
Black-Box Separations
and Their Adaptability to the Non-uniform Model

Ahto Buldas1,2,3 and Margus Niitsoo4,�
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Abstract. Oracle separation methods are used in cryptography to rule out black-
box reductions between cryptographic primitives. It is sufficient to find an oracle
relative to which the base primitive exists but there are no secure instances of
the constructed primitive. It is often beyond our current reach to construct a fixed
oracle with such properties because it is difficult to prove the existence of secure
base primitives. To overcome this gap, randomized oracles are used to create
random base primitives that are secure on average. After that, a fixed oracle is
extracted from the probability distribution by using non-constructive probabilistic
arguments and the countability of the set of adversaries. Such extraction only
applies to uniform reductions because the set of non-uniform adversaries is not
countable. We study how to adapt oracle separation results to the non-uniform
model. The known separation techniques are capable of ruling out the so-called
fully black-box reductions and a certain strong form of semi black-box reductions
also in the non-uniform model. We study how to go beyond the barrier of strong
semi black-box reductions and show that this is possible by using random oracles
with auxiliary advice. For that end, we prove a conjecture of Unruh (2007) about
pre-sampling being a sufficient substitute for advice for any oracle distribution.

1 Introduction

Complex cryptographic protocols are often built from simpler building blocks called
primitives. Usually, the security of such protocols is proved based solely on the security
guarantees of the original primitives independent of their actual implementation details.
Such constructions are called black-box reductions. To date, almost all security proofs
for efficient cryptographic constructions utilize black-box reductions.

Although back-box reductions are extremely useful cryptographic tools, there exist
limits on where they can be applied. There are many known cases for which it is proved
that such a reduction cannot exist. This usually means that a very clever proof construc-
tion is necessary if the reduction can be achieved at all. As very few of these clever
constructions are known, the power and limits of black-box reductions are of a rather
special interest to many people working in the field.
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The first separation result involving black-box reductions was given in 1989 by Im-
pagliazzo and Rudich [7]. They showed that there are no such reductions from key
agreement protocols to one-way functions. Their seminal paper was followed by a long
line of similar types of results [5,6,10]. The approach was even generalized by Kim,
Simon and Tetali [8] to give bounds on reduction efficiency. Though all these results
leave open the existence of more specific security proofs they are still valuable hard-
ness indicators as they rule out the most obvious approaches.

Non-existence of black-box reductions is commonly shown by oracle separation
techniques. In complexity theory, oracle separation has been widely applied to prove
limits of the proof techniques capable of establishing set-theoretical inclusions between
complexity classes. For example, with oracle separation one can easily show that diag-
onal arguments are insufficient to solve the famous P vs NP question. This is done by
showing two oracles—one relative to which the conjecture holds and another for which
it does not. In cryptography, oracle separation is used to argue that it is impossible to
securely implement a primitive or a protocol P given only black-box access to a secure
low-level primitive f as an instance of a class of primitives Q. This is done by defining
an oracle so that f remains secure even if the adversary can access the oracle but any
instance Pf of the protocol P being considered is insecure relative to the oracle.

In classical separation results of complexity theory, oracles are defined as fixed func-
tions that always behave the same way. In cryptographic separations, it is often hard
to explicitly define a fixed separation oracle. For example, if one wishes that one way
functions exist relative to the oracle, an explicit functional description of such function
should then be given (as a part of the oracle). This is however still unreachable for the
state of the art computer science—the existence of one way functions is conjectured but
not yet proved. So, in cryptographic separations we often assume that oracles are cho-
sen randomly from certain probability distributions. We then prove that the separation
statements hold on average and then argue that there exists a particular choice of the
oracle for which the statements hold. For example, one-way functions indeed exist in
the random oracle model because random functions are one-way on average [7].

It would then seem natural that the oracle separation results would also be stated with
respect to the random oracles. However, as the classical separation theorems are adopted
from the classical model, the authors still try to make their oracle choice deterministic.
Such an oracle extraction approach, though, has a big limitation—it usually requires
that the number of adversaries is countable, and hence the whole approach is usable
only in the uniform model, where the adversaries are ordinary Turing machines.

To avoid the countability argument, Buldas, Laur and Niitsoo [2] proposed an alter-
native oracle extraction approach where the oracle extraction step is unnecessary. Rather
than trying to extract a suitable deterministic oracle from a probability distribution, they
assumed that there exists a black-box reduction (that works for every f ) and derived a
contradiction by assuming the probabilistic separation condition and the average (over
f ) version of the reduction condition. We call the method they introduced the averaging
approach. They proved that the averaging approach is capable of showing that there are
no semi black-box reductions between two primitives. However, they were able to do
this only for a strong version of semi black-box reduction where the simulator A does
not depend on the instance f of the source primitive.
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In this paper, we give an overview on both the traditional oracle extraction based sep-
aration and the averaging-based separation techniques. For each type of the reduction,
we outline the main steps of the separation and point out the steps where the countabil-
ity assumption is used. Thereby, we determine the exact reason why the separation fails
in the non-uniform model. We achieved the following results:

– The traditional oracle extraction approach still works for the strong semi black-box
reductions, because the separation oracle can be chosen for a fixed adversaryA and
a fixed simulator S. Similar to the averaging approach, this is not so for the weak
semi black-box reductions, and from this viewpoint, the averaging approach has no
advantage over the traditional methods.

