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Abstract. We investigate a lattice construction method for the Copper-
smith technique for finding small solutions of a modular equation. We
consider its variant for simultaneous equations and propose a method
to construct a lattice by combining lattices for solving single equations.
As applications, we consider a new RSA cryptanalysis. Our algorithm
can factor an RSA modulus from � ≥ 2 pairs of RSA public exponents
with the common modulus corresponding to secret exponents smaller
than N (9�−5)/(12�+4), which improves on the previously best known re-
sult by Sarkar and Maitra. For partial key exposure situation, we also
can factor the modulus if β − δ/2 + 1/4 < (3�− 1)(3�+ 1), where β and
δ are bit-lengths / logN of the secret exponent and its exposed LSBs,
respectively. Due to the spacing limit, some arguments are omitted; see
the full-version [1].

1 Introduction

Since the RSA cryptosystem [31] was proposed, its security has been intensively
investigated. In particular, polynomial-time algorithms for recovering short se-
cret exponents have been studied [34,3]. There are two main strategies for recov-
ering a secret exponent in this situation: The continued fraction algorithm was
used in this approach [34,19,17] and the Coppersmith technique based approach
[3,5,11]. We consider the latter technique.

Using the Coppersmith technique for finding small roots of a modular equa-
tion, Boneh and Durfee [3] proposed an algorithm for recovering a small secret
exponent from the corresponding public key pair. Under several acceptable as-
sumptions, the attack is guaranteed to work when the secret exponent is smaller
than N0.292.

Although the original Coppersmith technique was designed to treat a sin-
gle modular equation, the method can be extended to multivariate simultane-
ous equations [8,32,33,15]. Their approaches first construct a single multivariate
modular equation whose solutions are also those of the simultaneous equations,
and apply the standard Coppersmith technique. This may not be a better strat-
egy from the viewpoint of lattice construction because it does not consider in-
dividual equations. May and Ritzenhofen [26] proposed an approach based on
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the Chinese remainder theorem to solve simultaneous univariate modular equa-
tions. In this paper, we study an extension of the Coppersmith technique that
directly treats the original simultaneous multivariate equations. We expect that
our algorithm will improve several lattice based attacks.

Related Works on Lattice Construction for the Coppersmith Tech-
nique: For a single modular equation, it has been widely studied. The first
work by Coppersmith [9] gave a good lattice construction for any univariate
modular equation. Recently, Aono et al. [2] has proven the optimality of this
construction. Blömer and May [6] proposed a construction method for bivariate
equations, and Jochemsz and May [20] improved this to a method for treat-
ing general multivariate equations. Another viewpoint was given by Kunihiro
[22], who proposed a method for converting a lattice for an n-variable equation
f(x1, . . . , xn) ≡ 0 (mod W ) into a lattice for a new (n + 1)-variable equation
of the form x0f(x1, . . . , xn) + C ≡ 0 (mod W ) where C is a constant. For si-
multaneous modular equations, May and Ritzenhofen [26] considered a Chinese
remainder theorem based approach. They proposed a method for constructing a
lattice in the univariate case and gave an application to RSA. Recently, Ritzen-
hofen [30] improved this approach to multivariate simultaneous equations and
proposed a lattice construction method for equations with the common modulus.
However, the case for coprime moduli was not solved (see [30, Section 5.4]). We
consider this problem.

1.1 Contributions of This Work

Minkowski Sum Based Lattice Construction: We propose a method to
construct a lattice for the Coppersmith technique for simultaneous modular
equations. We consider simultaneous equations such as F1(x1, y) ≡ 0 (mod W1)
and F2(x2, y) ≡ 0 (mod W2). Assume that we have lattices spanned by the

sets of polynomials {g(1)1 , . . . , g
(1)
c1 } and {g(2)1 , . . . , g

(2)
c2 } for the equations, respec-

tively. Then, we propose the Minkowski sum based lattice construction, which is
a method for generating a lattice basis for solving the simultaneous equations,

as a set of polynomials of the form
∑

aλg
(1)
λ · g(2)λ′ . Our method defines the range

of suffixes (λ, λ′) and the coefficients aλ of the combination.

Cryptanalysis of Multiple RSA Short Secret Exponents: The above con-
struction method can easily be extended to multivariate and multi-equation situ-
ations. By this, we improve the cryptanalysis of RSA with short secret exponents
studied in [19,17,32,33]. In this situation, the attacker has � pairs of RSA public
keys (ek, N) with the common modulus, which correspond to secret exponents
smaller than Nβ for some β ∈ (0, 1). Then, we prove that the RSA modulus is
efficiently factored if

β < (9�− 5)/(12�+ 4).

