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Abstract. KATAN/KTANTAN is a family of hardware oriented block
ciphers proposed at CHES 2009. Although the KTANTAN family have
been broken by a meet-in-the-middle approach, the KATAN family are
secure at present. In this paper, we investigate the KATAN family in
the related-key boomerang framework with several techniques. By using
an efficient differential characteristics search method, long boomerang
distinguishers can be built. Furthermore, the key recovery phase is opti-
mized by exploiting several properties of the round function such as the
high linearity of the round function and the slow key diffusion. As a re-
sult, we can attack 174, 145 and 130 rounds of KATAN32, KATAN48 and
KATAN64, which substantially improve the known best results whose at-
tacked rounds are 120, 103, 94 rounds, respectively. Our attacks are con-
firmed by various experimental verifications, especially, we give concrete
right quartets for KATAN32.

Keywords: KATAN32/48/64, ultra lightweight block cipher, related-
key attack, boomerang attack, differential.

1 Introduction

KATAN/KTANTAN is a family of lightweight block ciphers designed for ex-
tremely resource-constrained devices such as RFID and sensor nodes [1]. After
its publication in CHES 2009, the full-round KTANTAN family was theoretically
broken by using a meet-in-the-middle approach [2]. The attack takes advantage
of the simple key scheduling algorithm for the KTANTAN family. The complex-
ity of the attack was later improved by using the splice-and-cut technique [3].
Armed with related-key model, KTANTAN family can even be broken in prac-
tical time [4]. For the KATAN family where the key is loaded into a register
and updated in each round, the meet-in-the-middle approach is not likely to
work well as the cases of KTANTAN. In the single-key setting, a conditional
differential attack is applied to 78, 70 and 68 rounds of KATAN32, KATAN48
and KATAN64, respectively [5]. These results were further improved by using a
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variant of the meet-in-the-middle approach to 110, 100 and 94 rounds [6]. Also, a
differential-style attack broke the 115-round KATAN32 [7]. Even in the related-
key setting, only 120, 103 and 90 rounds for the respective three versions were
broken by the conditional differential attack [8]. Given the full 254 rounds, the
KATAN family seem to have enough security margin at present. Note that the
accelerating key searches for the full KATAN32/48/64 were presented in [9].

In this paper, we further investigate the security of the KATAN family in
the related-key boomerang framework. In order to build a long and efficient
boomerang distinguisher, we use an efficient differential characteristics search
strategy. Generally speaking, this strategy is inspired by observing that there
exists 39 consecutive rounds where the related key difference is zero. We call
it blank step, and by fixing the starting round of the blank step, we can go
backwards and forwards to compute the input and output differences for both
E0 and E1. Since the key scheduling algorithm is linear for the KATAN family,
key difference fixed in E1 can still be propagated in backwards deterministically.
Although a similar strategy was used for conditional differential attacks [5,8], we
optimize it for boomerang-type attacks. In particular, we carefully choose sets
of input differences which are likely to produce differential characteristics with
very high probability, and then exhaustively search for differential characteristics
of each input set. The probability for E0 can be further controlled by adding
conditions in the plaintexts. By taking multiple output differences for E0 and
multiple input differences for E1 into consideration, we are able to build 140,
119 and 113 rounds related-key boomerang distinguisher for the corresponding
three versions. Based on the boomerang distinguisher, we further optimize the
key recovery phase by exploiting the property of the round function in order to
reduce the complexity as well as increasing the number of attacked rounds. The
comparison of the attacks against the KATAN family is summarized in Table
1. Our attacks substantially improve previous attacks for all variants, and are
confirmed by various experimental verifications, especially, we give the concrete
right quartets for KATAN32 which supports the feasibility of the attack.

Outline of the Paper This paper is organized as follows. A description of
KATAN and related-key boomerang attack are given in Section 2. The related-
key boomerang distinguisher on KATAN32 is shown in Section 3. In Section 4, we
present a key recovery attack using the boomerang distinguisher on KATAN32.
The analysis of KATAN48/64 is given in Section 5. Finally, we present conclu-
sions in Section 6 with various experimental results showed in Appendix.

2 Preliminaries

2.1 KATAN Block Cipher

The KATAN family [1] is a feedback shift register-based block cipher consisting
of three variants : KATAN32, KATAN48, KATAN64, whose block sizes are 32
bits, 48 bits and 64 bits, respectively. All variants use the same LFSR(Linear
Feedback Shift Register)-type key scheduling function accepting an 80-bit key.
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Table 1. Comparison of attacks against KATAN family

Cipher Attacking Technique #Rounds Time Data Mem. Reference

KATAN32 Differential (SK) 78 276 216 CP Not given [5]

MitM (SK) 110 277 138 KP 275.1 [6]

Differential (SK) 115 279 138 KP 275.1 [7]

Differential (RK) 120 231 Practical (CP) Practical [8]

Boomerang (RK) 172 276.2 227.6 CP 226.6 Ours

Boomerang (RK) 173 277.5 227.6 CP 226.6 Ours

Boomerang (RK) 174 278.8 227.6 CP 226.6 Ours

KATAN48 Differential (SK) 70 278 231 CP Not given [5]

MitM (SK) 100 278 128 KP 278 [6]

Differential (RK) 103 225 Practical (CP) Practical [8]

Boomerang (RK) 145 278.5 238.4 CP 237.4 Ours

KATAN64 Differential (SK) 68 278 232 CP Not given [5]

MitM (SK) 94 277.68 116 KP 277.68 [6]

Differential (RK) 90 227 Practical (CP) Practical [8]

Boomerang (RK) 130 278.1 253.1 CP 252.1 Ours

SK: Single Key, RK: Related Key, KP: Know Plaintext, CP:Chosen Plaintext.