– We derive sufficient average-based separation criterions for the weak semi black-
box and the variable semi black-box reductions. It turns out that proving the se-
curity condition of the oracle separation for the weak semi black-box reduction is
equivalent of proving the security of a cryptographic construction in a model where
the adversary is given a function ϕ(O) of the oracle.

– We generalize the results of Unruh [11] about oracles with auxiliary strings so that
they would apply to arbitrary oracle distributions.

2 Notation

By x ← D we mean that x is chosen randomly according to a distribution D. We use
the Big Oh notation for describing asymptotic properties of functions. In particular,
f(k) = O(1) means that f is bounded and f(k) = k−ω(1) means that f(k) decreases
faster than any polynomial, i.e., f is negligible. A Turing machine M is poly-time if
it runs in time kO(1), where k denotes the input size that is mostly referred to as the
security parameter.

By an oracle Turing machine we mean an incompletely specified Turing machine S
that comprises calls to oracles. The description can be completed by defining the oracle
as a function O : {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO. The
function y ← O(x) does not have to be computable but has a conditional running time
t(x), which does not necessarily reflect the actual amount of computations needed to
produce y from x. The running time of SO comprises the conditional running time of
oracle calls—each call O(x) takes t(x) steps. We assume that all the oracles O are poly-
time, that is t(x) = {x}O(1), where {x} denotes the bit-length of x. Note that though
the classical complexity-theoretic oracles only require a single step, this more general
notion is appropriate in cryptography where oracles often model abstract adversaries
with running time t. We say that S is a poly-time oracle machine if SO runs in poly-
time, wheneverO is poly-time. By a non-uniform poly-time oracle machine we mean an
ordinary poly-time oracle machine S together with a family A = {ak}k∈N of (advice)
bit-strings ak with length kO(1). For any oracle O and any input x, it is assumed that
SO(x) has access to the advice string a{x}. Usually, the advice strings are omitted for
simplicity, but their presence must always be assumed when S is non-uniform. One
of the most important facts about non-uniform machines is that there are uncountably
many of them, whereas the set of ordinary Turing machines is countable.
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3 Basic Lemmas

Lemma 1 (Probabilistic Argument). Let F be a probability space and P be a predi-
cate function. Then Pr

f←F
[P(f)] > 0 ⇒ ∃f : P(f).

Lemma 2 (Countability Argument). Let F be a probability space and P(f,A) be a
predicate function where A varies over all poly-time Turing machines, then

∀
pol

A : Pr
f←F

[P(f,A)] = 1 ⇒ Pr
f←F

[
∀
pol

A : P(f,A)

]
= 1 .

Proof. Countable intersection of measure one sets is a measure one set. ��
Lemma 3 (Borel-Cantelli). Let {Ei}i∈N be a countable set of events and E∞ be the
event that infinitely many of these events happen. If

∑
n Pr [En]<∞ then Pr [E∞]=0.

Proof. Indeed, let Bk =
⋃∞
n=k Ek. If x ∈ E∞ then x ∈ ∩kBk, because otherwise

x only belongs to a finite sequence E1, . . . ,Ek−1 of events. Hence, E∞ ⊆ ∩kBk and
Pr [E∞] ≤ Pr [∩kBk] ≤ Pr [Bk]. From

∑
n Pr [En] <∞ it follows that for every ε > 0

there is k such that
∑∞
n=k Pr [Ek] < ε. Thus, Pr [E∞] ≤ Pr [Bk] = Pr [∪∞n=kEk] ≤∑∞

n=k Pr [Ek] < ε, which implies Pr [E∞] = 0. ��
Lemma 4 (Negligible Average Argument). Let F be a distribution so that for every
f ← F there is a real-valued function δf : N→ [0, 1]. If E

f←F
[δf (k)] = ε(k) = k−ω(1),

then δf (k) = k−ω(1) for measure one of f ’s.

Proof. As Pr
f←F

[
δf (k) > k2 · ε(k)] ≤ k−2 and Pr

f←F

[
δf(k) ≤ k2 · ε(k)

] ≥ 1 − k−2
by Markov inequality, we define Ek as the event that δf (k) > k2 · ε(k). Now we use
the Borel-Cantelli lemma and

∑
k Pr [Ek] ≤

∑
k k
−2 <∞ to imply

Pr
f←F

[
”δf (k) > k2 · ε(k) for infinitely many k-s”

]
= Pr [E∞] = 0 .

Thus, for measure one of f ’s: ∃k0∀k > k0 : δf (k) ≤ k2 · ε(k) = k−ω(1). ��
Lemma 5 (Overwhelming Average Argument). Let F be a distribution so that for
every f ← F there is a function δf : N → [0, 1]. If E

f←F
[δf (k)] = 1 − k−ω(1), then

δf (k) = 1− k−ω(1) for measure one of f ’s.

Proof. E
f←F

[1− δf (k)] = 1 − E
f←F

[δf (k)] = 1 − (1 − k−ω(1)) = k−ω(1), which by

Lemma 4 implies that 1− δf (k) = k−ω(1) for measure one of f ’s. ��
Lemma 6. There exist quantities δi(k) = k−ω(1) for which E

i
[δi(k)] �= k−ω(1).

