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Preface

This book and its sister volume collect the refereed papers presented at the
10th International Symposium on Neural Networks (ISNN 2013), held in Dalian,
China, during July 4–6, 2013. Building on the success of the previous events,
ISNN has become a well-established series of popular and high-quality confer-
ences on neural network and its applications. The field of neural networks has
evolved rapidly in recent years. It has become a fusion of a number of research
areas in engineering, computer science, mathematics, artificial intelligence, oper-
ations research, systems theory, biology, and neuroscience. Neural networks have
been widely applied for control, optimization, pattern recognition, signal/image
processing, etc. ISNN aims at providing a high-level international forum for sci-
entists, engineers, educators, as well as students to gather so as to present and
discuss the latest progresses in neural network research and applications in di-
verse areas.

ISNN 2013 received a few hundred submissions from more than 22 countries
and regions. Based on the rigorous peer reviews by the Program Committee
members and the reviewers, 157 papers were selected for publications in the
LNCS proceedings. These papers cover major topics of theoretical research, em-
pirical study, and applications of neural networks.

In addition to the contributed papers, three distinguished scholars (Cesare
Alippi, Polytechnic University of Milan, Italy; Derong Liu, Institute of Automa-
tion, Chinese Academy of Sciences, China; James Lo, University of Maryland -
Baltimore County, USA) were invited to give plenary speeches, providing us with
the recent hot topics, latest developments, and novel applications of neural net-
works. Furthermore, ISNN 2013 also featured two special sessions focusing on
emerging topics in neural network research.

ISNN 2013 was sponsored by Dalian University of Technology and The Chi-
nese University of Hong Kong, financially co-sponsored by the National Natural
Science Foundation of China, and technically co-sponsored by the IEEE Compu-
tational Intelligence Society, IEEE Harbin Section, Asia Pacific Neural Network
Assembly, European Neural Network Society, and International Neural Network
Society.

We would like to express our sincere gratitude to all the Program Commit-
tee members and the reviewers of ISNN 2013 for their professional review of
the papers and their expertise that guaranteed the high qualify of the technical
program! We would also like to thank the publisher, Springer, for their cooper-
ation in publishing the proceedings in the prestigious series of Lecture Notes in
Computer Science. Moreover, we would like to express our heartfelt appreciation
to the plenary and panel speakers for their vision and discussion of the latest
research developments in the field as well as critical future research directions,



VI Preface

opportunities, and challenges. Finally, we would like to thank all the speakers,
authors, and participants for their great contribution and support that made
ISNN 2013 a huge success.

July 2013 Chengan Guo
Zeng-Guang Hou

Zhigang Zeng
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Information Transfer Characteristic in Memristic 
Neuromorphic Network 

Quansheng Ren, Qiufeng Long, Zhiqiang Zhang, and Jianye Zhao 

School of Electronics Engineering and Computer Science, Peking University,  
Beijing 100871, China 

Abstract. Memristive nanodevices can support exactly the same learning 
function as spike-timing-dependent plasticity in neuroscience, and thus the 
exploration for the evolution and self-organized computing of memristor-based 
neuromorphic networks becomes reality. We mainly study the STDP-driven 
refinement effect on memristor-based crossbar structure and its information 
transfer characteristic. The results show that self-organized refinement could 
enhance the information transfer of memristor crossbar, and the dependence of 
memristive device on current direction and the balance between potentiation 
and depression are of crucial importance. This gives an inspiration for resolving 
the power consumption issue and the so called sneak path problem. 
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1 Introduction 

Recently, the limitation of CMOS scaling and the re-discovery of the memristor [1,2] 
have brought neuromorphic computing architectures new attention. An important 
discovery is that many adaptive nanoelectronic devices (such as memristor) can 
support exactly the same learning functions in neuroscience, such as the spike-timing-
dependent plasticity (STDP) [3,4] as well as short-term plasticity and long-term 
potentiation [5]. Several schemes for neuromorphic computing and learning have 
been proposed and fabricated by using the crossbar architecture [6,7,8]. However, 
much yet remains to be done, such as the power consumption issue and the so called 
sneak path problem [9,10]. Below this setting, it is necessary to study the role of 
resistance distribution from the perspectives of STDP adaptation and information 
transfer for further exploration of the relationship between the demands of hardware 
integration and information processing. 

In order to address this issue, we should revisit some related researches in 
neuroscience. The STDP learning rule says that a synapse is strengthened if the 
presynaptic neuron fires shortly before the postsynaptic neuron, and weakened when 
the temporal order is reversed. The brain has a very dense population of synapses 
after birth and most of these synapses are irreversibly pruned during development 
when their strength falls below a certain threshold [11]. A sparse network structure 
will be achieved at last. STDP is likely to be a crucial factor in the synaptic pruning 
process, for it can refine a fully connected neural network to be a simplified one with 
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a bimodal distribution of synaptic weights [12], which could bring several non-trivial 
topological characteristics [13-16], and can be used to systematically improve and 
optimize synchronization properties [17]. In addition, by inputting temporal-
correlated input signals, the information transfer efficiency of neural network could 
be improved obviously [18].  

In this paper, we establish an equivalent model of memristor-based neuromorphic 
networks according to the characteristics of the memristor and some latest relevant 
experimental results [3,4,5,12]. We mainly focus on the mutual information between 
the input and output layers of the crossbar network. To compute the mutual 
information between the input and output layers, we adopt a classical algorithm 
[17,19] to achieve this purpose. Besides, Bayes estimation [20] based on the context 
tree method was put to use to calculate the entropy rate. Our results suggest that self-
organized refinement effect can increase the information transfer efficiency of the 
crossbar network. 

2 Analysis and Modeling of Memristic Neural Networks 

2.1 Neuromorphic Analysis of Memristor 

The neuromorphic network studied in this paper is the memristor-based crossbar 
structure firstly promoted by HP Labs [1]. This kind of crossbar network consists of 
some horizontal and vertical metal nanowires, the intersections of which are 
connected by memristor. And it has been proven that the change of the memristive 
resistance is related with the direction, amplitude and duration of the voltage across it. 

There is a one-to-one relationship between memristive characteristics and STDP 
rules in neuroscience. The aforementioned voltage direction, duration and amplitude 
are respectively equivalent to the order of the pre- and postsynaptic action potentials, 
the time interval between pre- and postsynaptic spikes and the STDP-driven learning 
efficiency in neuroscience. The only difference between the memristive and the 
neural network is the form of processed signals. For this reason, to establish an 
equivalent model of memristor-based crossbar network, we should transform the time 
difference between a pair of neural spikes into a PWM electrical signal with the equal 
time interval and corresponding direction of the two spikes. These works are not 
difficult to deal with by using analog digital mixing circuit, such as the integral-and-
fire (I&F) neuron circuit [3]. 

2.2 Equivalent Model of Memristor-Based Neuromorphic Network 

On the basis of neuromorphic analysis of memristic circuit, we adopt the aforemen-
tioned crossbar structure network as a simulation model. In addition, multi-parameter 
expression is utilized for more accurate research (see Fig. 1). 

CMOS I&F neuron circuit could read and record the time parameter of input and 
output spikes. According to the time difference of the two time parameters, the circuit 
can generate a PWM signal with corresponding polarity and duration of the pre- and 
postsynaptic timing. The PWM signal can be used to regulate and control the 
memristive synaptic conductance. The internal potential parameter Vj of the jth 
neuron and the conductance gi satisfy 
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This formula has the same parameter setting as a classical document [21], the 
capacitance Cm=200pF, leakage conductance gL=10nS, resting potential Vrest=−70mV 
and excitatory reversal potential Eex=0 mV. When potential parameter reach the 
threshold Vth=−54mV, the neuron model will generate an action potential. After a 
refractory period τref=1ms, potential will decrease to Vreset=−60mV. Furthermore, 
synaptic conductance parameter gj(t) in LIF model is determined by 
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where n is the number of excitation sources, gm is the maximal synaptic 
conductance, wij is the synaptic weight between the ith and jth neuron circuit and ti

k is 
the kth effective output time of the ith neuron circuit. f(x) usually adopts α function 
[22]. 
 

 
Fig. 1. Model of memristor-based neuromorphic network and input excitation 

According to the above analysis, the memristor synapse conductance are controlled 
by PWM signals in a STDP-like way. The expressions describing the STDP-driven 
learning mechanism depend on the time difference between pre- and post-synaptic 
timing Δt=tj−(ti+τd), where ti and tj respectively represent the output time of the pre-
synaptic neuron circuit i and the post-synaptic circuit j, τd is the time for processing 
and transmitting the effective signals from the input circuit i to output circuit j. 

Multiparameter expressions are utilized to describe various of STDP learning 
curves by setting the parameters with different values. The variation of connecting 
weights Δwij satisfys 
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Here, λ is the learning rate corresponding to the amplitude of the output PWM 
signal, w determines the memristic conductance gmw, (1−w)μ+ and wμ− reflects the 
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dependencies of potentiation and depression on the current synaptic weights. Then we 
can restrict w in the range [0,1] so that the synaptic conductance gmw is positive and 
can’t exceed gm=2.0nS. When μ+=μ−=0,w should remain unchanged once approaching 
the maximum 1(or minimum 0), which is equivalent to the restricted condition 
promoted by R. S. Williams [1]. 

In Eq. (3), α is a asymmetric coefficient of the ratio between potentiation and 
depression while τ+ and τ− controls the width of effective time-window of the 
potentiation and depression. To balance α, we utilize asymmetric STDP time window 
(τ+=16.8ms and τ−=33.7ms), which is fairly close to the STDP parameters observed in 
neuroscientific investigation [23]. As what has been suggested in [21], to keep system 
steady, the integrated result of Δwij must be negative, i.e. α(τ−/τ+)>1.0. 

3 Input Scheme and Mutual Information Computation 

The input scheme is as follows: As shown in Fig. 1, 100 uncorrelated periodic spike 
trains with mean firing rate fs and 100 stochastic Poisson spike trains with mean firing 
rate fn are respectively regarded as input signals and noise of the 100 input neuron 
circuits (see Fig. 1).  
 

 

Fig. 2. Input setting for computing mutual information 

For the investigation of the information transfer characteristics in the simplified 
network, we calculate the mutual information between the output and input signals 
with a classcal method [17,19]. One hundred 1.5-s-long spike sequences with mean 
firing rate fs are generated by independently truncating from a single Poisson spike 
trains. These spatiotemporal spike patterns are then respectively repeated 1000 times 
at regular intervals, and finally interleaved among one hundred 1500-s-long stochastic 
Poisson stimuli. As shown in Fig. 2, the input signals of each synapse is composed of 
alternating repeated spike segments and stochastic spike segments, each lasting 1.5s. 
In addition, noise is still stochastic Poisson spike process with mean firing rate fn. 
This indeterminacy of both the input signals and input noise can be quantified by total 
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entropy Htotal. In our input scheme, the input repeated spike segments are identical, so 
the indeterminacy of output signals exactly equal to the input noise entropy Hnoise. 
Finally we could know that the mutual information between the output and input 
signals is just the difference of the two entropies, i.e. Iinfo=Htotal−Hnoise. 
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Fig. 3. Analysis of information transfer in a refinement process. Here fs=30Hz, 
fn=10Hz, α=0.51. (a) The changing curves with time of the 100 memristor conductances. (b) 
Different mutual information rate (red triangle line) and mean firing rate (black cross line) of 
output signals in the refinement evolution. Inset figures: The distribution of memristor 
conductances at 1s,15s and 40s. 

To directly achieve the entropy rate estimators of Htotal and Hnoise, we adopt a well-
known algorithm proposed in Ref. [20]. In addition, with regard to the first-order 
Markov Chain σ, if a new character r A∈ can be produced with a stationary transition 
probability P(r|σ), R={r1,r2,r3,...} could be regarded as a time series. According to the 
entropy calculation formula h=limD→∞H(ri+1|ri,...ri−D) (D is the length of the 
sequential characters obtained from time series), the entropy rate of the time series R 
can be obtained by 

 

                    ( )[ | ] ( )h H p r
σ

σ μ σ=                         (4) 

Here, H[…] is the Shannon Entropy and μ(σ) is the probability of state σ. According 
to the output series, we can establish a context tree weighting model for binary 
character streams. Every node record the occurrence probability of the next character 
and the number of its current character in the time series. The entropy rate of this 
context tree method can be calculated with Eq. (4). Then by using Minimum 
Description Length (MDL) method, we can obtain a topological structure of the 
context tree, each terminal node of which corresponds to a sample value ( | )P H c , i.e. 
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H*(n) calculated with Markov Chain Monte Carlo, where c is the number of the next 
generated character in the time series. Then, we can calculate the entropy estimator 

( )* * ( )i n
h H n nμ= , where ( )

1
( ) / /

A

ii
n N n N c Nμ

=
= = in which ci and N respectively 

represent the occurrence number of the corresponding character of nth node and that 
of all characters in the time series. Finally by repeating this process for Nmc times, we 
can obtain the entropy estimator with Bayesian confidence interval, 

*

1
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h h N

=
= . 

4 Influence of Refinement Phenomena on Information Transfer 

According to the method proposed in 3rd paragraph, we can calculate and contrast the 
information transmission rate of the network at different times in a simplification 
process. The simulation results are displayed in Fig. 3. After a long-time simulation, 
all synaptic conductances form a stable bimodal distribution. Simulation results show 
that the mutual information rate increase along with the refinement process while the 
output firing rate undergo a decrease process.  

We conduct many simulation experiments with different α. We can see from Fig. 
4(a): When 0.49<α<0.5, the scale of potentiation and depression (τ+/ατ−) tends to be a  
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Fig. 4. Influence of different parameter setting on information transfer. (a) In the condition 
of fs= 30Hz, fn=10Hz, the change curves with α of mutual information rate (red solid line with 
triangle marker) and the mean output firing rate (black dash line with circle marker). (b) The 
mutual information rate with different fs, fn=10Hz. (c) The mutual information with 
different fs and fn ,SNR = 3/1. 
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balance state, during which the information transfer rate grows. If 0.5<α<0.51, the 
information transfer rate keeps in a higher level. However, if depression is stronger 
than potentiation (such as α>0.51), information transfer rate will markedly decline 
mostly because of the lack of output response. As what have been stated in 2nd 
paragraph, memristor STDP learning characteristics are directly related with: (1) The 
dependence on current direction of memristor conductance, (2) The balance between 
potentiation and depression. Consequently, the two factors play an important role in 
optimizing information transfer in memristor-based neural networks. 

To get a general conclusion, we conduct simulations with constant firing rate of 
input noise and different firing rate of input signals for the implementation of 
different SNR configuration. Simulation results with different α and SNR are 
demonstrated in Fig. 4(b), from which we can see that the greater the input SNR is, 
the higher the maximal mutual information transfer rate becomes. In addition, we also 
experiment with constant SNR (3/1) and different firing rate fs and fn, which, however, 
have been proved to be not of critical to change the information transfer 
characteristics (see Fig. 4(c)). 

5 Conclusions 

In this paper, we mainly research the effect of STDP-driven pruning on the structure 
and information transfer characteristics of the neuromorphic crossbar network. 
Simulating results show that, by inputting periodic signals, the conductance of most 
memristor synapses will falls to 0nS (HRS) and remain unchanged due to the STDP 
learning mechanism, which is the so-called synaptic pruning phenomena. We adopt a 
classical method to compute the mutual information, and calculate the entropy rate 
with a method based on the context tree weighting (CTW). It is shown that the 
simplification process driven by STDP learning mechanism can improve information 
transmission rate. This means that the reduction of LRSs is naturally achieved by 
STDP-based learning, which can improve information transfer rate and give an 
inspiration for resolving the power consumption issue and the so called sneak path 
problem. Investigations with many kinds of parameter configurations prove that the 
aforementioned results are by no means accidental events. 

Though the memristor was for the first time discovered just in 2008, some 
researchers have made a great progress on hybrid nano-devices/semiconductor circuits. 
Based on the CMOS I&F neuron circuit and nano-memristor synapse, the days of 
"Electronic brain" are numbered [6]. In this background, theoretical exploration from 
the aspect of information theory and system architecture should be conducted urgently. 
This paper for the first time study the memristive neuromorphic networks from the 
angle of the information transfer characteristic. Above-mentioned research conclusions 
may be instructive for crossbar architecture designing and neuromorphic computing. 
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Abstract. Neuronal morphology is significant for understanding structure-
function relationships and brain information processing in computational neu-
roscience. So it is very important to simulate neuronal morphology completely 
and accurately. In this paper, we present a novel approach for efficient genera-
tion of 3D virtual neurons using genetic regulatory network model. This ap-
proach describes dendritic geometry and topology by locally inter-correlating 
morphological variables which can be represented by the dynamics of gene ex-
pression. The experimental results show that the generating virtual neurons that 
are anatomically indistinguishable and accurate from experimentally traced real 
neurons. 

Keywords: virtual neuron, neuronal morphology, genetic regulatory network. 

1 Introduction 

The brain, with its billions of interconnected neurons, is without any doubt the most 
complex organ in the body and it will be a long time before we understand all its mys-
teries. The Human Brain Project [1] proposes a completely new approach and it builds 
on the work of the Blue Brain Project [2], which has already taken an essential first 
towards simulation of the complete brain. The project is integrating everything we 
know about the brain into computer models and using these models to simulate the 
actual working of the brain. The remarkable progress of computer processing power 
in the past few decades has enabled the construction of greatly sophisticated models 
of neuronal function and behavior. Computational modeling of neuronal morphology 
is a powerful tool for understanding developmental processes and structure-function 
relationships. Dendrites and axons define the connectivity of the brain [3] and play a 
large role in information processing at the single cell level [4]. 

The research of neuronal activity and network connectivity in computational neuroa-
natomy has recently encouraged neuroscientists to develop and characterize computer 
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algorithms for the simulation of neuronal morphology. There are two main computer 
algorithms exist to generate virtual neurons with similar shape properties as their empir-
ically observed counterparts: reconstruction algorithms and growth algorithms. Recon-
struction algorithms focusing on both topological and metrical aspects, use the empirical 
distribution functions for geometrical properties, and provide models for randomly ge-
nerating dendritic morphologies by a repeated process of random sampling of these 
distributions [5,6,7,8]. Growth algorithms, in contrast, aim at modeling dendritic mor-
phologies from principles of dendritic development, use the hypothetical growth rules 
for branching and elongation in the generation of random dendritic trees. Growth algo-
rithms explain topological variation by assuming that the branching probability depends 
on the type of segment (intermediate or terminal) as well as on the centrifugal order of 
the segment [9,10]. For this reason, growth algorithms are mechanistic models and 
‘grow’ models in an abstract but biologically plausible manner. In addition, recent ad-
vances in computer graphics have become possible to use these algorithms for genera-
tion and display of 3D models of neuronal structures that are visually and statistically 
indistinguishable from the traced real neurons. 

In this paper, using the recurrent genetic regulatory network model, the dynamics of 
gene expression can be treated as a model for dendritic development. We propose a 
novel growth algorithm for the 3D simulation of neuronal dendritic trees. This method 
generates dendrites in single neuron by local algorithms, in which each modeled den-
drite grows depending on intrinsic influences, and independent of other dendritic trees 
or neurons. The aim of this paper is to generate virtual neurons that are anatomically 
accurate and realistic. 

2 Morphological Data of Real Neurons 

The morphological structure of a neuron can be represented in a SWC format [11], 
which extracted from 3D reconstructions of intracellularly stained cells. The recon-
structions are publicly available at the online NeuroMorpho archive [12,13]. The mo-
toneuron files corresponded to six alpha motor neurons from cat spinal cord. These 
typical motor neurons obtain from Burke’s laboratory archive [6]. We can read SWC 
morphology file by the publicly available tools CVAPP [14] and Neuromantic [15]. 
Additionally, our method output the generated virtual neuron which is interpreted to 
SWC format file. 

In this paper, we adopt some basic variables and emergent variables [16]. The basic 
variables can be usually measured from digital files of traced neurons. Such mea-
surements result in distributions of values, which are fitted with a statistical function. 
The basic morphological variables include number of stems, diameter of stem, azi-
muth angle and elevation angle of stem, the length of compartment, taper rate, ampli-
tude angle and torque angle at a bifurcation, Rall’s power at a bifurcation, azimuth 
angle and elevation angle at an elongate point. A list of basic variables and their value 
ranges for motoneurons is shown in Table 1. On the other hand, the emergent va-
riables emerge from the interaction between basic variables. An example is the overall 
length of a dendritic branch that emerges from several basic variables such as the 
number of stems, the stem length and individual compartment length. There are some 
emergent variables are used in this study: total number of bifurcations, total number 



 Generation and Analysis of 3D Virtual Neurons 11 

 

of branches, branching order, surface, volume, total dendritic length, contraction, 
fragmentation, partition asymmetry, significant width, significant height and signifi-
cant depth. 

Table 1. List of basic morphological variables for motoneurons 

Variable Description Value range 

stemN  Number of stems (8, 16) 

stemD  Diameter of stem (3.0, 5.0) 

azS  Azimuth angle of stem (0, 360) 

elevS  Elevation angle of stem (0, 180) 

comL  The length of compartment (60, 100) 

taperR  Taper rate (0.1, 0.2) 

ampB  Amplitude angle at a bifurcation (10, 170) 

torB  Torque angle at a bifurcation (0, 180) 

rallB  Rall’s power at a bifurcation (1, 4.45) 

azE  Azimuth angle at an elongate point (−10, 10) 

elevE  Elevation angle at an elongate point (−10, 10) 

3 Generation of 3D Virtual Neurons 

3.1 Genetic Regulatory Network Model 

The genetic regulatory network can be viewed as expressed genes influencing the 
expression of other genes. It can be represented as a directed graph, in which each 
node represents a gene and edges represent direct transcriptional interactions. Each 
edge is directed from a gene that encodes a transcription factor to a gene that is regu-
lated by that transcription factor. A genetic system is defined as a network of N inte-
racting nodes. The genetic regulatory network is structured in three layers, consisting 
NI input nodes, NR regulatory nodes, and NO output nodes respectively. NI and NO are 
determined by the developmental model described in the below section. The regulato-
ry nodes that recurrently connect in the network represent genes that play a regulatory 
role only. 

The activation of node i at time t during development is represented by a variable 
Ai(t), i=1, 2, …, N. The state of the network is updated synchronously in discrete time 
steps, with the activation Ai(t+1) of node i at time t+1, given by 

1

( 1) ( ( ) )
N

i ij j i
j

A t w A tσ θ
=

+ = − . (1) 

where wij is the level of the interaction from node j to node i, which is a real-valued 
weight in the range [0, 5.0]. θi is the activation threshold of node i, given by 

1

N

i ij
j

wθ δ
=

= . (2) 
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where δ is weight bias (by default, δ = 0.5). σ(x) is the sigmoid function, given by 
1

( )
1 x

x
e

σ −=
+

. (3) 

Therefore, the activation of gene is continuous change in the interval [0, 1], where 0 
represents gene inactivation and 1 represents complete gene expression. 

3.2 Developmental Method of Virtual Neurons 

In this paper, the recurrent genetic regulatory network control the dendritic develop-
ment process, which includes 2 nodes in input layer, 10 nodes in regulatory layer, and 
10 nodes in output layer. The initial genetic regulatory network can express as a so-
ma, which activation is random initialization within the interval [0, 1]. The input 
nodes are used to specify the relative position of the compartment in the dendritic 
trees; the regulatory nodes are used to regulate other regulatory nodes and output 
nodes; the output nodes are used to represent the development process and the mor-
phological variables. 

Considering the convenience of description, the activation of a regulatory node at 
time t during development is represented by Ri(t), i=1, 2, …, NR. The activation of an 
input or output node at time t is represented by Ii(t), i=1, 2, …, NI or Oi(t), i=1, 2, …, 
NO, respectively. The activation of the output nodes express qualitative features, 
which include bifurcation probability, symmetric or asymmetric bifurcation mode, 
termination probability, and the others convert into specific parameter values within 
the given range [Pmin, Pmax], which is represented as Pmin+(Pmax−Pmin)Oi(t). These 
parameters correspond to the basic morphological variables as shown in Table 1. 

The morphogenetic algorithm for generation of neuronal morphologies is shown in 
Fig. 1. The algorithm generates each dendritic tree as an independent process. For 
generation of the motoneurons, one of the basic variables is Nstem, which is the num-
ber of stems. Once a value Nstem is sampled for this variable, the algorithm is repeated 
Nstem times to generate the appropriate number of stems. Each stem originates from 
the soma with a certain initial diameter Dstem and an orientation specified by Saz and 
Selev. Then in the spherical coordinate system, the dendrite is defined by the spherical 
coordinates of its end point taking the starting point as the origin (Fig. 2). 

If the activation of the first output node, O1(t), is above a certain bifurcation thre-
shold θbif, a dendritic compartment bifurcates, the two daughter compartments will 
create two copies of the genetic regulatory network with identical interactions of 
nodes. The threshold of bifurcation dynamic changes in the developmental processes, 
it is assigned a value which depends exponentially on the diameter of current com-
partment. So it can be represented as 1

bif 1
dk eλθ = , where k1=0.06, d is the diameter, λ1 

represents development scale and uses for controlling the scale of neuronal develop-
ment. The relative directions of the two daughters are determined with two variables, 
a bifurcation amplitude Bamp and a bifurcation torque Btor. Both daughters are deter-
mined by the activation of asymmetric output node (O2(t)) and their diameters are 
calculated from the parent diameter based on the Rall’s ratio [17]. After bifurcation, 
the input nodes I1(t) and I2(t) are set to {0, 1} in the left daughter and {1, 0} in the 
right daughter. 
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2 1pD D Dλ λλ= −

 

Fig. 1. Flow diagram of the morphogenetic algorithm. The algorithm begins at a soma and 
attaches dendritic variables. Initially, an initial azimuth and elevation angle of stem is calcu-
lated. Then, the algorithm decides recursively whether to bifurcate, terminate or stretch the 
current compartment. For motoneurons, a dendritic branch is also terminated if it grows in 
length larger than 2200 μm or in diameter less than 0.13 μm. 

 

Fig. 2. The spherical coordinate system where a dendritic compartment is defined by the coor-
dinate (r, θ, φ) of its end point taking the starting point as the origin: r is the Euclidean distance 
between the two points, θ is the elevation angel and φ is the azimuth angle 
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If the compartment does not bifurcate, the compartment may terminate or elongate 
with a new compartment. The activation of the third node, O3(t), is used to specify the 
termination probability. Similarly, the threshold of termination also dynamic changes, 
it depends exponentially on diameter of current compartment. It can be represented 
as 2

ter 2
dk eλθ = , where k2=0.65, d is the diameter, and λ2 is the development scale. 

Additionally, the dendritic compartment is always terminated for the motoneurons 
when the current diameter is less than 0.13 μm or the path length to the soma is larger 
than 2200 μm, these limitations are motivated by biological knowledge. If the com-
partment does not terminate either, the current compartment will elongate with a new 
compartment. The growth direction is updated with an azimuth angle Eaz and eleva-
tion angle Eelev. The compartment diameter shrinks according to a taper rate Rtaper that 
is relative to the diameter of parent compartment, but it is independent of the com-
partment length. The algorithm continues recursively until all dendritic compartments 
have terminated. 

4 Experimental Results 

In the results reported here, since the experimentally traced datasets consisted of a 
limited number of neurons, we generated a lot of virtual neurons to allow the statistic-
al analysis of their emergent variables. An example of the morphological structures of 
real and simulated virtual neurons is shown in Fig. 3. 

We mainly investigated the relationship between emergent variables and develop-
mental scales in the generation of 3D virtual neurons. In the simulations, we carried 
out a sensitivity analysis for each parameter. For each combination of parameter set-
tings, averages were taken over 100 virtual neurons. Because there were so many 
possible combinations, we kept the values of every parameter at a fixed base value 
except for the parameter being tested. The base values of the developmental scales λ1 
and λ2 are 0.5 and −3.0, respectively. The emergent variables were measured from 
each real and virtual neuron. Every group was statistically characterized with average 
and standard deviation values for each of the emergent variables. Virtual data were 
then analyzed in terms of mean and standard deviation of each value, and compared to 
the corresponding values of the experimental group. 

Fig. 4(a), (c), (e) show the results of the each emergent variable for the motoneu-
rons as the value of development scale λ1 is 0.4, 0.45, 0.5 and 0.55 respectively.  
Accordingly, as the value of development scale λ2 is −2.0, −3.0, −4.0 and −5.0 respec-
tively, the corresponding results are shown in Fig. 4(b), (d), (f). The mean value of the 
surface and the total dendritic length is lower than corresponding value in real neu-
rons, while the volume of the virtual neurons is larger than the real cells in the two 
different development scales. The Surface, volume and total dendritic length are rela-
tively sensitive to λ1, but little sensitive to λ2. In particular, the contraction, fragmenta-
tion and partition asymmetry of real cells are all quantitatively reproduced in virtual 
neurons. In short, λ1 and λ2 have little effect on the contraction, fragmentation and 
partition asymmetry. However, this algorithm fails to reproduce the real values related 
to width, height and depth. It is shown that the generated virtual neurons have little 



 Generation and Analysis of 3D Virtual Neurons 15 

 

 

Fig. 3. The real and virtual neurons displayed with Neuromantic tool. This figure shows 2D 
projections of real (left) and virtual (right) morphological structures of the motoneurons 
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Fig. 4. Emergent morphological variables for the motoneurons. 6 real motoneurons and 4 
groups of 100 virtual motoneurons were analyzed in different development scale 
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(b) Real neurons
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(c) Real neurons
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(d) Real neurons

λ
2
=-2.0

λ
2
=-3.0

λ
2
=-4.0

λ
2
=-5.0

 

Fig. 5. Distributions of emergent variables for the motoneurons. (a) and (b) Branch diameter 
versus branch order, (c) and (d) Number of branches versus branch order 

difference with real neurons in spatial structure at a certain extent. With the variation 
of the development scale, the value will get closer to the experimental value and may 
be achieved the desired results. 

The analysis of virtual motoneurons is extended to distributions of emergent va-
riables (Fig. 5). As an example, we reported the dependence of the average branch 
diameter versus branch order in different development scale (Fig. 5(a), (b)). Virtual 
neurons are very similar to the real ones and show typical decay function that con-
forms to biological detail. We concluded that the developmental scales λ1 and λ2 have 
little effect on this distribution. Sholl-like plots of the bifurcations or terminations 
versus branch order or path distance yielded classical bell shaped curves for all real 
and virtual neurons. In the same way, the distributions of the number of branches 
versus branch order are shown in Fig. 5(c), (d). Here, the number of branches is equal 
to number of bifurcations plus number of terminations. The real motoneurons group 
has a peek at 66 branches at order 5, while there are 56, 65, 80 and 98 branches in Fig. 
5 (c) (λ1 is 0.4, 0.45, 0.5 and 0.55 respectively), and 69, 80, 85 and 91 branches in Fig. 
5 (d) (λ2 is −2.0, −3.0, −4.0 and −5.0 respectively). The real neurons group decrease 
gradually as branch order increases, but virtual neurons decrease quickly. In conclu-
sion, the generation of virtual neurons depends on the values of development scale λ1 

and λ2, and some basic morphological variables. 
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5 Conclusions 

We conclude that the genetic regulatory network model is useful techniques for effi-
cient generation of 3D dendritic trees. The algorithm is able to generate virtual neu-
rons that can be used in structure-function relationship studies, as building blocks for 
analysis and modeling of neurons and neural networks, as tools to search for the most 
efficient description of neuroanatomical data, or to aid researchers develop scientific 
intuitions and hypotheses [18]. It should be stressed that this algorithm does not de-
scribe a single neuron, but rather a morphological class. It will allow the same de-
scriptive rule to generate neurons as diverse as Purkinje, Granule and Stellate neurons 
just changes the statistical distributions of morphological variables and the develop-
mental control parameters. Since an arbitrarily huge amounts of virtual neurons can 
be generated from a finite data set, so it naturally amplifies the data. These features 
may have a great influence on the development of neuromorphological databases. 
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Abstract. For a given set S of n real numbers, a k-subset means a sub-
set of k distinct elements of S. It is obvious that there are totally Ck

n

different combinations. The L smallest k-subsets sum problem is defined
as finding L k-subsets whose summation of subset elements are the L
smallest among all possible combinations. This problem has many ap-
plications in research and the real world. However the problem is very
computationally challenging. In this paper, a novel algorithm is proposed
to solve this problem. By expressing all the Ck

n k-subsets with a network,
the problem is converted to finding the L shortest loopless paths in this
network. By combining the L shortest paths algorithm and the finite-
time convergent recurrent neural network, a new algorithm for the L
smallest k-subsets problem is developed. And experimental results show
that the proposed algorithm is very effective and efficient.

Keywords: L smallest k-subsets sum problem, L shortest paths,
convergence in finite time, recurrent neural network.

1 Introduction

For a given set S of n real numbers, a k-subset means a subset of S containing
k distinct elements, where k < n [1]. The number of k-subsets on n elements is
therefore given by the binomial coefficient

(
n
k

)
. For example, there are

(
4
2

)
= 6

2-subsets of {2, 4, 6, 9}, namely {2, 4}, {2, 6}, {2, 9}, {4, 6}, {4, 9} and {6, 9}.
The values of summation of elements for these 2-subsets are 6, 8, 11, 10, 13 and
15 respectively. The L smallest k-subsets sum problem is defined as finding L
k-subsetss whose summation of subset elements are the L smallest among all
possible combinations. It is obvious that the 3 smallest 2-subsets of {2, 4, 6, 9}
is {2, 4}, {2, 6} and {4, 6}.

It is obvious that the total number of distinct k-subset on set S of n elements
is given by

∑n
k=1

(
n
k

)
= 2n−1 (0 < k ≤ n). For the previous example of {2, 4, 6, 9},
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these subsets are {2}, {4}, {6}, {9}, {2, 4}, {2, 6}, {2, 9}, {4, 6}, {4, 9}, {6, 9},
{2, 4, 6}, {2, 4, 9}, {2, 6, 9}, {4, 6, 9} and {2, 4, 6, 9}. Then finding the L smallest
subsets or finding some subsets satisfying certain specific conditions among these
2n − 1 subsets is known as the subset sum problem, which is proved to be
NP-complete.

The subset sum problem has numerous applications in research and the real
world. For example, in computer science, it is widely applied to the optimal
memory management in multiple programming[2]. In the field of telecommu-
nication, it is used in allocating wireless resources to support multiple scalable
video sequences[3]. For the application in embedded system, it is used in generat-
ing application specific instructions for DSP applications to reduce the required
code size and increasing performance in embedded DSP systems[4]. And in op-
timization, the subset sum problem can also be studied as a special case of the
Knapsack problem[5].

Due to the importance of the subset sum problem, many algorithms have
been proposed. Lagarias and Odlyzko proposed a polynomial time algorithm for
this problem in 1983[6]. However, the algorithm can hardly find a solution only
when the density of the problem is less than 1/n. In 1990, Lobstein proved that
there is no polynomial-time algorithm solving the general subset sum problem[7].
Several heuristic algorithm have been proposed such as quantum computation
method[8], space-time tradeoff method [9] and penalty function method [2]. How-
ever, these algorithm do not always find a solution when one exists.

Since the subset sum problem can be thought of as the extension of the L
smallest k-subsets sum problem. Then, it is clear that the subset sum prob-
lem can be solve very efficiently if there is a fast and exact algorithm for the
L smallest k-subsets sum problem. For this reason, the L smallest k-subsets
sum problem is studied in detail in this paper. A specified structure network
was creatively proposed to express all the

(
n
k

)
k-subsets. Then, based on the

relationship between the
(
n
k

)
k-subsets and the proposed network, finding the L

smallest k-subsets sum is equivalent to searching the L shortest loopless paths
in this network. Furthermore, by combining the L shortest paths algorithm and
the finite-time convergent recurrent neural network, a fast and exact algorithm
for the L smallest k-subsets problem is developed.

The remainder of this paper is organized as follows. In Section 2, the problem
formulation is presented and the expression of the problem with a network is
illustrated. Then the procedure for finding the L shortest loopless paths in this
network is described in Section 3. In Section 4, by combining the L shortest loop-
less paths algorithm with the finite-time convergent recurrent neural network, a
new algorithm is developed. Next, in Section 5, experimental results are given to
verify the efficiency and effectiveness of the proposed algorithm. Finally, Section
6 concludes this paper.

2 Problem Formulation and Model Description

To solve the L smallest k-subsets problem effectively, an appropriate mathematic
model is needed. It is obvious that finding the L smallest k-subsets is equivalent
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to determine the 1st, 2nd, 3rd, . . . , (L − 1)th and Lth smallest k-subsets step
by step. Mathematically, the lth (0 < l ≤ L) smallest k-subset problem can be
formulated as a function

xi =

{
1, if vi∈{the lth smallest k-subset};
0, otherwise;

(1)

for i = 1, . . . , n; where v ∈ Rn and k ∈ {1, . . . , n− 1}. Fig.1 shows the operation
graphically.

Finding the lth smallest
k-subset

x1 x2 xn-1 xn

v1 v2 vn-1 vn

k

l

Fig. 1. Diagram of finding the lth (0 < l ≤ L) smallest k-subset operation

When l = 1 and k is a nonnegative integer less than n, the above operation is
almost the same with the k-Winners-Take-All (kWTA) operation[10]. The only
difference is that kWTA operation finds k largest elements from n candidates
instead of the smallest ones. However, solving the L smallest k-subsets sum prob-
lem is much more complicated than solving the kWTA problem. On one hand,
when the (l− 1)th smallest k-subset is already known as x̂l−1, the (l)th smallest
k-subset can be obtained by solving the following integer optimization(2).

minimize vTx,
subject to eTx = k

x �= x̂l−1 (C1)
vTx ≥ vT x̂l−1 (C2)
xi ∈ {0, 1}, i = 1, 2, . . . , n.

(2)

where v = [v1, . . . , vn]
T , e = [1, . . . , 1]T ∈ Rn, x = [x1, . . . , xn]

T ∈ Rn, l is
an integer greater than one and k is a nonnegative integer less than n. Com-
pared with the optimization formulation of kWTA problem[11], conditions (C1)
and (C2) are added in finding the (l)th smallest k-subset, which increases the
difficulty greatly. In addition, it is proved in [11] that condition xi ∈ {0, 1} in
solving kWTA can be relaxed to xi ∈ [0, 1] . However, this integer condition in
optimization problem(2) can not be relaxed. On the other hand, for the kWTA
problem, only one round of optimization should be solved. However, for the L
smallest k-subsets sum problem, totally L round of optimization(2) should be
solved one by one from l = 1 to l = L.
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Since integer optimization(2) is difficult to solve due to the inequality condition
(C1) and the integer restriction for x, it is not wise to solve the original problem
by integer programming. Here, a specific network structure is created to represent
all k-subsets of set S. As shown in Fig.2, this network has one source node nstart

(i.e. start point), one sink node nend (i.e. ending point) and several intermediate
nodes such as n1.1 and n2.1. There are some links connecting different nodes, and
for each link one weight is assigned. For example, the weight for the link connecting
nodes n1.1 and n2.1 is four. For this network, it can be easily enumerated that there
are totally six different paths from the source node to the sink node. Each path
represents a 2-subsetby theweights of the links constituting this path.For instance,
path nstart → n1.1 → n2.1 → nend represents subset {2, 4}. And all these six
paths represent all 2-subsets of set {2, 4, 6, 9}. When constructing a network for
representing k-subsets of n elements, the network is composed of a source node,
a sink node and k layers of intermediate nodes. For the first layer (i = 1), it has
(n−k+1) intermediate nodes. For other layers (i = 2, . . . , k), the ith layer has (n−
i+1) intermediate nodes. It can be proved that the upper bound for the number of
nodes is nk. Then link the nodes in adjacent layers and assign the weights properly,
a network representing all k-subsets of n elements can be constructed. Therefore,
it is clear that finding the L smallest k-subsets sum is equivalent to searching L
shortest paths in a network.

n1.1

n1.2

n1.3

nstart

n2.1

n2.2

n2.3

nend

Fig. 2. A network representing all 2-subsets of {2, 4, 6, 9}

3 Finding L Shortest Paths in a Network

There are several algorithms available for finding L shortest paths in a network,
among which the algorithm proposed by Yen is one of the most efficient in term
of the number of operations and the number of memory addresses[12]. Here the
algorithm is adapted to find L shortest paths in the specific structure network.
The first step is to convert the network to a matrix form Mn,k. For the case in
Fig.2, the matrix form is given in (3) where M(i, j) = −1 means there is no link
from node i to node j. And when M(i, j) is a nonnegative number, it means
there is a link node i to node j and the number is the weight on this link.
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M8,2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nstart n1.1 n1.2 n1.3 n2.1 n2.2 n2.3 nend

nstart −1 2 4 6 −1 −1 −1 −1
n1.1 −1 −1 −1 −1 4 6 9 −1
n1.2 −1 −1 −1 −1 −1 6 9 −1
n1.3 −1 −1 −1 −1 −1 −1 9 −1
n2.1 −1 −1 −1 −1 −1 −1 −1 0
n2.2 −1 −1 −1 −1 −1 −1 −1 0
n2.3 −1 −1 −1 −1 −1 −1 −1 0
nend −1 −1 −1 −1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

The flowchart of the algorithm is given in Fig.3. It is obvious that procedures
P1 and P2 play main roles in the algorithm. Both these two procedures find
the shortest path from a given network. Therefore, the efficiency of finding the
shortest path completely determine the performance of the algorithm.

START

Determine the shortest path
A1 from the network.

Set l=1

l=l+1

Determine the deviation Al

from Aj, (j=1,2, ,l-1) by
finding the shortest paths
from modified networks

Choose the shortest Al and
store it in List B

Find from List B the paths that
have the minimum length and

store them in List A

Paths in List A>=L

END

P1

P2

Fig. 3. Flowchart of the algorithm for finding L shortest paths in a network

4 Finite-Time Convergent Recurrent Neural Network
Based Algorithm

There are many algorithms proposed for finding the shortest path such as the
famous dynamic programming method. However, for large-scale and real-time
applications most of these series algorithms may not be efficient due to the
drawback of sequential processing in computational time. Therefore, parallel
computational models are more desirable. In [14], several neural networks were
proposed for finding the shortest path. The shortest path problem was converted
to the following linear program:
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minimize
n∑

i=1

n∑
j=1

cijxij

subject to
n∑

k=1

xik +
n∑

l=1

xli = δil − δin

xij ≥ 0, i, j = 1, 2, . . . , n

where cij is the weight of the link from node i to node j, and δij is the Kronecker
delta function defined as δij = 1(i = j) and δij = 0(i �= j). For the previous
problem, the dual problem is

maximize yn − y1

subject to yj − yi ≤ cij , i, j = 1, 2, . . . , n

where yi is the dual decision variable associated with node i. The dual problem
can be further simplified as follows by defining zi = yi − y1 for i = 1, 2, . . . , n.

minimize zn,
subject to zj − zi ≤ cij , i �= j, i, j = 1, 2, . . . , n

(4)

where z1 = 0. Based on the above formulation, several recurrent neural net-
works for shortest path routing have been proposed in succession, among which
the finite-time convergent recurrent neural network is proved to be effective and
efficient for its simple structure and the flexibility in choosing parameter for
global convergence[13]. By combining (4) and the finite-time convergent recur-
rent neural network, the specific neural network model can be tailored as follows:

ε
dz

dt
= −σAT g[0,1](Az − b)− c, (5)

where ε is a positive scaling constant, σ is a gain parameter greater than one,
z = (z2, z3, . . . , zn)

T , b = (c12, . . . , c1n, c21, c23, . . . , c2n, . . . , cn1, . . . , cn,n−1)
T ∈

R
n(n−1), A is an n(n − 1) × n matrix of 0, 1 and −1 to construct n(n − 1) in-

equality constraints, g[0,1](v) = (g[0,1](v1), . . . , g[0,1](vn−1)), and its components
are defined as

g[0,1](vi) =

⎧⎪⎨⎪⎩
1, if v > 0,

[0, 1], if v = 0, (i = 1, 2, . . . , n− 1)

0, if v < 0.

(6)

The block diagram of the specific neural network is shown in Fig.4. It consists of
three main parts. The preprocessing part converts a certain network structure
to a linear programming in the form of (4). Then the neural network processing
part calculates the optimal solution. And finally, the optimal solution is decoded
to the solution in terms of links by the postprocessing part.
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Fig. 4. Block diagram of the neural network for finding the shortest path

5 Experimental Results

Due to the efficiency of the finite-time convergent recurrent neural network in
finding the shortest path, the neural network model is integrated with the L
shortest path algorithm to solve the L smallest k-subsets problem.
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(a) Transient behaviors of the state vari-
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(b) Global convergence of the dual objec-
tive function.

Fig. 5. Neural network dynamics for finding the shortest path in solving the L smallest
k-subsets problem

When L = 4, k = 2 and S = {2, 4, 6, 9}, the L smallest k-subsets means
finding 4 smallest 2-subsets from S. A specific network is constructed as in
Fig.2 to represent all 2-subsets. Then the proposed algorithm is applied to this
network. Fig.5 shows the dynamics of the finite-time convergent recurrent neural
network in finding the shortest in the network, where Fig.5(a) and 5(b) presents
the transient behaviors of the state variables and global convergence of the dual
objective function respectively. It is obvious that the network converge quickly to
the exact optimal value. For this case, the optimal value is six (i.e., 2 + 4 = 6).
The optimal solution is decoded to the solution in terms of links. After this
postprocessing, the path in bold in Fig.6(a) is the first shortest path responding
to subset {2, 4}. Then for the next three rounds, the second shortest path (i.e.,
Fig.6(b)), the third shortest path (i.e., Fig.6(c)) and the fourth shortest path
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(a) The first shortest path corresponding
to subset {2, 4}.
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(b) The second shortest path correspond-
ing to subset {2, 6}.
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(c) The third shortest path corresponding
to subset {4, 6}.
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(d) The fourth shortest path correspond-
ing to subset {2, 9}.

Fig. 6. Finding four smallest 2-subsets from {2, 4, 6, 9}

(i.e., Fig.6(d)) are determined in succession, which correspond to subsets {2, 6},
{4, 6} and {2, 9} respectively.

6 Conclusion

In this paper, based on a creative network structure as well as a finite-time
convergent recurrent neural network, a new algorithm has been proposed for the
L smallest k-subsets sum problem. Experimental results show that this novel
algorithm is efficient and is capable of finding the exact solutions.
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Abstract. In the olfactory system, both the temporal spike structure
and spatial distribution of neuronal activity are important for processing
odor information. In this paper, a biophysically-detailed, spiking neu-
ronal model is used to simulate the activity of olfactory bulb. It is shown
that by varying some key parameters such as maximal conductances of
Ks, Nap and Na, the spike train of single neuron can exhibit various
firing patterns. In the olfactory bulb, synchronization in coupled neurons
is also investigated as the coupling strength gets increased. Synchroniza-
tion process can be identified by correlation coefficient and phase plot. It
is illustrated that the coupled neurons can exhibit different types of syn-
chronization when the coupling strength increases. These results may be
instructive to understand information transmission in olfactory system.

Keywords: olfactory, spike train, maximal conductance,
synchronization.

1 Introduction

The study of the neural basis of olfactory system is important both for understand-
ing the sense of smell and for understanding the mechanisms of neural computa-
tion. The olfactory bulb plays a central role in processing and relaying olfactory
information(Laurent et al. 2001; Lledo et al. 2005; Shepherd et al. 2004). Themain
bulb receives signals from the population of olfactory receptor neurons(ORN) and
transmits signals to the olfactory cortex and other brain regions.

Information about the environment is generally encoded into spike sequences
by neurons in animal sensory nervous systems(Rieke.F et al. 1997). There is
a lot of evidence that(Hudspeth AJ et al.2000; Laurent et al. 2001), in some
systems, the representation of information comes through temporal encoding:
each stimulus is characterized by a specific and reproducible sequence of firing
spike train. In the olfactory bulb, the temporal structure of neuronal activity
appear to be especially important for processing odor information(Hutcheon B
et al. 2000). To build a reasonable dynamical theory of such an encoding, the
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rules on which the neuron model is based should be understood, and advantages
that such stimulus representation has for further processing are also predicted.
So it is necessary to explore the effect of some key parameters such as maximal
conductances of the olfactory model on temporal spike train pattern.

Except the contribution of a single neuron on information transmitting, syn-
chronization of a set of interacting individuals or units has been intensively stud-
ied because of its ubiquity in the natural world(Pikovsky et al. 2001; Davison et
al. 2001 ). The synchronization of neuronal signals has been proposed as one of the
mechanisms to transmit the information(Singer W. 1994; Eckhorn R. 1999). It is
suggested that theoretical studies of such synchronized behaviors in neuronal as-
semblies play an important role in our understanding of information processing in
olfactory systems. Hence, the synchronous firing of neurons has been extensively
investigated by means of the theory of nonlinear dynamical systems.

Synchronization of action-potential firing has been demonstrated in the mitral
and tufted cells of the rabbit olfactory bulb(Kashiwadani H et al.1999), which
show that odor-evoked synchronization is functionally relevant for olfactory dis-
crimination. Hence, the exploring for synchronization of two coupled neurons
may be helpful to the understanding of olfactory system.

This paper is organized as follows: The Mitral cell model of olfactory bulb is
introduced in Section 2. Single-neuron simulation and effects of maximal conduc-
tances to the spike train patterns are presented in Section 3, Section 4 describes
synchronization in two coupled neurons, and a conclusion is given in Section 5.

2 Mitral Cell Model of Olfactory Bulb

A single compartment that includes voltage-dependent currents described by
Hodgkin-Huxley kinetics was used to model mitral cells. The membrane capac-
itance for all cells is 1μF/cm2 and therefore not mentioned in the voltage equa-
tions. The following units were used: conductance per unit area in [mS]/[cm2],
current per unit area in [μA]/cm2, voltage in [mV ] and time(t) in [ms]. Their
membrane potentials were calculated with the equations:

Cm
dV

dt
= − 1

Rm
(V − El)− INa − IKfast − IKa − IKs − INap − Ie, (1)

where V is the membrane potential, Cm is the membrane capacitance, Rm is the
input membrane resistance, and El is the leak reversal potential.Ie is external
currents. The mitral cells have two sodium currents INa, INap and three potas-
sium currents: IKfast, IKa and IKs. All these intrinsic currents are described by
the equation:

Ii = gim
MhH(v − Ei), (i = Na,Kfast,Ka,Ks,Nap) (2)

where gi is the maximal conductance and Ei the reversal potential. The activa-
tion and inactivation variablem and h raised to the powerM and H respectively
follow the kinetic equation:
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dm/dt = (m∞ −m)/τm (3)

dh/dt = (h∞ − h)/τh (4)

Values for all currents are taken from Bhalla and Bower(Bhalla et al 1993) and
the Senselab databank(http://senselab.med.yale.edu).

3 Single-Neuron Simulations

3.1 Effect of Single Maximal Conductance to the Spike Train
Pattern of Olfactory Model

In order to reproduce the characteristic properties of mitral cell, a set of parame-
ters is selected to reflect the different behaviors of the model. Spike train patterns
of olfactory bulb are sensitive to the persistent current Nap, Ks and Na.
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Fig. 1. Spike train patterns(a) and corresponding phase plots (b) with respect to
variation of the maximal conductance of Ks

At first, the responses of spike train patterns at different maximal conductance
of Ks are considered. Fig. 1 presents the spike train patterns and corresponding
phase plots when gKs changes from 0.7 to 2.7, respectively. As shown in the Fig.2,
with the gKs increasing, the frequency of spike train firing is increasing. Then
the situation of changing gNap is considered while fixing other parameters. On
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Fig. 2. Spike train patterns(a) and corresponding phase plots (b) with respect to
variation of the maximal conductance of Nap

the contrary to the case of gKs, the frequency of spike train firing is decreasing
when the gNap is increased(Fig.2).

while varying the maximal conductance of Na current in the model, the fre-
quency of spike firing do not have large change. However, the top value of mem-
brane potential increases from 10mv to 25mv and then to 40mv with the gNa

taking the 10μS/m2, 20μS/m2 and 50μS/m2 respectively shown as (a), (b) and
(c) of the Fig.3. The value of voltage will be stabilized at 40mv when the gNa

is larger than 50μS/cm2. (d) of the Fig.3 shows the result taking gNa as linear
function of time t. So it is supposed to simulate the experimental phenomenon
through controlling the maximal conductance of the model.

3.2 Effect of Multi-Maximal Conductances to the Spike Train
Pattern of Olfactory Model

If changing the maximal conductances of the Nap and Ks currents simultane-
ously, the variation tendency of spike train patterns are different to the case
that only change one parameter. As shown in the Fig.4, when two maximal con-
ductances decrease simultaneously, the frequencies of olfactory spike firing are
increasing, which is opposite to the situation when gKs decreases only. This state
is similar to the case of changing single gNap, but if the value of gNap is smaller
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Fig. 3. The top value of membrane potential is increasing with the maximal
conductance gna increasing

than 30μS/cm2, cell do not fire at all, only if the gKs decrease with the gNap

simultaneously, the neuron can still generate membrane potential.

4 Firing Synchronization of Two Coupled Olfactory
Neurons

In this section, synchronization of two identical coupled neurons is studied. It
is shown that two coupled neurons can exhibit more complicated dynamical
behaviors due to the effect of the coupling strength.

Dynamics of two coupled olfactory neurons are controlled as shown by the
following differential equations:

Cm
dVi
dt

= − 1

Rm
(Vi − El)−

∑
k

Ik − Ie +
∑
j

gsyn(Vi − Vj), (5)
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Fig. 4. Different spiking frequencies with the changing of gNap and
gKs. (a)gNap=150S/m2,gKs=1.1S/m2, (b)gNap=100S/m2,gKs=0.7S/m2,
(c)gNap=50S/m2,gKs=0.5S/m2, (d)gNap=20S/m2,gKs=0.3S/m2,

where Ik is ionic current(k = Na,Kfast,Ka,Ks,Nap).gsyn is coupling strength,
Vi and Vj are voltages between adjacent neuron i and j. Here, we take i and j as
1 and 2. All parameters are the same to the ones in section 2.

A correlation coefficient is introduced to measure the synchronization degree
of the coupled neurons, and it is defined as follows:

C =

∑n
i=1 | (V 1

i − 〈V 1
i 〉) || (V 2

i − 〈V 2
i 〉) |√∑n

i=1(V
1
i − 〈V 1

i 〉)2(V 2
i − 〈V 2

i 〉)2 (6)

where V 1
i (or V 2

i ) represents the samplings of the membrane potential V 1(t) (or
V 2(t)). 〈·〉 denotes the average over the number of the sampling. It is easy to see
that the more synchronous the coupled neurons are, the larger the correlation
coefficient C is, and the complete synchronization state o f the coupled neurons
is achieved when C is equal to 1.
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The correlation coefficient C is calculated as illustrated in Fig.5. It is shown
that synchronization exhibits a rout of process as: non-synchronization−→ nearly
synchronization −→ spiking synchronization. Complete synchronization cannot
occur when gsyn is less than 0.14, while complete synchronization can be observed
as shown in Fig.5, in which C is equal to 1.

5 Conclusion

Based on the olfactory model, the analysis of this paper shows that maximal
conductances have obviously effects on the spike train pattern: maximal con-
ductance of Na decides the top value of the membrane potential, however, the
frequencies of firing can be controlled by the maximal conductances of Nap and
Ks. The frequency of spike train firing is increasing with the gKs increasing,
while the frequency of spike train firing is decreasing when the gKs is increased;
if the two maximal conductances decrease simultaneously, the frequency of ol-
factory spike firing is increased, which is opposite to the situation when gKs

decreases only. Synchronization of two coupled olfactory neurons has also been
investigated in this paper. It was shown that the coupled neurons could achieve
synchronization with the variation of coupling strength. It has been suggested
that the variation of spike train pattern and neural synchronization can provide
some important guidelines to understanding the process of neural information
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transmission. In the olfactory system particular, these analysis maybe helpful to
understand the integration of the many factors influencing the construction and
transformation of odor representations.

Acknowledgement. This work was supported by the National Natural Sci-
ence Foundation of China (No.11002055, 11232005) and Young Teacher Fund of
ECUST; Jingyi Qu is supported by the Special Fund of Civil Aviation University
of China No.2012QD09X, No.ZXH2012C004.

References

1. Rieke, F., et al.: Spikes: Exploring the Neural code. MIT Press, Cambridge (1997)
2. Hudspeth, A.J., Legothetis, N.K.: Sensory systems. Curr. Opin. Neurobiol. 10, 631

(2000)
3. Bhalla, U.S., Bower, J.M.: Exploring parameter space in detailed single cell models:

simulations of the mitral and granule cells of the olfactory bulb. J. Neurophysiol. 69,
1948–1965 (1993)

4. Davison, A.P., Feng, J., Brown, D.: Spike synchronization in a biophysically-
detailed model of the olfactory bulb. Neurocomputing 40, 515–521 (2001)

5. Hutcheon, B., Yarom, Y.: Resonance, oscillation and the intrinsic frequency pref-
erences of neurons. Trends Neurosci. 23, 216–222 (2000)

6. Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A., Abar-
banel, H.D.I.: Odor encoding as an active, dynamical process: experiments, com-
putation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001)

7. Lledo, P.-M., Gheusi, G., Vincent, J.D.: Information processing in the mammalian
olfactory system. Physiol. Rev. 85, 281–317 (2005)

8. Shepherd, G.M., Wei, R.C., Greer, C.A.: Olfactory bulb. In: Shepherd, G.M. (ed.)
The Synaptic Organization of the Brain, 5th edn., pp. 165–216. Oxford Univ. Press,
Oxfrod (2004)

9. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, a universal concept in
nonlinear sciences. Cambridge University Press, New York (2001)

10. Singer, W.: Time as coding space in Neocortical processing. Springer, Berlin (1994)
11. Eckhorn, R.: Neural mechanisms of scene segmentation: recording from the visual

cortex suggest basic circuits or linking fieldmodels. IEEE Trans. Neural Netw. 10,
464–479 (1999)

12. Kashiwadani, H., Sasaki, Y.F., Uchida, N., Mori, K.: Synchronized oscillatory dis-
charges of mitral/tufted cells with different molecular receptive ranges in the rabbit
olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999)

13. Senselab databank, http://senselab.med.yale.edu

http://senselab.med.yale.edu


Efficiency Improvements

for Fuzzy Associative Memory

Nong Thi Hoa, The Duy Bui, and Trung Kien Dang

Human Machine Interaction Laboratory
University of Engineering and Technology

Vietnam National University, Hanoi

Abstract. FAM is an Associative Memory that uses operators of Fuzzy
Logic and Mathematical Morphology (MM). FAMs possess important
advantages including noise tolerance, unlimited storage, and one pass
convergence. An important property, deciding FAM performance, is the
ability to capture contents of each pattern, and associations of patterns.
Standard FAMs capture either contents or associations of patterns well,
but not both of them. In this paper, we propose a novel FAM that ef-
fectively stores both contents and associations of patterns. We improve
both learning and recalling processes of FAM. In learning process, the as-
sociations and contents are stored by mean of input and output patterns
and they are generalised by erosion operator. In recalling process, a new
threshold is added to output function to improve outputs. Experiments
show that noise tolerance of the proposed FAM is better than standard
FAMs with different types of noise.

Keywords: Fuzzy Associative Memory, Noise Tolerance, Pattern
Associations.

1 Introduction

Bidirectional Associative Memory (BAM) models store pattern associations and
can retrieve desired output patterns from noisy input patterns. FAM is an As-
sociative Memory that uses operators of Fuzzy Logic and Mathematical Mor-
phology (MM). FAMs have three important advantages over traditional BAMs,
which are noise tolerance, unlimited storage, and one pass convergence. Thanks
to those advantages, FAMs have been widely applied in many fields such as
image processing and optimization. Some standard FAMs [9,12,14] effectively
store pattern associations by using the ratio of input pattern to output pattern.
As a result, they do not store the content of patterns. Others [7,5,2,14] store
the content of output patterns or some representative values, which means the
associations of pattern pairs are not included.

In this paper, we propose a new standard FAM that can store both the content
of patterns as well as pattern associations. Our FAM is improved in both learning
and recalling process. In learning process, the associations and the contents are
stored by the mean of input and output patterns, and they are generalized
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by erosion operator of Mathematical Morphology. In recalling process, a new
threshold is added to the output function to improve recalled results. We have
conducted experiments in face recognition and pattern recognition with three
types of noise to confirm the effectiveness of our model.

The rest of the paper is organized as follows. Section 2 summarizes related
work. In the section 3, we describe our novel FAM. Section 4 presents our
experiments to show the advantages of the proposed FAM.

2 Related Work

Studies of FAMs can be divided into two categories: developing new models, and
applying them into applications. In the first category, researchers mainly apply
operators of Fuzzy Logic and MM to store pattern associations. The input and
the association matrix are used to compute the output.

Kosko [7] used the minimum of input and output pattern to store the asso-
ciation and generalized them by dilation operator. A fuzzy implication operator
was used to present associations by Junbo et al. [5]. Generalizing patterns was
performed by erosion operator. The FAM set of Fulai [2] and some of Sussner
[14] were similar to Junbo’s FAM, in which the difference was only the output
function. After that, Fulai and Tong proposed a way to add/delete a pattern
pair [3]. These FAM, however, weakly presented the associations of patterns as
they stored only input or output pattern for showing the association of each
pattern pair.

Ping Xiao et al. [9] designed a model that applied the ratio of input to output
patterns for the associations. Erosion operator was used for generalizing the as-
sociations. Wang and Lu [12] proposed a set of FAM that used division operator
to describe the associations and erosion/dilations for generalizing the associa-
tions. Some FAMs of Sussner [14] used fuzzy implication to show the association
and used s-norm operator in the output function. A threshold was added to
the output function to improve weak outputs. Because of using the difference
between input and output pattern for storing, the content of patterns was not
presented in these FAMs.

An intuitive FAM that based on Junbo’s model was proposed by Long et al.
[8]. This FAM was added a complement value of each element of patterns and
associative matrices. Valle and Sussner modified implicative FAMs tomake them
be able to work with integer values by replacing values in [0,1] with values in
[0,1,...,L] [15]. Other researchers focused on the stability of FAMs, the conditions
for perfectly recalling stored patterns, and how to transform a given FAM to new
FAMs [18,10,17,1].

In the second category, working with uncertain data is the reason why novel
FAMs has been used in many fields such as pattern recognition, control, estima-
tion, inference, and prediction. There are some typical examples of each field.
Sussner and Valle used the implicative FAMs for face recognition [14]. Kim et
al. predicted Korea stock price index [6]. Shahir and Chen inspected the quality
of soaps on-line [11]. Wang and Valle detected pedestrian abnormal behaviour
[16]. Sussner and Valle predicted the Furnas reservoir from 1991 to 1998 [13].
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3 Our Approach

3.1 Design of the Proposed FAM

Because previous FAMs only effectively store the content or the associations, so
some useful information from patterns is lost. Thus, the ability of recall is limited.
We propose a novel FAM that stores both the content and the associations of
patterns better. Furthermore, we propose a new threshold for the output function
which can improve the noise tolerance.

Assuming that our FAM stores p pattern pairs, (A1, B1), (A2, B2), ..., (Ap, Bp)
in the general weight matrix W. The kth pair is represented by the vectors
Ak = (Ak

1 , ..., A
k
m) and Bk = (Bk

1 , ..., B
k
n).

The design of our FAM is presented in the following processes:

Learning Process Consists of Two Steps:
Step 1: Learn the association of patterns (Ak, Bk) by their mean values to

store both the contents and the associations of patterns more clearly.

W k
ij =

1

2
(Ak

i +Bk
j ) (1)

Step 2: Generalize the associations of patterns and store in the general weight
matrix W .

Wij =

p∧
k=1

W k
ij (2)

Recalling Process is Executed as Follows
We use a new threshold for the output function. The threshold is used in case

current output is much different from training output. That means the current
output is equal to threshold when it is smaller than the minimum of training
outputs. Models of Sussner [14] used a threshold that is the minimum of the
training output patterns while our threshold is an arithmetic mean. Therefore,
the ability of output correcting of Sussner’s FAMs is lower than our model. The
reason is that the ratio of minimum/maximum to the mean is smaller than the
ratio of minimum/maximum to the minimum.

Our threshold is formulated as:

θj =
1

p

p∑
k=1

Bk
j (3)

The summary of the current input and the general weight matrix is formulated
by dilation operator. Then it is compared to the threshold. If it is smaller than
the threshold then the current output is equal to the threshold, otherwise the
current output is equal to it. Therefore, output Y is recalled from an input X by
the equation:

Yj =

m∨
i=1

Xi.Wij ∨ θj (4)
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3.2 Discussion

To improve efficiency, our FAM employs arithmetic mean in both input and
output functions. Thus, we name it MIOFAM (Mean Input and Output FAM).

MIOFAM has three important advantages over standard FAMs. First, it has
unlimited capacity because of storing patterns in a single matrix. Second, recall-
ing process performs in an iteration, which reduces computation and converges
in only one pass. Finally, we expect to increase the noise tolerance ability because
of the improvement in both learning and recalling process. In addition to the
known advantages of FAM, MIOFAM is easy to understand and implement. As
a result, we expect that our MIOFAM will perform well in different applications
under harsh conditions.

4 Experiments

We have conducted three experiments with four image sets. FAMs are tested in
the hetero-association mode since it is more general than the auto-association
mode. The first experiment is face recognition from distorted inputs. The second
and last experiment are pattern recognition from in-complete inputs and “salt
& pepper” noise.

To prove the effectiveness, our novel FAM is compared to standard FAMs.
Standard FAMs which are selected for comparison, are models of Kosko [7],
Junbo et al. [4], Fulai and Tong [2], Ping Xiao et al. [9], Wang and Lu [12],
and Valle and Sussner [14]. We choose best model of each set of FAM to com-
pare. These FAMs and proposed FAM are similar to both learning and recalling
process. Therefore, we only compare the noise tolerance of FAMs.

We use the peak signal-to-noise ratio (PSNR) to measure quality between the
training and an output image. The higher the PSNR, the better the quality of
the output image. PSNR is computed by the following equation:

PSNR = 40log10
R2

MSE
(5)

where R is the maximum fluctuation in the input image data type. Working with
grey-scale images, value of R is 255. MSE represents the cumulative squared error
between the training and an output image. MSE is formulated by the following
equation:

MSE =

∑
M,N(I1(m,n)− I2(m,n))2

M ∗N (6)

where M and N are the number of rows and columns in the input images. I1, I2
are the output and the training image.

4.1 Experiment 1: Face Recognition from Distorted Inputs

We choose the faces database of AT & T Laboratories Cambridge1 including 40
people. Figure 1 shows some typical patterns in this experiment.

1 Avaliable at: http://www.uk.research.att.com/facedatabase.htm

http://www.uk.research.att.com/facedatabase.htm
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Fig. 1. Typical patterns for face recognition

There are 10 images for every person in the database, including one normal
image and nine distorted images. Normal images are used to train and the dis-
torted images are noisy inputs for experiments. Noisy inputs are made from
the training images by rotating faces, changing position of light source, wearing
glasses,...The size of each image is 112x92 pixels. We rescale the original images
to 23x19 pixels. Figure 2 shows PSNR of models in Experiment 1. The results
show that our FAM improves noise tolerance from 4% to 36 % comparing to
standard FAMs.

Fig. 2. PSNR of FAMs for face recognition from distorted inputs

4.2 Experiment 2: Recognition Applications from Incomplete
Inputs

We select three image sets which include many groups of images, namely, human,
animal, house, radar image, car, and thing. The first set contains 48 images of the
grey-scale image database (CVG) of the Computer Vision Group, University of
Granada, Spain2 with six groups of images. The second set has 50 animal images

2 Avaliable at: http://decsai.ugr.es/cvg/wellcome.html

http://decsai.ugr.es/cvg/wellcome.html
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Fig. 3. Some typical images of data sets.
(a), (b), (c) show CVG, CAR, ANIMAL datasets.

(ANIMAL) with many species from 50 Amazing Animals in the shared database
of Torrentz in EU. The last set includes 48 images (CAR) of car features, which
are selected from Corel database. Images are rescaled from 512x512, 1920x1080,
384x256 to 21x21, 23x19, 24x16 respectively. Figure 3 shows some typical images
of the three datasets.

Normal images are used to create the training set and the test set is made from
the training images by deleting parts of images. Figure 4 shows PSNR of FAMs
in Experiment 2. This experiment shows that MIOFAM is better than standard
FAMs in all datasets. Especially, our FAM achieves significant improvement in
ANIMAL set (22.3% comparing to FAMs of Fulai, the second best FAM).

Fig. 4. PSNR of FAMs for pattern recognition from incomplete inputs

4.3 Experiment 3: Pattern Recognition from “Salt & Pepper” Noise

We use the same three image sets in Experiment 2. Noisy images are made from
the training images by adding “salt & pepper”. Figure 5 shows PSNR of FAMs
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Fig. 5. PSNR of FAMs for pattern recognition from “salt & pepper” noise

in Experiment 3. Again, MIOFAM performs better than all other FAMs. In the
ANIMAL dataset, our FAM tolerates noise 23.2% better than the second best
FAM, FAMs of Sussner.

5 Conclusion

In this paper, we proposed a new FAM - the MIOFAM - that captures both con-
tent and associations of patterns. Our FAM improves both learning and recalling
process by using arithmetic mean. While still possessing vital advantages of stan-
dard FAMs, the MIOFAM has better noise tolerance and is easy to construct.
We have conducted three experiments in face recognition and pattern recogni-
tion to prove the efficiency of the proposed FAM. The obtained results show
that MIOFAM is better than standard FAMs in experiments with three types of
noise. Especially, our FAM performs much better than standards FAMs in one
dataset, the ANIMAL dataset. This hints that our improvement in capturing
pattern content and associations can be extremely effective. Our further work
would investigate further into this direction, such as measuring the diffusion in
pattern content and association to confirm that hypothesis.

Acknowledgements. This work is supported by Nafosted research project
No. 102.02-2011.13.
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Abstract. The combination of electroencephalogram (EEG) and functional 
magnetic resonance imaging (fMRI) is a very attractive aim in neuroscience, in 
order to achieve both high temporal and spatial resolution for the non-invasive 
study of cognitive brain function. In this paper, we record simultaneous EEG–
fMRI of  the same subject in emotional processing experiment in order to ex-
plore the characteristics of different emotional picture processing, and try to 
find the difference of the subject’ brain hemisphere when viewing different va-
lence emotional pictures. For fMRI data, we study the participant’s brain active 
region, and examine related blood oxygen level—dependent(BOLD) response. 
For EEG data, we focus on the amplitude of the late positive potential (LPP). 
We find that the amplitude of the LPP correlated significantly with BOLD in-
tensity in visual cortex and amygdala, prefrontal is also modulated by different 
picture categories.  

Keywords: emotion regulation, blood oxygen level-dependent, late positive 
potential, ICA. 

1 Introduction 

As an important psychological phenomenon, emotion plays a key role in the regula-
tion of human social behavior. Emotion is a physically and mentally excited state 
generated by the individuals who are stimulated, it is a complicated higher nervous 
activity. Emotional processing, it is an emotional stimuli perception or evaluation that 
possible to wake up the emotional experience. Because of the importance and com-
plexity of emotional itself, many scholars have made a series of research of emotion 
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mechanism, and make some achievements. The main research methods are based on 
functional magnetic resonance imaging (fMRI) and electroencephalograph (EEG). 

A key feature observed in event-related potential (ERP),which was derived from 
EEG, evoked by emotionally engaging stimuli is the late positive potential (LPP), 
which is characterized by an amplitude enhancement for positive and negative stimu-
li, relative to neutral stimuli. For affective picture viewing, LPP starts ~300 – 400 ms 
after picture onset and is often sustained throughout the duration of picture presenta-
tion. In parallel, fMRI has found that viewing of affective pictures is associated with 
increased blood oxygen level-dependent (BOLD) activity in widespread brain re-
gions, including occipital, parietal, inferotemporal cortices, and amygdala: [1], [2], 
[3], [4]. So, if enhanced LPP and BOLD reflect a common underlying mechanism, 
one might expect a coupling between LPP amplitude and BOLD activity in the above 
reported regions. Consistent with prior work, the voltage strength of a positive slow 
wave recorded from parietal regions of the scalp (the LPP) reflects the rated emotion-
al intensity of picture stimuli[5]. The strength of this scalp-positive waveform corre-
late significantly with BOLD signal in lateral occipital, inferior temporal, and medial 
parietal cortex. Thus, despite wide differences in signal origin and latency, the 2 
measures of cortical reactivity show comparable modulation by emotional pictures. 
Past source-space modeling of LPP has only been able to identify generators in the 
visual system, including occipito-temporal, parietal, and inferior temporal cortices[6], 
despite the fact that the amplitude of LPP is closely related to the rated intensity of 
emotion. The contribution to scalp-recorded potentials by the emotional processing 
areas may be modulatory and mediated by the visual cortex. It has been hypothesized 
that, when observers view emotionally engaging scenes, cortical and deep sub-cortical 
structures modulate visual cortex in a reentrant fashion: [7],[8]. 

In this paper, we design the emotional processing experiment by ourself, and  
record simultaneous EEG–fMRI while one subject passively view three categories 
picture, neutral, negative and positive pictures. What’s more, these pictures are all 
random present. We use Netstation software which come from America company EGI 
to preprocess EEG data, and use the 8th Statistical Parametric Mapping (SPM8) to 
preprocess fMRI data, then apply ICA algorithm for further study, and get some  
result. 

2 Independent Component Analysis 

Before estimating the independent components, the observed data can be whitened, that 
is, transformed to be uncorrelated and have unit variances. Whitening can be done using 
a linear transformation and does not constrain the estimation in any way, since indepen-
dence implies uncorrelation. Additionally, whitening simplifies the following compo-
nent estimation by restricting the structure of the mixing. If the whitening is done using 
principal component analysis (PCA), the number of free parameters can be reduced by 
taking only the K strongest principal components, and leaving out the weakest. Assum-
ing that the weakest components contain mainly noise, the dimension of the data is re-
duced in an optimal manner to improve the signal-to-noise ratio.  
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As mentioned before, ICA is based only on the assumption that the source signals 
are statistically independent. This seems reasonable in many applications and in fact 
does not have to hold exactly for ICA to be applicable in practice. The generative 
model used in ICA is an instantaneous linear mixture of random variables. The origi-
nal signals can be considered as a source matrix S, where each row of the matrix con-
tains one of the K signals. Respectively, the observed mixed signals are denoted as 
matrix X . Again, each row of the matrix contains one of the N observed signals. As-
suming a noiseless environment, the mixing model can be expressed in matrix  
form as: 

ASX =  (1)

Each column ka of the full rank KN × mixing matrix A holds the mixing weights 

corresponding to source k. The problem of jointly solving both the mixing and the 
original sources is not only considerably difficult, but also ambiguous. Since both A 
and S are unknown, it immediately follows that the signs and scaling of the sources 
cannot be uniquely defined. One can multiply the mixing weights ka and divide the 

corresponding source respectively with any given coefficient. Additionally, the 
sources can appear in any order: [9], [10]. 

3 Experience 

3.1 Participants and Experimental Material 

One healthy adult, participate in simultaneous fMRI and EEG experiment, 22 years 
old, right handedness, normal vision, no nerve system disease and claustrophobia, and 
access to subjects’ informed consent. 

The stimuli consisted of 30 positive, 30 neutral, and 30 negative pictures select 
from the International Affective Picture System (IAPS) based on their normative va-
lence and arousal levels. Positive picture average arousal is 5.32, neutral pictures 
average arousal is 3.26, negative picture average arousal is 6.41; the positive valence 
is 7.30, neutral valence is 4.30, negative valence is 3.46. Between two stimuli appears 
gray screen, and a red “+” at the central as fixation point. 

3.2 Task 

The experimental paradigm is implemented in an event-related fMRI design. Each 
picture is centrally displayed on a projector for 6 s followed by a 12 s inter-stimulus 
interval. Subject complete three experimental sessions in which the pictures are pre-
sented in different random orders. A red cross is displayed at the center of the screen 
between two stimuli appears as a fixation point, as shown in Fig.1. Stimuli are pre-
sented on an MR-compatible monitor using E-Prime software (Psychology Software 
Tools). Subject view the task presentation in the screen via a reflective mirror. During 
the experiment, subject should just view the picture, and don’t have to feedback any 
information of the picture content. After one session is over, participants can close 
their eyes and have a rest for a period of time. 
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Fig. 1. Emotional picture stimulate experimental paradigm 

4 Data Acquisition 

FMRI data are acquired using a 3.0-Tesla superconducting type nuclear magnetic 
resonance imaging system from Philips company at Changzhou Second People's  
Hospital, and the fMRI time series of whole brain images are acquired with single 
excitation gradient echo planar imaging using a T2-weighted BOLD sequence. The 
sequence parameters are: TR=2000 ms, TE=35 ms, FA=90°, FOV=230 mm×125 mm, 
matrix=96×52, 20 continuous slices with a thickness of 3.5 mm.  

EEG data is recorded using a 64-channel system (Electrical Geodesics, EGI) and 
all signals recorded are referenced to a Cz electrode, sampled at 250 Hz with an on-
line bandpass filter of 0.3 to 30Hz using Netstation acquisition software and an EGI 
Net-Amps 300 amplifier. Impedance is checked online before recording and accepted 
when below 50 kΩ. 

5 Data Analysis 

5.1 fMRI Analysis 

After acquiring the fMRI data, we perform using the software package of SPM8,  
including slice timing, realigning, spatial normalizing and smoothing. 

Next, in order to get every condition activation model, we analyze the fMRI data 
with the generalized linear model, convolute each subject’s sequential functional vo-
lumes and the hemodynamic response function(HRF), there will be a curve function, 
we take it as a reference function. Define experiment conditions as task conditions 
and rest conditions, then watch subject’s activated brain regions when he passively 
accept visual task, correct threshold level P<0.05(family wise error, FWE). When 
analyse the data in following steps, we use the default parameter settings . At last,  
we get subject’s fMRI activated information in MNI coordinate, which reflects the 
cerebral cortex BOLD activity on different picture stimulus conditions. 

Fig.2 shows the subject’s brain activate region on different picture stimulus condi-
tions, as a 3D form. We can see that visual stimulation of the main active area is front 
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Fig. 2. 3D form brain active region among three categories pictures (positive, negative, neutral) 
stimulus, letf is the brain active region under positive picture stimulus, medial is the brain ac-
tive region under negative picture stimulus, right is the brain active region under neutral picture 
stimulus. 

occipital lobe, rear parietal lobe, inferior temporal gyrus, prefrontal and postcentral 
gyrus. We can also see that among the brain active regions, the frontal area and the 
temporal’s activation strength under the emotional picture stimulus is greater than 
under the neutral picture stimulus, it suggests that subject’s BOLD signal in the  
emotional stimulus is improved comparing with neutral picture stimulus. 

5.2 EEG Analysis 

The acquired continuous EEG data is firstly preprocessed by Netstation software, 
including the follow steps, magnetic resonance (MR) Artifact, QRS Detection, optim-
al basis set (OBS), a band pass digital filter between 0.01Hz and 40Hz, Segment from 
200ms before stimulus to 1000ms after stimulus. Fig.3 shows the preprocessed EEG 
signals using the Netstation software. From the EEG signals we know that many arti-
facts like ECG and EOG are interfused into EEG signals. We remove all of the arti-
facts after segmenting with temporal ICA analysis, then we get the temporal and spa-
tial independent components, shown as Fig.4. We can see that the channel of 7, 28, 32 
are artifacts. We reconstruct the signals after removing the artifacts, which are 
showed in Fig.5. At last, the features of the de-noised EEG signals are extracted by 
using wavelet transform method, the characteristic signal are showed in Fig.6, it is the 
picture onset ERP, with the epoch ranging form 200 to 700 ms representing the LPP. 
The red circle line represents positive stimulus, blue star represents negative stimulus, 
green line represents neutral stimulus, the amplitude of positive and negative stimulus 
LPP are obviously higher than neutral stimulus, this suggests that the amplitude of the 
LPP is related to emotional arousal. 
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Fig. 3. The above 32 channels EEG signals after preprocessing. Left: EEG signals from 1 to 16 
electrodes; Right: EEG signals from 17 to 32 electrodes. 

 

 

Fig. 4. Corresponding ICA component activations and scalp maps of the above 32 channel 
data., upper row is corresponding ICA component activations, lower row is corresponding scalp 
maps 
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Fig. 5. ICA cleaned EEG signals from 1 to 32 channels 

 

Fig. 6. The characteristic waveform of positive, negative, and neutral stimulus 

6 Discussion 

Currently, the most common methods of assessing emotional processing in the human 
brain are ERP, derived from the EEG, and BOLD contrast, assessed with fMRI. Here, 
we make a preliminary study of emotion regulation based on simultaneous recording 
of EEG and BOLD responses, we use temporal ICA to analysis the EEG signals, ex-
tracting LPP, the LPP and visual cortical blood oxygen level--dependent (BOLD) 
signals are both modulated by the rated intensity of picture arousal, the overall LPP 
amplitude variability across three picture categories(positive, negative and neutral, 
show as Fig. 6 is found to be mainly correlated with BOLD responses in visual cortex 
and amygdala, this is consistent with prior work, we also find temporal area and  
prefrontal are modulated by different picture categories. 
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Abstract. The combination of electroencephalogram (EEG) and functional 
magnetic resonance imaging (fMRI) is a very attractive aim in neuroscience, in 
order to achieve both high temporal and spatial resolution for the non-invasive 
study of cognitive brain function. In this paper, we record simultaneous EEG–
fMRI of three subjects, study the participants’ brain active regions, examine  
related blood oxygen level—dependent(BOLD) response for fMRI data, and 
focus on the effects of reappraisal instructions on the amplitude of the late posi-
tive potential(LPP) for EEG data. We find that emotion cognitive reappraisal 
result in early prefrontal cortex responses, decrease negative emotion expe-
rience and amygdala response. Besides, the study indicates that reappraisal  
decrease the magnitude of the LPP.  

Keywords: emotional processing, late positive potential, Functional magnetic 
resonance imaging, blood oxygen level—dependent. 

1 Introduction 

Although the term ”emotion regulation” has different meanings and refers to several 
modes of processing, researchers have focused particularly on better understanding  
a conscious, cognitive strategy for regulating emotions known as cognitive  
reappraisal:[1], [2]. Cognitive reappraisal severs to change the emotional meaning and 
significance of an event or stimulus[3].  

The specific neural systems associated with antecedent-focused emotion regulation 
have been the target of numerous functional magnetic resonance imaging (fMRI) 
studies. Schaefer et al. first reported that the increased amygdala activity in response 
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to unpleasant stimuli could be prolonged if subjects were given an explicit instruction  
to maintain their emotional response. Since then, multiple studies that utilize the spe-
cific strategies of detachment[4] and reappraisal have demonstrated that it is possible 
to consciously inhibit amygdala activation when instructed to decrease emotional 
response.  

In addition to fMRI, event-related brain potentials (ERPs) have been used to inves-
tigate the processes of emotion regulation in recent studies. The excellent temporal 
resolution of ERPs has allowed for greater insight into the time course of emotion 
regulation processes, and these studies suggest that reappraisal modulates ERPs fol-
lowing unpleasant pictures[5]. These studies have focused on the late positive poten-
tial (LPP) in particular, which has been shown to be reliably increased in magnitude 
following both pleasant and unpleasant compared to neutral stimuli[6]. In one com-
bined fMRI/ERP study, the LPP is found to be correlated with neural activity in the 
lateral occipital, inferotemporal, and parietal visual areas, supporting the notion that it 
reflects facilitated perceptual processing of motivationally relevant, emotional stimu-
li[7]. Instructions to reappraise unpleasant stimuli have been shown to decrease the 
magnitude of the LPP and, importantly, reappraisal modulates the LPP just 300 ms 
after stimulus onset. 

In this paper, we record simultaneous EEG-fMRI while subjects passively view the 
neutral and unpleasant stimuli pictures which is preceded by a instruction of look or 
decrease. What’s more, these pictures are all random present. We study the subjects’ 
brain active regions, examine related BOLD response for fMRI data, and focus on the 
effects of reappraisal instructions on the amplitude of LPP for EEG data. We use 
Netstation software which come from America company EGI to preprocess EEG data, 
and use the 8th Statistical Parametric Mapping (SPM8) to preprocess fMRI data, then 
apply ICA algorithm for further study. From the scalp-recorded LPP and fMRI BOLD 
signal, we predict that reappraisal will decrease negative affect. 

2 Independent Component Analysis (ICA) 

Before estimating the independent components (ICs), the observed data can be whi-
tened, that is, transformed to be uncorrelated and have unit variances. Whitening can be 
done using a linear transformation and does not constrain the estimation in any way, 
since independence implies uncorrelation. Additionally, whitening simplifies the fol-
lowing component estimation by restricting the structure of the mixing. If the whitening 
is done using principal component analysis (PCA), the number of free parameters can 
be reduced by taking only the K strongest principal components, and leaving out the 
weakest. Assuming that the weakest components contain mainly noise, the dimension of 
the data is reduced in an optimal manner to improve the signal-to-noise ratio.  

As mentioned before, ICA is based only on the assumption that the source signals are 
statistically independent. This seems reasonable in many applications and in fact does 
not have to hold exactly for ICA to be applicable in practice. The generative model used 
in ICA is an instantaneous linear mixture of random variables. The original signals can 
be considered as a source matrix S, where each row of the matrix contains one of the K 
signals. Respectively, the observed mixed signals are denoted as matrix X. Again,  
each row of the matrix contains one of the N observed signals. Assuming a noiseless 
environment, the mixing model can be expressed in matrix form as: 
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ASX =  (1)

Each column ka of the full rank KN × mixing matrix A holds the mixing weights 

corresponding to source k. The problem of jointly solving both the mixing and the 
original sources is not only considerably difficult, but also ambiguous. Since both A 
and S are unknown, it immediately follows that the signs and scaling of the sources 
cannot be uniquely defined. One can multiply the mixing weights ka and divide the 

corresponding source respectively with any given coefficient. Additionally, the 
sources can appear in any order [8], [9]. 

3 Experimental Material and Design 

3.1 Participants and Experimental Material 

Three undergraduate right-hand students (1 female 2 male, mean age = 22.8 years, 
standard deviation 1.25 years) who reported no history of psychiatric or medical  
disorders or medication use, all participate in simultaneous EEG-fMRI experiment, 
normal vision, no nerve system disease and claustrophobia, and access to subjects’ 
informed consent.  

A total of 60 picture are taken from the International Affective Picture System; of 
these, 20 depicted neutral scenes (e.g., neutral faces, household objects) and 40 de-
picted unpleasant scenes (e.g., sad faces, violent images). The two categories differ on 
normative ratings of valence (M = 5.05, SD = 1.21, for neutral picture content; M = 
2.82, SD = 1.64, for unpleasant picture content); additionally, the emotional pictures 
are reliably higher on normative arousal ratings (M = 5.71, SD = 2.16, for unpleasant 
picture content; and M = 2.91, SD = 1.93, for neutral picture content). 

3.2 Emotion Cognitive Reappraisal Strategies and the Task 

Prior to magnetic resonance imaging (MRI), participants are trained in specific reap-
praisal strategies while viewing four practice pictures. Reappraisal instructions en-
courage thinking objectively to decrease emotional reactivity to pictures (e.g.,  
for decrease instruction, “I try to detach myself from the situation as much as possi-
ble. I imagine the scene is from a movie, or that the person was in no pain, or that the  
person got away from the bad situation”). 

The trial structure is identical to previous investigations of cognitive reappraisal. 
As shown in Fig.1, at the start of each trial, an instruction word is presented in the 
middle of the screen (‘decrease’ or ‘look’; 4 seconds), a black blank screen is pre-
sented 2 seconds, a picture is presented (negative if instruction is decrease (regulation 
instruction), negative or neutral if instruction is look (non-regulation instruction);  
4 seconds), follow by a rating period (scale from 1-9; 4 seconds)and then the word 
‘relax’ (4 seconds). The comparisons from the 4-second picture presentation period 
are the only trial periods reported here. Following presentation of each picture, partic-
ipants are prompted to answer the question ‘How negative do you feel?’ on a scale 
from 1-9 (where 1 is labeled ‘weak’ and 9 is labeled ‘strong’). Responses are made on  
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Fig. 1. Event-related emotion regulation task 

a 9-button button box using the participant’s dominant (right) hand. A total of 60 
trials (20 of each trial type) are administered in 6 runs of 10 trials each.  

4 Data Acquisition 

fMRI is acquired using a 3-Tesla superconducting type nuclear magnetic resonance 
imaging system from Philips company at Changzhou Second People's Hospital, and 
the fMRI time series of whole brain images are acquired with single excitation gra-
dient echo planar imaging using a T2-weighted BOLD sequence. The sequence para-
meters are: TR=2000ms, TE=35ms, FA=90°, FOV=230mm×180mm, matrix=96×74, 
24 continuous slices with a thickness of 4mm. Subjects are instructed to lie on their 
back, stay awake, try to avoid a specific thinking activity, and lie inside the scanner 
with foam pads so as to prevent from head movement. 

Continuous EEG data is recorded with a 64-channel Electrical Geodesics Inc. Net 
Station MR amplifier, via a dense array 64 electrode Geodesics Sensor Net. The Ver-
tex (Cz) is chosen as the reference, and impedances are kept below 50 kΩ as recom-
mended for the EGI high input impedance amplifier. Sampling rate is 250 Hz with an 
on-line bandpass filter of 0.3 to 30Hz.  

5 Data Analysis 

5.1 fMRI Analysis 

After acquiring the fMRI data, we use the software package of SPM8 to preprocess 
the data, including slice timing, realigning, spatial normalizing and smoothing. Then 
we use ICA to calculate the average independent component. We sort all the space 
ICs into task related ICs, head moving ICs, instantaneous ICs, artifact ICs, and similar 
periodic ICs. Fig.2 and Fig.3 represent three different task related average ICs of the 
three subjects, and the corresponding time process curves. 

To examine emotional reactivity, we choose two kinds of tasks related ICs, show 
in Fig.2. We examine reactivity by contrasting responses during the look negative 
condition with responses during look neutral condition. We observe greater amygdala 
activity during the look negative than the look neutral condition. At the same time, we 
find greater BOLD responses for viewing negative than viewing neutral stimulus. 
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Fig. 2. Three subjects’ average brain active area and the corresponding time process curves. left 
under neutral picture stimulus, right under negative picture stimulus 

To examine emotion regulation, we consider first the a priori region of interest as-
sociated with emotional reactivity, the amygdala. We find the amygdala that are more 
active when participants are responding naturally to negative pictures than when they 
are actively regulating. The activities in the lateral occipital, inferotemporal and pa-
rietal visual areas are smaller than when subject view negative stimulus. The results 
are showed in Fig.3. 

 

Fig. 3. Three subjects’ brain active areas when cognitive reappraisal and corresponding time 
process curves 

5.2 EEG Analysis 

The acquired continuous EEG data of each subject is firstly processed by Netstation 
software, include the following steps, (MR) Artifact Removal, QRS Detection, Op-
timal Basis Set (OBS),  band pass digital filtering between 0.01Hz and 40Hz and 
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Fig. 4. One of the subject’s above 32 channels source EEG signal. Left: raw data from 1 to 16 
electrodes; Right: raw data from 17 to 32 electrodes. 

 

 

Fig. 5. One of the subjects’ corresponding ICA component activations and scalp maps of the 
above 32 channel data., upper row is corresponding ICA component activations, lower row is 
corresponding scalp maps 
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Fig. 6. One of the subjects’ ICA cleaned EEG signals from 1 to 32 channels by removing  
artifacts 

 

Fig. 7. The average characteristic waveform of the three subjects 

Segmenting from 200ms before stimulus to 1000ms after stimulus. Fig.4 shows the 
first 32 channels preprocessed EEG signals for one subject. We can see that some 
artifacts like ECG and EOG are interfused into EEG signals. We remove these arti-
facts with ICA method, and get the temporal and spatial ICs, showed in Fig.5. From 
Fig.5, we can see that the channel of 3, 8, 9, 15, 16, 24, 29 are artifacts. We recon-
struct the signals after removing the artifacts which are showed in Fig.6, these signals 
are clean and artifacts are removed. At last, the features of three subjects' de-noised 
EEG signals are extracted using wavelet packet method, and are averaged, the curves 
of characteristic signal are showed in Fig.7, it is the picture onset ERP, with the epoch 
ranging form 100ms to 600ms representing the LPP. Analyses conducted on the sus-
tained LPP time windows confirm that the magnitude of the LPP will follow the  
direction of emotion regulation to negative pictures—relative to a passive viewing 
condition—such that it will be larger during viewing negative pictures and reapprais-
al. What’s more, the amplitude of viewing negative pictures is higher than reappraisal. 

6 Discussion 

Currently, the most common methods of assessing emotional processing in the human 
brain are event-related potentials (ERP), derived from the electroencephalograph 
(EEG), and blood oxygen level-dependent (BOLD) contrast, assessed with functional 
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magnetic resonance imaging (fMRI). Here, we make a preliminary study of emotion 
cognitive reappraisal based on simultaneous recording of EEG and BOLD responses. 
The current study built on previous findings and theory of emotion regulation by us-
ing ERPs elicited during negative and neutral processing to examine the time course 
of emotion generation and regulation. From Fig.7, we can see that decrease-negative 
and look-negative trail LPPs remain enhanced compared to look-neutral trail LPPs 
during the early picture onset. But this does not sustain all the time when picture on-
set. At the same time, from the results of fMRI data, we find that the activity of 
amygdala is different under different picture stimulus, it is more active when viewing 
negative pictures than viewing neutral, but the activity is smaller during reappraisal. 
The results are same with ERPs. Since the brain activation area is caused by the 
BOLD signal, we hypothesis that there are some kind of relationship between BOLD 
signal and LPP. 
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Abstract. This paper considers the convergence of chaos injection-based
backpropagation algorithm. Both the weak convergence and strong
convergence results are theoretically established.

Keywords: Convergence, Backpropagation algorithm, Chaos.

1 Introduction

Backpropagation (BP) is a popular training algorithm for feedforward neural
networks. BP algorithm (BPA) can be implemented by two practical ways: the
batch learning and the online learning [1]. The batch learning approach ac-
cumulates the weight correction over all the training samples before actually
performing the update, nevertheless the online learning approach updates the
network weights immediately after each training sample is fed. Though BPA is
widely used, it also receives criticisms because of its slow convergence and the
problem of being easily trapped into the local minimums. To overcome those
problems, many improvements have been proposed , such as adding a penalty
term to the error function [2], adding a momentum to the weight updation,
injecting noise into the learning procedure, etc. The convergence theories for
BPA and its various improvements have been well established by many authors
[3,4,5,6,7,8,9,10].

Recently, a new approach is proposed by injecting chaos into the BP learning
procedure and its effectiveness has been experimentally verified [11]. However,
the convergence for this chaos injection-based BPA has not yet been theoret-
ically established. The purpose of this paper is to investigate the convergence
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of the injection-based batch BPA. The corresponding convergence analysis for
injection-based online BPA will be given in our future work.

The rest of this paper is organized as follows. The network structure and
the learning algorithm are described in Section 3 and Section 4, respectively.
Section 5 presents some assumptions and our main theorem. The detailed proof
of the theorem is given in Section 6.

2 Network Structure

Consider a three-layer network consisting of p input nodes, q hidden nodes, and 1
output node. Let w0 = (w01, w02, · · · , w0q)

T ∈ R
q be the weight vector between

all the hidden units and the output unit, and wi = (wi1, wi2, · · · , wip)
T ∈ R

p

be the weight vector between all the input units and the hidden unit i (i =
1, 2, · · · , q). To simplify the presentation, we write all the weight parameters in
a compact form, i.e., w = (wT

0 ,w
T
1 , · · · ,wT

q )
T ∈ R

q+pq and we define a matrix

V = (w1,w2, · · · ,wq)
T ∈ R

q×p.
Given activation functions f, g : R → R for the hidden layer and output layer,

respectively, we define a vector function F(x) = (f(x1), f(x2), · · · , f(xq))T for
x = (x1, x2, · · · , xq)T ∈ R

q. For an input ξ ∈ R
p, the output vector of the

hidden layer can be written as F(Vξ) and the final output of the network can be
written as

ζ = g(w0 ·F(Vξ)), (1)

where w0 · F(Vξ) represents the inner product between the two vectors w0

and F(Vξ).

3 Chaos Injection-Based Backpropagation Algorithm

Suppose that {ξj , Oj}Jj=1 ⊂ R
p × R is a given set of training samples. The aim

of the network training is to find the appropriate network weights w∗ that can
minimize the error function

E(w) =
1

2

J∑
j=1

(
Oj − g(w0 · F(Vξj))

)2
=

J∑
j=1

gj
(
w0 ·F(Vξj)

)
, (2)

where gj(t) :=
1
2

(
Oj − g(t)

)2
.

The gradient of the error function is given by

Ew(w) =
(
ET

w0
(w), ET

w1
(w), · · · , ET

wq
(w)

)T
(3)
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with

Ew0(w) =

J∑
j=1

g′j
(
w0 · F(Vξj)

)
F(Vξj), (4a)

Ewi(w) =

J∑
j=1

g′j
(
w0 · F(Vξj)

)
w0if

′(wi · ξj)ξj , i = 1, 2, · · · , q. (4b)

Starting from an arbitrary initial value w0, the chaos injection-based
backpropagation algorithm updates the weights {wn} iteratively by (cf. [11])

wn+1 = wn − ηn(Ew(wn) + ηnAαv(t)(1 − v(t))I), n = 0, 1, 2, · · · (5)

where ηn > 0 is the learning rate, A and α are positive constants, I =
(1, · · · , 1)T ∈ R

pq+q, and v(t+ 1) = αv(t)(1 − v(t)) is the logistic map/Verhust
equation which is highly sensitive to the initial value v(0) and the parameter
α. For specific values of v(0)(e.g., 0 < v(0) < 1) and α(e.g., 3.6 < α < 4), the
logistic map produces a chaotic time series.

4 Main Results

Let Φ = {w : Ew(w) = 0} be the stationary point set of the error function
E(w), and Φs = {wij : w = (w01, · · · , wij , · · · , wqp) ∈ Φ, s = (i − 1)p + j +
q( if i > 0) or j( if i = 0)} be the projection of Φ onto the sth coordinate axis,
for s = 1, · · · , pq+q. The following assumptions are needed for our boundedness
and convergence results.
(A1) The functions f and g are differentiable on R. Moreover, f, g, f ′, and g′

are uniformly bounded on R.

(A2) ηn > 0,
∞∑
n=0

ηn = ∞,
∞∑

n=0
η2n < ∞.

(A3) {wn} is bounded over Rpq+q .
(A4) The set Φs does not contain any interior point for every s = 1, · · · , pq+q.
Now we present our convergence result.

Theorem 1. Suppose that the error function is given by (2) and that the weight
sequence {wn} is generated by the algorithm (5) for any initial value w0. Assume
the conditions (A1)− (A3) are valid. Then we have the weak convergence results

(a) There is E∗ > 0 such that lim
n→∞E(wn) = E∗; (6)

(b) lim
n→∞

∥∥Ew(wn)
∥∥ = 0. (7)

Moreover, if Assumption (A4) is valid, then we have the strong convergence, i.e.,
there exists a point w∗ ∈ Φ such that

(c) lim
n→∞wn = w∗. (8)
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5 Proofs

We first list several lemmas which are crucial to our convergence analysis.

Lemma 1. Let Yn,Wn and Zn be three sequences such that Wn is nonnegative
for all t. Assume that

Yn+1 ≤ Yn −Wn + Zn, n = 0, 1 · · · , n

and that the series
∞∑

n=0

Zn is convergent. Then either Yn → −∞ or else Yn

converges to a finite value and
∞∑
n=0

Wn ≤ ∞.

Proof. This lemma is directly from [12]. �

Lemma 2. Suppose the conditions (A1) and (A3) are valid, then Ew(w) sat-
isfies Lipschitz conditon, that is, there exists a positive constant L, such that

‖Ew(w
n+1)− Ew(w

n)‖ ≤ L‖wn+1 −wn‖. (9)

Specially, we have

‖Ew(w
n + θ(wn+1 −wn))− Ew(wn)‖ ≤ Lθ‖wn+1 −wn‖. (10)

Proof. The proof of this lemma is similar to Lemma 2 of [8] and thus
omitted. �

Lemma 3. (see Lemma 4.2 in [5]) Suppose that the learning rate ηn satisfies

(A2) and that the sequence {an}(n ∈ N) satisfies an ≥ 0,
∞∑
n=0

ηnα
β
n < ∞

and |an+1 − an| ≤ μηn for some positive constants β and μ. Then we have
limn→∞ an = 0.

Lemma 4. (see Lemma 5.3 in [6]) Let F : Φ ⊂ R
k → R, (k ≥ 1) be continuous

for a bounded closed region Φ, and Φ0 = {z ∈ Φ : F (z) = 0}. The projection of
Φ0 on each coordinate axis does not contain any interior point. Let the sequence
{zn} satisfy:
(i) limn→∞ F (zn) = 0;
(ii) limn→∞ ‖zn+1 − zn‖ = 0.
Then, there exists a unique z∗ ∈ Φ0 such that lim

n→∞ zn = z∗.

Proof of (6). Given that 0 < v(0) < 1 and 3.6 < α < 4, it is easy to see

0 < v(t+ 1) = αv(t)(1 − v(t) ≤ α
(v(t) + 1− v(t))2

4
=

α

4
< 1. (11)
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By the differential mean value theorem, there exists a constant θ ∈ [0, 1],
such that

E(wn+1)− E(wn)

= (Ew(wn + θ(wn+1 −wn)))T (wn+1 −wn)

= (Ew(wn))T (wn+1 −wn)

+ (Ew(w
n + θ(wn+1 −wn))− (Ew(wn)))T (wn+1 −wn)

≤ (Ew(wn))T (wn+1 −wn) + Lθ‖wn+1 −wn‖2. (12)

Considering (5) and (12), we have

E(wn+1) ≤ E(wn) + ηn(Ew(wn))T [−Ew(w
n)− ηnAαv(t)(1 − v(t))I]

+ Lθηn‖Ew(w
n) +Aηnαv(t)(1 − v(t))I‖2. (13)

Using (11) and the inequality ‖Ew(w
n)‖ ≤ (1+‖Ew(wn)‖2)

2 , we have

(Ew(w
n))T [−Ew(w

n)− ηnAαv(t)(1 − v(t))I]

≤ −‖(Ew(w
n))‖2 + ηn‖Ew(w

n)‖A√
pq + qαv(t)(1 − v(t))

≤ −‖(Ew(w
n))‖2 + ηnA

√
pq + q‖Ew(w

n)‖
≤ −‖(Ew(w

n))‖2 + ηn
A

2

√
pq + q(1 + ‖Ew(w

n)‖2) (14)

Using inequality (a+ b)2 ≤ 2(a2 + b2), we have

‖ηnEw(w
n) +Aη2nαv(t)(1 − v(t))I‖2

≤ 2η2n‖Ew(w
n)‖2 + 2η4n‖Aαv(t)(1 − v(t))I‖2

≤ 2η2n‖Ew(w
n)‖2 + 2A2(pq + q)η4n. (15)

Combing (13)-(15), we have

E(wn+1) ≤ E(wn)− ηn‖Ew(w
n)‖2 + η2n

A

2

√
pq + q(1 + ‖Ew(w

n)‖2)
+ 2Lθη2n‖Ew(w

n)‖2 + 2LθA2(pq + q)η4n

= E(wn)− ηn(1 − 2Lθηn − A

2

√
pq + qηn)‖Ew(w

n))‖2

+ η2n(
A

2

√
pq + q + 2LθA2η2n(pq + q)). (16)

As ηn → 0, for sufficiently large n, there exist positive constants C1 and C2,
such that

E(wn+1) ≤ E(wn)− ηnC1‖Ew(w
n))‖2 + η2nC2. (17)
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Using
∞∑

n=1
η2nC2 < ∞, E(wn) > 0, and Lemma 1, we have

lim
n→∞E(wn) = E∗, (18)

∞∑
n=1

‖Ew(w
n)‖2ηn < ∞. (19)

This completes the proof of (6). �
Proof of (7). By Assumptions (A1) and (A3), there is a constant C3 > 0

such that for all n = 0, 1, · · ·

‖Ew(w
n)‖ ≤ C3. (20)

Using (5), (20), and Lemma 2, we have

|‖Ew(w
n+1)‖ − ‖Ew(w

n)‖| ≤ ‖Ew(wn+1)− Ew(wn)‖
≤ Lθ‖wn+1 −wn‖
≤ ηnLθ(‖Ew(w

n)‖+ ‖Aηnαv(t)(1 − v(t))I‖)
≤ C4ηn, (21)

where C4 = Lθ(C3 + A
√
pq + q supn∈N ηn). Thus, by (19), (21), and Lemma 3,

we conclude

lim
n→∞Ew(wn) = 0.

�
Proof of (8). Obviously Ew(w) is a continuous function under the

Assumption (A1). Using (5) and (7), we have

lim
n→∞ ‖wn+1 −wn‖ = lim

n→∞ ηn‖Ew(w
n) +Aηnαv(t)(1 − v(t))I‖ = 0. (22)

Furthermore, the Assumption (A4) is valid. Thus, applying Lemma 4, there
exists a unique w∗ ∈ Φ such that lim

n→∞wn = w∗. �
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Abstract. In this paper, we proposed a method which presented a new definition 
of different multi-step interval ISI-distance distribution of single neuronal spike 
trains and formed a new feature vector to represent the original spike trains. It is a 
binless spike train’s measure method. We used spectral clustering algorithm on 
new multi-dimensional feature vectors to detect the multiple neuronal firing 
patterns. We tested this method on standard data set in machine learning, 
neuronal surrogate data set and in vivo multi-electrode recordings respectively. 
Results shown that the method proposed in this paper can effectively improve the 
clustering accuracy in standard data set and detect the firing patterns in neuronal 
spike trains.  

Keywords: Spike trains, Spectral clustering, Firing patterns. 

1 Introduction 

How to compare the similarity between pairs of spike trains and discover the spatiotemporal 
firing patterns among spike trains from multi-electrode recordings have been an important part of 
research in computational neuroscience. With the development of multi-electrode 
recordings technology, dozens of individual neurons can be recorded simultaneously 
[1]. Currently, there are no good solutions because neuronal firing patterns are 
complexity. Many neuroscientists carried out relevant research. Fellous found the 
timing of the spikes is highly precise between many trials when a cortical neuron was 
repeatedly injected with the same current stimulus [2]. But the researches of firing 
patterns analysis between multiple neural spike trains data are still rare, also existing 
many challenges. In the other hand, how to determine the degree of similarity or 
dissimilarity between two spike trains is the key question to analyze the level of 
synchronization of neuronal firing. The general method calculated cross-correlation to 
measure the similarity of two spike trains [3,4]. This method required binning the spike 
trains using a moving-window. The choice of bin size directly impact on the analysis 
results. To avoid the difficulties associated with binning, several binless spike trains 
dissimilarity measures have been proposed. These metric-spaces are binless spike train 
measures without binning the time window to define the similarity between two spike 
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trains. But these measures need to calculate all the dimensions of action potentials, the 
number of dimensions grows very large as the length of the spike trains grows. Paiva 
compared some binless spike trains measures [5].  

In this paper, we proposed a definition of multi-step interval ISI-distance, a new 
binless spike trains measure to detect the similarity or synchrony of spike trains, by 
defining the different step interval ISI-distance distribution to represent the original 
spike trains. Regardless of the number of action potentials in a neuronal spike trains, 
spike trains all can be mapped onto a lower dimension. These values of the different 
step interval ISI-distance formed a new vector matrix. A new distance between two 
spike trains was also defined. Then, spectral clustering proposed by Andrew Y.Ng et al 
was applied to the new vector matrix to discover the neuronal firing patterns [6]. 

One of the main contributions of this work shows a new method which combines the 
new spike trains similarly distance with spectral clustering analysis. To test the 
effectiveness of the method, we tested this method on different data sets respectively. 
Firstly, the standard machine learning data set IRIS was used to examine the 
effectiveness of the method. Secondly, this method was tested on surrogate spike trains 
data set, for which the pattern structure was known in advance. The result shows that it 
is effective. Finally, we applied it to real spike trains in vivo. The spike trains were 
recorded from prefrontal cortex of rat when rat learned an ordered task in a Y-maze, for 
which the firing patterns were previously undetected. From the experimental results, 
we can see that the method can effectively find implicit patterns in the spike trains. 

2 Methods 

Spike distribution of neurons is often quite irregular, and certain information may be 
encoded in this irregular time distribution of the spikes.  

 

Fig. 1. Spike trains of three neurons, a row represent single neuronal spikes 

Fig. 1 shows the spike trains of three neurons and a vertical line indicates an action 
potential. xij represents the time of jth action potential of the ith neuron. Using n to 
represent the number of single neuronal action potentials, the value of n of each neuron  
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is not necessarily the same. Each time interval between the xi1 and xi2 is called ISI 
( 2 1ISI i ix x x= − ). 

This paper proposed the multi-step interval ISI-distance of single neuronal spike 
trains and the degree of similarity between two spike trains. 

Definition 1. The p-step interval ISI-distance of qth neuron is defined as follows: 
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According to definition 1, we obtained the 1-step interval ISI-distance of qth neuron, 
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Other different multi-step interval ISI-distances are calculated in the same manner. 
Therefore, n neuronal spike trains were converted to a new multi-dimensional matrix V 
through the conversion of multi-step interval ISI-distance. 
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(3)

The new matrix V represents the original multi-neuronal spike trains and a line  
of matrix V represents a single neuronal spike trains. Same to principal component 
analysis (PCA), this method realized a dimensionality reduction of spike trains.  
But different to the PCA, the numbers of spikes in each neuronal spike trains can  
be differ. 

The correlation coefficient between two neurons was given by the functional 
distance of two neuronal spike trains. Based on the matrix V, the correlation coefficient 
was defined using a Gaussian kernel, which has been widely used in the graph analysis 
methods. 

2 2/2h h
i j

s e
ij

σ− −
=

 

 
(4)
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Where 
2

1

( )
p

i j ik jk
k

h h h h
=

− = − , it is the Euclidean distance between two 

vectors. σ  is a scale parameter which controls the decay of the Gaussian kernel. The 
value of s is between 0 and 1.The closer the value of s is to its maximum 1, the stronger 
the synchrony.  

The matrix V from Eq.(3) was a projection of the original spike trains. It realized 
nonlinear dimensionality reduction. Based on matrix V, we can detect the firing 
patterns of neurons using spectral clustering algorithm. 

The matrix S based on Eq.(4) was a symmetrical matrix. Based on this matrix, we 
used the NJW spectral clustering algorithm to cluster the data set.  

The details of NJW method are given as follows: 

(1) Construct the affinity matrix A. The simility between a pair of spike trains is 
equal to the synchrony ij ijA S= . 

(2) Compute the degree matrix D and the normalized affinity matrix 
1/ 2 1/2L D AD− −= . 

(3) Let 1 2 kλ λ λ≥ ≥ ⋅⋅⋅ be the k largest eigenvalues of L and v1, v2,…,vk be the 
corresponding eigenvectors. Construct the new matrix X=[v1,v2,…,vk], and here 
eigenvectors are the column vector. 

(4) Let Y is normalized from affinity matrix X, 2 1/2/ ( )ij ij ij
j

Y X X=  . 
(5) Based on matrix Y, cluster them into k clusters by using k-means method. 

NJW method can obtain satisfying clustering results through embedding the data points 
into a new space. Compared to the k-means algorithm, spectral clustering algorithm has 
the advantage to identify any shape data sets. 

3 Experimental Results and Analysis 

In this paper, in order to test the proposed method was effective, we firstly tested the 
performance of the above mentioned algorithm by applying it to a standard real data set 
IRIS and a surrogate spike trains data set. Finally, we applied the method to the analysis 
of multi-electrode recordings neuronal firing patterns. 

3.1 Standard Data Set 

First, we used a data set of IRIS to test the performance of proposed method in this 
paper. This data set was taken from the UCI repository. The IRIS data set is widely used 
as a relatively standard test data in many clustering algorithm testing. This data set has 
150 samples. Each sample has four characteristics, containing a total of three classes, 
setosa, versicolor, and virginica. Each class has 50 samples. 

In IRIS data set, ISI-distance represents the distance between the two properties, we 
selected the first three step interval ISI-distances for spectral clustering. Shown in 
experimental results, we can see the accuracy rate has been greatly improved after 
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Fig. 2. Results of IRIS data set. (A) Results of spectral clustering on original IRIS data set. (B) 
Results of spectral clustering based on multi-step interval ISI-distances of IRIS data set. 

 

Fig. 3. The comparison of correctness of several different algorithms 

ISI-distance conversion than other clustering algorithm. The results indicate that the 
testing of proposed method in this paper is effective in this standard data set. 

3.2 Surrogate Spike Trains 

We can not know what kinds of pattern exist in the real spike trains data set in advance. 
We need to use the surrogate data set to test the performance of the proposed method. 
There are many ways to generate the surrogate spike trains data [7]. In these data sets, 
neuronal firing patterns are known in advance. In this paper, a surrogate data set 
containing 20 neuronal spike trains was generated. 

Shown in Fig. 4, the two clusters were identified according to similar spike firing. 
We can see from the experimental result of the surrogate data, combing the multi-step 
interval ISI-distance and spectral clustering proposed in this paper can correctly 
distinguish the firing patterns of neurons. 

3.3 Real Spike Trains 

In this section, we applied our method to the analysis of neuronal spike trains which 
structures were unknown in advance. We cannot give the standard partitioning results. 
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Fig. 4. Results of the surrogate data set. (A) The original generated surrogate data set. (B) The 
similarity matrix of 20 neurons. (C) The divided results by spectral clustering. (D) The sorted 
similarity matrix. (E) Two firing patterns were divided by spectral clustering. 

 

Fig. 5. Results of the Y-maze data set. (A) Spike trains of a trial process. (B) The similarity 
matrix. (C) the sorted similarity matrix after Spike trains were divided into two firing patterns. 
(D) Spike trains correspond to two firing patterns, with different colors. 

Data was obtained from a trained rat. The rat had to perform a Y-maze task. Spike trains 
recordings were gotten from the medial prefrontal cortex (mPFC) of the rat. The 
experimental spike trains data was selected from a trial process. The time of spike trains 
was from 3082s to 3124s, lasted for 42s, containing 20 neurons. 

The results showed that the firing patterns of 20 neurons can be roughly divided into 
two clusters, although the distinction between two clusters was not obvious. We used 
the method proposed in this paper can  identify the two different firing patterns. 
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4 Discussion and Conclusions 

Understanding of firing patterns of neurons will play a very important role for the 
analysis of neural coding. This paper proposed the concept of multi-step interval 
ISI-distance. It realized a nonlinear mapping of spike trains, without binning the 
neuronal spike trains. This paper proposed a new similarity measure of pairs of 
neurons. Based on the similarity matrix, we used the spectral clustering algorithm to 
detect the firing patterns in the multi-electrode recordings. We tested this method in 
different experimental data sets, results shown that this method can clearly find the 
firing patterns of spike trains. We applied this method to analyze real multi-neuron 
spike trains from multi-electrode recordings, in which the rat performed the working 
memory task. The result shows there are similar firing patterns between neurons. 

Of course, the present method also has some limitations. We can not know the 
number of clusters in advance in real spike trains. Existing spectral clustering 
algorithms typically require specification of the number of clusters at the outset. How 
to select the value of number is always need to be solved in clustering algorithms. In 
fact, there is a certain regularity of neuronal firing patterns. It is worthwhile further 
propose new methods which can identify the number of clusters automatically.  
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Dr. Ji-yun Peng (Institutes of Brain Science, Fudan University). 

References 

1. Quiroga, R.Q., Panzeri, S.: Extracting information from neuronal populations: information 
theory and decoding approaches. Nature Reviews Neuroscience 10(3), 173–185 (2009) 

2. Fellous, J.M., Tiesinga, P.H.E., Thomas, P.J., et al.: Discovering spike patterns in neuronal 
responses. The Journal of Neuroscience 24(12), 2989–3001 (2004) 

3. Toups, J.V., Tiesinga, P.H.E.: Methods for finding and validating neural spike patterns. 
Neurocomputing 69(10), 1362–1365 (2006) 

4. Schreiber, S., Fellous, J.M., Whitmer, D., et al.: A new correlation-based measure of spike 
timing reliability. Neurocomputing 52, 925–931 (2003) 

5. Paiva, A.R.C., Park, I., Príncipe, J.C.: A comparison of binless spike train measures. Neural 
Computing and Applications 19(3), 405–419 (2010) 

6. Paiva, A.R.C., Rao, S., Park, I., et al.: Spectral clustering of synchronous spike trains. In: 
IEEE International Joint Conference on Neural Networks, pp. 1831–1835 (2007) 

7. Macke, J.H., Berens, P., Ecker, A.S., et al.: Generating spike trains with specified correlation 
coefficients. Neural Computation 21(2), 397–423 (2009) 

 

 



 

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 74–82, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

A Study on Dynamic Characteristics of the Hippocampal 
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Abstract. In the paper, based on the computer simulation, the hippocampal 
two-dimension reduced neuron model is taken as the object, and its dynamic bi-
furcation characteristics are analyzed and discussed in detail by the neurody-
namic analysis methods. When the maximum conductance of the instantaneous 
sodium channel and the maximum conductance of the delay-rectified potassium 
channel are changed, the neuron model undergoes the supercritical Andronov-
Hopf bifurcation from the rest state to the continuous discharge state. The  
neuron model is a resonator with the monostable state and has the common dy-
namics of the resonator. This investigation is helpful to know and investigate 
deeply the dynamic characteristics and the bifurcation mechanism of the hippo-
campal neuron by the computer simulation. 

Keywords: Neurodynamics, The two-dimension reduced neuron model,  
Bifurcation, Simulation. 

1 Introduction 

In the 1990s, neuron modeling in hippocampal region has been becoming a research 
hotspot in the field of neural science. Depended on electrophysiological experiments 
and new technologies such as optics imaging, some models of hippocampal pyramidal 
Neuron based on ionic conductance have been successfully constructed[1-14]; The 
work of R.D. Traub’s research team is the most excellent[7-9]. 

The hippocampal CA1 pyramid neuron[10] has plenty of discharge actions. Yue 
found that bursting behavior persists in adult CA1 pyramidal cells after almost com-
plete truncation of the apical dendrites. The mechanism of bursting is different from 
the “ping-pong” mechanism, which depends on the integrity of apical dendrites 
[11-13]. Based on the neuron’s membrane ionic channel theory and the CA1 pyra-
midal neuron’s electrophysiological experimental data, David had developed one-
compartment model of CA1 Pyramidal Neuron by neurodynamic theory [14]. The 
model not only can simulate many electrophysiological features and experimental 
results of the hippocampal CA1 pyramid neuron, but also can spontaneously generate 
regular firing, tonic firing, rhythmic bursting, and so on. 
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The nine-dimension one-compartment model of CA1 pyramid neuron developed 
by David [14] is different from former multi-compartment cable models of the hippo-
campal pyramid neuron. This model omits the effects of the apical dendrites and the 
complexity is much reduced. However, the model is still a set of complex high di-
mensional differential equations, and is very inconvenient to deeply analyze the neu-
ron model’s local dynamic characteristics. So this complex high dimensional neuron 
model is needed to be reduced by dimension reduction. In recent years, the reduction 
work of the nine-dimension one-compartment complex model of CA1 pyramid neu-
ron developed by David is done by Yueping Peng, and et al[15-18]. They have re-
duced the nine-dimension complex neuron model to the four minimal models and the 
two-dimension reduced model by the neurodynamics theory and methods, and  
analyzed and discussed the dynamic characteristics of the normal model and these 
reduced models. 

In the paper, based on computer stimulation, the two-dimension reduced neuron 
model[18] is taken as the object, and Its dynamic characteristics are analyzed and 
discussed in detail by the neurodynamic analysis methods such as the nullcline analy-
sis method, the linear equalization analysis method, and so on. 

2 The Hippocampal Two-dimension Reduced Neuron Model 

The Hippocampal two-dimension reduced neuron model[18] is: 

APPKKdrNaNaLL IVVngVVnVmgVVg
dt

dV
C +−−−−−−= ∞ )())(0.8834-7334.0)(()( 43      

)(

)(

V

nVn

dt

dn

nτ
−= ∞                                                                (1) 

Where the physical meanings of parameters related to the model equation are showed 
in references[14]. 

The two-dimension reduced neuron model described by formula (1) has only two 
time variables: the membrane potential V and the delayed rectified K+ current activa-
tion variables n. At numerical calculation, the values of model parameters are as  
follows: 

2/1 cmuFC = ; 2/05.0 cmmSg L = ; mVVL 70−= ; 2/35 cmmSg Na = ;  
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In addition, the state variable of the model is (V, n), and the initial state is  

(-65, 0.8). 

The two-dimension reduced neuron model described by formula (1) has many dy-
namic characteristics. Under the different current stimulation, the two-dimension 
reduced model can also generate many discharge patterns such as period discharge 
pattern, bursting pattern, the chaos discharge pattern, and so on. Fig.1 shows the sev-
eral common discharge patterns of the two-dimension reduced neuron model, where 
the model’s simulation time is 0~2000ms. 

In Fig.1, Figure (a) and Figure (d) are the period 1 discharge pattern, where the 
stimulation current is the direct current, and the current amplitude is 2nA. Figure (b) 
and Figure (e) are the bursting pattern, where the stimulation current is the half wave 
sine current, and the current amplitude and the current period are respectively 5nA 
and 60ms. Figure (c) and Figure (f) are the chaos discharge pattern, where the stimu-
lation current is the half wave sine current, and the current amplitude and the current 
period are respectively 8nA and 10ms. 

 
 
 

 

Fig. 1. The several common discharge patterns of the two-dimension reduced neuron model 
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3 The Dynamic Characteristics of the Two-dimension Reduced 
Neuron Model 

In the following, we take the two-dimension reduced neuron model described by for-
mula (1) as the object, and discuss its dynamic characteristics under the current con-
ductance’s changing. 

3.1 The Dynamic Bifurcation under the Transient Sodium Channel’s 
Maximum Conductance’s Changing 

The transient Na+ current is indispensable in the two-dimension reduced neuron mod-
el described by formula (1). Under the certain amplitude current’s stimulation, the 
neuron model can generate the discharge process (change from the resting state to the 
continuous discharge state) only when the maximum conductance of the transient 
sodium channel ( ) reaches a certain threshold. During the changing process, the 
neuron also undergoes the dynamic bifurcation. Fig.2 shows the dynamic bifurcation 
process of the neuron in the V-n phase plane under the transient sodium channel’s 
maximum conductance’s changing, where the simulation time is 0~1000ms, and the 
stimulation current IApp is 5nA.  

From Fig.2 (a), the neuron model has only one equilibrium point. In the following, 
the stability of the equilibrium point is analyzed by the neurodynamics theory. 

In Fig.2 (a), the coordinate of the equilibrium point is (-41.8981, 0.3341) in the V-
n phase plane. Jacobian matrix JNa and Its eigenvalues can be solved: 

          ; 

;  

Because these two eigenvalues’ real parts are both less than zero, the equilibrium 
point is stable, and is corresponding to the resting state of the neuron model. 

From Fig.2, during the process of the transient sodium channel’s maximum con-
ductance’s increasing gradually, the stable equilibrium point (Its coordinate is (-
41.8981, 0.3341)) in the V-n phase plane gradually loses stability and gives birth to a 
small-amplitude subliminal oscillating phase trajectory around the stable equilibrium 
point. The oscillating amplitude is damped according to exponential form. Moreover, 
these subliminal oscillating phase trajectories finally return to the stable equilibrium 
point (the resting state of the neuron model). When  reaches some a value, the 
subliminal oscillating phase trajectories don’t return to the stable equilibrium point, 
and give birth to a small-amplitude limit cycle attractor. At the same time, the stable 
equilibrium point loses stability. As  keeps on increasing, the amplitude of the  
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Fig. 2. The dynamic bifurcation process of the neuron model under ’s changing, where 

the stimulation current IApp is 5nA. (a) . (b) . 

(c) . (d) . (e) . (f)

. 
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limit cycle also increases and becomes full-size spiking limit cycle. From the neuro-
dynamics theory point of view, the neuron model undergoes the supercritical Andro-
nov-Hopf bifurcation process.  

From the property of the supercritical Andronov-Hopf bifurcation, The neuron model 
is equivalent to a monostable resonator, and has the common dynamic properties of the 
resonator such as the subliminal discharge behaviour, class 2 neural excitability, and so 
on. When  is near 11.55mS/cm2 (showed in Fig.2 (d)), the stable limit cycle at-
tractor begins to arise, and the neuron model goes into the stable “all or none” discharge 
state. So the neuron model undergoes the supercritical Andronov-Hopf bifurcation near 
11.55mS/cm2. When the stimulation current IApp is 5nA, the transient sodium chan-
nel’s maximum conductance’s threshold of the neuron model which can produce the 
stable “all or none” discharge behaviour is near 11.55mS/cm2. In addition, because the 
neuron model has the monostable characteristics, the stable limit cycle (the continuous 
discharge state) and the stable equilibrium point can’t coexist. 

3.2 The Dynamic Bifurcation under the Delay-Rectified Potassium Channel’s 
Maximum Conductance’s Changing 

The delay rectification K+ current is also indispensable in the two-dimension reduced 
neuron model described by formula (1). Under the certain amplitude current’s stimu-
lation, the neuron model can generate the discharge process (change from the resting 
state to the continuous discharge state) only when the maximum conductance of the 
delay-rectified potassium channel ( Kdrg ) reaches a certain threshold. During the 
changing process, the neuron also undergoes the dynamic bifurcation. Fig.3 shows the 
dynamic bifurcation process of the neuron in the V-n phase plane under the delay-
rectified potassium channel’s maximum conductance’s changing, where the simula-
tion time is 0~1000ms, and the stimulation current IApp is 5nA. The Values of related 
parameters are showed in the third section. 

From Fig.3 (a), the neuron model has only one equilibrium point. In the following, 
the stability of the equilibrium point is analyzed by the neurodynamics theory. 

In Fig.3 (a), the coordinate of the equilibrium point is (-18.9569, 0.8326) in the V-
n phase plane. Jacobian matrix JKdr and Its eigenvalues can be solved: 

 

；  

Because these two eigenvalues’ real parts are both less than zero, the equilibrium 
point is stable, and is corresponding to the resting state of the neuron model. 

From Fig.3, during the process of the delay-rectified potassium channel’s maxi-
mum conductance’s increasing gradually, the stable equilibrium point (Its coordinate 
is (-18.9569, 0.8326)) in the V-n phase plane gradually loses stability and gives birth  
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Fig. 3. The dynamic bifurcation process of the neuron model under ’s changing, where 

the stimulation current IApp is 5nA. (a) . (b)  (c)
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to a small-amplitude subliminal oscillating phase trajectory around the stable equili-
brium point. The oscillating amplitude is damped according to exponential form. 
Moreover, these subliminal oscillating phase trajectories finally return to the stable 
equilibrium point (the resting state of the neuron model). When  reaches some a 
value, the subliminal oscillating phase trajectories don’t return to the stable equili-
brium point, and gives birth to a small-amplitude limit cycle attractor. At the same 
time, the stable equilibrium point loses stability. As  keeps on increasing, the 
amplitude of the limit cycle also increases and it becomes full-size spiking limit cycle. 
From the neurodynamics theory point of view, the neuron model also undergoes the 
supercritical Andronov-Hopf  bifurcation process. 

From the property of the supercritical Andronov-Hopf bifurcation, the neuron 
model is equivalent to a monostable resonator, and has the common dynamic proper-
ties of the resonator such as the subliminal discharge behaviour, class 2 neural excita-
bility, and so on. When Kdrg  is near 1.98mS/cm2 (showed in Fig.2 (c)), the stable 
limit cycle attractor begins to arise, and the neuron model goes into the stable “all or 
none” discharge state. So the neuron model undergoes the supercritical Andronov-
Hopf bifurcation near 1.98mS/cm2. When the stimulation current IApp is 5nA, the 
delay-rectified potassium channel’s maximum conductance’s threshold of the neuron 
model which can produce the stable “all or none” discharge behaviour is near 
1.98mS/cm2. In addition, because the neuron model has the monostable characteris-
tics, the stable limit cycle (the continuous discharge state) and the stable equilibrium 
point can’t coexist. 

4 Conclusion 

In the paper, the two-dimension reduced neuron model is taken as the object, and Its 
dynamic bifurcation characteristics are analyzed and discussed in detail by the neuro-
dynamic analysis methods such as the nullcline analysis method, the phase space 
analysis method, the linear equalization analysis method, and so on. When the maxi-
mum conductance of the instantaneous sodium channel ( NaI ) and the maximum con-
ductance of the delay-rectified potassium channel ( KdrI ) are changed, the neuron 
model undergoes the supercritical Andronov-Hopf bifurcation from the rest state to 
the continuous discharge state. The neuron is a resonator with the monostable state 
and has the common dynamics of the resonator. This investigation is helpful to know 
and investigate deeply the dynamic characteristics and the bifurcation mechanism of 
the hippocampal neuron by the computer simulation. 
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Abstract. The normalized risk-averting error (NRAE) training method
presented in ISNN 2012 is capable of overcoming the local-minimum
problem in training neural networks. However, the overall success rate
is unsatisfactory. Motivated by this problem, a modification, called the
NRAE-MSE training method is herein proposed. The new method trains
neural networks with respect to NRAE with a fixed λ in the range of 106-
1011, and takes excursions to train with the standard mean squared error
(MSE) from time to time. Once an excursion produces a satisfactory MSE
with cross-validation, the entire NRAE-MSE training stops. Numerical
experiments show that the NRAE-MSE training method has a success
rate of 100% in all the testing examples each starting with a large number
of randomly selected initial weights.

Keywords: Neural network, Training, Normalized risk-averting error,
Global optimization, Local-minimum, Mean squared error.

1 Introduction

A standard formulation of training a multilayer perceptron (MLP) under super-
vision follows: A set of pairs, (xk, yk), k = 1, ...,K, of which the vectors xk and
the vectors yk are related by an unknown function f

yk = f (xk) + ξk

where ξk are random noises. Find the weight vector w of a MLP f̂ (x,w) such
that the mean squared error (MSE) criterion,

Q(w) =
1

K

K∑
k=1

∥∥∥yk − f̂ (xk, w)
∥∥∥2 (1)
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is minimized. If the MLP f̂ (xk, w) is nonlinear in w, the MSE criterion Q(w) is
usually nonconvex and has nonglobal local minima [1,2,3,4,5,6,7,8].

It is proven in [9] that the convexity region of Jλ(w)/λ where the risk-averting
error (RAE) Jλ(w) is defined by

Jλ(w) :=

K∑
k=1

exp

(
λ
∥∥∥yk − f̂ (xk, w)

∥∥∥2) (2)

expands strictly as λ increases, and that limλ→0
1
λ ln

[
1
K Jλ (w)

]
= Q (w). These

properties confirmed the effectiveness of the adaptive training method reported
in [10] for avoiding nonglobal local minima. However, Jλ(w) is an exponential

function of λ
∥∥∥yk − f̂ (xk, w)

∥∥∥2 and is plagued with computer register overflow if

λ is large. This motivated the use of the normalized RAE (NRAE)

Cλ (w) :=
1

λ
ln

[
1

K
Jλ (w)

]
(3)

leading to the NRAE training method presented in ISNN 2012 [11]. However,
its success rate over all the numerical experiments is 50% for the risk-sensitivity
index λ in the range 106-108, 100% in the range 108-109, and 75% in the range
109-1011, but fails to work for λ > 1011.

Although the NRAE training method cannot reach a global minimum with
a 100% success rate, it is able to bring Cλ (w) and the corresponding Q (w)
significantly down for 106 ≤ λ ≤ 1011. Experiments show that if, after the
NRAE training is performed for a reasonable number of iterations, the training
criterion is switched from Cλ (w) to Q (w), a global minimum can be obtained
each time for λ in the range 106 - 1011 in our numerical experiments. This method
is called the NRAE-MSE method.

In this paper, numerical results of testing the NRAE-MSE method are
presented that show the efficacy of the method. In the examples, cross-validation
is performed to ensure the MLP trained with the new method has a good
generalization capability.

2 The NRAE-MSE Training Method

The NRAE-MSE training method first select a value of λ in the range 106 - 1011,
select positive integers L and M , and randomly select an initial weight vector as
the current weight vector for the MLP under training. The method then repeats
the following two steps:

1. Use Cλ (w) with the selected λ to train the MLP for L iterations. Each
iteration replaces the current weight vector at the beginning of the iteration
with the resultant weight vector as the current weight vector.

2. Starting with the current weight vector, use Q (w) to train the MLP un-
til the number of iterations exceeds M . After that, if Q (w) < ε, or if
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a cross-validation test shows that overfitting of the training data occurs,
stop the entire NRAE-MSE training. If a cross-validation test is needed, an
early-stopping method is chosen to detect overfitting of the training data.

3 Numerical Experiments

Four function approximation experiments, where each function is intended to
have nonglobal local minima, are provided to demonstrate the effectiveness of the
proposed NRAE-MSE training method. For each task, ten different initial weight
vectors are randomly chosen to start ten training groups. In each group, a NRAE-
MSE training and a standard MSE training with the backpropagation (BP)
and BFGS algorithm are performed by choosing the same initial weight vector.
After ten training groups are completed, we analyze the obtained fitting plots
and training errors for all function approximation tasks, and measure different
performances between the MSE and NRAE-MSE training. For all NRAE-MSE
training sessions, we record their corresponding MSE values as training errors
and compare them to the results of the MSE training.

In order to test the capability of noise tolerance for the MSE and NRAE-
MSE training, another ten training groups are initiated for these four function
approximation tasks with measurement noises. Particularly, measurement noises
are defined by the signal-to-noise ratio (SNR), which is generally used to indicate
the proportion between the power of the target output O and the power of the
measurement noises E, and generated by the Gaussian white noise model. In
our experiments, the SNR is chosen as 10 log10 2

2 = 6dB. For the purpose of
comparing different training criterions with noisy data involved, same training
strategies performed to noiseless data are used to perform the training with
noisy data for each function approximation task. In addition, we use the cross-
validation to test generalization abilities and detect the overfitting of the MSE
and NRAE-MSE training in both the noiseless and noisy experiments. The size
of cross-validation data is chosen as half of the training data, and each cross-
validation data is randomly selected from the target function domain without
overlapping to training data. In order to clearly show the performance of the
function approximation with measurement noises involved, we choose the trained
MLP weights in noisy experiment and the target function data without adding
measurement noises to compute the MSE as the training error for each noisy
experiment.

Before each training session starts, several parameters in the MLP are chosen
based on the suggestions in [8]: each synaptic weight in a weight vector is ran-
domly selected from a uniform distribution between −2.4/Fi and 2.4/Fi, where
Fi is the number of input neurons of the connected unit; all input and output
values defined in the training data are normalized into [−1, 1]; the activation
function in each training neuron is chosen as the hyperbolic tangent function
ϕ(v) = a tanh(bv), where a = 1.7159 and b = 2/3. For all MSE training ses-
sions, the maximum number of training epochs is set to 106. For all NRAE-MSE
training sessions, we set L = 1 × 104 for the NRAE training, M = 1 × 104
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for the MSE excursion, and λ = 106 as a sufficiently large value to achieve
the condition λ >> 1. In addition, the maximum number of iterations of the
NRAE-MSE training is limited to 50, which indicates the maximum number of
training epochs for the combination of the NRAE training sessions and the MSE
excursions is 106. A large number of numerical experiments are not shown in this
paper because of the page limit. In those experiments, the NRAE-MSE method
delivered a 100% success rate for λ in the range 106 - 1011.

3.1 Function Approximation

Three-notch A function with three notches is defined by

y = f(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ [0, 1.0] ∪ [2.2, 2.3] ∪ [3.5, 4.5]
0.25 if x ∈ [2.8, 3.0]
0.5 if x ∈ [1.5, 1.7]
1 otherwise

(4)

where x ∈ X = [0, 4.5]. For the training data, input values xk are obtained by
random sampling 2000 non-repeatable numbers from X with a uniform distribu-
tion, and corresponding output values yk are computed by (4). Then, a training
data set of 2000 (xk, yk) pairs is obtained. By the same way, a cross-validation
data set of 1000 (xk, yk) pairs is also obtained such that it and the training data
set are disjoint. MLPs with 1:16:1 architecture are initiated to all training ses-
sions with noiseless or noisy data. Approximated function plots of the MSE and
NRAE-MSE training are presented from Fig. 1(a) to Fig. 1(d). Training errors
obtained by ten initial weight vectors are shown in Fig. 2(a) for the MSE and
NRAE-MSE trained MLPs with or without noisy data involved.

Fine Features A smooth function with two fine features as spikes is defined by

y = f(x) = g

(
x,

1

6
,
1

2
,
1

6

)
+ g

(
x,

1

64
,
1

4
,

1

128

)
+ g

(
x,

1

64
,
11

20
,

1

128

) (5)

where x ∈ X = [0, 1], and g is defined as

g (x, α, μ, σ) =
α√
2πσ

cos

(
(x − μ)π

σ

)
exp

(
− (x− μ)2

2σ2

)
. (6)

For the training data, input values xk are selected by sampling 2000 numbers
from a uniform distributed grid on X , and corresponding output values yk are
computed by (5). Then, a training data set of 2000 (xk, yk) pairs is obtained. By
the same way, a cross-validation data set of 1000 (xk, yk) pairs is also obtained
such that it and the training data set are disjoint. MLPs with 1:14:1 architecture
are initiated to all training sessions with noiseless or noisy data. Approximated
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function plots of the MSE and NRAE-MSE training are presented from Fig. 1(e)
to Fig. 1(h). Training errors obtained by ten initial weight vectors are shown in
Fig. 2(b) for the MSE and NRAE-MSE trained MLPs with or without noisy
data involved.

Unevenly-SampledSegments. A smooth function with two unevenly-sampled
segments is defined by

y = f(x) = g

(
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1
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1

12

)
+ g

(
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1
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,
1

12

)
+ g

(
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1

64
,
5

4
,
1

12

) (7)

where x ∈ X = [0, 1.5] and g is defined in (6). For the training data, input
values xk are collected by sampling 50 numbers from a uniform distributed grid
on [0, 0.5], 50 numbers from a uniform distributed grid on [1.0, 1.5], and 2000
numbers from a uniform distributed grid on (0.5, 1.0). Corresponding output
values yk are computed by (7). Then, a training data set of 2100 (xk, yk) pairs
is obtained. By the same way, a cross-validation data set of 1050 (xk, yk) pairs
is also obtained such that it and the training data set are disjoint. MLPs with
1:12:1 architecture are initiated to all training sessions with noiseless or noisy
data. Approximated function plots of the MSE and NRAE-MSE training are
presented from Fig. 1(i) to Fig. 1(l). Training errors obtained by ten initial
weight vectors are shown in Fig. 2(c) for the MSE and NRAE-MSE trained
MLPs with or without noisy data involved.

Unevenly-Sampled Square. A three-dimensional function, which has a letter
‘L’ shape and an unevenly-sampled square raised from a plane, is defined by

z = f(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1 if x ∈ [1.0, 5.5] and y ∈ [1.0, 2.0]
1 if x ∈ [1.0, 2.0] and y ∈ [2.0, 5.5]
1 if x ∈ [3.0, 5.5] and y ∈ [3.0, 5.5]
0 otherwise

(8)

where x ∈ X = [0, 6] and y ∈ Y = [0, 6]. For the training data, input values xk
and yk are collected by sampling 289 numbers from an uniform distributed grid
on X

′ × Y
′
= (2.5, 6]× (2.5, 6] and 2522 numbers from an uniform distributed

grid on (X −X
′
)× (Y − Y

′
). Corresponding output values zk are computed by

(8). Then, a training data set of 2811 (xk, yk) pairs is obtained. By the same way,
a cross-validation data set of 1405 (xk, yk) pairs is also obtained such that it and
the training data set are disjoint. MLPs with 2:6:3:1 architecture are initiated to
all training sessions with noiseless and noisy data. Approximated function plots
of the MSE and NRAE-MSE training are presented from Fig. 1(m) to Fig. 1(p).
Training errors obtained by ten initial weight vectors are shown in Fig. 2(d) for
the MSE and NRAE-MSE trained MLPs with or without noisy data involved.
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3.2 Discussion

Experimental results illustrated in Fig. 2 indicates that the NRAE-MSE train-
ing consistently leads all trained MLPs to achieve satisfactory training errors,
which are lower than the MSE training. Fig. 1 shows the NRAE-MSE training
captures all significant features located on the target function for both noiseless
and noisy tests, but the MSE training can only find partial features. Moreover,
based on the noisy test results presented in Fig. 1, all the NRAE-MSE train-
ing sessions are superior to the MSE training sessions in achieving low training
errors with high generalization levels. These mentioned results illustrate that:
with the combination of two steps in the NRAE-MSE training method, and the
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Fig. 1. Fitting plots for function approximation tasks in Section 3.1. The first two
columns describe functions trained with noiseless data, and the last two columns show
functions trained with noisy data. Numbers on the horizontal and vertical axes in each
subfigure represent the input and output of the function, respectively. From Fig. 1(a)
to Fig. 1(l), red dots denote target training samples, and blue dash lines are MLP
approximated function plots. From Fig. 1(m) to Fig. 1(p), only MLP approximated
function plots are shown by using blue and red colors to distinguish different function
values on vertical axes.
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following MSE excursion can successfully lead to a satisfactory training error; on
the contrary, without the elimination of local minima, the MSE training error is
difficult to converge to a lower one.

In Fig. 2, another fact which can be observed is that trying to use different
initial weight vectors never makes the MSE training becoming better than the
NRAE-MSE training in any of our experiments. The explanation is that one
proper initial guess of weight vectors for the MSE training can only provide a
good starting point to the local-searching method, but it cannot eliminate or
avoid local minima existing in the searching path of the optimal weight vector.
In contrast, the NRAE-MSE training with a large λ has the capability to avoid
nonglobal local minima, thus it is more insensitive to different selections of initial
weight vectors than the MSE training.
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Fig. 2. Training errors of ten different initial weight vectors for function approximation
tasks in Section 3.1. Colors and symbols denote different training methods of the MSE
(red square) and NRAE-MSE (blue triangle). Solid and dash lines represent different
training sessions with noiseless and noisy data, respectively. In order to clearly show
differences between MSE values obtained by the MSE and NRAE-MSE training, actual
numbers in all vertical axes are converted to logarithmic numbers with respect to
base 10.
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4 Conclusion

The unsatisfactory success rate of the NRAE training method proposed in [11]
motivated the development of the NRAE-MSE training method herein reported.
The NRAE-MSE training method consists of 2 phases - training with respect
to the NRAE criterion at a fixed λ for a number of iterations and training
with respect to the MSE criterion until convergence. Our numerical experiments
show that the method is not sensitive to said number of iterations or the risk-
sensitivity index λ as long as λ lies in the range 106-1011. The success rate over
a large number of numerical examples that we have worked out is 100%.

It can be argued that the numerical examples are toy examples, which are
not representative of more complex real-world applications. However, the target
functions in these examples contain fine features or unevently-sampled functions
are designed to create nonglobal local minima that are hard for a training method
to escape from. Most real-world applications are not expected to be so “vicious”.

More importantly, the NRAE-MSE training method roots in the convexfi-
cation idea in [9]. This idea is valid regardless of the complexity of the target
function or training data. The new training method is therefore expected to do
well in real-world applications. As soon as test results are obtained on real-world
applications of the NRAE-MSE method, we will report the test results.
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Abstract. In this paper, we propose a novel generalized single-hidden
layer feedforward network (GSLFN) by employing polynomial functions
of inputs as output weights connecting randomly generated hidden units
with corresponding output nodes. The main contributions are as fol-
lows. For arbitrary N distinct observations with n-dimensional inputs,
the augmented hidden node output matrix of the GSLFN with L hidden
nodes using any infinitely differentiable activation functions consists of
L sub-matrix blocks where each includes n+1 column vectors. The rank
of the augmented hidden output matrix is proved to be no less than that
of the SLFN, and thereby contributing to higher approximation perfor-
mance. Furthermore, under minor constraints on input observations, we
rigorously prove that the GLSFN with L hidden nodes can exactly learn
L(n + 1) arbitrary distinct observations which is n + 1 times what the
SLFN can learn. If the approximation error is allowed, by means of the
optimization of output weight coefficients, the GSLFN may require less
than N/(n + 1) random hidden nodes to estimate targets with high ac-
curacy. Theoretical results of the GSLFN evidently perform significant
superiority to that of SLFNs.

Keywords: single-hidden layer feedforward networks, polynomial func-
tions, output weights, hidden node numbers, approximation capability.

1 Introduction

In the field of neural networks, in addition to various fuzzy neural networks
[1,2,3], single-hidden layer feedforward networks (SLFNs) have been investigated
thoroughly in the past two decades. In the 1990’s, it has been shown that SLFNs
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with N hidden nodes can exactly learn N distinct observations. Tamura et al. [4]
proved that a SLFN with N hidden units using sigmoid functions can give any N
input-target relations exactly. The further improvement proposed by Huang [5]
revealed that if input weights and hidden biases are tunable the SLFN with at
most N hidden neurons using any bounded nonlinear activation function which
has a limit at one infinity can learnN distinct samples with zero error. In contrast
to previous SLFNs which adjust all the parameters of hidden layers, some re-
searchers suggested incremental SLFNs allowing only newly added hidden nodes
to be tuned. In this case, parameters of hidden nodes need to be updated only
once based on training data. Nevertheless, the computation burden would also
be heavy. Alternatively, Huang et al. [6] developed an innovative learning scheme
termed as extreme learning machine (ELM) for SLFNs with randomly generated
hidden units using infinitely differentiable activation functions. Corresponding
results [7] indicated that SLFNs with N hidden nodes using any infinitely dif-
ferentiable activation functions can learn N distinct samples exactly and SLFNs
may require less than N hidden nodes if learning error is allowed. Similar to
[8], Ferrari et al. showed that SLFNs with N sigmoidal hidden nodes and with
input weights randomly generated but hidden biases appropriately tuned can
exactly learn N distinct observations. Besides, several interesting investigations
on compact structure of SLFNs were implemented by using singular value de-
composition (SVD) [9] and regularized least-squares (RLS) [10] methods, etc.
However, all the previous works focused on the SLFNs using constant output
weights whether hidden node parameters are adjusted or not. Rationally, we refer
to the abovementioned SLFNs as standard SLFNs since all the output weights
are confined to be constants independent on inputs. In this case, the constant
output weights would impose much deficiency on the capability of approximation
and generalization.