The key scheduling function expands an 80-bit user-provided key ki (0 ≤ i <
80) into a 508-bit subkey ski (0 ≤ i < 508) by the following linear operations,

ski =

{
ki (0 ≤ i < 80),

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 (80 ≤ i < 508).

These operations are expressed as an 80-bit LFSR whose polynomial is x80 +
x61 + x50 + x13 + 1 as shown in Fig 1.

In the round function, each bit of a plaintext is loaded into registers L1 and
L2. Then, these are updated as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb,

L1[i] = L1[i− 1] (1 ≤ i < |L1|), L1[0] = fb(L2),

L2[i] = L2[i− 1] (1 ≤ i < |L2|), L2[0] = fa(L1),

where ⊕ and · are bitwise XOR and AND operations, respectively, and L[x] de-
notes the x-th bit of L, IR is the round constant value defined in the specifica-
tion, and ka and kb are two subkey bits. Table 2 shows the detailed parameters of
KATAN32/48/64. For round i, ka and kb correspond to sk2(i−1) and sk2(i−1)+1,
respectively. After 254 rounds (from 1 to 254) values of registers are output as
a ciphertext. Fig. 2 illustrates the round function of KATAN32.
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Fig. 1. Key scheduling function of
KATAN32/48/64
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Fig. 2. Round function of KATAN32

Table 2. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

2.2 Related-Key Boomerang Attack

The related-key boomerang attack [10,11,12] is a combination of the boomerang
attack [13], and the related-key differential attack [14,15,16].

Boomerang-Type Attack. The main idea behind the boomerang attack [13] is
to use two short differentials with high probability instead of one long differential
with low probability. Suppose that a block cipher with n-bit block and k-bit key,
E : {0, 1}n × {0, 1}k → {0, 1}n, is expressed as a cascade cipher E = E1 ◦ E0,
where E0 has a differential α → β with probability p, and E1 has a differential
γ → δ with probability q. Then, the distinguisher is mounted as follows:

1 : Ask for the ciphertexts C1 = E(P1) and C2 = E(P2), where P2 = P1 ⊕ α.
2 : Ask for the plaintexts P3 = E−1(C3) and P4 = E−1(C4), where C3 = C1⊕ δ

and C4 = C2 ⊕ δ.
3 : Check whether P3 ⊕ P4 = α.

Here, E satisfies the condition of P3 ⊕ P4 = α with probability of p2q2, while
that of a random permutation is 2−n. Note that the attack can be mounted for
all possible β’s and γ’s simultaneously. Therefore, the probability is improved to

p̂2q̂2 from p2q2, where p̂ =
√∑

β Pr2[α→ β] and q̂ =
√∑

γ Pr2[γ → δ].

The amplified boomerang attack converts the adaptive setting into the non-
adaptive one [17]. It exploits the birthday paradox in the middle round. An
attacker encrypts many plaintext pairs with a difference α, and collects plain-
text/ciphertext quartets. Then, she searches for right quartets in the form of
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ. For E, this event occurs if
the following three conditions are satisfied:
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Fig. 3. Related-key boomerang quartet
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Fig. 4. Strategy for finding differential
characteristics

Condition 1 : E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β,
Condition 2 : E0(P1)⊕ E0(P3)(or E0(P2)⊕ E0(P4)) = γ,
Condition 3 : C1 ⊕ C3 = C2 ⊕ C4 = δ.

The probability that a quartet is the right one is 2−np2q2. For a random per-
mutation, this event occurs with probability of 2−2n. Thus, if pq > 2−n/2, we
can distinguish E from a random permutation. Given N plaintext pairs having
α difference, there are

(
N
2

) × 2 ≈ N2 quartets. Thus, the expected number of
right quartets in N pairs is N2 · 2−np2q2. The rectangle attack [18] exploits all
β and γ to improve the amplified boomerang attack. If p̂2q̂2 > 2−n/2, this dis-
tinguisher works. Though the rectangle attack requires a large amount of data,
it can perform a key recovery phase in the non-adaptive setting.

In this paper, we refer boomerang-type attack using amplified and rectangle
techniques to boomerang attack for sake of simplicity.

Related-Key Boomerang Attack. The related-key boomerang attack
[10,11,12] additionally uses key differences. See Fig. 3 for its illustration. Assume
that E0 has a differential α→ β under a key difference ΔKa with probability p̂,
and E1 has a differential γ → δ under a key difference ΔKb with probability q̂.
A related-key distinguisher is constructed by using four different unknown keys,
K1, K2 = K1 ⊕Ka, K3 = K1 ⊕Kb, K4 = K1 ⊕Ka ⊕Kb, as follows:

1 : Ask N ciphertext pairs (C1, C2), where C1 = EK1(P1), C2 = EK2(P2) and
P1 ⊕ P2 = α. Define the set of these pairs as S.

2 : Ask N ciphertext pairs (C3, C4), where C3 = EK3(P3), C4 = EK4(P4) and
P3 ⊕ P4 = α. Define the set of these pairs as T .

3 : Find right quartets satisfying the following conditions from S and T :
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ,
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Table 3. Output differences
of z for each input value
(x, y) and its difference

Value of Difference of (x, y)
(x, y) (0,1) (1,0) (1,1)

(0,0) 0 0 1

(0,1) 0 1 0

(1,0) 1 0 0

(1,1) 1 1 1

Table 4. Sets of input diff. with Hamming weight 2

set key difference no-difference subkeys plaintext differences Pcol

0 0, 19 20− 98 L2[9], L1[12] 2−2

1 1, 20 21− 99 L2[18], L1[2, 7, 12] 2−3

2 2, 21 22− 100 L2[8], L1[11] 2−3

3 3, 22 23− 101 L2[17], L1[1, 6, 11] 2−3

4 4, 23 24− 102 L2[7, 18], L1[10] 2−3

5 5, 24 25− 103 L2[16], L1[0, 5, 10] 2−4

6 6, 25 26− 104 L2[6, 17], L1[9] 2−3

7 7, 26 27− 105 L2[15, 18], L1[4, 9] 2−3

8 8, 27 28− 106 L2[5, 16], L1[8] 2−4

9 9, 28 29− 107 L2[14, 17], L1[3, 8] 2−5

10 10, 29 30− 108 L2[4, 15], L1[7, 12] 2−4

3 Related-Key Boomerang Distinguisher on KATAN32

In this section, we introduce an effective search strategy for finding good related-
key differential characteristics. This technique exploits the linearity of the key
scheduling and the low dependency of subkey bits. Although a similar search
strategy was used in [5,8], we optimize it for a boomerang-type attack.