Proof. Let I = {1, 2, . . .} and pi = 6
π2i2 for all i ∈ I . Then

∑
i∈I pi = 1. For all

i ∈ I we define the function δi by δi(k) = δik, where δik is the Kronecker delta. Now
we define a probability space on {δi}i∈I such that Pr[δi] = pi for all i ∈ I . Note
that δi(k) = k−ω(1) for all i ∈ I but the average of all δi-s is non-negligible, because
E
i
[δi(k)] =

6
π2 · k−2 = k−O(1) �= k−ω(1). ��
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4 Primitives

Complex cryptographic constructions can often be decomposed into a few fundamen-
tal building blocks that are called primitives. One is usually interested in proving the
security of constructions based solely on the properties of the underlying primitives.
Reingold et al. [9] give a formal definition by considering primitives as families of
functions of type f : {0, 1}∗ → {0, 1}∗ along with a matching between these functions
and Turing machines implementing them. Indeed, for many common primitives such as
one-way permutations or collision-resistant hash functions this formalization coincides
with our intuition—an instance of a primitive is indeed just one function.

In some more complicated cases that actually have more than one type of function-
ality, it may make more sense to define a primitive as a tuple of functions. However, we
can usually concatenate these functions into one single function – we just use the first
few input bits to tell the function which sub-function we want to use. This means that
we can still formalize the primitive as one single function, although it may be a little
counter-intuitive.

A primitive is usually defined in terms of functional requirements that the instances
of the primitive must satisfy before it makes sense to talk about their security. These
requirements, though, are just syntactic and have nothing to do with security. For exam-
ple, every permutation is an instance of the one-way permutation primitive, however, it
does not have to be a secure instance.

In cryptography we also have to define the security of primitives. Reingold et al. [9]
define security as a relation between primitives and Turing machines that possibly break
them. That is, a machine either breaks the primitive or not. In this work, we use a
more specific (but still sufficiently general) definition of security given in [2], where the
breakage advantage is a real-valued function that also depends on the security parameter
k which is usually tied to the actual input (or output) lengths of the primitive:

Definition 1 (Primitives, Adversaries and Advantage). A primitiveP is a set of func-
tions of type f : {0, 1}∗ → {0, 1}∗. Primitives have an advantage function ADVP

k (·, ·),
which given as input the security parameter k ∈ N, an instance f of P, and an ora-
cle Turing machine AO (an adversary) returns a real number ADVP

k (A
O, f) ∈ [0, 1]

(the advantage of AO). The function ADVP
k (·, f) is extended to probabilistic Turing ma-

chines by taking the average over their randomness strings1. We say that AO breaks
an instance f of P if ADVP

k (A
O, f) �= k−ω(1). If for a fixed oracle O no probabilistic

poly-time oracle Turing machine AO breaks f then f is said to be secure relative to O.

We emphasize that our definition says nothing about the efficiency of f . The function
may even be non-computable, as long as the advantage that can be gained by any ad-
versary is negligible. In practice, one needs an instantiation of a primitive that is both
efficient and secure. Commonly, it is required that we can compute the function f with
a (uniform) poly-time Turing machine for f to be called efficient.

1 Each fixed randomness string gives a deterministic poly-time Turing machine for which
ADVP

k () is already defined.



Black-Box Separations and Their Adaptability to the Non-uniform Model 157

5 Black-Box Reductions

Reductions capture the relations between different security notions. A primitive P can
be reduced to a primitive Q if there exists a construction that given a secure instance of
the primitive Q yields a secure instance of P. Most common cryptographic reductions
are black-box reductions, where an instance f of a primitive Q is treated as an atomic
object in the construction and in the security proof. In this work, we consider four
sub-notions of black-box reductions: fully-black box reductions, strong and weak semi
black box reductions, and variable semi black box reductions.

The first step towards classification of black-box reductions was made by Reingold,
Trevisan and Vadhan [9]. They showed a complex hierarchy of 7 types of different re-
ductions. Our classification is based on their work but leaves out some of the more
general reductions and introduces one that actually arises quite often in practice. Also,
we assume that the reduction construction is deterministic whereas the original hier-
archy uses probabilistic Turing machines everywhere. This is necessary for reductions
between deterministic primitives as the reduction cannot be allowed any randomization
in that case. If we consider randomized primitives,G can usually be made deterministic
even when it is randomized in essence – the key idea is to use the oracle as a source of
randomness. This approach was already used by Impagliazzo and Rudich [7] in the first
paper about oracle separations in cryptology.

In the first three definitions, the construction of a derived primitive is independent
of the actual implementation of P, whereas the construction itself may depend on the
implementation in the last definition. The reduction in question is uniform if all oracle
machines in the corresponding definition are uniform, otherwise the reduction is non-
uniform. We assume that the constructionG is always deterministic but the adversaries
are allowed to be randomized.

Definition 2 (Fully black-box reduction). A fully black-box reduction P=⇒f Q is de-
termined by two poly-time oracle machinesG and S, satisfying the next two conditions:
(C) If f implements Q then Gf implements P.
(S) For every instance f ∈ Q, if A breaks Gf (as P) then SA,f breaks f (as Q).

In brief, we must to provide a universal oracle algorithm S that can handle all suc-
cessful adversaries to establish a fully black-box reduction. So-called semi-black-box
reductions weaken this restriction by allowing for some specialization in the security
proofs. The degree to which the specialization can go is different for different authors.
We give two possible definitions, one just slightly stronger than the other.

Definition 3 (Strong semi black-box reduction). A strong semi-black-box reduction
P=⇒ss Q is a poly-time oracle machine G, satisfying the next two conditions:

(C) If f correctly implements Q then Gf correctly implements P.
(S) For all poly-time oracle machines A there exists a poly-time oracle machine B such

that for every instance f ∈ Q if Af breaks Gf then Bf breaks f .