In this paper, we propose a novel kind of generalized single-hidden layer feed-
forward networks (GSLFNs) which extend the standard SLFNs by using poly-
nomial functions of inputs instead of constants as the output weights. To be
specific, for arbitrary N distinct observations (xk, tk) ∈ Rn × Rm, L hidden
nodes using any infinitely differentiable activation functions are randomly gen-
erated and output weight coefficients are allowed to be adjustable for desired
performance of approximation and generalization. In this case, the augmented
hidden node output matrix consists of L sub-matrix blocks whereby each one
includes n+ 1 column vectors containing N entities. Each column vector in the
ith sub-matrix block is defined by the Hadamard product of the input vector in
the j-dimension (i.e., xj = [x1j , · · · , xNj ]

T) and the ith hidden node output vec-
tor with respect to the kth input observation. Accordingly, preliminary results
reveal that the rank of augmented hidden node output matrix in the GSLFN
would be no less than that of hidden node output matrix in SLFN, and thereby
contributing to higher potentials for approximation capability. Furthermore, we
rigorously prove that under minor constraints on input observations the GSLFN
with any L randomly generated hidden nodes can exactly learn L(n+1) arbitrary
distinct observations which are n+ 1 times what the SLFN can learn.
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2 Preliminaries

Given N arbitrary distinct samples (xk, tk) where xk = [xk1, xk2, · · · , xkn]T ∈
Rn and tk = [tk1, tk2, · · · , tkm]T ∈ Rm, the standard single-hidden layer feedfor-
ward networks (SLFNs) with L hidden nodes and activation function g(x) can
be mathematically modeled as,

yk =

L∑
i=1

βββig(ai · xk + bi), k = 1, 2, · · · , N (1)

where ai = [ai1, ai2, · · · , ain]T ∈ Rm is the weight vector connecting the ith hid-
den node and the input nodes, βββi = [βi1, βi2, · · · , βim]T ∈ Rm is the weight
vector connecting the ith hidden node and the output nodes, and bi is the
threshold of the ith hidden node. ai ·xk denotes the inner product of ai and xk.

If the outputs of the SLFN are equal to the targets, we have the compact
formulation as follows:

Hβββ = T (2)

where,

H(a1, . . . , aL, b1, . . . , bL,x1, . . . ,xN )

=

⎡⎢⎣ g(a1, b1,x1) · · · g(aL, bL,x1)
...

. . .
...

g(a1, b1,xN ) · · · g(aL, bL,xN )

⎤⎥⎦
N×L

(3)

βββ =

⎡⎢⎣βββ
T
1
...
βββT
L

⎤⎥⎦
L×m

and T =

⎡⎢⎣ tT1
...
tTN

⎤⎥⎦
N×m

(4)

Here, H is called the hidden-layer output matrix of the SLFN, whereby the ith
column is the ith hidden node’s output vector with respect to inputs x1, . . . ,xN

and the jth row is the output vector of the hidden layer with respect to input xj .
βββ and T are corresponding matrices of output weights and targets, respectively.

It has been proved that standard SLFNs with a wide type of random compu-
tational hidden nodes possess the universal approximation capability as follows.

Lemma 1. [6] Given a standard SLFN with N hidden nodes and activation
function g : Rn → R which is infinitely differentiable in any interval, for N
arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm, for any ai and
bi randomly chosen from any intervals of Rn and R, respectively, according to
any continuous probability distribution, then with probability one, the hidden
layer output matrix H of the SLFN is invertible and ‖Hβββ −T‖ = 0. ��
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Lemma 2. [6] Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤ N
such that for N arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm,
for any ai and bi randomly chosen from any intervals of Rn and R, respectively,
according to any continuous probability distribution, then with probability one,
‖HN×LβββL×m −TN×m‖ < ε. ��

3 Generalized Single-Hidden Layer Feedforward
Networks

We are now in a position to extend standard SLFNs to generalized SLFNs
(GSLFNs) by defining the output weights as polynomial functions of input
variables (i.e., βββ � βββ(x)) as follows:

βij(x) = w
(0)
ij + w

(1)
ij x1 + · · ·+ w

(n)
ij xn, i = 1, 2, · · · , L, j = 1, 2, · · · ,m (5)

where w
(0)
ij , w

(1)
ij , · · · , w(n)

ij are corresponding weights for input variables. Ac-
cordingly, if the outputs of the GSLFN estimate the targets with zero errors, we
obtain the following compact formulation,

GW = T (6)

where,

G(a1, . . . , aL, b1, . . . , bL,x1, . . . ,xN )

=

⎡⎢⎣ g(a1, b1,x1)x̄
T
1 · · · g(aL, bL,x1)x̄

T
1

...
. . .

...
g(a1, b1,xN )x̄T

N · · · g(aL, bL,xN )x̄T
N

⎤⎥⎦
N×L(n+1)

(7)

W =

⎡⎢⎢⎢⎣
w11 w12 · · · w1m

w21 w22 · · · w2m

... · · · . . .
...

wL1 wL2 · · · wLm

⎤⎥⎥⎥⎦
L(n+1)×m

(8)

x̄k = [1, xk1, xk2, · · · , xkn]T , wij =
[
w

(0)
ij , w

(1)
ij , · · · , w(n)

ij

]T
(9)

Here, G is referred to be the augmented hidden-layer output matrix of the
GSLFN consisting of N × L blocks, whereby the kith block Gki is the product
of the ith hidden node output with respect to the kth input vector, i.e., gi(xk),
and the corresponding augmented input vector x̄T

k , and thereby constituting
a [N × L(n + 1)]-dimension matrix. Accordingly, W is the output coefficient
matrix consisting of L × m blocks, whereby the block wij in the ith-row-jth-
column position corresponds to the coefficient vector of the output weight con-
necting the ith hidden node to the jth output node, and thereby contributing a
[L(n+ 1)×m]-dimension matrix.
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4 Main Results

Furthermore, one can obtain the main results on the approximation capabilities
of the GSLFN as follows.

Theorem 1. Given a GSLFN with N hidden nodes and activation function
g : Rn → R which is infinitely differentiable in any interval, for N arbitrary
distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm, for any ai and bi
randomly chosen from any intervals of Rn and R, respectively, according to
any continuous probability distribution, then with probability one, the rank of
the augmented hidden-layer output matrix G for the GSLFN satisfies N ≤
rank(G) ≤ N(n + 1), and there exists at least one coefficient matrix W such
that ‖GW −T‖ = 0. ��
Proof. By Lemma 1, for any ai and bi randomly chosen from any intervals of Rn

and R, respectively, according to any continuous probability distribution, then
with probability one, the hidden-layer output matrix H satisfies rank(H) = N .
In addition, the augmented hidden-layer output matrix G can be represented by,

G = P

⎡⎢⎣ g(a1, b1,x1) · · · g(aL, bL,x1) g(a1, b1,x1)x
T
1 · · · g(aL, bL,x1)x

T
1

...
. . .

...
...

. . .
...

g(a1, b1,xN ) · · · g(aL, bL,xN ) g(a1, b1,xN )xT
N · · · g(aL, bL,xN )xT

N

⎤⎥⎦Q

where, P ∈ RN×N and Q ∈ RN(n+1)×N(n+1) are elementary transformation
matrices. It follows, with probability one, that N ≤ rank(G) ≤ N(n + 1). In
this case, eqn. (6) becomes an under-determined problem with N independent
equations since the number of equations is larger than that of unknown parame-
ters. As a consequence, there exists at least one solution for the coefficient matrix
W in (6). This concludes the proof. ��
Similar to Lemma 2, for the GSLFN, we can straightforward obtain the following
result.

Theorem 2. Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤ N
such that for N arbitrary distinct samples (xk, tk), where xk ∈ Rn and tk ∈ Rm,
for any ai and bi randomly chosen from any intervals of Rn and R, respectively,
according to any continuous probability distribution, then with probability one,
‖GN×L(n+1)WL(n+1)×m −TN×m‖ < ε. ��
Proof. Following the proof of Theorem 1, the rank ofG would be less than L with
high probability. Accordingly, the columns of G might belong to a subspace of
dimension no more than N . In other words, the independent equations of eqn.
(6) would be no more than N , and thereby resulting in an under-determined
equation with partial targets not be exactly estimated. Fortunately, the tuning of
coefficient matrixW can make the approximation error infinitely small especially
when L = N . The proof is completed. ��
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Furthermore, the GSLFN using polynomial functions as output weights features
significant characteristics as follows.

Theorem 3. Given a GSLFN with L hidden nodes and activation function
g : Rn → R which is infinitely differentiable in any interval, for N ≤ L(n +
1) arbitrary distinct samples (xk, tk), where xk ∈ Rn, tk ∈ Rm and xkj �=
xk′j′ , ∃k �= k′, j �= j′, for any ai and bi randomly chosen from any intervals
of Rn and R, respectively, according to any continuous probability distribution,
then with probability one, the rank of the augmented hidden-layer output matrix
G satisfies,

rank(G) = N (10)

and there exists at least one coefficient matrix W such that ‖GW−T‖ = 0. ��
Proof. The augmented hidden-layer output matrix G consists of L sub-matrices
Gi, i = 1, 2, · · · , L, and thereby totally contributing to L(n+ 1) column vectors
given by,

G = [G1,G2, · · · ,GL]N×L(n+1)

Gi =

⎡⎢⎣ g(ai, bi,x1) g(ai, bi,x1)x11 · · · g(ai, bi,x1)x1n
...

...
. . .

...
g(ai, bi,xN ) g(ai, bi,xN )xN1 · · · g(ai, bi,xN )xNn

⎤⎥⎦
Note that ai are randomly generated based on a continuous probability distri-
bution, we can assume that ai · xk �= ai · xk′ for all k �= k′. Consider the jth
column of the ith matrix block Gi, i.e.,

g(bi,x
j) = c(bi)� xj (11)

where � denotes the Hadamard product, and

c(bi) = [g(bi + di1), · · · , g(bi + diN )]T , xj = [x1j , · · · , xNj ]
T, j = 0, 1, · · · , n

where dik = ai · xk, bi ∈ (a, b) ⊂ R and xk0 = 1, k = 1, 2, · · · , N .
It can be proved by contradiction that vectors g does not belong to any

subspace whose dimension is less than N . Suppose that g belongs to a subspace
of dimension N−1. Then there exists a vector ααα �= 0 which is orthogonal to this
subspace, i.e.,

〈ααα,g(bi,xj)− g(a,xj′ )〉 = 0 (12)

Note that, for N ≤ L(n + 1) arbitrary distinct samples (xk, tk) ∈ Rn × Rm,
xkj �= xk′j, ∃k �= k′, j �= j′. For the cases j = j′ = 0 and j �= j′ in (12), we
can simply set bi + dij �= a + dij′ and bi + dij = a + dij′ , respectively. As a
consequence, it holds that

g(bi,x
j)− g(a,xj′ ) =

{
(c(bi)− c(a))� xj , j = j′ = 0

c(bi)�
(
xj − xj′

)
, j �= j′
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It follows that g(bi,x
j) − g(a,xj′ ) �= 0 is guaranteed since xj �= xj′ , ∀j, j′ �= 0

and x0 = 1.
Using (11), eqn. (12) can be further written as,

α1g(bi + di1)x1j + α2g(bi + di2)x2j + · · ·+ αNg(bi + diN )xNj −ααα · g(a,xj′ ) = 0

Without loss of generality, we assume αN �= 0 and obtain,

g(bi + diN )xNj = −
N−1∑
k=1

γkg(bi + dik)xkj +ααα′ ·
(
c(a)� xj′

)
where γk = αk/αN , k = 1, 2, · · · , N − 1 and ααα′ = ααα/αN . Since the activation
function g(.) is infinitely differentiable in any interval, we have

g(l)(bi + diN )xNj = −
N−1∑
k=1

γkg
(l)(bi + dik)xkj , l = 1, 2, · · · , N,N + 1, · · ·

where g(l) is the lth derivative of function g of bi. However, there are only N − 1
free coefficients: γ1, · · · , γN−1 for the derived more than N − 1 linear equations,
this is contradictory. Thus, vector g does not belong to any subspace whose
dimension is less than N .

As a consequence, from any interval (a, b) it is possible to randomly choose
L′ = ceil(N/(n+1)) bias values b1, · · · , bL′ for the L′ hidden nodes such that N
vectors g(bi,x

j), i = 1, 2, · · · , L′, j = 0, 1, · · · , n span RN . This means that for
any input weight vectors ai and bias values bi chosen from any intervals of Rn

and R, respectively, according to any continuous probability distribution, then
with probability one, the column vectors of G can be made row full-rank, i.e.,
rank(G) = N if N ≤ L(n+ 1).

Accordingly, the number of independent equations in eqn. (6) is N , and
thereby resulting in a well- or under-determined problem. Hence, there exists
at least one solution for W in (6). This concludes the proof. ��

Theorem 4. Given any small positive value ε > 0 and activation function
g : Rn → R which is infinitely differentiable in any interval, there exists L ≤
N/(n+1) such that for N arbitrary distinct samples (xk, tk) ∈ Rn ×Rm where
xkj �= xk′j′ , ∃k �= k′, j �= j′, for any ai and bi randomly chosen from any intervals
of Rn and R, respectively, according to any continuous probability distribution,
then with probability one, ‖GN×L(n+1)WL(n+1)×m −TN×m‖ < ε. ��

Proof. Following the proof of Theorem 3, the rank of G would no more than N
with high probability. In this case, (6) would be an over-determined equation. It
means there might not exist exact solutions for W in (6). Alternatively, given
any small error ε > 0 and the GSLFN with L ≤ N(n + 1) hidden nodes, fine
tuning of coefficient matrix W can make the estimation error less than ε. ��
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5 Conclusions

This paper extends the standard single-hidden layer feedforward networks
(SLFNs) to generalized SLFNs (GSLFNs) by employing the polynomial func-
tions of inputs as output weights. Accordingly, we have rigorously proved the
significant characteristics of the GSLFN as follows. On the one hand, similar
to the SLFN, the GSLFN with at most N hidden nodes using any infinitely
differentiable activation functions can exactly learn N distinct observations. On
the other hand, for distinct n-input m-output observations with different data in
each input dimension, the GSLFN features much higher approximation capabil-
ity such that the GSLFN with only N/(n+1) hidden nodes using any infinitely
differentiable activation functions can exactly learn N distinct observations. The
number of hidden nodes in the GSLFN can be dramatically reduced by using
polynomials as output weights, especially for high-dimension regressions and
classifications.
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Abstract. Neural cryptography is widely considered as a novel method
of exchanging secret key between two neural networks through mutual
learning. This paper puts forward a generalized architecture to provide an
approach to designing novel neural cryptography. Meanwhile, by taking
an in-depth investigation on the security of neural cryptography, a heuris-
tic rule is proposed. These results can effectively guide us to designing
secure neural cryptography. Finally, an example is given to demonstrate
the effectiveness of the proposed structure and the heuristic rule.

Keywords: Neural synchronization, Neural cryptography, Generalized
architecture, Heuristic rule.

1 Introduction

Public key exchange protocols (PKEPs) have played an important role in mod-
ern cryptography since initially introduced by Diffie and Hellman [1]. Actually,
PKEPs enable two parties, named A and B, to share a common secret key on
public channel, while an attacker E cannot retrieve the key even equipped with
access to the communication channel. Then the key can be utilized to deal with
some cryptographic problems, such as privacy, authentication, data integrity to
name a few. In particular, PKEPs based on number theory have been extensively
studied [1–4]. However, it has been recognized that neural synchronization is able
to achieve the same objective bringing about what is known as neural cryptog-
raphy [5]. The mechanism behind neural cryptography is similar to secret key
agreement though public discussion [6]. In particular, benefited from the absence
of large-scale computation, which is highly expected by the small-scale embed-
ded systems [7,8], neural cryptography has gained considerable attention and has
also been an increasingly important research. Besides, by substituting the neu-
ral networks, other synchronization systems, such as chaotic maps and coupled
lasers [9–11], can also can be exploited in constructing the similar PKEPs.

So far, several models of neural cryptography have been proposed, typically
permutation parity machine (PPM) [14,15], TPM [5] and TCM [16]. Meanwhile
a probabilistic attack algorithm for PPM with a high success rate has also been
presented [17] and the TCM does not work effectively [16]. In addition, the TPM
containing one or two hidden units (K = 1, 2) has been also attacked success-
fully [18,19]. Besides, only TPM with the fixed structure (K= 3) can resist kinds
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of attacks depending on increasing the synaptic depth of its networks [20–22].
Then applicability and security of TPM have been extensively studied [23–29].
In [23], three most common learning rules are analyzed in detail, including Heb-
bian learning rule, Anti-Hebbian learning rule, and Random-walk learning rule.
The dynamic process of synchronization in TPM has been carefully profiled [24].
Moreover, the model of the classical ruin problem is used to examine the average
synchronization time of TPM [25]. A feedback mechanism to guarantee relevant
input vectors partially unavailable to the attacker [26], and a queries mecha-
nism is further introduced [27], which speeds up the synchronization through
generating input vectors by means of queries instead of randomizer. Recently,
an error prediction mechanism based on the algorithm called ”Do not Trust My
Partner” (DTMP) is presented [28]. It largely relies on that one party sends
some erroneous bits while the other is capable of predicting and correcting cor-
responding errors. Meanwhile, Four kinds of attack algorithms are also exper-
imentally investigated in detail, i.e., simple attack [5], geometric attack [29],
majority attack [12], and genetic attack [23]. In spite of numerous studies on
neural cryptography, there has been no secure neural cryptography other than
TPM (K = 3).

Motivated by the situation in this area, the objective of this paper is to estab-
lish an approach to addressing this problem, with which we can formulate some
better instances. Meanwhile, an example is used to demonstrate the usefulness
of the proposed design methods.

2 Generalized Architecture and Mutual Learning

Shown in Fig.1 is principle graph of the generic structure named TSCM. It can be
regarded as a tree-connected networks consisting of three layers. More precisely,
a TSCM hasK hidden units, N input neurons for each hidden unit, and a unique
output neuron connecting all hidden units (we refer to the output neuron as state

Fig. 1. The architecture with K = 3, N = 4
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classifier). Each hidden unit works like an independent perceptron and elements
of the weighted vector are integral numbers:

wi,j ∈ {−L, . . . , 0, . . . ,+L}. (1)

Here, L represents synaptic depth of the networks; the index i = 1, . . . ,K denotes
the i-th hidden unit of the networks and j = 1, . . . , N the j-th input neuron for
each hidden unit. Meanwhile input vector is indicated by x and its elements are
binary, i.e.,

xi,j ∈ {−1,+1}. (2)

When TSCM receives x, the value of the i-th hidden unit is defined by as:

y =

{
σi = sgn(hi);

hi =
1√
N
wixi =

1√
N

∑N
i=1 wi,jxi,j .

(3)

In order to ensure σi binary, hi = 0 is mapped to σi = −1. Afterwards, the
state classifier generates an output, denoted by τ , according to the state of
vector σ, i.e.,

τ = StateClassifier(σ). (4)

Table 1. Classification of TPM(K = 3) and TCM(K = 3)

Name τ state vector σ Name τ state vector σ

TPM

+1 (+1,+1,+1), (+1,−1,−1)

TCM

+1 (+1,+1,+1), (−1,+1,+1)
(−1,+1,−1), (−1,−1,+1) (+1,−1,+1), (+1,+1,−1)

−1 (−1,−1,−1), (−1,+1,+1) −1 (−1,−1,−1), (+1,−1,−1)
(+1,−1,+1), (+1,+1,−1) (+1,−1,+1), (+1,+1,−1)

Significantly, TSCM generalizes and unifies the existing structures, i.e., TPM
and TCM. When the state classifier is defined as Table 1, it is observed that
TCM and TPM are two special cases of TSCM.

The mutual learning algorithm of TSCM is illustrated as follows:

1. The two parties A and B start with a uniform TSCM-based networks and
randomly choose weighted vectors wA and wB, which are kept secret. This
can effectively guarantee the uncorrelation between wA and wB at the
beginning.

2. In each learning step, the two parties receive a common input vector x at the
same time. Upon receiving x, A and B work out σA and σB, respectively. And
then τA and τB can also be calculated by using σA and σB, respectively. This
computation process is well defined in the above subsection. Afterwards, τA

and τB are exchanged with each other on the public channel while σA and
σB are secretly kept.
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3. All weights are iteratively adjusted using one of the following learning rules:
(a) Hebbian learning rule:

w
A/B
i,j = g

(
w

A/B
i,j + xi,jτ

A/BΘ(σiτ
A/B)Θ(τAτB)

)
. (5)

(b) Anti-Hebbian learning rule:

w
A/B
i,j = g

(
w

A/B
i,j − xi,jτ

A/BΘ(σiτ
A/B)Θ(τAτB)

)
. (6)

(c) Random-walk learning rule:

w
A/B
i,j = g

(
w

A/B
i,j + xi,jΘ(σiτ

A/B)Θ(τAτB)
)
. (7)

Here g(w) is introduced to ensure that each component of the weighted
vector wA/B resides within the range [−L,+L]. It is determined by

g(w) =

{
sgn(w)L, for|w| > L;
w, otherwise.

(8)

4. Repeating procedure 2 and 3 until synchronization (wA = wB) is achieved.
The final identical weighted vector wA/B can be used as the common secret
key between A and B.

In whole synchronization process, the state vector σA/B is consistently
inaccessible to any others. Then two possible real update behavior can be defined:

- An attractive step (τA = τB = σ
A/B
i ): The weighted vectors of both cor-

responding hidden units increase or decrease in the same direction. And a
series of such steps leads to synchronization eventually.

- A repulsive step (τA = τB, σA
i �= σB

i ): Only one weighted vector of the cor-
responding hidden units in A or B update while B or A remains unchanged.
A sequence of these repulsive steps may lower synchronization speed.

3 Analysis on Security

In this section, we analyze the security of neural cryptography by investigating
the neural synchronization process. Meanwhile, TPM and TCM are illustrated to
propose the heuristic rule. It is worth paying special attention that TPM(K = 3)
is a security instance and TCM is insecure.

Synchronization in neural cryptography is a Markovian process composed of
finite learning steps. The level of synchronization is indicated by the normalized
overlap between the two corresponding hidden units:

ρ =
wA

i w
B
i√

wA
i w

A
i

√
wB

i w
B
i

, ρ ∈ [0,+1]. (9)

At the beginning of synchronization, ρ locates approximately at ρ = 0, because
of the random initial weighted vectors. Through a series of learning steps, syn-
chronization is achieved and ρ is stable at ρ = +1. In these learning steps,
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it is possible that the two corresponding hidden units have different σ . The
probability of this event is defined by ε, which is known as the generation error

ε =
1

π
arccos(ρ), ε ∈ [0,+1]. (10)

For discussing the dynamics of ρ in the synchronization process, it is very
necessary to introduce

〈Δρ(ρ)〉 = Pa(ρ)〈Δρa(ρ)〉 + Pr(ρ)〈Δρr(ρ)〉. (11)

Here, 〈Δρ(ρ)〉 denotes the average change size of ρ in each learning step; 〈Δρa(ρ)〉
(〈Δρr(ρ)〉) represents the average change size of ρ in each attractive (repul-
sive) step; Pa(ρ) (Pr(ρ)) indicates the probability of the event that an attractive
(repulsive) step occurs between one pair of corresponding hidden units.

In particular, a secure neural cryptography need to satisfy: as the synap-
tic depth L grows, the averaged synchronization time by mutual learning for
A and B grows at a polynomial rate; meanwhile the averaged synchronization
time by unidirectional learning for E grows at an exponential rate. Remarkably,
〈Δρ(ρ)〉 > 0 in (0, 1) enables synchronization time grows at a polynomial rate
with increasing L. So we can take two essential conditions for a secure neural
cryptography: i) in synchronization process for A and B,

Pa(ρ)〈Δρa(ρ)〉 + Pr(ρ)〈Δρr(ρ)〉 > 0, ρ ∈ (0, 1) (12)

is true; ii) for E, there exists a region G in (0,1), such that

Pa(ρ)〈Δρa(ρ)〉+ Pr(ρ)〈Δρr(ρ)〉 < 0, ρ ∈ G. (13)

However, the following analysis mainly focuses on condition i). Clearly, the
inequality (12) can be reduced to:

−〈Δρa(ρ)〉
〈Δρr(ρ)〉 >

Pr(ρ)

Pa(ρ)
, ρ ∈ (0, 1). (14)

For convenience of analysis, the inequality (14) can be rewritten as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
U(ρ) > R(ρ),

U(ρ) = − 〈Δρa(ρ)〉
〈Δρr(ρ)〉 ,

R(ρ) = Pr(ρ)
Pa(ρ)

,

ρ ∈ (0, 1).

(15)

Substituting (10) to R(ρ), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
U(ρ) > R(ε),

U(ρ) = − 〈Δρa(ρ)〉
〈Δρr(ρ)〉 ,

R(ε) = Pr(ε)
Pa(ε)

,

ρ ∈ (0, 1), ε ∈ (0, 0.5).

(16)
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In [19], the authors have noted that U(ρ) is only dependent on the equations of
motion, which means U(ρ) is constant. On the other hand, we can easily obtain
R(ρ) on the basis of Pa(ε) and Pr(ε). While Pa(ε) and Pr(ε) are described by
formula as: ⎧⎨⎩Pa(ε) = P(τA/B = σA = σA|τA = τB);

Pr(ε) = P(σA �= σA|τA = τB);
Pu(ε) = P(τA = τB).

(17)

Here, Pu(ε) denotes the probability of an agreement on outputs. Then we de-
scribe the computational procedure of Pu(ε) in TPM(K = 3). The following
equalities always hold:

PTPM
u (k, ε)

⎧⎪⎪⎨⎪⎪⎩
PTPM
u (0, ε) =

(
3
0

)
ε0(1− ε)3,

PTPM
u (1, ε) = 0

(
3
1

)
ε1(1 − ε)2,

PTPM
u (2, ε) =

(
3
2

)
ε2(1− ε)1,

PTPM
u (3, ε) = 0

(
3
3

)
ε3(1 − ε)0.

(18)

Here, PTPM
u (k, ε) denotes the probability of an update step in TPM as k pairs

of corresponding hidden units disagree. According to (17) and (18), we can get:

PTPM
a (k, ε)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PTPM
a (0, ε) =

1
2 (

3
0)ε

0(1−ε)3

PTPM
u (k,ε) ,

PTPM
a (1, ε) = 0,

PTPM
a (2, ε) =

1
6 (

3
2)ε

2(1−ε)1

PTPM
u (k,ε) ,

PTPM
a (3, ε) = 0.

(19)

and

PTPM
r (k, ε)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PTPM
r (0, ε) =

0(30)ε
0(1−ε)3

PTPM
u (k,ε) ,

PTPM
r (1, ε) = 0,

PTPM
r (2, ε) =

2
3 (

3
2)ε

2(1−ε)1

PTPM
u (k,ε) ,

PTPM
r (3, ε) = 0.

(20)

Sum them up to derive the PTPM
a (ε) and PTPM

r (ε):⎧⎨⎩PTPM
a (ε) =

1
2 (1−ε)3+ 1

2 ε
2(1−ε)

PTPM
u (ε) ;

PTPM
r (ε) = 2ε2(1−ε)

PTPM
u (ε) .

(21)

Then, it follows that

RTPM(ε) =
PTPM
r (ε)

PTPM
a (ε)

=
4ε2

(1− ε)2 + ε2
. (22)

Similarly, we also can obtain:

RTCM(ε) =
1
2ε(1− ε) + ε2

3
4 (1− ε)2 + ε(1− ε) + 1

2ε
2
. (23)
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However, the equations of motion in TPM and TCM is the same, and this means
UTPM(ρ) = UTCM(ρ). So the difference in security between TPM and TCM is
due to the R(ε). Simulation experiment shows that 〈Δρ(ρ)〉 < 0 is most likely
to occur nearly synchronization (ρ → 1, ε → 0). Closing to synchronization,
RTPM(ε) and RTCM(ε) can be represented by two approximate value:

RTPM(ε) ∼ 4ε2 (24)

and

RTCM(ε) ∼ 2

3
ε. (25)

Then, we can derive the following:

RTPM(ε) ∼ 4ε2 < UTCM/TPM(ρ) <
2

3
ε ∼ RTCM(ε), ρ → 1, ε → 0. (26)

Because R(ε) is closely related to the state classifier, we make an assumption
that some factor of the state classifier can impact the security of TSCM.

Definition 1: For two different state vectors in one class, i.e., σ and σ′ in c1,
the Hamming Distance (HD) between them is defined by: HDc1 = HD(σ, σ′) =∑K

i=1(σi⊕σ′
i). And the Smallest Hamming Distance (SHD) in class c1 : SHDc1 =

min{HDc1
1 ,HD

c1
2 , . . .}. And Minimum Hamming Distance (d) in the classifier:

d = min{SHDc1 , SHDc2 , . . .}.
Note that (24) and (25) can be described by a uniform formula:

R(ε) ∼ λεd, ε → 0+, λ ∈ R
+. (27)

Here λ is a real number related to K. The following illustrates that (27) is
always true:

1. In the synchronization process, the probability of the occurrence of an attrac-
tive step between one pair of corresponding hidden units is calculated by

Pa(ε) =

∑n
i=0 ai

(
n
i

)
εi(1 − ε)n−i

Pu(ε)
. (28)

In fact, it is certainly possible that an attractive step happens as all pairs of

corresponding hidden units agree. So a0, and the item
a0(n0)ε

0(1−ε)n

Pu(ε)

constantly exist.
2. Similarly, we can obtain

Pr(ε) =

∑n
i=0 ri

(
n
i

)
εi(1− ε)n−i

Pu(ε)
. (29)

By Definition 1, it is impossible that τA = τB occurs as i < d, and this also
means the repulsive step can not occur as i < d. Therefore, the existence

of the minimum i equals d in (29). Meanwhile, the item
rd(nd)ε

d(1−ε)n−d

Pu(ε)

constantly exists.
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3. Combining (28) and (29), it can be easily obtained

R(ε) =
Pr(ε)

Pa(ε)
=

∑n
i=d ri

(
n
i

)
εi(1− ε)n−i∑n

i=0 ai
(
n
i

)
εi(1− ε)n−i

. (30)

As ε → 0, it can be derived

R(ε) ∼ rd
(
n
d

)
εd(1 − ε)n−d

a0
(
n
0

)
ε0(1 − ε)n

=
rd
(
n
d

)
εd

a0
. (31)

Simplifying (31), (27) is hold.

According to (12),(26) and (27), a Heuristic Rule about security can be found.

Heuristic Rule: Without other behavior, by means of modifying the state
classifier to enlarge d appropriately, we can improve the security of TSCM.

4 Example

In this section, an example has been illustrated the benefits and effectiveness of
our results for designing novel secure neural cryptography.

Table 2. Classification of Modified TCM(K = 3)

Name τ state vector σ

MTCM
+1 (+1,+1,−1), (+1,−1,+1), (−1,+1,+1)

−1 (−1,−1,+1), (−1,+1,−1), (+1,−1,−1)
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Fig. 2. Three types of dynamics of 〈Δρ(ρ)〉
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For simplicity, let us modify the insecure case, namely TCM. The state clas-
sifier of the modified TCM(MTCM) is shown in Table.2. And the d of MTCM
equals two. We can also obtain

RMTCM(ε) ∼ 2ε2 < UMTCM(ρ), ρ → 1, ε → 0. (32)

The inequality (32) indicates that the modified TCM can meet 〈Δρ(ρ)〉 >
0 nearly synchronization. Besides, simulation experiments shown in Fig.2 can
further prove the security of the modified TCM in whole synchronization.

5 Conclusion

The factor impacting on the security of neural cryptography is carefully inves-
tigated in this paper. The approach for designing novel neural cryptography is
established by presenting the generalized architecture and the heuristic rule. In
addition, main results obtained are efficient which have been demonstrated by
an example.
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Abstract. A tri-neuron discrete-time Cohen-Grossberg BAM neural
network with delays is investigated in this paper. By analyzing the corre-
sponding characteristic equations, the asymptotical stability of the null
solution and the existence of Neimark-Sacker bifurcations are discussed.
By applying the normal form theory and the center manifold theorem,
the direction of the Neimark-Sacker bifurcation and the stability of bifur-
cating periodic solutions are obtained. Numerical simulations are given
to illustrate the obtained results.

Keywords: Cohen-Grossberg neural network, discrete time, delay,
stability, Neimark-Sacker bifurcation.

1 Introduction

Hopfield [1] proposed Hopfield neural networks in 1982, and in 1983, Cohen-
Grossberg [2] proposed Cohen-Grossberg neural networks, which include Hop-
field neural networks. These network models have been successfully applied to
signal processing, pattern recognition, optimization and associative memories.
The analysis of the dynamical behaviors is a necessary step for practical design
of neural networks because their applications heavily depend on the dynamical
behaviors, researchers have focused on the studying of simple systems in order
to obtain a deep and clear understanding of the dynamics of complicated neural
networks with time delays [3-15]. This is indeed very useful since the complexity
found may be carried over to large networks.

In applications of continuous-time neural networks with or without delays to
some practical problems, such as computer simulation, experimental or com-
putational purposes, it is usual to formulate a discrete-time system which is a
discrete version of the continuous-time system. Recently, bifurcation analysis for
some discrete-time neural networks have been undertaken [11-15].

The authors discussed the Neimark-Sacker bifurcation for a tri-neuron discrete-
time Hopfield-type BAM neural network [11], we discussed the bifurcation for a
two-neuron discrete-time Cohen-Grossberg neural network with discrete delays

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 109–116, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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[15]. Motivated by the work in [11], we study the following tri-neuron discrete-
time Cohen-Grossberg-type BAM neural network with discrete delays further:

x1(n+ 1)=x1(n)−a(x1(n))[b(x1(n))−p11f1(y1(n− k2))−p12f1(y2(n−k2))],

y1(n+ 1) = y1(n)− c(y1(n))[d(y1(n))− q11f2(x1(n− k1))],

y2(n+ 1) = y2(n)− c(y2(n))[d(y2(n))− q21f3(x1(n− k1))],
(1)

where x1(n) denotes the state variable of the ith neuron from the neural field
FX and and yi(n), i = 1, 2 denote the state variables of neurons from the neural
field FY , a(·) and c(·) represent amplification functions which are positive for
R; fi(·) denote the signal functions of neurons; b(·) and d(·) are appropriately
behaved functions; p1i(·), i = 1, 2 and qi1(·), i = 1, 2 are connection weights of
the neural networks; discrete delays k1 and k2 correspond to the finite speed of
the axonal signal transmission.

The neural network (1) may be regarded as a discrete version of the following
continuous-time Cohen-Grossberg BAM neural network by Euler method.

ẋ1(t) = −ã(x1(t))[b(x1(t))− p11f1(y1(t− τ2))− p12f1(y2(t− τ2))],

ẏ1(t) = −c̃(y1(t))[d(y1(t))− q11f2(x1(t− τ1))],

ẏ2(t) = −c̃(y2(t))[d(y2(t))− q21f3(x1(t− τ1))].

(2)

The rest of this paper is organized as follows: The asymptotical stability and
bifurcation are analyzed for the system in Section 2. The formula for determining
the properties of Neimark-Sacker bifurcation of the model such as the direction
of Neimark-Sacker bifurcation, stability of bifuricating periodic solutions are
derived in Section 3. An example is given in Section 4 to demonstrate the main
results. Conclusions are finally drawn in Section 5.

2 Stability Analysis and Existence of Bifurcations

Throughout this paper, we assume that

(H1) b(0) = d(0) = 0, fi(0) = 0, i = 1, 2, 3;
(H2) 0 < a(0)b′(0) < 1, 0 < c(0)d′(0) < 1.

It is clear that(0, 0, 0) is a fixed point of system (1). We transform system (1)
into the following system of k1 + 2k2 + 3 difference equations without delays:

x
(0)
1 (n+ 1)=x

(0)
1 (n)−a(x

(0)
1 (n))[b(x

(0)
1 (n))−p11f1(y

(k2)
1 (n))−p12f1(y

(k2)
2 (n))],

y
(0)
1 (n+ 1) = y

(0)
1 (n)− c(y

(0)
1 (n))[d(y

(0)
1 (n))− q11f2(x

(k1)
1 (n))],

y
(0)
2 (n+ 1) = y

(0)
2 (n)− c(y

(0)
2 (n))[d(y

(0)
2 (n))− q21f3(x

(k1)
1 (n))],

x
(i)
1 (n+ 1) = x

(i−1)
1 (n), i = 1, 2, . . . , k1,

y
(j)
1 (n+ 1) = y

(j−1)
1 (n), y

(l)
2 (n+ 1) = y

(l−1)
1 (n), j, l = 1, 2, . . . , k2.

(3)
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The Jacobian matrix of system (3) at the fixed point (0, · · · , 0) as follows:

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 0 · · · 0 0 0 0 · · · 0 γ1 0 0 · · · 0 γ2
1 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 0 0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 β1 α2 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 1 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 1 · · · 0 0 0 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 · · ·
0 0 · · · 0 0 0 0 · · · 1 0 0 0 · · · 0 0
0 0 · · · 0 β2 0 0 · · · 0 0 α2 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

in which

α1 = 1− a(0)b′(0), α2 = 1− c(0)d′(0),

β1 = a(0)p11f
′
1(0), β2 = a(0)p12f

′
1(0), γ1 = c(0)q11f

′
2(0), γ2 = c(0)q21f

′
3(0).

(5)

The associated characteristic equation of system (3) is

λk2(λ− α2)[(λ − α1)(λ − α2)λ
k − b] = 0. (6)

where b = β1γ1 + β2γ2 and k = k1 + k2.
Obviously, (6) has k2 zero roots and the root α2, the other roots satisfy the

following equation
(λ− α1)(λ − α2)λ

k = b. (7)

Denote

b0 = (1− α1)(1 − α2),

bj = (−1)j
√
(1 + α2

1 − 2α1 cos θj)(1 + α2
2 − 2α2 cos θj), j = 1, 2, · · · , k + 1,

bk+2 = (−1)k+2(1 + α1)(1 + α2),

(8)

where θj = h−1(jπ), j = 1, 2, · · · , (k + 1) and h(θ) = cot−1

(
cos θ − α1

sin θ

)
+cot−1

(
cos θ − α2

sin θ

)
+ kθ in which cot−1 denotes the inverse of the cotangent

function restricted to the interval (0, π).
According to Theorem 2.1 in [15], together with 0 < α2 < 1, we obtain the

following results.
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Theorem 1. Under assumptions (H1)-(H2), we have
1. If b ∈ (b1, b0), the null solution of system (1) is asymptotically stable.

2. If b = b0, a Fold bifurcation occurs at the origin in system (1).

3. If b = b1, a Neimark-Sacker bifurcation occurs at the origin in system (1),
i.e. a unique closed invariant curve bifurcates from the origin near b = b1.
Where

b0 = (1− α1)(1− α2), b1 = −
√
(1 + α2

1 − 2α1 cos θ1)(1 + α2
2 − 2α2 cos θ1)

in which θ1 is the unique solution in (0, π/(k+2)) of the equation sin(k+2)θ−
(α1 + α2) sin(k + 1)θ + α1α2 sin kθ = 0 and k = k1 + k2.

Remark 1. If b = bj, j = 2, 3, · · · , k + 1, a Neimark-Sacker bifurcation also
occurs at the origin in system (1) near b = bj except θj = 2π/3 and π/2, and
the value bj satisfy

· · · < b5 < b3 < b1 < 0 < b0 < b2 < b4 · · ·
and |bj | ≤ (1 + α1)(1 + α2)[15].

3 Direction and Stability of Neimark-Sacker Bifurcation
for the Model

In this section, we investigate the direction of Neimark-Sacker bifurcation and
the stability of periodic solutions bifurcating from the origin of system (1) by
applying the normal form theory and the center manifold theorem for discrete
time system developed by Kuznetsov [16].

We still discuss system (3). We know that if b = b1, system (3) undergoes
a Neimark-Sacker bifurcation at the origin and the associated characteristic
equation of system (3) has a pair simple imaginary roots e±iθ1 .

Denote λ1 = eiθ1 . Let q ∈ Ck1+2k2+3 be an eigenvector of Â corresponding to
eigenvalue λ1, then Âq = λ1q. Again, let p ∈ Ck1+2k2+3 be an eigenvector of ÂT

corresponding to its eigenvalue λ̄1. By direct calculation we obtain

q =
(
λk1
1 q1, λ

k1−1
1 q1, · · · , λ1q1, q1, λk2

1 q2, λ
k2−1
1 q2, · · · , λ1q2, q2,

λk2
1 q3, λ

k2−1
1 q3, · · · , λ1q3, q3

)T
,

p =
(
p1, (λ̄1 − α1)p1, λ̄1(λ̄1 − α1)p1, · · · , λ̄k1−1

1 (λ̄1 − α1)p1,

p2, (λ̄1 − α2)p2, λ̄1(λ̄1 − α2)p2, · · · , λ̄k2−1
1 (λ̄1 − α2)p2,

p3, (λ̄1 − α3)p3, λ̄1(λ̄1 − α3)p3, · · · , λ̄k2−1
1 (λ̄1 − α3)p3

)T
(9)

in which
q1 = λk2

1 (λ1 − α2), q2 = γ1, q3 = γ2,

p̄1 =
1

λk1(λ1 − α2)[λ1 + k1(λ1 − α1)]
,
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p̄2 =
γ2

λk2
1 + k2λ

k2−1
1 (λ1 − α2)

, p̄3 =
−γ1

λk2
1 + k2λ

k2−1
1 (λ1 − α2)

and

< p, q >=λk1(λ1−α2)[λ1+k1(λ1−α1)]p̄1+[λ
k2
1 +k2λ

k2−1
1 (λ1−α2))](γ1p̄2+γ2p̄2) = 1.

Let function F : Rk1+2k2+3 → Rk1+2k2+3 be given by the right-hand side of
system (3), and denote the operators

B̂ = D2F (0), Ĉ = D3F (0), (10)

when b = b1, the restriction of system (3) to its two-dimensional center manifold
at the critical parameter value can be transformed into the normal form written
in complex coordinates [16]:

w → λ1w

(
1 +

1

2
d|w|2

)
+O(|w|4), w ∈ C (11)

in which

d = λ̄1 < p, Ĉ(q, q, q̄) + 2B̂(q, (1− Â)−1B̂(q, q)) + B̂(q̄, (λ21I − Â)−1B̂(q, q)) >,

where p and q are defined by (9), Â and B̂, Ĉ are defined by (4) and (10),
respectively.

Theorem 2. ([16]) The direction and stability of the Neimark-Sacker bifurca-
tion for system (1) are determined by the sign of Re(d). If Re(d) < 0, then the
bifurcation is supercritical, i.e. the closed invariant curve bifurcating from the
origin is asymptotically stable. If Re(d) > 0, then the bifurcation is subcritical,
i.e. the closed invariant curve bifurcating from the origin is unstable.

Remark 2. If a(·) = 1, c(·) = 1, b(x(n)) = b̃x1(n), d(yi(n)) = d̃yi(n), i = 1, 2,
and b̃ = d̃, system (1) reduces to the following Hopfield-type BAM neural
network in [11].

x1(n+ 1) = ax1(n) + p11f1(y1(n− k2)) + p12f2(y2(n− k2)),

y1(n+ 1) = ay1(n) + q11f2(x1(n− k1)),

y2(n+ 1) = ay2(n) + q21f3(x1(n− k1))

(12)

where a = 1 − b̃, and 0 < a < 1 according to the condition (H2). In this
case, bj = (−1)j|1 + a2 − 2a cos θj | due to α1 = α2 = a. The Neimark-Sacker
bifurcation for system (12) has been discussed in [11]. Note that |b| = (a4 +

4a2 + 1 − (4a3 + 4a) cos θ + 2a2 cos 2θ)
1
2 in (2.1) in [11] is not a concise results,

actually, |b| = |1 + a2 − 2a cos θ|. Hence Theorem 3.1 and Theorem 4.1 in [11]
are Corollary of Theorem 2.1 and Theorem 3.1 in this paper. Furthermore, the
results in [11] can be simplified.
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4 A Numerical Example

Consider the following discrete-time Cohen-Grossberg BAM neural network with
discrete delays:

x1(n+ 1) = x1(n)− [0.7x1(n)− tanh(y1(n− 2))− p12 tanh(y2(n− 2))],

y1(n+ 1) = y1(n)− 0.2(2 + cos(y1(n)))[y1(n)− 0.6 sin(x1(n− 3))],

y2(n+ 1) = y2(n)− 0.2(2 + cos(y2(n)))[y2(n)− 1.2 sin(x1(n− 3))].

(13)

We can obtain that θ1 = 0.3823 and furthermore we obtain that b1 = −0.4747
in view of bisection method by using MATLAB. It is easy to know b0 = 0.42.
According to Theorem 1, the null solution of system (13) is asymptotically stable
when b = β1γ1 + β2γ2 = 0.36 + 0.72p12 ∈ (−0.4747, 0.42), and when b = b1, the
Neimark-Sacker bifurcation occurs at the origin.

Case 1: Let p12 = −1.1, b = −0.2844 ∈ (−0.4747, 0.42), then the null solution
of system (13) is asymptotically stable ( as shown in Fig. 1).
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Fig. 1. Phase plot for system (13) with initial condition (0.02, 0.02) and p12 = −1.1
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Fig. 2. Phase plot for system (13) with initial condition (0.02, 0.02) and p12 = −1.17
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Case 2: Let p12 = −1.17, b = −0.4827, and b < b1 = −0.4747, thus Neimark-
Sacker bifurcation occur at the origin and the bifurcating periodic solutions is
stable as Re(d) = −0.2137 ( as shown in Fig. 2).

Case 3: Let p12 = −3.27, although Neimark-Sacker bifurcation does not occur
due to |b| > (1 + α1)(1 + α2), Fig. 3-4 show the chaotic dynamic behaviors of
system (13).
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Fig. 3. Phase plot for system (13) with initial condition (0.02, 0.02) and p12 = −3.27

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−4

−3

−2

−1

0

1

2

3

4

p
12

x 1

Fig. 4. Bifurcation diagram in space (p12, x1) for system (13) with step size 0.01 for
p12 and initial condition (0.02, 0.02), in which there are 100 points for each p12

5 Conclusions

A discrete-time Cohen-Grossberg BAM neural network with discrete delays is
analyzed. By using b = β1γ1 + β2γ2 = a(0)c(0)f ′

1(0)[p11q11f
′
2(0) + p12q21f

′
3(0)]

as a bifurcation parameter, we show that this system undergoes Neimark-Sacker
bifurcations at the critical parameter The direction of Neimark-Sacker bifurca-
tion and the stability of the bifurcating periodic solutions are investigated for
the system. In addition, system may be chaostic when |b| is large enough.
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Stability Criteria for Uncertain Linear Systems

with Time-Varying Delay

Huimin Liao, Manchun Tan�, and Shuping Xu

Department of Mathematics, Jinan University, Guangzhou 510632, China
tanmc@jnu.edu.cn

Abstract. This paper is concerned with the stability criteria for uncer-
tain systems with time-varying delay. The parameter uncertainties are
supposed to be norm-bounded. By using Lyapunov functional and in-
tegral inequality, some delay-dependent stability criteria are obtained.
Numerical examples are given to demonstrate the effectiveness of pro-
posed method.

Keywords: uncertain linear systems, Lyapunov functional, time-
varying delay, stability.

1 Introduction

It is known that the phenomena of time-delay occur in many systems, such
as communication systems, neural networks, automatic systems, and so on. The
existence of time-delay has an adverse effect on system performance and stability.
Hence, much attention is received in stability analysis of the systems with time-
delay [1]-[22].

To derive the delay-dependent stability criteria, many methods have been
proposed such as augmented functional approach [1], free-weighting matrix ap-
proach [2][3], integral inequality [4][5], convex combination method [6], delay
partition approach [7][8], triple-integral approach [9][10], mathematical analysis
[11], LMI [12]-[14], and so on. The free-weighting matrix approach is most widely
used among these approaches.

In this paper, we investigate the delay-dependent stability of uncertain linear
systems. By choosing an appropriate Lyapunov functional and using integral
inequality, some delay-dependent stability criteria are obtained. In the end, nu-
merical examples are given to show the advantages of the proposed stability
criteria.

The notations used throughout this paper are as follows. Matrix I refers to
an identity matrix. The superscript T stands for matrix transposition. The sym-
metric term in a matrix is denoted by ∗. Rn represents n dimensional Euclidean,
Rn×m is the set of all n ×m real matrices. For real symmetric matrices A and
B, the notion A > B means the matrix A−B is positive definite.
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2 Problem Formulation

Consider the following uncertain linear system with time-varying delay:

ẋ(t) = (A+�A(t))x(t) + (A1 +�A1(t))x(t − h(t)), ∀ t ≥ 0,

x(t) = Φ(t), ∀ t ∈ [−h2, 0], (1)

where x(t) is the state vector, A and A1 are constant matrices of appropriate
dimensions, Φ(t) is a given continuous vector valued function. The delay h(t) is
a bounded differentiable function that satisfies

0 ≤ h1 ≤ h(t) ≤ h2, ḣ(t) ≤ d < ∞, ∀ t ≥ 0, (2)

where h1,h2 and d are constants. Unknown real matrices �A(t) and �A1(t)
represent time-varying parametric uncertainties satisfying

[�A(t) �A1(t)] = DF (t)[E E1], (3)

where D,E and E1 are constant matrices of appropriate dimensions, F (t) is
unknown matrix that satisfies

FT (t)F (t) ≤ I. (4)

We first introduce the following lemmas which will play a great role on our
derivation.

Lemma 1. [16] For any constant matrix M ∈ Rn×n, there exist positive scalars
h1, h2 such that h1 ≤ h(t) ≤ h2 and vector function ẋ : [−h2,−h1] → Rn such

that the integration
∫ t−h1

t−h2
ẋT (s)Mẋ(s)ds is well defined, then

−(h2 − h1)

∫ t−h1

t−h2

ẋT (s)Mẋ(s)ds ≤ ξT (t)Λξ(t),

where ξ(t) =

⎡⎣ x(t− h1)
x(t− h(t))
x(t− h2)

⎤⎦, Λ =

⎡⎣−M M 0
∗ −2M M
∗ ∗ −M

⎤⎦.
Lemma 2. [17] For a given matrix S =

[
S11 S12

∗ S22

]
with S11 = ST

11, S22 = ST
22,

then the following conditions are equivalent:

(1)S < 0; (2)S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Lemma 3. [17] Let U, F,W and Q be real matrices of appropriate dimensions
with Q satisfying Q = QT , then

Q+ UFW +WTFTUT < 0 for all FTF ≤ I

if and only if there exists a scalar ε > 0 such that

Q+ ε−1UUT + εWTW < 0.
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3 Main Results

Theorem 1. Given scalars 0 ≤ h1 < h2 and d ≥ 0, system (1) with (3) is asymp-
totically stable if there exist positive definite matrices P,M,R11, R22, R33, Qi(i =
1, 2, 3, 4), appropriately dimensioned matrices R12, R13, R23 and a positive con-
stant ε such that the following LMI holds:

ϕ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ11 ϕ12 0 0 ATΩ PD εET

∗ ϕ22 M M AT
1 Ω 0 εET

1

∗ ∗ ϕ33 0 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ −Ω ΩD 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (5)

where

R =

⎡⎣R11 R12 R13

∗ R22 R23

∗ ∗ R33

⎤⎦ > 0,

ϕ11 = PA+ATP +Q1 +Q2 +Q3 + h2R11 +R13 +RT
13,

ϕ12 = PA1 + h2R12 −R13 +RT
23,

ϕ22 = −(1− d)Q3 + h2R22 −R23 −RT
23 −M −MT ,

ϕ33 = −Q1 +Q4 −M,

ϕ44 = −Q2 −Q4 −M,

Ω = h2R33 + (h2 − h1)
2M.

Proof. Consider the Lyapunov function

V (t) =

4∑
i=1

Vi(t), (6)

where

V1(t) = xT (t)Px(t),

V2(t) =

∫ t

t−h1

xT (s)Q1x(s)ds +

∫ t

t−h2

x(s)TQ2x(s)ds +

∫ t

t−h(t)

x(s)TQ3x(s)ds

+

∫ t−h1

t−h2

x(s)TQ4x(s)ds,

V3(t) =

∫ 0

−h2

∫ t

t+θ

ẋT (s)R33ẋ(s)dsdθ + (h2 − h1)

∫ −h1

−h2

∫ t

t+θ

ẋT (s)Mẋ(s)dsdθ,

V4(t) =

∫ t

0

∫ θ

θ−h(θ)

ζT (θ, s)Rζ(θ, s)dsdθ,
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where

ζ(θ, s) = [xT (θ) xT (θ−h(θ)) ẋT (s)]T .

Taking the derivative of V (t) along any trajectory of system (1), we have

V̇1(t) = 2xT (t)P ẋ(t), (7)

V̇2(t) ≤ xT (t)(Q1 +Q2 +Q3)x(t)− xT (t− h1)Q1x(t− h1)

− xT (t− h2)Q2x(t− h2)− (1− d)xT (t− h(t))Q3x(t− h(t))

+ xT (t− h1)Q4x(t− h1)− xT (t− h2)Q4x(t− h2), (8)

V̇3(t) = h2ẋ
T (t)R33ẋ(t)−

∫ t

t−h2

ẋT (s)R33ẋ(s)ds+ (h2 − h1)
2ẋT (t)Mẋ(t)

− (h2 − h1)

∫ t−h1

t−h2

ẋT (s)Mẋ(s)ds

≤ ẋT (t)[h2R33 + (h2 − h1)
2M ]ẋ(t)−

∫ t

t−h(t)

ẋT (s)R33ẋ(s)ds

− (h2 − h1)

∫ t−h1

t−h2

ẋT (s)Mẋ(s)ds, (9)

V̇4(t) = h(t)[xT (t) xT (t− h(t))]

[
R11 R12

∗ R22

]
[xT (t) xT (t− h(t))]T + 2xT (t)R13x(t)

− 2xT (t)R13x(t− h(t)) + 2xT (t− h(t))R23x(t)− 2xT (t− h(t))R23x(t− h(t))

+

∫ t

t−h(t)

ẋT (s)R33ẋ(s)ds

≤ h2x
T (t)R11x(t) + 2h2x

T (t)R12x(t− h(t)) + h2x
T (t− h(t))R22x(t− h(t))

+ 2xT (t)R13x(t)− 2xT (t)R13x(t− h(t)) + 2xT (t− h(t))R23x(t)

− 2xT (t− h(t))R23x(t− h(t)) +

∫ t

t−h(t)

ẋT (s)R33ẋ(s)ds, (10)

By Lemma 1, we have

− (h2 − h1)

∫ t−h1

t−h2

ẋ(s)Mẋ(s)ds ≤ φT (t)

⎡⎣−2M M M
∗ −M 0
∗ ∗ −M

⎤⎦φ(t), (11)

where φT (t) = [xT (t− h(t)) xT (t− h1) xT (t− h2)]
T .

By adding (7)-(11), we obtain the following result:

V̇ (t) ≤ ηT (t)[ψ +ΠTΩΠ ]η(t), (12)

where ϕ11, ϕ22, ϕ33, ϕ44 are defined in (5) and

η(t) = [xT (t) xT (t− h(t)) xT (t− h1) xT (t− h2)]
T ,

ψ =

⎡⎢⎢⎣
ϕ11 +Δ1 ϕ12 +Δ2 0 0

∗ ϕ22 M M
∗ ∗ ϕ33 0
∗ ∗ ∗ ϕ44

⎤⎥⎥⎦ ,
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Δ1 = PDF (t)E + ETFT (t)DTP,

Δ2 = PDF (t)E1,

Π = [A+DF (t)E A1 +DF (t)E1 0 0],

Ω = h2R33 + (h2 − h1)
2M.

By Lemma 2, if

ψ +ΠTΩΠ < 0, (13)

then [
ψ ΠTΩ
∗ −Ω

]
< 0. (14)

Inequality (14) is equivalent to

Ξ + UF (t)W +WTFT (t)UT < 0, (15)

where

Ξ =

⎡⎢⎢⎢⎢⎣
ϕ11 ϕ12 0 0 ATΩ
∗ ϕ22 M M AT

1 Ω
∗ ∗ ϕ33 0 0
∗ ∗ ∗ ϕ44 0
∗ ∗ ∗ ∗ −Ω

⎤⎥⎥⎥⎥⎦ ,
U = [DTP 0 0 0 DTΩ]T ,

W = [E E1 0 0 0].

Applying Lemma 2 and Lemma 3, inequality (12) can be expressed as follows:

V̇ (t) ≤ ηT (t)ϕη(t). (16)

If ϕ < 0, then V̇ (t) < 0. Hence, systems (1) is asymptotically stable if LMI (5)
is satisfied. This completes the proof.

If the function h(t) is not differentiable or d is unknown, by eliminating Q3,
we have the following theorem.

Theorem 2. Given scalars 0 ≤ h1 < h2, system (1) with (3) is asymptotically
stable if there exist positive definite matrices P,M,R11, R22, R33, Q1, Q2, Q4,
appropriately dimensioned matrices R12, R13, R23 and a positive constant ε such
that the following LMI condition holds:
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ϕ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ̂11 ϕ12 0 0 ATΩ PD εET

∗ ϕ̂22 M M AT
1 Ω 0 εET

1

∗ ∗ ϕ33 0 0 0 0
∗ ∗ ∗ ϕ44 0 0 0
∗ ∗ ∗ ∗ −Ω ΩD 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (17)

where ϕ33, ϕ44, Ω are defined in (5) and

R =

⎡⎣R11 R12 R13

∗ R22 R23

∗ ∗ R33

⎤⎦ > 0,

ϕ̂11 = PA+ATP +Q1 +Q2 + h2R11 +R13 +RT
13,

ϕ̂22 = h2R22 −R23 −RT
23 −M −MT .

4 Numerical Example

In this section, we consider three examples to show the reduced conservatism of
the proposed stability criteria.

Table 1. Maximum allowable delay bound h2 for various d and h1 = 0

method d 0 0.5 0.9

Fridman [18] h2 1.1490 0.9247 0.6710
Wu et al. [19] h2 1.1490 0.9247 0.6954
Theorem 1 h2 1.2060 1.0103 0.8165

Table 2. Maximum allowable delay bound h2 for various h1 and unknown d

method h1 0.5 0.8 1 2

Jiang et al. [22] h2 1.07 1.33 1.50 2.39
He et al. [20] h2 1.0991 1.3476 1.5187 2.4000
Shao [21] h2 1.2191 1.4539 1.6169 2.4798
Theorem 2 h2 1.2201 1.4892 1.6676 2.5436
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Example 1. Consider the system (1) with

A =

[−2 0
0 −0.9

]
, A1 =

[−1 0
−1 −1

]
, D =

[
0.1 0
0 0.5

]
,

E =

[
16 0
0 0.1

]
, E1 =

[
1 0
0 0.6

]
.

When the lower bound h1 = 0, by using Theorem 1, Table 1 lists the maximum
allowable delay bound for various delay derivative values. It clearly shows that
the proposed criterion is less conservative than those obtained in [18][19].

Example 2. Consider the system (1) with

A =

[
0 1
−1 −2

]
, A1 =

[
0 0
−1 1

]
, D = E = E1 = 0.

When d is unknown, Table 2 gives the comparisons of the maximum allowable
delay h2 for various h1 by Theorem 2.

5 Conclusion

In this paper, we discuss the delay-dependent stability criteria with uncertain
systems. By using Lyapunov functional and integral inequality, some improved
stability criteria are obtained. Examples are given to demonstrate the advantages
of our method.
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Abstract. The generalized function projective lag synchronization (GFPLS) is 
proposed in this paper. The scaling functions which we have investigated are not 
only depending on time, but also depending on the networks. Based on Lyapunov 
stability theory, a feedback controller and several sufficient conditions are 
designed such that the response networks can realize lag-synchronize with the 
drive networks. Finally, the corresponding numerical simulations are performed to 
demonstrate the validity of the presented synchronization method. 

Keywords: generalized function projective lag synchronization, Lyapunov 
stability theorem, neural networks, feedback control. 

1 Introduction 

In recent years, neural networks (NNs) have drawn the attention of many researchers 
from different areas since they have been fruitfully applied in signal and image 
processing, associative memories, automatic control , secure communication, and so 
on[1-4]. Synchronization is a ubiquitous phenomenon in nature, roughly speaking, if 
two or more networks have something in common, a synchronization phenomenon 
will occur between them which are either chaotic or periodic share a common 
dynamical behavior. As a research hot spot, synchronization in neural networks has 
received a great deal of interests. Since the pioneering work of Pecora and Carroll [5], 
in which proposed a successful method to synchronize two identical chaotic systems 
with different initial conditions, chaos synchronization has received a great deal of 
interest among scientists from various fields. In the past decades, some new types of 
synchronization have appeared in the literatures. Such as complete synchronization 
[6], function projective synchronization [7], stochastic synchronization [8], impulsive 
synchronization [9] and projective synchronization [10], etc. 

The problem of synchronization between two neural networks with time delay has 
been extensively studied [11-14]. Recently, considering a time delay will affect the 
synchronization of neural networks received a lot of attentions of researchers. 
Namely, the response networks’ output lags behind the output of the driver system 

                                                           
* Corresponding author. 
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proportionally. Such as projective lag synchronization [15], exponential lag 
synchronization [16-17], function projective lag synchronization [18], and so on. In 
Ref.[15], the author considered adaptive lag synchronization in unknown stochastic 
chaotic neural networks with discrete and distributed time-varying delays, by the 
adaptive feedback technique and several sufficient conditions have been derived to 
ensure the synchronization of stochastic chaotic neural networks. In this paper, we 
investigate a special kind of function projective lag synchronization which is different 
from other literatures. A controller and sufficient conditions are designed such that the 
response networks can lag-synchronize with the drive networks. 

The rest of this paper is organized as follows: Section 2 gives neural networks 
model and some preliminaries. In section 3, the function projective lag 
synchronization is presented for neural networks based on Lyapunov stability theory. 
In section 4, we give numerical simulation to verify the result. The conclusion is 
finally drawn in section 5. 

2 Neural Networks Model and Preliminaries 

In this paper, we consider the following neural networks as drive neural networks: 

1

( ) ( ) ( ( )) ( )
N

i i i i i ij j i
j

x t A x t f x t c Px t I
=

= + + +               1, 2,...,i N=      (1) 

where ( ) 1 2( ( ), ( ),..., ( ))T n
i i i inx t x t x t x t R= ∈ is the state vector of the ith neuron at time 

t, N corresponds to the number of neurons, n n
iA R ×∈ is a constant matrix, 

: n n
if R R→ denote the activation functions of the neurons, , 1, 2,...,N

iI R i N∈ =  is a 

constant external input vector. n nP R ×∈ is an inner coupling matrix, 
( ) N N

ij N NC c R ×
×= ∈ is the coupling configuration matrix meaning the coupling 

strength and the topological structure of the networks, if there is a connection from 
node i to node j ( )i j≠ , then 0ijc ≠ , otherwise, 0ijc = , the diagonal elements of 

matrix C is defined by
, 1

N

ii ij
j i j

c c
≠ =

= −  1,2,...,i N= . 

We take the response neural networks is given by: 

1

( ) ( ) ( ( )) ( ) ( )
N

i i i i i ij j i i
j

y t B y t g y t d Qy t I u t
=

= + + + +        1, 2,...,i N=        (2) 

where the ( ) 1 2( ( ), ( ),..., ( ))T n
i i i iny t y t y t y t R= ∈ denote the response state vector of the 

ith neuron at time t, respectively, , , ,i i iB g Q I  have the same meanings as , , ,i i iA f P I  

of Eq.(1). ( ) N N
ij N ND d R ×

×= ∈  is the same meaning as C, ( )1,2,...,n
iu R i N∈ = are 

the controllers to be designed. 
Let the error term ( )( )( ) ( ) ( )i i i ie t y t x t t= − −α τ , 1, 2,...,i N= . ( , )i x tα are nonzero 

scaling functions and continuously differentiable functions, ( )tτ is the time lag. 
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Definition 1 (GFPLS). For the drive neural networks (1) and the response neural 
networks (2), it is said that they are generalized function projective lag synchronized, 
if there exist the continuous function ( , )i x tα such that 

( )( )lim ( ) lim ( ) ( ) 0i i i i
t t

e t y t x t t
→∞ →∞

= − − =α τ . 

Definition 2 [19]. The Kronecker product of matrices A and B is defined as: 

                    
11 1

1

m

n nm

a B a B

A B

a B a B

 
 ⊗ =  
 
 


  


                       (3) 

where if A is an n m× matrix and B is a p q× matrix, then A B⊗ is an np mq× matrix. 

Remark 1. If ( ) 0tτ = , we know that the generalized function projective lag 

synchronization reduced to generalized function projective synchronization. 
Remark 2. If ( ),i x tα are taken as nonzero constants then the generalized function 

projective lag synchronization reduced to projective lag synchronization. 

3 Main Result 

In this section, we consider the generalized function projective lag synchronization of 
neural networks (1) and (2). For simple we regard ( ( ( )))i ix t t−α τ as a linear 

function ( ( ))i i is x t tτ λ− + , is , iλ are constant 1,2,...,i N= , then we have 

( )( ) ( )( ) ( ) ( ) ( ) ( )i i i i i i i ie t y t x t t y t s x t tα τ τ λ= − − = − − − . So we can get error networks 

as following: 

( )( )( ) ( ) ( ) 1 ( )i i i ie t y t s x t t tτ τ= − − −      

( )( )
1

( ) ( ( )) ( ) ( ) ( ) 1 ( )
N

i i i i ij j i i i i
j

B y t g y t d Qy t u t s A x t t tτ τ
=

= + + + − − −   

( )( ) ( )( ) ( )( )
1

( ) 1 ( ) 1
N

i i i i ij j
j

s f x t t t s c Px t t tτ τ τ τ
=

− − − − − −   

( ) ( ) ( ) ( )( )
( ) ( )

1

1 1

( ) ( ) ( ) ( )

( ( )) ( ( )) ( ) ( )

( ( )) ( ( )) ( ) ( )

i i i i i i i i i i i

N

i i i i i i ij j
j

N N

i ij j i ij j i i i
j j

B e t B A s x t t s A x t t t g y t

s f x t t s f x t t t d Qy t

s c Px t t s c Px t t t B u t

τ τ τ

τ τ τ

τ τ τ λ

=

= =

= + − − + − +

− − + − +

− − + − + +



 







      

( ) ( ) ( )( ) ( )

( ) ( )
1 1

1 1

( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ( )) ( )

i i i i i i i i i i i

N N

i i ij j i ij i
j j

N N

i ij i ij j i i i
j j

B e t B A s x t t g y t s f x t t

s t x t t d Qe t s d Qx t t

d Q s c Px t t B u t

τ τ

τ τ τ

λ τ λ

= =

= =

= + − − + − −

+ − + + −

+ − − + +

 

 

          (4) 
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( ) ( ) ( )( ) ( )

( )
1 1 1

( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( ( ))

( )

i i i i i i i i i i i

N N N

i i ij j i ij i ij ij j
j j j

i i i

B e t B A s x t t g y t s f x t t

s t x t t d Qe t d Q s c P d Q x t t

B u t

τ τ

τ τ λ τ

λ
= = =

= + − − + − −

+ − + + − − −

+ +

     

Theorem 1. The neural networks (2) and (1) can realize generalized function projective 
lag synchronization, if we choose the adaptive controller and update law such that: 

( ) ( ) ( )( ) ( )

( )
1 1

( ) ( ) ( ( ))

( ) ( ) ( ) ( ( ))

( )

i i i i i i i i i i

N N

i i i ij i ij ij j
j j

i i i

u t B A s x t t g y t s f x t t

s t x t t d Q s c P d Q x t t

B k e t

τ τ

τ τ λ τ

λ
= =

∗

= − − − − + −

− − − + − −

− −

    1,2,...,i N=   (5) 

where k ∗ is a positive constant to be determined. 

Proof. Choose the following Lyapunov function: 

                ( ) ( )
1

1
( )

2

N
T
i i

i

V t e t e t
=

=     1,2,...,i N=                   (6) 

Substituting (4) into (6), with the controllers (5), we obtain: 

1 1

( ) ( ) ( ) ( ) ( )
N N

T
i i i ij j i

i j

V t e t B e t d Qe t k e t∗

= =

 
= + − 

 
   

     ( ) ( )
1 1 1 1

( ) ( ) ( ) ( )
N N N N

T T T
i i i ij i j i i

i i j i

e t B e t d e t Qe t k e t e t∗

= = = =

= + −    

     ( ) ( ) ( ) ( ) ( ) ( )T T Te t Be t e t We t k e t e t∗= + −  

     ( )max max( )) ( ) ( )
2 2

T T
TB B W W

k e t e t∗ + +≤ Λ + Λ − 
 

 

where ( )1 2diag , ,..., nN nN
NB B B B R ×= ∈ , nN nNW D Q R ×= ⊗ ∈ . 

Taking max max( )) ( ) 1
2 2

T TB B W W
k∗ + +≥ Λ + Λ + , we can get ( )( ) 0TV e t e t≤ − ≤  

Based on Lyapunov stability theory, we know that the neural networks which we 
have discussed achieved function projective lag synchronization. So, the proof is 
completed. 
Corollary 1. If ( ) 0tτ = and other situations constant, the neural networks which we 

have discussed can achieve generalized function projective synchronization by the 
following controllers: 

( ) ( ) ( )( ) ( )

1 1

( ) ( ) ( ( ))

( ) ( ( )) ( )

i i i i i i i i i i

N N

i ij i ij ij j i i i
j j

u t B A s x t t g y t s f x t t

d Q s c P d Q x t t B k e t

τ τ

λ τ λ ∗

= =

= − − − − + −

− + − − − − 
  1, 2,...,i N=    (7) 

where max max( )) ( ) 1
2 2

T TB B W W
k∗ + +≥ Λ + Λ + . 
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Corollary 2. If ( ),i x tα are taken as nonzero constants is and other situations constant 

then the neural networks which we have discussed can achieve projective lag 
synchronization by the controllers as following: 

( ) ( ) ( )( ) ( )

( )
1

( ) ( ) ( ( ))

( ) ( ) ( ) ( ( )) ( )

i i i i i i i i i i

N

i i i ij ij j i
j

u t B A s x t t g y t s f x t t

s t x t t s c P d Q x t t k e t

τ τ

τ τ τ ∗

=

= − − − − + −

− − + − − − 
  1, 2,...,i N=   (8) 

where max max( )) ( ) 1
2 2

T TB B W W
k∗ + +≥ Λ + Λ + . 

Corollary 3. If , , ,i i i i ij ijA B f g c d P Q= = = = and other situations constant then we 

can make two neural networks which have the same structure to achieve generalized 
function projective lag synchronization by the following controllers: 

( ) ( )( ) ( )

( )
1

( ) ( ) ( ( ))

( ) ( ) ( )

i i i i i i i i

N

i i i ij i i i
j

u t s x t t g y t s f x t t

s t x t t d Q B k e t

τ τ

τ τ λ λ ∗

=

= − − + −

− − − − − 
  1, 2,...,i N=           (9) 

where max max( )) ( ) 1
2 2

T TB B W W
k∗ + +≥ Λ + Λ + . 

4 Simulation 

In this section, the simulation example is performed to verify the effectiveness of the 
proposed synchronization scheme in the previous section. We consider six Lorenz 
systems and six Chen systems as the drive neural network and response networks, 
respectively. Comparing Eq. (1), and Eq. (2), we can get: 

( )
( )

1 1 1 1

1 1 1 1 1 1 1

1 1 11 1 1 1

0 0

1 0

0 0

x a y x a a x

y b z x y b y x z

c z x yz x y cz

= − −     
      = − − = − + −      
      −= −      





,              (10) 

( )
( )

2 2 2 2

2 2 2 2 2 2 2 2

2 2 22 2 2 2

0 0

0

0 0

x y x x

y x x z y y x z

z x yz x y z

α α α
γ α γ γ α γ

ββ

= − −     
      = − − + = − + −      
      −= −      





.  (11) 

where 1x , 1y , 1z are the drive state variables, when the three real parameters 

810, 28, 3a b c= = = , the system shows chaotic behavior, 2x , 2y , 2z are response 

state variables, when three real parameters 35α = , 3β = , 28γ = , the system shows 

chaotic behavior. They are shown in Figs 1-2, respectively. Comparing Eq.(1) and (2), 
we have: 
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10 10 0

28 1 0

80 0 3

A

 − 
 = −
 

−  

 1 1

1 1

0

f x z

x y

 
 = − 
  

 

35 35 0

7 28 0

0 0 3

B

− 
 = − 
 − 

  2 2

2 2

0

g x z

x y

 
 = − 
  

   (12) 

We rewrite the drive neural networks and response networks as following: 

6

1

( ) ( ) ( ( )) ( )i i i ij j i
j

x t Ax t f x t c Px t I
=

= + + +   1,2,...,6i =               (13) 

6

1

( ) ( ) ( ( )) ( ) ( )i i i ij j i i
j

y t By t g y t d Qy t I u t
=

= + + + +   1,2,...,6i =           (14) 

For simply, we take the input vector iI as (0,0,0) , 0iλ = , 1is = , iu is designed as 

Eq.(4), the inner coupling matrices of Eq.(13) and Eq.(14) ( )diag 1,1,1P = and 

( )diag 1,1,1Q = , the coupling configuration matrices 6 6( )ijC c ×= , ( )
6 6ijD d
×

= are 

given respectively as follows: 
3 1 0 0 2 0

1 5 2 0 0 2

1 2 4 0 1 0

0 1 1 2 0 0

0 1 0 2 5 2

1 0 1 0 2 4

C

− 
 − 
 −

=  
− 

 −
  − 

    

5 2 0 2 0 1

0 4 1 0 2 1

2 0 3 0 1 0

1 2 0 4 0 1

1 0 2 2 5 0

1 0 0 0 2 3

D

− 
 − 
 −

=  
− 

 −
  − 

 

Let ( ) ( )0 0.1 0.3 ,0.1 0.3 ,0.1 0.3
T

ix i i i= + + + , ( ) ( )0 2 0.5 ,2 0.5 , 2 0.5
T

iy i i i= + + +  

and ( ) 1tτ = . Based on theorem 1, the neural networks we have discussed can achieve 

function projective lag synchronization, the simulation results as shown in Fig 3. 
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Fig. 1. Chaotic attractor of drive system
Eq. (9) 

Fig. 2. Chaotic attractor of response system
Eq. (10) 
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Fig. 3. The function projective lag synchronization errors of the drive networks(1) and response 
networks(2) 

5 Conclusion 

In this paper, we investigated the function projective lag synchronization between two 
different neural networks. Based on Lyapunov stability theory and feedback control 
method, the two neural networks can realize FPLS under the designed controller and 
updated law. Moreover the function projective lag synchronization which we have 
investigated is special and different from the other literatures, the scaling functions 
are not only depending on time, but also depending on the networks. We also 
discussed the FPLS of the same structure of the networks in Corollary 3. Finally, 
numerical simulations are provided to show the effectiveness of the main result. 
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Abstract. The study of chemical reactions with oscillating kinetics has
drawn increasing interest over the last few decades. However the dynam-
ical properties of the coupled nonlinear dynamic system are difficult to
deal with. The local activity principle of the Cellular Nonlinear Network
(CNN) introduced by Chua has provided a powerful tool for studying
the emergence of complex behaviors in a homogeneous lattice formed by
coupled cells. Based on the Autocatalator Model introduced by Peng.B,
this paper establishes a two dimensional coupled Autocatalator CNN
system. Using the analytical criteria for the local activity calculates the
chaos edge of the Autocatalator CNN system. The numerical simulations
show that the emergence may exist if the selected cell parameters are
nearby the edge of chaos domain. The Autocatalator CNN can exhibit
periodicity and chaos.

Keywords: Cellular Nonlinear Network, edge of chaos, reaction
diffusion equation, chaos.

1 Introduction

The study of autocatalator model for isothermal reaction in a thermodynamically
closed system has drawn increasing interest over the last few decades, because
it also contributes towards a deeper understanding of the complex phenomena
of temporal and spatial organizations in biological systems. The role of diffusion
in the modelling of many physical, chemical and biological processes has been
extensively studied. However the dynamical properties of the coupled nonlinear
dynamic system are difficult to deal with.

The cellular nonlinear network (CNN), first introduced by Chua and Yang [1],
have been widely studied for image processing and biological versions([2],[3]).
The theory of CNN local activity principle introduced by Chua([4],[5],[6]) has
provided an effective analytical tool for determining whether a lattice dynami-
cal system made of coupled cells can exhibit emergent and complex behaviors.
It asserts that a wide spectrum of complex behaviors may exist if the corre-
sponding cell parameters of the CNN’s are chosen in or nearby the edge of chaos
domain[7]. In particular, some analytical criteria for local activity of CNN’s have

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 133–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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been established and applied to the study of the dynamics of the CNN’s related
to the FitzHugh-Nagumo equation [7], the Yang-Epstein model [8], the Orego-
nator model[9] and smoothed Chua’s circuit CNNs [10], respectively. Based on
the Autocatalator Model introduced by Peng.B[11], this paper establishes a two
dimensional coupled Autocatalator CNN system. Using the analytical criteria
for the local activity calculates the bifurcation diagrams of the edge of chaos.
Numerical simulations show that the emergence may appear if the chosen cell
parameters are located nearby the edge of chaos domain.

The rest of this paper is organized as follows: Section 2 states the basic local
activity theory developed by Chua. Bifurcation diagrams and numerical simula-
tion of the Autocatalator CNN’s are given in section 3. Concluding remarks are
given in section 4.

2 Main Theorem of Local Activity

Generally speaking, in a reaction-diffusion CNN, every C(i, j, k) has n state vari-
ables but onlym(≤ n) state variables coupled directly to their nearest neighbors.
Consequently, each cell C(i, j, k) has the following state equations:

V̇1(j, k, l) = f1(V1, V2, . . . , Vn) +D1∇2V1
...

V̇m(j, k, l) = fm(V1, V2, . . . , Vn) +Dm∇2Vm

V̇m+1(j, k, l) = fm+1(V1, V2, . . . , Vn) (1)

...

V̇n(j, k, l) = fn(V1, V2, . . . , Vn)

j, k, l = 1, 2, . . . , Nx

In vector form, Eq.(1) becomes

V̇a = fa(Va,Vb) + Ia, V̇b = fb(Va,Vb)

The cell equilibrium point Qi = (Va;Vb)(∈ R
n) of Eq.(2) for the restricted

local activity domain [7] can be determined numerically or analytically, via

fa(Va,Vb) = 0, fb(Va,Vb) = 0.

The local linearized state equations at the cell equilibrium point Qi are defined

V̇a = AaaVa +AabVb + Ia,

V̇b = AbaVa +AbbVb. (2)

where the Jacobian matrix at equilibrium point Qi, for the restricted local ac-
tivity domain, has the following form:

J(Qi)
�
= [alk(Qi)]

�
=

[
Aaa(Qi) Aab(Qi)
Aba(Qi) Abb(Qi)

]
(3)
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The admittance matrix at equilibrium point Q ([4]) is

YQ(s)
Δ
= (sI−Aaa)−Aab(sI−Abb)

−1Aba (4)

Definition 1. (Local activity at cell equilibrium point Q) ([4], [5], [6]) A
cell is said to be locally active at a cell equilibrium point Q iff there exists a
continuous function of time ia(t) ∈ Rm, t ≥ 0, such that 0 < T < ∞,∫ T

0

〈va (t), ia(t)〉dt < 0 (5)

where 〈·, ·〉 denotes the vector dot product, and va(t) is a solution of the linearized
state equation(2) about equilibrium point Qi with zero initial state va(0) = 0
and vb(0) = 0 , otherwise it is said to be locally passive at equilibrium point Qi.

Theorem 1. Main Theorem on the Local Activity of CNN ([4], [5]) A
three-port Reaction Diffusion CNN cell is locally active at a cell equilibrium point

Q
�
= (V̄a, V̄b, Īa) if and only if, its cell admittance matrix YQ(s) satisfies at least

one of the following four conditions:
1. YQ(s) has a pole in Re[s] > 0.
2. Y H

Q (iω) = Y ∗
Q(iω) + YQ(iω) is not a positive semi-definite matrix at some

ω = ω0, where ω0 is an arbitrary real number, Y ∗
Q(s) is constructed by first taking

the transpose of YQ(s), and then by taking the complex conjugate operation .
3. YQ(s) has a simple pole s = iωρ on the imaginary axis, where its associate
residue matrix

k1
Δ
= lim

s→iωρ

(s− iωρ)YQ(s)

is either not a Hermitian matrix, or else not a positive semi-definite Hemitian
matrix.
4. YQ(s) has a multiple pole on the imaginary axis.

Theorem 2. ([4], [6]) When the number of nonzero diffusion coefficients is equal
to the number of the state variables. RD CNN cell is locally active at a cell
equilibrium point Q, if and only if the Js = A + A′ is a nonpositive-define
matrix.

Definition 2. (Edge of chaos with respect to equilibrium point Qi) ([4],
[5]) A ”Reaction-Diffusion” CNN with one ”diffusion coefficient” D1 (resp. two
diffusion coefficients D1 and D2; or three diffusion coefficients D1, D2, and D3)
is said to be operating on the edge of chaos with respect to an equilibrium point
Qi if, and only if, Qi is both locally active and stable when I1 = 0 (resp. I2 = 0
and I3 = 0; or I1 = 0, I2 = 0, and I3 = 0).
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3 Autocatalator CNN Model and Numerical Simulation

In [11], Peng.B, Scott.S.K, and Showalte.K introduced the a three variable Au-
tocatalator model ⎧⎨⎩

ẋ = μ+ rz − xy2 − x
ẏ = γ(x+ xy2 − y)
ż = S(y − z)

(6)

The equilibrium points of (6) are

Q0 = (
μ(1 − r)

(1 − r)2 + μ2
,

μ

1− r
,

μ

1− r
)

Now the prototype Autocatalator equations (6) can be mapped to a two-
dimensional N ×N Autocatalator CNN model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi,j = μ+ rzi,j − xi,jy
2
i,j − xi,j +D1[xi+1,j + xi−1,j

+xi,j+1 + xi,j−1 − 4xi,j ]

ẏi,j = γ(xi,j + xi,jy
2
i,j − yi,j) +D2[yi+1,j + yi−1,j

+yi,j+1 + yi,j−1 − 4yi,j]

żi,j = S(yi,j − zi,j) +D3[zi+1,j + zi−1,j + zi,j+1

+zi,j−1 − 4zi,j ]

(7)

i, j = 1, 2, · · · , N.

periodic boundary condition: xi,0 = xi,N , yi,0 = yi,N , zi,0 = zi,N , xi,N+1 =
xi,1, yi,N+1 = yi,1, zi,N+1 = zi,1, x0,j = xN,j , y0,j = yN,j, z0,j = zN,j, xN+1,j =
x1,j , yN+1,j = y1,j, zN+1,j = z1,j .

0 5 10 15
0

0.2

0.4

0.6

0.8

1

  μ

  r

Fig. 1. Bifurcation diagram of the Autocatalator CNN model at μ ∈ [0, 15], r ∈
[0, 1], γ = 230, S = 40, with respect to the equilibrium point Q0. The domains are
coded as follows: edge of chaos (red), locally active unstable domain (green).
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Using Theorems 1 ∼ 2, the locally active domains and edges of chaos with re-
spect to Q0 of Autocatalator CNN can be numerically calculated via computer
programs, respectively. The bifurcation diagram(Fig.1) with respect to the equi-
librium point Q0 are only locally active domains. The calculated results based
on the bifurcation diagram are shown in Table 1.

Table 1. Cell parameters and corresponding dynamic properties of the Autocatalator

CNN EQs. where γ = 230, S = 40. Symbols ⇓, ⇑, np and
⊕

indicate that convergent

patterns, divergent patterns, n-period patterns, and chaotic patterns are observed near

to or far from the corresponding cell equilibrium points Q0, respectively. The numbers

which are marked by ∗ indicate that the corresponding cell parameters lie on the edge

of chaos domain. M(A) represents the eigenvalue with the maximum real part at Q0.

No. μ r Equilibrium points Q M(A) Pattern

1∗ 12 0.19 0.0671, 14.8331, 14.8331 -0.0028 ± 2.248i 1p
2∗ 11 0.254 0.0675, 14.7453, 14.7453 -0.0023 ± 2.2326i ⇓
3∗ 10 0.3172 0.0680, 14.6456, 14.6456 -0.0002 ± 2.2151i 1p
4 10 0.1995 0.0795, 12.4922, 12.4922 0.3136 ± 1.8544i 3p
5 10 0.195 0.0800, 12.4224, 12.4224 0.3230 ± 1.8421i 4p
6∗ 10 0.32 0.0677, 14.7059, 14.7059 -0.0096 ± 2.2247i ⇓
7 10 0.1965 0.0798, 12.4446, 12.4446 0.3199 ± 1.8462i

⊕
8 8 0.446 0.0689, 14.4404, 14.4404 0.0039 ± 2.1789i 1p
9 8 0.445 0.0690, 14.4144, 14.4144 0.0078 ± 2.1747i ⇑
10∗ 6 0.55 0.0746, 13.3333, 13.3333 0.1365 ± 1.9874i 1p
11 6 0.515 0.0803, 12.3711, 12.3711 0.2671 ± 0.9923i 2p
12 5 0.540 0.0912, 12.8696, 12.8696 0.4362 ± 1.5162i 4p
13 5 0.51 0.0971, 10.2041, 10.2041 0.5122 ± 1.3777i

⊕
14∗ 4 0.716 0.0706, 14.0845, 14.0845 -0.0002 ± 2.1148i ⇓
15 4 0.715 0.0709, 14.0351, 14.0351 0.0070 ± 2.1063i 1p
16 4 0.600 0.0990, 10.0000, 10.0000 0.5154 ± 1.3230i 3p

Now let us choose parameters μ = 10, r = 0.1965, γ = 230, S = 40, which are
lie in the locally active unstable domains nearby the edges of chaos. The initial
conditions are given by following.⎧⎨⎩

[xi,j(0)] = 0.0464 + 0.001rand(21, 21)
[yi,j(0)] = 14.7669+ 0.01rand(21, 21)
[zi,j(0)] = 15.4041+ 0.01rand(21, 21).

i, j = 1, 2, · · · , 21

where rand(21, 21)′s are 21 × 21 matrices with uniformly distributed random
generated, and we select D1 = 0.01, D2 = 0.1, D3 = 0.1. The chaotic trajectories
of cell located in {12, 12} over the time interval [0, 0.5] are shown in Fig.2.

We furthermore choose parameters μ = 10, r = 0.3172, γ = 230, S = 40, which
are lie in the edges of chaos domains. The periodic trajectories of cell located in
{12, 12} are shown in Fig.3. Three-dimensional views of the state variables are
shown in Fig.6. Observe that three state variables exhibit oscillations and a new
type of limit cycle spiral waves has emerged. Some of simulation results based
on the bifurcation diagram are shown in Figs.4-5.
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Fig. 2. Chaotic trajectories: μ = 10, r = 0.1965, γ = 230, S = 40 (a)
x12,12, y12,12, z12,12. (b) x12,12. (c) y12,12. (d)z12,12.
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Fig. 4. Double periodic trajectories: μ = 6, r = 0.515, γ = 230, S = 40. (a)
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Fig. 6. Three-dimensional views of the limit cycle spiral waves at different time t. The
vertical axes represent the state variables x′
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define the spatial coordinates (i, j).
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4 Concluding Remarks

The local activity criteria of CNN’s provide a new tool to the research on the
Coupled nonlinear dynamical cell models.This paper uses the criteria of the lo-
cal activity for the CNN with three state variables and three ports to study the
coupled Autocatalator model with three coupling terms. It has been found that
for the parameters μ = 10, r = 0.1965, γ = 230, S = 40, the corresponding RD
CNN can exhibit chaos behaviors. When μ = 10, r = 0.3, γ = 230, S = 40,it can
exhibit a periodic behaviors. Roughly speaking, if the parameter group of the
Autocatalator CNN are selected nearby the edge of chaos domain, the dynamics
of the correspondingly Autocatalator CNN always exhibit chaos or period tra-
jectory. If the selected cell parameters are located on the edge of chaos domain
with respect to Q0, then the trajectories of the Autocatalator equations will
always converge to equilibrium point Q0 or exhibit period trajectory. The effec-
tiveness of the local activity principle in the study for the emergence of complex
behaviors in a homogeneous lattice formed by coupled cells is confirmed.
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Abstract. In this paper, the passivity for stochastic Takagi-Sugeno
(T-S) fuzzy systems with time-varying delays is investigated without as-
suming the differentiability of the time-varying delays. By utilizing the
Lyapunov functional method, the Itô differential rule and the matrix in-
equality techniques, a delay-dependent criterion to ensure the passivity
for T-S fuzzy systems with time-varying delays is established in terms
of linear matrix inequalities (LMIs) that can be easily checked by using
the standard numerical software.

Keywords: T-S fuzzy systems, Passivity, Time-varying delays, Stochas-
tic disturbance.

1 Introduction

The Takagi-Sugeno (T-S) fuzzy system, first proposed and studied by Takagi
and Sugeno[1], have been widely applied within various engineering and scien-
tific fields since it provides a general framework to represent a nonlinear plant
by using a set of local linear models which are smoothly connected through non-
linear fuzzy membership functions [2]. In practice, time-delays often occur in
many dynamic systems such as chemical processes, metallurgical processes, bio-
logical systems, and neural networks [3]. The existence of time-delays is usually
a source of instability and poor performance [4]. Besides, stochastic disturbance
is probably another source leading to undesirable behaviors of T-S fuzzy sys-
tems [5]. As a result, stability analysis for T-S fuzzy systems with time-delay
has not only important theoretical interest but also practical value [6]. Recently,
the stability analysis for T-S fuzzy systems with delays and stochastic T-S fuzzy
systems with delays have been extensively studied, for example, see [2–6], and
references therein.

On the other hand, the passivity theory is another effective tool to the stability
analysis of system [7]. The main idea of passivity theory is that the passive prop-
erties of system can keep the system internal stability [8]. For these reasons, the
passivity and passification problems have been an active area of research recently.
The passification problem, which is also called the passive control problem, is
formulated as the one of finding a suitable controller such that the resulting
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closed-loop system is passive. Recently, some authors have studied the passivity
of some systems and obtained sufficient conditions for checking the passivity of
the systems that include linear systems with delays [7], delayed neural networks
[8], and T-S fuzzy systems with delays [9]-[14]. In [9–11], authors considered
the continuous-time T-S fuzzy system with constant delays, and presented sev-
eral criteria for checking the passivity and feedback passification of the system.
In [12], discrete-time T-S fuzzy systems with delays were considered, several
sufficient conditions for checking passivity and passification were obtained. In
[11, 13, 14], the contiguous-time T-S fuzzy systems with time-varying delays
were investigated, several criteria to ensure the passivity and feedback passifi-
cation were given. It is worth noting that it has been assumed in [11, 13] that
the time-varying delays are differentiable. However, when the time-varying de-
lays are not differentiable, the presented methods in [11, 13] are difficult to be
applied to investigate the passivity and passification of T-S fuzzy systems with
time-varying. Therefore, there is a need to further improve and generalize the
passivity results reported in [11, 13].

Motivated by the above discussions, the objective of this paper is to study the
passivity of stochastic T-S fuzzy system with time-varying delays by employing
Lyapunov-Krasovskii functionals.

2 Problem Formulation and Preliminaries

Consider a continuous time stochastic T-S fuzzy system with time-varying de-
lays, and the ith rule of the model is of the following form:

Plant Rule i
IF z1(t) is Mi1 and . . . and zp(t) is Mip, THEN⎧⎨⎩
dx(t) = [Aix(t) +Bix(t− τ(t)) + Uiw(t)]dt + σi(t, x(t), x(t − τ(t)))dω(t),
y(t) = Cix(t) +Dix(t− τ(t)) + Viw(t),
x(s) = φ(s), s ∈ [τ, 0],

(1)

where t ≥ 0, i = 1, 2, . . . , r and r is the number of IF-THEN rules; z1(t), . . . , zp(t)
are the premise variables, each Mij (j = 1, 2, . . . , p) is a fuzzy set; x(t) =
(x1(t), x2(t), . . . , xn(t))

T ∈ R
n is the state vector of the system at time t;

w(t) = (w1(t), w2(t), . . . , wq(t))
T ∈ R

q is the square integrable exogenous input;
y(t) = (y1(t), y2(t), . . . , yq(t))

T ∈ R
q is the output vector of the system; τ(t)

denote the time-varying delay, and satisfies 0 ≤ τ(t) ≤ τ , where τ is constant;
φ(s) is bounded and continuously differentiable on [−τ, 0]; Ai, Bi, Ui, Ci, Di and
Vi are some given constant matrices with appropriate dimensions. ω(t) ∈ R

m is
a scalar Brownian motion defined on (Ω,F ,P); σi : R × R

n × R
n → R

n×m is
the noise intensity function.

Let μi(t) be the normalized membership function of the inferred fuzzy set
γi(t), that is

μi(t) =
γi(t)
r∑

i=1

γi(t)
,
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where γi(t) =
p∏

j=1

Mij(zj(t)) with Mij(zj(t)) being the grade of membership

function of zj(t) in Mij(t). It is assumed that γi(t) ≥ 0 (i = 1, 2, . . . , r) and
r∑

i=1

γi(t) > 0 for all t. Thus μi(t) ≥ 0 and
r∑

i=1

μi(t) = 1 for all t. And the T-S

fuzzy model (1) can be defuzzied as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =
r∑

i=1

μi(t)[Aix(t) +Bix(t− τ(t)) + Uiw(t)]dt

+
r∑

i=1

μi(t)σi(t, x(t), x(t − τ(t)))dω(t),

y(t) =
r∑

i=1

μi(t)[Cix(t) +Dix(t− τ(t)) + Viw(t)],

x(s) = φ(s), s ∈ [−τ, 0].

(2)

Let f(t) =
r∑

i=1

μi(t)[Aix(t) + Bix(t − τ(t)) + Uiw(t)], α(t) =
r∑

i=1

μi(t)σi(t, x(t),

x(t− τ(t))), then model (2) is rewritten as⎧⎪⎪⎨⎪⎪⎩
dx(t) = f(t)dt+ α(t)dω(t),

y(t) =
r∑

i=1

μi(t)[Cix(t) +Dix(t− τ(t)) + Viw(t)],

x(s) = φ(s), s ∈ [−τ, 0].
(3)

Throughout this paper, we make the following assumptions:
(H). There exist constant matrices R1i and R2i of appropriate dimensions such
that the following inequality

trace(σT
i (t, α, β)σi(t, α, β)) ≤ ‖R1iα‖2 + ‖R2iβ‖2 (4)

holds for all i = 1, 2, . . . , r and (t, α, β) ∈ R× R
n × R

n.

Definition 1. System (1) is called passive if there exists a scalar γ > 0 such
that

2E
{∫ tp

0

yT (s)w(s)ds
}

≥ −γE
{∫ tp

0

wT (s)w(s)ds
}

for all tp ≥ 0 and for the solution of (1) with φ(·) ≡ 0.

Let C1,2(R×R
n,R+) denote the family of all nonnegative function V (t, x(t)) on

R×R
n which are continuously once differentiable in t and twice differentiable in

x. For each V ∈ C1,2(R × R
n,R+), By Itô’s differential formula, the stochastic

derivative of V (t, x(t)) along (3) can be obtained as:

dV (t, x(t)) = LV (t, x(t))dt + Vx(t, x(t))α(t)dω(t), (5)
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where L is the weak infinitesimal operator of the stochastic process {xt = x(t+
s)|t ≥ 0,−ρ ≤ s ≤ 0}, and the mathematical expectation of LV (t, x(t)) is given
by

E{LV (t, x(t))} = E
{
Vt(t, x(t)) + Vx(t, x(t))f(t)

+
1

2
trace(αT (t)Vxx(t, x(t))α(t))

}
, (6)

in which

Vt(t, x(t)) =
∂V (t, x(t))

∂t
, Vx(t, x(t)) =

(∂V (t, x(t))

∂x1
, . . . ,

∂V (t, x(t))

∂x1

)
,

Vxx(t, x(t)) =
(∂2V (t, x(t))

∂xi∂xj

)
n×n

.

To prove our results, the following lemmas that can be found in [15] are
necessary.

Lemma 1. For any constant matrix W ∈ R
m×m, W > 0, scalar 0 < h(t) < h,

vector function ω(·) : [0, h] → R
m such that the integrations concerned are well

defined, then(∫ h(t)

0

ω(s)ds
)T

W
( ∫ h(t)

0

ω(s)ds
)
≤ h(t)

∫ h(t)

0

ωT (s)Wω(s)ds.

Lemma 2. Let a, b ∈ Rn, P be a positive definite matrix, then 2aT b ≤ aTP−1

a+ bTPb.

Lemma 3. Given constant matrices P , Q and R, where PT = P , QT = Q,
then [

P R
RT −Q

]
< 0

is equivalent to the following conditions

Q > 0 and P +RQ−1RT < 0.

3 Main Result

Theorem 1. Model (1) is passive if there exist four symmetric positive definite
matrices Pi (i = 1, 2, 3, 4), three matrices Qi (i = 1, 2, 3), three scalars λi > 0
(i = 1, 2) and γ > 0, such that the following LMIs hold for i = 1, 2, . . . , r:

P1 < λ1I, (7)

P3 < λ2I, (8)
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Ωi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11,i Q2 0 AT
i Q1 + P1 −CT

i Q2 Q2 0 0
∗ Ω22,i Q3 BT

i Q1 −DT
i 0 0 Q3 Q3

∗ ∗ −P2 0 0 0 0 0 0
∗ ∗ ∗ Ω44 QT

1 Ui 0 0 0 0
∗ ∗ ∗ ∗ Ω55,i 0 0 0 0
∗ ∗ ∗ ∗ ∗ − 1

τ P4 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −P3 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

τ P4 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −P3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (9)

where Ω11,i = (λ1 + τλ2)R1iR
T
1i + P2 − Q2 − QT

2 , Ω22,i = (λ1 + τλ2)R2iR
T
2i −

Q3 −QT
3 , Ω44 = −Q1 −QT

1 + τP4, Ω55,i = −Vi − V T
i − γI.

Proof. Consider the following Lyapunov-Krasovskii functional as

V (t) = xT (t)P1x(t) +

∫ t

t−τ

xT (s)P2x(s)ds

+

∫ 0

−τ

∫ t

t+ξ

(
trace(αT (s)P3α(s)) + fT (s)P4f(s)

)
dsdξ. (10)

By Itô differential rule, the mathematical expectation of the stochastic derivative
of V (t) along the trajectory of system (3) can be obtained as

E{dV (t)} = E
{[

2xT (t)P1f(t) + trace(αT (t)P1α(t)) + xT (t)P2x(t)

−xT (t− τ)P2x(t− τ) + τtrace(αT (t)P3α(t)) + τfT (t)P4f(t)

−
∫ t

t−τ

trace(αT (s)P3α(s))ds −
∫ t

t−τ

fT (s)P4f(s)ds
]
dt

+2xT (t)P1α(t)dω(t)
}

≤ E
{[

2xT (t)P1f(t) + (λ1 + τλ2)trace(α
T (t)α(t))

+xT (t)P2x(t)− xT (t− τ)P2x(t− τ) + τfT (t)P4f(t)

−
∫ t

t−τ

trace(αT (s)P3α(s))ds −
∫ t

t−τ

fT (s)P4f(s)ds
]
dt
}
. (11)

In deriving inequality (11), we have utilized E
{
2xT (t)P1α(t)dω(t)

}
= 0 and

conditions (7) and (8).
From the definition of f(t), we have

0 = 2
(
− f(t) +

r∑
i=1

μi(t)[Aix(t) +Bix(t− τ(t)) + Uiw(t)]
)T

Q1f(t)

=

r∑
i=1

μi(t)
[
2xT (t)AT

i Q1f(t) + 2xT (t− τ(t))BT
i Q1f(t)

+2wT (t)UT
i Q1f(t) + fT (t)(−Q1 −QT

1 )f(t)
]
. (12)
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Integrating both sides of first equation in (3) from t− τ(t) to t, we get

x(t) − x(t− τ(t)) =

∫ t

t−τ(t)

f(s)ds+

∫ t

t−τ(t)

α(s)dω(s).

By using Lemma 1 and Lemma 2 and noting 0 ≤ τ(t) ≤ τ , we have

0 = 2xT (t)Q2

[
− x(t) + x(t− τ(t)) +

∫ t

t−τ(t)

f(s)ds+

∫ t

t−τ(t)

α(s)dω(s)
]

≤ xT (t)
(
−Q2 −QT

2 + τQ2P
−1
4 QT

2 +Q2P
−1
3 QT

2

)
x(t) + 2xT (t)Q2x(t− τ(t))

+

∫ t

t−τ(t)

fT (s)P4f(s)ds+
(∫ t

t−τ(t)

α(s)dω(s)
)T

P3

( ∫ t

t−τ(t)

α(s)dω(s)
)
,(13)

Similarly, we can get that

0 = 2xT (t− τ(t))Q3

[
− x(t− τ(t)) + x(t− τ)

+

∫ t−τ(t)

t−τ

f(s)ds+

∫ t−τ(t)

t−τ

α(s)dω(s)
]

≤ xT (t− τ(t))
(
−Q3 −QT

3 + τQ3P
−1
4 QT

3 +Q3P
−1
3 QT

3

)
x(t− τ(t))

+2xT (t− τ(t))Q3x(t− τ) +

∫ t−τ(t)

t−τ

fT (s)P4f(s)ds

+
(∫ t−τ(t)

t−τ

α(s)dω(s)
)T

P3

(∫ t−τ(t)

t−τ

α(s)dω(s)
)
, (14)

From the proof of [16], we can get that

E
{(∫ t−τ(t)

t−τ

α(s)dω(s)
)T

P3

( ∫ t−τ(t)

t−τ

α(s)dω(s)
)}

= E
{∫ t−τ(t)

t−τ

trace[αT (s)P3α(s)]ds
}

(15)

and

E
{(∫ t

t−τ(t)

α(s)dω(s)
)T

P3

( ∫ t

t−τ(t)

α(s)dω(s)
)}

= E
{∫ t

t−τ(t)

trace[αT (s)P3α(s)]ds
}
. (16)

From definition of α(t) and assumption (H), we have

trace(αT (t)α(t)) = trace
( r∑

i=1

r∑
j=1

μi(t)μj(t)σ
T
i (t)σj(t)

)
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≤ trace
(1
2

r∑
i=1

r∑
j=1

μi(t)μj(t)(σ
T
i (t)σi(t) + σT

j (t)σj(t))
)

=
r∑

i=1

μi(t)trace(σ
T
i (t)σi(t))

≤
r∑

i=1

μi(t)
(
‖R1ix(t)‖2 + ‖R2ix(t− τ(t))‖2

)
. (17)

It follows from (11)-(17) that

E{dV (t)− 2yT (t)w(t)dt − γwT (t)w(t)dt} ≤ E
{ r∑

i=1

μi(t)z
T (t)Πiz(t)dt

}
,(18)

where z(t) =
(
xT (t), xT (t− τ(t)), xT (t− τ), fT (t), wT (t)

)T
, and

Πi =

⎡⎢⎢⎢⎢⎣
Π11,i Q2 0 AT

i Q1 + P1 −CT
i

∗ Π22,i Q3 BT
i Q1 −DT

i

∗ ∗ −P2 0 0
∗ ∗ ∗ Π44 QT

1 Ui

∗ ∗ ∗ ∗ Π55,i

⎤⎥⎥⎥⎥⎦
with Π11,i = (λ1+τλ2)R1iR

T
1i+P2−Q2−QT

2 +τQ2P
−1
4 QT

2 +Q2P
−1
3 QT

2 , Π22,i =
(λ1+τλ2)R2iR

T
2i−Q3−QT

3 +τQ3P
−1
4 QT

3 +Q3P
−1
3 QT

3 , Π44 = −Q1−QT
1 +τP4,

Π55,i = −Vi − V T
i − γI.

It is easy to verify the equivalence of Πi < 0 and Ωi < 0 by using Lemma 3.
Thus, one can derive from (9) and (19) that

E{dV (t)}
dt

−E{2yT (x(t))w(t) + γwT (t)w(t)} ≤ 0. (19)

It follows from (19) and the definition of V (t) that

2E{
∫ tp

0

fT (x(s))u(s)ds} ≥ −γE{
∫ tp

0

uT (s)u(s)ds}.

From Definition 1, we know that the stochastic T-S fuzzy system (1) is globally
passive in the sense of expectation. The proof is completed.

4 Conclusions

In this paper, the passivity for stochastic Takagi-Sugeno (T-S) fuzzy systems
with time-varying delays has been investigated without assuming the differentia-
bility of the time-varying delays. By utilizing the Lyapunov functional method,
the Itô differential rule and the matrix inequality techniques, a delay-dependent
criterion to ensure the passivity for T-S fuzzy systems with time-varying delays
has been established in terms of linear matrix inequalities (LMIs) that can be
easily checked by using the standard numerical software.
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for Training Neural Networks 

Daiyuan Zhang 
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Abstract. Different from some early learning algorithms such as backpropaga-
tion (BP) or radial basis function (RBF) algorithms, a new data driven algo-
rithm for training neural networks is proposed. The new data driven methodol-
ogy for training feedforward neural networks means that the system modeling 
are performed directly using the input-output data collected from real processes, 
To improve the efficiency, the parallel computation method is introduced and 
the performance of parallel computing for the new data driven algorithm is ana-
lyzed. The results show that, by using the parallel computing mechanisms, the 
training speed can be much higher. 

Keywords: artificial intelligence, neural networks, weight function, B-spline 
function, algorithm, data driven methodology, parallel computation. 

1 Introduction 

It is well know that there are many drawbacks in BP algorithm, for example, local 
minima, the architecture of neural networks are difficult to be settled, as the networks 
are at least three-layer structures and the hidden layers need to be extended or mod-
ified again and again, which usually take a very long training time. To improve the 
learning performance of BP algorithm, many studies have been made ([1] [2] [3] [4]), 
but those studies can not overcome the drawbacks mentioned above. In addition, the 
trained weights by BP or RBF algorithms are constant data (constant weights), which 
have no information about relations between input and output patterns. Therefore, the 
constant weights can not be used as useful information for understanding any rela-
tions, regularities or structure inherent in some source of trained data, or we say that 
the constant weights serve no useful purpose. 

In recent years, to overcome the drawbacks of BP or RBF algorithms completely, 
the new training algorithms using weight functions have been proposed [5] [6], in 
which the architecture of networks is simple and the learning processes of the algo-
rithms using weight functions are to find the weight functions by interpolation and 
approximate theories. 

In this paper, the weight functions are obtained directly by the input-output data. 
The forms of weight functions are B-spline functions defined on the sets of the given 
input variables and can be established easily, which are linear combination of some 
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values associated with the given output patterns. From this point of view, we say that 
the new algorithm can get very good approximate results directly without training. 
The approximately analytic expression can be used to analysis some interested  
performance. 

2 Network’s Architecture and Fundamentals of the Algorithm 

In this paper, the new network’s architecture is different from that used in BP or RBF 
networks. The network has two layers, one is input layer, and the other is output layer. 
There are m points in the input layer, and denoted by ix , 1, 2, ,i m=  , or we say, 

the input dimension is m. There are n points in the output layer, and denoted by jN , 

1, 2, ,j n=  , or we say, the output dimension is n. The neuron jN  is used as an 

adder. Note that each of the m inputs is connected to each of the neurons (adders). 
The mapping relations between output layer and input layer are 

 ( )
1 1

m m

j ji ji i
i i

y y g x
= =

= =   (1) 

The one-variable function ( )ji ig x  is called weight function between the jth output 

point (neuron) and the ith input point (variable). 
The yj denotes the output values of the network’s jth neuron, and the zj indicates 

the target patterns of the jth point of the network. 
Given the knot sequence in the following 

 0 1 1Na t t t b+= < < =  (2) 

Now, let’s begin with a system of knots on the real line, named ti. Usually, only a 
finite set of knots is ever needed for practical purposes (see (1)), but for the theoreti-
cal development it is much easier to suppose that the knots form an infinite set from 
(1) extending to +∞ on the right and to -∞ on the left in the following:  

 2 1 0 1 2t t t t t− −< < < < <   (3) 

We suppose that a function [ ] ( ),a bf x  is given on [a,b]. Now let us extend function 

[ ] ( ),a bf x  in the following. 

 ( )
[ ] ( )

[ ] ( ) [ ]
[ ] ( )

0 0,

0 1,

1 1,

if

if , ,

if

a b

Na b

N Na b

f t x t

f x f x x t t a b

f t x t

+

+ +

 ≤

= ∈ =   


≥

 (4) 
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The set of B-splines { }1 1, , ,r r r
r r NB B B− − + −  is linearly independent on ( )0 , Nt t . 

Therefore, any spline function of degree r defined on interval ( )0 , Nt t  can be  

expressed as 

 ( ) ( ) ( )
N

r r
p p p p

p p r

s x c B x c B x
∞

=−∞ =−

= =   (5) 

The next step is to introduce a spline function that approximates function f(x). For this 
purpose we choose: 

 ( ) ( ) ( )2
r
pp r

p

g x f t B x
∞

+  
=−∞

=   (6) 

Obviously, ( )g x  is a special form of (4). With the aid of function (5) we have that, 

If f(x) is a function on [t0,tn], then the spline function g(x) in  (5) satisfies  

 ( ) ( ) ( ) [ ]( )
0

,max 1 2 ;
n

a b
t x t

f x g x r fω δ
≤ ≤

− ≤ +  (7) 

where ( )1
1

max p p
k p n

t tδ −− ≤ ≤ +
= −  (8) 

and [ ]( ), ,a bfω δ  is the modulus of continuity of function f(x) on [ ],a b .  

The preceding result can be stated in terms of the distance from f(x) to the space 

1
r
NS + . The distance from a function f(x) to a subspace G in a normed space is defined 

by  

 ( )dist , inf
g G

f G f g ∞∈
= −  (9) 

Let us use the norm defined by  

 ( )max
a x b

f f x∞ ≤ ≤
=  (10) 

We have 

 ( ) [ ]( )1 ,dist , ;r
N a bf S fλ ω δ+ ≤ ⋅  (11) 

If f is continuous on [ ],a b  , then 

 [ ]( ),0
lim ; 0a bf
δ

ω δ
→

=  (12) 
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Hence, by increasing the density of the knots, the upper bound in (10) can be made 
to approach zero.  

For functions possessing some derivatives, more can be said in the following: let 

r Nα < < . If ( )0 1, Nf C t tα
+∈ , then 

 ( ) ( ) ( ) ( ) ( )1 2f x g x r f x
α ααδ

∞ ∞
− ≤ +  (13) 

Now, we introduce the notation including networks’ parameters (the number of input 
and output layers) to the neural network’s architecture, and from (5), we can construct 
the weight function between the jth output neuron and the ith input point (variable), 
i.e., 

 ( ) ( ) ( )2
r

ji i ji ip ip r
p

g x f t B x
∞

+  
=−∞

=   (14) 

The learning algorithm can be expressed as the form: 

 

( ) ( ) ( )

( )

2

1

r
ji i ji ip ip r

p

m

j ji i
i

g x f t B x

y g x

∞

+  
=−∞

=


=





=





 (15) 

The most important advantage in (14) is that we can get the forms of weight functions 
by the given patterns directly and immediately. This important advantage may have 
some applications in data-centric technologies or approaches.   

For the finitely discrete data (patterns), the final expression of learning algorithm 
in this paper can be expressed in the following 

 

( ) ( ) ( )

( )

2

1

N
r

ji i ji ip ij p r
p r

m

j ji i
i

g x z B x

y g x

η +  
=−

=


=





=





 (16) 

Now, the next step is to investigate whether continuous functions can be approx-
imated to arbitrary precision by the algorithm proposed in this paper.  

Theorem: Let r Nα < < , ( )0 1, Nz C t tα
+∈ , then the following holds: 

 ( ) ( )1 2j j j jz y m r z
α αδ

∞ ∞
− ≤ +  (17) 

Proof From (12) and (15), we have 



 Parallel Computation of a New Data Driven Algorithm for Training Neural Networks 153 

 

 

( )( )

( ) ( ) ( ) ( ) ( )
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1 2 1 2
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m

j j ji ji i
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i i
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ji ji j ji j
i i
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α αα αα α

α α
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δ η δ

δ

∞
= ∞

∞ ∞= =

∞ ∞= =

∞

− = −

≤ − ≤ +

= + ≤ +

≤ +



 

 

 (18) 

Where ( )ji iz x  is the theoretical weight function between the jth output neuron and 

the ith input point. In many practical applications, we do not know the form of func-
tion ( )ji iz x .  Function ( )ji ig x  is the weight function constructed by B-splines 

between the jth output neuron and the ith input point. jiδ  is the maximum step of 

knots between the jth output neuron and the ith input point described as that in  
Theorem, and 

1
maxj ji

i m
δ δ

≤ ≤
= . 

The theorem states that, if  ( )
jz
α

∞
< ∞  and r is a constant, any desired precision 

can be reached by increasing the density of knots. 
Obviously, in order to obtain higher precision, we can increase the number of knots 

(or decrease the values of step jδ ).  

The learning procedure proposed in this paper is to construct a system of (15) for 
getting the forms of weight functions ( )ji ig x . Equation (15) indicates that each of 

weight functions takes one correspond input neuron (input point) as an argument. The 
forms of weight functions are linear combination of some values associated with the 
given output patterns and the B-spline functions defined on the sets of given input 
variables (input knots or input patterns). 

Obviously, (15) is an analytic form of mathematic expression, which can be ob-
tained directly by knots (or extended patterns). Analytic expression is very useful for 
getting some performance in the interval 0 1, NX t t +=     or some interested sub-

intervals like 1,q q qX t t X+ = ⊂   and so on. 

3 Parallel Mechanisms 

In order to accelerate the training speed, parallel mechanisms must be introduced. 
Some devices must be used to implement the overhead of preparing the data packet at 
the sender or processing it when it arrives at the receiver. Obviously, networks inter-
connecting more than two devices require mechanisms to physically connect  
the source to its destination in order to transport the data packet and deliver it to the 
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correct destination. These mechanisms can be implemented in different ways and the 
types of network structure and functions performed by those mechanisms are very 
much the same, regardless of the domain. 

In addition to the devices, the algorithm can be divided into some independent 
parts are the premises on which the parallel computation is based. Eq.(15) shows that 
the weight functions can be found independently, and the number of independent 
parts is mn., which means that the algorithm proposed in this paper can be imple-
mented by parallel computation. 

Parallel mechanisms indicate that the devices (more than two) can process the data 
at the same time. The time can be found by the parallel mechanisms in the following 

 

( ){ }
P

P P

1

min max 1,2, ,

s.t.

i i i
i

N

i
i

T t u i N

mn

λ Δ Δ

λ
=

= + =



=





 (19) 

where { }1,2,iλ ∈  , itΔ  is the overhead of processing of the ith device (processor), 

iuΔ  denotes the overhead of preparing the data packet of the ith device. NP is the 

number of devices working at the same time. 
If there is only one device, we have 

 ( )T mn t uΔ Δ= +  (20) 

The speedup is 

 
( )

( ){ }P Pmin max 1,2, ,i i i
i

mn t uT
S

T t u i N

Δ Δ
λ Δ Δ

+
= =

+ = 
 (21) 

Suppose each device has the same performance, i.e. it tΔ Δ= , iu uΔ Δ= , we have 

 ( )P
P

mn
T t u

N
Δ Δ = + 

 
 (22) 

And the speedup will be 

 P
P

T
S N

T
= ≈  (23) 

In general, P 1N  ，it shows that the parallel computation has high training speedup. 

4 Simulations 

The most important issue developed in this paper is that the weight functions can be 
obtained before network training. 
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Example: We choose r=3 in (15) and the coefficients 1 3jiη = . The patterns are 

obtained by 

 

( )
( ) ( )

( ) ( )
1 2 3

2 2 2
1 1 2 3

2 2 2
2 1 2 3

2 2 2 2 2 2
3 1 2 3 1 2 3

sin

sin

sin

x x x

z x x x

z e x x x

z x x x x x x

− + +

 = + +

 = + +

 = + + + +


 (24) 

And the learning curve [5] is 

 1x t= , 2 1.8x t= , 3 3x t= +  (25) 

where t∈[0, 1]. The 10 input patterns are equally spaced knots, using the values of t:  

 ( ) ( )0 1 0 10 1 9 0,1,2, , 1,t p p p N= + − − = = + , 8N =  (26) 

Obviously, the learning procedure of the new algorithm developed in this paper is to 
construct the linear combination of B-spline weight functions (15) by the given knots 
and output patterns, which states that if the patterns are obtained, then the weight 
functions can be given directly by (15). For example, if the patterns are the same as 
that from example 1, we can write the analytic form of weight functions directly in 
the following without network training: 

 

( ) ( ) ( )

( )

8
3

2
3

3

1

1

3ji i ip ij p
p

j ji i
i

g x z B x

y g x

+
=−

=


=





=





 (27) 

The extended knots (input patterns) are equally spaced outside [0, 1].  
The architecture of the neural network in example is 3-3, which indicates that the 

input and output nodes are 3 and 3 respectively. Or we say that the number of weight 
functions needed in this example is 3×3=9. Using parallel mechanisms proposed in 
this paper, the speedup can be found by (20) 

 
( )

( ){ }P P

9

min max 1,2, ,i i i
i

t uT
S

T t u i N

Δ Δ
λ Δ Δ

+
= =

+ = 
 (28) 

Suppose each device has the same performance, from (21), we have 

 ( )P
P

9
T t u

N
Δ Δ = + 

 
 (29) 
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The overhead of processing and preparing is t uΔ Δ+  if there is only one device in 
the system, which means the overhead of processing and preparing for one weight 
function is t uΔ Δ+ . The speedup is about NP. 

5 Conclusions 

The new algorithm proposed in this paper inherits many advantages of cubic spline 
weight functions, i.e. the neural network’s architecture is very simple and without 
problems such as local minima, slow convergence, and dependent on initialized val-
ues arising from the steepest descent-like algorithms (BP and RBF algorithms). The 
weights obtained, instead of constant weights found by BP and RBF algorithms, are 
weight functions. When relations between input and output patterns are established, 
the weight functions, at least to some extent, can be used to understand some rela-
tions, regularities or structure inherent in some trained patterns. The new algorithm 
has good property of generalization. 

The analytic forms of mathematical expressions can be easily found immediately 
as long as the expended patterns are given, which is a new data driven methodology 
for feedforward neural networks. This advantage may be important in some data-
centric technologies, which can deals with the automatic detection of patterns in data, 
and plays a central role in many modern artificial intelligence and computer science 
problems. The parallel computing mechanisms are introduced to the network training, 
the results show that, by using the parallel computing mechanisms, the parallel algo-
rithm has high speedup. 
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Abstract. In this paper, we investigate a class of high order fuzzy Cohen-
Grossberg neural networks (HOFCGNN) with mixed delays which include time 
variable dalay and unbounded delays. Based on the properties of M-matrix, by 
constructing vector Lyapunov functions and applying differential inequalities, 
the sufficient conditions ensuring existence, uniqueness, and global exponential 
stability of the equilibrium point of HOFCGNN with mixed delays and 
reaction-diffusion terms are obtained.  

Keywords: Stability, HOFCGNN, mixed Delay, Reaction-diffusion. 

1 Introduction 

Recently, some kinds of Cohen-Grossberg[1], fuzzy cellular[2] and high order neural 
networks[6] have attracted the attention of the scientific community due to their 
promising potential for tasks of associative memory, parallel computation and their 
ability to solve difficult optimization problems. In these applications it is required that 
there is a well-defined computable solution for all possible initial states. This means 
that the neural network should have a unique equilibrium point that is globally stable. 
Thus, the qualitative analysis of dynamic behaviors is a prerequisite step for the 
practical design and application of neural networks. There are many papers discuss 
the qualitative properties for neural networks [3]. In hardware implementation, time 
delays are unavoidable, and may lead to an oscillation and instability of networks [4]. 
In most situations, the time delays are variable, and in fact unbounded. Therefore, the 
study of stability of neural networks with mixed delay is practically important. 
Stability of neural networks with constant and variable time delays stand by 
differential equation has been studied in [4~5]. The global exponential stability of 
Cohen-Grossberg neural networks and fuzzy logic with reaction-diffusion terms were 
obtained in [7~10, 12]. Stability of high-order neural networks was studied in [6, 8-
12]. But they do not consider the unbounded delays. 

In this paper, we study a class of HOFCGNN, which contain both variable time 
delays and unbounded delay. We relax some conditions on activation functions and 
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diffusion functions of systems similar to that discussed in [8-9], [11-12], by using M-
matrix theory and nonlinear integro-differential inequalities, even type Lyapunov 
functions were constructed to analyze the conditions ensuring the existence, 
uniqueness and global exponential stability of the equilibrium point of the models. 

2 Model Description and Preliminaries 

In this paper, we analyze the stability of reaction-diffusion HOFCGNN with both 
variable delays and unbounded delay described by the following differential equations 

1 1

m n
i i

ik i i i i i ij j j
k jk k

u ( t ) u
[ D ( t,x,u ) ] d ( u ( t ))[ ( u ( t )) a f ( u ( t ))

t x x
ρ

= =

∂ ∂∂= − −
∂ ∂ ∂   

1
1

n
j ,k ijk j j ij k k ikb f ( u ( t ( t ))) f ( u ( t ( t )))τ τ=− ∧ − − 2

1
n
j ,k ijk j j ij k k ikb f ( u ( t ( t ))) f ( u ( t ( t )))τ τ=− ∨ − −  

1
1

tn
j ,k ijk ij j j k kc k (t s ) f (u ( s )) f (u ( s ))ds= −∞

−∧ − 2
1

tn
j,k ijk ij j j k k ic k (t s)f (u (s))f (u (s))ds J ]= −∞

−∨ − +  (1) 

0),...,(~
1

=
∂
∂

∂
∂=

∂
∂

m

iii

x

u

x

u
col

n

u  It ∈ , Ω∂∈x ,  ),,2,1( ni =            (2) 

where iu  is the state of neuron i, ),,2,1( ni =  and n is the number of neurons; 

),,( ii uxtD is smooth reaction-diffusion function, ija are the first order connection 

weights, 1
ijkb , 

2
ijkb , 1

ijkc  and 2
ijkc are second order connection weights of fuzzy 

feedback MIN template and MAX template, respectively, T
1 ),,( nJJJ =  is the 

constant input vector. T
1 1( ) ( ( ),..., ( ))n nf u f u f u= ,  is the activation function of the 

neurons; )( ii ud  represents an amplification function; )( ii uρ  is an appropriately 

behaved function such that the solutions of model (1) remain bounded. The variable 
delays ( )ij tτ , ( )ik tτ  ( , , 1,2, ,i j k n= Λ ) are bounded functions, i.e. 0 ( ), ( )ij ikt tτ τ τ≤ ≤ , 

and ),0[),0[: ∞→∞ijk , ),,2,1,( nji = are piecewise continuous on ),0[ ∞ . Let 

nnijkk ×= )( .∧ and ∨ denote the fuzzy AND and fuzzy OR operation, respectively.  

The conventional conditions for kernel functions of Eq. (1) meet the following 
assumptions: 

Assumption A: 
∞

=
0

1)( dsskij , 
∞

+∞<
0

)( dssskij , ),,2,1,( nji = . 

Assumption B: 
∞

=
0

1)( dsskij , 
∞

+∞<=
0

)( ijij
s Kdsskeβ , ),,2,1,( nji = . 

In order to study the exponential stability of neural networks (1) conveniently, we 
inquire kernel functions meet the following assumption: 

Assumption C: 
∞

=
0

)()( ββ
ijij

s Ndsske , ),,2,1,( nji = , where )(βijN  are 

continuous functions in ),0[ δ , 0>δ , and 1)0( =ijN .  

It is easy to prove that the Assumption C includes Assumption A and B [5]. 
The initial conditions of equation (1) are of the form )()( ssu ii φ= , 0≤s , where iφ  

is bounded and continuous on ]0,(−∞ . Equation (2) is the boundary condition of 



 Stability Analysis of a Class of High Order Fuzzy Cohen-Grossberg Neural Networks 159 

 

equation (1), in which mRx ⊂Ω∈ , Ω  is a compact set with smooth boundary 
and 0>Ωmes , Ω∂ is the boundary of Ω , ],0[ +∞=∈ It .  

For convenience, we introduce some notations. The express nT
n Ruuuu ∈= ),...,,( 21  

represents a column vector (the symbol T)(  denotes transpose). For matrix nnijaA ×= )( , 

|| A  denotes absolute value matrix given by nnijaA ×= |)(||| , i, j =1, 2,…, n; SA][  is 

defined as 2/)( T AA + . For nRx ∈ , Τ= |)||,...,(||| 1 nxxx , |||| x  denotes a vector norm 

defined by |}{|max||||
1

i
ni

xx
≤≤

= . ),...,diag( 1 nρρρ = , ),...,diag( 1 nddd = . And 

1

( , , ) ( ( , , ) ),
m

i
i i ij i

k k k

u
D t x u D t x u

x x=

∂∂=
∂ ∂  so model (1) becomes the following system: 
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n

i i i i i i i ij j i
j

u ( t ) D ( t ,x,u ( t )) d ( u ( t ))[ ( u ( t )) a f ( u ( t ))ρ
=

= − −  

1
1

n
j,k ijk j j ij k k ikb f (u (t (t ))) f (u (t (t )))τ τ=−∧ − − 2

1
n
j ,k ijk j j ij k k ikb f (u (t (t ))) f (u (t (t )))τ τ=−∨ − −  

1
1

tn
j ,k ijk ij j j k kc k (t s ) f (u ( s )) f (u ( s ))ds= −∞

−∧ − 2
1 ijk

tn
j,k ij j j k k ic k (t s)f (u (s))f (u (s))ds J ]= −∞

−∨ − + . (3) 

Therefore, system (3) and (1) has the same properties of stability. 
Now we consider the activation functions of the neurons, amplification function 

and behaved function satisfying the following assumption: 
Assumption D. For each },,2,1{ ni ∈ , RR: →if , there exist numbers 0iM > , 

such that i i i| f ( y ) | M≤ , and  there exist the real number 0>ip , such that 

|
)()(

|sup
zy

zfyf
p ii

zy
i −

−=
≠

,  

for every zy ≠ . Let ),...,diag( 1 nppP = , 1 nM diag( M ,...,M )= . 
Remark 1: Assumption D introduced the supremum of Global/Local Lipschitz 
constants, and expanded the scope of system application. So, the activation functions 
such as sigmoid type and piecewise linear type are the special case of that satisfying it. 

Let 1 1 2 2

1

(| | | | | | | |)
n

ij k ijk ikj ijk ikj
k

B M b b b b
=

= + + + , 1 1 2 2

1

(| | | | | | | |)
n

ij k ijk ikj ijk ikj
k

C M c c c c
=

= + + +  

and ( )ij n nB B ×=  , ( )ij n nC C ×=  in which the kM is defined as the Assumption D. 

Assumption E. For each },,2,1{ ni ∈ , RR: →ie  is strictly monotone increasing, 
i.e. there exists a positive diagonal matrix 0),,,diag( 21 >= nρρρρ   such that  

i
ii

vu

vu ρρρ ≥
−
− )()(

, )( vu ≠  . 

Assumption F. For each },,2,1{ ni ∈ , RR: →id  is continuous function and 

ii d≤< σ0 , where iσ  is a constant. 

3 Existence and Uniqueness of the Equilibrium Point 

In this section, we shall study the condition which ensures the existence and 
uniqueness of the equilibrium point of system (1). 
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For convenience, we introduce some definitions and lemmas as follows. 
Definition 1 [13]. A real matrix nnijaA ×= )(  is said to be an M-matrix if 0≤ija  

nji ,...,2,1, = , ji ≠ , 0>iia  and all successive principal minors of A  are positive. 

Definition 2. The equilibrium point *u  of (1) is said to be globally exponentially 

stable, if there exist constant 0>λ  and 0>β  such that ||*)(|| utu − tu λφβ −−≤ e||*||  

( 0≥t ), where |)(|supmax||*|| *

]0,[1
ii

sni
usu −=−

−∈≤≤
φφ

τ
. 

If there is a constant constuu == *
00 (const denotes invariable constant) which is the 

solution of the following equations: 
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then 0
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=
∂
∂

x

ui . That is to say equations (4) and (3) have the same equilibrium point, 

and so, system (4) has the same equilibrium point as that of system (1). 
We firstly study the solutions of the nonlinear map associated with (1) as follows: 
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H ( u ) ( u ) a f ( u ) b f ( u ) f ( u )

b f ( u ) f ( u ) c f ( u ) f ( u ) c f ( u ) f ( u ) J

ρ =
=

= = =

= − + + ∧

+ ∨ + ∧ + ∨ +


    (5) 

Let T
nn uHuHuHxH ))(),...,(),(()( 2211= . It is well known that the solutions of 

0)( =uH  are equilibriums in (1). If map 0)( =uH  is a homeomorphism on nR , then 

system (1) has a unique equilibrium *u  (see [3]). In the following, we will give 
condition ensuring 0)( =uH  is a homeomorphism. 

Lemma 1[5]. If 0)( CuH ∈  satisfies the following conditions: (i) )(uH  is injective 

on nR ; (ii) ∞→)(uH  as ∞→u ; then )(uH  is a homeomorphism of nR . 

Lemma 2 [2].  Suppose x and y are two states of system (1), then 

1 1 1
1 1

1

n
n n
j ij j j j ij j j ij j j j j

j

| c f (x ) c f (y )| |c || f (x ) f (y )|= =
=

∧ −∧ ≤ − , 2 2 2
1 1

1

n
n n
j ij j j j ij j j ij j j j j

j

| c f (x ) c f (y )| |c || f (x ) f (y )|= =
=

∨ −∨ ≤ − . 

Lemma 3 [8]. For 1 2* ( , ,..., )T
nu u u u∗ ∗ ∗= },,2,1{ ni ∈ , and RR: →if are 

continuously differentiable, then we have  

1 1 1 1

n n n n
j j

ijk j j k k j j k k ijk ikj j j k k
j k j k j

f ( )
b [ f ( u ) f ( u ) f ( u ) f ( u )] ( b b ) ( u u ) f ( )

u

ξ
ξ∗ ∗ ∗

= = = =

∂
− = + −

∂   

1 1 1 1

n n n n

ijk j j k k j j k k ijk ikj j j j j k k
j k j k

b [ f (u ) f (u ) f (u ) f (u )] (b b )[ f (u ) f (u )] f ( )ξ∗ ∗ ∗

= = = =
− = + −   

Where jξ lies between ju and ju∗ and  kξ lies between ku and ku∗ . 
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So, from Lemma 2 and Lemma 3, we have the following lemma. 
Lemma 4.  Suppose x and y are two states of system (1), from Lemma 3, then 

1 1 1 1
1 1

1 1

n n
n n
j,k ijk j j k k j,k ijk j j k k ijk ikj j j j j k k

j k

| b f ( x )f ( x ) b f ( y )f ( y )| ( |b | |b |)| f ( x ) f ( y )|| f ( )|ξ= =
= =

∧ −∧ ≤ + −

2 2 2 2
1 1

1 1

n n
n n
j,k ijk j j k k j,k ijk j j k k ijk ikj j j j j k k

j k

| b f ( x )f ( x ) b f ( y ) f ( y )| ( |b | |b |)| f ( x ) f ( y )|| f ( )|ξ= =
= =

∨ −∨ ≤ + −  

1 1 1 1
1 1

1 1

n n
n n
j,k ijk j j k k j,k ijk j j k k ijk ikj j j j j k k

j k

| c f ( x ) f ( x ) c f ( y )f ( y )| ( |c | |c |)| f ( x ) f ( y )|| f ( )|ξ= =
= =

∧ −∧ ≤ + −

2 2 2 2
1 1

1 1

n n
n n
j,k ijk j j k k j,k ijk j j k k ijk ikj j j j j k k

j k

| c f ( x ) f ( x ) c f ( y ) f ( y )| ( |c | |c |)| f ( x ) f ( y )|| f ( )|ξ= =
= =

∨ −∨ ≤ + − . 

Theorem 1. If Assumption D, E, and F are satisfied, and (| A | | B | | C |)Pα ρ= − + +  

is an M-matrix, then, for every input J , system (1) has a unique equilibrium *u . 
Proof: In order to prove that for every input J , system (1) has a unique equilibrium 

point *u , it is only to prove that )(uH  is a homeomorphism on nR . In following, 

we shall prove it in two steps. 
Step 1, we will prove that condition (i) in Lemma 1 is satisfied. Suppose, for 

purposes of contradiction, that there exist nyx R, ∈  with yx ≠  such that 

)()( yHxH = .  

From Assumption E, we know that there exists matrix ),,,,diag( 21 nββββ =  

)( ii ρβ ≥  such that )()()( iiiiiii yxyx −=− βρρ , for ni ,...,2,1= .  

Form (5), we get  

1

[ ( ) ( )] ( ( ) ( ))
n

i i i i ij j j j j
j

x y a f x f yρ ρ
=

− − + − 1 1
1 1

n n
j ,k ijk j j k k j ,k ijk j j k kb f ( x ) f ( x ) b f ( y ) f ( y )= =+∧ −∧  

2 2
1 1

n n
j,k ijk j j k k j,k ijk j j k kb f ( x )f ( x ) b f ( y )f ( y )= =+∨ −∨ 1 1

1 1
n n
j,k ijk j j k k j,k ijk j j k kc f ( x ) f ( x ) c f ( y ) f ( y )= =+∧ −∧  

2 2
1 1 0n n

j ,k ijk j j k k j ,k ijk j j k kc f ( x ) f ( x ) c f ( y ) f ( y )= =+ ∨ − ∨ = .                             (6) 

We have 
1

| ( ) ( ) | | ( ( ) ( )) |
n

i i i i ij j j j j
j

x y a f x f yρ ρ
=

− ≤ − +  

1 1
1 1

n n
j,k ijk j j k k j,k ijk j j k k| b f ( x )f ( x ) b f ( y ) f ( y )|= =∧ −∧ 2 2

1 1
n n
j,k ijk j j k k j,k ijk j j k k| b f ( x )f ( x ) b f ( y )f ( y )|= =+ ∨ −∨  

1 1
1 1

n n
j,k ij j j k k j,k ijk j j k k| c f ( x )f (x ) c f ( y )f ( y )|= =+ ∧ −∧ 2 2

1 1
n n
j,k ijk j j k k j,k ijk j j k k| c f ( x )f ( x ) c f ( y )f ( y )|= =+ ∨ −∨  

1 1 2 2

1 1 1

n n n

ij ijk ikj k ijk ikj k j j j j
j k k

[| a | (| b | | b |)M (| b | | b |)M ] | f ( x ) f ( y ) |
= = =

≤ + + + + −  

1 1 2 2

1 1 1

n n n

ijk ikj k ijk ikj k j j j j
j k k

[ (| c | | c |)M (| c | | c |)M ] | f ( x ) f ( y ) |
= = =

+ + + + −   . 

From Assumption D, E and Lemma 2 and 4, we get [ (| | | | | |) ]| | 0A B C P x yβ− + + − ≤  . (7) 

Because of α  being an M-matrix, from Definiton 1, we know that all elements of 
1( (| | | | | |) )A B C Pβ −− + +  are nonnegative. Therefore 0|| ≤− yx , i.e., yx=  . 

From the supposition yx≠ , thus this is a contradiction. So )(uH  is injective.  
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Step2. We now prove that condition (ii) in Lemma 1 is satisfied. Let 

))0()()( HuHuH −= . From (5), we get 
1

( ) ( ( ) (0))
n

i i i i ij j i j
j

H u u a f u fβ
=

= − + −   

1 1
1 1 0 0n n

j,k ijk j j k k j ,k ijk j kb f (u ) f (u ) b f ( ) f ( )= =+∧ −∧ 2 2
1 1 0 0n n

j,k ijk j j k k j ,k ijk j kb f (u ) f (u ) b f ( ) f ( )= =+∨ −∨  
1 1

, 1 , 1( ) ( ) (0) (0)n n
j k ij j j k k j k ijk j kc kf u f u c f f= =+ ∧ −∧ 2 2

, 1 , 1( ) ( ) (0) (0)n n
j k ijk j j k k j k ijk j kc f u f u c f f= =+ ∨ −∨ . 

To show that )(uH  is homeomorphism, it suffices to show that )(uH  is 

homeomorphism. According to Assumption D, we get |||)0()(| upfuf iii ≤− . 

Since (| | | | | |)A B C Pα ρ= − + + is an M-matrix, so (| | | | | |)A B C Pα β= − + +  is 

an M-matrix. From the property of M-matrix[13], there exists a matrix 

0),,diag( 1 >= nTTT   such that [ ( (| | | | | |) )] 0S
nT A B C P Eβ ε− + + + ≤ − <      (8) 

for sufficiently small 0>ε , where nE  is the identity matrix. Calculating 

1 1

[ ] ( ) [ ( ( ) (0))
n n

i i i i ij j i j
i j

Tu H u u T d u a f u fΤ

= =

= − + − +   

1 1
1 1 0 0n n

j ,k ijk j j k k j ,k ijk j kb f (u ) f (u ) b f ( ) f ( )= =∧ −∧ 2 2
1 1 0 0n n

j,k ijk j j k k j ,k ijk j kb f (u ) f (u ) b f ( ) f ( )= =+∨ −∨  
1 1

, 1 , 1( ) ( ) (0) (0)n n
j k ij j j k k j k ijk j kc kf u f u c f f= =+ ∧ −∧ 2 2

, 1 , 1( ) ( ) (0) (0)]n n
j k ijk j j k k j k ijk j kc f u f u c f f= =+ ∨ −∨  

| | [ ( (| | | | | |) )] | |Su T A B C P uβΤ≤ − + + + 2|||| uε−≤ .                           (9) 

From (9) and using Schwartz inequality, we get ||)(|||||||||||||| 2 uHuTu ≤ε , namely,      

 || || || || || ( ) ||u T H uε ≤ ⋅  .                             (10) 

So, +∞→||)(|| uH , i.e., +∞→||)(|| uH  as +∞→|||| u . From Lemma 1, we know 

that for every input J , map )(uH  is homeomorphism on nR . So systems (1) have a 

unique equilibrium point *u . The proof is completed. 

4 Global Exponential Stability of Equilibrium Point 

In this section, we shall apply the ideal of vector Lyapunov method to analyze global 
exponential stability of model (1). 
Theorem 2. If Assumption D, E, and F are satisfied and (| | | | | |)A B C Pα ρ= − + +  

is an M-matrix, then for each input J , systems (1) have a unique equilibrium point, 
which is globally exponentially stable. 
Proof: Since α  is an M-matrix, from Theorem 1, system (1) has a unique 

equilibrium point *u . Let *)()( ututz −= , model (1) can be written as 

1 1

m n
* ^ ^i i

ik i i i i i ij j j
k jk k

z ( t ) z
[ D ( t ,x,( z ( t ) u )) ] d ( z ( t ))[ ( z ( t )) a F ( z ( t ))

t x x
ρ

= =

∂ ∂∂= + − −
∂ ∂ ∂      

1 1
1 1

2 2
1 1

n n * *
j ,k ijk j j ij k k ik j ,k ijk j j k k

n n * *
j ,k ijk j j ij k k ik j ,k ijk j j k k

b F ( z ( t ( t )))F ( z ( t ( t ))) b f ( u ) f ( u )

b F ( z ( t ( t )))F ( z ( t ( t ))) b f ( u ) f ( u )

τ τ

τ τ
= =

= =

+ ∧ − − − ∧

+ ∨ − − − ∨
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 1 1
1 1 j k

tn n * *
j ,k ijk ij j j k k j ,k ijk j kc k ( t s )F ( z ( s ))F ( z ( s ))ds c f ( u ) f ( u )= =−∞

− ∧ − + ∧   

2 2
1 1 j k

tn n * *
j ,k ijk ij j j k k j ,k ijk j kc k ( t s )F ( z ( s ))F ( z ( s ))ds c f (u ) f ( u )]= =−∞

− ∨ − + ∨ ),...,2,1( ni = , (11) 

where j j j j j j jF ( z ( t )) f ( z ( t ) u *) f ( u *)= + − ,  
*

j j ij j j ij j j jF ( z ( t ( t ))) f ( z ( t ( t ) u )) f ( u *)τ τ− = − + −  
^ *
i i i i id ( z ( t )) d ( z ( t ) u )= + , ^ * *

i i i i i i i( z ( t )) ( z ( t ) u ) ( u )ρ ρ ρ= + − . 

The initial condition of Eqs. (11) is *)()( uss −= φψ , 0≤s , and Eqs. (11) have a 

unique equilibrium at 0=z . So according to the Assumption D, we get 

j j j j| F ( z ( t ))| p | z ( t ) |≤ . 

Due to α  being an M-matrix, so (| A| | B | | C |)Pα β= − + +  is an M-matrix. Using 

property of M-matrix [13], there exist 0>iξ  ),...,2,1( ni =  satisfy  

1

0
n

i i j ij ij ij j
j

(| a | | B | | C |)pξ β ξ
=

− + + + < ),...,2,1( ni = .      (12) 

From Assumption F,we know that ))((0 *
iiii utzd +≤≤ σ , so 1/))(( * ≥+ iiii utzd σ . 

So there exist a constant 0>λ  such that  

1

0
n

i i j ij ij ij ij j
ji

( ) (| a | e | B | | C | N ( ))pλτλξ β ξ λ
σ =

− − + + + < .    (13) 

Here, τ  is a fixed number according to assumption of neural networks (1). Let 

)(e)( tztV i
t

i
λ= ),...,2,1( ni = , and Lyapunov function Ω= dxtVtV ii |)(|)( , calculating 

the upper right derivative )(tVD i
+ of )(tVi  along the solutions of (11), we get  

dxtVDtVD ii Ω
++ = |)(|)( ( sgn | |)t t

i i ie z z e z dxλ λλ
Ω

= +  .          (14) 

From (11) and (14), according to Assumption D, Lemma 4, boundary condition (2), and 
0>Ωmes , we get 

 Ω
=

Ω
+ +

∂
∂+

∂
∂= dxtzedx

x

u
utzxtD

x
tzetVD i

t

k

i
m

k
iik

k
i

t
i |)(|])))((,,([)(sgn)( *

1

λλ λ  

1

n
^ t ^
i i i i i ij j j

j

d ( z ( t ))e {sgn z ( t )[ ( z ( t )) a F ( z ( t ))λ ρ
Ω

=

− −  

1 1
1 1

n n * *
j ,k ijk j j ij k k ik j ,k ijk j j k kb F ( z ( t ( t )))F ( z ( t ( t ))) b f ( u ) f ( u )τ τ= =− ∧ − − + ∧  

2 2
1 1

n n * *
j ,k ijk j j ij k k ik j ,k ijk j j k kb F ( z ( t ( t )))F ( z ( t ( t ))) b f ( u ) f ( u )τ τ= =− ∨ − − + ∨           

1 1
1 1 j k

tn n * *
j ,k ijk ij j j k k j ,k ijk j kc k ( t s )F ( z ( s ))F ( z ( s ))ds c f ( u ) f ( u )= =−∞

+ ∧ − − ∧  

2 2
1 1 j k

tn n * *
j ,k ijk ijk j j k k j ,k ijk j kc k ( t s )F ( z ( s ))F ( z ( s ))ds c f ( u ) f ( u )]}dx= =−∞

+ ∨ − − ∨  

1

ij

n
( t )^

i i i i ij j j ij j j ij
ji

d ( z ( t ))[( )|V ( t )| | a | p |V ( t )| e | B | p |V ( t ( t ))|]dx
λτλβ τ

σΩ
=

≤ − − − − −

1

n
^
i i ij j

j

d ( z ( t ))[ | C |p
Ω

=

+ ×  dxdssVestk j
stt

ij ]|)(|)( )( −
∞− − λ                       (15) 
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Defining the curve },...,2,1,0,:)({ nillyly ii =>== ξγ , and the set ( ) { :y uΩ =  

0 , }u y y γ≤ ≤ ∈ . Let }{min
1

min i
ni

ξξ
≤≤

= , }{max
1

max i
ni

ξξ
≤≤

= . Taking 

min0 /||||)1( ξψδ+=l , where 0>δ  is a constant number, then 

|,)(|e|||:{| sVV s ψλ=  ))((}0 00 lzs Ω⊂≤≤−τ , namely 0|)(|e|)(| lssV ii
s

i ξψλ <= , 

0≤≤− sτ , i=1,2,…, n. 
We claim that 0|)(| ltV ii ξ< , for ),0[ +∞∈t , i=1, 2, … , n . If it is not true, then 

there exist some index i and 1t  ( 01 >t ) such that 01 |)(| ltV ii ξ= , 0|)(| 1 ≥+ tVD i , and 

0|)(| ltV jj ξ≤ , for 1tt ≤<−τ , j =1, 2, … , n. So we could get 

0|)(|)( 11 ≥= Ω
++ dxtVDtVD ii . However, from (13) and (15), we get 

1 1
1

n
^

i i i i i i j ij j
ji

D V ( t ) D |V ( t ) | dx d ( z ( t ))[ ( ) (| a | p
λξ β ξ
σ

+ +

Ω
=

= ≤ − − −  

0 0ij j ij ij je | B | p | C | N ( )p )]lλτ λ+ + <  

There is a contradiction. So 0|)(| ltV ii ξ< , for ),0[ +∞∈t , therefore, 
t

ii ltz λξ −< e|)(| 0 minmax /||||)1( ξξψδ+≤ tλ−e ||||ψβ= tλ−e ,  

where minmax /)1( ξξδβ += . From definition 2, the zero solution of systems (11) is 

globally exponentially stable, i.e., the equilibrium point of systems (1) is globally 
exponentially stable. The proof is completed.  

Remarks 2: If the activation function of second order satisfy 1k k ikf ( u ( t ( t )))τ− = , 

1k kf ( u ( s )) = , then the system (1) is become the normal fuzzy  Cohen-Grossberg 

neural networks discussed in [7]. And if ( , , ) 0i iD t x u = or ( )i id u =0, then the system (1) 

is become the  generally studied neural networks in many literatures such as [2~5].  
Remarks 3: If 1 0ijkc =  and 2 0ijkc = , then the high order system is the same as 

[8,10,11,12], which not include the unbounded delays. In other words, the system in 
these literatures is the special case of this paper. 

5 Conclusions 

In the paper, a thorough analysis of existence, uniqueness, and global exponential 
stability of the equilibrium point for a class of HOFCGNN with reaction-diffusion 
terms and both variable delays and unbounded delay have been presented. The 
conditions ensuring the existence and uniqueness of the equilibrium are obtained. By 
constructing proper Lyapunov functionals, using M-matrix theory and qualitative 
property of the differential inequalities, the sufficient conditions for global 
exponential stability of the equilibrium point for HOFCGNN are obtained. Some 
restrictions on HOFCGNN are removed, and the results in this paper are explicit and 
convenient to verify in practice. 
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Abstract. In recent years, Extreme Learning Machine (ELM) has at-
tracted comprehensive attentions as a universal function approximator.
Comparing to other single layer feedforward neural networks, its input
parameters of hidden neurons can be randomly generated rather than
tuned, and thereby saving a huge amount of computational power. How-
ever, it has been pointed out that the randomness of ELM parameters
would result in fluctuating performances. In this paper, we intensively in-
vestigate the randomness reduction effect by using a regularized version
of ELM, named Ridge ELM (RELM). Previously, RELM has been shown
to achieve generally better generalization than the original ELM. Fur-
thermore, we try to demonstrate that RELM can also greatly reduce the
fluctuating performance with 12 real world regression tasks. An insight
into this randomness reduction effect is also given.

Keywords: Extreme Learning Machine, Ridge Regression, Randomness
Reduction.