3.1 Differential Properties of KATAN

Round Function. Let us consider an XOR differential property of the round
function of KATAN in which there are four nonlinear components, i.e., AND
operations. Table 3 shows the differential property of the AND operation whose
inputs are x, y and the output is z, namely z = x · y. For example, for the value
(1, 0) and the difference (1, 0), the difference of z is obtained as (x · y) ⊕ ((x ⊕
1) · (y ⊕ 0)) = (1 · 0) ⊕ (0 · 1) = 0. From Table 3, when input values have any
differences, the output also has a difference with probability 2−1(= 6/12).

Besides, one AND operation takes IR as one of the input bits. If one of input
bits is public and constant, the corresponding output difference is deterministic.
Thus, we can focus on only three AND operations as nonlinear operations.

Key Scheduling Function. The key scheduling function employs only linear
operations based on the LFSR. Then, we obtain the following observation.

Observation. Choosing input key differences properly, 79 consecutive
subkey bits have no differences after the key scheduling function.

Since the key scheduling function is the 80-bit LFSR-type construction, any
80 consecutive subkeys surely contain some differences if the key has differences.
However, if only one bit of ki (0 ≤ i ≤ 18) has a difference, there is no differences
in ki+1− ki+79, because ki is not used until ki+80. As for the other case, Table 4
shows all possible sets of 2-bit input key differences producing such 79-bit no
differences subkeys. For example, assuming that k0 and k19 have differences (set
0), k20− k98 do not have differences because the difference k0 is canceled by k19
when it is used for computing k80. The same event occurs in other sets 1-10.
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Note that, for all 79 consecutive subkey bits, we can generate the subkey
difference which does not make any difference for the target 79 subkey bits. This
can be done by the kernel computing approach in [19]. However these sets do
not give advantage compared to the sets 1-10, and thus we omit the details.

3.2 Strategy for Finding Differential Characteristics

We introduce an effective search strategy for finding good related-key differen-
tial characteristics. It is well-suited for boomerang-type attacks in terms of short
differential characteristics with very high probability. In general, it is difficult to
find good differential characteristics for a bit-oriented cipher due to the large
search space. Besides, the related-key setting where key differences are addition-
ally inserted makes it more difficult. In order to get rid of this problem, our
strategy is focusing on particular input differential sets which are expected to
give good characteristics for boomerang-type attacks.

The differential characteristic search strategy consists of a collision step, a
blank step and a brute force step as shown in Fig.4.

Collision Step : Plaintext difference and key difference cancel each other.
Blank Step : No difference exists in registers and inserted subkeys.
Brute Force Step : Subkey differences propagate to the registers.

The key idea of this strategy is to construct the rounds having no difference called
blank round. Since the blank round does not reduce the differential probability,
i.e., differential probability of such rounds is one, we expect to obtain differential
characteristics with high probability. For constructing a long blank round, we
utilize the observation 1: we can set 79 consecutive subkey bits having no differ-
ence. If there is no difference in registers where these 79-bit subkeys are used,
the blank round can be easily constructed. In other words, we properly choose
plaintext difference for canceling out subkey differences just before the blank
round. Table 4 shows the plaintext differences for canceling the corresponded
input key differences before the blank round and its probability. After the blank
round, we search for all differential characteristics. As mentioned before, we re-
gard three AND operations as nonlinear components. Let Pcol, Pblk and Pbf

be the differential probability of each step, respectively. The whole differential
characteristic probability is calculated as Pcol · Pblk · Pbf , where Pblk = 1.

Input key differences are restricted to the set satisfying the property of the
observation 1. Then, plaintext differences are also determined from the set of
input key differences for constructing the blank round (see Table 4).

3.3 Related-Key Boomerang Distinguisher on 140-Round
KATAN32

Using the efficient differential characteristics search, we obtain the maximum
probability of differential characteristics of each input set in E0 starting from
round 1 (see Table 5).
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Table 5. Maximum probability of differential characteristics of each set in E0

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−9 2−9 2−7 2−8 2−7 2−8 2−7 2−7 2−7 2−7 2−7

66 2−10 2−10 2−7 2−9 2−7 2−9 2−7 2−8 2−8 2−8 2−8

67 2−12 2−10 2−8 2−10 2−7 2−10 2−7 2−9 2−8 2−9 2−9

68 2−13 2−11 2−9 2−10 2−8 2−11 2−7 2−11 2−8 2−10 2−10

69 2−14 2−12 2−10 2−12 2−9 2−11 2−8 2−12 2−8 2−11 2−11

70 2−15 2−12 2−12 2−12 2−10 2−12 2−9 2−12 2−9 2−12 2−12

71 2−16 2−13 2−13 2−12 2−12 2−13 2−10 2−14 2−10 2−12 2−12

Table 6. Maximum probability of differential characteristics of each set in E1

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−6 2−10 2−7 2−8 2−9 2−8 2−7 2−7 2−8 2−7 2−6

