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Abstract. Gaussian graphical models are important undirected graph-
ical models with multivariate Gaussian distribution. A key probabilistic
inference problem for the model is to compute the marginals. Exact in-
ference algorithms have cubic computational complexity, which is intol-
erable for large-scale models. Most of approximate inference algorithms
have a form of message iterations, and their computational complexity
is closely related to the convergence and convergence rate, which causes
the uncertain computational efficiency. In this paper, we design a fixed
parameter linear time approximate algorithm — the Gaussian message
propagation in d-order neighborhood. First, we define the d-order neigh-
borhood concept to describe the propagation scope of exact Gaussian
messages. Then we design the algorithm of Gaussian message propa-
gation in d-order neighborhood, which propagates Gaussian messages
in variable’s d-order neighborhood exactly, and in the (d + 1)th-order
neighborhood partly to preserve the spread of the Gaussian messages,
and computes the approximate marginals in linear time O(n · d2) with
the fixed parameter d. Finally, we present verification experiments and
comparison experiments, and analyze the experiment results.

Keywords: Gaussian graphical model, Probabilistic inference, Message
propagation, d-order neighborhood.

1 Introduction

Gaussian graphical models are basic undirected graphical models with multivari-
ate Gaussian distribution and conditional independence assumptions [1,2], and
have wide application in image analysis, natural language processing, time-series
analysis etc [3,4]. The key problem of probabilistic inference for the Gaussian
graphical model is to compute the marginals of variables [5]. For tree-like models,
exact inference algorithms, such as Gaussian elimination, belief propagation or
junction tree algorithms, can present the marginals in linear time [6]. For general
graphical models, these exact inference algorithms have cubic O(n3) computa-
tional complexity [6]. For large-scale models with more complex graphs, aris-
ing in oceanography, 3D-tomography, and seismology, the cubic computational
complexity becomes computationally prohibitive [7]. Then various approximate
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inference algorithms have been developed, such as loopy belief propagation [8],
mean field method [9,10].

The loopy belief propagation algorithm propagates the belief messages in the
models with cycles directly, and provides successful approximation in some ap-
plications [8]. But the algorithm may converges to local optimum, may even
fail to converge for general models, and its computational complexity is closely
related to the convergence and convergence rate [11]. The mean field algorithm
propagates the variational messages to approximate the marginals, and research
shows that if the variational message converge, the algorithm can compute the
correct mean parameter [10]. This series of message iteration algorithms have
the computational complexity O(m ·n ·N), but the iteration number N is closed
related to the convergence of the algorithms. So these algorithms have uncertain
computational efficiency.

In this paper, we design a fixed parameter linear time O(n · d2) approximate
inference algorithm— Gaussian message propagation in d-order neighborhood
(GaussianMP-d). First, we define the d-order neighborhood concept to describe
the propagation scope of Gaussian message, and show the message propaga-
tion process in the d-order neighborhood of univariable (GaussianVariableMP-
d), which propagates the Gaussian messages in variable’s d-order neighborhood
exactly, and in the (d+1)th-order neighborhood partly to preserve the computa-
tional complexity increasing. Then we design the GaussianMP-d algorithm based
on the GaussianVariableMP-d unit, which executes the GaussianVariableMP-d
for variables in the elimination order I and the reverse order I ′ respectively to
compute all the Gaussian messages, and calculates the approximate marginals
with these Gaussian messages. Finally, we present verification experiments and
comparison experiments to demonstrate the efficiency and flexibility of the
GaussianMP-d algorithm.

2 Gaussian Elimination Process

The Gaussian graphical model is a undirected graphical model based on graph
G = (V,E), where the vertex set V denotes the Gaussian random variable set
x = {x1, · · · , xn}, and the edge set E reflects the conditional independences
among variables. The probability distribution of Gaussian graphical model is

p(x) = exp
{
〈h,x〉+ 1

2
〈J ,xxT〉 −A(h,J)

}
,

A(h,J) = log

∫

Ξ

exp
{
〈h,x〉+ 1

2
〈J ,xxT〉

}
dx.