Here, we assumed that all ek’s are full-sized i.e., they have the same bit sizes.
This improves on the previously known best result by Sarkar and Maitra [33],
which achieved β < (3� − 1)/(4�+ 4). For large �, both values converge to 3/4.
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Noting that Howgrave-Graham and Seifert [19] had given an extended version
of Wiener’s continued fraction attack and obtain the bound

β <
(2�+ 1) · 2� − (2�+ 1)

(
�

�/2

)

(2�− 2) · 2� + (4�+ 2)
(

�
�/2

) if 2|� and β <
(2�+ 1) · 2� − 4�

(
�−1

(�−1)/2

)

(2�− 2) · 2� + 8�
(

�−1
(�−1)/2

) if 2 � |�.

However, Hinek and Lam [17] observed that the attack does not recover the secret
exponents if the bound exceeds 0.5, i.e., � > 7. Hence, our result is the best one.
These results are compared in Figure 1. HS99 is the result by Howgrave-Graham
and Seifert [19] for � ≤ 6. SM10 is Sarkar and Maitra [33]. Ours shows our result.
CA indicates the heuristic bound by the counting argument in Section 4.1.

� 2 3 4

HS99: [19] 0.357 0.400 0.441

SM10: [33] 0.416 0.500 0.550

Our result 0.464 0.550 0.596

CA 0.750 0.833 0.875

Fig. 1. Comparison of previous results

Extension for the Partial Key Exposure Situation: We then extend the at-

tack to a situation studied in [4,11], in which the attacker has � tuples (ek, N, d̃k)

where ek and N are RSA public keys, and each d̃k is δn LSBs (least significant
bits) of the corresponding secret exponent smaller than Nβ. Then, we prove that
the RSA modulus is efficiently factored if

β − δ

2
+

1

4
<

3�− 1

3�+ 1
⇔ δ > 2β +

1

2
− 2(3�− 1)

3�+ 1
.

Computer Experiments: We perform our computer experiments of the appli-
cations for RSA and the partial key exposure situation. Our experiments work
well. Interestingly, in the partial key exposure situation, the range of β and δ
that we can factor N is slightly larger than that derived by theory.

Organization of this Paper: Section 2 gives necessary definitions, lemmas,
and an outline of the Coppersmith technique. In Section 3, we consider the Cop-
persmith technique for the simultaneous equations and propose our Minkowski
sum based lattice construction. Sections 4 and 5 give applications to cryptanaly-
sis of RSA Section 6 gives experimental results to verify our lattice construction.
In Section 7, we suggest and discuss several open problems.
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2 Preliminaries

Here we introduce necessary definitions and technical lemmas. For any positive
integers a and b, let [a] and [a : b] be the set {1, . . . , a} and {a, a+1, . . . , b−1, b},
respectively. For natural numbers x, A and N , the notation |x| < A (mod N)
means that 0 ≤ x < A or N −A < x < N holds.

We use ≺ to denote the lexicographic order between integer tuples. For ex-
ample, consider two 2-tuples, (i1, i2) and (i′1, i

′
2), then (i1, i2) ≺ (i′1, i

′
2) means

that i1 < i′1 or [i1 = i′1 and i2 < i′2] holds. We also use this to order mono-

mials; e.g., xi1
1 xi2

2 ≺ x
i′1
1 x

i′2
2 ⇔ (i1, i2) ≺ (i′1, i

′
2). Here, we neglect the coeffi-

cients. These notations are used for general n-tuples and n-variable monomials.
We use x1, x2, . . . , xn−1 and y to denote the variables, and fix the priority of
variables as y ≺ xn−1 ≺ · · · ≺ x1 to order the n-variable monomials. For exam-
ple, consider four variables, x1, x2, x3, y, and monomials 3x2

2x3 and x2
1x

3
2y. Then,

3x2
2x3 ≺ x2

1x
3
2y holds since the corresponding tuples are (0, 2, 1, 0) and (2, 3, 0, 1),

respectively. Note that for any integer tuples T1, T2, S1, S2 of the same dimension,
T1 ≺ S1 and T2 ≺ S2 implies that T1 + T2 ≺ S1 + S2.

With respect to the above order, we can define the maximum element in a
polynomial f(x1, . . . , x�, y). Let ax

i1
1 · · ·xi�

� y
j be the non-zero maximum mono-

mial in f . Then, we call it the head term of f and denote it by HT(f). We also
call a, xi1

1 · · ·xi�
� y

j and (i1, . . . , i�, j) head coefficient, head monomial and head
index, and denote them by HC(f), HM(f) and HI(f), respectively.

Let A and B be finite subsets of Zn, then their Minkowski sum is defined by
A�+ B = {(a1 + b1, . . . , an + bn) : (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}. Note that
the sum of three or more sets is defined recursively.

2.1 Overview of the Coppersmith Technique

We introduce the Coppersmith technique [9,10] with necessary definitions and
lemmas. Our formulation is due to Howgrave-Graham [16] and Aono et al. [2].

Fix a polynomial F (x, y) ∈ Z[x, y] and X,Y,W ∈ N. Then consider the prob-
lem of finding all integer solutions of

F (x, y) ≡ 0 (mod W ) (1)

satisfying |x| < X and |y| < Y . While this is generally not easy, the Coppersmith
technique efficiently solves it if X and Y are much smaller than W .

