
Colin Boyd
Leonie Simpson (Eds.)

 123

LN
CS

 7
95

9

18th Australasian Conference, ACISP 2013
Brisbane, QLD, Australia, July 2013
Proceedings

Information Security
and Privacy

Lecture Notes in Computer Science 7959
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Colin Boyd Leonie Simpson (Eds.)

Information Security
and Privacy

18th Australasian Conference, ACISP 2013
Brisbane, QLD, Australia, July 1-3, 2013
Proceedings

13

Volume Editors

Colin Boyd
Leonie Simpson
Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001, Australia
E-mail: {c.boyd; lr.simpson}@qut.edu.au

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39058-6 e-ISBN 978-3-642-39059-3
DOI 10.1007/978-3-642-39059-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940582

CR Subject Classification (1998): K.6.5, E.3, D.4.6, E.4, J.1, K.4.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at ACISP 2013: the 18th Australasian
Conference on Information Security and Privacy held during July 1–3, 2013,
in Brisbane, Australia. The conference was hosted by the Institute for Future
Environments at Queensland University of Technology, who provided first-class
facilities and material support. The excellent local Organizing Committee was
led by the ACISP 2013 General Chair, Ed Dawson, with administration led
by Amanda Dunne. We made use of the EasyChair submission and reviewing
software.

There were 78 submissions. Each submission was allocated to three Program
Committee members and each paper received on the average 3.1 reviews. The
committee decided to accept 28 papers. Accepted papers came from 11 countries,
with the largest proportions coming from Japan (9), China (5), Australia (5), and
Estonia (2). Other authors are from France, Hong Kong, India, Korea, Norway,
UK, and USA. We would like to extend our sincere thanks to all authors who
submitted papers to ACISP 2013.

The program also included four excellent and informative invited talks. Two
of these were from eminent cryptography researchers, two were from highly ex-
perienced security practitioners. Paul Ashley (IBM Security Systems) talked on
“Trends in Advanced Threat Protection”; Xavier Boyen (QUT) talked on “Ex-
pressive Cryptography: Lattice Perspectives”; Bradley Schatz (Schatz Forensic)
talked on “Current and Future Challenges in Digital Forensics”; and Yuliang
Zheng (UNC Charlotte) talked on “Public Key Cryptography for Mobile Cloud.”

We were fortunate to have an energetic team of experts who formed the
Program Committee. Their names may be found overleaf, and we thank them
warmly for their considerable efforts. This team was helped by an even larger
number of individuals who reviewed papers in their particular areas of expertise.
A list of these names is also provided; we hope it is complete. We would like to
express our thanks to Springer for continuing to support the ACISP conference
and for help in the conference proceedings production.

April 2013 Colin Boyd
Leonie Simpson

Organization

General Chair

Ed Dawson Queensland University of Technology, Australia

Program Chairs

Colin Boyd Queensland University of Technology, Australia
Leonie Simpson Queensland University of Technology, Australia

Program Committee

Michel Abdalla École Normale Supérieure, France
Joon Sang Baek Khalifa University, UAE
Paulo Barreto University of São Paulo, Brazil
Lynn Batten Deakin University, Australia
Colin Boyd Queensland University of Technology, Australia
Serdar Boztas RMIT University, Australia
Raymond Choo University of South Australia
Orr Dunkelman University of Haifa, Israel
Bao Feng Institute for Infocomm Research, Singapore
Ernest Foo Queensland University of Technology
Steven Galbraith University of Auckland, New Zealand
Praveen Gauravaram Tata Consultancy Services, India
Matt Henricksen Institute for Infocomm Research, Singapore
Jiankun Hu University of New South Wales at ADFA,

Australia
Wang Huaxiong Nanyang Technological University, Singapore
Keith Martin Royal Holloway, University of London, UK
Atsuko Miyaji Japan Advanced Institute of Science and

Technology
Udaya Parampalli University of Melbourne, Australia
Josef Pieprzyk Macquarie University, Australia
Axel Poschmann Nanyang Technological University, Singapore
Rei Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute
Leonie Simpson Queensland University of Technology, Australia
Douglas Stebila Queensland University of Technology, Australia
Ron Steinfeld Monash University, Australia
Willy Susilo University of Wollongong, Australia

VIII Organization

Tsuyoshi Takagi Kyushu University, Japan
Vijay Varadharajan Macquarie University, Australia
Kapaleeswaran Viswanathan HP Labs, India
Guilin Wang University of Wollongong, Australia
Duncan Wong City University of Hong Kong, SAR China
Chuankun Wu Chinese Academy of Sciences
Kan Yasuda NTT Corporation, Japan

Additional Reviewers

Abdelraheem, Mohamed
Ahmed

Aono, Yoshinori
Aranha, Diego
Asghar, Hassan
Au, Man Ho
Barua, Rana
Brzuska, Christina
Chalamala, Srinivasa

Rao
Chang, Donghoon
Chen, Chien-Ning
Chen, Jiageng
Chen, Jie
Cho, Joo Yeon
Chow, Sherman
Dela Cruz, Romar
Deng, Yi
Futa, Yuichi
Gao, Wei
Ghodosi, Hossein
Granger, Robert
Hinek, Jason
Hirose, Shoichi
Huang, Qiong
Huang, Xinyi
Jiang, Shaoquan
Knudsen, Lars
Kohlweiss, Markulf

Kojima, Tetsuya
Kucuk, Ozgul
Kunihiro, Noboru
Laverdière,

Marc-André
Lee, Peter
Liang, Kaitai
Lim, Hoon Wei
Liu, Zhen
Lu, Yao
Lyubashevsky, Vadim
Martini, Ben
May, Alexander
McDonald, Cameron
Moonsamy, Veelasha
Morozov, Kirill
Nguyen, Khoa
Nguyen, Phuong Ha
Omote, Kazumasa
Parno, Bryan
Paterson, Maura
Paul, Goutam
Pereira, Geovandro
Persichetti, Edoardo
Phuong Ha, Nguyen
Rangasamy, Jothi
Rodriguez-Henriquez,

Francisco
Ruan, Chun

Saarinen,
Markku-Juhani

Salim, Farzad
Sanadhya, Somitra
Sasaki, Yu
Sato, Hisayoshi
Stehlé, Damien
Sun, Donald
Teo, Sui Guan
Todo, Yosuke
Tupakula, Udaya
Wang, Pengwei
Wang, Yilei
Warinschi, Bogdan
Weng, Jian
Xu, Haixia
Xu, Jing
Yang, Guomin
Yoneyama, Kazuki
Zhang, Hui
Zhang, Liangfeng
Zhang, Rui
Zhang, Wei
Zhang, Yun
Zhang, Zongyang

Table of Contents

Cryptanalysis I

Analysing the IOBC Authenticated Encryption Mode 1
Chris J. Mitchell

A Chosen IV Related Key Attack on Grain-128a . 13
Subhadeep Banik, Subhamoy Maitra, Santanu Sarkar, and
Meltem Sönmez Turan

Cryptanalysis of Helix and Phelix Revisited . 27
Zhenqing Shi, Bin Zhang, and Dengguo Feng

RSA

Attacks on Multi-Prime RSA with Small Prime Difference 41
Hui Zhang and Tsuyoshi Takagi

Factoring Multi-power RSA Modulus N = prq with Partial Known
Bits . 57

Yao Lu, Rui Zhang, and Dongdai Lin

Toward Separating the Strong Adaptive Pseudo-freeness from the
Strong RSA Assumption . 72

Masayuki Fukumitsu, Shingo Hasegawa, Shuji Isobe,
Eisuke Koizumi, and Hiroki Shizuya

Minkowski Sum Based Lattice Construction for Multivariate
Simultaneous Coppersmith’s Technique and Applications to RSA 88

Yoshinori Aono

Lattices and Security Proofs

Adaptive Precision Floating Point LLL . 104
Thomas Plantard, Willy Susilo, and Zhenfei Zhang

Better Lattice Constructions for Solving Multivariate Linear Equations
Modulo Unknown Divisors . 118

Atsushi Takayasu and Noboru Kunihiro

Key-Dependent Message Chosen-Ciphertext Security of the
Cramer-Shoup Cryptosystem . 136

Baodong Qin, Shengli Liu, and Zhengan Huang

X Table of Contents

Black-Box Separations and Their Adaptability to the Non-uniform
Model . 152

Ahto Buldas and Margus Niitsoo

Public Key Cryptography

Attribute-Based Identification: Definitions and Efficient
Constructions . 168

Hiroaki Anada, Seiko Arita, Sari Handa, and Yosuke Iwabuchi

Relations among Privacy Notions for Signcryption and Key Invisible
“Sign-then-Encrypt” . 187

Yang Wang, Mark Manulis, Man Ho Au, and Willy Susilo

Injective Encodings to Elliptic Curves . 203
Pierre-Alain Fouque, Antoine Joux, and Mehdi Tibouchi

Membership Encryption and Its Applications . 219
Fuchun Guo, Yi Mu, Willy Susilo, and Vijay Varadharajan

Hashing

Security Proofs for Hash Tree Time-Stamping Using Hash Functions
with Small Output Size . 235

Ahto Buldas and Risto Laanoja

Improved Boomerang Attacks on SM3 . 251
Dongxia Bai, Hongbo Yu, Gaoli Wang, and Xiaoyun Wang

Invited Talk

Expressive Cryptography: Lattice Perspectives . 267
Xavier Boyen

Cryptanalysis II

Related-Key Boomerang Attacks on KATAN32/48/64 268
Takanori Isobe, Yu Sasaki, and Jiageng Chen

Highly Accurate Key Extraction Method for Access-Driven Cache
Attacks Using Correlation Coefficient . 286

Junko Takahashi, Toshinori Fukunaga, Kazumaro Aoki, and
Hitoshi Fuji

Upper Bounds for the Security of Several Feistel Networks 302
Yosuke Todo

Table of Contents XI

Signatures

Fairness in Concurrent Signatures Revisited . 318
Willy Susilo, Man Ho Au, Yang Wang, and Duncan S. Wong

Formalizing GBS and Practical Constructions without Random
Oracles . 330

Essam Ghadafi

Passwords and Mobile Security

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 347
Byoung-Il Kim and Jin Hong

Complexity of Increasing the Secure Connectivity in Wireless Ad Hoc
Networks . 363

Seyit A. Camtepe

Towards Privacy Preserving Mobile Internet Communications –
How Close Can We Get? . 379

Kristian Gjøsteen, George Petrides, and Asgeir Steine

Count-Min Sketches for Estimating Password Frequency within
Hamming Distance Two . 388

Leah South and Douglas Stebila

Secret Sharing

A Rational Secret Sharing Protocol with Unconditional Security in the
Synchronous Setting . 403

Yang Yu and Zhanfei Zhou

Secret Sharing Schemes with Conversion Protocol to Achieve Short
Share-Size and Extendibility to Multiparty Computation 419

Ryo Kikuchi, Koji Chida, Dai Ikarashi, Koki Hamada, and
Katsumi Takahashi

Invited Talk

Public Key Cryptography for Mobile Cloud . 435
Yuliang Zheng

Author Index . 437

Analysing the IOBC Authenticated

Encryption Mode

Chris J. Mitchell

Information Security Group, Royal Holloway, University of London
Egham, Surrey TW20 0EX, UK

c.mitchell@rhul.ac.uk

Abstract. The idea of combining a very simple form of added plaintext
redundancy with a special mode of data encryption to provide data in-
tegrity is an old one; however, despite its wide deployment in protocols
such as Kerberos, it has largely been superseded by provably secure au-
thenticated encryption techniques. In this paper we cryptanalyse a block
cipher mode of operation called IOBC, possibly the only remaining en-
cryption mode designed for such use that has not previously been ana-
lyzed. We show that IOBC is subject to known-plaintext-based forgery
attacks with a complexity of around 2n/3, where n is the block cipher
block length.

1 Introduction

This is perhaps the last chapter in a long and rather unfortunate story1, namely
that of ‘special’ modes of operation for block ciphers, designed to offer ‘low cost’
combined integrity and confidentiality protection by combining encryption with
the addition of simple (or fixed) redundancy to the plaintext. The underlying
idea is to design the mode so that modifying the ciphertext without invalidating
the added redundancy is impossible without knowledge of the encryption key. It
is a long story since the idea dates back over 30 years, and a sad story because
one by one these special modes of operation have been shown to fail to meet
their objectives.

Such modes are the theme of section 9.6.5 of Menezes, van Oorschot and
Vanstone’s landmark book [1]. As they point out, the starting point for the
development of such modes is the observation that encryption alone does not
guarantee integrity. This, combined with the observation that the ‘obvious’ ap-
proach of encrypting the data and then separately computing a MAC involves
twice the work, leads to the alternative notion of adding detectable redundancy
before encrypting so that it can be detected after decryption. Two main methods
for adding redundancy have been proposed:

– add a fixed block at the end of the plaintext, which may be public or secret
(in the latter case the block acts as an auxiliary key);

1 Since ACISP has played its own part in this developing tale, it seems fitting to
present this final chapter at ACISP 2013.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 C.J. Mitchell

– append to the plaintext some easily computed and simple (public) function
of the plaintext.

In either case we refer to the block added to the end of the plaintext as a Ma-
nipulation Detection Code (MDC). Whichever approach is adopted, the method
for computing the MDC needs to be simple, or it offers no advantage over the
more conventional ‘encrypt then MAC’ approach.

Note that there is a third, related, approach which remains viable and is, in-
deed, increasingly used; this involves computing a keyed function of the plaintext
(a sort of ‘weak MAC’) which is then encrypted to make it secure. The plaintext
itself may or may not be encrypted. Indeed, one example of such an approach,
namely GCM/GMAC [2], has a proof of security and has been standardized [3,4].
The main differences between GCM (and other related techniques) and the ap-
proaches we are concerned with here is that GCM uses a ‘standard’ encryption
method and, of course, GCM has a proof of security.

At this point we observe that the general approaches described above possess
an intrinsic weakness if the method of adding redundancy is public2. Suppose an
attacker persuades the legitimate originator of protected messages to encrypt a
message containing a correct MDC somewhere in the middle (where the MDC
is correct in the sense that it is a correct MDC on the data that precedes it).
The attacker will then be able to delete all ciphertext blocks following the en-
crypted MDC, and such a change will not be detectable. Despite this weakness,
using an appropriate encryption mode combined with a public method for adding
verifiable redundancy to a message has been widely used for message integrity
protection — e.g. in Kerberos (see, for example, [5]). We thus restrict our atten-
tion in the remainder of the paper to the case where the MDC is a secret value
(this is the approach proposed for use with the IOBC mode, which forms the
main subject of this paper).

Regardless of the nature of the MDC, the method of encryption needs to be cho-
senwithgreat care.Using a streamcipher orCBCmode encryption is clearly totally
insecure, since a ciphertext producedwith such a technique can readily bemanipu-
lated in such a way that large parts of the recovered plaintext, including the end of
the plaintext, remains unchanged. A simple modified version of CBC called Plain-
text Cipher Block Chaining (PCBC) [6,7], in which the feedback chaining variable
is the exclusive-or of the immediately preceding ciphertext and plaintext blocks,
was proposed back in the 1980s to avoid this problem. This scheme was used in
Kerberos version 4 [7] to provide combined encryption and integrity protection.
The weakness of PCBC for use as an integrity-protection mode was first pointed
out by Kohl [6]. As is simple to verify, Kohl showed that interchanging two of the
ciphertext blocks of a PCBC-encrypted message does not affect the decryption of
the final block, i.e. it is extremely simple to make undetectable changes to mes-
sages. Note that this is actually a stronger attack than is implied by Menezes, van
Oorschot andVanstone [1] who refer only to the danger of known-plaintext attacks.

2 This problem appears to be part of the cryptographic folklore — it was pointed out
to the author by Bart Preneel in the late 1990s.

Analysing the IOBC Authenticated Encryption Mode 3

Menezes, van Oorschot and Vanstone [1] describe a slightly different mode,
confusingly also referred to asPCBC(this time forPlaintext-CiphertextBlockChain-
ing), in which the feedback chaining variable is the modulo 2n sum of the immedi-
ately preceding ciphertext and plaintext blocks. This technique was also described
as long ago as 1982 byMeyer andMatyas [8].Unfortunately, despite its long history,
the latter version of PCBCwas shown to possessmajor weaknesses when usedwith
an MDC for integrity protection in a 2005 ACISP paper [9]. M-PCBC, a further
variant of PCBC due to Sierra et al. [10], was also shown to fail to offer appropri-
ate MDC protection in the same ACISP 2005 paper [9]. Another variant of PCBC
was proposed by Gligor and Donescu [11]; however, this latter scheme, known as
iaPCBC, was shown to possess serious vulnerabilities by Ferguson et al. [12]. Yet
another scheme, called PES-PCBC,was proposedby Zuquete andGuedes [13] but,
as observed byRecacha [14] as well the authors themselves [15], PES-PCBC is sub-
ject to known-plaintext attacks.

Indeed, to the author’s knowledge, almost all the proposals for such special
modes have been cryptanalyzed, with one exception — a scheme proposed in
1996 called Input and Output Block Chaining (IOBC) [14]. One possible reason
why IOBC has escaped attention is that until recently the only available de-
scription was in Spanish. However, recently an English language translation of
the original 1996 paper3 has been made available by the author, and it is this
translation that has been used as the basis of this paper. It is interesting to note
that IOBC has, nevertheless, had an impact on the cryptographic literature. A
modified version of IOBC, called EPBC, was published in 1997 [15] and was
subsequently cryptanalyzed in 2007 [16].

Finally we observe that, although the history of the area sketched above may
give the impression of an ordered and coherent narrative, the truth is somewhat
different. Ideas, and sometimes attacks, appear to have been put forward in-
dependently of one another, and one role of this introduction is to try to pull
together the main developments in the area.

The remainder of the paper is structured as follows. Section 2 provides details
of the operation of IOBC and its use for integrity protection. This is followed in
section 3 by certain observations on the properties of IOBC and its component
functions. This sets the stage for section 4, in which a known plaintext forgery
attack against IOBC when used for integrity protection is described. A brief
discussion of possible fixes to IOBC is given in section 5, before a certificational
chosen-plaintext attack on IOBC is outlined in section 6. Concluding remarks
are provided in section 7.

2 The Recacha IOBC Mode

We next describe the operation of the IOBC block cipher mode of operation4. We
base our description on Recacha’s 1996 paper [14], although we use the notation
of Mitchell [16].

3 http://inputoutputblockchaining.blogspot.com.es/
4 PES-PCBC (briefly mentioned in section 1) is the same as IOBC with the exception
that in PES-PCBC the function g is the identity function.

http://inputoutputblockchaining.blogspot.com.es/

4 C.J. Mitchell

2.1 Initial Assumptions

We suppose that IOBC is to be used with an n-bit block cipher, i.e. a block cipher
operating on plaintext and ciphertext blocks of n bits. We further suppose that
n is a power of two, and put n = 2m (as is the case for all standardized block
ciphers [17]). We write eK(P) for the result of block cipher encrypting the n-
bit block P using the secret key K, and dK(C) for the result of block cipher
decrypting the n-bit block C using the key K. Finally we suppose the plaintext
to be protected is divided into a sequence of n-bit blocks (if necessary, having
first been padded): P1, P2, . . . , Pt.

2.2 Initialization Vectors

The scheme uses two secret n-bit Initialization Vectors (IVs), denoted by F0 and
G0. The nature of the intended restrictions on their use is not altogether clear.
However, one suggestion in the original Recacha paper [14] is that they should
be generated as follows.

Suppose K ′ is an auxiliary key used solely for generating the IVs. Suppose also
that S is a sequence number, managed so that different values are used for every
message. Then F0 = eK′(S) and G0 = eK′(F0). For the purposes of this paper
we assume that F0 and G0 are always generated this way, and thus the scheme
can be thought of as employing a pair of block cipher keys and a non-secret,
non-repeating, sequence number (which must be carefully managed to prevent
accidental re-use of sequence number values). Note that special measures will
need to be taken if the same key is to be used to encrypt communications in
both directions between a pair of parties. Avoiding sequence number re-use in
such a case could be achieved by requiring one party to start the sequence number
they use for encryption at a large value, perhaps halfway through the range.

2.3 Operation

The IOBC encryption of the plaintext P1, P2, . . . , Pt operates as follows:

Gi = Pi ⊕ Fi−1, (1 ≤ i ≤ t),

Fi = eK(Gi), (1 ≤ i ≤ t),

Ci = Fi ⊕ g(Gi−1), (2 ≤ i ≤ t),

where C1 = F1 ⊕ G0, ⊕ denotes bit-wise exclusive-or, and g is a function that
maps an n-bit block to an n-bit block, defined below. The operation of the mode
(when used for encryption) is shown in Figure 1. Note that we refer to the values
Fi and Gi as ‘internal’ values, as they are computed during encryption, but they
do not constitute part of the ciphertext.

The function g is defined as follows. Suppose X is an n-bit block, where
n = 2m. Suppose also that X = L||R where L is the leftmost 2m−1 − 1 bits of
X and R is the rightmost 2m−1 + 1 bits of X (and, as throughout, || denotes
concatenation). Then

g(X) = (>1 (L))||(>1 (R))

Analysing the IOBC Authenticated Encryption Mode 5

Fig. 1. IOBC encryption

where >i denotes a rightwards (cyclic) shift by i bit positions.
Decryption operates similarly. We have:

Fi = Ci ⊕ g(Gi−1), (2 ≤ i ≤ t),

Gi = dK(Fi), (1 ≤ i ≤ t),

Pi = Gi ⊕ Fi−1, (1 ≤ i ≤ t).

and F1 = C1 ⊕G0, where d denotes block cipher decryption.

2.4 Additional Remarks

As described above, we assume throughout that the IVs F0 and G0 are derived
by ECB-mode-encrypting a sequence number using a secondary key. Thus the
ciphertext blocks will be a function of this serial number (as well as the pair of
keys used). We thus write [S], C1, C2, . . . , Ct for a sequence of ciphertext blocks,
meaning that C1, C2, . . . , Ct were encrypted using the sequence number S. This
is logical, since the sequence number will need to be sent or stored with the
ciphertext to enable correct decryption.

Finally observe that IOBC should only be used with relatively short messages.
That is, as specified by Recacha [14] (and for reasons which become clear below),
a message to be encrypted using IOBC shall contain at most n2/2− 1 plaintext
blocks, where n is the plaintext block length. Thus for n = 64 and n = 128, the
two most commonly used block lengths, a message shall contain at most 2047
and 8191 blocks, respectively.

6 C.J. Mitchell

2.5 Using IOBC for Integrity Protection

As already implied, IOBC is designed for combined confidentiality and integrity
protection. Confidentiality comes simply by encrypting the data using IOBC
mode. Integrity is achieved by adding an MDC to the end of the plaintext —
what Recacha [14] refers to as an Integrity Check Vector (ICV). After decryption
of an IOBC-protected message, the receiver must check that the ICV is correct,
and must reject the message if it is not.

Recacha recommends use of a secret ICV of length n/2. This ICV must clearly
be known to the intended recipient, and should therefore be regarded as forming
part of the key (along with the key K used in IOBC computations and the key
K ′ used to derive the IVs).

3 Preliminary Observations

We first establish some simple results on the operation of the IOBC scheme.
The first Lemma derives directly from a discussion in section 6 of [16]. It is also
implicit in the discussions of Recacha [14].

Lemma 1. Suppose [S], C1, C2, . . . , Ct and [S′], C′
1, C

′
2, . . . , C

′
t′ are IOBC en-

crypted versions of the plaintext sequences P1, P2, . . . , Pt and P ′
1, P

′
2, . . . , P

′
t′ , re-

spectively. If the ciphertext:

[S′], C∗
1 , C

∗
2 , . . . , C

∗
t−v+u =

[S′], C′
1, C

′
2, . . . , C

′
u−1, Cv ⊕ g(G′

u−1)⊕ g(Gv−1), Cv+1, . . . , Ct

is submitted for IOBC decryption (where 1 < u and 1 < v < t, and Gv−1 and
G′

u−1 are values computed during the encryption of the respective sequences of
blocks), then the resulting sequence of plaintext blocks P ∗

1 , P
∗
2 , . . . , P

∗
t−v+u will be

equal to

P ′
1, P

′
2, . . . , P

′
u−1, Pv ⊕ F ′

u−1 ⊕ Fv−1, Pv+1, Pv+2, . . . , Pt.

Proof. We first note that it follows immediately from the definitions that
F ∗
i = F ′

i and G∗
i = G′

i (1 ≤ i ≤ u− 1), where F ′
i and G′

i are the internal values
generated during the encryption process that yielded the ciphertext message
C′

1, C
′
2, . . . , C

′
t′ . Hence P ∗

i = P ′
i (1 ≤ i ≤ u− 1).

We now consider the decryption of C∗
u. We have:

F ∗
u = C∗

u ⊕ g(G∗
u−1) (from section 2.3)

= Cv ⊕ g(G′
u−1)⊕ g(Gv−1)⊕ g(G∗

u−1) (by defn. of C∗
u)

= Cv ⊕ g(Gv−1) (since G∗
u−1 = G′

u−1)

= Fv (from section 2.3).

Hence G∗
u = Gv. Finally we have:

P ∗
u = G∗

u ⊕ F ∗
u−1 (from section 2.3)

= Gv ⊕ F ′
u−1 (from above)

= Pv ⊕ F ′
u−1 ⊕ Fv−1 (from section 2.3).

Analysing the IOBC Authenticated Encryption Mode 7

We now consider the decryption of C∗
u+1. We have

F ∗
u+1 = C∗

u+1 ⊕ g(G∗
u) (from section 2.3)

= Cv+1 ⊕ g(Gv) (by defn. of C∗
u+1 and from above)

= Fv+1 (from section 2.3).

Hence G∗
u+1 = Gv+1. Finally, we have

P ∗
u+1 = G∗

u+1 ⊕ F ∗
u (from section 2.3)

= Gv+1 ⊕ Fv (from above)

= Pv+1 (from section 2.3).

The same argument shows that P ∗
u+i = Pv+i for every i ≥ 1, and the desired

result follows. �

Remark 1. Lemma 1 suggests a way in which it may be possible to forge an
IOBC-encrypted message so that the final block will contain the correct ICV.
However, the problem remains of discovering g(G′

u−1) ⊕ g(Gv−1) (as used in
constructing the message in the statement of the lemma). Recacha [14] discusses
this very point, and explains that making this difficult motivates the inclusion of
the function g in the design of IOBC — that is, if g was not included (as is the
case for PES-PCBC), then simple forgeries could be achieved by manipulating a
single encrypted message for which part of the plaintext was known. We revisit
this point later, and show that g is not as effective in achieving the goal as
intended.

We next give some elementary observations on the operation of IOBC.

Lemma 2. Suppose [S], C1, C2, . . . , Ct is the encryption of P1, P2, . . . , Pt using
IOBC, and that Fi and Gi are as defined in section 2.3. Then:

(i) Cj+1 ⊕ Pj+2 = g(Gj) +Gj+2, 1 ≤ j ≤ t− 2;

(ii)
⊕k

i=1 g
k−i(Cj+2i−1 ⊕ Pj+2i) = gk(Gj) ⊕ Gj+2k, 1 ≤ j ≤ t − 2, 1 ≤ k ≤

(t− j)/2.

Proof. (i) follows immediately from the definition of the operation of IOBC.
(ii) follows by inductively applying (i), observing that g is a bit permutation,
and hence a linear function, and so it distributes across the bitwise exclusive-or
operation (⊕). �

Remark 2. It is not hard to see that if gk(Gj) = Gj for some k, then Lemma 2(ii)
could be combined with Lemma 1 to yield a forgery attack (given a ciphertext
message with corresponding known plaintext). This point is made by Recacha
[14], who explains that the bit permutation g has been chosen so that the smallest
integer i > 1 such that gi is the identity permutation is n2/4−1. The restriction
on the maximum length of messages that can be encrypted using IOBC, as
defined in section 2.4, prevents this problem arising in practice. However, as we
show next, in some cases gk is ‘close’ to the identity permutation for significantly
smaller values of k.

8 C.J. Mitchell

We conclude this section by giving certain properties of the function g. We
examine two special cases of particular practical importance, i.e. where n is
either 64 or 128. We first consider the case n = 64.

Lemma 3. If X is a randomly selected 64-bit block then:

Pr(X = g341(X)) = 2−22.

Proof. As in section 2.3, put X = LX ||RX , where LX and RX are 31-bit and
33-bit blocks, respectively. Let Y = g341(X), and, analogously, let Y = LY ||RY .

We first observe that LX = LY . This follows immediately from the definition
of g and the observation that 341 = 31× 11, i.e. it is a multiple of 31.

Secondly, we show that Pr(RX = RY) = 2−22. To establish this, first observe
that 341 = 10 × 33 + 11, i.e. RY =>11 (RX). Since 33 = 3 × 11, it follows that
RY = RX if and only if RX = Z||Z||Z, where Z is an arbitrary 11-bit string.
There are clearly 211 such strings Z, and hence the probability that RY = RX

is 211/233, and the claim follows. This establishes the desired result. �

An analogous result holds for n = 128, as follows.

Lemma 4. If X is a randomly selected 128-bit block then:

Pr(X = g1365(X)) = 2−42.

Proof. As previously, let X = LX ||RX , where LX and RX are 63-bit and 65-
bit blocks, respectively. Put Y = g1365(X), and define LY and RY analogously
to the proof of the previous lemma.

Since 1365 = 21×65 it follows that RY = RX . Also, since 1365 = 21×63+42,
and since 21|42 and 21|63, we have LY = LX if and only if LX = Z||Z||Z, where
Z is an arbitrary 21-bit string. The result now follows. �

Remark 3. Similar results can be achieved for any n = 2m since, for every m,
either 2m − 1 or 2m + 1 is a multiple of 3.

4 A Known-Plaintext Forgery Attack on IOBC

The main elements of the attack are now in place. We suppose that the attacker
has access to a number of ciphertext messages all encrypted using the same key,
and that the attacker also knows large parts of the plaintext for these messages.
The precise number of messages required for the attack will depend on the
message lengths and the value of n. We look at two special cases of particular
importance.

4.1 The Case n = 64

We start by considering the case n = 64, as applies for standardized block ciphers
such as 3DES, MISTY1 and CAST-128 [17]. In this case the definition of IOBC
requires that messages encrypted using IOBC contain at most 2047 blocks.

Analysing the IOBC Authenticated Encryption Mode 9

Suppose the attacker has obtained a ciphertext message [S], C1, C2, . . . , Ct

where t ≥ 685. Suppose also that the attacker knows the corresponding plaintext
blocks P1, P2, . . . , Pt (in fact, the attack we describe does not require the attacker
to know all the plaintext blocks, as will become clear). Using Lemma 2(ii) with
j = 1 and k = 341, the attacker can use knowledge of C2, C4, . . . , C682 and
P3, P5, . . . , P683 to compute g341(G1)⊕G683.

The attacker now constructs a new ciphertext message [S], C∗
1 , C

∗
2 , . . . , C

∗
t−682

equal to the following sequence of blocks:

[S], C1, C684 ⊕ g342(G1)⊕ g(G683), C685, . . . , Ct.

Note that g342(G1)⊕g(G683) can be obtained simply by applying g to g341(G1)⊕
G683.

By Lemma 3, the probability that g342(G1) ⊕ g(G683) = g(G1) ⊕ g(G683) is
2−22, assuming that the encryption algorithm generates randomly distributed
ciphertext blocks. If this event occurs, then, by Lemma 1, the result of IOBC
decrypting [S], C∗

1 , C
∗
2 , . . . , C

∗
t−682 will be equal to:

P1, P684 ⊕ F1 ⊕ F683, P685, P686, . . . , Pt.

That is, since t ≥ 685, the final plaintext block will contain the correct ICV, i.e.
[S], C∗

1 , C
∗
2 , . . . , C

∗
t−682 will be a successful forgery.

The above attack, which essentially involves cutting out 682 consecutive ci-
phertext blocks from a valid message and modifying the ciphertext block imme-
diately after the removed portion, will yield a successful forgery with probability
2−22. In the example above, the removed ciphertext blocks were C2, C3, . . . , C683,
but essentially the same attack will work by removing any sequence of 682 con-
secutive ciphertext blocks as long as it does not include the first block or the final
two blocks. Thus, for example, a message containing 1808 blocks (well short of
the maximum of 2047) could be used to construct 1024 = 210 different possible
forgeries, each of which would have a probability of 2−22 of being accepted as
legitimate. A simple argument shows that 1000–2000 encrypted messages of this
length could therefore yield 221–222 forgeries, at least one of which is likely to
be accepted.

We therefore conclude that the IOBC integrity protection mechanism can, in
this case, be defeated with potentially as few as 1000–2000 known plaintexts and
221–222 queries to a decrypting party.

4.2 The Case n = 128

We next consider the case n = 128, as applies for standardized block ciphers such
as AES, Camellia and SEED [17]. In this case the definition of IOBC requires
that messages encrypted using IOBC contain at most 8191 blocks.

An exactly analogous approach will clearly work here as for the n = 64 case,
except that in this case we need to omit 2730 consecutive ciphertext blocks from
a valid message, and make appropriate modifications to the ciphertext block
immediately following the omitted sequence. In this case, the probability of the

10 C.J. Mitchell

forged message being accepted will be 2−42 (from Lemma 4). As in the 64-bit
case, a single message could yield a number of possible forgeries. For example, a
6829-block message could be used to generate 212 different possible forgeries. A
total of 241–242 forgery attempts will be required to have a good chance of having
at least one forgery accepted, potentially requiring 229–230 known plaintexts (if
they have an average length of around 7000 blocks).

This is a rather large number, but significantly less than the 264 which is the
design goal.

4.3 Other Values of n

The same general approach will work for any value of n (see Remark 3), yield-
ing a known-plaintext-based forgery attack with complexity approximately 2n/3

decryptions and somewhat less than 2n/3 known plaintexts.

5 Can IOBC be Fixed?

It is not hard to see that the attacks in section 4 could be prevented by further
limiting the maximum length of message that can be encrypted using IOBC
mode. However, unless the limit is made very small, less effective versions of the
attack described in section 4 will still apply, where the exact results will depend
on the factorisation of 2m − 1 and 2m + 1.

For example, for the n = 64 case (i.e. m = 6) we know that, for randomly
chosen blocks (X , Y) of 33 and 31 bits respectively, Pr(g93(X) = X) = 2−30 and
g93(Y) = Y . That is a forgery attack with a success probability of 2−30 could be
launched using a ciphertext (with known plaintext) of length only 100 blocks.

Of course, it may be possible to devise significantly more secure schemes by
choosing g to be more complex, but this would reduce the attractiveness of the
scheme. After all, the only reason to adopt this approach instead of ‘encrypt
then MAC’ (which is provably secure) is to reduce the complexity of protecting
the message to that of encryption plus a small delta.

6 A Chosen-Plaintext Forgery Attack

All the attacks we have considered so far can be avoided if only relatively short
messages are encrypted. Moreover, these attacks take advantage of special prop-
erties of the function g. As a result, it is of at least theoretical interest to know
the level of security provided by IOBC mode regardless of the length of plaintext
messages and of the choice of g.

We thus conclude the main part of the paper by sketching a certificational
chosen-plaintext-based forgery attack which serves to limit the security of IOBC
regardless of length limits for plaintexts (and the choice of g). Suppose that
[S], C1, C2, . . . , Ct and [S′], C′

1, C
′
2, . . . , C

′
t′ are IOBC encrypted versions of the

plaintext sequences P1, P2, . . . , Pt and P ′
1, P

′
2, . . . , P

′
t′ , respectively. Suppose also

that P ′
i = Pj and P ′

i+1 = Pj+1.

Analysing the IOBC Authenticated Encryption Mode 11

It is not hard to see that if C′
i = Cj and C′

i+1 = Cj+1 then, with very
high probability, we have F ′

i−1 = Fj−1, and hence G′
i−1 = Gj−1 and G′

i+1 =
Gj+1. If such an event occurs, then, by Lemma 1, the constructed ciphertext
message [S′], C′

1, C
′
2, . . . , C

′
i−1, Cj , Cj+1, . . . , Ct will very conveniently decrypt to

P ′
1, P

′
2, . . . , P

′
i−1, Pj , Pj+1, . . . , Pt, i.e. a MAC forgery has been constructed. By

the usual ‘birthday paradox’ probabilistic arguments, to find such an event sim-
ply requires around 2n/2 chosen plaintexts to be encrypted, each containing the
same consecutive pair of plaintext blocks. In fact, the number of required chosen
plaintext encryptions can be reduced to significantly less than 2n/2 by including
many occurrences of the fixed pair of plaintext blocks in each chosen plaintext.

That is, regardless of the lengths of plaintext messages and the choice of
g, forgery attacks on IOBC are possible if of the order of 2n/2 messages are
encrypted using the same key.

7 Summary and Conclusions

The analysis in this paper suggests that IOBC does not offer an adequate level
of security for routine use as the basis of a combined integrity and confidentiality
technique. In fact, use of the ‘add redundancy and then encrypt using a special
mode’ approach to provide combined integrity and confidentiality protection is
no longer ‘state of the art’, and so this is arguably not a major development. The
main significance is that, as mentioned in section 1, IOBC was the only remaining
proposed block cipher mode for simultaneous confidentiality and integrity pro-
tection known to the author which had not already been shown to suffer from
forgery attack issues. Hence this paper serves to bring a cryptographic chapter
to a tidy close.

As discussed in many other places, if both confidentiality and integrity pro-
tection are required, then either encryption and a MAC should be combined in
an appropriate way, or a dedicated ‘authenticated encryption’ mode should be
used — see, for example, ISO/IEC 19772 [3]. Indeed, a wide variety of provably
secure schemes are available.

Acknowledgements. The author would like to thank Francisco Recacha for
his very helpful explanations and corrections, and also the anonymous referees
for comments which have helped to improve the presentation of this paper.

References

1. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

2. McGrew, D.A., Viega, J.: The Galois/Counter mode of operation (GCM) (May
2005), http://www.mindspring.com/~dmcgrew/gcm-nist-6.pdf

3. International Organization for Standardization Genève, Switzerland: ISO/IEC
19772:2009, Information technology — Security techniques — Authenticated en-
cryption mechanisms (February 2009)

http://www.mindspring.com/~dmcgrew/gcm-nist-6.pdf

12 C.J. Mitchell

4. International Organization for Standardization Genève, Switzerland: ISO/IEC
9797-3:2011, Information technology — Security techniques — Message Authen-
tication Codes (MACs) — Part 3: Mechanisms using a universal hash-function
(2011)

5. Dent, A.W., Mitchell, C.J.: User’s Guide to Cryptography and Standards. Artech
House (2005)

6. Kohl, J.T.: The use of encryption in kerberos for network authentication. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 35–43. Springer, Heidelberg
(1990)

7. Steiner, J., Neuman, C., Schiller, J.: Kerberos: an authentication service for open
network systems. In: Proceedings: Usenix Association, Winter Conference, Dallas
1988, pp. 191–202. USENIX Association, Berkeley (1988)

8. Meyer, C.H., Matyas, S.M.: Cryptography: A new dimension in computer data
security. John Wiley and Sons, New York (1982)

9. Mitchell, C.J.: Cryptanalysis of two variants of PCBC mode when used for message
integrity. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574,
pp. 560–571. Springer, Heidelberg (2005)

10. Sierra, J.M., Hernandez, J.C., Jayaram, N., Ribagorda, A.: Low computational
cost integrity for block ciphers. Future Generation Computer Systems 20, 857–863
(2004)

11. Gligor, V.D., Donescu, P.: Integrity-aware PCBC encryption schemes. In:
Malcolm, J.A., Christianson, B., Crispo, B., Roe, M. (eds.) Security Protocols.
LNCS, vol. 1796, pp. 153–171. Springer, Heidelberg (2000)

12. Ferguson, N., Whiting, D., Kelsey, J., Wagner, D.: Critical weaknesses of iaPCBC
(November 1999)

13. Zuquete, A., Guedes, P.: Transparent authentication and confidentiality for stream
sockets. IEEE Micro 16(3), 34–41 (1996)

14. Recacha, F.: IOBC: Un nuevo modo de encadenamiento para cifrado en bloque. In:
Proceedings: IV Reunion Espanola de Criptologia, Valladolid, pp. 85–92 (Septem-
ber 1996)

15. Zuquete, A., Guedes, P.: Efficient error-propagating block chaining. In: Darnell,
M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 323–334. Springer,
Heidelberg (1997)

16. Mitchell, C.J.: Cryptanalysis of the EPBC authenticated encryption mode. In:
Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp.
118–128. Springer, Heidelberg (2007)

17. International Organization for Standardization Genève, Switzerland: ISO/IEC
18033-3:2010, Information technology — Security techniques — Encryption al-
gorithms — Part 3: Block ciphers, 2nd edn. (2010)

A Chosen IV Related Key Attack on Grain-128a

Subhadeep Banik1, Subhamoy Maitra1,
Santanu Sarkar2, and Turan Meltem Sönmez2

1 Applied Statistics Unit, Indian Statistical Institute Kolkata, 203, B.T. Road,
Kolkata-108

s.banik r@isical.ac.in, subho@isical.ac.in
2 National Institute of Standards and Technology, 100 Bureau Drive, Stop 8930

Gaithersburg, MD 20899-8930, USA
santanu.sarkar@nist.gov, meltem.turan@nist.gov

Abstract. Due to the symmetric padding used in the stream cipher
Grain v1 and Grain-128, it is possible to find Key-IV pairs that gener-
ate shifted keystreams efficiently. Based on this observation, Lee et al.
presented a chosen IV related Key attack on Grain v1 and Grain-128
at ACISP 2008. Later, the designers introduced Grain-128a having an
asymmetric padding. As a result, the existing idea of chosen IV related
Key attack does not work on this new design. In this paper, we present a
Key recovery attack on Grain-128a, in a chosen IV related Key setting.
We show that using around γ · 232 (γ is a experimentally determined
constant and it is sufficient to estimate it as 28) related Keys and γ · 264
chosen IVs, it is possible to obtain 32 · γ simple nonlinear equations and
solve them to recover the Secret Key in Grain-128a.

Keywords: Cryptanalysis, eStream, Grain-128a, Related Keys, Stream
Cipher.

1 Introduction

The Grain family of stream ciphers, proposed by Martin Hell, Thomas Johans-
son and Willi Meier in 2005, is designed for constrained devices. Grain v1 [16]
is included in the final hardware portfolio of the eStream project [1]. To meet
increased security requirements, the designers proposed a 128-bit version called
Grain-128 in ISIT 2006 [17]. In both ciphers, the symmetric padding of all ones is
used during the initialization of the internal state of the cipher, before the Key-
IV mixing. Due to this symmetric padding, slide attacks based on the observation
that one could obtain Key-IV pairs that produce ε-bit shifted keystream with
probability 2−2ε, were reported in [9]. This probability was improved to 2−ε in [6].
In the SKEW conference of 2011, the designers proposed the Grain-128a cipher
that accommodated both functionalities of message encryption and authentica-
tion [2,3]. In order to protect against the previous attacks, the designers used an
asymmetric padding in the design of Grain-128a. For detailed cryptanalytic re-
sults related to this family, the reader may refer to [4,7–9,11–14,18–20,22,24,25].

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 13–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 S. Banik et al.

The symmetric padding used in the initialization of Grain v1 and Grain-128
was also exploited in [20] to mount a chosen IV related Key attack. Their main
idea is to use related Keys and chosen IVs to obtain shifted keystream and then
to carefully study the scenario to obtain the Secret Key bits. The same attack
fails against Grain-128a, for the following reasons:

1. The padding used in Grain-128a is a string of 31 ones followed by a zero.
Because of this asymmetric nature of the padding it is not possible to obtain
related Key-IV pairs that produce shifted keystream bits for less than 32 bit
shifts by using the idea of [9,20]. Following their idea, getting related Key-IV
pairs for 32-bit shifted keystream should require an expected 264 trials.

2. In Grain-128a, the first 64 keystream bits and thereafter every alternate
keystream bit are used for computation of a MAC and hence are not di-
rectly available to the attacker. This also ensures that Grain-128a is resistant
against the attack proposed in [20].

Thus one can argue that an attack against Grain-128a in the chosen IV related
Key setting is much more difficult and hence requires much higher computational
effort compared to [20].

In this paper, first, we present a novel approach to obtain related Key-IV pairs
that produce 32-bit shifted keystream with an expected number of 232 random
trials. Using these Key-IV pairs, we present a Key recovery attack on Grain-
128a, in a chosen IV related Key setting. We show that using around γ · 232 (γ
is an experimentally determined constant and it is sufficient to estimate it as
28) related Keys and γ · 264 chosen IVs, it is possible to obtain 32 · γ simple
nonlinear equations and solve them to recover the Secret Key in Grain-128a.
We experimentally verified that solving these equations are practical, due to the
simplicity of the equations.

The paper is organized as follows. In the next section, a brief explanation
of chosen IV attacks and the structure of the Grain family of stream ciphers
are presented. In Section 3, the Key-IV pairs that produce shifted keystreams
in Grain-128a are discussed. In Section 4, the details of the chosen IV related
Key attack are presented, along with the experimental results and a discussion
of a few possible countermeasures to prevent attacks of this nature. Finally, in
Section 5 the conclusions of the paper are given.

2 Preliminaries

2.1 Chosen IV Attacks

The model used in chosen IV attacks is as follows. The adversary is given access
to an Oracle which is in possession of an unknown quantity (typically the Se-
cret Key). The adversary can choose a public parameter of his choice (typically
the IV) and ask the Oracle to encrypt a message of his choice. In the context
of stream ciphers, this implies that the adversary is able to obtain keystream
bits by querying the Oracle possessing the Secret Key with any IV of his choice

A Chosen IV Related Key Attack on Grain-128a 15

(See Fig. 1). The above process can be repeated with different IVs of the ad-
versary’s choice. The task of the adversary could be either (i) to compute the
Secret Key efficiently or, (ii) to distinguish the keystream output from a random
stream.

Secret Key K

IV1

IV2

...