66 2−7 2−11 2−7 2−9 2−9 2−9 2−7 2−8 2−9 2−8 2−7

67 2−8 2−11 2−8 2−10 2−10 2−11 2−7 2−9 2−10 2−9 2−8

68 2−9 2−13 2−9 2−10 2−11 2−12 2−7 2−10 2−10 2−10 2−8

69 2−11 2−13 2−10 2−12 2−13 2−12 2−8 2−11 2−11 2−11 2−8

70 2−12 2−13 2−12 2−12 2−14 2−13 2−9 2−11 2−12 2−12 2−8

71 2−15 2−14 2−13 2−12 2−15 2−14 2−10 2−12 2−14 2−12 2−9

To construct a distinguisher, we choose 70 rounds of set 8 whose probability
is highest of all the sets. E0 has 8 characteristics with probability p = 2−9,
16 characteristics with probability p = 2−10, 16 characteristics with probability
p = 2−11 and 64 characteristics with probability p = 2−12, which are generated
from the same input. Thus, the overall probability for E0 is

p̂ =
√
(2−9)2 · 8 + (2−10)2 · 16 + (2−11)2 · 16 + (2−12)2 · 64 ≈ 2−7.1.

Table 11 in Appendix gives a single differential trail of E0 with probability of
2−9, where round 0 means initial differences, i.e., differences of a plaintext.

Since KATAN employs the LFSR-based key scheduling, all 508 subkey bits
can be calculated from any consecutive 80 subkey bits. It means that we can
use the efficient differential characteristics search strategy from any round by
regarding the consecutive 80 subkey bits as the master key bits. Thus, we search
for differential characteristics of E1 from round 71 with the same strategy.

Table 6 shows the maximum probability of differential characteristics of each
set in E1 starting from round 71. We choose set 1 as E1 with probability 2−8.
In addition, E1 has 4 characteristics with probability 2−8, 8 characteristics with
probability 2−9 and 32 characteristics with probability 2−10, which produce the
same output difference. Thus, the total probability for E1 is estimated as

q̂ =
√
(2−8)2 · 4 + (2−9)2 · 8 + (2−10)2 · 32 ≈ 2−6.5.

Table 12 in Appendix gives a single differential trail of E1 with probability 2−8.
Combining these two-type differential characteristics, 140 (=70+70)-round

related-key boomerang distinguisher can be constructed with probability of
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p̂2 · q̂2 = (2−7.1)2 · (2−6.5)2 = 2−27.2 (> 2−32).

The probability of the boomerang distinguisher, 2−27.2, is possible to verify prac-
tically. We performed the experiment on a standard PC and found right quartets
within a few minutes. One example is shown in Table 10 in Appendix.

4 Related-Key Recovery Attack on KATAN32

In this section, a related-key attack on KATAN32 is proposed given the 140-
round boomerang distinguisher. One of the challenging problems is how to reduce
the candidate quartets. This is usually achieved by studying the propagation of
the difference to the ciphertext in order to filter out definitely wrong quartets.
For the KATAN family, this may not be the best option. When we extend the
attacking rounds as long as possible, the difference propagation will leave us
with no clue. Instead, we try to choose plaintext so that the characteristic for
the first several rounds are always satisfied. This strategy is also used in previous
KATAN attacks [5,8]. We further optimize the key recovery phase by exploiting
the property of the round function, in order to reduce the complexity as well as
increasing the number of attacked rounds.

4.1 Conditions for Chosen Plaintexts

In the collision step for E0, we have calculated that pcol = 2−4. Recall that for
two inputs to an AND gate, one input with value 1 will guarantee the propagation
of the difference from the other input, and difference will disappear when the
value is fixed to 0. Thus we can assure the difference propagation with probability
1 by fixing some of the plaintext bits. For KATAN32, the probability for the
collision steps can be increased to 1. The conditions on plaintext bits are L2[0] =
L2[3] = L2[7] = L1[5] = 0, and the increased probability for E0 is

p̂ =
√
(2−9+4)2 · 8 + (2−10+4)2 · 16 + (2−11+4)2 · 16 + (2−12+4)2 · 64 ≈ 2−3.1.

This indicates that we can expect one right quartet in 251.2(= (2−3.1)2 · (2−6.5)2 ·
2−32). As a result, the number of quartet candidates is reduced to 251.2.

4.2 Optimizing Key Recovery Phase

Suppose that we append x rounds to the end of the 140-round distinguisher.
The attacker queries N pairs of plaintexts to oracles with K1 and K2. She also
queries N pairs of plaintexts to oracles with K3 and K4. Then, N

2 quartets are
constructed. We set N ← p̂−1 · q̂−1 · 2n/2 so that a right quartet is generated.

To recover subkeys for the last x rounds with a straight-forward method,
the attacker guesses all subkeys for the last x rounds, and performs partial
decryptions until the end of the 140-round distinguisher for each of N2 quar-
tets. Let gi, where i ∈ {1, 2, 3, 4} be a set of subkey bits used in the last x
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rounds for the Ki oracle. Because KATAN uses two subkey bits in each round,
each gi contains 2x subkey bits. We denote the x-round partial decryption for
a ciphertext Ci with a guessed key gi by Dgi(Ci). Note that if the guess for
K1 oracle, g1, is determined, the corresponding g2, g3, and g4 are determined
uniquely. If the guessed value is correct, the attacker will find one quartet such
that Dg1(C1)⊕Dg3(C3) = Dg2(C2)⊕Dg4(C4) = δ. If such a quartet is not found,
the guess is wrong. Unfortunately, the complexity of this approach is too high.
Let #g be the number of subkey bits in each of gi, namely 2x. The approach
requires N2 ·#g · 4 partial decryptions, where a factor of N2 is too high.

