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Abstract. The known security proofs for hash tree time-stamping as-
sume collision-resistance (CR). An asymptotically optimally tight proof

has the security loss formula t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
, where t′

δ′ is the time-
success ratio of a collision-finder, t

δ
is the ratio of a back-dating adversary

and C is the size of the hash tree created in every time unit. Practi-
cal schemes use 256-bit hash functions that are just 2128-secure because
of the birthday bound. For having a 280-secure time-stamping scheme,
we have C < 103 that is insufficient for global scale solutions. Due to
tightness bounds for CR, practically relevant security proofs must use
assumptions stronger than CR. We show that under the random oracle
(RO) assumption, the security loss is independent of C. We establish
a linear-preserving security reduction under the Pre-Image Awareness
(PrA) assumption. We present a new slightly stronger assumption SPrA
that leads to much tighter proofs. We also show that bounds on C are
necessary—based on any PrA/SPrA function, we construct a PrA/SPrA
function that is insecure for unbounded time-stamping.

1 Introduction

Hash tree (keyless) time-stamping was first introduced by Haber and Stornetta
[11] in order to eliminate secret-based cryptography and trusted third parties. In
their scheme, a collection ofN documents is hashed down to a single digest of few
dozen bytes that is then published in widely available media such as newspapers.
Merkle hash trees [14] enable to create compact certificates (of size logN) for
each of the N documents. Such certificates just consist of all sibling hash values
in the path from a document (a leaf of the tree) to the root of the tree. The
certificate is sufficient to re-compute the root hash value from the document
and can be used as a proof of membership. Haber and Stornetta drafted a large-
scale time-stamping scheme [1] where at every unit of time a large hash tree is
created co-operatively by numerous servers all over the world and the root value
is published in newspapers.
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It might seem obvious that the security of a hash-then-publish time-stamping
scheme can be reduced to collision-resistance of the hash function. However, the
first correct security proof of such a scheme was published as late as in 2004 [6].
It turned out that the potential number N of time-stamps explicitly affects the
tightness of security proofs. The proof in [6] shows that if there is an adversary
with running time t that backdates a document with probability δ, then there

is a collision-findiner with running time t′ ≈ 2t and success probability δ′ ≈ δ2

N .
When measuring security in terms of time-success ratio [12] we have to use 2N ·
t
δ2 -collision resistant hash functions to have a t

δ -secure time-stamping scheme,

i.e. the hash function must be roughly 2N
δ times more secure than the time-

stamping system constructed from it. As N could be very large in considering
global-scale time-stamping, the security requirements for the hash function may
grow unreasonably large. Indeed, it is said in [6] that such a security proof is
practical only for hash functions with about 400-bit output.

The tightest known security proof [4] for hash tree time-stamping has the

security loss formula t′
δ′ ≈ 14

√
N t

δ1.5 , which is insufficient because the security
level it implies for systems that use 256-bit hash functions is not that one expects
today. In order to have a 280-secure system with the total capacity of N times-
tamps, we need n = log2 N + 248 output bits. If n = 256, then N < 28 = 256,
which is clearly too small. Moreover, the proof of [4] is asymptotically optimally
tight, if the collision-resistance property is used as the security assumption. So,
the only way out is to use stronger (or incomparable) security assumptions for
hash functions. In this paper, we first show that if the hash function is assumed
to be a random oracle, the security loss does not depend on N . Next, we establish
a linear-preserving reduction that assumes the hash functions to be pre-image
aware (PrA) constructions from ideal components. We also present a new slightly
stronger than PrA security condition (SPrA) under which the security proof is
much tighter than all previous ones and is very close to the tightness in the ran-
dom oracle model. Finally, we show that the bounded capacity N is a necessary
assumption to prove the security of hash-tree time-stamping schemes under the
PrA/SPrA assumption. Based on arbitrary PrA/SPrA hash function, we con-
struct another PrA/SPrA hash function that is totally insecure for unbounded
time-stamping. This negativity result is a generalization of a somewhat weaker
oracle-separation based result [6] presented in Asiacrypt 2004 about the proofs
that use collision-resistance.

2 Preliminaries

2.1 Security Proofs and Their Tightness

The security of a cryptographic protocol (or a primitive) is measured by the
amount of resources (such as running time) needed for an adversary to break the
primitive. A protocol is said to be S-secure, if it can be broken by no adversaries
with less than S units of resources available. Considering that the running time t
and the success probability δ of the known practical attacks against the protocol
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may vary, Luby [12] proposed the time-success ratio t
δ as a universal security

measure. This means that a protocol is S-secure, if the success probability of
any t-time adversary does not exceed t

S .
In a typical security proof for a protocol P built from a primitive Q, it is

shown that if Q is Sq-secure, then P is Sp-secure. Bellare and Rogaway [2,3]
first emphasized the importance of studying the tightness of security proofs
in practical applications. Informally, tightness shows how much security of the
primitive is transformed to the protocol. Numerically, we may express tightness
as the ratio Sp/Sq. The notion opposite to tightness is security loss.