1 Introduction

Extreme Learning Machine (ELM) achieves its extremely fast learning speed
through random generalization of input parameters. However, one of the biggest
concerns towards ELM is also the reason of its popularity: randomness nature.
Zhu et al pointed out that the random assignment of parameters could introduce
non-optimal solutions [1]. In [2], fluctuating performance of ELM was reported
with different initial parameters. Various approaches have been applied to reduce
the randomness effect of ELM, such as evolutionary algorithms [1,3]. However,
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their slow learning speed becomes the bottleneck. Another approach is to use
an ensemble of ELMs, which gives an average output of each individual one
[2,4,5,6]. The third approach is to first create a large pool of neurons, and a
subset of more significant neurons are selected using various ranking algorithms
[7,8,9]. Ridge regression [10] was also applied to improve the performance of
ELM [11]. It has been found out that the generalization ability of ridge ELM
(RELM) is less sensitive to the choice of ridge parameter C and the number of
neurons than traditional ELM [12]. And for some activation function, sigmoid
for instance, it appears that the generalization performance reaches a plateau
rather than deteriorating when the number of neurons exceeds some value [12].

In this paper, we attempt to demonstrate an additional feature of RELM, the
randomness reduction effect. Different to previous works, we design our tests
solely to investigate the ELM fluctuating performance caused by different initial
parameters, excluding the influences such as random data partition and target
value approximation (caused by classification tasks). The results are compared
with the original ELM and ELM ensemble since their computational time are at
relatively same level. The remaining of this paper is organized as follows: Section
2 gives the preliminaries of ELM, RELM and ensemble method. The randomness
effect comparison of the above methods is presented in Section 3. An attempt
to explain the reason why RELM is less affected by random weights than ELM
is given in Section 4. Conclusions are drawn in Section 5.

2 Preliminaries on Original ELM, ELM Ensemble and
RELM

The structure of the original ELM is a generalized single layer feed forward
Neural Network, and its output y with L hidden nodes can be represented by:

y =

L∑
i=1

βigi(x) =

L∑
i=1

βiG(ωi, bi,x) = Hβ (1)

where x,ωi ∈ R
d and gi denotes the i

th hidden node output function G(ωi, bi,x);
H and β are the hidden layer output matrix and output weight matrix respec-
tively. For N distinct samples (xj, tj), j = 1, . . .N , Eqn. 1 can be written as:

Hβ = T (2)

H =

⎡⎢⎣ h1

...
hN

⎤⎥⎦ =

⎡⎢⎣ h(x1)
...

h(xN)

⎤⎥⎦ =

⎡⎢⎣ G(ω1, b1,x1) · · · G(ωL, bL,x1)
... · · · ...

G(ω1, b1,xN) · · · G(ωL, bL,xN)

⎤⎥⎦
N×L

(3)

Since the input weights of its hidden neurons (ωi, bi) can be randomly generated
instead of tuned [12], the only parameters that need to be calculated in ELM
is the output weight matrix β, which can be easily done through Least Squares
Estimate (LSE):

β = H†T (4)
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where H† is the Moore-Penrose generalized inverse of matrix H [11], which can
be calculated through orthogonal projection, where H† = (HTH)−1HT.

The idea of neural network ensembles was first introduced by Hansen and
Salamon [13]. Its structure consists of P individual neural networks. In the com-
mon implementation, the final output of the ensemble is the average of each
individual one’s result. By using the ensemble, it has been shown that the the
overall network performance can be expected to be improve, and it can be ap-
plied to ELM to reduce its fluctuating performance [2,4,6].

According to ridge regression theory [10], more stable and better generaliza-
tion performance can be achieved by adding a positive value 1/C to the diagonal
elements of HTH when calculating the output weight β [12,14]. Therefore, the
corresponding ELM with ridge regression becomes:

H† = (HTH+
I

C
)−1HT (5)

3 Randomness Effect Comparison

To better explain the fluctuating performance of ELM, Auto MPG data (datasets
used in this paper are taken from UCI Machine Learning Repository [15] and
Statlib [16]) is selected for demonstration. To be fair, L in ELM and C in
RELM (L in RELM is uniformly selected as 1000) are chosen using 10-fold-
cross-validation. The specific data configuration is shown in Table 1. Totally 10
trials are carried out with random permutation. Within each trial, 50 runs are
done to study the randomness effect with data unchanged, therefore it eliminates
the performance fluctuation caused by different data partitions.

From Figure 1, it can be seen that the Standard Deviation (STD) caused
by the random generalization of input parameters are reduced to about 1/3 to
the original level, and therefore ELM ensemble can indeed achieve more stable
performance than using a single ELM. For the case of RELM, not only the testing
results are generally improved, the STD has also been reduced to about half of
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Fig. 1. Random effect comparison of original ELM and ELM ensemble with Auto MPG
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ELM ensemble and 1/6 of original ELM. For the Auto MPG problem, the STD
is only around half a thousandth of the whol e data range, pretty insignificant.

To thoroughly study the randomness reduction effect of RELM, 12 regres-
sion datasets are selected for comparison. Regression tasks are preferred in this
study, since the correction rate in classification may be affected by the output
approximation, therefore not able to truly reflect the randomness effect1.

Table 1. Specification of datasets and results. 1:Number of features; 2: Number of
training data; 3: Number of testing data

Datasets L C 1 2 3
ELM ELM Ensemble RELM

RMSE STD RMSE STD RMSE STD

Basketball 5 20 5 64 32 0.2980 0.0034 0.2975 0.0011 0.2923 2.064e-4

Autoprice 19 2−1 16 106 53 0.1847 0.0119 0.1841 0.0036 0.1767 6.412e-4

Bodyfat 24 20 15 168 84 0.0326 0.0034 0.0324 0.0010 0.0291 2.983e-4

Auto MPG 28 210 8 261 131 0.0766 0.0026 0.0766 8.563e-4 0.0738 4.507e-4

Housing 30 25 14 337 169 0.0673 0.0022 0.0674 7.245e-4 0.0605 4.748e-4

Forest Fire 1 20 13 345 172 0.0945 0.0031 0.0947 0.0010 0.0669 2.344e-4

Strike 19 2−5 7 416 209 0.2987 0.0095 0.2981 0.0029 0.2959 6.043e-5

Concrete 139 213 9 687 343 0.0900 0.0076 0.0897 0.0024 0.0766 0.0011

Balloon 16 220 3 1334 667 0.0544 0.0026 0.0543 8.155e-4 0.0577 1.607e-4

Quake 18 24 4 1452 726 0.1764 2.927e-4 0.1764 9.116e-5 0.1774 5.193e-5

Space-ga 69 24 7 2071 1036 0.0341 8.104e-4 0.0342 2.732e-4 0.0357 2.743e-5

Abalone 30 20 9 2784 1393 0.0775 0.0011 0.0775 3.617e-4 0.0777 5.478e-5

From the results in Table 1 (best results shown in bold letters), it can be
seen that the fluctuating performance of ELM caused by random generalization
of input weights can be greatly reduced by using RELM. Generality speaking,
RELM offers better test performance, which is consistent with the results re-
ported in [12]. Although by using an ensemble of ELMs, the random effect of
input parameters can also be reduced, but still not enough to beat RELM in
our tests. In summary, we believe RELM is a better choice compared to ELM
and ELM ensemble because it offers the following benefits (first two suggested
in [12]):

– Better generalization performance may be achieved.
– Only one ridge parameter C needs to be defined by the user, which can be

selected easily and efficiently.
– The fluctuating performance of ELM caused by random generalization of

input parameters can be greatly reduced.

1 The final STD is the average of STD derived from each trial rather than all trials.
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4 An Attempt to Explain the Randomness Reduction
Effect of RELM

Although the simulation results strongly demonstrate the randomness reduction
effect of RELM, it is preferred that this phenomenon can be explained. From
Eqn. 2 and 3 and , the target estimation matrix in Eqn. 2 can be rewritten as:

Hβ =[G(Xω1 + b1) G(Xω2 + b2)) · · · G(XωL + bL)) ]β

=β1G(Xω1 + b1) + β2G(Xω2 + b2) + · · ·+ βLG(XωL + bL)

=β1G1 + β2G2 + · · ·+ βLGL = T (6)

Therefore the learning process can be considered as finding the best linear com-
bination of [G1 G2 · · · GL ] to approximate the target vector T. According to
[12], to solve Eqn. 6 for any T with zero error, the linear combination of Gi,
should be able to cover the whole space of RN . Given the fact that when L ≥ N ,
serious overfitting problem can appear in ELM, L is usually much smaller than
N for the optimal structure in ELM. Consequently, Hβ can only approximate T
to a certain degree. In the simulation tests carried out in Section 3, X and T are
hold constant in Eqn. 6. However, because of the effect of randomly generalized
ω and b (ω ∈ [−1, 1] and b ∈ [0, 1]), each Gi will be oscillating in the range of
[−G(−X), G(X + 1)] (with sigmoid function). For each run, the linear combi-
nation of Gi, can only approximate T with varying performances, and this is
where the problem of random performance stems from.

The output regularization of RELM can suppress the overfitting problem
and therefore more neurons can be used in the network structure. In [12], L
is uniformly selected as 1000 for all tasks, which results in L > N for most
cases. Intuitively, the linear combination of Gi should be able to approximate∥∥∥Hβ − T̃

∥∥∥2, with ∥∥∥T− T̃
∥∥∥ = ε, much easier than ELM. Hence the fluctuating

training performance can be reduced. And with properly selected C, the fluctu-
ating testing performance can also be reduced. However, to thoroughly explain
this phenomenon, we propose the following lemmas and a remark.

Lemma 1. In RELM, let L ≥ N , the fluctuating training performance will
decrease towards zero when C → ∞
Proof. When C → ∞, 1

C → 0, therefore the RELM will approach to the normal
ELM. ELM can approximate T with zero error if at least N Gi are linearly
independent Consequently, the STD is close to zero because all training errors
are close to zero.

Lemma 2. In RELM, the fluctuating performance will decrease towards zero
when C → 0

Proof. When C → 0, 1
C → ∞, then (HTH+ I

C ) can be considered as a square
matrix with diagonal elements approaching to ∞ and others approaching to 0,
and this results in its inverse (HTH+ I

C )−1 approach zero matrix. Therefore

the estimated output Hβ = H(HTH+ I
C )−1HTT is overwhelmed by the zero

matrix and produces nearly zero. Thus the STD of outputs approaches zero.
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The two extreme cases mentioned above rarely happens in practical implemen-
tations since the scenario in Lemma 1 will lead to serious overfitting problem
and the RELM in Lemma 2 has outputs approaching zero. Consequently, it is
more important to analyse the scenarios where C and L enable RELM to have
optimal generalization ability, which has the most practical significance. Figure
2 and Figure 3 shows the randomness reduction effect with varying C and L,
the STD comparison of ELM and RELM across a wide range of C and L.
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Fig. 2. Training error and STD comparison between ELM and RELMfor Auto MPG
task

The above two Lemmas have been verified in Figure 2. From Figure 2.a, It can
be seen that the STD of RELM is pretty low when C takes two extreme values.
However, as mentioned in Lemma 2, this is caused by two different scenarios,
where RELM is close to ELM when C approaches ∞, while when C approaches
0, it almost loses approximation ability and its output error is very high. When
L is small, the available Gi has difficulties approximating the target T , thus the
STD of ELM oscillates at a relatively high value. At the same time, adding C
can stabilize the output, and this explains why the STD of RELM is smaller
than one of ELM when L is small, but with slightly higher training error.

From Figure 2.b, it can be seen that implementing C generally has some
negative effect on controlling the training STD, since the ELM has lower STD
than RELM when L > 200. However, in real applications, optimal ELM usually
takes a small L (28 in Auto MPG), then RELM with much more hidden neurons
(e.g., 1000), has more advantage in controlling STD, as long as C is not too small
(rarely happens since normally 1

C takes the value in [0, 1] [17]). But of course, it
is more important to analyse generalization performance, shown in Figure 3.

Generally speaking, by using a small amount of 1/C, the ELM generalization
ability can be improved, given the same L is used in RELM, except when L is
small (probably before the overfitting effect appears in ELM). With increasing
number of hidden neurons used, RELM can achieve better generalization ability
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task

with bigger amount of 1/C. This demonstrates that RELM is more resistant
to overfitting problem. Although whether optimal RELM performs better than
optimal ELM is still remain to be determined, the results in Table 1 seem to give
an affirmative answer. From Figure 3.b, given the same L, RELM has more stable
performance, and only a very small region in the plot shows otherwise. In this
specific Auto MPG task, RELM already has lower STD than ELM when L = 28,
C = 210. Since more neurons tends to offer better approximation ability, and the
C is selected so that overfitting effect is limited in RELM, we can almost certain
to say that RELM offers more stable results with carefully chosen parameters,
and experiments in Table 1 also shows similar results. Therefore we propose the
following remark:

Remark 1. Given the same approximation task, and optimal L in ELM and
C in RELM (L is large enough) are selected, RELM can achieve more stable
performance.

5 Conclusions

In this paper, the randomness reduction effect on the ELM performance caused
by the implementation of ridge regression is investigated. According to the results
of the 12 real world regression task experiments, it has been shown that the
fluctuating performance can be greatly reduced by using RELM comparing to
normal ELM, even an ensemble of 10 ELMs. Furthermore, we investigated the
reason of the randomness effect through a dimensional viewpoint and proposed
two Lemmas to discuss two extreme scenarios in RELM. After examining the
performances across a wide range of C and L, together with the results from
experiments, we conclude that RELM can achieve more stable performance than
normal ELM, given appropriate parameters are selected.
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RELM is generally deemed to achieve better generalization performance and
the parameter C is easier to select. We demonstrated that in addition to these
two benefits, it can also offer more stable performances. We believe our work
can make ELM to attract more researchers, considering the fact that the random
performance is one of the biggest concerns in ELM. In future works, we also plan
to develop an algorithm to automatically derive the parameter C, replacing the
tedious manual tuning procedure.
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Abstract. In this paper, a class of high-ordered neural networks are investigated.
By rigorous analysis, a set of sufficient conditions ensuring the existence of a
nonnegative periodic solution and its Rn

+-asymptotical stability are established.
The results obtained can also be applied to the first-ordered neural networks.

Keywords: High-ordered neural networks, nonnegative periodic solutions,
global stability, asymptotical stability.

1 Introduction

Recently, the neural networks with high-ordered interactions have attracted consider-
able attentions due to the fact that they have stronger approximation property, faster
convergence rate, greater storage capacity, and higher fault tolerance than first-ordered
neural networks. It is of great importance to study the dynamics underlying these sys-
tems in both theory and applications. Consider a class of high-ordered Cohen-Grossberg
neural networks described by

dui(t)

dt
= −ai(ui(t))

[
bi(ui(t)) +

n∑
j=1

cij(t)fj(uj(t))

+

n∑
j1=1

n∑
j2=1

dij1j2(t)gj1 (uj1(t− τij1 ))gj2(uj2(t− τij2)) + Ii(t)
]
,

i = 1, · · · , n, (1)

where ui(t) represents the state of the ith unit at time t, ai(u) > 0 is the amplification
function, cij(t) and dij1j2(t) are the first-order and high-order connection weights, re-
spectively, τij ≥ 0 stands for the transmission delay, and τ = max

i,j
τij , Ii(t) denotes the

external input at time t, fj , gj are the activation functions, i, j = 1, · · · , n. The initial
condition is

ui(s) = φi(s) for s ∈ [−τ, 0], (2)

where φi ∈ C[−τ, 0], i = 1, · · · , n.
C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 174–180, 2013.
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In the competition models of biological species, ui(t), which represents the amount
of the i-th species, must be nonnegative. In [2], [4]-[6], theoretical analysis have been
provided on the stability of positive solutions of neural networks. The dynamics of high-
ordered neural networks were also studied in [7]-[9]. In this paper, we are concerned
with the Cohen-Grossberg neural networks (1) with high-ordered connections, and to
investigate the existence and stability of nonnegative periodic solutions.

2 Preliminaries

First of all, we present some assumptions and definitions required throughout the paper.
Assumption 1. The amplification function ai(ρ) is continuous with ai(0) = 0 and
ai(ρ) > 0 when ρ > 0. And for any ε > 0, it holds that

∫ ε

0
dρ

ai(ρ)
= +∞, i =

1, 2, · · · , n.
Assumption 2. cij(t), dij1j2(t), Ii(t) are continuous and periodic functions with pe-

riod ω. bi(x) is continuous and satisfies bi(x)−bi(y)
x−y ≥ γi > 0, i = 1, 2, · · · , n.

Assumption 3. There exist positive constants Fj > 0, Gj ,Mj > 0, such that,

|fj(x)− fj(y)| ≤ Fj |x− y|, |gj(x) − gj(y)| ≤ Gj |x− y|, |gj(x)| ≤ Mj

for any x, y ∈ R, j = 1, 2, · · · , n.
Definition 1. {ξ,∞}-norm: ‖u(t)‖{ξ,∞} = max

i=1,...,n
ξ−1
i |ui(t)|, where ξi > 0, i =

1, . . . , n.
Definition 2. A nonnegative periodic solution u∗(t) of the system (1) is said to be
Rn

+-asymptotically stable if for any trajectory solution u(t) of (1) with initial condition
φi(s) > 0, s ∈ [−τ, 0], i = 1, 2, · · · , n, there holds that lim

t→+∞[u(t)− u∗(t)] = 0.

3 Main Results

Lemma 1. Suppose that Assumption 1 is satisfied. If the initial condition φi(s) > 0,
then, the corresponding trajectory u(t) = [u1(t), u2(t), · · · , un(t)]T satisfies ui(t) > 0
for t > 0.

Proof: If for some t0 > 0 and some index i0, ui0(t0) = 0, then, by the Assumption
1, we have∫ t0

0

[
bi0(ui0(t)) +

n∑
j=1

ci0j(t)fj(uj(t))

+

n∑
j1=1

n∑
j2=1

di0j1j2(t)gj1(uj1 (t− τi0j1))gj2(uj2(t− τi0j2)) + Ii0(t)
]
dt

= −
∫ t0

0

u̇i0(t)

ai0(ui0(t))
dt =

∫ φi0
(0)

0

dρ

ai0(ρ)
= +∞. (3)

Because of the continuity of ui(t), the left side of (3) is finite, which contradicts with
the infinity of right side. Hence, ui(t) �= 0 for all t > 0, which implies that ui(t) > 0
for all t > 0, i = 1, 2, · · · , n. Lemma 1 is proved.
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Lemma 2. Suppose that Assumption 1 ∼ Assumption 3 are satisfied. If there are
positive constants ξ1, . . . , ξn such that

− γiξi +

n∑
j=1

|cij(t)|ξjFj +

n∑
j1=1

n∑
j2=1

|dij1j2(t)|(ξj1Gj1Mj2 + ξj2Gj2Mj1) < 0, (4)

for all 0 ≤ t < ω, i = 1, · · · , n, then any solution u(t) of the high-ordered Cohen-
Grossberg neural networks (1) is bounded.

Proof: By (4), we can find a small positive constant η such that

−γiξi +
n∑

j=1

|cij(t)|ξjFj +

n∑
j1=1

n∑
j2=1

|dij1j2(t)|(ξj1Gj1Mj2 + ξj2Gj2Mj1) < −η < 0,

for all t > 0.
Define M(t) = sup

t−τ≤s≤t
‖u(s)‖{ξ,∞}. For any fixed t0, there are two possibilities:

(i) ‖u(t0)‖{ξ,∞} < M(t0).
In this case, there exists δ > 0, ‖u(t)‖{ξ,∞} < M(t0) for t ∈ (t0, t0 + δ). Thus

M(t) = M(t0) for t ∈ (t0, t0 + δ).
(ii)‖u(t0)‖{ξ,∞} = M(t0).

In this case, let it0 be an index such that ξ−1
it0

|uit0 (t0)| = ‖u(t0)‖{ξ,∞}. Notice that

|fj(x)| ≤ Fj |x|+|fj(0)|, |gj1(x)gj2(y)| ≤ Gj1Mj2 |x|+Gj2Mj1 |y|+|gj1(0)gj2(0)|.

Denote

C̃ = max
i

{ n∑
j=1

|bi(0)|+ c∗ij |fj(0)|+
n∑

j1=1

n∑
j2=1

d∗ij1j2 |gj1(0)gj2(0)|+ I∗i
}
, (5)

where c∗ij = sup
t

|cij(t)|, d∗ij1j2 = sup
t

|dij1j2(t)|, I∗i = sup
t

|Ii(t)|.
Then we have

d|uit0
(t)|

dt

∣∣∣∣∣
t=t0

= −sign(uit0
(t0))ait0

(uit0
(t0))

{
bit0 (uit0

(t0)) +

n∑
j=1

cit0 j(t0)fj(uj(t0))

+

n∑
j1=1

n∑
j2=1

dit0 ,j1,j2(t0)gj1(uj1 (t0 − τit0 j1))gj2(uj2(t0 − τit0 j2)) + Iit0 (t0)

}

≤ ait0
(uit0

(t0))

{
− γit0 |uit0

(t0)|+
n∑

j=1

|cit0 j(t0)|Fj |uj(t0)|

+
n∑

j1=1

n∑
j2=1

|dit0 ,j1,j2(t0)|(Gj1Mj2 |uj1(t0 − τit0 j1)|+Gj2Mj1 |uj2(t0 − τit0 j2)|) + C̃

}
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≤ ait0
(uit0

(t0))

{[
− γit0 ξit0 +

n∑
j=1

|cit0 j(t0)|ξjFj

+

n∑
j1=1

n∑
j2=1

|dit0 ,j1,j2(t0)|(ξj1Gj1Mj2 + ξj2Gj2Mj1)
]
M(t0) + C̃

}

< ait0
(uit0

(t0))

{
− ηM(t0) + C̃

}
. (6)

If M(t0) ≥ C̃/η, then,
d|uit0

(t)|
dt

∣∣∣
t=t0

≤ 0, M(t) is non-increasing nearby t0, that is,

there exists δ1 > 0, such that M(t) = M(t0) for t ∈ (t0, t0+ δ1). On the other hand, if
M(t0) < C̃/η, then there exist δ2 > 0, such that M(t) < C̃/η for t ∈ (t0, t0+ δ2). Let
δ = min{δ1, δ2}, then, M(t) ≤ max{M(t0), C̃/η} holds for every t ∈ (t0, t0 + δ).

In summary, ‖u(t)‖{ξ,∞} ≤ M(t) ≤ max{M(0), C̃/η}. Lemma 2 is proved.

Theorem 1. Suppose that Assumption 1 ∼ Assumption 3 are satisfied. If there are
positive constants ξ1, . . . , ξn, ζ1, · · · , ζn, such that for every 0 ≤ t < ω, there hold (4)
and

− γiζi +

n∑
j=1

|cji(t)|ζjFi +

n∑
j1=1

n∑
j2=1

(ζj1d
∗
j1ij2Mj2 + ζj2d

∗
j2j1iMj1)Gi < 0, (7)

for i = 1, . . . , n. Then the system (1) has a nonnegative periodic solution with periodic
ω, which is Rn

+-asymptotically stable.

Proof: In fact, for any positive solution u(t) of system (1), let xi(t) = ui(t + ω) −
ui(t), yi(t) =

∫ ui(t+ω)

ui(t)
dρ

ai(ρ)
. It is obvious that sign(xi(t)) = sign(yi(t)). Then, by

direct calculation, we have

d|yi(t)|
dt

= sign(yi(t))

{
− bi(ui(t+ ω)) + bi(ui(t))

−
n∑

j=1

cij(t+ ω)fj(uj(t+ ω)) +

n∑
j=1

cij(t)fj(uj(t))

−
n∑

j1=1

n∑
j2=1

dij1j2(t+ ω)gj1(uj1(t+ ω − τij1 ))gj2(uj2(t+ ω − τij2 ))

+

n∑
j1=1

n∑
j2=1

dij1j2(t)gj1(uj1(t− τij1 ))gj2(uj2(t− τij2))

−Ii(t+ ω) + Ii(t)

}
≤ −γi|xi(t)|+

n∑
j=1

|cij(t)|Fj |xj(t)|

+
n∑

j1=1

n∑
j2=1

|dij1j2(t)|
(
Gj1Mj2 |xj1 (t− τij1)|+Gj2Mj1 |xj2 (t− τij2 )|

)
.
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Define

V (t) =
n∑

i=1

ζi|yi(t)| +
n∑

i=1

n∑
j1=1

n∑
j2=1

ζid
∗
ij1j2

(
Gj1

Mj2

∫ t

t−τij1

|xj1
(s)|ds + Gj2

Mj1

∫ t

t−τij2

|xj2
(s)|ds

)
.

(8)

Differentiating it along the trajectory u(t), it gets

dV (t)

dt
≤

n∑

i=1

ζi

{
− γi|xi(t)| +

n∑

j=1

|cij(t)|Fj |xj(t)|

+
n∑

j1=1

n∑

j2=1

|dij1j2 (t)|
(
Gj1Mj2 |xj1(t − τij1 )|+Gj2Mj1 |xj2(t − τij2 )|

)}

+
n∑

i=1

n∑

j1=1

n∑

j2=1

ζid
∗
ij1j2

(
Gj1Mj2 |xj1(t)| +Gj2Mj1 |xj2 (t)|

−Gj1Mj2 |xj1 (t− τij1 )|+Gj2Mj1 |xj2(t− τij2 )|
)

≤
n∑

i=1

(−γiζi)|xi(t)| +
n∑

i=1

n∑

j=1

|cij(t)|ζiFj |xj(t)|

+
n∑

i=1

n∑

j1=1

n∑

j2=1

ζid
∗
ij1j2

(Gj1Mj2 |xj1 (t)|+Gj2Mj1 |xj2(t)|)

=
n∑

i=1

{
− γiζi +

n∑

j=1

|cji(t)|ζjFi +
n∑

j1=1

n∑

j2=1

(ζj1d
∗
j1ij2

Mj2 + ζj2d
∗
j2j1i

Mj1)Gi

}
|xi(t)|

≤ −λ
n∑

i=1

|xi(t)| = −λ‖x(t)‖1, (9)

where λ is defined by

−λ = max
i

sup
t

{
− γiζi +

n∑

j=1

|cji(t)|ζjFi +
n∑

j1=1

n∑

j2=1

(ζj1d
∗
j1ij2

Mj2 + ζj2d
∗
j2j1i

Mj1 )Gi

}
< 0.

Integrating both sides of (9), we have∫ ∞

0

‖x(t)‖1dt ≤ 1

λ
V (0) < +∞, (10)

that is,

∞∑
n=1

∫ ω

0

‖u(t+ nω)− u(t+ (n− 1)ω)‖1dt ≤ 1

λ
V (0) < +∞. (11)

By Cauchy convergence principle, we have that u(t + nω) converges in L1[0, ω] as
n → +∞. On the other hand, from Lemma 2, we know that ui(t) is bounded, so
that ai(ui(t)) is bounded and u(t) is uniformly continuous correspondingly. Then the
sequence u(t + nω) is uniformly bounded and equicontinuous. By Arzéla − Ascoli
theorem, there exists a subsequence u(t + nkω) converging on any compact set of R.
Denote the limit as u∗(t).
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It is easy to see that u∗(t) is also the limit of u(t+ nω) in L1[0, ω], i.e.,

lim
n→+∞

∫ ω

0

‖u(t+ nω)− u∗(t)‖1dt = 0.

Then, we have that u(t+ nω) converges to u∗(t) uniformly on [0, ω]. Similarly, u(t+
nω) converges to u∗(t) uniformly on any compact set of R.

Now we will prove that u∗(t) is a nonnegative periodic solution of (1). Clearly, u∗(t)
is nonnegative. And, u∗(t+ω) = lim

n→+∞ u(t+(n+1)ω) = lim
n→+∞u(t+nω) = x∗(t),

so that u∗(t) is periodic with period ω. Then, replace u(t) with u(t + nkω) in system
(1), let k → ∞, and it gets

du∗i (t)
dt

= −ai(u∗i (t))
[
bi(u

∗
i (t)) +

n∑
j=1

cij(t)fj(u
∗
j (t))

+

n∑
j1=1

n∑
j2=1

dij1j2(t)gj1(u
∗
j1(t− τij1 ))gj2(u

∗
j2(t− τij2)) + Ii(t)

]
. (12)

Hence u∗(t) is a solution of system (1).
Let t = t1+nω, where t1 ∈ [0, ω]. Then, ‖u(t)−u∗(t)‖ = ‖u(t1+nω)−u∗(t1)‖.

And the uniform convergence of {u(t+ nω)} on [0, ω] leads to

lim
t→+∞ ‖u(t)− u∗(t)‖ = 0. (13)

Finally, we prove that any positive solution v(t) of system (1) converges to u∗(t). In

fact, redefine xi(t) = vi(t) − ui(t), yi(t) =
∫ vi(t)

ui(t)
dρ

ai(ρ)
. Using the same method

above, it is easy to get that lim
t→+∞ ‖v(t) − u(t)‖ = 0. Combining with (13), we get

lim
t→+∞ ‖v(t)− u∗(t)‖ = 0. Theorem 1 is proved.

4 Conclusions

In this paper, the high-ordered Cohen-Grossberg neural networks are addressed. Under
some mild conditions, the existence of a nonnegative periodic solution and its Rn

+-
asymptotical stability are presented.
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Abstract. In this paper, under the condition without assuming the
boundedness of the activation functions, the competitive neural networks
with time-varying and distributed delays are studied. By means of con-
traction mapping principle, the existence and uniqueness of periodic so-
lution are investigated on time scales.

1 Introduction

Over past few decades, competitive neural networks have been extensively inves-
tigated as is apparent from a large number of publications [1–11]. Generally, a
competitive neural network model contains two types of state variable, the short-
term memory (STM), and the long-term memory (LTM). The STM describes
rapid changes in neuronal dynamics, and the LTM describes the unsupervised
neural cell synaptic slow behavior. For the detailed hardware implementation of
competitive neural networks, please refer to the reference [2].

So far, a large number of papers involved in the existence of solutions of
competitive neural networks had been published in various magazines [3–11].
Based on flow-invariance, the existence and uniqueness of the equilibrium of
CNNs were discussed [3, 7]. In addition, the existence and uniqueness of the
equilibrium point of CNNs were investigated by using the nonsmooth analysis
techniques [4], Browers fixed-point theorem [5], the theory of uncertain singularly
perturbed systems [6], the topological degree theory [8], the nonlinear Lipschitz
measure (NLM) method [9] and the Leray-Schauder alternative theorem [10],
respectively. But there is no papers on studying the existence of the solution of
CNNs by adopting contraction mapping principle on time scales.

The theory of time scales, which unify the continuous-time and discrete-time
demains, was initiated by Hilger in 1988 [16]. We recommend the interested read-
ers to crack the reference [17] which summarized and organized the time scale
calculous theory in detail.

Recently, many excellent results have been reported on existence of periodic
solution of several types of neural networks on time scales [12–15]. However,

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 181–188, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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there is still little work dedicated to studying the existence of periodic solutions
for CNNs on time scales. Motivated by above mentioned, in this paper, we will
discuss the existence of periodic solution for competitive neural networks with
time-varying and distributed delays on time scales. Such a model is described
by the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

STM : xΔi (t) = −αi(t)xi(t) +
∑N

j=1Dij(t)fj(xj(t))

+
∑N

j=1D
τ
ij(t)fj(xj(t− τij(t))

+
∑N

j=1 D̄ij(t)
∫ +∞
0

Kij(u)fj(xj(t− u))Δu

+Bi(t)Si(t)

LTM : SΔ
i (t) = −ci(t)Si(t) + Ei(t)fi(xi(t))

(1)

with the initial values

xi(s) = φi(s), s ∈ (−∞, 0]T

Si(s) = ψi(s), s ∈ (−∞, 0]T

where i, j = 1, ..., N ; xi(t) is the neuron current activity level, αi(t), ci(t) are
the time variable of the neuron, fj(xj(t)) is the output of neurons, Dij(t) and
Dτ

ij(t), D̄ij(t) represent the connection weight and the synaptic weight of delayed
feedback between the ith neuron and the jth neuron respectively, Bi(t) is the
strength of the external stimulus, Ei(t) denotes disposable scale, transmission
delays τij(t) satisfies 0 < τij(t) � τ (τ > 0).
T is an ω-periodic time scale, and φi(·), ψi(·) are rd-continuous. Assume that

0 ∈ T , T is unbounded above, ie. supT = ∞ and T+ = {t ∈ T, t ≥ 0}. We
denote

μ̄ = max
t∈[0,ω]T

|μ(t)|, Dij = max
t∈[0,ω]T

|Dij(t)|, Dτ
ij = max

t∈[0,ω]T
|Dτ

ij(t)|,

D̄ij = max
t∈[0,ω]T

|D̄ij(t)|, Bi = max
t∈[0,ω]T

|Bi(t)|, Ei = max
t∈[0,ω]T

|Ei(t)|.

Through this paper, we make the following assumptions:
(H1): αi(t),ci(t), Dij(t), D

τ
ij(t), D̄ij(t), Bi(t), Ei(t), τij(t) are continuous ω-

periodic functions with ω > 0, and there exist positive numbers αi, αi ,ci, ci
such that αi ≤ αi(·) ≤ αi, ci ≤ ci(·) ≤ ci, for i, j = 1, ..., N .

(H2): The delay kernels Kij(s) : [0,+∞) → [0,+∞) are continuous integral
functions, and satisfy∫ +∞

0

Kij(s)Δs = 1,

∫ +∞

0

Kij(s)eη(s, t)Δs < ∞, (2)

for i, j = 1, ..., N .
(H3): The functions fi ∈ C(R,R) are Lipschitz functions, that is, there exists

positive constants ki > 0, such that for all x, y ∈ R

|fi(x) − fi(y)| ≤ ki|x− y|. (3)
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2 Preliminary

Definition 1. ([17]) A time scale T is an arbitrary nonempty closed subset of
the real set R with the topology and ordering inherited from R. The set of all
right-dense continuous functions on T is defined by Crd = Crd(T ) = Crd(T,R).
The graininess of the time scale T and is determined by the formula μ(t) =
σ(t)− t, σ(t) = inf{s ∈ T, s > t}.
Definition 2. ([17]) For f : T → R and t ∈ T k, we define the so-called
Δ−derivative of f , fΔ(t), to be the number (if it exists) with the following prop-
erty, for any ε > 0 there is a N−neighborhood of t with

|f(σ(t)) − f(s)− fΔ(t)(σ(t) − s)| ≤ ε|σ(t)− s|, for all s ∈ N.

We call fΔ(t) the delta derivative of f at t.

Definition 3. ([17]) We say that a function f : T → R is called regressive if
1 + μ(t)f(t) �= 0, for all t ∈ T k. If p, q ∈ R, we define

(p⊕ q)(t) = p(t) + q(t) + μ(t)p(t)q(t), p� q = p⊕ (�q), �p(t) = − p(t)
1+μ(t)p(t) .

Definition 4. ([17]) For s, t ∈ T , if p is a regressive function then we define
the exponential function ep(t, s) by

ep(t, s) = exp
(∫ t

s

ξμ(τ)(p(τ))Δτ
)
, ξh(z) =

{
Log(1+zh)

h , h �= 0
z, h = 0

.

Lemma 1. ([17]) If p, q ∈ R, t, r, s ∈ T , then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + μ(t)p(t))ep(t, s);
(iii) ep(t, s) =

1
ep(s,t)

= e�p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t, s)eq(t, s) = ep⊕q(t, s);
(vi) eΔp (t, t0) = p(t)ep(t, t0).

Lemma 2. Suppose (H1)− (H3) hold, then Z(t) ∈ X is an ω−periodic solution
of system (1), if and only if Z(t) is an ω−periodic solution of the following
system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi(t) =
1

e�(−αi)(ω, 0) − 1

∫ t+ω

t

e�(−αi)(s, t)

1− αi(s)μ(s)
×
{ N∑

j=1

Dij(s)fj(xj(s))

+
N∑

j=1

Dτ
ij(s)fj(xj(s− τij(s)) +

N∑
j=1

D̄ij(s)

∫ +∞

0

Kij(u)fj(xj(s− u))Δu

+Bi(s)Si(s)
}
Δs

Si(t) =
1

e�(−ci)(ω, 0) − 1

∫ t+ω

t

e�(−ci)(s, t)

1− ci(s)μ(s)
Ei(s)fi(xi(s))Δs

(4)

for t ∈ T+; i = 1, 2, · · ·, N .

Proof. The proof of the lemma is similar to that of the lemma 2.3 in [12].
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3 Existence and Uniqueness of Periodic Solution

Theorem 1. Assume (H1)− (H3) hold. Further, assume that
M = max{M1,M2} < 1 with μ̄ < min{ 1

ᾱi
, 1
c̄i
}, for i = 1, 2, · · ·, N , where

M1 = ω max
1≤i≤N

(
A(αi)

(1− ᾱiμ̄)
Wi +

A(ci)

(1− c̄iμ̄)
kiEi

)
, M2 = ω max

1≤i≤N

A(αi)

(1− ᾱiμ̄)
Bi

(5)

and where

A(θ) =
e�(−θ)(ω, 0)

e�(−θ)(ω, 0)− 1
, Wi =

N∑
j=1

(Dij +Dτ
ij + D̄ij)kj ,

Then system (1) has a unique ω−periodic solution.

Proof. For convenience, we consider system (1) as the following equations:{
xΔi (t) =− αi(t)xi(t) + hij(t)

SΔ
i (t) =− ci(t)Si(t) + lij(t)

(6)

where⎧⎪⎨⎪⎩
hij(t) =

∑N
j=1Dij(t)fj(xj(t)) +

∑N
j=1D

τ
ij(t)fj(xj(t− τij(t))

+
∑N

j=1 D̄ij(t)
∫ +∞
0

Kij(u)fj(xj(t− u))Δu+Bi(t)Si(t)

lij(t) = Ei(t)fi(xi(t))

(7)

Let X = {Z(t)|Z ∈ Crd(T,R
2N ), Z(t + ω) = Z(t)} with the norm ‖Z‖ =∑N

k=1(supt∈T+ |xk(t)|+supt∈T+ |Sk(t)|), where Z(t) = (x1(t), · · ·, xN (t), S1(t), · ·
·, SN (t))T , then X is a Banach space. Let

Ω =
{
Z(t)|Z ∈ X, ‖Z‖ ≤ k, k >

M3

1−M

}
where

M3 = ω

N∑
i=1

A(αi)

(1− ᾱiμ̄)

N∑
j=1

(Dij +Dτ
ij + D̄ij)|fj(0)|+ ω

N∑
i=1

A(ci)

(1− c̄iμ̄)
Ei|fi(0)|.

Obviously, Ω is a closed nonempty subset of X .
Now, we define an operator F on the Banach X .
F : X → X , (FZ)(t) = ((Fx)1(t), · · ·, (Fx)N (t), (FS)1(t), · · ·, (FS)N (t)),

t ∈ T+ for any Z(t) = (x1(t), · · ·, xN (t), S1(t), · · ·, SN (t)) ∈ X , where⎧⎨⎩(Fx)i(t) = 1
e�(−αi)

(ω,0)−1

∫ t+ω

t

e�(−αi)
(s,t)

1−αi(s)μ(s)
hij(s)Δs

(FS)i(t) = 1
e�(−ci)

(ω,0)−1

∫ t+ω

t

e�(−ci)
(s,t)

1−ci(s)μ(s)
lij(s)Δs
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for t ∈ T+, i = 1, · · ·, N .
In order to obtain the result of theorem 1, the following three steps are made:

Step 1. Proving the following inequalities

e�(−αi)(s, t) ≤ e�(−αi)(ω, 0), e�(−ci)(s, t) ≤ e�(−ci)(ω, 0)

Firstly,we prove the first inequality.
Considering two possible cases: (i) μ(t) �= 0; (ii) μ(t) = 0;
Noting αi(t) > 0, μ(t) > 0, αi(t)μ(t) < 1, that is, Log(1− αi(t)μ(t))

−1 > 0.

(i) When μ(t) �= 0, we have

e�(−αi)(s, t) ≤ exp
{∫ t+ω

t

Log(1− μ(τ)αi(τ))
−1

μ(τ)
Δτ

}
= exp

{∫ ω

0

Log(1− μ(τ)αi(τ))
−1

μ(τ)
Δτ

}
= e�(−αi)(ω, 0).

(ii) When μ(t) = 0, we have

e�(−αi)(s, t) = exp
{∫ s

t

αi(τ)Δτ
}

≤ exp
{∫ ω

0

αi(τ)Δτ
}

= e�(−αi)(ω, 0).

So, e�(−αi)(s, t) ≤ e�(−αi)(ω, 0). Similarly, e�(−ci)(s, t) ≤ e�(−ci)(ω, 0).
Step 2. Proving F maps Ω into itself.
Firstly, from inequality (3), we know

|fi(x)| ≤ |fi(x)− fi(0)|+ |fi(0)| ≤ ki|x|+ |fi(0)|.
Noting that,

|hij(s)| ≤
N∑
j=1

|Dij(s)||fj(xj(s))|+
N∑
j=1

|Dτ
ij(s)||fj(xj(s− τij(s))|

+

N∑
j=1

|D̄ij(s)|
∫ +∞

0

Kij(u)|fj(xj(s− u))|Δu + |Bi(s)||Si(s)|

≤
N∑
j=1

Dij(kj |(xj(s))| + |fj(0)|) +
N∑
j=1

Dτ
ij(kj |xj(s− τij(s))|+ |fj(0)|)

+

N∑
j=1

D̄ij

∫ +∞

0

Kij(u)(kj |xj(s− u)|+ |fj(0)|)Δu +Bi|Si(s)|

≤Wi sup
s∈T+

|xi(s)|+Bi sup
s∈T+

|Si(t)|+
N∑
j=1

(Dij +Dτ
ij + D̄ij)|fj(0)|

(8)
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|lij(s)| ≤|Ei(s)||fi(xi(s))| ≤ Ei(ki|xi(s)|+ |fi(0)|)
≤Eiki sup

s∈T+

|xi(s)|+ Ei|fi(0)|.

For any Z(t) ∈ Ω, we have

‖(FZ)(t)‖ = sup
t∈T+

[
N∑
i=1

|(Fx)i(t)|+
N∑
i=1

|(FS)i(t)|
]

≤ sup
t∈T+

N∑
i=1

e�(−αi)(ω, 0)

(1− ᾱiμ̄) · (e�(−αi)(ω, 0) − 1)

∫ t+ω

t

|hij(s)|Δs

+ sup
t∈T+

N∑
i=1

e�(−ci)(ω, 0)

(1− c̄iμ̄) · (e�(−ci)(ω, 0) − 1)

∫ t+ω

t

|lij(s)|Δs

≤
N∑
i=1

ω

[
A(αi)Wi

(1− ᾱiμ̄)
+

A(ci)kiEi

(1− c̄iμ̄)

]
sup
t∈T+

|xi(t)|

+
N∑
i=1

ω
A(αi)Bi

(1− ᾱiμ̄)
sup
t∈T+

|Si(t)|

+
N∑
i=1

ω
A(αi)

(1− ᾱiμ̄)

N∑
j=1

(Dij +Dτ
ij + D̄ij)|fj(0)|+

N∑
i=1

ω
A(ci)Ei

(1− c̄iμ̄)
|fi(0)|

≤ M1

N∑
i=1

sup
t∈T+

|xi(t)|+M2

N∑
i=1

sup
t∈T+

|Si(t)|+M3

≤ M‖Z‖ +M3

≤ k

So, FZ ∈ Ω.
Step 3. Proving that F is a contraction mapping. For any
Z(t) = (x1(t), ···, xN (t), S1(t), ···, SN (t))T ∈ Ω, Z∗(t) =

(
x∗1(t), ···, x∗N (t), S∗

1 (t), ··
·, S∗

N (t))T ∈ Ω, we have

∥∥(FZ)(t)− (FZ∗)(t)
∥∥ = sup

t∈T+

N∑
i=1

[∣∣(Fx)i(t)− (Fx∗)i(t)
∣∣+ ∣∣(FS)i(t)− (FS∗)i(t)

∣∣]

≤
N∑
i=1

ω

[
A(αi)

(1− ᾱiμ̄)
Wi +

A(ci)

(1− c̄iμ̄)
kiEi

]
sup
t∈T+

|xi(t)− x∗
i (t)|

+

N∑
i=1

ω
A(αi)Bi

(1− ᾱiμ̄)
sup
t∈T+

|Si(t)− S∗
i (t)|

≤ M1

N∑
i=1

sup
t∈T+

|xi(t)− x∗
i (t)|+M2

N∑
i=1

sup
t∈T+

|Si(t)− S∗
i (t)|

≤ M‖Z − Z∗‖
(9)
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Note that M < 1, thus F is a contraction mapping.
According to the fixed point theorem, F has and only one unique fixed point.
Therefore, system (1) has a unique ω-periodic solution.

Corollary 1. When μ(t) = 0, suppose that (H1)− (H3) hold. Further, suppose
the following.
For i = 1, 2, · · ·, N

M1 = ω max
1≤i≤N

(
exp

( ∫ ω

0 αi(t)dt
)

exp
( ∫ ω

0
αi(t)dt

)− 1

N∑
j=1

(Dij +Dτ
ij + D̄ij)kj

+
exp

( ∫ ω

0
ci(t)dt

)
kiEi

exp
( ∫ ω

0
ci(t)dt

)− 1

)
< 1,

M2 = ω max
1≤i≤N

exp
( ∫ ω

0
αi(t)dt

)
Bi

exp
( ∫ ω

0
αi(t)dt

)− 1
< 1.

(10)

Then the periodic solution of the system (1) is existent and unique.

Corollary 2. When μ(t) = 1 and ᾱi, c̄i < 1, suppose (H1)−(H3) hold. Further,
suppose the following. For i = 1, 2, · · ·, N

M1 = ω max
1≤i≤N

( ∏ω−1
k=0

[
1− αi(k)

]−1(∏ω−1
k=0

[
1− αi(k)

]−1 − 1
) · (1− ᾱi

) N∑
j=1

(Dij +Dτ
ij + D̄ij)kj

+

∏ω−1
k=0

[
1− ci(k)

]−1
kiEi(∏ω−1

k=0

[
1− ci(k)

]−1 − 1
) · (1− c̄i

)) < 1,

M2 = ω max
1≤i≤N

∏ω−1
k=0

[
1− αi(k)

]−1
Bi(∏ω−1

k=0

[
1− αi(k)

]−1 − 1
) · (1− ᾱi

) < 1.

(11)
Then the periodic solution of the system (1) is existent and unique.

4 Conclusion

Under the condition without assuming that the activation functions are zero
at the zero [12] and the activation functions are bounded [13], some conditions
are obtained to ensure the existence of periodic solution for competitive neu-
ral networks with time-varying and distributed delays on time scales by using
contraction mapping principle. This is the first time applying the time scale cal-
culus theory to discuss the existence of periodic solution of competitive neural
networks, therefore, the results derived in this paper extend some previously
existing results1.

1 This work was jointly supported by the Fundamental Research Funds for the Cen-
tral Universities ( JUSRP51317B), the Foundation of Key Laboratory of Advanced
Process Control for Light Industry (Jiangnan University), Ministry of Education of
China.
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Global Exponential Stability in the Mean Square

of Stochastic Cohen-Grossberg Neural Networks
with Time-Varying and Continuous Distributed
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Abstract. In this paper, the global exponential stability in the mean
square of stochastic Cohen-Grossberg neural networks (SCGNNS) with
mixed delays is studied. By applying the Lyapunov function, stochastic
analysis technique and inequality techniques, some sufficient conditions
are obtained to ensure the exponential stability in the mean square of
the SCGNNS. An example is given to illustrate the theoretical results.

1 Introduction

In 1983, Cohen and Grossberg constructed an important kind of simplified neural
networks model which is now called Cohen-Grossberg neural networks (CGNNS)
[1]. This kind of neural networks is very general and includes Hopfield neural
networks, cellular neural networks and BAM neural networks as its special cases.

In general, the model of Cohen-Grossberg neural networks is described by the
set of ordinary differential equations:

x
′
i(t) = −ai(xi(t))[bi(xi(t))−

n∑
j−1

cijgj(xj(t))], i = 1, 2, · · · , n,

where n is the number of neurons and xi(·) is the state variable, ai(·) is an am-
plification function and bi(·) represents a behaved function, C = (cij)n×n is a
connection matrix, which shows how the neurons are connected in the network,
and the activation function gj(·) tells how the jth neuron reacts to the input.

In recent years, the stability of the Cohen-Grossberg neural networks with
or without delays has been widely studied. Many useful and interesting results
have been obtained in [2]-[13]. Distributed delays were introduced into the neural
networks in [3], and by using the theory of dissipative systems, several condi-
tions were obtained to ensure the stability of the system. Without considering
the global Lipschitz activation functions, Zhou [4] studied the stability of the

� Corresponding author.

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 189–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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almost periodic solutions for delayed neural networks. Recently, Balasubrama-
niam [7] investigated the Takagi-Sugeno fuzzy Cohen-Grossberg BAM neural
networks. In [10], by utilizing the Lyapunov-Krasovkii function and combining
with the linear matrix inequality (LMI) approach, some well conclusions were
obtained about the global exponential stability of neutral type neural networks
with distributed delays. The problem of robust global exponential stability for a
class of neutral-type neural networks was investigated in [9], where the interval
time-varying delays allowed for both fast and slow time-varying delays. However,
to the best of our knowledge, there have been few authors to study the global
exponential stability in the mean square of stochastic Cohen-Grossberg neural
networks with time-varying and continuous distributed delays. This motivates
our present research.

The rest organization of this paper is as follows: the model and some prelim-
inaries are introduced in section 2. In section 3, some sufficient conditions are
given to guarantee the global exponential stability in the mean square of the
model. One example is given in section 4. And in the last section: we give some
conclusions.

2 Model Description and Preliminaries

In this paper, we consider a system of SCGNNS as follows:

dxi(t) =− ai(xi(t))
[
bi(xi(t)) −

n∑
j=1

cij(t)fj(xj(t))−
n∑

j=1

dij(t)fj(xj(t− τ))

−
n∑

j=1

eij(t)

∫ +∞

0

Kij(s)fj(xj(t− s))ds
]
dt+

n∑
j=1

σij(xj(t))dωj(t),

(1)

t ≥ 0, where n is the number of neurons and xi(t) is the state variable, ai is
an amplification function and bi represents a behaved function, cij(t), dij(t),
eij(t) present the strengths of connectivity between cells i and j at time t,
the activation function fj(·) tells how the jth neuron reacts to the input, τ
corresponds to the time delay. Kij(·) is the delay kernel function and satis-

fies that
∫ +∞
0

|Kij(s)|ds ≤ Kij ,
∫ +∞
0

Kij(s)e
λsds ≤ kij ,

∫ +∞
0

Kij(s)e
λssds ≤

kij . The noise pertuibation σij is a Borel measurable function, and ω(t) =
(ω1(t), · · · , ωn(t))

T is an n-dimensional Brownian motion defined on a complete
probability space (Ω,F ,P) with a natural filtration {Ft}t≥0.

Let C((−∞, 0];Rn) be the Banach space of continuous functions, which from
(−∞, 0] to Rn. The initial condition associated with (1) is: xi(s) = ϕi(s), s ∈
(−∞, 0], ϕ ∈ L1

F0
((−∞, 0]; Rn), where L1

F0
((−∞, 0]; Rn) is the family of all F0-

measurable, C((−∞, 0];Rn)-valued stochastic process. Moreover,
∫ 0

−τ E|ϕ(t)|dt
< ∞, where E[·] is the correspondent expectation operator with respect to the
given probability measure P.

Following are some assumptions and one definition which can be used later.
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A1: The weight functions cij(t), dij(t), and eij(t) are continuous, and cij =
supt≥0{|cij(t)|}, dij = supt≥0{|dij(t)|}, eij = supt≥0 {|eij(t)|}.

A2 : 0 < ai ≤ ai(u) ≤ ai, ∀u ∈ R, and ∀x, y ∈ R, there exists a positive
constant γi, such that (x− y)[bi(x)− bi(y)] ≥ γi(x− y)2, bi(0) ≡ 0.

A3 : ∀x, y ∈ R, there exists a constant Mj > 0, such that |fj(x) − fj(y)| ≤
Mj|x− y|, Moreover, fj(0) ≡ 0.

A4 : σij(0) ≡ 0, and there exists a constant Γij > 0, such that |σij(x) −
σij(y)| ≤ Γij |x− y|, ∀x, y ∈ R.

Definition 1. The solution of model (1) is said to be mean square exponential
stability if ∀ϕ ∈ L1

F0
((−∞, 0]; Rn), there exist constants μ, λ > 0, such that

Ex2(t) ≤ μe−λt sup
s≤0

Eϕ2(s), t > 0.

3 Globally Exponentially Stable in the Mean Square

In this section, we give the global mean square exponential stability of SCGNNS.

Theorem 1. Assume that A1 − A4 hold, if there exists a positive constant pi,
such that the following inequality holds:

2piaiγi >

n∑
j=1

piaiMj [cij + dij + eijKij ]

+

n∑
j=1

pjajMi[cji + dji + ejikji] +

n∑
j=1

pjΓ
2
ji

(2)

then the solution of system (1) is global exponential stability in the mean square.

Proof. Define the following Lyapunov-Krasovskii functions:

V1(t) = eλt
n∑

i=1

pix
2
i (t), V2(t) =

∫ t

t−τ

eλ(s+τ)
n∑

i=1

n∑
j=1

pjajdjiMix
2
i (s)ds,

V3 =

n∑
i=1

n∑
j=1

piaieijMj

∫ +∞

0

Kij(s)e
λs
[ ∫ t

t−s

eλux2j (u)du
]
ds.

Then for t > 0, consider the Itô formula, we have:

LV1(t) =λeλt
n∑

i=1

pix
2
i (t) + 2eλt

n∑
i=1

pixi(t)
{
− ai(xi(t))

[
bi(xi(t))

−
n∑

j=1

cij(t)fj(xj(t))−
n∑

j=1

dij(t)fj(xj(t− τ ))

−
n∑

j=1

eij(t)

∫ +∞

0

Kij(s)fj(xj(t− s))ds
]}

+ eλt
n∑

i=1

pi

n∑
j=1

σ2
ij(xj(t))
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=λeλt
n∑

i=1

pix
2
i (t) + 2eλt

n∑
i=1

pixi(t)
[ − ai(xi(t))bi(xi(t))

]
+ 2eλt

n∑
i=1

pixi(t)ai(xi(t))

n∑
j=1

cij(t)fj(xj(t))

+ 2eλt
n∑

i=1

pixi(t)ai(xi(t))

n∑
j=1

dij(t)fj(xj(t− τ))

+ 2eλt
n∑

i=1

pixi(t)ai(xi(t))

n∑
j=1

eij(t)

∫ +∞

0

Kij(s)fj(xj(t− s))ds

+ eλt
n∑

i=1

pi

n∑
j=1

σ2
ij(xj(t))

≤λeλt
n∑

i=1

pix
2
i (t)− 2eλt

n∑
i=1

piaiγix
2
i (t)

+ 2eλt
n∑

i=1

piai

n∑
j=1

cijMj |xi(t)xj(t)|

+ 2eλt
n∑

i=1

piai

n∑
j=1

dijMj |xi(t)xj(t− τ)|

+ 2eλt
n∑

i=1

piai

n∑
j=1

eijMj

∫ +∞

0

Kij(s)|xi(t)xj(t− s)|ds

+ eλt
n∑

i=1

pi

n∑
j=1

Γ 2
ijx

2
j (t)

≤λeλt
n∑

i=1

pix
2
i (t)− 2eλt

n∑
i=1

piaiγix
2
i (t) + eλt

n∑
i=1

piai

n∑
j=1

cijMj [x
2
i (t)

+ x2j(t)] + eλt
n∑

i=1

piai

n∑
j=1

dijMj[x
2
i (t) + x2j (t− τ)]

+ eλt
n∑

i=1

piai

n∑
j=1

eijMj

∫ +∞

0

Kij(s)[x
2
i (t) + x2j (t− s)]ds

+ eλt
n∑

i=1

pi

n∑
j=1

Γ 2
ijx

2
j (t).

(3)

LV2(t) = eλ(t+τ)
n∑

i=1

n∑
j=1

pjajdjiMix
2
i (t)− eλt

n∑
i=1

n∑
j=1

pjajdjiMix
2
i (t− τ). (4)
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LV3(t) =
n∑

i=1

n∑
j=1

piaieijMj

∫ +∞

0

Kij(s)e
λs
[
eλtx2j (t)− eλ(t−s)x2j (t− s)

]
ds. (5)

Then from (3) to (5), we have

LV (t) ≤λeλt
n∑

i=1

pix
2
i (t)− 2eλt

n∑
i=1

piaiγix
2
i (t) + eλt

n∑
i=1

piai

n∑
j=1

cijMjx
2
i (t)

+ eλt
n∑

i=1

piai

n∑
j=1

cijMjx
2
j (t) + eλt

n∑
i=1

piai

n∑
j=1

dijMjx
2
i (t)

+ eλt
n∑

i=1

piai

n∑
j=1

eijMj

∫ +∞

0

Kij(s)x
2
i (t)ds+ eλt

n∑
i=1

pi

n∑
j=1

Γ 2
ijx

2
j (t)

+ eλ(t+τ)
n∑

i=1

n∑
j=1

pjajdjiMix
2
i (t)

+
n∑

i=1

n∑
j=1

piaieijMj

∫ +∞

0

Kij(s)e
λseλtx2j (t)ds

≤eλt
n∑

i=1

[
λpi − 2piaiγi +

n∑
j=1

piaicijMj +
n∑

j=1

pjajcjiMi

+
n∑

j=1

piaidijMj +
n∑

j=1

piaieijMjKij +
n∑

j=1

pjΓ
2
ji + eλτ

n∑
j=1

pjajdjiMi

+
n∑

j=1

pjajejiMikji

]
x2i (t)

(6)

From (2), we have

−2piaiγi +
n∑

j=1

piaiMj [cij + dij + eijKij ]

+

n∑
j=1

pjajMi[cji + dji + ejikji] +

n∑
j=1

pjΓ
2
ji < 0.

Then we can choose an appropriate constant λ, 0 < λ � 1, such that

λpi − 2piaiγi +
n∑

j=1

piaicijMj +
n∑

j=1

pjajcjiMi +
n∑

j=1

piaidijMj +
n∑

j=1

pΓ 2
ji

+

n∑
j=1

piaieijMjKij + eλτ
n∑

j=1

pjajdjiMi +

n∑
j=1

pjajejiMikji < 0. (7)
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Combining (6) and (7), we can obtain that LV (t) < 0. Then by applying the
Dynkin formula, we have the following inequality:

EV (t)− EV (0) = E

∫ t

0

LV (u)du < 0.

It implies that

EV (t) < EV (0) ≤
n∑

i=1

piEx
2
i (0) + eλτ

n∑
i=1

n∑
j=1

pjajdjiMi

∫ 0

−τ

Ex2i (s)ds

+
n∑

i=1

n∑
j=1

piaieijMj

∫ +∞

0

Kij(s)e
λs

∫ 0

−s

Ex2j (u)duds

≤
(

max
1≤i≤n

pi + max
1≤i,j≤n

τeλτpjajdjiMi

+ max
1≤i,j≤n

pjajejiMikji

)
sup
s≤0

Eϕ2(s)

(8)

On the other hand, by the definition of the Lyapunov function V (t), it is easy
to get the following inequality:

EV (t) ≥ Eeλt
n∑

i=1

pix
2
i (t) ≥ eλt min

1≤i≤n
piEx

2(t). (9)

Combining (8) and (9), we can obtain: Ex2(t) ≤ αe−λtEϕ2(s), where

α =
max1≤i≤n pi +max1≤i,j≤n τe

λτpjajdjiMi +max1≤i,j≤n pjajejiMikji
min1≤i≤n pi

> 0.

Then by the Definition 1, the trivial solution of the model (1) is globally expo-
nentially stable in the mean square. Thus completes the proof.

4 An Example

In this section, we will give one example to illustrate the results obtained.

Example 1. Consider the following two dimensional Cohen-Grossberg neural net-
works with the following parameters:

a(x(t)) =

[
3− cos(t) 0

0 3 + sin(t)

]
, b(x(t)) =

[
6 0
0 5

] [
x1(t)
x2(t)

]
,

(cij)(t)2×2 = sin(t)

[
3
5

1
2

2
5

2
5

]
, (dij)(t)2×2 = sin(t)

[
1
5

1
10

1
5

1
10

]
,

(eij)(t)2×2 = sin(t)

[
1
2

1
3

1
3

1
5

]
, f(x(t)) =

[
sin(x1(t))
sin(x2(t))

]
,

(σij(xj(t)))2×2 =

[
2 0
0 1

] [
x1(t) 0
0 x2(t)

]
,



Global Exponential Stability in Mean Square 195

(Kij(s))2×2 =

[
1
2e

−s 1
2e

−s

1
2e

−s 1
2e

−s

]
, 0 ≤ s ≤ 40,Kij(s) = 0, ∀s ∈ (40,+∞).

So a1 = a2 = 2, a1 = a2 = 4, γ1 = 6, γ2 = 5, M1 = M2 = 1, Γ11 = 2, Γ22 =
1, Γ12 = Γ21 = 0, select Kij = kij = 1, p1 = p2 = 1, then

2p1a1γ1 =2× 1× 2× 6 = 24

>p1a1M1(c11 + d11 + e11K11) + p1a1M2(c12 + d12 + e12K12)

+ p1a1M1(c11 + d11 + e11K11) + p2a2M1(c21 + d21 + e21K21)

+ p1Γ
2
11 + p2Γ

2
21 =

328

15
,

2p2a2γ2 =2× 1× 2× 5 = 20

>p2a2M1(c21 + d21 + e21K21) + p2a2M2(c22 + d22 + e22K22)

+ p1a1M2(c12 + d12 + e12K12) + p2a2M2(c22 + d22 + e22K22)

+ p1Γ
2
12 + p2Γ

2
22 =

47

3
.

From Theorem 1, we can check that the solution of the model is global mean
square exponential stability. The results are shown in Fig.1 and Fig.2.
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Fig. 1. The trajectory of x1(t) and x2(t)
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Fig. 2. The stability of the solutions

5 Conclusions

In this paper, we investigate the stochastic Cohen-Grossberg neural networks
with mixed delays. Some sufficient conditions are obtained to ensure the global
mean square exponential stability of SCGNNS. From Theorem 1, we know that
if system (1) satisfies the conditions in the theorem, then the stability is indepen-
dent of the delays and the noise. In [11] and [12], the authors also investigated
the mean square stability of the SCGNNS. However, they did not consider the
distributed delays, which is very important in a neural reaction process in the
real world. Compared with them, the model in our paper is more general 1.

1 This work was jointly supported by the National Natural Science Foundation of
China under Grant 60875036, the Key Research Foundation of Science and Technol-
ogy of the Ministry of Education of China under Grant 108067, and the Fundamental
Research Funds for the Central Universities JUSRP51317B.
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Abstract. This paper considers the problem of stability analysis for
discrete-time recurrent neural networks with randomly occurred non-
linearities (RONs) and time-varying delay. By utilizing new Lyapunov-
Krasovskii functions and delay-partitioning technique, the stability crite-
ria are proposed in terms of linear matrix inequality (LMI). We have also
shown that the conservatism of the conditions is a non-increasing func-
tion of the number of delay partitions. A numerical example is provided
to demonstrate the effectiveness of the proposed approach.

1 Introduction

Due to the successful applications in pattern recognition, associative memories,
signal processing and the other fields [1], the study of neural networks has re-
ceived a great deal of attention during the past decades [1]-[8]. It is well known
that the stability of neural networks is a prerequisite in modern control theories
for these applications. However, time delays are often attributed as the major
sources of instability. Therefore, how to find sufficient conditions to guarantee
the stability of neural networks with time delays is an important research topic.
A vast amount of effort has been devoted to this topic [2]-[8].

Recently, by introducing free-weighting matrices, LMI approach and adopting
the concept of delay partitioning, criteria have been established [2,7,9]. Stability
results for neural networks with time-varying delay have been proposed by em-
ploying complete delay-decomposing approach and LMI in [2]. Compared with
continuous-time systems with time delay, discrete-time systems with state delay
have a strong background in engineering applications. It has been well recog-
nized that networked-based control is a typical example. However, little effort
has been made for studying the problem of stability of discrete time-delay sys-
tems. On the other hand, it is worth mentioning that, a number of practical
systems are influenced by additive randomly occurred nonlinear disturbances
which are caused by environmental circumstances. The nonlinear disturbances

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 197–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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may occur in a probabilistic way, what’s more, they are randomly changeable
in terms of their types and/or intensity. For example, in a networked environ-
ment, nonlinear disturbances may be subject to random abrupt changes, which
may result from abrupt phenomena such as random failures and repairs of the
components, environmental disturbance and so on. The stochastic nonlineari-
ties, which are then named as randomly occurred nonlinearities (RONs), have
recently attracted much attention [10,11,12]. However, to the best of the authors’
knowledge, the stability analysis of discrete-time recurrent neural networks with
RONs via delay-partitioning method has not been tackled in the previous liter-
atures. This motivates our research.

2 Problem Formulation

Consider the following discrete recurrent neural networks with time-varying de-
lay and RONs:

y(k + 1) =(A+ΔA)y(k) + (B +ΔB)g(y(k)) + (C +ΔC)g(y(k − d(k)))

+ ξ(k)Ẽf(y(k)),

y(k) =φ(k), k = −d2,−d2 + 1, · · · , 0,
(1)

where y(k) ∈ Rn is the state vector. d(k) is a positive integer representing time-
varying delay with lower and upper bounds 1 ≤ d1 ≤ d(k) ≤ d2, d1 and d2
are known positive integers. Note that the lower bound of the delay can be
always described by d1 = τm, where τ and m are integers, and τ presents the
partition size. φ(k) is an initial value at time k. A, B, C and Ẽ are known real
matrices with appropriate dimensions. ΔA, ΔB and ΔC are unknown matrices
representing parameter uncertainties, which are assumed to satisfy the following
admissible condition:

[ΔA,ΔB,ΔC] = MF [N1, N2, N3], FFT ≤ I, (2)

where M , N1, N2 and N3 are known constant matrices.

g(y(·)) = (
g1(y1(·)) g2(y2(·)) . . . gn(yn(·))

)T
denotes the neuron activation func-

tion. It satisfies the following assumptions:
A1: For i ∈ {1, 2, . . . , n} , the function g(y(·)) is continuous and bounded.
A2: For any t1, t2 ∈ R, t1 �= t2:

0 ≤ gi(yi)

yi
≤ si, gi(0) = 0, ∀yi �= 0, i = 1, 2, . . . , n, (3)

where si are known constant scalars.
The nonlinear function f(y) satisfies the following sector-bounded condition:

[f(y)−K1y]
T [f(y)−K2y] ≤ 0, ∀y ∈ Rn, (4)

where K1 and K2 are known real matrices and K1 −K2 ≥ 0.
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Remark 1. The nonlinear function f(y) satisfying (4) is customarily said to
belong to the sector [K1,K2]. Due to such a nonlinear condition is quite general
that includes the usual Lipschitz condition as a special case, the systems with
sector-bounded nonlinearities have been intensively studied in [10].

The stochastic variable ξ(k) ∈ R, which accounts for the phenomena of RONs,
is a Bernoulli distributed white sequence taking values of 1 and 0 with

Prob{ξ(k) = 1} = ξ̄, P rob{ξ(k) = 0} = 1− ξ̄, ξ̄ ∈ [0, 1].

Remark 2. According to the given hypothesis, we have E{ξ(k) − ξ̄} =
0, E{(ξ(k)− ξ̄)2} = ξ̄(1− ξ̄). Besides, as emphasised in [13], ξ(k) is a Markovian
process and follows an unknown but exponential distribution of switchings.

Under A1 and A2, it is not difficult to ensure the existence of equilibrium
point for (1) by employing the well-known Brouwer’s fixed point theorem. To
end this section, the lemmas are introduced as follows.

Lemma 1. [3] For any symmetric positive-definite matrix M ∈ Rn×n, two in-
tegers r1 and r2 satisfying r2 ≥ r1, and vector function ω(i) ∈ Rn, such that the
sums in the following are well defined, then

−(r2 − r1 + 1)

r2∑
i=r1

ωT (i)Mω(i) ≤ −(

r2∑
i=r1

ωT (i))M(

r2∑
i=r1

ω(i)).

Lemma 2. [14] There exists a matrix X such that⎛⎝ P Q+XE X
(Q +XE)T R V

XT V T S

⎞⎠ > 0,

if and only if (
P Q
QT R − V E − ETV T + ETSE

)
> 0,(

R− V E − ETV T + ETSE V − ETS
(V − ETS)T S

)
> 0.

3 Main Results

In this section, we give the LMI-based asymptotic stability conditions for the
system (1). The main results are stated as follows.

Theorem 1. For given positive integers τ, m, and d2, the system (1) is asymp-
totically stable if there exist real matrices P > 0, Qi > 0 (i = 1, 2, 3), Zi >
0 (i = 1, 2), X, Y, W, Y −W > 0, and a scalar μ > 0, such that the following
LMI holds: ⎛⎝−Z2 Y

T X
∗ Ψ W
∗ ∗ −Z2

⎞⎠ < 0, (5)
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where

Ψ =WT
1 PW1 +WT

2 Φ1W2 +WT
3 Φ2W3 +WT

4 Φ3W4 +WT
5 Φ4W5 +WT

6 Φ5W6

+WT
7 Q2W7 −WT

8 Z1W8 +WT
3 Z1W8 +WT

8 Z1W3 − μK̃ + (λ2 + 1)Q̃

+
(
O Y −(Y −W )S−1 −W O

)
+
(
O Y −(Y −W )S−1 −W O

)T
,

λ1 =
√
ξ̄(1 − ξ̄), λ2 = d2 − τm, Φ1 = P + τ2Z1 + λ22Z2,

Φ2 =− P +Q2 + (λ2 + 1)Q3 − Z1, Φ3 = τ2Z1 + λ22Z2,

Φ4 =

(
Q1 O
O −Q1

)
, Φ5 = −(S−1)TQ3S

−1,

W1 =
(
A+ΔA On,mn C +ΔC On B +ΔB ξ̄Ẽ

)
,

W2 =
(
On,(m+4)n λ1Ẽ

)
, W3 =

(
In In,(m+4)n

)
, W4 = W1 −W3,

W5 =

(
Imn Omn,5n

Omn,n Imn Omn,4n

)
, W6 =

(
On,(m+1)n In On,3n

)
,

W7 =
(
On,(m+2)n In On,2n

)
, W8 =

(
On In On,(m+3)n

)
,

Q̃ ={Q1, O(n, 3n), Q2, On},

K̃ =

⎛⎜⎜⎝
K̃1 ∗ ∗ ∗

O(m+2)n,n O(m+2)n ∗ ∗
On On,(m+2)n On ∗
K̃2 On,(m+2)n On In

⎞⎟⎟⎠ ,

K̃1 =(KT
1 K2 +KT

2 K1)/2, K̃2 = −(KT
1 +KT

2 )/2.

Proof. Construct the following Lyapunov-Krasovskii function:

V (k) = V1(k) + V2(k) + V3(k) + V4(k), (6)

where

V1(k) =y
T (k)Py(k) +

−d1+1∑
j=−d2+1

k−1∑
i=k−1+j

ζT (i)Q̃ζ(i),

V2(k) =

k−1∑
i=k−τ

γT (i)Q1γ(i) +

k−1∑
i=k−d2

yT (i)Q2y(i),

V3(k) =

−τm∑
j=−d2

k−1∑
i=k+j

yT (i)Q3y(i),

V4(k) =

−1∑
j=−τ

k−1∑
i=k+j

τΔyT (i)Z1Δy(i) +

−τm−1∑
j=−d2

k−1∑
i=k+j

λ2Δy
T (i)Z2Δy(i),

with

γ(i) =
(
yT (i) yT (i − τ) . . . yT (i− (m− 1)τ)

)T
, Δy(i) = y(i+ 1)− y(i),

ζ(k) =
(
γT (k) yT (k − τm) gT (y(k − d(k))) yT (k − d2) g

T (y(k)) fT (y(k))
)T

.
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Calculating the difference of V (k) along the system (1):

E{ΔV1(k)} ≤E{ζT (k)WT
1 PW1ζ(k) + ζT (k)WT

2 PW2ζ(k) + (λ2 + 1)ζT (k)Q̃ζ(k)

− yT (k)Py(k)},
E{ΔV2(k)} =E{yT (k)Q2y(k)− yT (k − d2)Q2y(k − d2) + γT (k)Q1γ(k)

− γT (k − τ)Q1γ(k − τ)},

E{ΔV3(k)} =E{(λ2 + 1)yT (k)Q3y(k)−
k−τm∑
i=k−d2

yT (i)Q3y(i)},

E{ΔV4(k)} =E{ΔyT (k)(τ2Z1 + λ22Z2)Δy(k)−
k−1∑

i=k−τ

τΔyT (i)Z1Δy(i)

−
k−τm−1∑
i=k−d2

λ2Δy
T (i)Z2Δy(i)}.

(7)

Using Lemma 1, we have

−
k−1∑

i=k−τ

τΔyT (i)Z1Δy(i) ≤ −(y(k)− y(k − τ))TZ1(y(k)− y(k − τ)). (8)

Note that

−
k−τm∑
i=k−h2

yT (i)Q3y(i) ≤ −yT (k − d(k))Q3y(k − d(k)). (9)

For any matrices Y and W (Y −W > 0), the following equations always hold:

2ζT (k)Y [y(k − τm)− y(k − d(k))−
k−τm−1∑
j=k−d(k)

Δy(j)] = 0,

2ζT (k)W [y(k − d(k)) − y(k − d2)−
k−d(k)−1∑
j=k−d2

Δy(j)] = 0.

(10)

On the other hand, for μ > 0, (4) is equivalent to

−μζT (k)K̃ζ(k) ≥ 0. (11)

From (6) to (11), we obtain

E{ΔV (k)} ≤E
{

1

λ2

k−τm−1∑
i=k−d(k)

(
ζ(k)

−λ2Δy(i)
)T (

Ψ Y
∗ −Z2

)(
ζ(k)

−λ2Δy(i)
)

+
1

λ2

k−d(k)−1∑
i=k−d2

(
ζ(k)

−λ2Δy(i)
)T (

Ψ W
∗ −Z2

)(
ζ(k)

−λ2Δy(i)
)}

.

(12)
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According to Lemma 2, it can be shown that there exists a matrix X of appro-
priate dimensions such that (5) holds if and only if(

Ψ Y
∗ −Z2

)
< 0,

(
Ψ W
∗ −Z2

)
< 0. (13)

Therefore, if the condition (5) is satisfied, the condition (13) is satisfied. By
(12), there exists a scalar λ > 0 such that E{ΔV (k)} ≤ −λ‖E{y(k)}‖2 < 0 for
y(k) �= 0. Then, from the Lyapunov stability theory, we can conclude that the
system (1) is asymptotically stable.

Remark 3. The Lyapunov-Krasovskii functional candidate (6) introduces the

term
∑−d1+1

j=−d2+1

∑k−1
i=k−1+j ζ

T (i)Q̃ζ(i), which makes use of the information of
gi(yi(k)) and the involved delay d(k). Additionally, (11) is introduced, which
makes our result take the full advantage of the information of f(y). Thus, The-
orem 1 in this investigation is expected to be less conservative.
Remark 4. Using similar steps as in the proof of [7], it is easy to establish
that the conservatism is reduced as delay partitions grow, which largely bene-
fits from the fact that the delay-partitioning approach is employed. Thus our
results provide the flexibility that allows us to trade off between complexity and
performance of the stability analysis.

In view of Theorem 1, we consider the case d1 ≥ 1, however, the d1 could be
zero in applications, thus we introduce the following criterion.

Theorem 2. For given positive integer d2, the system (1) is asymptotically sta-
ble if there exist real matrices P > 0, Q̂i > 0 (i = 1, 2, ), Z > 0, X, Ŷ , Ŵ , Ŷ −
Ŵ > 0, and a scalar μ > 0, such that the following LMI holds:⎛⎝−Z Ŷ T X

∗ Ψ̂ Ŵ
∗ ∗ −Z

⎞⎠ < 0, (14)

where

Ψ̂ =ŴT
1 PŴ1 + ŴT

2 Φ̂1Ŵ2 + ŴT
3 Φ̂2Ŵ3 + d22Ŵ

T
4 ZŴ4 + ŴT

5 Φ̂3Ŵ5 + (d2 + 1)Q̂

− μT̂ +
(
Ŷ −(Ŷ − Ŵ )S−1 −Ŵ O

)
+
(
Ŷ −(Ŷ − Ŵ )S−1 −Ŵ O

)T
,

Φ̂1 =P + d22Z, Φ̂2 = −P + Q̂1 + (d2 + 1)Q̂2, Φ̂3 = −(S−1)T Q̂2S
−1,

Ŵ1 =
(
A+ΔA C +ΔC On B +ΔB ξ̄Ẽ

)
, Ŵ2 =

(
On,4n λ1Ẽ

)
,

Ŵ3 =
(
In In,4n

)
, Ŵ4 = Ŵ1 − Ŵ3, Ŵ5 =

(
On In On,3n

)
,

Ŵ6 =
(
On,2n In On,2n

)
, Q̂ = {Q̂1, O(2n), Q̂2, On},

K̂ =

⎛⎜⎜⎝
K̃1 ∗ ∗ ∗
O2n,n O2n ∗ ∗
On On,2n On ∗
K̃2 On,2n On In

⎞⎟⎟⎠ .

Proof. The proof can then be derived by following a similar line of arguments
as that in Theorem 1.
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4 An Simulation Example

To demonstrate the effectiveness of the proposed method, we now consider the
system (1) with parameters as follows:

A =

(
0.3 0
0 0.6

)
, B =

(
0.2 0
0 0.4

)
, C =

(−0.1 0
0 −0.2

)
, Ẽ =

(
0.1 0
0 0.1

)
,

M =
(
1 1
)T

, N1 =
(
0.001 0

)
, N2 =

(
0.001 0

)
, N3 =

(
0.001 0

)
,

ξ̄ = 0.8, m = 2, si = 1 (i = 1, 2), d(k) = 10 + 6 sin
kπ

2
(k ∈ Z),

ĝi(s) = tanh(s) (i = 1, 2), F = sin(k) (k ∈ Z),

f̂(x(k)) =
1

2

(
0.3(x1(k) + x2(k))
1 + x21(k) + x22(k)

+ 0.1x1(k) + 0.1x2(k) 0.3x1(k) + 0.3x2(k)

)T

,

K1 =

(
0.2 0.1
0 0.2

)
, K2 =

(−0.1 0
−0.1 0.1

)
.

(15)

By simple computation, we have d1 = 4, d2 = 16 and τ = 2. The LMI (5) can be
verified by using the Matlab LMI Toolbox. According to Theorem 1, the system
(1) with parameters in (15) is asymptotically stable. The simulation result is
shown in Fig. 1, which also confirms our method.
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Fig. 1. State development of system (1) with parameters (15)

5 Conclusions

In this paper, we discuss the problem of asymptotic stability for discrete-time
recurrent neural networks with time-varying delay and RONs. By using new
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Lyapunov-Krasovskii functions and delay-partitioning technique, the LMI-based
criteria for the asymptotic stability of such systems are established. The results
reported in this paper are not only dependent on the delay but also dependent
on the partitioning, which aims at reducing the conservatism. An illustrative
example is exploited to show the usefulness of the results obtained1.
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Abstract. Universal approximation capability of feedforward neural
networks with one hidden layer states that these networks are dense in
the space of functions. In this paper, the concept of the Mellin approx-
imate identity functions is proposed. By using this concept, It is shown
that feedforward Mellin approximate identity neural networks with one
hidden layer can approximate any positive real continuous function to
any degree of accuracy. Moreover, universal approximation capability of
these networks is extended to positive real Lebesgue spaces.

Keywords: Mellin approximate identity, Mellin approximate identity
neural networks, Universal approximation, Electromyographic signals
analysis, Lognormal distribution.

1 Introduction

The problem of function approximation by an artificial neural networks has been
perused by many researchers. The generalization of this problem to some func-
tion spaces leads to the concept of universal approximation property. “ Universal
approximation property states that the set of approximation functions lies dense
in the set of approximated function C[X ] w.r.t. a proper norm, where X is a
compact domain.” [15].

The question of universal approximation capability by feedforward neural net-
wotks (FNNs) is reviewed as follows. Cybenko (1989) andFunahashi (1989) proved
that any continuous function can be approximated by a one hidden layer feed-
forward neural networks using sigmoid functions as activation functions. Hornik,
Stinchcombe, and Withe (1989) showed that a one hidden layer FNNs by using
arbitrary squashing functions can approximate any continuous function to any de-
gree of accuracy. Girosi and Poggio (1990) and Park and Sandberg (1991, 1993)
proved the universal approximation capability of radial basis function FNNs. In
addition, Leshno et al. (1993) showed that one hidden layer FNNs are universal
approximators provided their activation functions are not polynomials. Moreover,
Scarselli and Tosi (1998) reviewed universal approximation by using FNNs.
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Furthermore, a few works have been done in the approximate identity neu-
ral networks (AINNs) in the last fifteen years. Turchetti et al. (1998) showed
that feedforward approximate identity neural networks with one hidden layer
are capable of providing the universal approximation property. By using ap-
proximate identity functions, Hahm and Hong (2004) proved that the universal
approximation capability of FNNs with one hidden layer is with Sigmoidal ac-
tivation functions and fixed weights. Then, Li (2008) discussed the universal
approximation capability of a radial basis function FNNs with fixed weights
by using approximate identity functions. Lately, Zainuddin and Panahian Fard
(2012) showed that the double approximate identity neural networks are uni-
versal approximators in a real Lebesguse space. In addition, Panahian Fard and
Zainuddin (2013a) proved that flexible approximate identity neural networks are
universal approximators in the space of continuous functions. Moreover, these
authors (2013b) proved that these networks are universal approximators in the
real Lebesgue spaces.

On the other hand, Rupasov et al. (2012) showed that the analysis of elec-
tromyographic signals is well described by the lognormal distribution which is
obviously superior to the normal distribution. The question that arises is whether
lognormal radial basis functions belonging to some general class possess univer-
sal approximation capability. This question is the motivation of this paper.

The approach of this paper is to introduce Mellin approximate identity which
is the “multiplicative” counterpart of approximate identity. A feedforward neural
networks of Mellin approximate identity functions as activation functions with
one hidden layer is considered. Then, the universal approximation capability of
these networks are shown in two functions spaces. First, the universal approx-
imation capability of feedforward Mellin approximate identity neural networks
is proved in a space of positive continuous functions. Then, this property is ex-
tended to a positive real Lebesgue space.

The organization of this paper is as follows. In section 2, the definition of
the Mellin approximate identity will be proposed. Besides, an example will be
provided to clarify this definition. Then, two Theorems will be proven in a space
of positive real continuous functions. In section 3, two Theorem will be obtained
in a positive real Lebesgue space. In section 4, conclusions will be presented

2 Theoretical Results for Positive Real Continuous
Functions

In this section, the definition of Mellin approximate identity functions is intro-
duced. This definition will be used in further sections.

Definition 1. Let {φn(x)}n∈N, φn : R+ :=]0,∞[→ [0,∞[ is said to be Mellin
approximate identity if the following properties hold:
1)
∫
R+ φn(x)

dx
x = 1;

2) Given ε > 0 and 1 < δ < +∞, there exists N such that if n � N then∫
R+\[ 1δ ,δ] φn(x)

dx
x ≤ ε.
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To present the clarification of the previous definition, the following example is
given.
Example 1. [1] Let us consider the following sequence
φn(x) =

1√
4π
exp

(− (12 lognx)
2
)
, x ∈ R

+.

It is obvious that this sequence is a Mellin approximate identity. By using Mellin
approximate identity functions, the theoretical results will be obtained in the
next section.

Now, the universal approximation capability of FMAINNs in a positive real
continuous functions space C[ 1δ , δ] where 1 < δ < ∞, is described. First, Theorem
1 is presented. This Theorem states that any positive real continuous function f ,
convolved with another function φn where φn belongs to the Mellin approximate
identity as n → ∞, converges to itself.

Theorem 1. Let {φn(x)}n∈N, φn : R+ :=]0,∞[→ [0,∞[, be a Mellin approxi-
mate identity. Let f be a function in C[ 1δ , δ] where 1 < δ < ∞. Then, φn ∗ f
uniformly converges to f on [ 1δ , δ].

Proof. Let x ∈ [ 1δ , δ] and ε > 0. There exists a η > 0 such that |f(xy)− f(x)| <
ε

2‖φ‖L1(R+)
for all y, |xy − x| < η. Let us define {φn ∗ f}n∈N by φn(x) = nφ(xn).

Then,

φn ∗ f(x)− f(x) =

∫
R+

nφ(yn){f(xy)− f(x)}dy
y

= (

∫
[ 1δ ,δ]

+

∫
R+\[ 1δ ,δ]

)nφ(yn){f(xy)− f(x)}dy
y

= I1 + I2,

where I1 and I2 are as follows:

|I1| ≤
∫
[ 1δ ,δ]

nφ(yn){f(xy)− f(x)}dy
y

<
ε

2‖φ‖L1(R+)

∫
[ 1δ ,δ]

nφ(yn)
dy

y

=
ε

2‖φ‖L1(R+)

∫
[ 1δ ,δ]

φ(t)
dt

t

≤ ε

2‖φ‖L1(R+)

∫
R+

φ(t)
dt

t
=

ε

2
.

For I2, we have

|I2| ≤ 2‖f‖C]1δ ,δ[

∫
R+\[ 1δ ,δ]

nφ(yn)
dy

y

= 2‖f‖C[1δ ,δ]

∫
R+\[ 1δ ,δ]

φ(t)
dt

t
.
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Since

lim
n→∞

∫
R+\[ 1δ ,δ]

φ(t)
dt

t
= 0,

there exists an n0 ∈ N such that for all n � n0,∫
R+\[ 1δ ,δ]

φ(t)
dt

t
<

ε

4‖f‖C[1δ ,δ]

.

Combining I1 and I2 for n � n0, we have

‖φn ∗ f(x)− f(x)‖C[ 1δ ,δ]
< ε.

This Theorem provides the core of the following theorem.

Theorem 2. Let C[ 1δ , δ] be a linear space of all continuous functions on the
closed and bounded interval [ 1δ , δ] where 1 < δ < ∞, and V ⊂ C[ 1δ , δ] a compact
set. Let {φn(x)}n∈N, φn : R+ :=]0,∞[→ [0,∞[, be Mellin approximate identity

functions. Let the family of functions {∑M
j=1 λj

φj(x)
x |λj ∈ R, x ∈ R

+,M ∈ N},
be dense in C[ 1δ , δ], and given ε > 0. Then there exists N ∈ N which depends on
V and ε but not on f , such that for any f ∈ V , there exist weights ck = ck(f, V, ε)
satisfying ∥∥∥∥∥f(x)−

N∑
k=1

ck
φk(x)

x

∥∥∥∥∥
C[ 1δ ,δ]

< ε

Moreover, every ck is a continuous function of f ∈ V .

Proof. The method of the proof is similar to the proof of Theorem 1 in [17].
Since V is compact, for any ε > 0, there is a finite ε

2 -net {f1, ..., fM} for V . This
implies that for any f ∈ V , there is an f j , such that ‖ f − f j ‖ C[ 1δ ,δ]

< ε
2 . For

any f j, by assumption of the theorem, there are λji ∈ R, Nj ∈ N, and
φj
i (x)

x , such
that ∥∥∥∥∥f j(x) −

Nj∑
i=1

λji
φj
i (x)

x

∥∥∥∥∥
C[ 1δ ,δ]

<
ε

2
. (1)

For any f ∈ V , we define

F−(f) = {j| ‖ f − f j ‖C[ 1δ ,δ]
<

ε

2
},

F0(f) = {j| ‖ f − f j ‖C[ 1δ ,δ]
=

ε

2
},

F+(f) = {j| ‖ f − f j ‖C[ 1δ ,δ]
>

ε

2
}.

Therefore, F−(f) is not empty according to the definition of ε
2 -net. If f̃ ∈ V

approaches f such that ‖ f̃ − f ‖C[ 1δ ,δ]
is small enough, then we have F−(f) ⊂
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F−(f̃) and F+(f) ⊂ F+(f̃). Thus F−(f̃)
⋂
F+(f) ⊂ F−(f̃)

⋂
F+(f̃) = ∅, which

implies F−(f̃) ⊂ F−(f) ∪ F0(f). We finish with the following.

F−(f) ⊂ F−(f̃) ⊂ F−(f) ∪ F0(f). (2)

Define

d(f) =

[ ∑
j∈F−(f)

( ε
2
− ‖ f − f j ‖C[ 1δ ,δ]

)]−1

and

fh =
∑

j∈F−(f)

Nj∑
i=1

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
λji
φj
i (x)

x
(3)

then fh ∈
{∑M

j=1 λj
φj(x)

x

}
approximates f with accuracy ε :

‖ f − fh ‖C[ 1δ ,δ]

=

∥∥∥∥∥ ∑
j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
(
f −

Nj∑
i=1

λji
φj
i (x)

x

)∥∥∥∥∥
C[ 1δ ,δ]

=

∥∥∥∥∥ ∑
j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
(
f − f j + f j −

Nj∑
i=1

λji
φj
i (x)

x

)∥∥∥∥∥
C[ 1δ ,δ]

≤
∑

j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
(
‖f − f j ‖C[ 1δ ,δ]

+

∥∥∥∥∥fj −
Nj∑
i=1

λji
φj
i (x)

x

∥∥∥∥∥
C[ 1δ ,δ]

)

≤
∑

j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
(
ε

2
+

ε

2
) = ε. (4)

Now, the continuity of ck is proved for the next step. For the proof, we use (2)
to obtain ∑

j∈F−(f)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)

≤
∑

j∈F−(f̃)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)
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≤
∑

j∈F−(f̃)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)
+

∑
j∈F0(f)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)
. (5)

Let f̃ → f in (5), then we have

∑
j∈F−(f̃)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)
→

∑
j∈F−(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
. (6)

This obviously shows d(f̃) → d(f). Thus, f̃ → f results

d(f̃)

(
ε

2
− ‖ f̃ − f j ‖C[ 1δ ,δ]

)
λji → d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
λji . (7)

Let N =
∑

j∈F−(f)Nj and define ck in terms of

fh =
∑

j∈F−(f)

Nj∑
i=1

d(f)

(
ε

2
− ‖ f − f j ‖C[ 1δ ,δ]

)
λji
φj
i (x)

x

≡
N∑

k=1

ck
φk(x)

x

From (7), ck is a continuous functional of f . This completes the proof.

Now, the theoretical results for a positive real Lebesgue space will be extended
in the following section.

3 Theoretical Results for Positive Real Lebesgue
Functions

In this section, the universal approximation capability of FMAINNs in a positive
real Lebesgue space Let Lp[ 1δ , δ] where 1 ≤ p < ∞, and 1 < δ < ∞, is considered.
First, the following simple Lemma is presented. This Lemma will be used in the
proof of Theorem 3.

Lemma 1. Let Lp[ 1δ , δ] where 1 ≤ p < ∞, and 1 < δ < ∞, be a linear space
of all positive real Lebesgue integrable functions on any compact subset of the
positive real space. Then, lims→1‖f(xs)− f(x)‖Lp[ 1δ ,δ]

= 0.

Theorem 3 described that by any positive real Lebesgue integrable function f ,
convolved with another function φn where φn belongs to the Mellin approximate
identity as n → ∞, converges to itself.
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Theorem 3. Let Lp[ 1δ , δ] where 1 ≤ p < ∞, and 1 < δ < ∞, be a linear
space of all positive real Lebesgue integrable functions on any compact subset of
the positive real space. Let {φn(x)}n∈N, φn : R+ :=]0,∞[→ [0,∞[, be Mellin
approximate identity functions. Let f be a function in Lp[ 1δ , δ]. Then φn ∗ f
uniformly converges to f in Lp[ 1δ , δ].

Proof. Generalized Minkowski inequality implies that∥∥φn ∗ f − f
∥∥
Lp[ 1δ ,δ]

≤
∫
R+

∥∥f(xs)− f(x)
∥∥
Lp[ 1δ ,δ]

|φn(s)|ds
s
. (8)

Using Lemma 1, for any ε > 0, there exists a 1 < δ < +∞ such that if 1
δ < s < δ,∥∥f(xs)− f(x)

∥∥
Lp[ 1

δ
,δ]

≤ ε

4M
. (9)

Also, the triangular inequality implies that∥∥f(xs)− f(x)
∥∥
Lp[ 1δ ,δ]

≤ 2
∥∥f∥∥

Lp[ 1δ ,δ]
. (10)

By substituting the last two inequalities (10) and (9) in inequality (8), we obtain

∥∥φn ∗ f − f
∥∥
Lp[ 1δ ,δ]

≤
∫
[ 1δ ,δ]

ε

2M
|φn(s)|ds

s
+

∫
R+\[ 1δ ,δ]

2
∥∥f∥∥

Lp[a,b]
|φn(s)|ds

s

≤ ε

2M

∫
[ 1δ ,δ]

|φn(s)|ds
s

+ 2
∥∥f∥∥

Lp[ 1δ ,δ]

∫
R+\[ 1δ ,δ]

|φn(s)|ds
s

(11)

By definition 1 there exists an N such that for n ≥ N∫
R+\[ 1δ ,δ]

|φn(s)|ds
s

≤ ε

4
∥∥f∥∥

Lp[ 1δ ,δ]

(12)

Using inequality (12) in (11), it follows that for n ≥ N

∥∥φn ∗ f − f
∥∥
Lp[ 1δ ,δ]

≤ ε

2M
.M + 2

∥∥f∥∥
Lp[ 1δ ,δ]

.
ε

4
∥∥f∥∥

Lp[ 1δ ,δ]

= ε.

This Theorem constructs the core of the Theorem 4.

Theorem 4. Let Lp[ 1δ , δ] where 1 ≤ p < ∞, and 1 < δ < ∞, be a linear
space of all positive real Lebesgue integrable functions on any compact subset
of the positive real space, and V ⊂ Lp[ 1δ , δ] a compact set. Let {φn(x)}n∈N,
φn : R

+ :=]0,∞[→ [0,∞[, be Mellin approximate identity functions. Let the

family of functions {∑M
j=1 λj

φj(x)
x |λj ∈ R, x ∈ R

+,M ∈ N}, be dense in Lp[ 1δ , δ],
and given ε > 0. Then there exists an N ∈ N which depends on V and ε but not
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on f , such that for any f ∈ V , there exist weights ck = ck(f, V, ε) satisfying∥∥∥∥∥f(x)−
N∑

k=1

ck
φk(x)

x

∥∥∥∥∥
Lp[ 1δ ,δ]

< ε

Moreover, every ck is a continuous function of f ∈ V .

Proof. The construction of the proof of this theorem is similar to the proof of
Theorem 2, and hence will be omitted.

4 Conclusions

In this study, the definition of Mellin approximate identity functions has been
proposed. Based on this definition, Theorem 1 proves that any positive real con-
tinuous function f , convolved with another function φn where φn belongs to
Mellin approximate identity functions, converges to itself. By using this result,
Theorem 2 has been presented as the first main result. This theorem states that
the universal approximation capability of feedforward Mellin approximate iden-
tity neural networks with one hidden layer in a positive real continuous functions
space. Again, making use of Mellin approximate identity functions, Theorem 3
proves that any positive real Lebesgue integrable function f , convolved with
another function φn, where φn belongs to the Mellin approximate identity func-
tions, converges to itself. Based on this Theorem, Theorem 4 has been proved
as the second main result. This Theorem shows the universal approximation
capability of these networks in a positive real Lebesgue space.

Acknowledgements. This work was supported by Universiti Sains Malaysia
(1001/PMATHS/811161).
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Abstract. This paper focuses on studying the filtering problem of
Markovian jumping neural networks with time delays. Based on a
stochastic Lyapunov functional, a delay-dependent design criterion is
presented under which the resulting filtering error system is stochasti-
cally stable and a prescribed H∞ performance is guaranteed. It is shown
that the gain matrices of the desired filter and the optimal performance
index are simultaneously obtained by handing a convex optimization
problem subject to some coupled linear matrix inequalities, which can
be efficiently solved by some standard algorithms.

Keywords: Markovian jumping neural networks, filter design, time de-
lays, stochastic stability.

1 Introduction

In recent years, the so-called Markovian jumping neural networks have been pro-
posed and received considerable attention [7, 10]. It is known that time delays
are frequently encountered in real systems including neural networks, chemi-
cal processes and communication systems, etc. One of the disadvantages of the
existence of time delays is to lead to instability and poor performance of the un-
derlying systems. Consequently, the study on the dynamical behaviors of delayed
Markovian jumping neural networks has become an active research topic and a
great number of interesting conditions have been published in the literature (see,
e.g., [15–17]).

As mentioned in [4, 11], it is generally hard (or sometimes impossible) to
completely acquire the state information of the neurons in a relatively large-
scale neural network. However, in some neural-network-based applications, these
information are utilized to achieve certain objectives. That is to say, in some
situations, one needs to know these information in advance. Therefore, the state
estimation problem of delayed neural networks is of great importance. It has been
extensively investigated in the literature [4, 8, 9]. At the same time, the state
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estimation problem was also discussed for Markovian jumping neural networks
with time delays [2, 12, 14].

On the other hand, in the VLSI implementations of neural networks, noise
is inevitable due to the tolerance of the used electronic elements. It means that
the performance analysis is also of practical significance. It should be pointed
out that, in [2, 12, 14], only the state estimator design problem was considered
for Markovian jumping neural networks. Furthermore, although some results on
the performance analysis of delayed neural networks without Markovian jump-
ing parameters were reported in [5, 6], this issue has not yet been studied for
Markovian jumping neural networks with time delays.

Motivated by the above discussion, this paper is concerned with the delay-
dependent H∞ filtering problem of Markovian jumping neural networks with
time delays. The activation function is assumed to satisfy a sector-bounded
condition, which is less restrictive than the Lipschitz continuous condition. By
constructing a stochastic Lyapunov functional, a delay-dependent criterion is
derived under which the resulting filtering error system is stochastically stable
and a prescribed performance is ensured. It is shown that the gain matrices of
the designed filter and the optimal H∞ performance index are obtained by solv-
ing linear matrix inequalities (LMIs) [1], which is facilitated readily by standard
algorithms.

2 Problem Formulation

Let {rt, t ≥ 0} be a right-continuous Markov chain defined on a probability
space and taking values in a finite set M = {1, 2, . . . ,M}. It is assumed that its
transition probability matrix Π = [πij ]M×M is given by

Pr{rt+h = j|rt = i} =

{
πijh+ o(h), i �= j
1 + πiih+ o(h), i = j

where h > 0, limh→0+ o(h)/h = 0, πij ≥ 0 for j �= i is the transition rate from
mode i at time t to mode j at time t+ h, and for each i ∈ M,

πii = −
M∑

j=1,j �=i

πij . (1)

Consider the following delayed Markovian jumping neural network subject to
noise disturbances:

ẋ(t) = −A(rt)x(t) +B1(rt)f(x(t))

+B2(rt)f(x(t − τ)) + J(rt) + E1(rt)w(t) (2)

y(t) = C(rt)x(t) +D(rt)x(t− τ) + E2(rt)w(t) (3)

z(t) = H(rt)x(t) (4)

x(t) = φ(t) ∀t ∈ [−τ, 0] (5)
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where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ R

n is the state vector with n
being the number of the neurons, w(t) ∈ R

q is a noise disturbance be-
longing to L2[0,∞), y(t) ∈ R

m is the available measurement, z(t) ∈ R
p,

to be estimated, is a linear combination of the neuron states, f(x(t)) =
[f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]

T is the activation function, τ is a con-
stant time delay, and φ(t) is an initial condition on [−τ, 0] with τ > 0. For a
fixed rt ∈ M, A(rt) is a diagonal matrix with positive entries, B1(rt) and B2(rt)
are respectively the connection weight matrix and delayed connection weight
matrix, E1(rt), E2(rt), C(rt), D(rt) and H(rt) are real known constant matrices
with appropriate dimensions, and J(rt) is an external input vector.

Assumption 1. There exist scalars L−
i and L+

i (i = 1, 2, . . . , n) such that for
any u �= v ∈ R,

L−
i ≤ fi(u)− fi(v)

u− v
≤ L+

i . (6)

Denote L− = diag(L−
1 , L

−
2 , . . . , L

−
n ) and L+ = diag(L+

1 , L
+
2 , . . . , L

+
n ).

In sequel, for each rt = i ∈ M, A(rt), B1(rt), B2(rt), E1(rt), E2(rt), C(rt),
D(rt), H(rt) and J(rt) are respectively denoted by Ai, B1i, B2i, E1i, E2i, Ci,
Di, Hi and Ji.

As stated before, this study aims to deal with the H∞ filtering problem of
the neural network (2)-(5). For each i ∈ M, a causal Markovian jumping filter
is constructed as follows:

˙̂x(t) = −Aix̂(t) +B1if(x̂(t)) +B2if(x̂(t− τ)) + Ji

+Ki[y(t)− Cix̂(t)−Dix̂(t− τ)], (7)

ẑ(t) = Hix̂(t), (8)

x̂(t) = 0, t ∈ [−τ, 0], (9)

where x̂(t) ∈ R
n, ẑ(t) ∈ R

p, and Ki(i ∈ M) are the gain matrices of the filter.
Let the error signals e(t) = x(t) − x̂(t) and z̄(t) = z(t) − ẑ(t). Then, the

filtering error system is obtained from (2)-(4) and (7)-(8) and is described by

ė(t) = −(Ai +KiCi)e(t)−KiDie(t− τ)

+B1ig(t) +B2ig(t− τ) + (E1i −KiE2i)w(t), (10)

z̄(t) = Hie(t), (11)

with g(t) = f(x(t))− f(x̂(t)) and g(t− τ) = f(x(t− τ))− f(x̂(t− τ)).
Let et = e(t+ s),−τ ≤ s ≤ 0. It is known from [13] that {(et, rt), t ≥ 0} is a

Markov process. Then, its weak infinitesimal operator L acting on a functional
V (et, i, t) is defined by

LV (et, i, t) = lim
Δ→0+

1

Δ

{
E

[
V (et+Δ, rt+Δ, t+Δ)|et, rt = i

]
− V (et, i, t)

}
.

According to Dynkin’s formula, one has

EV (et, rt, t) = V (e(0), r0, 0) + E

{∫ t

0

LV (es, rs, s)ds

}
.
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Definition 1. The filtering error system (10) with w(t) ≡ 0 is said to be stochas-

tically stable if limt→∞ E
{ ∫ t

0 e
T (s)e(s)ds

}
< ∞ holds for any initial conditions

φ(t) and r0 ∈ M.

The objective of this study is to present a delay-dependent approach to address-
ing the H∞ filtering problem of the delayed Markovian jumping neural network
(2)-(5) via the causal filter (7)-(9). Detailedly, for a prescribed level of noise at-
tenuation ρ > 0, the filter (7)-(9) is designed such that (i) the resulting filtering
error system (10) with w(t) ≡ 0 is stochastically stable, and (ii)

‖z̄‖E2 < ρ‖w‖2 (12)

under the zero-initial conditions for all nonzero w(t) ∈ L2[0,∞), where ‖z̄‖E2 =(
E
{ ∫∞

0 z̄T (t)z̄(t)dt
}) 1

2

and ‖w‖2 =
√∫∞

0 wT (t)w(t)dt.

3 Main Result

Theorem 1. Consider the delayed Markovian jumping neural network (2)-(5),
and let ρ > 0 be a prescribed scalar. Then there exist Ki(i = 1, 2, . . . ,M) such
that the H∞ filtering problem is solvable if there are real matrices Pi > 0, Qi =[
Q1i Q2i

∗ Q3i

]
> 0, Q =

[
Q1 Q2

∗ Q3

]
> 0, R > 0, Λi = diag(λ1i, λ2i, . . . , λni) >

0, Γi = diag(γ1i, γ2i, . . . , γni) > 0 and Ni (i = 1, 2, . . . ,M) such that the following
LMIs [

Σ1i ΣT
2i

∗ −2Pi + R

]
< 0, (13)

M∑
j=1

πijQj ≤ Q, (14)

are satisfied for i = 1, 2, . . . ,M , where ∗ represents the symmetric block in a
symmetric matrix, and

Σ1i =

⎡⎢⎢⎢⎢⎣
Φ11i Φ12i Φ13i PiB2i Φ15i

∗ Φ22i 0 Φ24i 0
∗ ∗ Φ33i 0 0
∗ ∗ ∗ Φ44i 0
∗ ∗ ∗ ∗ −ρ2Iq

⎤⎥⎥⎥⎥⎦ ,
Σ2i = τ

[ −PiAi −NiCi −NiDi PiB1i PiB2i PiE1i −NiE2i

]
,

Φ11i = −PiAi −AT
i Pi −NiCi − CT

i N
T
i +

M∑
j=1

πijPj

+HT
i Hi − 2L+ΛiL

− +Q1i + τQ1 −R,

Φ12i = −NiDi +R, Φ13i = PiB1i +Q2i + τQ2 + L+Λi + L−Λi,
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Φ15i = PiE1i −NiE2i, Φ22i = −Q1i −R− 2L+ΓiL
−,

Φ24i = −Q2i + L+Γi + L−Γi, Φ33i = Q3i + τQ3 − 2Λi, Φ44i = −Q3i − 2Γi.

Furthermore, the gain matrices Ki(i = 1, 2, . . . ,M) can be designed as

Ki = P−1
i Ni. (15)

Proof. It is firstly shown that, under the zero-initial conditions, (12) holds for
any nonzero w(t). Choose a stochastic Lyapunov functional candidate for each
i ∈ M as

V (et, i, t) = eT (t)Pie(t) +

∫ t

t−τ

ξT (s)Qiξ(s)ds

+

∫ 0

−τ

∫ t

t+θ

ξT (s)Qξ(s)dsdθ + τ

∫ 0

−τ

∫ t

t+θ

ėT (s)Rė(s)dsdθ, (16)

with ξ(t) = [eT (t), gT (t)]T .
By taking the weak infinitesimal operator L on the stochastic Lyapunov func-

tional V (et, i, t), one has

LV (et, i, t) = eT (t)
[
− Pi(Ai +KiCi)− (Ai +KiCi)

TPi

]
e(t)

−2eT (t)PiKiDie(t− τ ) + 2eT (t)PiB1ig(t) + 2eT (t)PiB2ig(t− τ )

+2eT (t)Pi(E1i −KiE2i)w(t) + eT (t)

( M∑
j=1

πijPj

)
e(t) + ξT (t)Qiξ(t)

−ξ(t− τ )TQiξ(t− τ ) +

∫ t

t−τ

ξT (s)
( M∑

j=1

πijQj

)
ξ(s)ds

+τξT (t)Qξ(t)−
∫ t

t−τ

ξT (s)Qξ(s)ds+ τ 2ėT (t)Rė(t)

−τ

∫ t

t−τ

ėT (s)Rė(s)ds. (17)

It follows from (14) that

∫ t

t−τ

ξT (s)

( M∑
j=1

πijQj

)
ξ(s)ds ≤

∫ t

t−τ

ξT (s)Qξ(s)ds. (18)

By Jensen’s inequality [3], one has

− τ

∫ t

t−τ

ėT (s)Rė(s)ds ≤ −
[
e(t)− e(t− τ)

]T
R
[
e(t)− e(t− τ)

]
. (19)
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Noting that g(t) = f(x(t))− f(x̂(t)) and (6), it is known that L−
i ≤ gi(t)

ei(t)
≤ L+

i .

Then, for any positive diagonal matrices Λi and Γi,

0 ≤ −2

n∑
k=1

λki

[
gk(t)− L−

k ek(t)
][
gk(t)− L+

k ek(t)
]

= −2gT (t)Λig(t) + 2gT (t)ΛiL
+e(t)

+2eT (t)L−Λig(t)− 2eT (t)L+ΛiL
−e(t), (20)

0 ≤ −2gT (t− τ)Γig(t− τ) + 2gT (t− τ)ΓiL
+e(t− τ)

+2eT (t− τ)L−Γig(t− τ) − 2eT (t− τ)L+ΓiL
−e(t− τ). (21)

Define

J (T ) = E

{∫ T

0

[z̄T (t)z̄(t)− ρ2wT (t)w(t)]dt

}
(22)

for T > 0. Under the zero-initial conditions, it is known from (16) that

V (e(0), r0, 0) = 0 and EV (et, rt, t) ≥ 0, and thus E
{ ∫ t

0 LV (es, rs, s)ds
} ≥ 0.

Then, by combining (17)-(21) together, for any T > 0, one has

J (T ) ≤ E

{∫ T

0

[z̄T (t)z̄(t)− ρ2wT (t)w(t) + LV (et, i, t)]dt

}
≤ E

{∫ T

0

ηT (t)
(
Ξ1i + τ2ΞT

2iRΞ2i

)
η(t)dt

}
, (23)

where

η(t) =
[
eT (t) eT (t− τ) gT (t) gT (t− τ) wT (t)

]T
,

Ξ1i =

⎡⎢⎢⎢⎢⎣
Φ̄11i Φ̄12i Φ13i PiB2i Φ̄15i

∗ Φ22i 0 Φ24i 0
∗ ∗ Φ33i 0 0
∗ ∗ ∗ Φ44i 0
∗ ∗ ∗ ∗ −ρ2Iq

⎤⎥⎥⎥⎥⎦ ,
Ξ2i =

[ −Ai −KiCi −KiDi B1i B2i E1i −KiE2i

]
,

Φ̄11i = −PiAi −AT
i Pi − PiKiCi − CT

i K
T
i Pi +

M∑
j=1

πijPj

+HT
i Hi − 2L+ΛiL

− +Q1i + τQ1 −R,

Φ̄12i = −PiKiDi +R, Φ̄15i = PiE1i − PiKiE2i.

By Schur complement, Ξ1i + τ2ΞT
2iRΞ2i < 0 is equivalent to[

Ξ1i τΞT
2iR

∗ −R
]
< 0. (24)
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By pre- and post- multiplying (24) by diag(I4n+q, PiR
−1) and diag(I4n+q , R

−1Pi)
respectively and noting that Ki = P−1

i Ni and −PiR
−1Pi ≤ −2Pi + R, it yields

that (24) is guaranteed by (13). Then, it has Ξ1i+τ2ΞT
2iRΞ2i < 0. It thus implies

that J (T ) ≤ 0 for any T > 0. According to (22) that (12) holds under the zero-
initial conditions for any nonzero w(t).

Secondly, it is shown that the filtering error system (10) with w(t) ≡ 0 is
stochastically stable. When w(t) ≡ 0, (10) is of the form:

ė(t) = −(Ai +KiCi)e(t)−KiDie(t− τ) +B1ig(t) +B2ig(t− τ). (25)

As proven above, (24) is true because of (13). Then, it follows from (24) that[
Ξ̄1i τΞ̄T

2iR
∗ −R

]
< 0, (26)

where

Ξ̄1i =

⎡⎢⎢⎣
Φ̄11i Φ̄12i Φ13i PiB2i

∗ Φ22i 0 Φ24i

∗ ∗ Φ33i 0
∗ ∗ ∗ Φ44i

⎤⎥⎥⎦ ,
Ξ̄2i =

[ −Ai −KiCi −KiDi B1i B2i

]
.

By Schur complement again, it immediately implies that Ξ̄1i + τ2Ξ̄T
2iRΞ̄2i < 0.

We still consider the stochastic Lyapunov functional (16). Similar to the deriva-
tive of (23), it is not difficult to obtain that

LV (et, i, t) ≤ ζT (t)(Ξ̄1i + τ2Ξ̄T
2iRΞ̄2i)ζ(t) < 0 (27)

for any ζ(t) =
[
eT (t), eT (t − τ), gT (t), gT (t − τ)

]T
�= 0. Therefore, the filtering

error system (10) with w(t) ≡ 0 is stochastically stable. This completes the
proof. �

Remark 1. Theorem 1 provides a delay-dependent criterion to the H∞ filter
design to the Markovian jumping neural network with time delays (2)-(5). It is
worth noting that the H∞ performance index ρ can be optimized by a convex
optimization algorithm:

Algorithm 1. minPi,Qi,Q,R,Λi,Γi,Ni ρ
2 subject to the LMIs (13)-(14).

Remark 2. The performance of Theorem 1 can be further improved by employ-
ing some recently-established techniques such as the free-weighting matrices based
technique and the delay partitioning approach, etc.

Remark 3. Some illustrative examples, used to show the effectiveness of Theo-
rem 1, are omitted due to page limit.
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4 Conclusion

The delay-dependent H∞ filtering problem has been studied in this paper for
Markovian jumping neural networks with time delays. A delay-dependent design
criterion has been derived such that the resulting filtering error system is stochas-
tically stable and a prescribed H∞ performance is achieved. Its advantage is that
the gain matrices and the optimal performance index can be obtained by solving
a corresponding convex optimization problem with some LMIs constraints.
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Convergence Analysis for Feng’s MCA Neural

Network Learning Algorithm�
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lizx@dlut.edu.cn

Abstract. The minor component analysis is widely used in many fields,
such as signal processing and data analysis, so it has very important
theoretical significance and practical values for the convergence analysis
of these algorithms. In this paper we seek the convergence condition for
Feng’s MCA learning algorithm in deterministic discrete time system.
Finally numerical experiments show the correctness of our theory.

Keywords: MCA learning algorithm, DDT system, eigenvalue, eigen-
vector, invariant sets.

1 Introduction

The minor component analysis (MCA) is a very important statistical method,
which is used to search a space direction such that the signal data has the small-
est variance in it. Through the analysis, it is found that the minor component
is just the corresponding eigenvector of the smallest eigenvalue of the signal
data correlation matrix. The minor component analysis has been widely used in
curve/surface fitting, digital beamforming, total least squares (TLS), etc. So it
is very important for the convergence problem of the minor component analysis.

There are many algorithms for MCA learning method, including Feng’s MCA,
EXIN MCA, OJAn MCA [1-8], etc. Most of the MCA learning algorithms are
about stochastic discrete time system (SDT), which results in the difficulty of
the direct convergence analysis [9, 10], and we can study them via some indirect
methods. Later the deterministic continuous time system (DCT) is proposed
[11]. However, the demanded conditions are very harsh, such as the learning
rate of the algorithm tends to zero [12], which in practice are very difficult to
get satisfied. To study the convergence of algorithms better, the deterministic
discrete time (DDT) system is proposed in [13]. DDT system doesn’t require the
learning rate to approach zero, moreover, it preserves the discrete nature of the
original algorithms. Furthermore, artificial neural networks have the properties
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of fault tolerance capability, self organization and parallel computation [16, 17],
so it is successfully used in the study of MCA algorithms. Some scholars have
deeply studied the learning algorithms such as Oja-Xu MCA, AMEX MCA as
yet [14, 15]. A necessary condition for the convergence of Feng’s MCA learning
algorithm is given in [2]: η < min{λn/λ1, 0.5}. Based on that paper, we propose
a more general condition: η < min{2λn/(λ1 − λn), 0.5}.

2 Feng’s MCA Learning Algorithm

Consider a linear neuron with the following input/output relation

y(k) = w(k)Tx(k), k = 0, 1, · · · , (1)

where the neuron input {x(k)|x(k) ∈ R
n, k = 0, 1, · · · } is a stationary stochastic

process with mean zero, y(k) denotes the neuron output, w(k) the weight vector.
Feng’s MCA learning algorithm is represented as follows (see [1])

w(k + 1) = w(k) + η
(
w(k) − ‖w(k)‖2y(k)x(k)) , (2)

where η is the learning rate.
Let R = E[x(k)x(k)T ] (R �= 0) is the correlation matrix of the input vec-

tor {x(k)|x(k) ∈ R
n, k = 0, 1, · · · }, then R is a symmetric nonnegative defi-

nite matrix. Suppose λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are all the eigenvalues of R,
{v1, v2, · · · , vn} is an orthonormal basis of Rn, where each vi (i = 1, 2, · · · , n) is
the unit eigenvector of the correlation matrix R associated with the eigenvalue
λi. Obviously, for each k ≥ 0, the weight vector can be represented

w(k) =

n∑
i=1

zi(k)vi, (3)

where zi(k) (i = 1, 2, · · · , n) are some real constants.
Taking conditional expectations E{w(k+1)/w(0), x(i), i < k} in both sides of

the equation (2) via deterministic discrete time method, we can get the following
DDT system

w(k + 1) = w(k) + η
(
w(k) − ‖w(k)‖2Rw(k)) . (4)

By (3), we have

Rw(k) =

n∑
i=1

zi(k)Rvi =

n∑
i=1

λizi(k)vi. (5)

Based on the equation (3), (4) and (5), we have

zi(k + 1) = [1 + η(1 − λi‖w(k)‖2)]zi(k), i = 1, 2, · · · , n. (6)
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3 Convergence Analysis

3.1 Assumptions

In [2] Peng has proved that if λn = 0, then Feng’s MCA learning algorithm is
divergent. Based on the above discussion, we propose the following assumptions
throughout this paper:

(A1) λ1 > λ2 > · · · > λn > 0.
(A2) η < min{2λn/(λ1 − λn), 0.5}.

3.2 Invariant Sets

For preserving the boundness of the system (4), invariant sets is proposed in [2].

Definition 1. A subset S of Rn space is called an invariant set of the system
(4), if every trajectory with any initial w(0) ∈ S always lies in the interior of S.

Lemma 1. [2] Assume η ≤ 0.5, then for all μ ∈ [0, 1/
√
λn], we have

[1 + η(1 − λnμ
2)]μ ≤ 1/

√
λn.

Theorem 1. Let S0 = {w(k) |w(k) ∈ R
n, ‖w(k)‖ ≤ 1/

√
λn}. If the assump-

tions (A1), (A2) are satisfied, then S0 is an invariant set of the system (4).

Proof. Let k ≥ 0, and suppose w(k) ∈ S0, then 1 + η(1− λn‖w(k)‖2) > 0.
By the assumptions (A1), (A2) and the known, we have

1 + η(1− λ1‖w(k)‖2) + 1 + η(1− λn‖w(k)‖2)
= 2 + 2η − η(λ1 + λn)‖w(k)‖2 ≥ 2 + 2η − η(λ1 + λn)/λn

= 2− η(λ1 − λn)/λn > 0.

(7)

For i = 1, 2, · · · , n, due to

1 + η(1 − λ1‖w(k)‖2) ≤ 1 + η(1− λi‖w(k)‖2) ≤ 1 + η(1− λn‖w(k)‖2).
Combined with (7), we get∣∣1 + η(1− λi‖w(k)‖2)

∣∣ ≤ 1 + η(1− λn‖w(k)‖2). (8)

By (3), (6), (8), it is easy to prove

‖w(k + 1)‖2 =
n∑

i=1

z2i (k + 1) =
n∑

i=1

[
1 + η(1 − λi‖w(k)‖2)

]2
z2i (k)

≤ [
1 + η(1 − λn‖w(k)‖2)

]2 n∑
i=1

z2i (k)

=
[
1 + η(1 − λn‖w(k)‖2)

]2 ‖w(k)‖2,
(9)
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that is
‖w(k + 1)‖ ≤ [

1 + η(1− λn‖w(k)‖2)
] ‖w(k)‖.

By Lemma 1, we get ‖w(k + 1)‖ ≤ 1/
√
λn.

Finally, for any k ≥ 0, if w(k) ∈ S0, then it must be have w(k + 1) ∈ S0, and
so S0 is an invariant set of the system (4).

3.3 Convergence Analysis

Lemma 2. Suppose (A1), (A2) are satisfied, w(0) ∈ S0 and w(0)T vn �= 0, then
there exists a constant l > 0 such that for any k ≥ 0, ‖w(k)‖2 ≥ l.

Proof. By the known and (3), we have zn(0) = w(0)T vn �= 0.
Let l = z2n(0) > 0, then

‖w(0)‖2 =

n∑
i=1

z2i (0) ≥ z2n(0) = l.

Since S0 is an invariant set of (4), then for any k ≥ 0, ‖w(k)‖2 ≤ 1/λn, and so
we have

1 + η(1− λn‖w(k)‖2) ≥ 1. (10)

Combined with (6), it follows that the sequence {z2n(k)} is monotonically in-
creasing, hence

‖w(k + 1)‖2 =

n∑
i=1

[
1 + η(1− λi‖w(k)‖2)

]2
z2i (k)

≥ [
1 + η(1− λn‖w(k)‖2)

]2
z2n(k) ≥ z2n(k) ≥ z2n(0) = l.

This completes the proof.

Lemma 3. Suppose (A1), (A2) are satisfied, w(0) ∈ S0 and w(0)T vn �= 0, then

there exists constant numbers α > 0, β > 0, such that
∑n−1

i=1 z2i (k) ≤ αe−βk for
any k ≥ 0.

Proof. For i = 1, 2, . . . , n− 1, from (A1), (A2) and Lemma 2 we know

−1 < 1 + η (1− λ1/λn) ≤ 1 + η(1− λi‖w(k)‖2)
1 + η(1− λn‖w(k)‖2) ≤ 1 + η(1 − λn−1l)

1 + η(1− λnl)
< 1.

Let ρ = max{[1 + η(1 − λ1/λn)]
2, [ 1+η(1−λn−1l)

1+η(1−λnl)
]2}, then 0 < ρ < 1.

Combined with (6),

z2i (k + 1)

z2n(k + 1)
=

[
1 + η(1− λi‖w(k)‖2)
1 + η(1 − λn‖w(k)‖2)

]2
z2i (k)

z2n(k)

≤ ρ
z2i (k)

z2n(k)
≤ ρk+1 z

2
i (0)

z2n(0)
=

z2i (0)

l
e−β(k+1),
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where β = − ln ρ.
From the definition of invariant set S0 and (3), for any k ≥ 0, i = 1, 2, . . . , n,

it follows that
z2i (k) ≤ ‖w(k)‖2 ≤ 1/λn, (11)

so we have
n−1∑
i=1

z2i (k) =

n−1∑
i=1

[
zi(k)

zn(k)

]2
z2n(k) ≤ αe−βk,

where α = n−1
lλ2

n
.

From Lemma 3 we immediately get

Theorem 2. Suppose (A1), (A2) are satisfied, w(0) ∈ S0 and w(0)T vn �= 0,
then limk→∞ zi(k) = 0, i = 1, 2, · · · , n− 1.

Theorem 3. Suppose (A1) , (A2) are satisfied, w(0) ∈ S0 and w(0)T vn �= 0,
then limk→∞ w(k) = (±1/

√
λn)vn.

Proof. By the equation (6) and (10), it is easy to know that if zn(0) < 0, then the
sequence {zn(k)} is monotonically decreasing, and if zn(0) > 0, then {zn(k)} is
monotonically increasing. Combined with (11), we can get: limk→∞ zn(k) exists
and is not zero. Denote limk→∞ zn(k) = c �= 0.

From (3) and Theorem 2, we can deduce that

lim
k→∞

‖w(k)‖2 = lim
k→∞

z2n(k) = c2.

Let i = n in (6) and take limit on both sides we have

c = ±1/
√
λn.

Hence
lim
k→∞

w(k) = lim
k→∞

zn(k)vn = (±1/
√
λn)vn.

This completes the proof.

4 Numerical Experiments

4.1 Experiments Conditions

Throughout the experiments, we use the following 5 × 5 random correlation
matrix

R =

⎛⎜⎜⎜⎜⎝
0.1944 0.0861 0.0556 0.1322 0.1710
0.0861 0.2059 0.1656 0.1944 0.1467
0.0556 0.1656 0.2358 0.1948 0.1717
0.1322 0.1944 0.1948 0.3135 0.2927
0.1710 0.1467 0.1717 0.2927 0.3241

⎞⎟⎟⎟⎟⎠ ,

all the eigenvalues are λ5 = 0.0059, λ4 = 0.0526, λ3 = 0.0887, λ2 = 0.1838, λ1 =
0.9428, and the minor component is v5 = [−0.2470 0.3892 − 0.1422 − 0.6295
0.6091]T . Define the direction cosine between the weight vector w(k) and the
minor component vn as θ(k) = w(k)T vn/‖w(k)‖, which used to measure the
convergence rate of the weight vector w(k) into the minor component vn.
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4.2 Verification of Theoretical Results

4.2.1 Invariant Set S0

Generate three initial weight vector randomly as following

w1(0) =
(
0.7851 − 1.2715 − 1.2967 0.5490 − 1.3122

)T
, ‖w1(0)‖ = 2.4368.

w2(0) =
(
3.2253 − 0.5377 1.1313 − 9.5904 8.0924

)T
, ‖w2(0)‖ = 13.0167.

w3(0) =
(
2.3471 1.5690 4.7120 − 3.1450 − 2.6800

)T
, ‖w3(0)‖ = 6.8736.

It is easy to know that ‖wi(0)‖ <
√
1/λ5 ≈ 13.0189, wi(0)v5 �= 0, i = 1, 2, 3.

Taking the learning rate η = 1.99λ5

λ1−λ5
≈ 0.0126, and the total iteration number

is 600. The change for the norm of the weight vector as different initial weight
vector in the algorithm is given in figure 1.
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Fig. 1. The boundedness of ‖w(k)‖

From figure 1 we can see that for any initial weight vector w(0) ∈ S0, as long as
the learning rate satisfies the assumption (A2), then w(k) ∈ S0, which verifies
the accuracy of Theorem 1.

4.2.2 Convergence for Every Component {zi(k)| i = 1, 2, · · · , 5} of the
Weight Vector w(k)

Taking initial weight vector w(0) = w2(0), then z5(0) = w(0)T vn > 0. Let the
learning rate η = 0.0126, the total iteration number 100 and 400, respectively.
The change of every component of the weight vector w(k) is given in figure 2.

From figure 2(a) we can deduce that zi(k) → 0, i = 1, 2, 3, 4 as k → ∞, and
from figure 2(b) we can easily see that the sequence {z5(k)} is monotonically
increasing and is convergent. The experiment results equate with Theorem 2
and Theorem 3.
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Fig. 2. The convergence of the sequence {zi(k)| i = 1, 2, · · · , 5}

4.2.3 Comparison of Convergence Rate

The initial weight vector w(0) = w3(0), taking three different learning rate as
η1 = 1.99λ5/(λ1 − λ5) ≈ 0.0126, η2 = 1.5λ5/(λ1 − λ5) ≈ 0.0095, η3 = λ5/λ1 ≈
0.0063, where η1 and η2 satisfy the assumption (A2), η3 is the result in [2].
The total iteration number is 400. The convergence for the direction cosine
θi(k) (i = 1, 2, 3) as different learning rate is given in figure 3.
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Fig. 3. Comparison of convergence rate for direction cosine

From figure 3 we can know the choice of learning rate has certain effect on
the convergence rate of the algorithm. Since the learning rate η1 and η2 are all
greater than the learning rate η3 in [2], the convergence is faster.
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4.3 Conclusion

Based on [2], we study the convergence of Feng’s MCA learning algorithm deeply,
and we enlarge the original learning rate twice by the premise of guarantee of
the algorithm convergence, hence improve the convergence rate.
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Abstract. In this paper, we discuss the existence and exponential sta-
bility of the anti-periodic solution for delayed Cohen-Grossberg neural
networks with impulsive effects. First we give some sufficient conditions
to ensure existence and stability of the anti-periodic solutions. Then we
present an example with numerical simulations to illustrate our results.

Keywords: Cohen-Grossberg neural networks, Anti-periodic solution,
Impulsive effects, Exponential stability.

1 Introduction and Preliminaries

Since Cohen-Grossberg neural networks (CGNNs) have been first introduced by
Cohen and Grossberg in 1983 [1], they have been intensively studied due to their
promising potential applications in classification, parallel computation, associa-
tive memory and optimization problems. In these applications, the dynamics of
networks such as the existence, uniqueness, Hopf bifurcation and global asymp-
totic stability or global exponential stability of the equilibrium point, periodic
and almost periodic solutions for networks plays a key role, see [2–11], and the
references therein.

Over the past decades, the anti-periodic solution of Hopfield neural networks,
recurrent neural networks and cellular neural networks have actively been in-
vestigated by a large number of scholars. For details, see [12–14] and references
therein. However, till now, there are very few or even no results on the prob-
lems of anti-periodic solutions for delayed CGNNs with impulsive effects, while
the existence of anti-periodic solutions plays a key role in characterizing the
behavior of nonlinear differential equations (see [15]). Thus, it is worth investi-
gating the existence and stability of anti-periodic solutions of CGNNs with both
time-delays an impulsive effects.
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Motivated by above analysis, in this paper, we consider the following impulsive
Cohen-Grossberg neural networks model with time-varying delays⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x′i(t) = ai(xi(t))
[
− bi(t, xi(t)) +

n∑
j=1

cij(t)fj(xj(t))

+

n∑
j=1

dij(t)gj (xj(t− τij(t))) + Ii(t)
]
, t ≥ 0, t �= tk,

Δxi(tk) = xi(t
+
k )− xi(t

−
k ) = γikxi(tk), k ∈ N,

(1)

where n denotes the number of neurons in the network, xi(t) corresponds to the
state of the ith unit at time t, ai(xi(t)) represents an amplification function,
bi(t, xi(t)) is an appropriate behaved function, fj(xj(t)) and gj(xj(t − τij(t)))
denote, respectively, the measures of activation to its incoming potentials of the
unit j at time t and t− τij(t), τij(t) corresponds to the transmission delay along
the axon of the jth unit and is non-negative function, and Ii(t) denotes the
external bias on the ith unit at time t. Concerning coefficients of differential
system (1), cij(t) denotes the synaptic connection weight of the unit j on the
unit i at time t, dij(t) denotes the synaptic connection weight of the unit j on

the unit i at time t− τij(t), where τij(t) > 0, i, j ∈ I � {1, 2, ..., n}.
Throughout this paper, for the model (1), we introduce the following assump-

tions
(H1) ai ∈ C(R,R+) and there exist positive constants ai and ai such that

ai ≤ ai(u) ≤ ai, for all u ∈ R, i ∈ I .

(H2) For each u, bi(·, u) is continuous, bi(t, 0) ≡ 0 and there exists a continuous
and ω-periodic function βi(t) > 0 such that

bi(t, u)− bi(t, v)

u− v
≥ βi(t), u, v ∈ R, u �= v, i ∈ I .

(H3) The activation functions fj, gj are continuous, bounded and there exist
Lipschitz constants L1

j , L
2
j > 0 such that, for each j ∈ I

|fj(u)− fj(v)| ≤ L1
j |u− v|, |gj(u)− gj(v)| ≤ L2

j |u − v|, u, v ∈ R .

(H4) cij , dij , τij , Ii ∈ C(R,R), and there exists a constant ω > 0 such that

ai(−u) = ai(u), bi(t+ ω, u) = −bi(t,−u), cij(t+ ω)fj(u) = −cij(t)fj(−u),
Ii(t+ ω) = −Ii(t), dij(t+ ω)gj(u) = −dij(t)gj(−u), τij(t+ ω) = τij(t) .

(H5) |1+γik| ≤ 1, tk+1 − tk ≥ κ, limk→∞ = ∞ and there exists q ∈ N such that

[0, ω]
⋂
tk≥1 = {t1, t2 · · · , tq}, tk+q = tk + ω, γi(k+q) = γik, i ∈ I, k ∈ N .

Let τ = maxi,j∈I sup0≤t≤ω τij(t), the initial conditions associated with system
(1) are given by

xi(s) = ϕi(s), s ∈ [−τ, 0], i ∈ I,
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where ϕi(t) denotes a real-valued continuous function defined on [−τ, 0] .
A solution x(t) = (x1(t), x2(t), · · · , xn(t))T of impulsive system (1) is a piece-

wise continuous vector function whose components belong to the space

PC([−τ,+∞), R) = {ϕ(t) : [−τ,+∞) −→ R is continuous for t �= tk,
ϕ(t−k ), ϕ(t

+
k ) ∈ R and ϕ(t−k ) = ϕ(tk)} .

A function u(t) ∈ PC([−τ,+∞), R) is said to be ω-anti-periodic, if{
u(t+ ω) = −u(t), t �= tk,
u((tk + ω)+) = −u(t+k ), k ∈ N .

For any u = (u1, u2, · · · , un) ∈ Rn, its norm is defined by ‖u‖1 = maxi∈I |ui| .
In addition, in the proof of the main results we shall need the following lemma.

Lemma 1. Let hypotheses (H1)− (H3) and (H5) are satisfied and suppose there
exist n positive constants p1, p2, · · · , pn such that

−βi(t)pi +
n∑

j=1

|cij(t)|L1
jpj +

n∑
j=1

|dij(t)|L2
jpj +Di(t) < 0, (2)

where

D(t) =

n∑
j=1

|cij(t)||fj(0)|+
n∑

j=1

|dij(t)||gj(0)|+ Ii(t) .

Then any solution x(t) = (x1(t), · · · , xn(t))T of system (1) with initial conditions

xi(s) = ϕi(s), |ϕ(s)| < pi, s ∈ [−τ, 0], i ∈ I, (3)

verifies
|x(t)| < pi, ∀ t > 0, i ∈ I . (4)

Proof. For any assigned initial condition, hypotheses (H1), (H2) and (H3) guar-
antee the existence and uniqueness of x(t), the solution to (1) in [0,+∞).

Now, we first prove that, for each i ∈ I,
|xi(t)| < pi, t ∈ [0, t1] . (5)

In fact, if it dos not hold, then there exist some i and time σ ∈ [0, t1] such that

|xi(σ)| = pi, D+|xi(t)|t=σ ≥ 0 and |xj(t)| < pi, ∀t ∈ [−τ, σ), j ∈ I . (6)

From (H1)− (H3), (2) and (6), we get

0 ≤ ai(σ)
[
− β(σ)|xi(σ)| +

n∑
j=1

|cij(σ)||fj(xj(σ))|

+

n∑
j=1

|dij(σ)||gj(xj(σ − τij(σ)))| + |Ii(σ)|
]

≤ ai(σ)
[
− βi(σ)pi +

n∑
j=1

|cij(σ)|L1
jpj +

n∑
j=1

|dij(σ)|L2
jpj +Di(σ)

]
< 0
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which is a contradiction and shows that (5) is true for t ∈ [0, t1].
Since |xi(t+1 )| = |1 + γi1||xi(t1)| ≤ |xi(t1)|, using the same method we can

prove that
|xi(t)| < pi, t ∈ [t1, t2], i ∈ I,

and so on. The proof of Lemma 1 is now completed. ��

2 Main Results

In this section, we consider the existence and global exponentially stability of
periodic solutions for system (1).

Suppose that x∗(t) = (x∗1(t), · · · , x∗n(t))T is a solution of system (1) with
initial conditions x∗i (s) = ϕ∗

i (s), |ϕ∗
i (s)| < pi, s ∈ [−τ, 0], where pi are defined

in Lemma 1. Then on the stability of system (1), we have a following result.

Theorem 1. Let (H1) − (H3) and (H5) hold. Assume that following inequality
is satisfied

(λ − βi(t))pi +
n∑

j=1

|cij(t)|L1
jpj +

n∑
j=1

|dij(t)|L2
jpje

λτ < 0, (7)

where λ is a positive constant such that
(
λ− lnA

κ

)
> 0, A = maxi∈I ai

ai
. Then

x∗(t) is globally exponentially stable.

Proof. Let x(t) = (x1(t), x2(t), · · · , xn(t))T is an arbitrary solutions of system
(1) with initial value ϕ = (ϕ1(s), ϕ2(s), · · · , ϕn(s))

T and set

ui(t) = sign(xi(t)− x∗i (t))
∫ xi(t)

x∗
i (t)

ds

ai(s)
. (8)

From (H1), (H2) and (H3), for t �= tk, we have

u′i(t) =sign(xi(t)− x∗i (t))
[
− (bi(t, xi(t))− bi(t, x

∗
i (t))) +

n∑
j=1

cij(t)
(
fj(xj(t))

− fj(x
∗
j (t))

)
+

n∑
j=1

dij(t)
(
gj(xj(t− τij(t))) − gj(x

∗
j (t− τij(t)))

) ]
≤ −βi(t)aiui(t) +

n∑
j=1

|cij(t)|L1
jajuj(t)) +

n∑
j=1

|dij(t)|L2
jajuj(t− τij(t))) .

(9)

Also

ui(t
+
k ) ≤

∣∣∣∣∣
∫ xi(t

+
k )

x∗
i (t

+
k )

ds

ai(s)

∣∣∣∣∣ =
∣∣∣∣∣
∫ (1+γik)xi(tk)

(1+γik)x∗
i (tk)

ds

ai(s)

∣∣∣∣∣ ≤ ai
ai

|1 + γik|ui(tk) . (10)



234 A. Abdurahman and H. Jiang

Considering the Lyapunov function

Vi(t) = ui(t)e
λt, i ∈ I, (11)

and for t �= tk, calculating its upper right derivative along the trajectory of
system (1) leads to

D+Vi(t) ≤
(
λ− βi(t)ai

)
Vi(t) +

n∑
j=1

|cij(t)|L1
jajVj(t)

+

n∑
j=1

|dij(t)|L2
jaje

λτVj(t− τij(t)) .

(12)

Let m > 1 be an arbitrary real number such that

mpi > sup
s∈[−τ,0]

max
i∈I

|ϕi(s)− ϕ∗
i (s)|

ai
, i ∈ I .

It follows from (8) and (11) that

Vi(t) = ui(t)e
λt < mpi, t ∈ [−τ, 0], i ∈ I .

Now, we claim that

Vi(t) = ui(t)e
λt < Akmpi, t ∈ [tk, tk+1], i ∈ I . (13)

First, we prove that

Vi(t) = ui(t)e
λt < mpi, i ∈ I,

is true for 0 < t ≤ t1. Otherwise, there exist i ∈ I and η ∈ (0, t1] such that

Vi(η) = mpi and Vj(t) < mpj, t ∈ [−τ, η), j ∈ I . (14)

Combining (7), (12) and (14), we get

0 ≤ D+Vi(t)
∣∣
t=η

≤ m
[
(λ−ai(η))pi+

n∑
j=1

|bij(η)|L1
jpj +

n∑
j=1

|cij(η)|L2
jpje

λτ
]
< 0,

which is a contradiction. Hence (13) holds for t ∈ [−τ, t1].
From (10) and |1 + γik| ≤ 1, we know that

Vi(t
+
1 ) ≤

ai
ai

|1 + γi1(t1)|Vi(t1) ≤ AVi(t1) ≤ Ampi .

Repeating above process, when t ∈ [tk, tk+1], we get

Vi(t) = ui(t) e
λt < Akmpi, t ∈ [tk, tk+1], i ∈ I .
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Since �tk = tk+1 − tk ≥ κ and A > 1, when t ∈ [tk, tk+1], we get

Ak = ek lnA ≤ e

[
1+

(t2−t1)+(t3−t2)+...+(tk−tk−1)

κ

]
lnA

= e

(
1+

tk−t1
κ

)
lnA ≤ M ′e

t
κ lnA,

where M ′ = e(1+
t1
κ ) lnA. From (8) and above inequality, we have

|xi(t)− x∗i (t)| ≤ aiui(t) ≤ maiM
′pie−(λ−

lnA
κ )t, ∀ t > 0, i ∈ I . (15)

Letting M > 1 such that

max
i∈I

{maiM
′pi} ≤ M‖ϕ− ϕ∗‖1, i ∈ I . (16)

Together with (8), (15) and (16), we get

‖x(t)− x∗(t)‖1 = max
i∈I

|xi(t)− x∗(t)| ≤ M‖ϕ− ϕ∗‖1e−δt, ∀ t > 0 . (17)

where δ =
(
λ− lnA

κ

)
> 0. Therefor, according to the definition 1 in [8], x∗(t) is

globally exponentially stable. The proof of Theorem 1 is completed. ��
Theorem 2. Suppose that hypotheses (H1)− (H5) hold. If the inequality (2) is
satisfied, then system (1) admits an ω−anti-periodic solution.

Proof. Let x(t) = (x1(t), x2(t), · · · , xn(t))T be a solution of system (1) with
initial conditions (3). By Lemma 1, we have

|xi(t)| ≤ pi, ∀t ∈ [−τ,∞], i ∈ I . (18)

From hypotheses (H4), for any h ∈ N , we have[
(−1)h+1xi(t+ (h+ 1)ω)

]′
= (−1)h+1x′i(t+ (h+ 1)ω)

=ai
(
(−1)h+1xi(t+ (h+ 1)ω)

) [− bi
(
t, (−1)h+1xi(t+ (h+ 1)ω)

)
+

n∑
j=1

cij(t)fj
(
(−1)h+1xj(t+ (h+ 1)ω)

)
+ Ii(t)

+
n∑

j=1

dij(t)gj
(
(−1)h+1xj (t+ (h+ 1)ω − τij(t))

) ]
.

(19)

Moreover, by hypothesis of (H5), we have

(−1)h+1xi
(
(tk + (h+ 1)ω)+

)
= (1 + γik)

[
(−1)h+1xi (tk + (h+ 1)ω)

]
. (20)

Thus, for any natural number h, xi (t+ (h+ 1)ω) are the solutions of system
(1). Therefore, by Theorem 1, there exist constants M > 1 and λ > 0 such that

|(−1)h+1xi (t+ (h+ 1)ω)− (−1)hxi (t+ hω) | ≤ 2Mpie
−λ(t+hω) (21)
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and

|(−1)h+1xi
(
(tk + (h+ 1)ω)+

)− (−1)hxi
(
(tk + hω)+

) | ≤ 2Mpie
−λ(tk+hω) .

(22)
Thus, for any natural number m, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

|(−1)m+1xi (t+ (m+ 1)ω) |

≤|xi(t)|+
m∑
l=0

(−1)l+1
∣∣xi (t+ (l + 1)ω)− (−1)lxi (t+ lω)

∣∣, t �= tk,

|(−1)m+1xi
(
(tk + (m+ 1)ω)+

) | ≤ |(1 + γik)(−1)m+1xi (tk + (m+ 1)ω) |
≤|xi (tk + (m+ 1)ω) | .

(23)
In view of (21), we can choose a sufficiently large constant N0 and a positive
constant ε such that∣∣xi (t+ (l + 1)ω)− (−1)lxi (t+ lω)

∣∣ ≤ ε(e−λω)l, l > N0, (24)

on any compact set of R+. Together with (23) and (24), it follows that fundamen-
tal sequence {(−1)m+1xi (t+ (m+ 1)ω)} uniformly converges to a continuous
function x∗(t) = (x∗1(t), x∗2(t), · · · , x∗n(t)) on any compact set of R+.

Now we will show that x∗(t) is ω−anti-periodic solution of system (1). It is
easily known that x∗(t) is anti-periodic, since

x∗i (t+ ω) = lim
m→+∞(−1)mxi (t+ ω +mω)

= − lim
(m+1)→+∞

(−1)m+1xi (t+ (m+ 1)ω) = −x∗i (t), for all t �= tk,

and

x∗
i

(
(tk + ω)+

)
= lim

m→+∞
(−1)mxi

(
(tk + ω +mω)+

)
= − lim

(m+1)→+∞
(−1)m+1xi

(
(t+ (m+ 1)ω)+

)
= −x∗

i (t
+
k ), for any k ∈ N .

In addition, together with the piece-wise continuity of the right side of (1),
(19) and (20) imply that x∗(t) converges uniformly to a piece-wise continuous
function on any compact set of R+. Therefore, letting m → +∞ on both side
of (19) and (20), we know that x∗(t) satisfies the impulsive system (1). Thus,
x∗(t) is a ω-anti-periodic solution of system (1). The proof of Theorem 2 is now
completed ��
Remark 1. If we let dij(t) = 0 or gj(x) = 0, and ai(u) ≡ 1, bi(t, u) ≡ bi(t), then
system (1) become⎧⎪⎪⎨⎪⎪⎩

x′i(t) =− bi(t)xi(t) +

n∑
j=1

cij(t)fj(xj(t)) + Ii(t), t ≥ 0, t �= tk,

xi(t
+
k ) =(1 + γik)xi(tk), i ∈ I, k ∈ N,

(25)

which is studied in [12]. It is not difficult to see that Theorem 2 includes the
main results in [12] as a special cases.
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3 Numerical Simulations

For n = 2, consider the following delayed Cohen-Grossberg neural networks
system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x′i(t) =ai(xi(t))
[
− bi(t, xi(t)) +

2∑
j=1

bij(t)fj(xj(t))

+

2∑
j=1

cij(t)gj(xj(t− τij(t))) + Ii(t)
]
, t �= tk,

(26)

with impulses �x1(tk) = 0.6x1(tk), �x2(tk) = 0.4x2, k ∈ N . Where

fi(u) = tanh(u/2), gi(u) =
(|u+1|−|u−1|)

2 , τi1(t) = τi2(t) = 1, i = 1, 2

and

a1(u) = 5− cos(u), a2(u) = 5 + cos(u), b1(t, u) = (6 + cosπt)u,
b2(t, u) = (7− cosπt)u, I1(t) = 3 sin(πt), I2(t) = 4 sin(πt),

(cij)2×2 =

(
0.9| sin(πt)| 0.35| cos(πt)|
| cos(πt)| | cos(πt)|

)
, (dij)2×2 =

(
0.7| cos(πt)| 0.5| sin(πt)|
| cos(πt)| | cos(πt)|

)
.

If we let tk = k − 0.5, β1(t) = (3 + cosπt) and β2(t) = (7 − cosπt), then it is
not difficult to check that hypothesis (H1) − (H5) and inequalities (2) and (7)
are all satisfied. Therefore, by Theorem 1 and Theorem 2, the impulsive system
(26) has a unique 1-anti-periodic solution which is globally exponentially stable.
The fact can be seen by simulation in Figure 1.
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Fig. 1. Time response of state variables xi (i = 1, 2) with impulsive effects
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4 Conclusion

In this paper, we study the existence and exponential stability of anti-periodic
solution of impulsive Cohen-Grossberg neural networks with periodic coefficients
and time-varying delays. An examples with numerical simulations is presented
to illustrate our results. The results obtained in this paper indicate that suitable
impulsive effects can maintain the stability of system.
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are grateful to the Editor and anonymous reviewers for their kind help and
constructive comments.
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Global Robust Exponential Stability in Lagrange

Sense for Interval Delayed Neural Networks
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and Technology, Wuhan, 430074, China
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Abstract. The problem of global robust exponential stability in La-
grange sense for the interval delayed neural networks (IDNNs) with gen-
eral activation functions is investigated. Based on the Lyapunov stability,
a differential inequality and linear matrix inequalities (LMIs) technique,
some conditions to guarantee the IDNNs global exponential stability in
Lagrange sense are provided. Meanwhile, the specific estimation of glob-
ally exponentially attractive sets of the addressed system are also derived.
Finally, a numerical example is provided to illustrate the effectiveness of
the method proposed.

Keywords: Interval neural networks, Lagrange stability, Globally ex-
ponentially attractive set, Linear Matrix Inequality, Infinite distributed
delays.

1 Introduction

In recent years, the problem of Lagrange stability has been widely paid attention
because it refers to the stability of the total system, which is not only distinctly
different from Lyapunov stability, but also include Lyapunov stability as a spe-
cial case by regarding an equibrium point as an attractive set [1]. Generally
speaking, the goal of study on global exponential Lagrange stability for neural
networks is to determine globally exponentially attractive sets. Therefore, many
initial findings on the global Lagrange stability analysis of neural networks have
been reported [2-7]. For instance, in [2], the authors studied globally exponen-
tially stability in Lagrange sense for continuous recurrent neural network with
three different types of activation functions and constant time delays. Nextly,
[3] and [4] continued to research the Lagrange stability for neutral type and
periodic recurrent neural networks. Furthermore, [5] and [6] also investigated
Lagrange stability for Cohen-Grossberg neural networks with mixed delays. [7]
made use of the Linear Matrix inequality technique to further study the global
exponential stability in Lagrange sense for recurrent neural networks. Even so,
up to now, there is not existing work on interval neural networks with infinite
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distributed delay, particularly made on it by means of LMIs [8]. Hence, this gives
the motivation of our present investigation.