Pairwise Approach. We propose a more efficient method. For each guess of
g1 and corresponding g2, g3, g4, we perform the partial decryption for N pairs of
(C1, C2) and N pairs of (C3, C4) independently, and identify the right quartet
by checking their match as follows:

1. Make a guess for g1 and determine the corresponding values for g2, g3, g4.
2. For all N pairs of (C1, C2), compute (Dg1(C1) ⊕ δ,Dg2(C2) ⊕ δ) and store

them in a table with N entries.
3. For all N pairs of (C3, C4), compute (Dg3(C3), Dg4(C4)) and store them in

another table.
4. If the guess is correct, a match is found. Otherwise, the guess is discarded.

This method requires only N ·#g · 2 partial decryptions for Step 2 and Step 3
respectively, in totalN ·#g·4 partial decryptions. The memory requirement is 2N
state. The memory for Step 3 can be saved by checking the match as soon as we
obtain a pair. Each guess is judged as a right-key candidate if one of N2 quartets
satisfies two n-bit relations δ. We denote this probability by Pright, which is
N2 · 2−2n. After the analysis, the key space will be #g · Pright = #g ·N2 · 2−2n.
The remaining key space will be later examined by the exhaustive search.

Exploiting Linear Subkey Insertion. We further optimize the attack by
exploiting the round function structure. Recall Fig. 2. If the output value for
some round r is known, the input difference for round r can be computed without
guessing subkeys. This is because the 1-round decryption uses subkey values
only in the linear operation. The situation continues until unknown values are
used as an input of AND operations. In the end, the difference after the x-round
decryption can be computed only with guessing subkeys for the last x−4 rounds.

Partial Matching. Another optimization is possible by exploiting the property
that only 2 bits are updated in each decryption round. Let us see what will
happen if we go back 5 rounds without guessing subkeys. As mentioned above,
the difference in all bits can be computed up to 4 rounds. In the next round,
the attacker cannot compute the difference of the updated bit L1[12], while she
knows the difference of the other 31 bits (L2[18] can be computed at this stage).
Hence, the match can be performed for 31 bits. The analysis is summarized in
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Table 7. Partial-matching technique for KATAN32

#Skipped rounds Number of bits with unknown differences Pright

L1 L2 Total

1–4 0 0 0 N2 · 2−64

5 1 0 1 N2 · 2−62

6 2 0 2 N2 · 2−60

7 3 1 4 N2 · 2−56

r(≥ 6) r − 4 r − 6 2r − 10 N2 · 2−84+4r

If one subkey bit for the first skipped round is guessed, Pright decreases by 22.

Table 7. Let r be the number of rounds which we compute without guessing
subkeys. Let z be the number of bits with unknown difference. The match is
performed for 32− z bits. From Table 7, z = 2r − 10 for r ≥ 6. Because 2 pairs
exist in a quartet, Pright is N

2 ·2−2(32−z), which is N2 ·2−84+4r. As long as Pright

is small enough, subkeys can be recovered faster than the exhaustive search.
The idea of checking the difference only for a part of the state is similar to the

early abort technique [20]. Our idea is different because the pairwise approach
is used and the match of difference cannot be checked round by round.

Partial Key Guessing. The last technique for the optimization is partially
guessing a subkey, i.e., only guessing 1 bit of a subkey in the first skipped rounds.
In Table 7, this makes the number of unknown bits be 2r − 11 and Pright be
N2 · 2−86+4r when r ≥ 6. Intuitively, the technique increases the computational
complexity by 1 bit due to the additional guessed bit, while it increases the
efficiency of the filtering function by 2 bits due to two pairs in a quartet.

4.3 Attack Procedure and Complexity Evaluation

We append x = 34 rounds to the end of the 140-round distinguisher. The number
of rounds which we do not guess subkey values, r, is 8, but we use the partial
key guessing technique. Therefore, #g = 53, where each gi consists of 52 bits for
the last 26 rounds and 1 bit of subkey (either bit is fine) for the 27th last round.

1. Choose N = 225.6 plaintext pairs (P1, P2) so that P1 ⊕ P2 = α and satisfy
the 4-bit conditions L2[0] = L2[3] = L2[7] = L1[5] = 0. Query them to the
oracles with K1 and K2, and store the corresponding 225.6 pairs of (C1, C2).

2. Do the same for (P3, P4) to obtain N = 225.6 ciphertext pairs (C3, C4).
3. Guess g1 and the corresponding g2, g3, g4. For each guess, do as follows.

(a) For 225.6 pairs of (C1, C2), decrypt them for 26 rounds. Then, further
decrypt them by 8 rounds to obtain differences in 32− (2× 8− 11) = 27
bits, and take the XOR with δ. Store them in a table with 225.6 entries.

(b) For 225.6 pairs of (C3, C4), do as follows.
i. Similarly decrypt the pair for 26 + 8 = 34 rounds to obtain the

differences in 27 bits.
ii. Check if the match exists between the stored values. If no match is

found, delete the guess from the candidate. Otherwise, do as follows.
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iii. For exhaustive guesses of 80 − 53 = 27-bit subkeys which are not
guessed yet, check the correctness of the guess by using any pair of
plaintext and ciphertext (32-bit match). It it passes the check, then
further check the correctness of the guess with two more plaintext-
ciphertext pairs. If it passes all checks, output it as the correct key.

For Step 1 and 2, we need 4 ∗ 225.6 = 227.6 chosen plaintexts. Step 3a requires
253+25.6 ·2 ·34/174 ≈ 277.25 174-round KATAN32 computations. The memory re-
quirement for Step 3a is about 2·225.6 = 226.6 state values. Step 3(b)i also requires
277.25 computations. After Step 3(b)ii, 253 ·Pright = 253 · (251.2 ·2−86+4·8) = 250.2

key candidates will remain. Step 3(b)iii requires 250.2+27 = 277.2 174-round
KATAN32 computations for the first plaintext-ciphertext pair. Only 277.2−32 =
245.2 key candidates are examined for the second pair, and only 245.2−32 = 213.2

candidates are examined for the third pair. Hence, the complexity for Step 3(b)iii
is 277.2 + 245.2 + 213.2 ≈ 277.2 174-round KATAN32 computations.