IVl

Keystream1

Keystream2

...

Keystreaml

Fig. 1. Chosen IV Attack

The first model has been successfully employed in cube attacks on stream
ciphers [12] whereas the second model has been used in distinguishing attacks
on reduced round variants of stream and block ciphers [13, 14, 19, 22].

Chosen IV Related Key Attack. This attack model relaxes the requirements
of the chosen IV attack slightly. It is assumed that the adversary can somehow
obtain keystream bits corresponding to the Key-IV pair [fi(K), IVi,j], i, j =
0, 1, 2, . . ., where fi : K → K is a function from the Key-space K on to itself (See
Fig. 2) and K is the Secret Key. As before the adversary attempts to recover the
value of K. Chosen IV related Key attacks were successfully reported against
Grain v1 and Grain-128 [20].

fi(K)

IVi,1

IVi,2

...

IVi,l

Keystreami,1

Keystreami,2

...

Keystreami,l

Fig. 2. Chosen IV Related Key Attack

16 S. Banik et al.

2.2 Grain Family of Stream Ciphers

The Grain family of stream ciphers consists of two shift registers; an n-bit LFSR
and an n-bit NFSR. Certain bits of both the registers are taken as inputs to a
combining Boolean function, whence the keystream is produced. The structure
of the Grain family is explained in Fig. 3. The update function of the LFSR is
given by the equation yt+n = f(Yt), where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit
vector that denotes the LFSR state at time t and f is a linear function on the
LFSR state bits obtained from a primitive polynomial in GF (2) of degree n. The
NFSR state is updated as xt+n = yt + g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1]
is an n-bit vector that denotes the NFSR state at time t and g is a nonlinear
function of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits as
zt = h′(Xt, Yt) =

⊕
a∈A xt+a+h(Xt, Yt), where A is a subset of {0, 1, 2, . . . , n−1}

fixed by the specification of each Grain variant.

Key Loading Algorithm (KLA). The Grain family uses an n-bit Key K,
and an m-bit initialization vector IV , with m < n. The Key is loaded in the
NFSR and the IV is loaded in the first m bits of the LFSR. The remaining n−m
bits of the LFSR are loaded with some fixed padding P ∈ {0, 1}n−m. Hence at
this stage, the 2n bit initial state is of the form K||IV ||P .

Key Scheduling Algorithm (KSA). After the KLA, for the first 2n clocks,
the output of the function h′ is XOR-ed to both the LFSR and NFSR update
functions, i.e., during the first 2n clock intervals, the LFSR and the NFSR bits
are updated as yt+n = zt + f(Yt), xt+n = yt + zt + g(Xt).

Pseudo-Random keystream Generation Algorithm (PRGA). After the
of KSA, zt is no longer XOR-ed to the LFSR and NFSR update functions but
it is used as the output keystream bit. Therefore during this phase, the LFSR
and NFSR are updated as yt+n = f(Yt), xt+n = yt + g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 3. Structure of Stream Cipher in Grain Family

A Chosen IV Related Key Attack on Grain-128a 17

2.3 Description of Grain-128a

Grain-128a authenticated encryption scheme consists of a 128 bit LFSR and
a 128 bit NFSR. The size of the Key and IV is n = 128 and m = 96 bits,
respectively. The value of the padding is P = 0xffff fffe. The LFSR update
function is given by

yt+128
Δ
= f(Yt) = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt.

The NFSR state is updated as follows

xt+128 = yt + g(xt+96, xt+95, xt+93, xt+92, xt+91, xt+88, xt+84, xt+82, xt+78,

xt+70, xt+68, xt+67, xt+65, xt+61, xt+59, xt+48, xt+40, xt+27,

xt+26, xt+25, xt+24, xt+22, xt+13, xt+11, xt+3, xt),

where g(xt+96, xt+95, . . . , xt)
Δ
= g(Xt) =

xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+

xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84+

xt+88xt+92xt+93xt+95 + xt+22xt+24xt+25 + xt+70xt+78xt+82.

The pre-output function zt is defined as∑
j∈A

xt+j + yt+93 + h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+94)

where A = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1 + s2s3 + s4s5 +
s6s7 + s0s4s8. The output function is defined as yt = z64+2t.

Authentication. We use the description as explained in [3]. Assume that we
have a message of length L defined by the bits m0, . . . ,mL−1. Set mL = 1. To
provide authentication, two registers, called accumulator and shift register of
size 32 bits each, are used. The content of accumulator and shift register at time
t are denoted by a0t , . . . , a

31
t and rt, . . . , rt+31, respectively. The accumulator is

initialized through at0 = zt, 0 ≤ t ≤ 31 and the shift register is initialized through
rt = z32+t, 0 ≤ t ≤ 31. The shift register is updated as rt+32 = z64+2t+1. The
accumulator is updated as ajt+1 = ajt +mtrt+j for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L.
The final content of accumulator, a0L+1, . . . , a

31
L+1 is used for authentication.

3 Key-IV Pairs That Produce Shifted Keystream in
Grain-128a

In [9], a method to obtain Key-IV pairs K, IV and K ′, IV ′ in Grain v1 and
Grain-128, that produce ε-bit shifted keystream bits by performing a random
experiment 22ε many times was presented. The complexity was improved to 2ε

18 S. Banik et al.

in [6]. Both these techniques utilized the fact that the padding P used in Grain
v1 and Grain-128 was symmetric, i.e. a string of all ones. And in both [6,9], it was
suggested that the method would fail if an asymmetric padding was used. This
is precisely the strategy employed in Grain-128a, where the padding is P =0x

ffff fffe is a set of 31 ones followed by a single zero.
In this section, we explain how despite of the asymmetric nature of P , one

can obtain related Key-IV pairs K, IV and K ′, IV ′ in Grain-128a such that they
produce exactly 32-bit shifted keystream by running a random experiment 232

times. We begin by noting that the state update functions in both the KSA and
PRGA in the Grain family are one-to-one and invertible. This is because the
state update functions of the NFSR and the LFSR can be written in the form

g(x0, x1, . . . , x127) = x0 + g′(x1, . . . , x127)

f(y0, y1, . . . , y127) = y0 + f ′(y1, . . . , y127).

This implies that one can construct the KSA−1 routine that takes a 2n bit vector
Si denoting the internal state of the cipher at any ith round of the KSA, returns
the 2n bit vector Si−1 denoting the internal state of the cipher at the previous
round of the KSA. The same is true for the PRGA. A detailed description of the
KSA−1 routine are given in Algorithm 1.

Algorithm 1. KSA−1 routine for Grain-128a

Input: State Si = (x0, . . . , x127, y0, . . . , y127)
Output: The preceding State Si−1 = (x0, . . . , x127, y0, . . . , y127)

l = y127 and n = x127

for t = 127 to 1 do

yt = yt−1 and xt = xt−1

end
z =

⊕
a∈A xa + y93 + h(x12, y8, y13, y20, x95, y42, y60, y79, y94)

y0 = z + l + f ′(y1, . . . , y127)
x0 = z + n+ y0 + g′(x1, . . . , x127)

Given this information, our strategy to find related Key-IV pairs in Grain-
128a will be as follows. Let K = (k0.k1, k2, . . . , k127) be the Key. We choose a
96-bit IV of the form

IV = (v0, v1, . . . , v63, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

)

Therefore the initial state

S = K||IV ||P =(s0, s1, . . . , s255)

=(k0, . . . , k127, v0, . . . , v63, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

, 1, 1, . . . , 1, 0︸ ︷︷ ︸
32

).

A Chosen IV Related Key Attack on Grain-128a 19

If we apply the KSA−1 to S, 32 times, then we get the following internal state;

S′ = (a0, a1, . . . , a31, k0, k1, . . . , k95, b0, b1, . . . , b31, v0, v1, v63, 1, . . . , 1, 0).

where the values of ai, bi for 0 ≤ i ≤ 31 are given by polynomial functions in
k0, . . . , k127, v0, . . . , v63. The exact form of these functions can be found out by
executing the KSA−1 routine 32 times.

Note that S′ is a valid initial state for Grain-128a, since it is of the form
K ′||IV ′||P , where the value of K ′ = (a0, a1, . . . , a31, k0, k1, . . . , k95) and that of
IV ′ = (b0, b1, . . . , b31, v0, v1, v63). Therefore if one were to initialize Grain-128a
with K ′, IV ′ then the internal state of the cipher after the KSA round 32+ t will
be the same as the internal state after t rounds of initialization with K, IV . This
would be true for all t ≤ 224. After this, the cipher initialized with K ′, IV ′ would
enter the PRGA phase while the one initialized with K, IV would still be in the
KSA phase. As we have already seen, in the Grain family of ciphers, the output
bit feedback to the internal state, is discontinued after the KSA. Therefore the
state updates in the next 32 rounds are not guaranteed to be identical. The
situation has been explained pictorially in Fig. 4.

K||IV ||P

State W ′

State WState W

State W ′′

K′||IV ′||P

K||IV ||P

KSA

KSA

32

224

32

32 times KSA−1

KSA

PRGA

Fig. 4. Construction of Related Key-IV pairs in Grain Family

For the state updates to be identical in the next 32 rounds, it is necessary and
sufficient that the cipher initialized with K ′, IV ′ produces zero keystream bits
for each of these 32 rounds. After this, both systems run in PRGA mode and so
if the internal state of the cipher with K, IV just after the KSA is equal to the
internal state of the cipher with K ′, IV ′ after 32 PRGA rounds, then they will

20 S. Banik et al.

remain the same forever thereafter. In such a situation the (32+t)th PRGA state
produced by K ′, IV ′ will be equal to the tth PRGA state produced by K, IV for
all t > 0. In such a situation it is natural that K ′, IV ′ and K, IV will produce
32 bit shifted keystream bits.

Now if we choose random values of K ∈ {0, 1}128 and IV = V ||P with
V ∈ {0, 1}64, then it is expected that in one out of 232 trials we will obtain a
K ′, IV ′ which produces an all zero output stream in the first 32 PRGA rounds. If
so, K ′, IV ′ and K, IV will produce 32 bit shifted keystream bits. The arguments
are formalized in Algorithm 2.

Algorithm 2. Constructing Key-IV pairs that generate 32 bit shifted
keystream

Output: Key-IV pairs K′, IV ′ and K, IV that generate 32 bit shifted
keystream

s← 0;
while s = 0 do

Choose K ∈R {0, 1}128, V ∈R {0, 1}64;
IV ← V ||P ;
Run KSA−1(K||IV ||P) routine for 32 clocks and produce state
S′ = (K′||IV ′||P);
if K′, IV ′ produces all zero keystream bits in the first 32 PRGA rounds
then

s← 1;
Return (K, IV) and (K′, IV ′);

end

end

Example 1. In the following table, we present two Key-IV pairs that generate
32-bit shifted keystreams for Grain-128a. It can be seen that the second Key-IV
pair has been obtained by the right shifting the first Key-IV pair by 32 bits. The
pairs were found in around 232 random trials using Algorithm 2. It should be
noted that output bits given in the table includes the bits used for authentication
and encryption.

Pair Key IV Output bits
1 9bbe 7e2b b99d 1477 5a7c 21e9 3a77 41d5c1f0387c

0317 9f3b a1aa 8c70 52ce ffff fffe 3bf64e031725

2 f32a 7bd3 9bbe 7e2b 032d 0fee 5a7c 0000000041d5c1f0387c

b99d 1477 0317 9f3b 21e9 3a77 52ce 3bf64e031725

Remark 1. It is also possible to obtain two Key-IV pairs K1, IV1 and K2, IV2

that produce r-bit shifted keystream bits (where 1 ≤ r ≤ 31) by using a slight
modification of the ideas presented in [6]. But in that case K1, IV1 and K2, IV2

would be structurally unrelated i.e. no meaningful similarity exists between these
pairs. Such pairs cannot be used to mount a chosen IV related Key attack of the
nature that we are about to describe.

A Chosen IV Related Key Attack on Grain-128a 21

4 A Chosen IV Related Key Attack on Grain-128a

We will now present a technique to cryptanalyze Grain-128a in the related Key
and chosen IV setting i.e. in accordance to the model presented in Section 2.1.
It is worth noting that Algorithm 2 cannot be directly applied in this problem
due to two reasons. First, the Key is assumed to be secret in this model and so
executing the KSA−1 routine 32 times has to be done over the Key variables
k0, k1, . . . , k127 rather than bits. A second reason is that in Grain-128a the first
64 keystream bits and every alternate keystream bit thereof goes towards the
computation of MAC and is unavailable to the attacker directly. Hence it is not
possible to check if the first 32 keystream bits produced by any Key-IV pair is
all zero or not.

Let K = (k0, k1, k2, . . . , k127) be the 128-bit Secret Key. We will write K =
α0||α1||α2||α3 where each αi is a 32-bit word given by the equation αi =
(k32i, k32i+1, . . . , k32i+31) etc. Let the initial vector IV = β0||β1||P , where βis
are 32 bit words. If we initialize the cipher with K, IV we get the initial state

S = α0||α1||α2||α3 || β0||β1||P ||P.
Now let us fix β0 and β1 to some fixed 32-bit values and let the αis be unknowns,
and apply the KSA−1 routine over S, 32 times. We will get a new state S′ of
the form

S′ = χ||α0||α1||α2 || Υ ||β0||β1||P.
where each bit in χ can be expressed as polynomial functions over the Secret Key
variables k0, k1, . . . , k127. The form of these polynomials will of course depend
on the exact values of β0, β1. So, we can write

χ = fβ0||β1
(α0, α1, α2, α3),

where fβ0||β1
: {0, 1}128 → {0, 1}32 denotes a set of 32 Boolean functions. Simi-

larly one can write

Υ = gβ0||β1
(α0, α1, α2, α3),

where gβ0||β1
: {0, 1}128 → {0, 1}32 denotes another set of 32 Boolean functions.

The exact forms of the functions fβ0||β1
, gβ0||β1

for any value of β0, β1 can be
computed efficiently by implementing the KSA−1 routine in any computer alge-
bra system like Sage 5.4.1 [23]. Note that for S and S′ to produce 32-bit shifted
keystream we need that the first 32 output bits produced by S′ be all 0s. Again
this cannot be checked as the first 64 keystream bits are not directly available.
Therefore our strategy to proceed will be as follows

1. Fix some value of β0 and β1.
2. Calculate the polynomials fβ0||β1

, gβ0||β1
.

3. Query the oracle for keystream bits produced by K = α0||α1||α2||α3, IV =
β0||β1||P and K ′ = fβ0||β1

(α0, α1, α2, α3)||α0||α1||α2, IV
′ = η||β0||β1, where

η varies over all possible 32 bit words.

22 S. Banik et al.

4. We check if, for any value of η, we get 32-bit shifted keystream bits. This
can be done by checking the keystream bits after round 64 that Grain-128a
makes directly available.

5. We will get 32-bit shifted keystream if and only if the following two occur
simultaneously
A. η = gβ0||β1

(α0, α1, α2, α3) AND
B. The first 32 keystream bits produced by K ′, IV ′ are all zeros.

6. We know that A. will be satisfied for exactly one value of η and for that
value of η, the condition B. may not hold and so for this value of β0, β1,
none of the 232 values of η yields shifted keystream bits. In such an event we
take a new value of β0 and β1 and repeat the process.

Now we know that on expectation, by trying out 232 random values of β0 and
β1, we are likely to land up with a related Key-IV pair K ′, IV ′ that produces
all zeroes in the first 32 output rounds. Therefore by running the above ex-
periment 232 times we are likely to obtain some values of β0, β1, η such that
K ′ = fβ0||β1

(α0, α1, α2, α3)||α0||α1||α2, IV
′ = η||β0||β1 such that K ′, IV ′ and

K, IV produce 32-bit shifted keystream bits. When this happens, we obtain the
following set of 32 nonlinear equations in the Secret Key bits;

η = gβ0||β1
(α0, α1, α2, α3).

Hence, by repeating the above process for γ1 · 232 different values of β0, β1 for
any fixed value of the Secret Key we will on expectation be able to obtain 32 ·γ1
equations.

Next, we can start the above process for the single bit left rotated version
of the Secret Key K i.e. K ≪ 1 = k1, k2, . . . , k127, k0. Then by expending the
same computational effort we would be able to obtain another 32 · γ1 nonlinear
equations in the Key bits. In general by starting the routine with the i-bit
cyclically left rotated Key K ≪ i, for i = 0, 1, 2, . . . , γ2 − 1, we would in total
get 32 · γ1 · γ2 = 32 · γ equations in the Key bits which can be solved together to
recover the Secret Key for some suitable value of γ.

4.1 Complexity of the Attack

For each phase of the attack that yields 32 · γ1 equations we need to try out
on an average γ1 · 232 different values of β0, β1, and for each these values of
β0, β1 we need to try out in the worst case 232 different values of η. This leads
to the use of γ1 · 232 related Keys. Since we use 232 IVs for each related Key
this leads to a total of γ1 · 264 chosen IVs for each phase of the attack. We need
to check at least the first 128 keystream bits output from each related Key-IV
pair to determine if the keystreams are 32-bit shifts or not and so that requires
γ·264 · 128 = γ1 · 271 keystream bits. Repeating each phase γ2 number of times
for each rotated version of the Secret Key, increases the number of related Keys
to γ1 · γ2 · 232 = γ · 232, the number of chosen IVs to γ · 264 and the number of
keystream bits to γ · 271. The computational effort is therefore proportional to
γ · 264.

A Chosen IV Related Key Attack on Grain-128a 23

4.2 Experimental Results

After obtaining 32 ·γ nonlinear equations, the attacker needs to solve these equa-
tions to obtain the Secret Key. For the attack to be meaningful, the nonlinear
equations should be as simple as possible so that the attacker can solve the
system efficiently. However, to get 32 · γ equations, the attacker needs a com-
putational effort of the order of γ · 264, which is infeasible with the processing
resources at our disposal. So, in order to prove that after obtaining the required
number of equations, the attacker can recover the Secret Key efficiently we make
the following assumptions.

1. We assume that the attacker has succeeded in obtaining 32 · γ1 equations by
using γ1 random tuples of [β0, β1, η]. Using each such tuple we construct the
set of 32 equations

η = gβ0||β1
(α0, α1, α2, α3).

We have simulated this situation as the actual values of [β0, β1, η] are difficult
to obtain in practical time using the computational resources that we have.

2. We have observed that for each tuple [β0, β1, η], only a few of the equations
are very complex, therefore they were not used in our system of equations.
Out of each set of 32 equations around 20− 22 equations are of low degree
and are used for solving the system.

3. We repeat the above process for γ2 cyclically left rotated versions of the Secret
Key and thus obtain 32 · γ1 · γ2 = 32 · γ equations in the Secret Key bits.

Table 1. Experimental Results

γ1 γ2 γ = γ1 · γ2 Total # Polynomials Time (in seconds)

20 13 260 20γ 112.80
20 11 220 22γ 3240.62

After this we attempt to solve the equations so obtained, by using the SAT
solver Cryptominisat-2.9.5 [21] available in the computer algebra system Sage
5.4.1 [23]. Table 1 lists the total number of polynomials and the required time
to solve these equations to obtain the Secret Key. As seen from the table, it
is possible to solve these equations in less than 1 hour using a Dual Core PC,
with a CPU speed of 1.83 GHz and 2 GB RAM. These results show that once
the attacker can obtain enough equations, then he can solve them efficiently to
recover the Secret Key.

24 S. Banik et al.

4.3 Possible Countermeasures

The computational complexity required to mount our attack is given as γ ·264 =
γ · 22|P | where |P | = 32 is the length of the padding used in the initialization of
Grain-128a. Thus to make the attack worse than brute force |P | needed to be
more than or equal to half the length in bits of the Secret Key i.e. 128

2 = 64. So
prevention of such an attack on Grain-like ciphers requires that the bit-length
of the padding be atleast half the bit-length of the Secret Key. For Trivium like
ciphers where there is no difference in the operations performed during the KSA
and the PRGA, the length of padding must be atleast equal to the length of the
Secret Key (this is indeed the case for Trivium whose Keylength is 80 and where
the length of the padding is 128).

Another popular approach used to prevent slide attacks altogether is the ones
used in KATAN [10] and Quark [5], where update of two shift registers would
be controlled by a third register which is usually initialized to a fixed constant
at the start of operations. Performing a slide attack on then would require a
simultaneous synchronization of the third register for the related Key-IV pair,
which is not possible as it always starts with a fixed constant. This of course
requires extra hardware and hence increases the area and power consumption of
the device implementing the cipher.

5 Conclusion

In this paper we present a chosen IV related Key attack against the stream cipher
Grain-128a. A similar attack against Grain v1 and Grain-128 were proposed
in [20]. The attack worked due to the symmetric padding used in both Grain
v1 and Grain-128. The new design, Grain-128a, uses an asymmetric padding
and consequently the attack of Lee et. al. [20] does not work in this scenario.
We show that by using around γ · 232 related Keys and γ · 264 chosen IVs the
attacker can obtain 32 · γ nonlinear equations in the Secret Key bits which he
can then solve to recover the Secret Key in Grain-128a. Our attack on Grain-
128a requires higher complexities than that of [20] on Grain v1 and Grain-128.
However obtaining attacks against Grain-128a with lesser complexities is elusive
due to the asymmetric padding.

Acknowledgments. The authors like to thank the anonymous reviewers for
their helpful suggestions. The first three authors like to acknowledge the Centre of
Excellence in Cryptology, Indian Statistical Institute for supporting this research.

References

1. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers
(Revised on September 8, 2008)

2. Ågren, M., Hell, M., Johansson, T., Meier, W.: A New Version of Grain-128 with
Authentication. In: Symmetric Key Encryption Workshop 2011, DTU, Denmark
(February 2011)

A Chosen IV Related Key Attack on Grain-128a 25

3. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: A New Version of
Grain-128 with Optional Authentication. IJWMC 5(1), 48–59 (2011); This is the
journal version of [2]

4. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
Implementations of High-Dimensional Cube Testers on the Stream Cipher Grain-
128. In: SHARCS - Special-purpose Hardware for Attacking Cryptographic Systems
(2009)

5. Aumasson, J.P., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A Lightweight
Hash. Journal of Cryptology 26(2), 313–339 (2013)

6. Banik, S., Maitra, S., Sarkar, S.: Some Results on Related Key-IV Pairs of Grain.
In: Bogdanov, A., Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 94–110.
Springer, Heidelberg (2012)

7. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006)

8. Bjørstad, T.E.: Cryptanalysis of Grain using Time/Memory/Data tradeoffs (v1.0
/ February 25, 2008), http://www.ecrypt.eu.org/stream

9. De Cannière, C., Küçük, Ö., Preneel, B.: Analysis of Grain’s Initialization Algo-
rithm. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 276–289.
Springer, Heidelberg (2008)

10. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

11. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An Experimentally
Verified Attack on Full Grain-128 Using Dedicated Reconfigurable Hardware. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343.
Springer, Heidelberg (2011)

12. Dinur, I., Shamir, A.: Breaking Grain-128 with Dynamic Cube Attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011)

13. Englund, H., Johansson, T., Sönmez Turan, M.: A Framework for Chosen IV Statis-
tical Analysis of Stream Ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007)

14. Fischer, S., Khazaei, S., Meier, W.: Chosen IV Statistical Analysis for Key Recovery
Attacks on Stream Ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008)

15. Fredricksen, H.: A Survey of Full Length Nonlinear Shift Register Cycle Algo-
rithms. SIAM Rev. 24, 195–221 (1982)

16. Hell, M., Johansson, T., Meier, W.: Grain - A Stream Cipher for Con-
strained Environments. ECRYPT Stream Cipher Project Report 2005/001 (2005),
http://www.ecrypt.eu.org/stream

17. Hell, M., Johansson, T., Maximov, A., Meier, W.: A Stream Cipher Proposal:
Grain-128. In: IEEE International Symposium on Information Theory, ISIT 2006
(2006)

18. Khazaei, S., Hassanzadeh, M., Kiaei, M.: Distinguishing Attack on
Grain. ECRYPT Stream Cipher Project Report 2005/071 (2005),
http://www.ecrypt.eu.org/stream

19. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of NLFSR-based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

20. Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-Key Chosen IV Attacks on Grain-
v1 and Grain-128. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS,
vol. 5107, pp. 321–335. Springer, Heidelberg (2008)

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

26 S. Banik et al.

21. Soos, M.: CryptoMiniSat-2.9.5, http://www.msoos.org/cryptominisat2/
22. Stankovski, P.: Greedy Distinguishers and Nonrandomness Detectors. In: Gong, G.,

Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010)

23. Stein, W.: Sage Mathematics Software. Free Software Foundation, Inc. (2009),
http://www.sagemath.org (Open source project initiated by W. Stein and con-
tributed by many)

24. Zhang, B., Li, Z.: Near Collision Attack on the Grain v1 Stream Cipher. To appear
in FSE 2013 (2013)

25. Zhang, H., Wang, X.: Cryptanalysis of Stream Cipher Grain Family. IACR Cryp-
tology ePrint Archive 2009: 109 (2009), http://eprint.iacr.org/2009/109

http://www.msoos.org/cryptominisat2/
http://www.sagemath.org
http://eprint.iacr.org/2009/109

Cryptanalysis of Helix and Phelix Revisited�

Zhenqing Shi1, Bin Zhang2, and Dengguo Feng1

1 Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
2 State Key Laboratory of Information Security, Institute of Information

Engineering, Chinese Academy of Sciences, Beijing, 100195, China
zhenqingshi@gmail.com, {zhangbin,feng}@is.iscas.ac.cn

Abstract. Helix, designed by Ferguson et al., is a high-speed asyn-
chronous stream cipher with a built-in MAC functionality. At FSE 2004,
Muller presented two attacks on Helix. Motivated by these attacks, Phe-
lix was proposed and selected as a Phase 2 focus cipher for both Profile 1
and Profile 2 by the eSTREAM project, but was not advanced to Phase
3 mainly due to a key recovery attack by Wu and Preneel when the
prohibition against reusing a nonce is violated.

In this paper, we study the security of Helix and Phelix in the more
realistic chosen nonce model. We first point out a flaw in Muller’s sec-
ond attack, which results in the failure of his attack. Then we propose
our distinguishing attack on Helix with a data complexity of 2132, faster
than exhaustive search when the key length is larger than 132 bits. Fur-
thermore, when the maximal length of output keystream is extended,
the data complexity can be reduced to 2127 and we also can construct
a key recovery attack with a data complexity of 2163. Since this flaw is
overlooked by the designers of Phelix, we can extend the distinguishing
attack to Phelix with the same complexity, which shows that Phelix fails
to strengthen Helix against internal state collision attacks. Our results
provide new insights on the design of such dedicated ciphers with built-in
authentication.

Keywords: Authenticated encryption, Stream ciphers, ARX, Helix, Phe-
lix, eSTREAM.

1 Introduction

In the last 20 years, a huge number of symmetric primitives using modular
additions, interword rotations, and exclusive ors (ARX) have appeared, e.g.,
the MD-family hash functions (MD4, MD5) and their descendants SHA-x, the
stream ciphers Helix [1], Phelix [2] and Salsa20 [3]. These primitives usually have

� This work was supported by the National Grand Fundamental Research 973 Program
of China(Grant No. 2013CB338002), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant No. XDA06010701), IIE’s Research Project on
Cryptography (Grant No. Y3Z0016102) and the programs of the National Natural
Science Foundation of China (Grant No. 60833008, 60603018, 61173134, 91118006,
61272476).

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 27–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

28 Z. Shi, B. Zhang, and D. Feng

a high-speed and a low price of implementation in both software and hardware.
However, the security of these primitives is not well understood.

Helix is a stream cipher proposed by Ferguson et al. [1] at FSE 2003. It is
a high-speed asynchronous stream cipher with a built-in MAC functionality. At
FSE 2004, Muller published two attacks on Helix [4]. The first has a complexity
of 288 and requires 212 adaptive chosen-plaintext words, but it requires nonces
to be reused. In [5], Paul and Preneel developed an optimal algorithm to solve
differential equations of addition and reduced the number of adaptive chosen-
plaintext words by a factor of 3 in the worst case, and a factor of 46.5 in the
best case. Later, they showed that Muller’s attack can be even launched with
chosen plaintexts (CP) rather than adaptive chosen plaintexts (ACP) with data
complexity 235.64 CP’s [6]. The second attack on Helix is a distinguishing attack
by utilizing internal state collisions, which requires 2114 words of chosen plaintext
in the chosen nonce model, i.e., it does not require nonces to be reused. Until our
work, it is commonly believed that Helix was broken in theory by this attack.

As a result, a strengthened version, Phelix, was released by adding an output
function instead of extracting one word of the internal state directly. In 2004,
Phelix was submitted to the eSTREAM contest and was selected as a Phase
2 Focus Candidate for both Profile 1 and Profile 2, but was not advanced to
Phase 3 mainly due to Wu and Preneel’s key recovery attack [7]. Their attack
shows that if the cipher is used incorrectly (nonces reused), the key of Phelix
can be recovered with about 237 operations, 234 chosen nonces and 238.2 chosen
plaintext words. However, there is some debate on the validity of this attack
model, notably by Bernstein [8]. A counter example is that all additive stream
ciphers can be broken under the above security definition if the adversary is
not nonce-respecting. Despite of the above disputes, Helix and Phelix provide
an innovative and interesting design approach according to the final eSTREAM
portfolio report [9], especially in terms of the increasing demand of the authen-
ticated encryption [10].

In this paper, we study the security of Helix and Phelix in the more realistic
chosen nonce model. We first point out a flaw in Muller’s second attack on Helix,
which results in the failure of this attack. Precisely, there is an implicit inde-
pendence assumption in Muller’s attack that each collection of eight consecutive
keystream words is independent to each other. Unfortunately, this assumption
does not always hold. We find that under some conditions, a state collision can
propagate for more than 8 rounds, thus the independent assumption is violated.
This results in many invalid pairs in Muller’ attack. Based on this finding, we
propose our distinguishing attack and key recovery attack on Helix without
nonce reused. Since this flaw is overlooked by the designers of Phelix, we extend
the distinguishing attack to Phelix and show that Phelix fails to strengthen He-
lix against internal state collision attacks. To the best of our knowledge, this
is the first distinguishing attack on Phelix without nonces reused. Furthermore,
we prove that any attempt to Helix by adding an output function, has the same
security level as Helix with respect to internal state collision attacks, if the round
interval of this output function is much smaller than 231. For Phelix, the round

Cryptanalysis of Helix and Phelix Revisited 29

interval of its output function is only 5, which is far less than 231. This is a new
insight on the design of such dedicated ciphers with built-in authentication.

This paper is organized as follows. In Section 2, we briefly describe the Helix
and Phelix stream ciphers, and in Section 3 we recall Muller’s second attack. In
Section 4 we first point out the flaw in Muller’s second attack and then present all
the details of our attacks on Helix and Phelix, respectively. Finally, we conclude
the paper in Section 5.

2 Description of Helix and Phelix

In this section we recall the Helix and Phelix briefly and all the details can be
found in [1,2]. The only difference between Helix and Phelix is the output of the
keystream words, so here we mainly introduce Helix.

2.1 General Structure of Helix

The Helix encryption function takes as input a variable length key U of up to
32 bytes (produces the working key of 8 words K0,K1, ...,K7 by key mixing),
a 16-byte nonce N (interpreted by 4 words N0, N1, ..., N3), and a plaintext P .
It produces a ciphertext message and a tag that provides authentication. The
decryption function takes as input the key, nonce, ciphertext C, and tag, and
produces either the plaintext message or an error if the authentication failed.
The plaintext P and ciphertext C are both sequences of bytes of the same length,
with the sequence length shorter than 264. The only operations used are addition
modulo 232(�), exclusive or(⊕), and rotation by fixed numbers of bits(≪).

Helix is based on an iterated block function applied to an internal state of
160 bits. The internal state before encryption of the i-th word of plaintext is

represented as 5 words (Z
(i)
0 , ..., Z

(i)
4) which are initialized for i = −8 using

K and N . It basically uses a block function F to update the internal state in
function of the plaintext P , the working key K and nonce N . More precisely,
during the i-th round, the internal state is updated with F , using the i-th word
of plaintext Pi and two words derived from K, N and i, denoted as Xi,0 and
Xi,1 (called key words). Hence,

(Z
(i+1)
0 , ..., Z

(i+1)
4) = F (Z

(i)
0 , ..., Z

(i)
4 , Pi, Xi,0, Xi,1).

2.2 The Block Function

The block function F of Helix mixes three types of basic operations on words:
addition modulo 232, exclusive or, and rotation by fixed numbers of bits. F relies
on two consecutive applications of a single “helix” function denoted as G (see in
Fig.1).

G uses two auxiliary inputs (A,B). In the first half of the block function,
(A,B) = (0,Xi,0) and in the second half, (A,B) = (Pi,Xi,1). Thus, the block

30 Z. Shi, B. Zhang, and D. Feng

� � � � �

� � � 	

� �

�

�

�

�
�

�

�

�

�

�
�

�
 � �

�

�

� � � � � �

��

� ��

� ��

� ��

� ��

��

� �

! "�

$�

% &�

Fig. 1. The half-round “helix” function G

function can be described by the following relations

(Y
(i)
0 , ..., Y

(i)
4) = G(Z

(i)
0 , ..., Z

(i)
4 , 0, Xi,0)

(Z
(i+1)
0 , ..., Z

(i+1)
4) = G(Y

(i)
0 , ..., Y

(i)
4 , Pi, Xi,1)

where (Y
(i)
0 , ..., Y

(i)
4) is the internal state in the middle of the computation.

2.3 The Key Words

The expanded key words are derived from the working key K0, ...,K7, the nonce
N0, ..., N3, the input key length 	(U), and the block number i. We first extend the
nonce to 8 words by defining Nk := (k mod 4)−Nk−4(mod 232) for k = 4, ..., 7.
The key words for block i are then defined by

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 +Ni mod 8 +X ′
i + i+ 8

X ′
i :=

⎧⎨
⎩

�(i+ 8)/231� if i mod 4 = 3
4 · 	(U) if i mod 4 = 1
0 otherwise

where all additions are taken modulo 232.

Cryptanalysis of Helix and Phelix Revisited 31

2.4 Initialization

A Helix encryption is started by setting

Z
(−8)
j := Kj+3 ⊕Nj for j = 0, ..., 3

Z
(−8)
4 := K7.

Eight blocks are then applied, using block number i = −8 to −1. For these
blocks, the plaintext word Pi is defined to be zero, and the generated key stream
words are discarded.

2.5 The Keystream Words

After the initialization, the keystream word is output. For Helix, the keystream

word si := Z
(i)
0 , while for Phelix si := Y

(i)
4 � Z

(i−4)
4 , where Z(−8−j) = 0 for

j = 1, ..., 4.

3 Muller’s Distinguishing Attack on Helix

This section describes Muller’s second attack on Helix. As Muller said:“ this
attack is faster than exhaustive search, processes less than 2128 blocks of plaintext
and respects the security requirements proposed in [1], since no pair (key,nonce)
is ever reused to encrypt different messages. Therefore, this attack constitutes a
theoretical break of Helix.”

3.1 Influence of Each Nonce Word

Suppose that the same plaintext P is encrypted twice with the same secret
key, but two distinct nonces N and N ′ such that N = (N0, N1, N2, N3), N

′ =
(N0, N1, N2, N3 +Δ). It appears from Section 2.3 that the two key words intro-
duced at each round do not depend on the full nonce. Actually, the key words at
round i depend only on Ni mod 4. Therefore, if we consider two distinct nonces
N and N ′, the round function will essentially apply the same mapping on the
internal state for 3 rounds out of 4, i.e., for any round i such that i mod 4 	= 3.
If a state collision occurs on the input of such a round, it will also propagate to
a state collision for the input of the next round. Thus state collisions on inputs
of rounds i such that i mod 4 = 0 imply collisions on 4 consecutive blocks of
keystream.

3.2 Forcing the Collisions

The general idea of Muller’s distinguishing attack on Helix is to work on a large
set of nonces that will preserve collisions for a few rounds. Then these collisions
can be detected by observing the corresponding keystream blocks. More precisely,
suppose an attacker can build a message P of the maximal authorized length

32 Z. Shi, B. Zhang, and D. Feng

262 words by repeating 262 times the same word P0. Then, P is encrypted under
a fixed unknown secret key K using different nonces of the form

N (δ,Δ) = (N0 + δ,N1 + δ,N2 + δ,N3 +Δ)

with four fixed constants (N0, ..., N3). δ is of the form 8 × x where x spans all
values from 0 to 220 and Δ spans all 232 possible words. Therefore, the number of
blocks encrypted is 262×220×232 = 2114. Consider any state collision that occurs
between two different nonces N (δ1,Δ1) and N (δ2,Δ2), at two different positions i1
and i2, respectively. This state collision should be preserved for several rounds, in
order to detect some properties on the keystream, as in the previous section. It’s
sure that the plaintext word introduced in any round is always P0. Furthermore,
the round key words for both encryptions should be the same. Hence, these
positions should satisfy

i1 mod 8 = i2 mod 8 = 0

in order to have Xi1+j,0 = Xi2+j,0 for all j. Besides, if

δ1 + i1 = δ2 + i2 mod 232 (1)

then Xi1+j,1 = Xi2+j,1 when j mod 4 	= 3. In this case, the state collision is
preserved for at least 3 rounds. Concerning rounds i1 + 3 and i2 + 3, the state
collision is also expected to be preserved, thus it requires Xi1+3,1 = Xi2+3,1 or

Δ1 + i1 +X ′
i1+3 = Δ2 + i2 +X ′

i2+3 mod 232. (2)

With these three assumptions, the state collision is preserved at least until the
rounds i1 + 7 and i2 + 7 which results in collisions on 8 consecutive keystream
words.

To mount an attack, first store sequences of 8 consecutive keystream words,
for each message and for each position i such that i mod 8 = 0. Then, look for

a collision among the 2114

8 = 2111 entries in this table. This can be achieved by
sorting the table, with complexity of 2111× 111
 2118 basic comparisons. Then,
since the considered objects are of 256 bits, the number of “fortuitous” collisions
in the table is

2111 × 2111

2
× 2−256
 0.

Besides, when a state collision occurs, a collision is also observed on the entries
of the table, provided the additional assumptions (1) and (2) hold, and denote
such collision in the table “a true collision” in contrast to “a fortuitous collision”.
Furthermore, (1) holds with probability 2−29, since all terms are multiples of 8,
and (2) holds with probability 2−32. Therefore, the number of true collisions
observed in the table is in average

2111 × 2111

2
× 2−160 × 2−29 × 2−32 = 1.

Thus for a true Helix output an attacker expects to find at least one collision in
the previous table, while it is not the case for a random output.

Cryptanalysis of Helix and Phelix Revisited 33

4 Our Attacks on Helix and Phelix

In this section we first calculate the success probability of Muller’s collision
attack on Helix. Then we point out the flaw in Muller’s attack. Finally, based
on our analysis, we construct our distinguishing attack and key recovery attack
on Helix, and extend the distinguishing attack to Phelix.

4.1 The Success Probability and the Advantage of the Attack

Muller’s collision attack would succeed if at least one collision is found in the
table. However, the success probability is not given in [4]. Now we estimate this
probability.

For a pair of 8 consecutive keystream words in Muller’s collision attack, it
is a collision with probability p0 = 2−221, then given M independent pairs, the
success probability of the attack is

Pr0 = 1− (1− p0)
M ≈ 1− e−Mp0 .

While given M independent pairs of random 256-bits words, the probability
that there is at least one collision is

Pr = 1− (1− p)M ≈ 1− e−Mp,

where p = 2−256.
Thus, the advantage of the attack is

A = Pr0 − Pr ≈ e−Mp − e−Mp0 .

4.2 A Flaw in Muller’s Attack on Helix

In section 3.2, δ is of the form 8 × x where x spans all values from 0 to 220

and Δ spans all 232 possible words. Therefore, the number of blocks encrypted

is 262 × 232 × 220 = 2114, i.e., 2114

8 = 2111 sequences of 8 consecutive keystream
words. Then an attacker compares every two sequences to look for a collision.
This process can be regarded as the following 4 steps:

1. Choose distinct (δ1, Δ1) and (δ2, Δ2), encrypt P with the fixed K and two
distinct nonces N (δ1,Δ1) and N (δ2,Δ2), and get two keystreams, denoted by
S1 and S2 respectively;

2. For h = 1, 2, divide Sh into 231 blocks, denoted by Sh,r(r = 0, 1, ..., 231 − 1),
and each Sh,r contains consecutive keystream words from round 231r− 8 to
round 231(r + 1)− 9;

3. For h = 1, 2, r = 0, 1, ..., 231 − 1, divide Sh,r into 228 blocks, denoted by
Sh,r,t(t = 0, 1, ..., 228 − 1), and each Sh,r,t contains 8 consecutive keystream
words from round 231r + 8t− 8 to round 231r + 8t− 1;

4. For 0 ≤ r1, r2 ≤ 231−1, 0 ≤ t1, t2 ≤ 228−1, check whether S1,r1,t1 = S2,r2,t2 .
If there exists a pair (S1,r1,t1 , S2,r2,t2) satisfying this condition, output the
successful information; otherwise, return to Step 1.

34 Z. Shi, B. Zhang, and D. Feng

Remark 1 At Step 2, for r = 0, Sh,0 does not contain consecutive keystream
words from round −8 to round −1 because there are no outputs in those rounds.
And we also omit the last 8 consecutive keystream words for each Sh. These
operations have negligible impact.

The number of pairs used in Muller’s attack can be estimated as follow:

1. At Step 1, there are 252×252

2 pairs of (S1, S2), because δ is of the form 8× x
where x spans all values from 0 to 220 and Δ spans all 232 possible words;

2. At Step 2, for each (S1, S2), there are 2
31×231 pairs of (S1,r1 , S2,r2), because

0 ≤ r1, r2 ≤ 231 − 1;
3. At Step 3, for each (S1,r1 , S2,r2), there are 2

28×228 pairs of (S1,r1,t1 , S2,r2,t2),
because 0 ≤ t1, t2 ≤ 228 − 1, and all these pairs of (S1,r1,t1 , S2,r2,t2) will be
checked at Step 4.

Thus there are 252×252

2 ×231×231×228×228 pairs. If those pairs are all indepen-
dent, Muller’s attack would succeed with probability Pr0 ≈ 0.632 and advantage
A ≈ 0.632. However, many pairs are not independent in Muller’s attack.

Lemma 1. For 0 ≤ r1, r2 ≤ 231 − 1, 0 ≤ t1 ≤ t2 ≤ 228 − 1, S1,r1,t1 and S2,r2,t2

is a true collision if and only if S1,r1,0 and S2,r2,t2−t1 is a true collision.

Proof.
(⇐=)

Denote ih(r, t) = 231r + 8t − 8, h = 1, 2. Suppose S1,r1,0 and S2,r2,t2−t1 is a
true collision, that means a state collision occurs at round i1(r1, 0) and round
i2(r2, t2 − t1), and the additional assumptions (1) and (2) hold, i.e.,

δ1 + i1(r1, 0) = δ2 + i2(r2, t2 − t1) mod 232 (3)

Δ1 + i1(r1, 0) +X ′
i1(r1,0)+3 = Δ2 + i2(r2, t2 − t1) +X ′

i2(r2,t2−t1)+3 mod 232.

(4)

By (3) and the definition of ih(r, t), we can deduce

δ1 − δ2 = i2(r2, t2 − t1)− i1(r1, 0) = i2(r2, t2 − t1 + j)− i1(r1, j) mod 232

where 0 ≤ j ≤ 228 − 1 + t1 − t2, i.e.,

δ1 + i1(r1, j) = δ2 + i2(r2, t2 − t1 + j) mod 232. (5)

From Section 2.3, we deduce

X ′
i1(r1,0)+3 = r1 = X ′

i1(r1,j)+3

X ′
i2(r2,t2−t1)+3 = r2 = X ′

i1(r1,t2−t1+j)+3.

Then by (4) and the definition of ih(r, t), we obtain

Δ1 + i1(r1, j) +X ′
i1(r1,j)+3 = Δ2 + i2(r2, t2 − t1 + j) +

X ′
i2(r2,t2−t1+j)+3 mod 232. (6)

Cryptanalysis of Helix and Phelix Revisited 35

Thus the state collision on inputs of round i1,r1,0 and i2,r2,t2−t1 can be preserved
for 8(228 + t1 − t2) rounds. So S1,r1,t1 and S2,r2,t2 is a true collision.
(=⇒)

Because the round function of Helix is invertible, the proof of necessary con-
dition is the same as that of sufficient condition. ��
Thus for a fixed pair (S1,r1 , S2,r2), the pair (S1,r1,t1 , S2,r2,t2) can be classified
into the equivalence classes

{(S1,r1,j , S2,r2,t2−t1+j)|0 ≤ j ≤ 228 − 1 + t1 − t2}, when t1 ≤ t2

or

{(S1,r1,t1−t2+j , S2,r2,j)|0 ≤ j ≤ 228 − 1 + t2 − t1}, when t2 ≤ t1.

By the proof of Lemma 1, we deduce that any pair in the equivalence class is
a true collision if and only if the remaining pairs in the same equivalence class
are true collisions. Therefore, we only need to check the representative element
of each equivalence class to look for a true collision.

For each (S1,r1 , S2,r2), there are 2
28+228 equivalence classes. Thus the number

of independent pairs in Muller’s attack is M = 252×252

2 × 231 × 231 × (228 +228),
and we can obtain the success probability Pr0 ≈ 0 and advantage A ≈ 0.

4.3 Distinguishing Attack on Modified Helix

In this section, we present the improved distinguishing attack on Helix, provided
that the maximal length of output keystream can be extended.