In this paper, we focus on the problem of global robust exponential stability
in Lagrange sense for a class of interval neural networks with general activation
functions and mixed delays. In the next section, some preliminaries, including
some definitions, assumptions and significant lemmas will be described. Section
3 will state the main results. Section 4 will present a illustrative example to
verify the main results and finally a summery will be given in Section 5.

Notations. Throughout this paper, I represents the unit matrix; R+ = [0,∞),
the symbols Rn and Rn×m stand, respectively, for the n-dimensional Euclidean
space and the set of all n × m real matrices. AT and A−1 denote the matrix
transpose and matrix inverse. A > 0 or A < 0 denotes that the matrix A is a
symmetric and positive definite or negative definite matrix. Meanwhile, A < B
indicates A−B < 0 and ‖∗‖ is the Euclidean vector norm. When x is a variable,
‖x‖ =

∑n
i=1 |xi|. Λ = {1, 2, · · · , n}. Moreover, in symmetric block matrices, we

use as an ellipsis for the terms that are introduced by symmetry. we use an
asterisk “ ∗ ” to represent a term that is induced by symmetry and diag{· · ·}
stands for a block-diagonal matrix.

2 Problem Statement

The interval neural networks with infinite distributed delays is described by the
following equation group:

ẋ(t) = −Dx(t) +Ag(x(t)) +Bg(x(t − τ(t))

+C

∫ t

−∞
h(t− s)g(x(s))ds+ U, (2.1)

where x(t) = (x1(t), . . . , xn(t))
T is the neuron state vector of the neural net-

work; U = (U1, · · · , Un)
T is an external input; τ(t) is the transmission delay of

the neural networks, which is time-varying and satisfies 0 ≤ τ(t) ≤ τ , where τ is
a positive constant; g(x(·)) = (g1(x1(·)), · · · , gn(xn(·)))T represents the neuron
activation function and h(·) = diag{h1(·), · · · , hn(·)} represents the delay kernel
function. The matrices D = diag{d1, · · · , dn} > 0 is a positive diagonal matrix,
A = (aij)n×n, B = (bij)n×n, and C = (cij)n×n are the connection weight ma-
trix, delayed weight matrix and distributively delayed connection weight matrix,
respectively. In electronic implementation of neural networks, the values of the
constant and weight coefficients depend on the resistance and capacitance val-
ues which are subject to uncertainties. This may lead some deviations in the
values of di, aij , bij , and cij . Since these deviations are bounded in practice, the
quantities di, aij , bij , and cij may be described with interval numbers as follows:

D ∈ [D,D], A ∈ [A,A], B ∈ [B,B], C ∈ [C,C]

where D = diag{d1, . . . , dn} > 0, D = diag{d1, . . . , dn}, A = (aij)n×n, A =

(aij)n×n, B = (aij)n×n, B = (aij)n×n, C = (aij)n×n, C = (aij)n×n. In addition,
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let Ω := {diag(δ11, · · · , δ1n, · · · , δn1, · · · , δnn) ∈ Rn2×n2 || δij | ≤ 1, i, j ∈ Λ},
D0 = D+D

2 , A0 = A+A
2 , B0 = B+B

2 , C0 = C+C
2 ,

(αij)n×n = D−D
2 , (βij)n×n = A−A

2 , (γij)n×n = B−B
2 , (ϑij)n×n = C−C

2 ,
M1 = [

√
α11e1, · · · ,√α1ne1, · · · ,√αn1en, · · · ,√αnnen]n×n2 ,

M2 = [
√
β11e1, · · · ,

√
β1ne1, · · · ,

√
βn1en, · · · ,

√
βnnen]n×n2 ,

M3 = [
√
γ11e1, · · · ,√γ1ne1, · · · ,√γn1en, · · · ,√γnnen]n×n2 ,

M4 = [
√
ϑ11e1, · · · ,

√
ϑ1ne1, · · · ,

√
ϑn1en, · · · ,

√
ϑnnen]n×n2 ,

J1 = [
√
α11e1, · · · ,√α1nen, · · · ,√αn1e1, · · · ,√αnnen]n2×n,

J2 = [
√
β11e1, · · · ,

√
β1nen, · · · ,

√
βn1e1, · · · ,

√
βnnen]n2×n,

J3 = [
√
γ11e1, · · · ,√γ1nen, · · · ,√γn1e1, · · · ,√γnnen]n2×n,

J4 = [
√
ϑ11e1, · · · ,

√
ϑ1nen, · · · ,

√
ϑn1e1, · · · ,

√
ϑnnen]n2×n,

where ei ∈ Rn denotes the column vector with ith element to be 1 and others
to be 0.

By some simple calculations, one can transform system (2.1) into the following
form:

ẋ(t) = −[D0 +M1Ω1J1]x(t) + [A0 +M2Ω2J2]g(x(t))

+[B0 +M3Ω3J3]g(x(t − τ(t)) + [C0 +M4Ω4J4]

∫ t

−∞
h(t− s)g(x(s))ds+ U,

or equivalently,

ẋ(t) = −D0x(t) +A0g(x(t)) +B0g(x(t− τ(t))

+C0

∫ t

−∞
h(t− s)g(x(s))ds+MΨ(t) + U, (2.2)

where M = [M1,M2,M3,M4]n×4n2 , Ωi ∈ Ω, i = 1, 2, 3, 4,

Ψ(t) =

⎛⎜⎜⎝
Ω1J1 0 0 0
0 Ω2J2 0 0
0 0 Ω3J3 0
0 0 0 Ω4J4

⎞⎟⎟⎠×

⎛⎜⎜⎝
x(t)

g(x(t))
g(x(t− τ(t)))∫ t

−∞ h(t− s)g(x(s))ds

⎞⎟⎟⎠ .

In this paper, the system (2.1) is supplemented the initial condition given by
x(s) = φ(s), s ∈ (−∞, 0], i = 1, · · · , n, where φ(·) ∈ C, C denotes real-valued
continuous functions defined on (−∞, 0]. Here, it is assumed that for any initial
condition φ(·) ∈ C, there exists at least on solution of model (2.1). As usual, we
will also assume that g(0) = 0 for all t ∈ R+ in this paper.

For further discussion, the following assumptions and lemmas are needed:

(A1). The activation function g satisfies g(0) = 0, and

l−j ≤ gj(x)− gj(y)

x− y
≤ l+j ,

for all x �= y, x, y ∈ R, where l+j and l−j , j ∈ Λ, are some real constants.
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(A2). The delay kernels hj(t), j ∈ Λ are some real value nonnegative continuous

function defined in (−∞, 0] and satisfy hj(t) ≤ h̃(t), j ∈ Λ,∫ ∞

0

hj(t)dt = 1,

∫ ∞

0

h̃(t)dt = h̃,

∫ ∞

0

h̃(t)e�tdt
.
= h̃� < ∞,

in which h̃(t) corresponds to some nonnegative function defined in (−∞, 0], con-
stants ", h̃, h̃� are some positive numbers.

Definition 1. [2] The neural network defined by (2.1) or (2.2) is globally ex-
ponentially stable in Lagrange sense, if there exists a radially unbounded and
positive definite Lyapunov function V (x(t)), which satisfies V (x(t)) ≥ ‖x‖α,
where α > 0 is a constant, and constants ζ > 0, β > 0, such that for V (x(t0)) >
ζ, V̄ (x(t)) > ζ, t ≥ t0, the inequality V (x(t))−ζ ≤ (V̄ (x(t0))−ζ) exp{−β(t−t0)}
always holds. And {x|V (x(t)) ≤ ζ} is said to be a globally exponentially attrac-
tive set of (2.1) or (2.2), where V̄ (x(t0)) ≥ V (x(t0)) and V (x(t0)) is a constant.

Lemma 1. [9] For any vectors a, b ∈ Rn, the inequality±2aT b ≤ aTXa+bTX−1b
holds, in which X is any n× n matrix with X > 0.

Lemma 2. [10] For a given matrix S =

(
S11 S12

ST
12 S22

)
, with S11 = ST

11, S22 = ST
22,

then the following conditions are equivalent:

(1)S < 0, (2)S22 < 0, S11 − S12S
−1
22 S

T
12 < 0, (3)S11 < 0, S22 − ST

12S
−1
11 S12 < 0.

Lemma 3. Let p, q, r and τ denote nonnegative constants, and function f ∈
C(R,R+) satisfies the scalar differential inequality

D+f(t) ≤ −pf(t) + q sup
t−τ≤s≤t

f(s) + r

∫ +∞

0

k(s)f(t− s)ds, t ≥ t0, (2.3)

where k(·) ∈ C([0,+∞), R+) satisfies
∫ +∞
0 k(s)eη0sds < ∞ for some positive

constant η0 > 0. Assume that

p > q + r

∫ +∞

0

k(s)ds, (2.4)

then f(t) ≤ f̄(t0) exp(−λ(t− t0)) for all t ≥ t0, where f̄(t0) = sup−∞≤s≤t0 f(s),
and λ ∈ (0, η0) satisfies the inequality

λ < p− qeλτ − r

∫ +∞

0

k(s)eλsds. (2.5)

Proof: Let σ = +∞, ak = 0, bk = 0,M = 1, η = 0 in [11, Lemma 2.1], then we
can obtain above result easily.
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3 Main Results

In this part, sufficient conditions for global robust exponential stability in La-
grange sense of (2.1) or (2.2) are got by using Lyapunov functions and inequality
techniques.

Theorem 1. Assume that assumptions (A1)-(A2) hold, if there exist three
constants βi > 0, i = 1, 2, 3, seven positive diagonal matrices Q1, Q2, Q3 ∈ Rn×n,
Q4, Q5, Q6, Q7 ∈ Rn2×n2

and two positive definite matrices P,Q8 ∈ Rn×n such
that the following inequalities hold:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1 PA0 PB0 PC0 PM P
∗ Q1 0 0 0 0
∗ ∗ Q2 0 0 0
∗ ∗ ∗ Q3 0 0

∗ ∗ ∗ ∗ Π2 =

⎛⎜⎜⎝
Q4 0 0 0
0 Q5 0 0
0 0 Q6 0
0 0 0 Q7

⎞⎟⎟⎠ 0

∗ ∗ ∗ ∗ ∗ Q8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0

β2P ≥ WQ2W +WJT
3 Q6J3W

β3P ≥ WQ3W +WJT
4 Q7J4W

β1 > β2 + β3h̃

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,(3.6)

where Π1 = PD0 + D0P − WQ1W − JT
1 Q4J1 − WJT

2 Q5J2W − β1P , W =
diag{w1, · · · ,wn},wj = max{|l−j |, |l+j |}. Then the IDNNs defined by (2.1) or
(2.2) is globally robustly exponentially stable in Lagrange sense, and the set

Φ = {x ∈ Rn | xT (t)Px(t) ≤ UT Q8U

β1−β2−β3h̃
} is a globally exponentially attractive

set.

Proof: Now, we consider the following Lyapunov function

V (x(t)) = xT (t)Px(t). (3.7)

Calculating the derivative of V (x(t)) along the trajectories of (2.2), we can obtain

dV (x(t))

dt
|(2.2) ≤ 2xT (t)P [−D0x(t) +A0g(x(t))

+B0g(x(t− τ(t))) + C0

∫ t

−∞
h(t− s)g(x(s))ds+MΨ(t) + U

]
. (3.8)

From Assumption (A1) and Lemma 1, we know that there exist three positive
diagonal matrices Q1, Q2, Q3 ∈ Rn×n and a positive definite matrix Q8 ∈ Rn×n

such that the following inequalities hold

2xT (t)PA0g(x(t))) ≤ xT (t)PA0Q
−1
1 AT

0 Px(t) + gT (x(t))Q1g(x(t))

≤ xT (t)PA0Q
−1
1 AT

0 Px(t) + xT (t)WQ1Wx(t), (3.9)
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2xT (t)PB0g(x(t− τ(t))))

≤ xT (t)PB0Q
−1
2 BT

0 Px(t) + gT (x(t − τ(t)))Q2g(x(t− τ(t)))

≤ xT (t)PB0Q
−1
2 BT

0 Px(t) + xT (t− τ(t))WQ2Wx(t− τ(t)). (3.10)

2xT (t)PC0

∫ t

−∞
h(t− s)g(x(s))ds ≤ xT (t)PC0Q

−1
3 CT

0 Px(t)

+

(∫ t

−∞
h(t− s)g(x(s))ds

)T

Q3

(∫ t

−∞
h(t− s)g(x(s))ds

)
,

and by well-know Cauchy-Schwarz inequality and assumption (A2), we get(∫ t

−∞
h(t− s)g(x(s))ds

)T

Q3

(∫ t

−∞
h(t− s)g(x(s))ds

)
=

n∑
j=1

q
(3)
j

(∫ +∞

0

hj(u)gj(xj(t− u))du

)2

≤
n∑

j=1

q
(3)
j

∫ +∞

0

hj(u)du

∫ +∞

0

hj(u)g
2
j (xj(t− u))du

≤
n∑

j=1

q
(3)
j

∫ +∞

0

h̃(u)w2
jx

2
j (t− u)du =

∫ +∞

0

h̃(u)
n∑

j=1

q
(3)
j w2

j x
2
j (t − u)du

=

∫ +∞

0

h̃(s)xT (t− s)WQ3Wx(t− s)ds,

which implies that

2xT (t)PC0

∫ t

−∞
h(t− s)g(x(s))ds ≤ xT (t)PC0Q

−1
3 CT

0 Px(t) +

+

∫ +∞

0

h̃(s)xT (t− s)WQ3Wx(t− s)ds. (3.11)

2xT (t)PU ≤ xT (t)PQ−1
8 Px(t) + UTQ8U. (3.12)

In view of the definition of Ω, we have the following inequality:

ΨT (t)Ψ(t) ≤ xT (t)JT
1 J1x(t) + gT (x(t))JT

2 J2g(x(t))

+gT (x(t − τ(t)))JT
3 J3g(x(t− τ(t)))

+

(∫ t

−∞
h(t− s)g(x(s))ds

)T

JT
4 J4

(∫ t

−∞
h(t− s)g(x(s))ds

)
. (3.13)

Considering Lemmas 1 and (3.13), we derive

2xT (t)PMΨ(t) ≤ xT (t)PMΠ−1
2 M

TPx(t) + ΨT (t)Π2Ψ(t)
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≤ xT (t){PMΠ−1
2 M

TP + JT
1 Q4J1 +WJT

2 Q5J2W}x(t)
+xT (t− τ(t))[WJT

3 Q6J3W ]x(t − τ(t))

+

∫ +∞

0

h̃(s)xT (t− s)[WJT
4 Q7J4W ]x(t − s)ds. (3.14)

Now, adding the terms on the right of (3.9)-(3.12) and (3.14) to (3.8), and
considering conditions (3.7), also making use of Lemma 2, we can obtain that

dV (x(t))

dt
|(2.2) ≤ xT (t){−PD0 −D0P + PA0Q

−1
1 AT

0 P +WQ1W

+PB0Q
−1
2 BT

0 P + PC0Q
−1
3 CT

0 P + PQ−1
8 P + PMΠ−1

2 M
TP + JT

1 Q4J1

+WJT
2 Q5J2W}x(t) + xT (t− τ(t))[WQ2W +WJT

3 Q6J3W ]x(t− τ(t))

+

∫ +∞

0

h̃(s)xT (t− s)[WQ3W +WJT
4 Q7J4W ]x(t − s)ds + UTQ8U

≤ −β1xT (t)Px(t) + β2x
T (t− τ(t))Px(t − τ(t))

+β3

∫ +∞

0

h̃(s)xT (t− s)Px(t− s)ds + UTQ8U

≤ −β1V (x(t)) + β2V (xT (t− τ(t)))

+β3

∫ +∞

0

h̃(s)V (x(t − s))ds + UTQ8U. (3.15)

Transforming (3.15) into the following inequality, we get

d(V (x(t)) − η)

dt
|(2.2) ≤ −β1(V (x(t)) − η) + β2

(
sup

t−τ≤s≤t
V (x(s)) − η

)
+β3

∫ +∞

0

h̃(s)(V (x(t− s))− η)ds, t ≥ t0, (3.16)

where η = UT HU
β1−β2−β3h̃

.

From the formula (3.16), we can know that it satisfies the (2.3) of Lemma
3. Meanwhile, noticed assumption (A2), it can be deduced that β1 > β2 +

β3h̃ ⇔ β1 > β2 + β3
∫ +∞
0 h̃(s)ds. So the (2.4) of Lemma 3 is also satisfied. From

this, when V (x(t)) > η, supt−τ≤s≤t V (x(s)) > η, and sup−∞≤s≤t V (x(s)) > η,
according to Lemma 3, we are able to derive

V (x(t)) − η ≤ (V̄ (x(t)) − η) exp(−λ(t− t0)),

where V̄ (x(t)) = sup−∞≤s≤t V (x(s)), λ ∈ (0, ") satisfies

λ < β1 − β2e
λτ − β3

∫ +∞

0

h̃(s)eλsds. (3.17)

Simultaneously, judging by [12], it is easy to prove that there exists a constant
α such that V (x(t)) ≥ ‖x‖α. In terms of Definition 1, we know that the IDNNs
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defined by (2.1) or (2.2) is globally robustly exponentially stable in Lagrange

sense and Φ = {x ∈ Rn | xT (t)Px(t) ≤ UT HU
β1−β2−β3h̃

} is a globally exponentially

attractive set of (2.1) or (2.2). Hence, the proof of Theorem 1 is completed.

Remark 1: It should be noted that the exponential convergence rate λ of IDNNs
(2.1) or (2.2) is also derived in (3.17). Moreover, one may find that condition
β1 − β2 − β3h̃ > 0 implies that there exists constant λ ∈ (0, ") such that (2.1)
or (2.2) holds for any given τ > 0.

In the IDNNs system (2.1) or (2.2), when getting rid of the term of infinite

distributed delay
∫ t

−∞ h(t− s)g(x(s))ds, we get the following Corollary 1.

Corollary 1: Assume that assumptions (A1) holds, if there exist three con-
stants βi > 0, i = 1, 2, five positive diagonal matrices Q1, Q2 ∈ Rn×n, Q3, Q4,
Q5 ∈ Rn2×n2

and two positive definite matrices P,Q6 ∈ Rn×n such that the
following inequalities hold:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1 PA0 PB0 PM P
∗ Q1 0 0 0
∗ ∗ Q2 0 0

∗ ∗ ∗ Π3 =

⎛⎝Q3 0 0
0 Q4 0
0 0 Q5

⎞⎠ 0

∗ ∗ ∗ ∗ Q6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0

β2P ≥ WQ2W +WJT
3 Q5J3W
β1 > β2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.18)

where Π1 = PD0 + D0P − WQ1W − JT
1 Q3J1 − WJT

2 Q4J2W − β1P , W =
diag{w1, · · · ,wn},wj = max{|l−j |, |l+j |}. Then the IDNNs defined by (2.1) or
(2.2) is globally robustly exponentially stable in Lagrange sense and the set

Φ = {x ∈ Rn | xT (t)Px(t) ≤ UT Q8U
β1−β2

} is a globally exponentially attractive set.

Proof: In front of the course of proof is almost parallel to that of Theorem 1,
except for the inequality (3.11) in Theorem 1, here no longer say. In the end, We
can also obtain

d(V (x(t)) − η)

dt
≤ −β1(V (x(t)) − η) + β2(V̄ (x(t)) − η), t ≥ t0,

where η = UTHU
β1−β2

, V̄ (x(t)) = supt−τ≤s≤t V (x(s)).

It is noticed that β1 > β2, hence according to the famous Halanay Inequality[13],
when V (x(t)) > η and supt−τ≤s≤t V (x(s)) > η, we are able to derive

V (x(t)) − η ≤ (V̄ (x(t)) − η) exp(−λ(t− t0)),

where λ is the unique positive root of λ = β1 − β2e
λτ . Similarly, it is obtained

that Ω = {x ∈ Rn | xT (t)Px(t) ≤ UT HU
β1−β2

} is a positive invariant and globally

exponentially attractive set of system (2.1). Hence, the proof is gained.
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Remark 2: For the Lagrange stability condition given in [2-7], the time delay
are constant delays or time-varying delay that are differentiable such that their
derivatives are not greater than one or finite. Note that in this paper we do
not impose those restrictions on our time-varying delays, which means that our
presented results have wider application range.

4 Simulation Example

In this section, we give a numerical example to illustrate the theoretical results.
Example 1: Consider the interval neural networks model (2.1) with the following
parameters:

τ(t) = 0.3 + 0.5| sin(t)|, U = (1 1)T , D =

(
7.8 0
0 9.6

)
, D =

(
6.2 0
0 8.4

)
,

A =

(
1.6 0.1
0.9 1.2

)
, A =

(
0 −0.5
0.1 0

)
, B =

(
2 0.4

−0.3 1.6

)
, B =

(
0.4 −0.2
−1.1 0.4

)
,

C =

(
0.2 0.8
0 1.2

)
, C =

(−1.4 0.2
−0.8 0

)
.

And the delay kernel h(s) is elected as hi(s) = e−s for s ∈ [0,+∞), i = 1, 2.
In this case, by simple calculation, it can be obtained that

D0 = D+D
2 =

(
7 0
0 9

)
, A0 = A+A

2 =

(
0.8 −0.2
0.5 0.6

)
, B0 = B+B

2 =

(
1.2 0.1
−0.7 1

)
,

C0 = C+C
2 =

(−0.6 0.5
−0.4 0.6

)
, (αij)2×2 = D−D

2 =

(
0.8 0
0 0.6

)
,

(βij)2×2 = A−A
2 =

(
0.8 0.3
0.4 0.6

)
, (γij)2×2 = B−B

2 =

(
0.8 0.3
0.4 0.6

)
,

(υij)2×2 = C−C
2 =

(
0.8 0.3
0.4 0.6

)
, M1 =

[√
0.8 0 0 0

0 0 0
√
0.6

]
,

M2 = M3 = M4 =

[√
0.8

√
0.3 0 0

0 0
√
0.4

√
0.6

]
,

J1 =

⎡⎢⎢⎣
√
0.8 0
0 0
0 0

0
√
0.6

⎤⎥⎥⎦, J2 = J3 = J4 =

⎡⎢⎢⎣
√
0.8 0√
0.3 0

0
√
0.4

0
√
0.6

⎤⎥⎥⎦.
Clearly, h̃ = 1, τ = 0.8 and we choose " = 0.8 < 1. In addition, let g(x(t)) =

1
4 (|x + 1| − |x − 1|), the activation function satisfies the assumption (A1) with
L = diag{−0.5,−0.5}, F = W = diag{0.5, 0.5}. In this case, we choose β1 =
1, β2 = 0.5, β3 = 0.4. Obviously, it satisfies the condition β2 + β3h̃ < β1. Note
that M = [M1,M2,M3,M4] and solving the LMIs in Theorem 1 using the Mat-
lab LMI Control Toolbox, we obtain the feasible solutions as follows:

P =

(
3.907 −0.044
−0.044 5.761

)
, Q1 =

(
24.13 0
0 44.59

)
, Q2 =

(
1.601 0
0 1.293

)
,

Q3 =

(
0.946 0
0 1.010

)
, Q4 = 14.672I4×4, Q8 = 13.912I2×2,
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Q5 =

⎛⎜⎜⎝
29.5 0 0 0
0 76.3 0 0
0 0 111.2 0
0 0 0 74.8

⎞⎟⎟⎠, Q6 =

⎛⎜⎜⎝
1.137 0 0 0
0 3.464 0 0
0 0 2.626 0
0 0 0 1.923

⎞⎟⎟⎠,

Q7 =

⎛⎜⎜⎝
1.501 0 0 0
0 3.464 0 0
0 0 2.626 0
0 0 0 1.923

⎞⎟⎟⎠.

Thereby, by Theorem 1, we obtain that the system (2.1) is globally robustly
exponentially stable in Lagrange sense. Moreover, by calculating the eigenvalues

of P , we gain that the set Ω = {x ∈ Rn | 3.906x21 + 5.762x22 ≤ UT R8U

β1−β2−β3h̃
=

13.912
0.1 = 139.12} is a globally exponentially attractive set of (2.1).

Remark 3. In order to imitate the dynamic behavior of system (2.1), we choose
some parameters randomly as follows:

D =

(
6.4 0
0 8

)
, A =

(
1 0.8
0.5 1

)
,

B =

(
1.5 0.1
−0.8 1

)
, C =

( −1 0.5
−0.6 1

)
. (4.19)

Fig.1 depicts the phase plots of system (2.1) with parameters (4.19) in the case of
g(x(t)) = 1

4 (|x+1|− |x− 1|). The numerical results show that system (2.1) with
parameters (4.19) is globally robustly exponentially stable in Lagrange sense.
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Fig. 1. The phase plots of system (3.1) with random initials

5 Conclusions

The paper has mainly studied the problem of global robust exponential stability
in Lagrange sense for interval neural networks with general activation functions
and infinite distributed delays. By employing the LMI techniques, some sufficient
conditions to ensure the global robust exponential stability in Lagrange sense
for IDNNs are derived. In addition, a series of globally exponentially attractive
sets of IDNNs are also obtained. In the end, an example has been provided to
demonstrate the validity of the proposed theoretical results.
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Abstract. When solving a multi-classification problem with k kinds of
samples, if we use a multiple linear perceptron, k output nodes will be
widely-used. In this paper, we introduce binary output units of multiple
linear perceptron by analyzing the classification problems of vertices of
the regular hexahedron in the Three-dimensional Euclidean Space. And
we define Binary Approach and One-for-Each Approach to the prob-
lem. Then we obtain a theorem with the help of which we can find a
Binary Approach that requires more less classification planes than the
One-for-Each Approach when solving a One-for-Each Separable Classi-
fication Problem. When we apply the Binary Approach to the design of
output units of multiple linear perceptron, the output units required will
decrease greatly and more problems could be solved.

Keywords: Multiple linear perceptron, Binary Approach, One-for-Each
Approach.

1 Introduction

When we use a multiple linear perceptron to solve a multi-classification problem,
every kind of samples will correspond to a specific output unit if we use existing
method of designing output units of multiple linear perceptron[1-3]. If and only
if we input the i-th kind of samples, the corresponding output unit will output
’1’. And we need k output units to solve the classification problem with k kinds
of samples. In this paper, we introduce Binary Approach by analyzing the classi-
fication problems of vertices of the regular hexahedron in the Three-dimensional
Euclidean Space. When we apply this approach to the design of output units of
multiple linear perceptron, the output units required will decrease greatly and
more problems could be solved.

2 Approach to the Classification Problems

Assuming the vertices of the regular hexahedron in the Three-dimensional Eu-
clidean Space, as shown in Fig.1, constitute the set ofA = {P1, PP , P3, P4, P5, P6,
P7, P8}, we can use a plane in the space to divide these vertices into two
disjoint sets, and the plane is called the classification plane. For example, as
shown in Fig.2, plane S1S2S3S4 divides A into two classes each of which has

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 250–257, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The regular hexahedron in the
Three-dimensional Euclidean Space

Fig. 2. Plane S1S2S3S4divides A into two
classes

four vertices and the vertices of two classes constitute respectively the sets
A1 = {P1, P2, P3, P4} and A2 = {P5, P6, P7, P8}.

We define the classification problem of the set A as follows. Set A is divided
into k (2 ≤ k ≤ 8) pairwise disjoint subsets, and the i-th subset has ni (1 ≤ ni <
8) vertices. Assuming that the vertices of the i-th subset constitute the set Ai,

we can get
⋃k

i=1Ai = A, Ai

⋃
Aj = ∅, (1 ≤ i, j ≤ k, i �= j)

Definition 1. In terms of the classification problem described above, we will
call it linearly separable, if there are some planes which create disjoint regions
by incising the Three-dimensional Euclidean Space, and the vertices in subset Ai

located in the same region and the vertices in subset Ai and the vertices in subset
Aj (i �= j) are in different regions. We define the approach as Binary Approach.

Definition 2. A approach to solving a linearly separable classification problem
is as follows. We find k planes: S1, S2 · · · Sk. And Si divides set A into two
parts, making all the ni vertices in subset Ai locate in the same side of Si but
the remaining vertices locate in the other side. We define the approach above as
One-for-Each Approach. If there are such planes in the classification problem,
we will name it as One-for-Each Separable.

Obviously, One-for-Each Approach is a special Binary Approach and k planes
divide set A in the process into k pairwise disjoint subsets. But k planes can
divide the space into 2k disjoint regions at most. So the regions created by the
planes usually have no vertex in set A.

In terms of a classification problem which is linearly separable, we expect to
use as few planes as possible to solve it. The p planes represents a solution of
the classification problem only if p satisfies inequality k ≥ 2p, p ∈ N , because p
planes can divide the space into 2p disjoint regions at most,

So p ≥ �log2k (�• is the rounded up sign, such as �log25 =3).
Can a linearly separable classification problem certainly be solved by �log2k 

planes? The answer is NO, as shown in Fig.3(a), A1 = {P1, P2}, A2 = {P3, P4},
A3 = {P5, P8}, A4 = {P6, P7}. We use bold lines to connect the vertices which
are in the same subset. We can prove that to solve this classification problem, 3
planes are required at least. Fig.3(b) is a Binary Approach to it.



252 Q. Sun et al.

(a) The counter-example (b) The solution

Fig. 3. The counter-example and it’s solution

But we can prove the theorem bellow:

Theorem 1. When a classification problem with k classes is linearly separable,
if it is One-for-Each Separable, we can find a Binary Approach which requires
p planes to solve the same problem. And the correspondent relationship between
p and k is shown in Table 1. Conversely, if we can find a Binary Approach to a
linearly separable classification problem, we may not be able to find an One-for-
Each Approach to the problem.

Table 1. The relationship be-
tween p and k

k 2 3 4 5 6 7 8

p 1 2 2or3 3 3 3 3

3 The Application in the Neural Networks

Figure.4 shows the architectural graph of a multilayer perceptron with a hidden
layer which has 3 neurons and an output layer which has n neurons. The network
is fully connected and the activation function used is the threshold function f(x):

f(x) =

{
1 x ≥ 0

0 x ≤ 0
(1)

The classification problem of the samples can be seen as the classification prob-
lem of corresponding outputs of the hidden layer, because outputs of the output
layer is decided by corresponding outputs of the hidden layer. The output of the

hidden layer must be a three-dimensional

⎡⎣0 or 1
0 or 1
0 or 1

⎤⎦. So if we use the coordinate

in the Three-dimensional Euclidean Space to denote outputs of the hidden layer,
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Fig. 4. A multiplayer perceptron Fig. 5. The regular hexahedron of the
Three-dimensional Euclidean Space

they will constitute the regular hexahedron in the space as shown in Fig.5. In
this case, the multilayer perceptron can be simplified as Fig.6 and the input

of the networks will be

⎡⎣0 or 1
0 or 1
0 or 1

⎤⎦, if we only consider about the design of the

output layer. Obviously, the output can also be represented by a binary number,
so the differences among binary numbers reflect the differences among Binary
Approaches. For example, when we use the One-for-Each Approach, the output
corresponding to the i-th subset of the networks is a k dimension vector with
’1’ at the i-th bit and ’0’ at others, namely [0, · · · , 0, 1, 0, · · · , 0]T , which
is widely used in the traditional design of the neural network. We can conclude
from the Theorem:

Fig. 6. The neural network simplified

A) As when we use this kind of network, outputs of the hidden layer will have
8 cases at most for any sample set , the sample set can be divided into 8
pairwise disjoint subsets at most. If we can divide the set into k pairwise
disjoint subsets (2 ≤ k ≤ 8) using One-for-Each Approach, it will require k
neurons in the output layer but meanwhile we can find a Binary Approach
which requires p neurons in the output layer. The correspondent relationship
between p and k is shown in Table 1.
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B) Conversely, if we can divide the set into k pairwise disjoint subsets (2 ≤ k ≤
8) using a Binary Approach, we may not be able to divide the set into the
same subsets using One-for-Each Approach no matter how much neurons in
output layer.

From A), B), we can make conclusions: With appropriate Binary Approach, far
less neurons are required in the output layer than the One-for-Each Approach
and we can solve some classification problems that cannot be solved by One-for-
Each Approach. Thus the complexity of the neural network is reduced and we
can solve more classification problems.

4 Proof

We will prove the Theorem when k ≥ 4, for k=2 or 3 is easy to solve. Firstly,
we define some special planes.

1) As show in Fig.7, by connecting the midpoints of prism P4P8, P5P8, P7P8,
namely S11, S12, S13, we can get a plane that separates P8 from other
vertices, so we call it the 1-plane of {P8}. We can get the 1-plane of a vertex
set composed of one vertex in a similar way.

Fig. 7. The 1-plane of {P8} Fig. 8. The 2-plane of {P1, P4}

2) As show in Fig.8, by connecting the midpoints of prism P1P5, P4P8, P3P4,
P1P2, namely S21, S22, S23, S24, we can get a plane that separate {P1, P4}
from other vertices, so we call it the 2-plane of {P1, P4}. We can get the
2-plane of a vertex set composed of two vertices in the same prisms in a
similar way.

3) As shown in Fig.9, by connecting the midpoint of prism P5P8, a quarter
point of prism P8P7 closest to P8, a quarter point of prism P4P3 closest to
P3, a quarter point of prism P1P2 closest to P1 and the midpoint of prism
P1P5, namely S31, S32, S33, S34, S35, we can get a plane that separate P1,
P4, P8 from other vertices, so we call it the 3-plane of {P1, P4, P8}. We can
get the 3-plane of a vertex set composed of three vertices in the same face
in a similar way.
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Fig. 9. The 3-plane of {P1, P4, P8} Fig. 10. The 4-1-plane of {P1, P2, P3, P4}

4) As shown in Fig.10, by connecting the midpoints of prism P1P5, P2P6, P3P7,
P4P8, namely S41, S42, S43, S44, we can get a plane that divides A into
{P1, P2, P3, P4}, {P5, P6, P7, P8}, so we call it the 4-1-plane of {P1, P2, P3,
P4}. We can get the 4-1-plane of a vertex set composed of four vertices in
the same face in a similar way.

5) As shown in Fig.11, by connecting the midpoints of prism P1P2, P1P5, P5P8,
P7P8, P3P7, P2P3 namely S421, S422, S423, S424, S425, S426, we can get
a plane that divides A into {P1, P3, P4, P8}, {P2, P5, P6, P7}, so we call it
the 4-2-plane of {P1, P3, P4, P8}. We can get the 4-2-plane of a vertex set
composed of four vertices that each three of them is in the same face in a
similar way.

Fig. 11. The 4-2-plane of {P1, P3, P4, P8}

Secondly, we will list all the cases of classification problems which are One-for-
Each Separable and satisfy k ≥ 4. Please note that we will consider about the
isomorphism among different cases. That is to say case A1 = {P1, P2, P3, P4},
A2 = {P5, P6, P7, P8} is equivalent to case A1 = {P5, P6, P7, P8}, A2 = {P1,
P2, P3, P4}, which we can get only by turning the regular hexahedron upside
down.

1) k = 4.
a) A1 = {P1, P2, P3, P4, P5}, A2 = {P6}, A3 = {P7}, A4 = {P8}.
b) A1 = {P1, P2, P3}, A2 = {P4, P5, P8}, A3 = {P6}, A4 = {P7}.
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c) A1 = {P1, P2, P3}, A2 = {P5, P6, P7}, A3 = {P4}, A4 = {P8}.
d) A1 = {P1, P2, P3}, A2 = {P5, P7, P8}, A3 = {P4}, A4 = {P6}.
e) A1 = {P1, P2, P3}, A2 = {P6, P7, P8}, A3 = {P4}, A4 = {P5}.
f) A1 = {P1, P2, P3, P4}, A2 = {P5, P6}, A3 = {P7}, A4 = {P8}.
g) A1 = {P1, P2, P3}, A2 = {P5, P6}, A3 = {P7, P8}, A4 = {P4}.
h) A1 = {P1, P2, P3}, A2 = {P4, P8}, A3 = {P6, P7}, A4 = {P5}.
i) A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5, P6}, A4 = {P7, P8}.
j) A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5, P8}, A4 = {P6, P7}.

2) k = 5.
a) A1 = {P1, P2, P3, P4}, A2 = {P5}, A3 = {P6}, A4 = {P7}, A5 = {P8}.
b) A1 = {P1, P2, P3}, A2 = {P4, P8}, A3 = {P5}, A4 = {P6}, A5 = {P7}.
c) A1 = {P1, P2, P3}, A2 = {P5, P6}, A3 = {P4}, A4 = {P7}, A5 = {P8}.
d) A1 = {P1, P2, P3}, A2 = {P5, P8}, A3 = {P4}, A4 = {P6}, A5 = {P7}.
e) A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5, P6}, A4 = {P7}, A5 = {P8}.
f) A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5, P8}, A4 = {P6}, A5 = {P7}.

3) k = 6.
a) A1 = {P1, P2, P3}, A2 = {P4}, A3 = {P5}, A4 = {P6}, A5 = {P7},

A6 = {P8}.
b) A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5}, A4 = {P6}, A5 = {P7},

A6 = {P8}.
c) A1 = {P1, P2}, A2 = {P7, P8}, A3 = {P3}, A4 = {P4}, A5 = {P5},

A6 = {P6}.
d) A1 = {P1, P2}, A2 = {P5, P8}, A3 = {P3}, A4 = {P4}, A5 = {P6},

A6 = {P7}.
4) k = 7.

a) A1 = {P1, P2}, A2 = {P3}, A3 = {P4}, A4 = {P5}, A5 = {P6}, A6 =
{P7}, A7 = {P8}.

5) k = 8.
a) A1 = {P1}, A2 = {P2}, A3 = {P3}, A4 = {P4}, A5 = {P5}, A6 = {P6},

A7 = {P7}, A8 = {P8}.
Third, we will solve the classification problems using planes defined in the first
part of the Proof. The classification problems have many cases, but almost each
of them is easy to find a correspondent Binary Approach which meets the de-
mand. So we only discuss some of the complex cases.

1) As shown in Fig.12, A1 = {P1, P2, P3}, A2 = {P4, P5, P8}, A3 = {P6},
A4 = {P7}. We can use a 2-plane of {P6, P7} and a 4-2-plane of {P1, P2,
P3, P6} to solve the problem, as shown in Fig.12. Namely, there is a Binary
Approach requiring 2 planes to solve it.

2) As shown in Fig.13, A1 = {P1, P2}, A2 = {P3, P4}, A3 = {P5, P8}, A4 =
{P6}, A5 = {P7}. We can use a 4-1-plane of {P1, P2, P3, P4}, a 3-plane of
{P1, P2, P6} and a 1-plane of {P7} to solve the problem, as shown in Fig.13.
Namely, there is a Binary Approach requiring 3 planes to solve it.

3) As shown in Fig.14, A1 = {P1, P2}, A2 = {P5, P8}, A3 = {P3}, A4 = {P4},
A5 = {P6}, A6 = {P7}. We can use a 4-1-plane of {P1, P2, P3, P4}, a 3-plane
of {P1, P2, P6} and a 2-plane of {P3, P7} to solve the problem, as shown in
Fig.14. Namely there is a Binary Approach requiring 3 planes to solve it.
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Fig. 12. Case b) when k=4 and it’s
solution

Fig. 13. Case f) when k=5 and it’s
solution

Fig. 14. Case d) when k=6 and it’s
solution

Fig. 15. The example for the second part
of the proof

The second part of the theorem can be proved by a counter-example that A1 =
{P1, P3, P5, P7}, A2 = {P2, P6}, A3 = {P4, P8}, as shown in Fig.15. We can use
a 2-plane of {P2, P6} and a 2-plane of {P4, P8}to solve the problem, as shown
in Fig.15. Namely there is a Binary Approach requiring 2 planes to solve it. But
we cannot find an One-for-Each Approach to solve it.

References

1. Wu, W., Zhou, C.G., Liang, Y.C.: Intelligent computing. Higher Education Press,
Beijing (2009)

2. Haykin, S.: Neural Networks and Learing Machines, 3rd edn. China Machine Press
(2009)

3. SateeshBabu, G., Suresh, S.: Meta-cognitive Neural Network for classification prob-
lems in a sequential learning framework. Neurocomputing 81, 86–96 (2012)



 

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 258–264, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Support Vector Machine with Customized Kernel  

Guangyi Chen1, Tien Dai Bui1, Adam Krzyzak1, and Weihua Liu2 

1 Department of Computer Science and Software Engineering, Concordia University,  
1455 de Maisonneuve West, Montreal, Quebec, Canada H3G 1M8 

{guang_c,bui,krzyzak}@cse.concordia.ca 
2 State Key Lab. of Virtual Reality Technology and Systems, Beihang University,  

ZipCode 100191, No 37, Xueyuan Rd., Haidian District, Beijing, P.R. China 
liuwh_99@hotmail.com 

Abstract. In the past two decades, Support Vector Machine (SVM) has become 
one of the most famous classification techniques. The optimal parameters in an 
SVM kernel are normally obtained by cross validation, which is a time-consuming 
process. In this paper, we propose to learn the parameters in an SVM kernel while 
solving the dual optimization problem. The new optimization problem can be 
solved iteratively as follows:  

(a) Fix the parameters in an SVM kernel; solve the variables αi in the dual 
     optimization problem.  
(b) Fix the variables αi; solve the parameters in an SVM kernel by using the  
     Newton–Raphson method.  

It can be shown that (a) can be optimized by using standard methods in training 
the SVM, while (b) can be solved iteratively by using the Newton-Raphson 
method. Experimental results conducted in this paper show that our proposed 
technique is feasible in practical pattern recognition applications. 

Keywords: Support vector machine (SVM), feature extraction, SVM kernels, 
pattern recognition, pattern classification. 

1 Introduction 

Support vector machine (SVM) was developed by Vapnik et al. ([1], [2], [3]) for 
pattern recognition and function regression. The SVM assumes that all samples in the 
training set are independent and identically distributed. It uses an approximate 
implementation to the structure risk minimization principal in statistical learning 
theory, rather than the empirical risk minimization method. A kernel is utilized to map 
the input data to a higher dimensional feature space so that the problem becomes 
linearly separable. An SVM kernel plays a very important role in the performance of 
the SVM applications.  

We briefly review recent advances in SVM applications. Chen and Dudek [4] 
developed the auto-correlation wavelet kernel for pattern recognition. It was shown 
that this kernel is better than the wavelet kernel [5] because the auto-correlation 
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wavelet is shift-invariant whereas the wavelet is not. This shift-invariant property is 
very important in pattern recognition. Chen [6] also proposed the dual-tree complex 
wavelet (DTCWT) kernel for SVM classification. The DTCWT developed by 
Kingsbury [7] has the approximate shift invariant property and better orientation 
selectivity. These good properties have made the DTCWT a better candidate for 
pattern recognition.  

In this paper, we propose to learn the parameters in an SVM kernel while solving 
the SVM optimization problem. We break the optimization problem into two smaller 
optimization problems: (a) Fix the parameters in an SVM kernel, and then solve the 
variables αi in the dual optimization problem. (b) Fix the variables αi, and solve the 
parameters in an SVM kernel by using the Newton–Raphson method. We solve (a) 
and (b) iteratively for at most τ iterations in each round of optimization, respectively. 
We repeat the optimization of (a) and (b) in a loop manner until they converge or the 
maximum number of iterations is reached. Our simulation results show that our 
proposed method achieves higher classification rates than the standard SVM for 
recognizing traffic light signals and the vowel dataset (τ=100).  

The organization of this paper is as follows. Section 2 proposes to learn the 
parameters in an SVM kernel while training the SVM for pattern recognition. Section 
3 conducts some experiments in order to show that by optimizing the parameters in an 
SVM kernel we can achieve higher classification rates. Finally, Section 4 draws the 
conclusions of this paper, and gives future research direction. 

2 Proposed Method 

An SVM can be used as a classifier for a pattern recognition problem with n>2 
classes, which can be resolved by solving n×(n-1)/2 two-class SVM problems. A two-
class SVM problem can be summarized as follows. Let (xi,yi) be a set of training 
samples, where xi is the feature vector and yi=+1 or -1.  
 
The primal form of an SVM problem is formulated as: 

 
 Min: ½ ||w||2 
 Subject to: yi (w

Txi-b) ≥ 1 for all i=1, 2, …, n. 
 
This is an optimization problem that can be solved by introducing a set of Lagrange 
multiplier αi ≥0. We have to solve the following quadratic dual optimization problem: 
 

            n           n   n 

Max: ∑ αi – ½ ∑  ∑ αi αj yi yj k(xi ,xj) 
      i=1       i=1  j=1    

                                 n 

    Subject to: 0 ≤ αi ≤ C and ∑ αi yi=0. 
                                i=1 
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In this paper, we will restrict the kernel to be the radial basis function (RBF) 
kernel:  

 
k(xi ,xj)=exp(-γ || xi – xj ||

2) 
 

or the exponential radial basis function (ERBF) kernel:  
 

k(xi ,xj)=exp(-γ || xi – xj ||), 
 

where the parameter γ ≥ 0. In the above dual optimization problem, the parameter γ 
can be chosen by the user or it can be learned by cross-validation, which is a time-
consuming process. We have decided to fix the parameter C in this paper. 

 
We propose to solve the above dual optimization problem in two steps: 
 

(a) Fix the parameter γ in an SVM kernel; solve the variables αi in the dual 
optimization problem.  

(b) Fix the variables αi; solve the parameters in an SVM kernel by using the Newton–
Raphson method iteratively.  

 
The first optimization problem (a) can be solved by the standard optimization method 
in training an SVM. We restrict the number of iteration in solving this optimization 
problem to be at most τ iterations, instead of looping for many iterations. We modify 
the C++ code of LIBSVM [8] to solve this optimization problem. After obtaining the 
approximate parameters αi, we will solve the second optimization problem (b) 
iteratively by using the Newton–Raphson method. 

                    
Let us derive the formula to solve the second optimization problem (b). Since 
 
        n          

∑ αi yi = 0,  
       i=1  

                      
We have  
 
      n-1 

∑ αi yi yn = - αn.                                                                                                   
        i=1  

 

By plugging αn into the dual optimization problem, we obtain the following 
optimization problem without any constrains: 

 
              n-1                  n-1  n-1                                                     

Max: W( γ) = ∑ αi (1-yn yi ) - ½ ∑  ∑  αi αj yi yj 
 γ            i=1                   i=1  j=1        
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                          n-1        n-1                     n-1 
           k(xi ,xj)+ (∑ αi yi )( ∑ αj yj k(xn ,xj))- ½ (∑ αi yi)

2 
                          i=1        j=1                     j=1 
 

In order to obtain the maximization, we need to set the first derivative W’(γ)=0. From 
the above equation, we can derive: 

 

           n-1  n-1                                                      

W’( γ)= ½ ∑   ∑  αi αj yi yj k(xi ,xj)(-||xi-xj||
2) –  

          i=1   j=1                                                                      
                            n-1 
                αn yn ( ∑ αj yj k(xn ,xj))(-||xn-xj||

2)   for RBF. 
                            j=1 
 

              n-1   n-1                                                                 

W’( γ)= ½ ∑   ∑  αi αj yi yj k(xi ,xj)(-||xi-xj||) – 
           i=1  j=1                                                                    
                         n-1 
              αn yn ( ∑ αj yj k(xn ,xj))(-||xn-xj||)  for ERBF. 
                         j=1 
 

and 
 

           n-1  n-1                                                                    
W”( γ)= ½ ∑  ∑  αi αj yi yj k(xi ,xj)(||xi-xj||

4) – 
           i=1  j=1                                                                    
                             n-1 
                 αn yn ( ∑ αj yj k(xn ,xj))(||xn-xj||

4)  for RBF. 
                             j=1 

 

              n-1  n-1                                                         

W”( γ)= ½ ∑  ∑  αi αj yi yj k(xi ,xj)(||xi-xj||
2) –  

           i=1  j=1                                                     
                             n-1 
                 αn yn ( ∑ αj yj k(xn ,xj))(||xn-xj||

2)  for ERBF. 
                             j=1 

 

From the Newton-Raphson method, we obtain the following formula for the second 
optimization problem (b): 

 

                          γ k+1 = γk – W’( γk) / W”( γk). 
 

We would like to restrict the number of iterations for the second optimization problem 
(b) to be at most τ=100 iterations, and then switch to the first optimization problem 
(a). We repeat to solve the two optimization problems (a) and (b) interchangeably 
until convergence or the maximum number of iterations is reached. The above 
solutions are for a two-class classification problem. Let Δγk = γk+1 - γk be for a two-
class classification problem.  Since we have to solve n×(n-1)/2 two-class SVM 
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problems, we can take the mean of Δγk, over all these n×(n-1)/2 two-class SVM 
problems. Therefore, the iterative formula for solving the parameter γk can be given as 

 
          γk+1 = γk + ε × mean(Δγk). 
 

It is expected that by solving the two optimization problems interchangeably, we can 
obtain better solutions for pattern recognition. The decision function of a two-class 
SVM problem is 

                                 n 
                 f(x) = sign( ∑ αi yi k(xi ,x)+b) 
                             i=1 

 
where                      n 

                 b = yr - ∑ αi yi k(xi ,xr) 
                         i=1 

 

and (xr,yr) is a training sample. For the one-versus-one SVM problem, classification is 
performed by a max-wins voting approach, in which every classifier assigns the 
instance to one of the two classes. The vote for the assigned class is increased by one, 
and the class with most votes determines the instance classification. 

3 Experimental Results 

We conducted some experiments by using the data sets svmguide4 and vowel 
provided in [8]. The svmguide4 data set is for traffic light signals, which has 6 classes 
with 300 training samples and 312 testing samples. The number of features was 
chosen to 10. The vowel data set has 11 classes with 528 training samples and 462 
testing samples. The number of features was also chosen to 10. We used the following 
Code One and Two to train and test the standard LIBSVM and our proposed SVM, 
where the parameters C and g can be changed as desired. In our experiments, we 
choose τ=100 and ε=0.01 for the traffic light dataset and for the vowel dataset. 

 
--------------------------------------------Code One-------------------------------------------- 
svm-scale -l 0 -s range1 svmguide4 > svmguide4.scale 
svm-scale -r range1 svmguide4.t > svmguide4.t.scale 
svm-train -c 100 -g 0.2 svmguide4.scale 

   svm-predict svmguide4.t.scale svmguide4.scale.model svmguide4.t.predict 
 
-------------------------------------------Code Two-------------------------------------------- 
svm-scale -l -1 -u 1 -s range3 vowel.scale > vowel.scale.scale 
svm-scale -r range3 vowel.scale.t > vowel.scale.t.scale 
svm-train -c 100 -g 0.2 -t 2 vowel.scale.scale 
svm-predict vowel.scale.t.scale vowel.scale.scale.model vowel.scale.t.predict 
--------------------------------------------------------------------------------------------------- 
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Tables 1-2 tabulate the parameters C and g, and the recognition rates for both the 
standard LIBSVM and our proposed SVM for the traffic light dataset and vowel 
dataset, respectively. From the two tables, it can be seen that our proposed SVM 
obtains higher classification rates than the standard LIBSVM due to the learning 
strategy introduced in our proposed SVM. Note that we only used the RBF in our 
experiments. We leave ERBF to our future research.  

Table 1. A comparison between the standard LIBSVM and our proposed SVM for the traffic 
light dataset 

Parameter  
C 

Parameter  
g 

Classification rate 
(LIBSVM) 

 Classification rate  
 (Proposed SVM) 

100 0.2 78.53% 81.73% 
10 0.2 54.17% 66.67% 
1 0.2 29.17% 46.79% 

Table 2. A comparison between the standard LIBSVM and our proposed SVM for the vowel 
dataset 

Parameter  
C 

Parameter 
g 

Classificati
on rate 

(LIBSVM) 

Classificati
on rate 

(Proposed 
SVM) 

100 0.2 55.19% 64.94% 
10 0.2 53.03% 63.20% 
1 0.2 59.74% 61.26% 

4 Conclusions and Future Work 

We have proposed a solution for solving an n-class classification problem by using 
SVM. We resolve the n-class SVM classification problem by solving n×(n-1)/2 two-
class SVM problems. Each two-class SVM classification problem can be resolved by 
(a) fixing the parameter γ in an SVM kernel and then solve the variables αi in the dual 
optimization problem, and by (b) fixing the variables αi and solve the parameter γ in 
an SVM kernel by using the Newton–Raphson method iteratively. We solve for (a) 
and (b) interchangeably until they converge or the maximum number of iterations 
τ=100 is reached. Experimental results show that the proposed method in this paper is 
feasible in pattern recognition.  

Further research needs to be done by learning the upper bound C as well while 
solving the optimization problems. It is believed that, by optimizing both C and γ, we 
can obtain higher classification rates for n-class pattern recognition problems. We 
may also apply our proposed SVM to the recognition of handwritten digits and 
handwritten characters. We are very interested in extracting the dual-tree complex 
wavelet features, the ridgelet features, the contourlet features, the curvelet features, 
etc. ([7], [9], [10]). 
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Abstract. Kernel Minimum Squared Error (KMSE) has been receiving
much attention in data mining and pattern recognition in recent years.
Generally speaking, training a KMSE classifier, which is a kind of super-
vised learning, needs sufficient labeled examples. However, there are usu-
ally a large amount of unlabeled examples and few labeled examples in real
world applications. In this paper, we introduce a semi-supervised KMSE
algorithm, called Laplacian regularized KMSE (LapKMSE), which explic-
itly exploits the manifold structure. We construct a p nearest neighbor
graph to model the manifold structure of labeled and unlabeled exam-
ples. Then, LapKMSE incorporates the structure information of labeled
and unlabeled examples in the objective function of KMSE by adding a
Laplacian regularized term. As a result, the labels of labeled and unla-
beled examples vary smoothly along the geodesics on the manifold. Ex-
perimental results on several synthetic and real-world datasets illustrate
the effectiveness of our algorithm.

Keywords: Kernel MSE, Semi-supervised learning, Manifold structure.

1 Introduction

In the last decades, kernel method has been receiving more and more attention
in nonlinear classification and regression. A training example can be mapped
into a high-dimensional feature space by using kernel trick [1,2] satisfying the
Mercer condition and then a classifier can be trained in the new feature space. In
most case, the kernel trick can achieve good generalization performance. Hence,
many researchers have been studying the idea and various methods have been
proposed, such as Kernel Minimum Squared Error (KMSE) [3], Support Vector
Machine (SVM) [4], Least Squares SVM (LS-SVM) [5], Kernel Principal Com-
ponent Analysis (KPCA) [6], Kernel Fisher Discriminant Analysis (KFDA) [7].
Among the above methods, KMSE has received many attention due to its higher
computational efficiency in the training phase. However, it is difficult to control
the generalization ability [8]. Xu et al. [9] proposed two versions of KMSE using
different regularization terms and proved their relation to KFDA and LS-SVM.
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Nevertheless, the performance of KMSE, which is a kind of supervised learn-
ing, relies on sufficient labeled examples to train a good classifier [10]. In fact,
labeled examples are usually insufficient while unlabeled data are often abun-
dant in real world. Consequently, semi-supervised classification, which uses both
labeled and unlabeled examples to train a classifier, has become a recent topic
of interest. In semi-supervised learning, how to learn from unlabeled examples
is still an open problem. One of the most used ways is manifold regularization.
Belkin et al. [11] proposed Laplacian Regularized Least Squares (LapRLS) and
Laplacian Support Vector Machines (LapSVM) which employ Laplacian regu-
larization to learn from labeled and unlabeled examples. Cai [12] introduced
a Semi-supervised Discriminant Analysis (SDA) where unlabeled examples are
used to exploit the intrinsic manifold structure. We refer the readers to some
excellent surveys [13,14] for more details.

In this paper, we propose a semi-supervised KMSE algorithm, called Lapla-
cian regularized KMSE (LapKMSE), which explicitly reveals the local manifold
structure. Naturally, if two examples are close on the manifold, they are likely to
be drawn from the same class. In fact, the manifold is usually unknown. Hence,
we construct a p nearest neighbor graph to model the manifold and employ
graph Laplacian to incorporate the Laplacian regularized term in the objective
function of KMSE. Based on this, the information of labeled and unlabeled ex-
amples are exploited by Laplacian regularization which smooths the labels of
labeled and unlabeled examples along the geodesics on the manifold.

The rest of the paper is organized as follows: In Sect.2, we briefly review the
näıve KMSE. In Sect.3, we describe our algorithm in detail. Section 4 presents
the experimental results on several synthetic and real-world datasets. Finally,
we conclude the paper and discuss some future directions in Sect.5.

2 Näıve KMSE

Let X = {(x1, y1), · · · , (xl, yl)} be a training set of size l, where xi ∈ R
D and

yi ∈ R. For the binary classification problem, yi = −1 if xi ∈ ω1 or yi = 1 if
xi ∈ ω2. By a nonlinear mapping Φ, a training example is transformed into a
new feature space Φ(xi) from the original feature space. The task of KMSE is to
build a linear model in the new feature. The outputs of the training examples
obtained by the linear model are equal to the labels

ΦW = Y (1)

where

Φ =

⎡⎢⎣1 Φ(x1)
T

...
...

1 Φ(xl)
T

⎤⎥⎦ , W =

[
α0

w

]
, and Y = [y1, · · · , yl]T
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According to the reproducing kernel theory [4,7], one can note that w can be
expressed as

w =

l∑
i=1

αiΦ(xi) (2)

By substituting Eq.(2) into Eq.(1), we can get

Kα = Y (3)

where

K =

⎡⎢⎣1 k(x1, x1) · · · k(x1, xl)
...

...
. . .

...
1 k(xl, x1) · · · k(xl, xl)

⎤⎥⎦ and α =

⎡⎢⎣α0

...
αl

⎤⎥⎦
here the matrix K is kernel matrix whose entry k(xi, xj) = (Φ(xi) · Φ(xj)).

The goal of KMSE is to find the optimal vector α by minimizing the objective
function as follows:

J0(α) = (Y −Kα)T (Y −Kα) (4)

By setting the derivation of J0(α) with respect to α to zero, we can obtain the
solution:

α∗ = (KTK)−1KTY (5)

From Eq.(5), we can find that the dimension of α∗ is l+1 and Rank(KTK) ≤ l.
In other words, KTK is always singular. Consequently, the solution α∗ is not
unique. In the last decades, the regularization approach [9] is often used to deal
with the ill-posed problem. The corresponding regularized objective function can
be described as

J1(α) = (Y −Kα)T (Y −Kα) + μαTα (6)

where μ is the coefficient of the regularization term.
By minimizing the above objective function (6), we can obtain

α∗ = (KTK + μI)−1KTY (7)

where I is an identity matrix of size (l + 1)× (l + 1).
When the optimal weight coefficients α∗ is obtained, the linear model of

KMSE can be presented as

f(x) =
l∑

i=1

α∗
i k(xi, x) + α∗

0 (8)

In the testing phase, x ∈ ω1 if f(x) < 0 and x ∈ ω2 if f(x) > 0

3 Method

In this section, we will discuss how to learn from labeled and unlabeled examples
in KMSE.
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3.1 Manifold Regularization

Recall the standard learning framework. There is a probability distribution P on
X×R according to which examples are generated for function learning. Labeled
examples are (x, y) pairs drawn according to P . Unlabeled examples are x ∈ X
generated according to the marginal distribution PX of P . In many applications,
the marginal distribution PX is unknown. Related works show that there may
be a relationship between the marginal and conditional distribution [11]. It is
assumed that if two examples x1, x2 ∈ X are similar in the intrinsic geometry
of PX , then the conditional distribution P(y|x1) and P(y|x2) are similar. This
is referred to as manifold assumption which is often used in semi-supervised
learning [14].

Given a set X = {(x1, y1), · · · , (xl, yl), xl+1, · · · , xn} with l labeled examples
and u = n − l unlabeled examples. In order to exploit the manifold structure,
Belkin et al. [11] introduced a Laplacian regularization by using graph Laplacian.
The Laplacian regularization is defined as

R = fTLf (9)

where L is the graph Laplacian defined as L = D − W , and f = [f(x1), · · · ,
f(xn)]

T is the output of labeled and unlabeled examples. Here D is a diagonal
matrix whose entry Dii =

∑
j Wij and the edge weight matrix W = [Wij ]n×n

can be defined as follows:

Wij =

{
1 if xi ∈ Np(xj) or xj ∈ Np(xi)
0 otherwise

where Np(xi) denotes the data sets of p nearest neighbors of xi.

3.2 Laplacian Regularized KMSE (LapKMSE)

In this section, we introduce Laplacian regularized KMSE (LapKMSE) which is
extended from KMSE by incorporating Laplacian regularizer into the objective
function of KMSE.

By integrating regularization term (9) into Eq.(6), the objective function of
LapKMSE can be given as

Jr(α) = (Y −GKα)T (Y −GKα) + γAα
Tα+ γIR (10)

where

G =

[
Il×l 0l×u

0u×l 0u×u

]
, Y = [y1, · · · , yl, 0, · · · , 0]T , and K =

⎡⎢⎣ 1 k(x1, x1) · · · k(x1, xn)
...

...
. . .

...
1 k(xn, x1) · · · k(xn, xn)

⎤⎥⎦
According to the Representer Theorem, the solution can be given as [11]

f(x) =

n∑
i=1

α∗
i k(xi, x) + α∗

0 (11)
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Substituting Eq.(11) into Eq.(10), the modified objective function becomes

J ′
r(α) = (Y −GKα)T (Y −GKα) + γAα

Tα+ γIα
TKTLKα (12)

The derivative of Eq.(12) with respect to α is

(−GK)T (Y −GKα) + γAα+ γIK
TLKα = 0 (13)

By solving Eq.(13), we can get

α∗ = ((GK)TGK + γAI + γIK
TLK)−1(GK)TY (14)

As we can see, when γI = 0, the coefficients of unlabeled examples will be zeros
and LapKMSE will be equivalent to the original KMSE (i.e., Eq.(6)).

4 Experimental Results

In this section, a series of experiments are conducted to evaluate our algorithm
on several synthetic and real-world datasets. we compare the performance of our
algorithm with KMSE, LapRLS and LapSVM1.

We begin with one synthetic example to demonstrate how LapKMSE works.

4.1 A Synthetic Dataset

In this section, since our goal is to illustrate how to learn from unlabeled ex-
amples in LapKMSE, we mainly compare our algorithm with KMSE. Let us
consider one synthetic example to evaluate the proposed algorithm.

(a) Toy dataset (b) KMSE (c) LapKMSE

Fig. 1. Classification results on two moons dataset:(a)Toy dataset;(b)Results obtained
by KMSE;(c)Results obtained by LapKMSE. Labeled points are shown in red color,
the other points are unlabeled.

Figure 1 gives the plots of the two moons dataset and classification results of
KMSE and LapKMSE. The dataset contains 400 points and 1 labeled point in
each class. The parameter in KMSE is set as μ = 0.001. And the parameters in

1 The matlab codes are available at:
http://www.cs.uchicago.edu/~vikass/manifoldregularization.html

http://www.cs.uchicago.edu/~vikass/manifoldregularization.html


270 H. Gan, N. Sang, and X. Chen

LapKMSE are set as γA = 0.01, γI = 0.1 and p = 4. As we can see, LapKMSE
performs better than KMSE. LapKMSE achieves the desired classification result
such that the two moons are well separated, while KMSE not. This is mainly
because LapKMSE takes into account the manifold structure of the data set by
incorporating a Laplacian regularizer.

4.2 Real-World Datasets

In this experiment, four real-world datasets are tested to evaluate our algorithm.
The datasets are all from UC Irvine Machine Learning Repository [15]. The
statistics of the four datasets are described in Table 1.

Table 1. Description of the experimental datasets

Dataset #Features #Classes #Traing examples #Testing examples

Breast Cancer 30 2 350 219
Diabetes 8 2 500 268
Heart 13 2 162 108
IRIS 4 3 60 90

Additionally, the parameters of the different methods are determined by using
grid search. In each experiment, we employ the one-against-all strategy to train
the multi-class classifier.

4.3 Results

To evaluate the performance of our algorithm, we carry out a series of exper-
iments against KMSE, LapRLS and LapSVM. First, we randomly divide the
training set into 10 subsets. Then we select each subset in order as labeled
examples and the remaining subsets as unlabeled examples. We repeat this pro-
cess 10 times to test our algorithm and the other three methods. The results are
shown in Table 2.

Table 2. Classification results on each dataset

Dataset KMSE LapRLS LapSVM LapKMSE

Breast Cancer 94.01±3.68 95.89±2.48 95.70±3.07 95.47±3.36
Diabetes 71.56±3.33 77.35±2.78 77.01±2.38 77.72±2.43
Heart 53.42±9.17 75.46±4.43 75.46±4.43 77.03±3.54
IRIS 91.77±4.89 92.88±3.19 92.88±3.19 94.55±2.69

From Table 2, we have two observations. First, as can be seen, all three semi-
supervised learning methods (i.e., LapRLS, LapSVM and our LapKMSE) make
use of the manifold structure and achieve fairly good results. Therefore, it can
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be concluded that unlabeled data can help train a better classifier and improve
the generalization ability of the classifier. And considering the manifold struc-
ture help learn a better discriminative function. Second, our LapKMSE algo-
rithm outperforms LapRLS and LapSVM on the latter three datasets and gives
comparable results on Breast Cancer. Especially, our algorithm has an obvious
improvement on the Heart and IRIS datasets.

Besides the above comparison experiments, we next analysis the impact of
the ratio of labeled examples on the performance of the different methods. Ex-
periments are conducted to compare the performance of our algorithm with that
of the other three methods while the ratio of labeled examples in the training
set increases from 10% to 90%. The results on the four datasets are shown in
Figure. 2.

(a) Breast Cancer (b) Diabetes

(c) Heart (d) IRIS

Fig. 2. Experimental results on each dataset

Not surprisingly seen from these figures, the testing accuracy of all four meth-
ods increases overall as the ratio of labeled examples increases. On the whole,
our LapKMSE algorithm gives comparable results with LapRLS and LapSVM.
And the accuracy of semi-supervised learning methods are generally greater
than KMSE, especially when the ratio is less than 30% on Diabetes and Heart
datasets. Interestingly, we find that sometimes (e.g., the ratio of labeled examples
is 90% in Figure. 2(b)) the performance of LapRLS, LapSVM and LapKMSE are
worse than that of KMSE that is only trained by labeled examples. It may be
because in those cases the labeled examples can cover the whole data space fairly
well, while the locality of the manifold structure may increase the probability of
overfitting.
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5 Conclusion

In this paper, we introduce a semi-supervised learning algorithm, called Lapla-
cian regularized KMSE. The method incorporates the manifold structure of la-
beled and unlabeled examples in the objective function of KMSE. We construct
a p nearest neighbor graph to exploit the manifold structure and use a Lapla-
cian regularization term to smooth the labels of labeled and unlabeled examples
along the geodesics on the manifold. A series of experiments are conducted on
several synthetic and real-world datasets and the results show the effectiveness
of our LapKMSE algorithm. In the future work, we will mainly focus on the
analysis the impact of the parameters on the performance of LapKMSE.
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Abstract. The kernel-based feature extraction method is of importance
in applications of artificial intelligence techniques to real-world problems.
It extends the original data space to a higher dimensional feature space
and tends to perform better in many non-linear classification problems
than a linear approach. This work makes use of our previous research
outcomes on the construction of wavelet kernel for kernel principal com-
ponent analysis (KPCA). Using Monte Carlo simulation approach, we
study noise effects of the performance of wavelet kernel PCA in spatial
pattern data classification. We investigate how the classification accuracy
change when feature dimension is changed. We also compare the classi-
fication accuracy obtained from the single-scale and multi-scale wavelet
kernels to demonstrate the advantage of using multi-scale wavelet ker-
nel in KPCA. Our study show that multi-scale wavelet kernel performs
better than single-scale wavelet kernel in classification of data that we
consider. It also demonstrates the usefulness of multi-scale wavelet ker-
nels in application of feature extraction in kernel PCA.

Keywords: Wavelet Kernel, Kernel Principal Component Analysis,
Spatial Pattern Data, Non-linear Classification.

1 Introduction

Principal component analysis (PCA) has been broadly used for feature extraction
of high dimensional data classification problems. The objective of PCA is to map
the data attributes into a new feature space that contains better, i.e. more lin-
early separable, features than those in the original input space. However, as the
standard PCA is linear in nature, the projections in the new feature space do not
always yield meaningful results for classification purposes. For example, the linear
classifiers do not perform well when groups are separated by a quadratic function.
One possible solution to this problem is to introduce to the data new dimensions
that combine the original data attributes in a non-linear fashion such as in a poly-
nomial relation. In this way, the resulting number of new dimensions may be so

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 273–282, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



274 S. Xie, A.T. Lawniczak, and S. Krishnan

large that the task of generating new features and calculating eigenvalue decom-
positions becomes computationally expensive. Various kernel methods have been
applied successfully in statistical learning and data analysis, including data classi-
fication and regression, to address the question of non-linearity (e.g., [1,2,3,4,5]).
The introduction of the kernel allows working implicitly in some extended feature
space, while doing all computations in the original input space. Dot-product ker-
nels in the extended feature space, that are expressed in terms of kernel functions
in the original input space, are often used for non-linear classification and regres-
sion problems [6]. The major consequence of the use of dot-product kernels is that
“any algorithm which only uses scalar product can be turned to nonlinear version
of it, using kernel methods ” [7].

Although kernel-based classification methods enable capturing of non-linearity
of data attributes in the feature space, they are usually sensitive to the choices
of kernel parameters [1]. Additionally, in KPCA ([8,9]), optimization of ker-
nel parameters is difficult. The search of hyper-parameters via cross-validation
methods can be computationally expensive because of many possible choices of
parameters values [7]. This calls for the construction of a type of kernel [10,11]
that performs well in KPCA. Besides the choice of a kernel and the determina-
tion of its parameters, another important issue is the feature dimensions. The
classification accuracy for a given data set may highly depend on the choice of
feature dimensions. This implies that investigation of classification accuracy re-
lated to the feature dimensions in data classification is important, particularly,
for wavelet kernel. Because of this, a simulation study was conducted to illustrate
the performance of wavelet kernel in kernel PCA and to see how classification
results are related to feature dimensions.

In this paper, we first discuss the KPCA method and the wavelet kernels.
Next, a simulation model is proposed to produce training and test data. Wavelet
KPCA is then applied to extract data features and a linear classifier is used to
determine their group memberships of test data. Finally, we discuss the results
and summarize our findings.

2 Methods

2.1 Kernel PCA

PCA is a powerful tool in analyzing multivariate data and has become very useful
for feature extraction of high dimensional data in the machine learning context.
The underlying assumption of this statistical approach is the linearity among the
data attributes, which may not be always the case in real-world applications. As
an extension of PCA, KPCA spans the original variable space in terms of higher
dimensional basis functions through a feature map. Mathematically, the feature
map transforms the original observations x1, . . ., xn ∈ Rd into column vectors
Φ(x1), . . . , Φ(xn), where d represents the original data dimension and Φ(·) is a
kernel function. Finding principal components in KPCA can be done through the
eigenvalues decomposition of kernel matrix K, whose element are defined by:

k(xi,xj) = Φ(xi) · Φ(xj)
�, 1 ≤ i, j ≤ n. (1)
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The eigenvalues decomposition produces a set of eigenvectors, denoted by V l =
(vl1, v

l
2, . . . , v

l
n)

�, for l = 1, 2, . . . , n, and the data features in the mapped feature
space can be extracted by

Φ(x) · V l =

n∑
i=1

vlik(xi,x). (2)

Due to the extension of the dimension of feature space from d to n, the extracted
features often appear to be more linear than the features extracted from PCA,
particularly for a small d. However, in practice, it is important to retain a low
dimensional feature vector in order to facilitate the classification process. This
requires an investigation of how wavelet KPCA as a feature extraction method
perform in data classification.

2.2 Wavelet Kernel

Besides the dot-product type kernel defined in (1), the translation invariant
kernel is also popular, for example, the wavelet kernel. The advantage of using
a dot-product type kernel is that it guarantees the required property of being
Mercer kernel (i.e., non-negative definite kernel matrix) while the translation
invariant kernel requires a proof of this property. Although the proof of being
Mercer kernel is often difficult, the translation invariant kernel is still desirable
as it has a reduced set of kernel parameters, which makes it more practical.

Single-Scale Wavelet Kernel. A signle-scale wavelet kernel is a function
that uses a mother wavelet at a particular scale, but various translation factors
are used for all variables within xi. A single-scale dot-product wavelet kernel
(SDWK) is defined as

k(x,y) =
d∏

i=1

ψ(
xi − bi

a
)ψ(

yi − bi
a

), (3)

where ψ(x) is a mother wavelet function, a ∈ R+ is the unique dilation factor
and bi ∈ R are the translation factors, for each variable xi in xi and yi in yi. A
single-scale translation invariant wavelet kernel (STIWK) is defined as

k(x,y) =

d∏
i=1

ψ(
xi − yi

a
). (4)

In practice, the parameter a in both (3) and (4) needs to be estimated. This
is possible for supervised problems, but it is not feasible when dealing with
unsupervised problems as it requires a tedious cross-validation process in which
all kinds of possible combinations of parameter values need to be considered.
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Multi-Scale Wavelet Kernel. A multi-scale dot-product wavelet kernel
(MDWK) ([10,11]) is defined as

k(x,y) =
d∏

i=1

J−1∑
j=0

2J−j−1∑
k=0

λiψ(
xi − bk
aj

) · ψ(yi − bk
aj

), (5)

and a multi-scale translation invariant wavelet kernel (MTIWK) is given by

k(x,y) =

d∏
i=1

J−1∑
j=0

λiψ(
xi − yi
aj

), (6)

where, respectively, λi = 1
aj

in (5) and λi = 1
J in (6). The benefit of using

the multi-scale wavelet kernel results from the fact that the kernel is a sum of
multiple kernel functions under different wavelet scales. The kernel aims, poten-
tially, to capture the multi-scale behavior of data and its application leads to
a better performance of feature extraction, without a search of optimal param-
eter set within the parameter space. The values of aj are in powers of 2, that
is aj ∈ {1, 20.25, . . . , 20.25j , . . . , 20.25(J−1)} for a given level J , which is 6 in this
paper. For each aj , the sequence bk is selected as bk = ku0aj, as suggested by
Daubechies (1992). Here, u0 controls the resolution of bk and is set to be 0.5.
The range of k is the set {0, 1, . . ., 10} which is determined by the border of
the mother wavelet function. In this paper, the mother wavelet functions that
we consider are Gaussian and Mexican hat wavelets.

2.3 Simulation Model

In this simulation study, we consider a two-class two dimensional heterogeneous
clustered data, denoted by D={xi, yi: i=1, . . ., n}, where each xi=(x1i , x

2
i )

represents the data of Cluster 1, each yi=(y1i , y
2
i ) is the data of Cluster 2, and n

is the total number of data points of each cluster. The simulation model is given
by the following expressions

x1i = x10 + σxei; x
2
i = x20 + σxei, (7)

y1i = y10 + σyei; y
2
i = y20 + σyei, (8)

where (x10, x
2
0) and (y10 , y

2
0) are the coordinates of the centers of Cluster 1 and

Cluster 2, respectively; σx and σy are the standard deviations of the data on
each dimension of Cluster 1 and Cluster 2, respectively, and ei ∼ N(0, 1). An
example of the simulation data is presented in Fig. 1. From Fig. 1 we see that
the type of data we investigate is related to multivariate non-stationary signals.
Indeed, the spatial pattern data shown in Fig. 1 (a) and (c) can be treated as
two-dimensional two-regime switching signals. This type of signals are often seen
in biomedical and financial applications. As one increases the value of σx or σy or
both, the separability of these two-dimensional data become lower and lower. It
is of interest to see how classification accuracy is affected by the increase of noise
level and which type of wavelet kernel, i.e. single-scale or multi-scale, performs
more robustly to the added noises.
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Fig. 1. Scatter plots and time series plots for heterogeneous clustered simulation data
with σx = 0.5 & σy = 5 (a-b) and with σx = 1 & σy = 5 (c-d)

3 Results

We simulate the training and test data using the simulation model described in
Section 2.3. We set the model parameters as x10=0, x20=5, y10=4, y20=0, σx=1,
σy=5 and n=100, respectively, for simulating both sets, i.e. the training and test
data. To simplify the problem, we fix the value of σy to be 5 and take different
values for σx. The values of σx are taken as σ1

x=0.1, σ2
x=0.2, . . ., and σ30

x =3,
respectively. We use each value of σx for the simulation of the training and test
data. We denote the training data and the test data by Dr

1 and Dr
2, respectively,

for r=1, 2, . . ., 30.
To each training data Dr

1 and to each test data Dr
2, first, we apply WKPCA,

respectively, to map the original data into the feature space. We then investigate
the effect of feature dimension to the classification accuracy with respect to
different experimental setups, i.e. different values of σx and different choices of
wavelet kernel function. Fig. 2 and 3 report the results of classification accuracy.
When σx is small, i.e. σx < 2.5, the classification accuracy converges at a small
value of feature dimension, i.e. 4. The increase of feature dimension does not
lead to an improvement of classification performance of WKPCA. However, for
larger σx, e.g. σx > 2.5, the classification accuracy increases with the increase
of feature dimension. This implies that for highly noisy data, a larger value
of feature dimension is required in order for obtaining a higher precision of
classification. Also, generally speaking, both types of wavelet kernel end up with
a similar pattern of classification results. With the increase of noise level the
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(c) Gaussian kernel, σx = 1.5
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(d) Gaussian kernel, σx = 2
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(c) Gaussian kernel, σx = 2.5
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(d) Gaussian kernel, σx = 3

Fig. 2. Classification accuracy rate for heterogeneous clustered data classification with
Gaussian kernel, various values of σx and various feature extraction methods, namely
STIWKPCA, MTIWKPCA and SDWKPCA, with respect to different numbers of re-
tained feature dimensions
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(a) Mexican hat kernel, σx = 0.5
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(b) Mexican hat kernel, σx = 1
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(c) Mexican hat kernel, σx = 1.5
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(d) Mexican hat kernel, σx = 2

0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Feature dimensions

A
ve

ra
ge

 A
cc

ur
ac

y

STIWK a=1

STIWK a=20.5

STIWK a=2
MTIWK
MDWK

(c) Mexican hat kernel, σx = 2.5
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(d) Mexican hat kernel, σx = 3

Fig. 3. Classification accuracy rate for heterogeneous clustered data classification with
Mexican hat kernel, various values of σx and various feature extraction methods,
namely STIWKPCA, MTIWKPCA and SDWKPCA, with respect to different numbers
of retained feature dimensions
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Table 1. The table reports the classification accuracy for the simulation data with
selected values of σx and different types of wavelet kernel based on Gaussian mother
wavelet function in data classification with feature dimensions 4, for 100 Monte Carlo
simulations

Gaussian σx=.1 σx=0.3 σx=0.5 σx=0.7 σx=0.9 σx=1.1 σx=1.3 σx=1.5

STIWK

a = 1 0.9441 0.9434 0.9417 0.9392 0.9345 0.9289 0.9212 0.9122
a = 20.25 0.9136 0.9128 0.9119 0.9100 0.9078 0.9033 0.8974 0.8912
a = 20.5 0.9002 0.9001 0.8991 0.8981 0.8962 0.8938 0.8892 0.8836
a = 20.75 0.8965 0.8962 0.8956 0.8943 0.8931 0.8904 0.8863 0.8809
a = 2 0.8953 0.8946 0.8936 0.8931 0.8920 0.8899 0.8857 0.8803
a = 21.25 0.8945 0.8942 0.8933 0.8927 0.8920 0.8899 0.8855 0.8802

MTIWK 0.9236 0.9228 0.9211 0.9188 0.9158 0.9126 0.9074 0.8989

MDWK 0.9194 0.9188 0.9183 0.9165 0.9135 0.9112 0.9078 0.9011

Table 2. The table reports the classification accuracy for the simulation data with
selected values of σx and different types of wavelet kernel based on Mexican hat mother
wavelet function in data classification with 4 features, for 100 Monte Carlo simulations

Mexican hat σx=.1 σx=0.3 σx=0.5 σx=0.7 σx=0.9 σx=1.1 σx=1.3 σx=1.5

STIWK

a = 1 0.9697 0.9692 0.9680 0.9663 0.9610 0.9488 0.9332 0.9112
a = 20.25 0.9238 0.9235 0.9225 0.9210 0.9192 0.9155 0.9109 0.9046
a = 20.5 0.9064 0.9062 0.9059 0.9052 0.9038 0.9012 0.8969 0.8912
a = 20.75 0.9035 0.9035 0.9029 0.9020 0.9011 0.8991 0.8943 0.8882
a = 2 0.9028 0.9027 0.9023 0.9016 0.9007 0.8987 0.8940 0.8876
a = 21.25 0.9027 0.9026 0.9020 0.9013 0.9003 0.8985 0.8938 0.8877

MTIWK 0.9409 0.9402 0.9379 0.9352 0.9317 0.9267 0.9204 0.9111

MDWK 0.9457 0.9455 0.9438 0.9418 0.9382 0.9337 0.9257 0.9143

performance of different types of wavelet kernel varies, and multi-scale wavelet
kernel outperforms the single-scale wavelet kernel when a low dimensional feature
vector is considered. However, this advantage disappears when the level of noise
is high, i.e. σx > 3.

Tables 1-4 reports the results corresponding to some selected values of σx and
different choices of wavelet kernel, under the optimal feature dimension, i.e. 4
for small value of σx, and 20 when σx is large. The obtained results are based on
100 runs of Monte Carlo simulation of different training and test data sets. From
these tables, one can see that, under the optimal choice of feature dimension, a
multi-scale kernel performs more robustly than a single-scale kernel for both the
Gaussian kernel and the Mexican hat kernel. In the presence of a higher level
of added noise, both single-scale and multi-scale wavelet kernels lead to similar
results no matter what mother wavelet function is chosen. The improvement of
classification accuracy for wavelet kernel multi-scale decreases as one increases
the noise level. Although the dimensional feature vector can be extended when
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Table 3. The table reports the classification accuracy for the simulation data with
selected values of σx and different types of wavelet kernels based on Gaussian mother
wavelet function in data classification with feature dimensions 20, for 100 Monte Carlo
simulations

Gaussian σx=1.7 σx=1.9 σx=2.1 σx=2.3 σx=2.5 σx=2.7 σx=2.9

STIWK

a = 1 0.9054 0.8881 0.8738 0.8593 0.8462 0.8333 0.8217
a = 20.25 0.9026 0.8855 0.8691 0.8543 0.8423 0.8297 0.8179
a = 20.5 0.8995 0.8821 0.8664 0.8518 0.8387 0.8268 0.8154
a = 20.75 0.8978 0.8812 0.8651 0.8501 0.8374 0.8267 0.8148
a = 2 0.8970 0.8807 0.8645 0.8496 0.8372 0.8263 0.8145
a = 21.25 0.8945 0.8824 0.8683 0.8545 0.8412 0.8290 0.8165

MTIWK 0.9041 0.8875 0.8719 0.8592 0.8458 0.8326 0.8205

MDWK 0.9039 0.8859 0.8721 0.8582 0.8457 0.8325 0.8198

Table 4. The table reports the classification accuracy for the simulation data with
selected values of σx and different types of wavelet kernels based on Mexican hat mother
wavelet function in data classification with feature dimensions 20, for 100 Monte Carlo
simulations

Mexican hat σx=1.7 σx=1.9 σx=2.1 σx=2.3 σx=2.5 σx=2.7 σx=2.9

STIWK

a = 1 0.9028 0.8851 0.8694 0.8550 0.8389 0.8238 0.8090
a = 20.25 0.9035 0.8867 0.8707 0.8555 0.8429 0.8310 0.8197
a = 20.5 0.8999 0.8827 0.8676 0.8515 0.8393 0.8277 0.8160
a = 20.75 0.8980 0.8816 0.8650 0.8506 0.8377 0.8270 0.8147
a = 2 0.8974 0.8806 0.8645 0.8498 0.8373 0.8263 0.8145
a = 21.25 0.8958 0.8805 0.8653 0.8505 0.8378 0.8255 0.8138

MTIWK 0.9032 0.8881 0.8724 0.8595 0.8474 0.8327 0.8197

MDWK 0.9030 0.8866 0.8724 0.8593 0.8470 0.8336 0.8201

a high level of noise is present, the classification accuracy cannot be improved
even for multi-scale wavelet kernels.

4 Conclusion

In this paper, a new type of kernel, the multi-scale wavelet kernel, was proposed
for KPCA in a feature extraction problem. Based on analysis of simulated data,
we observed that application of multi-scale wavelet kernels in kernel PCA im-
proves the classification accuracy rates when the kernel parameters are not cross-
validated. As our examples show, the use of multi-scale wavelet kernels in kernel
PCA is promising for improving the robustness of the classification performance
and achieving a moderate level of accuracy without the search of the values of
a kernel parameter of a given kernel. Our study suggests that the multi-scale
WKPCA outperforms the single-scale WKPCA. Although multi-scale WKPCA
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may not lead to the highest classification accuracy rates, it is highly desirable as
a feature extraction method for multi-scale data due to its ability of explaining
a higher level of linearity in the feature space.
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Abstract. Support Vector Data Description(SVDD) is an important
method to solve data description or one-class classification problem. In
original data description problem, only positive examples are provided
in training. The performance of SVDD can be improved when a few neg-
ative examples are availablewhich is known as SVDD neg. Intuitively,
these negative examples should cause an improvement on performance
than SVDD. However, the performance of SVDD may become worse
when some negative examples are available. In this paper, we propose a
new approach “SVM-SVDD”, in which Support Vector Machine(SVM)
helps SVDD to solve data description problem with negative examples
efficiently. SVM-SVDD obtains its solution by solving two convex opti-
mization problems in two steps. We show experimentally that our method
outperforms SVDD neg in both training time and accuracy.

1 Introduction

Binary classification problem has been studied carefully in the field of machine
learning. Given two classes of examples labeled +1 and -1, the binary classifica-
tion task is to learn a classifier to predict whether the label of one unseen example
is +1 or -1. Many classification algorithms have been developed such as SVM[1],
Boosting[2]. However, examples from only one class are provided and no or only
a few examples from non-given class in some applications. It is required to learn
a model to detect whether one unseen example comes from given class or not.
This problem is called data description or one-class classification[3]. Those much
different from the given examples would be taken as non-given class. Here, the
given class example is called “positive example” or “target” and non-given class
example is called “negative example” or “outlier”. Data description problem is
usually caused by the fact that examples from one class can be collected easily
while those from non-given class are very difficult to obtain. It is obvious that
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the data description problem, which happens frequently in real life, cannot be
solved directly by binary classification algorithms.

To solve data description problem, [4] adapted classical two-class SVM to
one-class SVM, whose idea is to separate the given class examples from origin in
feature space according to the principle of maximum margin. [5] proposed SVDD
based on the idea of SVM. It makes the hypothesis that the examples from the
given class should be inside a supersphere while non-given class examples should
be outside. SVDD has become a popular method for its intuitive idea and good
performance. It has been applied successfully to many real applications such
as remote sensing[6][7], face detection and recognition[8][9], fault detection[10],
document retrieval[11].

If a few outliers are available, they can be used to improve the performance
with only targets. SVDD neg[5], as an extension of SVDD, can solve the prob-
lem of data description with a few negative examples. But SVDD neg often gets
worse performance than SVDD[5]. Furthermore, the training of SVDD neg is
time consuming and the global optima is difficult to obtain for its non-convex
formulation. This paper proposes an approach SVM-SVDD to data description
problem with negative examples. The experimental results show that the pro-
posed SVM-SVDD achieves better performances and less training time than
SVDD neg in benchmark data sets.

2 Our Method

2.1 SVDD and SVDD neg

At the beginning, we present a brief review of SVDD and SVDD neg[5]. Assume
that we have a training set {xi}, i = 1, 2, ..., N , which are targets for training
in SVDD setting. The task is to learn a predictor that tests whether any new
example is a target or not.

The hypothesis of SVDD is that targets should locate inside a close boundary
in the feature space. The boundary is modeled as a supersphere. Two parameters
can describe a supersphere: center a and radius R. The goal is to obtain a
supersphere that encloses nearly all training examples with the smallest radius
R. This optimization problem is written as follows:

minR2 + C

N∑
i=1

ξi

s.t. ‖xi − a‖2 ≤ R2 + ξi, i = 1, 2, ..., N, ξi ≥ 0,

(1)

where ξi are the slack variables like those in SVM and C penalizes the loss term∑
ξi. If error rate of SVDD is expected to be less than a given threshold, C is

set:

C =
1

N · threshold ≥ 0. (2)
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The parameter a is computed as:

a =

N∑
i=1

αixi, 0 ≤ αi ≤ C. (3)

Similar to SVM, only a small fraction of αi are non-zero.
To test an observation v, the distance from v to center a should be calculated:

‖v − a‖2 ≤ R2 ⇒ v is target.
‖v − a‖2 > R2 ⇒ v is outlier.

(4)

Based on SVDD, SVDD neg is given below. The outliers available should be
outside the supersphere. Thus, the distance from an outlier to the center a should
be larger than R. Assume that we have a training set containing N targets {xi},
i = 1, 2, ..., N and M outliers {xj}, j = N + 1, ..., N + M . The optimization
problem of SVDD neg is written as follows:

minR2 + C1

N∑
i=1

ξi + C2

N+M∑
j=N+1

ξj ,

s.t. ‖xi − a‖2 ≤ R2 + ξi, i = 1, 2, ..., N, ξi ≥ 0,
‖xj − a‖2 ≥ R2 − ξj , j = N + 1, N + 2, ..., N +M, ξj ≥ 0.

(5)

The same as (Eq. (2)), C1 and C2 are to control the error rates of targets and
outliers respectively. For example, if we can accept 5% error rate for targets and
1% error rate for outliers, C1 = 1

0.01·N and C2 = 1
0.05·M .

2.2 SVM-SVDD

It can be seen that SVDD neg and SVM have the similar ideas and forms. If
a few outliers is available to training, SVDD neg is expected to achieve bet-
ter performance than SVDD. However, performance of SVDD neg may become
worse especially when there are overlap areas between targets and outliers in
feature space[5]. In our opinions, this problem is caused by the following rea-
sons. First, SVDD neg only puts targets inside supershere and outliers outside
supersphere, which does not separate outliers far from targets. Compared with
SVM, SVDD neg does not use the concept of “margin”, which acts an important
role in separating two classes well. When there are overlap areas between targets
and outliers in the feature space, SVDD neg usually excludes a few outlier out-
side at the cost of more targets inside supershere. Second, the close boundary
in SVDD neg has two tasks: to enclose most or all targets inside and separate
targets from outliers. It is difficult for SVDD neg to fulfill these two tasks well
at the same time. In addition, due to the existence of outliers, the optimization
problem Eq. (5) of SVDD neg becomes a non-convex programming problem from
a convex programming Eq. (1) only using targets. Therefore, it becomes more
difficult to solve SVDD neg. Non-convex programming is likely to converge to a
local minimum rather than a global minimum.
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Based on the reasons mentioned above, it is clear why performance of
SVDD neg becomes worse with some outliers in some cases. Here, it is natu-
ral to improve SVDD by means of SVM to solve data description with negative
examples efficiently.

SVM[1][12] is a classic binary classification approach. There are two classes
of examples, labeled +1 and -1. The class +1 examples’ number is N and the
class -1 examples’ number is M . The set {xi}, i = 1, ..., N + M are training
examples. {yi}, i = 1, ..., N+M are the labels of xi, in which yi = +1, i = 1, ..., N
and yi = −1, i = N + 1, ..., N + M . The task is to learn a classifier which
separates the +1 class and -1 class as well as possibly.If linear kernel is applied,
the form of prediction hyperplane is y = wx + b, x denotes the observation to
test and sign of y is the predicted label of x. The kerneled discriminant function

is sign(

N+M∑
i=1

yiαiker(xi · x) + b). The optimization formulation of SVM is[1]:

min
‖w‖2
2

+ C

N+M∑
i=1

ξi,

s.t. wxi + b ≥ 1− ξi, i = 1, ..., N,
wxi + b ≤ −1 + ξi, i = N + 1, ..., N +M.

(6)

ξi are the introduced slack variables. C is the same as the C in Eq. (1), which
controls the error rate.

Based on the analysis above, SVM-SVDD is proposed by the following
formulation:

min
w,r

‖w‖2
2

+ r2 + C0

N∑
k=1

ζk + C1

N∑
i=1

ξi + C2

N+M∑
j=N+1

ξj ,

s.t. wxi + b ≥ 1− ξi, i = 1, ..., N
wxj + b ≤ −1 + ξj , j = N + 1, ..., N +M

‖xk − a‖2 ≤ r2 + ζk, k = 1, 2, ..., N,
ξi ≥ 0, ξj ≥ 0, ζk ≥ 0.

(7)

Eq. (7) can replace Eq. (5) to solve the data description problem with negative
examples. Eq. (7) is to find both a hyperplane y = wx + b to separate targets
and outliers and a supershpere ‖x − a‖2 ≤ r2 enclosing targets at the same
time. C0 is advised to be a large constant so that more targets can be enclosed
inside supersphere. C1 and C2 are to control error rates of targets and outliers
respectively. C1 < C2 is advised. ξ and ζ are slack variables. The formulation
Eq. (7) can be rewritten in dual form:
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min
α,β

1

2

N+M∑
i,j=1

yiyjαiαjker1(xi, xj) +
N∑

i,j=1

βiβjker2(xi, xj)−
N+M∑
i=1

αi −
N∑
i=1

βiker2(xi, xi)

s.t.

M+N∑
i=1

yiαi = 0, 0 ≤ αi ≤ C1(i = 1, ..., N), 0 ≤ αi ≤ C2(i = N + 1, ..., N +M),

N∑
i=1

βi = 1, 0 ≤ βi ≤ C0,

(8)

where ker1() and ker2() are two different kernel functions. yi = +1, i = 1, ..., N
and yi = −1, i = N + 1, ..., N + M . These two kernel functions make SVM-
SVDD more flexible. α = (α1, ..., αN+M )T and β = (β1, ..., βN )T can be solved
separately in Eq. (8) for the independence between α and β. For example, we
can solve α with β fixed and then solve β with α. When α or β is fixed, the
formulation Eq. (8) becomes a convex quadratic programming problem. So the
time complexity of Eq. (8) is O((M +N)2 +N2) = O(M2 + 2MN + 2N2).

Only when both Eq. (9) and Eq. (10) hold at the same time, the observation
v is taken as a target. Otherwise it is an outlier.

f1(v) = sign(
N+M∑
i=1

yiαiker1(xi, v) + b) = +1, (9)

and

f2(v) = sign(r2−ker2(v, v)+2

N∑
i=1

αiker2(v, xi)−
N∑
i=1

N∑
j=1

αiαjker2(xi, xj)) = +1.

(10)

3 Experiments

In this section, we compare SVM-SVDD with SVDD neg on some benchmark
data sets. We used “libsvm” [13] and “dd tools” [14] in our experiments. These
data sets are downloaded from UCI maching learning repository[15]. Table 1
gives the details on these data sets.

Table 1. Datasets description

dataset example number
(target/outlier)

dimension

australian 307/383 14
breast-cancer 239/444 10
diabetes 500/268 8
haberman 225/81 3
german-credit 700/300 24

Each of these data sets has targets and outliers with label +1 and -1. Because
the data sets have no testing set, we use five-fold cross validation to train and
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test these data sets. The performances and speeds of both SVM-SVDD and
SVDD neg are mean values of 10 runs of training and testing in Table 2.

Table 2 shows the accuracies and training time on the data sets for comparison
between SVM-SVDD and SVDD neg. The parameters in optimization problems
of both SVM-SVDD and SVDD neg are fine-tuned by grid search. In the sec-
ond column (training time(seconds)) of Table 2, the training time is those of
SVM-SVDD. Here, the accuracy results include three indexes: target error (first
error), outlier error(second error) and total error. These three indexes are defined
according to four abbreviations: TT(True Target), TO(True Outlier), FT(False
Target), FO(False Outlier). These three definitions are listed as follows[12]:

target error =
FO

TT + FO
,

outlier error =
FT

TO + FT
,

total error =
FO + FT

TT + TO + FT + FO
.

(11)

Table 2. The comparison of training time and accuracy(percentage) between SVM-
SVDD and SVDD neg is shown. In each blank of the Table 2, the number before “/”
is the result of SVM-SVDD and after ’/’ is of SVDD neg.

data sets training time
(seconds)

target error
(percentage)

outlier error
(percentage)

total error
(percentage)

australian 0.144/1.399 17.32/31.58 11.21/11.74 13.92/20.57

breast-cancer 0.118/0.522 1.26/12.52 2.93/2.71 2.2/6.15

diabetes 0.165/2.219 13.2/27.8 41.38/40.68 23.05/32.30

haberman 0.102/0.498 8.44/26.22 66.54/60.29 23.86/35.29

german-credit 0.3131/1.8513 10.43/27.29 55.33/48.67 23.90/33.70

By comparison, the proposed SVM-SVDD achieves the less training time than
SVDD neg. On the other hand, SVM-SVDD outperforms SVDD neg with the
higher accuracies. In Table 2, SVM-SVDD achieves higher enhancement on target
error at the cost of lower reduction on outlier error than SVDD neg. The advan-
tage of SVM-SVDD is illustrated by comparing the ROC curves of SVM-SVDD
with SVDD neg on these data sets in Figure 1. For each of data sets, ROC curve
of SVM-SVDD locates above that of SVDD neg. That means that at the same
outlier acceptance rate, SVM-SVDD achieves higher target acceptance rate.

4 Conclusion

The task of SVDD neg is to find a supersphere with targets inside and outliers
outside. But when some outliers are available for training, the SVDD neg can
not improve the performance of training with only targets. The non-convex op-
timization problem of SVDD neg is difficult to solve and time consuming. We
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Fig. 1. The roc curves comparison between SVDD neg and SVM-SVDD
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propose a new approache SVM-SVDD to solve data description with negative
examples efficiently. We also experimentally show that, SVM-SVDD outperforms
SVDD neg on both prediction accuracy and training time.
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Abstract. Road condition monitoring through real-time intelligent systems has 
become more and more significant due to heavy road transportation. Road 
conditions can be roughly divided into normal and anomaly segments. The 
number of former should be much larger than the latter for a useable road. 
Based on the nature of road condition monitoring, anomaly detection is applied, 
especially for pothole detection in this study, using accelerometer data of a 
riding car. Accelerometer data were first labeled and segmented, after which 
features were extracted by wavelet packet decomposition. A classification 
model was built using one-class support vector machine. For the classifier, the 
data of some normal segments were used to train the classifier and the left 
normal segments and all potholes were for the testing stage. The results 
demonstrate that all 21 potholes were detected reliably in this study. With low 
computing cost, the proposed approach is promising for real-time application.  

Keywords: Anomaly detection, one-class, pothole, road, support vector 
machine, wavelet packet decomposition. 

1 Introduction 

In recent years, road condition monitoring has become a popular research area due to 
intensive and still growing traffic that puts the road surface to constant stress. Intelligent 
systems for detecting bad road surface conditions can assist drivers to prevent damaging 
vehicles and even accidents and assist road management departments in timely 
discovering the need of maintenance on dangerous road conditions in time. Using GPS 
data and the acceleration measured by the accelerometer attached on some part of the 
driving car have been particularly used in the pothole and other anomalies detection for 
road management [9], [10], [17], [19]. Fig.1 shows the image of a pothole in the road 
[10] and Fig.2 demonstrates the accelerometer orientation [19]. This pioneering work 
has many advantages, especially in reducing the cost of the road management in 
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contrast to many other systems including laser profilometer measurement [12], ground 
penetrating radar [14], collection and analysis of images of road segments [4], [11], 
[15], [18], and so on. Furthermore, with such work, real-time intelligent systems 
become possible.  

 

  

Fig. 1. Image of pothole [10] Fig. 2. Accelerometer orientation 

 
In [10], [17] accelerometer data were used for classifying road segments as the 

normal or containing anomaly by applying simple threshold values and a high-pass 
filter. In [19], classification was realized by machine learning methods, namely, with 
multi-class support vector machine (SVM) [7] on time-domain and frequency-domain 
features. However, these studies did not fully consider the properties of anomaly in 
the road condition monitoring. In this study, we propose a novel approach involving 
the feature extraction, feature selection and the classification with the consideration of 
the nature of detecting potholes in the road. 

For the feature extraction, two types of information tend to be used according to 
the mechanism of the data formulation and the transformation of the collected data. 
Particularly, in the time or frequency domain, the peak amplitude of the collected data 
within certain duration and the power spectrum density (PSD) are often measured 
[10]. The peak amplitude is very sensitive and may be affected by many factors since 
it just contains the information within a very short duration. The PSD actually 
assumes the data are stationary [16], and this assumption might be correct when the 
road is smooth and the collected accelerations tend to be stationary. However, in case 
that a car passes the anomaly, for example, the pothole, the collected accelerations are 
transient in short duration and they are definitely not stationary any more [10]. Thus, 
the transformation for the non-stationary signal should be used in the feature 
extraction for the anomaly. From this point of view, the wavelet transformation based 
methods are appropriate candidates for the feature extraction [8]. Hence, the wavelet 
packet decomposition (WPD) is used for the feature extraction in this study [21]. 

The feature selection plays an important role in pattern recognition [1]. It assists to 
remove the redundant features and obtain the discriminative features. We try four of 
the generally used methods in this study. They are forward selection (FS) [1], 
backward selection (BS) [1], genetic algorithm (GA) [22] and principal component 
analysis (PCA) [1]. After comparing the performance in detecting potholes in the 
road, we may determine the best method for feature selection in our study.  

After the feature is extracted, a machine learning based classifier is usually 
exploited to recognize the feature. There are mainly three ways to construct such 
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classifiers including the supervised, the semi-supervised and the unsupervised. For an 
anomaly detection problem, there are often two classes of samples to recognize [2]. 
However, since the number of samples of the anomaly is usually much smaller than 
that of the normal, the supervised method is not appropriate, but the semi-supervised 
and the unsupervised methods are [2]. The semi-supervised approach implies that the 
classifier is trained with normal data, and then tested with an independent set of 
normal and anomaly data. This is often named as the one-class classification which is 
also referred as outlier detection, novelty detection or anomaly detection [2]. In this 
problem, the data instances that do not belong to the normal data are separated. Here, 
the one-class SVM [20] is applied.  

In this study, accelerometer data were collected by the system used in [19]. Part of 
one car’s normal data was used for training the classifier and the left normal data of 
that car and pothole data of three cars were for the testing stage. All 21 potholes were 
successfully detected by the proposed approach.    

2 Method 

2.1 Data Description  

In order to make reliable analysis one must ensure high quality of the data. Further 
data analysis is much harder or even impossible if the data is invalid or badly 
corrupted. The accelerometer data in this work were collected by Perttunen et al. from 
the University of Oulu in Finland. The data were collected using a Nokia N95 mobile 
phone mounted on the car’s dashboard. The N95 mobile phone has a built-in 3-axis 
accelerometer and a GPS receiver. The sampling frequency of the accelerometer was 
38 Hz. The GPS data were not used in this study.  

Three different cars were used to collect data. Each drive was also recorded using a 
video camera, which was attached to the head rest of the passenger’s seat. The video 
was synchronized with accelerometer data after the drive so that it could be seen on 
the video when the car hits a road anomaly, for example a speed bump. This allows 
marking certain measurements of the accelerometer as anomalies. During the video 
analysis, it was noticed that it was impossible to observe when exactly the anomaly 
begins and ends in the level of milliseconds. It was also hard to classify the anomalies 
into different categories at the same time. Of course, some of the categories are easy 
to classify, for example speed bumps associated with potholes. But other kinds of 
anomaly were not easy to recognize from the video. So, the classification in this study 
was not targeted to recognize different potholes, but to discriminate potholes from 
normal road conditions, i.e., to detect potholes.   

While the data were labeled, 21 segments with potholes were extracted from three 
drives for investigation, and 1764 normal segments from one car were used for training 
and testing the classifier. Normal segments of the other two roads were not used for 
analysis since the roads were not very smooth. The duration of each segment was three 
seconds and a Hamming window was used. Each segment of the pothole was arranged in 
the center of the segment to avoid energy leakage. Although accelerations in three 
directions were measured, we found the y-axis data mostly revealed the changes of 
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standard deviation before feature selection. Toolbox of Wavelet in MATLAB (The 
Mathworks, Inc., Natick, MA) was used for WPD.  

2.3 Feature Selection 

Although some features were selected among all extracted features during the feature 
extraction process in terms of the rough evaluation of power spectrum of potholes and 
normal segments, there were still 30 features left for classification. Indeed, such a 
number is still too high for real-time application. Therefore, machine learning based 
feature selection can assist to reduce the computing demand for classification. Feature 
selection was designated to find the features best discriminating the potholes and 
normal segments in this study. We tried four extensively used methods here. For the 
completeness of the study, they are briefly introduced next. Please refer to [1] for 
more details.    

Forward selection [1] is one of the basic feature selection methods. As a part of 
stepwise selection method, the idea, like in other feature selection methods, is to 
select a subset of features, which yields accurate enough results compared to results 
with all features. Forward selection begins with zero features in the model. The first 
feature is selected by testing each feature and then selecting the feature that yields, for 
example, the best classification result or the best f-value in statistical tests, such as, 
ANOVA (analysis of variance). This feature is the most significant feature. When a 
feature is selected, it is moved from unselected feature set to selected feature set. 
After this, the algorithm continues by comparing which feature of the remaining 
unselected features yields the best result with previously selected features and moves 
that feature from the unselected to the selected feature set. The procedure ends when 
there are no more features that increases the result or increases it only a bit. Another 
ending condition can be by a pre-defined upper number of selected features. 

Another popular feature selection method is backward selection [1], which is 
opposite process compared to the forward selection. While forward selection begins 
with zero selected features, backward selection begins with all features. In every 
round, the algorithm tests all of the remaining features and removes the feature that 
decreases the results the most. This procedure continues until the result does not 
increase or it increases only a bit or the pre-defined number of features reaches. 

The model of genetic algorithms was introduced by John Holland in 1975 [13]. 
Genetic algorithms are a group of computational models searching a potential solution 
to a specific problem using a simple chromosome-like data structure, which is 
inspired by evolution [1], [22]. A chromosome is a set of instructions which one 
algorithm will use to construct a new model or a function, such as, an optimization 
problem or selecting a subset of features for SVM. All features are represented as a 
binary vector of size , where  is the number of features. ‘1’ means that a feature 
is part of the subset and ‘0’ means that the feature is not part of the subset. An 
algorithm can be considered as a two-stage process. It begins with the current 
population where the best chromosomes are selected to create an intermediate 
population. Recombination and mutation is then applied to create the next population. 
This two-stage process constitutes one generation in the execution of a genetic 
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algorithm. The algorithm begins with initial population of chromosomes. Typically 
initial population is chosen randomly from the original dataset. Then each 
chromosome is evaluated and assigned a fitness value. Chromosomes which represent 
better solution for the target problem are given a better fitness value than those 
chromosomes that provides poorer solution. Better fitness value means better 
reproducing chances. Reproducing may occur through crossover, mutation or 
reproduction operations. Please refer to [22] for more details about using an genetic 
algorithm for feature selection.  

PCA is another frequently used method for feature selection [1]. The object of 
PCA is to find uncorrelated principal components that describe the dependencies 
between multiple variables. The principal components are ordered so that the first 
component explains the largest amount of variance in the data, and the second 
component is for the second largest variance, and so on. Generally it is expected that 
most of the variance in the original data set is covered by the first several principal 
components. PCA can be easily produced through the eigenvalue decomposition of 
the covariance matrix of multivariate datasets. It must be noticed that forward and 
backward selection and genetic algorithm do not affect data, and they are just 
methods to choose the best feature combinations, but PCA is for new features.  

2.4 One-Class SVM 

SVM is probably the mostly used classifier in the past decade [3]. It is a binary 
classifier that was invented by Cortes and Vapnik in 1995 [7]. It is based on 
generalized portrait algorithm and on Vapnik’s research in statistical learning theory 
from the late 1970’s. Basically SVM is intended to classify only two classes but it can 
be extended to support one-class and multiclass classification.  

One scheme of one-class SVM is to map the input data into a high dimensional 
feature space and then fit all or most of the data into a hypersphere [3]. The volume of 
the hypersphere is minimized and all of the data samples that do not fall in the 
hypersphere are considered as anomalies. Another idea is the -SVM that creates a 
decision function that separates most of the training data from the origin with a 
maximum margin [3]. The parameter  is associated with the number of support 
vectors and outliers. So, one-class SVM tries to find a separating hyperplane and 
maximizes the distance between the two classes while two-class SVM can be solved 
by constructing a hypersphere that captures most of the training data and minimizes 
its volume or separates training data from the origin with maximum margin [3]. 

2.5 Data Processing 

LIBSVM software was used [3]. We used one-class SVM with Gaussian radial basis 
kernel with the parameters  and  with values 0.01 and 0.00002, correspondingly. 
SVM was trained with 70% of the normal data (1234 segments) and the training data 
was chosen randomly. Rest of the normal data (530 segments) and all 21 anomaly 
segments were used to test the accuracy of the constructed SVM model.  
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We present the result using sensitivity and specificity derived from the confusion 
matrix [1]. Such a matrix includes true positive (TP: ‘pothole’ is classified as 
‘pothole’), false negative (FN: ‘pothole’ is classified as ‘normal’), false positive (FP: 
‘normal’ is classified as ‘pothole’) and true negative (TN: ‘normal’ is classified as 
‘normal’). Sensitivity is equal to TP/(TP+FN), and specificity is defined as 
TN/(TN+FP). Their ideal values are 1 with zero FN and zero FP.  

3 Results 

All classification results that we present are the average of 1000 SVM classifications. 
If all 30 features were used for the classification, TP was 21, i.e., all 21 potholes were 
recognized as potholes, and TN was about 524 and FP was about 6, i.e., six normal 
segments were recognized as potholes.  

For feature selection, we tested the four methods mentioned in the subsection 2.3 
using different numbers of selected features. The results are shown in Fig.5. 
Obviously, PCA is the best for feature selection when the number of features is larger 
than 5. FS is the best when the number of features is larger than 2 and smaller than 6.  

 
 

 
            

            Fig. 5. (a) Sensitivity                           (b) specificity                              

4 Conclusion 

This study has attempted to solve road surface anomaly detection problems with 
mobile phone’s embedded accelerometer, wavelet packet decomposition for feature 
extraction, feature selection methods, and one-class support vector machine for 
classification. The achieved results are promising. As shown in Fig.5, one-class 
anomaly detection could be done very accurately. Our best true positive rate was 
100%. These results are surprisingly good with our limited and unbalanced data sets. 

In the data collection, some of the timestamps were corrupted and anomalies 
mislabeled due to limitation of hardware. This gives some extra challenge to data 
analysis. Thus, development of a proper data collection framework is essential in 
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order to obtain reliable and stable results for real-time classification system in real 
production environment. 
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Abstract. The turbine exhaust gas temperature (EGT) is an important parameter of 
the aeroengine and it represents the thermal health condition of the aeroengine. By 
predicting the EGT, the performance deterioration of the aeroengine can be 
deduced in advance and its remaining time-on-wing can be estimated. Thus, the 
flight safety and the economy of the airlines can be guaranteed. However, the EGT 
is influenced by many complicated factors during the practical operation of the 
aeroengine. It is difficult to predict the change tendency of the EGT effectively by 
the traditional methods. To solve this problem, a novel EGT prediction method 
named process support vector machine (PSVM) is proposed. The solving process 
of the PSVM, the kernel functional construction and its parameter optimization are 
also investigated. Finally, the proposed prediction method is utilized to predict the 
EGT of some aeroengine, and the results are satisfying.  

Keywords: Aeroengine, Condition monitoring, Turbine exhaust gas 
temperature, Process support vector machines, Time series prediction. 

1 Introduction 

The operational economy and reliability of the aeroengine are subjects of primary 
concern for airline companies. Both the maintenance ideology shift from mainly relying 
on preventation to reliability centered and the maintenance strategy shift from only time 
based maintenance to its combination with condition based maintenance and condition 
monitoring have been advanced energetically to resolve the contradiction between the 
aeroengine operational economy and its reliability since the 1960s. Aeroengine health 
monitoring and evaluation are the prerequisite and basis for the shifts of the 
maintenance ideology and the maintenance strategy. The possibility of inadequate 
maintenance and superfluous maintenance can be significantly reduced in condition of 
ensuring the safety of air transport by determining whether or not the aeroengine needs 
maintenance and how it is maintained according to its actual health condition. 

The turbine exhaust gas temperature (EGT) is a significant indicator in aeroengine 
health condition monitoring. With the increase of the service life of the aeroengine, 
the EGT gradually rises. When the EGT is above the scheduled threshold which is 
determined by the original equipment manufacturer, the aeroengine needs to be 
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removed timely for maintenance. Therefore, predicting the trend of the EGT has great 
significance to monitor the performance deterioration of the aeroengine, prognosticate 
the remaining life of the aeroengine, and reduce the aeroengine’s failure and the 
maintenance costs. In practice, aeroengine health condition monitoring engineers 
usually also monitor the EGT margin and the EGT index. The EGT margin is the 
difference between the temperature at which the aeroengine must be operated to 
deliver the required thrust and the certification temperature. The increase in the value 
of EGT equals the decrease in the value of EGT margin, so monitoring EGT is 
indirectly monitoring EGT margin. The EGT index is not the real EGT, but the 
function of the real EGT and aeroengine fuel flow. This makes the EGT index reflect 
the performance of the aeroengine more completely, thus this paper will focus on the 
EGT index prediction. 

The EGT index of the aeroengine is influenced by many complicated factors. It is 
difficult or even impossible to describe the variety of the EGT index by a determinate 
mathematic model. Aiming at solving this problem, the large amount of the collected 
EGT index data can be shrunken into a time series model. Thus, the tendency of EGT 
index can be predicted by some time series prediction methods. Traditional time 
series prediction methods are mainly based on the regression analysis [1]. The 
regression analysis is very mature in theory, but its accuracy is not high and its fault 
tolerance ability is poor. Artificial neural networks have been widely used in 
aeroengine condition monitoring and fault diagnosis [2] since multilayer feedforward 
neural networks were proved to be able to approximate any continuous function with 
any degree of accuracy [3,4]. As a new time series prediction method, artificial neural 
networks have been successful in many practical applications [5] for its good 
nonlinear capability, parallel distributed storage structures and high fault tolerance. 
Considering that time accumulation exists in time-varying systems, process neural 
network (PNN) was proposed in 2000 [6] and its application in time series prediction 
indicates that it seems to improve prediction accuracy [7]. However, both the 
traditional artificial neural networks and the process neural networks are all 
constructed around the empirical risk minimization (ERM) principle, which limits 
their generalization capability. Statistical learning theory shows that the ERM does 
not mean the minimization of the expectation risk and the overfitting is easy to 
happen if the ERM principle is adopted [8]. The ERM implies a premise that the 
number of training samples is infinite. The support vector machine is a machine 
learning model that follows the principle of structural risk minimization (SRM) that is 
rooted in VC dimension theory. Because its optimization object is SRM which 
ensures the minimization of both the empirical risk and the confidence interval, the 
support vector machine has a good generalization capability. Therefore, combined the 
SVM with the PNN, a method named process support vector machines (PSVM) is 
proposed to predict aeroengine EGT index in this paper. 

The remainder of this paper is organized as follows. In section 2, the time series 
prediction model based on PSVM is proposed. In section 3, the solving process of the 
PSVM is described. In section 4 and 5, the kernel functional construction and 
parameter optimization of the PSVM are investigated respectively. In section 6, the 
proposed prediction method is utilized to predict the EGT of some aeroengine, and 
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the prediction results are satisfying. The last section of the paper presents a 
conclusion. 

2 Time Series Prediction Model Based on PSVM 

Consider the training samples such as 1{( ( ), )}N
i i ix t y =


, where ( )ix t


 is the input function 

vector for the thi  example and iy  is the corresponding desired response. The 

architecture of the PSVM is depicted in Fig. 1. 

1( )x t

2 ( )x t

0
( )mx t


1mω

2ω
1ω

1
( ( ))m x tϕ


2( ( ))x tϕ


1( ( ))x tϕ


 ,b y


 

Fig. 1. The Topological Architecture of the PSVM 

The model as shown in Fig. 1 is comprised of three layers. The first layer is the 
input layer, which has 0m  nodes. The second layer is the hidden layer, which is 

composed of 1m  nodes. The last layer is the output layer, which has only one node. 

The output of the PSVM can be expressed as 

( ( ), ) ( ( ))
T

y f x t x t bω ω ϕ= = +
    

 (1) 

Where 
01 2( ) ( ( ), ( ), , ( ))T

mx t x t x t x t=


 , 
11 2( , , , )T

mω ω ω ω=


 , kω  is the connection weight 

between the output node and the thk  node in the hidden layer, ( ( ))k x tϕ


 is the thk  

nonlinear basis function in the hidden layer, 1m  is the dimensionality of the hidden 

space, which is determined by the number of process support vectors extracted from 
the training data by the solution to the constrained optimization problem, and b  is the 
bias of the output layer. 

3 Solving Process 

The first step in the time series prediction using PSVM is to define the ε -insensitive 
loss function. 

| ( ( ), ) | , | ( ( ), ) |
( , ( ( ), ))

0,

y f x t y f x t
L y f x t

other
ε

ω ε ω εω
 − − − >= 


    
 (2) 

Where ε  is the prescribed parameter. 
On the basis of the definition of the ε -insensitive loss function, the time series 

prediction problem can be reformulated as follows by introducing two sets of 
nonnegative slack variables 1{ }N

i iξ = , '
1{ }N

i iξ =  and a regularization parameter C . 
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Accordingly, the Lagrangian function can be defined as follows 

' ' ' '

1 1

' ' ' '

1 1

1
( , , , , , , ) ( ) ( ( ))

2

( ( )) ( )

i

N NT T

i i i i i
i i

N NT

i i i i i i i i
i i

J C x t y b

y x t b

ω ξ ξ α α γ γ ξ ξ ω ω α ω ϕ ε ξ

α ω ϕ ε ξ γ ξ γ ξ

= =

= =

 = + + − − + + +  

 − − − + + − +  

 

 

          

  
　　　                      

 (4) 

Where jα , '
jα , jγ , '

jγ  are the Lagrange multipliers. 

By carrying out this optimization we have 

'

1

'
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' '
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 (5) 

Substitute (5) into (4), thus the convex functional can be got as follows 
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max  Q ( , )



     

(6) 

Equation (6) is essentially a quadratic programming problem and we can get the 
Lagrange multipliers through solving it. According to the Karush-Kuhn-Tucker 
(KKT) conditions, the product between the Lagrange multipliers and the constraints 
has to vanish at the point of the solution of the convex program 

( )
( )' '

' '

( ( )) 0

( ( )) 0

( ) 0

( ) 0

i

i

i

i

T

i i i
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i i i
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C

C

α ε ξ ω ϕ

α ε ξ ω ϕ

α ξ
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 + − + + =

 + + − − =
 − =
 − =

  

    
(7) 

From (7) we can get 

' 0i iα α∗ =  (8) 
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According to (7), if 0iα = , ' 0iα = , and vice versa. Thus, the iα  and '
iα  are bound to 

meet the following combinations 

(1) 0iα = , ' 0iα =  

(2) 0 i Cα< < , ' 0iα =  

(3) 0iα = , '0 i Cα< <  

(4) i Cα = , ' 0iα =  

(5) 0iα = , '
i cα =  

The particular data points ( ( )ix t


, iy ) for which one of the (2)~(5) is satisfied are 

called process support vector (PSV). Especially, the data points ( ( )ix t


, iy ) for which 

(4) or (5) is satisfied are called boundary process support vector (BPSV). The data 
points ( ( )ix t


, iy ) for which (2) or (3) is satisfied are called normal process support 

vector (NPSV). Thus, the bigger ε  is, the fewer the number of PSV is and the lower 
the accuracy of the estimated function is also. 

According to (7), if 0 i Cα< <  and ' 0iα = , the bias b  can be expressed as follows 

'

1

( ) ( ( )) ( ( ))

T
N

i j j j i
j

b y x t x tα α ϕ ϕ ε
=

 
= − − − 

 


   
 (9) 

If 0iα =  and '0 i Cα< < , the bias b  can be expressed as follows 

'

1

( ) ( ( )) ( ( ))

T
N

i j j j i
j

b y x t x tα α ϕ ϕ ε
=

 
= − − + 

 


   
 (10) 

In order to ensure the reliability of the result, the bias b  is calculated respectively 
according to all NPSVs and then its final value is their average value 

1
' '

1 11

1
( ) ( ( )) ( ( )) ( )

T
m N

i j j j i i i
i j

b y x t x t sign
m

α α ϕ ϕ ε α α
= =

  
 = − − − ⋅ −    

 
   

 (11) 

Substitute (5) and (11) into (1), thus, the approximating function can be expressed as 
follows 

'

1

( ( ), ) ( ) ( ( )) ( ( ))
N T

i i i
i

F x t x t x t bω α α ϕ ϕ
=

= − +
     

 (12) 

It is obvious that the EGT index prediction problem can be solved by (12). 

4 Kernel Functional Construction 

From the (1), it is seen that the PSVM maps an input function vector ( )x t


 into a 

high-dimensional feature space using mapping functional vector ( )ϕ

  and then builds 
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the model based on SRM. It is hard to calculate ( ( ))x tϕ
 

 directly by a computer. 

According to the (12), the term ( ( )) ( ( ))
T

ix t x tϕ ϕ
   

 represents the inner product of two 

vectors induced in the feature space by the input function vector ( )x t


 and the input 

function vector ( )ix t


 pertained to the thi example. Thus, if we can find a functional 

( )K   as follows 

( ( ), ( )) ( ( )) ( ( ))
T

i j i jK x t x t x t x tϕ ϕ= ⋅
     

 (13) 

In the high-dimensional feature space only ( ( ), ( ))i jK x t x t
 

 is needed to calculate and 

the specific form of the mapping functional vector ( )ϕ

  is unnecessary to be known. 

The functional ( )K   for which the (13) is satisfied is called the kernel functional 
corresponded to the kernel of the traditional SVM. 

The input of PSVM, which is different from the instantaneous discrete input of the 
traditional SVM, is often time-varying continuous function. Thus, the functional is 
essential different from the kernel of the traditional SVM. The definition of the kernel 
functional may be formally stated as 

Definition 1: Let ψ  be a subset of 2L  space. Then a functional :K ψ ψ× → Κ  is 
called a kernel functional of the PSVM if there exists a Κ -Hilbert space H  and a 

map : Hϕ ψ →


 such that for all ( ), ( )x t y t ψ∈
 

 we have 

( ) ( )( ( ), ( )) ( ) , ( )K x t y t x t y tϕ ϕ=
     

 (14) 

Definition 1 can not be used to determine a specific form of a kernel functional. 
Mercer’s theorem tell us whether or not a candidate kernel of a traditional SVM is 
actually an kernel in some space and therefore admissible for use in the traditional 
SVM. According to the function approximation theory, the kernel functional 

( ( ), ( ))K x t y t
 

 can be uniformly approximated by a set of orthogonal functions in some 
function space. Thus, the method that determine a kernel of a traditional SVM 
according to Mercer’s theorem can be used for reference to determine a kernel 
functional of a PSVM. This theorem may be formally stated as 

Theorem 1: Let ( , )K x y
 

 be a continuous symmetric kernel that is defined in the 

closed interval a x b≤ ≤
 

 and likewise for y


. The kernel ( , )K x y
 

 can be expanded in 
the series 

1

( , ) ( ) ( )i i i
i

K x y x yλϕ ϕ
∞

=

=
   

 (15) 

With positive coefficients, 0iλ >  for all i . For this expansion to be valid and for it to 

converge absolutely and uniformly, it is necessary and sufficient that the condition 

( , ) ( ) ( ) 0
b b

a a
K x y x y d xd yψ ψ ≥ 

 

 
     

 (16) 



306 X.-y. Fu and S.-s. Zhong 

 

Holds for all ( )ψ   for which 

2 ( )
b

a
x d xψ < ∞




 

 (17) 

The functions ( )i xϕ


 are called eigenfunctions of the expansion and the numbers iλ  

are called eigenvalues. The fact that all of the eigenvalues are positive means that the 

kernel ( , )K x y
 

 is positive definite. 

For ( ( ), ( ))i jK x t x t
 

, it is apparently 

( ) ( ) ( ) ( )
, 1 , 1 1

( ), ( ) ( ) , ( ) ( ) 0
N N N

i j i j i j i j i i
i j i j i

c c K x t x t c c x t x t c x tϕ ϕ ϕ
= = =

= = ≥  
       

 (18) 

Therefore, the kernel functional of the PSVM is positive definite. It implies the kernel 
functional also satisfy the Mercer theorem. Thus, it is not hard to determine the kernel 
functional of the PSVM according to the Mercer theorem. 

By experience, four kernel functional may be determined as follows 

(1) linear kernel functional ( )
0

( ), ( ) ( ) ( )
T

i j i jK x t x t x t x t dt= ⋅
   

 

(2) polynomial kernel functional ( ) ( )0
( ), ( ) ( ) ( ) 1

pT

i j i jK x t x t x t x t dt= ⋅ +
   

 

(3) Gauss kernel functional ( ) 2

2 0

1
( ), ( ) exp ( ) ( )

2

T

i j i jK x t x t x t x t dt
σ

 = − − 
 

   
 

(4) sigmoid kernel functional ( ) ( )0
( ), ( ) tanh ( ) ( )

T

i j i jK x t x t x t x t dtγ β= ⋅ +
   

 

If they can not meet the needs of solving practical problems, the four kernel 
functionals may also be recombined until a new kernel functional is constructed to 
meet the needs. 

5 Parameter Optimization 

The performance of PSVM mainly refers to its generalization capability and the 
complexity of the learning machine. The parameters which affect the performance of 
PSVM mainly are the kernel functional parameters, the regularization parameter C  
and the prescribed parameter ε . The interaction among these parameters affects the 
performance of PSVM. Therefore, the interaction must be considered to find the 
optimal parameters. 

Particle swarm optimization (PSO), which was first described in 1995 [9], is a 
stochastic, population-based evolutionary computer algorithm for problem solving. 
As a highly efficient parallel optimization algorithm, PSO can be used to solve a large 
number of non-linear, nondifferentiable and multi-peak value complex optimization 
proposition, but the algorithm procedure is simple and the number of parameters 
needed to adjust is relatively small. 
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Although it has reduced some stochastic noise of the raw data, the aeroengine 
condition monitoring software can not effectively reduce the gross error from the 
instrument record mistakes or the measure accidents. Data cleaning must be carried 
on in order to remove the gross error of the EGT index. The visualization method is 
adopted in this paper to clean the data of the EGT index. Fig. 2 shows that the change 
of the 11th and the 50th point are abnormal in EGT index time series 75

1{ }i iEI = . 

Therefore, these two points belong to the gross error and should be removed. Missing 
data after removing the gross error is completed by the following equation 

1 1

2
i i

i

EI EI
EI − ++=  (19) 

After data cleaning, the vector 1 2 6( , , , )T
j j jEI EI EI  can be used to generate an input 

function ( )jIF t  by nonlinear least-squares method, where 1,2, ,69j =  , and 7jEI  can 

be used as the corresponding desired output to ( )jIF t . Thus, we get 69 samples such 

as 69
7 1{( ( ), )}j j jIF t EI + = . The samples 35

7 1{( ( ), )}j j jIF t EI + =  are utilized to train the time series 

prediction model based on the PSVM. The Gaussian kernel functional 

( ) 2

2 0

1
( ), ( ) exp ( ) ( )

2

T

i j i jK x t x t x t x t dt
σ

 = − − 
 

   
 is selected as the kernel functional of the 

PSVM. The width σ  of the Gaussian kernel functional, the regularization parameter 
C  and the ε -insensitive parameter are confirmed by using PSO algorithm. The 
PSVM completed training in 37.2633 minutes. The samples 69

7 36{( ( ), )}j j jIF t EI + =  are 

selected to test the time series prediction model. The test results are depicted in Fig. 3 
and the average relative error is 2.77%. 

In order to compare the performance of the PSVM, the traditional SVM is trained 

by the same training samples. The Gaussian kernel  is 

selected as the kernel of the SVM. The width  of the Gaussian kernel, the  
 

 

 

Fig. 3. EGT Index Prediction Results 
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regularization parameter  and the -insensitive parameter are confirmed by using 
PSO algorithm. The test results are also depicted in Fig. 3 and its average relative 
error is 2.92%. 

The results as shown in Fig. 3 indicate that the prediction accuracy of the PSVM 
are better than the traditional SVM. The EGT index time series predicion’s average 
relative error using the PSVM is 2.77% and it seems to meet the actual needs. It 
shows that the EGT index time series prediction using the PSVM can help condition 
monitoring engineers determine the health status of the aeroengine accurately, and 
can provide some decision support for the plan of the removal of the aeroengine. 

7 Conclusions 

The aeroengine plays a significant role as the heart of an aircraft. The aeroengine 
health monitoring is essential in terms of the flight safety and also for reduction of the 
maintenance cost. The EGT is one of the most important health parameters of the 
aeroengine. By predicting the EGT, maintenance crew can judge the performance 
deterioration and find the latent gas path faults in the aeroengine in advance. To solve 
the problem that the traditional method is difficult to predict the EGT accurately, a 
prediction method based on PSVM is proposed in this paper. To validate the 
effectiveness of the proposed prediction method, the EGT prediction model based on 
PSVM is utilized to predict the EGT index of some aeroengine, and the test results 
indicate that the PSVM can be used as a tool to predict the health condition of the 
aeroengine. 
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The Effect of Lateral Inhibitory Connections in Spatial 
Architecture Neural Network 
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Abstract. Based on the theories of lateral inhibition and artificial neural 
network (ANN), the different lateral inhibitory connections among the hidden 
neurons of SANN are studied. With the connect mode of activation-inhibition-
activation, the SANN will obtain a higher learning accuracy and generalization 
ability. Furthermore, this inhibitory connection considers both the activation 
before and after been inhibited by surrounding neurons. The effectiveness of 
this inhibitory mode is demonstrated by simulation results.  

Keywords: Lateral Inhibition, Activation, Inhibition, Spatial Architecture 
Neural Network. 

1 Introduction 

Lateral inhibition (LI) phenomenon is a result of mutual effect between excitability 
function of each neuron caused by the outside input stimulations and inhibition 
function caused by the surrounding neurons. It has been confirmed that LI exists in 
human and animal’s many sensory systems such as tactile system and vision system. 
The physiological significance of lateral inhibition mechanism is very clear, so it has 
been widely used in the study of artificial neural networks (ANNs). [1-3]  

The spatial architecture neural network (SANN)[4] is an ANN adopts recurrent 
lateral inhibition in the hidden layers. It means that, the mutual inhibitory effect of 
hidden neurons in SANN is caused by the output of surrounding neurons. Namely, the 
jth neuron of lth hidden layer may be inhibited by some other neurons of lth hidden 
layer, and the afferent inhibitory inputs from the output of excited neurons. 

LI comprises two inhibitory modes: recurrent lateral inhibition (RLI) and non-
recurrent lateral inhibition (N-RLI), and the difference between these two mutual 
inhibitions is that what caused the inhibitory effect. If it was caused by the network 
output, then it is the RLI; otherwise, it is the N-RLI. The neural network whose 
connection mode adopts the lateral inhibition mechanism is called lateral inhibition 
neural network (LINN). In these networks, if one neuron is excitatory after being 
stimulated, it will inhibit the surrounding neurons through the inhibitory connections; 
thereby achieve the competition between neurons.  

The rest of this paper is organized as follows. In section 2, we briefly review the 
lateral inhibition and introduce the architecture of SANN. The detailed analysis of 
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inhibitory influence caused by different lateral connection types are presented in 
Section 3. Section 4 gives the simulation results of numerical experiments, and 
Section 5 concludes this paper. 

2 Review of Lateral Inhibition and SANN 

2.1 Lateral Inhibition 

Fig.1 shows the schematic diagram of inhibitory systems [5], including the recurrent 
inhibition and non-recurrent inhibition. 
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Fig. 1. Schematic diagram of inhibitory systems: (a) recurrent inhibition; (b) non-recurrent 
inhibition 

Assuming that there are nl neurons in the lth hidden layer. The outputs of hidden 
neurons in SANN are determined by the external environment stimulus diminished by 
the lateral inhibitory influence exerted by other neurons. The output of the jth hidden 
neuron with recurrent lateral inhibition yo,j is given by [5-6]: 

( ), , ,
1,

, 1, 2,...,
ln

o j i j jr o r jr l
r r j

y y y r nϕ θ
= ≠

= − − =  (1) 

where yi,j is the external stimulus of jth neuron received, φjr is the lateral inhibitory 
coefficient between rth neuron and jth neuron, θjr is the inhibiting threshold value, r ≠ 
j indicated that the self-inhibitory influence is omitted. The threshold and the 
inhibitory coefficient are labeled to indicate the direction of the action: θjr is the 
threshold value of jth neuron’s output reach to which it begins to inhibit rth neuron; 
θrj is the reverse. In the same way, φjr is the coefficient of the inhibitory action of rth 
neuron on jth neuron, φrj is the reverse. 

In the lateral inhibition network, the inhibitory influence is proportional to the 
inhibitory coefficients and the activation level (its response yo,j). The inhibitory 
coefficients are real numbers in [0, 1], with 0 meaning no inhibition and 1 meaning 
full inhibition. The inhibitory coefficients from neuron r to j and from j to r usually 
are different. If the activity level of neuron r is high, it will inhibit other neurons with 
large values of inhibitory coefficients, and to the contrary, the inhibited coefficient by 
other neurons will be small values. A neuron r can inhibit other neurons such as 
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neuron j of a same layer if and only if its activation level yo,r is greater than or equals 
to the inhibiting threshold θjr. The amount of inhibition between two neurons is 
calculated according to the activation level and the corresponding inhibitory 
coefficient from the inhibiting neuron to inhibited neuron. For example, neuron j is 
the current receptor neuron, φjr is the inhibitory coefficient from neuron r to neuron j, 
yo,r is the activation level of neuron r. The inhibition amount P(j, r) from neuron r to 
neuron j can be calculated according to the Eq (2). 

( ) ( ), ,

,

,
0

jr o r jr o r jr

o r jr

y y
P j r

y

ϕ θ θ

θ

 − ≥= 
<

 (2) 

For jth neuron, the total inhibitory input by the surrounding units is a linear 
superposition of all single inhibiting units. Then the output of inhibited neuron j is 
given by: 

( ), ,
1,,

, ,

, ,

,

ln

i j o r jr
j j ro j

i j o r jr

y P j r y
y

y y

θ

θ
= ≠


− ≥= 
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 (3) 

The experimental researches of inhibition found that the distribution function of 
lateral inhibitory coefficient is a Gaussian distribution function [20] (such as Fig.3). 
The inhibitory coefficient of this paper is given by: 

( )
2exp , 0

0, 0

d d
d

d

μ φ
ϕ

  − ≠  = 
=

 (4) 

where μ and φ  are adjustable parameters. 

Another important concept of lateral inhibition is the inhibitory scope. The value of 
inhibitory scope defines the range of an excitatory neuron inhibiting other neurons. In 
other words, it indicates how many surrounding neurons will be inhibited by the 
excitatory neuron.  

From the analysis of recurrent lateral inhibition network, we can find that it is a 
dynamic process contains interaction, and the influence scope of each excitatory 
neuron is not only limited to the surrounding neurons of the same layer but will works 
on all hidden neurons at last. 

2.2 Spatial Architecture Neural Network 

Inspired by the biotomy and neurobiology findings and the theory of artificial neural 
networks, the spatial architecture neural network is proposed by Qiao et al. to obtain 
higher learning accuracy and generalization ability. In SANN, the first hidden layer 
will receive information from input neurons, and each subsequent layer neuron will 
get signal from all the previous layer neurons. Meanwhile, in each hidden layer the jth 
neuron will be inhibited by surrounding excited hidden neurons through the lateral 
inhibitory connections if and only if r jro θ≥ . Here, ro is the activity of rth neuron 

and will take place the representation of yo,r in the following context of this paper.  
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Fig. 2. Distribution of lateral inhibition coefficient (μ = 0.5, φ  = 0.04). Lateral axis indicates 

the interaction neurons, which can be measured by the activity level or distance between two 
interaction neurons. And longitudinal axis denotes the corresponding lateral inhibition 
coefficient between two neurons. Because there is no self-inhibition in SANN, so let φrr = 0. 

The connection schematic diagram of single-hidden-layer SANN is shown in Fig.3. 
The output of SANN is given by 

1 1 1 1

lnm m n

k ki i i kj j j
k k i j

O f o f f x oω δ ω δ
= = = =

    = = − + −            
     (5) 

where f(·) is the activation function, δj is the bias value and oj is the output of jth 
neuron. The output of jth hidden neuron is given by 

( ), , ,j i ji ro g x oω δ=  (6) 

which is a function of the input pattern xi, hidden-input weights ωji, intermediate 
output of surrounding excitated neurons ro  and biases δ. 

3 Analysis of Different Lateral Inhibitory Connections 

Based on the above analysis of recurrent lateral inhibition system and the structure of 
artificial neuron, the inhibitory influence exerted by surrounding excitatory neurons 
may works before or after being activated. So, there are three possible different 
connect modes of lateral inhibitory connection in SANN, which is according to the 
site of inhibition generation (see Fig. 2). 

In the Fig.2, uj is the sum of afferent feed-forward input from the (l-1)th layer and 
spatial span input from 0 to (l-2)th layers; jo is the intermediate output of jth neuron, 

actually it is the response of uj; f(·) is the activation function, δj is the bias value and oj 
is the output of jth neuron. Where, A, B and C is the possible site of inhibition 
generation. 
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Fig. 3. Connection schematic diagram of single-
hidden-layer SANN.  

Fig. 4. Connection Schematic diagram of 
lateral inhibitory connections in lth hidden 
layer of SANN.  

3.1 Case A: Site A, Inhibited-Activated 

The first possible case of lateral inhibitory connection is that the inhibitory influence 
occurred on the site of A. The output of jth hidden neuron is given by: 

( ) ( )
1 1,

lnn

j j j j ji i j jr r jr
i j j r

o f u L f x oδ ω δ ϕ θ
= = ≠

 
= − − = − − − 

 
   (7) 

where Lj indicates the total lateral inhibitory influences exerted by the surrounding 
hidden neurons on jth neuroon.  

In this case, the current jth excitated hidden neuron will be inhibited by 
surrounding neurons before it response to the stimulus input uj. 

3.2 Case B: Site B, Activated-Inhibited-Activated 

The second possible case of lateral inhibitory connection is that the inhibitory 
influence occurred on the site of B. The output of jth hidden neuron is given by: 

( ) ( )
1 1,

lnn

j j j ji i j jr r jr
i j r j

o f o L f f x oω δ ϕ θ
= = ≠

  = − = − − −  
  
   (8) 

In this case, the current jth excitated hidden neuron will be inhibited by surrounding 
neurons after it responses to the stimulus input uj, and then it receives the lateral 
inhibitory influence exerted by the surrounding neurons, and at last the jth neuron will 
be activated by f(·). 

3.3 Case C: Site C, Activated-Inhibited 

The third possible case of lateral inhibitory connection is that the inhibitory influence 
occurred on the site of C. The output of jth hidden neuron is given by: 
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1 1,

lnn

j j j ji i j jr r jr
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= = ≠

 = − = − − − 
 
   (9) 

The two interaction elements of lateral inhibition in this case is similar to the above 
second case, namely it will receive the inhibitory influence after being activated by 
f(·). However, in this case the response after being inhibited will not be activated by 
f(·), which is the difference compared with the second case. 

Without loss of generality, the intermediate output of jth neuron from lth hidden 
layer is given by 

1

0 1

lnl

j ji i j
l i

o f oω δ
−

= =

  
= −     

   (10) 

It can be seen that, from the representation of above three connect modes the 
functional relationship between the inputs and outputs are as follows respectively, 
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o F f f x o

o F f x o

 (11) 

Obviously, the second connection mode of CaseB is expressive effective than other 
two modes from the mapping point of view. 

4 Simulation Examples 

The three lateral inhibitory connect modes has been empirically tested on the parity-3 
classification problem, which was considered as a difficult benchmark problem for 
neural networks. [7-9] There are 23 input patterns in 3-dimensional space and the input-
output of parity problem is given by 

1

1

0, if  is even number

1, if  is odd number

N

ii

N

ii

x
y

x

=

=

= 





 (12) 

where xi is the network input vector, and y is the desired output. The training data is 
generated from (11), while the testing data is based on 0.1 and 0.9 that satisfy the 
relationship of parity-3 function. 

We mainly compared the learning accuracy; generalization ability and training time 
of SANN with these three different connect modes. All the simulations are 
implemented in Matlab 7.0 environment running on an ordinary PC with Intel ® Core 
™ 2 Duo CPU 3.0 GHz. The sigmoid additive activation function f(·)=1/(1+e-x) has 
been used for activating hidden neurons, while the output neurons are linear. The max 
iteration number is set as 8000, the learning rate is 0.15, the momentum term is 0.7, 
and the desired mse is 1e-5. From the approximation point of view, 2 hidden neurons 
are used to solve this task in the simulation study. 
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Table 1. Training and testing MSE on the parity-3 problem and iteration numbers 

Connect Modes Iteration Number Training MSE Testing MSE

CaseA1 1268 0.000018 0.027656 
CaseA2 2244 0.000019 0.027613 
CaseB1 443 0.000016 0.029770 
CaseB2 662 0.000019 0.027007 
CaseC1 4068 0.000020 0.469019 
CaseC2 5083 0.000020 0.239818 

 
Figs. 5-7 and Table 1 are the simulation results from this experiment. As shown in 

Fig.5, CaseBs obtained a training mse of 0.000016 and 0.000019 with 2 hidden 
neurons after 443 and 662 iterations, while the biggest training mse on this problem 
given by CaseCs are 0.000020 after more than 4000 iterations. From Fig.5, we can 
also observe that the training convergent speeds of CaseBs are the best two recoreds, 
while the results based on CaseCs are the last records. 
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Fig. 5. Comparison of training mean square error on parity-3 benchmark problem based on 
three different lateral inhibitory connections 
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Fig. 6. Comparison of testing output on parity-3
benchmark problem based on three different
lateral inhibitory connections 

Fig. 7. Comparison of absolute testing error 
on parity-3 benchmark problem based on 
three different lateral inhibitory connections  
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Figs.6 and 7 are the outputs of three lateral inhibition modes and the error between 
the desired outputs. Seen from Fig.6, we can find that the output of test samples is 
more close to the desired output when adopt the second lateral inhibitory connection 
(CaseBs), while the worst results are also generated from the third connect modes 
(CaseCs). From the Table 1, this experiment shown that the best inhibition connect 
mode for SANN is the second case (CaseBs), in which the hidden neurons will be 
activated at last. All of the iteration number, training mse and testing mse are the 
lowest record in this experiment. It means that, with this inhibition, SANN will have 
higher accuracy and generalization ability. 

5 Conclusions 

The effectiveness of three possible lateral inhibitory connections in SANN is studied. 
Based on the lateral inhibition mechanism and the structure of artificial neurons, we 
defined the different inhibitory connections according to the site of inhibition 
generation. The second connect mode, whose hidden neurons will be activated after 
have been inhibited, will improve the learning efficient of SANN both of the learning 
accuracy and generalization. The introducing of Lateral Inhibition in SANN will 
improve the competition in the real world applications, and the efficient learning 
algorithm is still a research field. 
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Abstract. An empirical mode decomposition (EMD) based Lease square 
support vector machines (LSSVM) is proposed for ship motion prediction. For 
this purpose, the original ship motion series were first decomposed into several 
intrinsic mode functions (IMFs), then a LSSVM model was used to model each 
of the extracted IMFs, so that the tendencies of these IMFs could be accurately 
predicted. Finally, the prediction results of all IMFs are combined to formulate 
an output for the original ship motion series.  Experiments on chaotic datasets 
and real ship motion data are used to test the effectiveness of the proposed 
algorithm. 

Keywords: ship motion, empirical mode decomposition, Lease square support 
vector machines. 

1 Introduction 

Ship motion at sea is a nonlinear and non-stationary time series. The prediction of 
ship motion is commonly done using various forms of statistical models. Lease square 
support vector machines (LSSVM) are closely related to statistical models and have 
been proved useful in a number of regression applications.  

The main motivation of this study is to propose an EMD-based LSSVM approach 
for ship motion prediction and compare its prediction performance with some existing 
forecasting techniques. The rest of this study is organized as follows. Section 2 
describes the formulation process of the proposed EMD-based LSSVM learning 
method in detail. For illustration and verification purposes, two main series, chaos 
series and real ship motion data are used to test the effectiveness of the proposed 
methodology, and the corresponding results are reported in Section 3. Finally, some 
concluding remarks are drawn in Section 4. 

2 Methodology Formulation 

2.1 Empirical Mode Decomposition (EMD) 

The empirical mode decomposition (EMD) technique, first proposed by Huang  
et al. (1998), is a form of adaptive time series decomposition technique using the 
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Hilbert–Huang transform (HHT) for nonlinear and nonstationary time series data. The 
basic principle of EMD is to decompose a time series into a sum of oscillatory 
functions, namely, intrinsic mode functions (IMFs). In the EMD, the IMFs must satisfy 
the following two prerequisites [1]: 

(1) In the whole data series, the number of extrema (sum of maxima and minima) 
and the number of zero crossings, must be equal, or differ at most by one, and  

(2) The mean value of the envelopes defined by local maxima and minima must be 
zero at all points. 
With these two requirements, some meaningful IMFs can be well defined. Otherwise, 
if one blindly applied the technique to any data series, the EMD may result in a few 
meaningless harmonics (Huang et al.,1999). Usually, an IMF represents a simple 
oscillatory mode, compared with the simple harmonic function. Using the definition, 
any data series ),......,2,1)(( nttx =  can be decomposed  according to the 

following sifting procedure. 
(1) Identify all the local extrema, including local maxima and local minima, of )(tx , 

(2) Connect all local extrema by a cubic spline line to generate its upper and lower 
envelopes, and compute the point-by-point envelope mean )(tm from upper and 

lower envelopes. 
(3)Extract the details, )()()( tmtxtimf −=  and check the properties of )(timf : 

1) if )(timf meets the above two requirements, an IMF is derived and meantime 

replace x(t) with the residual )()()( timftxtr ii −= ;  

2) if c(t) is not an IMF, replace )(tx with )(timfi . 