Definition 4 (Weak semi black-box reduction). By weak semi-black-box reduction
P=⇒ws Q we mean a poly-time oracle machine G, satisfying the next two conditions:2

2 This was the reduction given by Reingold et al. [9] as the semi-black-box reduction.
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(C) If f correctly implements Q then Gf correctly implements P.
(S) For every instance f ∈ Q and a poly-time oracle machineA, there exists a poly-time

oracle machine B such that if Af breaks Gf then Bf breaks f .

The difference between the two reduction types is very subtle. In the strong case, the
construction of B may non-constructively depend on A and G but it has to be universal
for all f ∈ Q. In the weak case, such a universal B might not exist – the construction of
B may depend on f as well as on A and G. This subtle difference is however extremely
important, as it seems to create a theoretical boundary for at least one general separation
method we show later.

In both semi-black-box reductionsG must be universal for all valid instances f ∈ Q

and as such, specific properties of an instance f cannot be used in the construction.
Variable semi-black-box reductions 3 weaken even this restriction so that the construc-
tions of bothG and B may depend on the instance f . However, such constructions must
exist for all instances of Q regardless of the actual efficiency of f . If we restrict f in
the following definition to efficiently implementable instances of Q, then we get the
definition of white-box reductions, which is the most general type of reductions.

Definition 5 (Variable semi black-box reduction). We say that there is a variable
semi-black-box reduction P=⇒v Q iff for any correct implementation f of Q:
(C) there exists a poly-time oracle machine Gf that correctly implements P;
(S) for every instance f ∈ Q and for any poly-time oracle machine A, there exists a

poly-time oracle machine B such that if Af breaks Gf , then Bf breaks f .

These reduction types form a linear hierarchy with fully black-box reductions being
the strongest and white-box reductions being the weakest. Existence of a reduction of
one type also trivially implies the existence of reductions of all weaker types. This
is important as it means that non-existence of a weaker reduction also implies non-
existence of all stronger reductions.

6 Oracle-Extraction Based Separation

Showing the non-existence of black-box reductions of a primitive P to a primitive Q by
oracle separation involves two major steps:

– (Breakage argument) Define an oracle O relative to which there is no secure P;
– (Security argument) Show that there is secure Q relative to O.

In cryptography, oracle separation is almost never done with an explicitly defined or-
acle. Instead of that, the existence of a suitable oracle is proved by using probabilistic
arguments, i.e. it is shown that an oracle with the desired properties can be extracted
from a probability space of oracles. So, the first step of an oracle separation is to define
a probability distribution O ← F of oracles and show that there is secure instance fO

of Q but no instance GO of P is secure relative to O. By using the so-called oracle em-
bedding techniques first introduced by Simon [10], the secure instance f of Q can be
identified with the oracle O, i.e. the oracle distribution is f ← F. To show the security
argument in the oracle-extraction based separation techniques we show that:

3 They were called ∀∃-semi-black-box by Reingold et al.
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s1: Every fixed poly-time adversary S that uses f as an oracle can break f only with
negligible success, on average, i.e. ∀

pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1).

s2: Pr
f←F

[
ADVk(S

f , f) = k−ω(1)
]
= 1, i.e. for measure one of f ’s, no poly time S can

break f (by s1 and Lemma 4).
s3: For measure one of oracles f , no poly-time Sf can break f better than with negli-

gible success, i.e. Pr
f←F

[
∀
pol
S : ADVk(S

f , f) = k−ω(1)
]
= 1 (by s2, Lemma 2).

To show the breakage argument we have to show that:

b1: Every instance Gf of P can be broken by a poly-time A with overwhelming prob-
ability, i.e. ∀

pol

G ∃
pol

A : E
f←F

[
ADVk(A

f , Gf )
]
= 1− k−ω(1).

b2: For every instanceGf of P there is a poly-timeA, so thatAf breaksGf for measure
one of f ’s, i.e. ∀

pol

G ∃
pol

A : Pr
f←F

[
ADVk(A

f , Gf ) = 1− k−ω(1)] = 1 (b1, Lemma 5).

b3: For measure one of oracles f , every Gf can be broken by a poly-time machine A,

i.e. Pr
f←F

[
∀
pol

G ∃
pol

A : ADVk(A
f , Gf ) = 1− k−ω(1)

]
= 1 (b2, Lemma 2).

Finally, by combining these two sets of measure one, we have that measure one of or-
acles satisfy both the breakage and the security conditions, which means that by the
probabilistic argument (Lemma 1) there exists a fixed separation oracle. Note that (b1)
cannot be replaced with the weaker statement E

f←F

[
ADVk(A

f , Gf )
]
= k−O(1), be-

cause it does not imply that there is an f for which ADVk(A
f , Gf ) = k−O(1). There

exists a counterexample (Lemma 6) for which ADVk(A
f , Gf ) = k−ω(1) for all f .

Table 1. Reduction types and separation conditions for oracle extraction based separations. The
quantifier ∀

of
means that the quantified variable varies over all oracle functions.

