, 41,56, 43,31, 48,35,51} 31minmax MIN= =           (2) 

Thus, ( ) (31,31)MinMax D =  is the initial hierarchical threshold of every CH node in 

VSN. Then, the parent CH node sends the multicast message with the initial threshold 
to all child nodes. In the next sampling round, as shown in Fig. 3, the CH node 
determined whether to forward a new sampling data to the parent node by judging the 
threshold domination. 

Definition 1: Given sensor data set is ( _1, _ 2, , _ _ )i i i id d d d attri n=  , the 

threshold is ( )MinMax D , if in the sensor data attibute, _ , ( 1, 2, , _ )id j j attri n∀ =  ,  

_id j minmax∃ >  (or _id j minmax∃ < ), then the sensor data id  is dominated by 

the threshold ( )MinMax D , the node will not forward the new sensor data to the 

parent node, or forwarding them.  

Definition 2: Given sensor data set is ( _1, _ 2, , _ _ )i i i id d d d attri n=  , the snesor 

data set is ( _1, _ 2, , _ _ )s s s sd d d d attri n=  from the child node. If 

_ , ( 1,2, , _ )id j j attri n∀ =   and _ , ( 1,2, , _ )sd k k attri n∀ =  , _ _i sd j d k∃ >  (or 

_ _i sd j d k∃ < ), then _id j  is dominated by _sd k , the node will forward _sd k  to 

the parent node, or forwarding _id j  to the parent node.  

 

Fig. 2. The initialization state of virtual sensor network 

According to the definiton 1, for the given VSN, suppose that the sampling data is 
dominated by the threshold when all sampling data attributes are greater than the 
threshold, the CH node will not forward the new sensor data to the parent node, or 



 A Massive Sensor Sampling Data Gathering Optimization Strategy 619 

 

forwarding them. As shown in Fig. 4, the node 7 and node 8 forwarded the sensor 
data to the parent node 6, according to the definiton 2, the sensor data 

8 (28,36)D = is 

dominated by
6 (25,32)D = , so the node 6 will foward the sensor data 

6 (25,32)D = and 

7 (45, 23)D =  to the parent node 3, instead of fowarding 
8 (28,36)D =  to node 8. 

Because the 
3 (26,40)D =  is dominated by 

8 (28,36)D = , the 
6 (25,32)D =  and 

7 (45, 23)D =  were stored by the root node 1. For the other VSN branch, the node 2 

transmited the new sampling data on the basis of the definiton 1 and definition 2.  

 

Fig. 3. The threshold ( )MinMax D of virtual sensosr network 

 

Fig. 4. The data gathering process with ( )MinMax D threshold in VSN 

3 Performance Evaluation  

In this section, the energy consumption performance of proposed strategy was 
evluated. Consider two sensor-network based systems, one for warning of forest fire 
and the other for monitoring of chemical plume pollution, both to be deployed on a 
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planar rectangle grid of 500m*500m, where 600 sensor nodes are randomly 
distributed with the transmission radius r = 100m. The initial energy of each node is 
10J. The sink node is placed in the middle of the sensor field. The number of the 
conmunication hop is 1Maxhops =  in the cluster members. The number of formation 

and detection messages are 120 bit, the number of sensor data is 800 bit. the 
application of VSN formed was decided to compare it to the traditional dedicated 
sensor networks. Fig.5 shows the total energy consumption of the nodes obtained with 
two non-cooperation WSNs and two different VSN subsets with the 

( )MinMax D threshold. Because the subset of nodes belonging to the VSN collaborates 

to carry out a given application data. VSN support will simplify application 
deployment and reduce energy consumption. 

 

Fig. 5. The total energy consumption compare of two frameworks 

 

Fig. 6. The average energy consumption of variety dimensionality per node 
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Fig.6 shows the average energy consumption per node when the dimensionality of 
sensor sampling data increases using the common hierarchical framework and 
MinMax threshold strategy separately. MinMax threshold strategy is superior to the 
common scheme in any dimensionality, reducing the energy consumption. However, 
the difference shrinks with the increasing of the dimensionality because the 
dominance relationship between high-dimensional points is weakened. 

4 Conclusion 

In this paper, we have proposed and described a massive sensor sampling data 
gathering optimization strategy using MinMax threshold. The strategy is fully 
distributed, self-organizing and energy efficient, so that it is more suitable for a large 
scale sensor network in multi-criteria target monitoring. However, the scale of the 
sensor sampling data tends to increase with the emergence of multimedia sensor 
networks. We come up with future research issues related with the massive sensor 
data modeling and visualization using the novel computing technology for the sensing 
layer of internet of things. 
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Abstract. Neural Networks such as RBFN and BPNN have been widely studied
in the area of network intrusion detection, with the purpose of detecting a variety
of network anomalies (e.g., worms, malware). In real-world applications, how-
ever, the performance of these neural networks is dynamic regarding the use of
different datasets. One of the reasons is that there are some redundant features for
the dataset. To mitigate this issue, in this paper, we propose an approach of com-
bining Neural Networks with Random Forest to improve the accuracy of detecting
network intrusions. In particular, we design an intelligent anomaly detection sys-
tem that uses the algorithm of Random Forest in the process of feature selection
and selects an appropriate algorithm in an adaptive way. In the evaluation, we
conducted two major experiments using the KDD1999 dataset and a real dataset
respectively. The experimental results indicate that Random Forest can enhance
the performance of Neural Networks by identifying important and closely related
features and that our developed system can select a better algorithm intelligently.

Keywords: Neural Networks, Anomaly Intrusion Detection, Random Forest,
Intelligent Applications.

1 Introduction

Network intrusion detection systems (NIDSs) are becoming an essential and impor-
tant component in protecting network environments from various network attacks (e.g.,
Trojan, worms). Traditionally, these detection systems can be classified as misuse-based
NIDS (or signature-based NIDS) [10, 18] and anomaly-based NIDS [4, 17]. The for-
mer attempts to detect an attack by comparing incoming packets with its pre-defined
signatures1 (or called rules), while the latter identifies an anomaly by pointing out great
deviations between current events and pre-defined normal models2. The misuse-based
NIDS can only detect known attacks whereas the anomaly-based NIDS has the capa-
bility of identifying potential novel attacks.