Repeat Steps (1)–(3) until the stop criterion is satisfied.  
The EMD extracts the next IMF by applying the above sifting procedure to the 

residual term )()()( 11 timftxtr −=   has at most one local extremum or becomes a 
monotonic function, from which no more IMFs can be 

extracted. The above sifting procedure can be implemented using Matlab software. 
At the end of this sifting procedure, the data series x(t) can be expressed by 

)()()(
1

trtimftX
n

i
ni

=

+=
 

(1) 

 

where n is the number of IMFs, )(trn  is the final residue, which is the main trend of 

)(tx , and )(timfi ),......,2,1( ni = are the IMFs, which are nearly orthogonal to 

each other, and all have nearly zero means. Thus, one can achieve decomposition of 
the data series into n-empirical mode functions and one residue. The IMF components 
contained in each frequency band are different and they change with variation of time 

series )(tx , while )(trn  represents the central tendency of data series )(tx . 

Relative to the traditional Fourier and wavelet decompositions, the EMD technique 
has several distinct advantages. First of all, it is relatively easy to understand and 
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implement. Second, the fluctuations within a time series are automatically and 
adaptively selected from the time series, and it is robust for nonlinear and 
nonstationary time series decomposition. Third, it lets the data speak for themselves. 
EMD can adaptively decompose a time series into several independent IMF 
components and one residual component. The IMFs and the residual component 
displaying linear and nonlinear behavior depend only on the nature of the time series 
being studied. Finally, in wavelet decomposition, a filter base function must be 
determined beforehand, but it is difficult for some unknown series to determine the 
filter base function. Unlike wavelet decomposition, EMD is not required to determine 
a filter base function before decomposition. In terms of the above merits the EMD can 
be used as an effective decomposition tool. 

2.2 Lease Square Support Vector Machines 

LSSVM are proposed by Suykens and Vandewalle.  The basic idea of mapping 
function is to map the data into a high dimensional feature space, and to do linear 
regression in this space [2].  

Given a training data set of N points ( ){ }N

iii yx 1, = with input data  n
i Rx ∈  and 

output data Ryi ∈ . According to the SVM theory, the input space  nR is mapped 

into a feature space Ζ  with )( ixϕ  being the corresponding mapping function. In 

the feature space, we take the form (2) to estimate the unknown nonlinear function 
where w  and b  are the parameters to be selected. 

( ) ( ) , ,y x w x b w b Rϕ= ⋅ + ∈ Ζ ∈  
(2) 

The optimization problem is as follows: 

2

, ,
1

1 1
min ( , ) 0

2 2

N
T

k
w b e

k

J w e w w eγ γ
=

= + >
 

(3) 

    
Where γ is an regularization constant. (3) is subjected to: 

( )T
k k ky w x b eϕ= + +

，
1 Nk = ， ，  (4) 

    

Where ke  is the error between actual output and predictive output of the kth data. 

The LS-SVM model of the data set can be given by: 

1

( ) ( ) ( )
N

T
i i j

i

y x x x bα φ φ
=

= +
 

(5) 
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Where ( 1, 2,......, )i R i Nα ∈ =  are Lagrange multipliers. The mapping function 

can be paraphrased by a kernel function K(·, ·) because of the application of Mercer’s 

theorem, which means that ( , )( 1,2......, )iK x x i N= are any kernel functions 

satisfying the Mercer condition.  

( ) ( ) ( , )T
ij i j i jx x K x xφ φΩ = = ，

N N×Ω∈  (6) 

The typical kernel functions are linear, polynomial, Radial Basis Function (RBF), 

MLP functions, etc. Analytical solutions of parameters i Rα ∈  and b can be 

obtained from the equation 

1

( ) ( , )
N

i i
i

y x K x x bα
=

= +
 

(7) 

 
Note that in the case of RBF kernels: 

2

2
( , ) exp{ }

2
i

i

x x
K x x

σ
−

= −
 

(8) 

 
There are only two additional tuning parameters , kernel width parameter σ  in (8) 
and  regularization parameter γ  in (3).These parameters have very important impact 

on the accuracy of model LS-SVM. In this study, they are automatically tuned by 
PSO algorithm in the training phase [3]. 

2.3 Overall Process of the EMD-Based LSSVM 

Suppose there is a time series )(tx  t=1, 2,…, N, in which one would like to make 

the L-step ahead prediction, i.e. )1( +tx . For example, L=1 means one single-step 

ahead prediction and L=15 represents 15-step ahead prediction. The proposed EMD-
based LSSVM forecasting method is generally composed of the following three main  

 
steps , as illustrated in Fig. 1. 
(1) The original time series )(tx , t=1, 2,…, N is decomposed into n IMF 

components, )(timfi , j=1, 2,…, n, and one residual component )(trn via EMD. 

(2)For each extracted IMF component and the residual component, the LSSVM is 
used as a forecasting tool to model the decomposed components, and to make the 
corresponding prediction for each component. 

(3)The prediction results of all extracted IMF components and the residue produced 
by LSSVM in the previous step are combined to generate an aggregated output, which 
can be seen as the final prediction result for the original time series. 
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To summarize, the proposed EMD-based LSSVM forecasting method is actually 
an“EMD–LSSVM” ensemble learning approach. That is, it is an “EMD 
(Decomposition)–LSSVM (Prediction)” methodology. In order to verify the 
effectiveness of the proposed EMD-based LSSVM ensemble methodology, two main 
time series, chaos time series and real ship motion data  are used for testing purpose 
in the next section. 

 

 

Fig. 1. The overall process of the EMD-based LSSVM methodology 

3 Experimental Results 

3.1 Real Ship Motions Prediction 

In order to test the validity of EMD-LSSVM method for real ship motions prediction, 
we collected a series of roll and pitch time series of a real ship during her seakeeping 
trial using tilt sensor motion measuring system, and the sampling frequency is 5Hz. 
Fig.2 and Fig.3 show the prediction result sample of the real ship’s roll and pitch in 
seakeeping trial.The means and standard deviations for the three records are shown in 
Table I. 

3.2 Prediction Error Analysis 

Let X be the m true values for a testing time series dataset, and X be the m predicted 
values obtained L-step ahead. Two error measures are used to evaluate the prediction 
performance. One is the root mean squared error (RMSE), which is the square root of 
the variance as defined in Equation 9. 

Ship motion data 

EMD 

IMF1 

LSSVM LSSVM LSSVM

Prediction results

IMF2 IMFn 

σ1, γ1 σ2, γ2 σn, γn 
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( )
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m i m i
i

RMSE x x
L

∗
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=
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(9) 

 
The other error measure is the symmetric mean absolute percentage error (SMAPE), 
which is based on relative errors and is defined in Equation 10. 
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(10) 

Table 1. Performance in terms of RMSE and SMAPE 
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10 0.3125 0.2033 0.0164 0.0151 

40 0.6957 0.5486 0.0346 0.0193 

70 1.2872 1.0509 0.0558 0.0447 

100 2.1120 1.9198 0.0832 0.0676 

130 2.4819 1.9447 0.1738 0.1430 

160 2.7642 2.4520 0.4193 0.2446 
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Fig. 2. 90 steps (18 seconds)prediction result of roll data EMD-based LSSVM algorithm (using 
700 points for training) 
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4 Concluding Remarks 

In this paper we proposed a forecasting method based on EMD and LSSVM 
algorithm. We have shown that reasonable prediction performance can be achieved in 
the case of nonstationary time series. The hybrid training algorithm of the EMD and 
LSSVM made the parameter searching process more effective. 

One drawback with our prediction method is the computational cost associated 
with the training matrix. The results suggest that the window size does have an 
important effect on the quality of a LSSVM based forecaster. 
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Abstract. Most algorithms have been extended to the tensor space to
create algorithm versions with direct tensor inputs. However, very un-
fortunately basically all objective functions of algorithms in the tensor
space are non-convex. However, sub-problems constructed by fixing all
the modes but one are often convex and very easy to solve. However, this
method may lead to difficulty converging; iterative algorithms sometimes
get stuck in a local minimum and have difficulty converging to the global
solution. Here, we propose a computational framework for constrained
and unconstrained tensor methods. Using our methods, the algorithm
convergence situation can be improved to some extent and better so-
lutions obtained. We applied our technique to Uncorrelated Multilinear
Principal Component Analysis (UMPCA), Tensor Rank one Discrimi-
nant Analysis (TR1DA) and Support Tensor Machines (STM); Experi-
ment results show the effectiveness of our method.

Keywords: Tensor learning approaches, Alternating projection opti-
mization procedure, Initial value problem.

1 Introduction

Many pattern recognition methods have been extended to the tensor space.
The PCA method has been extended to multilinear PCA (MPCA)[1] and
UMPCA[2]. LDA has been extended to TR1DA[3] and general tensor discrim-
inant analysis (GTDA)[4]. ICA has been extended to an independent subspace
approach[5]. non-negative matrix factorization has been extended to a multilin-
ear non-negative tensor factorization [6]. Support vector machine has been ex-
tended to STM[7][8], even the Minimax probability machine to a tensor Minimax
probability machine[8]. A supervised tensor learning (STL) framework has been
proposed to provide a common framework for extending vector-based methods
to tensors[8].

The objective function of methods is basically non-convex and there are a lot
of local solutions. However tensor sub-problems derived by fixing all the modes
but one are often convex and very easy to solve. So most of the algorithms use

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 326–333, 2013.
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an alternating projection/optimization procedure to solve the problem. But the
algorithmmay have trouble converging; sometimes it may iterate between several
local solutions and not converge to a global solution. So we put forward a set of
calculation methods for both constrained and nonconstrained tensor problems;
they improve both the calculated result and convergence behavior.

In this paper, two approximation approaches for unconstrained tensor ap-
proaches are introduced; they are alternating least squares (Section 2.1.1) and
the gradient descent algorithm (Section 2.1.2). In section 2.2 our approach for
constrained conditions, the NLPLSQ approach, is introduced. Section 3 describes
experiments which demonstrate the good convergence of our tensor approxima-
tion approaches (Section 3.1) and the performance improvement (Section 3.2).
Then a conclusion is given in Section 4.

2 Our Approach

The general tensor method often assigns a randomly generated value or all 1s to
the initial value. The result is often very unsatisfactory. All tensor methods aim
to find the optimal solution in the rank one tensor space, so the initial value can
be the rank one tensor which is closest to the optimal solution of the original
vector space problem.

min f(a(1), . . . , a(N)) ≡ 1

2

∥∥∥Z −
[[
a(1), . . . , a(N)

]]∥∥∥2 (1)

Here the Z is a tensor produced by transforming the optimal vector apace solu-
tion using the inverse process of vectorization. For tensor algorithms, there are
two cases, one with equality or inequality constraints, the other unconstrained.
We propose effective methods for both cases.

2.1 Approaches for Unconstrained Conditions

Many tensor algorithms only optimize the target function without other con-
straints. The feasible domain of the algorithm is the entire range of rank one
tensors. TR1DA is such an algorithm. There are two possible algorithms for such
problems, alternating least squares and gradient descent. The condition here is
quite similar to the canonical tensor decomposition when tensor rank is 1[9][10].

Alternating Least Squares. The idea of this algorithm is actually very sim-
ple. The main idea is like the idea of supervised tensor learning (STL). When
calculating the value of a certain mode, fix the other modes. A problem of this
form is convex and easy to solve. The equation is as follows:

mina(n)f(a(1), . . . , a(N)) =
1

2

∥∥∥Z − a(1) ◦ · · · ◦ a(n) ◦ · · · ◦ a(N)
∥∥∥2 (2)
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We can expand the equation as follows:

= mina(n)

∥∥∥Z(n) − a(n)(a(N) ⊗ · · · ⊗ a(n−1) ⊗ a(n+1) ⊗ · · · ⊗ a(1))
T
∥∥∥2 (3)

Here ⊗ means the kronecker product and Z(n) means transforming a tensor Z
to a matrix corresponding to mode n. The solution of this problem is as follows:

= Z(n) ((a
(N) ⊗ · · · ⊗ a(n−1) ⊗ a(n+1) ⊗ · · · ⊗ a(1))

T
)
†

(4)

Gradient Descent. The gradient descent algorithm (GDA) can also be used.
It ensures convergence to the global minimum only for a convex function on a
convex set. But here the target function, although non-convex, is very close to a
convex function. Therefore, the algorithm converges to the global minimum in
most cases.

x =
[
a(1), . . . , a(n), . . . , a(N)

]T
(5)

The key point in gradient descent is to determine the gradient of the objective
function for x,

∇f(x) =

[
∂f

∂a(1)
, . . . ,

∂f

∂a(n)
, . . . ,

∂f

∂a(N)

]T
(6)

The objective function can be written as:

f(x) =
1

2
‖Z‖2︸ ︷︷ ︸
f1(x)

−〈Z , a(1) ◦ a(2) ◦ · · · ◦ a(N)
〉

︸ ︷︷ ︸
f2(x)

+
1

2

∥∥∥a(1) ◦ a(2) ◦ · · · ◦ a(N)
∥∥∥2︸ ︷︷ ︸

f3(x)

(7)

The first summand does not involve the variables; therefore,

∂f1
∂a(n)

= 0 (8)

Here the 0 is a 0 vector of length In while the second term can be written as

f2(x) = Z ×N
m=1 a

(n)
r (9)

= (Z ×N
m=1,m �=n a

(m)
r )

T
a(n)r (10)

It is obvious with f2 written in this way:

∂f2
∂a(n)

= (Z ×N
m=1,m �=n a

(m)
r ) (11)
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The third summand is

f3(x) =

N∏
m=1

a(m)T a(m) (12)

therefore,

∂f3
∂a(n)

= 2(

N∏
m=1,m �=n

a(m)Ta(m))a(n) (13)

Combining these two terms yields the desired result. Another important issue
is choosing an appropriate step length. If it is too small, much more iteration
will be needed. If it is too big, the iteration may tend to diverge or come to an
inaccurate result.

2.2 Approach for Constrained Condition

For a variety of tensor algorithms, there is some constraint in the calculation.
That is, the feasible region is not the full rank one tensor region but has some
constraints such as the left part of the equations below. The UMPCA and STM
are such algorithms.

Nonlinear Least Squares with Nonlinear Constraints. For nonlinear least
squares, there are a lot of algorithms, such as the the Gauss-Newton approach.
There are also many algorithms can solve the linear least squares problem with
constraints. An intuitive idea is to combine these two algorithms. First, the origi-
nal problem is transformed into a linear least squares problem and then a method
which solves constrained least squares problems is applied[11][12]. However there
is a difficulty, For our problem, the Jacobi matrix is always singular but the
Gauss-Newton method needs the Jacobi matrix to be nonsingular. Although a
damped Gauss-Newton method such as the Levenberg-Marquardt algorithm can
solve this problem, additional errors are introduced in the process. Fortunately,
there is a very effective algorithm which can directly solve constrained nonlin-
ear least squares problems. By introducing new variables, the original problem
can be transformed into an equivalent optimization problem[13][14]. In this way,
the problem that the Jacobi matrix is singular is naturally solved and does not
artificially introduce error.

min 1
2

∑l
i=1 fi(x)

2

==>

min 1
2
zTz

gj(x) = 0 j = 1, . . . ,me fi(x)− zi = 0 i = 1, . . . , l

gj(x) ≥ 0 j = me + 1, . . . ,m gj(x) = 0 j = 1, . . . ,me

xl ≤ x ≤ xu gj(x) ≥ 0 j = me + 1, . . . ,m

xl ≤ x ≤ xu

(14)
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The transformed problems can be directly solved by the SQP algorithm which
can achieve very good convergence.

3 Experiments

3.1 Tensor Approximation Approaches

In Figure 1, we compare the convergence property and approximation error of
our tensor approximation algorithms. In Subfigure a, for different tensors, we
compare the number of steps the ALS algorithm takes to converge. An increase
in the number of dimensions or modes delays the convergence; it may need more
iteration steps. In addition, if the number of dimensions for each mode is similar
or the same, the algorithm tends to converge quickly. It always uses fewer steps
and the steps of different retries tend to be the same.

In Subfigure b, the number of steps of the gradient descent algorithm for
different step lengths are shown. Although this algorithm always converges to
the globally optimal solution, no matter what initial value it is assigned, the
step length greatly affects the step count. For different tensors, with a decrease
in step length, the number of iterations grow exponentially. With more modes
or a more complex tensor structure, the number of steps increases significantly.

In Subfigure c, we compare the iteration step count of NLPLSQ and SQP for
UMPCA and STM, NLPLSQ converges faster than SQP and the iteration count
for different retries is more stable; the variance is small.

Subfigure d shows the difference of approximation error for SQP and NLPLSQ
applied to UMPCA and STM. The error is much smaller for UMPCA. NLPLSP
has a lower approximation error. As for STM, the error decreases for most cases
but not as much as for UMPCA. In most cases, the decease is less than 0.1.

3.2 Improvement for Tensor Approaches

Subfigures a,b,c of Figure 2 demonstrate the iterative convergence process of
TR1DA,UMPCA and STM after using our approach for . TR1DA is for uncon-
strained problems and UMPCA and STM for constrained problems. Here we
should pay special attention to UMPCA, the calculation of other components
but the first is a constrained problem.

Subfigure a compares the iterative convergence process of TR1DA using our
approach for different tensors. Using our approach, the target function value
comes to a stable solution after only a few iterations, much faster than the
original method. Sometimes the target function curve is close to horizontal. A
tensor with more modes will make it harder to converge.

Subfigure b compares the iterative convergence process of UMPCA for the
original approach, ALS and NLPLSQ. The experiment is for 2*2*2, 6*6*6 and
10*10. It is clear that a complicated tensor requires more iterations to converge.
The UMPCA algorithm is special, so for the initial value setting of our approach,
the target function value sometimes experiences a decrease in the first step.
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Fig. 1. Tensor approximation approaches for constrained and unconstrained condition

Subfigure c compares the iterative convergence process of STM for the original
approach, ALS and NLPLSQ. The experiment is on two cases 3*3*3 and 10*10.
Our two approaches improve the convergence to some extent; NLPLSQ is a little
bit better than ALS in most cases.

Subfigure d shows the final result improvement of TR1DA, UMPCA and STM
after adopting our approach. The ALS approach improves the performance of
TR1DA in most cases. UMPCA is somewhat special. ALS and NLPLSQ are
better than the original approach in fewer than a third of cases. The result for
ALS is better than for NLPLSQ. As for STM, ALS and NLPLSQ perform well
about twice as often as the original method. NLPLSQ is better than ALS.

4 Conclusion

For tensor algotithsms, if we optimize a specific mode and fix all the other modes,
the subproblem becomes convex. However, even so, solving methods tend to fall
into local solutions and have difficulty converging. These problems are often
caused by unreasonable initial value selection. The essence of tensor methods
is finding the optimal solution of the original vector space within the rank one
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Fig. 2. The improvement given by our methods for TR1DA, UMPCA and STM

tensor limitation and this paper takes advantage of this. First, calculate the
optimal solution of the optimization problem in the vector space. Then in the
range of rank one tensors we calculate the tensor closest to the vector space
optimal solution in the least squares sense. Of the three types of tensor meth-
ods, our approach is for TVP and TSP typed methods. Depending on whether
there are constraints, we propose ALS, gradient descent algorithm (GDA) and
NLPLSQ. Experiment results show that the convergence of tensor approaches
is greatly improved by adopting our method; convergence becomes more stable
and a better target function value is achieved.
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Abstract. Aiming at reducing the link load and improving substrate network  
resource utilization ratio, we model the virtual network embedding (VNE) prob-
lem as an integer linear programming and present a discrete particle swarm op-
timization based algorithm to solve the problem. The approach allows multiple 
virtual nodes of the same VN can be embedded into the same physical node as 
long as there is enough resource capacity. It not only can cut down embedding 
processes of virtual link and reduce the embedding time, but also can save the 
physical link cost and make more virtual networks to be embedded at the same 
time. Simulation results demonstrate that comparing with the existing VNE al-
gorithm, the proposed algorithm performs better for accessing more virtual 
networks and reducing embedding cost. 

Keywords: network virtualization, embedding algorithm, virtual network,  
discrete particle swarm optimization. 

1 Introduction 

Network virtualization is the core problem of VNE. In the virtual network environ-
ment, the Internet service provider (ISP) is divided into two parts: infrastructure pro-
vider (InP) and service providers (SP) [1]. Network virtualization can provide more 
flexibility by separating the network provider from infrastructure provider. InPs man-
age the physical Infrastructure while multiple SPs will be able to create heterogeneous 
VNs to offer customized end-to-end services to the users by leasing shared resources 
from one or more InPs [2].  

Virtual network embedding problem is known to be NP-hard even in the offline 
case [3]. Thus efficient VNE techniques that intelligently use the substrate network 
resources are important. Most of literatures about VNE problem formulate the VNE 
as an optimization problem with the embedding cost as the objective. Recently, a 
number of heuristic-based algorithms or customized algorithms have appeared in the 
relevant literature [4-8]. 
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The authors in [4] have provided a two stage algorithm for embedding the VNs. 
Firstly, they embedding the virtual nodes. Secondly they proceed to map the virtual 
links using shortest paths and multi-commodity flow (MCF) algorithms. In order to 
increase the acceptance ratio and the revenue, D-ViNE and R-ViNE are designed in 
[5]. The authors formulated the VNE problem as a mixed integer program through 
substrate network augmentation, and then relaxed the integer constraints to obtain a 
linear program. VNE-AC algorithm in [6] is a new VNE algorithm based on the ant 
colony meta-heuristic. They do not restrain the VNE problem by assuming unlimited 
substrate resources, or specific VN topologies or restricting geographic locations of 
the substrate core node. The authors in [7] propose VNE strategy with topology-aware 
node ranking. They apply the Markov Random Walk (RW) model to rank a network 
node based on its resource and topological attributes before mapping the virtual net-
work components. The authors in [8] use a joint node and link mapping approach for 
the VI mapping problem and develop a virtual infrastructure mapping algorithm. 

In this paper, we propose a VNE algorithm based on discrete particle swarm opti-
mization (DPSO), which allows repeatable embedding over same substrate node as 
long as the node has enough available resources. We denote our algorithm by M-
VNE-DPSO. 

The rest of the paper is organized as follows. In section 2, we give the detailed de-
scription of VNE and its general model. In section 3, firstly, we give our particular 
model for VNE and briefly introduce DPSO, the parameters and operations of the 
DPSO are redefined. Then we discuss how to deal with VNE problem with DPSO. 
The simulation environment and results are given in Section 4. Section 5 gives the 
conclusion. 

2 Network Model and Problem Description 

2.1 Substrate Network 

We model the substrate network as a weighted undirected graph and denote it 
by ( , , , )S S S S S

N EG N E A A= , where SN is the set of substrate nodes and SE is the set of 

substrate link. We denote the set of loop-free substrate paths by SP .The nota-
tions S

NA denote the attributes of the substrate nodes, including CPU capacity, storage, 

and location. The notations S
EA  denote the attributes of the substrate edges, including 

bandwidth and delay. In this paper, each substrate node s Sn N∈  is associated with 
the CPU capacity. Each substrate link ( , )s Se i j E∈  between two substrate nodes i and 
j is associated with the bandwidth. 

2.2 Virtual Network Request 

Similar to the substrate network, a virtual network can be represented by a weighted 
undirected graph ( , , , )V V V V V

N EG N E C C= , where VN and VE denote the set of virtual nodes 

and virtual link, respectively. Virtual nodes and edges are associated with constraints 
on resource requests, denoted by V

NC and V
EC , respectively. 
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2.3 Virtual Network Embedding 

When a VN request arrives, the substrate network has to determine whether to accept 
the request or not. If the request is accepted, the substrate network has to perform a 
suitable Virtual network embedding and allocate substrate resource. The VNE prob-
lem is defined by a embedding * *:  ( , , , )V S S

N EG N P R RΓ  , from VG to SG , 

where *S SN N⊆ , *S SP P⊆ . 
The process of VNE has two parts: virtual network node embedding and virtual 

network edge embedding.  
In virtual network nodes embedding, each virtual node is hosted on substrate nodes 

that satisfy the requested CPU constraints: 
*

*

:

( ) ,   

( ) ( ( ))

V S
N

v S v V
N

v v
N

N N

n N n N

Rcpu n Ccpu n

Γ

Γ ∈ ∀ ∈

≤ Γ


                        (1) 

where ( )vRcpu n is requested CPU constraints for the virtual node vn , ( ( ))v
NCcpu nΓ  is 

the available CPU capacity of substrate node. 
In virtual network edges embedding, each link embedding assigns virtual links to 

loop-free paths on the substrate that satisfy the required bandwidth constraints: 
*:

( ) ,   

( ) ( ( ))

( ( )) min ( )
s s

V S
E

v v V
E

v v
E

v s
E

e P

E P

e P e E

Pbw e Cbw e

Cbw e Cbw e
∈

Γ

Γ ∈ ∀ ∈

≤ Γ

Γ =



                    (2) 

where ( )vPbw e is requested bandwidth constraints for the virtual edge, ( ( ))v
ECbw eΓ  is 

the available bandwidth capacity of substrate path. The available bandwidth capacity 
of a substrate path *SP P⊆  is qualified by the edge which has the minimum band-
width capacity in this path. 

2.4 System Object 

The main objective of virtual network embedding is to make efficient use of the sub-
strate network resources when mapping the virtual network into the substrate net-
work. In this paper, we aim to decrease cost of the InP so as to support more virtual 
networks. 

Similar to the early work in [4, 5, 6, 9], Firstly, we define the revenue and cost. 
Definition 1: Revenue   the sum of total an virtual network request gain from InP at 
time t as  

1 2( ( )) ( ) ( )
v V v V

V v v

e E n N

R G t bw e cpu nα α
∈ ∈

= • + •                   (3) 

where ( )vbw e  is the bandwidth of the request link, ( )vcpu n is the CPU capacity of 
the request node. 1α  and 2α  are weighting coefficients to balance the effect of 

bandwidth and CPU. 
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Definition 2: Cost the sum of total substrate resources allocated to that virtual net-
work at time t as 

3 4( ( )) ( ) ( ) ( )
v V v V

V v v

e E n N

C G t bw e Length P cpu nα α
∈ ∈

= • + •                (4) 

Where ( )Length P  is the hop count of the virtual link ve  when it is assigned to a set 
of substrate links. 3α  and 4α  are weighting coefficients similarly to 1α  and 2α . 

In a given period of time virtual network embedding algorithm should minimize 
the cost of substrate network and accept the largest possible number of virtual net-
work requests. We define the long-term average cost as  

0
( ( ))

lim

T V

t

T

C G tC
T T

=

→∞
=                              (5) 

3 M-VNE-DPSO Algorithms 

3.1 System Model 

We model the problem of embedding of a virtual network as a mathematical optimi-
zation problem using integer linear programming (ILP). We should minimize the 
usage of the substrate resources. Thus, the objective of our optimization problem is 
defined as follows: 

w
ijϕ  is a binary variable. 

0        
   ,  

1         
v s w

ij

i j
w E i j N

i j
ϕ

=
∀ ∈ ∀ ∈  ≠

 

Object: 

( , )

( )  w

s

w
ij

i j P

Minimize bw eϕ
∈

×                          (6) 

Node Constraints: 

,     ( ) ( ) ( ) ( )
v

V S v

n i

u N i N Ccpu i Cpu i Cpu n Rcpu u
→

∀ ∈ ∀ ∈ = − ≥           (7) 

where ( )
v

v

n i

Cpu n
→
 is the total amount of CPU capacity allocated to different virtual 

nodes hosted on the substrate node; ( )Cpu i  is the total amount of CPU capacity of 
the substrate node.  

Link Constraints: 

   , ,  ,   ( ) min ( ) ( )
s ij

s ij s v ij s

e P
i j N P P w e Cbw P Cbw e Rbw w

∈
∀ ∈ ∈ ∀ ∈ = ≥         (8) 

( ) ( ) ( )
v s

s s s

e e

Cbw e Bw e Bw e
→

= −                        (9) 

where ( )ijCbw P is the available bandwidth capacity of a substrate path from i to 

j; ( )
v s

s

e e

Bw e
→
 is the total amount of bandwidth capacity allocated to different virtual 

links hosted on the substrate link; ( )sBw e  is the total amount of bandwidth capacity of 
the substrate link. 
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3.2 Discrete PSO for Virtual Network Embedding 

Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by social 
behavior of bird flocking or fish schooling. 

During the evolutionary process, the velocity and position of particle updated as 
follows: 

1
1 1 2 2( ) ( )k k k k k k

p gV V c r X X c r X Xω+ = + − + −                  (10) 

1 1k k kX X V+ += +                             (11) 

Where 1 2, , ,k k k k
mV v v v = ⋅ ⋅ ⋅   is the velocity vector; 1 2, , ,k k k k

mX x x x = ⋅ ⋅ ⋅   is the position 

vector; ω  denote the inertia weight; 1r  and 2r  denote two random variables un-

iformly distributed in the range of (0, 1); 1c  and 2c  denote the accelerator of par-

ticle; k
pX  denote the position with the best fitness found so far for the kth particle; 

k
gX  denote the best global position in the swarm.  

Standard PSO is not directly applicable to the optimal VNE problem, so we used 
variants of PSO for discrete optimization problems to solve the optimal VNE  
problem. 

Redefine the position and velocity parameters for discrete PSO as follows: 

Definition 3: Position 1 2, , ,k k k k
mX x x x = ⋅ ⋅ ⋅    a possible VNE solution, where k

ix  is the 

number of the substrate node the ith virtual node embedding to. m denotes the total 
number of nodes in virtual network k.  

Definition 4: Velocity 1 2, , ,k k k k
mV v v v = ⋅ ⋅ ⋅   makes the current VNE solution to achieve 

a better solution, where k
iv  is a binary variable. For each k

iv , if 1k
iv = , the correspond-

ing virtual node’s position in the current VNE solution should be remains; otherwise, 
should be adjusted by selecting another substrate node. 

The operations of the particles are redefined as follows: 

Definition 5: Addition of Position and Velocity k kX V+   a new position that corres-
ponds to a new virtual network embedding solution. If the value of k

iv  equals to 1, 

the value of k
ix  will be kept; otherwise, the value of k

ix  should be adjust by select-

ing another substrate node. For example, (1, 5, 6, 3, 2) + (1, 0, 1, 0, 1) denotes the 
second and fourth virtual node embedding solutions should be adjusted. 

Definition 6: Subtraction of Position m nX X−   a velocity vector. It indicates the dif-
ferences of the two virtual network embedding solutions mX and nX . If mX  and nX  
have the same values at the same dimension, the resulted value of the corresponding 
dimension is 1, otherwise, the resulted value of the corresponding dimension is 0. For 
example, (5, 5, 3, 2, 4) - (5, 3, 3, 2, 6) = (1, 0, 1, 1, 0). 

Definition 7: Multiple of Velocity * mVψ    keep mV  with probability ψ  in the 
corresponding dimension.  



 Repeatable Optimization Algorithm Based Discrete PSO 339 

 

Definition 8: Addition of Multiple 1 2* *m nV Vψ ψ+   a new velocity that corresponds 

to a new virtual network embedding solution, where 1 2 1ψ ψ+ = . If mV  and nV  have 

the same values at the same dimension, the resulted value of the corresponding di-
mension will be kept; otherwise, keep mV  with probability 1ψ  and keep nV  with 

probability 2ψ . For example, 0.3 (1, 0, 0, 1, 1) + 0.7 (1, 0, 1, 0, 1) = (1, 0, *, *, 1), 

where * denotes the probability of being 0 or 1. In this example, the first * is equal to 
0 with probability 0.3 and equal to 1 with probability 0.7. 

Because of the specificity of discrete quantity operation, we modify the particle 
motion equation and cancel the original inertia item. The position and velocity of 
particle k are determined according to the following velocity and position update re-
currence relations: 

   1
1 2( ) ( )k k k k k

p gV X X X Xψ ψ+ = ∗ − + ∗ −                 (12) 

1 1k k kX X V+ += +                               (13) 

Where 1ψ  and 2ψ  are set to constant values that satisfy the inequality 1 2 1ψ ψ+ = . 

3.3 M-VNE-DPSO Algorithm Description 

We embed virtual nodes using the DPSO algorithm discussed in previous sub section 
and embedding virtual links using the well-known FloydWarshall shortest path algo-
rithm. Firstly, we introduce a step for substrate nodes and substrate edges initializa-
tion before virtual network embedding. The detailed steps of the initialization algo-
rithm are shown as follows: 
Algorithm 1. The initialization algorithm '( )SIni G  

1. For substrate network , sort the substrate nodes NList according to their cpu capaci-
ty ( )sCcpu n in descending order sort the substrate edges EList  according to their 

bandwidth capacity ( )sCbw e  in descending order; 
2. For a virtual network request ,sort the virtual nodesVNList according to their re-

quired CPU resources ( )vRcpu n  in ascending order, then min ( )vRcpu n ←  required 
CPU resources of the first node of VNList ;sort the virtual edgesVEList according to 
their required bandwidth resources ( )vRbw e  in ascending order, then 

min ( )vRbw e ←  required bandwidth resources of the first edge of VEList ; 

3. Obtain ' |{ ( ) min ( )}s vNList NList Ccpu n Rcpu n← < ; 

' | { ( ) min ( )}s vEList EList Cbw e Rbw e← < . 

In node embedding step, the algorithm with repeatable embedding over substrate 
nodes is put forward, in which, multiple virtual nodes in the same virtual network can 
be mapped to the same substrate node if there is enough resource capacity and takes 
the objective function (6) as fitness function ( )xφ . The detailed steps of the M-WNE-
DPSO algorithm are shown as follows: 
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Algorithm 2. The M-VNE-DPSO algorithm 

1. '( )SIni G ; 
2. Initialize n=Particle Count, m=Max Iteration Count; 
3. Randomly generated   k kX and V ; 
4. Each kX  corresponds to link embedding with shortest path. Set k

pX and k
gX  to 

these particles according to their fitness values of ( )xφ . If kX  is an unfeasible po-
sition, the fitness value ( )xφ  of this particle will be set to +∞ ; 

5. If ( )xφ of the particle equal to +∞ , re-initialize its kX and kV . Otherwise, 

if ( ) ( )k k
pX Xφ φ≥ , then set kX to be the k

pX of the particle. If ( ( ) ( )k k
gX Xφ φ≥ ), then 

set kX  to be the k
gX of the particle; 

6. use formula (12) and (13) to update  k kX and V ; 
7. If k

gX  unchanged for three times or Iterationcount M≥ , goto step 8, otherwise goto 

step 4; 
8. If k

gX = +∞ , there is no feasible solution. The virtual network request put into wait 

queue, otherwise, output the virtual network embedding solution, update the re-
sources of substrate network. 

4 Simulation 

We implemented the M-VNE-DPSO algorithm using the CloudSim3.0.1 on a high 
level PC which has one Intel Core i7-3770 CPU and 20G DDR3 1600 RAM. We 
write a random topological generator in java to generate topologies for the underlying 
substrate networks and virtual networks in CloudSim. Substrate networks in our expe-
riments have 100 nodes, each node connect to other nodes with probability 0.2, so 
there are about 500 links in the networks. Physical node CPU and link bandwidth 
capacities are 100 units. For each VN request, the number of virtual nodes was ran-
domly determined by a uniform distribution between 4 and 10. The average VN con-
nectivity was fixed at 50%. The CPU and bandwidth requirements of virtual nodes 
and links are real numbers uniformly distributed between 3 and 30 units. Each virtual 
network’s living time uniformly distributed between 100 and 1000 time unit. We 
analyze the performance of the new algorithm by comparing it with the D-ViNE-
SP and VEN-R-PSO [9] algorithm.  

In first experiment, we simulated 1000 virtual network request for each algo-
rithm, each test run 30 times and we have plot the average result of t accessed VN 
request number variation to time of the three embedding algorithms. As shown in 
Fig.1, M-VNE-DPSO accessed more VN requests than others at the same time 
and performance most smooth when the substrate network is full load, so it can 
finish the 1000 request faster. Another advantage of M-VNE-DPSO is that be-
cause of the repeatable nature in embedding the algorithm can easily complete all 
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1000 request we had submitted. And relatively in this experiment, the connectivity 
of virtual networks is higher than the substrate network and the number of virtual 
network is random, so if some virtual node’s connectivity is higher than every sub-
strate node, such “big” virtual networks won’t be accessed in non-repeatable embed-
ding, i.e. not all the VN request will be accessed in VEN-R-PSO and D-ViNE-SP. 
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Fig. 1. Number or accessed virtual networks correspond to running time 
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Fig. 2. Comparison of embedding cost for different number of VN request 

The second experiment runs number 100, 200, 300, 400, 500, 600 of virtual 
network request respectively, every case operation 30 times and take the average 
cost of the three algorithms. From Fig. 2.we can see, when running 100 virtual 
network request, D-ViNE-SP algorithm is the highest Cost, the M-VNE-PSO 
algorithm less than VNE-R-PSO algorithm, along with the increase of the number 
of virtual network, their difference is more and more obvious. The reason is that 
in D-ViNE-SP, its relaxation-based approach weakens the coordination between 
node mapping and link mapping, which results in poor performance. M-VNE-
PSO does using repeatable embedding over substrate nodes that saves the sub-
strate link cost and makes more virtual network embedded. 
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5 Conclusions 

This paper introduced a new VNE algorithm with repeatable embedding over sub-
strate nodes base on DPSO. We increase a step initialization before virtual network 
embedding which helps accelerate the convergence speed. We also allow that mul-
tiple virtual nodes in the same virtual network can be mapped to the same substrate 
node if there is enough resource capacity. From the customer point of view, this oper-
ation can increase embedding efficiency and reduce the embedding cost; from the 
InP’s perspective optimal resource usage strategy results in improving the resource 
utilization as well as accommodating more VN requests. Simulation results show that 
our algorithms outperform the previous approaches in terms of the accept number of 
VN request and the cost of substrate network. 

Acknowledgments. This work was supported by The Central University Fundamen-
tal Research Foundation, under Grant. N110323009. 
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for the Wireless Sensor Networks Based on  

Multi-objective Quantum-Inspired Cultural Algorithm 
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Abstract. The energy-efficiency coverage of wireless sensor network is 
measure by the network cover rate and the node redundancy rate. To solve this 
multi-objective optimization problem, a multi-objective quantum-inspired 
cultural algorithm is proposed, which adopts the dual structure to effectively 
utilize the implicit knowledge extracted from the non-dominating individuals 
set to promote more efficient search. It has three highlights. One is the 
rectangle’s height of each allele is calculated by non-dominated sort among 
individuals. The second is the crowding degree that records the density of non-
dominated individuals in the topological cell measure the uniformity of the 
Pareto-optimal set instead of the crowding distance. The third is the update 
operation of quantum individuals and the selection operator are directed by the 
knowledge. Simulation results indicate that the layout of wireless sensor 
network obtained by this algorithm have larger network cover rate and less 
node redundancy rate. 

Keywords: Wireless sensor network, cultural algorithm, real-coded quantum-
inspired evolutionary algorithm, multi-objective optimization. 

1 Introduction 

Wireless sensor network(WSN) containing large numbers of sensor nodes monitors 
the targets. Its energy-efficiency coverage optimization is actually how to rationally 
arrange the sensor nodes. Thus it is converted to a multi-objective optimization 
problem(MOP). Now, many natural-inspired optimization algorithms are introduced 
to solve the problems, such as genetic algorithm[1], ant colony optimization[2], 
particle swarm algorithm[3] and quantum algorithm[4]. However, the optimization 
objective normally is the network coverage rate only or the weighted objective 
combing the network coverage rate and node redundancy rate. The conflict between 
objectives was not considered. So we regard maximum network coverage rate and 
minimum node redundancy rate as two independent objectives.  

Until now, many multi-objective optimization algorithms had been presented, such 
as strength Pareto evolutionary algorithm II(SPEAII)[5], niched Pareto genetic 
algorithm (NPGA)[6], no-dominated sorting genetic algorithm II(NSGAII)[7] and 
multi-objective quantum evolutionary algorithms(MOQA). Meshoul [8] described the 
chromosome by quantum-encoded probabilistic representation. Kim[9] employed the 
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principles of quantum computing including superposition and interference to improve 
the quality of the non-dominated solution set. Wei[10] decomposed MOP into many 
scalar optimization sub-problems. Each sub-problem simultaneously evolved based 
on the population composed of q-bit individuals. Yang[11] constructed a triploid 
chromosome and the chaos encoding probability amplitude. However, they do not 
fully utilize the implicit information during the evolution, which limits the 
algorithm’s performances. Based on the dual structure in cultural algorithm[12], the 
author gave real-coded quantum-inspired cultural algorithm[13]. But it only fits for 
the scalar optimization problem. So a novel multi-objective real-coded quantum-
inspired cultural algorithm (MORQCA) is proposed and applied to optimize WSNs’ 
energy-efficiency coverage. 

2 The WSN’ Energy-Efficient Coverage Optimization Model 

The key issues that directly influence WSN’ energy-efficiency coverage optimization 
model lie on two aspects: (i)the sensor node’s sensing model. (ii)how to evaluate the 
performances of WSN’ energy-efficiency.  

The sensor nodes’ sensing model describes its monitoring ability and sensing 
range. In this paper, the probability sensing model is adopted. Considering the node’s 
electric characterize and white noises, the probability for monitoring the target 

ko  by 

the sensor node { , }i i is x y= , expressed by 
cov( , )k iP o s , is exponentially decreased as the 

distance between them is increasing[14]. Suppose there are N sensor nodes. As they 
all contribute to monitor the target, the ability to monitor 

ko  decides by the joint 

probability of all nodes, defined as cov cov( ) 1 (1 ( , ))k k i
i N

P o P o s
∈

= − −∏    
The QoS of WSN is commonly measured by the network coverage rate and the 

node redundancy rate. The former reflects the coverage degree of monitored area by 
all sensor nodes. The latter measures the uniformity degree on sensor nodes’ 
distribution. Without loss of generality, the monitored area is evenly partitioned into 
discrete grid along X-Y coordination[14]. Both objectives are obtained based on the 
joint monitored probability of all sensor nodes: 

 ( )cov
1

1

a b

k
k

P o
f NCR

a b

×

== =
×

  (1) 

 ( )2
cov

1
2 2

a b

k
k

N r P o
f NRR

N r

π

π

×

=

−
= =

  (2) 

The essential of above optimization problem is to obtain an optimal sensor nodes’ 
arrangement, which has maximum NCR and minimum NRR. Two objectives are 
incompatible each other. In order to simply the computation, we covert all objectives 
to maximum problem. 
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3 The WSN’S Energy-Efficiency Coverage Optimization 
Method Based on Morqca 

3.1 MQEA in Population Space 

There are two kinds of individuals in MQEA: evolutionary individuals and quantum 
individuals. Each evolutionary individual denotes the sensor nodes’ locations as 

1 2 1 1 2 2( ) { , , , } {( , ),( , ) ,( , )}, 1,2,i i i i i i i i i i
N N Np t s s s x y x y x y i n= ⋅⋅⋅ = ⋅⋅⋅ = ⋅⋅⋅ . n is population size. Each gene of ( )ip t  is 

described by a rectangle in a quantum individual ( )iq t , which is uniquely determined 

by its center and width[15] expressed by ( , , , )i i i i
cj wj cj wjx x y y . Because non-dominated rank 

can evaluate individuals instead of the fitness values, we present a novel method to 
calculate the rectangle’s height of ( )iq t  in MOP based on non-dominated sorting 

method. Let ( )izc t  be the number of dominating individuals.  

 1

( )+1
( )

( ( )+1)

i
i
h j n

k

k

zc t
x t

zc t
=

=
  (3) 

In MOP, we hope all optimal solutions are uniformly distributed along the Pareto 
front. The individuals with less non-dominated rank and less crowding degree are 
better and kept in next population. In this paper, the crowding degree of ip  is 
measured by the density of certain topological cell defined in Section 3.2.  

3.2 The Extraction and Utilization of Knowledge in Belief Space 

In this paper, normative knowledge and topological knowledge are used. Normative 
knowledge expressed by 1 1 1 2 2( ( ), ( )),( ( ), ( ))K l t u t l t u t=  memorizes the extreme limits of all 

non-domination individuals’ fitness values. 
iu and 

il  respectively the maximum and 

minimum values of jth objective for all non-dominated individuals.  
Topographic knowledge ( ) ( ) ( )3 1 2 kK C t ,C t , ,C t ,=< >   records the distribution of non-

dominated individuals’ fitness vector in objective space. The objective space is 
uniformly divided into subspace along each dimension by grid method[16]. We call 
the subspace cell, denoted by ( ) , ,k k k kC t L U d= . kL  and kU  are kth cell’s bound. ( )kd t  

is kth cell’s density, which decided by the proportion of non-dominated individuals in 
kth cell to Pareto-optimal set. The crowding degree of ith individual is defined as 

( ) ( ), ( ) ( )i i
k kar t d t x t C t= ∀ ∈ . ( ) ( )i lar t ar t<  indicates that ( )ip t  

locates in a relatively 

incompact area and has larger chance to reserve in next generation.  
Normative knowledge and topographic knowledge are used to influence the 

selection operation of evolutionary individuals and the update operation of quantum 
individuals so as to avoid the blind selection and obtain the uniform Pareto-optimal 
set close to the Pareto front. In the selection operation, the domination relationship 
between two individuals is expressed by ( )i tΓ and the individuals satisfying 

s ( ) { ( ) | ,max ( )}i i

i
P t p t i t= ∀ Γ  are selected to the next population.  
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t

t p t p t ar t ar t
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 (5) 

The update operation of quantum individuals’ width and center are influenced by 
topographic knowledge so as to lead the population close to the better area. Suppose θ 
is the constriction factor of step size. ( )i tδ denotes the evolution degree and is defined 

in Section 4. If an evolutionary individual’s performances become worse, the 
rectangle’s width is enlarged so as to expand the feasible search space. 

 ( 1) ( ), arg min ( ), ( ) , ( ) ( )i l k i k
c j j P

k
x t x t l p t p t p t S t+ = = ∈  (6) 

 ( )( 1) ( )
ii i t

wj wjx t x t δθ+ =  (7) 

4 Analysis of the Simulation Results 

Suppose the size of the monitored area is 20 20× . Each sensor node is described by 
the probability sensing model with following parameters: 1.5er = , 1 1 1α β= = , 2 0α = , 

2 0.5β = , 3r = . The main parameters in MORQCA and other compared algorithms are: 

25N = , 0.1mp = , 40n = , 20sn = , 1000T = , 40qn = , 30c = , 5τ = . In order to 
quantitatively compare the algorithms’ performances, Three metrics[17] including 
minimal spacing (SM), hyperarea (H) and purity(P) are adopted. Based on H-metric 
and SM-metric, the evolution degree is defined as follows. ( )i tδ  is less if the 
convergence and uniformity of the solutions in last generation are both improved. 

 -1 ( ( ( )) ( ( 1)) ( ( ( )) ( ( 1))
( ) 1 ( ( ( )) ( ( 1)) ( ( ( )) ( ( 1))

0

i i i i

i i i i i
SM p t SM p t H p t H p t

t SM p t SM p t H p t H p t
otherwise

δ
 < − ∧ > −= > − ∧ < −


 (8) 

4.1 Comparison of the Algorithm’s Performances with Different N 

We set the number of sensor nodes respectively are 15, 20, 25, 30 and 35. Under 
different number of sensor nodes, the statistical data are listed in Table.1 and shown 
in Fig.1 by box plot. μ and σ are the mean and the standard deviation. Obviously, SM-
metric is smallest and H-metric is largest when N=25, which means the pareto-
optimal solutions are uniformly distributed and close to the true Pareto front. When 
the number of sensor nodes is more or less, the algorithm’s performance becomes 
worse. So we choose N=25 in following experiments. From Fig.1(c), if the network 
consists of less nodes, all nodes are uniformly arranged and the node redundancy rate 
is less. However, the network coverage rate is not good enough. More sensor nodes 
can ensure the expected network coverage rate whereas they repeatedly cover the 
detected area. This increases the network’s cost. 
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Table 1. Comparison of the performances with different number of sensor nodes 

N 15 20 25 30 35 

H 
μ  9.62E1 1.22E2 1.36E2 8.65E1 5.13E1 
σ  6.89 7.13 6.64 8.18 6.73 

SM 
μ  4.02E-3 3.64E-3 3.12E-3 4.22E-3 6.98E-3 
σ  7.37E-4 6.25E-4 7.12E-4 9. 05E-4 5.12E-4 

 
 

         
          (a)H-metric             (b)SM-metric         (c)the parto optimal solutions 

Fig. 1. Comparison of the metrics with different number of sensor nodes 

4.2 Comparison of Different Algorithms 

Under the same experimental conditions, simulation results derived from applying 
NSGAII, SPEAII, multi-objective cultural algorithm(MOCA), MOQA, and 
MORQCA are listed in Table.2. and presented in Fig.2 by box plot. The data in 
Table.2 show that SM-metric and H-metric of MORQCA are better than other 
algorithms. The reason for that is in MORQCA, the extracted knowledge is fully used 
to ensure the evolution toward the potential domination area and make the optimal 
non-dominated solutions quickly close to the better Pareto-optimal front. Besides, the 
knowledge-inducing selection operation operator ensures the better individuals 
reserved in the next generation and avoid the sightless selection. Therefore, the 
optimal non-dominated solutions can be uniformly distributed along the Pareto front, 
which makes the SM-metric less. 

Table 2. Comparison of the metrics with different algorithms 

algorithm NSGAII SPEAII MOCA MOQA MORQCA 

SM 
μ  3.14E-2 3.33E-2 2.25E-2 3.35E-2 6.33E-3 
σ  3.50E-3 3.16E-3 5.81E-3 8.95E-3 8.45E-4 

H 
μ  7.85E1 8.80E1 1.18E2 1.05E2 1.40E2 
σ  1.12E1 1.18E1 1.59E1 1.04E1 1.50E1 

P 
μ  2.73E-2 1.59E-2 5.26E-1 4.18E-1 8.61E-1 
σ  7.75E-3 6.01E-3 6.39E-2 5.67E-2 4.67E-2 
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           (a)SM-metric                (b)H-metric                (c)P-metric 

Fig. 2. Comparison of the metrics with different algorithms 

5 Conclusions 

We choose maximum network cover rate and minimum node redundancy rate as the 
indices to measure WSN’s energy-efficiency coverage and convert it into a two-
objective optimization problem. Thereby a novel multi-objective quantum-inspired 
cultural algorithm is proposed to solve this problem. In population space, there are 
two highlights. One is the rectangle’s height of each allele is calculated based on the 
number of dominated individuals. The other is the crowding degree replaces the 
crowding distance to measure the scatting statue of Pareto-optimal solutions. In belief 
space, the extracted implicit knowledge records the information about the Pareto-
optimal solutions in objective space and utilized to direct the update operation for 
quantum individuals and the selection operator of evolutionary individuals. 
Experimental results show that the proposed algorithm kept the diversity of 
population better and obtained the better and more uniform Pareto-optimal solutions 
by comparing with other multi-objective optimization algorithms. That means the 
layout of wireless sensor network obtained by the proposed algorithm have larger 
network cover rate and less node redundancy rate. 

Acknowledgments. This work was supported by National Natural Science 
Foundation of Jiangsu under Grant BK2010183, the Fundamental Research Funds for 
the Central Universities under Grant 2012LWB76, Jiangsu Overseas Research & 
Training Program for University Prominent Young & Middle-aged Teachers and 
Presidents. 

References 

1. Jia, J., Chen, J., Chang, G.-R., et al.: Optimal coverage scheme based on genetic algorithm 
in wireless sensor networks. Control and Decision 22(11), 1289–1292 (2007) 

2. Lee, J.-W., Choi, B.-S., Lee, J.-J.: Energy-efficient coverage of wireless sensor networks 
using ant colony optimization with three types of pheromones. IEEE Transactions on 
Industrial Informatics 7(3), 419–427 (2011) 

3. Aziz, N.A., Mohemmed, A.W., Alias, Y.: A wireless sensor network cverageoptimization 
algorithm based on particle swarm optimization and voronoidiagram. In: IEEE 
International Conference on Networking, Sensing and Control, pp. 602–607 (2009) 

NSGAII SPEAII MOCA MOQA MORQCA

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

S
m

NSGAII SPEAII MOCA MOQA MORQCA

60

70

80

90

100

110

120

130

140

150

160

H

NSGAII SPEAII MOCA MOQA MORQCA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P



An Energy-Efficient Coverage Optimization Method for the Wireless Sensor Networks 349 

 

4. Hua, F., Shuang, H.: Optimal sensor node distribution based on the new quantum genetic 
algorithm. Chinese Journal of Sensors and Actuators 21(7), 1259–1263 (2008) 

5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary 
algorithm,Technical Report 103, Computer Engineering andNetworks Laboratory, Swiss 
Federal Institute of Technology Zurich, Switzerland (2001) 

6. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithmfor 
multiobjective optimization. In: IEEE World Congress on Computational Intelligence, pp. 
67–72 (1994) 

7. Deb, K.: A fast and elitist multiobjective geneticalgorithm: NSGA-II. IEEE Transaction on 
EvolutionaryComputation 6(2), 182–197 (2002) 

8. Meshoul, S., Mahdi, K., Batouche, M.: A quantum inspired evolutionary framework for 
multi-objective optimization. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS 
(LNAI), vol. 3808, pp. 190–201. Springer, Heidelberg (2005) 

9. Kim, Y., Kim, J.-H., Han, K.-H.: Quantum-inspired multiobjectiveevolutionary algorithm 
formultiobjective 0/1 knapsack problems. In: 2006 IEEE Congress on Evolutionary 
Computation, pp. 9151–9156 (2006) 

10. Wei, X., Fujimura, S.: Multi-objective quantum evolutionary algorithm for discrete multi-
objective combinational problem. In: Proceeding of International Conference on 
Technologies and Applications of Artificial Intelligence, pp. 39–46 (2010) 

11. Yang, X.-W., Shi, Y.: A real-coded quantum clone multi-objective evolutionary algorithm. 
In: Proceeding of International Conference on Consumer Electronic, Communications and 
Networks, pp. 4683–4687 (2011) 

12. Reynolds, R.G.: An introduction to cultural algorithms. In: Proceeding of the Third Annual 
Conference on Evolutionary Programming, pp. 131–139 (1994) 

13. Guo, Y.-N., Liu, D., Cheng, J., et al.: A novel real-coded quantum-inspired cultural 
algorithm. Journal of Central South University 42, 130–136 (2011) 

14. Li, S.J., Xu, C.F., Pan, Y.H.: Sensor deployment optimization for detecting maneuvering 
targets. In: Proceedings of International Conference on Information Fusion, pp. 1629–1635 
(2005) 

15. Cruz, A.V.A., Vellasco, M.B.R., Pacheco, M.A.C.: Quantum-inspired evolutionary 
algorithm for numerical optimization. In: Proceeding of IEEE Congress on Evolutionary 
Computation, pp. 19–37 (2006) 

16. Best, C., Che, X., Reynolds, R.G., et al.: Multi-objective cultural algorithms. In: 
Proceeding of IEEE Congress on Evolutionary Computation, pp. 1–9 (2010) 

17. Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multiobjective GAs,quantitative indices and 
pattern classification. IEEE Transactions on Systems, Man, and Cybernetics-Part B: 
Cybernetics 5(34), 2088–2099 (2004) 

 
 



 

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 350–356, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Artificial Bee Colony Algorithm for Modular Neural 
Network 

Chen Zhuo-Ming1, Wang Yun-Xia2 , Ling Wei-Xin2,  
Xing Zhen2, and Xiao Han-Lin-Wei1 

 
1 The Centre of Language Disorder, The First Affiliated Hospital, Jinan University, 

 Guangzhou, China 
2 School of Science, South China University of Technology, Guangzhou, China 

1090029753@qq.com, lan_shan2007@163.com, lingweixin@21cn.com 

Abstract. The Artificial bee colony (ABC) algorithm is simple, robust and has 
been used in the optimization of synaptic weights from an Artificial Neural 
Network (ANN). However, this is not enough to generate a robust ANN. 
Modular neural networks (MNNs) are especially efficient for certain classes of 
regression and classification problems, as compared to the conventional 
monolithic artificial neural networks. In this paper, we present a model of MNN 
based on ABC algorithm (ABC-MNN). Experiments show that, compared to 
the monolithic ABC-NN model, classifier designed in this model has higher 
training accuracy and generalization performance. 

Keywords: Modular Neural Network, Artificial Bee Colony Algorithm, 
Learning Algorithm. 

1 Introduction 

ANNs are commonly used in pattern classification, function approximation, 
optimization, pattern matching, machine learning and associative memories. But the 
monolithic neural network has serious learning problems——it easily forgets 
initialization settings and stores the knowledge in a sparsely [1].The retrieval problem 
with monolithic networks can be solved by proper network design, but such scales 
very badly with increasing complexity. 

A large amount of research in numerous problem domains is done in the past few 
years. In [2], the MNN which is optimized by Hierarchical Genetic Algorithm is 
applied for the speaker identification. In [3] MNN is used for the biometric 
recognition. Local experts and an integrated unit are two components which are used 
in the architecture. In [4], the topology and parameters of the MNN are optimized 
with a Hierarchical Genetic Algorithm, and it is used for human recognition. In [5], 
the MNNs are used for face recognition with large datasets, and its architecture is 
optimized by a parallel genetic algorithm. In [6] the authors propose a new approach 
to genetic optimization of MNNs with fuzzy response integration which is applied to 
human recognition. In [7], the MNN model which is optimized by PSO and trained by 
the OWO-HWO algorithm is applied to analog circuit fault diagnosis. 
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In [8] the authors train an ANN by means of ABC algorithm. In [9] the authors 
apply this algorithm to train a feed-forward Neural Network. In [10], the authors 
present an ABC based synthesis methodology for ANNs, by evolving the weights, the 
architecture and the transfer functions of each neuron. It says that ABC algorithm is a 
good optimization technique for ANN. In this paper we want to verify if this 
algorithm performs in MNNs. As we will see, the MNNs obtained are optimal in the 
sense that the architecture is simple with high recognition. 

The paper is organized as follows: in section 2 the basics of ABC and the ANN 
trained by ABC algorithm (ABC-NN) are presented. In section 3 MNNs based on 
ABC algorithm (ABC-MNN) are explained. In section 4 the experimental results 
using different classification problems are given. Finally, in section 5 the conclusions 
of the work are presented. 

2 Neural Network Learning Algorithm Based on  
ABC(ABC-NN) 

ANN is widely used in approximation and classification problems. One of the widely 
used ANNs is the feed-forward neural network, which is trained by means of the 
back-propagation (BP) algorithm [11]. This algorithm minimizes the Mean-Square 
Error (MSE) function given in (1). 
 ∑ ∑ ( )                         (1) 

 
where d ∈ |R  and y ∈ |R  are respectively target and actual output of the neural 
network, p is the number of samples and m is the number of the output layer node. 
Some algorithms constantly adjust the values of the synaptic weights until the value 
of the error no longer decreases, but it is easy to converge to a local minimum instead 
of to the desired global minimum. So a powerful swarm intelligence optimization 
algorithm ABC is introduced to enhance the neural network training. 

ABC algorithm is based on the metaphor of the bees foraging behavior which is a 
very simple, robust and population based stochastic optimization algorithm. ABC 
algorithm is proposed by Karaboga in 2005 [12] for solving numerical optimization 
problems. In ABC algorithm, the position of a food source represents a possible 
solution to the optimization problem and the nectar amount of a food source 
corresponds to the quality (fitness) of the associated solution. The colony of artificial 
bees contains three groups of bees: Employed bees, Onlookers and Scout bees. These 
bees have got different tasks in the colony, i. e., in the search space. 

Employed bees: Each bee searches for new neighbor food source near their hive. 
After that, it compares the food source against the old one using (2). Then, it saves in 
their memory the best food source. 

 (0,1)( )                         (2) 
 

where ∈ 1,2, … , and ∈ 1,2, … ,  are randomly chosen indexes. Although  
is determined randomly, it has to be different from i. SN is the number of the 
Employed bees and D is the dimension of the solution. 
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After that, the bee evaluates the quality of each food source based on the amount of 
the nectar (the information) i.e. the fitness function is calculated. Providing that its 
nectar is higher than that of the previous one, the bee memorizes the new position and 
forgets the old one. Finally, it returns to the dancing area in the hive, where the 
Onlooker bees are. 

Onlooker bees: This kind of bees watch the dancing of the employed bee so as to 
know where the food source can be found, if the nectar is of high quality, as well as 
the size of the food source. The Onlooker bee chooses a food source depending on the 
probability value associated with that food source, 

 
is calculated by the following 

expression:  

                        ∑                             (3) 

where ifit is the fitness value of the solution i which is proportional to the nectar 

amount of the food source in the position i and SN is the number of food sources 
which is equal to the number of Employed bees. 

Scout bees: This kind of bees helps abandon the food source which can not be 
improved further through a predetermined number of cycles and produce a position 
randomly replacing it with the abandoned one. This operation can be defined as in (4). 

 
                   

 min max min(0,1)( )j j j
ijx x rand x x= + −                         (4) 

 
The multi-layered NN structure is trained using ABC algorithm by minimizing the 
MSE function given in (1). The solution (food source) consists of the neural 
network’s weights and bias. The fitness value of each solution is the value of the error 
function evaluated at this position. The pseudo-code of the ABC-NN algorithm is 
shown as follows: 
 
Program ABC-NN(globalx) 
const  MCN=500,SN=20,goal=0.01; 
var    cycle:0..MCN; 
begin  
  cycle :=0; 
  Initialize the weights and bias  of the network to 

small random values by using (4), i=1,2,…,SN; 
Evaluate the MSE function’s value e by (1) of the 
population  , i=1,2,…,SN; 

repeat 
  cycle :=cycle+1; 

  Produce new solutions iv for the employed bees by 

using (2) and evaluate them; 
Apply the greedy selection process; 
Calculate the probability values 

 
for the 

solutions  by (3); 
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Produce the new solutions iv for the onlookers from 

the solutions  selected depending on 
 
and 

evaluate them; 
Apply the greedy selection process; 
Determine the abandoned solution for the scout, if 
exist, and replace it with a new randomly produced 
solution 

 
by (4); 

Memorize the best solution globalx achieved so far; 
until  cycle = MCN or min(e) < goal 

end 

3 ABC-MNN Model 

There exists a lot of neural network architectures in the literature that work well when 
the number of inputs is relatively small, but when the complexity of the problem 
grows or the number of inputs increases, their performance decreases very quickly. 
The MNN is used in such cases which work as a combination of neural networks. The 
idea shares conceptual links with "divide and conquer" methodology. The MNN has a 
hierarchical organization comprising multiple neural networks which is responsible 
for solving some part of the problem. The combination of estimators may be able to 
exceed the limitation of a single estimator. 

The ABC algorithm has a strong ability to find global optimistic result. MNN is 
especially efficient for certain classes of regression and classification problems, as 
compares to the conventional monolithic artificial neural networks [13]. Combining 
the ABC with the MNN, a new hybrid algorithm (ABC-MNN) is proposed in this 
paper. The algorithm is made up of Data Division Module (DDM), ABC-NNi Module 
and Integration Module (IM). The structure of the ABC-MNN is shown in figure 1. 

 

Fig. 1. Architecture of the ABC-MNN 

Assume that the input sample is (X, T), where ( , , … , )  is input 
vectors, m is the number of the samples, ∈ | , T is the target output and O is the 
actual output . The dataset has C classes.  

Data Division Module (DDM) works to divide the dataset. For each module of 
ABC-NN, the dataset X is divided into two categories, so it produces C datasets 
according to the number of the categories of the dataset. Each dataset has only two 
categories, i.e., th class and non- th type. The C dataset is noted as , , … . 

 

O
IM

ABC-NN1

 

ABC-NNi

 

ABC-NNC

 

X DDM 
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( , )|  is the input vectors and  is the new target vectors  

Each dataset Si corresponds to a ABC-NNi Module. The ABC-NN is an independent 
ANN which is a three-layer forward neural network like the BP neural network, and 
its structure is Ân-p-1Ê, where p is the number of the hidden layer node. The input of 
the model ABC-NNi is the dataset . At this stage, ABC is used to evolve the 
synaptic weights of sub-neural network ABC-NNi so as to obtain a minimum Mean 
Square Error (MSE) as well as a minimum classification error (CER) for the th class 
of data. Supposing in the well trained network ABC-NNi, using yij to denote the 
output of the th sample.  

Integration Module (IM) is used to integrate the outputs of all ABC-NN modules. 
Using oj to denote the category of the th sample and  means that the th 
sample belongs to th class. Here the winner-take-all rule is used. , which , , … , . So the th sample is identified as the th class. 

4 Experiments and Comparison    

Several experiments are performed in order to evaluate the accuracy of the ABC-
MNN designed by means of the proposal. The accuracy of the ABC-MNN is tested 
with four pattern classification problems which are taken from UCI machine learning 
benchmark repository [14]: Iris, Glass, Segment and Optdigits. Their characteristics are 
given in Table 1. 

Table 1. Datasets characteristics 

Datasets Observations Features Classes Respective observations 

Iris 150 4 3 50,50,50 
Glass 214 9 6 70,76,17,13,9,29 

Segment 2310 19 7 330,330,330,330,330,330,330 
Optdigits 5620 64 10 541,573,556,552,595,584,549,572,536,562 

 
The parameters of the ABC algorithm and the network are set to the same value for 

all the dataset problems: Colony size (NP = 40), number of food sources NP/2, limit = 
50, the maximum number of cycles is MCN = 500, the minimum of the MSE function 
(1) is goal=0.01 and the transfer function is sigmoid function. 

20 experiments using each dataset are performed. Ten for the case of ABC-NN 
model and ten for the ABC-MNN model. For each experiment, each dataset is 
randomly divided into two sets: a training set and a testing set, this with the aim to 
prove the robustness and the performance of the methodology. The same parameters 
are used through the whole experimentation. 

Once generated the ANN for each problem, we proceed to test their accuracy. 
Table 2 shows the best, average and worst percentage of classification for all the 
experiments using ABC-NN and ABC-MNN. In this Table, we can observe that the 
best percentage of recognition for most databases is achieved only during training 
phase. The accuracy slightly diminish during testing phase, but the Glass problem is 
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more serious. However, the results obtained with the proposed methodology ABC-
MNN are highly acceptable and stable. The training and testing accuracy of the ABC-
MNN methodology are highly enhanced and more stable. For the worst values 
achieved with the ANN are also represented. Particularly, the dataset that provides the 
worst results is the Glass problem which is very complicate and imbalance. 
Nonetheless, the accuracy achieved is highly acceptable. 

From these experiments, we observe that the ABC algorithm is able to find the best 
configuration for an ANN given a specific set of patterns that define a classification 
problem. The experimentation shows that the design generated by the proposal 
presents an acceptable percentage of classification for training and testing phase with 
the MNNs. 

Table 2. Comparison of training and testing accuracy 

Dataset  
ABC-NN ABC-MNN 

Training(%) Testing(%) Training(%) Testing(%) 

Iris 
best 99.12 97.22 99.12 97.22 

average 97.45 96.66 98.15 97.22 
worst 96.49 94.44 97.36 97.22 

Glass 
best 76.54 75.00 83.95 76.92 

average 75.55 71.15 82.77 74.42 
worst 74.69 63.46 80.86 73.07 

Segment 
best 90.55 89.72 95.27 94.77 

average 88.69 87.10 94.98 93.36 
worst 86.29 83.97 94.52 91.81 

Optdigits 
best 81.46 78.46 92.93 89.59 

average 76.67 71.94 92.21 88.19 
worst 68.21 62.66 91.49 87.25 

5 Conclusions 

In this paper, a new hybrid method for combining the MNN with ABC algorithm is 
proposed. From the foregoing experimental researches, it is concluded that the MNNs 
which are evolved by ABC algorithm are characterized by satisfying approaching 
results and high training speed. In this work we also test the performance of the ABC 
algorithm. Although the ABC-MNN has exceeded the traditional algorithm in 
convergence speed and classification precision, it still needs to span broad activities 
and require consideration of multiple aspects. The classifiers of imbalanced datasets 
are also needed further study. 
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Abstract. High instantaneous peak power of the transmitted signals is the main 
obstacle of orthogonal frequency division multiplexing (OFDM) systems for its 
application, therefore, the peak to average power ratio (PAPR) reduction has 
been one of the most important technologies. Among all the existing methods, 
partial transmit sequences (PTS) is a distortionless phase optimization tech-
nique that significantly improves PAPR performance to with a small amount of 
redundancy. However, the computational complexity in conventional PTS in-
creases exponentially with the number of subblocks. In this paper, an intelligent 
optimization method is proposed for PTS technique to obtain good balance be-
tween computational complexity and PAPR performance. Simulation results 
show that the proposed method can achieve better performance compared with 
conventional algorithms. 

Keywords: OFDM, Power Control, PAPR, Optimization. 

1 Introduction 

Orthogonal-frequency-division-multiplexing (OFDM) is one of the most popular 
modulation techniques because of high bandwidth efficiency and robustness to multi-
path environments [1]. 

Despite the advantages, high peak-to-average power ratio (PAPR) value of the sig-
nals is a major drawback of the OFDM systems. The high PAPR value causes in-band 
distortion and out-of-band radiation due to unwanted saturation in the high power 
amplifier (HPA).Various techniques have been proposed to handle this problem in 
recent years, including amplitude clipping, coding, nonlinear companding transform 
schemes, active constellation extension, selective mapping and partial transmit se-
quences (PTS) [2-9]. 

Among these methods, PTS is a distortionless phase optimization technique that 
provides excellent PAPR reduction with a small amount of redundancy. Nevertheless, 
finding the optimum candidate requires the exhaustive search over all combinations of 
allowed phase factors, and the search complexity increases exponentially with the 
number of sub-blocks. Hence, a suboptimal PTS method is proposed in this paper, 
which is combined with a new evolutionary optimization algorithm known as  
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adaptive acterial foraging algorithm (A-BFA). The A-BFA has been successfully used 
to solve various kinds of optimization problems and can offer good performance in 
terms of solution quality and convergence speed. Therefore, the proposed method can 
achieve better tradeoff between PAPR performance and computational complexity. 

2 OFDM Systems and PTS Technique 

With OFDM modulation, a block of N  data symbols (one OFDM symbol), 
{ , 0,1, , 1}nX n N= ⋅⋅⋅ −  will be transmitted in parallel such that each modulates a dif-

ferent subcarrier from a set n{ , 0,1, , 1}f n N= ⋅⋅⋅ − . The N  subcarriers are orthogonal, 

i.e. nf n f= Δ , where 1/f NTΔ =  and T is the symbol period. The complex envelope 

of the transmitted OFDM signal can be represented as 
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then the PAPR of the transmitted OFDM signal can be defined as 
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where E[•] denotes the expected value.  
The complementary cumulative distribution function (CCDF) is used to measure 

the PAPR performance, which represents the probability of the PAPR exceeds the 
given threshold 0PAPR  

 0CCDF Pr(PAPR PAPR )= >   (3) 

2.1 PTS Algorithm 

In a typical OFDM system with PTS technique to reduce the PAPR, the input data 
block X  is partitioned into M disjoint subblocks, which are represented by the vec-

tors  
( ) ( ) ( )( )
0 1 1{ }

m m mm
NX X X X −= ⋅⋅ ⋅ , therefore 
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Then, the subblocks ( )mX are transformed into M time-domain partial transmit se-
quences by IFFTs. These partial sequences are independently rotated by phase factors  

2
0,1, 1, { | }mj k

m m k WWb e θ πθ = ⋅⋅⋅ −=   ∈ . The object is to optimally combine the M subblocks to 

obtain the OFDM signals with the lowest PAPR 
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(5)

 

Assuming that there are W phase angles to be allowed, thus there are MD W= alter-
native representations for an OFDM symbol. The block diagram of the PTS technique 
is shown in Fig.1.  

 

Fig. 1. Block diagram of the PTS technique 

2.2 Problem Formulation 

Based on the consideration above, the problem of PTS, which is trying to find the 
aggregate of phase factors vector mb  to yield the OFDM signals with the minimum 

PAPR, can be considered as the combinatorial optimization problem. In other words, 
the objective function (6) is to minimize the PAPR of the transmitted OFDM signals. 
Constraint ensures the phase factors to be a finite set of values 
0 2 (0 1)m m Mθ π≤ <  ≤ ≤ −  

To minimize 

  

(6) 

where 2
0,1, 1{ | }k

m k WW
πθ = ⋅⋅⋅ − ∈ . Since PTS with binary weighting factors bm∈{±1}, i.e. 

W=2, attains a favorable performance-redundancy tradeoff, we concentrate on this 
choice in the following. 

Above all, the process of searching the optimal phase factors in PTS algo-
rithm can be formulated as an optimization problem with some constrains. 
Therefore, an optimal combinational scheme derived from bacterial foraging, is 
proposed to achieve better PAPR reduction with low search numbers. 
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3 PAPR Reduction with Adaptive Bacterial Foraging 
Algorithm 

Natural selection has a tendency to eliminate animals having poor foraging 
strategies and favor the ones with successful foraging strategies to propagate 
their genes as these are more likely to reach a successful reproduction. Poor 
foraging strategies are either completely eliminated or transferred into good 
ones after many generations are produced. This evolutionary process of forag-
ing inspired the researchers to utilize it as an optimization tool. The E-Coli bac-
teria present in our intestines also practice a foraging strategy. The control sys-
tem of these bacteria governing their foraging process can be subdivided into 
fouractions, which are chemotaxis, swarming, reproduction and elimination-
dispersal. 
Chemotaxis 

This process is achieved by swimming and tumbling via flagella. Depending 
upon the rotation of flagella in each bacterium, it decides whether it should 
move in a predefined direction (swimming) or altogether in different directions 
(tumbling) in the entire lifetime. 
Swarming 

During the process of reaching toward the best food location, it is always de-
sired that the bacterium which has searched the optimum path should try to pro-
duce an attraction signal to other bacteria, so that they swarm together to reach 
the desired location. In this process, the bacteria congregate into groups and 
hence move as concentric patterns of groups with high bacterial density. 
Reproduction 

The least healthy bacteria die and the other healthiest bacteria each split into 
two bacteria, which are placed in the same location. This makes the population 
of bacteria constant. 
Elimination and dispersal 

In the local environment of the bacteria, the lives of a bacteria population 
may change either gradually (e.g., via consumption of nutrients) or suddenly 
due to some other influence. All the bacteria in a local region may be killed or a 
group may be dispersed into a new location in the environment. They have the 
effect of possibly destroying the chemotaxis progress, but they also have the 
effect of assisting in chemotaxis, since dispersal may place bacteria near good 
food sources. 

3.1 Bacterial Foraging Algorithm (BFA) 

A flowchart of the BFA used in this paper is shown in Fig. 2. ( )J i, j,k

represents the cost function where i is the index of the bacterium, j  is the 

index for the chemotactic step, and k  is the index for the reproduction step. 
The BFA can be explained as follows.There are a number of external parame-

ters that control the behavior of the algorithm. These parameters include the 
number of bacteria S , maximum number of chemotactic loop CN , maximum 
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number of reproduction reN , number of search space dimensions p , divisor of 

the step size sd , swim length sN , counter for swim length m , and chemotactic 

step sizes ( ), =1,2, ,C i i S⋅ ⋅⋅ . 

 

Fig. 2. Flowchart of BFA algorithm 
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The bacterium is pointed in a random direction after a tumble. To represent a tum-
ble, a unit length random direction ( )jδ is generated; this is used to define the direc-

tion of movement after a tumble. 

 ( +1 )= ( )+ ( ) ( )i ij ,k j,k C i jζ ζ δ  (7) 

where ( )i j,kζ represents the ith bacterium at jth chemotactic and kth reproductive 

step. 
Each bacterium =1,2, ,i S⋅⋅⋅ , performs its swimming and tumbling tasks once in 

each iteration. An iteration cycle is a chemotactic process in BFA. By tumbling and 
swimming, bacteria try to reach the denser nutrition places which mean the lower cost 
function values. The bacteria which can achieve more plentiful nutrition are deemed 
as the healthier population members. When the chemotactic loop counter j  reaches 

the maximum iteration number CN , the reproduction step is performed, and then 

optimization starts again. Owing to reproduction step, the least healthier bacteria die, 
and the other healthier bacteria split into two at the same location. The new chemotac-
tic process continues with a new healthier bacteria population. These nested loops are 
performed until the reproduction loop counter k reached the maximum reproduction 
number reN . In this paper, the coordinates of bacteria represent the position values of 

phase factors. At the end of optimization process, the coordinates of bacterium with 
the lowest cost value (the healthiest member) are the optimal phase factors arrived by 
A-BFA. 

3.2 Adaptive Bacterial Foraging Algorithm (A-BFA) 

The length unit step of the basic BFA is a constant parameter which may guarantee 
good searching results for small optimization problems. However, when applied to 
complex large-scale problems with high dimensionality it shows poor performance. 
The run-length parameter is the key factor for controlling the search ability of the 
BFA. From this perspective, balancing the exploration and exploitation of the search 
could be achieved by adjusting the run-length unit. In this paper, we use a non-linear 
decreasing dynamic function to perform the swim walk instead of the constant step. 
This function is expressed as  

 
( , ) ( )

( , 1) ( )
( )

C i j C Nc
C i j Nc j

Nc C Nc

 −+ = − + 
 (8) 

where j is the chemotactic step and Nc is the maximum number of chemotactic steps 
while C(Nc) is a predefined parameter. 

The stopping criterion of the original BFA is the maximum number of the chemotac-
tic steps, the reproduction steps and the elimination/dispersal events. This criterion in-
creases the computation requirements of the algorithm in some cases. In this paper, an 
adaptive stopping criterion is applied so that the algorithm adjusts the maximum number 
of iterations depending on the improvement of the cost function. The chemotaxis  
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operation stops either when there is no improvement in the solution or when the maxi-
mum number of chemotactic steps is reached.  

3.3 A-BFA to Reduce PAPR of OFDM Signals  

As above mentioned, the steps, in which the A-BFA is presented for searching the 
optimal combination of phase factors in PTS algorithm. Initially, the phase factors 
and A-BF algorithm parameters are specified. Using randomly generated initial para-
meters, the efficiency of the PAPR reduction is determined by means of the A-BF 
algorithm. The implementation of A-BF algorithm for the PAPR reduction can be 
described as follows: 

Step 1. Input BF parameters, , , , , , ( ), =1,2, ,c s rep S N N N C i i S⋅ ⋅⋅ must be chosen. 

Step 2. Generate the positions of phase factors randomly for a population of bacte-

ria, and specify the phase factors 1{ }mj Mb e θ − = , 2
0,1, 1{ | }k

m k WW
πθ = ⋅⋅⋅ − ∈  

Step 3. Evaluate the objective value of each bacterium in the population using 
Eq(6). 

Step 4. Modify the positions of the phase factors for all the bacteria using tum-
bling/swimming process. 

Step 5. Perform reproduction and elimination-dispersal operation, and modify the 
step adaptively with formula (8). 

Step 6. If the maximum number of chemotatic, reproduction and elimination-
dispersal steps are reached, then go to Step 7. Otherwise, go to Step 4. 

Step 7. Output the equivalent phase factors corresponding to the overall best 
bacterium. 

4 Simulation Results 

In this section, we present some simulations to demonstrate the performance of the A-
BFA algorithm. Assuming that 410  random QAM modulated OFDM symbols were 
generated with 256N =  subcarriers, M=8 sub-blocks and the phase factors 

{ 1} =2)mb W∈ ±   ( .In BFA-PTS algorithm, for the consideration of tradeoff between 

PAPR performance and computational complexity, the parameters are specified care-
fully. The number of bacteria is 10S = , maximum number of chemotactic loop is 

=4CN , maximum number of reproduction is 5reN = , number of search space di-

mensions is 8p = , swim length is 4sN = . 

Especially, the maximum number of reproduction reN is the most important pare-

meter to impose the performance of proposed algorithm, thus an appropriate repro-
duction number 5reN =  is chosen to yield the best balance between PAPR reduction 

performance and complexity. Moreover, the performance of the proposed scheme in 
PAPR reduction is evaluated by the CCDF as in Fig.3 and Fig.4. 
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In Fig.3, the performance of PTS algorithm is analyzed, to compare PAPR reduc-
tion performance with A-BFA algorithm. When -3

0Pr(PAPR>PAPR ) 10= , the 

0PAPR of the original OFDM is 11dB, PTS and A-BFA improve it by 7.05dB and 

7.6dB respectively. Obviously, for M=8, W=2, the conventional PTS technique re-
quires 8=2 256MW =  iterations per OFDM frame, while the A-BFA technique re-
quires 80c s reN N N× × =  iterations per OFDM frame. It is evident that the A-BFA 

can achieve much lower computational complexity with relatively small PAPR per-
formance degradation.  

 

Fig. 3. Comparison of PAPR performance (PTS, A-BFA) 

Fig.4 shows some comparisons of the PAPR reduction performance between A-
BFA and IPTS. When -3

0Pr(PAPR>PAPR ) 10= , the 0PAPR of the original OFDM is 

11.2dB, A-BFA is 7.55dB and IPTS is 9.2dB. It is clear that, for M=8, W=2, the IPTS 
technique requires 16MW =  iterations and the BFA-PTS technique requires 

80c s reN N N× × =  iterations per OFDM frame. Compared with the IPTS algorithm, 

the A-BFA algorithm can improve 1.65 dB. From the curves in Fig.4, it is shown that 
the A-BFA can offer better tradeoff between PAPR performance and complexity 
compared with IPTS. 
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Fig. 4. Comparison of PAPR performance (IPTS, A-BFA) 

5 Conclusions 

The A-BFA is well known as powerful tool to reduce computational complexity and 
present satisfactory performance for optimization problems. Then, the A-BFA algo-
rithm is proposed to solve the optimal phase factor search in PTS technique efficient-
ly. Simulation results show that A-BFA scheme could achieve perfect balance be-
tween PAPR reduction performance and computational complexity compared with the 
conventional PTS techniques. 
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Abstract. The Neural-Network Ensemble (NNE) is a very effective method 
where the outputs of separately trained neural networks are combined to 
perform the prediction. In this paper, we introduce the improved Neural 
Network Ensemble (INNE) in which each component forward neural network 
(FNN) is optimized by particle swarm optimization (PSO) and back-
propagation (BP) algorithm. At the same time, the ensemble weights are trained 
by Particle Swarm Optimization and Differential Evolution cooperative 
algorithm(PSO-DE). We take two obviously different populations to construct 
our algorithm, in which one population is trained by PSO and the other is 
trained by DE. In addition, we incorporate the fitness value from last iteration 
into the velocity updating to enhance the global searching ability. Our 
experiments demonstrate that the improved NNE is superior to existing popular 
NNE. 

Keywords: Neural Network Ensemble, Back-Propagation, Particle Swarm 
Optimization, Differential Evolution. 

1 Introduction 

Neural Network Ensemble (NNE) is a learning mechanism which has a collection of a 
finite number of neural networks trained for the same task. In Hansen and Salamon’s 
work [1], it has been first proposed. Its main idea is that the predicting ability of a 
neural network system could be significantly improved by assembling a set of neural 
networks, for example, training many neural networks and then combining their 
predictions in some way [2]. But only by averaging, the combined prediction would 
not be effective, because in some cases, maybe some components of ensemble behave 
unsatisfactory. In [3], authors thought that it might be better to ensemble some 
components other than all of the trained neural networks; they introduced Genetic 
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algorithm based selective ensembles (GASEN), which employed genetic algorithm to 
evolve the weights assigned to each FNN for the best appropriate prediction. In [4], 
Kennedy and Eberhart put forward the binary particle swarm optimization (BiPSO) to 
optimize the NNE: in the BiPSO, the weight of each FNN could be zero or 1, and the 
ensemble problem of NNE would be transformed into selecting the best appropriate 
FNN set by PSO. Another version of PSO, denoted as DePSO, in which the weight of 
each FNN could be decimal number. 

The FNN often adopts the BP algorithm to optimize the weights. However, BP 
may lead to a failure in finding a global optimal solution [5]. But on the other part, the 
gradient descending method of BP could achieve higher convergent accuracy and 
faster convergent speed around the global optimum.  

The PSO algorithm is showed to converge rapidly during the initial stages of a 
global search. But around global optimum, the search process may become very slow, 
the improvement decreasing gradually with the searching iterating. Another 
shortcoming is that the particles would easily oscillate in different sinusoidal waves, 
converging quickly, sometimes prematurely [6] [7]. In [8], the authors proposed PSO 
and BP couple-algorithm to train the weights of FNN, where the hybrid algorithm 
could make use of both global searching ability of the PSO and local searching ability 
of the BP algorithm. [9] proposed a new kind of hybrid method which was based on 
fuzzy set theory and used PSO-BP couple algorithm to determine the weight of 
different FNN, then synthesized their assessment result to form the final output 
according to the weight. 

In our paper, we propose the improved PSO-BP-NNE mode, which means that we 
use PSO and BP to train each component FNN, and then use the Particle Swarm 
Optimization and Differential Evolution cooperative algorithm(PSO-DE) to optimize 
the NNE. There are two stages: In the FNN training stage, firstly, we use PSO to train 
each component FNN, when the constrain-condition is reached, we apply the BP 
algorithm into training until the new termination condition reached. In the NNE 
training stage, we present the multi-populations cooperative optimization (PSO and 
DE) to train the weight of each component FNN. In addition, we introduce an 
improved PSO algorithm which incorporates the fitness function into the velocity 
updating. In our experiment, the proposed algorithm is verified superior to the general 
NNE which is optimized by single algorithm.  

2 Component Neural Network Optimized by PSO and BP 

The gradient descending technique proposed by Werbos [10], is widely used in 
optimizing and training FNN. But it has its own disadvantage which is sensitive to the 
initial weight vector, often leading to a different result by virtue of different weight 
vector. The disadvantage leads trapping in a local solution which is bias to the best 
solution. But it could achieve faster convergent speed around global optimum, due to 
the reasons above, we introduce the PSO and BP couple-algorithm to optimize the 
FNN. The detailed gradient descending technique is described in [10] and [11].  
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Fig. 1. The forward neural network architecture 

The idea of BP is to make the error back-propagate to update the parameters of 
FNN, and the parameters include two sections: one is between the input-layer and 
hidden-layer, the other is between hidden-layer and output-layer. If we suppose that 
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ji

jijijiji v

E
tvvtvtv

∂
∂−=Δ+=+ 1)()()1( η  

 
(2) 

kh

kjkjkjkj w

E
twwtwtw

∂
∂−=Δ+=+ 2)()()1( η  

 
  (3) 

We could get the updating formula of the two thresholds, as follows: 

1

11111 )()()1(
j

jjjj

E
ttt

θ
ηθθθθ

∂
∂+=Δ+=+  

 
(4) 



370 Z.-S. Zhao et al. 

 

2

22222 )()()1(
k

kkkk

E
ttt

θ
ηθθθθ

∂
∂+=Δ+=+  

 
(5) 

Where 21 ,ηη is the learning rate. 

But it should be noticed that the learning rate which controls the convergence to a 
local optimal solution is often determined by experiments or experience. If it is not 
ideal enough, it would easily result in oscillating of the network and could not 
converge rapidly.  

The PSO algorithm could be described as a swarm of birds or pigeons hovering in 
the sky for food. We assume the pigeon swarm as a random particle swarm, and each 
particle stands for one bird. Every bird has its own location and flying-velocity. One 
swarm has m  particles, and the number of dimensions of every particle is n , 
denoted as )...,( 21 iniii xxxX = and )...,( 21 iniii vvvV = where iX and iV are the position 

and velocity of the thi −  particle in n dimensional space. At each step of iterations, 
the particles update their positions and velocities according to the two best values: 

One is )...,( 21 iniii pppP = , representing the previous best value of thi − particle up 

to the current step. Another is )...,( 21 ni gggG = , representing the best value of all 

particles in the population. After obtaining the two best values, each particle updates 
its position and velocity according to the following equations: 
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Here, rand() is a random number in the range [0, 1] generated according to a uniform 
probability distribution. In the general PSO, the learning actors 1c and 2c are positive 

constants, usually 8.21 =c , 3.12 =c . tw is the inertial weight used to balance global 

and local searching. The detailed description could be referred in [12].  
In the general PSO mechanism, the fitness values are used to select the best 

solutions. But the direct relation between the sequential iterations is usually ignored. 
In many cases, the values of the fitness mean the distance between the current 
location and the real best location. Incorporating the fitness value could enhance the 
global search-ability and diversity of the particle swarm. 

Based on the motivation above, we introduce the improved PSO: 
if  θ>)( k

ixfitness  (θ  is the given threshold ) 

       k

i

k

i

k

i vxfitnessv ×= )(ˆ  

else   k

i

k

i

k

i vxfitnessv ××= ξ)(ˆ  (Where ξ  is the acceleration constant) 

endif  

The improved updating equations list as follows: 
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The procedures for PSO–BP couple algorithm could be summarized as follows: 
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Step 1: Initialize the swarm of PSO: get M particles, set the initial weight w  and 

learning factor 1c , 2c , the maximal iterative generations psoT −max and BPT −max . 

Step 2: Evaluate the fitness of each particle of PSO, ipbest  represents the previous 

best value of the thi − particle up to the current step. gbest  represents the best value 

of all the particles in the population. 
Step 3: Do step 3 until psoTt −> max or do step4 if the best position has not changed 

for several iterations, or else, return to the step 4. 
Step 4: Do BP algorithm until BPTt −> max .   

Step 5: if  Egbestfitness <)(  (E is the given threshold)    

          Output the prediction and MSE 
      else  Continue to do BP for several iterations. 
          Output the prediction and MSE 

    endif  

3 Neural Network Ensemble Optimized by DE-PSO 

The authors have described the NNE in detail in[13][14]. Having obtained each 
refined component FNN as described in Section II, we would concentrate on how to 
combine the output of each component FNN.  
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where )(xfi represents the output of the thi − FNN and iw  represents the importance 

of the thi −  FNN. Our idea is that, for the best appropriate prediction how to 
optimize iw  of each sub-network, which corresponds to the solution of the 

optimization problem of the particles. But in [13], the authors recommended to 
average the weight of each sub-network. In this paper, we introduce the multi-
population cooperative algorithm which could not only avoid trapping into the local 
solution, but also increase the diversity of particles. Here we introduce another global-
searching algorithm, differential evolution algorithm [15]. DE is also a floating-point 
encoded evolutionary algorithm for global optimization over continuous spaces, but it 
creates new candidate solutions by combining the parent individual and several other 
individuals of the same population. It consists of selection, crossover and mutation.  

In [16] [17], authors utilized DE to optimize PSO to improve the efficiency and 
precision. The cooperative algorithm tends to compensate for disadvantage of the 
individual method and could be apt to the best solution. We also incorporate this idea, 
but in every iteration, the two populations optimized respectively by different 
algorithms would be compared and to select the best appropriate solution which 
determines the evolution direction. 
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Our architecture is as follows. 
 

 

Fig. 2. The sketch diagram of the whole mechanism 

The procedure for NNE-multi-population algorithm could be summarized as 
follows: 
 Step 1: Initialize the weight of each FNN which has been optimized by PSO and BP. 
 Step 2: Each particle represents a set of weights which means that each dimension 
represents one weight of each component FNN .The population is duplicated into 2 
identical swarms. 
 Step 3: One swarm is optimized by PSO and the other is optimized by DE 
respectively. 
 Step 4: After each Step3, the psogbest _ and DEgbest _ are calculated. 

        )_,_max( DEgbestpsogbestgbest =  

Step 5: Do the Step 3-Step 4 loop until the Max-iteration is reached. 
Step 6: Output the MSE. 

4 Experiment 

To test the efficiency of the improved NNE, we perform the comprehensive 
experiments to compare different optimization methods. We select the input-sample 
set for training from }4:08.0:4{−=X with 100 samples, we could get the expected 

output via the equation )2/(2 2

)21(1.1 xexxy −⋅⋅+−×= . We suppose the test-sample 

}96.3:08.0:96.3{ˆ −=X with 100 samples. We regard the MSE, the mean square 

error between the real-output and the expected-output, as the measure variable. 
The performance is compared between various ensemble ways with the different 

component FNN and different ways to combine the output of each component FNN. 
In our experiment, there are three kinds of component FNN: optimized by BP, 
optimized by PSO, optimized by PSO and BP. The ensemble weights of NNE are 
optimized in five ways: simple averaging, general PSO, improved PSO, multi-
population improved PSO and multi-population improved PSO and DE, which are 
listed in the following table.  
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Table 1. The train-MSE and test-MSE comparison between five ensemble ways with each FNN 
optimized by three ways 

The optimized
method of NNE 

Each component  
FNN optimized by
BP 

Each component  
FNN optimized by 
PSO 

Each component FNN 
optimized by PSO and 
BP 

MSE-train MSE-test MSE-train MSE-test MSE-train MSE-test 

Simple average 0.4543 0.4154 0.0133 0.0134 5.1015e-
007 

4.9619e-
007 

General 
 PSO 

0.4324 0.4031 0.0056 0.0055 1.8851e-
007 

1.8320e-
007 

Improved PSO 0.3348 0.3095 0.0058 0.0057 1.4201e-
007 

1.4180e-
007 

Multi-population 
Improved PSO 

0.2883 0.2616 0.0046 0.0043 7.0418e-
008 

6.7776e-
008 

Multi-population 
Improve PSO and 
DE 

0.1997 0.1905 0.0041 0.0044 4.5633e-
008 

4.3873e-
008 

 
From Table I, the results which are related to individual networks optimized by 

different algorithm have been listed. It could see that, the individual network 
optimized by BP and PSO couple-algorithms does better than other algorithms. 
Among different NNE training algorithms, we could discover that the multi-
population cooperative algorithm is superior to the other NNE trained algorithms. 

5 Conclusion 

In this paper, the superiority of individual networks optimized by different algorithm 
is analyzed, which reveals that in some cases the ensemble mechanism is superior to 
the simplex neural network. The weights of NNE also reveals the importance of 
individual networks, Experimental results show that multi-population cooperative 
algorithm is a promising ensemble approach that is superior to both averaging all and 
our other enumerating algorithms.  
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 for Classification of Remotely Sensed Images 
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Abstract. Fuzzy k-means clustering algorithms have successfully been applied 
to digital image segmentations and classifications as an improvement of the 
conventional k-means cluster algorithm. The limitation of the Fuzzy k-means 
algorithm is its large computation cost. In this paper, we propose a Successive 
Over-Relaxation (SOR) based fuzzy k-means algorithm in order to accelerate 
the convergence of the algorithm. The SOR is a variant of the Gauss–Seidel 
method for solving a linear system of equations, resulting in faster convergence. 
The proposed method has been applied to classification of remotely sensed im-
ages. Experimental results show that the proposed SOR based fuzzy k-means 
algorithm can improve convergence speed significantly and yields comparable 
similar classification results with conventional fuzzy k-means algorithm. 

Keywords: Remotely Sensed Image, Successive Over-Relaxation, Fuzzy k-
means, Classification. 

1 Introduction 

K-means algorithm is a widely used clustering technique[1], which aims to find a 
grouping (cluster) of unlabeled data points, whose members are more similar each 
other than they are to others. The centroid of each cluster is the mean of all the mem-
bers in the cluster. Fuzzy k-means (FKM) was originally introduced by Bezdek[2] as 
an improvement of conventional k-means clustering algorithm. Unlike traditional 
hard clustering schemes, such as k-means [1], that assign each data point to a specific 
cluster, the FKM employs fuzzy partitioning such that each data point belongs to a 
cluster to some degree specified by a Fuzzy membership grade [3-5]. Both K-means 
[6] and Fuzzy K-means [7,8] algorithms have been successfully applied to classifica-
tion of remotely sensed images. Classification or region segmentation of a satellite 
image (remotely sensed image) is an important issue for many applications, such as 
remote sensing (RS) and geographic information system (GIS) updating. The satellite 
image is a record of relative reflectance of particular wavelengths of electromagnetic 
                                                           
∗ Corresponding author.  
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radiation. A particular target reflection depends on the surface feature of the target 
and the wavelength of the incoming radiation. Multi-spectral information has been 
widely used for classification of remotely sensed images [9-11]. It has been shown 
that the FKM is very powerful for image classification such as remotely sensed image 
classification than the conventional k-means clustering algorithm. The main limitation 
of FKM is its large computation cost. In this paper, we propose a Successive Over-
Relaxation (SOR) based fuzzy k-means algorithm in order to accelerate the conver-
gence of the algorithm. The SOR is a variant of the Gauss–Seidel method for solving 
a large system of linear equations, resulting in faster convergence [12,13] and it has 
been used for many applications such as support vector machine [14]. The proposed 
method has been applied to classification of remotely sensed images. Experimental 
results show that the proposed SOR based fuzzy k-means algorithm can improve con-
vergence speed significantly and yields comparable similar classification results with 
conventional fuzzy k-means algorithm. 

2 Fuzzy k-Means Clustering 

Let X＝{x1,x2,…,xn} be a set of given data and M={m1,m2,…,mk} be a set of cluster 
centers. The idea of the FKM is to partition n data points into K clusters by 
minimizing the following objective function: 

1 1

( ( )) ( , )
k n

b
FKM j i ij i j

j i

J x d x mμ
= =

= . (1) 

where b is the weighting exponent which determines the fuzziness of the clusters. 
Distance from i-th sample to j-th cluster center defines as:  

μj(xi) indicates the membership degree to which data point xi belongs to j-th cluster. It 
should be noted that μj(xi)=1 in conventional K-means algorithm. 

1

0 ( ) 1 1,..., , 1,...,

( ) 1 ,

j i

k

j i
j

x i n j k

x i

μ

μ
=

≤ ≤ = =

 = ∀
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In order to minimize the objective function, following two gradient equations are set 
to zero and solved for mj and μj(xi), respectively. 

2( , ) || ||ij i j i jd x m x m= −  . (2) 
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3 SOR Based Fuzzy K-Means Clustering Algorithm 

The SOR is devised by applying extrapolation to Gauss-Seidel(GS). This extrapola-
tion takes the form of a weighted average between the previous iteration and the com-
puted GS iteration successively for each component. Suppose a linear equation to be 
solved as 
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The solution xi can be solved by the use of SOR as  

xi
(k ) = (1− w)xi

(k−1) + w

aii

− aij x j
(k ) − aijx j

(k−1) + bi

j=i+1

n


j=1

i−1














. (7) 

Where w is the extrapolation (weighting) factor or Relaxation factor. It has be proven 
that ０< w <2 will lead to convergence [13]. 

Convergence condition 

( 1) ( ) ( 1)

1 1

N N
k k k

i i i
i i

y y yε+ +

= =

− <   . (8) 

where ε is an infinitesimal positive number. 
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We apply SOR to FKM algorithm in order to accelerate the convergence of FKM 
algorithm. The algorithm of our proposed SOR based FKM (SFKM) is summarized as 
the following steps: 

Step1. Initialize 0
1m , 0

2m ,..., 0
km ,  0 ( )j ixμ , j =1,…, k; i =1,…,n. 

Step2. Normalize 0 ( )j ixμ
 
by Eq.3 

Step3. Update the cluster centers 
1N

jm +

 
by the equation 
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And 

Step4. If εμμ <−+ |||| )1( NN , stop iterating; Otherwise, return to Step3. 

4 Experimentation Results and Analysis 

The original remotely sensed image is true-color composite image which sizes is 
1024*768, which is shown in Fig.1. The number of clusters (K) is set to 6. In general, 
values of w>1 are used to speedup convergence of a slow-converging process, but it is 
not possible to compute in advance the value of w that will maximize the rate of con-
vergence of SOR. We use the gradually experimental method (GEM) [13] to deter-
mine the relaxation factor w. We experiment by setting w with 1.25, 1.5, and 1.75 and 
discuss their performance. For each w, five experiments have been done with different 
initial parameters. Experimental environments is shown in below: Intel Core(TM)2 
CPU1.66GHz; 2.5GB ram and Matlab7.0. 

 
 
 

2( , ) || ||N N
ir i r i rd x m x m= −  . (11) 
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Typical classification results are shown in Fig.1. Fig.1(a) is the original image. 
Fig.1(b) is the classification result using the conventional FKM. Figs.1(c)-(e) are 
classification results using our proposed SFKM method with different w values. 
Fig.1(f) shows the difference of Fig.1(b) (the conventional FKM) and Fig.1(e) (our 
proposed SFKM, w=1.75). As shown in Fig.1(f), there are no difference between 
Fig.1(b) (the conventional FKM) and Fig.1(e) (our proposed SFKM), i.e. our pro-
posed SFKM can obtain the classification result of the same accuracy as the conven-
tional FKM. The convergence of our proposed SFKM and the conventional FKM are 
shown in Fig.2. In Fig.2, the vertical axis is value of the objective function as shown 
in Eq.(1) and the horizontal axis is iteration number. Since the iteration covers a large 
range of numbers, the convergence is shown on a logarithmic scale. Fig.2(a) shows 
the convergence of the conventional FKM, while Figs.2(b)-(d) show results of our 
proposed SFKM with w=1.25, w=1.5 and w=1.75, respectively. It can be seen that our 
proposed SFKM is much faster than the conventional FKM. Detailed comparison of 
computation time is summarized in Table 1. As shown in table 1, for our proposed 
SFMK, each averaged iteration count for w=1.25, 1.5, 1.75 was 213, 124, 101 and 
each averaged computation time for w=1.25, 1.5, 1.75 was 369s, 269s, 205s, while for 
conventional FKM, the averaged iteration count for convergence is 343 and the aver-
aged computation time is about 708.5s. Based on the experimental results, the better 
value of the extrapolation factor w is 1.75. By the use of our proposed SFKM, the 
computation time can be reduced to about 1/3.5. 

 

 
Fig. 1. Classification results of FKM and SFKM 
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Fig. 2. Convergence situations of FKM and SFKM 

 

Table 1. Comparison of the proposed SFKM and the conventional FKM 

 Exp 1 2 3 4 5 Avg. 

SFKM 

w=1.25 

Iteration 
count 

205 205 226 216 213 213 

Runtime 354.4s 355.0s 392.1s 375.4s 370.4s 369.5s 

w=1.5 

Iteration 
count 

117 101 127 165 107 124 

Runtime 256.3s 220.4s 277.5s 360.4s 233.5s 269.6s 

w=1.75 

Iteration 
count 

137 98 120 57 95 101 

Runtime 278s 198s 242.3s 115.1s 191.7s 205s 

FKM 

Iteration 
count 

368 356 355 296 337 343 

Runtime 762.6s 735.1s 734.4s 612.2s 698.4s 708.5s 



 SOR Based Fuzzy K-Means Clustering Algorithm for Classification 381 

 

5 Conclusions 

In this paper, we proposed a Successive Over-Relaxation (SOR) based fuzzy k-means 
algorithm for classification of remotely sensed images. Experimental results show that 
the proposed SOR based fuzzy k-means algorithm can improve convergence speed 
significantly and yields comparable similar classification results with conventional 
fuzzy k-means algorithm. The computation time was shortened by ~1/3.5. The pro-
posed method can be considered as an improvement of the conventional fuzzy k-
means algorithm and it can be applied to a lot of applications. 

Acknowledgments. This research was supported in part by 863 Project “Research on 
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Abstract. In this paper, we propose an algorithm for 12-leads ECG
signals feature extraction by Uncorrelated Multilinear Principal Compo-
nent Analysis(UMPCA). However, traditional algorithms usually base
on 2-leads ECG signals and do not efficiently work out for 12-leads sig-
nals. Our algorithm aims at the natural 12-leads ECG signals. We firstly
do the Short Time Fourier Transformation(STFT) on the raw ECG data
and obtain 3rd-order tensors in the spatial-spectral-temporal domain,
then take UMPCA to find a Tensor-to-Vector Projection(TVP) for fea-
ture extraction. Finally the Support Vector Machine(SVM) classifier is
applied to achieve a high accuracy with these features.

Keywords: ECG, Feature Extraction, Tensor, UMPCA.

1 Introduction

Electrocardiography(ECG) is a transthoracic interpretation of the electrical ac-
tivity of human heart. ECG recognition and analysis are widely researched in
recent years, with eyes to auto-diagnosis of heart disease, big data service and so
forth. Many algorithms on machine learning have been proposed for ECG feature
extraction, so as to achieve good classification accuracy. Zhao et al. put forth
an effective method using wavelet transform and SVM classifier[1]. Alexakis et
al. described an algorithm combining artificial neural networks(ANN) and Lin-
ear Discriminant Analysis(LDA) techniques for feature extraction[2]. Zhang et
al. took the Principal Component Analysis(PCA) algorithm to extract feature
of ECG signals[3]. Besides, An ECG feature extraction scheme using Gaussian
Mixture Model(GMM) was presented by Roshan et al in [4].

The 12-leads ECG signals provide most spatial information about the heart’s
electrical activity in 3 approximately orthogonal directions. If the whole 12-leads
information of raw ECG signals are used, more robust features can be extracted
for more widely and deeply analysis. As a result, efficient representation and high
classification accuracy of ECG signals can be achieved. But most researches
are limitedly based on 2-leads ECG signals because of lack of 12-leads ECG
database. Besides, traditional methods usually require the reshaping of multi-
leads ECG data into vectors in a very high-dimensional space. This increases the
computational complexity and memory demands, also discards much meaningful
structural information of raw ECG data. As a result, the Tensors, which are

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 383–390, 2013.
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closer to the natural structure of ECG signals, are adopted as more effective
representation of ECG.

In this paper, we have proposed a tensor-based algorithm of feature extraction
for the 12-leads ECG signals, which are represented by 3rd-order tensors, i.e. 12-
leads signals in the spatial-spectral-temporal domain. Firstly We use STFT on
the raw ecg signals to create tensors. Secondly Uncorrelated Multilinear Princi-
pal Component Analysis (UMPCA) is taken to find a Tensor-to-Vector Projec-
tion(TVP) to extract feature. Finally Support Vector Machine(SVM) with Ra-
dial Basis Function(RBF) kernel is called for classification in the feature space.
We test this proposed method based on private large-scale database, and achieve
high classification accuracies.

Raw ECG Data
(lead × time)

1 Noise cancellation
2 Segmentation
3 Wave Alignment

Data Preprocessing

Tensor ECG Data
(lead × time×
frequency)

Short Time Fourier Transform

Uncorrelated Multilinear Principal
Component Analysis(UMPCA)

Training Data

UMPCA
Projection Vector

Testing Data

Training
Feature
Vector

Testing
Feature
Vector

SVM
Classifier

Model
Training

Model
Testing

Predicting Class Labels

Fig. 1. The Framework of the Algorithm

The rest of the paper is organized as follows: Section 2 introduces the concrete
procedure for feature extraction based on tensor representation using UMPCA.
Section 3 demonstrates the experiment results. Section 4 is our conclusion.

2 UMPCA Based Algorithm

2.1 ECG Database

In this study, we use a large ECG database get from the local hospital, which
consists of 3,000 pieces high quality 12-leads ECG records. Each piece contains
10 to 25 heartbeats, and there are 47,279 beats in total. All these records are
detected from wide ranges of people: male and female, old and young, healthy
and ill. We take the doctors’ diagnosis as the label for the beats. Also we have
6 types of labels as follows:

2.2 Data Pre-process

The raw ECG signals are usually interfered with random and background noises
while acquisition. In the first step of pre-process, we used wavelet transformation



UMPCA Based Feature Extraction for ECG 385

Table 1. Database used in this study

Label Abbreviation Number

Normal beat N 15991
Sinus bradycardia S 11775
Electrical axis left side E 6846
Left ventricular hypertrophy V 1700
Right bundle branch block beat R 8014
Left bundle branch block beat L 2953

to cancel high-frequency noises, and used median filter to eliminate the baseline
drift. The second part is R-wave alignment and beat segmentation, after that
we get several pieces of ECG signals, each containing single heartbeat.

2.3 Short-Time Fourier Transform

The raw ECG signals only represent the features in the spatial-temporal domain.
In order to transform the original signals into the spatial-spectral-temporal do-
main, we use Short Time Fourier Transform(STFT)[5]. We demote S as a 12-
leads(lead×time) ECG signal sample, s[l, n] as the discrete-time signal at time
n for lead l, then the short-time Fourier transform at time n�t and frequency
f is defined as:

STFT{s[l, n]}(m,w) ≡ S(l,m, n)

= Σ∞
m=−∞ω(n−m)s(l,m)e−j2πfm

(1)

likewise, with signal s[n] and window w[n]. In this case, we choose to use the
hann window, and transform all the raw signals to 3rd-order tensors as a result.

2.4 Uncorrelated Multilinear Principal Component Analysis

Uncorrelated Multilinear Principal Component Analysis(UMPCA) accepts gen-
eral tensors as input for pattern classification[6]. Utilizing the Tensor-to-Vector
Projection(TVP) principle, it parallelizes the successive variance maximization
approach seen in the classical PCA derivation. In UMPCA, a number of Ele-
mentary Multilinear Projections(EMPs) are solved to maximize the captured
variance, subject to the zero-correlation constraint.

Multilinear Fundamentals. We generally denote the tensor representation
of ECG signals as an N -th order tensor T ∈ RN1×N2×...×Nn with N indices
in,n=1,2,...,N, and each in addresses the n-mode of T. The n-order product of
T by a matrix M ,denoted by T×M, is a tensor as:

(T× nM)(i1, ..., in − 1, jn, in + 1..., iN ) = ΣinT(i1, ..., iN)×M(jn, in). (2)
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The scalar product of two tensors T1,T2 ∈ RN1×N2×...×Nn is defined as:

< T1,T2 >= Σi1 ...ΣiNT1(i1, ..., iN)T2(i1, ..., iN ). (3)

Tensor-to-Vector Projection. TVP is a generalized version of the projection
framework firstly introduced in [7]. It consists of multiple EMPs. An EMP is a

multilinear projection {u(1)T , u(2)T , ..., u(N)T } comprised of one unit projection
vector per mode. The TVP from a tensor T ∈ RN1×N2×...×Nn to a vector y ∈ RP

consists of P EMPs{up(1)T , up(2)T , ..., up(N)T },p = 1,...,P, which can be written
as:

y = T×1
n=1 {u(n)Tp , n = 1, ..., N}Pp=1, (4)

where the pth component of y is obtained from the pth EMP as:

y(p) = T×1 u
(1)T

p ×2 u
(2)T

p ...×N u(N)T

p (5)

Uncorrelated Multilinear Principal Component Analysis. In our model,
we have a set of M tensor object set {X1, X2, ..., XM} for training, where Xm ∈
RI1×I2×...×IN and In is the n-mode dimension of the tensor. Our objective is to

determine a TVP ,which consists of P EMPs {u(n)Tp , n = 1, ..., N}Pp=1, so that we

can map the origin tensor space RI
1⊗RI

2⊗...⊗RI
N into a vector subspace RP (with

P < ΠN
n=1In), as it shows in (4). We also denote gp as the pth coordinate vector,

which is the representation of the training samples in the pth EMP space. Its
mth component gp(m) = ym(p).

Following the standard derivation of PCA provided in [8],the variance of the
principal components is considered one at a time, starting from the first principal
component that targets to capture the most variance. In the setting of TVP, we
denote Sy

Tp
to measure the variance of the projected samples:

Sy
Tp

= ΣM
m=1(ym(p)− ȳp)

2 (6)

which is maximized in each EMP, subject to the constraint that the P coordinate
vectors {gp ∈ RM , p = 1, 2, ...P} are uncorrelated.

Generally, our objective is to determine a set ofPEMPs {u(n)Tp , n = 1, ..., N}Pp=1

that maximize the variance captured while producing uncorrelated features. The
objective function for determining the pth EMP can be expressed as:

{u(n)Tp , n = 1, ...N} = argmaxΣM
m=1(ym(p)− ȳp)

2, (7)

subject to u(n)
T

p u(n)p = 1 and
gTp gq

‖gp‖‖gq‖ = δpq, p, q = 1, ..., P, (8)

where δpq is the Kronecker delta defined as:

δpq =

{
1, if p = q
0, Otherwise

(9)
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Thus, given our tensor ECG samples X, the corresponding UMPCA feature
vector y is obtained as:

y = X×1
n=1 {u(n)Tp , n = 1, ..., N}Pp=1. (10)

To solve the problem in (7), we take the successive variance maximization ap-

proach. The P EMPs {u(n)Tp , n = 1, ..., N}Pp=1 are sequentially determined in P
steps. This procedure goes as follows:

Step 1:Determine the 1st EMP {u(n)T1 , n = 1, 2, ...N} by maximizing Sy
T1
.

Step 2:Determine the 2nd EMP {u(n)T2 , n = 1, 2, ...N} by maximizing Sy
T2

subject to the constraint that gT2 g1 = 0.

Step 3:Determine the 3rd EMP {u(n)T3 , n = 1, 2, ...N} by maximizing Sy
T3

subject to the constraint that gT3 g1 = 0 and gT3 g2 = 0.

Step p(4,...,P):Determine the pth EMP {u(n)Tp , n = 1, 2, ...N} by maximiz-
ing Sy

Tp
subject to the constraint that gTp gq = 0 for q = 1,...,p-1.

Since the determination of each EMP {u(n)p , n = 1, ..., N} is iterative in nature,
and solving the projection vector in one mode requires the projection vectors in
all the other modes, we use random initialization to draw each element of the n-

mode projection vectors {u(n)p } from a zero-mean uniform distribution between
[-2.5,2.5], with normalization to have unit length as well. In each iteration, the
update of projection vector un

∗
p in a given mode n∗ always maximizes Sy

Tp
, so

the scatter Sy
Tp

is non-decreasing. Therefore, UMPCA is expected to convergence
over iterations. The iterative procedure terminates when

Sy
Tp(k)

− Sy
Tp(k−1)

Sy
Tp(k−1)

< η, (11)

where Sy
Tp(k)

is the total scatter captured by the pth EMP obtained in the kth

iteration of UMPCA and η is a small number threshold. Alternatively, the con-
vergence of the projection vectors should also satisfy the inequality:

dist(u
(n)
p(k), u

(n)
p(k−1)) < ε, (12)

where

dist(u
(n)
p(k), u

(n)
p(k−1)) = min(‖u(n)p(k) + u

(n)
p(k−1)‖, ‖u(n)p(k) − u

(n)
p(k−1)‖) (13)

and ε is a small number threshold which we define it as 10−4. Also we need
to take the computational cost into consideration, a maximum number of iter-
ations K(e.g. K = 30) is set to terminate iterative procedures in practice for
convergence.

2.5 SVM-Based Classification

The high-performance Support Vector Machine(SVM)[9] is taken as our clas-
sifier. The Gaussian Radial Basis Function(RBF), is used for Multicategory
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Classification. With Cross-Validation, two parameters: C,λ(λ =
1

2σ2
), are ad-

justed for good classification effect. In this work, we set C = 16 and λ = 1.4142.

3 Experiments and Results

To evaluate the proposed tensor-based algorithm, we test it on our lab’s private
database. After using STFT on each single heartbeat records and get 3rd-order
tensor representation for ECG signals, we split these records into two datasets:
the training set and the testing set. We use the training set for UMPCA and
find a TVP, and extract features from both training set and testing set. Finally
we use the training set to train the SVM Classifier Model, with which we use
the testing set for classification.
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Fig. 3. Data Distribution in 3D

We split the original whole records into two sets randomly: the training set
consists of 24000 beats, the testing set consists of 23279 beats. In the first step
of UMPCA, random initialization discussed in previous Section are tested up to
30 iterations, with the projection order fixed. Fig.2 shows the simulation results
on the training sets.

Then we obtain the TVP for projection, with which we transform all the
3-order tensor data into 20-dimension feature vectors. Fig.3 shows the data dis-
tribution of three of the six classes ECG heartbeats in 3D feature space(Green
for N,Brown for S,Light Blue for L), from which we know that different heart-
beats are well separated. Fig.4 shows that twenty is a good number of dimension
to use. Finally, we use SVM for optimal classification. Fig.5 shows result details,
in which the cell in ith row and jth column means the number of heartbeat which
is the ith type in fact, and predicted as the jth type in experiment. Additional,
Table 2 shows the statistical results for each type of beats.
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Fig. 5. Test results Details

Table 2. Test results

Beat Training Training Testing Max Testing Testing Testing
Type Beats Accuracy Beats Accuracy Average Variance

N 8102 99.56% 7889 97.16% 97.11% 1.26e-6
S 5990 98.96% 5785 96.28% 96.25% 1.21e-6
E 3502 99.40% 3344 95.03% 95.01% 3.69e-6
V 869 99.99% 832 96.15% 96.05% 2.51e-6
R 3961 99.99% 4053 99.14% 99.11% 2.71e-7
L 1576 99.80% 1376 95.49% 95.43% 2.12e-6

4 Conclusions

In this paper, we have proposed a feature extraction algorithm for 12-leads ECG
signals. Computer simulations show that our approach gives the excellent perfor-
mances of successful classification on 3-order tensor data in the spatial-spectral-
temporal domain, accuracy is found to be 96.85%, and outperforms some other
traditional vector-based methods. The good performance of the tensor-based al-
gorithm demonstrates that it’s an effective and robust data exploratory tool in
12-leads ECG signals analysis.
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Genetic Algorithm Based Neural Network

for License Plate Recognition�
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Abstract. This paper combines genetic algorithms and neural networks
to recognize vehicle license plate characters. We train the neural networks
using a genetic algorithm to find optimal weights and thresholds. The
traditional genetic algorithm is improved by using a real number encod-
ing method to enhance the networks weight and threshold accuracy. At
the same time, we use a variety of crossover operations in parallel, which
broadens the range of the species and helps the search for the global
optimal solution. An adaptive mutation rate both ensures the diversity
of the species and makes the algorithm convergence more rapidly to the
global optimum. Experiments show that this method greatly improves
learning efficiency and convergence speed.

Keywords: license plate recognition, genetic algorithms, neural net-
works, character recognition.

1 Introduction

Vehicle License Plate Recognition (LPR) is a significant application of digital
image processing, artificial intelligence, and pattern recognition in the field of
Intelligent Transportation Systems [1,2]. A complete license plate recognition
system mainly consists of three parts: vehicle license plate location, character
segmentation, and character recognition; of which the latter is the most crit-
ical part. Character recognition methods that are frequently used include the
template matching method [3,4], the neural network method [5,6], and the sup-
port vector machine method [7]. Artificial neural networks have received a wide
range of research and applications because of its good self-adaptability, self-
organization, strong learning ability, association function, and fault-tolerance
[8,9,10,11]. For vehicle license plate recognition, multilayer feedforward based
on back-popagation is more commonly used, and some achievements have been
made in this area. Error back-propagation algorithms, also known as BP algo-
rithms, is a class of guided learning algorithms. Nevertheless, BP algorithms are
based on gradient descent algorithms, its training process can easily fall into a

� This work was supported by National Science Foundation of China under Grant
61273308.
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local extreme point of the error function instead of the global optimal solution.
At the same time, as the result of that setting the initial value of network is
mostly dependent on the experience value, this can easily result in the train-
ing process converging too slowly or even misconvergence if the initial value is
selected inappropriately. Having a global optimal search ability, genetic algo-
rithms [12,13,14,15]can overcome the deficiencies of BP algorithms. This paper
combines genetic algorithms with neural networks and makes full use of their
respective advantages for vehicle license plate character recognition, with good
results through testing.

2 Neural Network Theory Based on Genetic Algorithm

A neural network includes a learning process and an identification process. The
purpose of the learning process is to find a set of optimal network weights and
thresholds which minimize the error between the actual outputs and the the
expected outputs. The learning process is complete when an optimal solution is
found.

The genetic algorithm based neural network takes this as its learning algo-
rithm and encodes the threshold and weights of the hidden layer and output layer
of the neural network to form chromosomes inside the genetic space at first. It
then uses the selection, crossover and mutation operations of genetic evolution
to optimize the chromosomes. Evolution terminates when a set of weights and
thresholds are found which minimize the error between actual outputs and the
expected outputs. Figure 1 shows a sketch of such a network for vehicle license
plate recognition.

Fig. 1. Sketch of a neural network based on a genetic algorithm for vehicle license plate
recognition
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3 Improved Implementation of the Genetic Algorithm

Traditional genetic algorithms uses single crossover operations and variation
probability. This makes genetic algorithms that use real number coding easily
precocious. In order to solve this problem, this paper considers characteristics of
neural networks and then improves the selection operation, crossover operation
and mutation operation of neural networks.

• Improvement of Selection Operator

In nature, most species inheritance modes are mating between excellent individ-
uals, but there are a few species where some good individuals mate with bad
individuals, which maintains diversity. Therefore, in this paper we simulate this
evolution mode, select 7/8 of parents from individuals with excellent fitness,
another 1/8 from individuals with poor fitness. In order to avoid the best in-
dividual being destroyed by crossover and mutation operations, we use optimal
preservation strategies; namely, the best individual of this generation is directly
inherited to the next generation after each evolution.

• Improvement of Crossover Operator

The selection of the crossover operator, being the most important operator in
the genetic algorithm and the main way to produce new individuals, has a direct
impact on the performance of the algorithm. It cannot reach excellent effect if
we only use one single crossover operator. In this paper, through a lot of exper-
iments, we greatly improve the performance of the algorithm by using various
crossover operators in combination. The four crossover operators: intermediate
recombination, daisy chain crossover, genetic uniform crossover and linear recom-
bination are used to cross parents at ratio 1 : 1 : 1 : 1. Crossover probability is
set to 0.7. The following discussion is mainly focused on the daisy chain crossover
operator.

The daisy chain is a crossover operator which exchanges weights and thresh-
olds of neurons to be crossed, selects two parent individuals randomly and de-
termines a good position for them to be crossed. It then exchange neurons and
finally produces two new individuals. Weights and thresholds of the hidden layer,
weights and thresholds of the output layer needs to be crossed respectively. The
selected position, namely, the number of neurons to be crossed, must be iden-
tical. Taking the hidden layer as an example, as show in Fig. 2: α1 represents
the weight of the first neuron in the hidden layer of parent1, b1 represents the
threshold of the first neuron in the hidden layer of parent1, β1 represents weight
of the first neuron in the hidden layer of parent2, c1 represents the threshold of
the first neuron in the hidden layer of the parent2.
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Fig. 2. Schematic plot of daisy chain crossover

• Improvement of Mutation Operator

The mutation operator plays a subsidiary role in genetic algorithms, it can main-
tain the diversity of species and avoid the genetic algorithm falling into local
search. In this paper, we use a mutation operator which mutates each individual
and mutates weights and thresholds respectively with self-adaptive mutation
probability. This means that the mutation probability is larger at the begin-
ning of the training phase which makes the algorithm search all local optima as
much as possible. As evolution progresses, the mutation probability gradually
decreases, so that the algorithm converges to the global optimum.

4 Implementation and Testing of the Algorithm

In order to use the combination of genetic algorithms and neural networks to
recognize characters we must solve the following key issues.

1. Structure of neural networks.
2. Encoding for solution space of problem.
3. Ensure the fitness function of the genetic algorithm.

Following is a concrete analysis of these critical issues.

• Structure of the Neural Network

In this paper, we use three-layer feedforward neural networks. According to the
preceding analysis, vehicle license plate character recognition is a small classifica-
tion problem. A neural network which contains a hidden layer can approximate
any nonlinear function, and therefore we only need three-layer neural networks
to identify characters. Because the characters on the vehicle license plate consist
of Chinese characters, letters, and numbers, four neural networks are designed
according to these circumstances, i.e., a Chinese character network, a letter net-
work, a number network, as well as a letter-number network. We take each pixel
in the normalized character image as an input of the neural network. The uni-
form size of characters is 32×16, and therefore, a total of 512 inputs. The amount
of output neuron nodes is determined by the classification problem’s category
amount. For the Chinese character network, characters in license plates include
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shortened forms of names of provinces, municipalities and autonomous regions,
a total of 31 different characters. It also contains 13 Chinese characters for mili-
tary vehicles, as well as embassy, consulate, temporary and coach cars, all-in-all
51 Chinese characters. So the number of output nodes in the Chinese character
network is 51. Numbers from 0 to 9 total of ten, so output the amount of output
nodes for the number network is 10. The second character in license plate is
a letter from A to Z (except I), a total of 25 letters, as a result, the number
of output nodes in the letter network is 25. From the third character to the
seventh character, the letter I and O do not appear, therefore the number of
output nodes of the letter-number network is 34. The amount of hidden units
is generally less than the amount of input layer nodes, combined with genetic
algorithm it is generally chosen from 10 to 100. In this paper we choose 50 as the
amount for the Chinese character network, 40 for the letter network, 50 for the
number network, and 60 for the letter-number network. We select the unipolar
sigmoid function (1) as the activation function of the hidden layer and the out-
put layer. We also add an error correction value to each neuron of the hidden
layer and output layer, also called a threshold value. Table 1 shows the amount
of nodes for each layer of the neural network in this paper, and Table 2 shows
the parameters settings of the neural network and genetic algorithm.

f(x) =
1

1 + e−x
. (1)

Table 1. The number of nodes in each layer of the neural network

Chinese character
network

Letter
network

Number
network

Letter-number
network

Input layer 512 512 512 512
Hidden layer 50 40 50 60
Output layer 51 25 10 34

Table 2. Parameters of neural network and genetic algorithm

Type of
networks

Crossover
probability

Mutation
probability

Target value
of error

Amount of
evolution generations

Chinese character 0.7 0.1→0.0001 0.0001 1000
Letter 0.7 0.1→0.0001 0.00001 1200
Number 0.7 0.1→0.0001 0.00001 800

Letter-number 0.7 0.1→0.0001 0.00005 1200

• Encoding of Problem Solution Space

The solution space in this paper means thresholds and weights of the network,
i.e., the purpose of the network training is to find an optimal combination of
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weights and thresholds. Usually a binary encoding method is used, but the vehi-
cle license plate recognition system involves many parameters and needs higher
precision. However, the accuracy of binary coding is restricted by chromosome
length. In this paper we adopt a real number coding so that it meets the accuracy
requirement, in the meantime makes the coding significance clear.

• Fitness Function

To select good parents for a variety of genetic manipulations, we need to base our
genetic algorithm on a good fitness function. Error is a fundamental criterion and
a measure of an individual’s good or bad; namely, the smaller the error is, the
higher fitness the individual has. Conversely, the greater the error is, the lower
fitness it has. Fitness function F is related to error E in this article, F = C−E,
where C is a constant and E is the error, as shown in (2).

E =
∑

(tk − ok)
2
. (2)

Where tk means desired output value of the network and ok means actual output
value.

5 Simulation Studies

Because of the limited length of this article, it is not easy to list all the weights
and threshold trained by a sample network of 32× 16, a total of 512 inputs. In
the following, we take a sample of 7 × 5, a total of 35 inputs as an example to
show the trained optimization curve and threshold in the hidden layer. Only the
optimization curve of 32 × 16 is shown. Shown in Fig. 3 is a digital sample of
7× 5.

Fig. 3. Digital sample 0 and 5 of 7× 5

Algorithm parameters are as follows, amount of hidden layer neurons: 20,
amount of output layer neurons: 10, population size: 400. Due to the smaller
amount of outputs, we set the weights range as:[−10,10] to expand the search
scope of solutions. Since the subspace generated by intermediate recombinant
and linear recombinant is slightly larger than the parent value, the final weights
will be slightly larger than [−10,10]. The amount of the algorithm’s genetic
generations: 2000. Figure 4 is a graph of the algorithm optimizing.
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Fig. 4. Result diagram of 7× 5 sample after digital network training

The abscissa in Fig. 4 represents the amount of evolution generations, the
ordinate represents error value. As can be seen from Fig. 4, in the initial stage
of evolution the curve is relatively smooth and error converges slowly. In the
later stage of evolution, the error curve declines sharply. As a result of that
in the initial stage of evolution the mutation probability is relatively large, the
algorithm basically searches for optimal value in the entire solution space. In the
later stage of evolution, mutation probability is very small, and the algorithm
converges to the global optimum. After 2000 generations, error is close to 0
and algorithm converges with excellent effect. Table 3 shows the hidden layer’s
threshold trained by digital network.

Table 3. Threshold value of hidden layer after digital network training

Number of neurons threshold value number of neurons threshold value
1 4.1298 11 9.6997
2 5.4397 12 4.2231
3 6.4123 13 4.7711
4 5.7615 14 5.3735
5 4.7931 15 5.4468
6 6.1266 16 2.1759
7 5.7350 17 5.1540
8 5.2849 18 3.9687
9 4.5954 19 4.2383
10 5.7543 20 5.6170

And then test the sample of 32 × 16, algorithm parameters are as follows:
amount of hidden layer neurons: 50, amount of output layer neurons: 10, pop-
ulation size: 400, weights range: [−1, 1]. The crossover probability is 0.7. The
mutation probability is at first larger as well, then it gradually decreases as
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Fig. 5. Result diagram of 32× 16 sample after digital network training

evolution progresses. The amount of the algorithm’s genetic generations is 800.
Figure 5 is a graph of the algorithm’s optimization.

The abscissa in Fig. 5 represents the amount of generations of evolution; the
ordinate represents error value. As can be seen from Fig. 5, after evolution of
800 generations the output error nearly reduces to 0.

We select a total of 80 vehicle license plate images with different sizes, clarity
and inclination to test license plate recognition. This involves the Chinese char-
acters representing Sichuan, Beijing, Shanxi, Zhejiang, Jiangsu, Yunnan, Henan,
Guangdong, Heilongjiang and Shanxi; a total of 10 characters as well as the 26
letters from A to Z and 10 numbers from 0 to 9. This experiment is conducted
along the following practice: automatically eliminate the earlier failure with no
image trimming and do not include it in the follow-up experiment. Table 4 shows
the recognition result of the system.

Table 4. Recognition results

Treating process Amount of correct results Accuracy

Locating of license plate 78 97.5%
Characters segmentation 518 94.8%

Chinese character 70 94.6%
Letter 72 97.3%
Number 232 91.6%

Letter-number 354 89.7%

We compare the algorithm in this paper with the BP algorithm on recogni-
tion efficiency of vehicle license plate characters. The result is shown in Table 5.
It can be seen that the algorithm in this paper has much larger recognition
rate than the BP algorithm for the Chinese character network and letter net-
work. Meanwhile, the two algorithms have similar efficiency for the letter-number
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Table 5. Comparison between the algorithm in this paper and BP algorithm

Type of network BP algorithm Algorithm of this paper

Chinese character 88.99% 94.6%
Letter 77% 97.3%
Number 92.3% 91.6%

Letter-number 90.4% 89.7%

network. This shows that the algorithm in this paper is superior to the tradi-
tional BP algorithm.

6 Conclusions

Through the above analysis and experimental results, the following conclusions
can be drawn:

1. Using genetic algorithms in training of neural networks can achieve better
results and effectively overcome the BP neural network’s drawbacks of slow
convergence and easily falling into local minimum values.

2. The experiments shows that using the genetic algorithm based neural net-
work can effectively improve the accuracy of vehicle license plate recognition.
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Abstract. This study demonstrates a system and methods for optimiz-
ing a pattern classification task. A genetic algorithm method was em-
ployed to optimize a Fuzzy ARTMAP pattern classification task, followed
by another genetic algorithm to assemble an ensemble of classifiers. Two
parallel tracks were performed in order to assess a diversity-enhanced
classifier and ensemble optimization methodology in comparison with a
more straightforward method that does not rely on diverse classifiers
and ensembles. Ensembles designed with diverse classifiers outperformed
diversity-neutral classifiers in 62.50% of the tested cases. Using a neg-
ative correlation method to manipulate inter-classifier diversity, diverse
ensembles performed better than non-diverse ensembles in 81.25% of the
tested cases.

Keywords: genetic algorithms, pattern classification, classifier ensem-
ble, diversity.

1 Introduction

The effectiveness of a pattern recognition task depends on the type of pattern
classifier used, the reliability of the data set used for training the classifier to
recognize specific patterns, as well as the training method itself. For a given pat-
tern classifier, the best combination of parameter settings can be evaluated on a
case-by-case basis using genetic algorithms (GA). Another common method is by
creating a committee of classifiers to combine complementary information from
multiple sources in order to achieve a greater degree of understanding. Genetic
optimization of classifier ensembles are not a new concept in pattern recogni-
tion. Ruta and Gabrys [1] performed several different evolutionary optimization
methods for classifier selection. Coupled with majority voting, their combinatory
method displayed an improved accuracy and reliability when performing classi-
fication in comparison with a single-best classifier selection strategy. Similarly,

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 401–410, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



402 C.K. Loo, W.S. Liew, and E. Lim

a study by Zhou et al. [2] revealed that in some cases, ensembling a subset of
classifiers may outperform an ensemble with all classifiers included.

In 2003, an experiment by Kuncheva and Whitaker [3] studied the relation-
ship between several diversity measures in relation to ensemble classification
accuracy. The study did not find any conclusive connections between increased
ensemble diversity and ensemble classification accuracy. In addition, a 2010 study
by Lofstrom et al. [4] also displayed similar results, concluding that there is lit-
tle incentive for employing complex diversity algorithms in favour of simpler
methods of classifier ensembling.

The proposed system used Fuzzy ARTMAP neural network architecture as a
pattern learner and classifier. ARTMAP optimization was performed using ge-
netic algorithms to generate a population of optimum ARTMAP configurations.
A number of ARTMAP classifiers were then selected to form an ensemble, using
a probabilistic voting strategy to combine individual decisions. The proposed
methodology was tested using two methods of classifier optimization and en-
semble selection. The first method used a simple GA for classifier optimization..
To test the hypothesis regarding the contribution of diversity for classifier and
ensemble optimization, the second method was devised to enhance classifier and
ensemble diversity. The simple GA method was replaced with a hierarchical fair-
competition parallel GA (HFCPGA). A genetic-optimized negative correlation
method was used in both methods for classifier selection, using a single param-
eter to manipulate the weight of diversity. The ensembles’ pattern recognition
rate was then evaluated to determine the effectiveness of the methodology.

The next section details individual parts of the proposed system. The method-
ology of the experiment will be covered in Section 3, and Section 4 will present
the findings of the test.

2 Overview of System and Method

The system consists of several discrete sections integrated into a single framework
for optimizing a pattern classification task. Fuzzy ARTMAP classifiers were used
for learning and classifying patterns, using a given data set of training examples
for supervised learning. Factors which influence the pattern recognition rate of
the classifiers, such as the training sequence, feature subset, and ARTMAP vig-
ilance, were optimized using genetic algorithms for efficient searching through
the solution-space. From the resultant pool of optimum candidate FAM classi-
fiers, a selection method chose a number of classifiers to form an ensemble that
would score higher classification accuracy than any single individual. Predictive
decisions from the multitude of classifiers within the ensemble were aggregated
using a probabilistic voting strategy.

2.1 Fuzzy ARTMAP

The Fuzzy ARTMAP (FAM) neural network [5] was developed based on the
principles of adaptive resonance theory [6]. The classification performance of the
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Fig. 1. Flowchart of the system

FAM can be influenced by several factors: the parameters used for defining the
structure of the FAM, and the sequence in which data is presented to the FAM
during the supervised training process. The structural parameters of the FAM
that have been identified for optimization includes baseline vigilance, learning
rate, and number of epochs to present a new training pattern. Discovering the
best combination of structural parameters, as well as the best sequence of train-
ing data, requires an exhaustive searching method. For this purpose, a genetic
algorithm was proposed to search the solution-space.

2.2 Hierarchical Fair-Competition Parallel Genetic Algorithms

In the context of ensembles, a prevailing understanding is that diversity between
component classifiers is a key for creating an ensemble that can significantly out-
perform any single classifier. However, utilizing genetic algorithms to generate
classifiers for an ensemble has a drawback of convergence. Pressure from the evo-
lutionary selection process perpetuates classifiers sharing a certain combination
of genetic traits, eventually causing the classifiers in the population to evolve
into genetically-similar cousins.
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Fig. 2. Structure of a chromosome for a pattern classification task with a data set
consisting of N vectors with M attributes. Subchromosomes consist of the sequence
in which vectors were presented, parameters for initializing the FAM classifier, and
feature selection for the data vectors.

Lee and Kim [7] proposed using HFCPGA for generating a diverse popu-
lation of optimization solutions. In general, the HFCPGA method maintains
multiple subpopulations of chromosomes as opposed to a single encompassing
population. Chromosomes were assigned to subpopulations in a hierarchy: chro-
mosomes that yielded classifiers with a higher pattern recognition rate were
assigned to one subpopulation, while subsequent subpopulations were populated
by chromosomes with decreasing fitness. Genetic operators such as crossover
and reproduction were performed within each subpopulation independent of the
others. Periodically, newly generated chromosomes with higher or lower than
average fitness were immigrated into a higher or lower subpopulation respec-
tively. This methodology effectively divides genetic convergence across multiple
groups, while introducing new genetic material to increase diversity. A series of
comparative analyses were then performed with multiple data sets, concluding
with a clear demonstration of diversity measurements for HFCPGA and simple
GA.

The following Table 1 compares the key differences between both genetic
algorithm optimization methods.

2.3 Genetic-Optimized Negative Correlation

The classifier optimization step created a population of chromosomes, each rep-
resenting a single configuration to create and train a FAM classifier. An ensemble
was created by selecting and combining multiple classifiers. Ideally, the selected

Table 1. Comparison of differences between simple GA and HFCPGA optimization
methods

Simple GA Hierarchical Fair-Competition Parallel GA

Single population of chromosomes. Multiple subpopulations of chromosomes.

Random chromosome placement. Chromosomes distributed among subpopulations
grouped according to similar fitness.

Parent chromosomes selected at Roulette-wheel selection chooses a subpopulation.
random from population. Two parent chromosomes were then selected

at random from the subpopulation.
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component FAMs should be diverse from each other while possessing a good
predictive accuracy. Uncorrelated predictive errors from each classifier in the
ensemble can then be cancelled out using a voting strategy for decision combi-
nation.

The negative correlation method [8] constructs diverse ensemble with J com-
ponent classifiers using an equation [7] that can be simplified into:

ÊJ = (
1

J
)

J∑
j=1

[Cj − (
λ

J

J∑
t=1

Kjt)] (1)

The term Cj is the predictive error of the jth FAM classifier, while Kjt is the
inter-classifier diversity between the jth FAM and the tth FAM. The λ term is
a user-defined parameter to adjust the weight of diversity in determining the
classifier selection. Setting λ to zero eliminates the diversity requirement, while
setting it to a non-zero number introduces a measure of diversity in the classifier
selection process.

Given a selection of classifiers, the ensemble was initialized with the first se-
lected classifier and the negative correlation error function was calculated, ÊJ=1.
As each additional classifier were added into the ensemble, the new ensemble’s
error function was computed, ÊJ+1. If the latest classifier does not contribute
toward ensemble accuracy or diversity (i.e. ÊJ+1 ≥ ÊJ ), then the classifier in
question was removed from the ensemble. The optimization step thus solves for
FAM classifier combinations which yields the smallest error function ÊJ in order
to achieve maximum inter-classifier diversity and minimum ensemble predictive
error.

2.4 Probabilistic Voting

A pattern classification task usually involves a classifier assigning a single ob-
servation into one of several possible discrete categories. Misclassification occurs
when the observation is sufficiently vague that the classifier assigns it into the
wrong category. An ensemble of multiple diverse classifiers usually has a better
classification accuracy than any single classifier, since the misclassifications were
usually distributed among the residual categories. However this may not always
be the case, as misclassifications can occur if a majority of the classifiers perform
correlated errors on a particularly difficult observation.

The output decisions from individual FAMs in the ensemble were combined
using a probabilistic voting strategy [9][10]. In general, each classifier in the
ensemble is given a weightage inversely proportional to its error function ÊJ .
Consequently, instead of assigning one vote per classifier, the voting system gives
greater priority to the classification decisions made by highly accurate FAMs over
less accurate FAMs. If however, the best classifier makes a classification error,
the voting system will still be able to choose the correct classification if support
from the lesser FAMs outweighs that of the dominant FAM.
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3 Experiment Methodology

An experiment was designed to test the pattern recognition capability of the
proposed system. Data sets selected from the UCI Machine Learning Repository
[11]. Details of the data set are described in Table 2. In addition, the parameters
relevant to the experiment is detailed in Table 3. Both GA and HFCPGA meth-
ods were coded and executed in the Matlab programming environment, utilizing
the Parallel Processing Toolbox for increased performance. Empirical testing of
both methods showed no significant difference in computation time when tested
under identical settings.

Table 2. Data sets selected for benchmarking

Data set Instances Attributes Categories

Acute Inflammations 120 6 4

Arrhythmia 452 279 16

Glass 214 9 6

Ionosphere 351 34 2

Iris 150 4 3

Planning Relax 182 12 2

Seeds 210 7 3

Wine 178 13 3

The experiment methodology was performed with the following arrangements:

1. Given a training data set for a pattern recognition task, a population of
chromosomes were generated.

2. The initial FAM was created using the structural parameters defined in the
solution. The data set was reformatted using the defined training sequence
and attribute subset. The FAM was trained and tested using leave-one-out
cross-validation. The fitness of the chromosome was calculated as the per-
centage of tests correctly classified by the FAM.

– For HFCPGA, the chromosomes were distributed evenly into subpopu-
lations according to fitness. High-fitness chromosomes were assigned to
higher subpopulations, while low-fitness chromosomes were shifted into
lower subpopulations. This was performed only during the first gener-
ation. For subsequent generations, if there existed a chromosome in a
lower subpopulation with higher fitness than a chromosome in a higher
subpopulation, then these two chromosomes swap positions in their re-
spective subpopulations. Immigration was limited to one chromosome
pair per generation, and the pair with the largest difference in fitness
was selected for immigration.

3. A fraction of the population with the lowest pattern classification rate were
discarded. For each chromosome discarded, an offspring chromosome was
created by genetic reproduction and crossover of two parent chromosomes.
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Table 3. Experiment parameters

Parameter name Default Description

Genetic.chromosomes 50 Total number of chromosomes

Genetic.convergence 3 Number of consecutive generations with no
improvement before incrementing mutation rate

Genetic.generations 50 Maximum number of optimization generations

Genetic.maxsubset 0.5 Maximum fraction size of feature subset

Genetic.mutationrate 0.1 Fraction of genes per offspring to mutate

Genetic.maxmutation 1.0 Maximum mutation rate

Genetic.selection 0.5 Fraction of chromosomes to carry over to the
next generation

Genetic.subpopulations 5 Number of populations to maintain for HFCPGA

NegCorr.maxvoters 49 Maximum number of classifiers selected for
ensemble using genetic-optimized negative
correlation selection

– Both parent chromosomes were compared for common genetic traits,
which were then passed down to the offspring chromosome.

– The remaining uncommon genes were shuffled into the offspring. Genetic
mutation was then performed, using simple bit flip for the binary portion
of the chromosome, swapping gene positions for the training sequence,
and adding or subtracting a random fraction number for the ARTMAP
parameter genes.

4. The generation counter was incremented and steps 2-3 were repeated until
convergence.

5. Convergence criteria was defined thus: each generation, the mean and max-
imum fitness of the population of chromosomes were recorded. After three
consecutive generations with no improvement in either mean or maximum fit-
ness, the mutation parameter was increased to enhance the genetic algorithm
searching process. The optimization process was terminated once the muta-
tion rate was increased to 1.0 with no improvement in mean or maximum
fitness. A maximum was also defined to terminate the genetic optimization
step after the pre-determined number of generations have elapsed.

6. From the resultant population of chromosomes, a number of classifiers were
selected to form an ensemble, using genetic-optimized negative correlation.

(a) Chromosomes in the form of a binary string representing the population,
with 1s and 0s to select and deselect classifiers respectively.

(b) For each chromosome, an ensemble was created by using the negative
correlation method.

(c) Each classifier in the ensemble was fitness tested using leave-one-out
cross-validation. Output of each classifier was integrated via probabilistic
voting to determine ensemble output. Fitness of the chromosome was
computed as the percentage of tests correctly classified by the ensemble
as a single unified classifier.
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(d) Steps (b) and (c) was performed once for λ = 0 and once for λ = 1
to observe the effect of introducing diversity into the classifier selection
process.

4 Results and Discussion

For each data set, optimization was performed ten times, and the results were
averaged. The experiment findings are summarized in Table 4 below.

During classifier optimization, the population’s mean and maximum fitness
(MeanAcc, MaxAcc) were computed after each generation of optimization. Ge-
netic convergence was determined when the population’s MeanAcc and MaxAcc
does not increase in three consecutive generations, or until the maximum num-
ber of generations was achieved. Comparing GA and HFCPGA methods in this
experiment, neither achieved a faster convergence consistently.

The similarity index was incorporated as a means to determine the degree of
diversity of the population’s classifier output. An index of 1.00 indicates that all
classifiers in the population produce identical classification results. Ideally, low
similarity index is desirable due to uncorrelated predictive errors which can be
corrected using a voting strategy. While there was also no significant difference in
similarity and mean fitness, the simple GA method displayed consistently higher
maximum fitness than HFCPGA. This finding was consistent with a survey of
genetic algorithm methods by Cantú-Paz [12], which established that parallel
GA methods were slower to achieve convergence and usually having fitness less
than that of a single population GA.

This experiment defined two static values for the λ parameter in the negative
correlation step: 0 to create ensembles based only on the merit of the classifiers’
predictive accuracy, and 1 to introduce inter-classifier diversity as an equally
important factor. A proposal for future experiments will be to use genetic algo-
rithms to optimize the λ parameter for a range of values from 0 to higher than 1.
This will be especially effective for classification tasks with low recognition rates.
Placing a higher priority on inter-classifier diversity rather than classifier accu-
racy may be able to yield better ensembles through combining complementary
information rather than relying on the strengths of individual classifiers.

The experiment discovered that classifier ensembles with diversity incorpo-
rated (λ = 1) often outperformed diversity-neutral classifiers (λ = 0), in 13 out
of 16 cases. Comparing GA-optimized ensembles against HFCPGA-optimized
ensembles, 10 times out of 16, HFCPGA ensembles outperformed GA ensembles
while in 2 cases out of 16, GA outperformed HFCPGA. A conclusion was decided
that incorporating diversity into classifier and ensemble optimization was able
to improve pattern recognition rates. For future experiment designs, data sets
with difficult pattern classification would be more suitable in order to showcase
the increase in pattern recognition rates when classifiers were incorporated into
ensembles.
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Table 4. Experiment results for classification tasks with simple GA and HFCPGA.
Results taken as average over ten iterations.

Data set Convergence Similarity MeanAcc MaxAcc
Ensemble Acc
λ = 0 λ = 1

Acu.Inflam. GA 25.00 0.9399 0.9526 1.000 1.000 1.000
HFCPGA 23.80 0.9394 0.9624 1.000 1.000 1.000

Arrhythmia GA 33.10 0.7229 0.6003 0.6495 0.6787 0.6981
HFCPGA 32.20 0.7322 0.6099 0.6570 0.6829 0.7075

Glass GA 27.80 0.7711 0.7625 0.7982 0.8813 0.8850
HFCPGA 28.20 0.7584 0.7525 0.8000 0.8542 0.8869

Ionosphere GA 35.70 0.9535 0.9322 0.9500 0.9674 0.9690
HFCPGA 38.20 0.9530 0.9334 0.9500 0.9677 0.9699

Iris GA 16.00 0.9892 0.9028 0.9822 0.9822 0.9874
HFCPGA 16.20 0.9900 0.9000 0.9815 0.9815 0.9874

Plan. Relax GA 29.00 0.6757 0.6415 0.7116 0.7473 0.7945
HFCPGA 27.80 0.6744 0.6416 0.7074 0.7725 0.7956

Seeds GA 26.30 0.9299 0.9338 0.9577 0.9772 0.9783
HFCPGA 26.00 0.9332 0.9353 0.9561 0.9783 0.9788

Wine GA 35.10 0.9771 0.9717 0.9901 0.9975 0.9975
HFCPGA 33.20 0.9757 0.9700 0.9901 0.9975 0.9988

5 Conclusion

This paper presented a methodology for creating optimized classifier ensem-
bles. Diversity was shown to be a significant criterion during classifier and en-
semble optimization. Given two identical populations optimized by simple GA
and HFCPGA respectively, 62.50% of HFCPGA-optimized ensembles outper-
formed their GA counterparts. In addition, diversity-enforced ensembles outper-
formed diversity-neutral ensembles 81.25% of the time, using negative correlation
method for ensemble creation.
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Abstract. Remote sensing image classification plays an important role in urban 
studies. In this paper, a method based on structural neural network for 
panchromatic image classification in urban area with adaptive processing of 
data structures is presented. Backpropagation Through Structure (BPTS) 
algorithm is adopted in the neural network that enables the classification more 
reliable. With wavelet decomposition, an object’s features in wavelet domain 
can be extracted. Therefore, the pixel’s spectral intensity and its wavelet 
features are combined as feature sets that are used as attributes for the neural 
network. Then, an object’s content can be represented by a tree structure and 
the nodes of the tree can be represented by the attributes. 2510 pixels for four 
classes, road, building, grass and water body, are selected for training a neural 
network. 19498 pixels are selected for testing. The four categories can be 
perfectly classified using the training data. The classification rate based on 
testing data reaches 99.91%. In order to prove the efficiency of the proposed 
method, experiments based on conventional method, maximum likelihood 
classification, are implemented as well. Experimental results show the proposed 
approach is much more effective and reliable. 