Suppose the maximal length of output keystream for a pair (U ,N) is 2n. First
we build a message P of the maximal length 2n words by repeating 2n times
the same word P0. Then, P is encrypted under a fixed unknown secret key K
and two different nonces N (δ1,Δ1) and N (δ2,Δ2), where δ1 and δ2 are of the form
8× x and x spans all values from 0 to 229 − 1, Δ1 and Δ2 span all 232 possible
words. Therefore, the number of blocks encrypted is 2n × 229 × 232 = 2n+61. To
mount an attack, we first store sequences of 8 consecutive keystream words, for
each message and for each position i such that i mod 8 = 0. Then, we look for a

collision among the 2n+61

8 = 2n+58 entries in this table. This can be achieved by
sorting the table, with complexity of 2n+58 × (n+ 58) basic instructions. From
Section 4.2, the number of independent pairs in our attack is

M =
261 × 261

2
× 2n−31 × 2n−31 × (228 + 228) = 22n+88

And from Section 4.1, we obtain the success probability Pr0 ≈ 1 − e−22n−133

,
and the advantage A ≈ e−22n−168 − e−22n−133

.
Our attack needs 2n+61 Helix block function operations and 2n+58 × (n+58)

basic comparisons. In order to provide a better estimate of the complexity, we test
the time complexities of a Helix block function operation and a basic comparison

36 Z. Shi, B. Zhang, and D. Feng

respectively. The result shows that a basic comparison costs 1/42(
 2−5.4) time
of a Helix block function operation in average. Thus the time complexity of our
attack is 2n+52.6 × (n+ 396) Helix block function evaluations.

For different modified versions of Helix, the complexities of the attacks are
different, and three of them are summarized in table 1.

Table 1. Our attacks on different modified versions of Helix

n Data Time Pr0 A

66 2127 2127.45 0.393 0.393
66.5 2127.5 2127.95 0.632 0.632
67.5 2128.5 2128.95 0.982 0.982

4.4 Distinguishing Attack on Helix

If we have n = 62, we obtain M = 2212 and Pr0 ≈ 1 − e−2−9

. Now we con-
sider how many times of the forcing process we can do, i.e., how many pairs of
(N0, N1, N2,N3) we can use in the no-nonce-reuse model. In fact, for the nonces

N (δ,Δ) = (N0 + δ,N1 + δ,N2 + δ,N3 +Δ)

because Δ spans all 232 possible words, we can only have N3 fixed; δ is of the
form 8 × x where x spans all values from 0 to 229 − 1, so each Ni(i = 0, 1, 2)
can take values from the set {0,1,...,7}. Thus we can do 29 times of the forcing
process. In this case, the data complexity is 29×2123 = 2132, the time complexity
is 29×2n+52.6×(n+396) ≈ 2132.4, the success probability Pr0 ≈ 1−(e−2−9

)2
9

≈
0.632, and the advantage is A ≈ 0.632.

4.5 Key Recovery Attack on Modified Helix

By lemma 1, if we find a collision of the form S1,0,1 = S2,r2,1+j , we can obtain
a collision of the form S1,0,0 = S2,r2,j, where 0 ≤ r2 ≤ 231 − 1, 0 ≤ j ≤ 228 − 2.
Furthermore, from Section 2.5 we obtain

S<1>
1,0,0 = Z

(−8)
0

S<2>
1,0,0 = Z

(−7)
0

...

S<8>
1,0,0 = Z

(−1)
0

where S<i>
h,r,t represents the i-th word of Sh,r,t. Then from Section 2.4, we obtain

Z
(−8)
0 = K3 ⊕ (N0 + δ1), and deduce K3 = S<1>

2,r2,j
⊕ (N0 + δ1).

Cryptanalysis of Helix and Phelix Revisited 37

3()K

F

F

F

Round -8

Round -7

Round -6

-8,0 0

-8,1 4

()
()

X K
X K

-7,0 1

-7,1 5

()
(, ())

X K
X K l U

-6,0 2

-6,1 6

()
()

X K
X K

4()K 5()K 6()K 7()K
-8

iZ

-7
iZ

-6
iZ

-5
iZ

Fig. 2. The first three rounds of Helix

We suppose an attacker has access to the keystream. Then we can obtain

S2,r2,j , and deduce Z
(−i)
0 (i = 1, 2, ..., 8)(the dashed boxes represented in Fig.2).

Now let us consider the round −8 of Helix encryption. Because Z
(−8)
1 and X−8,1

have the same working key word K4, there are only 9 unknown state words at

round −8:K4, K5, K6, K7, K0 and Z
(−7)
i , 1 ≤ i ≤ 4. Hence if we guess 4 working

key words K4, K5, K6 and K7, we can deduce the remaining 5 unknown words
using 5 state equations. Then we consider the round −7. There are 6 unknown

state words: K1, l(U) and Z
(−6)
i , 1 ≤ i ≤ 4, and if l(U) guessed we can deduce

the remaining 5 unknown words using 5 state equations. After we obtain the
internal state of round −7, we can deduce K2 using the 5 state equations of
round −6. Thus we have recovered all the working key words Ki and the key
length l(U). We check the correctness of the guessed K4, K5, K6, K7 and l(U)
using the state equations of round -5 to round 0. After we obtain a correct pair
of Ki and l(U), we can deduce the input key U by reversing the key mixing of
Helix.

38 Z. Shi, B. Zhang, and D. Feng

The complexity of recovering the input key U by the method above is (232)4×
256× 8 = 2139 Helix block function operations. In the next work, we will force
a collision of the form S1,0,1 = S2,r2,1+j for some r2 and j.

We first build a message P of the maximal length 2n words by repeating 2n

times the same word P0. Then, P is encrypted under a fixed unknown secret key
K and two different nonces N (δ1,Δ1) and N (δ2,Δ2), where δ1 and δ2 are of the
form 8×x and x spans all values from 0 to 229−1,Δ1 andΔ2 span all 232 possible
words. Therefore, the number of blocks encrypted is 2n × 229 × 232 = 2n+61. To
mount an attack, for each position i such that i mod 8 = 0, we store sequences
of 8 consecutive keystream words as a prefix of each entry, followed by the round

number i, δ and Δ. Then, we look for a collision among the 2n+61

8 = 2n+58

entries in this table. This can be achieved by sorting the table by prefix of each
entry, with a complexity of 2n+58 × (n+58) basic comparisons. When we find a
collision, we need to check whether the collision is of the form S1,0,1 = S2,r2,1+j .
This can be achieved by checking the round numbers in the two entries: if there
is a round number 0, this collision is of the form S1,0,1 = S2,r2,1+j, otherwise,
it is not. The number of independent pairs of the form S1,0,1 = S2,r2,1+j in the
table is

M =
261 × 261

2
× (2n−3 + 2n−3) = 2n+119,

the success probability is Pr0 ≈ 1−e−2n−102

, and the advantage is A ≈ e−2n−137−
e−2n−102

. After we find a collision of the form S1,0,1 = S2,r2,j , we can recover
the key U with the method above. This attack needs 2n+61 data, and the time
complexity is 2n+61+2n+58× (n+58)× 2−5.4+2139
 2n+52.6× (n+396) Helix
block function evaluations. If we have n = 102, our attack would success with
probability Pr0 ≈ 0.632 and needs a data of 2163.

The following problem remains to be solved: how to find a true collision of
Helix and a special true collision of the form S1,0,1 = S2,r2,j with plaintext
restricted by the maximal authorized length of 262 and “fewer than 2128 Helix
block function evaluations to be carried out”.

4.6 Distinguishing Attack on Phelix

In this section, we extend the distinguishing attack to Phelix, which reveals that
Phelix has the same security level as Helix with respect to the state collision
attacks.

The only difference between Helix and Phelix is the output of the keystream
word (see Section 2.5). As the authors of Phelix declared, to avoid Muller’s
second attack, Phelix added the 4 “old” state words.

We first build a message P by repeating 2n times the same word P0. Then,
P is encrypted by Helix and Phelix cipher respectively, under a fixed unknown
secret key K using two different nonces N (δ1,Δ1) and N (δ2,Δ2), and denote the
four keystream by S1, S2, S

′
1, S

′
2.

Lemma 2. For 0 ≤ r1, r2 ≤ 231 − 1 and 0 ≤ j ≤ 228 − 2, if S1,r1,0 and S2,r2,j

is a true collision of Helix, S′
1,r1,1 and S′

2,r2,j+1 is a true collision of Phelix.

Cryptanalysis of Helix and Phelix Revisited 39

Proof. Suppose S1,r1,0 and S2,r2,j is a true collision of Helix, that means there
is a state collision at positions i1(r1, 0) and i2(r2, j), and this state collision can
be preserved for 231− 8j rounds by the proof of Lemma 1. Thus for Phelix there
is also a state collision at positions i1(r1, 0) and i2(r2, j), and this state collision
can be preserved for 231 − 8j rounds. From Section 2.5, the output of Phelix

is si := Y
(i)
4 + Z

(i−4)
4 , so S′

1,r1,1 is determined only by the states from round
i1(r1, 1)− 4 to i1(r1, 1) + 7, and S′

2,r2,j+1 is determined only by the states from
round i2(r2, j+1)−4 to i2(r2, j+1)+7. So S′

1,r1,1 and S′
2,r2,j+1 is a true collision

of Phelix. ��
Thus we can easily extend the distinguishing attack to Phelix, with the same

time and data complexities. However, Phelix can resist our key recover attack on
Helix. Because even if we find a collision of the form S′

1,0,1 = S′
2,r2,1+j , we can’t

obtain a collision of the form S′
1,0,0 = S′

2,r2,j due to Z
(i)
4 = 0 for i = −12, ...,−9.

4.7 Cryptanalysis of a General Type of Enhanced Version of Helix

Now we consider a general type of enhanced version of Helix by adding an output
function. If the output function at round i takes as input some states from round
i− n to round i, we denote this type of enhanced version n-Helix. For example,
the output function of Phelix at round i takes as input states from round i − 4
to round i, so Phelix is an instance of 4-Helix.

Lemma 3. For 0 ≤ r1, r2 ≤ 231 − 1 and 0 ≤ j ≤ 228 − 1 − m, if S1,r1,0 and
S2,r2,j is a true collision of Helix, S′

1,r1,m and S′
2,r2,j+m is a true collision of any

instance of n-Helix, where m = �n
8 �.

Proof. Suppose S1,r1,0 and S2,r2,j is a true collision of Helix, that means there is
a state collision at positions i1(r1, 0) and i2(r2, j), and this state collision can be
preserved for 231− 8j rounds by the proof of Lemma 1. Thus for any instance of
n-Helix there is also a state collision at positions i1(r1, 0) and i2(r2, j), and this
state collision can be preserved for 231− 8j rounds. By the definition of n-Helix,
S′
1,r1,m is determined only by the states from round i1(r1,m)−n to i1(r1,m)+7,

and S′
2,r2,j+m is determined only by the states from round i2(r2, j +m) − n to

i2(r2, j +m) + 7. So S′
1,r1,m and S′

2,r2,j+m is a true collision. ��
Thus, if m is much smaller than 228, we can extend our distinguishing attack to
any instance of n-Helix with the same time and data complexities. Therefore,
such type of enhanced version of Helix has the same security level as Helix with
respect to state collision attacks. Furthermore, our key recovery attack on Helix
can be extended on any instance of 0-Helix, because if we find a collision of the
form S′

1,0,1 = S′
2,r2,1+j, we can obtain a collision of the form S′

1,0,0 = S′
2,r2,j .

5 Conclusion

In this paper, we have studied the security of Helix and Phelix against both
distinguishing and key recovery attacks. First, a flaw in Muller’s second attack

40 Z. Shi, B. Zhang, and D. Feng

on Helix has been identified, which results in the failure of Muller’s second attack.
Based on this finding, we propose two attacks on Helix without nonce reused.
Then we show that our distinguishing attack on Helix can be easily extended to
Phelix with almost the same data complexity and time complexity, which reveals
that Phelix has the same security level as Helix with respect to internal state
collision attacks. This is the first distinguishing attack on Phelix without nonces
reused. Furthermore, a new insight on the design of such dedicated ciphers with
built-in authentication has been discovered, which we hope to be helpful in the
design of dedicated authenticated encryption algorithms.

Acknowledgement. The authors gratefully acknowledge the anonymous ref-
erees, whose comments helped to improve the presentation.

References

1. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

2. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix: Fast Encryption and Au-
thentication in a Single Cryptographic Primitive. Technical Report 2005/027. In
eSTREAM, ECRYPT Stream Cipher Project (2005)

3. Bernstein, D.J.: Salsa20. Technical Report 2005/025. In eSTREAM, ECRYPT
Stream Cipher Project (2005)

4. Muller, F.: Differential Attacks against the Helix Stream Cipher. In: Roy, B., Meier,
W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 94–108. Springer, Heidelberg (2004)

5. Paul, S., Preneel, B.: Near Optimal Algorithms for Solving Differential Equations
of Addition with Batch Queries. In: Maitra, S., Veni Madhavan, C.E., Venkatesan,
R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 90–103. Springer, Heidelberg
(2005)

6. Paul, S., Preneel, B.: Solving Systems of Differential Equations of Addition. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 75–88.
Springer, Heidelberg (2005)

7. Wu, H., Preneel, B.: Differential-Linear Attacks Against the Stream Cipher Phelix.
In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 87–100. Springer, Heidelberg
(2007)

8. Phorum eStream. Key recovery attacks on Phelix (2006),
http://www.ecrypt.eu.org/stream/phorum/read.php?1,883,921

9. eSTREAM. ECRYPT stream cipher project, http://www.ecrypt.eu.org/stream/
portfolio.pdf

10. DIAC. Directions in Authenticated Ciphers, http://hyperelliptic.org/DIAC/

http://www.ecrypt.eu.org/stream/phorum/read.php?1,883,921
http://www.ecrypt.eu.org/stream/portfolio.pdf
http://www.ecrypt.eu.org/stream/portfolio.pdf
http://hyperelliptic.org/DIAC/

Attacks on Multi-Prime RSA with Small Prime
Difference

Hui Zhang1 and Tsuyoshi Takagi2

1 Graduate School of Mathematics, Kyushu University, Japan
h-zhang@math.kyushu-u.ac.jp

2 Institute of Mathematics for Industry, Kyushu University, Japan
takagi@imi.kyushu-u.ac.jp

Abstract. We consider some attacks on multi-prime RSA (MPRSA)
with a modulus N = p1p2 . . . pr (r ≥ 3). It is believed that the small
private exponent attack on the MPRSA is less effective than that on RSA
(see Hinek et al.’s work at SAC 2003), which means that one can use a
smaller private exponent in the MPRSA than that in the original RSA.
However, our attacks show that private exponents which are significantly
beyond Hinek’s bound may be insecure when the prime difference Δ (Δ =
pr − p1 = Nγ , 0 < γ < 1/r, suppose p1 < p2 < · · · < pr) is small. By
exploring the relation between φ(N) and its upper bound, our proposed
small private exponent attack can make full use of the benefit brought
by small prime difference. It is shown that the MPRSA is insecure when
δ < 1−√

1 + γ − 2/r, where δ is the exponential of the private exponent
d with base N , i.e., d = Nδ . This result is a perfect extension of the
best known small private exponent attack. We also present a Fermat-like
factoring attack on the MPRSA which can directly factor the modulus
N when Δ < N1/r2 . These results surpass those of Bahig et al. (ICICS
2012) and the attacks are experimentally proved effective in practice.

Keywords: multi-prime RSA, lattice, cryptanalysis, small prime
difference.

1 Introduction

The RSA cryptosystem [16] is one of the most important public-key cryptosys-
tems that has been widely used in the secure Web communication (such as the
SSL protocol and the TLS protocol). The original version of the RSA is described
as follows.

The RSA Cryptosystem:

– Let N be the product of two large primes p and q. The public exponent e and
the private exponent d satisfy ed ≡ 1 mod φ(N), where φ(N) = (p−1)(q−1)
is Euler’s totient function. The public key is the pair (N, e) and the private
key is d.

– Encryption algorithm: c = me mod N where m ∈ ZN is the plaintext, c is
the ciphertext.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 41–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

42 H. Zhang and T. Takagi

– Decryption algorithm: m = cd mod N .

Multi-prime RSA is a variant of the original RSA in which the modulus has
more than two distinct primes. The key generation algorithm in the MPRSA
is essentially the same as that in the RSA, except that the modulus requires
r (r ≥ 3) distinct primes instead of two, i.e., N = p1p2 · · · pr. Consequently,
φ(N) = Π(pi − 1). The encryption algorithm and the decryption algorithm are
identical with those of the original RSA.

In this paper we only consider the MPRSA with balanced primes, i.e., the
primes pi’s are of the same bit size. If we assume pi’s are labeled in ascending
order, i.e., p1 < p2 < · · · < pr, then we have

1

2
N1/r < p1 < N1/r < pr < 2N1/r.

The prime difference of MPRSA is defined as Δ = pr − p1 = Nγ where 0 < γ <
1/r.

The main advantage of the MPRSA is its efficiency in decryption. Specifically,
when Chinese remainder theorem is used in decryption, the main costs will be r
modular exponentiations with (n/r)-bit moduli, where n is the bit length of N .
Compared to 2 modular exponentiations with (n/2)-bit moduli in the RSA, this
leads to a theoretic speed-up of a factor by up to r2/4. Boneh and Shacham [4]
experimentally observed a speed-up by a factor of 1.73 for 3-MPRSA (the modu-
lus has 3 prime factors) with a 1024-bit modulus. Moreover, most mathematical
attacks (such as the small exponent attacks, partial key exposure attack etc.)
become less effective as r increases. (However, r can not be unlimitedly large
because for the elliptic curve factorization method the difficulty of factoring an
MPRSA modulus decreases with increasing r. In most cases, r is set 3,4 or 5.
Refer to [7] for more details.) Therefore, MPRSA might be a practical alterna-
tive to RSA when decryption costs need to be lowered. Now the MPRSA has
already been supported by PKCS #1 v2.1 [17] and COMPAQ company [6,7].

Obviously, using small private exponents can also decrease the decryption costs.
However, too small private exponents may render the system completely insecure.
Wiener [20] first showed that RSA is insecure if d < N1/4. Boneh and Durfee [3]
improved this result to d < N0.292 by using lattice reduction method. They also
conjectured that the right bound below which RSA is insecure might be d < N1/2.
But this conjecture has not been proved yet. LetΔ = |p−q| be the prime difference
of the original RSA. De Weger [19] found that the small private exponent attacks
(both Wiener’s and Boneh & Durfee’s) can be enhanced when Δ is small and the
insecure bound can be improved to d < N1/2, even to d < N . It is common knowl-
edge that Fermat’s factoring technique [19] makes RSA insecure when the prime
difference is too small (Δ < N1/4). To resist this attack, standards, such as ANSI
X9.31 [1] and FIPS 168-3 [15] require that the two primes should differ in the first
100 bits, i.e., for 1024-bit RSA, Δ should be larger than N0.402. De Weger’s work
showed that though Δ is up to this standard, it still can lead to an enhanced small
private exponent attack as long as it is smaller than the general size (in the original
RSA, the general size of Δ is N1/2).

Attacks on Multi-Prime RSA with Small Prime Difference 43

Ciet et al. [5] generalized Wiener’s as well as Boneh & Durfee’s small private
exponent attack to the MPRSA. Bahig et al. [2] generalized de Weger’s result
and showed that the small prime difference can also enhance the small private
exponent attack on the MPRSA. To be specific, in the case of 3-MPRSA, Ciet et
al.’s insecure bound is about d < N0.18; Bahig et al. observed that the insecure
d could be as large as N1/3.

Our Contribution. To the best of our knowledge, Bahig et al.’s work [2] is the
only one which studies on the security of MPRSA with small prime difference.
However, compared with de Weger’s research on the original RSA, their work
is just a glimpse into this topic from the perspective of the continued fraction
technique. In this paper, we show our comprehensive studies which include not
only the small private exponent attack but also a factoring attack. We found that
the attacks based on the lattice reduction techinique perform much stronger than
that based on the continued fraction technique.

– In the respect of attacking the MPRSA with small private exponent, we
give our lattice reduction based attack with a bound δ < 1 −

√
1 + γ − 2

r ,
where δ = logN d and γ = logN Δ, which is superior to Bahig et al.’s result
[2]. Especially, if the prime difference Δ is of general size, i.e., Δ = N1/r,

then the condition for our attack becomes δ < 1 −
√
1− 1

r which exactly
coincides with Ciet et al.’s best result [5] on attacking the MPRSA with
small private exponent. Thus, the best known small private exponent attack
on the MPRSA can be regarded as a special case of our attack.

– In [2], the authors presented that when extending de Weger’s attacks to
MPRSA, they also tried to generalize the Fermat’s factoring attack but
failed. In this paper, we present a factoring attack on the MPRSA which
can directly factor the modulus N in polynomial time in log(N) when the
prime difference is smaller than N1/r2 . When r = 2, the condition of this
attack becomes Δ ≤ N1/4 which means that it performs as strong as the
Fermat’s factoring attack on the original RSA.

We compare our attacks with the previous works, including Ciet et al.’s attack
[5] (bound Eq. (4) in Section 3) which is the strongest one among all the previous
small private exponent attacks on MPRSA and Bahig et al.’s attack [2] (bound
Eq. (5) in Section 3) which is the first/only attack on MPRSA with small prime
difference.

Figure 1 shows the respective comparisons in terms of r = 3. The shaded
areas are the insecure δ, γ pairings. Obviously, our small private exponent attack
is superior to others. Our Fermat-like factoring attack further demonstrates the
vulnerability of the MPRSA when the prime difference is extremely small. It
should be noted that there will be less insecure area as r increases, which means
all these attacks become less effective as r increases. However, for any given r,
our small private exponent attack is always superior to the other attacks.

44 H. Zhang and T. Takagi

0 0.05 1/9 0.15 0.2 0.25 0.3 1/3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

r = 3

δ

Ciet et al.’s bound [5]

Bahig et al.’s bound [2]

Our bounds

Fermat-like

 factoring

 attack

small private exponten attack

Fig. 1. Comparison between our attacks and previous ones on 3-MPRSA

Our work proves that small prime difference is also a vulnerable feature for
the MPRSA. It is necessary to check the primes generated in the key generation
step of the MPRSA, especially for the cases of using small private exponents.

2 Previous Attacks on Original RSA

In this section we outline several previous attacks on the original RSA that are
relevant to our work.

2.1 Wiener’s Small Private Exponent Attack

Wiener’s continued fraction attack is the first significant attack on the small
private exponent RSA. As the public exponent e and the private exponent d
satisfy ed ≡ 1 mod φ(N), there exists some integer k which satisfies

ed = 1 + kφ(N). (1)

Eq. (1) can be rewritten as

e

φ(N)
− k

d
=

1

dφ(N)
.

If N is a balanced modulus, then φ(N) is relatively close to N . It can be proved
that when d is small, the publicly known fraction e/N is a good approximation
to the secret fraction k/d. Hence k/d can be found from the convergents in the
continued fraction expansion of e/N . Wiener showed that given only the public
key (N, e), this attack works well when d < N1/4. (We refer readers to Wiener’s
original paper [20] for more details.)

Attacks on Multi-Prime RSA with Small Prime Difference 45

2.2 Boneh & Durfee’s Small Private Exponent Attack

Boneh and Durfee proposed a much stronger attack which is based on Cop-
persmith’s methods [8] of finding small solutions of modular/integer equations.
Using the LLL reduction algorithm [13], Coppersmith found a way of construct-
ing new polynomials, with the same solutions as the target one, which have
sufficiently small coefficients. And then, the small solutions can be efficiently
found simply by solving the new constructed polynomials over integer. For more
information, we refer the reader to Coppersmith’s original paper [8] and other
related works [11,3].

Let s = (p+ q− 1). Then, φ(N) = (p− 1)(q − 1) = N − s. Therefore, Eq. (1)
can be rewritten as

−k(N − s) ≡ 1 mod e (2)

Boneh and Durfee showed that solving Eq. (2) for the unknowns k and s leads to
a heuristic small private exponent attack on RSA with d < N0.292. It should be
noted that this attack relies on the assumption that the first few small polyno-
mials obtained by lattice reduction are algebraically independent (which allows
a system of polynomials to be solved over Z). This assumption is often claimed
that this assumption is valid in practice [3,9].

2.3 Fermat’s Factoring Attack

It is well known that RSA modulus with small prime difference is insecure due to
Fermat’s factoring method. Let N = pq be a balanced RSA modulus and p < q.
The prime difference is Δ = q − p ≤ N1/2. Fermat’s factoring method is to find
positive integers x, y (other than N + 1 and N − 1) such that x2 − y2 = 4N . If
succeed, then let p′ = 1

2 (x + y) and q′ = 1
2 (x − y) which must satisfy p′q′ = N .

To find such x, y we simply try x = �2N1/2�, �2N1/2�+1, . . . , until x2 − 4N is a
square. It can be proved that when Δ < cN1/4, the number of values for x that
have to be tried is at most c2

4 . Therefore, when c is a small constant, factoring
N is trivial.

2.4 De Weger’s Improvements on the Small Private Exponent
Attacks

De Weger [19] found that both Wiener’s and Boneh & Durfee’s small private
exponent attack can be improved when the prime difference is small. Let Δ = Nγ

and d = N δ. Wiener’s bound was improved from δ < 1
4 to δ < 3

4 − γ, 0 < γ < 1
2 .

Boneh & Durfee’s bound was improved from δ < 0.292 to δ < 1 −
√
2γ − 1

2 ,
0 < γ < 1

2 (which is an amended result by [12]). We cite de Weger’s figure to
illustrate the results of above attacks.

From Figure 2 we can see that the RSA cryptosystem becomes more vulnera-
ble to de Weger’s small private exponent attack when prime difference is small.
To avoid such attacks, de Weger recommended to build in a check for prime
difference in the implementation of RSA key generation, especially in the cases
of using small private exponents.

46 H. Zhang and T. Takagi

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.25
0.292

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

δ
Fermat

Boneh−Durfee

Weger

Wiener

Fig. 2. Regions for δ and γ for which RSA is shown to be insecure [19]

3 Previous Attacks on MPRSA

In this section we recall several relevant attacks on MPRSA which are mainly
extensions of the attacks in Section 2.

3.1 Ciet et al.’s Extensions of the Small Private Exponent Attacks

Both Wiener’s and Boneh & Durfee’s attacks on original RSA were extended to
MPRSA by Ciet et al. [5] and then surveyed by Hinek et al. in their published
work [10]. Here we give a short overview of these results.

The extension of Wiener’s attack (based on continued fraction technique) to
MPRSA and yields following result.

– Let N be an r-prime RSA modulus with balanced primes, let e = Nα be
a valid public exponent and d = N δ be its corresponding private exponent.
Given the public key, if

δ ≤ 1

2r
, (3)

then the modulus can be factored in time polynomial in logN .

In terms of the bounds, this result is a weak one among all small private
exponent attacks on MPRSA. The attack based on lattice reduction technique
can get a larger bound which is also the strongest known small private exponent
attack on MPRSA. The result is as follows.

– Let N be an r-prime RSA modulus with balanced primes, let e = Nα be
a valid public exponent and d = N δ be its corresponding private exponent.
Given the public key, if

δ ≤ r −√r(r − 1)

r
, (4)

then the modulus can be factored in time polynomial in logN .

Attacks on Multi-Prime RSA with Small Prime Difference 47

3.2 Bahig et al.’s Extension of de Weger’s Attack

Bahig et al. [2] extended de Weger’s attack to MPRSA. More specifically, they
extended the continued fraction based small exponent attack on MPRSA to the
case of modulus N with small prime difference and got similar improvement as
de Weger’s work.

– Let N = p1p2 · · · pr be balanced MPRSA modulus, pr − p1 = Nγ . If the
private exponent d satisfies 2d2 + 1 < n2/r−γ

6r , then the modulus can be
factored in time polynomial in logN .

Let d = N δ. Bahig et al.’s bound can be rewritten in a similar form as (3)
and (4) as follows.

δ ≤ 1

r
− γ

2
. (5)

4 The Proposed Attacks

In this section, we introduce our attacks on the MPRSA. The first one is a small
private exponent attack which is a generalization of de Weger’s attack based on
lattice reduction technique. The second one is also based on the lattice reduction
technique which can efficiently factor the modulus when the prime difference is
extremely small.

4.1 Small Private Exponent Attack

We first introduce a framework to show how to recover the private exponent when
it is sufficiently small. Recall that the private exponent d and the public exponent
e of the MPRSA satisfy ed ≡ 1 mod φ(N), where φ(N) =

∏r
i=1(pi − 1). It

follows that there exists an integer k such that

ed = 1 + kφ(N) = 1 + k(N −
r∑

i=1

N

pi
+

r∑
i,j=1
i<j

N

pipj
− · · ·+ (−1)r). (6)

Let s = N −φ(N) =
r∑

i=1

N
pi

−
r∑

i,j=1
i<j

N
pipj

+ · · · − (−1)r. Eq. (6) can be rewritten as

k(N − s) = 1 mod e in which k and s are unknown. If we can find s, then we
can obtain φ(N) as well as the private exponent d.

As mentioned in Section 2, Boneh & Durfee [3] showed their observation on
the original RSA (r = 2). They also generalized this problem, which is called
small inverse problem, as follows.

Given two integers A and B, the small inverse problem is to find an integer
close to A such that its inverse modulo B is small, i.e., to find small integers x
and y satisfying x(A + y) ≡ 1 mod B.

Herrmann & May [9] also presented a method to construct optimized lattices
used in the small private exponent attack. Their method got the same bound
(δ < 1− 1

2

√
2 ≈ 0.292) as Boneh & Durfee’s but with a much simpler proof.

48 H. Zhang and T. Takagi

Our attack is actually a direct application of solving the small inverse problem.
However, in the previous works [3,9], the authors only considered the case when
the bound of y is fixed, i.e., y < B1/2, and try to maximize the bound of x.
In the following, we introduce a generalized result of the small inverse problem
which can be derived from the previous works with small changes.

Theorem 1. Given large integers A and B, let X = Bα and Y = Bβ where
0 < α, β < 1 satisfy

α ≤ 1−
√
β. (7)

Then we can probabilistically find all solutions (x0, y0) of x(A+ y) ≡ 1 mod B
with |x0| < X and |y0| < Y in polynomial time.

For completeness, we provide a full description of the proof which is based on
Herrmann & May’s method in Appendix.

Obviously, the above framework does not take the size of the prime difference
Δ into account. Actually, small Δ can enhance the small private exponent attack
if this feature can be fully exploited. Though s is unknown, we find its lower
bound can be obtained. In our work, we first calculate the lower bound of s
and then we estimate s with this lower bound in the attack. The new unknown
now is replaced with the error of the estimate. We prove that this new unknown
is smaller than s when Δ is small. That means we can solve the small inverse
problem with larger k and thus cryptanalyze the MPRSA with larger d. To detail
our attack, some lemmas are necessary.

Lemma 1. Let N be a large positive integer, r be a small positive integer, D(i) be
an i dimensional domain defined as D(i) = {(x1, x2, . . . , xi) : (x1, x2, . . . , xi) ∈
Ri, N1/r/2 < xj < 2N1/r for j = 1, 2, . . . , i} and R = {1, 2, . . . , r}. For k =
1, 2, . . . , r − 1, define the functions fk(x1, x2, . . . , xr) as

fk =
∑

{i1,...,ik}⊂R
i1<···<ik

xi1xi2 . . . xik .

In the domain D(r), if xi’s satisfy x1x2 · · ·xr = N , then
i. fk(x1, x2, . . . , xr) ≥ Cr

kN
k/r, where Cr

k = r!
k!(r−k)! is the binomial coefficient.

ii. Δj+1 −Δj ≥ 0 for j = 1, . . . , r − 2, where Δj = fj(x1, . . . , xr)− Cr
jN

j/r.

Proof. i. As x1x2 · · ·xr = N and xi 	= 0 for i = 1, 2, . . . , r, we have xr =
N

x1x2···xr−1
. Then fk with constraint x1x2 · · ·xr = N can be rewritten as

f̃k(x1x2 · · ·xr−1) =
∑

{i1,...,ik}⊂R′
i1<···<ik

xi1xi2 . . . xik +
∑

{i1,...,ik−1}⊂R′
i1<···<ik−1

N

xi1 . . . xik−1

,

where R′ = {1, 2, . . . , r − 1}. Now we compute the extremum of f̃k in D(r−1).

Attacks on Multi-Prime RSA with Small Prime Difference 49

For each k, partial derivatives of f̃k are

∂f̃k
∂xi

=
∑

{i1,...,ik−1}⊂R′/{i}
i1<···<ik−1

xi1xi2 . . . xik−1
−

∑
{i1,...,ik−2}⊂R′/{i}

i1<···<ik−2

N

xi1 . . . xik−2
· x2

i

By solving the simultaneous equations ∂f̃k
∂xi

= 0, for i = 1, . . . , r − 1 we get that
(N1/r, N1/r, . . . , N1/r) is the only stationary point of function f̃k in domain
D(r−1).

Let X0 = (N1/r, N1/r, . . . , N1/r). The Hessian matrix of f̃k at the point
of X0, i.e.,

(
∂2f̃k

∂xi∂xj
(X0)
)
1≤i,j≤r−1

can be easily proved to be a positive definite

matrix. Therefore, X0 is a minimum point of f̃k. That means, with the constraint
condition x1x2 · · ·xr = N and (x1, . . . , xr) ∈ D(r), fk reaches its minimum
Cr

kN
k/r at the point (N1/r, N1/r, . . . , N1/r).

ii. The same goes for the function fj+1 − fj ; we can prove that fj+1 − fj
reaches its minimum Cr

j+1N
(j+1)/r−Cr

jN
j/r in domain D(r) with the constraint

condition that x1x2 · · ·xr = N . Therefore, Δj+1 −Δj ≥ 0. ��
Lemma 2. Let N = p1p2 . . . pr be a balanced MPRSA modulus, p1 < p2 < · · · <
pr, pr − p1 = Nγ , 0 < γ < 1/r. Let sr−1 =

r∑
i=1

N
pi

and Er−1 = rN1−1/r. Then

0 < sr−1 − Er−1 < 2rN1+γ− 2
r

Proof. According to Lemma 1, we have sr−1 = fr−1(p1, p2, . . . , pr) > rN1−1/r =
Er−1. Therefore sr−1 − Er−1 > 0.

sr−1 − Er−1 =

r∑
i=1

(
N

pi
− N

N1/r
) =

r∑
i=1

N(N1/r − pi)

N1/rpi

< r · N(pr − p1)
1
2N

2/r
= 2rN1+γ− 2

r .

��
Proposition 1. Let Ek = Cr

kN
k/r and sk =

∑
{i1,...,ik}⊂R
i1<···<ik

pi1pi2 · · · pik , where

R = {1, 2, . . . , r}. Consequently s = N−φ(N) =
r∑

i=1

N
pi
−

r∑
i,j=1
i<j

N
pipj

+· · ·−(−1)r =

sr−1 − sr−2 + · · · − (−1)r. Let E = Er−1 −Er−2 + · · · − (−1)r be our estimation
of s. Then the estimation error E = s− E satisfies

0 < E < 2rN1+γ− 2
r .

Proof. Let Ei = si − Ei for i = 1, 2, . . . , r − 1. According to Lemma 1, we have

si = fi(p1, p2, . . . , pr) > Cr
i N

i/r = Ei ⇒ Ei > 0

50 H. Zhang and T. Takagi

for i = 1, 2, . . . , r − 1 and

si − Ei > si−1 − Ei−1 ⇒ Ei > Ei−1

for i = 2, . . . , r − 1. Accordingly, we get
∑k

i=1(−1)k−iEi > 0 and Ek+1 >∑k
i=1(−1)k−iEi for k = 1, 2, . . . , r − 2. Therefore,

0 < E < Er−1

since

E =
r−1∑
i=1

(−1)r+1−iEi = Er−1 −
r−2∑
i=1

(−1)r−iEi.

By Lemma 2, we have 0 < s− e < 2rN1+γ− 2
r . ��

Theorem 2 (Small Private Exponent Attack). Let N = p1p2 . . . pr be an
MPRSA balanced modulus, p1 < p2 < · · · < pr, pr − p1 = Nγ , 0 < γ < 1/r. Let
e be a public exponent with full size and d = N δ, 0 < δ < 1, be its corresponding
private key. Given the public key (N, e), for every integer r ≥ 3, γ and δ satisfy

δ < 1−
√
1 + γ − 2

r
, (8)

then the private key d can be probabilistically found in time polynomial in log(N).

Proof. Let s =
r∑

i=1

N
pi

−
r∑

i,j=1
i<j

N
pipj

+ · · · − (−1)r, E = �
r−1∑
i=1

(−1)r−1−iCr
i N

i/r −

(−1)r� and E = s − E. Then equation ed = 1 mod φ(N) can be rewritten as
kφ(N) = 1 mod e for some integer k. As φ(N) = N − s = N −E − E , we have

k(N − E − E) = 1 mod e. (9)

We assume e is full size, i.e., e is roughly the same order of magnitude as the
modulus N and φ(N). As

k =
ed− 1

φ(N)
<

ed

φ(N)
, and d < N δ,

we can get a rough bound of k that |k| < eδ. By Proposition 1, we also have
|E| < 2rN1+γ− 2

r ≈ e1+γ− 2
r .

Therefore, finding k and E from Eq. (9) is a small inverse problem in which
the large known integers are N − E and e, and the bound of the unknowns are
respectively |k| < eδ and |E| < e1+γ− 2

r . According to Theorem 1, when γ and δ
satisfy

δ < 1−
√
1 + γ − 2

r
,

k and E can be probabilistically found in polynomial time in log(N).
Then we can get φ(N) = N − E − E and compute d = e−1 mod φ(N). ��

Attacks on Multi-Prime RSA with Small Prime Difference 51

Notes: If the prime difference Δ is of the general size, i.e., Δ = N1/r, then the
condition for our attack becomes δ < 1−√1− 1/r which exactly coincides with
Ciet et al.’s result. And when r = 2, the condition becomes δ < 1−√1/2 ≈ 0.292
which is the best known result of small private exponent attack on original RSA.

4.2 Fermat-Like Factoring Attack

We have recalled that for original RSA, Fermat’s factoring technique can factor
the modulus N = pq efficiently when |p− q| < N1/4. Bahig et al. presented that
when extending de Weger’s attacks to MPRSA, they also tried to generalize the
Fermat’s factoring attack but failed. In this section, we provide a way of factoring
the modulus of MPRSA when the prime difference is small, which obtains a result
quite similar to that of Fermat’s factoring attack. We call this attack Fermat-like
Factoring. This attack is based on Coppersmith’s work of finding small solutions
of a univariate modular equation. We first recall a general form of Coppersmith’s
original univariate modular result, stated by May [14], and then demonstrate our
attack.

Theorem 3 (May [14]). Let N be an integer of unknown factorization, which
has a divisor b ≥ Nβ. Let fb(x) be a monic univariate polynomial of degree
n, let ε > 0. Then, for a sufficiently large N , we can find all solution x0 for
the equation fb(x) ≡ 0 mod b, such that |x0| ≤ Nβ2/n−ε in time polynomial in
logN , 1/ε and linear in the number of solutions.

Theorem 4 (Factoring Attack). Let N = p1p2 . . . pr be a balanced MPRSA
modulus, p1 < p2 < · · · < pr, pr − p1 = Nγ, 0 < γ < 1/r. If γ ≤ 1

r2 , then the
modulus N can be factored in time polynomial in logN .

Proof. Let p = �N1/r�. As N is a balanced modulus, p1 < p2 < · · · < pr, we
have

p1 < p < pr and |p− pi| < pr − p1 = Nγ .

Let xi = pi − p for i = 1, 2, . . . , r. Then |xi| < Nγ . Define a monic linear
polynomial f(x) = x + p, which has root xi modulo pi since f(xi) = xi +
p = pi = 0 mod pi. As pi > 1/2N1/r, we have |pi| > N1/r−ε′ for some ε′

which will be neglectable when N is large. According to Theorem 3, by using
the Coppersmith’s method, we can find all the solutions of equation f(x) = 0

mod pi in time polynomial in logN if |xi| ≤ N1/r2−ε̂, i.e., γ ≤ 1/r2. Namely,
the modulus N can be factored in this way when γ ≤ 1/r2. ��

Notes: For r = 2, this attack can factor the modulus N when Δ ≤ N1/4 which
achieves the same effect as the Fermat’s factoring method.

5 Experimental Results

In this section, we show some experimental data which provides an overview
of the effectiveness of our attacks. We implemented our attacks on a personal

52 H. Zhang and T. Takagi

computer with Intel CPU T230(1.73GHz), 4G RAM. The NTL Library [18] is
used to construct the lattice and reduce the basis (LLL algorithm) and Maple
system is used to solve the equations constructed from the LLL-reduced lattice
basis.

Based on a 24 dimensional lattice, we mounted our small private exponent
attack on instances of 3-MPRSA with different sizes of prime differences and
obtained an experimental bound, shown as Figure 3. This bound consists of the
largest sizes of private exponents, for different given prime differences, that we
could use to successfully mount our attack with a 24 dimensional lattice. It is not
a bound for the attacks in practice but only the largest size of private exponent
that we could break with our set of experiments. Actually, the performance of
our attack is strongly related to the size of the used lattice. We can make the
experimental bound as close to our theoretical bound as we want at the expense
of using larger lattice dimensions.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ

r = 3

δ

Bahig et al.’s theoretical bound [2]
Our theoretical bound

Our experimental bound
with a 24 dimensional lattice

Fig. 3. Experimental bound of our attack on 3-MPRSA with a 24 dimensional lattice

It is clear that our attack works well in practice. When the prime differences
are of the same size, our attack (using a 24 dimensional lattice) can break in-
stances of MPRSA with private exponents exceeding Bahig et al.’s bound.

In Table 1, we illustrate the effectiveness of our small private exponent attack
mounted on instances of MPRSA with a 1024-bit modulus. The prime difference
is fixed around 0.15. We list the dimension ω of the used lattice, the experimental
bound δexp and the corresponding runtime of each attack. Table 1 demonstrates
that we can expect the experimental bound to increase up to the theoretical
bound with the increasing dimension of the lattice used in the attack. We only
show the data of the attacks at γ ≈ 0.15 in Table 1. In fact, this conclusion is
tenable for all the values of γ. As LLL reduction algorithm is a polynomial time
algorithm, our attack will also be time polynomial in ω and logN . Thus the
runtime is roughly the same for a given choice of ω and logN , regardless of the
value of γ.

Attacks on Multi-Prime RSA with Small Prime Difference 53

Table 1. Effectiveness of our small private exponent attack on 3-MPRSA with different
size of lattice

γ δexp ω runtime

0.149 0.151 6 8.3 s
0.150 0.212 8 4 m 20 s
0.150 0.241 15 3 h 21 m
0.149 0.275 24 47 h 48m

s: second, m: minute, h: hour
When γ = 0.15, our theoretical bound on δ is 0.304.

Table 2. Effectiveness of the Fermat-like factoring attack

r logN γthe γexp ω runtime

r = 3 1024 0.111 0.108 8 2.8 s
r = 4 4096 0.0625 0.062 8 28 s
r = 5 8192 0.04 0.039 8 87 s

The experimental results in Table 2 demonstrate the efficiency of the Fermat-
like factoring attack. For several possible choices of r and logN , we list the
theoretical bound γthe, the observed experimental bound γexp, the dimension ω
of the used lattice and the runtime of each attack. In our attacks ω is set 8.
We tried to launch attacks with larger ω but the experimental bound can not
be further improved. We know that this factoring attack becomes less effective
(requires smaller prime difference) as r increases, but for a given r, we find the
experimental bounds are very close to the theoretical ones and the runtime keeps
quite short i.e., only a few seconds.

6 Conclusion

We presented two attacks on MPRSA with small prime difference which can
be regarded as an entire extension of de Weger’s attack. From the results of our
research, we can get a similar conclusion as de Weger’s: small prime difference is a
vulnerable feature for MPRSA. In particular, the prime difference can be used to
enhance the small private exponent attack as long as it is smaller than its general
size (Δ < N1/r). Moreover, an extremely small prime difference (Δ < N1/r2)
can lead to an efficient factorization of the modulus. We should note that when
the primes are generated randomly and independently, with high probability the
prime difference will be of the size of N1/r. However, we still recommend to
check the primes generated in the key generation step, especially for the case of
using small private exponents.

54 H. Zhang and T. Takagi

References

1. ANSI X9.31-1998, Digital signatures using reversible public key cryptography for
the financial services industry (rDSA), American National Standards Institute
(1998)

2. Bahig, H.M., Bhery, A., Nassr, D.I.: Cryptanalysis of multi-prime RSA with small
prime difference. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618,
pp. 33–44. Springer, Heidelberg (2012)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292 . In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

4. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
5. Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.-J.: Short private expo-

nent attacks on fast variants of RSA. UCL Crypto Group Technical Report Series
CG-2002/4, University Catholique de Louvain (2002)

6. Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic appa-
ratus and method. US patent #5, 848, 149 (1997)

7. Compaq Computer Corperation: Cryptography using Compaq multiprime technol-
ogy in a parallel processing environment (2000)

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10, 233–260 (1997)

9. Herrmann, M., May, A.: Maximizing small root bounds by linearization and ap-
plications to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010)

10. Hinek, M.J., Low, M.K., Teske, E.: On some attacks on multiprime RSA. In:
Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 385–404. Springer,
Heidelberg (2003)

11. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

12. Kühnel, M.: RSA vulnerabilities with small prime difference. In: Armknecht,
F., Lucks, S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 122–136. Springer,
Heidelberg (2012)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

14. May, A.: Secret exponent attacks on RSA-type schemes with moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

15. National Institute of Standards and Technology: Digital signature standard, FIPS
Publication 186-3 (2009), http://www.nist.gov/cmvp

16. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

17. RSA Laboratories: Public Key Cryptography Standards PKCS #1 v2.1: RSA cryp-
tography standard (2001)

18. Shoup, V.: NTL number theory C++ library, http://www.shoup.net/ntl
19. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-

bra in Engineering, Communication and Computing 13, 17–28 (2002)
20. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory 36, 553–558 (1990)

http://www.nist.gov/cmvp
http://www.shoup.net/ntl

Attacks on Multi-Prime RSA with Small Prime Difference 55

Appendix

Proof of Theorem 1

First we need to perform a linearization of the original polynomial f(x, y) =
xy+Ax− 1. Let u = xy− 1. Then we get a linear polynomial f̄(u, x) = Ax+ u.