The Coppersmith technique first fix an integer m ≥ 2 and consider a set L of
polynomials g(x, y) ∈ Z[x, y] satisfying

∀x, y ∈ Z [F (x, y) ≡ 0 (mod W ) ⇒ g(x, y) ≡ 0 (mod Wm)]. (2)

Note that L forms a lattice, i.e., it can easily see that g1, g2 ∈ L ⇒ g1 − g2 ∈ L.
Next, find polynomials g(x, y) ∈ L satisfying

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod Wm) ⇒ g(x, y) = 0]. (3)
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Suppose two algebraically independent polynomials are found, then the original
equation (1) can be converted to simultaneous equations over integers, which
are easily solved by the resultant technique [14] or the Gröbner basis technique
[7]. As we explain below, a polynomial with small coefficients satisfies (3). Our
tasks are to construct a polynomial lattice L, and to find such polynomials in L.

Many algorithms to find small elements in a lattice exist; e.g., the LLL algo-
rithm [23] is widely used. Unfortunately, most of them are designed for treating
lattices in Euclidean spaces R

n w.r.t. the standard Euclidean norms. To use
them as a subroutine, a polynomial lattice needs to be converted.

Converting Polynomials to Vectors: For a polynomial g(x, y) =
∑

i,j ai,jx
iyj

and parameters X and Y , define the vectorization of the polynomial by

V(g;X,Y ) = (a0,0, a1,0X, . . . , aiw ,jwX
iwY iw ).

Thus, it maps each term ai,jx
iyj to each coordinate ai,jX

iY j , respectively. It is
a linear mapping with respect to g. Note that the sequence of tuples {(ik, jk)}wk=1

is taken so that it covers all non-zero terms in g(x, y). We define the polynomial
norm w.r.t. the parameters X,Y by |V(g;X,Y )|. W.r.t. this norm, the following
lemma holds.

Lemma 1. (Howgrave-Graham [16], generalized in [20]) Fix X,Y,W ∈
N. Let g(x, y) ∈ Z[x, y] be a polynomial consisting of w non-zero terms, and
|V(g;X,Y )| < W/

√
w holds. Then we have

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod W ) ⇔ g(x, y) = 0].

Hence, if a polynomial lattice L is given, our task is to find independent polyno-
mials satisfying the above lemma, which is performed by finding short vectors in
a Euclidean lattice converted from L using certain parameters. To achieve this,
we use a lattice reduction algorithm.

Euclidean Lattices: Consider a sequence of linearly independent vectors B =
{b1, . . . ,bc} in Z

c̃ where c̃ ≥ c. Then, the Euclidean lattice spanned by them is
defined by L(B) = {a1b1 + · · ·+ acbc : ak ∈ Z for k ∈ [c]}. We call b1, . . . ,bc

the basis vectors. Following many papers, we assume that a lattice is represented
by its basis vectors.

To find short vectors in a lattice, we use the LLL algorithm [23] which com-
putes an LLL-reduced basis from a given basis. The following theorem bounds
the lengths of first vectors in such bases.

Theorem 1. [5] Let L be a Euclidean lattice and v1, . . . ,vc be its LLL-reduced
basis. Then, the following inequality holds for k ∈ [c].

||vk|| ≤ 2{(c(c−1)+(k−1)(k−2)}/4(c−k+1)| det(L)|1/(c−k+1) (4)

Here, det(L) is the lattice determinant that is defined by using the Gram-Schmidt
orthogonal basis v∗

1 , . . . ,v
∗
c as det(L) =

∏c
i=1 ||v∗

i ||.
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Polynomial Lattices: Let G = {g1, . . . , gc} be a sequence of linearly inde-
pendent polynomials in Z[x, y]. Then, the polynomial lattice spanned by them
is defined by L(G) = L(g1, . . . , gc) = {a1g1 + · · · + acgc : ai ∈ Z for k ∈
[c]}. We also consider the vectorization of polynomial lattices; i.e., for a basis
G = {g1, . . . , gc}, consider their vectorization V(g1;X,Y ), . . . ,V(gc;X,Y ) w.r.t.
parameters X and Y . Here, the tuple sequence is assumed to be fixed. Then,
define the vectorization of L(G) by the Euclidean lattice spanned by these vec-
tors, and let it be L(G;X,Y ). We use det(G;X,Y ) to denote the determinant
of L(G;X,Y ).

