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Abstract. In the past two decades, Support Vector Machine (SVM) has become 
one of the most famous classification techniques. The optimal parameters in an 
SVM kernel are normally obtained by cross validation, which is a time-consuming 
process. In this paper, we propose to learn the parameters in an SVM kernel while 
solving the dual optimization problem. The new optimization problem can be 
solved iteratively as follows:  

(a) Fix the parameters in an SVM kernel; solve the variables αi in the dual 
     optimization problem.  
(b) Fix the variables αi; solve the parameters in an SVM kernel by using the  
     Newton–Raphson method.  

It can be shown that (a) can be optimized by using standard methods in training 
the SVM, while (b) can be solved iteratively by using the Newton-Raphson 
method. Experimental results conducted in this paper show that our proposed 
technique is feasible in practical pattern recognition applications. 
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1 Introduction 

Support vector machine (SVM) was developed by Vapnik et al. ([1], [2], [3]) for 
pattern recognition and function regression. The SVM assumes that all samples in the 
training set are independent and identically distributed. It uses an approximate 
implementation to the structure risk minimization principal in statistical learning 
theory, rather than the empirical risk minimization method. A kernel is utilized to map 
the input data to a higher dimensional feature space so that the problem becomes 
linearly separable. An SVM kernel plays a very important role in the performance of 
the SVM applications.  

We briefly review recent advances in SVM applications. Chen and Dudek [4] 
developed the auto-correlation wavelet kernel for pattern recognition. It was shown 
that this kernel is better than the wavelet kernel [5] because the auto-correlation 
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wavelet is shift-invariant whereas the wavelet is not. This shift-invariant property is 
very important in pattern recognition. Chen [6] also proposed the dual-tree complex 
wavelet (DTCWT) kernel for SVM classification. The DTCWT developed by 
Kingsbury [7] has the approximate shift invariant property and better orientation 
selectivity. These good properties have made the DTCWT a better candidate for 
pattern recognition.  

In this paper, we propose to learn the parameters in an SVM kernel while solving 
the SVM optimization problem. We break the optimization problem into two smaller 
optimization problems: (a) Fix the parameters in an SVM kernel, and then solve the 
variables αi in the dual optimization problem. (b) Fix the variables αi, and solve the 
parameters in an SVM kernel by using the Newton–Raphson method. We solve (a) 
and (b) iteratively for at most τ iterations in each round of optimization, respectively. 
We repeat the optimization of (a) and (b) in a loop manner until they converge or the 
maximum number of iterations is reached. Our simulation results show that our 
proposed method achieves higher classification rates than the standard SVM for 
recognizing traffic light signals and the vowel dataset (τ=100).  

The organization of this paper is as follows. Section 2 proposes to learn the 
parameters in an SVM kernel while training the SVM for pattern recognition. Section 
3 conducts some experiments in order to show that by optimizing the parameters in an 
SVM kernel we can achieve higher classification rates. Finally, Section 4 draws the 
conclusions of this paper, and gives future research direction. 

2 Proposed Method 

An SVM can be used as a classifier for a pattern recognition problem with n>2 
classes, which can be resolved by solving n×(n-1)/2 two-class SVM problems. A two-
class SVM problem can be summarized as follows. Let (xi,yi) be a set of training 
samples, where xi is the feature vector and yi=+1 or -1.  
 
The primal form of an SVM problem is formulated as: 

 
 Min: ½ ||w||2 
 Subject to: yi (w

Txi-b) ≥ 1 for all i=1, 2, …, n. 
 
This is an optimization problem that can be solved by introducing a set of Lagrange 
multiplier αi ≥0. We have to solve the following quadratic dual optimization problem: 
 

            n           n   n 

Max: ∑ αi – ½ ∑  ∑ αi αj yi yj k(xi ,xj) 
      i=1       i=1  j=1    

                                 n 

    Subject to: 0 ≤ αi ≤ C and ∑ αi yi=0. 
                                i=1 
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In this paper, we will restrict the kernel to be the radial basis function (RBF) 
kernel:  

 
k(xi ,xj)=exp(-γ || xi – xj ||

2) 
 

or the exponential radial basis function (ERBF) kernel:  
 

k(xi ,xj)=exp(-γ || xi – xj ||), 
 

where the parameter γ ≥ 0. In the above dual optimization problem, the parameter γ 
can be chosen by the user or it can be learned by cross-validation, which is a time-
consuming process. We have decided to fix the parameter C in this paper. 