For an anomaly-based NIDS, a normal model should be established in advance by
training with historical data. During the establishment, a machine learning algorithm is
usually used to build this normal model. A lot of machine learning schemes have been

1 In intrusion detection, a signature is a kind of descriptions for known threats.
2 A normal model can be used to represent a normal connection or a normal event.

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part II, LNCS 7952, pp. 622–629, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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extensively studied in the field of network intrusion detection. For example, Kim and
Park [8] proposed a method of applying Support Vector Machines (SVMs) to network-
based Intrusion Detection System and their experimental results on KDD1999 datasets3

indicated that their method was effective at detecting intrusions. Li et al. [11] proposed
a novel algorithm of TCM-KNN (Transductive Confidence Machines for K-Nearest
Neighbors) to help detect network attacks by using a small dataset. Their experiments
were conducted on the same KDD1999 dataset and achieved a good result. Later, Meng
and Kwok [16] applied a disagreement-based semi-supervised learning algorithm to
detecting network intrusions in addition to false alarm reduction. Their experimental
results on both KDD1999 and a real dataset indicated that the proposed scheme can
achieve a high detection accuracy by only using a small labeled dataset compared to
several traditional supervised learning algorithms (e.g., SVM).

Neural Networks such as Radial Basis Function Network (RBFN) and Back Propa-
gation Neural Network (BPNN) are very popular for building supervised-based intru-
sion detection systems. But in real-world deployment, we find that its performance is
fluctuant by testing with different datasets. In this paper, we propose a method of apply-
ing Random Forest algorithm to both RBFN and BPNN. In particular, we develop an
intelligent anomaly detection system that uses the algorithm of Random Forest in the
process of feature selection and selects a better algorithm intelligently. Accordingly,
we conducted two major experiments to explore the performance of our developed sys-
tem on the KDD1999 dataset and a private dataset respectively. The evaluation results
demonstrate that the algorithm of Random Forest can improve the performance of neu-
ral networks (both RBFN and BPNN) in detecting network anomalies.

The rest of this paper is organized as follows: in Section 2, we introduce the
background of Random Forest and review some related work about the applications
of Neural Networks and Random Forest in intrusion detection; Section 3 describes our
proposed method of combining Neural Networks with Random Forest and presents our
developed intelligent system; we illustrate our experiments and the experimental results
in Section 4; at last, Section 5 concludes our work and points out the future work.

2 Background and Related Work

This section introduces the background of Random Forest and reviews some related
work regarding Neural Networks and Random Forest and their applications in the field
of intrusion detection.

2.1 Random Forest

Random Forest (or random forests, shortly RF) is an ensemble classifier that is com-
posed of many decision trees and outputs the class that is the mode of the classes output
by individual trees [2]. Random Forest has low classification (and regression) errors
comparable to SVM [9]. It has several merits described as follows: 1) it is one of the
most accurate learning algorithms available and it can produce a highly accurate clas-
sifier for various datasets [3]; 2) it runs efficiently on large databases and can handle

3 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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thousands of input variables without variable deletion; 3) it generates an internal unbi-
ased estimate of the generalization error as the forest building progresses; 4) It gives
estimates of what variables are important in the classification and provides methods for
balancing errors in class population unbalanced datasets; and 5) it offers an experimen-
tal method for detecting variable interactions.

Specifically, Random Forest usually works as follows [2]: when the training set for
the current tree is drawn by sampling with replacement, nearly one-third of the cases
are left out of the sample. This oob (out-of-bag) data is used for obtaining a running
unbiased estimate of the classification error as trees are added to the forest. It can also
be used for obtaining estimates of variable importance. After each tree is built, all of the
data is run down the tree, and proximities are computed for each pair of cases. If two
cases occupy the same terminal node, their proximity is increased by one. At the end of
the run, the proximities are normalized by dividing the number of trees. Proximities can
be used to replace missing data, locate outliers, and produce low-dimensional views of
the data. Each tree can be constructed as below:

– Let N denotes the number of training cases and M denotes the number of variables
in the classifier.

– Choosing the number m of input variables which is used to determine a node of the
tree (note that m should be much less than M ).

– Choosing a training set for this tree by choosing n times with replacement from all
N available training cases (i.e., take a bootstrap sample). Using the rest of the cases
to estimate the error of the tree through predicting their classes.

– For each node of the tree, randomly choosing m variables and calculating the best
split based on these variables in the training set.

– Each tree is fully grown and not pruned.

2.2 Related Work

Neural Networks have been widely studied in the area of intrusion detection, especially
aiming to improve the detection efficiency of anomaly-based NIDSs. A lot of Neural-
Network-based algorithms have been developed.

Han and Cho [6] first identified that neural networks were good at learning system-
call sequences and proposed a novel intrusion-detection technique based on evolution-
ary neural networks (ENNs). The proposed method could consume less time to obtain
superior neural networks than using other conventional approaches. The reason is that
they discover the structures and weights of the neural networks simultaneously. Their
experiments on the DARPA 1999 dataset showed that the time required for learning
could be reduced without any loss of detection performance. Cha et al. [5] presented
a method of combining neural networks and fuzzy membership function, and used the
Soundex algorithm to conduct feature selection and to change variable length data into a
fixed length learning pattern. They further compared their approach with N-gram tech-
nique and indicated that their method achieved a higher detection rate. Later, Yang and
Karahoca [22] proposed an anomaly-based network intrusion detection based on Cel-
lular Neural Networks (CNN) model, which featured with multi-dimensional array of
neurons and local interconnections among cells. Their experiments on the KDD1999
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dataset indicated that the CNN model was effective in intrusion detection and exhibited
an excellent performance with a higher detection rate and a lower false positive rate
in contrast to back propagation neural network. Several other applications of Neural
Networks in detecting anomalies can be referred to [1, 7, 12–14, 19–21].