Outline and a Working Condition for the Coppersmith Technique:
For fixed X and Y , suppose we have a polynomial lattice L(G) spanned by c
polynomials satisfying (2), and it holds that

2c/4 det(G;X,Y )1/c < Nm/w. (5)

Here, w is the length of tuple sequence used at vectorization, which is equal
to the Euclidean dimension of L(G;X,Y ), and upper bounds the number of
terms of any polynomials in L(G). Then, compute the LLL-reduced basis of
L(G;X,Y ). By Theorem 1, the first two vectors v1 and v2 in the reduced basis
are shorter than Nm/w. Hence, the corresponding polynomials, i.e., hk(x, y)
satisfying vk = V(hk;X,Y ) for k = 1, 2, also satisfy |V(hk;X,Y )| ≤ Nm/w.
Thus, by Lemma 1, these polynomials satisfy

∀x, y ∈ Z, |x| < X, |y| < Y [F (x, y) ≡ 0 (mod W ) ⇒ hk(x, y) = 0].

Finally, finding small integer solutions of h1(x, y) = h2(x, y) = 0, we obtain the
desired solutions.

As in many previous works, we regard the following simplified condition as a
working condition.

det(G;X,Y )1/c < Nm (6)

In many applications, the crucial problem is to construct a lattice G satisfying
(6) for X and Y as large as possible.

The algebraic independence of polynomials hk(x, y) is necessary to solve the
final simultaneous equations over the integers. Unfortunately, this is generally
not guaranteed. In this paper, again following previous works, we assume this
algebraic independence and justify it by computer experiments.

3 Coppersmith Technique for Simultaneous Equations

We consider a variant of the Coppersmith technique for the simultaneous equa-
tions, and propose a new method to construct polynomial lattices. For readabil-
ity, we consider the following three variable simultaneous equations with two
equations having the shared variable y:

F1(x1, y) ≡ 0 (mod W1) and F2(x2, y) ≡ 0 (mod W2) (7)
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Here, if no variable is shared, the simultaneous equations have no meaning.
Our objective is to find all integer solutions within the range of |x1| < X1,

|x2| < X2 and |y| < Y . Fix the above equations, given ranges, and parameters
c and m. Then we consider a lattice consisting of three variable polynomials
gi(x1, x2, y) such that satisfies

∀x1, x2, y ∈ Z,

[
F1(x1, y) ≡ 0 (mod W1)
F2(x2, y) ≡ 0 (mod W2)

⇒ gi(x1, x2, y) ≡ 0 (mod (W1W2)
m)

]

.

(8)
For a lattice L(G) with basis G = {g1, . . . , gc}, compute the LLL-reduced basis
of L(G;X1, X2, Y ). By the same argument as that in Section 2.1, we can prove
the technique works if det(G;X1, X2, Y )1/c < (W1W2)

m. The problem is also
finding the means of constructing better polynomial lattices.

3.1 Minkowski Sum Based Lattice Construction

We give a method for constructing a lattice for the simultaneous equations (7),
by combining lattices for solving single equations.

For k = 1, 2, let L(Gk) be a polynomial lattice for solving Fk(xk, y) ≡
0 (mod Wk) and its basis be Gk = {g(k)1 , . . . , g

(k)
ck }. Here we assume that the pa-

rameter m is fixed. Then for any �1 ∈ [c1] and �2 ∈ [c2], the polynomial g
(1)
�1

·g(2)�2
satisfies (8). Hence, the set

A =

⎧
⎨

⎩

∑

�1∈[c1],�2∈[c2]

a�1,�2g
(1)
�1

g
(2)
�2

: a�1,�2 ∈ Z

⎫
⎬

⎭

forms a polynomial lattice for solving the simultaneous equations. Unfortunately,

since the polynomials {g(1)�1
g
(2)
�2

}�1,�2 are not generally independent over the in-
tegers, it cannot explicitly obtain the basis of A and its determinant. Instead,
we consider a sublattice of A and define its basis by using the Minkowski sum
of indices.

We can assume that each basis Gk has a strictly increasing degree order, i.e.,

HM(g
(k)
1 ) ≺ · · · ≺ HM(g

(k)
ck ) holds for k = 1, 2. If this is not true, an equivalent

basis having this property can be efficiently computed by multiplying a uni-
modular matrix; the computation is performed by a Gaussian elimination-like

algorithm, see [2]. Then, for each k, consider the set of indices Ik = {HI(g(k)� ) :
� ∈ [ck]} ⊂ Z

3 and let their Minkowski sum be I+. Noting that the elements of I1
and I2 have the form (i1, 0, j) and (0, i2, j), respectively. For every (i1, i2, j) ∈ I+,
define the polynomial g+i1,i2,j to be

g+i1,i2,j =
∑

(∗)
aλg

(1)
λ g

(2)
λ′ . (9)

Here, the range of sum (∗) is over all suffix pairs (λ, λ′) satisfying HM(g
(1)
λ g

(2)
λ′ ) =

xi1
1 xi2

2 yj and the coefficients aλ are defined so that

HC(g+i1,i2,j) =GCD
(∗)

(HC(g
(1)
λ g

(2)
λ′ )), (10)
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that is, the greatest common divisor of all head coefficients within the range.
It is easy to see that the polynomial satisfies (8). We define the polynomial
basis by G+ = {g+(i1,i2,j) : (i1, i2, j) ∈ I+}. Here, it is clear that the basis

polynomials are linearly independent since the head monomials are distinct.
We call the polynomial lattice L(G+) the Minkowski sum lattice of L(G1) and
L(G2). Clearly, L(G+) ⊂ A holds.