Type Reduction Condition Separation Condition

Fully ∃
of
p ∃

pol
S∀f∀A : ∀

of
p ∀

pol
S∃F : E

f,A←F
[ADVk(A, p(f))] = 1− k−ω(1)

bb Abr p(f) ⇒ SA,f br f E
f,A←F

[
ADVk(S

f,A, f)
]
= k−ω(1)

Strong ∃
of
p ∀

pol
A ∃

pol
S∀f : ∀

of
p ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f , p(f))
]
= 1− k−ω(1)

Semi bb Af br p(f) ⇒ Sf br f E
f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Weak ∃
of
p ∀

pol
A∀f ∃

pol
S : ∀

of
p ∃

pol
A∃F : E

f←F

[
ADVk(A

f , p(f))
]
= 1− k−ω(1)

Semi bb Af br p(f) ⇒ Sf br f ∀
pol
S E
f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Countability argument for S
Variable ∀f ∃

pol
G ∀

pol
A ∃

pol
S : ∃F : ∀

pol
G ∃

pol
A E
f←F

[
ADVk(A

f , Gf )
]
= 1− k−ω(1)

Semi bb Af brGf ⇒ Sf br f ∀
pol
S E
f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Countability arguments for G and S
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The steps s1, s2, b1 and b2 also apply to non-uniform reductions, whereas the steps
s3 and b3 do not, because there are uncountably many non-uniform machines S and G.

In order to still apply the separation technique in the non-uniform model, there are
several ways to go on. The first way is to use the fact that stronger types of black-box
reductions may need weaker separation arguments and perhaps there is no need to use
the countability argument, i.e. the existence of the separation oracle may be deducible
without extraction. Indeed, if we examine the negations of the reduction statements
for all four types of black-box reductions (Table 1), we observe that the non-existence
of fully black-box and the strong semi black-box reductions can be proven without the
countability argument. The main reason is that the oracle distribution F must be defined
for a particular choice ofA and S. Formally, this means that in the separation condition,
the quantifier ∃F stands after the quantifiers ∃

pol

A and ∀
pol

S (Table 1).

It also turns out in a natural way that in order to show non-existence of fully black-
box reductions, we may use two separate oracles A and f , where the secure instance
(f ) of Q only has access to f , while the adversary S has access to both oracles. This
fact was first pointed out by Hsiao and Reyzin [6]. In Table 1, we list the separation
conditions for all four types of reductions. All proofs are given in Appendix A.

To conclude, the oracle extraction based separation techniques are applicable to the
strong semi black-box reductions (and hence also for the fully black-box reductions) but
not for the weak semi black-box and variable semi black-box reductions, because the
latter would require the countability argument.

7 Averaging-Based Separation

In practical separations, both the security- and the breakage assumption are probabilis-
tic, i.e. involve an average success over the oracle. The reduction condition (for fully
black-box reduction) is deterministic and has the form:

ADVP
k (A,G

f ) �= k−ω(1) ⇒ ADVQ
k (S

f,A, f) �= k−ω(1) . (1)

For showing that there are no fully black-box reductions of P to Q, we have to derive a
contradiction based on the reduction condition (1) and the separation conditions:

(S) E
f,A←F

[
ADVP

k (A,G
f )
]
= 1− k−ω(1)

(B) ∀
pol

S : E
f,A←F

[
ADVQ

k (S
f,A, f)

]
= k−ω(1) .

To derive a contradiction from (S), (B), and (1), the traditional approach focuses on
conditions (S) and (B) and tries to derive a negation of (1) from these two conditions.
This is done by using oracle extraction, i.e. by extracting a fixed oracles f andA from F

so that (1) is not satisfied. The average-based separation technique [2] does the opposite:
it first focuses on (1) and tries to derive the following averaged version:

E
f,A←F

[
ADVP

k (A,G
f )
]
�= k−ω(1) ⇒ E

f,A←F

[
ADVQ

k (S
f,A, f)

]
�= k−ω(1) , (2)
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and then derive a contradiction based on (S), (B) and (2). Indeed, from (S) it fol-

lows that E
f,A←F

[
ADVP

k (A,G
f )
]

= 1 − k−ω(1) �= k−ω(1). By (2) we imply that

E
f,A←F

[
ADVQ

k (S
f,A, f)

]
�= k−ω(1) which contradicts (B).

7.1 Poly-Preserving Reductions

The main problem with the the averaging approach described above is that the averaged
condition (2) cannot be derived from the general reduction condition (1). Indeed, let
af (k) = ADVP

k (A,G
f ) and bf(k) = ADVQ

k (S
f,A, f). We would like to prove that if

(for all f ) bf(k) = k−ω(1) implies af (k) = k−ω(1), then

E
f
[bf (k)] = k−ω(1) ⇒ E

f
[af (k)] = k−ω(1) .

The negligible average argument (Lemma 4) implies that af (k) = k−ω(1) for measure
one of f ’s, but this does not mean that E

f
[af (k)] is negligible (Lemma 6).

So, for average-based separation, the guarantee condition (S) is too weak—much
weaker than what is usually expected when constructing practical reductions. For these
reasons, the guarantee condition was strengthened [2] and the class of reductions re-
stricted in the following reasonable way:

Definition 6 (Poly-preserving reductions). A reduction of P to Q is poly-preserving
if the security guarantee (S) decreases the advantage by at most a polynomial amount,
i.e. there exists c ≥ 1 (independent of f , A and k) such that

ADVQ
k (S

f , f) ≥
[

ADVP
k (A

f , p(f))
]c

. (3)

7.2 Averaging-Based Separation for Poly-Preserving Reductions

For fully-black box reductions, (3) is in the form ADVQ
k (S

f,A, f) ≥
[
ADVP

k (A,G
f )
]c

.