Random Forest (RF) has also been applied to intrusion detection. For instance, Kim
et al. [9] proposed an approach of building lightweight Intrusion Detection System
(IDS) based on Random Forest (RF). Their experiments on the KDD1999 dataset indi-
cated the feasibility of their approach. That is, the approach could not only guarantee
high detection rates but also figure out important features of audit data. Later, Malik et
al. [15] proposed and implemented a hybrid classifier based on binary particle swarm
optimization (BPSO) and random forests (RF) to classify PROBE attacks in a network
environment. In the evaluation on the KDD1999 dataset, the results showed that their
proposed classifier outperformed 8 well-known classifiers such as SMO (SVM), PART
(C4.5), Bagging, etc.

3 Our Proposed Method

In real-world applications, we find that Random Forest is good at determining important
features and this observation was also validated in [9]. Regarding the anomaly-based
detection, there may exist a lot of features extracted from a network environment (i.e.,
each record in the KDD1999 dataset contains 41 features), in which some features are
not important and essential. In this work, we therefore attempt to develop an intelligent
anomaly detection system which employs Random Forest to conduct feature selection
for Neural Networks.

The architecture of our developed intelligent anomaly detection system is described
in Fig. 1. The term of intelligent in this architecture means that the system can compare
the performance of algorithms and determine the best one in an adaptive way . In par-
ticular, we select two neural-network algorithms of RBFN and BPNN in this work as
these two algorithms are very popular in real deployment.

– RBFN: is an artificial neural network (ANN) which employs radial basis functions
as its activation functions. This algorithm can be used to model complex mappings.

– BPNN: can propagate input forward and perform backward passes through the net-
work and calculate appropriate weights.

In total, there are four major components in the architecture: Feature Selection, De-
cision Component, Detection Component and Extended Algorithm Pool.

Feature selection. In this component, we use Random Forest to conduct feature se-
lection. Before that, network events should be converted to pre-defined features (i.e.,
the features in the KDD1999 dataset). For different sets of features, Random Forest is
expected to decide the most important and relevant features.

Decision component. In this component, the system can compare the performance of
two specific algorithms of RBFN and BPNN in the aspect of detecting anomalies. As a
case study, we measure the algorithm performance based on detection accuracy. That
is, the algorithm with a better detection accuracy can be output from this component.
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Fig. 1. The architecture of our developed intelligent anomaly detection system

Detection component. In this component, the system can use the output algorithm
(e.g., RBFN or BPNN) to detect network intrusions. In addition, the system can require
to re-select the algorithm after a fixed time.

Extended algorithm pool. This component is designed to integrate and store other
potential neural-network algorithms. By adding new algorithms (i.e., not only neural-
network algorithms) into this pool, the system can consider more algorithms and pro-
vide a larger comparison among different algorithms in the decision component.

4 Evaluation

In this section, we explore the performance of our developed intelligent system using
the KDD1999 dataset and a real dataset respectively.

4.1 KDD1999 Dataset

The KDD Cup 1999 Dataset (KDD1999) derives from the DARPA packet traces and
includes a wide variety of intrusions simulated in a military network environment. Al-
though this dataset is decade-old, it is the only well-known and widely available dataset
in the area of intrusion detection. The full KDD1999 dataset includes 4,898,431 records
and each record contains 41 features. As a baseline experiment, we evaluate our sys-
tem with a random selection of 45,069 records (each with 41 features) and 4 categories
of attacks such as Probe, DOS, U2R and R2L. These 41 specific features (a total of 4
categories) in the KDD1999 dataset are shown in Table 1.

The results of detection accuracy are shown in Table 2. This table shows that RBFN
and BPNN can achieve a detection accuracy of 98.54% and 98.65% respectively, while
our system can achieve a detection accuracy of 99.12%. These results indicate that Ran-
dom Forest can improve the performance of Neural Networks by identifying important
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Table 1. Features and categories in the KDD1999 dataset

Category Specific Featrues

TCP connection basic characteristic
duration, protocol_type, service, flag,
src_bytes, dst_bytes, land, wrong_fragment, urgent

TCP connection content characteristic

hot, num_failed_logins, logged_in,
num_compromised, root_shell, su_attempted,
num_root, num_file_creations, num_shells,
num_access_files, num_outbound_cmds, is_hot_login,
is_guest_login

Time-based network traffic
count, srv_count, serror_rate, srv_seror_rate,
rerror_rate, srv_rerror_rate, same_srv_rate,
diff_srv_rate, srv_diff_host_rate

Host-based network traffic

dst_host_count, dst_host_srv_count,
dst_host_same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,
dst_host_serror_rate, dst_host_srv_serror_rate,
dst_host_srv_serror_rate, dst_host_rerror_rate,
dst_host_srv_rerror_rate

Table 2. The results of detection accuracy

10-folder RBFN BPNN Our System
Detection Accuracy (%) 98.54 98.65 99.12

and closely related features. In particular, in this experiment, Random Forest selects 18
features out of these 41 features. Through training with the most important and related
features, the detection accuracy of our developed system is higher than that of those
original neural network algorithms.

4.2 Real Dataset

In this experiment, we replace the KDD1999 dataset with a real trace collected in a net-
work environment. Specifically, the real dataset was collected by a Honeypot4 deployed
in a public domain, in which anyone can access from anywhere on the Internet. The real
dataset contains 58,232 records and each record has 22 features (see TCP connection
basic characteristic and TCP connection content characteristic in Table 1). The dataset
was labeled by means of expert knowledge (i.e., labeling as attack or normal).

The results of detection accuracy are shown in Table 3. This table shows that RBFN
and BPNN can achieve a detection accuracy of 89.23% and 88.74% respectively, whereas
our system can improve the detection accuracy to 93.23%. In the component of feature
selection, 12 features were selected out of the 22 features. These results validate that our
approach is encouraging in real settings.