The basic strategy of this construction is to minimize the head coefficient of
g+i1,i2,j over all the possible integer combinations. It can be expected that the
determinant of the combined lattice is reduced. Note that a combination of aλ
that attains (10) is generally not unique. Hence, care needs to be taken regarding
the determinant if the lattice is not triangular. If the lattice is lower triangular,
the determinant, which is computed by

∏ |HC(g+i1,i2,j)|X i1
1 X i2

2 Y j , is not changed
for any allowed combination of aλ.

3.2 Minkowski Sum of Lower Triangular Lattices

Suppose the lattices for single equations are lower triangular, that is, there exist
sequences of tuples {(i1(�), j1(�))}c1�=1 and {(i2(�), j2(�))}c2�=1, the polynomials in
bases Gk can be written as

g
(1)
� =

�∑

�′=1

a�,�′x
i1(�

′)
1 yj1(�

′) and g
(2)
� =

�∑

�′=1

b�,�′x
i2(�

′)
2 yj2(�

′)

where a�,� �= 0 and b�,� �= 0. In this case, w.r.t. the above sequences of tuples,
the Euclidean lattices L(Gk;Xk, Y ) are lower triangular. We can show that the
Minkowski sum lattice of them is also lower triangular; for the proof, see the full-
version. Note that the situation of three or more lattices, which is considered in
our applications, can be proven by induction.

Theorem 2. For k = 1, 2, assume that the polynomial lattice basis Gk =

{g(k)1 , . . .

, g
(k)
ck } has a strictly increasing degree order, and that they are lower triangular.

Then the Minkowski sum lattice L(G+) is also lower triangular.

4 Cryptanalysis of RSA with Short Secret Exponents

As an application of our Minkowski sum lattice construction, we analyze the
RSA with multiple short secret exponents with a common modulus.

Notations: We use the standard notations for the RSA cryptography. That is,
p and q are large primes, and let their product be the RSA modulus N . e and
d are used to denote the public exponent and secret exponent, respectively. The
basic relation ed ≡ 1 (mod ϕ(N)) holds. Following [3], we assume that e ≈ N
and p+ q < 3N0.5.

We consider the situation in which the attacker has � pairs of public keys with
a common modulus, let them be (e1, N), . . . , (e�, N), which correspond to small
secret exponents satisfying d1, . . . , d� < Nβ for some β ∈ (0, 1). For simplicity,
we assume that ei and ej are coprime to each other for i �= j.
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4.1 RSA Equation and Its Limit by a Counting Argument

Following the work of Sarkar and Maitra [32,33] (see Boneh and Durfee [3] for
deriving single equation), it can prove that the simultaneous equations

Fi(xi, y) = −1 + xi(y +N) ≡ 0 (mod ei) for i = 1, . . . , � (11)

have a small solution (x1, . . . , x�, y) satisfying

|xk| < Nβ , for k ∈ [�] and |y| < 3N0.5, (12)

by which we can recover the secret exponents. Hence, our objective here is to
find this solution by the Coppersmith technique.

On the other hand, if β is not small, the solution within the range is not
unique. In this situation, the number of solutions becomes exponential in logN ;
thus, no polynomial-time algorithm exists. By a counting argument, we set the
following heuristic assumption of bounding β; the detailed argument is given in
the full version.

Heuristic Assumption: For a natural number �, assume that

β < (�− 0.5)/�. (13)

Then, within the range of (12), the equation (11) has only one solution by which
we can recover the corresponding secret keys dk.

4.2 Our Lattice Construction and Bound

Here we give our polynomial lattice to solve the simultaneous equations (11)
and a new security analysis of RSA. As mentioned in Section 3.1, assume that
lattices for solving single equation Fk(xk, y) = −1 + xk(y + N) ≡ 0 (mod ek)
are given. We follow the work of Boneh and Durfee [3], and employ their simple
lower triangular lattice that achieves the bound β < 0.25. While they achieved
β < 0.292 by their improved lattice, we did not use in this paper.