Security proofs are often presented as reductions, i.e. we assume that we have
an adversary for the protocol P with running time t and success probability
δ and then construct an adversary for the primitive Q with running time t′

and success probability δ′. This means that for having a protocol that is secure
against adversaries with running time t and with success probability δ, we have
to use a t′

δ′ -secure primitive. The ratio t′
δ′ is a function of t and δ, but not always

the function of t
δ . For example, if t′

δ′ = c · t
δ2 , then there is no dependence of type

t′
δ′ = F

(
t
δ

)
. However, due to t ≥ 1, we have an inequality t′

δ′ ≤ c · ( t
δ

)2
.

2.2 Security Properties of Hash Functions

In this paper, we study the security properties of hash functions HP that use
some kind of ideal functionality P (random permutations, random functions,
ideal ciphers, etc.) as an oracle. For example, in case of the Merkle-Damg̊ard
hash functions, the compression function and the output transform are often
assumed to be ideal objects. In this section, we describe some of the properties
of hash functions, starting from the strongest ones.

Random- and Pseudorandom Oracles. By a fixed length (FIL-) random or-
acle R, we mean a function that is chosen randomly from the set of all functions

of type {0, 1}m → {0, 1}n. There are (2n)
2m

= 2n2
m

possible choices of R. By a
variable length (VIL-) random oracle V, we mean a function that is chosen ran-
domly from the set Ω of all functions of type {0, 1}∗ → {0, 1}n. The probability
distribution of V is defined so that for any fixed input length m, the restriction
of Vm to {0, 1}m is distributed like a FIL-random oracle.

By the random oracle heuristic we mean a security argument when an appli-
cation of a hash function (e.g. a time-stamping scheme, a signature scheme) is
proved to be secure in the so-called random oracle model, where the hash func-
tion is replaced with a VIL-random oracle. The random oracle heuristic was first
introduced by Bellare and Rogaway [2]. Although it was proved later by Canetti
et al [7] that the random oracle heuristic fails in certain theoretical cases, proofs
in the random oracle model are still considered as valuable security arguments,
especially if no better security proofs are known.

Definition 1 (PRO). We say that HP is a pseudo-random oracle (PRO) if
there is an efficient simulator SV, such that for every efficient distinguisher D,
the following difference is negligible:
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⎪⎪⎪⎪⎪⎪Pr
[
1← DHP ,P

]
− Pr

[
1← DV,SV

]⎪⎪⎪⎪⎪⎪ .

This notion is first studied by Maurer et al [13] and was adapted to hash functions
by Coron et al [9]. The most important practical implication of the pseudo-
random oracle property of HP is that any application (e.g. a time-stamping
scheme) that uses HP as a hash function is almost as secure as if a variable
length random oracle V is used instead of HP . This means that the random
oracle heuristics applies in case of the particular application, i.e. we can prove
the security of the application in the random oracle model and then replace the
oracle by a more realistic (but still ideal!) model HP of the hash function. Note
that the PRO-property is a very strong assumption and often we would like
to know if some lighter assumptions would also be sufficient for the security of
the application. For example, it was shown [9] that the commonly used Merkle-
Damg̊ard style hash functions do not satisfy the PRO property.

Pre-image Awareness. Informally, pre-image awareness of a (hash) function
H means, that if we first commit an output y and later come up with an input x,
such that y = H(x), then it is safe to conclude that we knew x before committing
y. This notion was first formalized by Dodis et al. [10] for hash functions HP

that are built using an ideal primitive P in a black box way. For HP being pre-
image aware, there has to be an efficient deterministic algorithm E (the so-called
extractor) which when given y and the list α of all previously made P -calls (by
the adversary), outputs x, such that HP (x) = y, or ⊥ if E was unable to find such
an x. The adversary tries to find x and y so that E(α, y) 	= x and y = HP (x).

To define pre-image awareness of HP in a precise way, we set up an experi-
ment Exp (see Figure 1), specified as a game which an attacker B is trying to
win. B is constrained to oracle access to P , via a wrapper oracle P, which records
all P -calls made by B as an advise string α. Likely, the extractor E is also acces-
sible through another wrapper oracle Ex, which uses global arrays Q (initially ⊥
everywhere) and V (initially blank). Q is used to record all input parameters to
E; V is used to store all successfully extracted values corresponding to E’s inputs.
The adversary B tries to output a value x such that HP (x) = y, Q[y] = 1 and
V[y] 	= x, i.e. E tried to invert y, but was either unsuccessful (V[y] = ⊥) or found
a different pre-image x′ 	= x (a collision for HP ). As P- and Ex-calls are unit
cost, the running time of B does not depend on the running time of E.

Definition 2 (Pre-image Awareness). A function HP is S-secure pre-image
aware (PrA) if there is an efficient extractor E, so that for every t-time B:

Advpra
H,P,E(B) = Pr

[
1← Exppra

H,P,E,B

]
≤ t

S
. (1)

It is easy to see that pre-image awareness of HP implies collision-resistance of
HP . Hence, as there is the so-called birthday bound for the collision-resistance
which says that no function with n-bit output can be more than 2n/2-secure,
we conclude that no function with n-bit output can be more than 2n/2-secure
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pre-image aware. The Pre-image awareness property alone is not sufficient for
proving the PRO property. However, together with some additional assumptions
this has been proved to be possible [10,8].