To explore the intelligent nature of our developed system, we divided the real dataset
into five parts (called P1, P2, P3, P4 and P5). We present the output results of decision
component in Table 4. This table shows that our developed system can intelligently

4 http://www.honeybird.hk/

http://www.honeybird.hk/
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Table 3. The results of detection accuracy

10-folder RBFN BPNN Our System
Detection Accuracy (%) 89.23 88.74 93.23

Table 4. The results of detection accuracy

Data P1 P2 P3 P4 P5
Output RBFN RBFN BPNN BPNN RBFN

select and output the algorithm which can achieve a better detection accuracy. For in-
stance, RBFN is selected for P1, P2, P5 while BPNN is selected for P3 and P4.

5 Conclusions and Future Work

Neural Networks have been widely used to help establish a normal profile in the field
of anomaly-based intrusion detection. But the performance of these neural networks
is dynamic varied with different datasets. We identify that one of the main reasons is
due to the redundancy of data features. To mitigate this issue, in this work, we attempt
to conduct the process of feature selection by means of Random Forest. In particular,
we develop an intelligent anomaly detection system that enables to decide and output a
better algorithm in an adaptive way. In the evaluation, we conducted two major experi-
ments on the KDD1999 dataset and a real dataset respectively, the experimental results
demonstrate that our proposed method can overall enhance the performance (e.g., de-
tection accuracy) of RBFN and BPNN in detecting network anomalies.

This work presents some initial results of our developed system. Future work could
include conducting more analysis of feature selection (i.e., what features are most likely
to be selected) and involving a larger dateset to validate our system. Future work could
also include combining and comparing other algorithms in our system to provide a more
comprehensive evaluation of our approach.
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Abstract. In this paper, a novel computational intelligence scheme is
proposed to forecast landslide based on functional networks. Two types
functional networks, general functional networks with two variables basis
function (GFN) and separable functional networks (SFN) are applied to
predict a real-world example. In addition, the experiments reveal that
the landslide prediction using functional networks is reasonable and ef-
fective, and GFN are consistently better than SFN in terms of the same
measurements.

Keywords: Functional networks, Two variables basis function, Land-
slide prediction, Separable.

1 Introduction

Landslide [1,2] are serious nature disasters which cause major socioeconomic
disruptions, extensive property damage, and casualties. In order to avoid or
reduce the harm in advance, the prediction of landslide is essential for carrying
out quicker and safer mitigation programs. Hence, a number of methods have
been tried in the problem of displacement of landslide forecasting.

Recently, functional networks [3,4] have been introduced as an extension of
neural networks. Functional networks provide simple and valid techniques to
model nonlinear system. In this paper, considering that the broad application
prospects of functional networks [5,6,7], we apply them in landslide forecasting.
Moreover, applying two types function networks such as GFN and SFN into
research of landslide in the Three Gorges reservoir of China , the validity and
practical value of these new framework can be demonstrated.

2 Functional Networks

Functional networks may be considered as more problem-driven than as data-
driven, so the initial architecture is designed based on a problem in hand. As it is
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shown in Fig. 1, which represents a typical architecture of a functional network
illustrating its principal components. A functional networks consist of several
elements including:

a) One layer of input storing neurons of the data set {x1, x2, x3, x4}.
b) None, one or several layers to store intermediate information, there one

layer {x5, x6}.
c) One or several layers of processing neurons or computing units that evaluate

a set of input values and delivers a set of output values fi, there are two layers,
the first layer of neurons contains neurons f1, f2, f3 and the second layer of
neurons contains neurons f4.

d) One layer of output storing neurons reduce to units O.
e) A set of direct links between them.
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Fig. 1. Functional networks

Generally speaking, the neuron functions in functional networks are unknown
functions from a given family, such as, polynomial, exponential,Fourier and so
on. The SFN introduced by Castillo [3] is an interesting family with many ap-
plications. The SFN uses a functional expression that combines the separated
efforts of input variables. It contains two inputs and one output, where x1, x2

are the two input variables and O is the output of the functional network, fi
and yi are unknown neuron functions. The relationship between O, {x1, x2} can
be defined mathematically as follows:

O = F (x1, x2) =

n∑
i=1

fi(x1)yi(x2). (1)

For illustrative purposes, considering the simplest architecture from this family,
which neglects double interactions by separating the contributions of each of the
inputs in the form, where n = 2 and f2(x1) = y1(x2) = 1,

O = F (x1, x2) = f1(x1) + y2(x2) := f(x1) + y(x2). (2)
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3 Analytical Method

Training is an very important part in the application of a functional network.
Similar to the works Castillo et al [3] and Bruen and Yang [6], we consider
the general Function networks in Fig. 2. It is easily know that the network
structure is multiple input and multiple output. This network is composed of
many layers, where each layer has many functional neurons. The number of every
layer functional neurons may not be same, which only dependent on the initial
topology. The set {x1, . . . , xk} as a variable is the first input to the network,
with every layer functional neurons take previous neurons as a new input with
different function equation to calculate, and the last output layer reduces to the
unit O1, . . . , On. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = f1(x1, . . . , xk),
y2 = f2(x1, . . . , xk),
...
yl−1 = fl−1(x1, . . . , xk),
yl = fl(x1, . . . , xk),
z1 = g1(y1, . . . , yl),
z2 = g2(y1, . . . , yl),
...
zm−1 = gm−1(y1, . . . , yl),
zm = gm(y1, . . . , yl).