For some fixed integer m and t, m ≥ t, we now construct x-shifts:

ḡi,k(u, x) := xif̄kBm−k for k = 0, . . . ,m and i = 0, . . . ,m− k,

and y-shifts

h̄j,k(u, x, y) := yj f̄kBm−k for j = 0, . . . , t and k = �m
t
�j, . . . ,m,

where �m
t � means the largest integer which is smaller than m

t . We use xy =
u + 1 to substitute each occurrence of xy by the term u + 1 in y-shifts, and
then construct a lattice by using the coefficient vectors of ḡi,k(Uu,Xx) and
h̄j,k(Uu,Xx, Y y) as basis vectors, where U,X, Y are bounds of u, x, y. For ex-
ample, when m = 2 and t = 1, the constructed basis is as follows.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x u x2 ux u2 u2y

g0,0 B2

g1,0 B2X
g0,1 B ABX BU
g2,0 B2X2

g1,1 ABX2 BUX
g0,2 A2X2 2AUX U2

g1,2 A2X 2AU A2UX 2AU2 U2Y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
We can see that the above matrix is a triangular matrix. Actually, for any choice
of m and t, the corresponding matrix keeps being triangular. There is no doubt
for the upper part constructed from the x-shifts. Now we look at an arbitrary
y-shift yif̄ l, where i ∈ {0, 1, . . . , t} and l ∈ {�m

t �i, . . . ,m}, (the factor Bm−l is
omitted as it does not influence the set of monomials). Since f̄ = Ax+ u we can
expand yif̄ l as

ulyi + Cl
1Au

l−1xyi + · · ·+ Cl
lA

lxlyi.

Now we shall prove that the first term introduce a new monomial ulyi and all
other monomials are already present in the upper part. Let us look at the second
term after the substitution of xy

ul−1xyi = ul−1(u + 1)yi−1 = ulyi−1 + ul−1yi−1.

The monomials ulyi−1 and ul−1yi−1 appear in yi−1f̄ l and yi−1f̄ l−1, respectively.
In general, the (j + 1)th term of the binomial expansion, for j = 1, . . . , i − 1,
contains monomials that appear in yi−j f̄ l−k for k = 0, . . . , j. For i ≤ j ≤ l, it
is easy to prove that the (j + 1)th term contains monomials that appear in the
x-sifts.

56 H. Zhang and T. Takagi

Now we will show that if yif̄ l is a y-shift, then all of yi−j f̄ l−k for j = 1, . . . , i−1
and k = 0, . . . , j are also used as y-shifts. Since yif̄ l is in the set of y-shifts,
we know that l ∈ {�m

t �i, . . . ,m} and therefore l − k ∈ {�m
t �i − j, . . . ,m} when

k = 0, . . . , j. For yi−j f̄ l−j on the other hand, we have l−j ∈ {�m
t �(i−j), . . . ,m}.

As m ≥ t, we have �m
t � ≥ 1. Thus, �m

t �(i−j) ≤ �m
t �i−j and therefore yi−j f̄ l−k,

for k = 0, . . . , j, are also in the y-shift set.
Therefore, we can conclude that the constructed basis is a triangular matrix.

Let t = τm for some 0 < τ ≤ 1. If we denote its determinant to be det(L) =
XsxY syUsuBsb , then we can figure out that

sx =
m∑

k=0

m−k∑
i=0

i =
1

6
m3 + o(m3)

sy =

τm∑
j=1

m∑
k=j/τ

j =
τ2

6
m3 + o(m3)

su =
m∑

k=0

m−k∑
i=0

k +
τm∑
j=1

m∑
k=j/τ

k = (
1

6
+

τ

3
)m3 + o(m3)

sb =

m∑
k=0

m−k∑
i=0

(m− k) +

τm∑
j=1

m∑
k=j/τ

(m− k) = (
1

3
+

τ

6
)m3 + o(m3)

and the dimension of the lattice is

dim(L) =

m∑
k=0

m−k∑
i=0

1 +

τm∑
j=1

m∑
k=j/τ

1 = (
1

2
+

τ

2
)m2 + o(m2).

Using these values together with the upper bounds X = Bα, Y = Bβ , U =
Bα+β on the variables in the usual enabling condition detL = XsxY syUsuBsb ≤
Bm dim(L), we obtain that α and β should satisfy

βτ2 + (2α+ 2β − 2)τ + (2α+ β − 1) ≤ 0.

For any values of α and β, the left-hand side of this inequality is minimized when
τ is chosen to be τ = 1−α−β

β . Substituting this back into the inequality yields
the enabling equation α2 − 2α+1− β ≥ 0. Finally, we derive the condition that

α ≤ 1−
√
β.

��

Factoring Multi-power RSA Modulus N = prq

with Partial Known Bits

Yao Lu1,2, Rui Zhang1, and Dongdai Lin1

1 State Key Laboratory of Information Security (SKLOIS)
Institute of Information Engineering (IIE)

Chinese Academy of Sciences (CAS)
2 University of Chinese Academy of Sciences (UCAS)
lywhhit@gmail.com, {r-zhang,ddlin}@iie.ac.cn

Abstract. Factoring large integers is a fundamental problem in algebraic
number theory andmodern cryptography,which many cryptosystems, e.g.
RSA, are based on. Up to now, there is no known polynomial-time al-
gorithm to solve it with classical computers. However, in practice side-
channel attacks usually cause serious damage: Even if a small proportion
of bits in the secret primes is leaked, one may efficiently factor.

In this paper, we study the problem of factoring with partial known
bits for multi-power RSA modulus N = prq. In 1999, Boneh, Durfee and
Howgrave-Graham showed that this problem can be solved efficiently
given a 1

r+1
-fraction of the most significant bits (MSB) of p. In their at-

tack, the unknown bits are located in one consecutive block. We propose
two lattice-based approaches that extend the number of unknown blocks
to arbitrary n (n ≥ 1). The advantage of our approaches is that now

knowledge of a ln(1+r)
r

-fraction of the bits of p is already sufficient (for
any n). In fact, our result is a first step towards unifying and extending
previous works by Boneh-Durfee-Howgrave (Crypto’99) and Herrmann-
May (Asiacrypt’08).

Keywords: factoring with known bits, RSA, combined attacks.

1 Introduction

The RSA cryptosystem is the most widely used public-key cryptosystem today.
Denote an RSA modulus by N = pq that is the product of two primes p, q of
the equal length. Let e be a positive integer that is co-prime to Euler’s totient
function φ(N). The RSA encryption function takes a message m (encoded as an
element in ZN) to the e-th power in the ring ZN . However, since RSA is based
on arithmetic modulo large numbers, it can be slow in the resource-constrained
environments.

To speed up decryption, some variants of RSA are suggested, (see a nice
survey here [3]). Among them, an important one is the multi-power RSA scheme
proposed by Takagi [20] in 1998. This fast RSA variant modifies the structure
of the standard RSA modulus (N = pq with p, q are of the same bit-size), and
uses modulus of the form N = prq (r > 1) where two primes p, q are equal in

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 57–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 Y. Lu, R. Zhang, and D. Lin

length. Compared to the standard RSA scheme, the multi-power RSA is more
efficient in both key generation and decryption. Besides, modulus of this type
has been applied in many cryptographic designs, e.g., the Okamoto-Uchiyama
cryptosystem [16], or better known via EPOC and ESIGN [5], which uses the
modulus N = p2q.

The security of the multi-power RSA, like that of standard RSA, is related to
the hardness of factoring large integers. Until now there is no known polynomial-
time algorithm to factorize large numbers except quantum algorithms. The best
algorithm to date is Number Field Sieve (NSF), which works in sub-exponential
time. However, in a real-world implementation, partial information regarding
the factoring of N can be leaked by side-channel attacks, hence it is crucial to
study how this affects the hardness of the factoring problem.

In the context of standard RSA where N = pq, there have been a number
of results. In 1985, Rivest and Shamir [17] first studied the problem factoring
with known bits, they designed an algorithm to factor N given 2

3 -fraction of the
bits of p. In 1996, Coppersmith [4] improved this bound to 1

2 . Note that for the
above results, the unknown bits are within one consecutive block. The case of
n blocks was first considered by Herrmann and May in [9], where they showed
that ln2 ≈ 70% known bits in p are sufficient to factor N = pq, however, the
running time of their algorithm is polynomial only for n = O(log logN) blocks.

In this paper, we consider a more general problem: factoring multi-power RSA
modulus N = prq (r ≥ 1) with known bits in p. Note that Boneh, Durfee and
Howgrave-Graham [2] first considered this problem in 1999 and they shown that
N can be recovered efficiently given 1

r+1 -fraction of the most significant bits
(MSB) of p. Similar to [17,4], it is assumed that the unknown bits are located
in one consecutive block, however, very often the leaked bits obtained by side-
channel attack can be scattered over all positions in p, for instance, the cold-boot
attack reported in [7].

Therefore, a very interesting question rises that how can we efficiently utilize
the fragmentary known bits in p for the multi-power RSA problem? As far as
we are currently aware, there is no known works dealing with it. On the other
hand, when r = 1, the multi-power RSA problem degenerates to the standard
RSA problem. Studying the multi-power RSA problem helps to understand the
security of the standard RSA problem. In this paper, we investigate factoring
N = prq with known bits, which can be viewed as a step towards unifying all
the previous works [17,4,2,9].

Our Contributions. Let p ≥ Nβ, and let n denote the number of the unknown
blocks. In this paper we show that we can factorize the multi-power RSA modulus
N = prq given a

1− 1

rβ

(
1− (1 − rβ)

n+1
n − (n+ 1)(1− rβ)

(
1− n
√
1− rβ

))
fraction of the bits in p together with their positions. Our results generalize the
previous results in the following sense:

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 59

– For β = 1
r+1 and n = 1, which means that we are given the most or least

significant bits of p for modulus N = prq, our results show that we can
factorize N given a 1

r+1 -fraction of the most or least significant bits, which
is exactly Boneh-Durfee-Howgrave showed in [2].

– For β = 1
r+1 , r = 1 and n is large, which means that we are given many bit

blocks of p for modulus N = pq, our results show that we can factorize N
given ln2 ≈ 70% of the bits of p (see Table 1), which also matches Herrmann
and May showed [9].

Unfortunately, similar to [9], the running time of our algorithm heavily depends
on n, to be specific, our algorithm is polynomial-time only for n = O(log logN)
blocks.

Our Treatments. Technically, we develop two methods for finding small roots
of linear modular polynomials f(x1, · · · , xn) = a0 + a1x1 + · · ·+ anxn mod p,
where p is an unknown divisor of some known N and N ≡ 0 mod pr.

Our first method is to transform the above constrained polynomials to mul-
tivariate integer polynomials h(x1, · · · , xn+1) = N − f(x1, · · · , xn)rxn+1 =
N − (a0 + a1x1 + · · ·+ anxn)

rxn+1 , then analyze the integer polynomials using
Coppersmith’s method [4].

Our second method uses Herrmann-May’s idea [9] in the N = prq setting and
makes some suitable improvements. Herrmann and May solved the problem of
finding small roots of linear modular polynomials f(x1, · · · , xn) = a0 + a1x1 +
· · · + anxn mod p for some unknown divisor p of known modulus N . In our
second method, we make additional use of the fact that N ≡ 0 mod pr. More
precisely, we construct a lattice with subtle structures to reflect the property
for N = prq. In general, the two methods both achieve the same asymptotic
bounds, however, their performances may differ significantly. We give detailed
discussions on this.

The rest of the paper is organized as follows. In Section 2, we review some
useful notations and facts. In Section 3, we review some previous works on the
target problem. In Section 4 5, we present two methods to prove our main the-
orems, and give detailed discussions as well as comparisons of the two methods.
In Section 6, we give a conclusion.

2 Preliminary

Consider a set of linearly independent vectors u1, · · · , uw ∈ Zn, with w � n. The
lattice L, spanned by {u1, · · · , uw}, is the set of all integer linear combinations
of the vectors u1, · · · , uw. The number of vectors is the dimension of the lattice.
The set u1, · · · , uw is called a basis of L. In lattices with arbitrary dimension,
finding the shortest vector is a very hard problem, however, approximations of a
shortest vector can be obtained in polynomial-time by applying the well-known
LLL basis reduction algorithm [13].

60 Y. Lu, R. Zhang, and D. Lin

Lemma 1 (LLL [13]). Let L be a lattice of dimension w. In polynomial-time,
the LLL-algorithm outputs reduced basis vector vi, 1 � i � w that satisfy

‖ v1 ‖�‖ v2 ‖� · · · �‖ vi ‖� 2
w(w−1)

4(w+1−i) det(L) 1
w+1−i

Lemma 2 (Howgrave-Graham [10]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be
an integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and

2. ‖ g(x1X1, · · · , xkXk) ‖< pm

√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

We mention a useful lemma (Lemma 2 of [8]).

Lemma 3 (Herrmann [8]). Let P = {(i1, . . . , in) ∈ Zn|∀j,∑n
j=1 ≤ r∧ij ≥ 0}

be an n-dimensional simplex in Zn. Then the number of points in P is
(
r+n
n

)
,

and ∀ j ∈ {1, . . . , n}, sj =
∑

(i1,...,in)∈P ij =
(
r+n
r−1

)
.

Let g(x1, · · · , xk) =
∑

i1,··· ,ik ai1,··· ,ikx
i1
1 · · ·xikk . We define the norm of g by the

Euclidean norm of its coefficient vector: ‖ g ‖2=∑i1,··· ,ik a
2
i1,··· ,ik .

In our analysis we relies on the following assumption when extracting the final
roots efficiently, which was used in [9].

Assumption 1. The lattice-based construction yields algebraically independent
polynomials, the common roots of these polynomials can be efficiently computed
using techniques like calculation of the resultants or finding a Gröbner basis.

May [14] gives upper bounds on the size of the solutions of a univariate equation
modulo an unknown divisor.

Theorem 1 (May [14]). Let N be an integer of unknown factorization, which
has a divisor p ≥ Nβ, 0 < β ≤ 1. Let f(x) be a univariate polynomial of degree
δ. Then we can find in time O(cδ5log9N) all solutions x0 for the equation

f(x) = 0 mod p with |x0| ≤ cN
β2

δ .

Herrmann and May [9] give upper bounds on the size of the solutions of a
multivariate linear equations modulo an unknown divisor of a known composite.

Theorem 2 (Herrmann-May [9]). Let ε ≥ 0 and let N be a sufficiently large
composite integer (of unknown factorization) with a divisor p ≥ Nβ. Further-
more, let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a linear polynomial in n variables.
Under Assumption 1, we can find all the solutions (x01, . . . , x

0
n) of the equation

f(x1, . . . , xn) = 0 (mod p) with
∣∣x01∣∣ ≤ Nγ1 , . . . ,

∣∣x0n∣∣ ≤ Nγn if

n∑
i=1

γi ≤ 1− (n+ 1)(1− β) + n(1− β)
n+1
n − ε

The running time of the algorithm is polynomial in logN and (eε)
n.

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 61

3 Previous Works

In this section we review the previous works on the problem of factoring N = prq
with known bits in the secret prime p.

3.1 BDH Method

This attack was proposed by Boneh, Durfee and Howgrave-Graham [2], later
revisited by May [15], as will be referred to as the “BDH Method”. Basically,
they considered the scenario that a few most significant bits in the prime p are
known to the attacker. Consider the univariate polynomial

f(x) = (p̃+ x)r mod pr

For simplicity, we assume that p and q are of the same bit-size. Set β = r
r+1 ,

δ = r and c = 1. Applying Theorem 1, the LLL algorithm recovers all roots x
with

|x0| ≤ M
β2

δ = N
r

(r+1)2

Since N is roughly of the size pr+1, this means that we need an approximation p̃
with |p−p̃| ≤ p

r
r+1 . In other words, we need a 1

r+1 -fraction of the most significant
bits in order to factorize N in polynomial-time.

3.2 Herrmann-May Method

In Asiacrypt’08, Herrmann and May [9] proposed an algorithm to find solutions
to linear equations modulo an unknown divisors p of a known composite integer
N , which can be also directly used in this scenario. Consider the multivariate
linear polynomial

f(x1, x2, . . . , xn) = a0 + a1x1 + a2x2 + · · ·+ anxn mod p

where ak = 2l if the k-th unknown blocks starts in the l-th bit position. For
simplicity, we assume that p and q are of the same bit-size, thus β = 1

r+1 .
Applying Theorem 2, the LLL algorithm recovers all roots with

n∑
i=1

γi ≤ 1− r(n+ 1)

r + 1
+ n(

r

r + 1
)

n+1
n − ε

If n is large, we obtain the limit of the above equation

lim
n→∞ (1− r(n + 1)

r + 1
+ n(

r

r + 1
)

n+1
n) =

1

r + 1
+

r

1 + r
ln(

r

1 + r
)

It shows that if we known a ln(1 + 1
r)

r-fraction of bits in p, we can recover the
unknown bits regardless of the number of unknown blocks n.

62 Y. Lu, R. Zhang, and D. Lin

Remark 1. For a fixed N and a growing r, the modulus should be, from an
information-theoretic point of view, easier to factor than standard modulo. How-
ever, Herrmann-May Method does not exploit the unbalanced relation between
p and q. On the other hand, though the BDH Method take the advantage of the
relation, but they do not extend the problem of factoring N = prq with known
bits to an arbitrary number of unknown blocks.

4 Our Results

In this section, we present our main theorem, which can be acquired via two
different approaches. We further analyze and compare our two approaches.

4.1 The Main Theorem

Our main result is summarized below.

Theorem 3. Let N be a sufficiently large composite integer (of unknown fac-
torization) with a divisor pr (p ≥ Nβ and an integer r ≥ 1). Let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a linear polynomial in n variables. Under Assumption 1, we can
find all the solutions (x01, . . . , x

0
n) of the equation f(x1, . . . , xn) = 0 (mod p) with∣∣x01∣∣ ≤ Nγ1 , . . . ,

∣∣x0n∣∣ ≤ Nγn if

n∑
i=1

γi <
1

r

(
1− (1 − rβ)

n+1
n − (n+ 1)(1− rβ)

(
1− n
√
1− rβ

))
The running time of the algorithm is polynomial in logN but exponential in n.

Remark 2. In Theorem 3 we require that the linear polynomial is monic with
respect to one of the variables, i.e., ai = 1 (1 ≤ i ≤ n). This is usually not a
restriction, since we could multiply f(a1, · · · , an) by a−1

i mod N . If this inverse
does not exist, we can factorize N .

The proof of Theorem 3 is postponed to Section 5. An immediate application of
Theorem 3 is to factorize N given bits of p. The following theorem shows that
the extreme case when n becomes very large.

Theorem 4. Let N = prq where p and q are of equal length. Suppose a ln(1+r)
r -

fraction of the bits are known for n blocks in p (n is large), then under Assump-
tion 1, we can recover p. The running time of the algorithm is polynomial in
logN but exponential in n.

Proof. We model this factoring with known bits problem as the multivariate
linear polynomial

f(x1, x2, . . . , xn) = a0 + a1x1 + a2x2 + · · ·+ anxn mod p

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 63

Table 1. Lower bounds for the fraction of known bits in p to factor N = prq

r 1 2 3 4 5 6 7 8 9 10

[9] 69.4% 81.1% 86.4% 89.3% 91.2% 92.5% 93.5% 94.3% 94.9% 95.4%

Ours 69.4% 55.0% 46.3% 40.3% 35.9% 32.5% 29.8% 27.5% 25.6% 24.0%

where ak = 2l if the k-th unknown blocks starts in the l-th bit position. Moreover,
if n goes to infinity, from Theorem 3, we have

lim
n→∞

(
1

r

(
1− (1− rβ)

n+1
n − (n+ 1)(1− rβ)

(
1− n
√
1− rβ

)))
=β +

(1 − rβ) ln(1− rβ)

r

It shows that if n is very large, we can recover p regardless of n. Conversely, once
a (

1− 1

rβ

)
ln(1− rβ)

fraction of the bits from p together with their positions are given, we are able to
recover the missing bits. Suppose that the bit length of |p| = |q|, i.e. β = 1

r+1 ,

we need a ln(r+1)
r -fraction of known bits from p. ��

For small r, we provide in Table 1 the lower bounds on the percentage of the
leakage of p. In particular, for r = 1, we obtain the same result as Herrmann
and May [9].

5 Proof of Theorem 3

We use two different approaches to prove Theorem 3: The first one is based on
the general strategy of finding small roots of a multivariate integer equation, and
the second one from the Herrmann-May method, where we extend the original
algorithm with additional using the algebraic property N ≡ 0 mod pr. Before
giving the detailed proofs, we prove a useful lemma.

Lemma 4 (Sarkar-Maitra [18]). For a large positive integer m, we have

m∑
k=0

kn =
1

n+ 1
mn+1 + o(mn+1)

Proof. Let S =
∑m

k=0 k
n, then

∫m
0
xndx < S <

∫m+1

1
xndx, therefore,

1

n+ 1
mn+1 < S <

1

n+ 1
(m+ 1)n+1

The claimed result can then be easily obtained. ��

64 Y. Lu, R. Zhang, and D. Lin

5.1 Our First Approach

Consider a polynomial defined over integers:

h(x1, · · · , xn+1) = N−f(x1, · · · , xn)rxn+1 = N − (a0+a1x1+ · · ·+anxn)
rxn+1

where xn+1 stands for N
pr . We try to find the small roots of h(x1, · · · , xn+1) by

defining a collection of shift polynomials

gi1,...,in+1(x1, . . . , xn+1) = xi11 · · ·xin+1

n+1h(x1, . . . , xn+1)

where xi11 · · ·xin+1

n+1 ∈ S for a set of monomials S, which is specified below:

S =
⋃

0≤∑n
i=1 ti≤m−tr

{xi1+t1
1 · · ·xin+tn

n x
in+1

n+1 | xi11 · · ·xinn xin+1

n+1 is monomial of ht}

Here t = τm, and we will optimize it later. We also define the set M as the set
of all polynomials that appeared in the shift polynomials. More precisely, S and
M can be described as follows:

xi11 · · ·xin+1
n x

in+1

n+1 ∈ S ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m,
i2 = 0, . . . ,m− i1,
. . . .

in = 0, . . . ,m−∑n−1
j=1 ij ,

in+1 = max{0, �
∑n

j=1 ij−m

r + t�}, . . . , t

xi11 · · ·xin+1
n x

in+1

n+1 ∈M ⇔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i1 = 0, . . . ,m+ r,
i2 = 0, . . . ,m+ r − i1,
. . . .

in = 0, . . . ,m+ r −∑n−1
j=1 ij,

in+1 = max{0, �
∑n

j=1 ij−m

r + t�}, . . . , t+ 1

Next we construct the matrix. Let s = |S| denote the total number monomials
belong to S and d = |M | − |S| denote the difference of the number of the
monomials belong to M and S.

The upper left d × d block is diagonal, where the rows represent the mono-
mials xi11 · · ·xinn xin+1

n+1 ∈ M \ S. The diagonal entry of the row corresponding to

xi11 · · ·xinn xin+1

n+1 is (X i1
1 · · ·X in

n X
in+1

n+1)
−1. The lower left s× d block contains only

zeros.
The last s columns of the matrix represent the shift polynomials gi1,...,in+1 ,

for xi11 · · ·xin+1

n+1 ∈ S. We define the polynomial order for our collection. Let
gi1,...,in+1 , gj1,...,jn+1 be two polynomials. If i1 + · · · + in > j1 + · · · + jn,
then order(gi1,...,in+1) < order(gj1,...,jn+1), if i1 + · · · + in = j1 + · · · + jn then
order(gi1,...,in+1) < order(gj1,...,jn+1) ⇔ in+1 > jn+1. If we sort the polynomial
according to this order, we obtain an upper triangular lattice. A lattice L for
the case (n, r, t,m) = (1, 2, 1, 3) is depicted in Figure 1.

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 65

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3
1x2h x2

1x2h x1x2h x1h x2h h
x5
1x

2
2 ∗ −a2

1

x4
1x

2
2 ∗ 2a0a1 −a2

1

x3
1x

2
2 ∗ −a2

0 2a0a1 −a2
1

x2
1x

2
2 ∗ −a2

0 2a0a1 −a2
1

x1x
2
2 ∗ −a2

0 2a0a1

x2
2 ∗ −a2

0

x3
1x2 N −a2

1

x2
1x2 N 2a0a1 −a2

1

x1x2 N −a2
0 2a0a1

x1 N
x2 N −a2

0

1 N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. The Matrix for the case n = 1, r = 2, t = 1, m = 3

It is easy to see, the determinate of the lattice L is

det(L) = Ns ·
∏

x
i1
1 ···xin+1

n+1 ∈M\S

(xi11 · · ·xin+1

n+1)
−1 = Ns

n+1∏
i=1

X−si
i

For the lattice attack to work, we require the enabling condition det(L) > 1.
Here, we denote si as the contribution ofXi to the determinant. Next we compute
the above unknowns.

First we compute the value of s.

s = |S| =
∑

0≤∑
n
j=1 ij≤m

t∑
in+1=max{0,�

∑n
j=1

ij−m

r +t�}

1

= (t+ 1)
∑

0≤∑n
j=1 ij≤m

1 +
∑

m−tr≤∑n
j=1 ij≤m

−�
∑n

j=1 ij −m

r
+ t�

= (t+ 1)
∑

0≤∑
n
j=1 ij≤m

1−
t∑

k=1

∑
m+(k−t−1)r<

∑
n
j=1 ij≤m+(k−t)r

k

= (t+ 1)

(
m+ n

m

)
−

t∑
k=1

k

(
m− tr + kr + n

m− tr + kr

)

+

t∑
k=1

k

(
m− tr + (k − 1)r + n

m− tr + (k − 1)r

)

66 Y. Lu, R. Zhang, and D. Lin

=
t∑

k=0

(
m− tr + kr + n

m− tr + kr

)

≈
t∑

k=0

(m− tr + kr)n

n!

=
1− (1− τr)n+1

r(n+ 1)!
mn+1 + o(mn+1) (Using t = τm)

Following we compute the value of si (1 ≤ i ≤ n).

s1 = · · · = sn

=
∑

0≤∑
n
j=1 ij≤m+r

t+1∑
in+1=max{0,�

∑n
j=1

ij−m

r +t�}

i1

−
∑

0≤∑n
j=1 ij≤m

t∑
in+1=max{0,�

∑n
j=1

ij−m

r +t�}

i1

=
∑

0≤∑
n
j=1 ij≤m+r

i1

=

(
m+ r + n

m+ r − 1

)
≈ 1

(n+ 1)!
mn+1 + o(mn+1)

At last we compute the value of sn+1.

sn+1

=
∑

0≤∑
n
j=1 ij≤m+r

t+1∑
in+1=max{0,�

∑n
j=1

ij−m

r +t�}

in+1

−
∑

0≤∑
n
j=1 ij≤m

t∑
in+1=max{0,�

∑n
j=1

ij−m

r +t�}

in+1

= (t+ 1)
∑

0≤∑n
j=1 ij≤m+r

1

= (t+ 1)

(
m+ r + n

m+ r

)
≈ τ

n!
mn+1 + o(mn+1) (Using t = τm)

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 67

Using the values together with the upper bounds Xi = Nγi(1 ≤ i ≤ n),
Xn+1 = N1−rβ on the variables in the usual enabling condition det(L) > 1, we
obtain the condition

n∑
i=1

γi <
1

r

(
1− (1− τr)

n+1
)
− τ(n+ 1)(1− rβ)

Setting τ = 1− n
√
1−rβ
r , the condition reduces to

n∑
i=1

γi <
1

r

(
1− (1 − rβ)

n+1
n − (n+ 1)(1− rβ)

(
1− n
√
1− rβ

))
The running time is dominated by LLL reduction, which is polynomial in the
dimension of the lattice and in the bitsize of the entries. Recall that our lattice’s
dimension is O(mn+1) and the product X i1

1 · · ·X in+1

n+1 is upper bound by 2mlogN
(
∑n

j=1 ij ≤ m, in+1 ≤ t, and Xi < N(1 ≤ i ≤ n + 1)), therefore, the total
running time for this algorithm is polynomial in logN but exponential in n.

Remark 3. We also analyze the integer polynomial h(x1, · · · , xn+1) using
Jochemsz and May’s [11] strategy, and obtained the same asymptotic bounds.
Here we adopt the Coppersmith method because of its major practical advan-
tage, which has been pointed out in [11].

5.2 Our Second Approach

We will prove Theorem 3 by making a small twist to the Herrmann-May method.
They proposed a heuristic lattice-based algorithm for finding small solutions of
linear modular polynomial f(x1, · · · , xn) = a0+a1x1+ · · ·+anxn mod p. In our
method, we make additional use of the fact that N ≡ 0 mod pr.

We define the following collection of polynomials which share a common root
modulo pt

gi2,...,in,k = xi22 · · ·xinn fkNmax{� t−k
r �,0}

where ij ∈ {0, . . . ,m} such that
∑n

j=2 ij ≤ m − k, and the parameter t = τm
has to be optimized. For comparison, we give the definition of Herrmann-May’s
collection of polynomials

gi2,...,in,k = xi22 · · ·xinn fkNmax{t−k,0}

The idea behind the above transformation is that we try to eliminate powers of
N in the diagonal entries in order to keep the lattice determinant as small as
possible.

Next we can construct the lattice L using the similar method of Herrmann-
May, therefore, the lattice has triangular form, then the determinant det(L) is
then simply the product of the entries on the diagonal:

det(L) =
n∏

i=1

X
sxi

i NsN

68 Y. Lu, R. Zhang, and D. Lin

Let d denote the dimension of L, t = r · h + c (h, c ∈ Z and 0 ≤ c < r). A
straightforward but tedious computation yields that

sxi =

(
m+ n

m− 1

)
=

1

(n+ 1)!
mn+1 + o(mn+1)

sN =

t−1∑
k=0

∑
0≤∑

n
j=2 ij≤m−k

� t− k

r
�

=

h∑
i=1

t−ir+r−1∑
k=t−ir

∑
0≤∑

n
j=2 ij≤m−k

i+

c−1∑
k=0
c≥1

∑
0≤∑

n
j=2 ij≤m−k

(h+ 1)

=
h∑

i=0

t−1−ir∑
k=0

∑
0≤∑n

j=2 ij≤m−k

1

=
(n+ 1)τ − 1 + (1− τ)n+1

(n+ 1)!r
mn+1 + o(mn+1)

d =

(
m+ n

m

)
=

1

n!
mn + o(mn)

By ignoring the low-order terms, the necessary condition to obtain n equations
over integer from Lemma 2 is given by

det(L) 1
d−n+1 < Nβτm

Let Xi = Nγi(1 ≤ i ≤ n). Combining the values with the above condition, we
obtain

n∑
i=1

γi <
1

r

(
1− (1− τ)

n+1
)
− τ(n+ 1)(

1

r
− β)

By setting τ = 1− n
√
1− rβ, the condition reduces to

n∑
i=1

γi <
1

r

(
1− (1 − rβ)

n+1
n − (n+ 1)(1− rβ)

(
1− n
√
1− rβ

))
The running time is dominated by LLL reduction, therefore, the same as the
first approach, the total running time for this approach is polynomial in logN
but exponential in n.

Remark 4. Our second approach is quite different from the BDH Method of 3.1
[2]. For comparison, our method is converted to find small roots of a univariate
linear modular polynomial, whereas the BDH Method’s target is a univariate
modular polynomial of degree r. It is easy to see that our method is simpler and
more effective.

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 69

Table 2. Comparisons of performances of our methods for different r and n

r n β
Method of Sec. 5.1 Method of Sec. 5.2

(m, t) dim(L) ∑n
i=1 δi (m, t) dim(L) ∑n

i=1 δi
2 2 1/3 (10,2) 139 0.1318 (15,6) 136 0.1500

2 2 1/3 (14,2) 277 0.1519 (20,8) 231 0.1597

2 3 1/3 (6,1) 119 0.0272 (7,2) 120 0.0761

2 3 1/3 (8,1) 249 0.0815 (9,2) 220 0.0942

3 2 1/4 (10,1) 102 0.1087 (12,6) 91 0.1030

3 2 1/4 (15,2) 282 0.1223 (20,10) 231 0.1271

5.3 Discussions

We present two different approaches to prove our main theorem. They both
get the same asymptotic bounds, however, for a fixed lattice parameter d, their
performances are significantly different. Table 2 gives some comparisons of two
methods for small r, n.

One can observe that for the same scale of d, the method of 5.2 offers better
theoretical results than the method of 5.1. The reason is that the method of
5.2 uses Herrmann-May’s idea for solving modular polynomial equation, while
the method of 5.1 uses the generalized strategy for solving integer polynomial
equation. Thus the lattice dimension in the method of 5.1 is O(mn+1) in a certain
parameters while that of the method of 5.2 is O(mn), therefore, the method of
5.2 is more effective in practice.

We found several examples for the similar phenomenon in previous literature:
Boneh-Durfee [1] showed that the secret key d can be recovered from (e,N) in
polynomial-time if d < N0.284 by solving a modular polynomial equation, while
Ernst et al. [6] obtained the same bound by solving an integer polynomial equa-
tion; Ernst et al. [6] studied the problem of partial key exposed attack attacks on
RSA, which utilizes the strategy of finding small root of the integer polynomial
equation, while Sarkar et al. [19] offered the same asymptotic result as [6] for
certain range using a modular polynomial equation. These showed that com-
pared with the method of integer version, modular version has great advantage:
obtaining better upper bounds ([1] improved to N0.292), and better practical
performances at the same cost (see [19] and our comparisons of two methods).
However, the integer version also has strengths in some respects: irreplaceability
by modular version (see [12]), and a broader range of solvable parameters ([6]
and [19]). All the results enlighten us on how to choose the proper method in
different situations. Moreover, the relation between these two methods is not
clear yet, and we believe that many interesting facts are still hidden.

We show that for cryptographic applications, the RSA variant with modulus
N = prq should be used with more care. In particular, we show that less bits
are sufficient to factorize N as r grows. In the case of the p and q with 1024 bits,

70 Y. Lu, R. Zhang, and D. Lin

when r = 2, we should know 564 bits of p to factorize N , but when r = 4, we
only require 413 bits of p for factorization. Thus, based on our analysis, it seems
secure to use r = 2 rather than r = 4.

6 Conclusion

We propose two heuristic lattice-based approaches to find small roots of linear
modular polynomials f(x1, . . . , xn) = a0 + a1x1 + · · ·+ anxn mod p, where p is
an unknown divisor of some known N and N ≡ 0 mod pr. A direct implication
of this results is factorization of multi-power RSA modulus N = prq with given

bits of p. We show that the knowledge of a ln(1+r)
r -fraction of the bits of p is

sufficient to get the factorization. However, similar to [9], the running time of our
algorithm heavily depends on the number of unknown blocks n, to be specific,
our algorithm is polynomial-time only for n = O(log log N) blocks.

Acknowledgments. We would like to thank the anonymous reviewers for help-
ful comments. This work is supported by the National 973 Program of China
under Grant No. 2011CB302400, IIEs Research Project on Cryptography under
Grant No. Y3Z001C102, One Hundred Talents Project of the Chinese Academy
of Sciences under Grant No. NSFC61100225, the Strategic Priority Research
Program of the Chinese Academy of Sciences under Grant No. XDA06010701.

References

1. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than n0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

2. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring n = prq for large r.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337. Springer,
Heidelberg (1999)

3. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA

vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)
5. The EPOC and the ESIGN Algorithms. IEEE P1363: Protocols from

Other Families of Public-Key Algorithms (1998), http://grouper.ieee.org/

groups/1363/StudyGroup/NewFam.html

6. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

7. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Communications of the ACM 52(5), 91–98 (2009)

8. Herrmann, D.I.M.: Lattice-based Cryptanalysis using Unravelled Linearization.
PhD thesis (2011)

9. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

http://grouper.ieee.org/groups/1363/StudyGroup/NewFam.html
http://grouper.ieee.org/groups/1363/StudyGroup/NewFam.html

Factoring Multi-power RSA Modulus N = prq with Partial Known Bits 71

10. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

11. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

12. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than n0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4), 515–534 (1982)

14. May, A.: New RSA vulnerabilities using lattice reduction methods. PhD thesis
(2003)

15. May, A.: Using lll-reduction for solving RSA and factorization problems. In: The
LLL algorithm, pp. 315–348 (2010)

16. Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,
Heidelberg (1998)

17. Rivest, R.L., Shamir, A.: Efficient factoring based on partial information. In:
Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer,
Heidelberg (1986)

18. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one decryption expo-
nent. Information Processing Letters 110(8), 336–340 (2010)

19. Sarkar, S., Sen Gupta, S., Maitra, S.: Partial key exposure attack on RSA –
improvements for limited lattice dimensions. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 2–16. Springer, Heidelberg (2010)

20. Takagi, T.: Fast rsa-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

Toward Separating the Strong Adaptive

Pseudo-freeness from the Strong RSA
Assumption

Masayuki Fukumitsu, Shingo Hasegawa, Shuji Isobe,
Eisuke Koizumi, and Hiroki Shizuya

Graduate School of Information Sciences, Tohoku University,
41 Kawauchi, Aoba-ku, Sendai, 980–8576 Japan

fukumitsu@isl.is.tohoku.ac.jp,

{hasegawa,iso,koizumi,shizuya}@cite.tohoku.ac.jp

Abstract. The notion of pseudo-freeness of a group was introduced
by Hohenberger, and formalized by Rivest in order to unify crypto-
graphic assumptions. Catalano, Fiore and Warinschi proposed the adap-
tive pseudo-free group as a generalization of pseudo-free group. They
showed that the RSA group Z×

N is pseudo-free even if the adversary
against pseudo-freeness is allowed to operate adaptively, provided that
the adaptive behavior of the adversary is restricted by some specific
parametric distribution. They also proposed the notion of strong adap-
tive pseudo-freeness in which the adaptive behavior of the adversary is
not restricted. However, it remains open whether Z×

N is also strongly-
adaptive pseudo-free under the strong RSA (SRSA) assumption.

In this paper, we give a negative circumstantial evidence for the ques-
tion. We show that the SRSA assumption does not imply the strong
adaptive pseudo-freeness of Z×

N , as far as the algebraic reduction is con-
cerned. The algebraic reduction means that the algorithm of the black-
box reduction performs only group operations for elements in Z×

N . Our
result indicates that the strong adaptive pseudo-freeness for the RSA
group Z×

N cannot be shown under the SRSA assumption, by employing
only current proof techniques which are used in ordinary security proofs.

1 Introduction

Background. The notion of pseudo-free group was originally introduced by
Hohenberger [17], and formalized by Rivest [24] for unifying cryptographic as-
sumptions. Intuitively, a family {GN} of computational groups is pseudo-free
if {GN} is indistinguishable from free groups F(A) generated by a set A =
{a1, a2, . . . , am} of polynomially many symbols. Rivest [24] showed that several
cryptographic assumptions including the RSA assumption [23], the discrete log-
arithm (DL, for short) assumption [12] and the strong RSA (SRSA, for short)
assumption [5,13] hold on pseudo-free groups.

The indistinguishability of pseudo-free groups is described by using equations
over F(A). A family {GN} is pseudo-free if there exists no probabilistic polyno-
mial time (PPT, for short) adversary A that on a given pair (N,α) of a group

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 72–87, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Toward Separating the Strong Adaptive Pseudo-freeness 73

index N and an assignment α : A −→ GN which interprets the symbols in A as
elements in GN , tries to find a witness pair (λ, ψ) of an equation λ and a solution
ψ such that λ has no solution over the free group F(A), but the corresponding
equation λα has a solution ψ over GN , where λα is determined uniquely via the
assignment α. Existence of such a pair (λ, ψ) witnesses that GN is not a free
group, since λα should have no solution if GN is a free group.

Rivest [24] proposed a question whether one may extend the pseudo-freeness
so that it can deal with adaptive adversaries. For this question, Catalano, Fiore
and Warinschi [10] introduced the notion of the adaptive pseudo-free group,
which is defined by a security game between a challenger and an adversary. Their
adaptive pseudo-freeness means that there exists no PPT adversary that on a
given game pair (N,α) determined by the challenger, cannot output a witness
pair (λ, ψ) as in the Rivest’s static setting even if the adversary is allowed to
adaptively receive a solution of equation queries. Here, the “adaptive” behavior
of the adversary is restricted in the sense that the adversary is not allowed to
unrestrainedly choose equations to be solved, but those are chosen according to
some specified parametric distribution ρ over the set of possible queries. Namely,
on an input parameter M sent from the adversary, the challenger chooses an
equation according to the distribution ρ(M), and replies the equation and the
corresponding solution to the adversary. In [10], they showed that the RSA group
Z×
N is adaptive pseudo-free under the SRSA assumption for some specific class

of parametric distributions as in the static case [19,20].
They also proposed the notion of strong adaptive pseudo-freeness in [10], in

which the adaptive behavior of the adversary is not restricted. However, it is not
known that there exists an example of strongly-adaptive pseudo-free groups. In
particular, it remains open whether or not Z×

N is strongly-adaptive pseudo-free,
whereas Z×

N is shown to be adaptive pseudo-free under the SRSA assumption.

Contribution. In this paper, we give a negative circumstantial evidence for the
open question. We formalize the strong adaptive pseudo-freeness in a reasonable
setting, and show that the SRSA assumption does not imply the strong adaptive
pseudo-freeness of the RSA group Z×

N , as far as the black-box algebraic reduction
(algebraic reduction, for short) is concerned. Informally, an algorithm is said to be
algebraic with respect to a group G if the algorithm performs only group opera-
tions for elements inG and its execution can be easily traced. In particular, on any
given input elements y1, . . . , yn ∈ G, any element g ∈ G computed in the execu-
tion of the algorithm belongs to the subgroup 〈y1, . . . , yn〉 generated by the input
elements, andmoreover the expression g =

∏n
i=1 y

ci
i should be easily retrieved.We

note that employing algebraic algorithms is not of exceedingly restricted setting,
because most reductions concerning the pseudo-free group [10,18,19,20], and ordi-
nary security proofs (e.g. [21,22]) are performedonalgebraic algorithms.Our result
means that the strong adaptive pseudo-freeness for the RSA group Z×

N cannot be
shown under the SRSA assumption, by employing only current proof techniques
which are used in ordinary security proofs. Comparing the result of [10], our result
can be seen as a circumstantial evidence that the adaptive behavior of the pseudo-
free adversary should be restricted in some sense.

74 M. Fukumitsu et al.

Overview. We here describe the outline of the proof of our result. We show that
if the SRSA assumption implies the strong adaptive pseudo-freeness of Z×

N , then
the SRSA assumption fails. We follow Micciancio’s setting [19,20], namely for an
SRSA instance (N, y), N is a product of distinct safe primes, and y is restricted
to quadratic residues modulo N . As for equations, we only consider univariate
equations over the free abelian group F(A) generated by a set A = {ai}mi=1 of
polynomially many symbols as in [10]. Namely any equation λ in a variable x is
expressed as xe =

∏m
i=1 a

si
i for some exponents e, s1, . . . , sm ∈ Z.

We firstly explain the situation where the SRSA assumption implies the strong
adaptive pseudo-freeness of the RSA group Z×

N . This situation is expressed by a
black-box reduction R that breaks SRSA with a black-box access to an adversary
A that violates the strong adaptive pseudo-freeness of Z×

N . R plays the security
game concerning strong adaptive pseudo-freeness in which R is the challenger.
If such an adversary A exists, R should behave as follows. On any given SRSA
instance (N, y), R aims to find a solution (x,E) such that xE ≡ y (mod N) by
exploiting the adversaryA.R generates an assignment α : A −→ Z×

N by choosing
α(a) uniformly at random from the group QRN of quadratic residues mod N
for each a ∈ A following the setting in [10,19,20]. Then R gives the game pair
(N,α) toA.A adaptively queries an equation λ : xe =

∏m
i=1 a

si
i to the challenger,

namely R, at most polynomially many times. For each equation query, R should
reply a solution ψ over Z×

N for the interpreted equation λα : xe =
∏m

i=1 α(ai)
si

of λ to A. Eventually, A outputs a witness pair (λ∗, ψ∗) of a nontrivial equation

λ∗ : xe
∗
=
∏m

i=1 a
s∗i
i together with a solution ψ∗ of the interpreted equation

λ∗α : xe
∗
=
∏m

i=1 α(ai)
s∗i over Z×

N . By using (λ∗, ψ∗), R finds a solution for the
SRSA instance (N, y).

In the security game of the strong adaptive pseudo-freeness, we consider some
reasonable settings as follows. The first one is that R always replies a trivial
solution if a queried equation from A has a trivial solution. The second is that
if R fails to find a correct answer for some queried equation despite that it has
a solution over Z×

N , A aborts and outputs the special symbol ⊥ as in [9].
When R is algebraic with respect to QRN , all elements in QRN produced in

the execution of R belong to the subgroup 〈y〉 generated by the instance y ∈
QRN given to R. Then each element α(ai) ∈ QRN is expressed as α(ai) = ydi

for some integer di ∈ Z. Therefore, for any queried equation λ : xe =
∏m

i=1 a
si
i

from A, the interpreted equation λα : xe =
∏m

i=1 α(ai)
si is of the form xe = yD

over Z×
N , where e, s1, . . . , sm ∈ Z and D =

∑m
i=1 sidi.