In summary, the data complexity is 227.6 chosen plaintexts, the time com-
plexity is 277.25 +277.25 +277.2 ≈ 278.8 174-round KATAN32 computations. The
memory requirement is 225.6 state.

Note that our attack succeeds only if the right quartet is obtained i.e., the
differential with a probability of 2−51.2 is satisfied with 251.2 quartets. Hence,
the success probability of our attack is 1 − 1/e ≈ 0.63. On the other hand, the
success probability of the brute force attack with 278.8 trials is 0.44. Hence, our
attack is better than the brute force attack with the same complexity.

Also note that the advantage of our attack becomes clearer if the number of
rounds is reduced more. For example, the complexity for 173 or 172 rounds is
277.5 or 276.2 computations, respectively, with the same data and memory.

5 Related-Key Boomerang Attack on KATAN48/64

5.1 Differential Characteristics and Plaintext Conditions

First we give differential characteristic for KATAN48. Similar to KATAN32, we
start from finding collision steps, and by changing the starting point of the colli-
sion steps, we go backwards to derive the input differences and key differences. As
a result we build a 119-round boomerang distinguisher for KATAN48. Table 13
and 14 in Appendix demonstrate one characteristic for E0 and E1. We use a fixed
characteristic between rounds 1 to 49 of E0 and rounds 70 to 119 for E1, while
we use a differential for the other rounds. In total, for E0 there are 32 charac-
teristics with probability 2−14, 128 characteristics with probability 2−15 and 128
characteristics with probability 2−16. For E1 there are 128 characteristics with
probability 2−12. As a result, p̂ =

√
(2−14)2 · 32 + (2−15)2 · 128 + (2−16)2 · 128 =

2−10.9, q̂ =
√
(2−12)2 · 128 = 2−8.5.

Differential characteristics for E0 and E1 of KATAN64 are summarized in
Table 15 and 16 in Appendix. Due to the more scrambling in each round, the
number of the collision steps and the brute force steps are reduced. We use a
fixed characteristic between rounds 1 to 46 of E0 and rounds 103 to 113 for
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Table 8. Partial-matching for KATAN48

#skipped#bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−96

2 1 0 1 N2 · 2−94

3 3 0 3 N2 · 2−90

4 5 1 6 N2 · 2−84

5 7 3 10 N2 · 2−76

6 9 5 14 N2 · 2−68

r(≥ 4) 2r − 3 2r − 7 4r − 10N2 · 2−116+8r

If one subkey bit for the first skipped round is
guessed, Pright decreases by 24.

Table 9. Partial-matching for KATAN64

#skipped#bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−128

2 2 1 3 N2 · 2−122

3 5 4 9 N2 · 2−110

4 8 7 15 N2 · 2−98

r(≥ 3) 3r − 4 3r − 5 6r − 9 N2 · 2−146+12r

If one subkey bit for the first skipped round is
guessed, Pright decreases by 26.

E1, while we use a differential for the other rounds. For E0 there are 64, 256,
512, 1024, and 1024 characteristics with probability 2−16, 2−17, 2−18, 2−19, and
2−20, respectively. For E1 there are 4, 24, 88, 224, 416, 608, 704, 640, and 256
characteristics with probability 2−16, 2−17, 2−18, 2−19, 2−20, 2−21, 2−22, 2−23,
and 2−24, respectively. As a result, p̂ = 2−12.25, and q̂ = 2−13.8.

The probabilities of the collision steps of E0 for KATAN48/64 are both 2−7,
but this can be improved by 27 by choosing the plaintext satisfying the condi-
tions. The conditions are given below along with the improved probability for p̂.
q̂ is not affected by the chosen plaintext.

KATAN48. Conditions: L2[0] = L2[1] = L2[2] = L2[11] = L2[17] = 0, L2[10] �=
L2[18]. p̂ =

√
(2−14+7)2 · 32 + (2−15+7)2 · 128 + (2−16+7)2 · 128 = 2−3.9. We ex-

pect 272.8(= (23.9)2 · (28.5)2 · 248) quartets before a right one shows up.

KATAN64. Conditions: L2[6] = L2[7] = L2[8] = L2[21] = L2[30] = 0, L2[20] �=
L2[32], L2[19] �= L2[31]. p̂ becomes 2−5.25. We expect 2102.1(= (25.25)2 · (213.8)2 ·
264) quartets before a right one shows up.

5.2 Optimization and Summary of Key Recovery Attacks

The overall strategy is the same as the one for KATAN32. The only difference
from KATAN32 is the impact of the partial-matching technique, which comes
from the different register sizes |L1|, |L2| and input-bit positions for AND oper-
ations. The results are summarized in Table 8 and Table 9.

145-Round KATAN48. The attack generates p̂−1 · q̂−1 ·248/2 = 23.9+8.5+24 =
236.4 pairs of (P1, P2), and 236.4 pairs of (P3, P4). This makes 272.8 quartets, which
include a right quartet with probability 0.63. We append 26 rounds after the 119-
round distinguisher. Hence, 145 rounds are attacked. In the key recover phase, we
guess 42 bits of subkeys for the last 21 rounds. Therefore, the number of skipped
steps, r, is 5. This makes the time complexity for the analysis for P1, P2 pairs
be 236.4+42 · 2 · 26/145 ≈ 276.9 145-round KATAN48 computations. The memory
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requirement is 2 · 236.4 = 237.4 state values. The analysis for P3, P4 pairs also
requires 276.9 145-round KATAN48 computations. Pright is 2

72.8 · 2−76 = 2−3.2.
Hence, the complexity for the exhaustive check becomes 280·Pright = 276.8. In the
end, the data complexity is 4 ·236.4 = 238.4 chosen plaintexts. The computational
complexity is 276.9 + 276.9 + 276.8 ≈ 278.5 145-round KATAN48 computations.
The success probability of our attack is 0.63, while the success probability of the
brute force attack with the same complexity is 0.35.