Keywords: Panchromatic image classification, structural neural network, 
Backpropagation Through Structure, wavelet transform. 

1 Introduction 

Mapping the land cover patterns from global, regional, to local scale are critical for 
the scientists and the authorities to yield better monitoring of the changing world [1]. 
Precise monitoring of the land cover becomes indispensable for the decision makers 
in dealing with public policy planning and Earth resources management. Remote 
sensing sensors record the spectral reflectance of different land cover materials from 
visible to infrared wavelength, and from moderate to very high spatial resolution. 
Therefore, the land cover patterns can be derived from the spectral signatures using 
pattern recognition techniques. The demand on land cover mapping in finer scale, 
especially in urban area, is raised with evidence by numerous biophysical and socio-
economic studies in urban heat island [2], urban sprawl pattern [3], urban 
environmental quality [4], urban rainfall-runoff modeling [5], urban anthropogenic 
heat [6], and urban air pollution [7]. Panchromatic (PAN) satellite imagery is being 
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explored for land cover classification [8-9]. PAN satellite imagery is a single band 
greyscale data with high spatial resolution (1m), which recently has been used to 
explore its various applications such as feature extraction of roads/highways and 
buildings [1], and land cover mapping [2]. Despite of finer spatial resolution, PAN 
satellite imagery has lower image classification comparing to the multi-spectral 
imagery because of a single band in PAN image.  

Adoption of texture analysis is the recent trend for classifying PAN remote sensing 
imagery [8-9] so as to compensate the lack of the spectral information. Although 
improved classification accuracy has been demonstrated by using statistical textures, 
most recently, feature-based representation of images potentially with wavelet 
transform offers an attractive solution to this problem. Feature-based approach 
involves a number of features extracted from the raw image based on wavelet 
transform [10-11]. The features of objects can be described by the wavelet 
coefficients in low-pass and high-pass bands. Both features or objects and the spatial 
relationship among them play important roles in characterizing the objective contents, 
since they convey more semantic meaning. Although wavelet transform was applied 
to extract features from remote sensing image, the wavelet features cannot be properly 
organized so that the image contents cannot be comprehensively represented. In this 
study, by organizing wavelet coefficients into tree structure, object contents can be 
represented more comprehensively at various details which are very useful for image 
classification.  

The neural network (NN) has been increasingly applied to remote sensing image 
classification in the last two decades, especially multi-spectral image classification 
[12-15]. Generally, Maximum Likelihood Classification (MLC) is a conventional 
method adopted for remote sensing imagery classification.  The MLC method applies 
probability theory to the classification task.  It computes all of the class probabilities 
for each raster cell and assigns the cell to the class with the highest probability value. 
However, for PAN image, the classification rate is too low to meet requirement 
because of only one band data contained in the PAN image. It has been indicated that 
supervised classification means based on neural network is superior to the statistical 
approach. Neural networks for adaptive processing of data structures are of 
paramount importance for structural pattern recognition and classification [16]. The 
main motivation of the adaptive processing is that neural networks are able to classify 
static information or temporal sequences and to perform automatic inferring or 
learning [17-19]. Sperduti and Starita proposed supervised neural networks for 
classification of data structures [20] where the approach is based on using generalized 
recursive neurons and the Backpropagation Through Structure (BPTS) algorithm 
[16,20]. Compared with conventional backpropagation neural network, BPTS is more 
reliable because of its structure algorithm and its common use in numerous research 
[21-26]. It is recently developed and proved to be effectively for digital image 
classification in the field of computer graphics. In the study, BPTS algorithm is 
applied to the PAN IKONOS satellite image for land cover classification together 
with the extracted wavelet coefficients.  

The following section describes the adaptive processing of data structure. 
Extraction of wavelet features for experimental testing is described in section 3. Then, 
the conventional method for remote sensing image classification is introduced in 
section 4. After that, the design and analysis of experimental results are reported  
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in sections 5 and 6, respectively. Conclusions of the research are drawn in the final 
section. 

2 Backpropagation through Structure Algorithm 

Neural Networks for adaptive processing of data structures are of paramount 
importance for structural pattern recognition and classification. The main motivation 
of this adaptive processing is that neural networks are able to classify static 
information or temporal sequences and to perform automatic inferring or learning [6-
7]. Sperduti and Starita have proposed supervised neural networks for classification of 
data structures. This approach is based on using generalized recursive neurons and the 
BPTS algorithm, which is more reliable because of its structure algorithm. BPTS 
extends the time unfolding carried out by back-propagation through time in the case 
of sequences. The main idea of BPTS is depicted in Fig. 1. On the left an example of 
an input tree is shown. On the right, the state transition network f( ) is unrolled to 
match the topology of the input tree. The output network g( ) is attached to the replica 
of f( ) associated with the root. After recursion (1) is completed, the state vector x(r) 
at the root r contains an adaptive encoding of the whole tree. The encoding results are 
from a supervised learning mechanism. Forward propagation (dark arrows) is bottom 
up and follows equation (1). Backward propagation (light arrows) is employed to 
compute the gradients and proceeds from the root to leaves. The gradient 
contributions must be summed over all the replicas of the transition network to 
correctly implement weight sharing. A general framework of adaptive processing of 
data structures was introduced by Tsoi (1998) [6] and Cho et al. (2003) [8]. 

The recursive network for the structural processing is as follows: 

))(]),[(()( vIvchxfvx =  (1) 

where )(vx  is the state vector associated with node v ; ])[( vchx  is a vector 

obtained by concatenating the components of the state vectors contained in v ’s 

children. I  is a generic input object and can be a directed acyclic graph with a 
super-source. )(vI  denotes the label attached to vertex v . The transition function f is 

implemented by a feedforward neural network, according to the following scheme: 
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Fig. 1. An illustration of back propagation through structure 

3 Description of Feature Set for Neural Network 

The objective of supervised classification in remote sensing is to indentify and 
partition the pixels comprising the noisy image of an area according to its class, with 
the parameters in the model for pixel values estimated from training samples. In the 
paper, the spectral and frequency features are combined together as attributes for 
neural network. The spectral features can be obtained from the original image while 
the frequency features can be extracted after the image is decomposed by wavelet 
transform as described in the following sub-sections. 

 

 

Fig. 2. Block chart of wavelet decomposition of an image 

3.1 Decomposition of An Image by Wavelet Transform 

With the goal of extraction of frequency features, a discrete wavelet transform can be 
applied to decompose a PAN image and it is summarized in Fig. 2. It is noticed the 
original image (or previous low-pass results at level j) can be decomposed into a low-
pass band (Lj+1) and a high-pass band (Hj+1) through filters at level j+1. Through a 
low-pass filter and a high-pass filter, the low-pass band (Lj+1) is again decomposed 
into a low-pass band (LLj+1) and a high-pass band (LHj+1). The high-pass band (Hj+1) 
is decomposed into a low-pass band (HLj+1) and a high-pass band (HHj+1) through 
filters. Sub-bands LHj+1, HLj+1 and HHj+1 respectively represent the characteristics of 
the image in the horizontal, vertical, and diagonal views. The local details of an 
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image, such as edges of objects, are reserved in high bands. The basic energy of the 
image is reserved in LLj+1. We will refer to the four sub-bands created at each level of 
the decomposition as LLj+1 (Low/Low), LHj+1 (Low/High), HLj+1 (High/Low), and 
HHj+1 (High/High). A PAN image decomposed by wavelet transform is shown in Fig. 
3, which is represented by a tree structure. 

 

 

Fig. 3. A tree structural representation of a PAN imagery 

4321

0

8765
 

Fig. 4. An illustration of feature sets adopted in nodes: spatial features used in node 0; wavelet 
features used in nodes 1, 2, 3, 4, 5, 6, 7, and 8 

3.2 Tree Structural Description of Features as Inputs for Neural Network 

In order to conduct the image classification with BPTS NN, the image contents are 
represented by a tree structure as shown in Fig. 3. In the tree structure, totally, there 
are nine nodes illustrated in Fig. 4. Among them, the node numbered as 0 has four 
children nodes numbered as 1, 2, 3, and 4. The node 0 is corresponding to the original 
image while the four children nodes are corresponding to the four sub-bands, i.e. LL1, 
LH1, HL1, and HH1 sub-bands respectively. It is the similar case for node 1 that also 
has four children nodes, 5, 6, 7, and 8 corresponding to LL2, LH2, HL2, and HH2 sub-
bands respectively.  

The features obtained from spatial domain include a pixel’s spectral intensity value 
(SIV), mean of all pixels’ intensity (MEANI) in this class, standard deviation of 
intensity (STDI) corresponding to the mean. Another features extracted from 
frequency domain are a pixel’s wavelet coefficient (PWC), mean of all pixels’ 
wavelet coefficients (MEANWC) in this class, STD corresponding to the mean 
(STDWC).  Therefore, each node contains three parameters. The node 0 includes 
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spatial features, i.e. SIV, MEANI and STDI. The rest nodes, from node 1 to node 8, 
include wavelet features, i.e. PWC, MEANWC and STDWC as shown in Fig. 4.   

4 Method of Conventional Image Classification 

Generally, Maximum Likelihood Classification (MLC) is a conventional method 
adopted for remote sensing imagery classification. MLC applies probability theory to 
the classification task, in which all of the class probabilities for each raster cell are 
computed and the cell with the highest probability value is assigned to the class. The 
probability function can be expressed as: 
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where X is the input image vector, Mi and Vi are the mean vector and variance-
covariance matrix for the land cover class wi. After computing the posterior 
probability for each land cover class (i.e., w1 to wn for n classes), the pixel will be 
assigned with the specific land cover class wi which has the maximum posterior 
probability P(X|wi). 
 

  

Fig. 5. A Panchromatic IKONOS image          Fig. 6. Training and testing samples 

5 Experimental Strategy 

A PAN IKONOS satellite image with size of 2048 × 2048 pixels on Greater Toronto 
Area in Canada taken in 2006 is used in this study as shown in Fig. 5.  

The experiment based on BPTS NN is implemented firstly. There are two parts in 
the experiments. One is training the neural network, and the other is testing. In order 
to make findings reliable, 2510 samples are selected as the training data set, among 
which 621 samples are for building, 297 for road, 1259 for vegetation and 333 for 
water bodies. The training samples for each class are displayed in the PAN image 
with different color shown in Fig. 6. The class of building is displayed in red, road in 
yellow, vegetation in green, and water bodies in blue.  
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Also, in Fig. 6, the testing samples for each class, which are not included in 
training data set, are displayed with different color, i.e. building in cyan, road in 
magenta, vegetation in white and water bodies in black. There are total 19498 samples 
selected in testing data set, among which 3568 samples are for building, 4787 for 
road, 8634 for vegetation and 2509 for water bodies. The numbers of pixels used for 
classification are listed in Table 1.  

Table 1. Data Set for Classification 

Number of pixels in 

different data set 

Class  

Total 

number Building Road  Vegetation Water body 

In training data set 621 297 1259 333 2510 

In testing data set 3568 4787 8634 2509 19498 

6 Experimental Results and Analysis 

6.1 Experimental Results 

To conduct the classification by BPTS NN, the attributes of all the nodes in the tree 
are vectors of 3 inputs consisting of intensity, mean and STD described in Section III. 
In the investigation, a single hidden-layer is adopted for the neural classifier with 3 
input nodes, 5 hidden nodes and 4 output nodes. The classification rate based on 
training data set is 100% and the rate based on testing data set is 99.91%. To compare 
with the conventional method, the classification rate based on MLC method for 
testing data set is 55.33% and the corresponding classified image is shown in Fig. 7, 
in which building is displayed in brown, vegetation in yellow, road in blue and water 
bodies in green. It is known that MLC assumes that the statistics for each class in each 
band are normally distributed and calculates the probability that a given pixel belongs 
to a specific class. Unless you select a probability threshold, all pixels are classified. 
Each pixel is assigned to the class that has the highest probability (i.e., the maximum 
likelihood). It is seen from the experimental results that the classification rates are 
significantly improved by the proposed method.  

Since the number of hidden nodes affects the result, a series of different numbers 
of the hidden nodes are tested in the experiments in order to get the best result, i.e. 5, 
7, 9, 11, 13 and 15. The corresponding classification rates by testing data set are listed 
in Table 2. 8. The variations of CPU time and mean square error (MSE) for training 
neural network are tabulated in Table 2, too. It is noticed that when the number of 
hidden nodes is 5, its classification rate on the testing set is 99.91%, which is next to 
the best (99.96%). Corresponding to the best rate of 99.96%, the number of hidden 
node is 15. It is much larger than 5, which incurs an increase in computational 
complexity and much more testing time. Therefore, the number 5 is a trade-off value 
for hidden nodes for getting a better classification rate. 
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Fig. 7. Classified image based on MLC method 

Table 2. Classification Rates by Testing Data Set Using Different Numbers of Hidden Nodes  

Number of 
hidden nodes 

Classification rate on testing data 
set by wavelet transform 

Experimental data on training data set 

CPU time (second) MSE 

5 99.91% 51.20 0.0364 

7 89.96% 64.13 0.0279 

9 99.48% 49.78 0.0374 

11 92.36% 73.89 0.0377 

13 99.19% 62.69 0.0367 

15 99.96% 95.56 0.0319 

7 Conclusion 

In this paper, a method based on structural neural network is proposed for the PAN 
IKONOS image classification with adaptive processing of data structures. The image 
content is represented by a tree structural in which each node contains combined 
features, spatial and frequency features extracted from a PAN image. 

BPTS algorithm and PAN IKONOS image decomposed by wavelet transform are 
first described. The spectral intensity and wavelet features are combined as the input 
attributes for BPTS algorithm. Based on this, 2510 pixels are used for training neural 
network. The classification accuracy rate up to 100% is reached. Using such a trained 
neural network, with another 19498 pixels, the testing is carried out and its 
classification rate arrives at 99.91% when the number of hidden nodes is 5. For 
comparison, another experiment based on MLC is conducted and the classification 
rate is 55.33% only. Clearly, better classification accuracy is achieved by our 
approach. From the experimental results and analysis, it is found a PAN satellite 
imagery classification using wavelet coefficients is reliable and effective. 
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Using RGB-D Camera
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Abstract. In this paper, we perform activity recognition using an inexpensive
RGBD sensor (Microsoft Kinect). The main contribution of this paper is that the
conventional STIPs feature are extracted from not only the RGB image, but also
the depth image. To the best knowledge of the authors, there is no work on ex-
tracting STIPs feature from the depth image. In addition, the extracted feature are
combined under the framework of locality-constrained linear coding framework
and the resulting algorithm achieves better results than state-of-the-art on public
dataset.

Keywords: RGB-D, local feature, linear coding.

1 Introduction

Recognition of human actions has been an active research topic in computer vision. In
the past decade, research has mainly focused on leaning and recognizing actions from
video sequences captured from a single camera and rich literature can be found in a
wide range of fields including computer vision, pattern recognition, machine leaning
and signal processing. Recently, there are some approaches using local spatiotempo-
ral descriptors together with bag-of-words model to represent the action, which have
shown promising results. Since these approaches do not rely on some preprocessing
techniques, e.g. foreground detection or body-part tracking, they are relatively robust to
viewpoint, noise, changing background, and illumination. Most previous work on ac-
tivity classification has focused on using 2D video. however, the use of 2D videos leads
to relatively low accuracy even when there is no clutter.

On the other hand, the depth camera recently received great attentions from industrial
to academic fields. Microsoft provided a popular mass-production consumer electron-
ics device Kinect, which could provide a depth image except a color image. So some
scholars begin to use Kinect for people detection and tracking[4][5].

In this work, we perform activity recognition using an inexpensive RGBD sensor
(Microsoft Kinect). The main contribution of this paper is that the conventional STIPs
feature are extracted from not only the RGB image, but also the depth image. To the best
knowledge of the authors, there is no work on extracting STIPs feature from the depth
image. In addition, the extracted feature are combined under the framework of locality-
constrained linear coding framework and the resulting algorithm achieves better results
than state-of-the-art on publicly dataset.

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 421–428, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. STIPs features on RGB image(left) and depth image(right)

2 Feature Extraction

There are several schemes applied to time-consistent scene recognition issues. Some of
them are statistics based approaches, such as HMM, LDM(Latent-Dynamic Discrimi-
native Model) and so on. Others, like Space-Time Interest Points (STIPs), see the time
axis as the other same dimension as the space axes and look for the features along the
time axis as well. We prefer the latter schemes because the time parameter of the sample
is essentially the same as the space parameters in the mathematics sense. Since we have
plenty of reliable mathematics tools and feature construction schemes, the extensions of
already existed feature schemes can be safely applied in such time-relevant problems.
Meanwhile, those schemes can be naturally extent for more complex tasks as in our
problem.

STIPs[3] is an extension of SIFT in 3-dim space and uses one of Harris3D, Cuboid
or Hessian as the detector. For certain video, dense sampling is performed at regular
positions and scales in space and time to get 3D patches. We perform sampling from 5
dimensions x, y, t, σ and τ where σ and τ are the spatial and temporal scale, respec-
tively. Usually, the minimum size of a 3D patch is 18×18pixel2 and 10 frames. Spatial
and temporal sampling are done with 50% overlap. Multi-scale patches are obtained by
multiplying σ and τ by a factor of

√
2 for consecutive scales. In total, there are 8 spa-

tial and 2 temporal scales since the spatial scale is more important than the time scale.
Different spatial and temporal scales are combined that each video is sampled 16 times
with different σ and τ parameters. The detector is applied in each video and locates
interest points as well as the corresponding scale parameters. After that, we calculate
the HOGHOF descriptors at those detected interest points and synthesize the sample
features from them.

An important contribution of this paper is that the feature descriptors are extracted
from both RGB image and depth image. For applying the STIPs detector and descriptor
on the depth information, we scale the depth value from 16-bit unsigned integer to 8-bit
unsigned integer by searching the maximum and minimum (above 0) of the depth value
in the whole sample video, and transforming each depth pixel linearly as

dnew =

{
0 d = 0

255× d−v
V−v d > 0

(1)
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where V is the maximal depth of the video sample and v is the minimal depth above 0
of the video sample. We save the matrices of dnew as the gray type depth video and use
it in the same way as the RGB one. For a typical video, there are about several hun-
dred frames of RGB and depth image pairs and several thousand of STIPs descriptors
detected. The STIPs descriptors are of 162 dimensional vector composed of 90-dim
HOG[2] descriptor and 72-dim HOF descriptor. The HOG and HOF descriptors are
computed at the detected interest point with the associated scale factors. The STIPs de-
scriptor describes the local variation characters well in the xy space as well as in the t
space. Fig.1 shows the features detected in one frame of both RGB image and depth im-
age. The circles center at the interest points and the radius of the circles is proportional
to the scale factor σ of the interest point. It can be seen that the STIPs features on RGB
image and depth image find different regions of the subjects because of the different
pixel variation in the two types of data. In fact, the brightness of each pixel in the depth
image has larger variation near the contour of the subjects, including the head, arms
and legs. On the other hand, the variation of the brightness of the RGB image appears
at the boundary of the texture of the subject. So the STIPs features in the RGB images
disclose more detail characters of the subjects themselves while in the depth images
they extract more characters from the overall contour of the subjects. In conclusion,
both features are useful and equally important for classification.

3 Coding Approaches

A popular method for coding is the vector quantization (VQ) method, which solves the
following constrained least square fitting problem:

min
C

M

∑
i=1

‖xi −Bci‖2
2 s.t. ||ci||0 = 1, ||ci||1 = 1,ci $ 0,∀i, (2)

where C = [c1,c2, · · · ,cM] is the set of codes for X = [x1,x2, · · · ,xM]. The cardinality
constraint ||ci||0 = 1 means that there will be only one non-zero element in each code
ci, corresponding to the quantization id of xi. The non-negative, $1 constraint ||ci||1 = 1,
ci $ 0 means that the coding weight for xi is 1. In practice, the single non-zero element
can be found by searching the nearest neighbor.

VQ provides effective way to treat an image as a collection of local descriptors,
quantizes them into discrete “visual words”, and then computes a compact histogram
representation for traffic sign image classification. One disadvantage of the VQ is that
it introduces significant quantization errors since only one element of the codebook is
selected to represent the descriptor. To remedy this, one usually has to design nonlinear
SVM as the classifier which try to compensate the quantization errors. However, using
nonlinear kernels, the SVM has to pay a high training cost, including computation and
storage. This means that it is difficult to scale up the algorithm to the case where M is
more than tens of thousands.

In our experiment, we use all the STIPs features (descriptors) detected in all the
training samples as the candidate features for building the codebook. Then we apply
the standard k-means approach with the nearest neighborhood scheme on the features
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to get a codebook with its elements being the cluster centers. For saving the computing
time, and referring to the previous work[4], we set the number of the cluster to 128,
256 and 512 respectively. So the size of the codebook is a small quantity. The codebook
consists of a 162-dim mean vectors or namely “words”. We calculate the nearest word
in the codebook to each descriptor vector and represent the vector with a new k-dim
unit vector with the i-th component being 1 if the i-th word is nearest to the descriptor
vector and the other components being 0. The new representation or namely quantified
form of the descriptor vectors can be seen as a counter of the codebook words. So the
sum pooling step which add all the quantified vectors together is actually the histogram
of the codebook words in the video sample. Certainly, the pooling result should be
normalized by the total number of the STIPs features detected in the sample for what
we care about is the relative occurrence of each word in the codebook, not the absolute
value. The normalized histogram cannot be classified with linear SVM scheme, but
have to involve the χ2 kernel SVM.

Very recently, [6] pointed out that the sparse coding approach proposed by [7] ne-
glected the relationship among codebook elements. Since locality is more essential than
sparsity[8], [6] proposed a locality-constrained linear coding(LLC) approach. LLC in-
corporates locality constraint instead of the sparsity constraint, which leads to several
favorable properties. Specifically, the LLC code uses the following criteria:

min
C

M

∑
i=1

||xi −Bci||22 +λ ||di � ci||22 s.t. 1T ci = 1,∀i, (3)

where � denotes the element-wise multiplication, and di ∈ R
K is the locality adaptor

that gives different freedom for each basis vector proportional to its similarity to the
input descriptor xi. Specifically,

di = exp(
dist(xi,B)

σ
) (4)

where dist(xi,B) = [dist(xi,b1), · · · ,dist(xi,bK)]
T , and dist(xi,b j) is the Euclidean dis-

tance between xi and b j . σ is used for adjusting the weight decay speed for the locality
adaptor. The constraint 111T ci = 1 follows the shift-invariant requirements of the LLC
code.

To solve (3), the parameters λ and σ should be determined, which is nontrivial task
in practice. Noticing that LLC solution only has a few significant values, the authors of
[6] develop an faster approximation of LLC to speedup the encoding process. Instead
of solving (3), they simply use the k (k < d < K) nearest neighbors of xi as the local
bases B̃i, and solve a much smaller linear system to get the coding vector.

The next step after the extraction of features is to refine the features of the video sam-
ples so that each sample can be represented distinctly by a single shorter length vector.
According to the earlier work of Bingbing Ni in their paper[4], we apply a similar two-
step scheme for the pre-processing. The first step is to merge the local features. In the
referred literature, the Bag of Words (BoW) model is applied. The BoW model extracts
multiple cluster centers of thousands of the features, then quantifies all the STIPs fea-
tures into one of the cluster centers. The second step is to pool the features together as
a single feature vector (usually with the sum pooling scheme) for that video sample.
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And we perform the same process on the STIPs features of both the RGB and depth
images respectively. The two result feature vectors are concatenated for classification
stage. Since the BoW model generates a considerable loss during quantifying the fea-
ture into cluster center, the result feature has to be classified by nonlinear classifiers,
thus increases the computational complexity in the predicting period when efficiency
was more important. To overcome this demerit, we try LLC model[6] which uses a
local linear coding scheme to represent the original local features by the linear combi-
nation of the k nearest vectors in the codebook. The LLC features then undergo the max
pooling process to generate a single feature vector for each sample and the ultimate
sample features are trained and predicted with linear classifiers such as linear SVM,
which has the advantage in the online part of the whole process over the BOW scheme.

4 Experimental Results

4.1 Data

We use the RGBD-HuDaAct[4] video database for testing our approach. The database
is composed of 30 people playing daily activities of 13 categories including 12 named
categories and 1 background category. Each sample is recorded in an indoor environ-
ment with a Microsoft Kinect sensor at a fixed position for a few seconds. The video
sample consists of synchronized and calibrated RGB-D frame sequences, which con-
tains in each frame a RGB image and a depth image, respectively from RGB and depth
sensors in the same time spot. The RGB and depth images in each frame have been
calibrated with a standard stereo-calibration method available in OpenCV so that the
points with the same coordinate in RGB and depth images are corresponded. For each
video sample, the dimension of RGB and depth images is 640× 480pixel2. The color
image is formatted as standard 24-bit RGB image, while the depth image is represented
by a single channel 16-bit integer matrix, one element for each pixel.

Since the video database primarily faces the elder people’s everyday living issues the
categories of activities are defined in a large extent, which means each category may
contain different concrete actions or different combinations of meta-actions (i.e to make
a call one can stand up or sit down, with left hand or right hand) so that the recognition
and classification tasks can be quite challenging. But more important, the database is
the first public one involving both RGB image and depth data in one frame, which can
be a justified platform to evaluate and test algorithms based on both RGB and depth
data. The authors of this database proposed a baseline approach which trivially uses the
depth information for classification. Our method directly fetches the features from the
depth map, and merges the features from the RGB image and the depth map together.
As we utilize the most part of depth information, our results can improve significantly
over the baseline. Our experiments employ both BoW and LLC model on the HuDaAct
database[4]. We randomly select 709 samples of 18 subjects out of total 1189 samples
of 30 subjects (60% sampling) as the data set. Each subject contains videos of almost all
the categories of activities the database defines, performed by certain user. We repeat the
experiment for 18 times. For each round, we select one of the subjects as the testing data
and the other 17 subjects as the training data. There is no duplication in the 18 splits. We
record the testing results for each round and collect all the results to calculate the overall
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recognition rate at last. These settings are approaching to the settings by the baseline
method in [4]. So we can compare our results with the baseline. The pre-processing
scheme is the same as adopted by [4], which halves the dimensions of x, y and t by
downsampling both in the image space and along the time axis. So the input videos are
of 320×240pixel2 and 15 fps. We apply the original STIPs program available from [1]
provided by the authors to get the HOGHOF descriptors.

4.2 Results

We perform the experiments on RGB videos, depth videos and both of them respec-
tively. for each group of data, we apply both BoW and LLC model. The knn parameter
of the LLC coding scheme, which decides the nonzero number of components in the
LLC coded vector, is set to 10. The recognition rate is shown in Tab.1, where the results
in bold font correspond to the best recognition accuracy. We can see the overall effect
of experiment on depth samples are better than that on the RGB samples. And the ex-
periment with combined features is largely improved over either of the separate ones.
These facts suggest that: 1. depth sample have equal or better distinguished features
for the action recognition issues; 2. combining two features can provide more compre-
hensive distinctions, thus overcome the limitation of the representation of one single
feature.

Table 1. Recognition rates

the codebook size k 128 256 512
BOW on RGB 83% 86% 89%
BOW on Depth 84% 86% 89%

BOW on RGB&Depth 89% 90% 92%
LLC on RGB 74% 84% 86%
LLC on Depth 78% 86% 88%

LLC on RGB&Depth 83% 89% 91%

We also draw the confusion matrix of some groups of our experiment in Tab.2, Tab.3
and Tab.4, from which we can see the well classified categories and bad classified ones.
The 3 tables response the results of experiments with the same parameters: the cluster
number is set to 128, the coding method is nearest-neighbor and the SVM is linear. They
are evaluated on different features respectively extracted from RGB, depth and both
(combined feature) video samples. Almost for every category the combined feature has
a better recognition rate over the result of single features. In some special cases (drink,
sweep, etc.), the results have a prominent improvement. This indicates that the features
from different data could be complement for each other, supporting critical distinctions
from different aspects.

From the confusion matrixes we find that the dress and undress are very easily con-
fused. This is not surprising because such sequences are indeed similar (see Fig.2 for
some examples) if the temporal order is neglected. A direct remedy method is to incor-
porate the temporal order into the coding strategy. This remains our future work.
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Table 2. Confusion matrix for RGB samples

% B D E G I K L M N O P T BG
B(bed) 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D(dress) 0.00 72.22 0.00 0.00 0.00 0.00 0.00 0.00 22.22 5.56 0.00 0.00 0.00
E(exit) 0.00 0.00 96.30 0.00 0.00 0.00 1.85 0.00 0.00 0.00 0.00 0.00 1.85

G(get up) 6.67 0.00 0.00 91.11 0.00 0.00 0.00 0.00 0.00 2.22 0.00 0.00 0.00
I(sit down) 0.00 0.00 0.00 0.00 75.93 9.26 0.00 0.00 5.56 0.00 3.70 1.85 3.70
K(drink) 0.00 0.00 0.00 0.00 0.00 77.78 0.00 11.11 0.00 0.00 11.11 0.00 0.00
L(enter) 0.00 0.00 0.00 0.00 0.00 0.00 98.15 0.00 1.85 0.00 0.00 0.00 0.00
M(meal) 0.00 0.00 0.00 0.00 0.00 3.70 0.00 81.48 0.00 0.00 14.81 0.00 0.00

N(undress) 0.00 18.52 0.00 0.00 0.00 0.00 0.00 0.00 72.22 5.56 0.00 1.85 1.85
O(sweep) 0.00 5.56 0.00 0.00 0.00 0.00 0.00 0.00 16.67 77.78 0.00 0.00 0.00
P(phone) 0.00 0.00 0.00 0.00 1.39 2.78 0.00 9.72 1.39 0.00 80.56 0.00 4.17

T(stand up) 0.00 0.00 0.00 1.92 7.69 0.00 0.00 0.00 0.00 0.00 0.00 90.38 0.00
BG(background) 0.00 2.22 0.00 0.00 0.00 2.22 0.00 0.00 6.67 11.11 6.67 2.22 68.89

Table 3. Confusion matrix for depth samples

% B D E G I K L M N O P T BG
B(bed) 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D(dress) 0.00 83.33 0.00 0.00 0.00 0.00 0.00 0.00 11.11 5.56 0.00 0.00 0.00
E(exit) 0.00 0.00 98.15 0.00 0.00 0.00 1.85 0.00 0.00 0.00 0.00 0.00 0.00

G(get up) 4.44 0.00 0.00 95.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I(sit down) 0.00 1.85 0.00 0.00 79.63 9.26 0.00 0.00 1.85 0.00 1.85 1.85 3.70
K(drink) 0.00 0.00 0.00 0.00 2.78 80.56 0.00 9.72 1.39 0.00 5.56 0.00 0.00
L(enter) 0.00 0.00 5.56 0.00 0.00 0.00 94.44 0.00 0.00 0.00 0.00 0.00 0.00
M(meal) 0.00 0.00 0.00 0.00 0.00 11.11 0.00 83.33 0.00 0.00 5.56 0.00 0.00

N(undress) 0.00 16.67 0.00 0.00 0.00 0.00 0.00 0.00 74.07 3.70 0.00 3.70 1.85
O(sweep) 0.00 14.81 0.00 0.00 0.00 1.85 0.00 0.00 3.70 79.63 0.00 0.00 0.00
P(phone) 0.00 0.00 0.00 0.00 0.00 6.94 0.00 1.39 5.56 4.17 75.00 0.00 6.94

T(stand up) 0.00 0.00 0.00 0.00 0.00 9.62 0.00 0.00 1.92 0.00 3.85 84.62 0.00
BG(background) 0.00 8.89 0.00 0.00 0.00 2.22 0.00 2.22 2.22 4.44 11.11 0.00 68.89

Table 4. Confusion matrix for combined feature

% B D E G I K L M N O P T BG
B(bed) 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D(dress) 0.00 87.04 0.00 0.00 0.00 0.00 0.00 0.00 9.26 3.70 0.00 0.00 0.00
E(exit) 0.00 0.00 96.30 0.00 0.00 0.00 1.85 0.00 0.00 0.00 0.00 0.00 1.85

G(get up) 4.44 0.00 0.00 95.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
I(sit down) 0.00 0.00 0.00 0.00 83.33 5.56 0.00 0.00 3.70 0.00 1.85 1.85 3.70
K(drink) 0.00 0.00 0.00 0.00 0.00 87.50 0.00 9.72 0.00 0.00 2.78 0.00 0.00
L(enter) 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
M(meal) 0.00 0.00 0.00 0.00 0.00 7.41 0.00 87.04 0.00 0.00 5.56 0.00 0.00

N(undress) 0.00 12.96 0.00 0.00 0.00 0.00 0.00 0.00 81.48 3.70 0.00 0.00 1.85
O(sweep) 0.00 7.41 0.00 0.00 0.00 0.00 0.00 0.00 3.70 88.89 0.00 0.00 0.00
P(phone) 0.00 0.00 0.00 0.00 0.00 2.78 0.00 2.78 1.39 0.00 87.50 0.00 5.56

T(stand up) 0.00 0.00 0.00 0.00 0.00 7.69 0.00 0.00 1.92 0.00 1.92 88.46 0.00
BG(background) 0.00 2.22 0.00 0.00 0.00 2.22 0.00 0.00 4.44 8.89 8.89 0.00 73.33



428 M. Yuan, H. Liu, and F. Sun

Fig. 2. Snapshots of actions acted by one person. Top action: dressing. Bottom action: undressing.

5 Conclusion

Currently, the depth camera recently received great attentions from industrial to aca-
demic fields. In this paper, we perform activity recognition using an inexpensive RGBD
sensor (Microsoft Kinect). The main contribution of this paper is that the conventional
STIPs feature are extracted from not only the RGB image, but also the depth image. To
the best knowledge of the authors, there is no work on extracting STIPs feature from
the depth image. In addition, the extracted feature are combined under the framework
of locality-constrained linear coding framework and the resulting algorithm achieves
better results than state-of-the-art on publicly dataset.
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Abstract. There are a number of methods that transform 2-D shapes into 
periodic 1-D signals so that faster recognition can be achieved. However, none 
of these methods are both noise-robust and scale invariant. In this paper, we 
propose a circular projection method for transforming 2-D shapes into periodic 
1-D signals. We then apply a number of feature extraction methods to the 1-D 
signals. Our method is invariant to the translation, rotation and scaling of the 2-
D shapes. Also, our method is robust to Gaussian white noise. In addition, it 
performs very well in terms of classification rates for a well-known shape 
dataset. 

Keywords: Circular projection, Ramanujan Sums (RS), invariant features, 
pattern recognition, Gaussian white noise, fast Fourier transform (FFT). 

1 Introduction 

Feature extraction is an important step in pattern recognition. Among all existing 
feature extraction techniques, one very useful technique is to extract 1-D features 
from 2-D pattern images. This technique is very fast in terms of computing time when 
compared with those methods that extract 2-D features.  

In this paper, we propose a novel method, called circular projection, which projects 
every radial line to one point by taking the sum of the pixel values of all pixels on this 
line. Our method is invariant to the translation, rotation, and scaling of the input 2-D 
shapes. Our experiments show that our proposed method is feasible for invariant 
pattern recognition in classifying a well-known shape dataset. 

The organization of this paper is as follows. Section 2 proposes the circular 
projection of a pattern image, which is scale invariant. Section 3 briefly reviews five 
kinds of methods for rotation invariant feature extraction. Section 4 conducts some 
experiments in order to show that our proposed methods are feasible in practical 
pattern recognition applications. Finally, Section 5 concludes the paper.  
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2 Circular Projection 

Invariance and low dimension of features are of crucial significance in pattern 
recognition. A conventional way to obtain a smaller feature vector is to transform the 
2-D pattern into a 1-D periodic signal. Existing techniques that project 2-D images to 
1-D signals includes ring-projection, outer contour, line-moments, chain code, etc.  

In this paper, we propose a new method, which we call it as circular projection. 
The method projects all pixels on the radial line that passes through the centroid with 
a slope of θi degrees. It is defined as: 
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where [-M, M] is the range of the sample number along the radius direction. We then 
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where N is the total number of samples for the discretized variable θi. It is easy to see 
that the circular projection converts the rotation of the 2-D image into circular shift in 
the rotation angle θi. Also, the )( iR θ  is scale invariant due to the normalization. More 

importantly, the circular projection is very robust to Gaussian white noise because this 
kind of noise has zero mean. Fig. 1 shows two shapes and their circular projections. 
As we can see, the circular projection of the scaled image is the same as that of the 
original shape. This confirms that our proposed circular projection is scale invariant.  

 

 
Fig. 1. The shape images and their circular projection 
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Our circular projection is both noise-robust and scale invariant. However, the line 
moments [4] are scale invariant but not noise robust; the ring-projection [5] is noise 
robust but not scale invariant; the outer-contour [7] is scale invariant but not noise 
robust. 

3 Feature Extraction Methods 

In this section, we study a number of feature extraction methods, which extract 
rotation invariant feature from the )( iR θ . This includes the TI wavelet FFT method, 

the FFT method, the TI Ramanujan Sums method, the orthonormal shell FFT method, 
and the dual tree complex wavelet (DTCWT) method. 

3.1 TI Wavelet FFT 

Translation invariant (TI) wavelet transform, also called cycle-spinning, was proposed 
by Coifman and Donoho [1] to suppress the Gibb’s phenomenon at the discontinuous 
locations. The TI table is an N by D array, where D cannot be bigger than log2(N).  
The d-th column has N entries partitioned into 2d boxes, each box having N/2d entries. 
The boxes correspond to the 2d different collections of wavelet coefficients that can 
occur in the wavelet expansion at level J-d under different shifts of the input vector. 
The fast Fourier transform (FFT) can be applied to every wavelet subband and then 
take the magnitude of the FFT coefficients. The resulting features are rotation 
invariant. The computational complexity of this method is O(N log(N)), where N is 
the length of the input signal.. 

3.2 Fourier Transform 

The Fourier transform analyzes a signal in the time domain for its frequency content. 
The transform works by first transforming a function in the time domain into a 
function in the frequency domain. The signal can then be analysed for its frequency 
content because the Fourier coefficients of the transformed function represent the 
contribution of each sine and cosine function at each frequency. 

The fast Fourier transform (FFT) can extract invariant features by taking the 
magnitude of the Fourier coefficients.  
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where N is the dimension of the discretized variable θi. It is easy to show that the 
magnitude of the FFT coefficients is invariant to the rotation angle θi because 
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The computational complexity of the FFT is O(N log(N)). 
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3.3 TI Ramanujan Sums (RS) 

The Ramanujan Sums (RS) ([2] [3]) are the mth powers of qth primitive roots of unity, 
defined as 
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where (p,q) =1 means that the greatest common divisor (GCD) is unity, i.e., p and q 
are co-primes. An alternate computation of RS can be given as 
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The Mobius function μ(m) is defined as 
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We perform the convolution between R(θi) and ):1( qcq

, q∈[1,Q], along the r 

direction: 
 

))):1((),((),( qcfliplrRconvqB qii θθ =  

 
where fliplr() is a function to flip its filter and conv() is the convolution operation. Let 
us circularly pad q elements after the vector B(θi,q), and we obtain ),(ˆ qB iθ . Now, 

convert the vector ),(ˆ qB iθ into a matrix with q columns by the Matlab command: 

).),,(ˆ(2),( qqBmatvecqD jji
q θθ =  

Next, take the sum along each column of Dq(qi,θj ):  

=
i
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q

j qDqSD ),(),( θθ . 

Finally, we obtain the following invariant features: 
))(/|),((|),( max* qqSDqr j

q
j φθθ =  

This method is our newly proposed method for rotation invariant pattern recognition, 
and it is the first method for pattern recognition by using the TI RS features.  
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3.4 Orthonormal Shell-FFT 

Bui et al. developed the orthonormal shell-FFT transform [4] for invariant pattern 
recognition. The method applies the wavelet transform without downsampling to the 

)( iR θ  for a number of decomposition scales. We then apply the FFT to every 

wavelet scale and take the magnitude of the resulting FFT coefficients. The method is 
invariant to the rotation angle θ of the pattern image. We can apply a coarse-to-fine 
strategy to search the shape dataset and the matching is very quick because of the 
multiscale feature structure. The complexity of this method is O(N log(N)), where N 
is the length of the input signal. 

3.5 Dual-Tree Complex Wavelet 

The ordinary wavelet transform is not shift invariant due to its downsampling process. 
This has limited its applications in pattern recognition. The common way to overcome 
this limitation is to use the wavelet transform without downsampling. However, this is 
time-consuming.  

The dual-tree complex wavelet transform (DTCWT), developed by Kingsbury [6], 
has the important shift invariant property, which has been used successfully in pattern 
recognition by Chen et al. ([7], [8], [9]). We can use this transform to extract rotation 
invariant features from the 1D signal )( iR θ . We take the FFT of every wavelet 

subband and calculate the magnitude of the FFT coefficients. In this way, we have 
extracted rotation invariant features. The dual-tree complex wavelets are very 
efficient in computational complexity O(N), where N is the number of samples. Since 
we apply the FFT to every DTCWT subband, the overall computational complexity of 
this method is O(N log(N)). 

4 Experimental Results 

In this paper, we conducted experiments for a well-known shape dataset [10]. The 
dataset is a subset of the MPEG-7 CE Shape-1 Part-B data set, which has 216 shapes 
in total. This dataset has 18 categories with 12 shapes in each category. The dataset is 
shown in Fig. 2. Each shape is matched against every other shape in the dataset. As 
there are 12 shapes in each category, up to 12 nearest neighbours are from the same 
category. We rate the performance based on the number of times the 12 nearest 
neighbours are in the same category. The shape classes are very distinct, but the data 
set shows substantial within-class variations.  

Fig. 3 plots the correct recognition rates of the first 12 nearest neighbours in the 
same category for this dataset. We experimented with the TI wavelet-FFT features, 
the FFT features, the TI-RS features, the orthonormal shell-FFT features, and the 
DTCWT features. In general, the TI wavelet-FFT features are the best among the five 
feature extraction methods for this shape dataset. In addition, the TI RS method 
obtains relatively good classification rates, when compared with the FFT features, the 
orthonormal shell-FFT features and the DTCWT features.  It can be seen that our 
proposed methods are feasible in terms of recognition rates for classifying 2D shapes. 
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Fig. 2. The samples of the shape dataset 

 

Fig. 3. The recognition rates of the first 12 shapes for five different methods 
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5 Conclusions and Future Work 

In pattern recognition, the dimension of features is very important. A very large 
feature vector will require a huge amount of computation time and slow down the 
matching process. It is desirable to have a small feature vector while keeping the 
important features of the original pattern as much as possible. 

In this paper, we have proposed the circular projection for invariant shape 
recognition. Our method is invariant to the rotation and scaling of the input shape 
images. Translation invariance can be achieved by moving the centroid to the image 
center. Experimental results have demonstrated the feasibility of the proposed 
method.  

Future work will be done in the following ways. We would like to conduct 
experiments for other standard shape datasets in order to show if our proposed 
methods are good for practical pattern recognition applications. We would like also to 
develop other new algorithms for invariant pattern recognition in the fields of medical 
signal and image analysis.  
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Abstract. In the fields of machine learning, image processing, and pattern rec-
ognition, the existing least squares support tensor machine for tensor classifica-
tion involves a non-convex optimization problem and needs to be solved by the 
iterative technique. Obviously, it is very time-consuming and may suffer from 
local minima. In order to overcome these two shortcomings, in this paper, we 
present a tensor factorization based least squares support tensor machine 
(TFLS-STM) for tensor classification. In TFLS-STM, we combine the merits of 
least squares support vector machine (LS-SVM) and tensor rank-one decompo-
sition. Theoretically, TFLS-STM is an extension of the linear LS-SVM to ten-
sor patterns. When the input patterns are vectors, TFLS-STM degenerates into 
the standard linear LS-SVM. A set of experiments is conducted on six second-
order face recognition datasets to illustrate the performance of TFLS-STM. The 
experimental results show that compared with the alternating projection LS-
STM (APLS-STM) and LS-SVM, the training speed of TFLS-STM is faster 
than those of APLS-STM and LS-SVM. In term of testing accuracy, TFLS-
STM is comparable with LS-SVM and is superiors to APLS-STM. 

1 Introduction 

There are two main topics of concern in the fields of machine learning, pattern recog-
nition, computer vision and image processing: data representation and classifier de-
sign. In the past decades, numerous state-of-the-art classification algorithms have 
been proposed and have achieved great successes in many applications. Among these 
algorithms, the most prominent representative is support vector machines (SVMs) [1], 
which have been widely applied to text classification [2], image processing [3-6], and 
control [7-8]. Unfortunately, the SVM model is based on vector space and cannot 
directly deal with non-vector patterns. In real-world applications, image and video 
data are more naturally represented as second-order tensors or higher-order tensors. 
For example, grey level face images [9] are inherently represented as second-order 
tensors. Color images [10], gray-level video sequences [11], gait silhouette sequences 
[12-13], and hyperspectral cube [14] are commonly represented as third-order tensors. 
Color video sequences [15] are usually represented as fourth-order tensors. Although 
tensor patterns can be reshaped into vectors beforehand to meet the input requirement 
of SVM, several studies have indicated that this direct reshaping breaks the natural 



438 X. Yang, B. Chen, and J. Chen 

structure and correlation in the original data [13], [16-17], and leads to the curse of 
dimensionality and small sample size (SSS) problems [18]. 

In the past ten years, researchers have mainly focused on data representation to ad-
dress the above problems, such as tensor decomposition [19]-[21] and multilinear 
subspace learning [22]-[24]. Recently, several researchers [25]-[31] have suggested 
constructing multilinear models to extend the SVM learning framework to tensor 
patterns. In [25], Tao et al. presented a supervised tensor learning (STL) framework 
by applying a combination of the convex optimizations and multilinear operators, in 
which the weight parameter was decomposed into rank-one tensor. Based on the STL 
framework, Cai et al. [26] studied second-order tensor and presented a linear tensor 
least square classifier and support tensor machine (STM), Tao et al. [27] extended the 
classical linear SVM to general tensor patterns. Based on the SVM methodology 
within STL framework, Liu et al. [28] used the dimension-reduced tensors as input 
for video analysis. Kotsia et al. [29] adopted Tucker decomposition of the weight 
parameter instead of rank-one tensor to retain more structure information. Wolf et al. 
[30] proposed to minimize the rank of the weight parameter with the orthogonality 
constraints on the columns of the weight parameter instead of the classical maximum-
margin criterion and Pirsiavash et al. [31] relaxed the orthogonality constraints to 
further improve the Wolf’s method. 

At present, the STL-based methods have two main drawbacks. On the one hand, it 
may suffer from local minima since the model is non-convex. On the other hand, for 
the non-convex optimization problems, one usually resorts to iterative techniques, 
which is very time-consuming. In this paper, we propose a tensor factorization based 
least squares support tensor machine (TFLS-STM) to overcome these two shortcom-
ings. Firstly, we reformulate the linear least squares support vector machine (LS-
SVM) model from multilinear algebra viewpoint based on alternating projection least 
squares support tensor machine (APLS-STM) [27] and obtain a tensor space model. 
The novel model works with the same principles as the linear LS-SVM but operates 
directly on tensor. Different from APLS-STM which derives alternating projection 
optimization procedure along each mode, the global optimal solution of the proposed 
model can be obtained by the optimization algorithms for LS-SVM. Secondly, we 
integrate the tensor rank-one decomposition into the model to assist the tensor inner 
product computation. There are two main reasons for doing this. One is that the origi-
nal tensor inner product cannot exert its normal capability for capturing structural 
information of tensor objects because of the curse of dimensionality and SSS prob-
lems. The other is that the tensor rank-one decomposition is able to obtain more com-
pact and meaningful representations of the tensor objects, which saves storage space 
and computational time. A set of experiments is conducted on six tensor classification 
datasets to examine the effectiveness and efficiency of TFLS-STM. 

The rest of this paper is organized as follows. Section 2 covers some preliminaries 
including notation, basic definitions and a brief review of APLS-STM. In Section 3, 
TFLS-STM is proposed for tensor classification. The differences of TFLS-STM vs. 
LS-SVM and APLS-STM are also discussed in this section. The experimental results 
and analysis are presented in Section 4. Finally, Section 5 gives conclusions and fu-
ture work. 
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2 Preliminaries 

Before presenting our work, we first briefly introduce some notation and basic defini-
tions used throughout this study, and then review the APLS-STM algorithm. 

2.1 Notation and Basic Definitions 

For convenience, we will follow the conventional notation and definitions in the areas 
of multilinear algebra, pattern recognition and signal processing [13], [32-34]. In this 
study, vectors are denoted by boldface lowercase letters, e.g., a , matrices by bold-
face capital letters, e.g., A , tensors by calligraphic letters, e.g., A . Their elements 
are denoted by indices, which typically range from 1 to the capital letter of the index, 
e.g., 1, , .n N=    

Definition 1 (Tensor) A tensor, also known as thN − order tensor, multidimensional 
array, N − way or N −  mode array, is an element of the tensor product of N  vec-
tor spaces, which is a higher-order generalization of a vector (first-order tensor) and a 

matrix (second-order tensor), denoted as 1 2 ,NI I IR × × ×∈ A  where N  is the order of 

A , also called ways or modes. The element of A  is denoted by 

1 2, , , , 1 , 1 .
Ni i i n na i I n N≤ ≤ ≤ ≤  

Definition 2 (Tensor product or Outer product) The tensor product X Y  of a 

tensor 1 2 NI I IR × × ×∈ X  and another tensor 
' ' '
1 2 MI I IR × × ×∈ Y  is defined by 

 ' ' ' ' ' '
1 22 1 2 1 2

( )
Ni N M M

i i ii i i i i i i i i
x y=   

X Y . (1) 

for all values of the indices. 
Definition 3 (Inner product) The inner product of two same-sized tensors 

1 2 NI I IR × × ×∈ X, Y  is defined as the sum of the products of their entries, i.e., 

 
1 2

1 2 1 2

1 21 1 1

,
N

N N

N

II I

i i i i i i
i i i

x y
= = =

  =   X Y . (2) 

Definition 4 ( n − mode product) The n − mode product of a tensor 1 2 NI I IR × × ×∈ A  

and a matrix n nJ IR ×∈U , denoted by n× UA , is a tensor in 1 2 1 1n n n NI I I J I IR − +× × × × × × ×   

given by 

 
1 2 1 1 1 2, , , ,( ) i i i j i in n n N N n n

n

n i i i j i
i

a u× × × × × ×− +× =U   A . (3) 

for all index values. 

Remark. Given a tensor 1 2 NI I IR × × ×∈ A  and a sequences of matrices 

, 1, .n nJ I n N< =   The projection of A  onto the tensor subspace 1 2 NJ J JR × × ×  is 
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defined as (1) (2) ( )
1 2

N
N× × × ×U U UA . Given the tensor 1 2 NI I IR × × ×∈ A , the matrices 

n nJ IF R ×∈  and m mJ IG R ×∈ , one has 
( ) ( )n m m n n m× × = × × = × ×F G G F F GA A A . 

Definition 5 (Frobenius Norm) The Frobenius norm of a tensor 1 2 NI I IR × × ×∈ A  is 
the square root of the sum of the squares of all its elements, i.e. 

 
1 2

1 2
1 2

2

1 1 1

,
N

i i iN

N

II I

F
i i i

a
× × ×

= = =
=   =   

A A A . (4) 

Definition 6 (Tensor rank-one decomposition) Let 1 2 NI I IR × × ×∈ A  be a tensor. If 
it can be written as 

 (1) (2) ( ) ( )

1 1 1

NR R
N n

r r r r
r r n= = =

= ∏u u u u  A = , (5) 

where ( ) nIn
r R∈u , we call (5) tensor rank-one decomposition of A with length R . 

Particularly, if 1R = , it is called rank-1 tensor. If R  is the minimum number of 
rank-1 tensors that yield A  in a linear combination, R  is defined as the rank of 

A , denoted by ( )R rank= A . Moreover, if ( )n
iu and ( )n

ju are mutually orthonormal 

for all , 1 , , 1, ,i j i j R n N≠ ≤ ≤ =  , the formula (5) is often called rank- R  approx-

imation [33], [35]. 

2.2 Alternating Projection Least Squares Support Tensor Machine 

Considering a training set of l  pairs of samples 1{ , }l
i i iy =X  for tensor binary classifica-

tion problem, where 1 2 NI I I
i R × × ×∈ X  are the input data and { }1, 1iy ∈ − +  are the cor-

responding class labels of iX , APLS-STM is composed of N  quadratic programming 

(QP) problems with equality constraints, and the -thn QP problem can be described in 
the following [27]: 

 ( )
( ) ( ) ( )

22 2( ) ( ) ( ) ( ) ( ) ( )

1, , 1

1
min J( , , ) ,

2 2n n n

l
i nn n n n i n

ji NF Fb j

b
γ ξ≠

≤ ≤
=

= + ∏
w ξ

w ξ w w  (6) 

s. t. 

 ( )( )( ) ( ) ( ) ( )

1
( ) 1 , 1,2, , .

i nn T i n n
j j i ji N

y b j lξ≠

≤ ≤
× + = − =∏w w X  (7) 

Where ( )nw  is the normal vector (or weight vector) of the hyperplane in the - thn  mode 

space, ( )nb  is the bias, ( )n
jξ  is the error of the - thj  training sample corresponding to 

( )nw , γ  is the trade-off between the classification margin and misclassification error. 
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Obviously, each optimization problem defined in (6)-(7) is the standard linear LS-SVM. 
Mathematically, on the one hand, the optimization problem composing of these N  opti-
mization models has no closed-form solution, we need to use the alternating projection 
algorithm to solve it; on the other hand, this optimization problem is non-convex, we 
cannot obtain its global optimal solution. 

3 The Tensor Factorization Based Least Squares Support 
Tensor Machine 

In this section, we first introduce TFLS-STM for tensor classification, and then ana-
lyze the differences of TFLS-STM vs. LS-SVM and APLS-STM. 

3.1 TFLS-STM for Binary Classification 

Let (1) (2) ( )N= w w w W  and ( ){ }22 ( )

1,2, ,
max n

j j
n N

ξ ξ
=

=


. From the definitions of 

the outer product and the Frobenius norm of tensors, we know that 

 
22 ( )

1

N
n

F F
n=

= ∏ wW . (8) 

From the definitions of the n − mode product and the inner product of tensors, we 
have 

( )( ) ( )

1
( )

i nn T i
j ii N

≠

≤ ≤
×∏w wX  

( )( ) (1) (2) ( 1) ( 1) ( )
1 2 ( 1) ( 1)( )n T n n N

j n n N
− +

− += × × × × × × ×w w w w w w X  

( )(1) (2) ( 1) ( ) ( 1) ( )
1 2 ( 1) ( 1) ,n n n N

j n n n N j
− +

− += × × × × × × × × =w w w w w w X W X . (9) 

Based on (8) and (9), the N  QP problems arising in APLS-STM can be transformed 
into the following optimization problem in tensor space: 

 
2 2

, ,
1

1
minJ( , , ) ,

2 2

l

jFb
j

b
γ ξ

=
= + ξ

ξ
W

W W  (10) 

s. t. 

 ( ), 1j j jy b ξ+ = −W X . (11) 

It is obvious that when the input samples iX  are vectors, the optimization model 

(10)-(11) degenerates into the linear LS-SVM. Moreover, if we adopt the original 
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input tensors to compute the tensor inner product ,i jX X , then the optimal solu-

tions of (10)-(11) are the same as the linear LS-SVM.  
Considering that the tensor rank-one decomposition can obtain more compact and 

meaningful representations of the tensor objects, we use tensor rank-one decomposi-
tion to assist the inner product computation. Let the rank-one decompositions of iX  

and jX  be (1) (2) ( )

1

R
N

i ir ir ir
r=

=x x x X  and (1) (2) ( )

1

R
N

j jr jr jr
r=

=x x x X  respectively, then 

the inner product of iX  and jX is calculated as follow: 

 (1) (2) ( ) (1) (2) ( )

1 1

, ,
R R

N N
i j ir ir ir jr jr jr

r r= =

=  x x x x x x   X X  

    (1) (1) (2) (2) ( ) ( )

1 1

, , ,
R R

N N
ip jq ip jq ip jq

p q= =

= x x x x x x  (12) 

Based on (12), we call the optimization model (10)-(11) TFLS-STM. It can be solved 
by sequential minimal optimization algorithm [36]. The class label of a testing exam-
ple X  is predicted as follow: 

 ( ) ( )

1 1 1 1

( ) sgn( , )
Nl R R

n n
j j jp q

j p q n

y y bα
= = = =

= + ∏ x xX  (13) 

Where ( )n
jpx  and ( )n

px  are the elements of the rank-one decompositions of jX  and 

X  respectively. 

3.2 Analysis of the TFLS-STM Algorithm 

In this section, we discuss the differences of TFLS-STM vs. LS-SVM and APLS-
STM as follows: 
(1) Naturally APLS-STM is multilinear SVM and constructs N  different hyper-

planes in N  mode spaces. TFLS-STM is linear STM and constructs a hyper-
plane in the tensor space. 

(2) The optimization problem (6)-(7) needs to be solved iteratively in APLS-STM 
while the optimization problem (10)-(11) of TFLS-STM only needs to be solved 
once. 

(3) For the same training sample, the slack variables ( )n
jξ  obtained by APLS-STM 

are often unequal in different mode spaces while TFLS-STM only obtains one 
slack value in the tensor space. In addition, for different mode spaces, the support 
vectors in one mode space may no longer be support vectors in another mode 
space in APLS-STM. 

(4) For the weight parameter W , APLS-STM only obtains its rank-one tensor 
while TFLS-STM obtains its more accurate presentation.  
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(5) Based on the previous work [37], we know that the computational complexity of 

LS-SVM is 3

1
( )

N

n n
O l I

=∏ , thus the computational complexity of APLS-STM is 

3

1
( )

N

n n
O l NT I

=∏  where T  is the loop number, and the computational complex-

ity of TFLS-STM is 3 2

1
( )

N

nn
O l R I

= , which indicates that TFLS-STM is more 

efficient than LS-SVM and APLS-STM. 

4 The Experimental Results and Analysis 

In this section, six face datasets Yale32x32, Yale64x64, C7, C9, C27, and C29, which 
come from http://www.zjucadcg.cn/dengcai/Data/FaceData.html, are used to evaluate 
the performance of TFLS-STM. The detailed information about these six datasets is 
listed in Table 1. In our experiments, we compare LS-SVM with Gaussian kernel and 
APLS-STM with TFLS-STM. The optimal hyperparameters ( ),σ γ  and the optimal 

rank parameter R  are found by the grid search and ten-fold cross validation strategy, 

where { }4 3 2 92 ,2 ,2 , ,2σ − − −∈  , { }0 1 2 92 ,2 , 2 , ,2γ ∈  , {3,4,5,6,7,8,9,10}R ∈ , the 

threshold parameter ε  in APLS-STM is set to -310 . All the programs are written in 
C++ and compiled using the Microsoft Visual Studio 2008 compiler. All the experi-
ments are conducted on a computer with Intel(R) Core(TM) i7-3770 3.4GHz proces-
sor and 16GB RAM memory running Microsoft Windows 7 SP1 V8.8. The optimal 
parameters, the corresponding average testing accuracy and the average training time 
obtained by TFLS-STM, LS-SVM and APLS-STM are reported in Table 2. 

Table 1. The Detailed Information of Six Experimental Datasets 

Datasets Number of Samples Number of Classes Size 

Yale32x32 165 15 32x32 

Yale64x64 165 15 64x64 

C7 1629 68 64x64 

C9 1632 68 64x64 

C27 3329 68 64x64 

C29 1632 68 64x64 

 
From Table 2, we have the following observations: 

(1) In terms of testing accuracy, TFLS-STM is comparable with LS-SVM and out-
performs APLS-STM. The reason is that the solutions obtained by TFLS-STM 
and LS-SVM are the global optimal solutions while APLS-STM perhaps gives 
the local solutions. 
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(2) In terms of  training time, TFLS-STM is significantly superiors to LS-SVM and 
APLS-STM on all the datasets, which is identificial to the previous theoretical 
analysis. For example, the training speed of TFLS-STM on Yale64x64 is about 11 
times and 726 times faster than LS-SVM and APLS-STM, respectively. The main 
reason is that TFLS-STM uses tensor rank-one decomposition to calculate the tensor 
inner product and save storage space. 

Table 2. Comparison of the Results of TFLS-STM, LS-SVM and APLS-STM on Six 
Experimental Datasets 

Learning  
Machines 

Datasets R  γ  σ  
Testing  

Accuracy  
(%) 

Training Time 
(Seconds) 

LS-SVM 

Yale32x32 

-- 256 128 77.00 0.16 

APLS-STM -- 1 -- 73.67 2.86 

TFLS-STM 4 512 -- 78.33 0.05 

LS-SVM 

Yale64x64 

-- 512 64 84.33 0.59 

APLS-STM -- 8 -- 82.67 36.30 

TFLS-STM 3 2 -- 85.67 0.05 

LS-SVM 

C7 

--       512 32 96.32 182.67 

APLS-STM -- 1 -- 94.95 2138.24 

TFLS-STM 7 2 -- 96.20 76.52 

LS-SVM 

C9 

-- 512 8 97.43 183.65 

APLS-STM -- 1 -- 96.05 2148.31 

TFLS-STM 4 1 -- 96.96 24.73 

LS-SVM 

C27 

-- 512 16 96.62 183.21 

APLS-STM -- 2 -- 94.83 2753.91 

TFLS-STM 5 1 -- 96.10 41.71 

LS-SVM 

C29 

-- 512 16 96.64 183.11 

APLS-STM -- 1 -- 94.78 2363.10 

TFLS-STM 6 1 -- 96.03 59.97 

5 Conclusions and Future Work 

In this paper, TFLS-STM has been presented for tensor classification. In TFLS-STM, 
the linear LS-SVM model is reformulated from multilinear algebra viewpoint and can 
operates directly on tensor. Furthermore, the proposed model uses more compact R  
rank-one tensors as input data instead of the original tensors, which makes TFLS-
STM have strong capabilities for capturing essential information from tensor objects 
and saving storage space and computational time. The experimental results show that 
in terms of training speed, TFLS-STM is significantly faster than LS-SVM and 
APLS-STM. As for the testing accuracy, TFLS-STM is comparable with LS-SVM 
and is superiors to APLS-STM. 
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In future work, we will investigate the reconstruction techniques of tensor data so 
that TFLS-STM can handle high-dimensional vector data more efficiently. Another 
interesting topic would be to design some tensor kernel so as to generalize TFLS-
STM to nonlinear case. Further study on this topic will also include many applications 
of TFLS-STM in real-world tensor classification. 
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Abstract. There are few training samples in the remote sensing image 
classification. Therefore, it is a highly challenging problem that finds a good 
classification method which could achieve high accuracy and strong 
generalization to deal with those data. In this paper, we propose a new remote 
sensing image classification method based on extreme learning machine (ELM) 
ensemble. In order to promote the diversity within the ensemble, we do feature 
segmentation and nonnegative matrix factorization (NMF) to the original data 
firstly. Then ELM is chosen as base classifier to improve the classification 
efficiency. The experimental results show that the proposed algorithm not only 
has high classification accuracy, but also handles the adverse impact of few 
training samples in the classification of remote sensing well both on the remote 
sensing image and UCI data.  

Keywords: Remote Sensing Classification, Nonnegative Matrix Factorization-
(NMF), Extreme Learning Machine (ELM), Ensemble Learning. 

1 Introduction 

Remote sensing(RS) image classification is a way to distinguish class attributes and 
distribution of ground objects based on the feature of material electromagnetic 
radiation information in the remote sensing images. It’s a hot topic in the field of 
remote sensing. Though the remote sensing image has large number of data samples, 
the data types are complex and few data samples are available for training. So it is 
difficult to be classified well only by a single classifier [1]. Some scholars have 
proposed ensemble algorithms to solve the problem. Mingmin Chi proposed an 
ensemble learning algorithm which combined generative and discriminative models 
for remote sensing image classification [2]. But it worked only for hyperspectral 
remote sensing image which has low generalization. Xin Pan integrated the rough set 
with the genetic algorithm in order to reduce the number of input features to a single 
classifier and to avoid bias caused by feature selection [3].  

There are two main factors affecting the performance of ensemble learning 
algorithms: the accuracy of base classifiers and the diversity among the base 
classifiers [4]. Therefore, how to increase the diversity within the ensemble and keep 
a high accuracy in the base classifiers is an urgent problem. To promote the diversity, 
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Garcia-Pedrajas [5] gave weights to every base classifier for each training phase. 
However, the algorithm is sensitive to mis-indexing data which could cause over 
fitting. Rodriguez [6] proposed Rotation Forest (ROF) of which the diversity is 
improved through applying feature extraction to subsets of features for each base 
classifier by PCA. Decision trees are chosen as base classifiers in ROF. But they are 
not suitable for remote sensing image classification. 

In this study, we present a remote sensing image classification method based on 
NMF and ELM [7] ensemble (NMF-ELM). Diversity is improved by feature 
segmentation and NMF [8] for each base classifier. Due to the fast capability and 
good generalization performance of ELM, we choose it as base classifier to promote 
the efficiency of remote sensing image classification. Simulation results substantiate 
the proposed method on both remote sensing image data sets and UCI data sets. 

The rest of this paper is organized as follows. Section 2 presents the basic idea of 
proposed method NMF-ELM in detail. Section 3 gives two simulation results. The 
conclusions are given in Section 4. 

2 ELM Based Ensemble Algorithm for RS Classification 

2.1 Nonnegative Matrix Factorization  

The remote sensing image data has a characteristic of nonnegative. When we process 
these data by linear representation method, decomposition results are required to be 
nonnegative. In this case, if we use the traditional factor analysis method (such as 
PCA) to process these data, it may lose the physical meaning, because its results may 
contain negative numbers. But the use of nonnegative matrix factorization can avoid 
this problem effectively. 

NMF is a matrix factorization method which gives a nonnegative constraint to each 
element in the treated matrix. Let F be a M N×  matrix where each element is 
nonnegative. Then to decompose F into W and H: 

F WH≈                                      (1) 

Donate W as basic matrix in the form of a M T×  matrix. Donate H as coefficient 
matrix in the form of a T N×  matrix. When T is smaller than M, we can choose the 
coefficient matrix to replace the original data matrix in order to achieve 
dimensionality reduction. At the same time, because of the nonnegative constraint of 
each element in the decomposition process, they exists additive joint only. After 
decomposition, the matrix W and H can maintain the feature information of the 
original matrix well. 

2.2 Extreme Learning Machine 

ELM is a feedforward neural network with a simple three-layer structure: input layer, 
hidden layer and output layer. Let n be the input layer node number, let r be the 
hidden layer node number, and let c be the output layer node number. For N different 
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samples ( , )i ix l , 1 i N≤ ≤  , where 1 2[ , ,..., ]T n
i i i inx x x x R= ∈ , 

1 2[ , ,..., ]T c
i i i icl l l l R= ∈ , the mathematical expression of ELM is shown in formula (2): 

1

( ), 1,2,...,
r

k i i k i
i

o g w x b k Nβ
=

= ⋅ + =
                     

 (2) 

Where 1 2[ , ,..., ]T
k k k kcο ο ο ο=  is the network output value, 1 2[ , ,..., ]i i i inw w w w=  is 

the weight vector connecting the ith hidden node and the input nodes, 

1 2[ , ,..., ]T
i i i icβ β β β=  is the weight vector connecting the ith hidden node and the 

output nodes, g(x) is activation function, generally set as Sigmoid function, and ib  is 

the threshold of the ith hidden node. 
At the beginning of training, iw  and ib  are generated randomly and kept 

unchanged. And β  is the only parameter to be trained. The mathematical expression 

is shown in formula (3) and (4): 

1 1 1 1

1 1

( ) ... ( )

( ) ... ( )

r r

N r N r N r

g w x b g w x b

H

g w x b g w x b
×

⋅ + ⋅ + 
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 ⋅ + ⋅ + 

  

                

 (3) 

†H Lβ =                                   (4) 

Where H is called the hidden layer output matrix of the neural network, 

1 2[ , ,..., ]T
rβ β β β=  is the output weight vector, 1 2[ , ,..., ]T

NL l l l=  is the desired 

output vector. When β  is solved, ELM network training process is completed. 

2.3 NMF-ELM Algorithm 

NMF-ELM is an ensemble algorithm based on NMF and ELM. The main idea of 
NMF-ELM is to achieve good classification result through promoting diversity. The 
structure of NMF-ELM is show in Fig.1.And the structure of ELM base classifier is 
shown in Fig.2. Specifically, the diversity is improved by feature segmentation and 
NMF. 

Let 1 2[ , ,..., ]T
np p p p= be a sample point described by n features. Let P be the 

sample set containing the training objects in the form of a n N×  matrix. Let 

1 2[ , ,..., ]NY y y y=  be a vector with class labels for the data, where iy  takes a value 

from the set of class labels 1 1{ , ,..., }cl l l , and c is the number of labels. Denote by 

1 2, ,..., qB B B  the classifier in the ensemble and by F, the feature set, where q is the 

number of classifiers. NMF-ELM is described as below: 
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Fig. 1. The Structure of NMF-ELM 
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Fig. 2. The Structure of ELM Base Classifier 

(1) Split F randomly into K disjointed subsets. Let K be an adjustable variable. Each 
feature subset contains /m n K=  features. 

(2) Denote the jth subset of features by ,i jF  for the training set of classifier iB ,where 

1 ,1i q j K≤ ≤ ≤ ≤ . After NMF, , , ,i j i j i jF W H≈  .In order to improve diversity and 

keep the original data information as much as possible, we do not reduce the 
dimension of ,i jF . So ,i jH  is an m N×  matrix, ,i jW  is an m m×  matrix. 

(3) Let †
,i jW  be the pseudo-inverse of ,i jW . Organize †

,i jW  with coefficients in a 

sparse matrix iA . 



 A Remote Sensing Image Classification Method 451 

†
,1

†
,2

†
,

[0] [0]

[0] [0]

[0] [0]

i

i
i

i k

W

W
A

W

 
 
 =  
 
  




   


                             (5) 

Where [0] has the same dimension with †
,i jW . To calculate the training set for 

classifier iB , we first rearrange the row of iA  so that they correspond to the 

original features. Denote the new sparse matrix as iA* . 

(4) The training set for classifier iB  is *( , )iA X Y . Then the training of ELM 

network can be generalized by three points: (a) Randomly assign input weight 

iw  and bias ib . (b) Calculate the hidden layer output matrix H. (c) Calculate the 

output weight β . 

(5) To get the final classification results, we integrated the results of all the base 
classifiers by majority voting. 

3 Simulation Results 

To testify the validity of the proposed algorithm NMF-ELM, Zhalong wetland remote 
sensing image data and 5 UCI data were used for simulation. The performance was 
measured by accuracy. 

3.1 Simulation Results for Zhalong Wetland Remote Sensing Data Sets 

This section would verify the performance of NMF-ELM in Zhalong wetland remote 
sensing image. We used the Landsat ETM+ image which contains 8 
bands(band1,2,3,4,5,6,7,8). The image was 512*512 pixels. And the true color image 
of the remote sensing image was show in Fig.3 (a). Visual interpretation and field 
research showed that the Zhalong image contained five major classes: agricultural 
land, fire area, water, marsh, and saline-alkali soil.  

We chose 10000 sample points , and took 80% sample points as the training set, the 
left 20% as the testing set. And we compared NMF-ELM with other algorithm on 
these datasets, such as Bagging algorithm [9], Adaboost algorithm [4], ROF [6], and 
ELM [7]. These algorithms were run on the dataset for 50 times and the mean value 
was considered to be the final result. The detailed results were shown in Table 1. 

Table 1. Overall Accuracy of Zhalong Wetland（%） 

 Bagging Adaboost ROF ELM NMF-ELM 
Zhalong data 89.5 76.05 89.51 84.55 89.65 
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As can be seen from table 1, the proposed algorithm NMF-ELM had the highest 
accuracy than other algorithms. 

Then we used the 10000 sample points as training set to classify the whole image. 
The classification figure was shown in Fig.3. As can be seen from the figure, the 
Adaboost algorithm couldn’t recognize water and mash, the ELM arose over fitting, 
but the NMF-ELM got the best result.  

 

 

(a)The true color RS image of 
Zhalong 

 

 (d) Adaboost 

 

 (b) NMF-ELM 
 

 

(e) Rotation Forest 

 

 (c) Bagging 
 

 

(f) ELM
agricultural land  fire area  water  marsh  saline-alkali soil 

 

Fig. 3. Different Classification Results by Different Classfiers  

3.2 Simulation Results for UCI Data Sets 

To testify the generalization of the proposed algorithm NMF-ELM, 5 UCI data sets 
were used for simulation. The features of 5 UCI data sets were shown in Table 2. We 
took NMF-ELM with other algorithms on the UCI data set, such as Bagging 
algorithm [9], Adaboost algorithm [4], and ROF algorithm [6]. These algorithms were 
run on the data for 50 times and the mean value was taken to be the final result. The 
result was shown in Fig.4-8. 

As can be seen from fig.4-8, no matter how many base classifiers were used in the 
ensemble, the proposed algorithm NMF-ELM got the highest accuracy on 5 UCI data 
sets. It is illustrated that the NMF-ELM was with strong generalization and stability. 
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Table 2. The Feature of 5 UCI Data 

 Instances Attributes Labels Attributes Types 
Balance scale 625 4 3 Categorical 
Diabetes 768 8 2 Categorical, Integer 
Heart_S 270 13 2 Integer 
Tic-tac-toe 958 9 2 Categorical 
Zoo 101 17 7 Categorical, Integer 
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Fig. 4. Performance Curves of Methods on 
Balance-scale 
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Fig. 5. Performance Curves of Methods on 
Diabetes 
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Fig. 6. Performance Curves of Methods on 
Heart-statlog 
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Fig. 7. Performance Curves of Methods on 
Tic-tac-toe 
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Fig. 8. Performance Curves of Methods on Zoo 

4 Conclusions 

To solve the problem of few training samples available in the remote sensing image 
classification, we proposed an ELM based ensemble algorithm (NMF-ELM). The 
ensemble diversity is promoted by feature segmentation and NMF. And the 
classification efficiency is improved by choosing ELM as base classifier. Simulation 
results show that the proposed algorithm can settle the problem well. With this 
algorithm, higher classification accuracy can be achieved and stronger generalization 
can be obtained. 
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Abstract. The dynamic model of unmanned helicopter is a coupled nonlinear 
system. With respect to the identification problem for this model, extended least 
squares support vector machine (ELSSVM) is proposed. ELSSVM extends the 
solution space of structure parameters to improve the convergence performance. 
Base width of kernel function and regularization parameter of ELSSVM are 
minimized by differential evolution (DE). As compared to the traditional 
identification method for helicopter dynamic model, the proposed method omits 
the linear process and the trained model is closer to the helicopter dynamic 
model. The data-driven based experiments show that the proposed method takes 
a short training time and has a high identification accuracy.  

Keywords: Extended least squares support vector machine, coupled nonlinear 
system, differential evolution, model identification, unmanned helicopter. 

1 Introduction 

A flight control system with autonomous flight ability is essential for an unmanned 
helicopter. If the dynamic model can accurately reflect characteristics throughout the 
whole flight envelope, the flight control system will present an ideal performance. 
The traditional modeling approach for an unmanned helicopter flight dynamic system 
needs a large number of wind tunnel experiments. All those works take a lot of time 
and resources [1]. In order to brief the modeling process and reduce the cost, system 
identification becomes an ideal substitute. The flight dynamic model of unmanned 
helicopter is a highly coupled nonlinear system. In the traditional identification mod-
eling method of helicopter, “small perturbation” assumption is used to linearize the 
nonlinear dynamic model. Then linear system identification method is introduced to 
identify those unknown model parameters [2]. Unfortunately, the linear process res-
ults in a loss of model accuracy. 

In the field of nonlinear system identification, neural network (NN) has been wide-
ly used. When NN is used to identify the dynamic model of helicopter, we do not 
need to know about coupled relationships of system statuses detailly, the linearization 
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process can also be omitted. However, NN has the problem of local minimum point 
and “over learming” phenomenon. In addition, the structure of NN is generally deter-
mined by experience. In order to get a higher prediction accuracy, NN needs a large 
number of training samples [3]. Support vector machine (SVM) can simply the mode-
ling process as well. This theory is based on VC dimension theory and structural risk 
minimization principle. It can overcome the problem of local minimum point and 
“over learning” phenomenon [4]. Further, the least squares support vector machine 
(LSSVM) simplifies the computation complexity of SVM. It improves the training 
speed and needs fewer training samples [5]. While, the regularization parameter (RP) 
and the kernel based width (KBW) of LSSVM is directly given before training pro- 
cess. It needs a profound knowledge of the trained model. There is no theoretical to 
guarantee the prediction accuracy. 

In this paper, the extended least squares support vector machine (ELSSVM) is pro-
posed. In essence, the identification of unmanned helicopter dynamic model can be 
regarded as a function regression problem. ELSSVM is used to establish an model to 
approximate the model. In ELSSVM, two parameters are added into the solution 
space of structure parameters. In consideration of computation time and solving pre-
cision, differential evolution (DE) is introduced to compute those parameters. DE was 
proposed by Storn and Price. It is a heuristic optimization algorithm [6]. It has a high 
computation accuracy and a fast optimizing speed. And its global convergence gua-
rantees the convergence performance of ELSSVM. The rest of this paper is organized 
as follows. Section 2 presents the mechanism model of a single-rotor helicopter with 
tail rotor in hovering state. In section 3, we present in detail the theory of ELSSVM. 
In addition, the training procedure and convergence performance are presented and 
analyzed. In section 4, when the helicopter hovers stably in the air, flight status and 
control information are collected. They are sent back to ground station through 
wireless transmission equipment. After preprocessing the collected data, ELSSVM is 
used to train and test the model. Finally, a conclusion is given in section 5.  

2 Dynamic Model Analysis of Unmanned Helicopter 

In this paper, the identification object is a single-rotor helicopter with tail rotor. It 
weights 300kg. We will identify its model in hovering state. 

Helicopter can be regarded as an ideal rigid body. In the orthogonal body axes sys- 
tem, fixed at the center of gravity of the whole aircraft, helicopter owns six Degrees 
Of Freedom (DOF). Statuses in inertial coordinate system include three translation 
velocity components, three rotational velocity components and three Euler angles [7].  

Based on theoretical mechanics and moment of momentum theorem [8], it is easy 
to establish motion equations (1): 

Where, p , q , r represent angular velocity of roll, pitch and yaw. u , v , w represent 

longitudinal speed, later speed and vertical speed. θ , φ ,ψ represent pitch angle,  

roll angle and heading angle. xI , yI , zI represent inertia moment. xzI represents the 
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product of inertia. xM , yM , zM represent the sum of turn torque. M represents the 

quality of helicopter. xF , yF , zF represent total force in three body axes. 
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In equations (1), force and moment are relevant to not only control variables but also 
flight statuses. They can be expressed as follows (take xF for example): 

 
( , , , , , , , , , , , )x e a c rF f u v w p q r φ θ δ δ δ δ=                       (2) 

 
There are four more control variables in the above equation. eδ is longitudinal control 

input, aδ is lateral control input, cδ is vertical control input, rδ is yawing control 

input. Asψ has almost no effect on the other statuses, the dynamic model can be 

simplified as a system with 8 statuses and 4 control variables.  

3 ELSSVM Method 

3.1 LSSVM Algorithm 

Define training samples as { }, ( 1,..., )k kx y k l= , where n
kx R⊂ , ky R⊂ . At the k-th 

sample point, kx represent system statuses and control variables, ky represents outp-

ut. The input space can be mapped to a higher dimensional feature space by nonlinear 
mapping function ( )ϕ ⋅ . The purpose of LSSVM is to construct a function as follow: 

 

  ( ) ( )Ty x w x bϕ= +                               (3) 
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Where, weight vector nw R⊂ and offset b R⊂ . The objective function of LSSVM can 
be described as follow: 
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In the above equation, γ is error penalty coefficient. iξ is error. Its dual problem of 

Lagrange polynomial is equivalent to the following equation: 
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In the above dual Lagrange polynomial, iα is Lagrange multiplier. After derivation 

calculus to polynomial (5), we get equations (6): 
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Assume 1A K Iγ −= + . After one step derivation, we get equations (7). 
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Assume ( ) ( )T
kj k jK x xϕ ϕ= ⋅ , then equation (8) can be established as follow: 
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The kernel function in equation (8) is
2 2

2
( , ) exp{ / }i iK x x x x σ= − − . The above 

kernel function must satisfy Mercer condition [9]. 

3.2 Extended Solution Space of ELSSVM 

LSSVM has simplified the modeling process of helicopter dynamic model. It also 
makes a signification improvement on SVM. But it still has a bad convergence  
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performance. In ELSSVM, RP and KBW are added into the solution space of 
structure par-ameters to improve the convergence performance. 

Different γ and σ will establish different models. In order to evaluate models, it is 

necessary to define an uniform performance index. 

Define { }, ( 1,..., )k kX x y k l= = as the training samples, equation (8) represents pre-

diction response of the i-th sample. Where n
kx R⊂ , ky R⊂ . Define ( )i ie y f x= − . 

The energy function is established as follow: 
 

1

2
TJ e e=                                        (9) 

 
Equation (9) primely reflects the error between prediction response and actual out-
put. By minimizing equation (9) using DE, a convergent model will be established.  

The individual of DE is defined as ( , )γ σ . Define population size as NP . The 

dimension of each individual is D . The maximum number of generations is M .The i-
th individual in the g-th generation is ,i gx . After mutation operation, we can get ,i gv : 
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magnitude of differential vector. 1,p gx is the based vector.  

Crossover operation increases the diversity of population. Hybridize intermediate 
individual with target individual, we get the candidate individual. 
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ε is a sufficiently small positive constant. When J ε< , , 1i gv + is the optimal solution 

and iteration process ends. Otherwise, repeat the above process.  
As the description above, DE does not need the gradient information of individual 

objective function. So the individual objective function does not need to be continuous 
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and drivable [10]. After the mutation and crossover operations, new individuals take 
one-to-one competition with their parents. The smaller individual will become new 
parents in the next generation. Compared with genetic algorithm, DE omits the time-
consuming selection operation and takes less computation time.  

3.3 Training Procedure of ELSSVM 

Here is the training procedure of ELSSVM: 

Step 1: Initialize the population; 
Step 2: Train the model of each individual in this generation using LSSVM; 
Step 3: Use the trained model to predict the response of training samples. Prediction 

information and actual output make up the energy function J ; 
Step 4: If J ε< , the training process ends. Else, continue; 
Step 5: When iteration reachs the M-th generation, the individual with minimum J in 

this generation is the final answer. Else, continue; 
Step 6: Go on the mutation, crossover and elimination operations. Use the achieved 

RP and KBW to update the population in next generation; 
Step 7: Return to the step 2. 

Each iteration procedure is regarded as a map. The map is a random contraction 
operator with an unique random fixed point. Based on the random functional theory, 
the whole iteration process is asymptotically convergent [11]. All in all, DE algorithm 
in each iteration operation guarantees the convergence performance of ELSSVM. 

4 Experiment and Analysis 

4.1 Data Preprocessing 

In order to identify the flight dynamic model of this unmanned helicopter, training 
samples must sufficiently reflect characters of the helicopter. According to this dema-
nd, control variables and flight statuses are sampled at the sampling period of 0.1s. 
The information will be sent back to the ground station via wireless devices. In the 
data collecting process, there are a lot of interferences. Those interferences will affect 
the identification accuracy. So it is necessary to preprocess the experimental data. 

Firstly. Eliminate effects of high frequency noise. After spectrum analysis of the 
collected data, design a low pass filter to filter high frequency noise. Cutoff frequency 
is designed at 5HZ. 

Secondly. Due to the bandwidth limitation of transfer data, the sampling frequency 
is too low. In order to reflect system characteristics sufficiently, spline interpolation 
method is used to smooth the samples. 

Thirdly. Three translational velocities are collected in North-East-Down coordinate 
system. Translational velocities in dynamic equations are in body coordinate system. 
So coordinate transformation must be implemented before model identification. 
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4.2 Model Identification 

Take 100 samples as training set and another 100 as test set. Define initial population 
size 20NP = , crossover probability 0.6CR = and crossover factor 0.5F = . Maximum 
number of iteration procedure is 100. The radial bases function (RBF) works as the 
kernel function. Take equation (9) as error criterion. 

ELSSVM, LSSVM and back propagation neural network (BP) are used to train the 
model. In order to eliminate accidental factors, perform the identification experiment 
10 times using each method respectively. Then calculate the mean value of prefor- 
mance indicators. ELSSVM and LSSVM have the same initial structure parameters. 
The only difference is that ELSSVM has an extended solution space. In the model 
trained by BP, there are 12 nodes in the input layer, 25 nodes in the hidden layer and 
1 node in the output layer. The node function here is S-function. The experiment res-
ults are listed in the Table 1. 

Table 1. Parameter table of experiment results 

System status Method Training time Training error Test error 

Longitudinal 
velocity 

BP 13.13s 1.82 × 10−4 3.30 × 10−3 

LSSVM 0.13s 1.47 × 10−8 2.37 × 10−4 

ELSSVM 1.05s 1.27 × 10−9 6.04 × 10−5 

Lateral 
velocity 

BP 12.34s 9.99 × 10−5 6.50 × 10−3 

LSSVM 0.13s 7.29 × 10−8 1.40 × 10−3 

ELSSVM 1.00s 8.62 × 10−10 6.56 × 10−5 

Vertical 
velocity 

BP 9.72s 9.93 × 10−5 9.94 × 10−4 

LSSVM 0.11s 3.41 × 10−8 4.17 × 10−4 

ELSSVM 1.10s 1.59 × 10−9 1.57 × 10−5 

Roll 
rate 

BP 10.44s 5.80 × 10−3 2.81 × 10−2 

LSSVM 0.11s 1.17 × 10−6 4.39 × 10−2 

ELSSVM 1.08s 5.94 × 10−8 1.50 × 10−3 

Pitch 
rate 

BP 11.67s 1.80 × 10−3 2.39 × 10−2 

LSSVM 0.11s 4.88 × 10−7 2.70 × 10−2 

ELSSVM 1.18s 2.63 × 10−8 8.20 × 10−4 

Yaw 
rate 

BP 5.27s 2.00 × 10−3 7.14 × 10−2 

LSSVM 0.11s 2.44 × 10−6 1.61 × 10−1 

ELSSVM 1.09s 2.51 × 10−7 6.40 × 10−3 

Roll 

BP 11.95s 9.77 × 10−5 2.90 × 10−3 

LSSVM 0.11s 1.54 × 10−7 1.57 × 10−2 

ELSSVM 1.07s 1.40 × 10−8 9.72 × 10−4 

Pitch 

BP 12.33s 9.89 × 10−5 7.10 × 10−3 

LSSVM 0.13s 1.03 × 10−7 8.50 × 10−3 

ELSSVM 1.09s 1.10 × 10−8 1.46 × 10−4 
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It can be concluded from Table 1, ELSSVM take a shorter training time than BP 
and LSSVM. In the training process of BP, the back propagation has to be performed 
iteratively until error criterion is met. Whereas, the structure parameters of LSSVM 
and ELSSVM can be calculated just by one step. ELSSVM has an extended solution 
space which takes extra time to optimize RP and KBW. Hence, compared to LSSVM, 
ELSSVM takes a litter longer training time. In extended solution space of ELSSVM, 
DE is used to seek RP and KBW. Thus, ELSSVM has higher training accuracy and 
smaller prediction error. 

After training the model respectively by BP ,LSSVM and ELSSVM, test set is 
used to inspect the prediction performance. Here are linear velocity curves of the 
three trained model. 

 

 

Fig. 1. Curves of longitudinal velocity 

 

Fig. 2. Curves of lateral velocity 
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Fig. 3. Curves of vertical velocity 

Figs.1–3 present linear velocities of three trained models. The models are impelled 
by test set. The curves impelled by test set can reflect prediction performance directly. 
As DE is introduced to seek the optimal RP and KBW, the prediction model trained 
by ELSSVM is closer to the objective model. From the figures, we can see that the 
linear velocity curve of ELSSVM is closer to the real data curve. It can be concluded 
that the model trained by ELSSVM has a better prediction performance and conver-
gence performance than the other two.  

5 Conclusion 

Unmanned helicopter is a multi-DOF machine. It is a highly coupled nonlinear system. It 
is hard to achieve a high precision model using the traditional identification method. In 
this paper, ELSSVM is proposed to train the dynamic model. As compared to the 
traditional identification method, ELSSVM simplifies the identification process and 
extends the solution space of structure parameters. Experiment results show that the 
proposed method has higher training accuracy and prediction accuracy. It also solves the 
bad convergence performance problem of LSSVM. In essence, establishing the prediction 
model by ELSSVM is to solve differential equations using implicit solution method. 
Whereas, the training process of LSSVM is to solve differential equations by explicit 
solution method. Implicit solution has a better convergence performance than explicit 
solution in solving differential equation. In one sense, the works in this paper provide a 
new strategy to solve the identification problem of highly coupled nonlinear model with 
multi-DOF. 
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Abstract. In the field of object recognition in computer vision, feature point 
clustering algorithm has become an important part of the object recognition. 
After getting the object feature points, we make the feature points in clustering in 
the use of GG-RNN clustering algorithm, to achieve multi-part of the object 
clustering or the multi-object clustering. And the GG-RNN clustering algorithm 
we propose innovatively, is merged with the grayscale and gradient information 
based on Euclidean distance in the similarity calculation. Compared with the 
distance description of basic RNN algorithm, the similarity calculation of 
high-dimensional description of GG-RNN will improve the accuracy of the 
clustering in different conditions.   

Keywords: clustering, the reciprocal nearest neighbors, similarity, grayscale, 
gradient. 

1 Introduction 

Object recognition has occupied an important position in the field of computer vision 
recently. Object recognition is divided into overall object identification and 
comprehensive object identification of each part. After the extract of image feature 
point, using the clustering algorithm to cluster the feature point to obtain a multi-part or 
multi-object and recognize the object by synthesizing the above clustering result. 
There are many clustering algorithms such as the K-means clustering [1] and the RNN 
clustering [2] which is the basic algorithm of our GG-RNN method. In this field, the 
latest research is advanced by the ISM team which proposed the implicit shape model. 
They used the feature point clustering to locate the different parts of object for the 
recognition in the next step [3] .RNN clustering algorithm has the advantage that you 
don’t need to preset the number of clusters to get the clustering of feature points. With 
this advantage, we can find the target even though the number of target is unknown. 
However, the RNN clustering method effects mainly depend on the similarity metrics. 
Single linkage, Complete linkage, Average linkage [4] form the three common linkage 
metrics according to the different inter-cluster distance metric. But the above three 
linkage metrics are just based on the distance information and lacked the other 
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information in the image. This disadvantage leads the clustering can’t bind other image 
information to achieve a good clustering performance. To overcome these 
shortcomings, this paper combines the image grayscale and gradient information with 
the basic distance information, proposing the new similarity measure method named 
GG-RNN, which is short for RNN algorithm based on Grayscale and Gradient. With 
the GG-RNN method, we make the object clustering in complicated condition 
successfully which provide a powerful support for the late object recognition.  

2 RNN Clustering Theory 

The RNN clustering algorithm was introduced in [2].The reciprocal nearest neighbors 
[5] means that vector ix is the nearest neighbor of vector jx , and vector jx is the 
nearest neighbor of vector ix , i.e. vector ix  and vector jx  are RNN. Nearest 
neighbor means that vector jx  which taken from the entire set of vectors has the nearest 
distance to vector ix  in the whole space except the vector ix  itself, therefore vector

jx  is the nearest neighbor of vector ix ,i.e. vector jx  is the NN of vector ix .There are 
the basic steps of RNN algorithm as follows: 

Step1: A given data set V, and an empty NN linked list L, and R stored the data other 
than those in the L, C stored the clusters. Randomly taken 1x

 
from R and put it into the 

linked list L; then find 2x which is the NN of 1x ,and put it into the linked list L; find 3x  
which is the NN of 2x  next time, and put into the linked list L; according to the above 
step , finally we can find the NN of 1lx −  is lx  ,and put it into the linked list L; and at 
the same time we find the NN of lx  is 1lx −  ,therefore lx  and 1lx − are RNN. Stop the 
iteration at this time. So the final the NN chain can be represented as 

1, 2 1 1 1{ ( ),..., ( ), ( )}l l l lx x NN x x NN x x NN x− −= = = ,and it has length l .Noticed that the 
distance between two neighbor vectors in NN chain is getting smaller and smaller [3], 
same as the increasingly high degree of similarity. Therefore the distance between 1lx −  
and lx  which are in the end of this chain is the Minimum distance, and the similarity 
between them is also the highest similarity, i.e. R=V\L after this iteration. 

Step2: Calculate the similarity of 1lx −  and lx  in the link L, i.e. MinSim and 
compare with a preset similarity threshold, i.e. Thres. If MinSim is less than Thres 
,means that the clustering result of NN chain is not ideal, we will classify each data of 
the chain into a cluster (a class) ,and remove them from set V. If MinSim is greater than 
Thres, means that the clustering result of NN chain is meet the requirements, 1lx −  and 

lx  will be agglomerated in a new cluster sx , removed from L simultaneously, and put 
into R. Then continue look for the NN of 2lx −  in the new R, and repeat the previous 
procedure until find a similarity meet the requirement of NN-chain or link L is cleared. 

Step3: Randomly take new vector from new R, and repeat the above step 1 and  
step 2 until the set V is empty. Finish clustering and end. 
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3 Similarity Calculation and GG-RNN 

In the above process, the similarity threshold Thres is the key point determining 
clustering results because it constrained the clustering degree. In the traditional 
calculation, similarity is represented by the Euclidean distance between two clusters, 
and there are three distance calculation methods as follows, Single linkage, Complete 
linkage, Average linkage [4]. 

Single linkage means that the cluster distance equals to the minimum distance 
between two feature points from all feature points, is defined as  

( ) ( )( )
x y

D min  d x y
i j

i j
Y∈ ∈X,

X, Y = ,                      (1) 

Complete linkage means that the cluster distance equals to the maximum distance 
between two feature points bagging from all feature points, is defined as 

( ) ( )
x y

D max  d(x y )
i j

i j
Y∈ ∈X,

X, Y = ,                      (2) 

Average linkage means that the cluster distance equals to the average distance between 
two feature points from all feature points, is defined as 

( ) ( )
x

1
D d x  

i j

i j
y YXY ∈ ∈


X

X, Y = , y                     (3) 

In the above method, the object clustering of images won’t achieve a good performance 
with the single constraint factor, Euclidean distance. Taking this reason into consider, 
two factors add into the new similarity calculation: grayscale values and gradient 
magnitude, which are described the grayscale, edge feature and texture feature.  

Here, we list the similarity calculation of the traditional method and the improved 
method as follows: 

The traditional similarity calculation is defined as: 

                 D=d                                 (4) 

The improved similarity calculation is defined as: 

       D=a d b I c grad× + × + ×                       (5) 

Make width represent the width of image, height represent the height of image, 
( , )i iI x y represent the grayscale values of image, grad( , )i ix y  represent the gradient 

magnitude of image. 
The square of normalized distance value is defined as: 

2 2[(x -x ) / ] [( ) / ]i j i jd width y y height−= +                (6) 
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The square of normalized grayscale difference value is defined as: 

2 2[ ( , ) ( , )] /{max[ ( , )] min[ ( , )]}i i j jI I x y I x y I x y I x y= − −         (7) 

The square of normalized gradient magnitude difference is defined as:  

2 2[grad( , ) grad( , )] /{max[ ( , )] min[ ( , )]}i i j jgrad x y x y grad x y grad x y= − −   (8) 

The weights of variable , ,d I grad are defined as a, b, c, and with change of the 
weights get a better clustering performance. The algorithm with above three variables is 
called RNN algorithm based on Grayscale and Gradient, i.e. GG-RNN 

4 Experimental Comparison of Clustering Algorithms 

In this section we present an experimental comparison between the basic RNN and the 
GG-RNN clustering algorithm. We use the harris corner as feature point of images, and 
cluster the harris corner with the basic RNN and GG-RNN algorithm. We locate each 
cluster with a rectangle box. According many times emulation, we show parts of 
clustering results as follows. In each row of below figures, the first image is the 
original image, the second image is the result of harris corner detecting, the third image 
is the result of basic RNN clustering based on distance, the fourth image is the result of 
improved RNN clustering. 

Fig.1 represents the comparison between the basic RNN based on distance and the 
RNN based on grayscale and distance. With the grayscale information, the clustering 
performance at the bottom of this image has been improved that the corner on the jacket 
has been clustered as the same cluster with the grayscale factor. The third image 
clustering with a weight, i.e. a=1, b=0,c=0. The fourth image clustering with a weight, 
i.e. a=1, b=0.2, c=0 

 

Fig. 1. Basic RNN based on distance and the improved RNN based on grayscale and distance 

Fig.2 represents the comparison between the basic RNN based on distance and the 
RNN based on gradient and distance. With the gradient information, the clustering 
performance at the middle top of this image has been improved that the corner of the  
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black vehicle has been clustered as the same cluster with the gradient factor .The third 
image clustering with a weight, i.e. a=1,b=0,c=0. The fourth image clustering with a 
weight, i.e. a=1, b=0, c=0.2. 

   

Fig. 2. Basic RNN based on distance and the improved RNN based on gradient and distance 

Fig.3 represents the comparison between the basic RNN based on distance and the 
improved RNN based on grayscale, gradient and distance which we call GG-RNN. 
With the gradient information, the fourth image shows the clustering performance 
getting improved obviously. The third image clustering with a weight, i.e. a=1, b=0, 
c=0. The fourth image clustering with a weight, i.e. a=1, b=0.4, c=1.  

 

Fig. 3. Basic RNN based on distance and GG-RNN 

5 Summary 

The paper discuss about the RNN clustering algorithm which clusters the image feature 
point of multi-object and multi-part. Take the disadvantage that Euclidean distance is 
the only information for clustering into consideration, we propose an improved RNN 
algorithm combined with grayscale and gradient information for feature point 
clustering. We obtain the conclusion that GG-RNN is effective after many times 
emulations. Compared with the basic RNN, GG-RNN gets a good and exact 
performance in the image feature point clustering. And the exact feature point 
clustering also provide a support for the late object recognition which is worth to 
mention in the later research.   
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Abstract. Fisher Discriminant Analysis (FDA) is a popular method for
dimensionality reduction. Local Fisher Discriminant Analysis (LFDA) is
an improvement of FDA, which can preserve the local structures of the
feature space in multi-class cases. However, the affinity matrix in LFDA
cannot reflect the actual interrelationship among all the neighbors for
each sample point. In this paper, we propose a new LFDA approach with
the affinity matrix being solved by the locally linear embedding (LLE)
method to preserve the particular local structures of the specific feature
space. Moreover, for nonlinear cases, we extend this new LFDA method
to the kernelized version by using the kernel trick. It is demonstrated
by the experiments on five real-world datasets that our proposed LFDA
methods with LLE affinity matrix are applicable and effective.

Keywords: Dimensionality reduction, Fisher discriminant analysis
(FDA), Kernel method, Local affinity matrix.

1 Introduction

In data analysis and information processing, dimensionality reduction approach
is often used for simple but effective data representation. Actually, it tries to
find a linear projection such that the data in a higher dimensional space can be
effectively reexpressed in a lower dimensional space [1],[2]. Actually, Fisher Dis-
criminant Analysis (FDA) [3] and Principal Component Analysis [4] are popular
dimensionality reduction methods. Here we focus on the FDA approach to di-
mensionality reduction. In principle, FDA tries to make the between-class scatter
be maximized while the within-class scatter be minimized in the lower dimen-
sional space. However, FDA has two major drawbacks: (1). If the samples in one
class come from several separate clusters, it cannot behave properly and leads to
an unreasonable result [3]. (2). It cannot work well for a nonlinear classification
problem [5].

In order to get rid of the first drawback, Masashi [6] proposed the Local
Fisher Discriminant Analysis (LFDA), which makes the close samples still be
close in the dimensionality reduction feature space via the Locality Preserving
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Projection (LPP) mechanism [7]. But the used affinity matrix cannot reflect the
actual interrelationship among all the neighbors at each local sample point. So,
its performance is still limited.

As for the second drawback, the Kernel Fisher Discriminant Analysis (KFDA)
was used [5],[8]. Its main idea is to map the input space into a higher dimensional
feature space in which the corresponding sample classes are linearly separated
so that we can conduct the FDA method in this projected feature space.

In this paper, we propose a new LFDA approach to data dimensionality re-
duction for a classification problem. The within-class scatter matrix as well as
the between-class scatter matrix are redefined through a special weighted ma-
trix as the affinity matrix is solved by the locally linear embedding (LLE) [9]
method to preserve the particular local structures of the specific feature space.
Moreover, for nonlinear classification cases, we extend this new LFDA method
to the kernelized version by using the kernel trick. It is demonstrated by the
experiments on five real-world datasets that our proposed LFDA methods with
LLE affinity matrix are applicable and effective.

The rest of this paper is organized as follows. In Section 2, we give a brief
review of FDA and LFDA. In Section 3, we present the new LFDA approach.
Its kernelized version is presented in Section 4. Their experimental results and
comparisons are given in Section 5. We give a brief conclusion in Section 6.

2 Review of FDA and LFDA

For clarity, we give some mathematical notations used throughout the paper.
xi ∈ R

d and zi ∈ R
r(1 ≤ r < d) are the i-th input data and its corresponding

low dimensional projection or embedding (i = 1, 2, · · · , n), where n is the num-
ber of samples, d is the dimensionality of the input data and r is the reduced
dimensionality. yi ∈ {1, 2, · · · , c} are the associated class labels, and c is the
number of classes. nl is the number of samples in class l, thus

∑c
l=1 nl = n. X

is defined as the matrix of collection of all samples, i.e., X = (x1, x2, ..., xn).

2.1 FDA

We begin with the review of Fisher Discriminant Analysis (FDA) [3]. The within-
class scatter matrix Sw and the between-class scatter matrix Sb are defined as
follows.

Sw =

c∑
l=1

∑
i:yi=l

(xi − μl)(xi − μl)
T ; (1)

Sb =

c∑
l=1

nl(μl − μ)(μl − μ)T , (2)

where μl is the mean of the samples in class l and μ is the mean of all samples.
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The main idea of FDA is just to find out a group of r projection vectors
such that in the embedding feature space, the within-class scatter along each
projection vector is minimized while the between-class scatter along each pro-
jection vector is maximized. Mathematically, such a projection vector VFDA can
be solved by

VFDA = argmax
V TSbV

V TSwV
, (3)

where V is an arbitrary projection vector.
Let {ϕk}dk=1 be the generalized eigenvectors associated with the generalized

eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd of the generalized eigenvalue problem: Sbϕ =
λSwϕ. In this way, the k-th solution VFDA of Eq.(3) is just ϕk. Thus, the required
transformation matrix is TFDA = (ϕ1, ϕ2, ..., ϕr). That is, for xi, its embedded
vector zi is given by zi = T T

FDAxi.

2.2 LFDA

We further review the Local Fisher Discriminant Analysis (LFDA) [6]. In order
to preserve the local structure of the data, we can define the local within-class
scatter matrix S̃w and the local between-class scatter matrix S̃b as follows.

S̃w =
1

2

n∑
i,j=1

Pw
ij (xi − xj)(xi − xj)

T ; (4)

S̃b =
1

2

n∑
i,j=1

P b
ij(xi − xj)(xi − xj)

T , (5)

where

Pw
ij =

{
Aij

nl
, if yi = yj = l,

0, if yi �= yj,
, P b

ij =

{
( 1
n − 1

nl
)Aij , if yi = yj = l,

1
n , if yi �= yj ,

.

A is the affinity matrix where its element Aij denotes the affinity degree
between xi and xj . In principle, Aij tends to be 0 as xi and xj tend to be

far away. Generally, A can be computed by Aij = exp
(
− ‖xi−xj‖2

σiσj

)
, where

σi = ‖xi − xki ‖, xki is the k-th neighbor of xi.
Just as FDA, the projection vector VLFDA of LFDA can be defined by VLFDA

= argmax V T S̃bV

V T S̃wV
and the transformation matrix can be solved in the same way.

Since the affinity matrix only uses the information of the k-th neighbor and
does not consider the interrelationship among all the neighbors, it is sensitive
to the outliers. Besides, LFDA does not take the affinity of samples in different
classes into consideration.

3 Proposed LFDA with LLE Affinity Matrix

We begin to reformulate the FDA in a matrix manner.

Sw =

c∑
l=1

∑
i:yi=l

(xi − μl)(xi − μl)
T = X(D −W )XT
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where D = (Dij)d×d with Dij = 1, and W = (Wij)d×d is a weight matrix given
by

Wij =

{
1
nl
, if yi = yj = l;

0, if yi �= yj .

Similarly, we then have Sb = X(W −B)XT , where B is the d×d matrix with
its all elements being 1/n.

It should be noted that W is symmetrical and the sum of each row of W is
1, which can be considered as the affinity or weight matrix of LFDA. In this
sense, the within-class scatter matrix and between-class scatter matrix of our
new LFDA approach are defined as follows.

Sw = X(D − W̃ )XT ;Sb = X(W̃ −B)XT ,

where W̃ serves as the new affinity or weight matrix. Moreover, it can be solved
as the reconstruct matrix in the locally linear embedding (LLE) method [9],[10].

In this way, W̃ can preserve the local structure of the input data in a more
precise manner. For clarity, we introduce the reconstruction matrix of LLE as
follows.

Suppose that each input data point and its neighbors lie on or near a locally
linear patch of the manifold. We can calculate the reconstruction matrix W as
W̃ = arg min

∑n
i |xi −

∑k
j=1 W̃ijxij |2, subject to

∑
j W̃ij = 1 and W̃ij = 0 if

xj is not the k-th or less nearest neighbor of xi, where xij is the j-th neighbor
of xi.

For each input data point xi, let Ci be the local covariance matrix with
Ci

jl = (xi − xij )
T (xi − xil). Using the Lagrange multiplier method, we can get

the weight vector of xi, W̃i by W̃i = (Ci)−1e
eT (Ci)−T e , where e is the vector whose

elements are all 1. Then we can get W̃ by combining those W̃i together.
Actually, the reconstruction matrix W̃ represents the local correlation of the

data. The small absolute value of W̃ij shows that xj contributes little to the
reconstruction of xi, which certainly means little affinity between xi and xj .
So, it is reasonable to use the reconstruction matrix as the affinity matrix in
our new LFDA approach. Since W̃ is a sparse matrix based on the distance
information, we obtain its elements with neglecting the label constraints. W̃
takes into consideration the interrelationship of all the input data points in a
neighborhood. Thus, it may be more precise than the affinity matrix used in the
conventional LFDA.

In the same way, the projection vector V of the proposed LFDA with LLE
reconstruction matrix information can be defined as

V = argmax
V TSbV

V TSwV
. (6)

Therefore, the transformation matrix should be T = (ϕ1, ϕ2, ..., ϕr), where
{ϕk}dk=1 are the generalized eigenvectors associated with the eigenvalues λ1 ≥
λ2 ≥ ... ≥ λd of the generalized eigenvalue problem: Sbϕ = λSwϕ. In this way,

for each xi, the corresponding projection vector zi is given by zi = T
T
xi.
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4 Kernelized Version of Proposed LFDA Approach

We further present the kernelized version of our proposed LFDA with LLE in-
formation. Let φ : z ∈ R

d → φ(z) ∈ F be a nonlinear mapping from the input
space to a higher dimensional feature space F. The main idea of kernel methods
is to make a nonlinear classification problem be linear in a higher dimensional
feature space so that the classification problem can be effectively and efficiently
solved. Generally, the kernelization of a conventional method makes use of a
kernel function κ(.) which serves as the inner product in the higher dimensional
space, i.e., κ(x, y) =< φ(x), φ(y) >.

The generalized eigenvalue problem of our proposed LFDA approach with
LLE information can be expressed by

X(W̃ −B)XTϕ = λX(D − W̃ )XTϕ, (7)

where λ is the eigenvalue and ϕ is the corresponding eigenvector.
Then, in the higher dimensional space, Eq.(7) can be generalized as

Sφ
b ϕ̃ = λ̃Sφ

wϕ̃ (8)

where Sφ
b and Sφ

w are the scatter matrix in the kernel space, Sφ
b = Φ(W̃ −B)ΦT ,

Sφ
w = Φ(D − W̃ )ΦT , where Φ is the projection matrix of the input data in

the higher dimensional space, that is, Φ = [Φ1, Φ2, · · · , Φn], where Φi = φ(xi).
According to the reproducing kernel theory [11], ϕ̃ is the linear combination of
the φ(xi), that is ϕ̃ = Φα.

Let K be the kernel matrix, where Kij =< φ(xi), φ(xj) >. Then we multiply
Eq.(8) by ΦT and have

K(W̃ −B)Kα = λK(D − W̃ )Kα. (9)

Let αk for k = 1, 2, · · · , n be the generalized eigenvectors associated with the
generalized eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn of Eq.(9). Then, the embedded or
projected vector of xi in the dimensionality reduction feature space is given by

zi = (α1, α2, ..., αr)
T

⎛⎜⎜⎜⎝
K(x1, xi)
K(x2, xi)
...
K(xn, xi)

⎞⎟⎟⎟⎠ .

5 Experimental Results

In this section, we test the proposed LFDA approach with LLE affinity matrix as
well as its kernelized version on the classifications of five challenging real-world
datasets, being compared with some typical dimensionality reduction methods.

We use the Iris, wine, Wisconsin Diagnostic Breast Cancer (WDBC) and
Wisconsin Breast Cancer (WBC) datasets selected from UCI Machine Learning
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Repository [12]. Actually, there are 16 missing values in WDBC and we just set
them as zero. We also use the USPS handwritten digit (USPS-HD) dataset. For
simplicity, we just pick up 200 images randomly for each digit from the dataset.
Some basic numbers are listed in Table 1. For clarity, the numbers of training
and test sample points are denoted as ntraining and ntest.

Table 1. The basic numbers of five real-world datasets in the experiments

Dataset c d r n ntraining ntest

Iris 3 4 2 150 120 30
wine 3 13 6 178 142 36
WBC 2 9 2 699 420 279
WDBC 2 30 8 569 350 219

USPS-HD 10 256 40 2000 1400 600

We firstly implement the proposed LFDA approach with LLE affinity matrix
(referred to as LFDA-LLE) and its kernelized version (referred to as KLFDA-
LLE) for dimensionality reduction. For comparison, we also implement the FDA,
LFDA, PCA and LLE approaches. We then implement SVM [13],[14] for super-
vised classification. As for KLFDA-LLE, the kernel function is selected as the
Gaussian kernel function where σ is given by experience. In order to test the
performance and stability of these dimensionality reduction approaches, we im-
plement the above procedure on a couple of randomly selected training and test
sets with the fixed numbers ntraining and ntest for 30 times. The average Classifi-
cation Accuracy Rates (CARs) of the SVM algorithms with these six approaches
are listed in Table 2. Moreover, the sketches of the average CARs of the SVM
algorithms with those approaches along the reduced dimensionality are shown
in Figure 1.

Table 2. The average classification accuracy rates (CARs) of the SVM algorithms
with six dimensionality reduction approaches

Dataset PCA LLE FDA LFDA LFDA-LLE KLFDA-LLE

Iris 0.9417 0.9433 0.9500 0.9733 0.9733 0.9667
wine 0.9537 0.7722 0.9722 0.9269 0.9896 0.9639
WBC 0.9484 0.9222 0.9614 0.9530 0.9670 0.9753
WDBC 0.9479 0.9161 0.9227 0.9259 0.9727 0.9748

USPS-HD 0.8817 0.7600 0.8733 0.9223 0.9210 0.9250

It can be seen from Table 2 that the proposed LFDA approach with LLE
affinity matrix is better than LFDA on wine data, WBC data and WDBC data.
And it performs equally as LFDA on Iris data but it is sightly weaker than LFDA
on USPS-HD data. In the very high dimensionality cases such as WDBC data
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(c) WDBC

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reduced Dimension

C
A

R
s

 

 

PCA
LLE
LFDA
LFDA−LLE
KLFDA−LLE

(d) USPS-HD

Fig. 1. The sketches of the average CARs of the SVM algorithm with five dimension-
ality reduction approaches along the reduced dimensionality

and USPS-HD data, the kernelized version becomes better than both LFDA
and LFDA-LLE. On the other hand, it can be seen from Figure 1 that when
the reduced dimensionality is very low, our proposed approach is not as good as
LFDA, but can quickly increase to the maximum value and keeps stable as the
reduced dimensionality increases. On the other hand, LFDA and FDA cannot
increase so high, but reduce obviously on USPS-HD data. It can be also seen
that PCA and LLE usually behave poorly. The possible reason may be that both
these two approaches are unsupervised dimensionality reduction methods, while
the others are supervised methods.

6 Conclusions

We have investigated the data dimensionality reduction problem and proposed
a new local Fisher discriminant analysis with locally linear embedding affinity
matrix in order to preserve the local structures of the input feature space. Ac-
tually, the within-class scatter matrix Sw and the between-class scatter matrix
Sb are redefined and the affinity or weight matrix is solved through the Locally
Linear Embedding (LLE) method. Moreover, the proposed LFDA approach is



478 Y. Zhao and J. Ma

extended to the kernelized version for nonlinear classification. It is demonstrated
by the experiments on five real-world datasets that our proposed dimensionality
reduction approaches are more effective and stable in comparison with PCA,
LLE, FDA, and LFDA.
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Abstract. We develop a new method to recognize facial expressions. Sparse re-
presentation based classification (SRC) is used as the classifier in this method, 
because of its robustness to occlusion. Histograms of Oriented Gradient (HOG) 
descriptors and Local Binary Patterns are used to extract features. Since the  
results of HOG+SRC and LBP+SRC are complimentary, we use a classifier 
combination strategy to fuse these two results. Experiments on Cohn-Kanade 
database show that the proposed method gives better performance than existing 
methods such as Eigen+SRC, LBP+SRC and so on. Furthermore, the proposed 
method is robust to assigned occlusion. 

Keywords: Terms—facial expression recognition, HOG descriptors, Local bi-
nary pattern, Classifiers combination, Sparse representation based classification 
(SRC), assigned occlusion. 

1 Introduction 

The facial expressions recognition (FER), though an interesting application, has been 
tackled by several researches. In psychology, human facial expression is categorized 
into six classes of expression (happiness, sadness, disgust, surprise, anger and fear) 
[1]. There’re many state of the art published work [2],[3],[4],[5],[6].In practical appli-
cation, facial expression of human may be occluded by hands, shoulders and so on. 
So, until now on, the recognition of facial expressions is still a challenge work. 

Inspired by the human vision nervous system can easily recognize the facial ex-
pressions with partial occlusions. The latest work to consider about occlusion prob-
lems in the application of facial expression recognition by simulating the biological 
visual nervous system are [7] and [8]. They represent two ideas to solve the occlusion 
problems. One is simulating the process of biological visual cortex to extract local 
features such as [7]. So the final classifier can robust to occlusion problem by the help 
of local features. The other is simulating biological visual perception system to build 
occlusion robust classifiers such as Sparse Representation based Classification 
(SRC)[8],[9],[10],[11].In [7] , face images are divided into many local patches and 
Gabor features are extracted in each patches, the final judgment is made by using NN 
classifier. There are two aspects worth improving in this method. First, Haar features 
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are proved to give better performance than Gabor features when recognizing facial 
expressions [2],[12]. The other is that SRC method is proved to show better robust-
ness than NN when solving occlusion problem [7],[13].In present , SRC is wildly 
used in the recognition of facial expressions[8],[9],[10],[11]. These work show that 
SRC has the ability to deal with occlusion problems. 

As mentioned above, the suitable strategy to solve occlusion problem is the combi-
nation of local features and occlusion robust classifiers. The feature selection is di-
rectly affecting the success. There’re two factors must be considered in the choice of 
local features. One is the local features should contain expression information as 
much as possible. The other is the local features should be illumination invariance. In 
psychology, facial expression is the combination of action units [2].The shape infor-
mation and texture information can describe the movement of face components. So, in 
practical, the HOG descriptors and LBP may be the best choice. In this paper, we use 
HOG descriptors and LBP conjunction with SRC separately to recognize facial ex-
pressions. So, there’re two judgment vectors. The result in these judgment vectors is 
complementary. For example, LBP+SRC gives better performance than HOG+SRC 
when recognize disgust facial expression. Since, this paper uses a method [17] to fuse 
these two judgment vectors. The strategy of proposed method is shown in Fig.1. The 
experiments on Cohn-Kanade database [15] show that the proposed method outper-
forms existing methods for FER and robust to occlusion. In our experiment, we test 
the proposed method on face image with eye occlusion and mouth occlusion. 

The rest of the paper is organized as follows. Section 2 introduces the process of 
HOG descriptor extraction. Section 3 introduces the process of LBP feature extrac-
tion. Section 4 shows the proposed method. Section 5 shows the experiment results. 
Section 6 concludes the paper. 

Input
image

LBP HOG

SRC SRC

Decision Level Fusion

Final decision

Input
image

LBP HOG

SRC SRC

Decision Level Fusion

Final decision
 

Fig. 1. The diagram of proposed method 
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2 Sparse Representation Based Classification  

As mentioned in [13], the Algorithm of Sparse Representation-based Classification is 
shown as below: 

Step1: Input a matrix of training samples [ ]kAAAA ,,, 21 K=  for k classes, a test 

sample y  

Step 2: Normalize the columns of A to have unit 2l -norm. 
Step 3: Solve the 1l -minimization problem: 

 yAxtosubjectxx x ==
11 minargˆ  (1) 

Step 4: Compute the residuals  

 ( ) ( )
21x̂δAyyr ii −=  for ki ,,1 K=  (2) 

where ( ) ],0,,,,,,,0[ 21 KLK i

n

ii

i i
xxxxδ = , a coefficient vector is whose entries are zero 

except those associated with the ith class. 
Step 5: Output: 

 ( ) ( )yryidentity iiminarg=  (3) 

3 HOG Descriptors Extraction Strategy  

As mentioned in [14], the general process of HOG descriptors can be described as 
Fig.2.It can be seen that HOG descriptors extract shape information of face images. 
There’re many parameters need to be considered: the size of spatial cells, orientation 
bins and the size of spatial blocks. As mentioned in [2] and [7], two neighboring cells 
of face image are interrelated. And the relationships will strongly influence the suc-
cess of facial expression recognition. So, we choose six spatial cell segmentations: (1) 
face images are divided into 961 cells, cell size is 4×4 and neighboring cells are 50% 
overlapping; (2) face images are divided into 256 cells ,cell size is 4×4 and neighbor-
ing cells are no overlapping; (3) face images are divided into 225 cells, cell size is 
8×8 and neighboring cells are 50% overlapping; (4) face images are divided into 64 
cells, cell size is 8×8 and neighboring cells are no overlapping;  (5) face images are 
divided into 49 cells, cell size is 16×16 and neighboring cells are 50% overlapping; 
(6) face images are divided into 16 cells, cell size is 16×16 and neighboring cells are 
no overlapping. Another important parameter is orientation bin numbers. We choose 
six bin numbers N=2, 6,8,9,12,18 with space range [0,360]. The rest parameters are 
described as below: (1) The orientation gradients are calculated by using 3×3 Sobel 
mask without Gaussian smoothing; (2) Each spatial block contains four cells; (3)  
L2-norm method is used to implement block normalization.  
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Fig. 2. The process of HOG descriptors extraction 

4 LBP Feature Extracting Strategy 

As mentioned in [3], [9], [16], the process of LBP feature extraction can be described 
as Fig 3.There are two key parameters: (1) LBP operator; (2) The division of local 
patches. We choose four LBP operators as shown in Fig 4. The divisions of local 
patches are introduced as below: (1) the size of patch is 4×4 and neighboring patches 
are 0%, 25% and 50% overlapping separately. (2) The size of patch is 8×8 and neigh-
boring patches are 0%, 25% and 50% overlapping separately. So we totally get six 
divisions. 

Input face image

Divide images into many local patches and
calculate the histogram based on each region

Construct the LBP feature by concatenating
the regional histograms to a one big histogram

Calculate LBP code based on different LBP operator

Input face image

Divide images into many local patches and
calculate the histogram based on each region

Construct the LBP feature by concatenating
the regional histograms to a one big histogram

Calculate LBP code based on different LBP operator

 

Fig. 3. The general process of extracting LBP features 
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Fig. 4. LBP operators  

5 Proposed Method 

The proposed method uses HOG descriptors, LBP as features and SRC as classifier. 
First use HOG+SRC and LBP+SRC to judge the test samples of facial expressions 
separately. Then use these two results vectors as the posteriori probability of test 
samples to make the final decision more accurate [17]. The theory of classifier com-
bination in [17] can be briefly described as below. 

According to the Bayesian theory, given measurements xi, i = 1, … ,R of different 
classifier method,  the pattern , Z, should be assigned  to class jw  provided the a 

posteriori probability of that interpretation is maximum, i.e.. 

 ifwZassign j→  (4) 

 ( ) ( )RkkRj xxwPxxwP ,...max,...., 11 =  (5) 

Where R represents the number of classifiers and k represents the class numbers. 
There’re six combination rules in [17] based on this basic theory. The applicable con-
dition of these rules is that the given measurements of classifiers are complementary. 

So, in briefly, the process of the proposed method can be introduced as below. 

Step 1: Input a dictionary D which constructed by training samples 
Step 2: Input a test sample y and apply feature transformation P1 (HOG descriptors 

transformation), P2 (LBP feature transformation) to both y and D 
Step 3: Calculate the x  by solving l1-minimization problem: 

 yPDxPtsx jj =..min
1

  (j =1, 2) (6) 

Step 4: Judge the class where test sample y belongs to: 

 ( )
2

minarg)( xPDyPyidentify jiji δ−=  (7) 

Step 5: Go to step 2 until all the test samples are classified. 
Step 6: Calculate two results vector Q1 and Q2 (Q1 is the result judging by 

HOG+SRC, Q2 is the result judging by using LBP+SRC). 
Step 7: Use the combination rules in [17] to fuse the two results and generate final 

decision of each test sample. 
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6 Experiment 

Experiments are conducted on the Cohn-Kanade facial expression database [15]. We 
select 339 image sequences from 94 subjects. From each sequence, we select the last 
three frames to organize our dataset and normalize the entire dataset to 64×64 pixels 
by using the same method as [2]. There’re many person-independent validation me-
thod, such as 10-fold [7] and so on. In this paper we use the same person-independent 
validation method as [2]. We randomly select 66% subjects to organize the dictionary 
and the rest subjects are used as test samples. 

6.1 HOG Descriptors Parameter Selection 

As mentioned above, we need to find some suitable parameters when extracting HOG 
descriptors. Fig 5 shows the results of different parameter selection. It can be seen 
that when face images are divided into 961 local patches and bin number set to 9, the 
experiment result on our dataset is the best. The best accurate rate is 94.1%. 

 

Fig. 5. Recognition rates based on different parameters 

6.2 LBP Parameter Selection 

As shown in Fig 6, it can be seen that the best performance is 92.398%.The size  
of patch is 4×4 and neighboring patches are 25% overlapping. LBP (P=8, R=2.0) 
operator is chosen. 
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Fig. 6. Recognition rates based on different parameters 

6.3 Experiment on Clean Face Image 

In this part, we test the proposed method on our dataset which contain only clean face 
image. Table1 and Table 2 show the confusion matrix of HOG+SRC and LBP+SRC. 
It can be seen that LBP+SRC gives better performance than HOG+SRC when recog-
nizing disgust expression. So, we use the combination strategy in [17] to combine 
these two result vectors. Though [17] introduces six combination rules, table 3 shows 
the fusion results based on the six combination rules. 

Table 1. The confusion matrix(%) of HOG+SRC 

 Anger Disgust Fear 
Happi- 
Ness 

Sadness surprise 

Anger 84.62 0 0 0 15.38 0 
Disgust 0 93.33 0 0 6.67 0 

Fear 0 13.33 86.67 0 0 0 
Happi- 

ness 
0 0 0 100 0 0 

Sadness 0 0 0 0 100 0 
Surprise 0 0 0 0 0 100 
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Table 2. The confusion matrix(%) of LBP+SRC 

 Anger Disgust Fear 
Happi- 

ness 
Sadness surprise 

Anger 84.62 0 0 0 15.38 0 
Disgust 4.44 95.56 0 0 0 0 

Fear 5 0 80.00 11.67 3.33 0 
Happi- 
Ness 

0 0 1.23 98.77 0 0 

Sadness 3.03 0 0 0 96.67 0 
Surprise 0 0 1.23 0 0 98.77 

Table 3. The fusion results(%) by using different combination rules 

 Sum Product Max Min Median Majority rote 
Rate 95.64 95.33 94.42 94.79 95.23 93.96 

We compared our method to the existing FER method based on SRC. For example, 
RAW+SRC [8], Gabor+SRC[8], Eigen+SRC [8]. Table 4 shows the comparison  
results. 

Table 4. The perfomance of the method based on SRC on our dataset 

Methods Accuracy (%) 
RAW+SRC 85.70 
Gabor+SRC 81.34 
Eigen+SRC 80.32 

Ours 95.64 

We also compared the proposed method to other automatic FER methods. The re-
sults are shown in Table 5. Because of different dataset and validation method, the 
results in table 5 are not directly comparable. But through the comparison, it can be 
seen that our method is efficient. 

Table 5. Comparison with different method based on the CK database 

 Subjects Classes Measures Rate(%) 
[2] 96 6 — 92.3 
[3] 96 6 10-fold 92.1 
[4] 97 6 5-fold 90.9 
[7] 94 7 10-fold 91.51 

ours 94 6 — 95.64 

6.4 Experiment on Face Image with Assigned Occlusion 

The advantage of SRC is the robustness to occlusion. So, in this part, we test our me-
thod on the face image with two kinds of occlusions. One is eye region occlusion; the  
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other is mouth region occlusion as shown in Figure 7. We compared our method to 
the existing methods based on SRC. From table 6, it can be seen that our method is 
outperform than the other method based on SRC. 

 

Fig. 7. Examples of face image with assigned occlusion. (1) Eye occluded with small occlu-
sion. (2) Eye occluded with medium occlusion. (3) Eye occluded with large occlusion. (4) 
Mouth occluded with small occlusion. (5) Mouth occluded with medium occlusion. (6) Mouth 
occluded with large occlusion. 

Table 6. Recognition rates(%) on the occlusion face image 

 
Eye 

small 
Eye 

Medium 
Eye 

Large 
Mouth 
Small 

Mouth 
Medium 

Mouth 
Large 

Ours 93.34 89.23 85.12 85.45 79.65 72.58 
RAW+ 

SRC 
83.54 75.45 60.12 75.35 69.25 51.56 

Gabor+ 
SRC 

76.32 68.23 60.23 72.12 63.12 52.12 

Eigen+ 
SRC 

71.23 62.23 51.12 70.23 64.12 50.23 

7 Conclusion 

A Novel approach for facial expression recognition by fusion different classifier 
based on Sparse Representation is proposed. The experiment on Cohn-Kanade data-
base shows that the proposed algorithm gives better performance than the existing 
state of art work. But the time cost of proposed method is much higher than the exist-
ing methods based on SRC. 
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Abstract. Fuzzy c-Means algorithms(FCMs) with different distance
measures are applied to an image classification problem in this paper.
The distance measures discussed in this paper are the Euclidean distance
measure and divergence distance measure. Different distance measures
yield different types of Fuzzy c-Means algorithms. Experiments and re-
sults on a set of satellite image data demonstrate that the classification
model employing the divergence distance measure can archive improve-
ments in terms of classification accuracy over the models using the FCM
and SOM algorithms which utilize the Euclidean distance measure.

1 Introduction

Recent increase in the use of large image database requires an automatic clas-
sification tool which yields efficient content-based classification of image data.
In developing an automatic image classification tool, a clustering algorithm can
be utilized as a part of the classification tool. Several clustering algorithms have
been adopted for this purpose. Among them, k-Means algorithm [1,2] and Self
Organizing Map (SOM)[3] have been widely applied to the problem of cluster-
ing data in practice for their simplicity. The k-Means algorithm and adaptive
k-Means algorithm can be considered as the basis of SOM. In order to improve
the performance of k-Means algorithm and SOM, Fuzzy C-Means (FCM) cluster-
ing algorithm is later introduced[4,5]. Note that these algorithms are all designed
with Euclidean distance measure. In order to deal with nonlinear classification
problems, kernel methods are introduced[6,7]. The kernel methods project the
input data into a feature space with a higher dimension and nonlinear problems
in input data space are solved linearly in feature space. The kernel methods,
consequently, can improve the classification accuracy. Unlike SOM, an object
can be assigned to all available classes with different certainty grades in FCM.
By doing so, the FCM algorithm is more robust when compared with SOM or
k-Means algorithm.

Divergence distance measure has been also combined with the FCM algo-
rithm for utilizing statistical information from image data[8]-[10]. By combining
the ideas of FCM and divergence distance measure for the satellite image clas-
sification problem, a higher image classification accuracy can be expected.

The remainder of this paper is organized as follows: Section 2 summarizes the
conventional FCM with Euclidean distance measure. The FCM with divergence

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 489–496, 2013.
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distance measure is summarized in Section 3. Experiments and results on a set
of satellite image data are reported in Section 4. Finally, conclusions are given
in Section 5.

2 Fuzzy c-Means(FCM)with Euclidean Distance Measure

A clustering algorithm’s purpose is to group of similar data and separate dis-
similar ones. FCM has been widely used as a clustering algorithm. Bezdek first
defines a family of objective functions Jm, 1 < m < ∞ and generalized the fuzzt
ISODATA by establishing a convergence theorem for that family of objective
functions [4]. For FCM, the objective function is defined as :

Jm(U,v) =

n∑
k=1

c∑
i=1

(μki)
m(di(xk))

2 (1)

where the following notations are used:

– • di(xk) : distance from the input data xk to vi, the center of the cluster i

– • μki : membership value of the data xk to the cluster i

– • m : weighting exponent, m ∈ 1, · · · ,∞
– • n and c : number of input data and clusters.

Note that the distance measure used in FCM is the Euclidean distance.
The condition for minimizing the objective function by Bezdek are summa-

rized with the following equations:

μki =
1∑c

j=1(
di(xk)
dj(xk)

)
2

m−1

(2)

vi =

∑n
k=1(μki)

mxk∑n
k=1(μki)m

(3)

The FCM finds the optimal values of prototypes iteratively by applying the
above two equations alternately.

3 FCM with Divergence Distance Measure

In clustering algorithms, it is very important to choose a proper distance mea-
sure since the chosen distance measure affects the performance of an algorithm[5].
When a data vector is given as a Gaussian Probability Density Functions(GPDF),
the Divergence distance measure can be a promising choice[5,11]. The Diver-
gence distance measure is also called as Kullback-Leibler Divergence. Given two
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(a) Factory (b) Mountain (c) Harbor

(d) Farm (e) Desert (f) Urban

Fig. 1. Examples of different category data

GPDFs, x = (xμi , x
σ2

i ) and v = (vμi , v
σ2

i ), i = 1, · · · , d , the Divergence distance
measure is defined as:

D(x,v) =

d∑
i=1

(
xσ

2

i + (xμi − vμi )
2

vσ
2

i

+
vσ

2

i + (xμi − vμi )
2

xσ
2

i

− 2)

=

d∑
i=1

(
(xσ

2

i − vσ
2

i )2

xσ
2

i vσ
2

i

+
(xμi − vμi )

2

xσ
2

i

+
(xμi − vμi )

2

vσ
2

i

(4)

where the following notations are used:

– •xμi : μ value of the ith component of x

– •xσ2

i : σ2 value of the ith component of x
– •vμi : μ value of the ith component of v

– •vσ2

i : σ2 value of the ith component of v

By combining the divergence measure and FCM, the FCM with divergence mea-
sure (D-FCM) is introduced[10]. D-FCM calculates and updates their parameters
at each application of each data vector while FCM calculates the center param-
eters of the clusters after applying all the data vectors. The advantage of this
iterative application and updating the center parameters was reported. The up-
dating strategy for the mean and variance of center values follows the procedure
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of [8]. When a data vector x is applied, the membership for the data vector to
the cluster i is calculated by the following:

μi(x) =
1∑c

j=1(
D(x,vi)
D(x,vj)

)2
(5)

After finding the proper membership grade from an input data vector x to
each cluster i, the D-FCM updates the mean and variance of each prototype as
follows:

vμ
i (n+ 1) = vμ

i (n)− ημ2
i (x)(v

μ
i (n)− xμ) (6)

vσ2

i (n+ 1) =

∑Ni

k=1(x
σ2

k,i(n) + (xμ
k,i(n)− vμ

i (n))
2)

Ni
(7)

where the following notations are used:

– • vμ
i (n) or vσ2

i (n) : the mean or variance of the cluster i at the time of
iteration n

– • xμ
k,i(n) or x

σ2

k,i(n) : the mean or variance of the kth data in the cluster i at
the time of iteration n

– • η and Ni : the learning gain and the number of data in the cluster i

4 Experiments and Results

In order to evaluate the performances of FCMs with Euclidean distance measure
and Divergence distance measure, a set of satellite image data is collected. The
data set consists of six different image categories representing different areas as
shown in Fig. 1: factory area, mountain area, harbor area, farming area, desert
area, and urban area. Each category contains 100 images. From each class of data
set, 80 images were randomly chosen for training classifiers while the remaining
images were used for testing classifiers. Localized image representation method
is adopted for extracting texture information from image data. The contents of
a image data is presented by a collection of localized features which is computed
at different points of interest in image space. The localized interest of points in
image space is determined by the used of sliding windows or blocks. By combining
these extracted localized features, the feature for the entire image is obtained.

For the texture information of an image, Gabor filters [13] and wavelet filters
[14] are frequently adopted for extracting the frequency domain information.
In case of the applications that requires a real-time operation, these filters are
not good choice because of their high computational complexity. Tools with less
computational complexity are required for this case and the Discrete Cosine
Transform (DCT) is one of them for feature extracting methods suitable for
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Fig. 2. Feature extraction procedure [9]

our purpose. The DCT extracts the frequency information from an image data.
Extraction of the localized frequency information form a image is summarized
in Fig. 2. The feature extraction procedure works basically in sliding window
fashion and calculates the DCT coefficients from local points of interest. Its
window size is 8× 8 and yields 64 DCT coefficients. Out of 64 DCT coefficients,
32 lower half frequency coefficients are used for our experiments for each block
of image data. By combining the extracted frequency information from image
blocks, a feature vector is obtained for each data. The distribution of its feature
vectors formed from each image data is then used for finding the prototype of
each image category by using a clustering algorithm. Each prototype represents a
category with its mean vector and covariance matrix. For evaluating a classifier,
the following Bayesian classifier is utilized.

Genre(x) = argmax
i

P (x|vi) (8)

P (x|vi) =
M∑
i=1

ciℵ(x, μi) (9)

ℵ(x, μi) =
1√
(2π)

d
e−0.5(x−μi)

T (x−μi) (10)

where the following notations are used:

– • M : the number of code vectors
– • ci: the weight of the code vectors
– • d : the number of dimensions of the feature vectors (d=32)
– • μi : the mean of the i− th group of the class’s data

In order to evaluate different distance measure used for FCM, experiments on
a set of satellite image data are performed with conventional FCM, FCM with
Divergence distance measure, and SOM. Fig. 3 summarizes their performance in
terms of classification accuracies for the three classifiers. Note that the conven-
tional FCM and SOM use the Euclidean distance measure and utilize only the
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Fig. 3. Overall classification accuracies using different algorithms

mean vector value from GPDF data for each image data. Meanwhile, FCM with
Divergence distance measure utilizes the covariance matrix information from
GPDF in addition to the mean vector value when calculating the distance be-
tween two GPDFs. Experiments are performed by varying the number of code
vectors from 4 to 18. The average classification accuracies obtained from SOM,
FCM with Euclidean distance measure (FCM(E)), and FCM with Divergence
distance measure (FCM(D)) over different numbers of code vectors are 66.7%,
67.5%, and 78.0%, respectively. Fig.3 summaries the classification accuracies
among different classifiers with different numbers of code vectors. As can be
seen from Fig.3, the classification accuracy for a classifier increases as the num-
ber of code vectors grows and saturates when the number of code vectors reaches
at 10. Table 1 shows the classification accuracy for each category for different
classifiers when each classifier uses 14 code vectors. As can be seen from Fig. 3
and Table 1, the classifier that uses Divergence distance measure outperforms
the classifiers that use the Euclidean distance measure. It is somewhat obvious
because the Divergence distance measure utilizes the covariance information in
GPDF while the Euclidean measure distance does not. However, it is worthwhile
to mention that how the covariance information can be utilized in FCM with the
Divergence distance measure. In order to improve the classification accuracy, the
future study should include other feature extraction methods than the DCT.
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Table 1. Classification accuracy (%) of different algorithms using 12 code vectors

Factory Mountain Harbor Farm Desert Urban Overall

FCM(D) 75.8 74.2 88.5 74.0 84.3 93.3 81.5%

FCM(E) 71.4 64.5 76.1 67.4 71.3 83.7 72.4%

SOM 73.3 62.5 75.4 65.5 71.1 84.7 72.1%

5 Conclusion

In this paper, a comparative study on the use of different distance measures
for satellite image classification method has been performed. The distance mea-
sures discussed in this paper are the Euclidean distance measure and divergence
distance measure. Different distance measures requires updating formulas for
different types of Fuzzy c-Means algorithms. Experiments and results on a set
of satellite image data demonstrate that the classification model employing the
divergence distance measure can archive improvements in terms of classification
accuracy over the models using the FCM and SOM algorithms which utilize the
Euclidean distance measure. It is somewhat obvious because the Divergence dis-
tance measure utilizes the covariance information in GPDF while the Euclidean
measure distance does not. Other distance measures than the Divergence dis-
tance measure will be included in future work.
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Abstract. Local intensity order pattern feature descriptor is proposed to extract 
the feature of image recently. However, it did not provide the global informa-
tion of an image. In this paper, a simple, efficient and robust feature descriptor 
is presented, which is realized by adding the global information to local intensi-
ty features. A descriptor, which utilizes local intensity order pattern and/or 
global matching, is proposed to gather the global information with local intensi-
ty order. Experimental results shows that the proposed hybrid approach outper-
form over the state-of-the art feature extraction method like scale-invariant  
feature transform, local intensity order pattern and DAISY for standard oxford 
dataset. 

Keywords: Local Intensity Order Pattern, Global matching, Feature extraction, 
Image classification, Interest point based feature. 

1 Introduction 

Feature extraction method plays an important role in the field of image processing, 
such as in object recognition [1], remote sensing [2], medical imaging [3], image 
retrieval [4], wide base line matching [5], panoramic image stitching [6] and so on. 
Many methods have been used to detect the interest regions, among them, commonly 
used for affine covariant region detection includes IBR (Intensity-Based Region) [5], 
Harris-affine [7], Hessian-affine [8], MSER (Maximally Stable Extremal Region) [9] 
and EBR (Edge- Based Region) [5] methods. Currently, most popular feature extrac-
tion method is SIFT (Scale Invariant Feature Transform), which is proposed by Lowe 
[1] based on histogram. Krystian et al. [11] proposed an extension of SIFT descriptor 
named as GLOH (Gradient Location-Orientation Histogram). SURF (Speeded-Up 
Robust Features) is presented by Bay et al. [12], in which they got the speed gain due 
to the usage of integral images, which drastically reduce the number of operations for 
simple box convolutions, independent of the chosen scale. Lazebnik et al. proposed a 
rotation invariant descriptor called the RIFT (Rotation Invariant Feature Transform) 
[19]. Tola et al. proposed a method called DAISY [13], which creates a histogram of 

                                                           
* Corresponding author. 



498 H. Dawood, H. Dawood, and P. Guo 

gradient orientations and locations, the increase in speed comes from replacing 
weighted sums used by the earlier descriptors by sums of convolutions, which can be 
computed very quickly and from using a circularly symmetrical weighting kernel.  

Bin Fan [14] proposed a descriptor by combining the intensity order with gradient 
distribution in multiple support regions. Heikkila et al. [15] proposed a texture feature 
called center-symmetric local binary pattern (CS-LBP) by combining the strengths of 
SIFT and local binary pattern (LBP) [16] texture operator. Weber local descriptor [17] 
consists of two components: differential excitation and orientation. Dalal and Triggs 
proposed a histogram of oriented gradients (HOG) [18] feature descriptor also. Many 
variants of LBP have been recently proposed and have achieved considerable success 
in various tasks. Ahonen et al. exploited the LBP for face recognition [20]. Rodriguez 
and Marcel proposed adapted LBP histograms for face authentication [21]. Local 
intensity order pattern (LIOP) [24] is proposed to encode the local ordinal information 
of each pixel and the overall ordinal information is used to divide the local patch into 
sub-regions, which are used for accumulating LIOPs. However, by using such fea-
tures for recognition has a low recognition rate.  

In this paper, we propose an efficient global matching scheme where the LIOP is 
used for feature extraction. Global matching is obtained by computing the minimum 
distance in all directions. Also, by adopting the global matching technique effectively, 
we can reduce the requirement of using the large training sets. 

The rest of paper is organized as follows: Section 2 briefly reviews the LIOP;  
Section 3 presents the proposed global matching method with dissimilarity matrix, 
Section 4 presents the detailed experiments and results. Finally in Section 5 the con-
clusion is given. 

2 LIOP 

In this section, we will briefly review LIOP [24] descriptor. In LIOP, the overall in-
tensity is used to divide the local patch into sub-regions named as ordinal bins and the 
intensity relationship of neighboring sample points is calculated. LIOP descriptor is 
constructed by concatenating all bins. 

Assuming ( ){ }R:,...,, 21 ∈= iN
N ppppp is the set of N-dimensional vectors and set of 

all possible permutations of integer {1, 2,…,N}, and the mapping γ : from N-

dimensional vector to N-dimensional permutation vector is defined as NNP ∏→ , 

where NPP ∈ and N∏∈π .  The mapping can be defined as  

 ( ) NNPPP ∏∈∈= ππγ ,, . (1) 

Where π = ( )Niiii ,...,,, 321 and
Niii PPP ≤≤≤ ...

21
.The mapping γ  divides PN into N! 

partitions. For a given permutation N∏∈π , the corresponding partition of PN is  
defined as 

 ( ) ( ){ }.,: PPPPS ∈== πγπ  (2) 
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From Eq. 2 the equivalence equation can be written as: 

 
( )

( ) ....,...,...,,

,
'''

21

'

2121
NPPPPPPiii

SPP

iN iiiiiN ≤≤≤≤≤≤⇔=

∈

π
π

 (3) 

By using the index table, the feature mapping function φ  is defined to map a permu-

tation π  to an N!-dimensional feature vector i
NV !  whose elements are zero except 

for the i-th element which is 1. Where φ  is defined as  

 ( ) ( ) .,!
NInd

NV ∏∈= ππφ π  (4) 

From the above definitions, Assuming ( )xP  is a N-dimensional vector which consist 

the intensity of N neighboring sample points of x in the local patch, the LIOP of the 
point x is defined as: 

 
( )( )( )xPxLIOP γφ=)(

 

 ( )( )( )xPInd
NV γ

!=  (5) 

 
( )( )( )( )

,0,...0,0,...,0 1 












=

xPInd γ  

where ( ) ( ) ( ) ( )( ) N
N PxIxIxIxP ∈= ,...,, 21 and ( )ixI denotes the intensity of i-th 

neighboring sample point ix . The mathematical definition of LIOP is 

                     LIOP descriptor= ( )Bdesdesdes ,...,, 21 , 

 ( ). ∈
=

ibinxi xLIOPdes  (6) 

Where B represents the ordinal bins. The dimension of the descriptor is N!×B. Due to 
the Gaussian noise effect on intensity a weighting function is proposed to improve the 
robustness of the LIOP descriptor, which is defined as: 

 ( ) ( ) ( )( ) ,1xxsgn
ji,
 +−−= lpji TIIxw  (7) 

Where sgn() is the sign function and lpT is a present threshold. So the LIOP descrip-

tor with weighting is written as: 

 LIOP descriptor= ( )Bdesdesdes ,...,, 21  (8) 

 ( ) ( ), ∈
=

ibinxi xLIOPxwdes
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3 Global Matching with Dissimilarity Metric 

The rotation invariant methods have been proposed in literature [28,29], where LIOP 
extracts the features from the local region. However, it is not able to correctly recog-
nize those images in the same class. For example, the LIOP histogram of two images 
from the same class with scale variation is calculated, because each image exhibits 
different information, the LIOP histogram of these two images is different and they 
will possible be misclassified into different class. This is due to the loss of global 
information if we only take the locally rotation invariant feature.   

We can compute the difference between train image and test image by non-
parametric static test. By using different type, we can check the dissimilarity between 
two histograms like chi-square statics, likelihood ratio and histogram intersection 
[16]. The TR is used to stand for the training images and TE express the testing im-
ages in the datasets. 

 ( ) ( )
nn

nn
N

n
TETR

TETR
TETRD

+
−

=
=

2

1

,

.

 (9) 

Where N is the number of bins and nn TETR ,  represents the training and testing im-

age in corresponding n-th bin. Global matching can be implemented by exhaustive 
search, where by comparing the histogram of sample image and model image we can 
get the minimum distance between two images [25].  

4 Experimental Results 

The Oxford dataset [26] is used to evaluate the proposed descriptor. The Oxford dataset 
contains images with different geometric and photometric transformations of structured 
and textured scenes. It contains six different transformations like scale change, image 
blur, viewpoint change, illumination change, image rotation and JPEG compression, 
which are used in this work. Fig.1 shows some samples from this Oxford dataset. 

 
                     Graf         Wall         Ubc        Tree 

 

 

Fig. 1. Typical images used for the evaluation from Oxford dataset. Where Graf (Zoom, View-
point change, Rotation), Wall (Viewpoint), Ubc (JPEG compression), Trees (Image blur,  
Textured scene). 
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For interest region detection, we have used affine covariant region known as Har-
ris-affine (haraff) [7]. We compared proposed descriptor with some well know  
state-of-art feature descriptor, such as SIFT [1], DAISY [13] and LIOP [24].The per-
formance of our descriptor is evaluated on the basis as in [10], in which it depends 
upon the number of correct matches and number of false matches. The results are 
presented with recall and precision curves, while the number of correct matches and 
ground truth correspondences is determined by the overlap error [8]. 