Exppra
H,P,E,B:

x← BP,Ex

y ← HP (x)
If Q[y] = 1 and V[y] �= x return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle Ex(y):
Q[y]← 1
V[y]← E(y, α)
return V[y]

Fig. 1. Preimage awareness experiment and the wrapper oracles

Collision Resistance. Informally, the collision resistance of a hash function
HP means that it is infeasible for adversaries to find two different inputs x and
x′ that have the same hash value, i.e. HP (x) = HP (x′). This definition makes
sense only if the ideal primitive P contains some randomness, because for fixed
functions, there always exist collisions that can be “wired” into the adversary.

Definition 3 (Collision Resistance). A function HP is S-secure collision
resistant (CR) if for every adversary B with running time t:

Advcr
H,P (B) = Pr

[
x, x′ ← BP :x 	= x′, HP (x) = HP (x′)

] ≤ t

S
. (2)

Note that due to the so-called Birthday attack, functions with n-bit output can
only be 2

n
2 -secure collision resistant.

2.3 Hash-Tree Time-Stamping Schemes and Their Security

Hash trees were introduced by Merkle [14]. Let h: {0, 1}2n → {0, 1}n be a hash
function. By a hash-tree we mean a tree-shaped data structure that consists of
nodes each of which contains an n-bit hash value. Each node is either a leaf
which means it has no child nodes, or an internal node that has two child nodes
(the left- and the right child) whereas the hash value y of an internal node is
computed as a hash y = h(y0, y1), where y0 and y1 are the hash values of the left-
and the right child, respectively. There is one root node that is not a child of any
other node. If T is a hash tree with m leaves with hash values x1, . . . , xm and r
is the hash value of the root node, then we use the notation r = T(x1, . . . , xm).

Encoding the Leaves of a Hash Tree. Each node in a hash tree can be
naturally named by using finite bit-strings in the following way. The root node
is named by the empty string 
�. If a node is named by a bit-string �, then its
left- and right child nodes are named by �0 and �1, respectively. The name � of a
node resembles an address of the node, considering that one starts the searching
process from the root node, and then step by step, chooses one of the child nodes
depending on the corresponding bit in �, i.e. 0 means “left” and 1 means “right”.
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Shape of a Hash Tree. Hash tree has a particular shape by which we mean
the set of all names of the leaf-nodes. For example a balanced complete tree
with four nodes (Fig. 2, left) has shape {00, 01, 10, 11}. If the root hash value
is denoted by r (instead of r��) and r� denotes the hash value of a node with
name �, then in this example, the relations between the nodes are the following:
r = h(r0, r1), r0 = h(r00, r01), and r1 = h(r10, r11). The shape {000, 001, 01, 1}
represents a totally unbalanced tree with four leaves (Fig. 2, right), with the
hash values being in the following relations: r = h(r0, r1), r0 = h(r00, r01), and
r00 = h(r000, r001). Note also that the shape is always a prefix-free code.

r

r0

r00 r01

r1

r10 r11

r

r0

r00

r000 r001

r01

r1

Fig. 2. A balanced tree (left) and an unbalanced tree (right)

Hash Chains. In order to prove that a hash value r� (where �1�2 . . . �m is the
binary representation of �) participated in the computation of the root hash
value r, it is sufficient to present all the sibling hash values of the nodes on the
unique path from r� to the root r. For example, in the balanced tree with four
leaves (Fig. 2, left), to prove that r01 belongs to the tree, we have to show the
sibling hash values r00 and r1, which enable a verifier to compute r0 = h(r00, r01)
and r = h(r0, r1). In general, we define a hash chain as follows:

Definition 4 (Hash-chain). A hash-link from x to r (where x, r ∈ {0, 1}n)
is a pair (s, b), where s ∈ {0, 1}n and b ∈ {0, 1}, such that either b = 0 and
r = h(x‖s), or b = 1 and r = h(s‖x). A hash-chain from x to r is a (possibly
empty) list c = ((s1, b1), . . . , (sm, bm)), such that either c = () and x = r; or
there is a sequence x0, x1, . . . , xm of hash values, such that x = x0, r = xm, and
(si, bi) is an hash-link from xi−1 to xi for every i ∈ {1, . . . ,m}. We denote by

x
c� r the proposition that c is a hash chain from x to r. Note that x

()� x for
every x ∈ {0, 1}n. By the shape �(c) of c we mean the m-bit string b1b2 . . . bm.

Hash-Tree Time-Stamping Schemes. The time-stamping procedure runs as
follows. During every time unit t (e.g. one second) the time-stamping server
receives a list Xt = (x1, . . . , xm) of requests (n-bit hash values) from clients,
computes the root hash value r(t) = T(x1, . . . , xm) of a hash tree T and publishes
r(t) in a public repository R = (r(1), r(2), . . . , r(t)) organized as an append-only
list. Each request xi is then provided with a hash chain ci (the time stamp for
xi) that proves the participance of xi in the computation of the root hash value
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r(t). A request x ∈ Xt is said to precede another request x′ ∈ Xt′ if t < t′. The
requests of the same batch are considered simultaneous. In order to verify the
time stamp ci of a request xi, one computes the output hash value of ci (the last
hash value xm in the sequence) and checks whether xm = r.