Fix an integer m ≥ 2 and set

g
(k)
i,j (xk, y) = xi−j

k Fk(xk, y)e
m−j
k and Gk = {g(k)i,j : (i, j) ∈ Z

2, 0 ≤ j ≤ i ≤ m}
(14)

for k = 1, . . . , �. It is clear that g
(k)
i,j (xk, y) satisfies (2) w.r.t. Fk(xk, y) ≡ 0 (mod ek)

and m.
For each k, ordering its basis in the lexicographic order in suffixes (i, j), the

polynomial sequence has strictly increasing order since HM(g
(k)
i,j ) = xi

ky
j and

HI(g
(k)
i,j ) = (0, . . . , 0, i, 0, . . . , 0, j) ∈ Z

�+1 (the k-th and �+1-th coordinates are i
and j, respectively). As shown in [3], the lattice L(Gk;Xk, Y ) is lower triangular.
Thus, these bases satisfy the assumption of Theorem 2 and the Minkowski sum
lattice L(G+) is also lower triangular.
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We explicitly give the Minkowski sum lattice. The index set corresponding to
Gk is given by Ik = {(0, . . . , 0, i, . . . , 0, j) : (i, j) ∈ Z, 0 ≤ j ≤ i ≤ m} and their
Minkowski sum is

I+ = I1�+ · · ·�+ I� = {(i1, . . . , i�, j) : 0 ≤ i1, . . . , i� ≤ m and 0 ≤ j ≤ i1+ · · ·+ i�}.

For each (i1, . . . , i�, j) ∈ I+, a polynomial is written as by

gi1,...,i�,j =
∑

j1,...,j�

aj1,...,j� · g(1)i1,j1
g
(2)
i2,j2

· · · g(�)i�,j�
.

where the sum is over indices such that HM(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = xi1

1 · · ·xi�
� y

j .
In this situation, ik are fixed, and (j1, . . . , j�) moves over all integer tuples subject
to 0 ≤ jk ≤ ik and j1 + · · ·+ j� = j. Next we consider the coefficients; again as
mentioned in Section 3.1, the coefficients aj1,...,j� are selected so that

HC(gi1,...,i�,j) =GCD
j1,...,j�

(
HC(g

(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
)
)
.

Note that HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = em−j1

1 · · · em−j�
� . Since jk can move from

zero to min(ik, j), the greatest common divisor is e
m−min(i1,j)
1 · · · em−min(i�,j)

� .
Thus, we can take aj1,...,j� so that the head coefficient of gi1,...,i�,j is this value.

Then, we set the Minkowski sum lattice by G+ = {gi1,...,i�,j : (i1, . . . , i�, j) ∈
I+} and the order is the lexicographic order of suffixes. By Theorem 2 (and its
generalization), the converted lattice L(G+;X1, . . . , X�, Y ) is lower triangular.
The diagonal element corresponding to (i1, . . . , i�, j) is

HC(gi1,...,i�,j)×X i1
1 · · ·X i�

� Y j = e
m−min(i1,j)
1 · · · em−min(i�,j)

� X i1
1 · · ·X i�

� Y j .

Therefore, the determinant is

det(G+;X1, . . . , X�, Y ) =
∏

(i1,...,i�,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(i�,j)

� Xi1
1 · · ·Xi�

� Y j
]
.

As with the same argument in Section 2.1, the Coppersmith technique works
if det(G+;X1, . . . , X�, Y )1/|I+| < (e1 · · · e�)m, where |I+| denotes the number of
elements in I+. Using approximations ek ≈ N for k ∈ [�], X1 = · · · = X� = Nβ

and Y ≈ N0.5, the condition can be rewritten as

∑

(i1,...,i�,j)∈I+

[

0.5j + (i1 + · · ·+ i�)β −
�∑

k=1

min(ik, j)

]

< 0. (15)

By computing the left-hand side, we derive the condition

(

− 3

16
�2 +

5

48
�+

(
�2

4
+

�

12

)

β

)

m�+2 + o(m�+2) < 0.
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Thus, when m is sufficiently large, this condition is

β < (9�− 5)/(12�+ 4). (16)

Heuristic Improvement of Lattice: Suppose β > 0.5. We can construct a new
lattice by removing polynomials whose indexes satisfy both j > max{i1, . . . , i�}
and 0.5j+(i1+· · ·+i�)β−

∑�
k=1 min(ik, j) > 0, which have negative contributions

in the sigma (15). It can be shown that the new lattice is also lower triangular.
However, we have never derived an explicit formula of the working condition;
detailed construction and deriving numerical bounds are given in the full-version.

5 Application to Partial Key Exposure Attack on RSA

Assume that the attacker has � pairs of RSA public keys (e1, N), . . . , (e�, N), and
δn LSBs of the corresponding dk. Moreover, each dk is assumed to be smaller

than Nβ. Let M = 2�δn� and the exposed parts be d̃k for k ∈ [�]. Then, following

the derivation of the single equation for the situation that single (e,N, d̃) is given
[11], we consider the simultaneous equations

Fi(xi, y) = eid̃i − 1 + xi(y +N) ≡ 0 (mod eiM) for i = 1, . . . , �. (17)

By the counting argument, we can assume that if β − δ < (� − 0.5)/�, then the
solution satisfying |x1|, . . . , |x�| < Nβ and |y| < 3N0.5 is unique, and it can be
used to factor N .

The basic lattice construction is the same as in the above section; i.e., we let

g
(k)
i,j = xi−j

k (Fk(xk, y))
j(ekM)m−j and Gk = {g(k)i,j : (i, j) ∈ Z

2, 0 ≤ j ≤ i ≤ m}.