The performance of different methods in terms of precision and recall is evaluated. 
Also the average precision and recall for each class has been calculated to confirm 
that if our proposed global matching method performs well or not for variations of 
images in every class. 

Affine covariant region adopted in our experiments is Harris-affine [7]. K-means 
clustering algorithm is used to get the histograms from LIOP features. The experi-
mental results are shown in Fig. 2 and 3 for the case of haraff. We can observe from 
Fig. 2 that for only “leuven” class our proposed global matching does not perform 
well in term of precision, and the recall is good in most of the cases except “Gref” in 
Fig. 3.  

 

Fig. 2. Precision of Oxford dataset by using haraff 

 

Fig. 3. Recall by using Haraff affine covariant region on Oxford dataset 
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The recall and precision are defined as: 

 
H

c

w

w
recall =

, 

 
Auto

C

w

w
precision =

. 

Where wH is the manually classified images in the test data set, and automatically 
classified images are wAuto. The wc express the correct classified images. From these 
experiments, it can be seen that our proposed global matching method performs better 
on histograms. 

5 Conclusion 

By using hybrid approach, a novel descriptor is proposed to exploit the local and 
global information of image in this paper. The LIOP histograms are used to measure 
the dissimilarity between images. Global matching is obtained by computing the min-
imum distance in all directions. The experimental results on different image transfor-
mations demonstrated that the proposed global rotation invariant matching scheme 
outperforms the state-of-the-art methods in terms of recall and precision.    
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Abstract. Based on intrinsic mode functions (IMFs), standard energy difference 
of each IMF obtained by EEMD and probabilistic neural network (PNN), a new 
method is proposed to the recognition of power quality transient disturbances. 
In this method, ensemble empirical mode decomposition (EEMD) is used to 
decompose the non-stationary power quality disturbances into a number of 
IMFs. Then the standard energy differences of each IMF are used as feature 
vectors. At last, power quality disturbances are identified and classified with 
PNN. The experimental results show that the proposed method can effectively 
realize feature extraction and classification of single and mixed power quality 
disturbances. 

Keywords: power quality disturbances, ensemble empirical mode 
decomposition (EEMD), intrinsic mode function (IMF), probabilistic neural 
network (PNN). 

1 Introduction 

With the wide applications of electronic devices in power system, the quality of electric 
power has become an important issue for electric utilities. Economic losses to sensitive 
power users caused by transient power quality disturbances are the common problems 
in power system. Therefore, the classification and recognition of transient power 
quality disturbances is very important to improve power quality. In recent years, there 
have been several methods used for feature extraction of transient power quality 
disturbances, such as Fourier transform[1], wavelet transform[2], Hilbert-Huang 
transform[3], Wigner-Ville distribution[4], S-transform[5], etc. Besides, kinds of 
classifiers also have been designed to identify transient disturbance, such as: expert 
system[6], support vector machines[7], artificial neural networks [8] ,and so on. 

HHT including empirical mode decomposition (EMD) and Hilbert transform, which 
is a self-adaptive method for analyzing nonlinear and non-stationary signals, has been 
gradually applied to detecting power quality disturbances[9-10]. Recently empirical 
mode decomposition (EMD) has proven to be quite available in a extensive range of 
applications for extracting features from signals generated in noisy nonlinear and 
non-stationary processes. As useful as EMD proved to be, it still leaves some 
difficulties unresolved, such as mode mixing. To overcome the frequency separation 
problem, Zhaohua Wu and N.E. Huang proposed a new noise-assisted data analysis 
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(NADA) method named Ensemble EMD (EEMD), which collate the portion of each 
IMF by adding noise to deal with mode mixing[11]. Therefore, EEMD has been more 
and more widely application to extract characteristics of different disturbances[12]. 

Artificial Neural Network (ANN) is a kind of artificial intelligence, which has strong 
power in self-study, self-accommodate and nonlinear transition[8]. It has been used in 
pattern recognition, optimal control, statistical computation, power system and many 
other fields. Probabilistic neural networks (PNN) is a kind of artificial neural network, 
which is simple in learning rule and rapid in training. Besides, PNN has very strong 
anti-interference, strong capability of nonlinear approximation with high 
reconstructing accuracy and better classifying performance[13-14]. In the paper, 
EEMD is used to decompose the power quality signals with disturbances into IMFs 
(Intrinsic Mode Functions) to extract feature vectors and PNN is used to classify and 
recognize the types of the disturbances. 

2 EEMD and PNN  

2.1 EMD and EEMD 

EMD was proposed by Huang in 1998 as an adaptive time-frequency data analysis 
method in nonlinear and non-stationary signals[9-10]. EMD is used to decompose the 
complex signals into IMFs, which include the intrinsic features of the signals. Each 
IMF is defined by two principal characteristics: the number of its extreme must be 
equal to, or differ by at most one and its mean is zero. 

The steps comprising the EMD method are as follows [9]. 
1) Identify local maxima and minima of the distorted signal ( )X t and perform 

interpolation method between the maxima and the minima to obtain the envelopes, then 
compute the mean of the envelopes 1m to calculate the difference 1h . 

1 1( )h X t m= −                               (1) 

If 1h is an IMF, it means that the first IMF is obtained, which consists of the highest 

frequency components present in the original signal. 

2) If 1h  is not an IMF, then repeat steps 1 on 1h instead of ( )X t , until the new 

1h satisfies the conditions of an IMF recorded as 1c . 

3) Compute the residue, 1r . 

1 1( )r X t c= −                               (2) 

4) If the residue is larger than the threshold of error tolerance, repeat steps 1-3 to 

obtain the second IMF and residue. Repeat the steps 1-4 until the residual signal is a 

monotone function. 

1n n nr r c−= −                              (3) 

If orthogonal IMFs are obtained in this iterative manner, the original signal may be 
reconstructed as: 
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1

( )
n

i n
i

X t c r
=

= +                           (4) 

The final residue exhibits any general trends followed by the original signal, and each 
IMF represent different frequency components of the original signal. 

Though EMD is proved to be useful in many conditions, it still leaves some 
difficulties unresolved, such as mode-mixing. Zhaohua Wu and N. E. Huang put 
forward EEMD, a new noise-assisted data analysis approach to solve the scale 
separation problem of EMD. EEMD is developed below [11-12]: 

1) Add a white noise series to the target data; 
2) Decompose the data with added white noise into IMFs; 
3) Repeat step 1 and 2 again, but with different white noise series each time;  
4) Obtain the means of corresponding IMFs as the final result. 

2.2 PNN (Probabilistic Neural Network) 

PNN is a classification network proposed by Dr. DF Specht in 1989, which is based on 
Bayesian decision theory and probability function estimation theory[13-14]. Because it 
has shorter training time and higher classification accuracy than traditional neural 
networks, PNN is an effective training artificial neural network for many classification 
problems. The PNN neural network consists of three layers namely input, hidden and 
output layers as shown in Fig.1.  

Q R×

1Q ×

1Q ×

R

IW

dist

1b
1Q × 1Q ×

Q K

1K ×
K Q×

1n 1a

1K ×

2n
2LW1R ×

2a y=
MAX

p

 

Fig. 1. The architecture of PNN model 

Where R represents the number of the input vector, Q represents the number of the 
target samples which equals to the number of the neurons in radial base 
layer, K represents the categories of the input vector which is equal to the neurons in 
competitive layer. The input layer as the first layer is formed by the source nodes, the 
second layer is hidden layer including the radial basis function neurons and the third 
layer is output layer including the competition neurons. The number of radial basis 
neurons equals the number of training samples, while the number of input layer nodes 
depends on the dimension of the input vector. 
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The PNN is similar to the RBF in the hidden layer and the PNN generally takes form 

of the Gauss Function as the radials function [14]:  

2

( ) ( ) na n radbas n e−= =                         (5) 

The distance dist between the weight vector IW and the input vector P of every 

neuron in the hidden layer connected with the input layer is multiplied by a threshold 

[ ]0.5
log(0.5)b spread= − to form the self input. 

The relationship between the input layer and the hidden layer is 

1 1( )j ja f radbas W p b= = −  1, 2,...,j Q=                (6) 

Where 1
ja is the output of the j th hidden layer neuron, [ ]1 2, ,..., Rp p p p= is the input 

vector, 1( 1,2,..., )jb j Q= is the j th PNN width, 1 1 1 1 1
1 2 3, , ,..., Qa a a a a =   is the output of the 

hidden layer. The relationship between the hidden layer and the output layer is 

2 2 1

1

Q

m jm j
j

a w a
=

= , 1, 2,...,m K=                       (7) 

where 2
jmw is the output layer weight j th hidden layer neuron output acts on m th 

competition neuron. 2 2 2 2 2
1 2 3, , ,..., Ka a a a a =   is the output of the output layer 

and 2( )y MAX a= is the output vector, which set the max element as 1 and other 
elements as 0. 

3 Classification Based on EEMD and PNN 

In this paper, EEMD is used to decompose the disturbance signal into layers to get the 
IMFs and then obtain the standard energy difference represented as F1～F9 of the 
IMFs as follows.  

22
( )

1 1

1 1
( ) ( )

i iN N

i i pure i
i ik k

F d k d k
N N= =

= −    
1,2,3...i N=

       (8) 

where 1 9d d represent the IMF components of the disturbance signal and 

( )1 ( )9pure pured d represent the IMF components of the normal signal. 

Transient power quality problems can be divided into six categories such as voltage 
swell, voltage sag, voltage interruption, transient pulse, transient oscillation and 
harmonics. The paper’s goal is to classify the six kinds of transient disturbances using 
EEMD and PNN. There are three steps to finish the classification shown in Fig.2. 
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Step 1: EEMD is used to decompose the disturbance and obtain the IMF 
components. Some examples used EEMD is shown from Fig.3 to Fig.5. 

It can be seen from Fig.3 to Fig.5 that the IMF component will have some essential 
differences when the different disturbance is different. Therefore, we select IMF 
component coefficient to obtain the characteristics of the different signals. 

Step 2: The IMF component coefficient energy differences are calculated according 
to Eq.(8) and selected as the characteristic quantities. 

 
 

 

Fig. 2. The flow chart of proposed algorithm       Fig. 3. EEMD of voltage sag 

 

      Fig. 4. EEMD of voltage signal     Fig. 5. EEMD of transient pulse+ voltage swell 

Fig.6 shows the difference between the standard energy differences of the six kinds 
of signals. The IMF component coefficient energy differences are quite different. That 
is the reason why we select them as the characteristic quantities. 

Step 3: Classification with PNN. Input the characteristic quantities into the PNN. 
After training and testing, output the results and calculate the accuracy.  
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Fig. 6. The curve of the characteristic extraction 

4 Simulation Analysis  

4.1 Extract the Characteristic Quantities 

There are a variety of power quality disturbances and power quality disturbances are 
complex and hard to obtain. We use the MATLAB to simulate the disturbance signals 
according to standard of the IEEE[15] .The functions of each disturbance are shown 
in table I, Twhereα is the amplitude of the disturbance; β is fundamental frequency 

multiples; γ is for pulse amplitude; 1t is the starting moment ; 2t is the end moment; 

c is attenuation coefficient; ( )u t is unit step function; 0ω is fundamental angular 

frequency; T is cycle. 

Table 1. The characteristics and main types of power quality 

Disturbance type Mathematical model Model’s parameters  

Voltage swell ( ) ( ) ( )( )( )2 1 01 sin( )u t u t u t tα ω= + −  2 10.1~ 0.9 9T t t Tα = < − <；  

Voltage sag   ( ) ( ) ( )( )( )2 1 01 sin( )u t u t u t tα ω= − −  2 10.1 ~ 0.9 9T t t Tα = < − <；  

Voltage 

interruption 
 ( ) ( )( )( )2 1 0( ) 1- sin( )u t u t u t tα ω= −

 
 

2 10.9 ~ 1 9T t t Tα = < − <；  

Harmonics ( )
0 3 0 5 0 7 0

sin( ) sin(3 ) sin(5 ) sin(7 )u t t t t tω α ω α ω α ω= + + + 3 5

7

0.05 0.15 0.02 0.1
0.02 0.1

α α
α

< < < <
< <

；  

Transient 

oscillation 
( ) ( ) ( )1

0 0 2 1sin( ) sin( ) ( ( ))c t tu t wt e wt u t u tα β− −= + ⋅ ⋅ ⋅ −
2 1

0 .1 ~ 0.8 2 .5 ~ 5
0.5 3 5 ~ 10

c
T t t T

α
β

= =
< − < =

； ；
；

 

Transient pulse [ ]0 2 1( ) sin( )+ ( ) ( )u t t t tω γ ε ε= − 2 11 3;1 3ms t t msγ< < < − <  

Voltage signal 
0( ) sin( )u t tα ω=

01 50Hzα ω= =；



 An Approach of Power Quality Disturbances Recognition Based on EEMD and PNN 511 

4.2 Classification and Recognition 

(1)The classification of a single disturbance 
The groups of transient data can be produced in MATLAB according to the 

mathematical models shown in Table.1, 400 samples of each disturbance (200 samples 
for training, others for testing) under different SNR from 30dB to 50dB are simulated to 
test the accuracy of the proposed method. The simulation results are shown in Table 2. 

Table 2. The classification result of a single disturbance in different noises 

Disturbance type SNR/dB number of right samples number of wrong samples Accuracy/% 

Voltage swell 

30 194 6 97 

40 196 4 98 

50 197 3 98.5 

Voltage sag 

30 192 8 96 

40 194 6 97 

50 195 5 97.5 

Voltage interruption 

30 190 10 95 

40 193 7 96.5 

50 195 5 97.5 

Harmonics 

30 193 7 96.5 

40 194 6 97 

50 196 4 98 

Transient oscillation 

30 194 6 97 

40 197 3 98.5 

50 198 2 99 

Transient pulse 

30 193 7 96.5 

40 196 4 98 

50 197 3 98.5 

 
As Table 2 shows, no matter the low SNR(as 50dB) or the high SNR(as 30dB), the 

accuracy of the method proposed in this paper is high(the lowest is 95%). Simulation 
result shows that the method is very satisfied for the application under different noise 
environments. 

(2)The classification of mixed disturbance 
In order to analyze whether the method is suitable to identify the compound 

disturbance, six categories of mixed disturbances are selected to experiment and the 
results are shown in Table 3. 

As is shown in Table 3, the algorithm also has high classification accuracy when it 
is applied to the mixed disturbances. In addition, due to the small amplitude and noise 
affecting, several cases can not be completely accurately classified. 
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Table 3. The classification result of mixed disturbances 

Disturbance types Number of right samples Number of wrong samples Accuracy /% 

swell + pulse 195 5 97.5 

swell + oscillation 193 7 96.5 

sag + pulse 194 6 97 

sag + oscillation 196 4 98 

harmonics + pulse 193 7 96.5 

harmonics + oscillation 190 10 95 

5 Conclusions 

This paper proposed a new method for power quality disturbances recognition based on 
EEMD and PNN. The features of power quality disturbances are extracted by EEMD, 
six types of disturbances and their compound disturbances are classified precisely by 
the proposed method. Simulation results show that the method is effective especially 
under high noise environments. Otherwise, the principle of the method is very simple 
and the further work will be focused on improving the classification efficiency. 

Acknowledgments. This project was supported by National Natural Science 
Foundation of China (U1134205, 51007074) and Fundamental Research Funds for 
Central Universities (SWJTU11CX141) in China. 
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Abstract. Text classification is widely used nowadays. In this paper, we pro-
posed a combination feature reduction method to reduce feature space dimension 
based on inductive analysis of existing researches. Neural network was then 
trained and used to classify new documents. Existing researches mainly focus on 
the classification of the English text, but we focused on classification of Chinese 
text instead in this paper. Experimental results showed that the proposed feature 
reduction method performed well, and the neural network needed less terms to 
achieve the same accuracy compared with other classifiers. 

Keywords: Neural network, Text classification, Chinese text. 

1 Introductions 

With the rapid development of information technology, electronic documents on the 
Internet increase rapidly, and the amount of network data is growing exponentially. So, 
how to deal with these massive data has become an important issue. One of the most 
effective ways is to divide these data into different categories. Text classification is 
widely used, such as classification of web pages, spam filtering and etc. 

There are many methods for text classification, but most of them are based on the 
Vector Space Model (VSM) [1] proposed by G.Salton in the 1960s. In VSM, each 
document is expressed as a high-dimensional vector, and elements in the vector are the 
so-called feature items or terms. The similarity between two documents is calculated by 
the cosine angle between these two vectors. VSM simplifies the classification process 
into the operation between vectors, so that the complexity of the problem is greatly 
reduced, thereby obtaining a wide range of applications. However, as the amount of 
data increases, the number of terms growths rapidly, and the computing time increase 
as well. In this case, it is particularly important to find a reasonable strategy to select 
useful terms. Thereby, people propose a lot of feature reduction or selection methods, 
including the Document Frequency (DF), the Mutual Information (MI), Information 
Gain (IG), CHI-squared distribution (CHI), Principal Component Analysis (PCA) and 
the like. These methods examine the contribution of terms for text classification ac-
curacy from different angle, and select different terms based on various strategies. 
Another important work for text classification is to assign each selected term a  
                                                           
* Corresponding author. 
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reasonable weight. A good method should give those terms high weight whose class 
discrimination ability is strong, while give those terms low weight whose class dis-
crimination ability is weak. 

Since documents have been transformed into vectors, training and classification 
operation will be carried. Commonly used methods include Naive Bayes classifier, 
decision tree, support vector machine, k-nearest neighbor, neural network and etc. 
These methods have their own advantages and are suitable for different occasions. 
Neural network can fully approximate arbitrarily complex nonlinear relationship, so it 
is suitable for text classification problem which has complex classification plane. But 
neural network is of high time complexity, therefore, it is very necessary to reduce the 
feature space dimension prior to use neural network. 

This paper is structured as follows. Section 2 gives a review of researches against 
text classification based on neural network. We discussed key steps within text classi-
fication based on neural network in section 3. Experiments and results analysis are 
showed in section 4. We concluded the paper and showed acknowledgement in the end. 

2 Related Works 

There are plenty of researches focuses on the text classification. Yang [2] analyzed and 
compared several feature selection method, namely DF, IG, MI, CHI and TS (Term 
Strength). Experiment results on English text showed that IG and CHI performed better 
than other methods. Savio [3] compared DF, CF-DF, TFIDF and PCA on a subset of the 
Reuters-22173 using neural network as the classifier. Results showed that PCA per-
formed best. Hansen [4] used neural network ensemble technology to enhance the 
performance of the neural network, and cross-validation method was used to optimize 
the parameters and the structure of the neural network. Waleed [5] compared the per-
formance of neural network and SVM, and found that the neural network performed 
fairly with SVM, but required less training documents. Saha [6] used neural network to 
classify English text in case that number of categories was unknown. Cheng [7] used 
singular value decomposition to reduce the dimension of feature space. At the same 
time, multi-layer perceptron and back propagation neural network were used to train 
and classify new documents. Vassilios [8] proposed a novel neural network, namely 
sigma Fuzzy Lattice Neural network and compared it with other classification algo-
rithms, including K Nearest Neighbor and Naive Bayes Classifiers. Nerijus [9] used the 
decision tree to initialize the neural network, and test results on the Reuters-21578 
corpus showed that the method was effective. Taeho [10] proposed an improved neural 
network model which directly connected the input layer and output layer together, and 
update weights of the neural network only in the case of misclassification. 

The premise of the neural network to classify the text is that the text be represented 
as an acceptable input form of the neural network. Therefore, the conversion work is 
very important and lots of methods have been discussed in details [2-3]. In order to 
assign reasonable weight to each selected terms, Term Frequency Inverse Document 
Frequency (TFIDF) is commonly used. The TFIDF method determines a term’s weight 
by investigating the distribution of terms within and between categories. It was rec-
ognized as the benchmark weight calculation method.  
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Above all, most of researches are on the English text, rarely using Chinese corpus. In 
addition, most of existing researches using only one feature reduction or selection 
method while combination methods are lack of research. Therefore, we focus on using 
a combination feature reduction strategy to reduce the feature space dimension and 
using neural network to classify Chinese text in this paper. Seen from existing re-
searches, CHI and PCA performed best in feature selection or reduction, but PCA is 
very time-consuming. So, we use CHI to select the initial term set, and then use PCA 
for further dimension reduction. We use revised TFIDF method to calculate the weights 
of terms in this paper for simplicity. 

3 Text Classification Based on Neural Network 

In order to more clearly illustrate the procedure of text classification using neural 
network, we first describe the vector space model, and then we focus on two feature 
reduction methods namely CHI and PCA. Next, we show the term weight calculation 
method used in the paper. Finally, we describe the structure of neural network to be 
used. 

3.1 Vector Space Model 

Vector space model (VSM) expresses the document as a vector of terms having dif-
ferent weights, thus, simplifies the classification problem into the computation within 
the vector space, and greatly reduced the complexity of the problem. VSM expresses 

the document id : 1 2( , ,..., )i i i imd t t t= , where ijt  is the jth term of document id , and 

m is the number of terms. Different terms within the document play different role, so 

they should be assigned different weight. Then document id  can be further expressed 

as 1 2( , ,..., )i i i imd w w w= , where ijw is the weight of the jth term of document
id . 

From the definition of VSM, we can see that the number of terms and the weight of 
each term is the core factors of the text classification problem, which respectively, 
corresponding to the feature selection or reduction methods and the term weight cal-
culation method. Next, we would analyze two feature selection or reduction methods 
and one term weight computation method. 

3.2 CHI Method 

CHI (CHI-squared distribution) method assumes that terms and categories are not 
independent, but rather follow chi-squared distribution with k degrees of freedom. The 
higher CHI of a term respected to a category, the stronger correlation between them. 

CHI of term it  respected to category jc  can be calculated as follows: 

2
2 N ( )
( , )

( ) ( ) ( ) ( )i j

AD CB
t c

A C B D A B C D
χ × −=

+ × + × + × +
            (1) 
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Where N is the number of documents within the dataset, A is number of documents 

belonging to the class jc  and containing the term it . B is number of documents not 

belonging to the class jc  but containing the term it . C is number of documents be-

longing to the class jc  but not containing the term it , D is number of documents not 

belonging to the class jc  and not containing the term it . For multi-class classification 

problem, firstly, CHI of term it  respected to each category is computed, and then CHI 

of term it  respected to the entire dataset is computed as follows:  

2 2
max i i 1 i j( ) max ( , )nt t cχ χ==                         (2) 

Where n is the number of categories. Terms of CHI lower than the threshold will be 
filtered out, only those terms of CHI higher than the threshold be selected as the finally 
term set. 

3.3 PCA Method 

PCA (Principal component analysis) is a commonly used linear dimensionality reduc-
tion method which uses some linear projection to map high-dimensional data into 
low-dimensional space. PCA retains most of the original data features using less 
low-dimensional data by minimizing the variance on the projected data. PCA linear 
transformation concentrate different attributes into a few composite indicator (principal 
component), which is a linear combination of attributes. Different principal compo-
nents are mutually orthogonal and thus redundant attributes are removed, achieving the 
purpose of dimensionality reduction. 

3.4 Weight Computation Based on TFICF 

Conventional methods generally use TFIDF to compute the weight of a term. The 
TFIDF method assumes that the importance of a term is proportional to the times it 
appeared in the document, but inversely proportional to the times it appeared in dif-
ferent documents. Therefore, those terms that appeared more than once in a document 
should be given a higher weight, while those appeared in many documents should be 
given a lower weight. Usually, we need to compute the term weight relative to the 
entire dataset, not only within a category. Therefore, in this paper, we draw on the 
concept TFICF (Term Frequency Inverse Class Frequency) proposed in [11], and 
simplified it in our experiment. 

For term it  appeared in class jc , its TFICF value can be computed in two parts as 

follows: 

( ) ij
ij

kjk

n
tf t

n
=


                               (3) 

Where ijn  is the times term it  occurred in category jc , the denominator is the total 

times of all terms occurred in category jc . 
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( ) log
{ | } 1

i

i j

C
icf t

j t c
=

∈ +
                           (4) 

Where C is the total number of categories in the dataset， { | }i jj t c∈  is the 

number of categories contains term it . To avoid division by zero in case term it  does 

not appear in any category, the denominator was pulsed by 1. 

Finally, we can calculate the weight of term it respected to category jc as follows: 

( ) ( ) ( )i j i j itficf t tf t icf t= ⋅                             (5) 

3.5 Back Propagation Network 

Through the aforementioned feature selection or reduction methods and weight cal-
culation method, documents to be classified could be represented as relatively 
low-dimension vectors. Next, we use a three-layer feed forward back propagation 
neural network (BP) for text classification. The network is composited by three layers, 
including an input layer, a hidden layer and an output layer. Each layer contains a 
number of neurons. The number of neurons in the input layer is usually the dimension 
of the input vector and the number of neurons of the output layer is the category size. 
Hidden layer neurons have a greater impact on learning and generalization ability of the 
neural network, but there still lack of unified method for determining the number of 
hidden layer neurons. In this paper, we use “rule of thumb” called the Baum-Haussler 
rule [12], which states as follows. 

( ) /( )hidden train tolerance inputs outputsN N E N N≤ ⋅ +               (6) 

Where hiddenN  is the number of hidden neurons, trainN  is the number of training 

patterns, toleranceE  is the error we desire of the network, inputsN  and outputsN  are the 

number of input and output neurons respectively. In this paper, we set the number of 
hidden neurons as 40 according to our experiments. 

Text classification based on neural network consists of two phases: network training 
and classification. During the network training phase, each vector is entered to the input 
layer, and then it passes the hidden layer; the output of the output layer is the result. The 
difference between the result and expected result is then back propagated to modify the 
connection weights, so that the difference get diminished or even disappeared. During 
the classification phase, test document is entered and the outputs of each output layer 
neurons are compared. The neural of the maximum value is the corresponding category 
of the test document.  

The above procedure can be formalized like this. Suppose the number of categories 
is |C|, where C is the dataset and d is a document belongs to category k. During  
the training phase, the corresponding expected output should be a |C|-dimensional  
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vector 1 2( , , , )Ca a a , where 0( ), 1i ka i k a= ≠ = . If the expected output is not 

consistent with the actual output, then adjust the connection weights. During the clas-
sification stage, the test document t is entered and the corresponding output is also a | C 

|-dimensional output vector 1 2( , , , )Ca a a . Suppose 1 2max( , , , ) rCa a a a= , 

then test document t would be assigned to category r. 

4 Experiments 

4.1 Experiment Environment and Prepare Work 

All experiments were done on a PC with Intel(R) Core(TM) i5-1320 CPU @2.5GHz, 
10G Memory, 500G Hard Disk Capacities. We used Fudan University’s Chinese Text 
Classification Corpus1 in our experiment. The corpus contains 20 categories and is of 
101MB size. The corpus contains 19637 documents, in which 9804 as training docu-
ments and 9833 as test documents. Train set and test set do not overlap each other. 

We did Chinese word segmentation by Chinese lexical analysis system ICTCLAS2 
(Java version) which was developed by the Institute of Computing, Chinese Academy 
of Sciences. In order to validate the proposed method, open source tool Weka3, which 
was developed by the University of Waikato, was used. We did programming based on 
Weka’s API. All programs were written in Java under Eclipse Juno Service Release 
1.The statistic information of the dataset after preprocess is show in table 1. 

Table 1. Statistics of the dataset 

Total  
document# 

Train  
document# 

Test  
document# 

Category# Term# 

19637 9804 9833 20 55126 

4.2 Evaluation Method 

Commonly used evaluation methods for text classification include precision, recall and 
F1 value [2-3]. F1 combines precision and recall together and is a comprehensive 
assessment method. Therefore, we also use F1 as one of the evaluation criteria in this 
paper. In addition, we also take the running time of the program into consideration. 
Because even if the classification accuracy is very high, too long run time will limit the 
scope it can be used. Run time was measured from reading the dataset to printing the 
results. Because the Chinese text segmentation was done for preparation, and simply 
run only once, we ignored the time for segmentation. 

                                                           
1 The corpus is available at http://www.nlpir.org/download 
2 http:// www.ictclas.org 
3 http://weka.wikispaces.com 
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4.3 Results and Analysis 

At first, we tested the effectiveness of the combination feature reduction method. 
Feature space dimension was reduced to 500 by CHI at first, and then, neural network 
was trained and used to classify test documents. Since the original feature space di-
mension in our experiments is very high, PCA could not finish calculation within the 
limited time, therefore, it was not used separately for feature reduction. Then the 
comparison between CHI and CHI + PCA was conducted, and the dimension varies 
from 50 to 500 with an incensement of 50, the number of epochs to train the neural 
network is set as 200, and the result is show in figure 1. 
 

  

Fig. 1. F1 (a) and run time (b) of CHI and CHI + PCA 

As can be seen from figure 1, the combination method performed better. CHI + PCA 
performed best when the dimension is 150, which lead to a 99% reduction relative to 
the original feature space dimension. Both methods’ run time increased with the di-
mension. Since CHI + PCA choose more discriminated terms and reduced noises, it 
performed better than CHI. The best result CHI can achieve is lower than CHI + PCA 
can, therefore, one cannot improve the performance of CHI by simply increasing the 
dimension. 

Next, we compared neural network (NN) with other classifiers, including Naïve 
Bayes (NB) and Support Vector Machine (SVM), the result is shown in figure 2. 

Figure 2 shows that NN performed better than SVM when the dimension is lower 
than 450 and the result is comparable to SVM, which is considered to be one of the best 
classifiers. When the dimension is greater than 450, F1 value of NB decreased with the 
dimension, therefore, the proposed combination feature reduction method is not suita-
ble to NB. In addition, with the increase of the dimension, time consumed by NB and 
SVM grown slowly, but the time consumed by NN growth rapidly. Therefore, for these 
time-sensitive applications, e.g. online classification, SVM is a more reasonable 
choice. 
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Fig. 2. F1 (a) and run time (b) of different classifiers 

In addition, the training times of the neural network has greater impact on classifi-
cation accuracy. In this experiment, we fixed the dimension on 100 and changed the 
training times from 1 to 500 with an increment of 50, the result is show in figure 3. 

 

 

Fig. 3. F1 (a) and run time (b) against training times 

We can see from figure 3 that with the increase of training times, F1 increased at first 
and reached peek at 200, then decreased when the train times greater than 300. With too 
little training times, the neural network cannot reach a reasonable connection weight 
between neurons, therefore, get poor result. On the contrary, training too many times 
will make neural network over-fitting and thus performed bad on test data. Therefore, it 
is crucial to find a reasonable training times when use neural network on text classifi-
cation. In addition, we can see that the run time increased proportionally to the training 
times, which means time consumed in each training cycle is equally. 

5 Conclusions 

There have been a lot of researches on text classification based on neural network. 
Based on the analysis of existing researches, we proposed a combination feature  
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reduction method. Terms selected by the proposed method were then used as the input 
of the neural network. The proposed method was verified on the actual Chinese text 
corpus and the results showed that the method can effectively reduce the feature space 
dimension. Besides, neural network needed less terms to achieve the same accuracy 
compared with other classifiers. 
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Abstract. The recently introduced angular integral of the Radon trans-
form (aniRT) seems to be a good candidate as a feature vector used in
categorization of visual objects in a rotation invariant fashion. We inves-
tigate application of aniRT in situations when the number of objects is
significant, for example, Chinese characters. Typically, the aniRT feature
vector spans the diagonal of the visual object. We show that a subset of
the full aniRT vector delivers a good categorization results in a timely
manner.

Keywords: Radon transform, categorization of visual objects, Chinese
characters, Self-Organizing Maps, incremental learning.

1 Introduction

The paper is continuation of [20,22,21] where we considered categorization of
visual objects based on the angular integral of the Radon transform [25] (aniRT).
The principal problem in such categorization is the selection of the features that
can represent a visual object in a way invariant to rotation, scaling, translation
(RST), changes in illumination and the viewpoint. In this context, the main
attraction of the Radon transform is its ability to deliver rotational invariance
of the visual object. We will discuss this aspect in the section that follows. In
this paper, we consider a simple case of one visual object in the image. This
can be considered as a special case of more general invariant visual recognition
based on a variety of local descriptors (e.g. [14,5,19]). Three groups of methods,
namely, the Scale Invariant Feature Transform [16] (SIFT), PCA-SIFT [12] and
the “Speeded Up Robust Features” (SURF) [2], seem to dominate the field. A
comparison between the three methods is given in [11]. In [7] a rotation-invariant
kernels are discussed in application to shape analysis. An interesting method
(Ciratefi) that delivers the RST-invariance based on the template matching is
presented in [13,1].

The prime application of the Radon transform has been in computer tomog-
raphy. Relatively recently, Radon transform has been applied in a variety of im-
age processing problems. Typically, Radon transform is used in conjunction with
other transforms, wavelet and Fourier included. Magli et al. [17] and Warrick and

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 523–531, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Delaney [26] seem to initiate the use of Radon transform in combination with
wavelet transform. More recently, a similar combination of transforms has been
used in rotation invariant texture analysis [10,29], and in shape representation
[28]. Other approach to rotation invariant texture analysis uses Radon transform
in combination with Fourier transform [27]. Chen and Kégl [3] consider feature
extraction using combination of three transforms: Radon, wavelet and Fourier.
In [15], texture classification is performed by using a feature descriptor based on
Radon transform and an affine invariant transform. Miciak [18] describes a char-
acter recognition system based on Radon transform and Principal Component
Analysis. Hejazi et al. [8] present discrete Radon transform in rotation invariant
image analysis. Close to our considerations are object identification problems
discussed by Hjouj and Kammler in [9].

To our knowledge, the application of the angular integral of the Radon trans-
form (aniRT) in the rotational invariance categorization problem has originally
been presented in [20,22,21]. In those papers we used the aniRT feature vector
in conjunction with the Self-Organizing Maps to categorize a relatively small
number, say 30, of visual objects. We used the full aniRT feature vector that has
the number of components equal to the diagonal of the visual objects.

In this paper we aim at testing the aniRT feature vector when the number
of visual objects is significant, say 20000. We use a black-an-white rendering of
Chinese Characters as our test visual objects. Using all the components, say 100,
of the aniRT vector would be very time-demanding in the visual categorization
process.

2 An Angular Integral of Radon Transform (aniRT)

We consider first a real continuous function of two real variables x, y (or one
complex variable z) f(z), like an image, where z = x+jy. The Radon transform,
Rf(θ, s), (see [25]) of such a function is an integral of f(z) over straight lines
z(t) = ejθ(s+ jt) (see Fig. 1).

Rf(θ, s) =

∫ +∞

−∞
f(ejθ(s+ jt))dt (1)

where θ is the slope of the line (or ray), s is the distance of the line from the
origin, and t ∈ (−∞,+∞) is the line parameter, such that for t = 0 the line goes
through the point z(0) = sejθ as indicated in Fig. 1. Descriptively, we say that
each 2-D point of the Radon transform, Rf(θ, s), is calculated as a summation
(an integral) of the values of the function f(z), e.g. pixels of an image, along the
ray z(t) = ejθ(s+ jt), which is a straight line located at the distance s from the
origin (the image centre) and the slope θ.

In the next step we consider the formation from the Radon transform,Rf(θ, s),
a feature (or signature) function, say, h(s), that can be used to categorize the
function f(x, y) in general, and images in particular, in a rotation-invariant
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Fig. 1. The Radon Transform of a continuous function

fashion. This can be easily achieved by integrating the Radon transform wrt to
the angular variable θ:

h(s) =

∫ π

0

Rf(θ, s)dθ (2)

With reference to the right-hand side of Fig. 1 we note that the integral is per-
formed with respect to the angular variable. Such a feature (signature) function,
h(s), retains some characteristics of the original function f(x, y), but the angular
dependency is removed, hence, providing the rotational invariance. In a discrete
case, h(s), becomes a vector that spans the diagonal of the image, s ∈ [−d,+d].
We will be referring to this vector as the angular integral of the Radon Transform
(aniRT).

Before we consider an effective way of calculating aniRT, h(s), we recall a fun-
damental property of the Radon transform which says that the Radon transform
at the point (θ, s) of a function rotated by the angle α is equal to the Radon
transform of the original, un-rotated function calculated at the point (θ+ α, s):

Rf(θ, s;α) =

∫ +∞

−∞
f(ej(θ+α)(s+ jt))dt = Rf(θ + α, s) (3)

In practical terms it means that instead of rotating the rays z(t) we can rotate
the image f(z) in order to calculate the Radon transform at the point (s, θ).
Typically, rotation of an image for the purpose of visualization on a rectangular
grid implies the need for interpolation. However, in order to calculate the Radon
transform, or specifically the aniRT vector, h(s), we just rotate the grid, that is,
the coordinates of the pixels, without modifying the pixels values.
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Let us consider some details of the computational procedure. Firstly, the rota-
tion angles are quantized and the quantization step, that is, the smallest rotation
angle δ, should be at the order of (see Fig. 2)

δ = arctan
2

ρ
(4)

where ρ = max(r, c) and r and c are the number of rows and columns in the
image, respectively. The rotation angles, θ, for which the Radon transform is
calculated are:

θ

s

3210−1−2−3

δ

Fig. 2. Calculation of the aniRT vector

θk = k · δ , for k = 1, 2, . . . , &π
δ
' (5)

Now, consider coordinates of all pixels, zi = xi + jyi, for i = 1, 2, . . . , N where
N is to total number of image pixels. We can pre-calculate all rotated image
coordinates, that is,

ζik = zie
jθk (6)

With reference to Fig. 2 we notice that the Radon transform integral of eqn. (1)
becomes a sum of pixel values f(ζik) along the vertical direction. Such a sum
gives one point of the Radon transform Rf(θ, s) where s = round(real(ζ)), is
the rounded value of the real part of the rotated pixels coordinates. It is now
obvious that to calculate the aniRT vector, h(s), we sum pixels values, f(ζik),
for all angles as in eqn. (2).

In Fig. 3 we present the aniRT vectors, h(s), calculated for 10 randomly se-
lected Chinese characters. The characters are rendered in the Microsoft JhengHei
font of the size 28. The number of pixels is 70× 70, hence the size (the number
of components) of the aniRT vectors is 98. We observe two basic properties of
the aniRT vectors:
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Fig. 3. The aniRT vectors, h(s), for 10 randomly selected Chinese characters

– they are significantly different for different characters
– the main differentiation occurs in the central part of the vectors.

The obvious question now is how many components we need to differentiate a
given set of images. Before we investigate this issue, in Fig. 4 we present the
aniRT vectors calculated for 20,000 Chinese characters. We create 10 random
permutations of the Chinese characters and investigate how many components of
the aniRT vectors are needed to have a unique representation of the characters,
The results are presented in Table 1. A bit unexpectedly, we observe from the
last row of the Table 1, the number of components to make the selection of 20,000
characters uniquely represented is just 3. The result seems to be perfectly correct
if we consider the fact that the components of the aniRT vectors are coded by

Table 1. The minimum number of components of the aniRT vectors to differentiate
specified number of characters

cmp number of characters

1 2 2 2 2 2 2 2 2 2 2
2 6 58 8 72 107 100 14 85 67 107
3 1102 168 669 2137 836 892 951 1061 2106 825
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Fig. 4. The aniRT vectors, h(s), for 20,000 Chinese characters

four 13-bit numbers (the maximum value is greater than 4096 = 212 — see
Fig. 4), giving the total number of bits being 15, just enough to code 20,000
characters.

3 Example of Categorization of Chinese Characters with
the Incremental Self-Organizing Map (iSOM)

Unlike our previous usage of aniRT vectors in categorization of visual objects
([20,22,21]) where the all components of the vector were utilized, here we demon-
strate the result of categorization based on small number of components as dis-
cussed in the previous section. For this purpose we will create a self-organizing
map for a random selection of 200 characters out of the total number of 20,000
characters as in Fig. 5. We will use the version of the incremental SOM as pre-
sented in [21]. Similar, but non-incremental SOMs for categorization are also pre-
sented in [23,6,4,24]. The main characteristic features distinguishing our SOMs
from the most commonly used are as follows:

– Instead being located on a rectangular grid, our neuronal units are we ran-
domly distributed inside a unit circuit. The neuronal units are represented
by the yellow dots in Fig. 5.
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Incremental SOM,  nCH = 200

AJan26h1510

Fig. 5. iSOM for 200 Chinese characters

– A fix number (stochastically), 16 in the example, of neuronal units per char-
acter is maintained. This is to simulate a redundance observed in our brain
to represents mental objects.

– All vectors are normalised to be unity length and located on the respective
hyperspheres.

– We use the “dot-product” version of the Kohonen learning law.
– Although not explicitly shown here, the learning is done in an incremental

fashion, adding one character at a time as in [21].

With reference to Fig. 5 it needs to be said that the topological grouping of Chi-
nese characters is not an “intelligent” one, e.g. characters with the same radicals
being grouped together. Instead the grouping is based on the similarity of the
angular integral of the Radon Transform, or rather the four central components
of the aniRT. In general, the objective of the example is to demonstrate that
such a small number of components is enough to spread apart 200 characters in
the SOM. As discussed in [22] the aniRT vectors ensure the rotational invariance
of the representation of visual objects.
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4 Concluding Remarks

We have investigated some properties of the recently introduced feature vector
for images, aniRT, which is calculated as an angular integral of the Radon Trans-
form of images. We have demonstrated a novel method of calculating the aniRT
vector based on rotation of the image grid. Such a method gives a significant
time advantage when an aniRT vector is calculated for a large number of images
as in our example with Chinese characters. Subsequently, we have shown that
to differentiate 20,000 characters only four components of the aniRT vectors are
required. Finally, we have demonstrated the formation of a SOM consisting of
200 characters using 4 components of the aniRT feature vector.
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Abstract. MapReduce is a popular model in which the dataflow takes the form of 
a directed acyclic graph of operators. But it lacks built-in support for iterative 
programs, which arise naturally in many clustering applications. Based on mi-
cro-cluster and equivalence relation, we design a clustering algorithm which can 
be easily parallelized in MapReduce and done in quite a few MapReduce rounds. 
Experiments show that our algorithm not only runs fast and obtains good accu-
racy but also scales well and possesses high speedup.  

Keywords: Micro-Cluster, Equivalence relation, Clustering, MapReduce, Data 
mining. 

1 Introduction 

Cloud computing is a new computing model which is attracting more and more atten-
tion from the research and application domain of data mining. Hadoop is an 
open-source cloud computing platform which provides a distributed file system 
(HDFS) [1] and implements a computational paradigm named MapReduce [2]. Ma-
pReduce is designed for processing parallelizable problems across huge datasets using 
a large number of computers. A MapReduce procedure mainly consists of three stages: 
map, shuffle and reduce. The map phrase preliminarily processes the input data and 
produces intermediate results which are stored in local disk. In the shuffle phrase, the 
intermediate results are copied and transferred to one or more machines over the net-
work. The reduce phrase copes with the copied data and output the final results. It is 
easy to notice that MapReduce does not support iterative algorithms effectively, as  
each iteration might cause large amount of intermediate data and large bandwidth 
consumption.  

Based on the ideas of k-means algorithm[3] and micro-cluster structure[4], com-
bined with our equivalence relation, we proposed a new clustering algorithm called 
BigKClustering. First, BigKClustering divides the dataset into many groups, just like 
k-means does in its first two steps of the first iteration, and constructs one micro-cluster 
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Trustworthy Software, China (kx201116) and Educational Commission of Guangxi Province, 
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corresponding to each group. Then, all the micro-clusters that are closed enough will be 
connected and put into the same group by the equivalence relation. Finally, the center 
of each group will be calculated and that will be the center of a real cluster in the 
dataset. We conduct comprehensive experiments to evaluate our algorithm. Our key 
observations are: 1) BigKClustering can be implemented in MapReduce naturally and 
done among three MapReduce rounds; 2) BigKClustering runs very fast and obtains 
high clustering quality; 3) BigKClustering has pretty good scaleup and speedup, and its 
time cost is quite stable. 

2 Related Work 

Micro-cluster is a technique of data summarization for clustering data streams and large 
dataset. It is an extension of the Clustering Feature (CF) [5].Given N d-dimensional 
data points in a cluster: {Xi} where i = 1, 2, …, N, CF is defined as a vector: CF = (N, 
LS, SS), where N is the number of data points in the cluster, LS the linear sum of the N 
data points, SS the square sum of the N data points. Based on this vector, the mean and 
variance of all the data in a cluster can be calculated. Therefore, we can use a mi-
cro-cluster to represent a series of data and its main distribution features. For more 
information about the applications of micro-cluster, please refer to [6]. 

Up till now, Clustering based on MapReduce model has been studied in many lite-
ratures. Papadimitriou [7] proposed a distributed co-clustering framework on Hadoop 
called DisCo, providing practical methods for distributed data pre-processing and 
co-clustering. Ene et al. [8] focused on k-center and k-median and developed fast 
clustering algorithms with constant factor approximation guarantees. They use sam-
pling strategy to decrease the data size and ran a time consuming clustering algorithm 
such as k-means on the resulting dataset. Their algorithms could run in a constant 
number of MapReduce rounds but the performance did not always outperform their 
counterparts. Bahman et al. [9] proposed a parallel algorithm to generate initial centers 
for k-means, thus dramatically improved the performance of k-means, both in terms of 
quality and convergence properties. 

3 The Algorithm 

In this section, we show how our algorithm BigKClustering works. First, we give the 
definitions of micro-cluster and equivalence relation. Next, we introduce BigKClus-
tering in detail. Finally, we discuss a MapReduce realization of BigKClustering. 

3.1 Definitions 

Micro-cluster: Given a group of d-dimensional points X=(x1,…,xn), A micro-cluster is 
defined as a (3d + 2)-dimensional vector （ni,CF1i,CF2i, Centeri, maxi）, wherein i can 
be regarded as the micro-cluster id; ni,CF1i and CF2i each correspond to N,LS and SS 
in a CF vector; Centeri is the point we choose arbitrarily from X as one of the centers to 
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set part the total dataset, like an initial center for k-means, don’t confuse it with the 
average of X. maxi is the longest distance between all the points in X to Centeri. 

Equivalence Relation: Given a set of micro-clusters MC, to any two micro-clusters 
Si,Sj∈MC, if their distance is not greater than a given threshold d(also called the 
connection distance), or there is a bunch of micro-clusters (Si,St1,St2,…,Sj) among 
which the distance between any two adjacent micro-clusters is not greater than d, then 
we say Si,Sj have an equivalence relation. In our work, the distance of two mi-
cro-clusters is dis(Si,Sj)=dis(Centeri,Centerj)-maxi-maxj where Euclidean distance are 
used between two points. If the distance is a negative value, then it is set to be zero. If 
the distance is zero and the distance of Centeri to Centerj is less than maxi or maxj, we 
also think that Si,Sj have an equivalence relation. All the micro-clusters that have an 
equivalence relation will be connected and form a group of micro-clusters. 

3.2 The BigKClustering Algorithm 

BigKClustering (Algorithm 1) can be seen as the sequential version of our algorithm. 
The MapReduce implementation will be discussed in the next section.  

Typically, a clustering algorithm uses iterative strategy to obtain better result. 
During the iterations, the original data points are regrouped again and again and the 
compactness of some data points may be easily destroyed, thus reducing the clustering 
quality. Our algorithm intends to group together those most compact points in the 
dataset and then constructs series of micro-clusters. Every micro-cluster is used as a 
single point. In this way, those compact data points will not be parted during the clus-
tering process and always belong to one cluster, which most existing clustering algo-
rithms fail to do.  

After the construction of micro-clusters, the equivalence relation is employed to 
connect the micro-clusters and then groups of micro-clusters are formed. The center of 
the group will be treated as the center of a real cluster. As to the connection distance, we 
first initialize it with the mean value (m) of all the max values contained in mi-
cro-clusters and then adjust it until we get the right number of clusters. 

 
Algorithm 1. BigKClustering (ds, BigK, k)  
Input: dataset (ds); number of micro-clusters (BigK); number of real clusters (k). 
Output: clusters. 

 1: Arbitrarily choose BigK centers from ds.  
 2: Assign each point in ds to its closest center. This divides ds into BigK parts 

p1…pBigK. 
 3: Construct BigK micro-clusters s1,s2,…,sBigK, each corresponds to one data part. 
4: Calculate the initial connection distance m. 
5: Groups of micro-clusters  joinToGroups（< s1,s2,…,sBigK >, k, m） 
6: Calculate the centers of all the groups and take them as the centers of real clusters. 
7: Assign each point in ds to its closest center and give it a cluster label. 

joinToGroups is a function to generate expected number of groups of mi-
cro-clusters, its pseudo codes are described as follows: 
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Algorithm 2. JoinToGroups（< s1,s2,…,sBigK >, k, d） 

Input: list of micro-clusters (<s1,s2,…,sBigK >);  number of clusters (k); connection 
distance (d). 

Output: groups of micro-clusters. 
1）For i=1 to BigK do 

j=i-1; flag=true; 
1.1）if(j != 0) 

 For k=1 to j do 
1.1.1）if(dis(si,sk)==0) 
        if(dis(Centeri,Centerj)≤maxi || dis(Centeri,Centerj)≤maxj) 
      flag=false; break; 
1.1.2）else if (dis(si,sk)≤d)  

         flag=false; break; 
1.2）if(flag==true) 

  give si a new group id; 
1.3）else 

        add si to the same group as sk; 
2）If the number of groups is k, then turn to step 4). Otherwise, turn to step 3). 
3）Adjust d, turn to step 1). 

   4）return all the groups. 

3.3 MapReduce Implementation  

BigKClustering can be easily paralleled in MapReduce. Step 1 through step 3 can be 
done in one MapReduce Job: each mapper working on an input split outputs a series of 
intermediate key/value pairs among which the value is a data point and the key is the 
point closest center; the reducers take charge of constructing micro-clusterings based 
on their input records, one record one micro-cluster. All micro-clusters are put together 
in a file on HDFS at last. Step 4 through step 6 can be done with another Job which 
consists of only one mapper and one reducer: the mapper read all the micro-clusters 
from HDFS and calculates the initial connection distance; the reducer is responsible for 
connecting the micro-clusters based on the equivalence relation and calculating the 
centers for the real clusters. Step 7 is quite similar to step 2, assigns each data point to 
its nearest cluster center and gives it a label.   

As can be seen from the above, our parallel algorithm effectively avoids the iterative 
operations shared by many traditional clustering algorithms, thus substantially reduces 
the intermediate values and network traffics, which are caused by MapReduce 
framework. Moreover, the running time of our parallel algorithm mostly costs in the 
construction of micro-clusters which can be completely paralleled. So, our algorithm 
can run quite fast. 
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4 Experiments  

In this section, we present the experimental setup for evaluating BigKClustering. All 
the algorithms are run on a Hadoop cluster of 3 nodes, each with two Intel-Core 
3.1GHz processors and 4GB of memory. 

4.1 Datasets 

To evaluate the accuracy and running time of our algorithm, we generate a set of syn-
thetic datasets with eight real clusters. Each dataset consists of 10,000 vectors and the 
number of data dimensions of each dataset corresponds to 2、4、8 respectively. All 
the vectors follow normal distribution and are standardized in [0, 1]. To evaluate the 
scaleup and speedup of our algorithm, we generate three 10-dimensional datasets, the 
number of their records correspond to 1*108（≈1GB）、2*108、3*108, respectively. 

4.2 Results and Analysis 

We adopt clustering cost to evaluate the accuracy of our algorithm, as k-meansII [9] did 
in their experiments. We compare our algorithm against k-meansII and the parallel 
implementation of k-means. All experimental results are averaged over 10 runs. The 
results of the algorithms are displayed in Fig.1 through Fig.4. 

Fig.1 to Fig.2 shows that BigKClustering not only runs faster but also achieves 
lower cost than its counterparts. Fig.3 and Fig.4 show that BigKClustering scales very 
well and possesses high speedup. In Fig.2, we notice that the running time of our 
algorithm is more than the compared algorithms when the number of data dimensions is 
2. The reason is that the running time of our algorithm is mainly attributed by the time 
cost of constructing micro-clusters which is determined by the number of mi-
cro-clusters, while the running time of other two algorithms are mainly attributed by the 
time cost of iterations which are greatly affected by the number of data dimensions. 
This also well explains that the running time of our algorithm is quite stable, while the 
running time of the other two algorithms changes dramatically as the number of data 
dimensions increase.  

 

        

   Fig. 1. Clustering cost                        Fig. 2. Time cost  
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        Fig. 3. Scaleup                                  Fig. 4. Speedup 

4.3 Parameters Discussion 

Theoretically, the larger the number BigK of micro-clusters is, the higher the quality of 
clustering might be. Experiments show that our algorithm can obtain high accuracy 
with relatively short running time when BigK is set to be around 60.As to the connec-
tion distance d, we initialize it with m and then adjust it by using iterative strategy. For 
example, if BigK is proved to be smaller than expected (i.e. the number of groups of 
micro-clusters generated is greater than k) after the first iteration of connecting mi-
cro-clusters, it will be set to be 2*m; if BigK is then proved to be greater than expected 
after the following iteration, it will be set to be 1.5*m. The same process will continue 
until k groups of micro-clusters are generated. Experiments demonstrate that reaching k 
groups of micro-clusters always just needs a few rounds of iteration.  

5 Conclusions 

With huge dataset emerged, most of the existed algorithms or old models can not meet 
practical needs any more. In this paper we proposed BigKClustering, a new efficient 
clustering algorithm which bases on micro-cluster and equivalent relation. The algo-
rithm is simple and can be easily paralleled in MapReduce with only three MapReduce 
rounds. Experimental results show that BigKClustering not only runs fast and achieves 
high clustering quality but also scales well and possesses high speedup. 
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Abstract. Gaussian graphical models are important undirected graph-
ical models with multivariate Gaussian distribution. A key probabilistic
inference problem for the model is to compute the marginals. Exact in-
ference algorithms have cubic computational complexity, which is intol-
erable for large-scale models. Most of approximate inference algorithms
have a form of message iterations, and their computational complexity
is closely related to the convergence and convergence rate, which causes
the uncertain computational efficiency. In this paper, we design a fixed
parameter linear time approximate algorithm — the Gaussian message
propagation in d-order neighborhood. First, we define the d-order neigh-
borhood concept to describe the propagation scope of exact Gaussian
messages. Then we design the algorithm of Gaussian message propa-
gation in d-order neighborhood, which propagates Gaussian messages
in variable’s d-order neighborhood exactly, and in the (d + 1)th-order
neighborhood partly to preserve the spread of the Gaussian messages,
and computes the approximate marginals in linear time O(n · d2) with
the fixed parameter d. Finally, we present verification experiments and
comparison experiments, and analyze the experiment results.

Keywords: Gaussian graphical model, Probabilistic inference, Message
propagation, d-order neighborhood.

1 Introduction

Gaussian graphical models are basic undirected graphical models with multivari-
ate Gaussian distribution and conditional independence assumptions [1,2], and
have wide application in image analysis, natural language processing, time-series
analysis etc [3,4]. The key problem of probabilistic inference for the Gaussian
graphical model is to compute the marginals of variables [5]. For tree-like models,
exact inference algorithms, such as Gaussian elimination, belief propagation or
junction tree algorithms, can present the marginals in linear time [6]. For general
graphical models, these exact inference algorithms have cubic O(n3) computa-
tional complexity [6]. For large-scale models with more complex graphs, aris-
ing in oceanography, 3D-tomography, and seismology, the cubic computational
complexity becomes computationally prohibitive [7]. Then various approximate
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inference algorithms have been developed, such as loopy belief propagation [8],
mean field method [9,10].

The loopy belief propagation algorithm propagates the belief messages in the
models with cycles directly, and provides successful approximation in some ap-
plications [8]. But the algorithm may converges to local optimum, may even
fail to converge for general models, and its computational complexity is closely
related to the convergence and convergence rate [11]. The mean field algorithm
propagates the variational messages to approximate the marginals, and research
shows that if the variational message converge, the algorithm can compute the
correct mean parameter [10]. This series of message iteration algorithms have
the computational complexity O(m ·n ·N), but the iteration number N is closed
related to the convergence of the algorithms. So these algorithms have uncertain
computational efficiency.

In this paper, we design a fixed parameter linear time O(n · d2) approximate
inference algorithm— Gaussian message propagation in d-order neighborhood
(GaussianMP-d). First, we define the d-order neighborhood concept to describe
the propagation scope of Gaussian message, and show the message propaga-
tion process in the d-order neighborhood of univariable (GaussianVariableMP-
d), which propagates the Gaussian messages in variable’s d-order neighborhood
exactly, and in the (d+1)th-order neighborhood partly to preserve the computa-
tional complexity increasing. Then we design the GaussianMP-d algorithm based
on the GaussianVariableMP-d unit, which executes the GaussianVariableMP-d
for variables in the elimination order I and the reverse order I ′ respectively to
compute all the Gaussian messages, and calculates the approximate marginals
with these Gaussian messages. Finally, we present verification experiments and
comparison experiments to demonstrate the efficiency and flexibility of the
GaussianMP-d algorithm.

2 Gaussian Elimination Process

The Gaussian graphical model is a undirected graphical model based on graph
G = (V,E), where the vertex set V denotes the Gaussian random variable set
x = {x1, · · · , xn}, and the edge set E reflects the conditional independences
among variables. The probability distribution of Gaussian graphical model is

p(x) = exp
{
〈h,x〉+ 1

2
〈J ,xxT〉 −A(h,J)

}
,

A(h,J) = log

∫
Ξ

exp
{
〈h,x〉+ 1

2
〈J ,xxT〉

}
dx.

Where the h = [h1, · · · , hn]T,J = [Jij ]n×n are the model parameters, 〈, 〉 de-
notes dot product operation, A(h,J) is the log partition function, Ξ = {(h,J) ∈
R

n × R
n×n|J ≺ 0, J = JT} is the constraint set of parameter (h,J).

An important inference problem for the Gaussian graphical model is to com-
pute the marginals p(xi). Gaussian elimination algorithm is an exact
inference method with variable elimination/marginalization. The distribution of
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xU = x \ xs can be computed by eliminating xs, and the corresponding model
parameters J∗

U ,h
∗
U are

J∗
U = JU,U − JU,sJ

−1
s,sJs,U ,

h∗
U = hU − JU,sJ

−1
s,shs.

During the elimination process of the single variable xs, the parameters of the
neighbors {t | t ∈ N(s)} have only been changed. The parameter update formulas
of the neighbor variable {t | t ∈ N(s)} are

Jtt ← Jtt +

(
−J2

st

Jss

)
, ht ← ht +

(
−Jst
Jss

hs

)
.

The update formula of the edges {(t, u) | t, u ∈ N(s)} is

Jtu ← Jtu +

(
−JstJsu

Jss

)
.

If there is no edge between node t and u, an edge (t, u) would be added with
parameter Jtu ← (− JstJsu

Jss

)
. Obviously, the neighborhoods {t | t ∈ N(s)} form

a complete graphs with m = |N(s)| nodes, and the computational complexity of
elimination of the single variable xs is O(m2). The scale of the complete graph
becomes larger with the elimination of variables, and the computational complex-
ity of elimination of single variable is trend to O(n2). Then the computational
complexity of the Gaussian elimination algorithm is O(n3).

3 Gaussian Message Propagation in d-order
Neighborhood

In this section, we define the concept of d-order Gaussian elimination neigh-
borhood, and design the algorithm of Gaussian message propagation in d-order
neighborhood (GaussianMP-d Algorithm).

3.1 d-order Gaussian Elimination Neighborhood

Definition 1 (dth-order Neighborhood). For the Gaussian graphical model
G, let Nd(i) denote the dth-order Gaussian elimination neighborhood (abbreviated
to dth-order neighborhood) of node i, which is defined recursively as following:

1. The 1-st order neighborhood N1(i) is the set of neighbors of the node i, that
is N1(i) = {j | (i, j) ∈ E}.

2. Let s, t ∈ N1(i). If the edge (s, t) is added during Gaussian elimination of
variable xi, we label

s ∈ N2(t), t ∈ N2(s).
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3. Let u ∈ Na(i), v ∈ Nb(i). If the edge (u, v) is added during Gaussian elimi-
nation of variable i, we label

u ∈ Na+b(v), v ∈ Na+b(u).

Definition 2 (d-order Neighborhood). For the Gaussian graphical model G,
the d-order neighborhood is the union set of Nd(i), d = 1, · · · , d, that is

∪Nd(i) = N1(i) ∪N2(i) ∪ · · · ∪Nd(i).

The Gaussian message propagation in the d-order neighborhood of the vari-
able xi (GaussianVariableMP-d) is to propagate the Gaussian messages in the
d-order neighborhood exactly, and in the (d + 1)th-order neighborhood partly
through avoiding adding new edges to decrease the computational complexity.
Let I denote the node set in elimination order, Ielim the set of nodes elimi-
nated in elimination order, Ileft the set of nodes left in elimination order, the
GaussianVariableMP-d algorithm contains the following four steps, and he for-
mal description is shown in Algorithm 1.

1. Update the parameters {Ĵii, ĥi} of the variable xi with the Gaussian messages
propagated from the variables in Ielim, that is

Ĵii = Jii +
∑

j∈(∪Nd+1(i))∩Ielim

�Jj→i,

ĥi = hi +
∑

j∈(∪Nd+1(i))∩Ielim

�hj→i,
(1)

where �Jj→i,�hj→i are the Gaussian messages from node j to i.

Then update the parameters {Ĵik(k) | k ∈ (∪Nd+1(i)) ∩ Ileft} corresponding
to the edges {(i, k) | k ∈ (∪Nd+1(i)) ∩ Ileft}, that is

Ĵik = Jik +
∑

j∈(∪Nd+1(i))∩Ielim

�Jj→ik , (2)

where �hj→ik denote the message from the j to the edge (i, k).
2. Compute the Gaussian messages {�Ji→s,�hi→s | s ∈ (∪Nd(i))∩Ileft} in the

d-order neighborhood exactly, that is

�Ji→s = −Ĵis Ĵ−1
ii Ĵis, �hi→s = −Ĵis Ĵ−1

ii ĥi. (3)

For ∀ s, t ∈ (∪Nd(i)) ∩ Ileft, if the edge (s, t) /∈ E, we add the edge (s, t).
Then compute the message from i to the edge (s, t), that is

�Ji→st = −ĴisĴ−1
ii Ĵit. (4)

3. Compute the messages {�Jiu,�hiu | u ∈ Nn+1(i) ∩ Ileft} in the (d + 1)th-
order neighborhood partly, that is

�Ji→u = −Ĵiu Ĵ−1
ii Ĵiu, �hi→u = −Ĵiu Ĵ−1

ii ĥi. (5)
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Let v ∈ (∪Nd(i))∩Ileft, if there is an edge (u, v) ∈ E, we compute the message
�Ji→uv from node i to the edge (u, v), that is

�Ji→uv = −ĴiuĴ−1
ii Ĵiv. (6)

Obviously, we didn’t add new edge in this step, which decreases the compu-
tational complexity.

4. Add the node i to Ielim, and delete the node i from Ileft.

Algorithm 1. GaussianVariableMP-d of variable xi
Data: Gaussian graphical model G, variable xi, I, Ielim, Ileft
Result: {�Ji→j , �hi→j , �Ji→jk}
begin

Label the neighborhoods of variable xi from N1(i) to Nd+1(i);

Update the parameters Ĵii, ĥi with (1);
for k ∈ (∪Nd+1(i)) ∩ Ileft do

Update the parameters Ĵik with (2);
end
for s ∈ (∪Nd(i)) ∩ Ileft do

Update the messages �Ji→s,�hi→s with (3);
end
for ∀ s, t ∈ (∪Nd(i)) ∩ Ileft do

if (s, t) /∈ E then
add (s, t) ∈ E;

end
Update the messages �Ji→st with (4);

end
for u ∈ Nn+1(i) ∩ Ileft do

Update the messages �Ji→u,�hi→u with (5);
for v ∈ (∪Nd(i)) ∩ Ileft do

if (u, v) ∈ E then
Update the messages �Ji→uv with (6);

end

end

end
Add the node i to Ielim, delete the node i from Ileft.

end

3.2 GaussianMP-d Algorithm

The GaussianMP-d Algorithm is to execute the GaussianVariableMP-d for vari-
ables in the elimination order I and its inverse elimination order I ′ respectively,
and compute the approximate marginal distributions with the Gaussian mes-
sages in the d-order neighborhood. Here, we select a cutset P = {xA1 ,xA2 , · · · }
of the Gaussian graphical model G = (V,E), which is also the cutset of the
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elimination order I. Then, we can compute the approximate marginal distribu-
tion of xA, that is

p̃(xA) ∝ exp
{
〈h̃A,xA〉+ 1

2
〈J̃A,xAx

T
A〉
}
. (7)

Where the model parameters h̃A = [h̃a]
T, J̃A = [J̃a,b]|A|×|A| can be computed

with the these messages, that is

h̃a = ha +
∑

j∈∪Nd+1(i),j /∈A

�hj→a,

J̃aa = Jaa +
∑

j∈∪Nd+1(i),j /∈A

�Jj→a,

J̃ab = Jab +
∑

k∈∪Nd+1(a),
k∈∪Nd+1(b), k/∈A

�Jk→ab.

(8)

Generally speaking, the probability inference in subset xA is trackable. The ap-
proximate marginal distributions of variables xa ∈ xA can be computed with the
Gaussian elimination algorithm exactly. The formal description of GaussianMP-
d algorithm is shown in Algorithm 2. The computational complexity of the
GaussianMP-d algorithm is fixed parameter linear time O(n · d2).
Algorithm 2. GaussianMP-d Algorithm

Data: Gaussian graphical model G
Result:

{
p̃(xi) | xi ∈ x

}
begin

Select a elimination ordering I;
for xi ∈ I do

Run GaussianVariableMP-d algorithm;
end
for xi ∈ I ′ do

Run GaussianVariableMP-d algorithm;
end
Select a cutset P ;
for variable subset xA ∈ P do

Compute approximate marginal distribution p̃(xA) with (7),(8);
Run exact belief propagation algorithm in xA;
Output {p̃(xa1) | xa1 ∈ xA};

end
Output {p̃(xi) | xi ∈ x}.

end

4 Experiments

In this section, we compare the approximate marginal distributions with some
numerical experiments. We experiment with a 8× 8 two dimension lattice Gaus-
sian graphical model. Specially, we generate the attractive Gaussian model G1
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with model parameters Jij ∈ (0, 20), hi ∈ (0, 30)), and the repulsive Gaussian
model G2 with model parameters Jij ∈ (−20, 0), hi ∈ (−30, 0)), which all satisfy
the parameter conditions J = JT,J , 0.

For the model G1, we select the elimination order from left to right, and from
bottom up, and execute the GaussianMP-d(d = 1, 2, 3) algorithms respectively.
The experiment results are shown in Figure 1, which show that the approximate
marginal distributions become tighter as the neighborhood order d increasing,
and the GaussianMP-d algorithms present the low bounds of the parameters
compared with the exact values.
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Fig. 1. The comparisons of approximate marginals of the GaussianMP-d(d = 1, 2, 3)
algorithms for G1. The solid lines denote exact model parameters of marginals, the
dashed lines, dashdot lines and dotted lines denote the model parameters based on the
GaussianMP-d(d=1,2,3) algorithms respectively.

For the Gaussian graphical model G1, G2, we first execute the GaussianMP-
d(d = 2, 3) algorithms respectively, then run the mean field method with full
factorial free distribution. The experiment results are shown in Figure 2, which
shows that: (1) The GaussianMP-d(d = 2, 3) algorithms have higher computa-
tional accuracy on the parameters {Jii | i ∈ V } than the mean field method has.
(2) The mean field algorithm provides some better values for parameters {hi},
also some worse values. Conversely, the GaussianMP-d (d = 2, 3) algorithms
provide more stable approximate values for parameters {hi | i ∈ V }.

5 Conclusions

For the Gaussian graphical models, we have defined the d-order neighborhood
concept, and designed the GaussianMP-d algorithm with fixed parameter linear
O(n ·d2) computational complexity. The d-order neighborhood concept describes
the propagation scope of Gaussian messages, which reveals that the Gaussian
messages become less accurate as the neighborhood order d increases. Based on
this, the GaussianMP-d algorithm makes full use of the messages in the d-order
neighborhood, and obtains the linear running time at the cost of the accuracy of
the left neighborhoods. The order parameter d also provides a trade-off criterion
for the computational complexity and the approximate accuracy.
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(a) Parameter comparisons for model G1.
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(b) Parameter comparisons for model G2.

Fig. 2. Accuracy comparisons of the approximate marginal distributions for model G1

and G2. The solid lines denote the exact values of parameters, the dashed lines and
the dashdot lines denote the approximate values based on the GaussianMP-d(d = 2, 3),
the dotted lines the approximate values based on the mean field algorithm.
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Abstract. Up to now, rich and varied information, such as networks,
multimedia information, especially images and visual information, has
become an important part of information retrieval, in which video and
image information has been an important basis. In recent years, an
effective learning algorithm for standard feed-forward neural networks
(FNNs), which can be used classifier and called random weights networks
(RWN), has been extensively studied. This paper addresses the image
classification algorithms using the algorithm. A new algorithm of image
classification based on the RWN and principle component analysis (PCA)
is proposed. The proposed algorithm includes significant improvements
in classification rate, and the extensive experiments are performed using
challenging databases. Compared with some traditional approaches, the
new method has superior performances on both classification rate and
running time.

Keywords: Image classification, PCA, Random weights networks.

1 Introduction

Image information systems are becoming increasingly important with the ad-
vancements in broadband networks, high-powered workstations etc. Large col-
lections of images are becoming available to the public, from photo collection
to web pages, or even video databases[23]. Since visual media requires large
amounts of memory and computing power for processing and storage, there is
a need to efficiently index and retrieve visual information from image database.
In recent years, image classification has become an interesting research field in
applications (see [9], [15]). How to index efficiently large number of color image,
classification plays an important and challenging role(see [20], [5]).

In general, as shown in Fig. 1, the fist step of image classification is to define
an effective representation of the image, which includes sufficient information for
the image for future classification. The second step of image classification is to
classify a new image with the chosen representation(see [22], [1], [18]). Our main
focus of this research is to find suitable classifier for the classification.
� The research was supported by the National Natural Science Foundation of China
(Nos. 61272023, 61101240) and the Zhejiang Provincial Natural Science Foundation
of China (No. Y6110117).
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Fig. 1. Main procedures in a image classification system

In the investigation of image classification, there have been various classifiers,
both linear and nonlinear, such as feed-forward neural network (FNN), support
vector machine (SVM), polynomial classifier, and fuzzy rule-based system. In the
these classifiers, FNN seems one of the most popular techniques. Although the
FNN is being intensively studied for many years, most of them may be classified
as different variations of the perceptron to recognize image characters.

SVM was introduced by Vapnik [21] as popular method for classification (see
[19]). The working mechanism of the SVM is to learn a separating hyperplane to
maximize the margin and produce a good generalization capability. Currently,
SVM has been successfully applied in many areas such as face detection, hand-
written digit recognition, etc(see [17], [12], [7]).

The learning algorithm for FNN, called random weights networks (RWN),
which can be used in regression and classification problems. It is well-known that
traditional FNN approaches, such as BP algorithms, usually face difficulties in
manually tuning control parameters, but RWN can avoid such issues and reaches
good solutions analytically, and its learning speed of RWN is faster than other
traditional methods. The reason for which is that RWN randomly chooses the
input weights and bias of the FNN instead of tuning.

In this article, we will propose an algorithm for image classification based
on principle component analysis (PCA) and RWN. Our work combines the two
algorithms to eliminate the inherent shortcomings of some previous methods. We
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will perform extensive experiments to demonstrate superiority of our proposed
technique over existing methods.

We organize the study in the following manner. In section 2, we will briefly
introduce the PCA and RWN. In Section 3, we will propose our image classifi-
cation algorithm, and use small scale image database and big stand database in
the experiment. Conclusions of this article will be presented in final section.

2 Review for PCA and RWN

2.1 PCA Algorithm

Given a t-dimensional vector representation of each image, the PCA (see [19],
[24]) can be used to find a subspace whose basis vectors correspond to the
maximum-variance directions in the original space.

LetW represent the linear transformation that maps the original t-dimensional
space onto a f -dimensional feature subspace where normally f � t. The new
feature vectors

yi ∈ WTxi, i = 1, . . . , N. (1)

The columns of W are the eigenvalues ei obtained by solving the eigenstructure
decomposition

λei = Qei, (2)

where

Q = XXT (3)

is the covariance matrix and λi the eigenvalue associated with the eigenvector ei.
Before obtaining the eigenvectors of Q: 1) the vectors are normalized such that
‖xi‖ = 1 to make the system invariant to the intensity of illumination source,
and 2) the average of all images is subtracted from all normalized vectors to
ensure that the eigenvector with the highest represents the dimension in the
eigenspace in which variance of vectors is maximum in a correlation sense.

2.2 Random Weights Networks

The standard FNN with single hidden layer, Ñ hidden nodes, and activation
function g(x) are mathematically modeled as

Ñ∑
i=1

βigi(x) =

Ñ∑
i=1

βig(wi · x+ bi), (4)

where wi = [wi1, wi2, . . . , win]
T is the weight vector connecting the ith hidden

node and the input nodes, βi = [βi1, βi2, . . . , βim]T is the weight vector connect-
ing the ith hidden node and output nodes, and bi is the threshold of the ith
hidden node. And wi · xj denotes the inner product of wi and xj .
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Since FNN can approximate complex nonlinear mappings directly from the
input samples (see [4], [6], [10], [2], [3]) and provide models for a large class
of natural and artificial phenomena that are difficult to handle using classi-
cal parametric techniques, they have been extensively used in many fields. The
traditional FNN with Ñ hidden nodes and activation function g(x) can interpo-
late these N samples with zero error, which means that for N distinct samples
(xi, ti), where xi = [xi1, xi2, . . . , xin]

T ∈ Rn and ti = [ti1, ti2, . . . , tim]T ∈ Rm,

there holds
∑Ñ

j=1 ‖oj − tj‖ = 0, i. e., there exist βi, wi and bi such that

Ñ∑
i=1

βig(wi · xj + bi) = tj , j = 1, . . . , N. (5)

The above N equations can be written compactly as

Hβ = T (6)

where

H(wi, . . . , wÑ , b1,. . ., bÑ , x1, · · · , xN )

=

⎡⎢⎣ g(w1 ·x1+b1) · · · g(wÑ · x1+bÑ)
...

. . .
...

g(w1 ·xN+b1) · · · g(wÑ ·xN+bÑ)

⎤⎥⎦
N×Ñ

(7)

β =

⎡⎢⎣ β
T
1
...
βT
Ñ

⎤⎥⎦
Ñ×m

and T =

⎡⎢⎣ t
T
1
...
tTN

⎤⎥⎦
N×m

. (8)

H is called the hidden layer output matrix of the neural network; the ith column
of H is the ith hidden node output with respect to inputs x1, x2, . . . , xN .

Traditionally, in order to train an FNN, one may wish to find specific ŵi, b̂i,
β̂(i = 1, . . . , Ñ) such that

‖H(ŵ1, . . . , ŵÑ , b̂1, . . . , b̂Ñ)β − T ‖ = min
wi,bi,β

‖H(w1, . . . , wÑ , b1, . . . , bÑ)β − T ‖,(9)

which is equivalent to minimizing the cost function

E =

N∑
j=1

⎛⎝ Ñ∑
i=1

βig(wi · xj + bi)− tj

⎞⎠2

. (10)

In the conventional FNN theory, all the parameters of network (e.g., the hid-
den layer parameters (wi, bi) and the output weights βi) are required freely
adjustable. According to the theory, hidden layer parameters (wi, bi) and input
weights need to be tuned properly for given trained samples.
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A famous algorithm to tune and find these parameters is so-called back-
propagation (BP) algorithm, which uses gradient descent method to adjust input
and output weights and biases values of hidden layer nodes by solving the least
square problem for the training samples.

Although the BP algorithm is popular for solving practical problems, its suc-
cess depends upon the quality of the training data. Specially, the performance of
the BP algorithm in function approximation becomes unsatisfactory when gross
errors are present in the training data. It is clear that gradient descent-based BP
algorithm is generally very slow due to improper learning steps or may easily
converge to local minima. And many iterative learning steps may be required by
such learning algorithms in order to obtain better learning performance. If the
input weights and biases are chosen randomly, i.e., the the input weights and
biases are considered as random variables which obey the uniform distribution
on (0, 1), then it is possible to improve the learning speed compared with the
traditional BP algorithms, and the least square model of linear equation with
hidden layer output matrix can be used to estimate the output weights of FNN
by calculating the Moore-Penrose generalized inverse. This idea can be found in
some prior articles [16], [11], [14], and [13], and was named as so-called Extreme
Learning Machine (ELM) in [8]. In fact, this idea is an algorithm on random
weights network (RWN), which can be summarized as follows.

Algorithm of Random Weights Network (RWN):
Given a training set ℵ = {(Xi, ti)| ∈ Rn, ti ∈ Rm, i = 1, 2, . . . , N} and activation
function g(x), hidden node number Ñ .
Step 1: Randomly assign input weight wi and bias bi (i = 1, 2, . . . , Ñ);
Step 2: Calculate the hidden layer output matrix H .
Step 3: Calculate the output weight β by β = H†T , where T = (t1, t2, . . . , tn)

T .
We have the following important properties:

(1) Minimum training error. The special solution β̂ = H†T is one of the least-
squares solution of a general linear system Hβ = T , meaning that the smallest
training error can be reached by this special solution:

‖Hβ̂ − T ‖ = ‖HH†T − T ‖ = min
β

‖Hβ − T ‖, (11)

where H† is the Moore-Penrose (MP) generalized inverse of H . Although almost
all learning algorithms wish to reach the minimum training error, most of them
cannot reach it because local minimum or infinite training iteration is usually
not allowed in applications.

(2) Smallest norm of weights. Furthermore, the special solution β̂ = H†T has
the smallest norm among all the least squares solution of Hβ = T :

‖β̂‖ = ‖H†T ‖ ≤ ‖β‖, ∀β∈
{
β : ‖Hβ−T ‖≤‖Hz−T ‖, ∀z∈RÑ×N

}
. (12)

(3) The minimum norm least-squares solution of Hβ = T is unique, which is

β̂ = H†T .
Unlike traditional BP algorithms, RWN algorithm has concise architecture,

no need to tune input weights and biases. Particularly, its speed is usually faster
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than that of BP algorithm. In order to calculate the MP generalized inverse of
H , there have been several methods, such as orthogonal projection, orthogo-
nalization method, iterative method, and Singular Value Decomposition (SVD)
etc..

3 The Proposed Classification Method

The proposed method is based on PCA, and dimensionally reduced coefficients
are used to train and test an RWN classifier (see Fig. 2). Images from each
database are converted into gray level image before use. Each database is ran-
domly divided into training and testing sets so that 40% of images of each
subject are used as prototypes and remaining images are used during testing
phase. We use grayscale histogram as the feature of a picture, and each vector
size of 1 × U(U = 256) represents an image. Then PCA is used to generate low
dimensional features 1 × U ′ � 1 × U , for each sample, dimensionally reduced
feature sets are randomly selected for training of an RWN, whereas, remaining
features of the same database are used to test. Note that we do not assume any
a priori knowledge of the scene, background, object location, and illumination
conditions.

Fig. 2. Architecture of an RWN classifier

Our classification algorithm is summarized as follows:

Our Fast Algorithm: Given a image datebase;
Step 1: Images from each database are converted into gray level image and, we
use grayscale histogram as the feature of a picture;
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Step 2: PCA is used to generate low dimensional features;
Step 3: Dimensionally reduced feature sets are randomly selected for training
of an RWN;
Step 4: Using the RWN classifier to classify the remaining images features.

3.1 Experiment on Image Database

To evaluate the performance of proposed method for image classification, we
perform a number of experiments using our special database. This database
includes 4 classes of images as shown in Fig. 3. And each class has 10 images.
In experiment, each image are converted into gray image. These images are
downloaded from http://www.msri.org/people/ members/eranb/.

Fig. 3. Samples in our image database

The experiment is implemented in MATLAB R2009 version on a PC with
2.71G MHz CPU and 1.75 GB SDRAM. The parameters of the SVM are set as
follows: The Gaussian Radial Basis Function (RBF) kernel exp(−‖x−xj‖2/2σ2)
is used as the kernel of the SVM classifier and the active function of RWN. And
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we take σ = 5, C = 100 in (6), and Ñ = 1600. We carried out 20 experiments for
RWN, and used the average values as the final results. The experimental results
are shown in Table 2.

Table 1. Comparison of RWN and SVM in image database

Training time Testing time Testing accuracy

RWN 0.8133 0.6234 0.8229

SVM 1.8922 2.8862 0.8067

3.2 Experiment on Standard Large Scale Image Database

Maybe the particular example in previous section is not enough to show the effi-
ciency of our algorithm. In this section we will use large scale database to test the
proposed algorithm. The UCI database were created by Vision Group, University
of Massachusetts. It can be downloaded from: http://www.archive.ics.uci.edu/
ml/ datasets/Image +Segmentation). The instances were drawn randomly from
a database of 7 outdoor images. The images were segmented to create a classifi-
cation for every pixel. Each instance is a 3× 3 region. The first data is 210×19,
and the second data is 2100×19. The parameters of the SVM are set as follows:
The Gaussian RBF kernel was used as the kernel of the SVM classifier and the
active function of RWN. And the parameters were taken as C = 1200, σ = 5,
and Ñ = 2000.

Table 2. Comparison of RWN and SVM

Training time Testing time Testing accuracy

RWN 1.15 0.83 0.8366

SVM 2.2969 3.6875 0.8167

Before experiment, we drop those data which can not represent the features
clearly. That is, we drop the 4th, 5th, 6th columns. Then we classify these fea-
tures with SVM and RWN, respectively. Here, we carried out the experiments
20 times, and the experimental results are shown in Fig. 4, 5 and 6, respec-
tively. Table 2 is the case of average of the results. From those results, we found
that though RWN is not stable as SVM, it is more effective than SVM, and the
accuracy and time are both better than those of SVM.

4 Conclusion

This paper proposed a new algorithm for image classification. We first took
the grayscale histogram as the features of the images, and then we used PCA to
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Fig. 4. Comparison of training time

Fig. 5. Comparison of testing time

Fig. 6. Comparison of testing accuracy

reduce the dimension of the feature vectors. Finally, we input the low dimensional
feature data to the RWN classifier for learning an optimal model. The remaining
image was tested by the learned RWN classifier. Experimental results showed
that the proposed algorithm is more superior than popular SVM in both the
accuracy and the learning speed.
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Abstract. We propose a discriminatively-trained convolutional neural network 
for gender classification of pedestrians. Convolutional neural networks are hie-
rarchical, multilayered neural networks which integrate feature extraction and 
classification in a single framework. Using a relatively straightforward architec-
ture and minimal preprocessing of the images, we achieved 80.4% accuracy on 
a dataset containing full body images of pedestrians in both front and rear 
views. The performance is comparable to the state-of-the-art obtained by pre-
vious methods without relying on using hand-engineered feature extractors.  

Keywords: Gender recognition, convolutional neural network. 

1 Introduction 

Classifying the gender of a person has received increased attention in computer vision 
research in recent years. There are a number of possible applications, such as in hu-
man-computer interaction, surveillance, and demographic collection. While there has 
been quite a number of works on recognizing gender from facial information alone, 
less work has been done on using cues from the whole body.  In certain situations, 
using the face may not be possible for privacy reasons, or due to insufficient resolu-
tion. Another simpler reason would be that, from the back view of a person, the face 
is not visible. Most facial gender recognition systems rely on constrained environ-
ments, for example frontal or near-frontal view of the head. Thus, we believe there are 
merits to using the whole body. In particular, this paper focuses on pedestrian gender 
recognition using computer vision.  

Let us consider how we might be able to identify the gender of a pedestrian based 
on the whole human body rather than relying on the face alone. Due to differences 
between the male and female anatomy, the body shape can act a strong cue. However, 
clothing may cause occlusion, such as loose-fitting clothes that make the body shape 
less obvious. There are clothes for different gender, but similar types are also worn by 
both, such as long pants or T-shirts. Hairstyle acts a strong cue in the majority of cas-
es, but hair length can be a source of confusion. Despite all this, humans in most sit-
uations have the ability to distinguish gender accurately.  

The first investigation into gender recognition based on the human body was  
presented by Cao et al. [1]. Their parts-based method used Histogram of Oriented 
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Gradients (HOG) features to represent small patches of the human body image. These 
patches are overlapping partitions and used as weak features for a boosting type clas-
sifier. Their method gave better classification results that using only raw images with 
an Adaboost or random forest classifier. Collins et al. [2] proposed descriptors using 
dense HOG features computed from a custom edge map. This was combined with 
color features captured from a histogram computed based on the hue and saturation 
values of the pixels. Guo et al. [3] used biologically-inspired features derived from 
Gabor filters followed by manifold learning, with linear SVM as classifier. Best re-
sults were obtained by first classifying the view (front, back, or mixed) and followed 
by a gender classifier for each view. Bourdev et al. [4] used random patches called 
poselets, represented with HOG features, color histogram and skin features Their 
method relied on using a heavily annotated training dataset and context information. 

In this paper, we present a discriminatively-trained convolutional neural network 
(CNN), inspired by the work of LeCun et al.[5] for gender classification of pede-
strians in full body images. CNN is a hierarchical neural architecture that integrates 
feature extraction and classification in a single framework. It is able to automatically 
learn the features from the training data, instead of relying on the use of hand-crafted 
features. CNNs have been successfully applied to various pattern recognition tasks 
such as handwriting recognition [5], face recognition [6], face detection [7], traffic 
sign classification [8] and action recognition [9].  

Our proposed CNN has a straightforward architecture, without incorporating re-
cently proposed architectural elements such as local contrast normalization [10], recti-
fying nonlinearities [10] and multistage features [11]. Despite its simplicity, we were 
able to achieve competitive performance comparable to the state-of-the-art for pede-
strian gender recognition.  

The remainder of this paper is organized as follows.  In section 2, the architecture 
of the convolutional neural network is introduced and explained.  In section 3, the 
dataset used and the details of our proposed CNN is described. The experiment results 
are presented and compared with other methods in section 4. Finally, in section 5, 
conclusions are drawn and future work proposed. 

2 Convolutional Neural Network (CNN) 

Convolutional neural networks are a class of biologically-inspired, multi-layered 
neural networks. It models the human visual cortex using several layers of non-
linearities and pooling. Other classes of such models, inspired by the hierarchical 
nature of the mammalian primary visual cortex, include the Neocognitron [12] and 
HMAX model [13]. CNNs are able to automatically learn feature detectors which are 
adapted to the given task and, to a certain degree, invariant of scale, translation and 
deformation. The architecture of CNN attempts to realize these invariances  
using three main ideas, namely local receptive fields, shared weights and spatial  
subsampling [5].   

Traditional CNN typically includes two different kinds of layers inspired by the 
simple and complex cells in the visual cortex. The convolution layer contains feature 
maps obtained from convolution of filters with the previous layer’s feature maps. The 
subsampling layer is produced from downsampling each of the feature map.   
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Figure 1 shows the architecture of our proposed convolutional neural network, 
which is comprised of 7 layers. The first convolution layer C1 consists of a number of 
feature maps obtained by convolution of the input with a set of filters, and which are 
then passed through a squashing activation function. Each unit of a feature map shares 
the same set of weights for the filter. The connection of each unit to the units located 
in a small neighbourhood in the previous layer implements the idea of local receptive 
fields to extract features. The shared weights enable features to be detected regardless 
of their location in an image. Weight sharing also reduces greatly the number of train-
able parameters to achieve better generalization ability.  

Let Wi,j be the filter of size n × m which connects the i-th feature map from the pre-
vious layer Ii to the j-th feature map Cj and bj the corresponding trainable bias. The 
feature map is obtained as following: 

 

)( ,
∈

+⊗=
Si

jijij bIWC σ
 

where ⊗ denotes the convolution operation and S denotes the set of all or selected 
feature maps from the previous layer. The squashing activation function σ which 
introduces non-linearities is normally either a sigmoid σ(x) = 1/(1 + e-x) or hyperbolic 
tangent function σ (x) = tanh (x).  If the size of a feature map is h × w, then convolu-
tion with filter of size n × m will produce an output of size (h – n +1) × (w – m +1),  
disregarding border effects.  

The layer S2 is obtained by downsampling each feature map in layer C1. In con-
trast to [5] which uses an averaging operation, we use the so-called max pooling  
operation [13][14], where the feature map is partitioned into non-overlapping p × p 
sub-regions and the maximum value is output from each sub-region. Thus each fea-
ture map is downsampled by a factor of p, e.g. the size is halved if p = 3. The spatial 
downsampling operation introduces invariance to small translations. Incidentally, it 
also reduces the computational complexity for the next convolution layer as the fea-
ture map’s size is reduced.   

In a similar manner, the convolution layer C3 is obtained followed by max-pooling 
layer S4. Note that each feature map in layer C3 can be either connected to all the 
feature maps from layer S2 or a subset of it. Layer S4 is fully connected to the units of 
layer F5, which is a layer of neuron units similar to the hidden layer of a neural net-
work. The output layer contains logistic regression units for classification. 

 
 
 
 
 
 
 
 
 

Fig. 1. Architecture of our proposed CNN 

 
input          C1            S2            C3         S4         F5        output                  
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3 Experiment 

3.1 Dataset 

We evaluate the gender classification ability of the CNN on the MIT Pedestrian data-
set [15]. There are a total of 924 colour images of male and female pedestrians, in 
frontal and rear view. The size of the images is 64x128 pixels, with the person's body 
aligned to the center and the distance between the shoulders and feet approximately 
80 pixels. Cao et al. [1] provided gender labels for 888 images (the remaining were 
indistinguishable) consisting of 600 males and 288 females. The breakdown accord-
ing to the pose is 420 frontal views and 468 rear views. Figure 2 shows some exam-
ples of the images from the dataset.  

As preprocessing, the images were cropped to 54x108 by removing the border pix-
els equally before resizing down to 40x80. Generally better results were obtained 
compared to without cropping. This could be due to the border pixels containing only 
background clutter, hence providing miscues. Furthermore, we assume pedestrian 
detectors would provide a tighter bounding box than compared to the images from 
this dataset. The images were then converted to grayscale and scaled down to values 
in the range [0,1] before being used as input  to train the CNN. 

3.2 The Proposed CNN 

The detail of the architecture used in our experiments is as follows. Layer C1 contains 
10 features maps and uses 5x5 filters, hence when the input image is 40x80, the size 
of each feature map is 36x76. After downsampling using 2x2 max pooling, each fea-
ture map in layer S2 is 18x38.  Layer C3 contains 20 features maps with the size 
14x34 produced from 5x5 filters. Each feature map in this layer is connected to all the 
feature maps in layer S2. Layer S4 contains 7x17 feature maps obtained from 2x2 
max pooling. All units of the feature maps are connected to each of the 25 neuron 
units in layer F5. Finally, the output layer has two units for binary classification. We 
use hyperbolic tangent activations in both the convolution and hidden layers. The total 
number of free parameters that are learnt by training is 64,857.  
 
 

            

Fig. 2. Examples of pedestrian images from the MIT pedestrian dataset [15] 
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3.3 Training and Evaluation 

Our CNN was implemented using Python with Theano library [16] and trained using 
mini-batch stochastic gradient descent with learning rate decay. The weights were 
randomly initialized from a uniform distribution in the range [-√(6/f), √(6/f)], where f 
equals the total number of input and output connections, following the suggestion  
in [17].     

During each iteration, a batch of images from the training set was presented to the 
CNN and the weights were updated by backpropagation. Validation was performed 
using the validation set after each epoch.  The minimum validation error was taken as 
the best result. We used five-fold cross validation and the mean of the validation re-
sults was taken to determine the overall measure of accuracy. 

4 Results and Analysis 

Table 1 shows the results in comparison with other works on gender recognition from 
human body, evaluated on the same dataset. Our trained CNN achieved an average 
accuracy of 80.4 % on the validation set which is comparable to the best result by 
Guo et al. [3]. It should be noted that their method employs a view classifier, followed 
by a gender classifier for each different view (frontal, rear and mixed). Without using 
a view classifier, the accuracy is 79.2 %.  

Table 1. Comparison of gender classification accuracy on the MIT pedestrian dataset 

 Method Accuracy (%) 
Cao et al [1] 75.0 
Collins et al. [2] 76.0 (frontal view only) 
Guo et al. [3] 80.6 
Our method 80.4 

 
In contrast, our method goes not require a separate view classifier. The CNN inte-

grates feature extraction and classification in a single framework, where the features 
are learnt. Furthermore, our CNN uses a relatively small number of feature maps 
compared to recent works using CNN for recognition tasks [8][18], thus requires less 
computational intensity.  

Interestingly, the method of Guo et al. [3] also used a biologically inspired archi-
tecture, with features derived using Gabor filters and max pooling operation. This 
corresponds to layer C1 and S2 of the CNN. The difference is that Gabor filters can 
be considered as hard-wired, engineered features, while the CNN learns the optimal 
features.   

Figure 3 shows some examples of classification errors made by the CNN. The first 
three images on the left are misclassified males and the rest are misclassified females. 
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            (a) M  F         (b) F  M 

Fig. 3. Examples of misclassified images (a) Male misclassified as female (b) Female misclas-
sified as male 

5 Conclusion and Future Work 

In this paper, we have presented a convolutional neural network for gender classifica-
tion of pedestrians in full body images. We achieved 80.4% accuracy on the MIT 
pedestrian dataset, an accomplishment matching or even better than those using hand-
crafted features. In our present approach, we use only fully supervised training with a 
simple, basic CNN architecture. For future work, we plan to implement improvements 
to our CNN architecture and explore the use of unsupervised pretraining to improve 
its classification performance. 
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Abstract. Semi-supervised clustering can take advantage of some labeled data 
called seeds to bring a great benefit to the clustering of unlabeled data. This pa-
per uses the seeding-based semi-supervised idea for a fuzzy clustering method 
inspired by diffusion processes, which has been presented recently. To investi-
gate the effectiveness of our approach, experiments are done on three UCI real 
data sets. Experimental results show that the proposed algorithm can improve 
the clustering performance significantly compared to other semi-supervised 
clustering approaches. 

Keywords: Semi-supervised clustering, Seeding, Fuzzy clustering, Diffusion 
Processes, Neighborhood Graph. 

1 Introduction 

With the rapid developments of computer science, pattern recognition has played and 
important role in our life. Data clustering is one of the popular pattern recognition 
techniques. The aim of data clustering methods is to divide data into several homoge-
neous groups called clusters, within each of which the similarity or dissimilarity be-
tween data is larger or less than data belonging to different groups[1]. It has been used 
in a wide variety of fields, ranging from machine learning, biometric recognition, 
image matching and image retrieval, to electrical engineering, mechanical engineer-
ing, remote sensing and genetics. 

Unsupervised clustering partitions all unlabeled data into a certain number of 
groups on the basis of one chosen similarity or dissimilarity measure[2,3]. Different 
measure of the similarity or dissimilarity can lead to various clustering methods such 
as k-means[4], fuzzy c-means[5], mountain clustering, subtractive clustering[6]  and 
neural gas[7]. In these traditional clustering algorithms, k-means(KM), which can be 
easily implemented, is the best-known squared error- based clustering algorithm. 
Recently, a novel fuzzy clustering approach inspired by diffusion 
processes(DifFUZZY) was presented in [8]. Its main idea is that the concepts from 
diffusion processes in graphs is applied to the fuzzy clustering method[8]. Experi-
ments on some data sets show that the DifFUZZY in [8] is valid and can have encour-
aging performance.  
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Semi-supervised clustering can also divide a collection of unlabeled data into sev-
eral groups. However, a small amount of labeled data is allowed to be applied to aid-
ing and biasing the clustering of unlabeled data in semi-supervised clustering unlike 
the unsupervised clustering, and so a significant increase in clustering performance 
can be obtained by the semi-supervised clustering[9]. The popular semi-supervised 
clustering methods are composed of two categories called the similarity-based and 
search-based approaches respectively[10]. In similarity-based methods, an existing 
clustering algorithm employs a specific similarity measure trained by labeled data.  
In search-based methods, the clustering algorithms modify the objective function 
under the aid of labeled data such that better clusters are found[10]. A number of 
semi-supervised clustering approaches published until now belongs to the search-
based methods. For example, [11] presented a semi-supervised clustering with  
pairwise constraints and [10] gave an active semi-supervised fuzzy clustering. It is 
noticeable that semi- supervised clustering by seeding was proposed in [9]. [9] intro-
duced a clustering method viewed as the semi-supervised variants of k-means and 
also called Seed-KMeans(S-KM). The S-KM can apply some labeled data called 
seeds to the initialization of the k-means clustering. 

In this paper, the seeding-based semi-supervised clustering technique is introduced 
into the DifFUZZY clustering algorithm. The proposed method(S-DifFUZZY) uses 
some labeled data for affecting the structure of the σ-neighborhood graph and the 
corresponding matrix. This way can lead to the increase of the clustering accuracies 
proven by final experimental results on three UCI real data sets. 

The remainder of this paper is organized as follows. Section 2 reports the DifFUZZY 
clustering. In Section 3, the proposed S-DifFUZZY clustering method is formulated. 
Experimental results are shown in Section 4, and Section 5 gives our conclusions.  

2 The DifFUZZY Clustring Method 

The DifFUZZY clustering method is composed of main three operations. Assume 
that { }1 2, , , nX x x x=   is a set of n  unlabeled data in the d-dimensional space dR  

and X  can be divided into k  clusters. Firstly, some core clusters should be found 
in the first operation of the DifFUZZY and this operation is outlined as follows[8]: 
Step1. Let tσ ′= . 
Step2. Construct the σ-neighborhood graph. In this graph, each data point from X  is 

used as one node and two data point 
ix  and 

jx  can be connected by an edge 

when they satisfy the following condition where   is the Euclidean norm: 

 

( )
1,2, , ; 1,2, ,

max

i j

p q
p n q n

x x

x x
σ

= =

−
<

−
 

 (1) 

Step3. Let ( )E σ  be equal to the number components of the σ-neighborhood graph 

which should contain at least S  vertices.  
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Step4. Let tσ σ ′′= + . If 1σ > , then goto Step5; otherwise goto Setp2. 

Step5. Let 
( ]

( )( )*

0,1
min arg max E

σ
σ σ

∈

 
=  

 
. 

Step6. ( )*E σ  components of the σ*-neighborhood graph which should contain at 

least S  vertices is regarded as the core clusters.  
Step7. Label all data points in each core cluster. All data points without core clusters 

will be assigned to core clusters at the third operation of the DifFUZZY. 
In [8], let 0.001t′ =  and 0.05t′′ = . Moreover, S  is the mandatory parameter of 

the DifFUZZY and Adjusting it to make ( )*E kσ = .  

      Secondly, three matrices should be calculated in the second operation of the 
DifFUZZY. The second operation is given as follows[8]: 
Step1. Let a set { }1 2, , , hL l l l=  , 1t = and 

t tlβ = . 

Step2. Compute each element ( ),i j tm β of the matrix ( )tM β  according to the 

following Eq.(2) ( 1, 2, ,i n=  , 1, 2, ,j n=  ): 

 ( ) 2,

1

exp

i j

i j t
i j

t

if x and x belong to

one same core cluster
m

x x
otherwise

β

β



=   −  −  
  

 (2) 

Step3. Set ( ) ( ),
1 1

n n

t i j t
i j

H mβ β
= =

= . 

Step4. Let 1t t= + . If t h> , then let 1t =  goto Step5; otherwise let 
t tlβ =  and 

goto Step2. 

Step5. If ( ) ( )( ) ( )( ) ( )( )( )11,2, , 1,2, ,1,2, ,
min max mint i i i

i h i hi h
H H H Hβ β γ β β

= ==
> + −

 
, 

then let *
tβ β=  and goto Step6; otherwise let 1t t= + and goto Step5. 

Step6. Based on *β , calculate each elements ( )*
,i jm β  of the matrix ( )*M β  by 

the above Eq.(2). 
Step7. Let the matrix Z  be a diagonal matrix and its diagonal elements can compute 

according to the following equation: 

 ( )*
, ,

1

n

i i i j
j

z m β
=

=     1, 2, ,i n=   (3) 

Step8. Calculate the matrix Q  by the following equation: 
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 ( ) ( )
2

,
1,2, ,
max i i

i n

Q I M Z
z

γ

=

= + −


 (4) 

where n nI R ×∈  is the identity matrix. 

Note that the default values of two parameters 1γ  and 3γ  are 0.3 and 0.1 respec-

tively in [8]. Furthermore, the { }1 2, , , hL l l l=  can be generated by a Matlab’s func-

tion called logspace in [8]. 
Finally, all data points without the core clusters are labeled in the third operation of 

the DifFUZZY. This operation is given as follows[8]: 
Step1. Set θ be the second largest eigenvalue of Q  and compute the integer para-

meter μ according to the following equaltion: 

 3

log

γμ
θ

 
=  
 

 (5) 

where 3 1γ = . 

Step.2 Let 1t = . Assume that 1 2, , , kc c c  are k core clusters and 
1 2ˆ ˆ ˆ, , , gx x x  

are data points without k core clusters. Note that core clusters is also the 
clusters of the DifFUZZY.  

Step3. Let 1s = .  

Step4. Find a data point *x from sc , which distance from ˆtx  is minimum. 

Step5. If *x  is the rth element of  X  and ˆtx  is the vth element of X , then 

after substitute the  rth row for the vth row and substitute the  rth column 
for the vth column in the above matrix ( )*M β

 
,  the new matrix ( )*M̂ β

 
is gained.  

Step6. According to ( )*M̂ β
 

, calculate the matrices Ẑ  and Q̂  respectively by 

the Eq.(3) and Eq.(4). 

Step7. Compute the diffusion distance between ˆtx and the cluster sc by the follow-

ing equation: 

 ( ) ˆˆ ,t sG x c Q q Q qμ μ= −  (6) 

where q
 

is a n-dimensional vector, the vth element of q is equal to 1 and other 

elements are equal to 0. 
Step8. Let 1s s= + . If s k> , then goto Step9; otherwise goto Step4. 

Step9. Based on the following Eq.(7), the membership value of ˆtx in each cluster sc . 
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,      1, 2, ,s k=   (7) 

Step10. Label ˆtx according to the maximum membership value. 

Step11. Let 1t t= + . If t g> , then goto Step12; other goto Step3. 

Step12. End the DifFUZZY. 

3 The Proposed S-DifFUZZY Algorithm 

First, the generation method of seeds is described. Given the number of clusters 
k and a nonempty set { }1 2, , , nX x x x=   of n  unlabeled data in the d-

dimensional space dR , the clustering algorithm can partition X  into k  clusters. 
Let W  also called the seed set and generated randomly be the subset of X and for 
each xα ( x Wα ∈ ), its label be given by means of supervision. This way of producing 

seeds is similar to the S-KM clustering approach[9].  
Secondly, the proposed S-DifFUZZY clustering algorithm is outlined as follows: 

Step1. Assume that W contains B  labeled data points and 

{ }1,2, ,W x Bα α= =  . 

Step2. Do three operations of the DifFUZZY clustering algorithm in turn. But there 
are two differences between the DifFUZZY algorithm and the novel S-
DifFUZZY approach. Firstly, the method of constructing the σ-neighborhood 
graph is changed and the Eq.(1) is not used. If two data point 

ix  and 
jx  can 

be connected by an edge, then the value of the function ( ),i jx xΦ  is equal to 

1; otherwise the value of ( ),i jx xΦ  is equal to 0. ( ),i jx xΦ  can be com-

puted by the Eq.(8). Secondly, the method of computing each element 

( ),i j tm β of the matrix ( )tM β  is changed into the following two steps: 

i)       Apply the Eq.(2) to calculate each element ( ),i j tm β of the ma-

trix ( )tM β . Let φ  is equal to the minimum value of all ( ),i j tm β . 

ii) Use the E.q(9) for adjusting the value of some elements in ( )tM β . 

Step3. End the S-DifFUZZY. 
 
Because the proposed S-DifFUZZY utilizes some labeled data point called seeds to 
change the structure of the σ-neighborhood graph and the value of some elements of  
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the important matrix ( )tM β  , this novel algorithm can gain the better performance 

than the unsupervised DifFUZZY clustering. 
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4 Experimental Results 

To demonstrate the effectiveness of the above S-DifFUZZY algorithm, we compared 
it with the unsupervised KM, DifFUZZY method and the semi-supervised S-KM 
approach, on three UCI real data sets[12] referred to as the Tae, Sonar and Haberman 
respect tively. The Tae data set contains 151 cases with 5-dimensional feature from 
three classes. The Sonar data set is a 60-dimensional data set with 208 instances of 
two classes. The Haberman data set collects 306 3-dimensional cases belonging to 
two classes. All experiments were done by Matlab on WindowsXP operating system. 

For the semi-supervised S-KM and S-DifFUZZY, on each data set, we randomly 
generated %Z  ( 0,10, 20, ,100Z =   ) of the data set as seeds. Since true tables are 

known, the clustering accuracies %V  on unlabeled data, which is the remaining 

( )100 %Z−  of the data set, could be quantitatively assessed. Therefore, the cluster-

ing accuracies %Y  of the whole data set consisting of unlabeled data and labeled 
seeds could be calculated by ( )% 100 % %V Z Z⋅ − +  . If 0Z =  , the semi-

supervised clustering methods became the unsupervised algorithms, and If 100Z = , 
all data of the whole data set was considered as labeled seeds and 100Y =  . On each 
data set the semi-supervised S-DifFUZZY and S-KM were run 20 times for different  
Z  ( 10,Z =   
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Fig. 1. Comparison of clustering accuracies on the Haberman data set 

 

Fig. 2. Comparison of clustering accuracies on the Tae data set 
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20, ,90 ) and we report in Fig.1, Fig.2 and Fig.3 the average accuracies %Y  of the 

whole data set obtained. Furthermore, we should make the number of components of 
the σ-neighborhood graph is equal to the number clusters by selecting the minimum  
 

 

Fig. 3. Comparison of clustering accuracies on the Sonar data set 

value of the parameter S  from [ )2,+∞  for the DifFUZZY and S-DifFUZZY clus-

tering algorithms. The experimental results of the KM shown in all figures are aver-
aged on 20 independent runs for each data set. 
     As shown in Fig.1, Fig.2 and Fig.3, firstly, the unsupervised KM and Dif-
FUZZY method is not affected by the seeds because it never employs the seeds. Se-
condly, because the seeds are applied the S-DifFUZZY, there are the drastic distinc-
tions between the clustering accuracies of the DifFUZZY and S-DifFUZZY algo-
rithms. Finally, although the clustering accuracies of the S-KM are improved with the 
increase of the seeds, we can from the Fig.1, Fig.2 and Fig.3 that the proposed S-
DifFUZZY can achieve the better performance than the S-KM when an same amount 
of labeled seeds is used. 

5 Conclusions 

In this paper, we propose the novel seeding-based semi-supervised fuzzy clustering 
algorithm inspired by diffusion processes. This semi-supervised method is also called 
the S-DifFUZZY. Compared with the unsupervised DifFUZZY, main idea of the S-
DifFUZZY is applied to have an important effect on the corresponding matrix and the 
structure of the σ-neighborhood graph. Experiments are carried out on three UCI real 
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data sets. In comparison to the S-KM and DifFUZZY, our proposed method has been 
demonstrated their superiority. 
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Abstract. This paper presents a fault detection scheme for nonlinear
discrete-time systems based on the recently proposed deterministic learn-
ing (DL) theory. The scheme consists of two phases: the learning phase
and the detecting phase. In the learning phase, the discrete-time system
dynamics underlying normal and fault modes are locally accurately ap-
proximated through deterministic learning. The obtained knowledge of
system dynamics is stored in constant RBF networks. In the detecting
phase, a bank of estimators are constructed using the constant RBF net-
works to represent the learned normal and fault modes. By comparing
the set of estimators with the monitored system, a set of residuals are
generated, and the average L1 norms of the residuals are used to com-
pare the differences between the dynamics of the monitored system and
the dynamics of the learning normal and fault modes. The occurrence of
a fault can be rapidly detected in a discrete-time setting.

Keywords: Deterministic learning, fault detection, nonlinear discrete-
time systems, neural networks.

1 Introduction

The design and analysis of fault detection and isolation (FDI) for nonlinear sys-
tems are important issues in modern engineering systems. Over the past decades,
much progress has been achieved for FDI of nonlinear continuous-time systems
with structured and unstructured modeling uncertainties [1]. However, only lim-
ited results has been obtained for fault diagnosis of nonlinear discrete-time sys-
tems. In [2], an online approximation based fault detection and diagnosis scheme
for multiple state or output faults was proposed for a class of nonlinear MIMO
discrete-time systems. The faults considered could be incipient or abrupt, and
are modeled using input and output signals of the system. In [3], a distributed
fault detection and isolation approach based on adaptive approximation was pro-
posed for nonlinear uncertain large-scale discrete-time dynamical systems. Local
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and global FDI capabilities are provided due to the utilization of specialized
fault isolation estimators and a global fault diagnoser.

In adaptive approximation based fault detection and isolation of general non-
linear systems, however, convergence of the employed neural network (NN)
weights to their optimal values and accurate NN approximation of nonlinear
fault functions was less investigated. Recently, a deterministic learning (DL)
theory was proposed for NN approximation of nonlinear dynamical systems ex-
hibiting periodic or recurrent trajectories [4]. By using localized radial basis
function (RBF) NNs, it is shown that almost any periodic or recurrent trajec-
tory can lead to the satisfaction of a partial PE condition, which in turn yields
accurate NN approximation of the system dynamics in a local region along the
periodic or recurrent trajectory. Based on deterministic learning (DL) theory, [5]
proposed a new method for rapid detection of oscillation faults generated from
nonlinear continuous-time systems.

In this paper, we present a fault detection scheme for nonlinear discrete-
time systems via DL. A class of faults generated from nonlinear discrete-time
systems with unstructured modeling uncertainty will be considered. As it is
usually impossible to decouple fault functions from the unstructured modeling
uncertainty, these two terms are combined together as a whole as the general fault
function. The scheme consists of a learning phase and a detecting phase. Firstly,
in the learning phase, we will show that the general fault function can be locally-
accurately approximated by using an extension of DL algorithm for discrete-
time systems. Specifically, the system dynamics underlying normal and fault
modes are locally accurately approximated. Secondly in the detecting phase, by
utilizing the learned knowledge obtained through DL, a bank of estimators are
constructed using the constant RBF networks to represent the trained normal
and fault modes. By comparing the set of estimators with the monitored system,
a set of residuals are generated, the average L1 norms of the residuals can be used
for measuring the differences between the dynamics of the monitored system and
the trained normal and fault modes. The occurrence of a fault can be detected
according to the smallest residual principle. Detectability analysis is also carried
out to show the feasibility of the fault detection scheme.

2 Problem Formulations

Consider the following class of uncertain nonlinear discrete-time system:

x(k + 1) = f(x(k), u(k)) + η(x(k), u(k)) + β(k − k0)φ
s(x(k), u(k)) (1)

where k is the discrete-time instant, x(k) = [x1(k), · · · , xn(k)]T ∈ Rn is the
state vector of the system, u(k) = [u1(k), · · · , um(k)]T ∈ Rm is the control
input vector, f(x(k), u(k)) = [f1(x(k), u(k)), · · · , fn(x(k), u(k))]T is unknown
smooth nonlinear vector field representing the dynamics of the normal model,
η(x(k), u(k)) stands for the uncertainties including external disturbances, mod-
eling errors and possibly discretization errors. The fault β(k− k0)φ

s(x(k), u(k))
is the deviation in system dynamics due to fault s(s = 1, · · · ,M), and β(k− k0)
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represents the fault time profile, with k0 being the unknown fault occurrence
time. When k ≤ k0, β(k−k0) = 0, and when k ≥ k0, β(k−k0) = 1, i = 1, · · · , n.

The system state is assumed to be observable, and the system input is usu-
ally designed as a function of the system states. The state sequence (x(k))∞k=0

of (1) with initial condition x(0) is defined as the system trajectory. The tra-
jectory in normal mode is denoted as ϕ0(x(0)) or ϕ0 for conciseness of pre-
sentation, and the trajectory in fault mode s is denoted as ϕs(x(0)) or ϕs for
conciseness of presentation. Assume that the system trajectories for both nor-
mal and fault modes are recurrent trajectories [6], the class of recurrent tra-
jectory comprise the most important types (though not all types) of trajec-
tories generated from nonlinear discrete dynamical systems (see [6] for a rig-
orous definition of recurrent trajectory). The system states and controls are
assumed to be bounded for both normal and fault modes and η(x(k), u(k))
is bounded in a compact region by some known function η̄x(x(k), u(k)), i.e.,
‖η(x(k), u(k))‖ ≤ η̄(x(k), u(k)), ∀(x(k), u(k)) ∈ Ω ⊂ Rn ×Rm, ∀k ≥ 0.

In system (1), since the uncertainty η(x(k), u(k)) in the state equation and
fault β(k − k0)φ

s(x(k), u(k)) (s = 0, 1, · · · ,M) cannot be decoupled from each
other, we consider the two terms together as an undivided term, and define the
term as the general fault function as in [5]

ψs(x(k), u(k)) = η(x(k), u(k)) + β(k − k0)φ
s(x(k), u(k)) (2)

where s = 0, 1, · · · ,M , φs(x(k), u(k)) represents the sth fault belongs to the set
of fault functions. For simplicity of presentation, the normal mode is represented
by fault mode s = 0, with φ0(x(k), u(k)) = 0.

3 Learning and Representation of Faults

In this section, we investigate learning and representation of faults generated
from nonlinear discrete-time system (1) by using an extension of DL algorithm.

For both normal and fault modes, combined with (2), (1) is described by

x(k + 1) = f(x(k), u(k)) + ψs(x(k), u(k)) (3)

Construct the following discrete-time dynamical RBF network:

x̂(k + 1) = f(x(k), u(k)) +A(x̂(k)− x(k)) + Ŵ sT (k + 1)S(x(k)) (4)

where A = diag{a1, a2, · · · , an} is a diagonal matrix, with 0 < |ai| < 1 being
design constant, x̂(k) = [x̂1(k), x̂2(k), · · · , x̂n(k)]T is the state vector of (4),
x(k) = [x1(k), · · · , xn(k)]T is the state vector of system (1), The Gaussian RBF
network Ŵ sTS(x(k)) = [Ŵ sT

1 S(x(k)), · · · , Ŵ sT
n S(x(k))], s = 0, 1, 2, · · · ,M are

used to approximate the general fault function (2). The NN weights Ŵ (k + 1)
are updated similarly as in [7]:

Ŵi(k + 1) = Ŵi(k)− αP (ei(k)− aiei(k − 1))S(x(k − 1))

1 + λmax(P )ST (x(k − 1))S(x(k − 1))
(5)
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where ei(k) = x̂i(k)− xi(k) is the state error, 0 < α < 2 is the learning gain for
design, P = PT > 0, λmax(P ) denotes the largest eigenvalue of the matrix P .
From (3) and (4), we have ei(k + 1) = aiei(k) + W̃T

i (k + 1)S(x(k)) − ε, where
ε = ψs(x(k), u(k))−W ∗TS(x(k)) is the NN approximation error,W ∗ is the ideal
weight.

The following theorem presents the learning of the general fault function.

Theorem 1. Consider the close-loop system consisting of the nonlinear discrete-
time system (1), the dynamical RBF network (4) and the NN update law (5).
For both normal and fault modes of (1), we have that all the signals in the closed-
loop remain bounded, and the general fault function ψs(x(k), u(k)) of system (1)
is locally-accurately approximated along the trajectory ϕs(x(0)) by ŴTS(ϕs) as
well as by W̄TS(ϕs), where

W̄ =
1

kb − ka + 1

kb∑
k=ka

Ŵ (k) (6)

with (ka, kb) representing a time segment after the transient process.

Based on the convergence result of Ŵ , we can obtain a constant vector of neu-
ral weights W̄ according to (6), such that ψs(x(k), u(k)) = ŴTS(ϕs) + ε1 =
W̄TS(ϕs) + ε2, where ε1 and ε2 are the approximation errors using ŴTS(ϕs)
and W̄TS(ϕs), respectively. It is clear that after the transient process, ||ε1|−|ε2||
is small.

4 Detection of Faults

4.1 Residual Generation and Decision Scheme

In the detecting phase, the monitored system is described by

x(k + 1) = f(x(k), u(k)) + η(x(k), u(k)) + β(k − k0)φ
s′ (x(k), u(k)) (7)

where φs′(x(k), u(k)) represents the deviation of system dynamics due to an
unknown fault.

For the monitored system (7), the general fault function is described by

ψ′(x(k), u(k)) = η(x(k), u(k)) + β(k − k0)φ
s′(x(k), u(k)) (8)

Consider the monitored system (7), by utilizing the learned knowledge obtained
in the learning phase, a dynamical model is constructed as follows:

x̄h(k + 1) = f(x(k), u(k)) +B(x̄h(k)− x(k)) + W̄hT

S(x(k)) (9)

where h = 0, 1, . . . ,M , x̄h(k) = [x̄h1 (k), . . . , x̄
h
n(k)]

T ∈ Rn is the state of the
dynamical model, x(k) = [x1(k), · · · , xn(k)]T ∈ Rn is the state of monitored
system (7), B = diag{b1, . . . , bn} is a diagonal matrix which is kept the same for
all normal and fault models, with 0 < bi < 1.
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By combining the monitored system (7) and the dynamical model (9), the
following residual system is obtained:

x̃hi (k + 1) = bix̃
h
i (k) + (W̄hT

i Si(x(k))− ψ′
i(x(k), u(k))), i = 1, . . . , n (10)

where x̃hi (k) � x̄hi (k) − xi(k) is the state estimation error (residual), and

W̄hT

i Si(x(k)) − ψ′
i(x(k), u(k)) is the difference of system dynamics between the

monitored system and the hth estimator.
The average L1 norm ‖x̃hi (k)‖1 = 1

T

∑k−1
j=k−T |x̃hi (j)| is introduced for the

decision of a fault, where k ≥ T , T ∈ Z+ is the preset period constant of the
monitored system.

Fault detection decision scheme: Compare ‖x̃si ‖1 (i = 1, . . . , n), for all s ∈
{0, 1, . . . ,M} with each other. If, there exists a mode s∗, (s∗ ∈ {0, 1, . . . ,M})
such that for all i = 1, . . . , n, ‖x̃s∗i ‖1 < ‖x̃si ‖1, (s ∈ {0, 1, . . . ,M} \ {s∗}), then
the occurrence of a fault is deduced and the monitored system is recognized as
similar to the s∗th mode.

4.2 Fault Detectability Conditions

The detectability analysis of fault detection for nonlinear discrete-time systems
is stated in the following theorem.

Theorem 2. (Fault detectability) Consider the residual system (10). For all
s ∈ {0, 1, . . . ,M}, i ∈ {1, . . . , n} and k ≥ T , if the following conditions hold:

1) for all s ∈ {0, 1, . . . ,M} \ s∗, there exists at least one interval I = [Ta, Tb−
1] ⊆ [k − T, k − 1] such that

|ψs
i (s(kτ ), u(kτ ))− ψ′

i(s(kτ ), u(kτ ))| ≥ μi + ξ∗i ∀kτ ∈ I (11)

where μi > (ε∗i + ξ∗i ), l := Tb − Ta > l :=
μi+2(ε∗i +ξ∗i )
2μi+(ε∗i +ξ∗i )

T

2) bi satisfies

0 < bi <

(
μi − (ε∗i + ξ∗i )
5μi + (ε∗i + ξ∗i )

) l
l−l−1

(12)

where μi > (ε∗i + ξ∗i ), l := Tb − Ta > l :=
μi+2(ε∗i +ξ∗i )
2μi+(ε∗i +ξ∗i )

T .

Then, the fault will be detected. i.e., ‖x̃s∗i ‖1 < ‖x̃si‖1, holds for all k ≥ T .

Proof. Firstly, we prove that ‖x̃s∗i (k)‖1 < ε∗i+ξ∗i
1−bi

for all k ≥ T .
If the monitored system (7) is similar to the s∗th mode, according to the

definition of similarity for discrete-time systems [8]. we have

max
x(k)∈Ω

ϕs∗

∣∣∣ψ′
i(x(k), u(k)) − ψs∗

i (x(k), u(k))
∣∣∣ < ε∗i , i = 1, . . . , n (13)

and

max
x(k)∈Ω

ϕs∗

∣∣∣ψ′
i(x(k), u(k))− W̄ s∗T

i Si((x(k), u(k))
∣∣∣ < ε∗i + ξ∗i , i = 1, . . . , n (14)
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where ε∗i > 0 is the similarity measure between the two dynamical systems. ξ∗i
and ε∗i are respectively given by [8] and (13).

The error system with respect to the s∗th model satisfies x̃s
∗

i (k + 1) =
bix̃

s∗
i (k) +

[
W̄ s∗T

i Si(x(k)) − ψ′
i(x(k), u(k)))

]
. The solution of the above differ-

ence equation is

x̃s
∗

i (k) = bki x̃
s∗
i (0) +

k−1∑
j=0

bk−1−j
i

[
W̄ s∗T

i Si(x(j)) − ψ′
i(x(j), u(j)))

]
(15)

By combining (14) and 0 < bi < 1 , we have |x̃s∗i (k)| < bki |x̃s
∗

i (0)| + (ε∗i +

ξ∗i )
∑k−1

j=0 b
k−1−j
i < bki |x̃s

∗
i (0)| + ε∗i +ξ∗i

1−bi
. Since xi(0) is available, let x̄s

∗
i (0) = 0,

x̃s
∗

i (0) = 0. Then, we have |x̃s∗i (k)| < ε∗i+ξ∗i
1−bi

.
Thereby, we have for all k ≥ T ,

‖x̃s∗i (k)‖1 =
1

T

k−1∑
j=k−T

|x̃s∗i (j)| < 1

T

k−1∑
j=k−T

ε∗i + ξ∗i
1− bi

=
ε∗i + ξ∗i
1− bi

(16)

Secondly, we turn to prove that ‖x̃si (k)‖1 > ε∗i+ξ∗i
1−bi

> ‖x̃s∗i ‖1 for all k ≥ T .
For kτ ∈ I,

|x̃si (kτ )| =
∣∣∣∣∣∣bkτ−Ta

i x̃si (Ta) +

kτ−1∑
j=Ta

bkτ−1−j
i

[
W̄ sT

i Si(x(j)) − ψ′
i(x(j), u(j)))

]∣∣∣∣∣∣ (17)

From the local region is described by [8] and (12), we have

∣∣∣W̄ sT

i Si(x(kτ ))− ψ′
i(x(k), u(k)))

∣∣∣
≥ |ψs

i (x(kτ ), u(kτ ))− ψ′
i(x(kτ ), u(kτ ))| −

∣∣∣W̄ sT

i Si(x(kτ ))− ψs
i (x(kτ ), u(kτ ))

∣∣∣
≥ μi + ξ∗i − ξ∗i = μi

(18)

Let I ′ be defined as I ′ =
{
kτ ∈ I : |x̃si (kτ )| < 2μi+(ε∗i+ξ∗i )

3(1−bi)

}
. Then, it can be

proven that there at most exists one time interval I ′ = [T ′
a, T

′
b − 1] in I and

l′ = T ′
b − T ′

a ≤
⎛⎝ ln

(
μi−(ε∗i +ξ∗i )

[5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

⎞⎠+ 1 =

⎛⎝ ln

(
bi[μi−(ε∗i +ξ∗i )]

[5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

⎞⎠ and let l′ denote

the length of the time interval I ′.
The magnitude of |x̃si (kτ )| in the time interval I can be discussed in the

following cases:
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1) If |x̃si (Ta)| ≥ 2μi+(ε∗i+ξ∗i )
3(1−bi)

, and W̄ sT

i Si(x(k)) − ψ′
i(x(k), u(k)) has the same

sign with x̃si (Ta), then from (17) and (18), we have

|x̃si (kτ )| =
∣∣∣∣∣∣bkτ−Ta

i x̃si (Ta) +

kτ−1∑
j=Ta

bkτ−1−j
i

[
W̄ sT

i Si(x(j)) − ψ′
i(x(j), u(j))

]∣∣∣∣∣∣
≥
∣∣∣∣∣∣bkτ−Ta

i x̃si (Ta) + μi

kτ−1∑
j=Ta

bkτ−1−j
i

∣∣∣∣∣∣ ≥ 2μi + (ε∗i + ξ∗i )
3(1− bi)

(19)

Thus, |x̃si (kτ )| ≥ 2μi+(ε∗i+ξ∗i )
3(1−bi)

holds for all kτ ∈ I. Therefore, I ′ = ∅ and l′ = 0.

2) If |x̃si (Ta)| < 2μi+(ε∗i+ξ∗i )
3(1−bi)

, and according to (17) and (18), we have for all

kτ ∈ I

|x̃si (kτ )| =
∣∣∣∣∣∣bkτ−Ta

i x̃si (Ta) +

kτ−1∑
j=Ta

bkτ−1−j
i

[
W̄ sT

i Si(x(j)) − ψ′
i(x(k), u(k))

]∣∣∣∣∣∣
≥
∣∣∣∣∣μi

1− bkτ−Ta

i

1− bi

∣∣∣∣∣− ∣∣∣bkτ−Ta

i x̃si (Ta)
∣∣∣

≥ μi

1− bi
− 5μi + (ε∗i + ξ∗i )

3(1− bi)
bkτ−Ta

i

(20)

Assume that there exists a time interval I ′ = [T ′
a, T

′
b −1] ⊆ I with T ′

a = Ta, then
consider (20), we have

2μi + (ε∗i + ξ∗i )
3(1− bi)

≥ |x̃si (T ′
b − 1)| ≥ μi

1− bi
− 5μi + (ε∗i + ξ∗i )

3(1− bi)
b
T ′
b−1−T ′

a

i (21)

Solving the above inequality for T ′
b yields, we have l

′ = T ′
b−T ′

a ≤
ln

(
μi−(ε∗i +ξ∗i )

5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

+

1. From (12), which implies that l > l +
ln

(
bi[μi−(ε∗i +ξ∗i )]

5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

≥ l + l′. Thus we

have |x̃si (Tb−1)| ≥ 2μi+(ε∗i+ξ∗i )
3(1−bi)

and |x̃si (T ′
b)| ≥ 2μi+(ε∗i+ξ∗i )

3(1−bi)
, it can be proved that

W̄ sT

i Si(x(k))−ψ′
i(x(k), u(k)) has the same sign with |x̃si (T ′

b)|. By using the anal-

ysis result of case 1), we have |x̃si (kτ )| ≥ 2μi+(ε∗i+ξ∗i )
3(1−bi)

holds for all kτ ∈ [T ′
b, Tb−1].

Therefore, I ′ = [T ′
a, T

′
b − 1] and l′ ≤

ln

(
bi[μi−(ε∗i +ξ∗i )]

5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

.

3) In the case that |x̃si (Ta)| ≥ 2μi+(ε∗i+ξ∗i )
−3bi

, and W̄ sT

i Si(X(k))−ψ′
i(x(k), u(k))

has a different sign with |x̃si (Ta)|, if there exists a time T ′
a ∈ I such that

|x̃si (T ′
a)| < 2μi+(ε∗i+ξ∗i )

−3bi
, then using analystic result of case 2), we have I ′ =

[T ′
a, T

′
b−1] and l′ ≤

ln

(
bi[μi−(ε∗i +ξ∗i )]

5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

. If such time T ′
a does not exist, then I ′ = ∅

and l′ = 0.
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From the above discussion, we can summarize that there at most exists one

time interval I ′ = [T ′
a, T

′
b − 1] and l′ ≤

ln

(
bi[μi−(ε∗i +ξ∗i )]

5μi+(ε∗
i
+ξ∗

i
)

)
ln bi

.

Thus, in light of (16), we have ‖x̃si (k)‖1 = 1
T

∑k−1
j=k−T |x̃si (j)| ≥ 1

T l
2μi+(ε∗i+ξ∗i )

−3bi
,

for all k ≥ T , with (11), we have ‖x̃si (k)‖1 ≥ μi+2(ε∗i+ξ∗i )
3(1−bi)

≥ ε∗i+ξ∗i
3(1−bi)

> ‖x̃s∗i (k)‖1.
This ends the proof.

Remark 1. The represented mathematically rigorous proof of fault detectability
conditions for discrete-time case is more succinct than [5].

5 Conclusions

In this paper, a approach has been proposed for fault detection of nonlinear
discrete-time systems based on the recently proposed deterministic learning (DL)
theory. The discrete-time system dynamics underlying normal and fault modes
are locally accurately approximated through DL. The obtained knowledge of
system dynamics is stored in constant RBF networks. Then, a bank of estima-
tors are constructed using the constant RBF networks to represent the learning
normal and fault modes. A set of residuals are generated by comparing the set
of estimators. The occurrence of a fault can be rapidly detected according to the
smallest residual principle and detectability condition is also given.
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Abstract. Loose particles left inside aerospace components or equip-
ment can cause catastrophic failure in aerospace industry. It is vital to
identify the material type of these loose particles and eliminate them.
This is a classification problem, and autoregressive (AR) model and
Learning Vector Quantization (LVQ) networks have been used to classify
loose particles inside components. More recently, the test objects have
been changed from components to aerospace equipments. To improve
classification accuracy, more data samples often have to be dealt with.
The difficulty is that these data samples contain redundant information,
and the aforementioned two conventional methods are unable to process
redundant information, thus the classification accuracy is deteriorated.
In this paper, the wavelet Fisher discriminant is investigated for loose
particle classifications. First, the fisher model is formulated as a least
squares problem with linear-in-the-parameters structure. Then, the pre-
viously proposed two-stage subset selection method is used to build a
sparse wavelet Fisher model in order to reduce redundant information.
Experimental results show the wavelet Fisher classification method can
perform better than AR model and LVQ networks.

Keywords: Loose particle classification, wavelet Fisher discriminant,
subset selection.

1 Introduction

The reliability of all electronic components and equipment used for space ap-
plications is vital for the success of the missions where they perform complex
monitoring, navigation and control functions. Hence, all the components and
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equipment must be tested and screened strictly according to the standards and
specifications for space applications. One critical factor is loose particles in form
of foreign materials being left or trapped within components or equipment during
pre-seal handling and assembly process. These loose particles, such as tin gran-
ular, aluminum shot, and wire skin, can be dislodged and freed during launch
or in zero gravity and may cause system failures. For example, they can be dis-
lodged to bare bonding wires, short-circuiting the parts in usage. A number of
reports have been filed that loose particles caused some serious faults and even
catastrophic failures in space projects, leading to huge economic losses and so-
cial impacts. One of the well-known examples is the failure of the Delta Launch
Vehicle Program in 1965 caused by a loose bit of wire within an electronic compo-
nent [1]. This has raised the importance of screening devices for loose particles
to ensure that all components and equipment for space applications must be
particle free.

Following MIL-STD-883 standard [2, 3], Particle Impact Noise Detection
(PIND) test was designed as a non-destructive test in order to determine the
presence of the loose particles left inside components like relays, transistors and
micro-switches [4,5]. This is achieved by sensing the energy released when loose
particles strike the interior, the wall or elements within the components. For
details, a shaker induces a series of mechanical shocks and vibrations to free or
dislodge particles clinging to the interior of the components while an acoustic
emission transducer mounted on the shaker is used to detect the sound energy of
the loose particle impact. The captured acoustic signals are fed into a bandpass
filter to filter out the shaker frequency and background noises. The resulting
signals are then sent either to an oscilloscope or an audio circuit with speakers
or headphones. Operators determine the presence of the loose particle either by
watching the waveforms or by listening to the audio signals. The whole structure
of the PIND system is illustrated in Figure 1.

Component
Under TestThe Electronic

Circuit of PIND
System Sensor

Shaker
Sine Wave Signal

Generator

Coupler
Speaker

Oscilloscope

Y2

Y1

 

Fig. 1. Typical configuration of PIND test system

The PIND test system is a semi-automatic apparatus as the detection accu-
racy depends on both experience of the operator in identifying loose particle
signals. Human factors like the operator’s fatigue, negligence and lack of expe-
rience may easily lead to wrong conclusions [6]. Though the PIND test could
detect the existence of large particles effectively, a drawback is its low accuracy
for the detection of tiny particles. To address this problem, Fourier transform
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was employed for reducing noises like background noise, electrical noise and me-
chanical noise in the frequency domain [7]. However, the Fourier transform is
only localized in frequency domain and could not capture the high frequency
loose particle signals within a shorter time span. To capture the missed signals
with shorter time span, a wavelet decomposition algorithm was used for loose
particle detection to distinguish the loose particle signals with other noises in
the wavelet domain. This method was proved useful for detecting loose particles
left inside aerospace electrical relays [8].

Another key issue is that the type information about the loose particle mate-
rial, such as tin, aluminium, and wire is of great importance to manufacturers
for eliminating sources of loose particles [8,9]. Once the cause and source of loose
particles are known, proper actions should be implemented to eliminate particles
in the components. It is however difficult and complex for the identification of
material type due to the nonlinear relationships between different types of ma-
terials and their signals with respect to different shapes and weights. To simplify
the material identification, a linear method based on autoregressive (AR) model
was proposed to extract features in order to classify the signals with different
materials [9]. The results were not satisfactory due to the fact that nonlinear
characteristics existing in loose particle signals were ignored. Further investi-
gation using Learning Vector Quantization (LVQ) neural networks was used to
improve the classification accuracy for loose particles left inside the aerospace
power supply [6].

More recently, the detection objects have been extended to aerospace equip-
ment, rather than components like electrical relays and semiconductors. The
conventional PIND test is incapable of shaking the aerospace equipment which
are large in volume and heavy in weight. Hence, a large shaker with higher drive
power is used to free particles. To adopt to this change, four acoustic sensors
were used for capturing the signal from loose particle vibration instead of one
sensor for conventional tests. This results in redundant information from four
sensors. The requirements to reduce redundant information as well as to retain
useful information have to be dealt with. However, the previously mentioned two
conventional methods do not consider reducing the redundant information, lead-
ing to a low classification accuracy. Further experimental results has confirmed
that the conventional methods like AR model and LVQ neural networks could
not meet the new challenges.

To improve the classification accuracy, this paper investigates the kernel Fisher
discriminant for classification of loose particles left inside aerospace equipment.
It has been shown that kernel Fisher discriminant is very competitive with many
other classification methods like kernel principal component analysis, radial basis
function networks and support vector machines [10,11]. The key issue for Fisher
discriminant is to select a kernel like polynomial kernel, Gaussian kernel and
wavelet kernel. This paper uses the wavelet kernel for loose particle classifica-
tion, considering that the loose particle signal is a series of oscillation attenuation
pulses which can be captured by wavelet. The kernel Fisher discriminant is a
generalization of linear Fisher discriminant analysis. More specifically, the loose
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particle signals are first mapped into wavelet feature space using a wavelet kernel
mapping and then linear discriminant analysis is subsequently performed in this
kernel space.

A critical issue in the kernel Fisher discriminant is that its training time in-
creases significantly as the number of training data increases. This may prevent
its applications to large data sets. To address this problem, the kernel Fisher
discriminant can be formulated as a linear-in-the-parameter model where all the
training parameters can be listed and form a candidate term pool. Constructing
thus a model is a linear regression problem with the aim to select a represen-
tative subset from all the candidates. Typical methods for such a problem in-
clude orthogonal least squares (OLS) methods and the fast recursive algorithm
(FRA) [12] based forward and backward subset selection algorithms. In forward
selection, significant model terms are added one by one until some criterion is
met while in backward selection, insignificant model terms are deleted from the
whole term pool one by one [13, 14]. However, these two methods are fast and
greedy methods, they may not construct a parsimonious or compact model. To
improve model compactness, the two-stage algorithm integrating forward selec-
tion and backward refinement using FRA method has been proposed [15]. In
the first stage, an initial model is built by a novel fast forward selection ap-
proach [12]. Then, in the second stage, each previously selected term is reviewed
and compared. If the significance of previously selected model term is less than
any remaining term, it is replaced by the most significant one in the candidate
term pool. This process stops when no term needs to be replaced. Further, a new
two-stage algorithm using OLS which is computationally even more efficient than
the previously proposed two-stage algorithm has been proposed recently [16].

The main purpose of this paper is to improve classification accuracy for loose
particles left inside aerospace equipment. Wavelet Fisher discriminant is em-
ployed to solve this nonlinear classification problem. Further, the previously
proposed two-stage algorithm is used to build a parsimonious Fisher model. It
has been shown that the wavelet Fisher discriminant is able to produce better
classification results compared with AR model and LVQ networks.

2 Loose Particle Impact Signals

The loose particle detection system is as shown in Figure 2. The whole system
consists of a vibration generator, the aerospace equipment to be tested, and a
data acquisition subsystem in which four acoustic sensors are used to sample the
impact signals and then convert them into electronic signals. The bandwidth of
the data acquisition subsystem is from 100kHz to 200kHz with the gain of 60dB.
Following Shannon sampling law, the sampling rate of 500kHz was employed.

The test objective is a rectangular aerospace equipment. Its volume is 150mm×
120mm×100mm and the wall thickness is 2mm. To carry out experiments, three
different material particles including wire skin, aluminum shot and tin granular
were prepared. Their weights range from 0.5mg to 6mg, and their shapes are
close to sphere.
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equipment

Vibrator body

 

Fig. 2. The PIND test system

The sampling rate and sampling time are 500kHz and 5s, respectively. There-
fore, the total number of data for each sampling period is 2.5MB. Typical data
in a sampling period is shown in Figure 3 and more details are given in Fig-
ure 4. The main characteristics of loose particle signals is that it consists of
a series of oscillation attenuation pulses. In previous work, it has been shown
that the wire particles have lower frequency distribution around 40Hz while the
aluminium and tin particles have higher frequency around 80Hz and 100Hz,
respectively [6]. However, they distributions are overlapped, which gives rise
wrong classification conclusions. Mapping these features into high dimensions
can improve classification accuracy.
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Fig. 3. The loose particle signals

3 Wavelet Fisher Discriminant

The Fisher discriminant is a typical binary classifier. Given data samples {x1,
...,xn1 ,xn1+1, ...,xn,xi ∈ .N} with n1 samples for class c1 and n2 samples for
class c2, the total number of data samples is n = n1+n2, and N is the dimension
of each data sample. The nonlinear Fisher discriminant first maps its input
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Fig. 4. Detailed information of the loose particle signals

samples into some high dimensional space using a nonlinear function column
vector φ and then a linear discriminant analysis is carried out on the mapped
feature space [11]. To implement this, two matrices have to be calculated, which
are given by

Sφ
B = (mφ

1 −mφ
2 )(m

φ
1 −mφ

2 )
T

(1)

and
Sφ
W =

∑
i=1,2

∑
x∈ci

(φ(x) −mφ
i )(φ(x)−mφ

i )
T

(2)

where

mφ
i =

1

ni

∑
x∈ci

φ(x). (3)

Sφ
B and Sφ

W are known as between-class scatter matrix and within-class matrix,
respectively. mi is the mean for each class in the nonlinear space. The nonlinear
Fisher discriminant aims to maximize

J(Ω) =
ΩTSφ

BΩ

ΩTSφ
WΩ

(4)

by finding a proper vectorΩ ∈ .N . This can be achieved by solving the following
linear equation

Ω =
(
Sφ
W

)−1

(mφ
1 −mφ

2 ) (5)

However, if the dimension of φ(x) is very high, (5) may be ill-conditioned or
training can be computationally very expensive. In this paper, the number of
data in each sampling period is 2.5MB, hence, it is impractical to calculate this
equation. To overcome this limitation, the nonlinear Fisher discriminant can
be formulated as a least square problem using kernel method [11]. The kernel
operation is defined as

k(xi,xj) = φ(xi)
Tφ(xj) (6)

For wavelet kernel, it is given by [17]

k(xi,xj) =

N∏
l=1

h

(
xil − xjl

a

)
(7)
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where xi and xj are two input vectors with the length of N . The h is a wavelet
function with dilation parameter a. In this paper, Mexican Hat wavelet function
is used

h(x) = (d− ‖x‖2)e−‖x‖2
2 (8)

where d is the dimension of the input x. Here, d = 2 as the input has two
dimensions for two classes.

Wavelet Fisher discriminant is a kernelized version of linear discriminant anal-
ysis where it maps the input data into wavelet feature space then a linear dis-
criminant analysis is performed in the mapped feature space. It can be also
formulated as a least squares problem, which is shown as [11, 18]⎡⎢⎢⎢⎣

1 k(x1,x1) . . . k(x1,xn)
1 k(x2,x1) . . . k(x2,xn)
...

...
...

...
1 k(xn,x1) . . . k(xn,xn)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
t0
α1

...
αn

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
e0
e1
...
en

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...
y1
y2
...
y2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The output y1 and y2 represent two classes. Re-write the equation (9) in matrix
form

PΘ+ e = y (10)

where P can be obtained explicitly using the kernel operation. The Θ =
{t0, α1, ..., αn} is unknown vector with classification threshold t0 and discrimi-
nant parameters {α1, ..., αn}. Its least squares solution is

Θ̂ = (PTP)−1PTy (11)

However, as the column terms in P are usually redundant and correlated, they
may result in ill-conditioned equations or a non-sparse classifier. A useful solution
is to select a subset Ps of P instead of using the whole matrix P, which can
improve model parsimony and classification accuracy. For details, the subset is
given by

Ps =

⎡⎢⎢⎢⎣
1 k(x1,xi1 ) . . . k(x1,xis)
1 k(x2,xi1 ) . . . k(x2,xis)
...

...
...

...
1 k(xn,xi1 ) . . . k(xn,xis)

⎤⎥⎥⎥⎦ . (12)

Forward selection is a widely used algorithm for selecting a typical subset of
P. However, it is not optimal. To improve its compactness, the previously pro-
posed two-stage method combining both the forward selection and backward
refinement is employed.
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Anther problem is that the wavelet Fisher discriminant is a binary classifier
and it can not directly deal with multi-class classification problems. For loose
particle classification in this paper, three classes of materials, namely the tin,
aluminium and wire need to be distinguished. To achieve this, the binary tree
approach is used in this paper. For details, this paper first performs classification
of two coarse types, namely the metallic material (tin and aluminium) and non-
metallic material (wire), and then it classifies tin and aluminium classes. In other
words, two binary classifiers are used.

4 Two-Stage Orthogonal Least Squares

In this paper, the previously proposed two-stage orthogonal least squares (OLS)
method is used to build a sparse wavelet Fisher discriminant model. The first
stage is equivalent to the forward selection where the model terms are included
into an initial model one by one, leading to a sub-model Ps = {pi1 , ...,pis}.
The second stage refines the initial model by replacing those insignificant terms
compared with the terms left in the term pool. Both first and second stages
perform a series of orthogonal decomposition of P, which is given by

P = WA (13)

where the W is an orthogonal matrix and A is an upper triangular matrix.
After this decomposition, the Fisher model can be expressed as

y = (PA−1)(AΘ) + e = Wg+ e (14)

where g = [g1, g2, . . . , gM ]T is the orthogonal weight vector. So the original
model weight vector g can be calculated by [19]

g = (WTW)−1WTy. (15)

The error is
e = y −Wg = y −W(WTW)−1WTy. (16)

The model parameters Θ can be computed using backward substitution

θM = gM

θi = gi −
M∑

k=i+1

αikθk, i = M − 1, . . . , 1

⎫⎪⎪⎬⎪⎪⎭ . (17)

The orthogonal decomposition can be carried out byGram-Schmidt (GS)method.
The GS procedure computes one column ofA at a time and factorizesP as follows:

w1 = p1

αik =
< wi,pk >

< wi,wi >
, 1 ≤ i < k

wk = pk −
k−1∑
i=1

αikwi

⎫⎪⎪⎪⎬⎪⎪⎪⎭ k = 2, . . . ,M

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(18)
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and

gi =
< wi,y >

< wi,wi >
, i = 1, . . . ,M. (19)

In additional to the orthogonal decomposition, a criterion is used for model term
selection. In this paper, the error reduction ratio (ERR) is used for measuring
the term contribution. The ERR due to wi is defined as [19]

[err]i = g2i
< wi,wi >

< y,y >

= gi
< wi,y >

< y,y >
.

(20)

Given the ERR criterion, the two-stage OLS is shown as follows:
(1)First stage - forward selection:
The forward selection computes each term contribution and then selects the

most significant one at each step. More specifically,
At the 1st step, for 1 ≤ i ≤ M , compute

w
(i)
1 = pi

g
(i)
1 =

< w
(i)
1 ,y >

< w
(i)
1 ,w

(i)
1 >

[err]
(i)
1 = g

(i)
1

< w
(i)
1 ,y >

< y,y >

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (21)

Find the largest ERR

[err]
(i1)
1 = max{[err](i)1 , 1 ≤ i ≤ M} (22)

and select the model term associated with the number i1 as the first important
term

w1 = w
(i1)
1 = pi1 (23)

At the kth step, for 1 ≤ i ≤ M, i �= i1, . . . , i �= ik−1, calculate

α
(i)
jk =

< wj ,pi >

< wj,wj >
, 1 ≤ j < k

w
(i)
k = pi −

k−1∑
j=1

α
(i)
jkwj

g
(i)
k =

< w
(i)
k ,y >

< w
(i)
k ,w

(i)
k >

[err]
(i)
k = g

(i)
k

< w
(i)
k ,y >

< y,y >

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24)

Find the largest ERR

[err]
(ik)
k = max{[err](i)k , i �= i1, . . . , ik−1} (25)
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and select the term associated with the number ik as the kthe term

wk = w
(ik)
k = pik −

k−1∑
j=1

αik
jkwj . (26)

The procedure is terminated at the Msth step when

1−
Ms∑
j=1

[err]j < ρ (27)

where 0 < ρ < 1 is a preset tolerance. The fist stage builds an initial model with
regressors {pr1 , ...,pri , ...,prMs

}, where ri is the index in the original candidate
pool. For computational convenience for the second stage, the indexes of terms
in the initial model are renamed as {p1, ...,pi, ...,pMs} and others remaining in
the candidate pool are renames as {pMs+1, ...,pi, ...,pM}.

(2)Second stage - backward model refinement:
The second stage refines the initial model by reselecting the terms. As the

contributions of the latter selected terms are less than whose of the former ones
in terms of ERR, the refinement begins from backward direction. Swap the
wn, n = Ms − 1, . . . , 1 to the last column. To be specific,

w
′
n = pn+1 −

n−1∑
i=1

αi(n+1)wi

w
′
j = pj+1 −

n−1∑
i=1

αi(j+1)wi −
j−1∑
i=n

< w
′
i,pj+1 >

< w
′
i,w

′
i >

·w′
i, j = n+ 1, . . . ,Ms − 1

w
′
Ms

= pn −
n−1∑
i=1

αinwi −
Ms−1∑
i=n

< w
′
i,pn >

< w
′
i,w

′
i >

w
′
i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (28)

Re-select the last column, for Ms ≤ i ≤ M , calculate

w
(i)
Ms

′

= pi −
n−1∑
j=1

αjiwj −
Ms−1∑
j=n

< w
′
j ,pi >

< w
′
j ,w

′
j >

w
′
j

g
(i)
Ms

′

=
< w

(i)
Ms

′

,y >

< w
(i)
Ms

′
,w

(i)
Ms

′
>

[err]
(i)
Ms

′

= g
(i)
Ms

′ < w
(i)
Ms

′

,y >

< y,y >

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (29)

Find

[err]
(iMs )
Ms

′

= max{[err](i)Ms

′

, Ms ≤ i ≤ M}. (30)
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and

w
′
Ms

= w
(iMs )
Ms

′

(31)

The backward procedure refines all the terms selected in the first stage. If some of
them are replaced, the new model can be refined again using the same procedure
and this stops until no insignificant term can be further replaced.