We shall construct a meta-reduction M that breaks SRSA. Recall that if a
strongly-adaptive pseudo-free adversary A exists, then the algorithm R can find
a solution for SRSA by using A. We therefore consider a PPT algorithm SimA
that simulates the strongly-adaptive pseudo-free adversary A, or that looks for
a solution (x,E) for an SRSA instance (N, y) during its execution. M aims to
break SRSA by executing R and SimA. The idea for the construction of SimA
is as follows. Recall that the interpreted equation λα for any equation query
λ : xe =

∏m
i=1 a

si
i from the adversary SimA is expressed as xe = yD, where

D =
∑m

i=1 disi, provided that R is algebraic. Suppose that for the equation

Toward Separating the Strong Adaptive Pseudo-freeness 75

λ, the interpreted equation λα : xe = yD has a solution and e � D. In this
case, if SimA queries the equation λ to the challenger R and receives a correct
solution ψ ∈ Z×

N for λα, then it can easily find a solution (x,E) for the given
SRSA instance (N, y) [20]. Thus it suffices that one can efficiently construct such
equations. The construction of equations is as follows. Let P ′ and Q′ be distinct
primes such that P = 2P ′ + 1 and Q = 2Q′ + 1 for the RSA modulus N = PQ.
We aim to find an exponent e such that e ∈ Z×

P ′Q′ and e is strictly greater than

|D|, the absolute value of D. Then we see that e � D, and the element yDe−1

is a
solution for the equation xe = yD since y ∈ QRN and the order of QRN is P ′Q′.

Related Works

Pseudo-free Groups. One of the open questions posed in [24] is whether there
exists an example of the pseudo-free group. For this question, Micciancio [19,20]
showed that the RSA group Z×

N is pseudo-free under the SRSA assumption.
Jhanwar and Barua [18] showed the pseudo-freeness for Z×

N under a condi-
tion slightly different from Micciancio’s one. Anokhin [4] constructed a class
of pseudo-free groups under the integer factoring assumption.

In [15,16], some variants of pseudo-free groups has been studied. Hasegawa,
Isobe, Shizuya and Tashiro [15] also showed that the computational Diffie-
Hellman assumption [24] holds on pseudo-free groups in some varied form.

Catalano, Fiore and Warinschi [10] constructed a secure signature scheme
based on the adaptive pseudo-free groups. Their signature scheme is the first
direct cryptographic application of the pseudo-free groups.

Algebraic Algorithms. Paillier and Vergnaud [21] introduced the notion of
algebraic reduction to show an impossibility result for the universal unforgeabil-
ity against the key only attack of the Schnorr’s signature [25] under the DL
assumption in the standard model. There are some impossibility results showed
by using the algebraic reduction. Bresson, Monnerat and Vergnaud [9] showed
the separation among the One-More DL problems [6,7]. Abe, Groth and Ohkubo
[1] showed an impossibility result for the existential unforgeability against the
chosen message attack of the structure-preserving signatures over bilinear groups
under non-interactive assumptions. Abe, Haralambiev and Ohkubo [2] also stud-
ied the relationship between the length of the key and that of the commitment
for the commitment schemes over bilinear groups.

The algebraic reduction is also used to show a lower bound for a loss factor
of security reduction of the Schnorr’s signature under the DL assumption in the
random oracle model [21,14,26]. Villar [27] showed a lower bound for the loss
factor, of reduction algorithms that solves the decisional Diffie-Hellman problem
[8] with access to an adversary solving the rank problem.

2 Preliminaries

A prime P is safe if P = 2P ′ + 1 for some prime P ′. Let Nsafe
RSA be the set

of all RSA composites N = PQ such that P and Q are distinct safe primes.

76 M. Fukumitsu et al.

We assume that there are infinitely many safe primes. Although it is open
whether or not this assumption holds, this assumption is widely believed to hold,
e.g. [3]. For any N ∈ N, we use ZN and Z×

N to denote the residue ring Z/NZ and
its group of units, respectively. QRN designates the group of quadratic residues
mod N .

We write x ∈R X to denote that x is chosen uniformly at random from the
finite set X . A function ν(k) is negligible if for any polynomial μ, there exists a
constant k0 such that ν(k) < 1/μ(k) for any k ≥ k0. Throughout this paper, k
indicates a security parameter.

2.1 Pseudo-free Groups

Computational Groups [24]. Let {GN}N∈N be a family of finite groups in-
dexed by an index set N = ∪k≥0 N (k). We assume that each group index
N ∈ N (k) and each element of GN are expressed by words of polynomial length
in k, respectively. {GN}N∈N is said to be a family of computational groups if
its group operations such as the composition (i.e. the group law) and the sam-
pling can be efficiently executed. Note that the sampling is not necessarily uni-
form probability distribution. For the more formal definition, refer to [19,20,24].
Throughout this paper, we assume that GN is abelian for any N ∈ N .

Free Abelian Groups. Let A = {a1, a2, . . . , am} be a finite set of distinct sym-
bols. For the setA, a new symbol setA−1 is defined byA−1 =

{
a−1
1 , a−1

2 , . . . , a−1
m

}
.

We denote by F(A) the free abelian group generated by the set A. The set A is
called the set of generators. For the detail, refer to [10,15,20,24].

Equations Over Groups. We consider only univariate equations over a free
abelian group F(A) as in [10]. Let x be a variable. An equation in x with symbols
in A is a pair λ = (w1, w2), where w1 is a word of the form xe with some exponent
e ∈ N, and w2 is a word over A of finite length. Since F(A) is abelian, we may
assume that w2 is expressed in a way that w2 =

∏m
i=1 a

si
i with some exponents

s1, s2, . . . , sm ∈ Z. Then we write the equation λ = (w1, w2) by xe =
∏m

i=1 a
si
i .

We express the equation λ : xe =
∏m

i=1 a
si
i with the tuple (e, s) of exponents,

where s = (s1, s2, . . . , sm). Equations that have solutions in F(A) are trivial,
others are nontrivial. The triviality of an equation xe =

∏m
i=1 a

si
i can be easily

verified by the following lemma.

Lemma 1 ([24]). An equation xe =
∏m

i=1 a
si
i is trivial over F(A) if and only

if e | si for any 1 ≤ i ≤ m.

Let G be any abelian group, and let α : A −→ G be an assignment map that
interprets each symbol a ∈ A to a group element α(a) ∈ G. We write λα for the
equation λ : xe =

∏m
i=1 a

si
i interpreted over G via α, namely λα is the equation

xe =
∏m

i=1 α(ai)
si over G. ψ ∈ G is a solution for λα if ψe =

∏m
i=1 α(ai)

si holds.

Pseudo-Freeness. A family {GN}N∈N is pseudo-free if for any set A of polyno-
mial size in k, there exists no PPT adversary A that on a pair (N,α) of a group
index N ∈ N (k) and an assignment α : A −→ GN , outputs a witness pair (λ, ψ)

Toward Separating the Strong Adaptive Pseudo-freeness 77

of an equation λ and a solution ψ such that λ is nontrivial over F(A) but λα
has a solution ψ over GN , with nonnegligible probability, where the probability
is taken over the random choice of N ∈ N (k), that of α(a) according to the
designated sampling algorithm over GN for each a ∈ A, and the coin flips of A.

2.2 Strongly-Adaptive Pseudo-free Groups

Catalano, Fiore andWarinschi [10] introduced the notion of the adaptive pseudo-
freeness as a generalization of the Rivest’s “static” pseudo-freeness in order to
handle adaptive adversaries. Intuitively, the adaptive pseudo-freeness means that
no PPT adversary outputs a witness pair (λ, ψ) as in the static case with non-
negligible probability, even if he is allowed to adaptively receive a solution of a
queried equation polynomially many times. In their setting, the queried equa-
tions are chosen according to some specified parametric distribution. They also
informally define in [10] the strong adaptive pseudo-freeness in a way that there
is no such restriction, namely the adversary is allowed to freely choose his queries.
Following [10], we formally define the strong version of adaptive pseudo-freeness
by the strongly-adaptive pseudo-free (SAPF, for short) game.

Before defining the game, we need to formalize the triviality of an equation
that the adversary outputs in the adaptive setting [10]. In the static setting, the
adversary is only required to output an equation that has no solution over F(A).
However, the adaptive setting requires a more sophisticated treatment, because
the adversary has already learned some pairs of an equation and its solution via
his adaptive queries. Intuitively, an equation λ∗ (output by the adversary) is
trivial with respect to the queried equations set Λ =

{
λ(1), λ(2), . . . , λ(q)

}
if λ∗

can be efficiently derived from the equations in Λ by using the group laws and
some basic algebraic procedures. For the detail, refer to Section 3.2 of [10]. We
note that when Λ = ∅, the triviality of equations is exactly equivalent to that in
the static case.

The Strongly-Adaptive Pseudo-free Game. The SAPF game between the
challenger and the adversary is a variant of the adaptive pseudo-free game de-
fined in [10]. Let G = {GN}N∈N be a computational group family and A =
{a1, a2, . . . , am} be a set of m = poly(k) symbols.

Setup. The challenger chooses a group index N ∈ N (k) at random. Then, he
sets an assignment α : A −→ GN by choosing an element α(a) ∈ GN at random
according to the designated sampling algorithm. The adversary is given the game
pair (N,α) of the descriptions of GN and the assignment α.

Equations queries. The adversary A is allowed to adaptively query to the chal-
lenger on equations, and to receive their solutions. For each t-th query, A chooses
an arbitrary equation λ(t) = (et, s

t) and hands it to the challenger. The chal-

lenger returns a correct solution ψt ∈ GN for the interpreted equation λ
(t)
α :

xet =
∏m

i=1 α(ai)
sti to the adversary.

Challenge. The adversary outputs a witness pair (λ∗, ψ∗) of an equation λ∗ =
(e∗, s∗) and a solution ψ∗ of the interpreted equation λ∗α overGN . The challenger

78 M. Fukumitsu et al.

outputs 1 if λ∗ is nontrivial with respect to Λ, the set of queried equations and
corresponding solutions appeared in Equations queries phase, and ψ∗ is a correct
solution for λ∗α.

An adversaryA is said to (q, εA)-win the strongly-adaptive pseudo-free (SAPF,
for short) game for the family G if Amakes at most q queries, and the probability
that the challenger outputs 1 in the game is at least εA, where the probability is
taken over the random choices of the indexN ∈ N (k) and the element α(a) ∈ GN

for each a ∈ A, and the coin flips of A.

Definition 1 (Strongly-Adaptive Pseudo-Free Groups). A family G of
computational groups is strongly-adaptive pseudo-free, if for any set A of poly-
nomial size in k, any polynomial q in k, and any nonnegligible function εA in k,
there exists no PPT adversary A that (q, εA)-wins the SAPF game for G.
Remark: In the adaptive pseudo-free game given in [10], the equation queries of
the adversary A is determined by some specific parametric distribution. On the
other hand, in the SAPF game, A can freely choose his queries. It is therefore
necessary to consider the situation where A queries an equation which has no
solution over GN . In this paper, we assume that the challenger outputs the
special symbol ⊥ provided that a queried equation has no solution over GN .

2.3 Algebraic Algorithms

The concept of algebraic algorithm was introduced by Paillier and Vergnaud
[21]. Intuitively, an algorithm R is algebraic with respect to a computational
group G if R performs only the group operation for the elements in G and
the execution of R can be easily traced. In particular, on any input elements
y1, . . . , yn ∈ G, any element g ∈ G computed in the execution of R belongs to
the subgroup 〈y1, . . . , yn〉 generated by the input elements, and moreover the
expression g =

∏n
i=1 y

ci
i should be easily retrieved.

We follow the formal definition given in [26]. An algorithm R is algebraic
for a computational group family {GN}N∈N , if the following algorithm Extract
is provided. Extract receives any tuple (N, y1, . . . , yn, aux, g, ω) as input, where
N ∈ N is a group index, y1, . . . , yn ∈ GN are elements that are given to R as
input, aux is any word given to R as an auxiliary input, g ∈ GN is a target group
element and ω denotes a random coin used in R. Then Extract finds a tuple
(c1, . . . , cn) of exponents such that g =

∏n
i=1 y

ci
i , provided that g is actually

produced in the execution of R on the input tuple (N, y1, . . . , yn, aux) with the
random coin ω. If there is no correct exponents (c1, . . . , cn), then Extract may
output any word. Extract is required to run in polynomial time in the running
time of R. In particular, if R runs in polynomial time in the security parameter
k, then Extract should run in polynomial time in k.

We consider an algebraic algorithm R that has an access to an oracle A. We
assume that Extract correctly computes a tuple (c1, . . . , cn) for the given target
g ∈ GN that is produced after the t-th query if all the correct answers for the
previous t queries are provided as a part of the auxiliary input aux. Note that if

Toward Separating the Strong Adaptive Pseudo-freeness 79

the target element g ∈ GN is produced before the first query, it is not required
to provide any additional inputs to Extract as in [9].

2.4 Strong RSA Assumption

An RSA modulus generator GenMod outputs a k-bit RSA composite N ∈ Nsafe
RSA

on each input 1k. We follow the setting of [10,11,20] that N is restricted to a
product of two distinct safe primes. The SRSA assumption is defined as follows:

Definition 2 (Strong RSA). A probabilistic algorithm A ε-breaks SRSA if

Pr
[
xE ≡ y (mod N) : N ← GenMod(1k), y ∈R QRN , (x,E) ← A(N, y)

] ≥ ε,

where x ∈ Z×
N and E > 1 is a natural number, and the probability is taken over

the coin flips of GenMod and A, and the uniformly random choice y from QRN .
The pair (N, y) is called an SRSA instance. Then, the strong RSA (SRSA, for
short) assumption holds if for any nonnegligible function ε, there exists no PPT
algorithm A that ε-breaks SRSA.

We can restrict ourselves to the case where y is an element in quadratic residues
modN . Cramer and Shoup [11] mentioned that this is not an essential restriction
by showing that breaking the SRSA assumption for y ∈ QRN implies breaking
the SRSA assumption for an arbitrary y ∈ Z×

N . We employ the following lemma.

Lemma 2 ([20]). Let N ∈ Nsafe
RSA be any k-bit RSA composite. Let e and D be

any integers of binary length at most polynomial in k, and let ψ ∈ Z×
N and y ∈

QRN such that ψe ≡ yD (mod N). If e � D, then a pair (x,E) such that xE ≡ y
(mod N) can be found in polynomial time in k on the tuple (N, e,D, ψ, y).

3 Main Theorem

In this section, we show that the SRSA assumption does not imply the strong
adaptive pseudo-freeness for the family

{
Z×
N

}
=
{
Z×
N

}
N∈N of the RSA groups

with respect to the algebraic reduction, where N = Nsafe
RSA. In this paper, we

adopt any sampling algorithm for the family
{
Z×
N

}
which chooses an element

g ∈ QRN at random in a way that the probability distribution is statistically
close to the uniform distribution. For example, if a generator y of QRN is fixed,
then such a sampling algorithm can be easily done by choosing an exponent
d ∈R {i}B−1

i=0 with sufficiently large B and set g = yd. (See Lemma 2 of [20].)
Before stating the main result, we give a remark on the strong adaptive

pseudo-freeness of the RSA groups
{
Z×
N

}
. In Equations queries phase of the

SAPF game, the adversary is allowed to choose an equation query arbitrarily.
However, for Z×

N , this setting does not seem to work properly without care.
For example, assume that the adversary A queries the equation (2, (2, 0, . . . , 0)),
namely x2 = a21, and receives a solution c ∈ Z×

N such that c 	= ±α(a1). Then A

80 M. Fukumitsu et al.

can easily factor N . Once N is factored, the adversary can easily find a witness
pair (λ∗, ψ∗). Therefore, Z×

N would not be strongly-adaptive pseudo-free in the
strict sense. In this paper, we exclude such a situation. Instead, for any equation
query λ : xe =

∏m
i=1 a

si
i , the challenger is assumed to return a canonical solution

ψ′ for the interpreted equation λα, namely ψ′ is a solution for the interpreted
equation λ′α of the reduced equation λ′ : xe

′
=
∏m

i=1 α(ai)
s′i , where e′ = e/d,

s′i = si/d and d = gcd(e, s1, . . . , sm). For example, the challenger always returns
the canonical solution ψ = α(a1) on the query x2 = a21.

The Situation. We describe our setting for the situation that the SRSA as-
sumption implies the strong adaptive pseudo-freeness for the family

{
Z×
N

}
of the

RSA groups. We formalize this statement by the following contrapositive setting
similarly to [9,21]: there exist a PPT algorithm R, nonnegligible functions ε0 and
ε1 and a polynomial q such that for any SAPF adversary A who (q, ε1)-wins the
SAPF game on the family

{
Z×
N

}
, R ε0-breaks SRSA with a black-box access to

the adversary A. We may assume without loss of generality that q ≥ 2. Through
the black-box access, R would play the SAPF game with the adversary A in
which R is placed at the challenger’s position.

Given an SRSA instance (N, y), R follows Setup phase of the SAPF game,
namely R chooses a game pair (N,α), especially the assignment map α is chosen
by selecting α(a) uniformly at random from QRN for each a ∈ A. We assume
as in [10,19,20] that the index N of the game pair is always the same as the
modulus N of the given SRSA instance. Moving to Equations queries phase, A
makes equation queries λ = (e, s) at most q times. Since R is now playing the
role of the challenger,R replies the answer for each of the queries, but Rmay fail
to reply the correct answer because the reductionR is polynomial-time bounded.
Eventually, the game is completed with A’s output: a “winning” witness pair
(λ∗, ψ∗) of the SAPF game, or “losing” symbol ⊥. After the game, R would find
a correct solution (x,E) for the given SRSA instance (N, y) with nonnegligible
probability ε0.

In this paper, we force the reduction R to be algebraic with respect to the
group QRN for any N ∈ N . Consequently, any element g ∈ QRN produced in
the execution of R is generated by the given SRSA instance y and the expression
g = yd is easily retrieved by the extraction algorithm Extract, provided that g is
actually computed in the execution of R(N, y). In particular, for the assignment
α and each a ∈ A, α(a) is of the form α(a) = yd and the exponent d can be
easily retrieved.

We now ready to state our main theorem that the SRSA assumption does
not imply the strong adaptive pseudo-freeness for the family

{
Z×
N

}
of the RSA

groups with respect to the algebraic reduction.

Theorem 1. If the SRSA assumption implies the strong adaptive pseudo-freeness
for the family

{
Z×
N

}
of the RSA groups with respect to the algebraic reduction,

then the SRSA assumption does not hold.

Proof. Assume that the SRSA assumption implies the strong adaptive pseudo-
freeness for the family

{
Z×
N

}
of the RSA groups with respect to the algebraic

Toward Separating the Strong Adaptive Pseudo-freeness 81

reduction. Then, there exist a PPT algorithm R, nonnegligible functions ε0 and
ε1 and a polynomial q ≥ 2 such that R is algebraic with respect to QRN for any
N ∈ N , and R ε0-breaks SRSA with a black-box access to any PPT adversaryA
who (q, ε1)-wins the SAPF game for the family

{
Z×
N

}
. This means that for any

security parameter k, R breaks SRSA with at least nonnegligible probability ε0
for an instance (N, y) of an RSA modulo N generated by GenMod(1k) and an
element y ∈ QRN chosen uniformly at random. We may assume without loss of
generality that y is a generator of QRN , because a solution for an SRSA instance
(N, y) can be easily found when y is not a generator of QRN [20].

Construction of the Meta-reduction M. We shall construct a PPT algo-
rithm M that breaks SRSA with no oracle access at least nonnegligible proba-
bility. The reduction R ε0-breaks SRSA with the black-box access to any SAPF
adversary who (q, ε1)-wins the SAPF game. Therefore, we provide for the re-
duction R a simulator SimA that plays a (q, ε1)-winning SAPF adversary’s role
to R. In other words, from the R’s viewpoint, SimA looks like a “real” (q, ε1)-
winning adversary, namely it actually (q, ε1)-wins the SAPF game provided that
the reduction R is supposed to be ideal as a challenger in a sense that R always
replies a correct answer to each query from SimA. If SimA is set to the adver-
sary’s position, then R would ε0-break SRSA via playing the SAPF game with
SimA. Thus, our meta-reduction M is constructed by involving R and SimA.

For the algorithm SimA, we may assume without loss of generality that the
final output of SimA can be a correct solution (x,E) for the given SRSA instance
(N, y) if SimA fortunately finds it, instead of a witness pair (λ∗, ψ∗) of the SAPF
game. This does not lower the success probability ε0 of the reduction R. Thus,
our simulator SimA is to be a PPT algorithm that on a given instance (N,α, y, ω),
where (N, y) is an SRSA instance, α is a game pair of the SAPF game presented
by R and ω is a random coin used by R when R generates the assignment map
α, responds one of the following items (I)–(III):

(I) SimA finds a witness pair (λ∗, ψ∗) of a nontrivial equation λ∗ and a solution
ψ∗ for the interpreted equation λ∗α.

(II) In a fortunate case, SimA may find a solution (x,E) for the given SRSA
instance (N, y) in its execution. If SimA meets its fortunate case, then SimA
outputs the solution (x,E).

(III) SimA may abort with the output ⊥ in an unfortunate case.

We note that SimA is required only to come into either the case (I) or the case
(II) with at least probability ε1 and within q queries to R provided that R
is ideal as a challenger. By using SimA, the algorithm M is constructed as in
Fig. 1. If SimA is constructed in that way, R ε0-breaks SRSA and consequently
the resulting algorithm M will succeed with probability at least ε0.

Construction of SimA. In order to construct the algorithm M, it suffices to
construct the simulator SimA. Since R is algebraic with respect to QRN for any
N , there exists a polynomial time algorithm Extract that on a tuple (N, y, g, ω),
where g is a target element in QRN that is produced in the execution of R on the
input (N, y) with the random coin ω, returns an exponent d such that g = yd.

82 M. Fukumitsu et al.

On any given SRSA instance (N, y),

(M-1) M executes R on the instance (N, y) with using a random coin ω chosen by
M.

(M-2) When R submits a game pair (N, α) to the adversary,M executes SimA on
the tuple (N, α, y, ω). Then R and SimA play the SAPF game.

(M-3) SimA outputs a response c ∈ {(λ∗, ψ∗),⊥, (x,E)}, and halts.
(M-4) After receiving the response c,M behaves as follows:

(M-4a) either c = (λ∗, ψ∗) or c = ⊥: M continues to simulate R, and outputs
the final output of R, and halts; and
(M-4b) c = (x,E):M outputs (x,E), and halts.

Fig. 1. Configuration ofM

We involve Extract in the construction of SimA. The algorithm SimA is depicted
in Algorithm 1. On a given input tuple

– if α(ai) = 1 ∈ QRN for all 1 ≤ i ≤ m, then SimA outputs a correct witness
pair (λ∗, ψ∗) in the step (A-1) (the case (I)); or

– if α(ai0) 	= 1 for some i0, then in the step (A-2), SimA attempts to find a
solution (x,E) of the SRSA instance (N, y) by interacting to the challenger
R: if SimA has found a solution (x,E) for SRSA, then SimA outputs the
solution (x,E) (the case (II)), or otherwise, SimA outputs ⊥ (the case (III)).

Correctness of SimA. (A-1) We consider the case where α(ai) = 1 for all
1 ≤ i ≤ m. Note that the triviality of the equations in this case is equivalent to
the one in the static case, because SimA makes no query to the challenger R.
Namely, the triviality of the equation merely means that it has no solution over
the free group F(A). Therefore, the equation λ∗ = (2, (3, . . . , 3)) is nontrivial
by Lemma 1. Moreover, because α(ai) = 1 for all 1 ≤ i ≤ m, ψ = 1 ∈ Z×

N is a
solution for the interpreted equation λ∗α. Thus the output (λ∗, ψ∗) of SimA is a
correct witness pair. This is the case (I).

(A-2) We next consider the case where α(ai0) 	= 1 for some 1 ≤ i0 ≤ m. We
show that SimA outputs a solution (x,E) for the given SRSA instance (N, y)
by interacting to the challenger R or outputs ⊥. Since the assignment α is
generated before the game pair (N,α) is given to A, for each 1 ≤ i ≤ m, SimA
can retrieve an exponent di such that α(ai) = ydi by executing Extract on the
tuple (N, y, α(ai), ω). Note that the exponent di exists, because the element
α(ai) ∈ QRN is produced by the algebraic algorithm R, and hence it belongs
to the subgroup 〈y〉 generated by y ∈ QRN . Therefore, for any equation λ =
(e, (s1, . . . , sm)), the interpreted equation λα over Z×

N is expressed in a way
that xe =

∏m
i=1 α(ai)

si =
∏m

i=1

(
ydi
)si

= y
∑m

i=1 disi . We say that an equation
λ = (e, (s1, . . . , sm)) is good if the interpreted equation λα : xe = yD, where
D =

∑m
i=1 disi, has a solution ψ ∈ 〈y〉 and e � D. Note that if there is no

solution of λα in 〈y〉, R cannot find the solution of λα, although it has a solution

Toward Separating the Strong Adaptive Pseudo-freeness 83

Algorithm 1. SimA.

Input. a tuple (N, α, y, ω).
Output. one of the following: a pair (λ∗, ψ∗) of a nontrivial equation and its interpreted
solution, a pair (x,E) such that xE ≡ y (mod N) or the special symbol ⊥.
(A-1) If α(ai) = 1 for all 1 ≤ i ≤ m, then set λ∗ ← (2, (3, . . . , 3)) and ψ∗ ← 1, output
the tuple (λ∗, ψ∗), and halt.

(A-2) If α(ai0) 	= 1 for some i0, then for each 1 ≤ i ≤ m, retrieve an exponent di of
the element α(ai) ∈ QRN such that α(ai) = ydi by executing Extract(N, y,α(ai), ω).

(A-2a) Choose s1, . . . , sm ∈R ZN , and set D ←∑m
i=1 disi.

If D = 0, then reset si0 ← si0 + 1, and D←∑m
i=1 disi.

Set s← (s1, . . . , sm).
(A-2b) Set e1 ← |D|+ 1 and e2 ← |D|+ 2.

If ye1e2 ≡ 1 (mod N), then output the pair (x,E) = (y, e1e2 + 1), and halt.
Else, proceed to (A-2c).

(A-2c) For each t ∈ {1, 2}, submit the equation λ(t) = (et, s) to R, and then receive a
solution ψt from R.
If ψt0 is a correct solution for λ

(t0)
α for some t0 ∈ {1, 2}, then compute a pair (x,E)

such that xE ≡ y (mod N) by Lemma 2, output (x,E), and halt.
Else, output ⊥, and halt.

in Z×
N . This is because R is algebraic. If SimA queries a good equation λ to the

challengerR and succeeds to receive a correct solution ψ ∈ 〈y〉 for λα, then SimA
can find a correct solution (x,E) for the SRSA instance (N, y) by Lemma 2. This
is the case (II).

We now show that one of the following events occurs: (i) at least one of the
equation queries λ(1) = (e1, s) and λ(2) = (e2, s) generated in the steps (A-2a)
and (A-2b) is a good equation, or (ii) a correct solution (x,E) for the SRSA
instance (N, y) is found.

It is easy to observe that the integer D =
∑m

i=1 disi generated in (A-2a) is not
zero. In the step (A-2b), SimA computes integers e1 = |D|+1 and e2 = |D|+2.
If ye1e2 ≡ 1 (mod N), then it is obvious that the pair (x,E) = (y, e1e2 + 1) is a
solution for the given SRSA instance (N, y). Otherwise, by the claims Claim 1
and Claim 2, it is shown that there exists an index t0 ∈ {1, 2} such that for the

equation λ(t0) = (et0 , s), the interpreted equation λ
(t0)
α has a solution over Z×

N

and et0 � D, where s = (s1, . . . , sm) has been generated in (A-2a).

Claim 1. Assume that ye1e2 	≡ 1 (mod N). Then, there exists an index t0 ∈
{1, 2} such that the interpreted equation λ

(t0)
α : xet0 = yD has a solution ψt0 ∈ 〈y〉

for the equation λ(t0) = (et0 , s).

Claim 2. The integers e1 and e2 found in (A-2b) satisfy e1 � D and e2 � D.

In the step (A-2c), for each t ∈ {1, 2}, SimA queries the equation λ(t) = (et, s)
to the challenger R, and then receives the solution ψt over Z

×
N of the interpreted

equation λ
(t)
α : xet = yD.

84 M. Fukumitsu et al.

When ψt0 is a correct solution for λ
(t0)
α for some t0 ∈ {1, 2}, we have ψe

t0 ≡ yD

(mod N). Since et0 � D byClaim 2, SimA can find a solution (x,E) for the given
SRSA instance (N, y) by Lemma 2. This is the case (II).

Otherwise, ψt is not a correct solution of λ
(t)
α for any t ∈ {1, 2}. By Claim 1,

this means that for some index t0 ∈ {1, 2}, R failed to find a solution of λ
(t0)
α

despite that λ
(t0)
α has a solution in the subgroup 〈y〉. This is the unfortunate

case, namely the case (III). Therefore, SimA outputs ⊥, and halts.

It immediately follows from the construction that with the probability 1, SimA
outputs either a witness pair (λ∗, ψ∗) or a solution (x,E) for the given SRSA
instance (N, y), if R is ideal as a challenger, namely SimA can receive a correct
reply of the equation query λ(t) from R for each t ∈ {1, 2}.

Finally, we estimate the success probability of M. The following claim shows
that M breaks SRSA with at least probability ε0.

Claim 3. M ε0-breaks SRSA.

Thus the SRSA assumption does not hold. ��

Acknowledgment. The authors would like to thank anonymous reviewers for
their invaluable comments and suggestions on an earlier version of this paper.

References

1. Abe, M., Groth, J., Ohkubo, M.: Separating Short Structure-Preserving Signatures
from Non-interactive Assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 628–646. Springer, Heidelberg (2011)

2. Abe, M., Haralambiev, K., Ohkubo, M.: Group to Group Commitments Do Not
Shrink. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 301–317. Springer, Heidelberg (2012)

3. Agrawal, M., Kayal, N., Saxena, N.: PRIMES Is in P. Annals of Mathematics 160(2),
781–793 (2004)

4. Anokhin, M.: Constructing a Pseudo-Free Family of Finite Computational Groups
under the General Integer Factoring Intractability Assumption. Electronic Collo-
quium on Computational Complexity. report no.114 (2012)

5. Barić, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature
Schemes Without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

6. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The Power of RSA
Inversion Oracles and the Security of Chaum’s RSA-Based Blind Signature Scheme.
In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 319–338. Springer, Heidelberg
(2002)

7. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme. J. Cryp-
tology 16(3), 185–215 (2008)

8. Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

Toward Separating the Strong Adaptive Pseudo-freeness 85

9. Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More”
Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp.
71–87. Springer, Heidelberg (2008)

10. Catalano, D., Fiore, D., Warinschi, B.: Adaptive Pseudo-free Groups and Applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011)

11. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
J. ACM TISSEC 3(3), 161–185 (2000)

12. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans. on Infor-
mation Theory 22(6), 644–654 (1976)

13. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

14. Garg, S., Bhaskar, R., Lokam, S.V.: Improved Bounds on Security Reductions
for Discrete Log Based Signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 93–107. Springer, Heidelberg (2008)

15. Hasegawa, S., Isobe, S., Shizuya, H., Tashiro, K.: On the Pseudo-Freeness and
the CDH Assumption. International Journal of Information Security 8(5), 347–355
(2009)

16. Hirano, T., Tanaka, K.: Variations on Pseudo-Free Groups. Research Reports, Se-
ries C: Computer Science, C-239, Tokyo Institute of Technology (2007)

17. Hohenberger, S.: The Cryptographic Impact of Groups with Infeasible Inversion.
Master’s thesis, EECS Dept., MIT (2003)

18. Jhanwar, M.P., Barua, R.: Sampling from Signed Quadratic Residues: RSA Group
Is Pseudofree. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922,
pp. 233–247. Springer, Heidelberg (2009)

19. Micciancio, D.: The RSA Group is Pseudo-Free. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 387–403. Springer, Heidelberg (2005)

20. Micciancio, D.: The RSA Group is Pseudo-Free. J. Cryptology 23(2), 169–186
(2010)

21. Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equiva-
lent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
1–20. Springer, Heidelberg (2005)

22. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology. 13(3), 361–396 (2000)

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

24. Rivest, R.L.: On the Notion of Pseudo-Free Groups. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)

25. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
688–689. Springer, Heidelberg (1990)

26. Seurin, Y.: On the Exact Security of Schnorr-Type Signatures in the Random
Oracle Model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 554–571. Springer, Heidelberg (2012)

27. Villar, J.L.: Optimal Reductions of Some Decisional Problems to the Rank Prob-
lem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 80–97.
Springer, Heidelberg (2012)

86 M. Fukumitsu et al.

A Proofs of the Claims in Theorem 1

Claim 1. Assume that ye1e2 	≡ 1 (mod N). Then, there exists an index t0 ∈
{1, 2} such that the interpreted equations λ

(t0)
α : xet0 = yD has a solution ψt0 ∈

〈y〉 for the equation λ(t0) = (et0 , s).

Proof. Assume that ye1e2 	≡ 1 (mod N). Then, we now show that one of e1 ∈
Z×
P ′Q′ and e2 ∈ Z×

P ′Q′ holds. We assume that e1, e2 /∈ Z×
P ′Q′ . Then, we have

gcd(e1, P
′Q′), gcd(e2, P ′Q′) ∈ {P ′, Q′, P ′Q′}. If either gcd(e1, P

′Q′) = P ′Q′ or
gcd(e2, P

′Q′) = P ′Q′ holds, then ye1e2 ≡ 1 (mod N) holds, since y ∈ QRN

and the order ord(QRN) of QRN is P ′Q′. This is a contradiction. Otherwise,
we assume without loss of generality that gcd(e1, P

′Q′) = P ′ holds. Then, there
exists an integer b1 ∈ Z such that e1 = b1P

′. Moreover, we have e2 = e1 +1 	≡ 0
(mod P ′), and hence P ′ � e2. By the assumption, gcd(e2, P

′Q′) = Q′ holds.
Then, there exists an integer b2 ∈ Z such that e2 = b2Q

′. It follows that e1e2 =
b1b2P

′Q′. This implies that ye1e2 ≡ 1 (mod N). This is a contradiction. Thus,
one of e1 ∈ Z×

P ′Q′ and e2 ∈ Z×
P ′Q′ holds.

Let t0 ∈ {1, 2} be an index such that et0 ∈ Z×
P ′Q′ . Since y ∈ QRN and

ord(QRN) = P ′Q′, the interpreted equation λ
(t0)
α : xet0 = yD has a solution

yDe−1
t0 that belongs to the subgroup 〈y〉, where e−1

t0 denotes the inverse of et0 in

Z×
P ′Q′ . ��

Claim 2. The integers e1 and e2 found in (A-2b) satisfy e1 � D and e2 � D.

Proof. It follows from D 	= 0 and 0 < |D| < |D| + 1 = e1 < e2 that e1 � D and
e2 � D. ��
Claim 3. M ε0-breaks SRSA.

Proof. We denote by Pr[SuccM] and Pr[SuccR] the success probability of M and
R, respectively. It is guaranteed that Pr[SuccR] ≥ ε0 by Correctness of SimA.

Unity designates the event that the assignment α : A −→ Z×
N of the game pair

(N,α) satisfies that α(ai) = 1 for all 1 ≤ i ≤ m.

The event Unity happens. In this case, SimA outputs the witness pair (λ∗, ψ∗) of
a nontrivial equation and its corresponding solution, and then M outputs the
final output of R at (M-4a). Therefore, we have

Pr [SuccM ∧ Unity] = Pr [SuccR ∧ Unity] . (1)

The event Unity does not happen. Let SolveEq denote the event that for some

index t0 ∈ {1, 2}, R correctly solves the interpreted equation λ
(t0)
α : xet0 = yD

of the queried equation λ(t0) from SimA during playing the SAPF game.

If the event SolveEq happens, M outputs the pair (x,E) returned from SimA
at (M-4b). Since xE ≡ y (mod N) holds under the event SolveEq by the correct-
ness of SimA, we have Pr [SuccM | ¬Unity ∧ SolveEq] = 1. This implies that

Pr [SuccM ∧ (¬Unity ∧ SolveEq)] = Pr [SuccM | ¬Unity ∧ SolveEq] Pr [¬Unity ∧ SolveEq]

= Pr [¬Unity ∧ SolveEq]

≥ Pr [SuccR ∧ (¬Unity ∧ SolveEq)] . (2)

Toward Separating the Strong Adaptive Pseudo-freeness 87

If the event SolveEq does not happen,M outputs the final output ofR in (M-4a).
Therefore, we have

Pr [SuccM ∧ (¬Unity ∧ ¬SolveEq)] = Pr [SuccR ∧ (¬Unity ∧ ¬SolveEq)] . (3)

Putting together Eqs. (1)–(3), we have

Pr [SuccM] = Pr [SuccM ∧ Unity] + Pr [SuccM ∧ ¬Unity]
= Pr [SuccM ∧ Unity] + Pr [SuccM ∧ (¬Unity ∧ SolveEq)]

+ Pr [SuccM ∧ (¬Unity ∧ ¬SolveEq)]
≥ Pr [SuccR ∧ Unity] + Pr [SuccR ∧ (¬Unity ∧ SolveEq)]

+ Pr [SuccR ∧ (¬Unity ∧ ¬SolveEq)]
= Pr [SuccR ∧ Unity] + Pr [SuccR ∧ ¬Unity]
= Pr [SuccR]

≥ ε0.

Thus, M ε0-breaks SRSA. ��

Minkowski Sum Based Lattice Construction

for Multivariate Simultaneous Coppersmith’s
Technique and Applications to RSA

Yoshinori Aono

National Institute of Information and Communications Technology
aono@nict.go.jp

Abstract. We investigate a lattice construction method for the Copper-
smith technique for finding small solutions of a modular equation. We
consider its variant for simultaneous equations and propose a method
to construct a lattice by combining lattices for solving single equations.
As applications, we consider a new RSA cryptanalysis. Our algorithm
can factor an RSA modulus from � ≥ 2 pairs of RSA public exponents
with the common modulus corresponding to secret exponents smaller
than N (9�−5)/(12�+4), which improves on the previously best known re-
sult by Sarkar and Maitra. For partial key exposure situation, we also
can factor the modulus if β − δ/2 + 1/4 < (3�− 1)(3�+ 1), where β and
δ are bit-lengths / logN of the secret exponent and its exposed LSBs,
respectively. Due to the spacing limit, some arguments are omitted; see
the full-version [1].

1 Introduction

Since the RSA cryptosystem [31] was proposed, its security has been intensively
investigated. In particular, polynomial-time algorithms for recovering short se-
cret exponents have been studied [34,3]. There are two main strategies for recov-
ering a secret exponent in this situation: The continued fraction algorithm was
used in this approach [34,19,17] and the Coppersmith technique based approach
[3,5,11]. We consider the latter technique.

Using the Coppersmith technique for finding small roots of a modular equa-
tion, Boneh and Durfee [3] proposed an algorithm for recovering a small secret
exponent from the corresponding public key pair. Under several acceptable as-
sumptions, the attack is guaranteed to work when the secret exponent is smaller
than N0.292.

Although the original Coppersmith technique was designed to treat a sin-
gle modular equation, the method can be extended to multivariate simultane-
ous equations [8,32,33,15]. Their approaches first construct a single multivariate
modular equation whose solutions are also those of the simultaneous equations,
and apply the standard Coppersmith technique. This may not be a better strat-
egy from the viewpoint of lattice construction because it does not consider in-
dividual equations. May and Ritzenhofen [26] proposed an approach based on

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 88–103, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Minkowski Sum Based Lattice Construction for Multivariate 89

the Chinese remainder theorem to solve simultaneous univariate modular equa-
tions. In this paper, we study an extension of the Coppersmith technique that
directly treats the original simultaneous multivariate equations. We expect that
our algorithm will improve several lattice based attacks.

Related Works on Lattice Construction for the Coppersmith Tech-
nique: For a single modular equation, it has been widely studied. The first
work by Coppersmith [9] gave a good lattice construction for any univariate
modular equation. Recently, Aono et al. [2] has proven the optimality of this
construction. Blömer and May [6] proposed a construction method for bivariate
equations, and Jochemsz and May [20] improved this to a method for treat-
ing general multivariate equations. Another viewpoint was given by Kunihiro
[22], who proposed a method for converting a lattice for an n-variable equation
f(x1, . . . , xn) ≡ 0 (mod W) into a lattice for a new (n + 1)-variable equation
of the form x0f(x1, . . . , xn) + C ≡ 0 (mod W) where C is a constant. For si-
multaneous modular equations, May and Ritzenhofen [26] considered a Chinese
remainder theorem based approach. They proposed a method for constructing a
lattice in the univariate case and gave an application to RSA. Recently, Ritzen-
hofen [30] improved this approach to multivariate simultaneous equations and
proposed a lattice construction method for equations with the common modulus.
However, the case for coprime moduli was not solved (see [30, Section 5.4]). We
consider this problem.

1.1 Contributions of This Work

Minkowski Sum Based Lattice Construction: We propose a method to
construct a lattice for the Coppersmith technique for simultaneous modular
equations. We consider simultaneous equations such as F1(x1, y) ≡ 0 (mod W1)
and F2(x2, y) ≡ 0 (mod W2). Assume that we have lattices spanned by the

sets of polynomials {g(1)1 , . . . , g
(1)
c1 } and {g(2)1 , . . . , g

(2)
c2 } for the equations, respec-

tively. Then, we propose the Minkowski sum based lattice construction, which is
a method for generating a lattice basis for solving the simultaneous equations,

as a set of polynomials of the form
∑
aλg

(1)
λ · g(2)λ′ . Our method defines the range

of suffixes (λ, λ′) and the coefficients aλ of the combination.

Cryptanalysis of Multiple RSA Short Secret Exponents: The above con-
struction method can easily be extended to multivariate and multi-equation situ-
ations. By this, we improve the cryptanalysis of RSA with short secret exponents
studied in [19,17,32,33]. In this situation, the attacker has � pairs of RSA public
keys (ek, N) with the common modulus, which correspond to secret exponents
smaller than Nβ for some β ∈ (0, 1). Then, we prove that the RSA modulus is
efficiently factored if

β < (9�− 5)/(12�+ 4).

Here, we assumed that all ek’s are full-sized i.e., they have the same bit sizes.
This improves on the previously known best result by Sarkar and Maitra [33],
which achieved β < (3� − 1)/(4�+ 4). For large �, both values converge to 3/4.

90 Y. Aono

Noting that Howgrave-Graham and Seifert [19] had given an extended version
of Wiener’s continued fraction attack and obtain the bound

β <
(2�+ 1) · 2� − (2�+ 1)

(
�

�/2

)
(2�− 2) · 2� + (4�+ 2)

(
�

�/2

) if 2|� and β < (2�+ 1) · 2� − 4�
(

�−1
(�−1)/2

)
(2�− 2) · 2� + 8�

(
�−1

(�−1)/2

) if 2 	 |�.

However, Hinek and Lam [17] observed that the attack does not recover the secret
exponents if the bound exceeds 0.5, i.e., � > 7. Hence, our result is the best one.
These results are compared in Figure 1. HS99 is the result by Howgrave-Graham
and Seifert [19] for � ≤ 6. SM10 is Sarkar and Maitra [33]. Ours shows our result.
CA indicates the heuristic bound by the counting argument in Section 4.1.

� 2 3 4

HS99: [19] 0.357 0.400 0.441

SM10: [33] 0.416 0.500 0.550

Our result 0.464 0.550 0.596

CA 0.750 0.833 0.875

Fig. 1. Comparison of previous results

Extension for the Partial Key Exposure Situation: We then extend the at-

tack to a situation studied in [4,11], in which the attacker has � tuples (ek, N, d̃k)

where ek and N are RSA public keys, and each d̃k is δn LSBs (least significant
bits) of the corresponding secret exponent smaller than Nβ. Then, we prove that
the RSA modulus is efficiently factored if

β − δ

2
+

1

4
<

3�− 1

3�+ 1
⇔ δ > 2β +

1

2
− 2(3�− 1)

3�+ 1
.

Computer Experiments: We perform our computer experiments of the appli-
cations for RSA and the partial key exposure situation. Our experiments work
well. Interestingly, in the partial key exposure situation, the range of β and δ
that we can factor N is slightly larger than that derived by theory.

Organization of this Paper: Section 2 gives necessary definitions, lemmas,
and an outline of the Coppersmith technique. In Section 3, we consider the Cop-
persmith technique for the simultaneous equations and propose our Minkowski
sum based lattice construction. Sections 4 and 5 give applications to cryptanaly-
sis of RSA Section 6 gives experimental results to verify our lattice construction.
In Section 7, we suggest and discuss several open problems.

Minkowski Sum Based Lattice Construction for Multivariate 91

2 Preliminaries

Here we introduce necessary definitions and technical lemmas. For any positive
integers a and b, let [a] and [a : b] be the set {1, . . . , a} and {a, a+1, . . . , b−1, b},
respectively. For natural numbers x, A and N , the notation |x| < A (mod N)
means that 0 ≤ x < A or N −A < x < N holds.

We use ≺ to denote the lexicographic order between integer tuples. For ex-
ample, consider two 2-tuples, (i1, i2) and (i′1, i

′
2), then (i1, i2) ≺ (i′1, i

′
2) means

that i1 < i′1 or [i1 = i′1 and i2 < i′2] holds. We also use this to order mono-

mials; e.g., xi11 x
i2
2 ≺ x

i′1
1 x

i′2
2 ⇔ (i1, i2) ≺ (i′1, i

′
2). Here, we neglect the coeffi-

cients. These notations are used for general n-tuples and n-variable monomials.
We use x1, x2, . . . , xn−1 and y to denote the variables, and fix the priority of
variables as y ≺ xn−1 ≺ · · · ≺ x1 to order the n-variable monomials. For exam-
ple, consider four variables, x1, x2, x3, y, and monomials 3x22x3 and x21x

3
2y. Then,

3x22x3 ≺ x21x
3
2y holds since the corresponding tuples are (0, 2, 1, 0) and (2, 3, 0, 1),

respectively. Note that for any integer tuples T1, T2, S1, S2 of the same dimension,
T1 ≺ S1 and T2 ≺ S2 implies that T1 + T2 ≺ S1 + S2.

With respect to the above order, we can define the maximum element in a
polynomial f(x1, . . . , x�, y). Let ax

i1
1 · · ·xi�� yj be the non-zero maximum mono-

mial in f . Then, we call it the head term of f and denote it by HT(f). We also
call a, xi11 · · ·xi�� yj and (i1, . . . , i�, j) head coefficient, head monomial and head
index, and denote them by HC(f), HM(f) and HI(f), respectively.