 
We propose to solve the above dual optimization problem in two steps: 
 

(a) Fix the parameter γ in an SVM kernel; solve the variables αi in the dual 
optimization problem.  

(b) Fix the variables αi; solve the parameters in an SVM kernel by using the Newton–
Raphson method iteratively.  

 
The first optimization problem (a) can be solved by the standard optimization method 
in training an SVM. We restrict the number of iteration in solving this optimization 
problem to be at most τ iterations, instead of looping for many iterations. We modify 
the C++ code of LIBSVM [8] to solve this optimization problem. After obtaining the 
approximate parameters αi, we will solve the second optimization problem (b) 
iteratively by using the Newton–Raphson method. 

                    
Let us derive the formula to solve the second optimization problem (b). Since 
 
        n          

∑ αi yi = 0,  
       i=1  

                      
We have  
 
      n-1 

∑ αi yi yn = - αn.                                                                                                   
        i=1  

 

By plugging αn into the dual optimization problem, we obtain the following 
optimization problem without any constrains: 

 
              n-1                  n-1  n-1                                                     

Max: W( γ) = ∑ αi (1-yn yi ) - ½ ∑  ∑  αi αj yi yj 
 γ            i=1                   i=1  j=1        
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                          n-1        n-1                     n-1 
           k(xi ,xj)+ (∑ αi yi )( ∑ αj yj k(xn ,xj))- ½ (∑ αi yi)

2 
                          i=1        j=1                     j=1 
 

In order to obtain the maximization, we need to set the first derivative W’(γ)=0. From 
the above equation, we can derive: 

 

           n-1  n-1                                                      

W’( γ)= ½ ∑   ∑  αi αj yi yj k(xi ,xj)(-||xi-xj||
2) –  

          i=1   j=1                                                                      
                            n-1 
                αn yn ( ∑ αj yj k(xn ,xj))(-||xn-xj||

2)   for RBF. 
                            j=1 
 

              n-1   n-1                                                                 

W’( γ)= ½ ∑   ∑  αi αj yi yj k(xi ,xj)(-||xi-xj||) – 
           i=1  j=1                                                                    
                         n-1 
              αn yn ( ∑ αj yj k(xn ,xj))(-||xn-xj||)  for ERBF. 
                         j=1 
 

and 
 

           n-1  n-1                                                                    
W”( γ)= ½ ∑  ∑  αi αj yi yj k(xi ,xj)(||xi-xj||

4) – 
           i=1  j=1                                                                    
                             n-1 
                 αn yn ( ∑ αj yj k(xn ,xj))(||xn-xj||

4)  for RBF. 
                             j=1 

 

              n-1  n-1                                                         

W”( γ)= ½ ∑  ∑  αi αj yi yj k(xi ,xj)(||xi-xj||
2) –  

           i=1  j=1                                                     
                             n-1 
                 αn yn ( ∑ αj yj k(xn ,xj))(||xn-xj||

2)  for ERBF. 
                             j=1 

 

From the Newton-Raphson method, we obtain the following formula for the second 
optimization problem (b): 

 

                          γ k+1 = γk – W’( γk) / W”( γk). 
 

We would like to restrict the number of iterations for the second optimization problem 
(b) to be at most τ=100 iterations, and then switch to the first optimization problem 
(a). We repeat to solve the two optimization problems (a) and (b) interchangeably 
until convergence or the maximum number of iterations is reached. The above 
solutions are for a two-class classification problem. Let Δγk = γk+1 - γk be for a two-
class classification problem.  Since we have to solve n×(n-1)/2 two-class SVM 
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problems, we can take the mean of Δγk, over all these n×(n-1)/2 two-class SVM 
problems. Therefore, the iterative formula for solving the parameter γk can be given as 

 
          γk+1 = γk + ε × mean(Δγk). 
 