Note that only the constant terms and moduli differ between (11) and (17). Thus,
L(Gk) for k ∈ [�] and their Minkowski sum L(G+) are also lower triangular.
Moreover, the set of indices I1, . . . , I� and their Minkowski sum I+ are also the
same as in Section 4.2.

For each (i1, . . . , i�, j) ∈ I+, we give the polynomial gi1,...,i�,j. First note that

HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = em−j1

1 · · · em−j�
� M �m−j1−···−j� .

Thus, as Section 4.2, each jk can move from zero to min(ik, j), and we can take
the coefficients in (9) so that

HT(gi1,...,i�,j)e
m−min(i1,j)
1 · · · em−min(i�,j)

� M �m−jxi1
1 · · ·xi�

� y
j .

Hence, the determinant det(G+;X1, . . . , X�, Y ) is

∏

(i1,...,i�,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(i�,j)

� ×M �m−jX i1
1 · · ·X i�

� Y j
]
.
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Params: �: Number of RSA keys; n: RSA bit length; β: ratio of secret keys to n
Step 1: (Generate a sample RSA instance) Randomly choose �n/2�-bit pseudo-

primes p and q, and let N = pq. Randomly choose � �βn�-bit odd integers
d1, . . . , d� such that GCD(dk, (p − 1)(q − 1)) = 1 for all k ∈ [�]. Compute
the corresponding ek by d−1

k (mod (p− 1)(q− 1)). For each k ∈ [�], define
the RSA polynomial fk(xk, y) = −1 + xk(N + y) and let the solutions
x̄k = (1− ekdk)/(p− 1)(q − 1) and ȳ = 1− p− q.

Step 2: Set the bounds Xk = �Nβ� and Y = �3N0.5�. Construct the
polynomial lattice L(G) in Section 4.2, and compute the Euclidean
lattice L(G+;X1, . . . , X�, Y ). Then, apply the LLL algorithm to
L(G+;X1, . . . , X�, Y ).

Step 3: From the reduced basis, pick the first � + 1 vectors v1, . . . ,v�+1. Then,
compute the corresponding polynomials hk(x1, . . . , xk, y), i.e., take poly-
nomials so that vk = V(hk;X1, . . . , Xk, Y ) for k ∈ [�+ 1].

Step 4: First check hi(x̄1, . . . , x̄�, ȳ) = 0 for all k ∈ [�+1]. If it is not true, reject the
instance. After the polynomials pass the first check, compute the resultant
of polynomials modulo prime to check the algebraic independence. If the
instance passes two checks, then we regard the experiment as successful.

Fig. 2. Procedure of our computer experiments

Plugging the approximations ek ≈ N , Xk = Nβ, Y ≈ N0.5 and M ≈ N δ, the
working condition is

∑

(i1,...,i�,j)∈I

[
(0.5− δ)j + (i1 + · · ·+ i�)β −

�∑

k=1

min(ik, j)
]
< 0. (18)

Calculating the left-hand side, when m becomes large, the condition is

β − δ

2
+

1

4
<

3�− 1

3�+ 1
. (19)

6 Computer Experiments of our RSA Cryptanalysis

Experimental Environment: The experiments were conducted on a work-
station with 16GB of RAM and two Intel Xeon X5675@3.07GHz. We wrote our
experimental code in the C++ language using the following libraries. To compute
the LLL reduced basis, we used Shoup’s NTL library [28] version 5.5.2 compiled
with the GMP library [13] version 5.0.4. The polynomial computation was per-
formed using the GiNaC library [12] version 1.6.2. We compiled our source code
using g++ version 4.5.4 with the -O3 option. We also used Maple 15 to com-
pute the resultant in Zp in the final step of the experiments. We performed our
experiments on the Windows 7 platform and ran our program in a single thread.

6.1 Experiments for Short RSA Secret Exponents

Figure 2 shows the procedure of our computer experiments. In Step 1, “pseu-
doprime” means an odd integer that passes the Euler-Jacobi primality testing
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Table 1. Theoretical β bound and lattice dimension for small � and several m

� = 2
m 2 3 4 5 6 7 10 limit
β 0.386 0.405 0.416 0.424 0.430 0.434 0.442 0.464

dim 27 64 125 216 343 512 1331 -

� = 3
m 2 3 4 5 6 7 10 limit
β 0.464 0.486 0.500 0.508 0.514 0.519 0.527 0.550

dim 108 352 875 1836 3430 5888 21296 -

Table 2. Experimental results for short secret exponents

� m n βthm dim βexp LLL-time

2 2
512

0.386 27
0.386 3.2 sec

1024 0.386 10.55 sec.

2 3
512

0.405 64
0.406 5 min. 33 sec

1024 0.406 30 min. 44 sec.

2 4
512

0.414 125
0.416 3 hrs. 50 min.