Let A and B be finite subsets of Zn, then their Minkowski sum is defined by
A�+ B = {(a1 + b1, . . . , an + bn) : (a1, . . . , an) ∈ A, (b1, . . . , bn) ∈ B}. Note that
the sum of three or more sets is defined recursively.

2.1 Overview of the Coppersmith Technique

We introduce the Coppersmith technique [9,10] with necessary definitions and
lemmas. Our formulation is due to Howgrave-Graham [16] and Aono et al. [2].

Fix a polynomial F (x, y) ∈ Z[x, y] and X,Y,W ∈ N. Then consider the prob-
lem of finding all integer solutions of

F (x, y) ≡ 0 (mod W) (1)

satisfying |x| < X and |y| < Y . While this is generally not easy, the Coppersmith
technique efficiently solves it if X and Y are much smaller than W .

The Coppersmith technique first fix an integer m ≥ 2 and consider a set L of
polynomials g(x, y) ∈ Z[x, y] satisfying

∀x, y ∈ Z [F (x, y) ≡ 0 (mod W) ⇒ g(x, y) ≡ 0 (mod Wm)]. (2)

Note that L forms a lattice, i.e., it can easily see that g1, g2 ∈ L⇒ g1 − g2 ∈ L.
Next, find polynomials g(x, y) ∈ L satisfying

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod Wm) ⇒ g(x, y) = 0]. (3)

92 Y. Aono

Suppose two algebraically independent polynomials are found, then the original
equation (1) can be converted to simultaneous equations over integers, which
are easily solved by the resultant technique [14] or the Gröbner basis technique
[7]. As we explain below, a polynomial with small coefficients satisfies (3). Our
tasks are to construct a polynomial lattice L, and to find such polynomials in L.

Many algorithms to find small elements in a lattice exist; e.g., the LLL algo-
rithm [23] is widely used. Unfortunately, most of them are designed for treating
lattices in Euclidean spaces Rn w.r.t. the standard Euclidean norms. To use
them as a subroutine, a polynomial lattice needs to be converted.

Converting Polynomials to Vectors: For a polynomial g(x, y) =
∑

i,j ai,jx
iyj

and parameters X and Y , define the vectorization of the polynomial by

V(g;X,Y) = (a0,0, a1,0X, . . . , aiw ,jwX
iwY iw).

Thus, it maps each term ai,jx
iyj to each coordinate ai,jX

iY j , respectively. It is
a linear mapping with respect to g. Note that the sequence of tuples {(ik, jk)}wk=1

is taken so that it covers all non-zero terms in g(x, y). We define the polynomial
norm w.r.t. the parameters X,Y by |V(g;X,Y)|. W.r.t. this norm, the following
lemma holds.

Lemma 1. (Howgrave-Graham [16], generalized in [20]) Fix X,Y,W ∈
N. Let g(x, y) ∈ Z[x, y] be a polynomial consisting of w non-zero terms, and
|V(g;X,Y)| < W/

√
w holds. Then we have

∀x, y ∈ Z, |x| < X, |y| < Y [g(x, y) ≡ 0 (mod W) ⇔ g(x, y) = 0].

Hence, if a polynomial lattice L is given, our task is to find independent polyno-
mials satisfying the above lemma, which is performed by finding short vectors in
a Euclidean lattice converted from L using certain parameters. To achieve this,
we use a lattice reduction algorithm.

Euclidean Lattices: Consider a sequence of linearly independent vectors B =
{b1, . . . ,bc} in Zc̃ where c̃ ≥ c. Then, the Euclidean lattice spanned by them is
defined by L(B) = {a1b1 + · · ·+ acbc : ak ∈ Z for k ∈ [c]}. We call b1, . . . ,bc

the basis vectors. Following many papers, we assume that a lattice is represented
by its basis vectors.

To find short vectors in a lattice, we use the LLL algorithm [23] which com-
putes an LLL-reduced basis from a given basis. The following theorem bounds
the lengths of first vectors in such bases.

Theorem 1. [5] Let L be a Euclidean lattice and v1, . . . ,vc be its LLL-reduced
basis. Then, the following inequality holds for k ∈ [c].

||vk|| ≤ 2{(c(c−1)+(k−1)(k−2)}/4(c−k+1)| det(L)|1/(c−k+1) (4)

Here, det(L) is the lattice determinant that is defined by using the Gram-Schmidt
orthogonal basis v∗

1 , . . . ,v
∗
c as det(L) =

∏c
i=1 ||v∗

i ||.

Minkowski Sum Based Lattice Construction for Multivariate 93

Polynomial Lattices: Let G = {g1, . . . , gc} be a sequence of linearly inde-
pendent polynomials in Z[x, y]. Then, the polynomial lattice spanned by them
is defined by L(G) = L(g1, . . . , gc) = {a1g1 + · · · + acgc : ai ∈ Z for k ∈
[c]}. We also consider the vectorization of polynomial lattices; i.e., for a basis
G = {g1, . . . , gc}, consider their vectorization V(g1;X,Y), . . . ,V(gc;X,Y) w.r.t.
parameters X and Y . Here, the tuple sequence is assumed to be fixed. Then,
define the vectorization of L(G) by the Euclidean lattice spanned by these vec-
tors, and let it be L(G;X,Y). We use det(G;X,Y) to denote the determinant
of L(G;X,Y).

Outline and a Working Condition for the Coppersmith Technique:
For fixed X and Y , suppose we have a polynomial lattice L(G) spanned by c
polynomials satisfying (2), and it holds that

2c/4 det(G;X,Y)1/c < Nm/w. (5)

Here, w is the length of tuple sequence used at vectorization, which is equal
to the Euclidean dimension of L(G;X,Y), and upper bounds the number of
terms of any polynomials in L(G). Then, compute the LLL-reduced basis of
L(G;X,Y). By Theorem 1, the first two vectors v1 and v2 in the reduced basis
are shorter than Nm/w. Hence, the corresponding polynomials, i.e., hk(x, y)
satisfying vk = V(hk;X,Y) for k = 1, 2, also satisfy |V(hk;X,Y)| ≤ Nm/w.
Thus, by Lemma 1, these polynomials satisfy

∀x, y ∈ Z, |x| < X, |y| < Y [F (x, y) ≡ 0 (mod W) ⇒ hk(x, y) = 0].

Finally, finding small integer solutions of h1(x, y) = h2(x, y) = 0, we obtain the
desired solutions.

As in many previous works, we regard the following simplified condition as a
working condition.

det(G;X,Y)1/c < Nm (6)

In many applications, the crucial problem is to construct a lattice G satisfying
(6) for X and Y as large as possible.

The algebraic independence of polynomials hk(x, y) is necessary to solve the
final simultaneous equations over the integers. Unfortunately, this is generally
not guaranteed. In this paper, again following previous works, we assume this
algebraic independence and justify it by computer experiments.

3 Coppersmith Technique for Simultaneous Equations

We consider a variant of the Coppersmith technique for the simultaneous equa-
tions, and propose a new method to construct polynomial lattices. For readabil-
ity, we consider the following three variable simultaneous equations with two
equations having the shared variable y:

F1(x1, y) ≡ 0 (mod W1) and F2(x2, y) ≡ 0 (mod W2) (7)

94 Y. Aono

Here, if no variable is shared, the simultaneous equations have no meaning.
Our objective is to find all integer solutions within the range of |x1| < X1,

|x2| < X2 and |y| < Y . Fix the above equations, given ranges, and parameters
c and m. Then we consider a lattice consisting of three variable polynomials
gi(x1, x2, y) such that satisfies

∀x1, x2, y ∈ Z,

[
F1(x1, y) ≡ 0 (mod W1)
F2(x2, y) ≡ 0 (mod W2)

⇒ gi(x1, x2, y) ≡ 0 (mod (W1W2)
m)

]
.

(8)
For a lattice L(G) with basis G = {g1, . . . , gc}, compute the LLL-reduced basis
of L(G;X1, X2, Y). By the same argument as that in Section 2.1, we can prove
the technique works if det(G;X1, X2, Y)1/c < (W1W2)

m. The problem is also
finding the means of constructing better polynomial lattices.

3.1 Minkowski Sum Based Lattice Construction

We give a method for constructing a lattice for the simultaneous equations (7),
by combining lattices for solving single equations.

For k = 1, 2, let L(Gk) be a polynomial lattice for solving Fk(xk, y) ≡
0 (mod Wk) and its basis be Gk = {g(k)1 , . . . , g

(k)
ck }. Here we assume that the pa-

rameter m is fixed. Then for any �1 ∈ [c1] and �2 ∈ [c2], the polynomial g
(1)
�1

·g(2)�2
satisfies (8). Hence, the set

A =

⎧⎨
⎩

∑
�1∈[c1],�2∈[c2]

a�1,�2g
(1)
�1
g
(2)
�2

: a�1,�2 ∈ Z

⎫⎬⎭
forms a polynomial lattice for solving the simultaneous equations. Unfortunately,

since the polynomials {g(1)�1
g
(2)
�2

}�1,�2 are not generally independent over the in-
tegers, it cannot explicitly obtain the basis of A and its determinant. Instead,
we consider a sublattice of A and define its basis by using the Minkowski sum
of indices.

We can assume that each basis Gk has a strictly increasing degree order, i.e.,

HM(g
(k)
1) ≺ · · · ≺ HM(g

(k)
ck) holds for k = 1, 2. If this is not true, an equivalent

basis having this property can be efficiently computed by multiplying a uni-
modular matrix; the computation is performed by a Gaussian elimination-like

algorithm, see [2]. Then, for each k, consider the set of indices Ik = {HI(g(k)�) :
� ∈ [ck]} ⊂ Z3 and let their Minkowski sum be I+. Noting that the elements of I1
and I2 have the form (i1, 0, j) and (0, i2, j), respectively. For every (i1, i2, j) ∈ I+,
define the polynomial g+i1,i2,j to be

g+i1,i2,j =
∑
(∗)

aλg
(1)
λ g

(2)
λ′ . (9)

Here, the range of sum (∗) is over all suffix pairs (λ, λ′) satisfying HM(g
(1)
λ g

(2)
λ′) =

xi11 x
i2
2 y

j and the coefficients aλ are defined so that

HC(g+i1,i2,j) =GCD
(∗)

(HC(g
(1)
λ g

(2)
λ′)), (10)

Minkowski Sum Based Lattice Construction for Multivariate 95

that is, the greatest common divisor of all head coefficients within the range.
It is easy to see that the polynomial satisfies (8). We define the polynomial
basis by G+ = {g+(i1,i2,j) : (i1, i2, j) ∈ I+}. Here, it is clear that the basis

polynomials are linearly independent since the head monomials are distinct.
We call the polynomial lattice L(G+) the Minkowski sum lattice of L(G1) and
L(G2). Clearly, L(G+) ⊂ A holds.

The basic strategy of this construction is to minimize the head coefficient of
g+i1,i2,j over all the possible integer combinations. It can be expected that the
determinant of the combined lattice is reduced. Note that a combination of aλ
that attains (10) is generally not unique. Hence, care needs to be taken regarding
the determinant if the lattice is not triangular. If the lattice is lower triangular,
the determinant, which is computed by

∏ |HC(g+i1,i2,j)|X i1
1 X

i2
2 Y

j , is not changed
for any allowed combination of aλ.

3.2 Minkowski Sum of Lower Triangular Lattices

Suppose the lattices for single equations are lower triangular, that is, there exist
sequences of tuples {(i1(�), j1(�))}c1�=1 and {(i2(�), j2(�))}c2�=1, the polynomials in
bases Gk can be written as

g
(1)
� =

�∑
�′=1

a�,�′x
i1(�

′)
1 yj1(�

′) and g
(2)
� =

�∑
�′=1

b�,�′x
i2(�

′)
2 yj2(�

′)

where a�,� 	= 0 and b�,� 	= 0. In this case, w.r.t. the above sequences of tuples,
the Euclidean lattices L(Gk;Xk, Y) are lower triangular. We can show that the
Minkowski sum lattice of them is also lower triangular; for the proof, see the full-
version. Note that the situation of three or more lattices, which is considered in
our applications, can be proven by induction.

Theorem 2. For k = 1, 2, assume that the polynomial lattice basis Gk =

{g(k)1 , . . .

, g
(k)
ck } has a strictly increasing degree order, and that they are lower triangular.

Then the Minkowski sum lattice L(G+) is also lower triangular.

4 Cryptanalysis of RSA with Short Secret Exponents

As an application of our Minkowski sum lattice construction, we analyze the
RSA with multiple short secret exponents with a common modulus.

Notations: We use the standard notations for the RSA cryptography. That is,
p and q are large primes, and let their product be the RSA modulus N . e and
d are used to denote the public exponent and secret exponent, respectively. The
basic relation ed ≡ 1 (mod ϕ(N)) holds. Following [3], we assume that e ≈ N
and p+ q < 3N0.5.

We consider the situation in which the attacker has � pairs of public keys with
a common modulus, let them be (e1, N), . . . , (e�, N), which correspond to small
secret exponents satisfying d1, . . . , d� < Nβ for some β ∈ (0, 1). For simplicity,
we assume that ei and ej are coprime to each other for i 	= j.

96 Y. Aono

4.1 RSA Equation and Its Limit by a Counting Argument

Following the work of Sarkar and Maitra [32,33] (see Boneh and Durfee [3] for
deriving single equation), it can prove that the simultaneous equations

Fi(xi, y) = −1 + xi(y +N) ≡ 0 (mod ei) for i = 1, . . . , � (11)

have a small solution (x1, . . . , x�, y) satisfying

|xk| < Nβ , for k ∈ [�] and |y| < 3N0.5, (12)

by which we can recover the secret exponents. Hence, our objective here is to
find this solution by the Coppersmith technique.

On the other hand, if β is not small, the solution within the range is not
unique. In this situation, the number of solutions becomes exponential in logN ;
thus, no polynomial-time algorithm exists. By a counting argument, we set the
following heuristic assumption of bounding β; the detailed argument is given in
the full version.

Heuristic Assumption: For a natural number �, assume that

β < (�− 0.5)/�. (13)

Then, within the range of (12), the equation (11) has only one solution by which
we can recover the corresponding secret keys dk.

4.2 Our Lattice Construction and Bound

Here we give our polynomial lattice to solve the simultaneous equations (11)
and a new security analysis of RSA. As mentioned in Section 3.1, assume that
lattices for solving single equation Fk(xk, y) = −1 + xk(y + N) ≡ 0 (mod ek)
are given. We follow the work of Boneh and Durfee [3], and employ their simple
lower triangular lattice that achieves the bound β < 0.25. While they achieved
β < 0.292 by their improved lattice, we did not use in this paper.

Fix an integer m ≥ 2 and set

g
(k)
i,j (xk, y) = xi−j

k Fk(xk, y)e
m−j
k and Gk = {g(k)i,j : (i, j) ∈ Z2, 0 ≤ j ≤ i ≤ m}

(14)

for k = 1, . . . , �. It is clear that g
(k)
i,j (xk, y) satisfies (2) w.r.t. Fk(xk, y) ≡ 0 (mod ek)

and m.
For each k, ordering its basis in the lexicographic order in suffixes (i, j), the

polynomial sequence has strictly increasing order since HM(g
(k)
i,j) = xiky

j and

HI(g
(k)
i,j) = (0, . . . , 0, i, 0, . . . , 0, j) ∈ Z�+1 (the k-th and �+1-th coordinates are i

and j, respectively). As shown in [3], the lattice L(Gk;Xk, Y) is lower triangular.
Thus, these bases satisfy the assumption of Theorem 2 and the Minkowski sum
lattice L(G+) is also lower triangular.

Minkowski Sum Based Lattice Construction for Multivariate 97

We explicitly give the Minkowski sum lattice. The index set corresponding to
Gk is given by Ik = {(0, . . . , 0, i, . . . , 0, j) : (i, j) ∈ Z, 0 ≤ j ≤ i ≤ m} and their
Minkowski sum is

I+ = I1�+ · · ·�+ I� = {(i1, . . . , i�, j) : 0 ≤ i1, . . . , i� ≤ m and 0 ≤ j ≤ i1+ · · ·+ i�}.

For each (i1, . . . , i�, j) ∈ I+, a polynomial is written as by

gi1,...,i�,j =
∑

j1,...,j�

aj1,...,j� · g(1)i1,j1
g
(2)
i2,j2

· · · g(�)i�,j�
.

where the sum is over indices such that HM(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = xi11 · · ·xi�� yj .

In this situation, ik are fixed, and (j1, . . . , j�) moves over all integer tuples subject
to 0 ≤ jk ≤ ik and j1 + · · ·+ j� = j. Next we consider the coefficients; again as
mentioned in Section 3.1, the coefficients aj1,...,j� are selected so that

HC(gi1,...,i�,j) =GCD
j1,...,j�

(
HC(g

(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
)
)
.

Note that HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = em−j1

1 · · · em−j�
� . Since jk can move from

zero to min(ik, j), the greatest common divisor is e
m−min(i1,j)
1 · · · em−min(i�,j)

� .
Thus, we can take aj1,...,j� so that the head coefficient of gi1,...,i�,j is this value.

Then, we set the Minkowski sum lattice by G+ = {gi1,...,i�,j : (i1, . . . , i�, j) ∈
I+} and the order is the lexicographic order of suffixes. By Theorem 2 (and its
generalization), the converted lattice L(G+;X1, . . . , X�, Y) is lower triangular.
The diagonal element corresponding to (i1, . . . , i�, j) is

HC(gi1,...,i�,j)×X i1
1 · · ·X i�

� Y
j = e

m−min(i1,j)
1 · · · em−min(i�,j)

� X i1
1 · · ·X i�

� Y
j .

Therefore, the determinant is

det(G+;X1, . . . , X�, Y) =
∏

(i1,...,i�,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(i�,j)

� Xi1
1 · · ·Xi�

� Y j
]
.

As with the same argument in Section 2.1, the Coppersmith technique works
if det(G+;X1, . . . , X�, Y)1/|I+| < (e1 · · · e�)m, where |I+| denotes the number of
elements in I+. Using approximations ek ≈ N for k ∈ [�], X1 = · · · = X� = Nβ

and Y ≈ N0.5, the condition can be rewritten as

∑
(i1,...,i�,j)∈I+

[
0.5j + (i1 + · · ·+ i�)β −

�∑
k=1

min(ik, j)

]
< 0. (15)

By computing the left-hand side, we derive the condition(
− 3

16
�2 +

5

48
�+

(
�2

4
+

�

12

)
β

)
m�+2 + o(m�+2) < 0.

98 Y. Aono

Thus, when m is sufficiently large, this condition is

β < (9�− 5)/(12�+ 4). (16)

Heuristic Improvement of Lattice: Suppose β > 0.5. We can construct a new
lattice by removing polynomials whose indexes satisfy both j > max{i1, . . . , i�}
and 0.5j+(i1+· · ·+i�)β−

∑�
k=1 min(ik, j) > 0, which have negative contributions

in the sigma (15). It can be shown that the new lattice is also lower triangular.
However, we have never derived an explicit formula of the working condition;
detailed construction and deriving numerical bounds are given in the full-version.

5 Application to Partial Key Exposure Attack on RSA

Assume that the attacker has � pairs of RSA public keys (e1, N), . . . , (e�, N), and
δn LSBs of the corresponding dk. Moreover, each dk is assumed to be smaller

than Nβ. LetM = 2�δn� and the exposed parts be d̃k for k ∈ [�]. Then, following

the derivation of the single equation for the situation that single (e,N, d̃) is given
[11], we consider the simultaneous equations

Fi(xi, y) = eid̃i − 1 + xi(y +N) ≡ 0 (mod eiM) for i = 1, . . . , �. (17)

By the counting argument, we can assume that if β − δ < (� − 0.5)/�, then the
solution satisfying |x1|, . . . , |x�| < Nβ and |y| < 3N0.5 is unique, and it can be
used to factor N .

The basic lattice construction is the same as in the above section; i.e., we let

g
(k)
i,j = xi−j

k (Fk(xk, y))
j(ekM)m−j and Gk = {g(k)i,j : (i, j) ∈ Z2, 0 ≤ j ≤ i ≤ m}.

Note that only the constant terms and moduli differ between (11) and (17). Thus,
L(Gk) for k ∈ [�] and their Minkowski sum L(G+) are also lower triangular.
Moreover, the set of indices I1, . . . , I� and their Minkowski sum I+ are also the
same as in Section 4.2.

For each (i1, . . . , i�, j) ∈ I+, we give the polynomial gi1,...,i�,j. First note that

HC(g
(1)
i1,j1

g
(2)
i2,j2

· · · g(�)i�,j�
) = em−j1

1 · · · em−j�
� M �m−j1−···−j� .

Thus, as Section 4.2, each jk can move from zero to min(ik, j), and we can take
the coefficients in (9) so that

HT(gi1,...,i�,j)e
m−min(i1,j)
1 · · · em−min(i�,j)

� M �m−jxi11 · · ·xi�� yj .

Hence, the determinant det(G+;X1, . . . , X�, Y) is∏
(i1,...,i�,j)∈I+

[
e
m−min(i1,j)
1 · · · em−min(i�,j)

� ×M �m−jX i1
1 · · ·X i�

� Y
j
]
.

Minkowski Sum Based Lattice Construction for Multivariate 99

Params: �: Number of RSA keys; n: RSA bit length; β: ratio of secret keys to n
Step 1: (Generate a sample RSA instance) Randomly choose �n/2�-bit pseudo-

primes p and q, and let N = pq. Randomly choose � �βn�-bit odd integers
d1, . . . , d� such that GCD(dk, (p − 1)(q − 1)) = 1 for all k ∈ [�]. Compute
the corresponding ek by d−1

k (mod (p− 1)(q− 1)). For each k ∈ [�], define
the RSA polynomial fk(xk, y) = −1 + xk(N + y) and let the solutions
x̄k = (1− ekdk)/(p− 1)(q − 1) and ȳ = 1− p− q.

Step 2: Set the bounds Xk = �Nβ� and Y = �3N0.5�. Construct the
polynomial lattice L(G) in Section 4.2, and compute the Euclidean
lattice L(G+;X1, . . . , X�, Y). Then, apply the LLL algorithm to
L(G+;X1, . . . , X�, Y).

Step 3: From the reduced basis, pick the first � + 1 vectors v1, . . . ,v�+1. Then,
compute the corresponding polynomials hk(x1, . . . , xk, y), i.e., take poly-
nomials so that vk = V(hk;X1, . . . , Xk, Y) for k ∈ [�+ 1].

Step 4: First check hi(x̄1, . . . , x̄�, ȳ) = 0 for all k ∈ [�+1]. If it is not true, reject the
instance. After the polynomials pass the first check, compute the resultant
of polynomials modulo prime to check the algebraic independence. If the
instance passes two checks, then we regard the experiment as successful.

Fig. 2. Procedure of our computer experiments

Plugging the approximations ek ≈ N , Xk = Nβ, Y ≈ N0.5 and M ≈ N δ, the
working condition is

∑
(i1,...,i�,j)∈I

[
(0.5− δ)j + (i1 + · · ·+ i�)β −

�∑
k=1

min(ik, j)
]
< 0. (18)

Calculating the left-hand side, when m becomes large, the condition is

β − δ

2
+

1

4
<

3�− 1

3�+ 1
. (19)

6 Computer Experiments of our RSA Cryptanalysis

Experimental Environment: The experiments were conducted on a work-
station with 16GB of RAM and two Intel Xeon X5675@3.07GHz. We wrote our
experimental code in the C++ language using the following libraries. To compute
the LLL reduced basis, we used Shoup’s NTL library [28] version 5.5.2 compiled
with the GMP library [13] version 5.0.4. The polynomial computation was per-
formed using the GiNaC library [12] version 1.6.2. We compiled our source code
using g++ version 4.5.4 with the -O3 option. We also used Maple 15 to com-
pute the resultant in Zp in the final step of the experiments. We performed our
experiments on the Windows 7 platform and ran our program in a single thread.

6.1 Experiments for Short RSA Secret Exponents

Figure 2 shows the procedure of our computer experiments. In Step 1, “pseu-
doprime” means an odd integer that passes the Euler-Jacobi primality testing

100 Y. Aono

Table 1. Theoretical β bound and lattice dimension for small � and several m

� = 2
m 2 3 4 5 6 7 10 limit
β 0.386 0.405 0.416 0.424 0.430 0.434 0.442 0.464

dim 27 64 125 216 343 512 1331 -

� = 3
m 2 3 4 5 6 7 10 limit
β 0.464 0.486 0.500 0.508 0.514 0.519 0.527 0.550

dim 108 352 875 1836 3430 5888 21296 -

Table 2. Experimental results for short secret exponents

� m n βthm dim βexp LLL-time

2 2
512

0.386 27
0.386 3.2 sec

1024 0.386 10.55 sec.

2 3
512

0.405 64
0.406 5 min. 33 sec

1024 0.406 30 min. 44 sec.

2 4
512

0.414 125
0.416 3 hrs. 50 min.

1024 0.414 20hrs. 26min.

3 2
512

0.464 108
0.464 41 min. 25 sec.

1024 0.464 3 hrs. 17 min.

for bases 2, 3, 5 and 7. In Step 2, we use the command LLL XD(L,0.99,0,0,1).
In the second-half of Step 4, we first generate a random 0.5n bit prime number
P . Then, we erase the variable x1 by computing rk = Resx1(h1, hk) mod P for
k = 2, . . . , � + 1, and next we compute Resx2(r2, rk) mod P for k = 3, . . . , �+ 1
modulo P , and repeat this process. Finally, we obtain a univariate polynomial
R(y) and check R(ȳ) ≡ 0 (mod P). We repeat this check for three distinct
pseudoprime numbers via Maple 15.

Parameters and Results: Note first that if m and � are fixed, condition
(15) is written in a linear function w.r.t. β, and the maximum β satisfying the
inequality is easily computed. This β is a theoretical bound when N becomes
large along with neglecting several factors as described in Section 2.1. For each
m and � we compute the maximum β and the dimension of lattice. They are
shown in Table 1. The column “limit” indicates the right-hand side of (16).

We carried out our experiments to search for the practical bound of β for
several choices of �, m and n. We executed our procedure for each β at intervals
of 0.002. Table 2 shows the experimental results. The column “βexp” indicates
the experimental bound of β for parameters (l,m, n); that is, the instance passed
the final test at that β and failed at β + 0.002. The columns “βthm” and “dim”
are the theoretical bound of β and the lattice dimension, respectively; which
are the same as shown in Table 1. The running time of the LLL algorithm for
processing L(G+) is given in the column “LLL-time.”

We note that for � = 3 andm = 2, the second half of Step 4 is not finished due
to computational time. More precisely, Maple computed two bivariate polyno-
mials, r1(x3, y) and r2(x3, y) from h1, . . . , h4. It took over 120 hours to compute
Resx3(r1, r2), and we stopped the computation. However, we can observe that
h1, . . . , h4 are algebraically independent since they are reduced to the bivariate
polynomials, and can expect that the final resultant will be computed if more

Minkowski Sum Based Lattice Construction for Multivariate 101

β δ LLL-time result
1.00 0.96 18 hrs. 59 min. + (passed)
1.00 0.94 16 hrs. 13 min. + (passed)
1.00 0.92 15 hrs. 46 min. × (fault)
0.96 0.90 15 hrs. 42 min. + (passed)
0.96 0.88 16 hrs. 9 min. + (passed)
0.96 0.84 14 hrs. 46 min. × (fault)

Fig. 3. Experimental results for partial key exposure situation

time is permitted 1. Hence, we regard the experiment as a success. From the
observation, we conclude our method works well.

6.2 Experiments for Partial Key Exposure Situation

We conducted our experiments on the partial key exposure situation. The ex-
perimental procedure is similar to in Figure 2. Different points are the definition

of Fk(xk, y), and that M = 2�δn� and d̃k = d mod M are added in Step 1.
We fixed the parameters � = 3 and m = 2 since it could be taken β close

to one. Unfortunately, for this �, only the lattice constructed with m = 2 can
be reduced in reasonable time. The lattice dimension is 108 as in the above
subsection. For several choices of β and δ, we generated 1024-bit RSA sample
instances and tested them.

Figure 3 shows the result. In the figure, the horizontal and vertical axes are β
and δ, respectively. Each mark represents one experiment (β, δ) at the point. The
marks “+” and “×” mean that the instance passed and was a fault, respectively.
The left table in Figure 3 indicates the running time of the LLL algorithm and
experimental results for several β and δ close to β = 1. Again, note that the
final resultant computation was not finished and regard that the experiment is
successful if Maple computes two bivariate polynomials.

7 Discussion and Open Problems

Minkowski Sum Lattice Construction: Although our lattice construction
works well, it is not optimal. That is, in Section 3.1, L(G+) is a sublattice of A
that spanned by all possible combination of polynomials. Providing a method to
extract the lattice basis of A, and deriving the condition so that L(G+) and A
are equivalent are open problems.

Cryptanalysis of RSA with Small Secret Exponents: Both our bound
(16) and that by Sarkar and Maitra converge to N0.75 when � becomes large,
whereas the limit by the counting argument isN . Filling this gap is an interesting
problem. We expect that our heuristic improvement shown in Appendix D in the
full-verstion achieves this goal, though this is not proven.

1 An ACISP reviewer proposed to use the Gröbner basis instead, and use more poly-
nomials since the LLL algorithm usually finds more small vectors than required.

102 Y. Aono

Cryptanalysis of RSA in Other Situations: The proposed Minkowski sum
based lattice construction can be applied to other situations of cryptanalysis of
RSA including revealed MSBs [11], RSA-CRT [20], Takagi’s RSA [21], small e
[4,5,24], unbalanced p and q situation [25], and special settings of e [27]. For
more information, see [29, Chap. 10].

Acknowledgments. I would like to thank Noboru Kunihiro and Shiho Moriai
for helpful discussion and comments on an earlier version of this paper. I also
would like to thank the anonymous reviewers for insightful comments.

References

1. Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous
Coppersmith’s technique and applications to RSA, Cryptology ePrint Archive,
2012/675 (2012)

2. Aono, Y., Agrawal, M., Satoh, T., Watanabe, O.: On the Optimality of Lattices
for the Coppersmith Technique. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP
2012. LNCS, vol. 7372, pp. 376–389. Springer, Heidelberg (2012); The full-version
is available online at Cryptology ePrint Archive, 2012/134

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998)

5. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

6. Blömer, J., May, A.: A tool kit for finding small roots of bivariate polynomials
over the integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
251–267. Springer, Heidelberg (2005)

7. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms: An introduction to
computational algebraic geometry and commutative algebra. Springer, New York
(2007)

8. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks Against emv Signatures.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer,
Heidelberg (2010)

9. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

10. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996)

11. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks on
RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 371–386. Springer, Heidelberg (2005)

12. GiNaC is Not a CAS, http://www.ginac.de/
13. The GNU MP Bignum Library, http://gmplib.org/
14. Healy, A.D.: Resultants, Resolvents and the Computation of Galois Groups,

http://www.alexhealy.net/papers/math250a.pdf

http://www.ginac.de/
http://gmplib.org/
http://www.alexhealy.net/papers/math250a.pdf

Minkowski Sum Based Lattice Construction for Multivariate 103

15. Herrmann, M.: Improved cryptanalysis of the multi-prime Φ-hiding assumption.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
92–99. Springer, Heidelberg (2011)

16. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

17. Hinek, M.J., Lam, C.C.Y.: Common modulus attacks on small private exponent
RSA and some fast variants (in practice). Journal of Mathematical Cryptology 4(1),
58–93 (2010)

18. Herrmann, M., May, A.: Attacking power generators using unravelled linearization:
When do we output too much? In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 487–504. Springer, Heidelberg (2009)

19. Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the presence of
many decrypting exponents. In: Baumgart, R. (ed.) CQRE 1999. LNCS, vol. 1740,
pp. 153–166. Springer, Heidelberg (1999)

20. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

21. Kunihiro, N., Kurosawa, K.: Deterministic polynomial time equivalence between
factoring and key-recovery attack on Takagi’s RSA. In: Okamoto, T., Wang, X.
(eds.) PKC 2007. LNCS, vol. 4450, pp. 412–425. Springer, Heidelberg (2007)

22. Kunihiro, N.: Solving generalized small inverse problems. In: Steinfeld, R., Hawkes,
P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 248–263. Springer, Heidelberg (2010)

23. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515–534 (1982)

24. Luo, P., Zhou, H.-J.,Wang, D.-S., Dai, Y.-Q.: Cryptanalysis of RSA for a special case
with d > e. Science in China Series F: Information Sciences 52(4), 609–616 (2009)

25. May, A.: Cryptanalysis of unbalanced RSA with small CRT-exponent. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 242–256. Springer, Heidelberg (2002)

26. May, A., Ritzenhofen, M.: Solving systems of modular equations in one variable:
How many RSA-encrypted messages does Eve need to know? In: Cramer, R. (ed.)
PKC 2008. LNCS, vol. 4939, pp. 37–46. Springer, Heidelberg (2008)

27. Maitra, S., Sarkar, S.: A New Class of Weak Encryption Exponents in RSA. In:
Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365,
pp. 337–349. Springer, Heidelberg (2008)

28. Shoup, V.: NTL: A Library for doing Number Theory,
http://www.shoup.net/ntl/index.html

29. Nguyen, P.Q., Vallée, B.: The LLL algorithm: Survey and applications. Springer,
Berlin (2009)

30. Ritzenhofen, M.: On efficiently calculating small solutions of systems of polyno-
mial equations: lattice-based methods and applications to cryptography, Ph.D.
thesis, Ruhr University Bochum, http://www-brs.ub.ruhr-uni-bochum.de/

netahtml/HSS/Diss/RitzenhofenMaike/diss.pdf
31. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptsystems. Communications of the ACM 21(2), 120–128 (1978)
32. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption exponents. In-

formation Processing Letter 110, 178–181 (2010)
33. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with more than one decryption expo-

nent. Information Processing Letter 110, 336–340 (2010)
34. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on

Information Theory 36(3), 553–558 (1990)

http://www.shoup.net/ntl/index.html
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RitzenhofenMaike/diss.pdf
http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/RitzenhofenMaike/diss.pdf

Adaptive Precision Floating Point LLL�

Thomas Plantard, Willy Susilo, and Zhenfei Zhang

Centre for Computer and Information Security Research
School of Computer Science & Software Engineering (SCSSE)

University of Wollongong, Australia
{thomaspl,wsusilo,zz920}@uow.edu.au

Abstract. The LLL algorithm is one of the most studied lattice basis
reduction algorithms in the literature. Among all of its variants, the
floating point version, also known as L2, is the most popular one, due to
its efficiency and its practicality. In its classic setting, the floating point
precision is a fixed value, determined by the dimension of the input
basis at the initiation of the algorithm. We observe that a fixed precision
overkills the problem, since one does not require a huge precision to
handle the process at the beginning of the reduction. In this paper, we
propose an adaptive way to handle the precision, where the precision
is adaptive during the procedure. Although this optimization does not
change the worst-case complexity, it reduces the average-case complexity
by a constant factor. In practice, we observe an average 20% acceleration
in our implementation.

Keywords: Lattice Theory, Lattice Reduction, LLL, floating point
arithmetic.

1 Introduction

A lattice L is a discrete subgroup of Rn. It is usually represented by a set of
integer linear combinations of vectors B = (b1, . . . ,bd), bi ∈ Rn, d ≤ n. B is a
basis of L, if bi-s are linearly independent, and d is known as the dimension of
the L. For a given lattice L, there exists an infinite number of bases for d ≥ 2.
Given a “bad” basis (i.e., a basis with large coefficients), to find a short vector
of the lattice (a vector with small coefficients), or a “good” basis (i.e., a basis
with small coefficients and the vectors are almost orthogonal), is known as the
lattice reduction.

The LLL algorithm, named after its inventors, Lenstra, Lenstra and Lovász
[11], is a polynomial time lattice reduction algorithm. For a basisB = (b1, . . . ,bd),
the LLL algorithm is proven to terminate within O(d6β3) time, where β is the
maximum bit length of all the Euclidean norm of input vectors. This algorithm
is of great importance in cryptanalysis, since finding vectors with exponential
approximation (in d) to the shortest non-zero vector will break some of the cryp-
tosystems, such as the Coppersmith’s method [6,5] against RSA cryptosystem

� This work is supported by ARC Future Fellowship FT0991397.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 104–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adaptive Precision Floating Point LLL 105

[21]. For this reason, one of the working direction is to increase the time efficiency
of the algorithm.

One of the greatest achievements towards this end was due to [16,18], which
incorporates the floating point arithmetics. It is the first algorithm that achieves
quadratic complexity in terms of β, hence it was named L2. In practice, there
exist two main versions, a standard version (referred to as “L2”) that delivers
the proven complexity and a heuristic version (referred to as “FP”) that adopts
some heuristics to boost the reduction.

L2 uses floating points instead of integers, where the precision is set to O(d)
to deliver error free arithmetics. The precision was determined at the beginning
of the procedure. However, we notice that this setting indeed is an overkill. LLL
deals with vectors progressively. During the process, when k < d vectors are
involved, it only requires O(k) bit precision to deliver correct reduction. In fact,
the only time that the algorithm requires O(d) precision is when all the vectors
are involved. This inspires us to propose the adaptive precision floating point
LLL algorithm.

Our Contribution. We present an adaptive precision floating point LLL algo-
rithm, the ap-fplll. We consider both the proven version, L2, and the most effi-
cient version, FP. We test our ap-fplll with random lattices. In practice, we are
always faster than the standard version of L2. When the dimension and/or deter-
minant are sufficiently large, we are also faster than the fastest implementation
of L2. In general, we accelerate the reduction by 20%.

Roadmap. In the next section, we will discuss the background knowledge and
terminology required throughout the paper and briefly recall the L2 algorithm.
In Section 3, we show our adaptive precision floating point LLL algorithm and
analyze its performance. In Section 4, we show the implementation result of our
proposed algorithm. Finally, Section 5 concludes the paper.

2 Background

It this section, we briefly review the related area. We refer readers to [12,14] for
a more complex account of lattice theory, and [4,19] for the LLL algorithm.

2.1 Lattice Basics

The lattice theory, also known as the geometry of numbers, was introduced by
Minkowski in 1896 [15].

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Zb1 + Zb2 + · · ·+ Zbd,bi ∈ Rn

B = (b1, . . . ,bd) is called a basis of L and d is the dimension of L, denoted as
dim(L). L is a full rank lattice if d equals to n.

106 T. Plantard, W. Susilo, and Z. Zhang

Definition 2 (Successive Minima). Let L be an integer lattice of dimension
d. Let i be a positive integer. The i-th successive minima with respect to L,
denoted by λi, is the smallest real number, such that there exist i non-zero linearly
independent vectors v1,v2, . . . ,vi ∈ L with

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ λi.

The norm of i-th minima of a random lattice is estimated by

λi(L) ∼
√

d

2πe
det(L) 1

d . (1)

Definition 3 (Gram-Schmidt Orthogonalization). Let B = (b1, . . . ,bd) be
a basis of L. The Gram-Schmidt Orthogonalization (GSO) of B is the following
basis B∗ = (b∗

1, . . . ,b
∗
d)

b∗
1 = b1,

b∗
i = bi −

i−1∑
j=1

μi,jb
∗
j , (2 ≤ i ≤ d),

μi,j =
bi · b∗

j

b∗
j · b∗

j

.

Definition 4 (Gram determinants). Let B = (b1, . . . ,bd) be a basis of L.
Let B∗ = (b∗

1, . . . ,b
∗
d) be the corresponding GSO. The Gram determinants of B,

noted {Δ∗
1, . . . , Δ

∗
d} is defined as

Δ∗
i = det(b∗

1, . . . ,b
∗
i).

The loop invariant is defined as the product of all Gram determinants as: D =∏d−1
i=1 Δ

∗
i . For any basis, D is upper-bounded by 2βd(d−1) [4].

2.2 The LLL Algorithm

The LLL algorithm was proposed by Lenstra, Lenstra and Lovasz [11] in 1982.
We briefly sketch the algorithm as in Algorithm 1 and 2. LLL produces a (δ, 0.5)-
reduced basis for a given basis (see definitions below).

Definition 5 (η-size reduced[18]). Let B = (b1, . . . ,bd) be a basis of L. B is
η-size reduced, if |μi,j | ≤ η for 1 ≤ j < i ≤ d. η ≥ 0.5 is the reduction parameter.

Definition 6 ((δ, η)-reduced basis[18]). Let B = (b1, . . . ,bd) be a basis of L.
B is (δ, η)-reduced, if the basis is η-size reduced and it satisfies Lovász condition
as follows: δ‖b∗

i−1‖2 ≤ ‖b∗
i + μ2

i,i−1b
∗
i−1‖2 for 2 ≤ i ≤ d. 1

4 < δ ≤ 1 and
1
2 ≤ η <

√
δ are two reduction parameters.

Adaptive Precision Floating Point LLL 107

For a lattice L with dimension d, and a basis B, where the Euclidean norm of
all spanning vectors in B is ≤ 2β, the worst-case time complexity is polynomial
O(d6β3).

This complexity comes from the following. Firstly, there exists O(d2β) loop
iterations. It has been shown that the loop invariant D is not changed except
during the swap procedure, while during the swap, D is decreased by a factor
of δ. Hence, the total number of swaps is upper bounded by the absolute value

of βd(d−1)
log2 δ . Therefore there are maximum O(d2β) loop iterations. As a result,

the total number of size reduction is O(d2β). Secondly, for each size reduction,
there are O(d2) arithmetic operations. Finally, each operation involves integer
multiplications with a cost of M(dβ) due to rational arithmetics.1 Hence, the
original LLL algorithm terminates in polynomial time O(d6β3).

Algorithm 1. Size Reduction

Input: B = (b1,b2, . . . ,bd), its GSO and an index k.
Output: A new basis B, where bk is size reduced, and the updated GSO.

for i = (k − 1)→ 1 do
bk ← bk − �μk,i� · bi.
Update GSO

end for
return B.

Note that for the bases of a random lattices that are using in our analysis and
implementation, the number of loop iterations is O(dβ) instead of O(d2β) (see
Remark 3, [16]). So the complexity will be reduced by O(d).

2.3 Floating Point LLL Algorithm

The most costly part in an LLL procedure is the size reduction. When one
performs a size reduction, the GSO needs to be regularly updated. During the
update, the classic LLL needs to operate on integers with length of O(dβ). As a
result, the multiplication of those integers incurs a cost of O(M(dβ)).

The First Floating Point LLL Algorithm. In [22] and [23], Schnorr showed
that using floating points instead of integers for LLL can reduce the cost of
multiplications from M(dβ) to M(d + β). To the best of our knowledge, this
is the first time where floating points make a significant difference in the LLL
algorithm. However, it is obseved that the hidden constant in the bit complexity
remains huge.

1 M(d) represents the cost of multiplication between two O(d) length integers. In
this paper, we follow the LLL algorithm by using M(d) to be O(d2) assuming a
naive integer multiplication. One can replace it with O(d1+ε) to obtain the exact bit
complexity in practice.

108 T. Plantard, W. Susilo, and Z. Zhang

Algorithm 2. LLL

Input: B = (b1,b2, . . . ,bd) and a reduction parameter η
Output: A (δ, 0.5)-reduced basis B.

Compute GSO.
k← 2.
while k ≤ d do

size reduce (B, k);
if δ‖b∗

k−1‖2 ≤ ‖bk‖2 + μ2
k,k−1‖b∗

k−1‖2 (Lovász condition) then
k← k + 1

else
swap bk and bk−1;
k← max(k − 1, 2);
Update GSO;

end if
end while
return B.

The L2 Algorithm. To further improve the efficiency, the L2 algorithm was
proposed by Nguyen and Stehlé [16] in 2005. It is the first variant whose worst-
case time complexity is quadratic with respect to β. It uses a worst-case time
complexity of O(d5β2+d6β) to produce a (δ, η)-reduced basis for 1

4 < δ ≤ 1 and
1
2 < η <

√
δ.

The L2 algorithm incorporates the lazy reduction as follows: firstly, the size
reduction consists of many floating point reductions (fp-reduction). Then, within
each fp-reduction, one works on floating point whose precision is O(d). The factor
within O(·) is influenced by the reduction parameters. A default setting in the
fplll is approximately 1.6d. As a consequence, the multiplication cost is reduced
to O(M(d)). However, the trade-off is that, each fp-reduction may be incomplete,
and one is required to perform O(1+ β

d) fp-reductions to ensure that the vectors
is size reduced.

L2 in Practice. In practice, the fplll library [20] and MAGMA [3] are two well
known implementations. Within both implementations, there exist two main
versions, “L2” and “FP” (it is known as “LM WRAPPER” in the fplll). The L2
is described as above. It is the proved version of L2. Meanwhile, in practice, one
can further improve the average performance with some heuristics. To the best
of our knowledge, the most efficient implementation of L2 is FP. As far as the
floating point is concerned, FP is L2 plus some early reductions.

In FP, the basis is early reduced as follows: the algorithm will choose several
fixed precisions subject to the following conditions:

– The arithmetics are fast with those precisions, for instance, 53 for C double
precision.

– Reductions with those precisions are likely to produce a correct basis, for
instance, d rather than 1.6d (see Remark 4, [17]).

Adaptive Precision Floating Point LLL 109

Reductions with above precisions are cheaper, while they produce somewhat
reduced bases. So the algorithm will try all early reductions with different fixed
precisions, and finally perform an L2 to ensure the quality of reduction. We
note that those early reductions do not change the overall complexity, since in
theory the last L2 is still the most costly one. Nevertheless, in practice, the early
reductions are very effective to accelerate the whole procedure.

3 Our Adaptive Precision Floating Point LLL Algorithm

3.1 The Algorithm

The LLL algorithm uses a stepping method. For a basis B = (b1, . . . ,bd), it
starts with the first 2 vectors, and then adds 1 vector into the procedure during
each step. We notice that, one does not require a floating point precision of O(d)
to reduce in the first d−1 steps. In fact, for any k vectors, one only requires O(k)
precisions. Hence, a possible improvement is to adaptively select the precision
according to the number of vectors that are involved. This leads to the adaptive
precision floating point LLL algorithm (ap-fplll) as shown in Algorithm 3.