130-Round KATAN64. The attack generates p̂−1·q̂−1·264/2 = 25.25+13.8+32 =
251.05 pairs of (P1, P2), and 251.05 pairs of (P3, P4). This makes 2102.1 quartets,
which include a right quartet with probability 0.63. We append 17 rounds after
the 113-round distinguisher. Hence, 130 rounds are attacked. In the key recover
phase, we guess 28 bits of subkeys for the last 14 rounds. Therefore, the number of
skipped steps, r, is 3. This makes the time complexity for the analysis for P1, P2

pairs be 251.05+28 · 2 · 17/130 ≈ 277.1 130-round KATAN64 computations. The
memory requirement is 2·251.05 ≈ 252.1 state values. The analysis for P3, P4 pairs
also requires 277.1 130-round KATAN64 computations. Pright is 2

102.1 · 2−110 =
2−7.9. Hence, the complexity for the exhaustive check becomes 280 ·Pright = 272.1.
In the end, the data complexity is 4 · 251.05 ≈ 253.1 chosen plaintexts. The
computational complexity is 277.1 + 277.1 + 272.1 ≈ 278.1 130-round KATAN64
computations. The success probability of our attack is 0.63, while the success
probability of the brute force attack with the same complexity is 0.27.

6 Conclusion

In this paper, we proposed the related-key boomerang attack to 174, 145 and
130 rounds of KATAN32/48/64, respectively, which dramatically improved the
number of attacked rounds compared with the previous results. Examples of the
right quartet on KATAN32 confirmed the feasibility of our attack. As far as we
know, this is the best result achieved on the KATAN family.
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4. Ågren, M.: Some Instant- and Practical-Time Related-Key Attacks on KTAN-
TAN32/48/64. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp.
213–229. Springer, Heidelberg (2012)

5. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

6. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

7. Albrecht, M.R., Leander, G.: An All-In-One Approach to Differential Cryptanal-
ysis for Small Block Ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 1–15. Springer, Heidelberg (2013)

8. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

9. Knellwolf, S.: Accelerated Key Search for the KATAN Family of Block Ciphers.
In: ECRYPT Workshop on Lightweight Cryptography (2011)

10. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

11. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

12. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack
– Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

13. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

14. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

15. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

16. Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

17. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

18. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling
the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
340–357. Springer, Heidelberg (2001)

19. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

20. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)



Related-Key Boomerang Attacks on KATAN32/48/64 283

Appendix

Table 10. Example of confirmed boomerang quartets for KATAN32

P1 0x46ec3236 C1 0xee39e8a1 K1 0x22fe640869975423bce9

P2 0x4eed3216 C2 0xf19133e1 K2 0x22fe640869975c23bde9

P3 0xd2379460 C3 0xee11e925 K3 0xa6ffe4826d8d3228d6c1

P4 0xda369440 C4 0xf1b93265 K4 0xa6ffe4826d8d3a28d7c1

P1 ⊕ P2 0x08010020 C1 ⊕ C3 0x00280184 K1 ⊕K2 = K3 ⊕K4 0x00000000000008000100

P3 ⊕ P4 0x08010020 C2 ⊕ C4 0x00280184 K1 ⊕K3 = K2 ⊕K4 0x8401808a041a660b6a28

Table 11. Differential characteristic of
KATAN32 E0 (1 - 70)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

0 0000010000000000100 0000000010000 0 0 1

1 0000001000000000010 0000000001000 0 0 2−1

2 0000000100000000001 0000000000100 0 0 2−1

3 0000000010000000000 0000000000010 0 0 2−1

4 0000000001000000000 0000000000001 1 0 2−2

5 0000000000100000000 0000000000000 0 0 2−2

6 0000000000010000000 0000000000000 0 0 2−3

7 0000000000001000000 0000000000000 0 0 2−3

8 0000000000000100000 0000000000000 0 0 2−4

9 0000000000000010000 0000000000000 0 0 2−4

10 0000000000000001000 0000000000000 0 0 2−4

11 0000000000000000100 0000000000000 0 0 2−4

12 0000000000000000010 0000000000000 0 0 2−4

13 0000000000000000001 0000000000000 0 1 2−4

14 0000000000000000000 0000000000000 0 0 2−4

53 0000000000000000000 0000000000000 0 1 2−4

54 0000000000000000000 1000000000000 0 0 2−4

55 0000000000000000000 0100000000000 0 0 2−4

56 0000000000000000000 0010000000000 0 0 2−4

57 0000000000000000000 0001000000000 0 0 2−4

58 0000000000000000000 0000100000000 0 0 2−4

59 0000000000000000000 0000010000000 0 0 2−4

60 0000000000000000000 0000001000000 1 0 2−5

61 1000000000000000000 0000000100000 0 0 2−5

62 1100000000000000000 0000000010000 0 0 2−5

63 0110000000000000000 0000000001000 0 0 2−6

64 0011000000000000000 0000000000100 0 0 2−6

65 0001100000000000000 0000000000010 0 0 2−7

66 0000110000000000000 0000000000001 0 1 2−8

67 1000011000000000000 1000000000000 0 0 2−8

68 0100001100000000000 0100000000000 0 0 2−8

69 0010000110000000000 1010000000000 0 0 2−8

70 0001000011000000000 1101000000000 0 0 2−9

Table 12. Differential characteristic
of KATAN32 E1 (71 - 140)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