Where the h = [h1, · · · , hn]
T,J = [Jij ]n×n are the model parameters, 〈, 〉 de-

notes dot product operation, A(h,J) is the log partition function, Ξ = {(h,J) ∈
R

n × R
n×n|J ≺ 0, J = JT} is the constraint set of parameter (h,J).

An important inference problem for the Gaussian graphical model is to com-
pute the marginals p(xi). Gaussian elimination algorithm is an exact
inference method with variable elimination/marginalization. The distribution of



Gaussian Message Propagation in d-order Neighborhood 541

xU = x \ xs can be computed by eliminating xs, and the corresponding model
parameters J∗

U ,h
∗
U are

J∗
U = JU,U − JU,sJ

−1
s,sJs,U ,

h∗
U = hU − JU,sJ

−1
s,shs.

During the elimination process of the single variable xs, the parameters of the
neighbors {t | t ∈ N(s)} have only been changed. The parameter update formulas
of the neighbor variable {t | t ∈ N(s)} are

Jtt ← Jtt +

(
−J2

st

Jss

)
, ht ← ht +

(
−Jst
Jss

hs

)
.

The update formula of the edges {(t, u) | t, u ∈ N(s)} is

Jtu ← Jtu +

(
−JstJsu

Jss

)
.

If there is no edge between node t and u, an edge (t, u) would be added with
parameter Jtu ←

(− JstJsu

Jss

)
. Obviously, the neighborhoods {t | t ∈ N(s)} form

a complete graphs with m = |N(s)| nodes, and the computational complexity of
elimination of the single variable xs is O(m2). The scale of the complete graph
becomes larger with the elimination of variables, and the computational complex-
ity of elimination of single variable is trend to O(n2). Then the computational
complexity of the Gaussian elimination algorithm is O(n3).

3 Gaussian Message Propagation in d-order
Neighborhood

In this section, we define the concept of d-order Gaussian elimination neigh-
borhood, and design the algorithm of Gaussian message propagation in d-order
neighborhood (GaussianMP-d Algorithm).

3.1 d-order Gaussian Elimination Neighborhood

Definition 1 (dth-order Neighborhood). For the Gaussian graphical model
G, let Nd(i) denote the dth-order Gaussian elimination neighborhood (abbreviated
to dth-order neighborhood) of node i, which is defined recursively as following:

1. The 1-st order neighborhood N1(i) is the set of neighbors of the node i, that
is N1(i) = {j | (i, j) ∈ E}.

2. Let s, t ∈ N1(i). If the edge (s, t) is added during Gaussian elimination of
variable xi, we label

s ∈ N2(t), t ∈ N2(s).
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3. Let u ∈ Na(i), v ∈ Nb(i). If the edge (u, v) is added during Gaussian elimi-
nation of variable i, we label

u ∈ Na+b(v), v ∈ Na+b(u).

Definition 2 (d-order Neighborhood). For the Gaussian graphical model G,
the d-order neighborhood is the union set of Nd(i), d = 1, · · · , d, that is

∪Nd(i) = N1(i) ∪N2(i) ∪ · · · ∪Nd(i).

The Gaussian message propagation in the d-order neighborhood of the vari-
able xi (GaussianVariableMP-d) is to propagate the Gaussian messages in the
d-order neighborhood exactly, and in the (d + 1)th-order neighborhood partly
through avoiding adding new edges to decrease the computational complexity.
Let I denote the node set in elimination order, Ielim the set of nodes elimi-
nated in elimination order, Ileft the set of nodes left in elimination order, the
GaussianVariableMP-d algorithm contains the following four steps, and he for-
mal description is shown in Algorithm 1.

1. Update the parameters {Ĵii, ĥi} of the variable xi with the Gaussian messages
propagated from the variables in Ielim, that is

Ĵii = Jii +
∑

j∈(∪Nd+1(i))∩Ielim

�Jj→i,

ĥi = hi +
∑

j∈(∪Nd+1(i))∩Ielim

�hj→i,
(1)

where �Jj→i,�hj→i are the Gaussian messages from node j to i.

