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Abstract. In this paper, we propose a novel generalized single-hidden
layer feedforward network (GSLFN) by employing polynomial functions
of inputs as output weights connecting randomly generated hidden units
with corresponding output nodes. The main contributions are as fol-
lows. For arbitrary N distinct observations with n-dimensional inputs,
the augmented hidden node output matrix of the GSLFN with L hidden
nodes using any infinitely differentiable activation functions consists of
L sub-matrix blocks where each includes n+1 column vectors. The rank
of the augmented hidden output matrix is proved to be no less than that
of the SLFN, and thereby contributing to higher approximation perfor-
mance. Furthermore, under minor constraints on input observations, we
rigorously prove that the GLSFN with L hidden nodes can exactly learn
L(n + 1) arbitrary distinct observations which is n + 1 times what the
SLFN can learn. If the approximation error is allowed, by means of the
optimization of output weight coefficients, the GSLFN may require less
than N/(n + 1) random hidden nodes to estimate targets with high ac-
curacy. Theoretical results of the GSLFN evidently perform significant
superiority to that of SLFNs.

Keywords: single-hidden layer feedforward networks, polynomial func-
tions, output weights, hidden node numbers, approximation capability.

1 Introduction

In the field of neural networks, in addition to various fuzzy neural networks
[1,2,3], single-hidden layer feedforward networks (SLFNs) have been investigated
thoroughly in the past two decades. In the 1990’s, it has been shown that SLFNs
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with N hidden nodes can exactly learn N distinct observations. Tamura et al. [4]
proved that a SLFN with N hidden units using sigmoid functions can give any N
input-target relations exactly. The further improvement proposed by Huang [5]
revealed that if input weights and hidden biases are tunable the SLFN with at
most N hidden neurons using any bounded nonlinear activation function which
has a limit at one infinity can learnN distinct samples with zero error. In contrast
to previous SLFNs which adjust all the parameters of hidden layers, some re-
searchers suggested incremental SLFNs allowing only newly added hidden nodes
to be tuned. In this case, parameters of hidden nodes need to be updated only
once based on training data. Nevertheless, the computation burden would also
be heavy. Alternatively, Huang et al. [6] developed an innovative learning scheme
termed as extreme learning machine (ELM) for SLFNs with randomly generated
hidden units using infinitely differentiable activation functions. Corresponding
results [7] indicated that SLFNs with N hidden nodes using any infinitely dif-
ferentiable activation functions can learn N distinct samples exactly and SLFNs
may require less than N hidden nodes if learning error is allowed. Similar to
[8], Ferrari et al. showed that SLFNs with N sigmoidal hidden nodes and with
input weights randomly generated but hidden biases appropriately tuned can
exactly learn N distinct observations. Besides, several interesting investigations
on compact structure of SLFNs were implemented by using singular value de-
composition (SVD) [9] and regularized least-squares (RLS) [10] methods, etc.
However, all the previous works focused on the SLFNs using constant output
weights whether hidden node parameters are adjusted or not. Rationally, we refer
to the abovementioned SLFNs as standard SLFNs since all the output weights
are confined to be constants independent on inputs. In this case, the constant
output weights would impose much deficiency on the capability of approximation
and generalization.

In this paper, we propose a novel kind of generalized single-hidden layer feed-
forward networks (GSLFNs) which extend the standard SLFNs by using poly-
nomial functions of inputs instead of constants as the output weights. To be
specific, for arbitrary N distinct observations (xk, tk) ∈ Rn × Rm, L hidden
nodes using any infinitely differentiable activation functions are randomly gen-
erated and output weight coefficients are allowed to be adjustable for desired
performance of approximation and generalization. In this case, the augmented
hidden node output matrix consists of L sub-matrix blocks whereby each one
includes n+ 1 column vectors containing N entities. Each column vector in the
ith sub-matrix block is defined by the Hadamard product of the input vector in
the j-dimension (i.e., xj = [x1j , · · · , xNj ]

T) and the ith hidden node output vec-
tor with respect to the kth input observation. Accordingly, preliminary results
reveal that the rank of augmented hidden node output matrix in the GSLFN
would be no less than that of hidden node output matrix in SLFN, and thereby
contributing to higher potentials for approximation capability. Furthermore, we
rigorously prove that under minor constraints on input observations the GSLFN
with any L randomly generated hidden nodes can exactly learn L(n+1) arbitrary
distinct observations which are n+ 1 times what the SLFN can learn.
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2 Preliminaries