For poly-preserving reductions, the averaged reduction condition (2) easily follows:

E
f,A←F

[
ADVQ

k (S
f,A, f)

]
≥ E
f,A←F

[(
ADVP

k (A,G
f )
)c]
≥
(

E
f,A←F

[
ADVP

k (A,G
f )
])c

,

where the second inequality is an application of the Jensen inequality. This implies that

if E
f,A←F

[
ADVP

k (A,G
f )
]

is non-negligible, then so is E
f,A←F

[
ADVQ

k (S
f,A, f)

]
.

Table 2 lists the separation conditions for all four types of reductions. Note that the
breakage condition for averaging-based separation can be somewhat weaker than in the
traditional extraction-based approach. We only have to assume that the success of A is
non-negligible. All proofs are given in Appendix B.



162 A. Buldas and M. Niitsoo

Table 2. Reduction types and separation conditions for averaging-based separation in the case of
poly-preserving black-box reductions

Type Reduction Condition Separation Condition

Full ∃
of
p ∃

pol
S∀f∀A : ∀

of
p ∀

pol
S∃F : E

f,A←F
[ADVk(A, p(f))] �=k−ω(1)

bb ADVk(S
f,A, f)≥[ADVk(A

f, p(f))
]c

E
f,A←F

[
ADVk(S

f,A, f)
]
= k−ω(1)

Str ∃
of
p ∀

pol
A ∃

pol
S∀f : ∀

of
p ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f, p(f))
] �=k−ω(1)

s-bb ADVk(S
f, f) ≥ [

ADVk(A
f, p(f))

]c
E
f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Weak ∃
of
p ∀

pol
A∀f ∃

pol
Sf : ∀

of
p ∃

pol
A∃F : E

f←F

[
ADVk(A

f , p(f))
] �= k−ω(1)

s-bb ADVk(S
f
f ,f)≥

[
ADVk(A

f, p(f))
]c ∀

pol
S ∀

of
ϕ E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1)

Vari ∀f ∃
pol
Gf ∀

pol
A ∃

pol
Sf : ∀

of
ψ∃F :∀

pol
G ∃

pol
A E
f←F

[
ADVk(A

f , Gfψ(f))
]
�=k−ω(1)

s-bb ADVk(S
f
f , f)≥

[
ADVk(A

f , Gff )
]c

∀
pol
S ∀

of
ϕ E
f←F

[
ADVk(S

f
ϕ(f)

, f)
]
=k−ω(1)

8 Going beyond the Strong Semi Black-Box Boundary

The strong Semi Black-box separations are a clear boundary for oracle extraction based
approaches, as anything below that requires the use of countability arguments, which
fail in the non-uniform model. It therefore seems that the best hope of proving stronger
reductions would rest with the averaging-based approach. For this to succeed, however,
one would have to be able to account for oracle-dependent advice strings ϕ(F) being
available to the adversary construction. This is by not a trivial obstacle to overcome.

The most promising approach for doing so stems from the work of Unruh [11],
where they showed that under reasonable assumptions, the oracle could be switched
out with one fairly independent from the original without the adversary having a sig-
nificant chance of noticing the switch. A problem with his approach was that it only
applies to standard random oracles, which separation oracles rarely are. If this idea was
to be used, the result first needed to be generalized to work for other, less standard
oracles as well. This turned out to be possible as we managed to prove one of the con-
jectures presented in the original paper [11] pertaining to the fully general choice of
oracle distributions.

Theorem 1. Let F be any distribution of Oracles and let f ← F. We say that f is
consistent with a matching M = {x1 → y1, . . . , xm → ym} if f(xi) = yi for all
i ∈ {1, 2, . . . ,m}. Let ϕ(f) be an oracle function with an output of length p. Then
there is an oracle function S such that Sf is a matching of length m and the following
holds: For any probabilistic oracle Turing machine B that makes at most q queries to
its oracle, Δ(BF

ϕ(F);B
F/S
ϕ(F)) ≤

√
pq
2m , where F/S is an oracle sampled according to F

conditioned only on being consistent with SF (which is also a random variable).

We will generalize the proof for Theorem 2 of Unruh [11] to work for arbitrary oracle
distributions. The proof is quite similar to the original one, with only the notion of
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information J(M) gathered by an adaptive list M about the advice string z given a more
general definition. Since most of the proofs are completely analogous, we will only give
a detailed description of the parts that have to be changed. We will use the notion of
adapative lists from the original paper. To reiterate, a adaptive list is a Turing Machine
that takes as input a finite advice string z and then proceeds to make a number of oracle
queries, terminating in finite time, outputting all the oracle queries that it made along
with their results. It is assumed that the query responses are cached so that oracle is
never queried twice with the same input. It is further assumed that F is deterministic,
although this does not seem to be an essential assumption in our treatment. We will
define a TM G so that when given such an input, it will methodically query the oracle
on all the yet unqueried inputs.

For an adaptive list F, we will define the variable F o,z
k as the response to the k-th

oracle query made by G ◦ Fo(z) when run with the oracle o and input z. According
to the preceeding assumptions, F o,z

k is well defined for all k ≤ |Range|, o ∈ O and
z ∈ Z . Let FO,Z

k be the variable induced by Fk by choosing o ← O and z ← Z. For
convenience, we note Fk→l = Fk+1, . . . ,Fl and F∗l = F0→l.

Let the distribution of advice strings Z be dependent on the distribution of oracles O.
Let O′ stand for the distribution of oracles that is distributed identically to O but that is
independent from Z. Let O′/Sk denote the distribution O′ conditioned on agreeing with
O on all the queries FO,Z

∗k . The goal is then to show a bound on the statistical distance

Δ(FO,Z
∗k ,F

O′/Sk,Z
k→k+q ;FO,Z

∗(k+q)). We will use the Kullback-Leibler distance:

D(X||Y|Z) =
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x|Z = z]

Pr[Y = x|Z = z]

)
.