(3)
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Fig. 2. Generalized functional networks

A neuron functional f(x1, x2, · · · , xk) can be denoted as:

f̂(x1, x2, · · · , xk) =

m∑
j=1

αjθj(x1, x2, · · · , xk), (4)

where {θ1, · · · , θm} is a linear independent combination of a standard functional
form for each neuron function, the coefficients αj are the parameters of the
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functional networks. In this paper, a new linear independent combination of a
standard functional form with multiple basis functions are proposed θj={xm1

1 ×
xm2
2 × · · · × xmk

k , ms = 0, 1, 2, · · · , n; s = 1, 2, · · · , k}.
The objective function used here is the sum of square errors, which should

be minimised between the theoretic output and the output calculated by the
network. The error can be measured as in

E =

t∑
i=1

ê2 =

t∑
i=1

[Oi − f̂(xi1, xi2, · · · , xik)]
2, (5)

or

E =

t∑
i=1

[Oi −
m∑
j=1

αjθj(xi1, xi2, · · · , xik)]
2. (6)

For a unique representation of the functional networks, it should be add an initial
functional condition. In this case, it uses either of the one initial conditions:

f(x01, x02, . . . , x0k) = λ, (7)

where t is the training sample size, x01, · · · , x0k and λ are given constants to
ensure the unique representation of functional networks. Therefore, we want to
find the optimum coefficients αj , and minimize the sum of square errors of the

approximation Ê. Using the Lagrange multipliers, it build the auxiliary function:

Ê =

t∑
i=1

[Oi −
m∑
j=1

αjθj(xi1, xi2, · · · , xik)]
2

+ σ(

m∑
j=1

αjθj(x01, x02, · · · , x0k)− λ). (8)

Minimisation of the above function Ê is equivalent to solving the set of derivative
equations of Ê with respect to parameters αj and multiplier σ. Then, for j =
1, · · · ,m :

∂Ê

∂αj
= − 2

t∑
i=1

[Oi −
m∑
j=1

αjθj(xi1, xi2, · · · , xik)]

× θj(xi1, xi2, · · · , xik) + σθj(x01, x02, · · · , x0k) = 0,

∂Ê

∂σ
=

m∑
j=1

αjθj(x01, x02, · · · , x0k)− λ = 0. (9)

The minimum is obtained by solving the system of linear equations, then the
coefficients αj are derived.
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4 Application to Landslide Forecasting

4.1 Data Collection

The Baishuihe landslide occurred in the town of Zigui, on the south bank of
the Yangtze River, and its 56 km away from west of the Three Gorges Dam of
China. The landslide covers an area of (1260× 104). The general grade is about
30. It is a high-speed loess landslide, in which the formation of the landslides
is mainly related to the easy sliding loess material, complex geologic structure,
precipitation and human engineering activities. The bedrock geology of the study
area consists mainly of sandstone and mud stone, which is an easy slip stratum.
The slope is of the category of bedding slopes. However, the land is limit, there
are massive farmlands and people near the slope. When the slope failure of the
warning area occurs, the landslide often caused serious damages to the inhabitant
in reservoir area, the river side highway and even affected the Three Gorges Dam.

In this paper, two types of functional networks was used to predict the dis-
placement of Baishuihe landslide. First, we propose a general functional networks
with two variables basis function. And approximate f(x1, x2):

f̂(x1, x2) =

10∑
j=1

αjθj(x1, x2), (10)

where the coefficients αj are the parameters of the functional networks. Choose a
new linear independent combination of a standard functional form for each neu-
ron function with binary basis function θj(x1, x2) = {1, x1, x2, x

2
1, x

2
2, x1x2, x

2
1x2,

x1x
2
2, x

3
1, x

3
2}. j is the orders of two variables function binary basis function, and

10 is total the number of elements in the combination of sets of linearly inde-
pendent θj .

Second, we choose a simple SFN with two inputs and one output, by (1) and
(2) to predict the displacement of Baishuihe landslide.

f̂(x1) =
4∑

j=1

αjφj(x1), (11)

ŷ(x2) =

3∑
j=1

βjϕj(x2), (12)

where φj(x1) = {1, x1, x
2
1, x

3
1} and ϕj(x2) = {1, x2, x

2
2}. j is the orders of poly-

nomial family and the total number of φj and ϕj sets of linearly is 4 and 3.

4.2 Results and Discussion

Eleven GPS deformation monitoring points layout in the landslide surface. And
we choose the displacement data of ZG118 monitoring point as a case study. From
Fig. 3, we can see the measurement data between January 2008 to June 2009,
and then select the data between January 2008 to December 2008 as training
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Fig. 3. Baishuihe landslide accumulation displacement data

data in order to construct the forecasting model and the rest of 6 groups of
data from January 2009 to June 2009 as testing data. It is very obvious that the
deformation of the landslide has obvious ascend trend with small fluctuations,
which are related to the seasonal change.

In order to functional network to work well, the input data between January
2008 to December 2008 were normalized in a specific range, in between 0 and 1
based on (13) to make sure that the utilized input variables were independent
of measurement units.

x
(new)
i =

(x
(old)
i −min(xi))

(max(xi)−min(xi))
,

(13)

where x
(old)
i and x

(new)
i means input and output data, min(xi) and max(xi) are

respectively minimization and maximization of the input data.
Then, carrying out three functional networks compute themselves models.

First, we obtained the following models with GFN by (10):

f(x1, x2) = −0.050422917999985+ 1.595658859300810x1

+2.210746424005230x2+ 0.012027056091536x1x2

+0.000034253302232x2
1− 2.220803919057385x2

2

−3.248695211763328x2
1x2 + 0.011012083105003x1x

2
2

+1.895126430244329x3
1+ 0.810383805161921x3

2. (14)
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Second, we got a SFN by (11) and (12).

f(x1) = 1.080820780744473× 103

+0.005743071593316× 103x1

−0.012645877551293× 103x2
1

+0.006889501059795× 103x3
1,

y(x2) = −1.081040041133778× 103

+0.002349151558379× 103x2

−0.002102411096194× 103x2
2. (15)

And then, we unnormalized the data which were computed by three models value
use (16) to get Tables 1.

x
(old)
i = x

(new)
i (max(xi)−min(xi)) +min(xi). (16)

Table 1. Comparision between predicted values and measured values

Time Value GFN(mm) GFN relative error(%) SFN(mm) SFN relative error(%)

2009.01 1723.7 1736.2 0.73 1442.0 16.3
2009.02 1724.9 1732.2 0.72 1449.1 16.0
2009.03 1723.7 1740.4 0.97 1443.5 16.3
2009.04 1728.3 1739.7 0.66 1446.9 16.3
2009.05 1731.9 1737.8 0.34 1437.1 17.0
2009.06 1819.0 1728.2 5.0 1435.5 21.0

The simulation results illustrate two types functional network have well ability
for prediction, and successfully predict the obvious deformation from January
2009 to June 2009. As shown in Table 1, GFN had the predicting values and
actual measurement values are very close for every calculation, and the relative
error falls into 5 percent in Table 1, the predicting precision is high enough which
can satisfy the request of deformation prediction of landslide in medium-term
and demonstrate the superiority of the functional network approach to solve real-
time landslide forecast. And GFN had a lower relative error than SFN. Because,
GFN have more input of variables and more complicated compute, which benefit
functional networks to give more accurate prediction.