Then update the parameters {Ĵik(k) | k ∈ (∪Nd+1(i)) ∩ Ileft} corresponding
to the edges {(i, k) | k ∈ (∪Nd+1(i)) ∩ Ileft}, that is

Ĵik = Jik +
∑

j∈(∪Nd+1(i))∩Ielim

�Jj→ik , (2)

where �hj→ik denote the message from the j to the edge (i, k).
2. Compute the Gaussian messages {�Ji→s,�hi→s | s ∈ (∪Nd(i))∩Ileft} in the

d-order neighborhood exactly, that is

�Ji→s = −Ĵis Ĵ−1
ii Ĵis, �hi→s = −Ĵis Ĵ−1

ii ĥi. (3)

For ∀ s, t ∈ (∪Nd(i)) ∩ Ileft, if the edge (s, t) /∈ E, we add the edge (s, t).
Then compute the message from i to the edge (s, t), that is

�Ji→st = −ĴisĴ−1
ii Ĵit. (4)

3. Compute the messages {�Jiu,�hiu | u ∈ Nn+1(i) ∩ Ileft} in the (d + 1)th-
order neighborhood partly, that is

�Ji→u = −Ĵiu Ĵ−1
ii Ĵiu, �hi→u = −Ĵiu Ĵ−1

ii ĥi. (5)
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Let v ∈ (∪Nd(i))∩Ileft, if there is an edge (u, v) ∈ E, we compute the message
�Ji→uv from node i to the edge (u, v), that is

�Ji→uv = −ĴiuĴ−1
ii Ĵiv. (6)

Obviously, we didn’t add new edge in this step, which decreases the compu-
tational complexity.

4. Add the node i to Ielim, and delete the node i from Ileft.

Algorithm 1. GaussianVariableMP-d of variable xi

Data: Gaussian graphical model G, variable xi, I, Ielim, Ileft
Result: {�Ji→j , �hi→j , �Ji→jk}
begin

Label the neighborhoods of variable xi from N1(i) to Nd+1(i);

Update the parameters Ĵii, ĥi with (1);
for k ∈ (∪Nd+1(i)) ∩ Ileft do

Update the parameters Ĵik with (2);
end
for s ∈ (∪Nd(i)) ∩ Ileft do

Update the messages �Ji→s,�hi→s with (3);
end
for ∀ s, t ∈ (∪Nd(i)) ∩ Ileft do

if (s, t) /∈ E then
add (s, t) ∈ E;

end
Update the messages �Ji→st with (4);

end
for u ∈ Nn+1(i) ∩ Ileft do

Update the messages �Ji→u,�hi→u with (5);
for v ∈ (∪Nd(i)) ∩ Ileft do

if (u, v) ∈ E then
Update the messages �Ji→uv with (6);

end

end

end
Add the node i to Ielim, delete the node i from Ileft.

end

3.2 GaussianMP-d Algorithm

The GaussianMP-d Algorithm is to execute the GaussianVariableMP-d for vari-
ables in the elimination order I and its inverse elimination order I ′ respectively,
and compute the approximate marginal distributions with the Gaussian mes-
sages in the d-order neighborhood. Here, we select a cutset P = {xA1 ,xA2 , · · · }
of the Gaussian graphical model G = (V,E), which is also the cutset of the
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elimination order I. Then, we can compute the approximate marginal distribu-
tion of xA, that is

p̃(xA) ∝ exp
{
〈h̃A,xA〉+ 1

2
〈J̃A,xAx

T
A〉

}
. (7)

Where the model parameters h̃A = [h̃a]
T, J̃A = [J̃a,b]|A|×|A| can be computed

with the these messages, that is

h̃a = ha +
∑

j∈∪Nd+1(i),j /∈A

�hj→a,

J̃aa = Jaa +
∑

j∈∪Nd+1(i),j /∈A

�Jj→a,

J̃ab = Jab +
∑

k∈∪Nd+1(a),
k∈∪Nd+1(b), k/∈A

�Jk→ab.