Bounded, Unbounded and Shape-Compact Time-Stamping Schemes.
It was first mentioned by Buldas et al [6] that for proving the security of time-
stamping schemes, there must be restrictions on the shape �(c) of the hash chains
that are acceptable in time stamps. In general, we denote the set of allowed
shapes by S. If S is finite then there is always a binary tree T(S) such that for any
� ∈ S it contains a node with name �. For example, if S = {0, 000, 01, 1, 11, 100},
the smallest such binary tree (assuming that every non-leaf node has two chil-
dren) is depicted in Fig. 3. We say that a time-stamping scheme is unbounded,

.

0

.

000 .

01

1

.

100 .

11

Fig. 3. The smallest binary tree induced by S = {0, 000, 01, 1, 11, 100}

if S = {0, 1}∗. We say that a hash-tree time-stamping scheme is C-bounded
if |S | ≤ C. A C-bounded hash-tree time-stamping scheme is said to be shape-
compact if the tree T(S) induced by allowed shapes has no more than 2C vertices
and |� | ≤ 2 log2 C for every � ∈ S, where |� | denotes the bit length of �.

Security of Time-Stamping. Informally, we want that no efficient adversary
can back-date any request x, i.e. first publishing a hash value r, and only after
that generating a new “fresh” x (not pre-computed by the adversary), and a

hash chain c, so that x
c� r. To formalize the security condition, we use the

so-called entropy-based security condition [5] inspired by the following attack-
scenario with a two-stage adversary A = (A1, A2) cooperating with the server.
At the first stage A1 the adversary forces server to create a public repository
R of commitments. Note that there is no guarantee that the hash values in R

are created in the proper way, i.e. by using the hash tree. After that, the second
stage A2 of the adversary presents a high-entropy (unpredictable) x and a hash

chain c so that x
c� r for an r ∈ R. The unpredictability of x is crucial because

otherwise x could have been pre-computed (guessed) by A before r is published
and hence x could be in fact older than r and thereby not back-dated by A.

Hence, for defining the security of time-stamping schemes, the class of pos-
sible adversaries is restricted. Only unpredictable adversaries that produce un-
predictable x are considered, i.e. the output component x is assumed to be
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unpredictable even if the contents of R and all the internal computations of the
adversary (while computing R) are known. The original security definition from
[5] is somewhat inconvenient to use for exact security estimations, because it ex-
tensively uses the polynomial security model. In this paper, we slightly weaken
the adversary by assuming the so-called strong unpredictability. Intuitively, the
strong unpredictability means that x ∈ {0, 1}n is almost identically distributed,
i.e. its conditional min-entropy H∞[x | R, a] must be at least n− 1 bits, i.e. for
every input of A2 and for any possible value x0 of x, the probability of x = x0

is upper bounded by 1
2n−1 . For practical justification of such an assumption,

note that in practical applications, x is mostly a cryptographic hash of a (much)
longer document X that contains a considerable amount of new (fresh) informa-
tion. Cryptographic hash functions are assumed to be good entropy-extractors,
and hence the assumption of strong unpredictability is practically reasonable.

Definition 5 (Security against back-dating). A time-stamping scheme is
S-secure against back-dating if for every t-time strongly unpredictable (A1, A2):

Pr
[
(R, a)←A1, (x, c)←A2(R, a): x

c� R, �(c) ∈ S
]
≤ t

S
, (3)

where by x
c� R we mean that x

c� r for some r ∈ R, and a is an advice string
that contains possibly useful information that A1 stores for A2.

Existing Security Proofs and Their Tightness. We present the tightness
parameters of two known security proofs for hash-tree time-stamping schemes:
the first correct proof [6] that was presented in Asiacrypt 2004, and a tighter
proof [4] from ACISP 2010 that was also proved to be asymptotically optimally
tight. Both proofs assume the collision-resistance property of the hash function.
Both proofs apply only to N -bounded time-stamping schemes and their tight-
ness depends on the capacity N of the system. It was proved in [6] by using
oracle separation that collision-resistance is insufficient for proving the security
of unbounded time-stamping schemes. Both proofs are in the form of a reduc-
tion: a t-time backdating adversary with success probability δ is converted to a
t′-time collision-finding adversary with success probability δ′.

In Tab. 1 we present the parameters of these two security proofs. Closer
analysis shows that the parameter N used in these security proofs [6,4] can be
expressed by N = C · |R | in terms of this paper, where R is the hash reposi-
tory created by the first stage A1 of the back-dating adversary. As |R | is always
upper bounded by the running time t of the adversary, we have N ≤ C · t.
The third column of Tab. 1 presents the converted tightness formulae assuming
N ≈ Ct. The fourth column presents a formula for the required output size n of
the hash function, assuming that we want the time-stamping scheme to be S-
secure and that the hash function is secure near to the birthday barrier, i.e. n-bit
hash function is assumed to be 2n/2-secure. The last column presents the output
size in a particular case, where S = 280 (standard requirement for “commercial”
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security), and C = 264, i.e. acceptable hash chains are assumed to be no longer
than 64 steps. Note that this does not mean that we assume a hash-tree with
264 nodes is built in every second! The exponent 64 is only a theoretical bound
for the length of a hash chain, which is quite realistic in a system of global scale
with a multi-level structure of servers all over the world that compute hash trees.