5 Conclusion

In this paper, the real case of Baishuihe landslide of the Three Gorges reservoir
of China was utilized to investigate the capabilities of two kinds of functional
networks intelligence predictive models to forecast landslide deformation.The
functional network can work out the complex nonlinear relation by learning
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models and using the present data. And it is possible that a more detailed study
with more complex forms of the model will improve even further on these results.
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Abstract. In the paper, three kinds of classifiers are fused they are BP network 
classifier, self-organizing feature map network classifier and RBF network clas-
sifier and the moment invariant features as well as roundness features as the in-
puts of the fused neural network. Given targets are recognized by the majority 
voting method and self-adapts weighted fusion algorithm of the fused classifier, 
and also by the three network classifiers respectively. The recognition results of 
single neural network and fusion algorithm are analyzed and compared. The re-
sults indicate that the recognition rate of multi-neural networks fusion algorithm 
is higher than any single neural network, and also show that the fusion algo-
rithm has the significance for improving the accuracy of recognition. 

Keywords: multi-neural network classifier, target recognition algorithm, multi-
classifier fusion, BP network, SOM network, RBF network. 

1 Introduction 

It is information fusion that the multiple sensors or multi-source information are 
processed comprehensively and the results are getting more accurate and more reliable. 
So the best experimental method will be selected for solving a target recognition prob-
lem. However, a large number of experiments have shown that although the overall 
performance of a particular method is best, but other methods may correctly recognize 
the false recognition samples of this method. That is to say, for samples to be recog-
nized, the different recognition methods may result in complementary information. For 
the complementary information of classifier fusion, it will improve the recognition per-
formance by fusing multi-classifiers organically. In this paper, BP network classifier, 
self-organizing feature map network classifier and RBF network classifier are fused. 
Given targets are recognized by majority voting algorithm andself-adaptive weighted 
fusion algorithm, they can improve the effect of target recognition effectively. 

2 Multi-neural Network Classifiers Fusion System 

Different neural network classifiers have different performance in target recognition. 
If use a single classifier to recognize targets, we can’t achieve good effect. With the 
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development of fusion technology, target recognition rate is improving. The composi-
tion of multi-neural network target recognition system is shown in Figure 1. It  
consists of the following components: feature extraction, neural network classifiers, 
decision fusion, output of targets classification. 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
 

Fig. 1. Multi-neural network classifier fusion diagram 

3 Neural Network Classification Algorithm 

Currently, there are more than 40 kinds of neural network model. Three typical neural 
networks, which are BP neural network, SOM neural network and RBF neural net-
work, are used in the paper. In the experiment, 8 moment invariant features which 
contain a roundness feature and 7 moment features are used as the input of each neur-
al network; At the same time, referencing a experience rule that training sample num-
ber is 5 to 10 times the total number of the network connection weights[1] and the 
actual situation of networks and samples, each type sample is selected 5 samples. So, 
each network input is 50 samples; Finally, the trained networks above are used to 
recognize 10 categories targets. 

3.1 BP Neural Network 

BP neural network is a one-way communication multilayer feedforward network. So 
far, the multilayer feedforward network by using BP algorithm is the most widely 
used in neural network. In multilayer feedforward network applications, single hidden 
layer network is the most widely. Generally, single-hidden layer feedforward network 
is known as three-layer feedforward network or three-layer sensor, which is shown in 
Figure 2. 
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Fig. 2. Three layers BP network 

The BP neural network structure which is used in the experiment is as follows:  

1) Input layer and output layer node: Input layer have 8 neurons(which cor-
respond 8 invariant features) and output layer have 10 neurons (which correspond 
10 categories targets). 

2）Initial weight value: According to the experience, hidden layer initial 
weight value is the random value between 0 to 1, output layer initial weight value 
is randomly assigned +1 or -1, and both number is equal. 

3）Hidden layer number and hidden node: A single hidden layer BP network 
is used in the experiment and the trained network achieve the desired accuracy.  

According to past designers accumulating many experiences, we can get determine 
hidden layer number empirical formula[2]: 

α++= lnm                                   (1) 

In the formula, m  is hidden node number, n  is input node number, l  is output 
node number, α  is a constant between 1 to 10. 

According to the specific circumstances of experimental data and combining with 
the empirical formula, hidden node number is determined as 30. BP network with the 

activating function )0))(exp(1/(1)( >+= BBxxf
（Log-Sigmoid type）, in the 

experiment, B = -1. 

3.2 Self-Organizing Feature Map Neural Network 

SOM neural network is self-organizing feature map neural network. The network 
formed by input layer and competitive layer which is shown in Figure 3.  
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Fig. 3. Two-dimensional SOM topology structure 

The basic thought of SOM neural network is[3]: competitive layer neurons in the 
network compete the response opportunities of the input pattern. Finally only one 
neuron become the winner of the competition and its connection weight value adjust 
to a more favorable its competition direction. Thus, winning neuron express the clas-
sification of input patterns. 

The SOM neural network structure which is used in the experiment is as follows: 

1) Input layer and output layer：Input layer have 8 neurons and output layer 
have 10 neurons. 

2) Initial weight value：In the experiment, m input samples are randomly se-
lected from the training setting as the initial weights[4], that is  

rand
j XW =)0(

  ， mj ,...,2,1=                        (2) 

In the formula, randX  is random sample vector. 
3) Neighborhood：Neighborhood radius is used to express the size of the bet-

ter neighborhood 
)(* tN

j , and radius )(tr  is usually taken as[5]: 

)/1()( mttCtr −=                                 (3) 

In the formula, C is constant, mt  is pre-selected maximum training number. In the 

experiment, setting 2000=mt ,  . 