The following useful properties (Gibbs inequality, chain rule, and funcion applications
only decreasing the distance) are well known and easy to verify.

D(X||Y) ≥ 0 ,

D(X1, . . . ,Xk||Y1, . . . ,Yk) =

D(X1||X2) +D(X2||Y2|X1) + . . . D(Xk||Yk|X1, . . . ,Xk−1) ,
D(f(X)||f(Y)) ≤ D(X||Y) .

It is worth noting that for the chain rule,

D(X2||Y2|X1) =∑
x1∈X1

Pr[X1 = x1]
∑
x2∈X2

Pr[X = x2|X = x1] lg

(
Pr[X2 = x2|X1 = x1]

Pr[Y2 = x2|Y1 = x1]

)
,

the conditioning is actually over both the values of X1 and Y1. We define4 Jk(F) =

D(FO,Z
∗k ||FO′,Z

∗k |Z) and Jk→l(F) = Jl(F) − Jk(F) = D(FO,Z
k→l||FO′/Sk,Z

k→l |FO,Z
∗k ,Z).

We note that although we use a slightly different notation for J that makes the length

4 Introduction of Sk is due to the chain rule conditioning over both distibutions.
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of the list k explicit, this is purely for syntactic convenience. As in the original, let
Jk = maxF Jk(F).

The proof in the original paper requires three properties from J(F). Two of them
(Jk(F) ≥ 0 and Jl(F) ≤ Jk→l(F) + Jk(F)) follow directly from the properties of
Kullback-Leibler distance. The third property Jk(F) ≤ H(Z) is just slightly trickier,
but follows trivially from the following lemma.

Lemma 7. Let X and Y be identically distributed. Additionally, let Z be variable in-
dependent from Y (but possibly related to X). In such a case, D(X||Y|Z) ≤ H(Z).

Proof.

D(X||Y|Z) =
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x|Z = z]

Pr[Y = x|Z = z]

)

=
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x,Z = z]

Pr[Y = x] Pr[Z = z]

)

≤
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
1

Pr[Z = z]

)

=
∑
z∈Z

Pr[Z = z] lg

(
1

Pr[Z = z]

)
= H(Z) ,

where the inequality is due to Pr[X=x,Z=z]
Pr[X=x] ≤1 and X,Y are identically distributed. ��

Corollary 1. Jk(F) ≤ H(Z).

Proof.

Jk(F) = D(FO,Z
∗k ||FO′,Z

∗k |Z) = D(f(O,Z)||f(O′,Z)|Z) ≤ D(O,Z||O′,Z|Z)
= D(O||O′|Z) ≤ H(Z) .

��
The only piece missing is to use D(X||Y|Z) for boundingΔ(X,Z;Y, Z). This is also
completely analogous to the proof in Unruh, as

Δ(X,Z;Y,Z)=
∑
z∈Z

Pr[Z = z]Δ(X;Y|Z = z)≤
∑
z∈Z

Pr[Z = z]

√
D(X||Y|Z = z)

2

≤
√

1

2

∑
z∈Z

Pr[Z = z]D(X||Y|Z = z) =

√
1

2
D(X||Y|Z) ,

where the first inequality is due to Kullback-Leibler and the second is an application
of Jensen’s inequality. All the other parts of the proof remain fairly unaltered, with a
few pieces (such as replacing G with ∇G) becoming obsolete due to independence
requirements being relaxed.
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This theorem basically allows one to formally replace a polynomial-length oracle-
dependent advice string with just fixing a super-polynomial number of responses to
oracle queries, with only negligible chance of the adversary behaving differently. This
fits in well with many of the already known proofs for separation results, which will
still work even when the number of queries is slightly super-polynomial just as long
as it is still negligible when compared with the full domain and range of the oracle
function. In such cases, one can then replace the original usually oracle extraction based
argumentation with the averaging-based argumentation to yield a stronger result that
holds also in the non-uniform model. For instance, this seems to be the case with the
work of Simon [10] where it was shown that collision-resistant hash functions cannot
be constructed based purely on one-way functions. As his argumentation still remains
valid when the adversary makes a super-polynomial number of queries, the result can
be generalized to the non-uniform model.
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A Oracle Extraction Examples

Theorem 2. If ∀
pol

G ∃
pol

A ∀
pol

S∃F : so that (I) E
f←F

[
ADVk(A

f , Gf )
]
= 1 − k−ω(1) and

(II) E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there exist no strong semi black-box reductions.
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Proof. Using the overwhelming average argument for (I) and the negligible average ar-
gument for (II), we imply that Pr

f←F

[
Af brGf

]
= 1 and Pr

f←F

[
Sf � brf] = 1, which

implies ∀
pol

G ∃
pol

A ∀
pol

S∃F : Pr
f←F

[
Af brGf ∧ Sf � brf] = 1 and hence from the prob-

abilistic argument: ∀
pol

G ∃
pol

A ∀
pol

S∃f : [
Af brGf ∧ Sf � brf], which is the negation of

the strong semi black-box reduction condition.5 ��
Theorem 3. If ∀

pol

G ∃
pol

A∃F : so that (I) E
f←F

[
ADVk(A

f , Gf )
]
= 1 − k−ω(1) and (II)

∀
pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there exist no uniform weak semi b-b reductions.