5 Classification Results

In this study, the collected data was split into training and testing data for
classifying three kinds of loose particles. For each type of loose particles 250
samples were used, with first 150 for training and the remaining for testing.
The weights of materials range from 0.5mg to 6mg. In the training process,
two Fisher models were built to classify three materials. The first model is to
classify the wire from others and the second one is to classify the aluminium
from tin. Both the dilation parameter a = 1 in the wavelet and the training
tolerance α = 0.02 were determined by trial-and-error. In order to illustrate the
effectiveness of wavelet Fisher discriminant, the AR classifier and LVQ neural
networks were also built for classifications. The results are shown in Table 1 and
they illustrate that the wavelet Fisher discriminant can give higher classification
accuracy than the conventional AR model and LVQ neural networks.

Table 1. Comparison of classification results

Loose particle Fisher AR LVQ

Wire 90% 75% 85%
Aluminum 86% 62% 81%

Tin 85% 60% 80%

6 Conclusion

This paper has proposed to use the wavelet Fisher discriminant for loose particle
classification. First, the wavelet Fisher discriminant has been formulated as a
linear-in-the-parameters model which can be regarded as a least squares problem.
Then, the two-stage subset selection method has been employed to build a sparse
wavelet Fisher model, which improves the model compactness and performance.
Finally, the classification results have shown that the wavelet Fisher discriminant
has outperformed the conventional AR model and LVQ neural networks.
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Abstract. In machine learning and pattern recognition, feature selection has been
a very active topic in the literature. Unsupervised feature selection is challenging
due to the lack of label which would supply the categorical information. How to
define an appropriate metric is the key for feature selection. In this paper, we pro-
pose a “filter” method for unsupervised feature selection, which is based on the
geometry properties of �1 graph. �1 graph is constructed through sparse coding.
The graph establishes the relations of feature subspaces and the quality of fea-
tures is evaluated by features’ local preserving ability. We compare our method
with classic unsupervised feature selection methods (Laplacian score and Pearson
correlation) and supervised method (Fisher score) on benchmark data sets. The
classification results based on support vector machine, k-nearest neighbors and
multi-layer feed-forward networks demonstrate the efficiency and effectiveness
of our method.

Keywords: Sparse coding, Unsupervised learning, Neural network, Feature
selection.

1 Introduction

Feature selection is an important technique in dealing with high-dimensional data. It is
reported that 1.8 zettabytes (or 1.8 trillion gigabytes) of data has been created in the year
2011. How to manage the huge data to avoid the “curse of dimensionality” is essential in
real applications. Feature selection, as a powerful tool of dimension reduction, has been
successfully applied in pattern recognition [1] and computer version [2]. Functionally,
feature selection can be divided into three groups: filter model, wrapper model and
embedded model. Filter is the most popular model in recent research, as it has low
computational cost and is robust in theoretic analysis. Depends on the class labels,
feature selection can be implemented in supervised fashion or unsupervised fashion.
Most existing filter models are in supervised fashion. In real world applications, the
class labels are always scarce [3]. It is meaningful to design a filter feature selection
method in unsupervised fashion.
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Sparse coding (representation) has been studied widely in recent literature. It recon-
structs a signal (data) through a linear combination of a minimum set of atom vectors
from a dictionary. In detail, a signal (data) y ∈ R

m can be sparse represented through
y = Dx, the dictionary is D ∈ R

m×d. The correspondent coefficient x ∈ R
d is sparse

(the dominating elements are zeros). Spare coding has many effective applications in
real-world data, such as image denoising [4], information imputation [5], dictionary
learning [6] and blind source separation [7].

In this paper, we utilize the relations, established by sparse coding between the data
(signals) and dictionary atoms, to build $1 graphs. The graph has the properties in local
preserving ability. We evaluate these properties to rank features and establish a new
unsupervised filter model for feature selection.

The main contributions of the paper are summarized as follows:

– A graph is established through $1-Norm Regularization. The linear relations be-
tween the signal and the dictionary atoms are shown on the graph.

– The features’ local preserving ability is evaluated through spectral graph theory [8].
The unsupervised filter model is established based on the ability to perform feature
selection.

– The proposed method is applied to UCI [9] benchmark data sets (binary-category
and multiple-category). A 2-D visualization case study is carried out and compared
with classic filter feature selection methods (Fisher score [10], Laplacian score [11]
and Pearson correlation [10]). Intensive experiments of feature based classifications
are conducted to demonstrate the efficiency and effectiveness of our method.

2 Feature Score Based on �1 Graph

A data set Y = {y1,y2, · · · ,yi, · · · ,yn} ∈ R
n×m is assumed. Our proposed method

utilizes the property of self-characterization in the data sets. In detail, a data (signal)
can be represented by other data from the same data set through

yi = Yxi, xii = 0 (1)

where xi � [xi1 xi2 · · ·xin] and constraint xii = 0 avoids the trivial solution of char-
acterizing a data as a linear combination of itself. This formula is naturally transferred
to sparse coding when we want to choose as less as possible data to represent yi. There-
fore we assume the dictionary of sparse coding is the whole data set. Then the constrain
of $0 norm is:

min‖xi‖0, s.t. yi = Yxi (2)

It is known that the solving of above equation is NP hard. With the relative work of
Restricted Isometry Property (RIP) [12], the $0 norm can be transferred to $1 form and
solved with $1-regularized least squares method [13]:

x̂i = argmin{‖yi −Yxi‖22 + λ‖xi‖1} (3)

We summarize the sparse coding method for all data with the matrix form through:

min‖X‖1, s.t. Y = YX, diag(X) = 0 (4)
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Inspired by the work of sparse subspace clustering [14], the similarity matrix of $1
graph can be defined as:

W = |X|+ |XT |, diag(W) = 0 (5)

it means a node (signal) i is connected with node j by an edge with the weight |xij |+
|xji|. Based on the graph established above, our proposed feature score S based on the
spectral graph theory [8] is computed as:

1. First, $1 graph G (Gij = Wij) is built based on similarity matrix (5) with nodes
(signals) (Y = {y1,y2, · · · ,yi, · · · ,yn}).

2. For each feature Fz , the feature sets are Fz = fz, then Sz can be computed as

Sz =
f̃z

T
Lf̃z

f̃z
T
Qf̃z

(6)

where Q = diag(G1),1 = [1, · · · , 1]T , L = Q −G, and f̃z is a classic normalization
through:

f̃z = fz − fTz Q1

1TQ1
1 (7)

The step 2 is based on the local property of each feature, Gij evaluates the similarity
between the i-th and j-th data (nodes). In detail, when two nodes have heavily weighted
edge, the good feature should have close value between these two nodes. The heuristic
criterion [11] for selecting features is to minimize the function:

Sz =

∑
ij(fzi − fzj)

2Gij

V ar(fz)
(8)

where V ar(fz) is the variance for z-th feature, and fzi, fzj are z-th feature value for
node i, j. Based on some simple calculation, we could obtain:

∑
ij

(fzi − fzj)
2Gij = 2

∑
ij

f2
ziGij − 2

∑
ij

fziGijfzj

= 2fTz Qfz − 2fTz Gfz = 2fTz Lfz (9)

By the spectral graph theory, the V ar(fz) is calculated as:

V ar(fz) =
∑
i

f̃zi
2
Qii = f̃z

T
Qf̃z (10)

Also, it is easy to get

f̃z
T
Lf̃z = fTz Lfz (11)

Based on equations (8)(9)(10)(11), the selection criteria (6) is interpreted. When all the
features are assigned the score, the feature selection is carried out based on the score
ranking.
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3 Experimental Evaluation

In this section, the empirical experiments are conducted on ten data sets from UCI
Repository [9] to demonstrate the effectiveness of our method. There are six binary
data sets and four multiple categorical data sets. The detail information for the data sets
are listed in Table 1

Table 1. UCI Data sets

Name Features Training size Testing size Class

car 6 864 864 2

pima 8 384 384 2

tic-tac-toe 9 479 479 2

yeast 7 742 742 2

hill valley 100 303 303 2

vehicle silhouettes 18 473 473 2

wine 13 89 89 3

image segmentation 19 1165 1165 7

wine quality 11 2449 2449 6

libras 90 180 180 15

In the experiment, each data set is randomly separated into two equal parts. One
part is used in training and the rest part is used in testing. We used the training data to
build the model for feature selection. Five filter feature selection models are utilized for
comparison : our proposed unsupervised Filter model via L1 graph, Pearson correla-
tion (supervised and unsupervised fashion), Fisher score (supervised filter model) and
Laplacian score (unsupervised filter model). We use FL1, PCS, PCU, Fisher and Lap as
abbreviations to denote these 5 methods in the experiments.

3.1 Case Study of 2-D Visualization

A simple case study for data wine is shown. Totally, there are 13 features for data
wine, such as “Alcohol”, “Magnesium” and “Proline”. We use five filter methods based
on training data (with size 89) and apply on the testing data. Each method chooses
two features for 2-D visualization on testing data. The results are shown in Fig.1. Two
features are selected by 5 different methods and plotted in each subfigure. It can be
observed that the feature “Flavanoids” and feature “Color intensity” selected by FL1
method are crucial for discrimination.

3.2 Feature Based Classification

When selected features are more than two, we used the feature based classification to
compare the feature selection methods. The experiment is conducted five times and
mean outputs are obtained. The target selected features size is from one to around 80%
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Fig. 1. Data Wine plotted in 2-D with selected features. 5 methods have selected different two
features.
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Table 2. Mean accuracy in low dimension (in %)

Data set
LibSVM 5-NN NeuralNet

FL1 PCS PCU Fisher Lap FL1 PCS PCU Fisher Lap FL1 PCS PCU Fisher Lap

car 73.7 69.1 73.0 70.3 70.8 70.7 65.1 70.7 69.6 69.6 74.9 68.9 73.6 70.4 71.4
pima 71.6 64.9 65.3 67.8 67.3 68.6 61.4 64.0 64.6 65.8 71.3 64.6 66.8 67.5 67.3
tic-tac-toe 63.4 62.4 61.0 59.7 59.7 62.9 61.0 66.6 68.9 67.5 65.4 63.9 68.0 71.6 69.3
yeast 72.7 71.1 72.1 72.8 71.0 70.7 66.7 69.6 67.4 67.8 73.4 71.2 73.8 73.2 71.8
hill valley 55.9 50.8 47.9 50.9 54.8 52.3 50.8 50.6 49.4 52.1 60.5 54.6 50.3 53.9 58.8
vehicle 73.6 74.8 74.5 74.4 75.0 77.2 78.2 77.8 78.6 77.6 78.8 78.7 78.4 78.3 79.4
wine 82.6 69.8 66.6 75.1 75.4 83.6 69.3 68.7 79.4 75.5 86.7 72.8 71.0 79.4 77.7
image seg 91.1 91.3 90.8 90.1 91.5 92.8 94.8 92.0 91.2 93.7 93.4 95.4 92.4 91.6 94.1
wine quality 46.7 55.7 51.3 48.9 45.7 48.8 52.9 49.3 49.7 47.4 51.7 55.8 51.3 51.2 48.9
libras 54.0 40.6 35.8 35.9 48.4 57.5 43.2 43.4 44.7 52.5 74.4 56.6 60.0 61.1 68.2
Mean Wins 6 1 0 1 2 6 2 0 2 0 5 2 1 1 1

of whole feature size to give comprehensive comparison. In order to show the classifi-
cation performances, we use three classic classifiers: k nearest neighbor (k = 5 in the
experiment), LibSVM and multi-layer feed-forward networks. For briefness, we only
plot two data sets (one binary-category data set and one multi-category data set) results.
We abbreviate the classifiers as LibSVM, 5-NN and NeuralNet in the figures.
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Fig. 2. Comparison of feature based classification accuracies for data hill valley

Fig.2 shows the comparison results for data “hill valley”. When the selected features
size is smaller than 40, FL1 results rank first among all the competitors with all three
classifiers. And FL1 outputs rank second when the selected features size is larger than
40. In the case of multi-category data “libras” in Fig.3, the performances of FL1 rank
first in most cases. It is important to note that the PCS and Fisher are supervised feature
selection methods. And the performance of FL1 is competitive to PCS and Fisher in the
most feature sizes.
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Fig. 3. Comparison of feature based classification accuracies for data libras

In order to give comprehensive comparison of different feature selection methods on
multiple data sets, the mean accuracy in low dimension (from feature size one to around
40% of whole feature sizes) are calculated based on each data set and each classifier.
Table 2 shows the detail mean outputs and the comparison results. The highest accuracy
for each classifier is highlighted. It can be observed that FL1 can win 6, 6 and 5 times
of 10 data sets with LibSVM, 5-NN and NeuralNet respectively.

4 Conclusion

We present a new filter feature selection method based on sparse coding in unsupervised
fashion. Our approach aims to use $1 graph to evaluate the local property for individual
feature. Experimental comparisons with related filter methods have demonstrated that
our method is effective in terms of visualization and classification. Future research work
will focus on increasing dimension of the data set, statistical analysis among different
filter models and improving the theoretical framework of $1 graph for local structure.
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Abstract. The image segmentation of plant diseases is one of the critical tech-
nical aspects of digital image processing technology for Disease Recognition. 
This paper proposes an improved pulse coupled neural network based on an 
improved genetic algorithm. An objective evaluation function is defined based 
on linear weighted function with maximum Shannon entropy and minimum 
cross-entropy. Through adaptive adjustment of crossover probability and muta-
tion probability, we optimized the parameters of pulse coupled neural network 
based on the improve genetic algorithm. The improved network is used to seg-
ment the color images of Maize melanoma powder disease in RGB color sub-
spaces. Then combined with the results by color image merger strategy, we can 
get the terminal results of target area. The experimental results show that this 
method could segment the disease regions better and set complexity parameters 
simplier. 

Keywords: Maize melanoma powder disease, Genetic Algorithm, Pulse 
Coupled Neural Network, Image segmentation. 

1 Introduction 

Plant disease is a main reasons that affect the growth of the corn and other major crops. 
In order to improve the quality and the quantity of the crops ,there has grown up an 
urgent need for disease diagnosis and effective treatment.Normaly, the experts have to go 
to diagnose the diseases in the field ,which wasting time and effort . Meanwhile, due to 
the the effects of the subjective factors and the External environment condition, the 
diagnosis would  easily lead to the wrong answer by human beings.The digital image 
processing technology has fast,accurate and objectivity merit so it has become a possible 
way to take the place of human vision to diagnose the deseaes. Based on the digital 
image processing technology ,crop disease diagonosis include: disease image 
preprocessing, image segmentation, feature extraction, pattern recognition and other 

                                                           
* Corresponding author. 
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major steps. Effective segmentation  affects the accuracy of the disease image feature 
extraction and pattern recognition.So the image segmentation is the key of distinguishing 
crop diseases effectively . General image segmentation algorithm including threshold 
segmentation algorithm, spatial clustering algorithm, region growing algorithm, 
mathematical morphology method and a variety of computational intelligence method, 
etc. But because of background information compleity of crop disease images , disorder 
disease spots , color uneven distribution, disease spots fuzzy boundary ,vein noise and 
interference from enviromental light, so there is no good robust and simple applicable 
universal method[1-3]. At the same time, the conventional disease recognition method is 
based on gray image segmentation processing, a large number of pathological image 
color texture information lossed, then it will affect the accuracy of the  disease spot 
image feature extraction and pattern recognition .  

Genetic Algorithm (Genetic Algorithm, GA) was put forward by the university of 
Michigan's J.H olland professor in 1975 for the first time, through the modeling of 
biological evolution process optimization.As a bionic Algorithm for searching, it is 
widely used in combinatorial optimization, machine learning, signal processing, 
adaptive control , artificial life and many other fields [2]. Pulse coupled neural 
network (PCNN) was found by Eckhorn and colleagues Which were in the research of 
imitation cat, monkey and small mammals visual cortical imaging mechanism, and 
furtherly simplified and amended by Johnson after the amendment proposed an 
artificial network model [3]. This model has been widely used in image denoising, 
image smoothing, image edge detection, image segmentation, image enhancement 
and image fusion, etc [4]. This paper, using the optimized characteristics of genetic 
algorithm global search and the PCNN visual bionic characteristics, a kind of 
improved genetic algorithm combined with PCNN had been proposed to control the 
optimized network parameters, and the proposed network model was applied to the 
image segmentation of complicated background corn diseases. 

Structure of this paper is as follows: the first part mainly introduces research status 
of crop disease recognition and  disease image segmentation. Meanwhile, we put 
forward the main idea in this paper; The second part gave the detailed introduction—
—the algotithm realization of PCNN based on an improved genetic algorithm.At the 
same time,this part gave the segmentation results merging strategy in the RGB color 
subspaces using the proposed algorithm in this paper; Third and forth, the paper 
discussed the simulation results and conclusion. 

2 The Disease Image Segmentation Based on the Improving 
Genetic Pulse Coupled Neural Network Model  

2.1 The Basic Principle of PCNN  

Pulse couple neural network is also known as the third generation of neural network, 
this model is a kind of feedback type network which is proposed on the basis of the 
mechanism of the imitation biological visual cortex. The network includes receptive 
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fields, modem domains and pulse excitation domains.The mechanism of mathematics 
expression of classic PCNN neural network is as follows[5]: 
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In the Equ.1, S is input excitation of some neuron of PCNN, F is the input 
corresponding to the neuron, L is neurons link inputs, U is neuron activities of the 
internal network of PCNN, Y is the output of PCNN, θ is a dynamic threshold value 
of pulse activity, w is a link weight maxtrix of internal network of PCNN. 

Due to the characteristics of connection of PCNN, the neurons with similar input 
excitation also will be activated and output pulse in the next iteration process around 
the neuron which is triggered and output pulse. That is, the neurons are fired which 
correspond to pixels with similar gray value. So PCNN has been widely used in the 
field of digital image processing. But in the process of using PCNN for specific image 
processing, the network parameters still need artificial interactive control or to be 
determined through experience with a large number of experiments for a long time . 
For the foregoing reasons ,there are some limitations in the network model in practice. 
Currently, the typical work for adjusting PCNN parameters mainly cover the Ref. 
[5, 6 7]. However, there are some limitations that the coupling coefficient and the 
threshold attenuation amplitude of PCNN still need to adjustment in the Ref.[5,6].In 
the Ref.[7], they use classical genetic algorithm to optimize connection coefficient β , 

amplitude coefficient θV  and incentive pulse attenuation coefficient θa . The Ref.[7] 

has both reference meaning and real value to improve the network performance.But, 
because of some limitations in the classical genetic algorithm , there is a certain gap 
between the actual effect and the expected results in practice.  

According to the Ref.[7] which use genetic algorithm to optimize the parameters of 
PCNN (GA - PCNN) ,we proposed an algorithm by which the target fitness function , 
crossover probability and mutation probability have been improved. By this 
method ,the performance of PCNN has acquired enormous clout and the algorithm in 
this paper has been applied to the color image segmentation . 

2.2 An Improved Genetic Algorithm 

Genetic algorithm is a kind of global convergence algorithm which simulates some 
processes of biological evolution,and it was widely used as a powerful optimization 
tools in the 10 years. However, because crossover probability and mutation 
probability of classical genetic algorithm have been fixed in the evolutionary process,  
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it tend to prone into local optimal prematurity. So In this paper ,we used the algorithm 
to adaptively adjust crossover probability and mutation probability in the Ref.[8]. The 
ideological basis for the algorithm is that the group fitness function mean is promoted 
with the evolution of population, in the meanwhile, the variance of individuals are 
prone to become more and more smaller under the guidance of the consistency 
principle, that is, the mean and variance of individual fitness functions become more 
and more smaller. Thus, we adopt the degressive mode on the setting crossover 
probability and mutation probability in the course of evolution to ensure the 
individual difference at the beginning of the evolution and the stable at the end of it.. 
Specific adjustment principle is as follows. 
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In the Equ.2,3, 
0cP  

and 
0mP  are respectively the initial value of crossover probability 

and mutation probability. 
iS and 

iC are respectively mean and standard deviation of 

fitness function of the ith generation, meanwhile 
0S  

and 
0C  

are respectively mean 

and standard deviation of fitness function of the first generation, )1,0(∈λ . 

2.3 An Improved Genetic Pulse Coupled Neural Network (IGA-PCNN) 

In this paper,we defined objective evaluation function based on linear weighted 
function with maximum shannon entropy and minimum cross-entropy.Through 
adaptive adjustment of crossover probability and mutation probability,we optimized 
the parameters of pulse coupled neural network based on the improve genetic 
algorithm — connection coefficient β , amplitude coefficient θV and incentive pulse 

attenuation coefficient θa . The algorithm is as follows. 

• Population Initialization and Coding Description 

Individual coding uses binary encoding principle and specific coding is as 
follows.The length of individual chromosome is 55 bits , the individual chromosome 
is composed of connection coefficient coding, amplitude coefficient coding and 
incentive pulse attenuation coefficient coding respectively. The chromosome forms 
the initial individuals in the group. 
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Table 1. Gene cluster definition 

Gene definition minimum maximum Coding description 

Connection coefficient β  0.0001 400 19 

Amplitude coefficient θV  0.0001 400 19 

Pulse attenuation coefficient  θa  0.0001 100 17 

 

• Fitness Function Definition 

In this paper,we defined a fitness function based on linear weighted function with 
maximum shannon entropy and minimum cross-entropy.The definition of the fitness 
function is as follows. 
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In the Equ.4, )p(1H  and )p(2H  are used to express maximum shannon entropy 

and minimum cross-entropy of the part of fitness function. 1p and 0p  are used to 

show the probability which the outputs value of PCNN is 1 and 0 in turn. ρ is a 

weighted coefficient of fitness function, as well as [0,1]∈ρ .On special 

occasions,the fitness function is defined as maximum shannon entropy,if ρ takes 

1.Otherwise we defined minimum cross-entropy as the fitness function. 

• Genetic Algorithm Operation 

Genetic algorithm make the individualities of the initial population and the population 
evolving toward optimal direction of the fitness function by implementing selection, 
crossover and mutation operation. In this paper,we choice each individuality by the 
roulette way and store the optimum individuality of every generation. The algorithm 
drive population to evolve to optimal direction and avoid population ripening ,by 
using Adaptive crossover probability and mutation probability and operation of two-
point crossover and single-point mutation. 

• Algorithm Terminal Conditions 

For the terminal conditions of the population in evolutionary process,we set the max 
evolutionary generation or set a threshold. The algorithm terminated when the 
different value of the optimum fitness value is less than the given threshold. We can 
ensure that population evolution is terminated, the individuality is optimal when the 
algorithm meets the above condition arbitrarily. 
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2.4 The Strategy of Color Disease Image Segmentation  

Aiming at the color image segmentation, the general strategy that the target image is 
segmented into results correspongding to a certain color space, and then the results 
are combined by some combination strategie. Then we can obtain the final result of 
color image segmentation.RGB color space is more commonly expression of color 
space. Because of higher correlation of the components-R\G\B, the result of color 
image segmentation corresponding to the R\G\B can preserve a lot of detail 
information of the original image and increase the fault tolerance in merging 
process.In R\G\B subspace,we use IGA - PCNN proposed in this paper to segment 
color image into components corresponding to subspace, in order to get the best 
segmentation result of the R/G/B components.The selective hige probability merger 
strategy proposed by Y Tan, D Zhou [9] is used to  merge the result corresponding to 
the R\G\B subspace,and the final result is the interest target of color disease image 
segmentation. 

3 Experiment and Analysis 

3.1 Experiment 

In the corn plots of JiLin Agricultural University, We use the camera type of 
panasonic SZ1 to get a group of photos by automatic exposure photograph in natural 
lighting conditions.We save photos with JPEG format and cut photos to size of 
640*480 with Photoshop7.0. Meanwhile we use Matlab2011b as our development 
platform in ThinkPad core i5 with 4G memory.Then our method has been used to  
segment Maize disease images compare to the result with GA-PCNN and Minimum 
cross entropy thresholding method(MCET)[10]. 

Our contrast experimen need some necessary setting.Firstly,The parameters 
settings of GA-PCNN proposed in the Ref.[8]. are as follows. 

• Population size N :30 
• Number of genetion G :50 
• Fitness deviation of four generations is less than 0.001 
• Crossover probability

cP :0.7 

• Mutation probability
mP :0.01 

 

Secondly, We only list difference parameter Settings.The parameters settings of our 
algorithm are as follows.  
 

• Population size N :30 
• Initial crossover probability

0cP ：0.1 

• Initial mutation probability
m0P ：0.01 

• Number of genetion G :100 
• Weighted coefficient of fitness function ρ :0.5 
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Thirdly,we choosed two common images of maize melanoma powder disease 
which have different external morphological characteristics.The experiment results 
are as follows. 

 

               

Fig. a1. Corn melanorma disease                 Fig. b2. Corn melanorma disease   

   

Fig.a2. The result of MCET                     Fig.b2. The result of MCET 

   

Fig. a3. The result of GA-PCNN in Ref.[8]     Fig. a4. The result of GA-PCNN in Ref.[8] 

Fig. 1. The experience results of Corn melanorma disease 
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Fig. a4. The result of IGA-PCNN                 Fig. a4. The result of IGA-PCNN 

Fig. a. The first experience                   Fig. b. The second experience 

Fig. 1. (Continued) 

3.2 Analysis 

Through the contradistinctive test, we synthetic evaluation this algorithm from 
subjective visual evaluations and the algorithm settings.First of all, from the experiment 
results we can see, by the GA-PCNN algorithm and the IGA-PCNN algorithm segment 
the RGB color space subgraph, then merge down the segmentation extracted from the 
subgraph RGB color space. The target domain features,including disease profile 
features, disease visual color discriminant features are obviously superior to the 
traditional method which segmentation processing on the minimum cross entropy 
thresholding in gray image.In addition, compared the corn melanoma powder 
segmentation effects from GA-PCNN algorithm and IGA-PCNN algorithm proposed in 
this paper, except for the external morphological characteristics in details, IGA-PCNN 
algorithm got better effect,the color texture feature information also got a more 
satisfactory results.This paper proposes a model modified genetic pulse coupled neural 
network which made a less artificial regulation and higher degree of automation.   

From the perspective of quantitative analysis, the method presented  in reference 
[13] is adopted to compare the experement results of  cross-entropy threshold,GA-
PCNN and IGA-PCNN.The computing equations of comparative results are as 
follows in reference[13]. 

 Match:      %100)/)(( 2121 ×−− NNNN  (5) 

Error:            %100))/()(( 12 ××− nmNN  (6) 

Accuracy:      Accuracy=Match-Error (7) 

In the above equations, N1 is used to express pixels values of object area by using the 
three methods respectively, N2 is used to express pixel values of object area by ma-
nual segmentation. nm×  is used to express the image size. In this paper, we did the  
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experiments ten times by each algorithm and got the mean of the results. The compar-
ative experiment results showed that the algorithm of IGA-PCNN proposed in this 
paper performance better than others . 

Table 2. Comparative experiment results 

Groups 

The method of cross-entropy 
threshold 

The method of 
GA-PCNN 

The method of 
IGA-PCNN 

Match Error Accuracy Match Error Accuracy Match Error Accuracy 

a1 93.47 11.86 81.61 95.24 3.13 93.11 96.76 1.06 95.70 

b1 93.7 12.47 81.29 95.10 3.26 91.84 95.89 1.57 94.32 

4 Conclusion 

In this paper,we proposed an improved genetic pulse coupled neural network . The 
parameters of PCNN have been optimized by the use of an improved genetic 
algorithm which is proposed in this paper.The advantages of the improved algorithm 
are as follows.Firstly,it reduces the degree of artificial participation,meanwhile 
improves the automation degree of algorithm.Secondly,Using this algorithm, the 
target area appearances of maize desease images are more meticulous in contrast to 
other methods and the color texture feature has been retained better in the target area 
of maize desease images.Therefore, the algorithm proposed in this paper is very 
significant for feature extraction and disease recognition. To sum up, the proposed 
algorithm has better application value and practical significance. 
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Abstract. In the existing segmentation algorithms, most of them take single 
pixel as processing unit and segment an image mainly based on the gray value 
information of the image pixels. However, the spatially structural information 
between pixels provides even more important information of the image. In 
order to effectively exploit both the gray value and the spatial information of 
pixels, this paper proposes an image segmentation method based on Vector 
Quantization (VQ) technique. In the method, the image to be segmented is 
divided into small sub-blocks with each sub-block constituting a feature vector. 
Further, the vectors are classified through vector quantization. In addition, the 
self-organizing map (SOM) neural network is proposed for realizing the VQ 
algorithm adaptively. Simulation experiments and comparison studies have 
been conducted with applications to medical image processing in the paper, and 
the results validate the effectiveness of the proposed method. 

Keywords: image segmentation, spatial structure, SOM neural network, vector 
quantization. 

1 Introduction 

Image segmentation can be viewed as a process of decomposing an image into several 
meaningful parts for further analysis [1]. It is one of the most fundamental areas in 
image processing and computer vision, and has been a hot topic of general interest in 
the field. There are about seven existing categories of segmentation methods, 
including statistical probability of pixel characteristic based methods [2], region 
related segmentation methods, clustering methods, graph theory based methods, level 
set methods [3], hybrid methods [4], and fuzzy theory based methods. Most of the 
existing methods focus more on the gray value information than on the geometrical 
structure information of the pixels [5, 6]. Nevertheless, from the perspective of human 
vision, human vision perception of image content is more based on percipience of 
local regions and their spatial relationships than on pixel gray value information. 
Therefore, it is desirable to design a segmentation method that can effectively utilize 
both spatial structural information of local regions and gray value information of 
pixels. 
                                                           
∗ Corresponding Author. 
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In this paper we conduct research on the segmentation issue from the perspective 
that takes local regions as processing unites and utilizes both gray value and spatial 
structure information in local regions. First, the image to be segmented is divided into 
a series of sub-blocks with each sub-block being viewed as a vector that contains 
certain structural pattern. Then, an edge detection algorithm is performed to divide the 
sub-blocks into two patterns: edge sub-block patterns and non-edge sub-block 
patterns. Further, the vector quantization (VQ) approach is proposed to cluster the 
vectors according to the structural patterns of the non-edge sub-block pattern vectors. 
Finally, the pixels of the edge sub-blocks are further processed and classified into the 
best matched category of neighboring non-edge pattern clusters based on the VQ 
results.  

VQ technology originally stems from researches on encoding discrete data vectors 
for the purpose of data compression and communication. In this paper, VQ is 
introduced into image segmentation to cluster sub-block patterns for segmenting 
images. In addition, a SOM network model is proposed to adaptively implement the 
codebook design for the VQ method. Many experiments have been conducted to test 
the proposed method in the paper, including practical applications to the segmentation 
of medical MRI images. Comparison studies with some state-of-the-art segmentation 
methods, e.g., the improved fuzzy C-mean method (FCM), are also conducted in the 
paper. Validity of the proposed method is confirmed by the experiment results. 

The sequel of the paper is organized as follows: Section 2 describes the proposed 
segmentation approach, including the classification scheme of edge and non-edge 
pattern vectors, the vector quantization algorithm for image segmentation, and the 
SOM model for designing the VQ codebook. Experiments with applications to 
medical image segmentation and results analyses are given in Section 3. Section 4 
draws conclusions and points out the possible direction of the paper. 

2 Image Segmentation by SOM-Based Vector Quantization 

The overall scheme of the new image segmentation method consists of the following 
5 computational modules: 

(1) Divide the image to be segmented into small sub-blocks of n×n pixels, each sub-
block constituting a vector with 2n  elements and each element corresponding to 
a pixel of the sub-block. 

(2) Classify the sub-block vectors into two patterns, called the edge pattern and non-
edge pattern, by using an edge detection algorithm. The edge patterns are the sub-
blocks that contain edge pixels of sub-regions in the image, and the non-edge 
patterns are the sub-blocks without edge pixels (i.e., the relatively smoothing sub-
regions of the image).  

(3) Cluster the vectors (sub-blocks) of non-edge patterns into 
C

K  classes by using 

vector quantization (VQ) method. 
(4) Implement the VQ algorithm adaptively by using an SOM network. 
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(5) Process the edge pattern sub-blocks based on the VQ results in the following 
steps: 
(i) Compare the gray value of each pixel in the edge pattern sub-blocks with the 

mean values of the neighboring non-edge pattern sub-blocks; 
(ii) Set the pixel value of the edge pattern sub-blocks with the closest mean value 

of the neighboring non-edge pattern sub-blocks.  

The main ideas and algorithms for these modules will be presented in the sequel parts 
of the section. 

2.1 Vector Construction and Classification of Edge and Non-edge Patterns 

As the first step of the vector-quantization-based image segmentation approach, the 
image to be segmented is divided into nonoverlapping sub-blocks of n×n pixels. 

Suppose that [ ( , )]n nf i j × 1 1( ,..., ; ,..., )k k n k k ni i i j j j+ + + += = is a sub-block of the M×N 

image [ ( , )]M Nf i j × , the vector ( )X k  for the sub-block is constructed in the 

following form:  

1 1 1 1( ) [ ( , ),..., ( , ),...., ( , ),..., ( , )]T
k k k k n k n k k n k nX k f i j f i j f i j f i j+ + + + + + + +=   (1) 

In this way, the image [ ( , )]M Nf i j ×  can be expressed with the vector set 

{ ( ); 1,..., }XX X k k K= =                              (2) 

Where 2/XK MN n= .  

The sub-block vectors are then classified into two patterns, the edge pattern and 
non-edge pattern, by using the following edge detection algorithm based on the 
wavelet modulus maximum edge detection [9,10]. 

The two wavelets used in the paper are the partial derivatives of the two-

dimensional Gaussian function 
2 2 2( )/2

2

1
( , )

2
x yx y e σθ

πσ
− += : 

2 2 21 ( )/2
4

( , ) ( , )
2

x yd x
x y x y e

dx
σφ θ

πσ
− +−= = ，

2 2 22 ( )/2
4

( , ) ( , )
2

x yd y
x y x y e

dy
σφ θ

πσ
− +−= =  (3) 

By setting the wavelets scale factor to 2 ja = , we have that 

1 1
2 2

1
( , ) ,

2 2 2j j j j

x y
x yφ φ  =   

, 2 2
2 2

1
( , ) ,

2 2 2j j j j

x y
x yφ φ  =   

            (4) 

Then the horizontal and vertical edge information for the pixel ( , )f x y  of an image 

can be calculated by the following convolution operations: 
1 1
2 2( , ) ( , ) ( , )j jW f x y f x y x yφ= ⊗ ，

2 2
2 2( , ) ( , ) ( , )j jW f x y f x y x yφ= ⊗ .       (5) 

The modulus and angle parameters, 
2 ( , )jM f x y  and 2 ( , )jA f x y , are then computed 

based on the wavelets convolution results: 

2 21 2
2 2 2( , ) ( , ) ( , )j j jM f x y W f x y W f x y= + , 

2
2

2 1
2

( , )
( , ) arctan

( , )
j

j
j

M f x y
A f x y

M f x y

 
=  

  
     (6) 
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The main steps of the proposed classification algorithm for classifying the edge and 
non-edge pattern vectors based on the wavelet features are as follows: 

(i) Compute the threshold parameter MT  based on the mean and variance values, Mm  

and 2
Mσ , of 

2 ( , )jM f x y  for the image to be segmented: 

M M MT m ασ= +                                   (7) 

Where α ( 0α≥ ) is the adjustment parameter to be determined in experiments.  
(ii) Extract the maximum direction, max ( , )A x y , of the angle values 2 ( , )jA f x y  in its 

8-neighborhood area for each pixel. 
(iii) For each sub-block, compute the mean value, ( , )M x y , of the 3 modulus 

2 ( , )jM f x y  along the vertical direction of the maximum angle max ( , )A x y . 

(iv) Classify the vectors of the sub-blocks by compare the mean value ( , )M x y  with 

the threshold MT : 

If ( , )M x y > MT , the vector for the sub-block [ ( , )]n nf i j ×  is classified to the edge 

pattern;  
Otherwise, the vector is classified to the non-edge pattern.  

2.2 Image Segmentation by Vector Quantization 

After the sub-block vectors have been classified to edge pattern and non-edge pattern, 
we then perform segmentation on the non-edge pattern vectors using vector 
quantization (VQ) technique. 

The vector quantization [11] is the mapping process from a k-dimensional 
space kR to a finite subset of k-dimensional vectors C, i.e., : k kQ X R C R∈ → ⊂ . Where 

{ ( ); 1,..., }CC C k k K= =  is called the codebook, and ( )C k  is called the code word. For 

our vector-quantization-based segmentation approach, there are two key problems to 
be solved: one is how to design a good code book C for the specific image to be 
segmented, and the other is how to segment an image using a given code book. The 
code book design algorithm will be presented in the next subsection. We describe the 
segmentation algorithm here in the following. 

Suppose now that the vector set { ( ); 1,..., }XX X k k K= =  has been constructed for 

the image [ ( , )]M Nf i j ×  to be segmented by using the method given in Section 2.1 

and the codebook { ( ); 1,..., }CC C k k K= =  has also been obtained. The classification of 

edge pattern and non-edge pattern for the vectors has also been made. Our VQ-based 
segmentation algorithm is as follows: 

(i) Compute the distances between the vector ( )X k  and all the code words ( )C k  in the 

codebook C: 
( ) || ( ) ( )||, 1,...,j Cd k X k C j j K= − =                         (8) 

Where ( )X k  is the non-edge pattern vector of { ( ); 1,..., }XX X k k K= = . 
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(ii) Find the minimal distance 
qd  in all the 

jd ’s: 

( ) min{ ( )}q j
j

d k d j=                             (9) 

(iii) Quantize the vector ( )X k  to the code word ( )C q . This means that the sub-block 

[ ( , )]n nf i j ×  represented by ( )X k  in the image [ ( , )]M Nf i j ×  has been 

segmented to the sub-block ( )C q .   

(iv) Goto step (i) until all the non-edge pattern vectors have been processed.  

It can be seen that by performing the above algorithm, the non-edge pattern sub-
blocks of the image have been segmented to CK  classes with each class represented by 

( )C k , 1,..., Ck K= . 

2.3 Codebook Design for Vector Quantization Based on SOM Network 

The key problem of VQ is the design of its codebook. The classical LBG algorithm 
[11] has the drawback of high computational complexity. The self-organizing feature 
mapping (SOM) network has been successfully applied to solving unsupervised 
learning and clustering analysis problems [12,13]. In this paper we will apply the 
SOM network to the codebook design for our VQ-based image segmentation method. 
The architecture of the SOM network used in the paper is shown in Fig.1. 

 

1x 2x nx

jy

jW

 

Fig. 1. Architecture of the SOM network used for VQ 

In Fig.1, the weight vector between input 1 2[ , , , ]Tmx x x and output neuron jy is 

denoted by 
1 2[ , , , ]Tj j j jmW w w w=  . In the method, the input vector 1 2[ , , , ]Tmx x x  is just the 

non-edge pattern vector ( )X k  of the image { ( ); 1,..., }XX X k k K= =  to be segmented, 

the weight vector 
1 2[ , , , ]Tj j j jmW w w w=   to be designed by training process is the 

codeword ( )C j  of { ( ); 1,..., }CC C j j K= = . 

Based on the above idea, the algorithm for training weights (the VQ codebook) is 
as follows:  
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(i) Initialization:   

Wj (0) ← randomly selected vectors from the training set, i.e., the non-edge pattern 
vectors of { ( ); 1,..., }XX X k k K= = ;  k ← 0. 

(ii) Input X(k) , and update Wj in the following method: 
(ii-1) Find the weight vector Wq that has the minimal distance with X(k) : 

{ }( ) min ( ) ( ) ( ) ( )q j qj
d k W k X k W k X k= − = −                    (10) 

(ii-2) Define Nq(tk) the neighborhood of Wq , and update the weights in Nq(tk) , without 
updating the weights not in Nq(tk) : 

( 1) ( ) ( )[ ( ) ( )]j j jW k W k k X k W kα+ = + − , ( )qj N k∈                    (11)   

Where ( )ktα  is the learning rate with 0 ( ) 1.ktα< <  

(iii) k ← k+1, and goto (ii), until the network converged. 

Having the above training process finished, the trained weight vectors 

1 2[ , , , ]Tj j j jmW w w w=   ( 1,..., Cj K= ) will be taken as the codebook { ( ); 1,..., }CC C j j K= = , 

and will be used for segmenting the image as discussed in Section 2.2.  

2.4 Further Processing of the Edge Pattern Vectors Based on VQ Results 

After the non-edge pattern vectors have been segmented by using the SOM-based VQ 
method given above, we further process the edge pattern sub-block vectors based on 
the VQ results in the following way: 

(i) Compute the difference values between the pixel of the edge pattern sub-block and 
the mean value of its neighboring non-edge sub-block vectors that have been 
segmented by the VQ method.  

(ii) Find the minimum absolute difference value, and classify the pixel to the class 
with the minimum difference value by replacing the pixel value with the mean 
value of the best matched neighboring vector. 

3 Experimental Results 

To verify the effectiveness of the SOM-based VQ segmentation method, many 
experiments have been conducted with applications to segmentations of human brain 
MRI images in the paper. All the anatomical components of the MRI brain images, 
including the skull, cerebrospinal fluid (csf), gray matter, white matter, and 
background, are segmented in the experiments. Accordingly, the improved fuzzy C-
mean method (FCM), also known as FLICM proposed recently by Stelios and 
Vassilios [16] is also implemented for comparison study in the experiments. 

Fig.2 shows a group of the experiment results on an MRI image of human brain 
segmented by using the new segmentation method. In the figure, Fig.2(a) is the 
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original MRI image, in which 6 classes of anatomical components exist, including the 
skull, cerebrospinal fluid (csf), gray matter, white matter, background and a brain 
tumor in the centre part of the image. We expect to segment out all the 6 components 
from the image. Fig.2(b) - Fig.2(g) show the experiment results by using the new 
method.  

              

  (a)          (b)          (c)         (d)           (e)          (f)          (g)   

Fig. 2. Experiment result using the proposed method. (a) the original MRI human brain image 
with a brain tumor in the centre part; (b) the segmented tumor; (c) segmented white matter; (d) 
segmented gray matter; (e) segmented cerebrospinal fluid; (f) segmented skull; (g) the 
combination result of all the segmented parts 

We can see from Fig.2 that the outcomes of the proposed segmentation method 
have fulfilled our expectation. 

Meanwhile, the FLICM method [16] is also conducted on the same MRI image in 
the experiment. The result is shown in Fig.3.  

      
               (a)          (b)          (c)          (d)          (e)          (f) 

Fig. 3. Experiment result by FLICM method. (a) the original MRI human brain image with a 
brain tumor in the centre part; (b) the segmented tumor; (c) segmented white matter; (d) 
segmented gray matter; (e) segmented cerebrospinal fluid; (f) segmented skull 

By comparing the experimental results of Fig.2 and Fig.3, we can see that the new 
method works well and outperforms the FLICM in segmenting the 6 parts in the 
human brain MRI image, each part being segmented more accurate by the new 
method than by FLICM.  

Many other experiments have been done and similar results were obtained in the 
work, which will be omitted here due to the limitation of the paper pages.  

4 Conclusions 

In this paper, we proposed a new method for segmenting images by using the SOM-
based vector quantization technique. The new segmentation approach can effectively 
utilize both the gray value and the spatial information of image pixels. Validation of 
the new method is confirmed by the experimental results conducted in the paper with 
successful applications in medical images segmentation. 
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It is noticed that the computational complexity of the proposed method is quite 
high for the SOM training process. Thus, more efficient algorithms, such as parallel 
algorithms, for training the SOM network need to be developed to speedup the 
computational time. This is the problem for further study of the paper. 
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Abstract. Sparse modeling has proven to be an effective and powerful tool that 
leads to state of the art algorithms in image denoising, inpainting, super-
resolution reconstruction, etc. Although various sparse modeling algorithms 
have been proposed, a major problem of these algorithms is computationally 
expensive which prohibits them from real-time applications. In this paper, we 
propose a simple and efficient approach to learn fast approximate sparse coding 
networks as well as show its application to image denoising. Our experiments 
demonstrate that the pre-learned network is over 200 times faster than sparse 
optimization algorithm, and yet obtain approving result in image denoising.  

Keywords: Image denoising, Sparse coding, Neural networks, Online gradient 
method. 

1 Introduction 

Removing the noise of images is a conventional issue, which has aroused much inter-
est for years. Noise is inevitable introduced during the acquisition stage, thus denois-
ing is usually the first step to enhance the performance of degraded images. Different 
algorithms are depended on noise models applied. In most cases, the noise is assumed 
to be an additive random noise. Additive Gaussian white noise is the common type. 
The model of noisy image can be depicted below: 

 y x v= +  (1) 

Where y is the noisy image, and x is the ground truth. v is the noise, which is usually 
the Gaussian noise, as discussed above. Image denoising aims to remove the noise 
from y [2]. And the denoised image is as close as possible to the ground truth. We 
long for better quality of images with less cost, especially the wicked situations. How 
to obtain the less noisy images from these contaminated data has been a significant 
subject for researchers. 

Despite the great development of digital image techniques, image denoising is still a 
challenge problem. The algorithm based on dictionary learning and sparse representa-
tion is an outstanding one [1],[3]. In sparse coding, the test examples are represented as 
a sparse linear combination of the trained dictionary which is learned by training  
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samples. Using a small number of atoms parsimoniously chosen out of an over-
complete dictionary, sparse coding techniques effectively represent a natural image. By 
training an appropriate dictionary as well as corresponding sparse coefficients with K-
SVD, samples of data can be represented or reconstructed by dictionary [4]. Because of 
the high quality of dictionary and sparse coefficients, noise can be removed during this 
progress. Even though K-SVD algorithm performs well, the slow speed of predicting 
the sparse coefficients through learned dictionary limits its application. 

Our motivation is to propose a fast approximate sparse encoder in which not sparse 
coding performance but also sparse coefficients inference speed are taken into ac-
count. Although Gaussian noise is assumed in application to image denoising, the 
proposed approach is also valid to other types of noise.  

The paper is organized in the following parts: in section 2 we look back on the 
concerned benchmark work: K-SVD and the exact algorithm is presented in section 3. 
Then section 4 gives our experimental results. At last, we will conclude in section 5. 

2 K-SVD Algorithm 

The denoising algorithm based on dictionary learning is one of the most important 
branches. By training on the data, a dictionary can be obtained. With an over-
complete dictionary made up of standard signal atoms, data to be processed is de-
picted by sparse linear combinations of these atoms belonging to dictionary [1]. Data 
is preprocessed for the convenience of algorithm, and usually, images are cut into a 
large amount of patches.  

In order to achieve sparse representation of signals, Elad proposed an algorithm of 
dictionary learning: K-SVD. Under strict sparse constrains, they find an adapted dic-
tionary to represent each member of the training set. K-SVD is an iterative algorithm. 
It alternates between computing the sparse codes of samples based on current dictio-
nary, and updating the dictionary atoms according to modified coefficients. The mod-
ification of dictionary columns is accompanying with the update of coefficients. Thus, 
they converge at the same time [5]. Using patches from the contaminated image or 
ground truth, they train the dictionary by solving a L-0 norm problem. 

 
2

2 0
ˆ= arg min D x

α
α α μ α− +  (2) 

 
2

2 1
ˆ= arg min D x

α
α α μ α− +  (3) 

The original problem is a L-0 norm one, but in this circumstance, it equals to L-1 

norm formula (3), α is the sparse coefficient and D is the dictionary, μ is the para-
meter of sparsity.  

Because of trained dictionary’s strong representative ability, noise can be re-
strained during training progress. The noise level changed with the update of an  
output image. Usually, before finding the expected output image, several more itera-
tions of dictionary update and representation computation are carried out. They  
proposed a simple method for the denoising problem. The method is based on local 
operations and uses sparse decomposition of every patch on the redundant dictionary. 
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3 Fast Approximate Sparse Encoder 

3.1 Neural Networks 

Image denoising using neural network is not a new area for research. Many custo-
mized networks have been used to solve the denoising problem, for instance, convolu-
tional neural networks: CNNs [6]. Only a small set of patches are used for training, 
but robust to the strong noise level. Harold C. Burger et al propose a multi-layer per-
ceptron architecture for image denoising [7], each layer has sufficient units to achieve 
a better performance. In addition to Gaussian noise, the multi-layer perceptron archi-
tecture is still effective for other types of noise, such as stripe noise, speckle noise. 

Back propagation neural network is the most widely used neural network. It ap-
plies a smooth shrinkage function, and one hidden layer or more can be used. The 
neighboring layers are connected by the weights. In addition, BP network is a forward 
network, i.e. the signals are transferred layer by layer. But error is propagated back-
ward, according to error of ideal output and current output, during training. In the 
propagation, the weights are updated layer by layer from the input layer to the output. 
Our proposed algorithm also uses this structure.  

The network is completed by seeking a minimum of a composite function from the 
input to output space, known as the network function [8]. Given a training set {(x1, 
t1), (x2, t2)… (xm , tm)}. When the input data xi from the training examples, is of-
fered to the network, the network produces an output oi. The output is different from 
the target ti. By using a learning algorithm, the output and the target are identical. 
That is, we seek a minimum of error function of network, defined as 

 
2

1

1

2

m

i i
i

E o t
=

= −  (4) 

The back propagation is a method of finding a local minimum of error function. After 
lots of iterations, a network adapted to the train data is produced. 

3.2 Fast Approximated Predictor 

The fast approximated predictor is based on the classical BP network. Our proposed 
algorithm abandons the dictionary learned by K-SVD, which is strongly representa-
tive and redundant. Instead, we learn a single layer BP network to seek relationship 
between original signals and the sparse coefficients. To be precise, the network is a 
set of weights between layers. These weights play a similar role to the dictionary in 
the process of K-SVD algorithm. K-SVD learns a dictionary coupled with sparse 
coefficients. The dictionary can be considered as a backward direction transform. But 
noise removal is a problem that images not only need to be reconstructed, but to be 
represented. While in the stage of representation, sparse coefficients are acquired by 
means of OMP algorithm [9]. Unlike the K-SVD dictionary learning, our architecture 
is directly used to predict the approximate sparse coefficients or to restore the original 
signals. So our proposed is a bidirectional predictor. 
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In the training section, traditional solution is using batch learning. In this way, the 
gradient contribution accumulated for all data points in the training set before updat-
ing the weights. The other approach is online learning, where the weights are updated 
immediately after seeing every data point. Especially when the training set is redun-
dant, it is usually much faster. The noise in the gradient can help to escape from local 
minima. Online gradient method is a valid tool for this kind of problem, so we apply 
it to our algorithm to iterate to find its optimal solution. 

Figure 1 is the flowchart of the proposed methods. As illustrated in figure 1, X and 
α are the training set and coefficients. With the help of K-SVD algorithm, a dictio-
nary and the sparse coefficients are learned in the first stage. And by the means of 
dictionary and coefficients, a direct and back network is learned, meanwhile. Besides, 
the problem we solve is a large-scale data processing. We take place of the dictionary 
by the network weight: W, to find the structural hidden spaces and the mapping. Even 
the coefficients predicted by the network are not sparse, the speed is much faster. 

 

Fig. 1. Flowchart of our algorithm. X represents the training set. D and α  are learned by K-
SVD algorithm at the stage 1. Then with the help of training set and corresponding coefficients, 
a bidirectional network: W is trained between the two spaces at the stage 2. When going 
through the trained network, the noise is removed from noisy image. 

4 Experimental Results 

The algorithms including ours, dressed above, are patches-wise level. Two sizes of 
images are used. Images which have the resolution of 256×256, are cut into the blocks 
of 6×6 and, the number of overlap pixels is 4. Thus, sum of samples for training is 
15876. The ones of 512×512 are divided into 8×8 blocks, and the number of overlap 
pixels is 4. Sum of the total samples is 16129. While in the test stage, samples from 
images of 256×256 are still the size of 6×6. The overlap pixels are 5. The size of sam-
ples from images of 512×512 remains 8×8, but the overlap pixels are 6. 

The size of dictionary is set to 100, and the sparsity is 3. The network selects a sin-
gle hidden layer one. BP network parameters are very sensitive to the training data, so 
we employ some common tricks. The first one is data normalization. Each sample 
subtracts the mean value, and then is normalized by its 2-norm. The other is the  
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problem of hidden units. The number is set to 36, and learning rate is set to 0.03. Ini-
tial weights are random selected around zero. 

Learning a dictionary is sometimes accomplished through learning on a noise-free 
dataset. We implement the experiments by training the ground truth of images, and 
test various levels of noise as well as different types of noise. Experiments are com-
pleted on a PC with a Pentium Dual-Core 3.2G CPU. Considering speed is an impor-
tant aspect, table 1 gives the performance of the two algorithms. The principal time 
costs a lot, during the process which is used to predict coefficients. Denoising by K-
SVD spends much time encoding a sparse coefficient. But time of this step drops a lot 
in our proposed algorithm, owing to the quality of BP network. Our method is about 
200 times faster than the K-SVD at least. This performance may be acceptable for the 
application in our daily life and technique field. 

Table 1. Elapse time of comparisons for predicting the coefficients. The noise variance 
sigma=35, and the type of noise is Gaussian white noise. 

images K-SVD(s) Our method(s) Speed-up Ratio 

Lena 124.00 0.38 326.32 
Barbara 107.18 0.37 289.67 
Peppers 99.65 0.43 231.74 
Goldhill 100.62 0.31 324.58 

 

 
             (a)                          (b)                         (c) 

 
             (d)                          (e)                         (f) 

Fig. 2. PSNR values of K-SVD and our method with the increase of noise level. The top row is 
the performance for image “Peppers”, and the bottom is for “Lena”. Each column show the 
results tested by Gaussian noise, Salt and peppers noise and Speckle noise, respectively. 
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Our predictor is more obvious with the increase of noise level, compared to K-
SVD. Figure 2 shows the experiments results. As seen from the curves of two algo-
rithms in each figure, both methods perform well in low level of noise. But along with 
the increase of noise, PSNR slows down fast below Sigma=40. And performance 
tends to flat curves, when the noise continues to rise. For our algorithm, quality is 
inferior to the K-SVD in low noise level. As noise level updates, the proposed sur-
passes the other slightly. Even though the superiority is small, it has a tendency to 
keep the advantage.  And it is nearly same situation for all the types of noise, as the 
columns of figure depicting. A few examples are shown in Figure 3. 

              

Gaussian noise:        salt and pepper noise:       speckle noise: 
14.6035dB                19.6144dB               19.9227dB 

              
K-SVD: 26.9754dB      K-SVD: 28.1573dB     K-SVD: 29.9847dB 

              
our result: 27.1003dB  our result: 28.1839dB   our result: 27.9774dB 

Fig. 3. Comparison of our method to K-SVD on different kinds of noise. The top row show the 
images contaminated by Gaussian noise, salt and pepper noise and speckle noise. The perfor-
mance of K-SVD is described in the middle. And our results are slightly better than K-SVD 
under this noise level. 

5 Conclusions 

Our motivation is to train a fast approximate sparse encoder in which not sparse cod-
ing performance but also sparse coefficients inference speed are taken into account. In 
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this paper, we propose a simple and efficient approach to learn fast approximate 
sparse coding networks as well as show its application to image denoising. Our expe-
riments demonstrate that the pre-learned network is over 200 times faster than sparse 
optimization algorithm, and yet obtain approving result in image denoising. By train-
ing a neural network, the learned weights can achieve the performance of K-SVD 
algorithm. Although Gaussian noise is assumed in application to image denoising, the 
proposed approach is also valid to other types of noise.  

References 

1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An Algorithm for Designing Overcomplete 
Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 54(11), 
4311–4322 (2006) 

2. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, F.C.: Survey of Image Denoising 
Techniques. In: Proceedings of GSP 2004, Santa Clara, CA (September 2004) 

3. Sadeghipour, Z., Babaie-Zadeh, M., Jutten, C.: An adaptive thresholding approach for im-
age denoising using redundant representations. In: IEEE International Workshop on Ma-
chine Learning for Signal Processing, MLSP 2009, September 1-4, pp. 1–6 (2009) 

4. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: design of dictionaries for sparse representa-
tion. In: Proceedings of the Workshop on Signal Processing with Adaptative Sparse Struc-
tured Representations (SPARS 2005), Rennes, France, pp. 9–12 (2005) 

5. Elad, M., Aharon, M.: Image Denoising Via Sparse and Redundant Representations Over 
Learned Dictionaries. IEEE Transactions on Image Processing 15(12), 3736–3745 (2006) 

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) 

7. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks 
compete with BM3D? In: 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 16-21, pp. 2392–2399 (2012) 

8. Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Berlin (1996) 
9. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. In-

form. Theory 50(10), 2231–2242 (2004) 
 



 

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 627–634, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Residual Image Compensations for Enhancement  
of High-Frequency Components in Face Hallucination 

Yen-Wei Chen1, 2, So Sasatani2, and Xianhua Han2 

1 College of Computer Science and Information Technology,  
Central South Univ. of Forestry and Technology, Hunan, China 

2 College of Information Science and Eng., Ritsumeikan University, Shiga, Japan 

Abstract. Recently a growing interest has been seen in single-frame super-
resolution techniques, which are known as example-based or learning based  
super-resolution techniques. Face Hallucination is one of such techniques, 
which is focused on resolution enhancement of facial images. Though face hal-
lucination is a powerful and useful technique, some detailed high-frequency 
components cannot be recovered. In this paper, we propose a high-frequency 
compensation framework based on residual images for face hallucination me-
thod in order to improve the reconstruction performance. The basic idea of pro-
posed framework is to reconstruct or estimate a residual image, which can be 
used to compensate the high-frequency components of the reconstructed high-
resolution image. Three approaches based on our proposed framework are  
proposed. Experimental results show that the high-resolution images obtained 
using our proposed approaches can improve the quality of those obtained by 
conventional face hallucination method.   

Keywords: Super Resolution, Facial Image, Face Hallucination, Residual 
Image, High-Frequency Components. 

1 Introduction 

There is a high demand for high-resolution (HR) images such as video surveillance, 
remote sensing, medical imaging and so on because high resolution images can reveal 
more information than low resolution images. However, it is hard to improve the 
image resolution by replacing sensors because of the high cost, hardware physical 
limits. Super resolution image reconstruction (SR) is one promising technique to 
solve the problem. SR can be broadly classified into two families of methods: (1) The 
classical multi-frame super-resolution [1], and (2) the single-frame super-resolution, 
which is also known as example-based or learning-based super-resolution [2-4]. In the 
classical multi-image SR, the HR image is reconstructed by combining subpixel-
aligned multi-images (LR images). In the learning-based SR, the HR image is recon-
structed by learning correspondence between low and high resolution image patches 
from a database. 

Face Hallucination is one of learning-based SR techniques, which is focused on 
resolution enhancement of facial images [5-7]. Though face hallucination is a power-
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ful and useful technique, some detailed high-frequency components cannot be recov-
ered. In this paper, we propose a high-frequency compensation framework based on 
residual images for face hallucination method in order to improve the reconstruction 
performance. The basic idea of proposed framework, which is presented in our pre-
vious paper [8], is to reconstruct or estimate a residual image that can be used to com-
pensate the high-frequency components of the reconstructed high-resolution image. 
This paper is an extension of our previous paper [8] and three approaches based on 
our proposed framework are studied. 

The paper is organized as follows. In Section 2, we describe the conventional face 
hallucination method. Our proposed residual image compensation methods are pre-
sented in Section 3. Section 4 presents experimental results and quantitative evalua-
tion. Section 5 summarizes our conclusions. 

2 Face Hallucination  

The face hallucination method is one of learning-based SR methods, which is pro-
posed for resolution enhancement of facial images [5-7]. In this section, we briefly 
introduce the basic concept of face hallucination [8], which is shown in Fig.1.  

 

 
 

Fig. 1. The basic concept and schematic diagram of face hallucination 

The basic idea of face hallucination is that a face image can be reconstructed from 
other face images by linear combination because all facial images have a similar 
structure. In face hallucination, an input LR image can be represented as a linear sum 
of the LR training images along with some learned coefficients. Due to the correlation 
between the LR and HR images in the training dataset, the output HR image can also 
be calculated by finding the linear sum of the corresponding HR images using the 
same coefficients.  



 Residual Image Compensations for Enhancement of High-Frequency Components 629 

 

We represent a two-dimensional face image using a column vector of all pixel val-
ues, and lX represent the input LR face image. HR training images are denoted by 

],,,[ 21 MHHH  , and the corresponding LR training images are ],,,[ 21 MLLL  , 

where M is the number of training image pairs. First, we interpolate the LR training 
images and the input (test) LR image to the resolution space of the HR training im-
ages, denoted by ],,,[ ~~~

21 MLLL   and lX
~

, respectively. lX
~

 
may be represented by 

a linear sum of interpolated training LR images using Eq. 1: 
 

MMl ccc LLLX
~~~~

2211 +++=   (1)

where ],,[ ,21 Mccc =C  are the weight coefficients, satisfying  the following 

constraint: 
 

121 =+++ Mccc  (2)

The optimal weights can be calculated by minimizing the error in reconstructing the 
input LR image lX

~
 
from training LR images. This error is defined in Eq. 3. After 

substitution of the constraints in Eq. 2 into Eq. 3, the weight vector may be obtained 
as Eq. 4.  
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After obtaining the coefficients for reconstructing the input LR image with LR train-
ing images as given in Eq. 1, we replace L

~
 with H  using the same coefficients C . 

Subsequently, the HR image hX  can be obtained using the equation: 
 

MMh ccc HHHX ++= 2211

 

(5)

3 Three Approaches for High Frequency Compensations 

Though face hallucination is a powerful and useful technique, some detailed high-
frequency components cannot be recovered. In this paper, we propose a high-
frequency compensation framework based on residual images for face hallucination 
method in order to improve the reconstruction performance. The basic idea of pro-
posed framework is to reconstruct or estimate a residual image, which can be used to 
compensate the high-frequency components of the reconstructed high-resolution im-
age as shown in Fig. 2.  
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The HR and LR training image pairs ],,,[ 21 MHHH  and ],,,[ 21 MLLL   al-

ready exist in conventional face hallucination. With conventional face hallucination, 
for each LR training image L , the other 1−M training image pairs are used to obtain 

the approximated HR image Ĥ . The HR training residual image is the difference 

between the original HR image and the reconstructed HR image Ĥ , while the LR 
residual image is the difference between the original LR image and the downsampled 
version of the reconstructed HR image. With the two training pair datasets, three ap-
proaches are proposed for high frequency compensation, which are shown in Figs.3-5. 

 

 

Fig. 2. Framework for recovering high-frequency components in face hallucination 

 

 

Fig. 3. Proposed super-resolution method 1 
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Fig. 4. Proposed super-resolution method 2 [8] 

 

Fig. 5. Proposed super-resolution method 3 
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Proposed Method 1: We first use the conventional interpolation method to obtain 
a HR image and calculate the LR residual image between the input LR image and the 
downsampled reconstructed HR image. Then we reconstruct the HR residual image 
from the LR residual image using training residual image pairs. Finally we merge the 
HR residual and the interpolated HR images. 

Proposed Method 2 [8]: We first use the conventional face hallucination method 
to obtain a HR image and calculate the LR residual image between the input LR im-
age and the downsampled reconstructed HR image. Then we reconstruct the HR resi-
dual image from the LR residual image using training residual image pairs. Finally we 
merge the HR residual and the reconstructed HR images.  

Proposed Method 3: We first use our proposed SR method 1 to obtain a HR im-
age and calculate the LR residual image between the input LR image and the down-
sampled reconstructed HR image. Then we reconstruct the HR residual image from 
the LR residual image using training residual image pairs. Finally we merge the HR 
residual and the reconstructed HR images. 

4 Experimental Results 

In order to validate the effectiveness of our proposed methods, we apply our proposed 
three methods to two face databases. The first one is our developed MaVIC database 
(Multi-angle View, Illumination and Cosmetic Facial Image Database), which con-
tains 99 aligned images of different persons and the size of each image is 320 × 400 
[9]. The second one is C&P database provided by Cohn Kanade [10] and Pie [11], 
which contains 165 imperfectly aligned frontal face images, and each image size is 
264×320. Each image in database is used as a HR image. We first generate the corres- 
ponding LR image by downsampling the original image (the HR image), which is a 
quarter of the size of the original HR image. Then we have a pair of HR and LR im-
ages for training.  The leave-one-out method is used in our experiments. In each da-
tabase, we select one LR image randomly as a test image and its HR image is used as 
a groundtruth image for quantitative evaluation. Other image pairs are used for train-
ing. Our proposed three methods are used for HR reconstruction of the LR test image. 
In order to make a comparison, the conventional face hallucination method and the 
Bi-cubic interpolation method are also used for reconstructions. For each method, a 
total of 15 experiments with a different test image are performed. The Peak Signal-to-
Noise Ratio (PSNR) [dB] is used as a quantitative measure for evaluation of the HR 
reconstruction performance. For C&P’s imperfectly aligned facial datasets, our pro-
posed patch face hallucination method [8] is used with a patch size of 3×3 and a 1×1 
patch that overlaps with adjacent patches.  

Typical experimental results are shown in Fig.6 and Fig.7. Figure 6 is for MaVIC 
database, while fig.7 is for C&P database. The averaged PSNR over 15 experiments 
for each method is summarized in Table 1. It can be seen that the reconstructed high-
resolution images obtained using our proposed approaches are much better than those 
obtained by conventional face hallucination method and Bi-Cubic interpolation me-
thod and the proposed method 3 shows the best performance among three proposed 
methods.   
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Fig. 6. Typical reconstructed images for the MaVIC database 

 

 

Fig. 7. Typical reconstructed images for the C&P database 
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Table 1. Comparison of the averaged PSNR  

 MaVIC C&P 

Conventional SR 33.5 31.2 

Proposed SR 1 38.6 32.9 

Proposed SR 2 41.3 33.4 

Proposed SR 3 43.7 33.8 

Bi-Cubic 31.2 30.5 

5 Conclusions 

We proposed a residual image compensation framework to improve the reconstruction 
quality for face hallucination. The basic idea of our proposed framework was to recon-
struct or estimate a residual image, which can be used to compensate the high-frequency 
components of the reconstructed high-resolution image. Three approaches based on our 
proposed framework were proposed. The effectiveness of our proposed methods has 
been demonstrated on two face database: MaVIC and C&P. The reconstructed high-
resolution images obtained using our proposed approaches are much better than those 
obtained by conventional face hallucination method and Bi-Cubic interpolation method 
and the proposed method 3 shows the best performance among three proposed methods. 
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Abstract. A human motion recognition method based on micro-acceleration 
sensor technology is put forward in this paper. Acceleration information acquire 
system is designed, which is including a tri-axial accelerometer, a micro-
processor, a wireless transmission module and power supply program. The 
signal preprocessing and methods of feature extraction is analyzed. What’s 
more, the experiment of human hand motion recognition based on BP neural 
network is carried out, results show that method proposed have recognition rate 
of 90%, compare the characteristics without processing and through principal 
component analysis (PCA) respectively after the identification experiment, the 
results show that the latter improve recognition effect and speed up 
convergence rate. 

Keywords: motion recognition, acceleration sensor, feature extraction, PCA-BP 
neural network. 

1 Introduction 

In recent years, with the rapid development of micro-electromechanical systems, 
which have advantages of small size, low power consumption, low prices. The 
identification methods based on statistical pattern recognition is widely used in human 
motion tracking research[1-4]. Shiguang Yi used hidden Markov model for human 
motion recognition, motions such as walking, climbing stairs, identify activities is 
studied, action recognition rate between 90-100% [5]. Tong Zhang developed a 
wearable sensor and took advantage of the first-order support vector machine 
algorithm to monitor elder fall [6]. Neural network based on visual or wearable sensor 
in physical activity recognition have a wide range of applications[7][8]. 

In this essay, two aspects use neural network algorithm based on the sensor 
technology to recognize human motion are carried out. Firstly, micro-acceleration 
sensor module is designed and preprocessing of motion acceleration methods is 
studied. Secondly, BP neural network model as a human action recognition algorithm 
based on principal component analysis is proposed. 

The structure of this article is organized as follows: The second section describes 
the hardware of sensor module design, the third part is preprocessing and feature 
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extraction methods of acceleration signal, the fourth section describes the PCA-BP 
neural network model and structure, the fifth part introduce human motion 
recognition experiments and results. The sixth part is the summary of full essay. 

2 Design of Sensor Module 

According the acceleration amplitude of human body in daily activities is at the range 
of ± 2g, the frequency of the movement is around 0 ~ 10Hz. This paper we selected a 
three-axis acceleration sensor LIS3LV02DQ, which is produced by ST Company, it 
contains sensing unit and IC interface, and the signal received form the sensing unit 
can be transmitted through I2C/SPI interface to an external device. It is very small  
(7 × 7 × 1.8mm), which can be embedded into hardware development board, having 
640Hz frequency bandwidth and can be collected the 3D acceleration values range 
from ± 2g or ± 6g [9]. 

Data processing devices play the role of real-time data acquisition and storage of 
human motion acceleration. Enhanced 32-bit microcontroller STM32F103RBT6 
produced by ST corporation is selected. The devices are designed for the requirements 
of high-performance, low-cost, low-power embedded system [10]. Human motion 
acceleration signal transmit in wireless access, the wireless data transmission module 
nRF24L01 module and NetUSB-24L11 module is selected to meet the 
synchronization of data transmission and reception of human action. Figure 1 is the 
object picture of wireless module. 

 
 

 
(a) NetUSB-24L11 module (b) nRF24L01 module 

Fig. 1. Wireless data transmission module 

 
In order to ensure the entire acquisition system is lightweight and small size, a 

portable battery-powered system is used for power supply, and a separately powered 
plan is taken into account for this system. The switching power L6920 produced by 
ST corporation is chosen for the microcontroller and wireless data transmission 
module power supply. The output voltage range form 3V ~ 4.2V by lithium battery 
converted with DC-DC way, by this way can obtain stable 3.3V voltage for the power 
supply for microcontroller and wireless data transmission module, thus the power 
consumption of the system is reduced; so as to ensure pure power for acceleration 
sensor, a low dropout linear regulator power supply LM1117 is selected, which can 
ensure the accuracy and stability of the sensor supply. Figure 2 and Figure 3 is the 
electro circuit of wireless module respectively. 
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Fig. 2. Electro circuit of L6920 Fig. 3. Electro circuit of LM1117 

Below figure 4 and 5 is the sensor module front and rear physical map: 

 

Fig. 4. Sensor module front map Fig. 5. Sensor module rear map 

3 Data Pre-processing and Feature Extraction 

3.1 Data Preprocessing: 

In order to obtain a clean motion acceleration signal, the pretreatment is necessary. 
Pretreatment including: denoising resampling motion signal, characteristic extraction. 

Denoising: A five order Moving Average Filter (MAF) is selected for smoothing and 
denoising original acceleration signal of human motion, even though it is simple, but 
it is optimal for suppress random noise and keep the steep edge. 

( ) ( ) ( ) ( )( )1
1 ...

2 1sy i y i N y i N y i N
N

= + + + − + + −
+

 (1) 

Where yi is the original value of the signal, N=5 in this passage, ( )sy i is result of the 

i point signal after filtering. Figure 6 shows motion acceleration signal filtering result 
after the five order moving average filter, the above part is the raw acceleration signal, 
the below part is the moving average filter result, the noise in acceleration has been 
removed and the details and peak information also have been retained. 

 

 

Fig. 6. Filter result of acceleration signal 
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Motion Signals Extraction: Since the acceleration sensor LIS3LV02DQ having little 
drifts in the static condition, the action signal and non-action signal are distinguished 
well after differential operation. Set acceleration Root-Mean-Square (RMS) value to 
0.25m/s2 as threshold to judge whether the differential signal have action signal in 
time window. Sliding the time window, if the RMS value of signal after differential in 
time window is greater than 0.25m/s2, that point is considered as motion start point, 
while moving the time window, judge acceleration RMS value is less than 0.25m/s2 in 
next time sliding window as the end point of this motion. 

Resampling: The sensor acquisition system sampling frequency is 1KHz, different 
people do the same action, those smartness, the signal have short length, other 
slowness, the signal length is long, thus before the feature extraction and action 
recognition, it is necessary to ensure the motion signal have equivalent length. 
Pretreatment of resampling can achieve this purpose. 

3.2 Feature Extraction 

Studies show that after the original data feature extraction, the recognition rate can 
improve as much as 40%, so accurate select and extract feature information from 
acceleration is particular significance to recognition. By investigating the method 
used in characteristics extraction in pattern recognition system [11]. This essay 
extracted the following four time domain characteristics (mean, variance, signal 
amplitude area, RMS value, and axis correlation coefficient) for recognition algorithm. 

4 PCA-BP Neural Network Recognition Algorithm 

The structure of BP neural network is shown in Figure 7, it is generally composed by 
Three-Layer structure, the input layer, hidden layer and output layer, each layer 
containing one or more input nodes, hidden layer may be multilayer structure, two 
adjacent layer neurons is connected by adjustable weights. 

1x

2x

1Nx

1y

2y

2Ny

1z

2z

3Nz

1Δ

2Δ

3NΔ

1T

2T

ihw
hjw

3NT  

Fig. 7. Structure of BP neural network 

The input information passed the input layer through the hidden layer, and 
ultimately transmit to output layer, if the output of the output layer is not equal to the 
expectation output value, the error back propagation process begin. Network weights  
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are adjusted in error feedback process, the weight constantly revised so that the 
network output is closed to expectation output. BP neural network is widely applied 
because of using error back propagation algorithm. However, when this network meet 
complex problem, huge network structure will cause slow convergence speed, poor 
generalization ability. The principal component analysis is proposed to deal with 
feature data, aim at reducing dimension, removing correlation between character 
vector of the feature data and simplifying network. 

If we define the acceleration characteristics extracted is p dimension vector, X = (x1, 
x2, ... xp) 'is consists of p×p dimension random vector, the purpose of principal 
component analysis is converted p dimension vectors to k (k ≤ p)dimension linear 
combination vector, while new k dimension vector is mutually independent and can 
keep main information of p dimension before converted, if we get A = (A1, A2, ... Ak) 
as the result of PCA , A is given by: 

 

1 11 1 21 2 1

2 12 1 22 2 2

1 1 2 2

...

...

...

...

p p

P p

k k k pk p

A b x b x b x

A b x b x b x

A b x b x b x

= + + +
 = + + +


 = + + +

 (2) 

After matrix transformations (2), the selection of principal components is based on the 
value of cumulative variance contribution rate and variance contribution rate, which 
reflect new variable explain ability to all original variables, the larger its value, the 

more important the variable is. Given pλλλ ...21、 are characteristic values of 

covariance matrix ( )D X , the contribution rate of the j main component can be 

explained as follows: 

 
=

p

i
ij

1

λλ  (3) 

The cumulative contribution rate of the former m principal components given as: 

 
==

p

i
i

m

i
j

11

λλ  (4) 

The selection of main component lie on the cumulative contribution ratio, the larger it 
is, the smaller data information loss, generally the standard of value m is make the 
cumulative contribution rate reach 85% or more. 

5 Experiments and Results 

According to the algorithm proposed, the recognition based on motion acceleration is 
carried out, six motion(waving hand forward and backyard, arms waving around, 
fetching hand forward, rotation wrist clockwise, rotation counterclockwise, still) are 
recognition action. Sensor is put at the hand to collect motion data. The recognition 
research is carried out in Matlab7.1 software operation environment. Six motion data 
put into BP neural network after preprocessing, the structure of BP neural network is 
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13-20-1, each motion date collected 60 times, 30 times as training samples, another 
30 times as test samples. Group learning way is adopted. Figure 8 is the training error 
curve gained by traingdx algorithm, from Figure 8 we can see that the network ran to 
step 4387, it reached the initialize accuracy requirements. Save the trained network, 
and simulate the test sample, network output 1 x 180 data values is obtained, which is 
shown in Figure 9. 
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   Fig. 8. Error curve of traingdx algorithm  Fig. 9. Recognition result of test samples 

In figure 9, each step can be regarded as an action type of motion, it can be clearly 
found that the input samples of each operation have a good classification and 
recognition. It is also appear some samples recognition wrong. However, the network 
ensures a good recognition effect for human motion. 

In order to test whether the principal components obtained contain full 13 
dimensions characteristics and have equivalent recognition effect. The structure of the 
PCA-BP neural network 4-6-1 is established, the transfer function is a hyperbolic 
tangent function, adaptive change learning rate and momentum components algorithm 
is chosen as training function and mean square error is 0.001. The error performance 
chart is shown as Figure 10. At 1285 step iteration network achieve required accuracy. 
Compared with figure 8, the principal component analysis process reduces network 
complexity and speeds network convergence rate. 
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Fig. 10. Error curve of traingdx algorithm 
with PCA 

Fig. 11. Recognition result of test samples with 
PCA 

 
Similarly the test samples is simulated after the network learning well, test samples 

outputs can be draw as figure 11. Compared with figure 9, we can know that the four 
principal components through principal component analysis not only include all the 
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information of the 13 features, but also obtain more focused and accurate recognition 
results, which are verified the proposed method correctness and validity. 

6 Summary and Forwards 

Based on the characteristics of micro-sensor technology, human motion acceleration 
acquisition module is designed in this passage, which is consists of a tri-axis 
accelerometer, a microprocessor, a wireless transmission module and power supply 
module. The acceleration signal is preprocessed and the mean, variance, amplitude of 
signal area, RMS value of acceleration signals are extracted. BP neural network 
algorithm have been selected as identification algorithm, two groups sample untreated 
and principal component analysis is compared for recognition experiment, the final 
results show that the action recognition rate as much as 90%, which is verify accuracy 
and reliability of proposed method. 
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A Stable Dual Purpose Adaptive Algorithm
for Subspace Tracking on Noncompact Stiefel Manifold�
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School of Science, Dalian Nationalities University, Dalian 116600, P.R. China

Abstract. Starting from an extended Rayleigh quotient defined on the noncom-
pact Stiefel manifold, in this paper, we present a novel dual purpose subspace
flows for subspace tracking. The proposed algorithm can switch from principal
subspace to minor subspace tracking with a simple sign change of its stepsize pa-
rameter. More interestingly, the proposed dual purpose gradient system behaves
the same invariant property as that of the well-known Chen-Amari-Lin system.
The stability of the discrete version of the proposed subspace flow is guaranteed
by an additional added stabilizing term. No tunable parameter is required for the
proposed algorithm as opposed to the modified Oja algorithm. The strengths of
the proposed algorithm is demonstrated using a defacto benchmark example.

1 Introduction

Subspace tracking plays a crucial role in a variety of adaptive subspace-based methods
[7]. The problem of subspace tracking can be formulated as follows. Let x(t) be a se-
quence of n× 1 random data vectors with correlation matrix C = E[x(t)xT (t)] where
E[·] denotes the expectation operator. We aim at tracking the k-dimensional (k < n)
principal subspace (PS) or minor subspace (MS) in an online manner, which incremen-
tally updated an n× k matrix W in a sample-by-sample manner.

In the last decades, a large number of algorithms have been proposed for PS or MS
tracking separately ([12,1,13]). Recently there is considerable interest in constructing
the dual purpose subspace tracking algorithms, in which the PS or MS subspace are
adaptively tracked in the sense of simply switching the sign of the corresponding step-
size learning parameters [11,3,5,10,4].

The first dual purpose gradient flow was the modified version of Oja’s flow by Chen
[3]

dW (t)

dt
= ±

{
CW (t)−W (t)WT (t)CW (t)

}
+ βW (t)

{
I −M(t)TM(t)

}
, (1)

where β > 0 can be viewed as a penalty parameter. When β = 0, the modified is hap-
pened to be the well-known Oja’s PS flow [12]. The main problem of (1) is that the
penalty parameter β should be selected as greater than the largest eigenvalue of the cor-
relation matrix C, which definitely requires the prior information on the eigenstructure,

� Supported by National Natural Science Foundation of China ( No. 61002039 ) and The Fun-
damental Research Funds for the Central Universities ( No. DC10040121, DC12010216).

C. Guo, Z.-G. Hou, and Z. Zeng (Eds.): ISNN 2013, Part I, LNCS 7951, pp. 642–649, 2013.
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thus make it not applicable in cases the whole signal process is unobtainable. There
exists the same problem for the dual system proposed by Manton et al. [11]

dW (t)

dt
= ±CW (t)N + β

{
N −WT (t)W (t)

}
, (2)

for dual purpose principal and minor components extraction, where N ∈ Rn×k is a
positive diagonal matrix.

In view of Lie group theory, Chen, Amari and Lin [5] proposed the following dual
purpose subspace flow by means of the natural gradient defined on the orthogonal ma-
trix group SO(n),

dW (t)

dt
= ±{

CW (t)WT (t)W (t) +W (t)WTCW (t)
}
. (3)

Recently, Kong et al. [10] successfully proposed the following dual gradient flow

dW (t)

dt
=±

[
CW (t)−W (t)

{
WT (t)W (t)

}−1
WT (t)CW (t)

]
× {

WT (t)W (t)
}−1

+W (t)
[
I − {

WT (t)W (t)
}]

. (4)

Notice that its feasible domain is assumed to beΩ = {W |0 < WTCW < ∞,WTW �=
0}, which also requires information on the data correlation matrix. When C is assumed
to be symmetric positive definite, in fact, the condition that WTCW > 0 is equivalent
to that W is of full column rank. When it comes to the indefinite matrix, these two
conditions are not equivalent.

In this paper, we present a novel dual purpose subspace tracking algorithm based on
the optimization of an extended Rayleigh quotient defined on the noncompact n × k
matrix manifold. It can handle both the principal and minor subspace tracking with
a simple sign change of the stepsize parameter. The penalized version of the proposed
algorithm does not require any prior information on the eigenstructure of the correlation
matrix to adjust its stepsize parameter. Orthogonality constraint is finally guaranteed
without explicit step by step re-orthogonalization of the weight matrix W (t) during the
learning process.

2 Derivation of the Novel Dual Gradient Flow for Subspace
Tracking

Notice that for w ∈ Rn, it is well-known that Rayleigh quotient r(w) = wTCw
wTw is

maximized (resp. minimized) when and only when w is equal to the principal (resp.
minor) eigenvector of the symmetric matrix C. In order to computing the principal and
minor subspace of C, in this paper, we consider the matrix form extended Rayleigh
quotient (ERQ) [9,2]

JERQ(W ) = tr (WTRW (WTW )−1) (5)
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defined on the noncompact Stiefel manifold

ST(n, k) = {W ∈ Rn×k|rank(W ) = k} (6)

of all full rank n× k matrices.
Throughout this paper, C is assumed to have the following decomposition

C = V diag(λ1,λ2, · · · ,λn)V T (7)

where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of C and V = [v1 v2 · · · vn] is
the orthonormal eigenvector matrix of C. Let Vi and Li be the matrix consisting of
the first i and last i columns of V respectively. In other words, Vi is composed of the
i eigenvectors of C corresponding to the i largest eigenvalues λ1,λ2, · · · ,λi, and Li

is composed of the i eigenvectors of C corresponding to the i smallest eigenvalues
λn−i+1, λn−i+2, · · · , λn.

For the proposed extended Rayleigh quotient, we have the following desired results.

Theorem 1. W is a critical point of JERQ(W ) on ST(n, k) if and only if W = ṼkM ,
where Ṽr ∈ RN×k consists of the k eigenvectors of C andM is any nonsingular k-by-k
matrix.

Proof. The gradient of JERQ with respect to W is easily obtained as

1

2
∇J(W ) =

[
AW −W (WTW )−1WTAW

]
(WTW )−1 (8)

IfW = ṼkM , whereM is any nonsingular k-by-kmatrix and Ṽk contains any k distinct
orthonormal eigenvectors of C, it is straightforward to show ∇J(W ) = 0.

Conversely, ∇J(W ) = 0 implies that AW = W (WTW )−1WTAW , which means
that AW ∈ Span (W ), or equivalently Span(AW ) ⊂ Span(W ). So we reach the
conclusion that W is an invariant subspace of A. But any k−dimensional invariant sub-
space of C is spanned by k eigenvectors vi1 , · · · , vik . Denote Ṽk = [vi1 · · · vik ], hence
W is a critical point only it is of the form W = ṼkM , where M is any nonsingular
k-by-k matrix. The proof is completed.

The following result directly follows from Theorem 1.

Theorem 2. On manifold ST(n, k), the extended Rayleigh quotient JERQ(W ) reaches
its global maximum when and only when W = VkM for arbitrary nonsingular k-by-k
matrix M . JERQ(W ) reaches its global minimum when and only when W = LkM for
arbitrary nonsingular k-by-k matrix M . All the other critical points are saddle points
of JERQ(W ). Moreover the minimum and maximum value of JERQ(W ) are

min
W∈ST(n,k)

JERQ(W ) = λn−k+1+λn−k+2+ · · ·+λn, (9)

max
W∈ST(n,k)

JERQ(W ) = λ1+λ2+ · · ·+λk. (10)

Remark 1. The above theorem shows that the extended Rayleigh quotient JERQ

has a global maximum (respectively, minimum) at which the columns of W span
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k−dimensional principal (respectively, minor) eigen-subspace of C and no other lo-
cal extremum. This implies that one can search the global extremum point of JERQ by
iterative methods.

Therefore minimizing JERQ(W ) on ST(n, k) will automatically result in a solution
W in the k-dimensional minor subspace of C. Maximizing JERQ(W ) on ST(n, k)
will definitely result a W in the k-dimensional principal subspace. In this sense, the
proposed extended Rayleigh quotient is an ideal cost candidate for our dual purpose
subspace flow.

Further define the Riemannian metric on ST(n, k) as

< Ω1, Ω2 >:= tr (Ω1(W
TW )−1ΩT

2 ), ∀Ω1, Ω2 ∈ TW ST(n, k), (11)

where TW ST(n, k) denotes the tangent space at point W ∈ ST(n, k).
The following results list the Riemannian gradient formula on ST(n, k).

Theorem 3. Consider the cost function JERQ given in (5) defined on the noncompact
Stiefel manifold ST(n, k) given by (6). With respect to the induced Riemannian metric
in (11), the gradient can be calculated as

grad J = CW −W (WTW )−1WTCW (12)

Proof. In fact, the directional derivative of (15) in the direction Ω ∈ Rn×k can be
computed as

1

2
DJW (Ω) =tr (ΩTCW (WTW )−1) +

1

2
tr (WTCW (WTW )−1(ΩTW +WTΩ)(WTW )−1)

=tr
(
ΩTCW (WTW )−1

)
+ tr

(
ΩTW (WTW )−1(WTCW )(WTW )−1

)
=tr

[
ΩT

(
CW (WTW )−1 −W (WTW )−1(WTCW )(WTW )−1

)]
(13)

As such, the gradient of JERQ(W ) with respect to Riemannian metric (11) is readily
obtained as

grad J = CW −W (WTW )−1WTCW, (14)

which completes the proof.
Therefore, the novel gradient flow of JERQ(W ) for PS and MS tracking is derived

as

dW (t)

dt
= ±

{
CW (t) −W (t)

(
WT (t)W (t)

)−1
WT (t)CW (t)

}
, (15)

where “+” is used for PS tracking, and “−” is for MS tracking.
Direct computation shows that

d

dt

{
WT (t)W (t)

}
= 0 (16)

along the gradient flow given in (15), which is summarized as the following proposition.
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Theorem 4. WT (t)W (t) is invariant under the dynamical evolvements in (15).

The above theorem shows that WT (t)W (t) = WT (0)W (0) for any t ≥ 0. Also a
direct consequence of this theorem is that solution W (t) for initial value problem of

(15) exists for t ∈ [0,∞). Thus if we choose W (0) =
[
D1/2

0

]
∈ Rn×k of a diagonal

matrix D = diag {d1,d2, · · · ,dk} with di > 0, then the proposed dual flow (15) have
an invariant submanifold

SD =
{
W |WTW = D

}
. (17)

Therefore, starting from any initial orthognormal matrix on the Stiefel manifold
St(n, k) = {W ∈ Rn×k|WTW = Ik}, the weight flow W (t) of the gradient sys-
tem (15) evolves on St(n, k) for all t ≥ 0.

In order to maintain the stability of the proposed algorithm [8], similar to the ap-
proach in [4], in this paper we present the following stable flow for dual subspace
tracking.

dW (t)

dt
= ±

[
CW (t)−W (t)

[
WT (t)W (t)

]−1
WT (t)CW (t)

]
+W (t)

[
D −WT (t)W (t)

]
,

(18)

where “ + ” is for the PS tracking and “ − ” is for MS tracking. Obviously, the equi-
librium as well as the invariant property of the original dynamical system (15) are un-
changed by this additional term. The extra added term W (t)[D − WT (t)W (t)] helps
the gradient flow W (t) to conform to the invariant submanifold constraint W ∈ SD.
If we set D = Ik, SD is just the orthonormal constraint of the extracted principal and
minor subspace. The effectiveness of the stabilizing term is further confirmed in the
section of computer simulation.

3 Computer Simulation

In this section, we present some simulation results to show the effectiveness of the
proposed algorithm. A de facto benchmark example is used to evaluate the performance
of our algorithm. Assume the signal vector x(t) is generated by the following noisy
model,

x(t) = s(t) + n(t), (19)

where s(t) is a sequence of independent jointly Gaussian random vectors with correla-
tion matrix [1]

C =

⎡⎢⎢⎣
0.9 0.4 0.7 0.3
0.4 0.3 0.5 0.4
0.7 0.5 1.0 0.6
0.3 0.4 0.6 0.9

⎤⎥⎥⎦ (20)

and n(t) is white Gaussian noise with SNR = 0.01dB. The purpose is to adaptively
track the k = 2 dimensional principal and minor subspace from {x(t)} by using the
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proposed algorithm (15). Initial weight matrix W (0) is set to the first k columns of the
n× n identity matrix. For the stepsize μ > 0, we follow the search-then-converge style
[6] as μ = σ/(1 + t/T ), where T = Iternum/2 is one half of the iteration number
Iternum and σ = 0.01.

The performances of the four considered algorithms are observed during the learning
phase through the following two parameters:

– A measure of the orthogonality of W , defined as:

γ(t)
def
= ‖WT (t)W (t) − I‖F, (21)

where ‖ · ‖F denotes the Frobenius norm.
– A measure of how much W ’s columns are deviated from the principal or minor

subspace, defined as:

ρ(t)
def
= ‖(I − V V T )W‖F (22)

with V ∈ R4×2 being a orthonormal base of the principal subspace for PSA( re-
spectively, minor subspace for MSA) of x(t).

Results and Discussion

We first consider the task of principal subspace tracking. The results are shown in Fig.
1. It can be seen from Fig. 1(a), both the original algorithm and the penalized version
successfully extract the desired principal subspace after a sufficiently large iterations.
Meanwhile, as for the orthogonality of the weight matrix W , the penalized version
outperforms the non-penalized one, as is shown from Fig. 1(b).
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Fig. 1. Performance of PS tracking by the of the proposed algorithm

The minor subspace tracking ability of the proposed algorithm is illustrated in Fig.
2. Again we see that the effectiveness of the novel dual purpose algorithm for MS track-
ing. Also the orthogonality of the weight matrix W is guaranteed with the additional
constraint term in (18), which is verified in Fig. 2(b).
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Fig. 2. Performance of MS tracking of the proposed algorithm
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Fig. 3. Performance of MS tracking of the MOJA algorithm

By the modified Oja algorithm (MOJA), by setting β = 1, Fig. 3(a) and Fig. 3(b)
clearly show that both ρ(t) and γ(t) diverges for MS task. To see the reason why MOJA
failed in this occasion for MS tracking, in fact, theoretically speaking β > 0 should be
larger than the largest largest eigenvalue of C in order to extract the minor subspace. In
our case, the noisy Gaussian data has a correlation matrix with the largest eigenvalue
λmax ≈ 2.3096. Thus for β = 1 in our case, the MOJA failed to extract the minor space.
Alternatively, if we set β = 2, the MOJA algorithm can successfully extract the minor
subspace, as is shown in Fig. 3. It is interesting that the proposed ERQ based algorithm
is stable for any β > 0, which shows its superiority over the MOJA algorithm.

4 Conclusion

A novel dual purpose adaptive algorithm for principal and minor subspace tracking is
proposed in this paper. Different from most existing works in this area, we derived the
desired gradient flow on noncompact Riemannian manifold ST(n, k) from an extended
Rayleigh quotient. It guarantees the orthonomality of the tracked subspace and achieves
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high numerical stability with an additional stabilizing term. Moreover, different from
the modified OJA algorithm, the proposed algorithm does not need a prior information
on the eigenvalue of the correlation matrix.
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Abstract. In this paper, an invariant algorithm for object recognition is 
proposed by using the Radon and Fourier transforms. It has been shown that 
this algorithm is invariant to the translation and rotation of pattern images. The 
scaling invariance can be achieved by the standard normalization techniques. 
Our algorithm works even when the center of the pattern object is not aligned 
well. This advantage is because the Fourier spectra are invariant to spatial shift 
in the radial direction whereas existing methods assume the centroids are 
aligned exactly. Experimental results show that the proposed method is better 
than the Zernike’s moments, the dual-tree complex wavelet (DTCWT) 
moments, and the auto-correlation wavelet moments for one aircraft database 
and one shape database. 

Keywords: Radon transform, Fourier transform, Zernike’s moments, object 
recognition, pattern recognition, Gaussian white noise. 

1 Introduction 

Moment invariants [1] have been a very active research topic since Hu [2] proposed 
the first moments for 2D pattern recognition in 1962. Khotanzad and Hong [3] studied 
the magnitudes of Zernike’s moments in rotational invariant recognition of characters 
and shapes. They concluded that Zernike’s moments are better than Hu’s moments. 
Chen and Xie [4] developed the auto-correlation wavelet moments and the dual-tree 
complex wavelet (DTCWT) moments for recognizing 2D pattern images. 

In this paper, we propose a new algorithm for object recognition by using a 
combination of the Radon transform and the Fourier transform. The new algorithm is 
invariant to translation and rotation of the object to be recognized. Scaling invariance 
can be achieved by standard normalization techniques. Experimental results show that 
the proposed algorithm is better than the Zernike’s moments, the auto-correlation 
wavelet moments, and the DTCWT moments for recognizing 2D shapes. This 
indicates that the proposed algorithm in this paper is a practical approach for invariant 
object recognition. 
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The organization of this paper is as follows. Section 2 proposes an algorithm for 
invariant pattern recognition. Section 3 conducts some experiments to verify whether 
this algorithm is better or not. Finally, section 4 concludes the paper. 

2 Proposed Method 

The Radon transform of an image f(x,y) is defined as 
 

 −−=
yx

yxtyxftR
,

)sincos(),(),( θθδθ . 

The Radon transform has the shift invariant property, i.e., a translation of f(x,y) by a 
vector (x0,y0) results in a shift of its translation in the variable t by a distance 

.sincos 00 θθ yxd +=  In addition, a rotation of the image by an angle 
0θ  implies 

a shift 
0θ  of the transform in the variable θ . We can take the 1D FFT along the t 

direction of ),( θtR  and then take the magnitude of these coefficients. We can then 

take the 1D FFT along the θ direction of the resulting image. In this way, we have 

extracted translation and rotation invariant features from the pattern object. Note that 
scaling invariance can be achieved by standard normalization techniques in [5].  

 
We summarize our proposed method in the following algorithm: 
 

(a) Find the centroid of the input pattern image f(x,y), and move the centroid to the 
center of the image containing the pattern. 

(b) Scale the image by means of a standard normalization technique so that the scale 
variance can be eliminated. 

(c) Take the Radon transform ),( θtR  of the normalized pattern image obtained 

from (b). 
(d) Take the 1D FFT along the t direction of ),( θtR  and take the magnitude of 

these coefficients. 
(e) Take the 1D FFT along the θ direction of the resulting image from (d) and 

calculate the magnitude of the coefficients. 
(f) Classify the input pattern into one of the existing classes by using the extracted 

invariant features. 
 
The main contribution of this paper is that we have proposed a new invariant 
algorithm for object recognition by using a combination of the Radon transform and 
the Fourier transform. The new algorithm is invariant to translation, rotation, and 
scaling of the input pattern image. More importantly, it is very robust to Gaussian 
white noise. Our algorithm does not need to align the centroids of the patterns because 
the Fourier spectra are invariant to spatial shifts. Experimental results conducted in 
the next section show that the proposed algorithm is better than the Zernike’s 
moments, the auto-correlation wavelet moments, and the DTCWT moments for 
recognizing 2D shapes under different noise levels. 
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Note that we can replace the 1D FFT in the above algorithm by sparse FFT ([6], 
[7]), which is faster than the standard FFT when the input signal is sparse in the 
frequency domain. Even though our proposed method is very simple, it outperforms 
the Zernike’s moments, the DTCWT moments and the autocorrelation wavelet 
moments for the two shape databases. This means that our proposed method in this 
paper can be used in many real-life applications. 

Wang et al. [8] proposed a scaling and rotation invariant method for pattern 
recognition by using the Radon and the Fourier-Mellin transforms. The method 
requires the centroid of the image to be fixed, which is not true in real-life 
applications. Our proposed algorithm in this paper can overcome this drawback by 
taking the 1D FFT along the rows and columns of the pattern image, respectively. In 
addition, our algorithm should be faster than [6] because our method uses 1D FFT 
whereas [6] uses the Fourier-Mellin transform. 

3 Experimental Results 

We have tested a database of 20 aircrafts as show in Fig. 1. For each aircraft, we test 
ten rotation angles 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, and 270°. Fig. 2 and 3 
show the images after each processing step of this algorithm for an undistorted image 
and an distorted image, respectively. We tested the performance of our proposed 
method on noisy data. We generate the noisy images with different orientations by 
adding Gaussian white noise to the noise-free images. The signal-to-noise ratio (SNR) 
is defined as 
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where f is the noise-free image, n is the added white noise, and avg(f) is the average 
value of the image f . We selected to use the Zernikes’s moments for up to the 12th 
order. The correct recognition rates for the Zernike's moments, the autocorrelation 
wavelet moments, the dual-tree complex wavelet moments, and the proposed method 
are shown in Tables 1, 2, 3 and 4, respectively. From these four tables, it can be seen 
that our proposed method is better than the Zernike’s moments, the dual-tree complex 
wavelet moments, the auto-correlation wavelet moments. 

We also tested the second database (216 shapes), which has 18 categories with 12 
shapes in each category [9]. The database is shown in Fig. 5. Each shape is matched 
against every other shape in the database. As there are 12 shapes in each category, up 
to 11 nearest neighbours are from the same category. We rate the performance based 
on the number of times the 11 nearest neighbours are in the same category. The 
results are shown in Table 5 by using the Zernike’s moments, the autocorrelation 
wavelet moments, the DTCWT moments, and the proposed method. It can be seen 
that the proposed method outperforms other methods compared in this paper. 
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Table 1. The recognition rates (%) of the Zernike’s moments for the aircraft database with 
different rotation angles and SNR’s 

SNR 30° 60° 90° 120° 150° 180° 210° 240° 270° 

0.5 90 85 90 90 95 95 95 85 100 

1.0 100 100 100 100 100 100 100 100 100 

2.0 100 100 100 100 100 100 100 100 100 

4.0 100 100 100 100 100 100 100 100 100 

Table 2. The recognition rates (%) of the auto-correlation wavelet moments for the aircraft 
database with different rotation angles and SNR’s 

SNR 30° 60° 90° 120° 150° 180° 210° 240° 270° 

0.5 85 85 80 80 85 85 85 90 80 

1.0 100 100 100 100 100 100 100 100 100 

2.0 100 100 100 100 100 100 100 100 100 

4.0 100 100 100 100 100 100 100 100 100 

Table 3. The recognition rates (%) of the dual-tree complex wavelet moments for the aircraft 
database with different rotation angles and SNR’s 

SNR 30° 60° 90° 120° 150° 180° 210° 240° 270° 

0.5 95 90 100 100 90 100 100 95 100 

1.0 100 100 100 100 100 100 100 100 100 

2.0 100 100 100 100 100 100 100 100 100 

4.0 100 100 100 100 100 100 100 100 100 

Table 4. The recognition rates (%) of the proposed method for the aircraft database with 
different rotation angles and SNR’s 

SNR 30° 60° 90° 120° 150° 180° 210° 240° 270° 

0.5 100 100 100 100 100 100 100 100 100 
1.0 100 100 100 100 100 100 100 100 100 

2.0 100 100 100 100 100 100 100 100 100 

4.0 100 100 100 100 100 100 100 100 100 

Table 5. The top 11 matches in percentage (%) of the second database by using Zernike’s 
moments, the autocorrelation wavelet moments, the DTCWT moments, and the proposed 
method. It can be seen that the proposed method is better than every method compared in this 
paper. 

Method Top 11 matches (%) 

Zernike 100 93.52 91.67 86.11 81.02 79.17 72.69 71.76 66.67 65.28 56.48 
Auto-Corr 100 92.13 86.11 84.24 78.70 73.61 72.22 61.59 62.04 56.02 48.61 

DTCWT 100 85.19 81.02 71.76 70.37 60.65 60.19 54.63 45.83 47.22 34.72 

Proposed 100 95.83 93.52 91.20 84.72 84.26 77.31 75.46 73.61 73.61 60.65 
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Fig. 1. The aircraft database used in the experiments 

 

 

Fig. 2. The images of the proposed method for processing an aircraft 
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Fig. 3. The images of the proposed method for processing a distorted aircraft 

 

Fig. 4. The noisy images 

 

Fig. 5. A database of shapes selected from the MPEG test database 
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4 Conclusions 

In this paper, we have presented a new invariant algorithm for object recognition, 
based on the combination of the Radon function and the Fourier transform. The 
proposed algorithm has the ability to classify many types of image objects. In 
addition, it does not require to align the centroid of the pattern images because the 
Fourier spectra are invariant to spatial shifts. Experimental results have shown that the 
proposed algorithm is better than the Zernike’s moments, the auto-correlation wavelet 
moments, and the DTCWT moments for an aircraft database and a shape database. 
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Abstract. To minimize image blurring and detail loss caused by denoising, we 
propose a novel method to exploit residual image. Firstly, we apply Non-local 
Means (NLM) filter to original image to get the denoised image and store the 
weights used for averaging. Secondly, we filter the residual image with the 
stored weights. Then a Gaussian filter is applied to the denoised residual image 
before we add the results to image denoised by NLM to recover the lost image 
details. Different from previous methods, our method uses the structure infor-
mation in the original image and can be used to extract lost image details from 
residual images with very low SNR. An analysis on the mechanism of the sig-
nal extraction method is given. Quantitative evaluation showed that the pro-
posed algorithm effectively improved accuracy of NLM filter. In addition, the 
residual of the final results contained fewer observable structures, demonstrat-
ing the effectiveness of the proposed method to recover lost details. 

Keywords: residual, signal extraction, Non-Local Means(NLM), denoise, im-
age enhancement. 

1 Introduction 

Image denoising is a popular topic in image processing field. One way to evaluate the 
performance of a denoising algorithm is to use the residual [1-4], which is defined as 
the difference between original image u and the denoised image D(u) : 

- ( )R u D u=  (1) 

The purpose of denoise algorithms is to remove noise while preserving image signal, 
thus an ideal residual image should be dominated by random noise with no visible 
image structures. However, in practice, residual images also contain structured sig-
nals, indicating detail losses in the denoising process. Therefore, we can use residual 
images to evaluate the denoising performance simply by inspecting the visibility of 
remaining signal in them. The residual has also been used to estimate noise level[5], 
control iterations in iterative algorithm[6], and optimize algorithm parameters[7]. 

One interesting application of the residual is to extract remaining signal from it and 
add the extracted signal back to the denoised image to compensate the loss of image 
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details. Jeng et.al first denoised the noisy image with Gaussian algorithm, and ex-
tracted signal in residual by applying Kalman filter to the residual image [8]. Domini-
que et.al adopted a similar strategy but used TV (Total Variation) and Wiener filters 
respectively for denoising and residual filtering[2]. The numerical and visual 
inspection showed that these compensation methods can improve the original 
denoising methods.  

However, when these methods are applied to residual images from state-of-the-
art denoising algorithms, such as the popular Non-Local Means (NLM) filter [4], the 
results are hardly satisfying. This is because the residual images of NLM filter contain 
fewer visible image structures (Fig. 1) [3, 4, 9] and it is quite challenging to denoise 
residual images with such a low SNR (Signal-to-Noise Ratio).  

 

 

Fig. 1. Denoising results of NLM and corresponding residual image. (a)ground truth; (b)noisy 
image (original image) with noise level 7%; (c) denoise image; (d)Residual image. 

To more effectively extract signal from such residual images, we propose a new 
approach, which adopts the weights of NLM algorithm used in denoising the original 
image to average the residual image. Results from both quantitative and qualitative 
evaluations showed that our method can extract signals from low SNR residual im-
ages more effectively and can significantly improve denoising performance of NLM. 
Furthermore, since the weights used to denoise residual image have already been 
calculated during the NLM filtering of the noisy image, filtering of the residual image 
is computionally efficient.  

2 Method 

2.1 Non-Local Means (NLM)  

NLM is a spatial domain filter, which replaces each pixel P(i) in the image with a 
weighted average of every pixel P(j) in its “search region” (Ω):  



 An Effective Method for Signal Extraction from Residual Image 659 

 

0
( ( )) ( , ) ( )

j

NLM P i Z i j P jω
∀ ∈Ω

=                (2) 

where Z0 is the normalization coefficient, defined as: 

0
1 / ( , )

j

Z i jω
∀ ∈Ω

=   (3) 

The average weight ω(i,j) assigned to P(j) is based on the similarity between the 
neighborhoods of pixel i and j, named Nef(i) and Nef(j) respectively: 

2 2( , ) exp( ( ) ( ) / ), ( )f fi j K Ne i Ne j h i jρω = − − ≠ 
  

(4) 

where h is a parameter controlling the degree of smoothing, and is normally set pro-
portionally to standard deviation of noise. Kρ is a Gaussian kernel of standard devia-
tion ρ. The search region (Ω) can cover the whole image (thus non-local) but a limited 
radius t is commonly adopted with regard to computational efficiency[3]. The dis-
tance between the center pixel and itself is simply set to the minimum distance found 
in the neighborhood. 

Similar to other weighted-averaging filter, larger weights are assigned to pixels 
with higher similarity. What makes NLM different is that it uses the similarity be-
tween the neighborhoods of the pixels instead of the distance between pixels them-
selves. Thus it can make use of the redundant information in texture pattern in the 
image for robust denoising.  

2.2 Information Extraction Method 

To extract remaining structured information from the residual of NLM, we propose to 
use NLM weights calculated from original image to filter the residual image. We do 
this out of the following considerations: 1) SNR of the original image is much higher 
than that of the residual which means structured information can be easily extracted; 2) 
the structured information in original image is correlated to the remaining signal but no 
to the noise in the residual image; 3) NLM weights have been calculated beforehand, 
thus using them to denoise the residual will  incur minimum computational cost.  

Firstly, we filter the residual R using NLM weights ω of original image:  

0
ˆ ( ) ( , ) ( )

t
j

R i Z i j R jω
∀ ∈Ω

=   (5) 

Where R̂  is the filtered residual. Then we apply Gaussian filter to the filtered 
residual image for further noise suppression before adding the result back to the 
denoised image D(u) 

ˆ ˆ( ) ( ) ( )D u D u Gauss R
σ

= +   (6) 

where D̂  is the result of final denoised image, and Gaussσ is a Gaussian filter with 
STD σ.  

2.3 Analysis of Filtered Residual 

To discuss the performance of different methods on residual filtering, we quantified 
the respective influence of the filtering to the signal and noise in the residual. Suppose 
G is the signal (ground truth) in the original image and N is the noise. We filter the 
original image(G+N) with the NLM weights W1 and acquire residual image R: 
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 1
( ) ( )R G N W G N= + − +  (7) 

Because of the linearity of the weighted-averaging, R is equivalent to:  

1 1
( ) ( )R G W G N W N= − + −  (8) 

where The first two terms represent remaining signal in residual after original NLM 
denoising. After filtering the residual with another set of averaging weights W2, we get: 

2 2 2 1

2 2 1 2 2 1

( ) ( ) ( ( ))

( ) ( ( )) ( ) ( ( ))

W R W G N W W G N

W G W W G W N W W N

= + − +

= − + −
 (9) 

where the first two terms are originated from image signal, representing the signal 
component in filtered residual, while the latter two terms are originated from random 
noise and named noise component.  

Three filters, namely NLM filter, Gaussian filter and proposed filter, are compared 
in regard to their ability to extract information from residual image, and the results are 
shown in Fig. 2 (see section 4.1 for parameters used). It can be seen clearly that our 
method acquired the clearest image pattern in the signal component with no apparent 
artifacts in the noise component. 

 

 

Fig. 2. Comparison of signal (upper) and noise (lower) components in residual image after 
filtering of the residual image. From left to right are results from (a) NLM filter, (b) Gaussian 
filter, and (c) proposed filter and (d) the actual signal in the residual image. (a’ - d’) are magni-
fied regions from (a - d, upper) respectively. Noisy image with 7% noise is used. 

3 Experiment 

We used nature images Lena and Barbara (256×256) in our experiments. The dynam-
ic range of these images are 0-255. We added 5 different levels of Gaussian noise 
with standard deviation of 3%, 5%, 7%, 9%, 12% respectively of the original images. 
Images used to demonstrate the visual results were those with 7% noise. 
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3.1 Signal Extraction 

In this section, we compared the performance of signal extraction ability of proposed 
method with other filters. Firstly, we applied NLM to the noisy image, and acquired 
denoised image and the residual (Fig. 1). Then we filtered the residual by NLM filter, 
Gaussian filter, AD (anisotropic diffusion) filter, and the proposed method. 

The parameters of NLM filter were set as recommended in [3], namely t = 5, f = 2, 
h = 1.2σ. The parameters of Gaussian filter (standard deviation of Gaussian kernel = 
2) and AD filter (delta = 1/8, kappa = 0.25σ and iteration number = 60) were set as 
optimized value via exhaustive search. For Gaussian filter in our method, we used a 
3×3 kernel with standard deviation of 2.  

Experimental results showed that our method outperformed other filters by extract-
ing more information from the residual images (Fig. 3). 

3.2 Compensation 

The extracted signal was added back to the denoised image to compensate detail loss 
caused by denoising.  

 

 

Fig. 3. Comparison of different filters with respect to their information extraction ability in the 
context of whole denoising process. Shown from upper to lower are the final denoised image 
with filtered residual added back (upper), filtered residual images (middle), and the final resi-
dual images showing the difference between the ground truth and the final denoised image 
(lower) respectively. From left to right, (a) – (d) are results from NLM filter, Gaussian filter, 
AD filter and our filter respectively. 
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Fig.3. (continued) 

The performance of these different filters was compared quantitatively using mean 
squared error (MSE), which is defined as: 

2

1

1
( ( ) ( ))

n

i

MSE I i Q i
n =

= −  (10) 

where I and Q denote ground truth and the final denoised image. 
 

Table 1. MSE of NLM denoised images with and without signal compensation 

 
Noise Level Original 

Compensation Method 
NLM Gaussian AD Our 

Lena 3% 21.25 21.31 20.40 20.47 19.80 
5% 26.89 23.40 23.66 25.85 21.99 
7% 62.21 72.41 60.49 62.25 59.49 
9% 87.55 105.41 84.72 86.83 83.78 

12% 129.68 165.62 127.26 130.70 126.16 
Barbara 3% 23.48 23.84 22.63 23.25 22.30 

5% 29.11 25.93 26.01 28.36 23.59 
7% 75.36 83.91 73.07 75.16 70.39 
9% 110.68 126.05 107.82 110.55 104.21 

12% 171.15 200.53 166.81 172.17 162.51 
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We calculated final residual images for visual comparison(Fig. 3), which showed 
the difference between noisy image and the final denoised image after compensation. 
The final residual image from our method contained less structured information com-
pared to those from other filters. Quantitative results based on MSE (Table 1) also 
proved that our method achieved best denoising results at all noise levels. 

4 Conclusions 

In this paper we propose a new way to filter the residual images of denoising method. 
It can extract lost image details even from residual images of very low SNR. The 
proposed filter is especially useful when combined with NLM filter because NLM 
filter normally produces residual images with less structured information and there is 
no need to calculate the weights separately. However, the proposed approach can also 
be used to recover lost image details to enhance other state-of-the-art denoising  
methods.  
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Abstract. Visual attention is an important mechanism as it can be ap-
plied to many branches of computer vision and image processing such
as segmentation, compression, detection, tracking and so on. Based on
both capabilities and defects of existing models, the paper proposes a
computational saliency-oriented model from the perspective of frequency
domain. A saliency map can be generated by two main steps: firstly Ga-
bor wavelet decomposition of the input image at certain levels is used to
produce the feature components, and then these components are selected
and fused in the sense of 2D entropy. The proposed algorithm outper-
forms most of state-of-the-art algorithms at human fixation prediction
for both psychological patterns and natural images including salient ob-
jects with arbitrary sizes. Beyond that, biological plausibility of Gabor
filter makes our approach more reliable and adaptive to various stimuli.

Keywords: Visual Attention, Extended Classical Receptive Field
(ECRF), Gabor Decomposition, 2D Entropy.

1 Introduction

The highly evolved human vision system enables us to rapidly attend to the
locations which are conspicuous within an image. It is attention mechanism that
facilitates us to locate salient regions in a scene. Tsotsos [1] defines attention
as the process by which the brain controls and tunes information processing.
Therefore, the most general method to model attention is to simulate the func-
tions of human brain. By devising such artificial visual attention model, visual
tasks can be easily accomplished by the machines.

Borji and Itti [2] divide existing computational models into two kinds: fil-
ter ones and neural ones. Considering filter models, bottom-up model which is
stimuli-based and top-down model which is task-driven are two main branches.
Among different kinds of models, saliency map [3], a topological map containing
global conspicuity information, is frequently assumed and utilized as it directly
demonstrates the attended regions spatially. Most of state-of-the-art models are
both bottom-up schemed and saliency map based, so is ours.

Itti et al. [4] proposes a bottom-up model which calculates saliency by linear
filtering and center-surround difference upon low-level feature maps including
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intensity, color opponents and orientation, then combines different feature maps
across different scales to obtain saliency map. This algorithm is of high compu-
tational cost and fails to deal with large scale salient regions. Another model is
implemented in frequency domain [5] in which Quaternion combines intensity,
two color opponents (BY and RG) and motion feature to achieve Phase spec-
trum Fourier Transform (PQFT). This model suffers the drawback that only
edges are highlighted due to not taking amplitude information into account. In
[6], the author introduces a Frequency-Tuned Saliency (FTS) algorithm which
retains most of the frequency components of images in order to realize better seg-
mentation. It calculates saliency by simple subtraction between Gaussian filtered
image and its global mean. This model, compared with the previous two, out-
stands when large scale salient regions are dominant but fails when orientation
features (e.g., psychological patterns) lead to saliency or when salient objects
relatively small. This is because operations involved in FTS are isotropic and
retaining most frequency parts may only be suitable for large salient objects.

We find out that Itti’s model fails to locate large salient objects as it removes
most low frequency parts. And FTS is merely effective for large objects but
incapable to locate small ones as it retains most of the frequency. Inspired by
these two ideas, we introduce Extended Classical Receptive Field (ECRF) [7,8]
to solve both problems above.

The rest of paper is organized as follows. In section 2, we demonstrate that
saliency can be calculated by extracting information locating in certain bands of
frequency domain. Gabor wavelet decomposition is then introduced to achieve
feature extraction. Next, in section 3, the 2D entropy metric is utilized to select
and fuse feature maps. Then we formulate the algorithm in section 4. Experi-
mental results and comparisons are demonstrated in section 5 with analysis on
various models. Finally, conclusions are made on our work as well as future work.

2 From ECRF Model to Gabor Decomposition

Rodieck et al. [8] proposes the classical Difference of Gaussian (DoG) model to
depict the center-surround response structure of receptive field of retinal ganglion
cells. It is known as the Classical Receptive Field (CRF) which can be simulated
by the difference between two Gaussian functions. This DoG structure is adopted
in many bottom-up models [4,6]. Physiologists have found out, however, that
centre-surround CRF can be modulated by a larger region, i.e. the photoreceptor
cells outside the CRF of ganglion cells [9]. These areas are regarded as non-
Classical Receptive Field (nCRF). Combining both CRF and nCRF, Ghosh et
al. [10] model the receptive field as a combination of three zero-mean Gaussians
at three different scales:

ECRF(σ1, σ2, σ3) = A1
1√
2πσ1

e
− x2

2σ2
1 −A2

1√
2πσ2

e
− x2

2σ2
2 +A3

1√
2πσ3

e
− x2

2σ2
3 , (1)

where ECRF represents the response function, σ1, σ2 and σ3 represent the scales
of the center, the antagonistic surround and the extended disinhibitory surround
respectively, and A1, A2 and A3 represent the corresponding amplitudes.
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We think that ECRF may solve both problems of Itti’s model and FTS model
because it can choose frequency bands including low frequency as well as high
band-pass frequency part of input image by modulation of its parameters. That
is why human beings can easily pay attention to salient objects regardless of their
sizes. This idea, however, leaves another problem in real implementation: how
to automatically modify these parameters in Eq.(1) to suit various stimuli with
different size objects in natural image or psychological patterns as human beings
do. An idea in this paper is adopting wavelet transform in different orientations
and multiple scales to decompose input image to different frequency bands, and
then selecting one or two corresponding bands according to certain criterion.
This idea can partly simulate the ability of ECRF and also achieves the same
effect of frequency band selection. Considering different categories of wavelet
functions, we select Gabor function to carry out decomposition as it is related
to the processes of primary visual cortex.

Conventionally, wavelet decomposition of images with Mallat algorithm [11]
always mixes the two diagonal direction sub-maps into one map. This property
may hinder saliency detection in many cases. Therefore, we choose 2D Gabor
filter rather than Fast Wavelet Decomposition algorithm to accomplish “wavelet
decomposition” in order to obtain more information on orientations. Four high-
frequency filters with orientations {0◦, 45◦, 90◦, 135◦} and one low-frequency
filter, which is virtually a Gaussian filter, together amount to five 2D Gabor
filters. These five Gabor filters can almost cover the whole frequency domain.
They are shown in Fig.1.

Fig. 1. Five Gabor 2D filters (top row) with their corresponding amplitude spectrum
(bottom row). From left to right: low-frequency part, high-frequency part with 0◦, 45◦,
90◦, 135◦.

3 Fusion and Selection via 2D Entropy

Input image is decomposed at several different levels or scales, in other words,
these five Gabor filters convolve the image at one level and then the output of
low-frequency Gabor filter is subsampled to yield the input of next level. After
decomposition, dozens of feature maps are obtained. These maps contain valu-
able local saliency information, so a strategy is required to fuse and select them
to generate a significant saliency map. This fusion and selection process simu-
lates the process of parameters adjustment of ECRF model. After combination
and elimination of different bands, the effect of ECRF is achieved.
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2D entropy [12,13] is a useful metric to measure the clutter degree of an
image. It is originally used to determine the optimal threshold for segmentation.
To calculate 2D entropy, a 2D gray-level histogram taking spatial relations into
account is formed in advance by comparing the original image f(x, y) and the
averaging filtered version g(x, y) = m ∗ f(x, y), where m is a 2D mean filter
which can be 3×3 pixels. The 2D histogram is an L×L square matrix, where L
represents number of gray levels. A pixel located at (x, y) refers to ith gray level
in f(x, y) and j th gray level in g(x, y) respectively. After scanning all pixels in
image, rij denotes the number of pixels which are at ith gray level of f(x, y) and
at j th level of g(x, y). The element of 2D histogram pij is calculated as follows:

pij =
rij
MN

, (2)

where MN represents total pixel number of input image.
Then the 2D entropy can be calculated based on the generated 2D histogram.

According to the definition of 2D entropy, the 2D histogram mainly takes edge
change into account since uniform regions scarcely alter their grey level after
averaging filtering. If a map is topologically compact, which means less edge
information, then the averaged map may still contains relatively less edge infor-
mation. On the other hand, when a scene is cluttered, averaging filtering may
lead to excessive edge information which accordingly generates relatively greater
value of 2D entropy. So, the smaller the 2D entropy value is, the more significance
the corresponding map represents. One example is shown in Fig.2.

Fig. 2. Illustration of 2D entropy. From left to right: original image, one feature map
with 2D entropy 1.6932, another map with value of 3.5245.

4 Details of Algorithm

According to these processing methods, we combine them as a whole model to
generate the saliency map. The steps of saliency map calculation are as follows.

Four broadly-tuned color channels [4] are constructed according to the input
RGB image with r, g and b referring to its red, green and blue components
respectively:

R = r − (g + b)/2, (3)

G = g − (r + b)/2, (4)

B = b− (r + g)/2, (5)
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Y = (r + g)/2− |r − g| /2− b, (6)

As color information is processed in primary visual cortex in an antagonistic
way, two color pairs, red-green and blue-yellow, are obtained here:

RG = R−G, (7)

BY = B − Y, (8)

Besides, the intensity channel is averaged over the original components:

I = (r + g + b)/3, (9)

These three channels I, RG and BY are regarded as input signals for the rest
operations. As mentioned before, Gabor decomposition is utilized to substitute
band-pass filter in each channel. The 2D Gabor function is:

g(x, y;λ, θ, σ) = exp(−x′2 + y′2

2σ2
) cos(2π

x′

λ
), (10)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ. And four orientations are
selected as θ = {0◦, 45◦, 90◦, 135◦}. The scale is σ = 7/5 . The low-pass 2D
Gabor filter sets λ a large number like λlow = 2.510, and 4 other high-pass ones
set λhigh = 2.5. The sizes of these filters are 15×15 pixels (Fig.1).

In our experiments, we decompose the input image repeatedly until the height
of decomposed image is less than 64 pixels. Besides, feature maps extracted at
the first level, which means the original size, are discarded as they contain less
significant information even most can be considered as noise. That is, we first
filter the input image with the low-pass Gabor filter and then subsample it. The
half-sized image is considered as noise-reduced and it is then processed with the
five 2D Gabor filters. Therefore, in each channel for each level except the first
one, we obtain four orientation maps and one low frequency map.

The next operation is to select and fuse feature maps. First of all, 2D entropy
metric for each feature map is calculated. In order to calculate the entropy, the
2D histogram should be computed in advance as described in section 3. Before
calculating the 2D histogram, we use Gaussian filter with σ = 0.02×width to
smooth the feature maps. Then, the 2D entropy is calculated as:

2D entropy = −
L∑

i=1

L∑
j=1

pij log pij , (11)

where pij is calculated according to Eq.(2).
Moreover, like [14,15,16], we also take retinal eccentricity or center-bias effect

into account which means that one image is weighted more when it responds more
intensely and actively in center than in surround. A parameter cbi is defined for
each map as:

cbi =

M∑
m=1

N∑
n=1

K(m,n) ·Norm(fmi(m,n)), (12)
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where K is a Gaussian kernel with the same size of feature map and the scale
parameter is σx = N/6 and σy = M/6. Norm() is normalization operation and
fmi refers to different feature map.

This parameter is used together with 2D entropy to acquire the Modified 2D
entropy (M-2D entropy):

mei =
2D entropyi

cbi
, (13)

This value is an important metric to fuse feature maps and select the optimal
levels/scales. Then, we can calculate the M-2D entropy value for each feature
map of each channel. For these feature maps, we fuse those at the same level
to obtain a more comprehensive map, which means that four orientation maps
at same level (same resolution) are integrated with each weight equaling the
reciprocal of its M-2D entropy value. The low frequency map is left intact. For
instance, if the intensity channel of an input image is decomposed at 4 levels,
then 12 (4×3) orientation feature maps and 3 (1×3) low frequency feature maps
are obtained except the first level. By fusing orientation feature maps, we will
get 6 (3 + 3) comprehensive maps for the intensity channel.

From the perspective of frequency domain, the comprehensive maps contain
different frequency bands of the input image from the very low frequency to
nearly half of the highest frequency. But each frequency band is extracted with
different weights on various orientations. As we mentioned before, the other half
frequency band is discarded as noise components.

So what we have to do next is to pick up optimal frequency bands which con-
tain most significant saliency information to construct the saliency map. This is
to simulate the process of ECRF. The criterion of selection is to calculate the
M-2D entropy of each comprehensive map as well. We first select one compre-
hensive map with the lowest entropy value emin. Then we find out another map
with the second lowest entropy value and check whether the value is less than
1.1×emin. If it is not, we only get one optimal band. However if it is the other
case, we get 2 optimal bands if these two bands are not overlapped and one
represents low frequency while the other represents high frequency. In this case,
we combine these two maps linearly.

At last, 3 local saliency maps are obtained for I, RG and BY channels. The
weight for each map is also calculated as the reciprocal of its M-2D entropy.
These 3 maps are interpolated to reach the original resolution in order to make
a pixel-wise weighted summation.

5 Experimental Results and Discussions

To make a comprehensive evaluation on our model, the testing databases in-
clude both artificial patterns/images and natural images. Natural images contain
not only small sized salient objects but also large ones. Comparisons are per-
formed between several models including NVT [4], PQFT [5], FTS [6] and HFT
[14]. Among all of these models, PQFT resizes the input to resolution of 64×64
and HFT resizes to 128×128 as optimal defaults while others do not carry out
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resolution adjustment as well as our approach. However, resize of input image
may probably lead to irreversible information loss.

5.1 Quantitative and Subjective Evaluation

For artificial patterns or psychological images, we just list results in several cases
to make a subjective evaluation on each model.

For natural data, we compare the output of each model with the so-called
ground truth in a quantitative way, more than just listing dozens of results.
The ground truth data are based on human visual behavior and mainly include
two types: fixation maps and labeled area maps. A fixation map [2] is record of
human fixation within one image by eye tracking apparatus. Data of this kind
are binary maps, with logical 1 (fixation points) dotted over the whole image.
Ground truth maps of the other kind are also binary maps, but with consistent
areas indicating logical 1 which are labeled by a number of subjects. For both
types of ground truth, we choose AUC (Area under ROC Curve) metric to
measure the performance of each model’s capability to predict human fixation.

According to [17], the processes of center-bias and Gaussian smooth on
saliency maps have great impact on the results of AUC metric. Here, the cen-
ter bias operation is to take the Hadamard product of the saliency map and
a Gaussian mask as the result. Besides, by adopting Gaussian filtering to the
saliency map, better visual effects and more consistency of salient region can be
obtained. Consequently, for an impartial and unbiased comparison, we process
the saliency maps generated by each model with such operations if they are not
implemented by the model itself.

(a) Visual comparison (b) AUC comparison

Fig. 3. Visual comparison and AUC comparison for 5 models
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5.2 Saliency Detection for Natural Images

For natural images testing, all models are running on databases including Bruce’s
fixation data [18], Hou’s labeled data [19] and Achanta’s labeled data [6]. They
contain 120, 58 and 1000 natural images respectively. All saliency results are
first Gaussian smoothed with parameter setting as σ = 0.04×width. After
smoothing, the saliency map is multiplied by a Gaussian kernel with param-
eter σx = width/4 and σy = height/4 to achieve the effect of center-bias. Some
results are shown in Fig.3(a) and a quantitative comparison is plotted in Fig.3(b).

Fig.3(a) illustrates that our model is proved to be effective on both small
salient regions and large ones while PQFT and NVT only highlight small objects
or edges. FTS fails when orientation information is required or when salient
objects are relatively small. The results of HFT are also not as satisfying as ours
(first and fourth row in Fig.3(a)).

Additionally, our model outperforms the others in terms of AUC metric as
shown in Fig.3(b). We would like to point out that the HFT model is defective
due to its resize of input image and fixed weight of I, RG and BY channel. For
another, the NVT model suffers the problem that center-surround operations
exclude much of the low frequency part, which actually contributes a lot when
the salient region is relatively large. Considering PQFT, it totally discards the
amplitude spectrum and only phase information is utilized for saliency map
construction, which leads to only edges being popped out. For FTS, as it is only
effective on its own database (most images with large salient areas) but fails
others, it indicates that orientation is an important feature and retaining most
of frequency components is neither necessary nor sufficient to calculate saliency.

5.3 Saliency Detection for Artificial Images

Different types of psychological patterns, construct another test bench. These
images are important criterion to measure the performance of attention models.

In Fig.4, we can see that our model can deal with most cases of psychological
patterns. It turns out that our model shows good potential on these patterns
as well as HFT, but NVT and PQFT are less effective and FTS have the poor-
est performance. Nonetheless, considering cases like conjunction (last column),
it may require more high-level features or top-down knowledge which are not
contained in our model.

6 Conclusion and Future Work

We proposed a saliency model from the perspective of frequency band decom-
position though implemented in spatial domain. Two main steps are: Gabor
decomposition of input image at different levels generating dozens of feature
maps and 2D entropy which is chosen as metric to select optimal scales (or
frequency bands) and integrate feature maps. Our approach turns out to be
superior compared with others on various kinds of stimuli, including artificial
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Fig. 4. Saliency maps of psychological images. First row: patterns, second row: our
method, third row: NVT[4], fourth row: FTS[6], fifth row: HFT[14], last row: PQFT[5].

images and natural ones with large or small salient areas. Besides, although this
is a bottom-up model, top-down manners or prior knowledge can be more easily
included. As images are divided into different channels, scales and orientations,
diverse weights can be assigned to feature maps when specific tasks are involved.
However, our model still suffers a couple of drawbacks. Firstly, this algorithm
requires a bit more computational cost compared with PQFT or FTS. For an-
other, 2D entropy as a measure to fuse and select feature maps lacks of biological
support.

The future work is to discover biological basis of 2D entropy, or to replace
it with other more biologically plausible methods. So far, whether behavior like
2D entropy calculation exists in human visual system remains unknown. What’s
more, top-down mechanism turns out to be more important as we have interest in
airports or buildings detection in remote sensing images with attention models.
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Abstract. Impulse-radio Ultra-wide band (IR-UWB) radar plays an important 
role in searching and detecting human target in particular situations, such as 
counterterrorism, post-disaster search and rescue and so on. It mainly takes the 
advantages of its good penetrability through obstacles and high range resolu-
tion. It detects human target mainly by detecting the respiratory signal. As the 
higher order spectrum is immune to the Gaussian noise, a new algorithm based 
on the bispectrum analysis for human detection behind the wall is proposed. 
The results of the through-wall experiments show the algorithm has a better 
performance than the conventional PSD-based algorithm.  

Keywords: human detection, UWB, bispectrum. 

1 Introduction 

As a rapidly developing technology, IR-UWB radar plays an important role in con-
tactless human being detection in many areas, such as counterterrorism, post-disaster 
search and rescue and so on. It takes the advantages of the IR-UWB’s high range 
resolution and its good penetrability through nonmetallic materials in the lower  
frequencies [1-3]. 

Considering the outstanding applications in military, civilian and medicine, many 
research groups are studying human detection with the UWB radar. Scientists in this 
area have been trying to detect the human beings more efficiently and accurately by 
developing the radar prototypes and raising different respiratory-motion detection 
(RMD) algorithms [1-9]. The human target is mainly detected by detecting and identi-
fying the respiratory response. The IR-UWB pulses travel though the wall and reach 
to the human body and then are reflected backwards by the human chest and then the 
received echoes contain the respiratory signals. 

The traditional life detection algorithms are generally based on the energy of respi-
ratory response [5-9], those algorithms mainly focus on the power spectral density 
(PSD), which is the Fourier transform of the autocorrelation function [10]. However, 
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this type of algorithm is only suitable for high signal to noise ratio (SNR) situation 
without the noise in the same frequency range as respiration. Typically, the displace-
ment of chest caused by respiration is between 0.1 mm and several millimeters, de-
pending on different person, and that caused by heartbeat is even usually below 0.1 
mm [11]. So the magnitude of the respiratory response itself is weak. Also, the re-
flected signal carried by the electromagnetic waves is always contaminated by strong 
noise and intensive attenuation will appear as the radar signal travels through complex 
constructions [12]. The above two reasons make the SNR of the UWB echoes always 
low. As disturbance to the useful signal, noise always spreads in a large frequency 
range and mixes with the useful IR-UWB respiratory signal. Therefore, the algorithms 
based on the PSD may not that suitable to be applied to detect human objects behind 
the wall. 

For Gaussian process, the spectrum of order higher than two is identically zero. 
Then a nonzero higher order spectrum denotes a non-Gaussian process. So the higher 
order spectrum analysis (HOSA) is usually applied to study of the non-Gaussian sig-
nal contaminated by Gaussian noise, without considering the SNR or whether the 
noise is in the same range as the wanted signal [13]. As non-Gaussian signal, the qua-
si-periodic respiratory signal is suitable to be analyzed by the higher order spectrum 
method to analyze the IR-UWB echoes and finally be used to detect the human being 
automatically and accurately. In this paper, we use the bispectrum, which is the third 
order spectrum. The preferable performance of the algorithm is proved by experi-
ments and compared with the conventional PSD-based algorithm. 

The rest of the paper is organized as follows: In Section 2, the methods in this pa-
per are depicted. The results and discussion of the experiments are presented in Sec-
tion 3 and conclusion is made in Section 4. 

2 Methods 

2.1 Measurement System 

A set of IR-UWB radar system with center frequency of 400 MHz and bandwidth of 
100 MHz, which ensures good penetrability and high range resolution, is used. It 
complies with the definition of UWB according to the federal communication com-
mission (FCC). The pulse repetition frequency (PRF) is 250 KHz and the transmit 
power is 5 mW. In addition, the radar is controlled by a laptop and the data stream is 
transported through Wi-Fi.  

The IR-UWB radar echoes are received by the receiver antenna, sampled by the 
AD converter and then are stored in the laptop in the form of data matrix. Each re-
ceived waveform along the range consists of 4096 points and then the sampling rate 
of the radar system is approximately 61 Hz, which satisfies the Nyquist sampling 
theorem for the frequency of the human’s respiration is 2-3.5 Hz. For the stored ma-
trix, the time-axis related to range along each received waveform is termed fast-time, 
which is in the order of nanoseconds, while the time-axis along the measurement 
interval is termed slow-time, which is in the order of seconds [14].  
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2.2 Experiments  

The block diagram of the experiment using the IR-UWB radar to detect human object 
is shown in Fig. 1. A human object with normal breath stands still behind a 24 cm 
brick wall and stay away from the radar system 3 m and 4.5 m separately. 
 

 

Fig. 1. The block diagram of the experiment using IR-UWB to detect human object 

The stored data is analyzed by bispectrum analysis algorithm and PSD-based algo-
rithm, a conventional algorithm which is used to compare the performance with the 
proposed algorithm.  

The PSD-based algorithm is depicted by the flowchart in Fig. 2. In order to im-
prove the SNR, accumulation in range, digital components (DC) and linear trends 
(LT) removal and low-pass filter in slow time dimension are employed before calcu-
lating the PSD. Considering the respiration signal is, in most cases, no more than 0.5 
Hz, the PSD in the frequency range below the 0.5 Hz is accumulated, and then the 
accumulated value represents the amplitude of the point [15].  

 

 

Fig. 2. The flowchart of PSD-based algorithm 

2.3 RMD Algorithm Based on Bispectrum Analysis 

Bispectrum analysis is a kind of HOSA with the order is three and it is the Fourier 
transform of the third-order cumulant. A concise introduction to the bispectrum anal-
ysis will be given as following [13]: 

Consider a real discrete-time sequence x(n), which mean is zero. The third-order 
cumulant estimation of x(n) is defined: 

 3, 1 2 1 2( , ) ( ( ) ( ) ( ))xC E x n x n x nτ τ τ τ= + +  . (1) 

The bispectrum of x(n) is 
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That is to say, the bispectrum of x(n) is the Fourier transform of its third-order cumu-
lant. Besides, the bispectrum of x(n) can be also given by 

 1 2 1 2 1 2( , ) ( ) ( ) ( )B H H Hω ω ω ω ω ω∗= +  , (3) 
where H(ω) denotes the Fourier transform of x(n). 

Specific to the algorithm presented in this paper, the bispectrum estimation is the 
main part and the flowchart of our algorithm is shown in Fig. 3. 

 

 

Fig. 3. The flowchart of the proposed signal processing 

In order to reduce the computation complexity, range accumulation is employed, 
which can also, in some degree, increases the SNR of received signal. This step can 
be written as 

 [ ]
( 1/2) 1

1
( 1/2)

1
, [ , ]

L Q

m l Q

R l n R m n
Q

+ −

= −

=   , (4) 

where x=1, 2,..., X, Q is the window size in the range dimension, and L=⌊M/Q⌋ is the 

compression result in the same dimension, while ⌊a⌋ denotes the largest integer less 
than a [15]. 

After the accumulation in range dimension, a matrix R1 (l, n) will be obtained, 
where the l=1,2,…, L, which denotes the range information and the n=1,2,…, N , 
which denotes the time information. Then the bispectrum of each row signal rl (n) of 
the matrix is estimated. We estimate the bispectrum as following steps; 

Segment data into K frames and each frame has a length of M samples with 50% of 
overlap. 

Apply FFT algorithm to each frame and we get X(k) (λ), where λ=0, 1, … , M/2 
and k=1, 2, … , K. 

Calculate bispectrum of each frame according to Equation 3. We get bk(ω1,ω2), 
where k=1,2, …, K. 

Lastly, the bispectrum of each point signal is the average of the bispectrums of K 
frames: 

 1 2 1 2
1

1
( , ) ( , )

K

k
k

B b
K

ω ω ω ω
=

=   . (5) 

Bispectrum has extraordinary symmetry property. In order to reduce the computation 
complexity and maintain the entire information of the bispectrum at the same time, 
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analysis will focus on the Triangular OAB in Fig. 4, which is called the principal 
domain of the bispectrum plane [13]. Accumulation is implemented for the Gaussian 
noise will be zero in the domain, while the quasi-periodic respiratory signal will not. 
Then the point where the largest accumulated bispectrum appears can be regarded as 
the position where the human target locates. 

 

 

Fig. 4. The principal domain of the bispectrum plane 

3 Results and Discussion 

The results are shown in Fig. 5. Fig. 5(a) shows the results of the bispectrum analysis, 
while Fig. 5(b) shows that of the conventional PSD-based algorithm (the human ob-
ject stands away from the radar 3 m) Fig. 5(c) shows the results of the bispectrum 
analysis, while Fig. 5(d) shows that of the conventional PSD-based algorithm (the 
human object stands away from the radar 4.5 m). 

It can be seen from the results that the bispectrum estimation algorithm has better 
performance than the PSD-based algorithm. The value of the point where the human 
object stands is significantly higher than the other points. We can see from the fig-
ures, the respiratory response causes a relatively large value zone in both the results of 
the two algorithms, which can be called the affected area, and the rest of the zone can 
be called the non-affected area. As the two algorithms both detect the point where the 
largest value exists and locate the human object, values in non-affected area should be 
suppressed as much as possible. A parameter K is also defined to evaluate the perfor-
mance. The value of K is the quotient of the highest value in the affected area over the 
highest value in the non-affected area. The peaks in the non-affected area will be great 
disturbances to the automatic detection, so the larger the K is, the better the perfor-
mance is. For the bispectrum analysis algorithm, the value of the K can reach to 10, 
while for the PSD-based algorithm, the value can only get 2 or 3. 

In addition, the affected area in the results of the bispectrum analysis is narrower 
than that of the PSD-based algorithm, which can be clearly seen especially when the 
human object is 4.5 m away from the radar. The affected area’ width influences the 
accuracy of the detection, the narrower the affected area is, the more accurate the 
detection is. 
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Fig. 5. (a) The normalized amplitude of accumulated bispectrum along the range dimension 
with the human object stands 3 m away from the radar (b) The normalized amplitude of accu-
mulated PSD along the range position with the human object stands 3 m away from the radar 
(c) The normalized amplitude of accumulated bispectrum along the range dimension with the 
human object stands 4.5 m away from the radar (d) The normalized amplitude of accumulated 
PSD along the range position with the human object stands 4.5 m away from the radar. 

The reason that causes the differences between the two algorithms is mainly that 
there is noise in the same frequency where the respiratory response belongs. The 
PSD-based algorithm cannot eliminate this kind of noise in the essence of its theory. 
The density of the noise is treated as a component of the useful signal in the PSD-
based algorithm. Narrowing the accumulated frequency range can, in some degree, 
prevent the noise density be added. This kind of method needs the exact frequency 
range of the respiratory response, and either larger or smaller frequency range will 
bring departure. However, the prior knowledge of the respiratory frequency can hard-
ly obtain for the parameter varies from person to person. And when the system is 
applied in search and rescue or other emergent situations, it is impossible to get the 
respiration frequency beforehand. Regarding the bispectrum analysis algorithm, it is 
immune to the Gaussian noise essentially, with no need to care about if the frequency 
range of the noise and that of the respiratory response are overlapped. 
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In conclusion, the results show the bispectrum analysis is superior over the conven-
tional PSD-based algorithm in detecting human object as its immune characteristic to 
the Gaussian noise. 

4 Conclusion 

In this paper, a low power IR-UWB is employed to detect human object behind the 
wall and a new algorithm based on bispectrum analysis is proposed. The performance 
of the algorithm is compared with that of the conventional PSD-based algorithm. 
Experiments are carried out to test the algorithm and the results show the novel algo-
rithm has much better performance than the contrast algorithm, which shows promis-
ing applications of the algorithm to be used in complex situations. 

In the future, experiments of complicated scenarios should be carried out to testify 
the algorithm. In addition, as discussed above, the affected area of the results of the 
novel algorithm is narrower than that of the PSD-based algorithm. This kind of fea-
ture can be good for multi-human objects detection. Further researches will be carried 
out later. 

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Grant No. 61271102) and National Science &Technology Pillar 
Program (Grant No. 2012BAI20B02). 

References 

1. Zetik, R., Crabbe, S., Krajnak, J., Peyerl, P., Sachs, J., Thomä, R.: Detection and localiza-
tion of persons behind obstacles using M-sequence through-the-wall radar. In: Proceedings 
of SPIE, pp. 145–156 (2006) 

2. Sachs, J., Aftanas, M., Crabbe, S., Drutarovsky, M., Klukas, R., Kocur, D., Nguyen, T., 
Peyerl, P., Rovnakova, J., Zaikov, E.: Detection and tracking of moving or trapped people 
hidden by obstacles using ultra-wideband pseudo-noise radar. In: European EuRAD 2008, 
pp. 408–411 (2008) 

3. Ossberger, G., Buchegger, T., Schimback, E., Stelzer, A., Weigel, R.: Non-invasive respi-
ratory movement detection and monitoring of hidden humans using ultra wideband pulse 
radar. In: 2004 International Workshop on Ultra Wideband Systems, Joint with Conference 
on Ultrawideband Systems and Technologies, Joint UWBST & IWUWBS, pp. 395–399 
(2004) 

4. Levitas, B., Matuzas, J.: UWB Radar for Human Being Detection Behind the Wall. In: In-
ternational Radar Symposium, IRS 2006, pp. 1–3 (2006) 

5. Zaikov, E., Sachs, J., Aftanas, M., Rovnakova, J.: Detection of trapped people by UWB 
radar. In: German Microwave Conference (GeMIC), pp. 1–4 (2008) 

6. Yarovoy, A., Ligthart, L., Matuzas, J., Levitas, B.: UWB radar for human being detection. 
IEEE Aerospace and Electronic Systems Magazine 21, 10–14 (2006) 

7. Venkatesh, S., Anderson, C.R., Rivera, N.V., Buehrer, R.M.: Implementation and analysis 
of respiration-rate estimation using impulse-based UWB. In: IEEE Military Communica-
tions Conference, MILCOM 2005, pp. 3314–3320 (2005) 



 Human Detection Algorithm Based on Bispectrum Analysis for IR-UWB Radar 681 

 

8. Nezirovic, A., Yarovoy, A.G., Ligthart, L.P.: Signal processing for improved detection of 
trapped victims using UWB radar. IEEE Transactions on Geoscience and Remote Sens-
ing 48, 2005–2014 (2010) 

9. Li, Y., Jing, X., Lv, H., Wang, J.: Analysis of characteristics of two close stationary human 
targets detected by impulse radio UWB radar. Progress in Electromagnetics Research 126, 
429–447 (2012) 

10. Stoica, P., Moses, R.L.: Introduction to spectral analysis. Prentice Hall, Upper Saddle Riv-
er (1997) 

11. Singh, M., Ramachandran, G.: Reconstruction of sequential cardiac in-plane displacement 
patterns on the chest wall by laser speckle interferometry. IEEE Transactions on Biomedi-
cal Engineering 38, 483–489 (1991) 

12. Chernyak, V.: Detection problem for searching survivors in rubble with UWB radars. In: 
European Radar Conference, EuRAD 2008, pp. 44–47 (2008) 

13. Nikias, C.L., Raghuveer, M.R.: Bispectrum estimation: A digital signal processing frame-
work. Proceedings of the IEEE 75, 869–891 (1987) 

14. Lazaro, A., Girbau, D., Villarino, R.: Analysis of vital signs monitoring using an IR-UWB 
radar. Progress in Electromagnetics Research 100, 265–284 (2010) 

15. Li, W., Jing, X., Li, Z., Wang, J.: A new algorithm for through wall human respiration 
monioring using GPR. In: 2012 14th International Conference on Ground Penetrating Ra-
dar (GPR), pp. 947–952 (2012) 

 
 



Author Index

Abdurahman, Abdujelil I-230
Arshad, Muhammad Zeeshan II-463

Bai, Weiwei II-212
Bai, Yiming II-429
Bao, Hongyun II-514
Bao, Lanying II-552
Bertini Junior, João Roberto II-405
Bui, The Duy I-36
Bui, Tien Dai I-258, I-429, I-650

Cai, Chao II-155, II-455
Cai, Guoliang I-125
Cai, Jinlong II-586
Cao, Feilong I-547
Cao, Mao-Yong I-367
Chai, Wei I-311
Chang, Eric II-315
Chávez, Rafael II-489
Chen, Bing II-96
Chen, Bingqian I-437
Chen, Guangyi I-258, I-429, I-650
Chen, Hong II-413
Chen, Jian I-437
Chen, Jiejie II-630
Chen, Meirong I-343
Chen, Mou II-120, II-196
Chen, Shanshan II-323
Chen, Shengfu II-638
Chen, Shiyi I-635
Chen, Tianping I-174
Chen, Weisheng II-139
Chen, Xi I-265
Chen, Xiaoping I-214
Chen, Xingjun I-239
Chen, Xu II-315
Chen, Yen-Wei I-375, I-627
Chen, Yuehui II-606
Cheng, Mingsong I-222
Chu, Fufei II-155
Chu, Pei II-19
Cong, Fengyu I-291
Cui, Dong II-120
Cui, Jianyong I-620

Cui, Rongxin II-120
Cupertino, Thiago Henrique II-375,

II-395

da Cruz, Janir Nuno II-305
Dai, Shuling I-429
Dang, Trung Kien I-36
Dawood, Hassan I-497
Dawood, Hussain I-497
De, Ailing I-612
de Lourdes Arredondo, Maŕıa II-489
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