4) Learning rate：In the experiment, network learning rate )(tδ  is used as 
the function as follows[5]: 

       btcet −=)(δ                                    (4) 

In the formula, c  is a constant between 0 to 1, b  is a constant that greater than one. 
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3.3 Based on Radial Basis Function Neural Network 

RBF neural network is based on radial basis function neural network. The network is 
a triple-layer feedforward neural network. Input layer is formed by the source node; 
The second layer is hidden layer and its unit number depend on the needs of the de-
scription problem; The third layer is output layer that response the input pattern. Sup-
posing the network has m  input neurons, l  hidden neurons and n  output neurons. 
The topology structure is shown in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. RBF topology structure 

In the experiment, input layer have 8 neurons and output have 10. According to 
empirical formula (1) and testing results, hidden layer are set 13 neurons. 

2

)( xex −=Φ is taken as radial basis function. In the formula, function center is ori-

gin, width is 1. Weight value is set a value between 0.1 to 1 and 5.0=η is taken as 
learning rate. Then, weight the 13 radial basis function. Using above parameters 
trained the network then use it to recognize targets. 

4 Multiple Classifiers Fusion Algorithm 

Multiple classifiers fusion results not only depend on the selection of fusion algo-
rithm, but also the classifier performance and classification data, and so on. Although 
various fusion algorithm have been proposed, most of the studies are limited to verify 
the effectiveness of these algorithms from the application, not demonstrated the con-
clusion from theoretical point. Therefore, it has great theoretical and practical signi-
ficance to generalize the meaning of fusion, then reveal the nature of fusion from 
mathematics. There are some commonly multi-classifier fusion operator that includ-
ing majority voting method, average method (simple average and weighted average), 
the multiplication rule, maximum and minimum rules, Bayesian method[6], and so on. 
Majority voting method and dynamic adaptive weighting method are mainly used in 
this article. 

Φ

Φ

Φ
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4.1 Majority Voting Fusion Algorithm 

Majority voting method [7], use single classifier for output category of given test 
samples, the test samples are divided into a class that multiple classifier with the same 
decision-making, does not require any training, simple and effective. The method is 
similar to the election of voting process. The category that most classifier agree with 

is taken as fusion classification result. Supposing there are L  neural network clas-

sifier and target categories have M . The l th（ Ll ,...,1= ）neural network clas-

sifier mark the i th target iP  recognition result as follows:  

 targetmth  theas p determine tdoesn' network neural lth  thewhen

 targetmth  theas p determine network neural lth  thewhen

0

1
)(

i

i





=
ilm
PV

  

(5) 

Here Mm ,...,1= . so, L  classifier for the total votes number of the i th target 

determined as m  class is as follows:  


=

=
L

l
ilmim PVPV

1

)()(
 

Therefore, target recognition result by neural network classifiers majority voting me-
thod is as follows:  

MnPViVifnPD im
Mm

ni ,...,1  )(max)(,)(
...1

===
=

，

     
(6)

  

Thus, iP  is the n th class. Then request )(),...,(1 iMi PVPV  variance. If the va-

riances less than given threshold, refuse to recognize. 

4.2 Self-Adaptive Weighted Fusion Algorithm 

Classical weighted algorithm propose a computational model, then, according to the 
training sample estimates the model parameter. Such as, the weight of each classifier 
in linear model, fuzzy measure in fuzzy integral, etc. Then optimize the model to best 
in statistical sense. Although many scholars from different angles have proved that the 
fusion method will increase system performance under certain conditions[8], the me-
thod has clear defect that the classifier is only given a weight value(the value reflect 
the importance of classifier in fusion)  base on the statistical performance and doesn’t 
consider each sample specific circumstances. That is to say, the classifier output are 
fused together by fixed weight value. Obviously, this is unreasonable. If we can esti-
mate weight value in the line with each sample specific circumstance, multiple clas-
sifiers fusion method of adaptive changing weight could be realized. The method used 
in this article is based on classical weighted average model. Setting up, there are L  

classifiers in the system and each classifier output are denoted as lf ( Ll ,...2,1= ). 
So, the fused result is :  
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=

=
L

l
ll fwg

1                                     
(7)

 
 In the formula, lw  is the weight value of the l th classifier. However, the differ-

ence is that the different value of lw  is base on different sample. Weight value cal-

culating uses the following method. From the single classifier network recognition 
method of the first few chapters, it can be seen that the network has an actual output 
or the center of clustering after use the samples with selected target feature to train 
the network. The article use the Euclidean distance between the target eigenvector, 
which to be recognized, and sample eigenvector of network output to recognize. If 
the Euclidean distance between the target that to be recognized and the sample target 
of a category is least, the target belongs to this category. If the distance greater than 
certain threshold, refuse to recognize. Similarly, this distance judging method is also 
used in adaptive fusion algorithm. Using a monotonic decrease function, take the 

variable that convert ld
 to a value between 0 to 1 as each classifier weight value. 

In the article, use the following function:  

         
)))(exp(1/(11 βα −−+−= ll dw

                        (8) 

In the formula, α and β  is the parameter to be determined. When given a test sam-

ple, first calculate the Euclidean distance ld  between the test sample in each neural 

network classifier and training sample. Taking this as a basis, generate each classifier 
weight value, thus realize the fusion method of adaptive changing weight value. It can 
be seen that this method can adjust independently the weight value. From the follow-
ing experiment, it also can be seen that this method can achieve better classification 
effect. 