The required output size 312 is too large, because one would like to use smaller
hash functions such as SHA2-256 in time-stamping schemes. As the proof of
ACISP 2010 is optimally tight, we have no hope to construct tighter proofs
under the collision-resistance assumption. Schemes with smaller hash functions
can only be proved secure under assumptions stronger than collision-resistance.

Table 1. Tightness parameters of two security proofs

Proof Formula Output Size Formula n = n(C,S) n(264, 280)

Asiacrypt 2004 t′
δ′ ≈ 2C

(
t
δ

)2
n = 2 log2 C + 4 log2 S + 2 448

ACISP 2010 t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 C + 3 log2 S + 8 312

3 Security under RO and PrA Assumptions

Theorem 1. If h : {0, 1}2n → {0, 1}n is a random oracle, then the correspond-

ing (bounded or unbounded) hash-tree time-stamping schemes are 2
n−1
2 -secure.

Proof. Let A = (A1, A2) be a strongly unpredictable adversary with running
time t, as described in (3). Let t1, t2 denote the running times of A1 and A2,
respectively. Considering that (R, a)← A1, let R1 ⊆ {0, 1}n be the set of all x-s
so that the h-calls performed by A1 induce a hash-chain from x to an r ∈ R. Note
that R ⊆ R1, as an empty hash-chain is always induced by any set of h-calls. We
assume without loss of generality that the advice string a contains R1. Because

of strong unpredictability of A, we have Pr [x ∈ R1] ≤ |R1|
2n−1 .

In case of x /∈ R1, in order to be successful, A2 has to make additional h-calls
so that a chain from x to r ∈ R is induced. A necessary condition that A2 has to
satisfy is that it has to find x′ = x′

1‖x′
2 so that x′

1 /∈ R1 or x′
2 /∈ R1 (this means

that A1 did not make h-calls with input x′), but h(x′) ∈ R1. The probability

of this condition does not exceed t2
|R1|
2n , hence, considering that |R1 | ≤ 2t1 and

t1, t2 ≥ 1, the overall success probability δ of A can be estimated as follows:

δ ≤ |R1 |
2n−1

+

(
1− |R1 |

2n−1

)
t2
|R1 |
2n
≤ 2t1

2n−1
+

t1t2
2n−1

≤ 3t1t2
2n−1

≤ (t1 + t2)
2

2n−1
=

t2

2n−1
.

Hence, as δ2 ≤ δ ≤ t2

2n−1 , we have t
δ ≥ 2

n−1
2 . ��
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Corollary 1. Hash-tree time-stamping schemes (bounded/non-bounded) are S-
secure in the RO model if they use hash functions with 2 log2 S + 1 output bits.

Theorem 2. If HP : {0, 1}2n → {0, 1}n is a hash-function built from an ideal
primitive P that is S-secure PrA, then the corresponding C-bounded shape-
compact hash-tree time-stamping schemes are S

2C -secure against strongly unpre-

dictable adversaries with running time t� 2n

C .

Proof. Due to the PrA assumption there exists an efficient extractor E. Let
AP = (AP

1 , A
P
2 ) be a strongly unpredictable back-dating adversary with running

time t� 2n/C and success probability δ.
We construct a PrA-adversary BP,Ex that first simulates (R, a)← AP

1 so that
all P -calls of are executed through the P-oracle. After that, for every r ∈ R, the
adversary builds a hash-tree by using the Ex-oracle in the following way. It calls
z ← Ex(r) and if z = ⊥, then no more extractions are performed. If z 	= ⊥ (this
means r = HP (z)), then B assigns r0 = z1...n and r1 = zn+1...2n, i.e. r0 equals to
the first n bits of z and r1 equals to the last n bits of z. The same procedure is
then applied to r0 and r1, etc. until the whole hash-tree T(S) (induced by the set S
of allowed shapes) is filled with hash values. If the extractor fails in some branches
of the tree, the extraction procedure is stopped in this branch but is continued
in other branches. For example, in case S = {00, 01, 10, 11} the adversary tries
to extract (r0, r1) ← Ex(r), (r00, r01) ← Ex(r0), (r10, r11) ← Ex(r1). Due to the
shape-compactness, the Ex-oracle is called no more than C · |R | ≤ Ct times.

Finally, B simulates AP
2 so that all its P calls are executed through the P-

oracle. With probability δ we obtain a hash value x and a hash chain c such
that �(c) ∈ S and x

c� r for some r ∈ R. Due to the strong unpredictability of A
and Ct � 2n, the probability that x coincides with some of the extracted hash
values r� is upper bounded by 2Ct

2n−1 which is negligible. Hence, with probability
almost δ, we have a hash value x that is not in the extracted tree, and still there
is a hash chain c = {(c1, b1), (c2, b2), . . . , (cm, bm)} with output hash value r that
certainly is in the extracted tree. Let x0, x1, . . . , xm be the intermediate hash
values (outputs of hash links) as described in Def. 4. Let k be the smallest index
such that xk−1 is not in the extracted tree but xk is. For such k,

{
HP(ck‖xk−1) = xk and Ex(xk) 	= (ck‖xk−1) if bk = 0 ;
HP(xk−1‖ck) = xk and Ex(xk) 	= (xk−1‖ck) if bk = 1 .