Given N arbitrary distinct samples (xk, tk) where xk = [xk1, xk2, · · · , xkn]
T ∈

Rn and tk = [tk1, tk2, · · · , tkm]T ∈ Rm, the standard single-hidden layer feedfor-
ward networks (SLFNs) with L hidden nodes and activation function g(x) can
be mathematically modeled as,

yk =

L∑

i=1

βββig(ai · xk + bi), k = 1, 2, · · · , N (1)

where ai = [ai1, ai2, · · · , ain]T ∈ Rm is the weight vector connecting the ith hid-
den node and the input nodes, βββi = [βi1, βi2, · · · , βim]T ∈ Rm is the weight
vector connecting the ith hidden node and the output nodes, and bi is the
threshold of the ith hidden node. ai ·xk denotes the inner product of ai and xk.

If the outputs of the SLFN are equal to the targets, we have the compact
formulation as follows:

Hβββ = T (2)

where,

H(a1, . . . , aL, b1, . . . , bL,x1, . . . ,xN )

=

⎡

⎢⎣
g(a1, b1,x1) · · · g(aL, bL,x1)

...
. . .

...
g(a1, b1,xN ) · · · g(aL, bL,xN )

⎤

⎥⎦

N×L

(3)

βββ =

⎡

⎢⎣
βββT
1
...

βββT
L

⎤

⎥⎦

L×m

and T =

⎡

⎢⎣
tT1
...
tTN

⎤

⎥⎦

N×m

(4)

Here, H is called the hidden-layer output matrix of the SLFN, whereby the ith
column is the ith hidden node’s output vector with respect to inputs x1, . . . ,xN

and the jth row is the output vector of the hidden layer with respect to input xj .
βββ and T are corresponding matrices of output weights and targets, respectively.

It has been proved that standard SLFNs with a wide type of random compu-
tational hidden nodes possess the universal approximation capability as follows.

Lemma 1. [6] Given a standard SLFN with N hidden nodes and activation
function g : Rn → R which is infinitely differentiable in any interval, for N
arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm, for any ai and
bi randomly chosen from any intervals of Rn and R, respectively, according to
any continuous probability distribution, then with probability one, the hidden
layer output matrix H of the SLFN is invertible and ‖Hβββ −T‖ = 0. ��
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Lemma 2. [6] Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤ N
such that for N arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm,
for any ai and bi randomly chosen from any intervals of Rn and R, respectively,
according to any continuous probability distribution, then with probability one,
‖HN×LβββL×m −TN×m‖ < ε. ��

3 Generalized Single-Hidden Layer Feedforward
Networks

We are now in a position to extend standard SLFNs to generalized SLFNs
(GSLFNs) by defining the output weights as polynomial functions of input
variables (i.e., βββ � βββ(x)) as follows:

βij(x) = w
(0)
ij + w

(1)
ij x1 + · · ·+ w

(n)
ij xn, i = 1, 2, · · · , L, j = 1, 2, · · · ,m (5)

where w
(0)
ij , w

(1)
ij , · · · , w(n)

ij are corresponding weights for input variables. Ac-
cordingly, if the outputs of the GSLFN estimate the targets with zero errors, we
obtain the following compact formulation,

GW = T (6)

where,

G(a1, . . . , aL, b1, . . . , bL,x1, . . . ,xN )

=

⎡

⎢⎣
g(a1, b1,x1)x̄

T
1 · · · g(aL, bL,x1)x̄

T
1

...
. . .

...
g(a1, b1,xN )x̄T

N · · · g(aL, bL,xN )x̄T
N

⎤

⎥⎦

N×L(n+1)

(7)

W =

⎡

⎢⎢⎢⎣

w11 w12 · · · w1m

w21 w22 · · · w2m

... · · · . . .
...

wL1 wL2 · · · wLm

⎤

⎥⎥⎥⎦

L(n+1)×m

(8)

x̄k = [1, xk1, xk2, · · · , xkn]
T
, wij =

[
w

(0)
ij , w

(1)
ij , · · · , w(n)

ij

]T
(9)

Here, G is referred to be the augmented hidden-layer output matrix of the
GSLFN consisting of N × L blocks, whereby the kith block Gki is the product
of the ith hidden node output with respect to the kth input vector, i.e., gi(xk),
and the corresponding augmented input vector x̄T

k , and thereby constituting
a [N × L(n + 1)]-dimension matrix. Accordingly, W is the output coefficient
matrix consisting of L × m blocks, whereby the block wij in the ith-row-jth-
column position corresponds to the coefficient vector of the output weight con-
necting the ith hidden node to the jth output node, and thereby contributing a
[L(n+ 1)×m]-dimension matrix.
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4 Main Results

Furthermore, one can obtain the main results on the approximation capabilities
of the GSLFN as follows.