5 Multi-neural Network Classifiers Fusion Experimental 
Results 

5.1 The Recognition by Majority Voting Fusion Algorithm 

According to the principle of majority voting that described above, fuse the recogni-
tion results of BP neural network, SOM neural network and RBF neural network: The 
recognized target is m, when the three networks determine the target as the same m 
target; The target is also recognized as target m, while any two network determine the 
target as m target, but the other is target n; When a network refused to recognize, but 
the other two network have been recognized the target as m, the target is recognized 
as target m; When a network refused to recognize, and the other two recognized the 
target as different targets, then refused to recognize; The target is recognized as m 
when there are two network refused to identify, but the third  recognize the target as 
target m; When the three networks refused to identify, then refused to identify. Rec-
ognition results are shown in Table 1. 
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Table 1. The target recognition results of majority voting fusion algorithm 

％ T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 

Recogni-

tion rate 
87.45 90.31 92.64 88.26 89.77 91.79 93.65 88.96 92.30 91.78 

Error rate 5.98 2.57 3.19 6.79 3.68 2.14 1.36 5.61 3.24 4.25 

Rejection 

rate 
6.57 7.12 4.17 4.95 6.55 6.07 4.99 5.43 4.46 3.97 

5.2 Recognition by Adaptive Weighted Fusion Algorithm 

By using the fusion algorithm in Section 4.2, and adopting the equation (8) to give the 
weight value separately to BP neural network, SOM neural network and RBF neural 
network, while calculating the target feature vectors of each neural network and the 

Euclidean distance ld of the classifier training samples. Then according to equation 
(7) to obtain recognition results after fusing. The weight function of the experiment is 
shown in Figure 5, 2＝α 、 25.0＝β , the horizontal coordinates denotes the Eucli-
dean distance, while the vertical coordinates stands for weight value. Rejection thre-
shold 1.0=J . Recognition results are shown in Table 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Adaptive fusion weight function 
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Table 2. Target recognition results by adaptive weighted fusion algorithm 

％ T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 

Recog-

ni-tion rate 91.79 94.26 92.18 93.42 92.69 93.70 94.03 90.43 93.58 95.26 

Error 

rate 2.44 2.57 1.96 2.57 1.38 2.52 1.21 3.64 2.24 1.65 

Rejec-

tion rate 5.77 3.17 5.86 4.01 5.93 3.78 4.76 5.93 4.18 3.09 

5.3 The Comparison of Each Recognition Methods 

The target recognition results of 10 categories by BP neural network, SOM neural 
network, RBF neural networks, majority voting fusion algorithm and adaptive fusion 
algorithm respectively, are averaged which are shown in Table 3. It can be seen from 
Table 3, when using a single neural network classifier to recognize, the recognition 
rate of BP algorithm is slightly higher, while the recognition rate of  RBF neural 
network is lower, the recognition rate of SOM neural network is between the above 
two methods. Because the weight value of RBF network is partly modified, the train-
ing time of RBF neural network is shorter. The recognition rate of majority voting 
fusion algorithm is slightly lower than BP neural network and SOM neural network. It 
is because the method treats each classifier “vote” equally without considering these 
classification differences in performance. But the recognition rate of adaptive fusion 
algorithm is significantly higher than single neural network recognition rate. 

Table 3. Comparison of target recognition results by each methods 

% BP  SOM  RBF Majority 
voting fusion 

algorithm 

Adaptive fusion 
algorithm 

Recogni-

tion rate 

91.9

4 

91.21 89.64 90.69 93.13 

Error rate 2.38 3.25 4.04 3.88 2.22 

Rejection 

rate 

5.68 5.54 6.32 5.43 4.65 

6 Conclusion 

Using different features or different classifiers could lead different classification re-
sults in target recognition and there is very strong complementary between these  
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results. Therefore fusing multi-classifier recognition results can improve target classi-
fication recognition effect effectively. The recognition results of BP neural network, 
SOM neural network and RBF neural network are fused by majority voting and adap-
tive fusion algorithm in this paper. The results indicate that the recognition rate of 
multi-neural networks fusion algorithm is higher than single neural network. Adaptive 
fusion algorithm overcomes the disadvantage and classical weighted algorithm is 
fixed weight value. Both of them have the advantages for self-adjusting the weight 
value as well as for improving the recognition rate. 

References 

1. Jia, C.-C., Yu, X., Zhang, J.-T.: Two-dimensional invariant target recognition based on BP 
network. Journal of Dalian University of Technology 37(2) (1997) 

2. Qi, X.-X., Duan, Z.-M.: Auto Type Passive Noise Recognition Based on BP Neural  
Network. Instrumentation and Measurement Technology 23(2) (2004) 

3. Huang, J.: Self-organizing Neural Network Used In Air Target Recognition. Xinyang  
Normal College (Natural Science) 12(1), 81–83 (1999) 

4. Fei, S., Ke, J.: MATLAB 6.5 Analysis and Design Of Supportive Neural Network. Electron-
ics Industry Press, Beijing (2003) 

5. Han, L.-Q.: Leather Textures Classification Based on SOM Neural Network. China Leath-
er 26(6), 11–13 (1997) 

6. Liu, R.-J., Yuan, B.-Z., Tang, X.-F.: A New Multi-classifier Fusion Algorithm Based on 
Clustering. Computer Research and Development 38(10), 1236–1241 (2001) 

7. Zhao, Y.-H., Chen, G.-H., Shi, X.-Z.: A New Weighting Algorithm In Multi-classifier  
Fusion. Journal of Shanghai Jiaotong University 36(6), 765–768 (2002) 

8. Wang, H.-Y., Pan, Q., Zhang, H.-C.: An Improved Weighted Fusion Algorithm. Computer 
Engineering and Applications (2003) 



Author Index

Abdurahman, Abdujelil I-230
Arshad, Muhammad Zeeshan II-463

Bai, Weiwei II-212
Bai, Yiming II-429
Bao, Hongyun II-514
Bao, Lanying II-552
Bertini Junior, João Roberto II-405
Bui, The Duy I-36
Bui, Tien Dai I-258, I-429, I-650

Cai, Chao II-155, II-455
Cai, Guoliang I-125
Cai, Jinlong II-586
Cao, Feilong I-547
Cao, Mao-Yong I-367
Chai, Wei I-311
Chang, Eric II-315
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