The adversary B outputs (ck‖xk−1) if bk = 0 or (xk−1‖ck) if bk = 1. Hence, an
adversary B with approximate running time t′ = Ct + t ≤ 2Ct wins the PrA
experiment with probability δ′ ≈ δ. Hence, t

δ ≥ t′
2Cδ′ ≥ S

2C . ��
Analysis. Tightness of security proofs under the CR, PrA, and RO assumptions
is compared in Tab. 2. In case of PrA, we assume that the hash function is about
2n/2-secure, which is a limit because PrA implies CR and the birthday barrier
applies. We see that even though PrA seems to be much stronger than CR, the
required output length is not much smaller. This is because the security loss is
linear in C and not in

√
C as in the case of the CR assumption.
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Table 2. Tightness parameters of security proofs under different assumptions

Assumption Formula Output Size Formula n = n(C, S) n(264, 280)

CR t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 C + 3 log2 S + 8 312

PrA t′
δ′ ≈ 2C t

δ
n = 2(log2 C + log2 S + 1) 290

RO t
δ
≥ 2

n−1
2 n = 2 log2 S + 1 161

4 Strong Pre-image Awareness

By studying the proof of Theorem 2, we may see the following way to improve
the tightness of the proof. Why should we extract the whole tree T (S)? Maybe

we just extract the hash chain x
c� r instead. This would mean that we call the

Ex-oracle only 2 log2 C times instead of C ·|R | times. However, this is not allowed.
First, we do not know x before simulating A2 and second, after executing A2,
we have changed the string α in the wrapper oracle. If we extract the tree T (S)
after executing A2, then the contents of the tree (the hash values) depend on x
and we cannot apply the strong unpredictability argument. The probability that
x is in the tree may not be negligible any more. But, what if we still extract the
tree after the execution of A2 but use the same “old” α that was created after
the simulation of A1? The problem is that though we are able to execute the
extractor E directly with an old α, the results will not be saved in the arrays V
and Q and the adversary is unable to win the game for “technical reasons”.

This inspires a new stronger notion of PrA in which “old” advise strings α
can be used in those queries Ex(y) where y is created not later than α was
formed. So, we define a new Ext-oracle that always uses the “oldest” possible α.
For example, if we obtain x ← Ext(y) (where x = x1x2 and x1, x2 ∈ {0, 1}n)
for which the oracle uses α, and later we call Ext(x1), the same α is used for
extraction, because the oracle remembers that x1 was created by just “parsing”
x and it is thereby as old as x and the use of α is “legal”. If the ordinary Ex
oracle is replaced with the Ext-oracle, then we call the corresponding security
property strong pre-image awareness (SPrA). For the SPrA condition to make
sense for functions with variable input length, we use the notion of a parser. We
also assume a quite natural additional property of the extractor algorithm. We
use the notation α ⊆ α′ to mean that α is an initial segment of α′, i.e. α′ is
created from α by adding some extra pairs to the top of it.

Definition 6 (Natural extractor). An extractor E is natural, if α ⊆ α′ and
E(α, x) 	= E(α′, x) implies E(α, x) = ⊥.
Definition 7 (n-parser). By an n-parser Π, we mean any efficiently com-
putable deterministic (not necessarily invertible) function that converts a finite
bit-string x to a finite set Xx of n-bit strings.
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Expspra
H,P,E,Π,A:

x← AP,ExtΠ

y ← HP (x)
If Q[y] = 1 and V[y] �= x
return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle ExtΠ(y):
if A[y] = ⊥ then A[y]← α
Q[y]← 1
V[y]← E(y, A[y])
if V[y] �= ⊥ and Π(V [y]) =
{y1, . . . , ym} then for every i = 1 . . .m:

if A[yi] = ⊥ then A[yi]← A[y]
return V[y]

Fig. 4. Strong pre-image awareness experiment and the wrapper oracles

Definition 8 (Strong Pre-image Awareness). A function HP : {0, 1}∗ →
{0, 1}n is S-secure strongly pre-image aware (SPrA) if there is an efficient nat-
ural extractor E, so that for every n-parser Π and for every t-time A:

Advspra
H,P,E,Π(A) = Pr

[
1← Expspra

H,P,E,Π,A

]
≤ t

S
. (4)

It can be shown that random oracles are SPrA and the next theorem shows that
SPrA is a property the strength of which lies between RO and PrA.

Theorem 3. SPrA implies PrA.