(8)

Generally speaking, the probability inference in subset xA is trackable. The ap-
proximate marginal distributions of variables xa ∈ xA can be computed with the
Gaussian elimination algorithm exactly. The formal description of GaussianMP-
d algorithm is shown in Algorithm 2. The computational complexity of the
GaussianMP-d algorithm is fixed parameter linear time O(n · d2).
Algorithm 2. GaussianMP-d Algorithm

Data: Gaussian graphical model G
Result:

{
p̃(xi) | xi ∈ x

}
begin

Select a elimination ordering I;
for xi ∈ I do

Run GaussianVariableMP-d algorithm;
end
for xi ∈ I ′ do

Run GaussianVariableMP-d algorithm;
end
Select a cutset P ;
for variable subset xA ∈ P do

Compute approximate marginal distribution p̃(xA) with (7),(8);
Run exact belief propagation algorithm in xA;
Output {p̃(xa1) | xa1 ∈ xA};

end
Output {p̃(xi) | xi ∈ x}.

end

4 Experiments

In this section, we compare the approximate marginal distributions with some
numerical experiments. We experiment with a 8× 8 two dimension lattice Gaus-
sian graphical model. Specially, we generate the attractive Gaussian model G1



Gaussian Message Propagation in d-order Neighborhood 545

with model parameters Jij ∈ (0, 20), hi ∈ (0, 30)), and the repulsive Gaussian
model G2 with model parameters Jij ∈ (−20, 0), hi ∈ (−30, 0)), which all satisfy
the parameter conditions J = JT,J � 0.

For the model G1, we select the elimination order from left to right, and from
bottom up, and execute the GaussianMP-d(d = 1, 2, 3) algorithms respectively.
The experiment results are shown in Figure 1, which show that the approximate
marginal distributions become tighter as the neighborhood order d increasing,
and the GaussianMP-d algorithms present the low bounds of the parameters
compared with the exact values.
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Fig. 1. The comparisons of approximate marginals of the GaussianMP-d(d = 1, 2, 3)
algorithms for G1. The solid lines denote exact model parameters of marginals, the
dashed lines, dashdot lines and dotted lines denote the model parameters based on the
GaussianMP-d(d=1,2,3) algorithms respectively.

For the Gaussian graphical model G1, G2, we first execute the GaussianMP-
d(d = 2, 3) algorithms respectively, then run the mean field method with full
factorial free distribution. The experiment results are shown in Figure 2, which
shows that: (1) The GaussianMP-d(d = 2, 3) algorithms have higher computa-
tional accuracy on the parameters {Jii | i ∈ V } than the mean field method has.
(2) The mean field algorithm provides some better values for parameters {hi},
also some worse values. Conversely, the GaussianMP-d (d = 2, 3) algorithms
provide more stable approximate values for parameters {hi | i ∈ V }.

5 Conclusions

For the Gaussian graphical models, we have defined the d-order neighborhood
concept, and designed the GaussianMP-d algorithm with fixed parameter linear
O(n ·d2) computational complexity. The d-order neighborhood concept describes
the propagation scope of Gaussian messages, which reveals that the Gaussian
messages become less accurate as the neighborhood order d increases. Based on
this, the GaussianMP-d algorithm makes full use of the messages in the d-order
neighborhood, and obtains the linear running time at the cost of the accuracy of
the left neighborhoods. The order parameter d also provides a trade-off criterion
for the computational complexity and the approximate accuracy.
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(a) Parameter comparisons for model G1.
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(b) Parameter comparisons for model G2.

Fig. 2. Accuracy comparisons of the approximate marginal distributions for model G1

and G2. The solid lines denote the exact values of parameters, the dashed lines and
the dashdot lines denote the approximate values based on the GaussianMP-d(d = 2, 3),
the dotted lines the approximate values based on the mean field algorithm.
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