Theorem 1. Given a GSLFN with N hidden nodes and activation function
g : Rn → R which is infinitely differentiable in any interval, for N arbitrary
distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm, for any ai and bi
randomly chosen from any intervals of Rn and R, respectively, according to
any continuous probability distribution, then with probability one, the rank of
the augmented hidden-layer output matrix G for the GSLFN satisfies N ≤
rank(G) ≤ N(n + 1), and there exists at least one coefficient matrix W such
that ‖GW −T‖ = 0. ��
Proof. By Lemma 1, for any ai and bi randomly chosen from any intervals of Rn

and R, respectively, according to any continuous probability distribution, then
with probability one, the hidden-layer output matrix H satisfies rank(H) = N .
In addition, the augmented hidden-layer output matrix G can be represented by,

G = P

⎡

⎢⎣
g(a1, b1,x1) · · · g(aL, bL,x1) g(a1, b1,x1)x

T
1 · · · g(aL, bL,x1)x

T
1

...
. . .

...
...

. . .
...

g(a1, b1,xN ) · · · g(aL, bL,xN ) g(a1, b1,xN )xT
N · · · g(aL, bL,xN )xT

N

⎤

⎥⎦Q

where, P ∈ RN×N and Q ∈ RN(n+1)×N(n+1) are elementary transformation
matrices. It follows, with probability one, that N ≤ rank(G) ≤ N(n + 1). In
this case, eqn. (6) becomes an under-determined problem with N independent
equations since the number of equations is larger than that of unknown parame-
ters. As a consequence, there exists at least one solution for the coefficient matrix
W in (6). This concludes the proof. ��
Similar to Lemma 2, for the GSLFN, we can straightforward obtain the following
result.

Theorem 2. Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤ N
such that for N arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm,
for any ai and bi randomly chosen from any intervals of Rn and R, respectively,
according to any continuous probability distribution, then with probability one,
‖GN×L(n+1)WL(n+1)×m −TN×m‖ < ε. ��
Proof. Following the proof of Theorem 1, the rank ofG would be less than L with
high probability. Accordingly, the columns of G might belong to a subspace of
dimension no more than N . In other words, the independent equations of eqn.
(6) would be no more than N , and thereby resulting in an under-determined
equation with partial targets not be exactly estimated. Fortunately, the tuning of
coefficient matrixW can make the approximation error infinitely small especially
when L = N . The proof is completed. ��
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Furthermore, the GSLFN using polynomial functions as output weights features
significant characteristics as follows.

Theorem 3. Given a GSLFN with L hidden nodes and activation function
g : Rn → R which is infinitely differentiable in any interval, for N ≤ L(n +
1) arbitrary distinct samples (xk, tk), where xk ∈ Rn, tk ∈ Rm and xkj �=
xk′j′ , ∃k �= k′, j �= j′, for any ai and bi randomly chosen from any intervals
of Rn and R, respectively, according to any continuous probability distribution,
then with probability one, the rank of the augmented hidden-layer output matrix
G satisfies,

rank(G) = N (10)

and there exists at least one coefficient matrix W such that ‖GW−T‖ = 0. ��
Proof. The augmented hidden-layer output matrix G consists of L sub-matrices
Gi, i = 1, 2, · · · , L, and thereby totally contributing to L(n+ 1) column vectors
given by,

G = [G1,G2, · · · ,GL]N×L(n+1)

Gi =

⎡

⎢⎣
g(ai, bi,x1) g(ai, bi,x1)x11 · · · g(ai, bi,x1)x1n

...
...

. . .
...

g(ai, bi,xN ) g(ai, bi,xN )xN1 · · · g(ai, bi,xN )xNn

⎤

⎥⎦

Note that ai are randomly generated based on a continuous probability distri-
bution, we can assume that ai · xk �= ai · xk′ for all k �= k′. Consider the jth
column of the ith matrix block Gi, i.e.,

g(bi,x
j) = c(bi)
 xj (11)

where 
 denotes the Hadamard product, and

c(bi) = [g(bi + di1), · · · , g(bi + diN )]T , xj = [x1j , · · · , xNj ]
T, j = 0, 1, · · · , n

where dik = ai · xk, bi ∈ (a, b) ⊂ R and xk0 = 1, k = 1, 2, · · · , N .
It can be proved by contradiction that vectors g does not belong to any

subspace whose dimension is less than N . Suppose that g belongs to a subspace
of dimension N−1. Then there exists a vector ααα �= 0 which is orthogonal to this
subspace, i.e.,