1024 0.414 20hrs. 26min.

3 2
512

0.464 108
0.464 41 min. 25 sec.

1024 0.464 3 hrs. 17 min.

for bases 2, 3, 5 and 7. In Step 2, we use the command LLL XD(L,0.99,0,0,1).
In the second-half of Step 4, we first generate a random 0.5n bit prime number
P . Then, we erase the variable x1 by computing rk = Resx1(h1, hk) mod P for
k = 2, . . . , � + 1, and next we compute Resx2(r2, rk) mod P for k = 3, . . . , �+ 1
modulo P , and repeat this process. Finally, we obtain a univariate polynomial
R(y) and check R(ȳ) ≡ 0 (mod P ). We repeat this check for three distinct
pseudoprime numbers via Maple 15.

Parameters and Results: Note first that if m and � are fixed, condition
(15) is written in a linear function w.r.t. β, and the maximum β satisfying the
inequality is easily computed. This β is a theoretical bound when N becomes
large along with neglecting several factors as described in Section 2.1. For each
m and � we compute the maximum β and the dimension of lattice. They are
shown in Table 1. The column “limit” indicates the right-hand side of (16).

We carried out our experiments to search for the practical bound of β for
several choices of �, m and n. We executed our procedure for each β at intervals
of 0.002. Table 2 shows the experimental results. The column “βexp” indicates
the experimental bound of β for parameters (l,m, n); that is, the instance passed
the final test at that β and failed at β + 0.002. The columns “βthm” and “dim”
are the theoretical bound of β and the lattice dimension, respectively; which
are the same as shown in Table 1. The running time of the LLL algorithm for
processing L(G+) is given in the column “LLL-time.”

We note that for � = 3 and m = 2, the second half of Step 4 is not finished due
to computational time. More precisely, Maple computed two bivariate polyno-
mials, r1(x3, y) and r2(x3, y) from h1, . . . , h4. It took over 120 hours to compute
Resx3(r1, r2), and we stopped the computation. However, we can observe that
h1, . . . , h4 are algebraically independent since they are reduced to the bivariate
polynomials, and can expect that the final resultant will be computed if more
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β δ LLL-time result
1.00 0.96 18 hrs. 59 min. + (passed)
1.00 0.94 16 hrs. 13 min. + (passed)
1.00 0.92 15 hrs. 46 min. × (fault)
0.96 0.90 15 hrs. 42 min. + (passed)
0.96 0.88 16 hrs. 9 min. + (passed)
0.96 0.84 14 hrs. 46 min. × (fault)

Fig. 3. Experimental results for partial key exposure situation

time is permitted 1. Hence, we regard the experiment as a success. From the
observation, we conclude our method works well.

6.2 Experiments for Partial Key Exposure Situation

We conducted our experiments on the partial key exposure situation. The ex-
perimental procedure is similar to in Figure 2. Different points are the definition

of Fk(xk, y), and that M = 2�δn� and d̃k = d mod M are added in Step 1.
We fixed the parameters � = 3 and m = 2 since it could be taken β close

to one. Unfortunately, for this �, only the lattice constructed with m = 2 can
be reduced in reasonable time. The lattice dimension is 108 as in the above
subsection. For several choices of β and δ, we generated 1024-bit RSA sample
instances and tested them.

Figure 3 shows the result. In the figure, the horizontal and vertical axes are β
and δ, respectively. Each mark represents one experiment (β, δ) at the point. The
marks “+” and “×” mean that the instance passed and was a fault, respectively.
The left table in Figure 3 indicates the running time of the LLL algorithm and
experimental results for several β and δ close to β = 1. Again, note that the
final resultant computation was not finished and regard that the experiment is
successful if Maple computes two bivariate polynomials.

7 Discussion and Open Problems

Minkowski Sum Lattice Construction: Although our lattice construction
works well, it is not optimal. That is, in Section 3.1, L(G+) is a sublattice of A
that spanned by all possible combination of polynomials. Providing a method to
extract the lattice basis of A, and deriving the condition so that L(G+) and A
are equivalent are open problems.

Cryptanalysis of RSA with Small Secret Exponents: Both our bound
(16) and that by Sarkar and Maitra converge to N0.75 when � becomes large,
whereas the limit by the counting argument isN . Filling this gap is an interesting
problem. We expect that our heuristic improvement shown in Appendix D in the
full-verstion achieves this goal, though this is not proven.

1 An ACISP reviewer proposed to use the Gröbner basis instead, and use more poly-
nomials since the LLL algorithm usually finds more small vectors than required.
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Cryptanalysis of RSA in Other Situations: The proposed Minkowski sum
based lattice construction can be applied to other situations of cryptanalysis of
RSA including revealed MSBs [11], RSA-CRT [20], Takagi’s RSA [21], small e
[4,5,24], unbalanced p and q situation [25], and special settings of e [27]. For
more information, see [29, Chap. 10].
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