Proof. The overwhelming average argument for (I) and the negligible average argu-
ment for (II) imply Pr

f←F

[
Af brGf

]
= 1 and ∀

pol

S : Pr
f←F

[
Sf � brf] = 1. By the

countability argument for S, we obtain Pr
f←F

[
∀
pol
S : Sf � brf

]
= 1, which implies

∀
pol

G ∃
pol

A∃F : Pr
f←F

[
Af brGf ∧ ∀

pol

S : Sf � brf
]
= 1, and we have the negation of

the weak semi black-box reduction: ∀
pol

G ∃
pol

A∃f ∀
pol

S :
[
Af brGf ∧ Sf � brf]. 6 ��

Theorem 4. If ∃F : so that (I) ∀
pol

G ∃
pol

A : E
f←F

[
ADVk(A

f , Gf )
]
= 1 − k−ω(1) and

(II) ∀
pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there are no uniform variable semi b-b re-

ductions.

A proof was already presented by the steps s1-b3 in Section 6.

B Averaging Examples

Lemma 8. The existence of weak semi black-box reductions is equivalent to:

∃
of

p ∀
pol

A ∃
pol

S ∃
of

ϕ∀f : ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

where c ≥ 1 . (4)

Proof. Assume first that ∃
of

p ∀
pol

A∀f ∃
pol

Sf : ADVk(S
f
f , f) ≥

[
ADVk(A

f , p(f))
]c

, i.e.

there exists a weak semi black-box reduction and prove (4). Let ϕ be an oracle function
so that ϕ(f) is a bit-representation of Sf . Let S be the universal f -oracle machine,
which when given as input a bit-representation ϕ(f) behaves exactly like Sf . This
means that ADVk(S

f
ϕ(f), f) = ADVk(S

f
f , f). Moreover, as such simulation is possible

with logarithmic overhead, it follows that Sϕ(f) is poly-time. As S and ϕ are the same
for all instances of f , the statement (4) follows.

From (4) by defining Sf := Sϕ(f), there exists p such that for all poly-time A and

for all f there is Sf , so that ADVk(S
f
f , f) = ADVk(S

f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

,
which proves the existence of weak semi black-box reduction. ��

5 No countability arguments were used.
6 As we used the countability argument for S, the result does not apply to the models where the

adversaries are allowed to be non-uniform.
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Theorem 5. If ∀
of

p ∃
pol

A∃F : so that (I) E
f←F

[
ADVk(A

f , p(f))
] �= k−ω(1) and (II)

∀
pol

S ∀
of

ϕ E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1), there exist no weak semi b-b reductions.

Proof. By using (4), (I) and (II), we will derive a contradiction. Let p be as in (4).
By applying the assumption of the theorem to this p, we conclude that there exist a
poly-time oracle machine A and a distribution F with the properties (I) and (II). Now,
from (4) it follows that for thisA, there exist a poly-time oracle machine S and an oracle
functionϕ such that (*) ADVk(S

f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

holds for all f . By (II),

we have (**) E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1). Finally, by averaging (*) and using the

Jensen’s inequality we have:

E
f←F

[
ADVk(S

f
ϕ(f), f)

]
≥ E
f←F

[
ADVk(A

f , p(f))c
]≥

[
E

f←F

[
ADVk(A

f , p(f))
]]c

,

which is a contradiction between (I) and (**). ��
Lemma 9. The existence of variable semi black-box reductions is equivalent to:

∃
of

ψ ∃
pol

P ∀
pol

A ∃
pol

S ∃
of

ϕ∀f : ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f ,Pfψ(f))
]O(1)

. (5)

Proof. Assume first that ∀f ∃
pol

Gf ∀
pol

A ∃
pol

Sf : ADVk(S
f
f , f) ≥

[
ADVk(A

f , Gff )
]c

, i.e.

there exists a variable semi black-box reduction, and prove (5). Let ψ be a mapping so
that ψ(f) is the bit-string representation ofGf . Let P be the universal f -oracle machine
so that Pψ(f) behaves identical to Gf . Hence, ADVk(A

f ,Pfψ(f)) = ADVk(A
f , Gff ),

and due to the efficiency of simulation, Pψ(f) is poly-time. For everyA we define S and
ϕ like in Lemma 8. The statement (5) follows. ��
Theorem 6. If ∀ψ∃F : so that (I) ∀

pol

G ∃
pol

A E
f←F

[
ADVk(A

f , Gψ(f))
] �= k−ω(1) and

(II) ∀
pol
S ∀

of
ϕ E

f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1), there exist no weak semi b-b reductions.

Proof. By using (5), (I) and (II), we derive a contradiction. Let ψ and P be as in (4). By
applying the assumption of the theorem to ψ, we conclude that a distribution F with the
properties (I) and (II). By applying (I) to P, we conclude that there exists A such that
(*) E

f←F

[
ADVk(A

f ,Pψ(f))
] �= k−ω(1). From (5) it follows that there exist a poly-time

S and an oracle function ϕ so that (**) ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f ,Pfψ(f))
]c

for all

f . By (II), we have (***) E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1). Finally, by averaging (**)

and using the Jensen’s inequality, we have

E
f←F

[
ADVk(S

f
ϕ(f), f)

]
≥ E
f←F

[
ADVk(A

f ,Pfψ(f))
c
]
≥
[

E
f←F

[
ADVk(A

f ,Pfψ(f))
]]c

.

A contradiction between (*) and (***). ��
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