It is expected that by solving the two optimization problems interchangeably, we can 
obtain better solutions for pattern recognition. The decision function of a two-class 
SVM problem is 

                                 n 
                 f(x) = sign( ∑ αi yi k(xi ,x)+b) 
                             i=1 

 
where                      n 

                 b = yr - ∑ αi yi k(xi ,xr) 
                         i=1 

 

and (xr,yr) is a training sample. For the one-versus-one SVM problem, classification is 
performed by a max-wins voting approach, in which every classifier assigns the 
instance to one of the two classes. The vote for the assigned class is increased by one, 
and the class with most votes determines the instance classification. 

3 Experimental Results 

We conducted some experiments by using the data sets svmguide4 and vowel 
provided in [8]. The svmguide4 data set is for traffic light signals, which has 6 classes 
with 300 training samples and 312 testing samples. The number of features was 
chosen to 10. The vowel data set has 11 classes with 528 training samples and 462 
testing samples. The number of features was also chosen to 10. We used the following 
Code One and Two to train and test the standard LIBSVM and our proposed SVM, 
where the parameters C and g can be changed as desired. In our experiments, we 
choose τ=100 and ε=0.01 for the traffic light dataset and for the vowel dataset. 

 
--------------------------------------------Code One-------------------------------------------- 
svm-scale -l 0 -s range1 svmguide4 > svmguide4.scale 
svm-scale -r range1 svmguide4.t > svmguide4.t.scale 
svm-train -c 100 -g 0.2 svmguide4.scale 

   svm-predict svmguide4.t.scale svmguide4.scale.model svmguide4.t.predict 
 
-------------------------------------------Code Two-------------------------------------------- 
svm-scale -l -1 -u 1 -s range3 vowel.scale > vowel.scale.scale 
svm-scale -r range3 vowel.scale.t > vowel.scale.t.scale 
svm-train -c 100 -g 0.2 -t 2 vowel.scale.scale 
svm-predict vowel.scale.t.scale vowel.scale.scale.model vowel.scale.t.predict 
--------------------------------------------------------------------------------------------------- 
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Tables 1-2 tabulate the parameters C and g, and the recognition rates for both the 
standard LIBSVM and our proposed SVM for the traffic light dataset and vowel 
dataset, respectively. From the two tables, it can be seen that our proposed SVM 
obtains higher classification rates than the standard LIBSVM due to the learning 
strategy introduced in our proposed SVM. Note that we only used the RBF in our 
experiments. We leave ERBF to our future research.  

Table 1. A comparison between the standard LIBSVM and our proposed SVM for the traffic 
light dataset 

Parameter  
C 

Parameter  
g 

Classification rate 
(LIBSVM) 

 Classification rate  
 (Proposed SVM) 

100 0.2 78.53% 81.73% 
10 0.2 54.17% 66.67% 
1 0.2 29.17% 46.79% 

Table 2. A comparison between the standard LIBSVM and our proposed SVM for the vowel 
dataset 

Parameter  
C 

Parameter 
g 

Classificati
on rate 

(LIBSVM) 

Classificati
on rate 

(Proposed 
SVM) 

100 0.2 55.19% 64.94% 
10 0.2 53.03% 63.20% 
1 0.2 59.74% 61.26% 

4 Conclusions and Future Work 

We have proposed a solution for solving an n-class classification problem by using 
SVM. We resolve the n-class SVM classification problem by solving n×(n-1)/2 two-
class SVM problems. Each two-class SVM classification problem can be resolved by 
(a) fixing the parameter γ in an SVM kernel and then solve the variables αi in the dual 
optimization problem, and by (b) fixing the variables αi and solve the parameter γ in 
an SVM kernel by using the Newton–Raphson method iteratively. We solve for (a) 
and (b) interchangeably until they converge or the maximum number of iterations 
τ=100 is reached. Experimental results show that the proposed method in this paper is 
feasible in pattern recognition.  

Further research needs to be done by learning the upper bound C as well while 
solving the optimization problems. It is believed that, by optimizing both C and γ, we 
can obtain higher classification rates for n-class pattern recognition problems. We 
may also apply our proposed SVM to the recognition of handwritten digits and 
handwritten characters. We are very interested in extracting the dual-tree complex 
wavelet features, the ridgelet features, the contourlet features, the curvelet features, 
etc. ([7], [9], [10]). 
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