Proof. Let HP be strongly pre-image aware with the corresponding natural ex-
tractor E and let B be an PrA-adversary. We define an SPrA-adversary A so
that it simulates B and its P- and Ex oracle calls, ret aining their results in
arrays α′, Q′ and V′ that A maintains itself. In parallel, A calls the real oracles P
and Ext that maintain the arrays Q and V. For B, the simulated oracles behave
exactly like P and Ex (Fig. 5). However, for some of the outputs y it might be

Expspra
H,P,E,Π,A:

x← AP,ExtΠ ≡
{
Initialize α′, V′ and Q′

x← BP′,Ex′

y ← HP (x)
If Q[y] = 1 and V[y] �= x return 1,
else return 0

simulated P′(m):
call c← P(m)
α′ ← α′||(m, c)
return c

simulated Ex′(y):
Q′[y]← 1
V′[y]← E(y, α′)
call v ← ExtΠ(y)
return V′[y]

Fig. 5. Simulation of oracles by Expspra
H,P,E,Π,A

that E(α, y) = V[y] 	= V′[y] = E(α′, y) because the extractions are made using
different advise strings. But our construction guarantees that α ⊆ α′ and thus

V[y] 	= V′[y] =⇒ V[y] = ⊥ (5)

because E is natural. If B is successful, i.e. finds x with output y = HP (x), such
that Q′[y] = 1 and V′[y] 	= x, then also Q[y] = 1 and V[y] 	= x, because V[y] = x
implies V[y] 	= V′[y] which by (5) gives x = V[y] = ⊥, a contradiction. Hence,
Advpra

H,P,E(B) ≤ Advspra
H,P,E,Π(A). ��
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Theorem 4. If HP : {0, 1}2n → {0, 1}n is a hash function with ideal primitive
P that is S-secure SPrA, then the corresponding C-bounded shape-compact hash-
tree time-stamping schemes are S

4 log2 C -secure against strongly unpredictable ad-

versaries with running time t� 2n

C .

Proof. Let E be an SPrA-extractor and AP = (AP
1 , A

P
2 ) be a strongly unpre-

dictable back-dating adversary with running time t� 2n/C and success δ. We
construct an SPrA-adversary BP,Ext which first simulates (R, a)← A1 and then
calls Ext(r) for every r ∈ R. This step fixes the advice string α, thus the follow-
ing tree extraction will be independent of the computations of A2. After that,
B simulates (x, c)← AP

2 (R, a) so that all P -calls of H are executed through the
P-oracle. Note that as Ct � 2n, the probability that x is in the extraction tree
T(S) is negligible. Finally, B uses the Ext-oracle to extract the hash values along
the hash chain c (there are at most 2 log2 C of them). The proof is exactly like
in the case of the PrA assumption, except we have a much smaller tree (i.e. a
chain instead of a tree). Hence, an adversary B with approximate running time

t′ ≈ t+ |R |+ 2 log2 C ≤ 2t+ 2 log2 C ≤ 4t log2 C

wins the SPrA game with probability δ′ ≈ δ. Hence, t
δ ≥ t′

4 log2 C·δ′ ≥ S
4 log2 C . ��

Tab. 3 summarizes the results. As we see, a seemingly minor and natural strength-
ening of PrA leads to much tighter security proofs for time-stamping schemes.

Table 3. Tightness parameters of security proofs under different assumptions

Assumption Formula Output Size Formula n = n(C, S) n(264, 280)

CR t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 N + 3 log2 S + 8 344

PrA t′
δ′ ≈ 2C t

δ
n = 2(log2 C + log2 S + 1) 290

SPrA t′
δ′ ≈ 4 log2 C

t
δ

n = 2(log2 log2 C + log2 S + 2) 176

RO t
δ
≥ 2

n−1
2 n = 2 log2 S + 1 161

5 Necessity of Boundedness

The security proof in the pure random oracle model does not depend on the
capacity C of the time-stamping scheme. In all other cases, the assumption
about the boundedness is necessary and the tightness of the reduction depends
on C. We show in this section that even under assumptions so strong as PrA,
the boundedness is a necessary assumption. Namely, under the assumption that
PrA hash functions exist, we construct another PrA hash function that is totally
insecure for unbounded time-stamping schemes. For every n ≥ 2 let In be a
subset of {0, 1}2n defined as follows:

In = {(0x0, 0x1):x ∈ {0, 1}n−2, x 	= 0n−2} .
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Define ιn: In → {0, 1}n−1 so that ιn(0x0, 0x1)=0x for any x∈{0, 1}n−2\{0n−2}.
Clearly, ιn is injective and easily invertible. The computations with ιn form a
tree (with nodes of the form x = 0x′, where x′ ∈ {0, 1}n−1\{0n−1}). The main
property of this tree is that for every x = 0x′, where x′ 	= 0n−1 there is an
easily computable hash chain from x to the root node r = 0n−11. For every
FP : {0, 1}∗ → {0, 1}n−1 and for every extractor E: {0, 1}n−1 × {0, 1}∗ → {0, 1}∗
define FP

0 : {0, 1}∗ → {0, 1}n and E0: {0, 1}n × {0, 1}∗ → {0, 1}∗ so that:

FP
0 (x) =

{
0‖ιn(x) if x ∈ In
1‖FP (x) if x 	∈ In

E0(y, α) =

⎧
⎨

⎩

ι−1
n (y′) if 0n 	= y = 0‖y′ ∈ {0, 1}n
E(y′, α) if y = 1‖y′
⊥ otherwise.

Theorem 5. FP
0 is insecure for unbounded time-stamping, i.e. there is an effi-

cient strongly unpredictable adversary (A1, A2) with success probability ≈ 1
2− 1

2n .

Proof. The first stage A1 outputs the root value r = 0n−11 of the computational
tree for ιn. The second stage choses randomly and uniformly x← {0, 1}n, which
with probability ≈ 1

2 − 1
2n belongs to the computational tree and hence there is

an easily computable hash chain x
c� r. ��

Theorem 6. If FP is PrA then so is FP
0 .