70 0000100000000001000 0000000100001 0 0 1

71 0000010000000000100 0000000010000 0 0 1

72 0000001000000000010 0000000001000 0 0 2−1

73 0000000100000000001 0000000000100 0 0 2−1

74 0000000010000000000 0000000000010 0 0 2−1

75 0000000001000000000 0000000000001 1 0 2−2

76 0000000000100000000 0000000000000 0 0 2−2

77 0000000000010000000 0000000000000 0 0 2−3

78 0000000000001000000 0000000000000 0 0 2−3

79 0000000000000100000 0000000000000 0 0 2−4

80 0000000000000010000 0000000000000 0 0 2−4

81 0000000000000001000 0000000000000 0 0 2−4

82 0000000000000000100 0000000000000 0 0 2−4

83 0000000000000000010 0000000000000 0 0 2−4

84 0000000000000000001 0000000000000 0 1 2−4

124 0000000000000000000 0000000000000 0 1 2−2

125 0000000000000000000 1000000000000 0 0 2−2

126 0000000000000000000 0100000000000 0 0 2−3

127 0000000000000000000 0010000000000 0 0 2−3

128 0000000000000000000 0001000000000 0 0 2−3

129 0000000000000000000 0000100000000 0 0 2−4

130 0000000000000000000 0000010000000 0 0 2−4

131 0000000000000000000 0000001000000 1 0 2−5

132 1000000000000000000 0000000100000 0 0 2−5

133 1100000000000000000 0000000010000 0 0 2−5

134 0110000000000000000 0000000001000 0 0 2−6

135 0011000000000000000 0000000000100 0 0 2−6

136 0001100000000000000 0000000000010 0 0 2−7

137 0000110000000000000 0000000000001 0 1 2−8

138 1000011000000000000 1000000000000 0 0 2−8

139 0100001100000000000 0100000000000 0 0 2−8

140 0010000110000000000 1010000000000 0 0 2−8
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Table 13. Differential characteristic of KATAN48 E0 (1 - 60)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

0 00000000011000000011000000011 0000000000000000011 1 0 1

1 00000000000110000000110000000 0000000000000000000 0 0 1

2 00000000000001100000001100000 0000000000000000000 0 0 2−2

3 00000000000000011000000011000 0000000000000000000 0 0 2−4

4 00000000000000000110000000110 0000000000000000000 0 0 2−5

5 00000000000000000001100000001 0000000000000000000 0 0 2−5

6 00000000000000000000011000000 0000000000000000000 0 0 2−6

7 00000000000000000000000110000 0000000000000000000 0 0 2−7

8 00000000000000000000000001100 0000000000000000000 0 0 2−7

9 00000000000000000000000000011 0000000000000000000 0 1 2−7

10 00000000000000000000000000000 0000000000000000000 0 0 2−7

49 00000000000000000000000000000 0000000000000000000 0 1 2−7

50 00000000000000000000000000000 1100000000000000000 0 0 2−7

51 00000000000000000000000000000 0011000000000000000 0 0 2−7

52 00000000000000000000000000000 0000110000000000000 0 0 2−7

53 10000000000000000000000000000 0000001100000000000 0 0 2−7

54 00100000000000000000000000000 0000000011000000000 0 0 2−9

55 00001000000000000000000000000 0000000000110000000 0 0 2−9

56 10000010000000000000000000000 0000000000001100000 1 0 2−9

57 10100000100000000000000000000 0000000000000011000 0 0 2−10

58 00101000001000000000000000000 0000000000000000110 0 0 2−12

59 10001010000010000000000000000 0000000000000000001 0 0 2−12

60 01100010100000100000000000000 0000000000000000000 0 0 2−14

Table 14. Differential characteristic of KATAN48 E1 (61 - 119)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

60 00000000011000000011000000011 0000000000000000011 1 0 1

61 00000000000110000000110000000 0000000000000000000 0 0 1

62 00000000000001100000001100000 0000000000000000000 0 0 2−2

63 00000000000000011000000011000 0000000000000000000 0 0 2−4

64 00000000000000000110000000110 0000000000000000000 0 0 2−5

65 00000000000000000001100000001 0000000000000000000 0 0 2−5

66 00000000000000000000011000000 0000000000000000000 0 0 2−6

67 00000000000000000000000110000 0000000000000000000 0 0 2−7

68 00000000000000000000000001100 0000000000000000000 0 0 2−7

69 00000000000000000000000000011 0000000000000000000 0 1 2−7

70 00000000000000000000000000000 0000000000000000000 0 0 2−7

109 00000000000000000000000000000 0000000000000000000 0 1 2−7

110 00000000000000000000000000000 1100000000000000000 0 0 2−7

111 00000000000000000000000000000 0011000000000000000 0 0 2−7

112 00000000000000000000000000000 0000110000000000000 0 0 2−7

113 10000000000000000000000000000 0000001100000000000 0 0 2−7

114 00100000000000000000000000000 0000000011000000000 0 0 2−9

115 00001000000000000000000000000 0000000000110000000 0 0 2−9

116 10000010000000000000000000000 0000000000001100000 1 0 29

117 10100000100000000000000000000 0000000000000011000 0 0 2−10

118 00101000001000000000000000000 0000000000000000110 0 0 2−12

119 10001010000010000000000000000 0000000000000000001 0 0 2−12
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Table 15. Differential characteristic of KATAN64 E0 (1 - 56)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

0 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

1 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

2 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

3 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

4 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

5 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

6 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

7 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

46 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

47 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

48 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

49 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

50 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

51 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

52 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

53 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

54 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

55 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

56 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16

Table 16. Differential characteristic of KATAN64 E1 (57 - 113)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

56 000000000000000111000000000011100000000 0000000000000000000000000 0 0 1

57 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

58 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

59 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

60 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

61 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

62 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

63 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

64 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

103 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

104 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

105 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

106 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

107 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

108 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

109 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

110 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

111 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

112 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

113 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16
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