〈ααα,g(bi,xj)− g(a,xj′ )〉 = 0 (12)

Note that, for N ≤ L(n + 1) arbitrary distinct samples (xk, tk) ∈ Rn × Rm,
xkj �= xk′j, ∃k �= k′, j �= j′. For the cases j = j′ = 0 and j �= j′ in (12), we
can simply set bi + dij �= a + dij′ and bi + dij = a + dij′ , respectively. As a
consequence, it holds that

g(bi,x
j)− g(a,xj′ ) =

{
(c(bi)− c(a))
 xj , j = j′ = 0

c(bi)

(
xj − xj′

)
, j �= j′



Generalized Single-Hidden Layer Feedforward Networks 97

It follows that g(bi,x
j) − g(a,xj′ ) �= 0 is guaranteed since xj �= xj′ , ∀j, j′ �= 0

and x0 = 1.
Using (11), eqn. (12) can be further written as,

α1g(bi + di1)x1j + α2g(bi + di2)x2j + · · ·+ αNg(bi + diN )xNj −ααα · g(a,xj′ ) = 0

Without loss of generality, we assume αN �= 0 and obtain,

g(bi + diN )xNj = −
N−1∑

k=1

γkg(bi + dik)xkj +ααα′ ·
(
c(a)
 xj′

)

where γk = αk/αN , k = 1, 2, · · · , N − 1 and ααα′ = ααα/αN . Since the activation
function g(.) is infinitely differentiable in any interval, we have

g(l)(bi + diN )xNj = −
N−1∑

k=1

γkg
(l)(bi + dik)xkj , l = 1, 2, · · · , N,N + 1, · · ·

where g(l) is the lth derivative of function g of bi. However, there are only N − 1
free coefficients: γ1, · · · , γN−1 for the derived more than N − 1 linear equations,
this is contradictory. Thus, vector g does not belong to any subspace whose
dimension is less than N .

As a consequence, from any interval (a, b) it is possible to randomly choose
L′ = ceil(N/(n+1)) bias values b1, · · · , bL′ for the L′ hidden nodes such that N
vectors g(bi,x

j), i = 1, 2, · · · , L′, j = 0, 1, · · · , n span RN . This means that for
any input weight vectors ai and bias values bi chosen from any intervals of Rn

and R, respectively, according to any continuous probability distribution, then
with probability one, the column vectors of G can be made row full-rank, i.e.,
rank(G) = N if N ≤ L(n+ 1).

Accordingly, the number of independent equations in eqn. (6) is N , and
thereby resulting in a well- or under-determined problem. Hence, there exists
at least one solution for W in (6). This concludes the proof. ��

Theorem 4. Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤
N/(n+1) such that for N arbitrary distinct samples (xk, tk) ∈ Rn×Rm where
xkj �= xk′j′ , ∃k �= k′, j �= j′, for any ai and bi randomly chosen from any intervals
of Rn and R, respectively, according to any continuous probability distribution,
then with probability one, ‖GN×L(n+1)WL(n+1)×m −TN×m‖ < ε. ��

Proof. Following the proof of Theorem 3, the rank of G would no more than N
with high probability. In this case, (6) would be an over-determined equation. It
means there might not exist exact solutions for W in (6). Alternatively, given
any small error ε > 0 and the GSLFN with L ≤ N(n + 1) hidden nodes, fine
tuning of coefficient matrix W can make the estimation error less than ε. ��
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5 Conclusions

This paper extends the standard single-hidden layer feedforward networks
(SLFNs) to generalized SLFNs (GSLFNs) by employing the polynomial func-
tions of inputs as output weights. Accordingly, we have rigorously proved the
significant characteristics of the GSLFN as follows. On the one hand, similar
to the SLFN, the GSLFN with at most N hidden nodes using any infinitely
differentiable activation functions can exactly learn N distinct observations. On
the other hand, for distinct n-input m-output observations with different data in
each input dimension, the GSLFN features much higher approximation capabil-
ity such that the GSLFN with only N/(n+1) hidden nodes using any infinitely
differentiable activation functions can exactly learn N distinct observations. The
number of hidden nodes in the GSLFN can be dramatically reduced by using
polynomials as output weights, especially for high-dimension regressions and
classifications.
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