Algorithm 3. Adaptive precision floating point LLL algorithm

Input: B = (b1,b2, . . . ,bd), reduction parameters (δ, η) and a starting index γ.
Output: An (δ, η)-reduced basis B.

k← 2, kmax ← γ.
SetPrecision(γ) and Compute GSO accordingly.
while k ≤ d do

Size reduce (B, k);
if δ‖b∗

k−1‖2 ≤ ‖bk + μk,k−1‖b∗
k−1‖2 (Lovász condition) then

k← k + 1;
if k > kmax then

kmax ← k;
if kmax > γ then

SetPrecision(kmax) and Compute GSO accordingly.
end if

end if
else

Swap bk and bk−1;
k← max(k − 1, 2);
Update GSO;

end if
end while
return B.

Algorithm 3 describes the L2 version of our ap-fplll algorithm. k indicates the
current vector the algorithm is working on, while kmax indicates the maximum
number of the vectors that are involved. When kmax changes, one is required

110 T. Plantard, W. Susilo, and Z. Zhang

to reset the precision. To obtain the FP version of the algorithm, one conducts
early reductions as in fplll when kmax increases.

We also introduce an index parameter γ due to implementation issue. For
some of the library, there exists a minimum precision for floating point. If the
required precision is smaller than this bound, the algorithm will automatically
use the bound. In this case, the precision is not O(d), rather it is a fixed value
subject to the system. Hence, using an adaptive precision will not reduce the
cost of multiplication, rather it will repetitively recompute the GSO. We set γ
such that when more than γ vectors are involved, the algorithm will need to use
a precision subject to the dimension.

Remark 1. In our algorithm, we follow the L2 by setting the precision to be the
exact value that is required, i.e., 1.6d, to deliver a fair comparison. Nevertheless,
it is worth pointing out that thempfr library [1] that the fplll depends on operates
a floating number as a linked list of blocks of 32 bits (or 64 bits), therefore, it
is possible that increasing precisions with respect to the size of the block (the
actual size may be smaller than 32 or 64 due to the overhead of storing a floating
number) may derive a better performance, since in this case, the GSO will be
updated less often.

3.2 Worst-Case Complexity

In this part, we prove that our algorithm uses the same worst-case complexity
with L2.

The reduction part of L2 algorithm can be seen as our algorithm with a fixed
precision of O(d). Therefore, during the reduction part we can never be more
costly than L2. However, our algorithm needs to recompute the GSO for each
step, where the GSO is updated partially in L2. On the worst-case, we can be
more costly than L2 by the cost of computing the GSO.

For each step, the cost of computing GSO is O(d2k2β). This brings an overall
cost of O(d5β), hence it will not affect the worst-case complexity of O(d6β +
d5β2). As a result, the ap-fplll uses a same worst-case complexity with L2.

3.3 Average Behaviors

We construct the random lattices as in [9]. There exist bases of those lattices
that are of the following form:

B =

⎛⎜⎜⎜⎜⎜⎝
X1 0 0 . . . 0
X2 1 0 . . . 0
X3 0 1 . . . 0
...

...
... · · · ...

Xd 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ ,

where X1 is a large prime with β bits. Xi-s (i 	= 1) are chosen uniformly between
0 and p.

Adaptive Precision Floating Point LLL 111

These bases are somewhat standard to analyze lattice reductions. They are
believed to leak the least information for the corresponding lattice, since it can
be obtained by any lattice basis within polynomial time. They are adopted in
[8,17] where the LLL behavior is widely analyzed. Further, when setting β ∼ 10d,
these bases are also used for the shortest vector problem (SVP) challanges in [2].

We analyze the average case complexity of our algorithm with the above bases.
Since the lattice is a random one, then its minimas λi follow Equation 1.

Bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 . . . x1,k 0 . . . 0
x2,1 x2,2 . . . x2,k 0 . . . 0
...

... · · · ...
... · · · ...

xk,1 xk,2 . . . xk,k 0 . . . 0
Xk+1 0 . . . 0 1 . . . 0

...
... · · · ...

... · · · ...
Xd 0 . . . 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the k-th step (k > 2), the basis is shown as above, where ‖bi‖ � 2

k−1
2 2

β
k−1

for i < k and ‖bk‖ � 2
k−2
2 2

β
k−2 . Hence, the loop invariant for the current step

Dk is then bounded by

k∏
i=1

‖bi‖2(k−i+1) = 2k(k−1)2−122βk+
β

(k−1)(k−2) .

When the k-th step terminates, bi will be reduced to 2
k
2 2

β
k for i ≤ k. Hence, one

obtains O(β) loop iterations on average cases. We note that this observation is
quite natural, since there are O(dβ) loop iterations in total, hence, on average
there are O(β) loop iterations for each k.

Let l be the precision to be used in the algorithms. Then for each loop iter-
ation, one needs to perform O(1 + β

l) floating point reductions, each at a cost

of O(d2M(l)). Since l = O(k), so it will cost O(d2β
∑d

i=γ(1 +
β
i)M(i))) that is

1
6c1d

5β + 1
2c2d

4β2 for some constants c1 and c2, if we assume M(d) = O(d2).

For comparison, we also show the complexity of L2: O(d2β
∑d

i=1(1+
β
d)M(d))

which is c1d
5β + c2d

4β2 for the same constants.
It is straightforward to see that our algorithm uses the same bit complexity

with L2. Further, our algorithm wins on both terms. However, the factor 1
6 on

the first term does not make a difference, which is due to the following. Firstly, in
this case, β < d which indicates that for each lazy reduction, only requires O(1)
fp-reductions, while our advantage is in fact a faster fp-reduction. Hence, our
advantage diminishes. Secondly, the cost of recompute the GSO is also O(d5β)
on worst cases as well.

Nevertheless, when β > d, we anticipate a lot of reductions. In this case, we
should be able to accelerate the reduction by a factor between 0 and 50% for L2
(due to the fact that in practice M(d) ≤ O(d1+ε)).

112 T. Plantard, W. Susilo, and Z. Zhang

As for FP, in practice, it is possible that the early reduction already produces
a good basis. It happens a lot when the dimension is small and β

d is small. In this
case, the adaptive precision will not boost the reduction, since our advantage
works on the final procedure, while in the final procedure, the basis is already
in a good shape. Nevertheless, when one increases the dimension and/or the β

d ,
the adaptive precision will still accelerate the reduction.

4 Implementation

In this section we show the implementation results of our algorithm. The tests
were conducted with fplll library version 4.0 on Xeon E5640 CPUs @ 2.66GHz.
The memory was always sufficient since the algorithm only requires a polyno-
mial space. We used the random lattice basis as shown in the last section. We
set the dimension to 64 and increase it by 32 each time. For each dimension,
we set β = 10d, 20d, · · · , and generated the bases accordingly. For each dimen-
sion/determinant, we tested 10 different bases where the random numbers are
generated from different seeds 0 ∼ 9 using the pseudo-random generator of the
NTL library [24].

We set the index γ = 40 so that the required precision is strictly greater than
53. In deed, one can change γ to improve ap-fplll. However, to show a more fair
comparison, we use a same value for all the tests. The reduction parameter pair
is set to (0.99, 0.51) as the default value of fplll. This results in a very strongly
reduced basis which is in general most useful for cryptanalysis.

We show the implementation results as follows. As one can see from Table 1,
one can merely observe any difference between two algorithms at the beginning
of the tests, although ap-fplll-L2 is slightly faster than fplll-L2. We believe the
reason is that the cost of recompute the GSO is more or less the same of the
advantage of using smaller precisions. However, when the dimension grows, the
reductions influence the total complexity more importantly compared with the
GSO computation, and as a result, the ap-fplll starts to be a lot faster. Figure 1
illustrated the winning percentage of ap-fplll-L2 versus fplll-L2. When d = 64, we
accelerate the reduction by 10%, since it is closer to the starting index γ = 40.
When d ≥ 96, the influence of γ diminishes, and we start to see the phenomenon
where the dimension and/or determinant grow, the advantage increases as well.
When the dimension and the determinant are sufficiently large, we can expect
an advantage up to 40%. Overall, our algorithm is always faster in all cases, and
we anticipate a boost of over 20% in general.

The results for the FP version are shown in Table 2. The results are not as
stable as L2 due to the early reductions. As we anticipated, with small determi-
nant/dimension, i.e., β = 10d, our algorithm does not accelerate the reduction.
The early reduction technique works extremely efficient in those cases. Never-
theless, the disadvantage is still acceptable considering that even in dimension
448, the disadvantage is less than several of minutes.

Meanwhile, for the other cases, when the dimension grows, we start to ob-
serve advantages. Further, the advantage rises with the increase of dimension

Adaptive Precision Floating Point LLL 113

T
a
b
le

1
.
T
es
t
R
es
u
lt
s:

a
p
-f
p
ll
l-
L
2
v
s
fp
ll
l-
L
2

β
1
0
d

2
0
d

3
0
d

4
0
d

a
p
-f
p
ll
l-
L
2
fp
ll
l-
L
2

a
p
-f
p
ll
l-
L
2
fp
ll
l-
L
2

a
p
-f
p
ll
l-
L
2
fp
ll
l-
L
2

a
p
-f
p
ll
l-
L
2
fp
ll
l-
L
2

d

6
4

5
.2
9
8

5
.7
4
2

1
1
.0
1
5

1
2
.3
1
9

1
7
.7
1
9

2
0
.0
6
9

2
3
.9
4
1

2
7
.2
1
2

9
6

2
9
.4
8
8

3
0
.6
0
7

6
4
.6
4
3

6
9
.3
3
6

1
0
4
.5
5
3

1
1
3
.5
1
3
1
4
4
.9

1
5
8
.2
2
2

1
2
8

9
5
.4
4
5

9
9
.3
2
6

2
2
1
.7
2
2

2
3
7
.1
3
6
3
6
8
.6
3
3

4
0
9
.1
5

5
1
6
.0
1
2

5
7
7
.8
2
2

1
6
0

2
3
4
.2
4
1

2
5
3
.7
1
1
5
7
5
.6

6
3
6
.7
0
3
9
7
1
.4
5
9

1
1
4
9
.2
2
1
4
1
7
.3
4

1
7
1
8
.8
4

1
9
2

4
7
0
.9
8
6

5
2
2
.5
3
7
1
2
4
1
.9

1
4
1
6
.4
1
2
2
7
8
.7
9

2
8
7
6
.8
2
3
2
4
8
.4

4
1
8
4
.2

2
2
4

8
3
8
.0
5
9

1
0
0
3
.0
8
2
3
8
5
.8
1

2
9
4
4
.0
7
4
3
8
6
.8
6

6
0
6
2
.0
6
6
6
0
4
.1
8

9
2
3
8
.3
1

2
5
6

1
3
4
9

1
7
0
2
.9
5
4
2
2
1
.7
4

5
4
5
2
.4
8
8
2
3
5
.8

1
1
6
8
4
.3

1
1
9
4
2
.6

1
7
1
0
2
.9

2
8
8

2
0
3
3
.2
9

2
5
6
1
.1
6
6
9
7
9
.1
1

9
0
8
0
.9
7
1
3
4
8
1
.2

1
9
2
3
1
.7

3
2
0

2
7
7
2
.1
5

3
7
0
2
.2
2
1
1
0
0
7
.3

1
5
0
4
8
.3

3
5
2

3
6
8
6
.8

5
1
8
1
.0
6

3
8
4

4
7
7
2
.0
2

7
1
7
5
.7
8

4
1
6

6
0
8
7
.3
1

9
4
7
6
.5
2

4
4
8

7
6
4
1
.2
5

1
2
5
6
3
.9

114 T. Plantard, W. Susilo, and Z. Zhang

T
a
b
le

2
.
T
es
t
R
es
u
lt
s:

a
p
-f
p
ll
l-
F
P
v
s
fp
ll
l-
F
P

β
1
0
d

2
0
d

3
0
d

4
0
d

5
0
d

a
p
-f
p
ll
l-
F
P

fp
ll
l-
F
P

a
p
-f
p
ll
l-
F
P

fp
ll
l-
F
P

a
p
-f
p
ll
l-
F
P

fp
ll
l-
F
P

a
p
-f
p
ll
l-
F
P

fp
ll
l-
F
P

a
p
-f
p
ll
l-
F
P

fp
ll
l-
F
P

d

6
4

1
.2
5
1

0
.9
6
8

2
.1
9

1
.9
4
1

3
.3
0
2

3
.1

4
.4
8
4

4
.2
7
5

5
.7
0
7

5
.5
3
6

9
6

6
.1
9
5

4
.8
3
3

1
2
.2
0
6

1
1
.4
8
8

1
9
.2
8
3

1
8
.9
1
9

2
6
.7
6
9

2
7
.4
2
4

3
4
.0
7
5

3
5
.0
2
8

1
2
8

1
9
.4
2
6

1
6
.9
3
4

4
0
.4
7
1

4
0
.6
7
2

6
6
.8
9
8

7
0
.5
1
2

9
3
.9
9

1
0
2
.0
8
3
1
2
3
.8
2
3

1
3
4
.3
2
4

1
6
0

4
8
.4
2
2

4
2
.1
3
3

1
0
9
.6
1
3

1
1
3
.1
6
7
1
8
5
.2
9
3

2
0
1
.1
6
9
2
6
8
.0
9
5

2
9
8
.6
2
9
3
5
7
.4
1
2

4
1
8
.3
9
5

1
9
2

1
0
8
.4
3
2

9
5
.2
2
2

2
6
4
.0
3
7

2
6
6
.8
6
4
4
7
6
.4
2
6

5
3
3
.0
2
4
6
9
9
.0
7
3

7
7
7
.9
9
5
9
8
2
.3
4
5

1
0
7
6
.9
7

2
2
4

2
2
0
.0
4
5

2
0
1
.6

5
4
3
.7
1
2

6
2
6
.5
3
8
1
1
6
0
.4
9

1
7
1
9
.1

1
9
2
2
.3
5

2
5
8
9
.3
1
2
5
3
7
.6
5

3
7
0
5
.7
8

2
5
6

5
6
4
.4
6
2

6
0
5
.9
2
5
1
8
6
2
.0
8

2
8
2
9
.1

3
9
7
9
.1
6

5
2
4
3
.4
1
6
0
1
3
.4
2

8
0
3
6
.8
9
8
1
0
5
.5
4

1
0
1
8
5
.1

2
8
8

1
1
2
7
.6

1
1
7
5
.7
6
4
5
5
7
.4
9

5
5
7
6
.7
7
8
4
5
1
.6
4

1
0
7
8
4
.1

1
2
7
2
2
.3

1
6
2
2
6

1
6
7
8
7
.2

2
1
0
7
3
.3

3
2
0

1
8
7
9
.0
3

1
8
6
8
.1
9
7
8
2
6
.5
2

9
3
4
1
.1
8
1
5
1
7
5
.8

1
8
8
9
6

3
5
2

2
8
0
0
.8
7

2
8
9
6
.2
1
1
2
4
4
5
.3

1
4
6
6
4
.5

3
8
4

4
1
3
6
.4
1

4
1
2
3
.8
8

4
1
6

6
2
2
3
.4
8

6
1
5
0
.3
5

4
4
8

8
8
2
1
.4
9

8
6
4
1
.2
7

Adaptive Precision Floating Point LLL 115

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64 96 128 160 192 224 256 288 320 352 384 416 448
 0

 5

 10

 15

 20

 25

 30

 35

 40

ra
tio

 (
in

 p
er

ce
nt

ag
e)

dimension

β = 10d
β = 20d
β = 30d
β = 40d

Fig. 1. Test Results: winning percentage of ap-fplll vs fplll using L2

-30

-20

-10

 0

 10

 20

 30

 40

 64 96 128 160 192 224 256 288 320 352 384 416 448
-30

-20

-10

 0

 10

 20

 30

 40

ra
tio

 (
in

 p
er

ce
nt

ag
e)

dimension

β = 10d
β = 20d
β = 30d
β = 40d
β = 50d

Fig. 2. Test Results: winning percentage of ap-fplll vs fplll using FP

116 T. Plantard, W. Susilo, and Z. Zhang

and determinant, just like L2. However, we notice the advantage is not stable.
This is because the early reduction affects differently for different dimensions.
Overall, as shown in Figure 2, with dimension grows, we accelerate the reduc-
tion by approximately 20% for β ≥ 20d. In cryptanalysis, one usually needs to
deal with lattice with massive dimension and/or determinants, for instance, the
Coppersmith-Shamir’s technique [7] against an NTRU cryptosystem [10], so it
is still helpful to use adaptive precisions when d ≥ 128 and β ≥ 20d.

5 Conclusion

In this paper, we presented an adaptive floating point precision LLL algorithm.
The cost of reduction relies heavily on the precision of the floating point, and
the precision used in L2 in fact overkills the problem. Therefore, we presented
an approach that adaptively handles the precision. In practice, our algorithm
is always faster than the proved version of L2. It also out-performs the fastest
implementation so far in most cases.

References

1. mpfr library, http://www.mpfr.org/
2. SVP CHALLENGE, http://www.latticechallenge.org/svp-challenge/index.

php

3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. the user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

4. Bremner, M.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and
Its Applications. Pure and Applied Mathematics. CRC Press Inc. (2012)

5. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer (ed.) [13], pp. 178–189

6. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer
(ed.) [13], pp. 155–165

7. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

8. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

9. Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathe-
maticum 15, 165–189 (2006)

10. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 513–534 (1982)

12. Lovász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. CBMS-
NSF Regional Conference Series in Applied Mathematics, vol. 50. SIAM Publica-
tions (1986)

13. Maurer, U.M. (ed.): EUROCRYPT 1996. LNCS, vol. 1070. Springer, Heidelberg
(1996)

http://www.mpfr.org/
http://www.latticechallenge.org/svp-challenge/index.php
http://www.latticechallenge.org/svp-challenge/index.php

Adaptive Precision Floating Point LLL 117

14. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems, A Cryptographic
Perspective. Kluwer Academic Publishers (2002)

15. Minkowski, H.: Geometrie der Zahlen. B. G. Teubner, Leipzig (1896)
16. Nguen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
17. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.

(eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)
18. Nguyen, P.Q., Stehlé, D.: An lll algorithm with quadratic complexity. SIAM J.

Comput. 39(3), 874–903 (2009)
19. Nguyen, P.Q., Valle, B.: The LLL Algorithm: Survey and Applications, 1st edn.

Springer Publishing Company, Incorporated (2009)
20. Pujol, X., Stehlé, D., Cade, D.: fplll library, http://perso.ens-lyon.fr/

xavier.pujol/fplll/

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

22. Schnorr, C.-P.: A more efficient algorithm for lattice basis reduction. J. Algo-
rithms 9(1), 47–62 (1988)

23. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

24. Shoup, V.: NTL - A Library for Doing Number Theory,
http://www.shoup.net/ntl/index.html

http://perso.ens-lyon.fr/xavier.pujol/fplll/
http://perso.ens-lyon.fr/xavier.pujol/fplll/
http://www.shoup.net/ntl/index.html

Better Lattice Constructions

for Solving Multivariate Linear Equations
Modulo Unknown Divisors

Atsushi Takayasu and Noboru Kunihiro

The University of Tokyo, Japan
{a-takayasu@it.,kunihiro@}k.u-tokyo.ac.jp

Abstract. At CaLC 2001, Howgrave-Graham proposed the polynomial
time algorithm for solving univariate linear equations modulo an un-
known divisor of a known composite integer, the so-called partially ap-
proximate common divisor problem. So far, two forms of multivariate
generalizations of the problem have been considered in the context of
cryptanalysis. The first is simultaneous modular univariate linear equa-
tions, whose polynomial time algorithm was proposed at ANTS 2012 by
Cohn and Heninger. The second is modular multivariate linear equations,
whose polynomial time algorithm was proposed at Asiacrypt 2008 by
Herrmann and May. Both algorithms cover Howgrave-Graham’s
algorithm for univariate cases. On the other hand, both multivariate
problems also become identical to Howgrave-Graham’s problem in the
asymptotic cases of root bounds. However, former algorithms do not
cover Howgrave-Graham’s algorithm in such cases. In this paper, we in-
troduce the strategy for natural algorithm constructions that take into
account the sizes of the root bounds. We work out the selection of poly-
nomials in constructing lattices. Our algorithms are superior to all known
attacks that solve the multivariate equations and can generalize to the
case of arbitrary number of variables. Our algorithms achieve better
cryptanalytic bounds for some applications that relate to RSA cryp-
tosystems.

Keywords: Lattices, Coppersmith’s method, small roots, implicit fac-
torization, Multi-Prime Φ-Hiding Assumption, Fault Attacks, Digital
Signatures, RSA.

1 Introduction

In 1996, Coppersmith introduced lattice-based methods for solving modular
equations that had small solutions [5]. So far, several results of RSA vulner-
abilities have been reported using the method [2,6,20,21]. Howgrave-Graham’s
reformulation [16] describes the method as the reduction of solving modular
equations to finding small roots of polynomials over the integers. It is crucial
to select polynomials carefully in constructing lattices to maximize the solvable
root bounds. From a theoretical point of view, it is interesting to consider the

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 118–135, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Better Lattice Constructions for Solving Multivariate Linear Equations 119

strategy for selecting polynomials to achieve optimal root bounds. In the context
of cryptanalysis, there are a number of cases in which modular equations need
to be solved. Therefore, also from a practical point of view, it is important to
construct the efficient algorithm to solve modular equations.

At CaLC 2001, Howgrave-Graham [17] proposed the polynomial time algo-
rithm to solve the modular univariate linear equations,

a+ x = 0 (mod p).

Although we do not know the moduli p, we know its multiple N where p ≥ Nβ .
The size of root is bounded, |x| < Nγ . Howgrave-Graham’s algorithm can solve
the problem provided that γ < β2. The running time is polynomial in logN .
Howgrave-Graham called the problem the partially approximate common divisor
problem. We call the problem (1, 1)-ME throughout the paper since there is one
equation which has one variable.

So far, two forms of multivariate modular linear equations have been con-
sidered in the context of cryptanalysis. Both equations can be considered as
multivariate generalizations of (1, 1)-ME. The first generalization is the simul-
taneous modular univariate linear equations,⎧⎪⎪⎨⎪⎪⎩

a1 + x1 = 0 (mod p),

...

an + xn = 0 (mod p).

We call this problem (n, 1)-ME since there are n equations each of which has
one variable. At Eurocrypt 2010, van Dijk, Gentry, Halevi and Vaikuntanathan
introduced fully homomorphic encryption over the integers [12]. The security
lies in the difficulty of solving (n, 1)-ME. So far, the variants of the scheme have
been proposed [8,9,11]. Sarkar and Maitra used (n, 1)-ME in solving relaxed fac-
torization problem [24], the so-called implicit factorization that was introduced
by May and Ritzenhofen at PKC 2009 [22]. At CHES 2012, Fouque et al. in-
troduced fault attacks on CRT-RSA signatures by solving (n, 1)-ME [13]. The
attack is applicable to any padding functions even for RSA-PSS [1]. The second
generalization is the modular multivariate linear equations,

a0 + a1x1 + · · ·+ anxn = 0 (mod p).

We call this problem (1, n)-ME since there is one equation which has n variables.
The problem (1, n)-ME has been used in factoring with known bits to arbitrary
blocks [15]. At Crypto 2010, Kiltz, O’Neil and Smith introduced the Multi-
Prime Φ-Hiding Assumption [18]. After that, some cryptanalysises of the Multi-
Prime Φ-Hiding Assumption have been considered via (1, n)-ME [14,18,23,25].
At CHES 2009, Coron et al. introduced fault attacks on CRT-RSA signatures by
solving (1, n)-ME [7]. The attacks are applicable to randomized padding func-
tions. Coron, Naccache and Tibouchi applied the attacks to EMV signatures at
CT-RSA 2010 [10].

120 A. Takayasu and N. Kunihiro

In both problems, as with (1, 1)-ME, we do not know the moduli p, and we
know its multiple N where p ≥ Nβ. The sizes of all roots are bounded, |x1| <
Nγ1 , . . . , |xn| < Nγn . Needless to say, both (n, 1)-ME and (1, n)-ME are the same
as (1, 1)-ME with n = 1. Additionally, in the asymptotic cases γ2, γ3, . . . , γn →
β for (n, 1)-ME and γ2, γ3, . . . , γn → 0 for (1, n)-ME, the equations become
identical to (1, 1)-ME.

Several algorithms to solve (n, 1)-ME have been proposed [3,4,9,24]. As a natu-
ral generalization of Howgrave-Graham’s algorithm, Cohn andHeninger proposed
the algorithm to solve (n, 1)-ME at ANTS 2012 [4]. Cohn and Heninger’s algo-
rithm can solve (n, 1)-ME provided that (γ1+· · ·+γn)/n < β(n+1)/n. The running
time of the algorithm is polynomial in logN and exponential in n.With n = 1, this
condition covers Howgrave-Graham’s condition. This algorithm was constructed
considering different root bounds. Since Cohn and Heninger bounded the sizes of
unknowns by individual value X1, . . . , Xn in (n, 1)-ME and the same value X in
other problems in [4]. However, in the asymptotic case γ2, γ3, . . . , γn → β, Cohn
andHeninger’s condition is worse than Howgrave-Graham’s condition. The (n, 1)-
ME algorithm can be improved to overcome the issue.

At Asiacrypt 2008, Herrmann and May proposed the algorithm to solve (1, n)-
ME [15]. Herrmann and May’s algorithm can solve (1, n)-ME provided that∑n

i=1 γi < 1 − (n + 1)(1 − β) + n(1 − β)(n+1)/n. The running time of the algo-
rithm is polynomial in logN and exponential in n. As in the case with (n, 1)-ME,
with n = 1, this condition covers Howgrave-Graham’s condition. However, in the
asymptotic case γ2, γ3, . . . , γn → 0, Herrmann and May’s condition is worse than
Howgrave-Graham’s condition. The (1, n)-ME algorithm can be improved to over-
come the issue. Herrmann and May pointed out the issue, and claimed that their
(1, n)-ME algorithm with imbalanced root bounds had the room to be improved.

The improved algorithm to solve (1, 2)-ME with imbalanced root bounds was
proposed by Sarkar [23]. Sarkar’s algorithm is superior to Herrmann and May’s
algorithm with extremely large or small root bounds. Sarkar’s algorithm cov-
ers Howgrave-Graham’s algorithm in the asymptotic case, though no proof is
written in [23]. The algorithm can achieve the best cryptanalytic bounds for the
Multi-Prime Φ-Hiding Assumption. However, the property of the algorithm was
not analyzed in detail. The condition of Sarkar’s algorithm has two parameters
that are not optimized. So, we do not know the relation between Sarkar’s algo-
rithm and Herrmann and May’s algorithm; how large improvement is achieved
and when Sarkar’s algorithm is superior to Herrmann and May’s algorithm. Fur-
thermore, the algorithm was not extended to general n-variate cases.

The forms of (n, 1)-ME and (1, n)-ME seem to be very simple. However, there
are no optimal algorithms to solve even these simple multivariate equations when
each root bound becomes large or small. To construct more efficient algorithms
are theoretically important and strongly motivated. In the case that we analyze
the more complicated forms of modular equations, the strategy to construct
(n, 1)-ME and (1, n)-ME algorithms has to be useful. From a practical point of
view, such improved algorithms have to provide better cryptanalytic bounds for
some applications.

Better Lattice Constructions for Solving Multivariate Linear Equations 121

Our Contributions. In previous works, the sizes of root bounds were not
considered in the phase of selecting polynomials. Therefore, although the former
algorithms [4,15] may be optimal when each root bound is the same or similar,
they are not optimal in general cases. This is why the former algorithms cover
Howgrave-Graham’s algorithm with n = 1, but become worse in the asymptotic
cases.

As a solution, we take into account the sizes of root bounds γ1, . . . , γn in
the phase of selecting polynomials. We carefully decide if each polynomial is
helpful or not. The diagonals of helpful polynomials in the basis matrix is smaller
than modulo, this criterion relates to the value γ1, . . . , γn. Helpful polynomials
contribute to the condition for modular equations to be solved, and vice versa.
So, we select as many helpful polynomials as possible.

Based on this simple strategy, we propose the algorithms to solve (n, 1)-ME
and (1, n)-ME. Our algorithms work under better conditions than all known
algorithms since previous works selected less helpful polynomials in constructing
lattices. In addition, our algorithms cover Howgrave-Graham’s algorithm in the
asymptotic cases. Though our algorithms are heuristic, they work well in our
numerical experiments.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ga
m

m
a2

gamma1

Fig. 1. The comparison of the bounds for (2, 1)-ME with
β = 0.5 to be solved

Cohn and Heninger’s
algorithm can solve (n, 1)-
ME provided that

γ1 + · · ·+ γn
n

< β(n+1)/n.

Our algorithm can solve
(n, 1)-ME provided that

n
√
γ1 · · · γn < β(n+1)/n.

Our algorithm becomes
identical to Cohn and
Heninger’s algorithm if
and only if all γ1, . . . , γn
are the same values.
However, our algorithm
provides better bounds in
different cases. It is clear
that our algorithm cov-
ers Howgrave-Graham’s
algorithm in the asymptotic case γ2, γ3, . . . , γn → β. Figure 1 compares the
condition for our algorithm and Cohn and Heninger’s algorithm for (2, 1)-ME
with β = 0.5 to be solved. Cohn and Heninger’s algorithm can work in the grey
area. Our algorithm provides better results in the black area.

In the case of (1, n)-ME, we assume γ1 ≥ γ2 ≥ · · · ≥ γn without loss of
generality. Based on our strategy for polynomials selection, we show that Her-
rmann and May’s algorithm can be improved if and only if γ1 > β(1− n

√
1− β).

122 A. Takayasu and N. Kunihiro

Table 1. The comparison of the bounds for (1, 2)-ME with β = 0.5 to be solved

γ2 Herrmann and May’s γ1 Sarkar’s γ1 Our γ1
0 0.207107 0.25 0.25

0.01 0.197107 0.209391 0.209446

0.02 0.187107 0.192456 0.192513

0.03 0.177107 0.179215 0.179256

0.04 0.167107 0.16773 0.167749

0.05 0.157107 0.157193 0.157196

0.06 0.147107 0.147107 0.147107

Our algorithm and Sarkar’s algorithm become identical to Herrmann and May’s
algorithm with smaller γ1. The conditions for (1, 2)-ME with γ1 > β(1−√

1− β)
to be solved by all known algorithms can be written as

γ1 + γ2 < τ3 − 3τ2 + 3βτ +Δ2. (1)

Herrmann and May’s algorithm can solve (1, 2)-ME provided that the condition
(1) holds where

Δ2 = 0, τ = 1−
√
1− β.

Our strategy enables us to optimize the parameters of Sarkar’s algorithm, too.
Our algorithm can solve (1, 2)-ME provided that the condition (1) holds where

Δ2 =
(γ1 − βτ)3

γ1(γ1 − γ2)
, τ =

γ2
β −√

γ1 − γ2
.

These algorithms provide better bounds by the existence of positive Δ2. Fur-
thermore, our algorithm can extend to general n-variate cases unlike Sarkar’s
work. We prove that our algorithm covers Howgrave-Graham’s algorithm in the
asymptotic case γ2, γ3, . . . , γn → 0. Table 1 compares the bounds for these algo-
rithms for (1, 2)-ME with β = 0.5, γ1 > β(1 −√

1− β) to be solved.

Organization of the Paper. In Section 2, we introduce Howgrave-Graham’s
lemma and the LLL algorithm to use Coppersmith’s method and define the
problems. In Section 3, we explain our strategy for selecting polynomials. In
Section 4, we give the analysis of (n, 1)-ME. In Section 5, we give the analysis
of (1, n)-ME. In Section 6, we implement our algorithms.

2 Preliminaries

Using the lattice-based Coppersmith’s method [5], we can find small solutions of
modular equations. Here, we introduce the reformulation of Howgrave-Graham
[16]. For n-variate polynomials h(x1, . . . , xn) =

∑
hi1,...,inx

i1
1 · · ·xinn , define the

Better Lattice Constructions for Solving Multivariate Linear Equations 123

norm of polynomials ‖h(x1, . . . , xn)‖ :=
√∑

h2i1,...,in . Howgrave-Graham pro-

posed the following lemma that reduces modular equations into integer polyno-
mials [16].

Lemma 1 (Howgrave-Graham’s lemma [16]). Let h(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a polynomial, which consists of at most w monomials. Let φ,m,
X1, . . . , Xn be positive integers. Consider the case that the polynomial
h(x1, . . . , xn) satisfies
1. h(x̄1, . . . , x̄n) = 0 (mod φm), where |x̄1| < X1, . . . , |x̄n| < Xn,
2. ‖h(x1X1, . . . , xnXn)‖ < φm/

√
w.

Then h(x̄1, . . . , x̄n) = 0 holds over the integers.

To find new polynomials that satisfy Howgrave-Graham’s lemma, we use the
LLL algorithm. Let {b1, . . . ,bd} be linearly independent w-dimensional vectors.
The lattice L(b1, . . . ,bd) spanned by the basis vectors {b1, . . . ,bd} is defined

as L(b1, . . . ,bd) = {∑d
j=1 xjbj : xj ∈ Z}. We call d the rank of the lattice, and

w the dimension of the lattice. With d = w, the lattice is described as full-rank.
The basis matrix of the lattice B is defined as the d × w matrix that has basis
vectors {b1, . . . ,bd} in each row. In this paper, we use only full-rank lattices.
The volume of the full-rank lattice is computed by vol(L(B)) = |det(B)|.

In 1982, Lenstra, Lenstra and Lovász proposed the LLL algorithm [19] that
can find vectors in polynomial time whose norm is small enough to satisfy the
following condition [20].

Proposition 1 (LLL algorithm [19]). Given a lattice spanned by
w-dimensional basis vectors {b1, . . . ,bd}, the LLL algorithm finds new reduced
bases {b′

1, . . . ,b
′
n} that satisfy

‖b′
1‖ ≤ 2(d−1)/4(vol(L))1/d, ‖b′

n‖ ≤ 2d(d−1)/4(d−n+1)(vol(L))1/(d−n+1).

These norms are all Euclidean norms. The running time of the LLL algorithm
is O(d5w(logB)3) where logB = logmaxj |bj|.
This condition is the worst case proved in [19]. It is widely known that the
LLL algorithm tends to output the vectors whose norms are much smaller than
theoretically predicted.

We should mention that the Coppersmith’s method requires a heuristic ar-
gument in solving multivariate equations. This is because each new polynomial
whose coefficients consist of the LLL-reduced bases has no assurance of alge-
braically independence. In this paper, we assume that the polynomials whose
coefficients consist of LLL-reduced bases are algebraically independent and the
resultant of these polynomials will not vanish.

We define the problems introduced in Section 1.

Definition 1 ((n, 1)-ME). Given positive integers N = pq, a1, . . . , an, and
given (0, 1) real numbers γ1, . . . , γn, β, we want to find all integers r1, . . . , rn
such that |r1| ≤ Nγ1 , . . . , |rn| ≤ Nγn , p ≥ Nβ, and

124 A. Takayasu and N. Kunihiro

⎧⎪⎪⎨⎪⎪⎩
a1 + r1 = 0 (mod p),

...

an + rn = 0 (mod p).

Definition 2 ((1, n)-ME). Given positive integers N = pq, a0, a1, . . . , an, and
given (0, 1) real numbers γ1, . . . , γn, β, we want to find all integers r1, . . . , rn
such that |r1| ≤ Nγ1 , . . . , |rn| ≤ Nγn , p ≥ Nβ, and

a0 + a1r1 + · · ·+ anrn = 0 (mod p).

We write Xj := Nγj throughout the paper. In the case of (1, n)-ME, we assume
γ1 ≥ γ2 ≥ · · · ≥ γn and a1 = 1 without loss of generality. If a1 	= 1, we multiply
with the inverse of a1 modulo N , or we find a non-trivial factorization of N . For
both problems, N is large enough not to factorize.

3 The Strategy for Lattice Constructions

We briefly explain the Coppersmith’s method to solve the equations modulo φ.
We put lattice bases the coefficients vectors of polynomials that have the same
roots as the original equations modulo φm with positive integer m. We have new
polynomials whose coefficients are the elements of LLL-reduced bases. The new
polynomials have the same roots as the original equations modulo φm, and the
norms of polynomials are small. We can solve the n-variate equations if new n
polynomials satisfy Howgrave-Graham’s lemma. This condition can be written
as

2d(d−1)/4(d−n+1)(det(B))1/(d−n+1) <
φm√
d
.

As in previous works, we neglect small terms1 and rewrite the condition as

(det(B))1/d < φm. (2)

Our strategy for lattice construction to improve the algorithms is very simple.
In previous works [4,15], the basis matrixes are triangular. The left side of the
condition (2) can be computed as the geometric mean of all diagonals of the basis
matrix. We call polynomials whose diagonals are less than φm helpful as in [21].
Conversely, we call polynomials whose diagonals are larger than φm non-helpful.
Helpful polynomials contribute to satisfy the condition (2). The more we add
helpful polynomials to the lattice bases, the better the conditions for modular
equations to be solved become. We should select as many helpful polynomials

1 This approximation can be used if β � 1/
√
logN . In the context of fully homo-

morphic encryption over the integers, we can not neglect the small terms (e.g. see
[4]).

Better Lattice Constructions for Solving Multivariate Linear Equations 125

as possible and select as few non-helpful polynomials as possible in constructing
lattices under the constraint for the basis matrix to be triangular.

There are some cases that we cannot hold the basis matrix triangular when
adding a helpful polynomial, but we can hold the basis matrix triangular when
adding w′ polynomials. If the geometric mean of the diagonals of the w′ poly-
nomials is less than φm, these polynomials contribute to satisfy the condition
(2). We call these polynomials consecutive helpful polynomials . As is the case for
helpful polynomials, we should select as many consecutive helpful polynomials
as possible in constructing lattices. Based on this strategy, we can optimize the
parameters before calculating the condition (2) unlike previous works.

4 Improved Algorithm for (n, 1)-ME

To solve (n, 1)-ME, we use the shift-polynomials as Cohn and Heninger with
positive integer m,

f[i1,...,in](x1, . . . , xn) = (a1 + x1)
i1 · · · (an + xn)

inNmax{m−∑n
j=1 ij ,0}.

If all indexes i1, . . . , in are non-negative integers, the shift-polynomials modulo
pm have the same solutions as the original equations for all x1, x2, . . . , xn; that
is, f[i1,...,in](r1, . . . , rn) = 0 (mod pm). We span the lattice generated by the
coefficient vectors of shift-polynomials f[i1,...,in](x1X1, . . . , xnXn).

Cohn and Heninger selected the shift-polynomials that satisfy 0 ≤∑n
j=1 ij ≤

τm. Considering the condition (2), Cohn and Heninger optimized τ = β−1/n

and concluded that (n, 1)-ME can be solved provided that (γ1 + · · · + γn)/n <
β(n+1)/n.

We change the shift-polynomials to be selected and improve the condition for
(n, 1)-ME to be solved. Each diagonal of the shift-polynomial is

N
∑n

j=1 γjij+max{m−∑n
j=1 ij ,0}. To select as many helpful polynomials as possible

under the constraint for the basis matrix to be triangular, we select the shift-
polynomials that satisfy

0 ≤
n∑

j=1

γjij ≤ βm.

Since we select more helpful polynomials and less non-helpful polynomials than
Cohn and Heninger’s lattice, our algorithm is expected to improve the algo-
rithm. Figure 2 describes an example of the basis matrix for (2, 1)-ME with
γ1 = 0.4, γ2 = 0.1, β = 0.3,m = 2. We define the polynomial order ≺ as

xi11 x
i2
2 · · ·xinn ≺ x

i′1
1 x

i′2
2 · · ·xi′nn if

n∑
j=1

ij <

n∑
j=1

i′j or

n∑
j=1

ij =

n∑
j=1

i′j, ij = i′j(j = 1, 2, . . . , t), it+1 < i′t+1.

Ordered in this way, the basis matrixes become triangular in general.

126 A. Takayasu and N. Kunihiro

f[i1,i2] 1 x1 x2 x1x2 x2
2 x1x

2
2 x3

2 x4
2 x5

2 x6
2

f[0,0] N2 0 0 0 0 0 0 0 0 0
f[1,0] Na1 NX1 0 0 0 0 0 0 0 0
f[0,1] Na2 0 NX2 0 0 0 0 0 0 0
f[1,1] a1a2 a2X1 a1X2 X1X2 0 0 0 0 0 0
f[0,2] a2

2 0 2a2X2 0 X2
2 0 0 0 0 0

f[1,2] a1a
2
2 a2

2X1 2a1a2X2 2a2X1X2 a1X
2
2 X1X

2
2 0 0 0 0

f[0,3] a3
2 0 3a2

2X2 0 3a2X
2
2 0 X3

2 0 0 0
f[0,4] a4

2 0 4a3
2X2 0 6a3

2X
2
2 0 4a2X

3
2 X4

2 0 0
f[0,5] a5

2 0 5a4
2X2 0 10a3

2X
2
2 0 10a2

2X
3
2 5a2X

4
2 X5

2 0
f[0,6] a6

2 0 6a5
2X2 0 15a4

2X
2
2 0 20a3

2X
3
2 15a2

2X
4
2 6a2X

5
2 X6

2

Fig. 2. The example of basis matrixes to solve (2, 1)-ME with γ1 = 0.4, γ2 = 0.1, β =
0.3, m = 2

To derive the condition for (n, 1)-ME to be solved, we compute the dimension
as d, where

d =

βm∑
γ1i1+···+γnin=0

1 =
mn

n!

βn

γ1 · · · γn + o(mn),

and the volume as det(B) = NsNX1
sX1 · · ·Xn

sXn , where

sN =

m∑
i1+···+in=0

(∑n
j=1 ij + n− 1

n− 1

)
(m−

n∑
j=1

ij) =
mn+1

(n+ 1)!
+ o(mn+1),

sXj =

βm∑
γ1i1+···+γnin=0

ij =
mn+1

(n+ 1)!

βn+1

γ1 · · · γj−1γ2j γj+1 · · · γn + o(mn+1),

for each sX1 , sX2 , . . . , sXn . Ignoring low order terms of m, we have the following
result considering condition (2), that is, (sN +

∑n
j=1 γjsXj)/d < βm.

Theorem 1 ((n, 1)-ME algorithm). (n, 1)-ME can be solved provided that

n
√
γ1 · · · γn < β(n+1)/n.

The running time of the algorithm is polynomial in logN and exponential in n.

As the application of the algorithm, we analyze implicit factorization in the full
version. Since our (n, 1)-ME algorithm is superior to that of [24], we achieve
better cryptanalytic bounds.

Cohn and Heninger also considered the degrees generalization of (n, 1)-ME
[4]. Consider the simultaneous modular univariate equations,⎧⎪⎪⎨⎪⎪⎩

h1(x1) = 0 (mod p),

...

hn(xn) = 0 (mod p).

Better Lattice Constructions for Solving Multivariate Linear Equations 127

There are n equations and each equation hj(xj) has one variable of degrees δj . We
call the problem (n, 1)δ-ME. In [20], May analyzed (1, 1)δ-ME. May’s algorithm
can solve (1, 1)δ-ME provided that δ1γ1 < β2. Cohn and Heninger [4] proposed
an algorithm to solve (n, 1)δ-ME provided that (δ1γ1+ · · ·+δnγn)/n < β(n+1)/n.
As the case of (n, 1)-ME, our method can improve (n, 1)δ-ME algorithm.

Theorem 2 ((n, 1)δ-ME algorithm). (n, 1)δ-ME can be solved in polynomial
time provided that

n
√
δ1γ1 · · · δnγn < β(n+1)/n.

The running time of the algorithm is polynomial in logN and exponential in
n, δ1, . . . , δn.

The proof is written in the full version.

5 Improved Algorithm for (1, n)-ME

5.1 Improved Algorithm for (1, 2)-ME

First, we analyze (1, 2)-ME. To solve (1, 2)-ME, we use the shift-polynomials as
previous works with positive integers m, t and the parameter τ = t/m > 0 to be
optimized later,

g[i1,i2](x1, x2) = xi22 (a0 + x1 + a2x2)
i1Nmax{t−i1,0}.

If both indexes i1, i2 are non-negative integers, the shift-polynomials modulo
pt have the same solutions as the original equations for both x1, x2; that is,
g[i1,i2](r1, r2) = 0 (mod pt). We span the lattice generated by the coefficient
vectors of shift-polynomials g[i1,i2](x1X1, x2X2). Each diagonal of the

shift-polynomial is Nγ1i1+γ2i2+max{t−i1,0}. To select as many helpful polynomials
as possible under the constraint for the basis matrix to be triangular, we select
the shift-polynomials that satisfy

0 ≤ i1 + i2 ≤ m and 0 ≤ γ1i1 + γ2i2 ≤ βt. (3)

Herrmann and May selected the shift-polynomials that satisfy only the first
inequality of (3). They optimized τ = 1−√

1− β and concluded that (1, 2)-ME
can be solved provided that γ1 + γ2 < 3β − 2 + 2(1 − β)3/2. Since the second
inequality of (3) eliminates non-helpful polynomials, our algorithm is expected
to improve the algorithm. Sarkar selected the shift-polynomials that satisfy the
first inequality of (3) and 0 ≤ i1 ≤ k with another parameter η = k/m > 0. For
our condition (3) can select more helpful polynomials than Sarkar, our algorithm
is expected to improve the algorithm. Figure 3 describes an example of the basis
matrix for (1, 2)-ME with γ1 = 0.2, γ2 = 0.1, β = 0.5,m = 4, τ = 0.25.