Proof. Let E be the extractor for FP and let E0 be the corresponding extractor
for FP

0 . LetB0 be a PrA adversary for FP
0 . Let Ex0 be the oracle that corresponds

to E0. We modify the adversary B0 to an adversary B that uses the Ex-oracle
(that corresponds to E) and simulates B’s Ex0-calls with input y as follows:

– if y = 0‖y′ ∈ {0, 1}n\{0n}, the Ex0-call is answered with ι−1
n (y′);

– if y = 1‖y′, it makes an oracle call x← Ex(y′) and answers the call with x;
– otherwise, the call is answered with ⊥.

If 1 ← Exppra
F0,P,E0,B0

, then during the execution x ← BP,Ex0
0 an Ex0-call was

made with an input y = FP
0 (x) such that E0(F

P
0 (x), α) 	= x. Note that y 	= 0‖y′,

because otherwise (due to the definition of FP
0 ) we would have y′ ∈ In, y

′ =
ιn(x), and E0(F

P
0 (x), α) = E0(0‖y′, α) = ι−1(y′) = ι−1

n (ιn(x)) = x.
Therefore, y = FP

0 (x) = 1‖y′, which means that y′ = FP (x) and E0(y, α) =
E(y′, α). This also means that B makes an Ex-call with parameter y′, such that

E(FP (x), α) = E(y′, α) = E0(y, α) = E0(F
P
0 (x), α) 	= x ,

and we have 1← Exppra
F,P,E,B. Hence, Advpra

F0,P,E0
(B0) ≤ Advpra

F,P,E(B). ��

Theorem 7. If FP is SPrA then so is FP
0 .

Proof. Let E be the extractor for FP and let E0 be the corresponding extractor
for FP

0 . Let Π0 be an arbitrary n-parser and B0 be an SPrA adversary for FP
0 .

Let Ext0 be the oracle that corresponds to E0 and Π0. We define an (n−1)-parser
Π in the following way: if Π0(x) = {y1, . . . , ym} and y1 = b1‖y′1 . . . ym = bm‖y′m
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(where b1, . . . , bm ∈ {0, 1}), then Π(x) = {y′1, . . . , y′m}. Let Ext be the oracle
that corresponds to E and Π . We modify the adversary B0 to an adversary B
that uses the Ext-oracle (that corresponds to E) and simulates B’s Ext0-calls
with input y as follows:

– if y = 0‖y′ ∈ {0, 1}n\{0n}, then the Ext0-call is answered with ι−1
n (y′);

– if y = 1‖y′, it makes an oracle call x← Ext(y′) and answers the call with x;
– otherwise, the call is answered with ⊥.

If 1 ← Expspra
F0,P,E0,Π0,B0

, then during the execution x ← BP,Ext0
0 an Ext0-call

was made with an input y = FP
0 (x) such that E0(F

P
0 (x), α) 	= x. Note that

y 	= 0‖y′, because otherwise (due to the definition of FP
0 ) we would have y′ ∈ In,

y′ = ιn(x), and E0(F
P
0 (x), α) = E0(0‖y′, α) = ι−1(y′) = ι−1

n (ιn(x)) = x.
Therefore, y = FP

0 (x) = 1‖y′, which means that y′ = FP (x) and E0(y, α) =
E(y′, α). This also means that B makes an Ext-call with parameter y′, such that

E(FP (x), α) = E(y′, α) = E0(y, α) = E0(F
P
0 (x), α) 	= x .

Note that due to the definition of the parserΠ , the Ext-oracle uses the same α for
extracting y′ then the EXT0-oracle would use for extracting y = 1‖y′. Thereby
1← Expspra

F,P,E,Π,B, and hence, Advpra
F0,P,E0,Π0

(B0) ≤ Advpra
F,P,E,Π(B). ��

Generalization of an Oracle Separation Result from Asiacrypt 2004.
The construction of FP

0 from FP allows to generalize and simplify the result in
[6] which says that there are no black-box reductions that prove the security of
unbounded time-stamping scheme based on the collision-freeness of the underly-
ing hash function. Using the construction F �→ F0 enables to extend this result
form black-box reductions to arbitrary proofs. This is due to the next theorem:

Theorem 8. If FP is CR then so is FP
0 (even if FP does not use P at all).

The proof relies on the fact that the function FP
0 is injective on In and hence

finding a collision for FP
0 is equivalent to finding collisions for F0.

Corollary: If there exist collision-free hash functions, then there also exist col-
lision free hash functions that are insecure for unbounded hash-then-publish
time-stamping schemes. Note that this corollary is a much stronger statement
than an oracle separation because it rules out any proving attempts, not only the
black-box ones. Therefore, the implication “F is CR⇒ F is secure for unbounded
time-stamping” is true only if there exist no collision-free hash functions.

6 Open Questions and Further Research

It would be interesting to know whether the SPrA assumption can be used in the
indifferentiability framework in a way analogous to the PrA assumption, i.e. is
it weak enough for being preserved by the Merkle-Damg̊ard transform, and can
the conventional compression functions (like Davies-Meyer) to be proven SPrA.
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