128 A. Takayasu and N. Kunihiro

g[i1,i2] 1 x2 x1 x2
2 x1x2 x2

1 x3
2 x1x

2
2 x4

2 x1x
3
2

g[0,0] N 0 0 0 0 0 0 0 0 0
g[0,1] 0 NX2 0 0 0 0 0 0 0 0
g[1,0] a0 a2X2 X1 0 0 0 0 0 0 0
g[0,2] 0 0 0 NX2

2 0 0 0 0 0 0
g[1,1] 0 a0X2 0 a2X

2
2 X1X2 0 0 0 0 0

g[2,0] a2
0 2a0a2X2 2a0X1 a2

2X
2
2 2a2X1X2 X2

1 0 0 0 0
g[0,3] 0 0 0 0 0 0 NX3

2 0 0 0
g[1,2] 0 0 0 a0X

2
2 0 0 a2X

3
2 X1X

2
2 0 0

g[0,4] 0 0 0 0 0 0 0 0 NX4
2 0

g[1,3] 0 0 0 0 0 0 a0X
3
2 0 a2X

4
2 X1X

3
2

Fig. 3. The example of basis matrixes to solve (1, 2)-ME with γ1 = 0.2, γ2 = 0.1, β =
0.5, m = 4, τ = 0.25

We should consider the case that the sets of indexes (i1, i2) that satisfy the
second inequality of (3) always satisfy the first inequality. In this case, our lattices
become identical to Herrmann and May’s lattices. Such situations occur provided
that γ1 ≤ βτ . According to the result of Herrmann and May, our algorithm
achieves better bounds than Herrmann and May’s algorithm if and only if γ1 >
β(1−√

1− β). We analyze the case γ1 > β(1−√
1− β) > γ2. In this case, we can

eliminate non-helpful polynomials from the lattices and improve the algorithm.
We consider the optimization of τ , γ1 > βτ > γ2. The condition (3) can be

rewritten as

0 ≤ i1 ≤ βτ − γ2
γ1 − γ2

m; 0 ≤ i2 ≤ m− i1,

βτ − γ2
γ1 − γ2

m < i1 ≤ βτ

γ1
m; 0 ≤ i2 ≤ βτm− γ1i1

γ2
.

The diagonals of the shift-polynomials that satisfy (βτ − γ2)m/(γ1 − γ2) <
i1 ≤ βτm/γ1 and i2 = (βτm − γ1i1)/γ2 are all Nβτm. That is, with (βτ −
γ2)m/(γ1 − γ2) < i1 ≤ βτm/γ1, we select all helpful-polynomials and no non-
helpful polynomials.

We consider the shift-polynomials that satisfy 0 ≤ i1 ≤ (βτ − γ2)m/(γ1 − γ2)
in the same way. In this case, we should consider the constraint for the basis
matrix to be triangular. For the shift-polynomials that satisfy i2 = m − i1, we
do not consider the shift-polynomials individually but consider whether all shift-
polynomials are consecutive helpful polynomials or not. We should optimize τ
for the geometric mean of the diagonals of those shift-polynomials to be Nβτm.
In this case, with 0 ≤ i1 ≤ (βτ − γ2)m/(γ1 − γ2), we select all consecutive
helpful-polynomials and no consecutive non-helpful polynomials. We compute
the number of shift-polynomials that satisfy 0 ≤ i1 ≤ (βτ −γ2)m/(γ1−γ2), i2 =
m− i1 as d′, where

Better Lattice Constructions for Solving Multivariate Linear Equations 129

d′ =
(βτ−γ2)m/(γ1−γ2)∑

i1=0

1 =
βτ − γ2
γ1 − γ2

m+ o(m),

and the product of diagonals of such shift-polynomials as Ns′NX
s′X1
1 X

s′X2
2 , where

s′N =

τm∑
i1=0

(τm− i1) =
m2

2
τ2 + o(m2),

s′X1
=

(βτ−γ2)m/(γ1−γ2)∑
i1=0

i1 =
m2

2
(
βτ − γ2
γ1 − γ2

)2 + o(m2),

s′X2
=

(βτ−γ2)m/(γ1−γ2)∑
i1=0

(m− i1) =
m2

2

(
1− (

γ1 − βτ

γ1 − γ2
)2
)
+ o(m2).

For the geometric mean of the diagonals of those shift-polynomials to be Nβτm,
(s′N + γ1s

′
X1

+ γ2s
′
X2

)/d′ = βm should hold. Substituting the value and we have
the equation (β2−γ1+γ2)τ2−2γ2βτ+γ

2
2 = 0. Solving the equation, and we have

the value τ = γ2/(β−√
γ1 − γ2). The other solution τ = γ2/(β+

√
γ1 − γ2) does

not satisfy γ2 < βτ . This discussion can also be applied to Sarkar’s algorithm.
We optimize the parameters of Sarkar’s algorithm in the full version.

To derive the condition for (1, 2)-ME to be solved, we compute the dimension
as d, where

d =

(βτ−γ2)m/(γ1−γ2)∑
i1=0

m−i1∑
i2=0

1 +

βτm/γ1∑
i1=(βτ−γ2)m/(γ1−γ2)

(βτm−γ1i1)/γ2∑
i2=0

1

=
m2

2

(
1− (γ1 − βτ)2

γ1(γ1 − γ2)

)
+ o(m2),

and the volume as det(B) = NsNX
sX1
1 X

sX2
2 , where

sN =
τm∑
i1=0

(m+ 1− i1)(τm − i1) =
m3

6

(−τ3 + 3τ2
)
+ o(m3),

sX1 =

(βτ−γ2)m/(γ1−γ2)∑
i1=0

m−i1∑
i2=0

i1 +

βτm/γ1∑
i1=(βτ−γ2)m/(γ1−γ2)

(βτm−γ1i1)/γ2∑
i2=0

i1

=
m3

6

(
1− 3(

γ1 − βτ

γ1 − γ2
)2(1− 3γ2βτ + 2(γ1 + γ2)(γ1 − βτ)

3γ21
)

)
+ o(m3),

sX2 =

(βτ−γ2)m/(γ1−γ2)∑
i1=0

m−i1∑
i2=0

i2 +

βτm/γ1∑
i1=(βτ−γ2)m/(γ1−γ2)

(βτm−γ1i1)/γ2∑
i2=0

i2

=
m3

6

(
1− (γ1 − βτ)3

γ1(γ1 − γ2)2

)
+ o(m3).

130 A. Takayasu and N. Kunihiro

Ignoring low order terms of m and considering condition (2), that is, (sN +
γ1sX1 + γ2sX2)/d < βm and we have

γ1 + γ2 < τ3 − 3τ2 + 3βτ +
(γ1 − βτ)3

γ1(γ1 − γ2)
where τ =

γ2
β −√

γ1 − γ2
.

We substitute the value of τ and have the following result.

Theorem 3 ((1, 2)-ME algorithm). (1, 2)-ME with γ1 > β(1 − √
1− β) can

be solved in polynomial time provided that

γ1(3β − γ2 − 2
√
γ1 − γ2) < β3.

The running time of the algorithm is polynomial in logN .

Unlike Herrmann and May’s algorithm, this algorithm satisfies the following
property.

Proposition 2. With γ2 → 0, the algorithm of Theorem 3 can solve (1, 2)-ME
provided that γ1 < β2.

Proof. First, we show that the algorithm does not work if γ1 > β2. Consider the
case γ1 < β′. Here, β′ is a real number that satisfies β′ > β2. With a positive
real number ε, we rewrite γ1 = β′ − ε. The parameter τ can be rewritten as
τ = γ2/(β − √

β′ − ε− γ2). If ε " β2 and γ2 is sufficiently small, τ < 0. This
is inconsistent with the definition of τ . Therefore, the algorithm cannot solve
(1, 2)-ME with γ1 > β2.

Next, we show that the algorithm works provided that γ1 < β2. With positive
real numbers ε " β2 and sufficiently large u, we rewrite γ1 = β2 − ε, γ2 = εu.
We can calculate as

γ1(3β − γ2 − 2
√
γ1 − γ2)− β3

= (β2 − ε)(3β − εu − 2
√
β2 − ε− εu)− β3

= 2(β2 − ε)
ε + εu

β +
√
β2 − ε − εu

− βε − (β2 − ε)εu

=
2β2ε

β +
√
β2 − ε− εu

− 2ε(ε+ εu)

β +
√
β2 − ε− εu

− βε

+
2β2εu

β +
√
β2 − ε− εu

− (β2 − ε)εu

= − ε(ε+ εu)((β + 2
√
β2 − ε− εu)

(β +
√
β2 − ε− εu)2

+ o(εu) < 0.

Therefore, the condition of Theorem 3 holds with sufficiently large u. That is,
Proposition 2 is proved. ��

Better Lattice Constructions for Solving Multivariate Linear Equations 131

5.2 Extension to (1, n)-ME

To extend Theorem 3 to general n-variate cases, we use the shift-polynomials as
Herrmann and May with positive integers m, t, and the parameter τ = t/m > 0
to be optimized later,

g[i1,...,in](x1, . . . , xn) = xi22 · · ·xinn (a0 + x1 + a2x2 + · · ·+ anxn)
i1Nmax{t−i1,0}.

If all indexes i1, . . . , in are non-negative integers, these shift-polynomials modulo
pt have the same solutions as the original equations for all x1, x2, . . . , xn; that
is, g[i1,...,in](r1, . . . , rn) = 0 (mod pt). We span the lattice generated by the coef-
ficient vectors of shift-polynomials g[i1,...,in](x1X1, . . . , xnXn). Each diagonal of

the shift-polynomial is N
∑n

j=1 γjij+max{t−i1,0}. To select as many helpful poly-
nomials as possible under the constraint for the basis matrix to be triangular,
we select the shift-polynomials that satisfy

0 ≤
n∑

j=1

ij ≤ m and 0 ≤
n∑

j=1

γjij ≤ βt. (4)

Herrmann and May selected the shift-polynomials that satisfy only the first
inequality of (4). They optimized τ = 1− n

√
1− β and concluded that (1, n)-ME

can be solved provided that
∑n

i=1 γi < 1 − (n + 1)(1 − β) + n(1 − β)(n+1)/n.
Because the second inequality of (4) can eliminate non-helpful polynomials, our
algorithm is expected to improve the algorithm. We define the polynomial order

≺ for n-variate cases as xi11 x
i2
2 · · ·xinn ≺ x

i′1
1 x

i′2
2 · · ·xi′nn if

n∑
j=1

ij <

n∑
j=1

i′j or

n∑
j=1

ij =

n∑
j=1

i′j , ij = i′j(j = t, t+ 1, . . . , n), it−1 < i′t−1.

Ordered in this way, the basis matrixes become triangular in general.
As the case of (1, 2)-ME, our algorithms are superior to Herrmann and May’s

algorithm if and only if γ1 > β(1 − n
√
1− β). We analyze the case γ1 > β(1 −

n
√
1− β) > γ2. However, the calculation of the dimension and the volume of

this lattice is too complicated. We relax the condition (4) and select the shift-
polynomials that satisfy

0 ≤
n∑

j=1

ij ≤ m and 0 ≤ γ1i1 + γ̄

n∑
j=2

ij ≤ βt. (5)

The new parameter γ̄ should be optimized later. This polynomials selection is
the exact multivariate generalization of Theorem 3 if and only if γ2 = · · · = γn.
However, this relaxed algorithm is superior to Herrmann and May’s algorithm
for the second inequality of (5) can eliminate non-helpful polynomials. Selecting
polynomials according to the condition (5), we have the following result.

132 A. Takayasu and N. Kunihiro

Theorem 4 (relaxed (1, n)-ME algorithm). (1, n)-ME with
γ1 > β(1− n

√
1− β) > γ2 can be solved in polynomial time provided that

n∑
j=1

γj < 1− (n+ 1)(1− β)τ − (1− τ)n+1 +Δn(1),

where Δn(1) = (γ1 − βτ)n+1/(γ1(γ1 − γ̄)n−1), γ̄ =
∑n

j=2 γj/(n− 1), and τ is the
solution of the equation

(1− τ)n − (γ1 − βτ)n

(γ1 − γ̄)n−1
+ n(1− β)τ − 1 +

n∑
j=1

γj = 0,

with γ1 > βτ > γ̄. The running time of the algorithm is polynomial in logN and
exponential in n.

We show the proof in the full version. Theorem 4 covers Theorem 3 with n = 2.
We present (1, n)-ME algorithm under more general setting in the full version,
that is, γk > β(1− n

√
1− β) ≥ γk+1 for some positive integer k.

Like our (1, 2)-ME algorithm and unlike Herrmann and May’s algorithm, this
algorithm satisfies the following property.

Proposition 3. With γ2, γ3, . . . , γn → 0, the algorithm of Theorem 4 can solve
(1, n)-ME provided that γ1 < β2.

Proof. We can get the value of parameter τ by solving the equation

(1− τ)n − (γ1 − βτ)n

(γ1 − γ̄)n−1
+ n(1− β)τ − 1 +

n∑
j=1

γj = 0.

We can rewrite the equation as

n∑
k=2

(
n

k

)
((γ1 − γ̄)n−1 − γn−k

1 βk)(−τ)k − nβτ

n−1∑
l=1

(
n− 1

l

)
(−γ̄)lγn−1−l

1

+ (γ1 − γ̄)n−1
n∑

j=1

γj − γn1 = 0.

With positive real numbers ε " 1 and sufficiently large u, we rewrite γ1 =
β2 − ε, γ2 = · · · = γn = εu and assume τ = Θ(εv), the above equation can be
rewritten as

− n(n− 1)

2
γn−2
1 ετ2 + o(ε2v+1) + n(n− 1)βγn−2

1 γ̄τ + o(εu+v)

− n(n− 1)

2
γn−2
1 γ̄2 + o(ε2u) = 0.

Consider the case that v > u, τ is the solution of the equation

−n(n− 1)

2
γn−2
1 γ̄2 + o(ε2u) = 0.

Better Lattice Constructions for Solving Multivariate Linear Equations 133

This is the contradiction for there are no valid values of τ .
Consider the case that v = u, τ is the solution of the equation

n(n− 1)βγn−2
1 γ̄τ − n(n− 1)

2
γn−2
1 γ̄2 + o(ε2u) = 0.

Solving the equation, and we have τ = γ̄/2β+o(ε2u−1). This is the contradiction
for βτ > γ̄ does not hold.

Consider the case that u > v > u− 1, τ is the solution of the equation

−n(n− 1)

2
γn−2
1 γ̄2 + o(ε2u) = 0.

This is the contradiction for there are no valid values of τ .
Considering the case v < u− 1, τ is the solution of the equation

−n(n− 1)

2
γn−2
1 ετ2 + o(ε2v+1) = 0.

This is the contradiction for τ = Θ(εv) does not hold.
Considering the case v = u− 1, τ is the solution of the equation

−n(n− 1)

2
γn−2
1 ετ2 + n(n− 1)βγn−2

1 γ̄τ + o(ε2u−1) = 0.

Solving the equation, and we have τ = 2βγ̄/ε+o(ε2u−1). Therefore, τ = Θ(εv) =
Θ(εu−1) holds and this is the valid parameter.

By the result of Theorem 4, (1, n)-ME can be solved provided that

n∑
j=1

γj < 1− (n+ 1)(1− β)τ − (1− τ)n+1 +
(γ1 − βτ)n+1

γ1(γ1 − γl)n−1
.

We can rewrite the condition as

n+1∑
k=2

(
n+ 1

k

)
(−τ)k(γ1(γ1 − γ̄)n − βkγn+1−k

1 (γ1 − γ̄))

− (n+ 1)βγ1((γ1 − γ̄)n − γn−1
1 (γ1 − γ̄))τ

+ γ1

⎛⎝ n∑
j=1

γj(γ
n
1 − (γ1 − γ̄)n)− nγn1 γ̄

⎞⎠ < 0.

Consider the case that γ1 = β2− ε, γ2 = · · · = γn = εu and assume τ = Θ(εu−1),

− (n+ 1)n

2
γn1 ετ

2 + (n+ 1)(n− 1)βγn1 γ̄τ + o(ε2u−1) < 0.

Substitute the value γ̄ = εu, τ = 2βγ̄/ε+ o(ε2u−1),

−2(n+ 1)β2γn1 ε
2u−1 + o(ε2u−1) < 0.

Therefore, the condition of Theorem 4 holds with sufficiently large u.
As the same way, we can prove that our (1, n)-ME algorithm does not work

if γ1 < β′ with some β′ > β2. That is, Proposition 3 is proved. ��

134 A. Takayasu and N. Kunihiro

Our (1, n)-ME algorithm is superior to all known attacks with γ1 > β(1 −
n
√
1− β). Our n-variate algorithm can achieve some cryptanalytic improvements

that can not be done by Sarkar’s algorithm. In the full version, we show two
examples, cryptanalysis of the Multi-Prime Φ-Hiding Assumption if the RSA
moduli have a number of prime factors, and improved fault attacks on RSA
signatures with randomized paddings.

6 Implementation

We implemented our algorithms in Sage 5.3 over Mac OS X 10.7.5 CPU 3.06GHz
Intel Core 2 Duo, 12 GB RAM. Table 2 shows the results. RSA moduli N are
1024 bits and prime factors p, q are 512 bits. Though our algorithms are heuristic,
it works well in practice. We have new polynomials from LLL-reduced bases. We
can easily recover small roots by Gröbner basis computation.

Table 2. Implementation of (1, 2)-ME algorithm

γ1 γ2 d LLL running time(sec.)

(2, 1)-ME 0.390625 0.246094 59 112.5
(2, 1)-ME 0.488281 0.239258 100 332.6

(1, 2)-ME 0.159180 0.007813 144 281.2
(1, 2)-ME 0.144531 0.015625 159 232.7
(1, 2)-ME 0.133789 0.023438 177 271.8

Acknowledgement. This work was supported by JSPS KAKENHI Grant
Numbers 22700006 and 25280001.

References

1. Bellare, M., Rogaway, P.: Probabilistic signature scheme. US Patent 6266771 (2001)
2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.

IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000); Firstly appeared In: Stern, J.
(ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg (1999)

3. Chen, Y., Nguyen, P.Q.: Faster Algorithms for Approximate Common Divi-
sors: Breaking Fully-Homomorphic-Encryption Challenges over the Integers. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
502–519. Springer, Heidelberg (2012)

4. Cohn, H., Heninger, N.: Approximate common divisors via lat-
tices. Report 2011/437 in the Cryptology ePrint Archive (2011),
http://eprint.iacr.org/2011/437 (to appear at Proc. of ANTS-X)

5. Coppersmith, D.: Finding a Small Root of a univariate modular Equation. In:
Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996)

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

7. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault Attacks on
RSA Signatures with partially unknown messages. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)

http://eprint.iacr.org/2011/437

Better Lattice Constructions for Solving Multivariate Linear Equations 135

8. Coron, J.-S., Lepoint, T., Tibouchi, M.: Batch Fully Homomorphic Encryption
over the Integers. Report 2013/036 in the Cryptology ePrint Archive (2013),
http://eprint.iacr.org/2013/036

9. Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M.: Fully Homomorphic Encryp-
tion over the Integers with Shorter Public Keys. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (2011)

10. Coron, J.-S., Naccache, D., Tibouchi, M.: Fault Attacks Against emv Signatures.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220. Springer,
Heidelberg (2010)

11. Coron, J.-S., Naccache, D., Tibouchi, M.: Public Key Compression and Modulus
Switching for Fully Homomorphic Encryption over the Integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (2012)

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

13. Fouque, P.-A., Guillermin, N., Leresteux, D., Tibouchi, M., Zapalowicz, J.-C.:
Attacking RSA-CRT Signatures with Faults on Montgomery Multiplication. In:
Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 447–462.
Springer, Heidelberg (2012)

14. Herrmann, M.: Improved Cryptanalysis of the Multi-Prime Φ-Hiding Assumption.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
92–99. Springer, Heidelberg (2011)

15. Herrmann, M., May, A.: Solving Linear Equations modulo Divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

16. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997)

17. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

18. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under Chosen-
Plaintext Attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010)

19. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 515–534 (1982)

20. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis,
University of Paderborn (2003)

21. May, A.: Using LLL-reduction for solving RSA and factorization problems: A sur-
vey (2007), http://www.cits.rub.de/permonen/may.html

22. May, A., Ritzenhofen, M.: Implicit Factoring: On Polynomial Time Factoring Given
Only an Implicit Hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009)

23. Sarkar, S.: Reduction in Lossiness of RSA Trapdoor Permutation. In: Bogdanov,
A., Sanadhya, S. (eds.) SPACE 2012. LNCS, vol. 7644, pp. 144–152. Springer,
Heidelberg (2012)

24. Sarkar, S., Maitra, S.: Approximate Integer Common Divisor Problem relates to
Implicit Factorization. IEEE Trans. Inf. Theory 57(4), 4002–4013 (2011)

25. Tosu, K., Kunihiro, N.: Optimal Bounds for Multi-Prime Φ-Hiding Assumption.
In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1–14.
Springer, Heidelberg (2012)

http://eprint.iacr.org/2013/036
http://www.cits.rub.de/permonen/may.html

Key-Dependent Message Chosen-Ciphertext

Security of the Cramer-Shoup Cryptosystem

Baodong Qin1,2, Shengli Liu1, and Zhengan Huang1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China
2 College of Computer Science and Technology,

Southwest University of Science and Technology, Mianyang, China
{qinbaodong,slliu}@sjtu.edu.cn, zhahuang.sjtu@gmail.com

Abstract. The Key-Dependent Message (KDM) security requires that
an encryption scheme remains secure, even if an adversary has access
to encryptions of messages that depend on the secret key. In a multi-
user surrounding, a key-dependent message can be any polynomial-time
function f(sk1, sk2, . . . , skn) in the secret keys of the users. The Key-
Dependent Message Chosen-Ciphertext (KDM-CCA2) security can be
similarly defined if the adversary is also allowed to query a decryption
oracle. To date, KDM security has been obtained by a few constructions.
But most of them are limited f(sk1, sk2, . . . , skn) to affine functions.
As to KDM-CCA2 security, there are only two constructions available.
However, neither of them has comparable key sizes and reasonable effi-
ciency, compared to the traditional KDM-free but CCA2 secure public
key encryption schemes. This article defines a new function ensemble,
and shows how to obtain KDM-CCA2 security with respect to this new
ensemble from the traditional Cramer-Shoup (CS) cryptosystem. To ob-
tain KDM security, the CS system has to be tailored for encryption
of key-dependent messages. We present an efficient instantiation of the
Cramer-Shoup public-key encryption (CS-PKE) scheme over the sub-
group of quadratic residues in Z∗

p, where p is a safe prime, and prove
the CS-PKE to be KDM-CCA2 secure with respect to the new func-
tion ensemble. We show that our proposed ensemble covers some affine
functions, as well as other functions that are not contained in the affine
ensemble. At the same time, the CS-PKE scheme with respect to our
proposed function ensemble finds immediate application to anonymous
credential systems. Compared to other KDM-CCA2 secure proposals,
the CS scheme is the most practical one due to its short ciphertext size
and computational efficiency.

Keywords: Key-dependentmessage security, adaptive chosen-ciphertext
attack, Cramer-Shoup cryptosystem, public-key encryption.

1 Introduction

KDM Security. The well-accepted security notion for Public-Key Encryption
(PKE) schemes [18, 28, 29] assumes that plaintext messages are chosen in a way

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 136–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 137

independent of the secret key. Over the years, however, it was observed that in
some situations [12, 8, 1] the messages do depend on the secret key. Security in
this more demanding setting was formalized as Key-Dependent Message (KDM)
security by Black et al. [6] in 2002 and circular security by Camenisch and
Lysyanskaya [12] a little earlier. Some negative results [13] showed that KDM
security does not follow from standard security. For this reason, in the past few
years, KDM security has received much attention in various settings, includ-
ing the symmetric-key [24, 3], public-key [8, 9], identity-based settings [2, 17].
For detailed history, results and applications of KDM security, we refer to the
excellent survey by Malkin, Teranishi and Yung [27].

In this paper, we are interested in public-key encryption with KDM security.
We will first recall the model of KDM security for public-key setting proposed
by Black et al. [6] and then give an overview of the main results on KDM secure
PKE schemes.

In the setting of public-key encryption, KDM security with respect to an
efficiently computable (polynomial-time) function ensemble F is modelled as
follows. An adversary is given n public keys (pki)

n
i=1 and has access to an en-

cryption oracle Okdm that returns the encryption of f((ski)
n
i=1) under public key

pki for any function f ∈ F and any index 1 ≤ i ≤ n chosen by the adversary.
The scheme is KDM(n)[F] secure if the adversary can not tell any difference
when Okdm is replaced by an oracle that always returns an encryption of some
constant symbol 0. However, there is no efficient constructions achieving KDM
security when f is polynomial-time but arbitrarily depends on the secret key.
With the exception of [26] (which is KEM-secure with respect to the so-called
Straight-Line Program (SLP) computable functions), the best result up to now
is that the function ensemble F is limited to affine functions. In other words,
the adversary has access only to affine functions of the secret keys. Nevertheless,
KDM security with respect to affine functions covers the circular security. Cir-
cular security is defined in a multi-user setting when the adversary is provided
with encryptions of arbitrary secret keys under arbitrary public key. And it is
sufficient in scenarios like harddisk encryption, anonymous credential systems,
etc.

Note that the function ensemble F plays an important role in KDM security.
Different function ensembles may find applications in different scenarios. For ex-
ample, when F is the set of all (trivial) constant functions F : {fm : (skj)

n
j=1 →

m}m∈M where M is the message space, then KDM security with respect to this
ensemble just defines the traditional semantic security [18]. Another example of
function ensemble is the set of all selector functionsF : {fi : (skj)nj=1 → ski}i∈[n].
KDM security with respect to this ensemble is called clique/circular security [8].
Circular security has the so-called “all-or-nothing” sharing property and can be
used in an anonymous credential system [12] where a circular secure encryption is
used to discourage delegation of credentials.

In 2008, Boneh, Halevi, Hamburg, and Ostrovsky [8] (henceforth BHHO) con-
structed the first PKE scheme that is KDM secure with respect to affine functions
against Chosen-Plaintext Attacks (KDM-CPA secure) in the standard model

138 B. Qin, S. Liu, and Z. Huang

(not relying on the random oracle idealization [5]), under the Decisional Diffie-
Hellman (DDH) assumption. Though the BHHO scheme is quite inefficient, its
approach has led to constructions of comparatively efficient KDM-CPA secure
PKE schemes with respect to affine functions [9], rational functions over SLP [26]
and division function [25] from other computational assumptions. In 2009, Ca-
menisch, Chandran and Shoup [11] proposed the first PKE scheme that is KDM
secure against adaptive Chosen-Ciphertext Attacks (KDM-CCA2 secure) in the
standard model. They showed that by applying the Naor-Yung “double encryp-
tion” paradigm, one can combine any KDM-CPA secure scheme to any regular
CCA2 secure scheme, along with a non-interactive zero-knowledge proof, to ob-
tain a KDM-CCA2 secure scheme. Moreover, they gave a nearly practical instan-
tiation using the BBHO KDM-CPA scheme, a K-linear version [30, 23] of the
Cramer-Shoup CCA2 scheme [14], and a pairing-based NIZK proof system [19–
21]. Very recently, Hofheinz [22] constructed a KDM-CCA2 secure PKE scheme
with respect to selector functions. It is the first KDM-CCA2 secure scheme with
compact ciphertexts. In this scheme, a new technical tool called Lossy Algebraic
Filters (LAFs) was used to make a hybrid between the BHHO-like PKE schemes
of Brakerski and Goldwasser [9], resp. Malkin et al. [26] to achieve KDM-CCA2
security. So far, only the constructions of Camenisch et al. [11] and Hofheinz [22]
are known to be KDM-CCA2 secure. However, none of them are competitive with
current KDM-free schemes in terms of parameters and efficiency.

Theoretically, it would be interesting to find a feasible KDM secure PKE
scheme with respect to a function ensemble F that is as large as possible, re-
gardless of its efficiency [10, 4]. But, in this article, we concentrates on designing
practical KDM secure scheme with respect to a reasonably large F .

1.1 Our Contribution

In this work, we prove the KDM-CCA2 security of the Cramer-Shoup cryp-
tosystem by designing a reasonable function ensemble and show its application
to credential systems.

– Let K be the secret key space and q be a prime number of κ (security
parameter) bits. We define a function ensemble F = {f : Kn → Zq}, where

f(sk1, . . . , skn) =

L∑
t=1

∏
i,j∈[n]

αi,j,t(ski − skj)
ai,j,t (mod q). (1)

Here n, L ∈ N, αi,j,t ∈ Zq. When K is not contained in Zq, we assume that
any secret key can be mapped into a vector space over Fq via an injective
function. Then all the secret keys in Eq.(1) are replaced by their vector
components.

– Our function ensemble covers the difference circular encryptions

CE = (Enc(pk1, sk1 − sk2),Enc(pk2, sk2 − sk3), . . . ,Enc(pkn, skn − sk1)),

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 139

which provide the “all-or-nothing” property, i.e., anyone who knows one
secret key can obtain all the secret keys from CE. Consequently, our result
finds an immediate application to anonymous credential systems [12].

– We proved the Cramer-Shoup (CS) scheme to be KDM-CCA2 secure with
respect to the aforementioned function ensemble with an efficient instanti-
ation. To encrypt the secret key, we will first find an injective function to
map the secret key to elements of group G on which the CS scheme is based.
Specifically, the instantiation is based on the subgroup QRp of quadratic
residues in Z∗

p, where p = 2q + 1 is a safe prime. Obviously, QRp is a cyclic
group with prime order q. The DDH problem over QRp is believed to be
intractable from [7]. As noted in [15], in this group, elements of Zq are easily
encoded as elements of QRp. Thus, the secret key space (i.e. Zq) can be
used as a message space. This algorithm guarantees our scheme the same
efficiency as the original KDM-free Cramer-Shoup scheme.

1.2 Organization

The rest of this paper is organized as follows. Preliminaries are presented in
Section 2. We give a detailed definition for a new function ensemble, and an
application of the KDM-secure scheme with respect to this function ensemble in
Section 3. We propose an instantiation of the Cramer-Shoup encryption scheme,
and show its KDM-CCA2 security with respect to the new function ensemble in
Section 4. Conclusion and further work are presented in Section 5.

2 Preliminaries

Notation. Let κ ∈ N denote the security parameter. For n ∈ N, let [n] =
{1, 2, . . . , n}. For i ∈ [n], let [n \ i] = {1, 2, . . . , n} \ {i}. If A is a set, then |A|
denotes its cardinality and a

$← A denotes that a is sampled uniformly from
A. Let |a| denote the bit-length of a. If A is a probabilistic algorithm, then

a
$← A(x;R) denotes that a is computed by A on input x and randomness R.

We write a
$← A(x) to denote a

$← A(x;R) with uniformly chosen R.

2.1 Definitions of KDM-CCA2 Security

Public-Key Encryption. A public-key encryption scheme PKE consists of a
tuple of (possibly probabilistic) polynomial-time algorithms (Sys,Gen,Enc,Dec).
The system parameter generation algorithm Sys(1κ) takes as input a security
parameter and outputs a public parameter pp. The public/secret key generation
algorithm Gen(pp) takes as input a public parameter pp and outputs a pub-
lic/secret key pair (pk, sk). The probabilistic encryption algorithm Enc(pp, pk,m)
encrypts a message m from the message space M under public parameter pp
and public key pk and outputs a ciphetext c. The deterministic decryption al-
gorithm Dec(pp, sk, c) decrypts a ciphertext c with secret key sk and outputs

140 B. Qin, S. Liu, and Z. Huang

a message m or a special symbol ⊥. For consistency, we require that for all

pp
$← Sys(1κ), all (pk, sk)

$← Gen(pp), all m ∈ M and all c
$← Enc(pp, pk,m),

we have Dec(pp, sk, c) = m.

Security. We recall the definition of KDM-CCA2 security proposed by Ca-
menisch et al. [11]. Let K be the space of secret keys output by Gen. For n ∈ N,
let F := {f : Kn → M} be a finite set of functions. KDM-CCA2 security with re-
spect to function ensemble F is defined through the following experiment played
between a challenger and an adversary A. The experiment ExpKDM-CCA2

PKE,A (κ, b)
(where b = 0, 1) is defined as

Experiment ExpKDM-CCA2
PKE,A (κ, b):

1. Initialization Phase: The challenger runs Sys(1κ) to generate a public pa-
rameter pp and then runs Gen(pp) n times to generate n key pairs (pki, ski),
i ∈ [n]. It sends pp and the n public keys pki, i ∈ [n] to A. The challenger
also initializes a list CL := ∅ to an empty list. Suppose that 0|M| is a fixed
message in M.

2. Query Phase: A may adaptively query the challenger for two types of op-
erations.

(a) Encryption Queries: The adversary selects (i, f) ∈ [n] × F
and submits it to the challenger. The challenger computes c =
Enc(pp, pki,m), where m depends on the value of b. If b = 0,
then m = f(sk1, . . . , skn), else m = 0|M|. Then it appends (i, c)
to CL. Finally, the challenger sends c to the adversary.

(b) Decryption Queries: The adversary submits a ciphertext c
together with an index i ∈ [n] to the challenger. If (i, c) ∈
CL, the challenger returns ⊥, otherwise returns the output of
Dec(pp, ski, c).

3. Guess Phase: Eventually, the adversary outputs a bit b′ ∈ {0, 1}.
Definition 1 (KDM-CCA2). A public-key encryption scheme PKE is KDM-
CCA2 secure with respect to F if for any probabilistic polynomial-time adversary
A, the following advantage:

AdvKDM-CCA2
PKE,A (κ) = Pr

[
ExpKDM-CCA2

PKE,A (κ, 0) = 1
]
− Pr
[
ExpKDM-CCA2

PKE,A (κ, 1) = 1
]

is negligible in κ.

Note that in the above experiment, if we let n = 1 and let F be the set of all
constant functions on K → M, then we obtain the standard notion of security
against adaptive Chosen-Ciphertext Attacks (CCA2) [29].

2.2 Target-Collision Resistant Hashing

A hash function H : X → Y is Target Collision-Resistant (TCR) if given a
random pre-image x ∈ X , it is hard to find x′ 	= x with H(x′) = H(x). Below is
the precise definition of TCR.

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 141

Definition 2 (TCR hash function). Let H : X → Y be a hash function. Then
H is target collision-resistant if for an PPT algorithm B the following advantage

AdvTCR
H,B (κ) := Pr

[
x′ 	= x ∧ H(x′) = H(x) | x $← X, x′ $← B(x)

]
is negligible in κ.

2.3 The DDH Assumption

Let G be a group of prime order q, and g be a generator. The Decisional Diffie-
Hellman (DDH) problem over the group G is to distinguish the two distributions
(g, ga, gb, gab) and (g, ga, gb, gc) where a, b, c are uniformly at random from Zq.

Definition 3 (The DDH Assumption). The Decisional Diffie-Hellman
(DDH) assumption over group G states that for every PPT algorithm D,

AdvddhG,D(κ) :=
∣∣Pr [D(g, ga, gb, gab) = 1

]− Pr
[D(g, ga, gb, gc) = 1

]∣∣
is negligible, where g is a generator of G and a, b, c

$← Zq.

Let p be a safe prime with p = 2q + 1, where q is also a prime. Let QRp denote
the subgroup of quadratic residues in Z∗

p. Then QRp is a cyclic group of prime
order q. The DDH problem over the subgroup QRp is believed to be intractable
(for details, see [7]).

3 New Function Ensemble and Application

3.1 New Function Ensemble

Let L and M be two positive integers, both of which are polynomial in κ. Let
q be a prime number. Let X be a finite set contained in Zq. We define a new
ensemble of functions FL,M

q,n : Xn → Zq over ring Zq. The functions in FL,M
q,n

have n variables X = (x1, . . . , xn) with coefficients in ring Zq and each function
f ∈ FL,M

q,n can be expressed as

f(x1, . . . , xn) =
L∑

t=1

∏
i,j∈[n]

αi,j,t(xi − xj)
ai,j,t (mod q),

where αi,j,t ∈ Zq and
∑

i,j∈[n] ai,j,t ≤ M for all t. Actually, function f can also

be considered as a multivariate polynomial with {xi − xj}i,j∈[n] being the n2

arguments. In formula, Define S(n2) be the set of n2-variate polynomials over
Zq. Then

FL,M
q,n = {g : (xi − xj)i,j∈[n] → Zq | g ∈ S(n2), xi ∈ X , i ∈ [n]}.

It is easy to see that (x1 − x2), (x2 − x3), . . . , (xn−1 − xn), (xn − x1) are all
contained in FL,M

q,n . We have

142 B. Qin, S. Liu, and Z. Huang

⎛⎜⎜⎜⎜⎜⎝
x1 − x2
x2 − x3

...
xn−1 − xn
xn − x1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 −1
−1 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

A

·

⎛⎜⎜⎜⎝
x1
x2
...
xn

⎞⎟⎟⎟⎠ .

The matrix An×n has rank n. For any vector b = (b1, b2, . . . , bn) over Zq and
β ∈ Zq, the following

f(x1, x2, . . . , xn) = (b1, b2, . . . , bn) ·A ·

⎛⎜⎜⎜⎝
x1
x2
...
xn

⎞⎟⎟⎟⎠+ β

is an affine function which is in FL,M
q,n .

Let I = {b ·A · (x1, x2, . . . , xn)T +β | b ∈ Zn
q , β ∈ Zq}. Let Γ be the ensemble

of all affine functions from Xn to Zq. Then we have I = FL,M
q,n ∩ Γ. Therefore,

the new function ensemble covers part of affine functions. On the other hand,
when the degree of the multivariate polynomial g is higher than 1, the new
ensemble covers much more functions that are not contained in the affine function
ensemble.

As for KDM security, set X is just the secret key space K, and the function
ensemble is expressed as FL,M

q,n = {g : (ski − skj)i,j∈[n] → Zq | g ∈ S(n2), ski ∈
K, i ∈ [n]}. To evaluate the function, we implicitly assume that K ⊆ Zq.

If K � Zq, we assume that there is an efficient injective function to map K
into a vector space over Zq. All the ski will be replaced by any of its vector
components over Zq.

3.2 Application to Anonymous Credential Systems

In 2001, Camenisch and Lysyanskaya [12] proposed a practical anonymous cre-
dential system. In the system, to prevent users from sharing their credentials,
they introduced the primitive of circular encryption to achieve all-or-nothing
sharing: a user who allows a friend to use one of her credentials once, gives this
friend the ability to use all of her credentials. Circular encryption is a special
kind of key-dependent message encryption. Specifically, a circular encryption for
n users consists of a tuple of ciphertexts:

Enc(pp, pk1, sk2),Enc(pp, pk2, sk3), . . . ,Enc(pp, pkn, sk1).

Obviously, a friend who knows one secret key can obtain all of the remaining
secret keys from these ciphertexts.

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 143

We briefly show that a KDM-secure PKE scheme with respect to functions
f ∈ FL,M

q,n suffices to achieve the so-called “all-or-nothing” property. Consider
the following KDM ciphertexts

Enc(pp, pk1, sk1 − sk2),Enc(pp, pk2, sk2 − sk3), . . . ,Enc(pp, pkn, skn − sk1).

It is clear that the above encryptions also have “all-or-nothing” sharing property.
Thus, it can be used to discourage delegation of credentials in an anonymous
credential system as well. We will see shortly (in Section 4) that such encryption
can be constructed efficiently and enjoys KDM-CCA2-security in the standard
model.

4 The CS Scheme Tailored for KDM-CCA2 Security

4.1 The Tailored CS Scheme

Recall that the traditional CS scheme has a message space G of order q, while the
secret key space is Z6

q. To encrypt a message that depends on sk, it is necessary
to tailor the CS scheme to encode sk = (x1, x2, x3, x4, x5, x6) into six elements
over G. More precisely, we need an efficient injective encoding encode : Zq → G
and efficient decoding decode : G → Zq such that decode(encode(x)) = x for all
x ∈ Zq.

Now we describe the tailored Cramer-Shoup encryption (denoted by CS =
(CS.Sys,CS.Gen,CS.Enc,CS.Dec) over the group G equipped with two more al-
gorithm (encode, decode). Note now that the message space is Zq, compared to
G in the original CSscheme.

CS.Sys(1κ): Choose a group G of prime order q, where q has κ bits. Choose
two random generators g, ĝ of G. In addition, pick a TCR hash function
H : G3 → Zq. The public parameter is pp = (q,G, g, ĝ,H).

CS.Gen(pp): Randomly and independently choose xi from Zq for i ∈ [6] and set

h1 = gx1 ĝx2 , h2 = gx3 ĝx4 , h3 = gx5 ĝx6

The public and secret keys are pk = (hi)i∈[3] resp. sk = (xi)i∈[6]

CS.Enc(pp, pk,m): To encrypt a message m ∈ Zq with the public parameter
pp = (q,G, g, ĝ,H) and the public key pk = (h1, h2, h3), choose a random
r ← Zq and then set

u = gr, û = ĝr, c = hr1 · encode(m), v = (ht2h3)
r

where t = H(u, û, c). The ciphertext is C = (u, û, c, v).

CS.Dec(pp, sk, C): To decrypt a ciphertext C = (u, û, c, v) with the secret key

sk = (xi)
6
i=1, compute t = H(u, û, c) and check that ux3t+x5 · ûx4t+x6

?
= v

holds. If it does not, outputs ⊥, else outputs decode(c/ux1ûx2).

144 B. Qin, S. Liu, and Z. Huang

Correctness. If a ciphertext C = (u, û, c, v) is the output of CS.Enc(pp, pk,m)
with a public key pk generated by CS.Gen(pp), then we will have⎧⎨
⎩
ux3t+x5 · ûx4t+x6 = (gx3 ĝx4)tr · (gx5 ĝx6)r = (ht2h3)

r = v

decode
(c

ux1ûx2

)
= decode

(
hr1 · encode(m)

hr1

)
= decode(encode(m)) = m

as required.
Now we present an instantiation of the above CS scheme with specific encode

and decode algorithms, which were also suggested in [15].

Group Generation: CS.Sys(1κ): Choose a safe prime p = 2q + 1. Let QRp be
the subgroup of quadratic residues in Z∗

p. Choose two random generators g, ĝ

of QRp. In addition, pick a TCR hash function H : QR3
p → Zq. The public

parameter is pp = (p, q,QRp, g, ĝ,H).

Encode: Let
(

x
p

)
denote the Legendre symbol. The algorithm encode : Zq →

QRp is given by

encode(x) :=

⎧⎨
⎩
x, if

(
x
p

)
= 1

p− x, if
(

x
p

)
= −1

Decode: The decoding algorithm decode : QRp → Zq is described as follows:

decode(x) :=

{
x, if 1 ≤ x ≤ q
p− x, if q < x ≤ p− 1

Note that, for each x ∈ Zq, if
(

x
p

)
= 1, then x ∈ QRp; if

(
x
p

)
= −1, then(

p−x
p

)
= 1 and thus p − x ∈ QRp. Further, for distinct x1, x2 ∈ Zq, we have

encode(x1) 	= encode(x2). Thus, encode is a bijective mapping and decode is its
inverse.

CCA2 Security. According to [15], we have the following theorem.

Theorem 4. The above PKE encryption scheme is CCA2-secure if H is a TCR
hash function and the DDH assumption holds in the subgroup QRp. More pre-
cisely, we have

AdvCCA2
CS,A (κ) ≤ 2 ·

(
AdvDDH

QRp,D(κ) + AdvTCR
H,B (κ) +

(Qd + 4)

q

)
where Qd is the number of decryption queries A makes to its decryption oracle.

4.2 KDM-CCA2 Security of the Tailored CS Scheme

Secret Keys as Messages. The tailored CS scheme has secret keys sk =
(xs)

6
s=1 ∈ Z6

q . In an n-user setting, let ski = (xi,1, xi,2, xi,3, xi,4, xi,5, xi,6) for

i = 1, 2, . . . , n. The function in ensemble FL,M
q,n is defined by

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 145

f(sk1, . . . , skn) = f((xi,1, xi,2, xi,3, xi,4, xi,5, xi,6)
n
i=1) (2)

=

L∑
t=1

∏
i,j∈[n],s∈[6]

αi,j,t(xi,s − xj,s)
ai,j,t (mod q), (3)

where αi,j,t ∈ Zq, and ai,j,t ∈ N.
Next, we show that the CS-PKE scheme proposed in Section 4.1 achieves

KDM-CCA2 security with respect to the function class FL,M
q,n . We have the

following theorem.

Theorem 5. For any positive integer n ≥ 2, L and M , both of which are poly-
nomial in the security parameter κ, the tailored CS scheme is KDM-CCA2 secure
with respect to the function class FL,M

q,n . More precisely, we have

AdvKDM-CCA2
CS,A (κ) ≤ 2nQe ·

(
AdvDDH

QRp,D(κ) + AdvTCR
H,B (κ) +

(Qd + 4)

q

)
assuming that A makes at most Qe queries to the encryption oracle and makes
at most Qd queries to the decryption oracle.

Before the formal proof, we briefly explain why our scheme can achieve KDM-
CCA2 security with respect to the aforementioned function ensemble. Let us
first take a look at the structure of our scheme. The public key is given by
pk = (hi)

3
i=1 = (gx2i−1 ĝx2i)

3
i=1 and the secret key is given by sk = (xi)

6
i=1, where

g, ĝ are two random generators and (xi)
6
i=1 are independently and uniformly

chosen from Zq. To encrypt a message m ∈ Zq under public key pk, we select
a random r ∈ Zq and then set the ciphertext as C = (u, û, c, v) = (gr, ĝr, hr1 ·
encode(m), hrt2 h

r
3), where t = H(u, û, c) and H is a suitable hash function. In

the proof, the simulator starts from a public key pk∗ with respect to secret key

sk∗. She chooses difference values ŝki uniformly and independently from Z6
q ,

and then all of the other secret keys are implicitly defined based on the chosen
differences from the unknown secret key. The public key pki corresponding to
the i-th secret key can also be correctly computed from pk∗ and the difference

values ŝki. Though the simulator does not know sk∗, she can correctly compute
the difference between ski and skj for all i, j ∈ [n]. Thus, the simulator can
answer all the KDM queries perfectly. What remains is to answer decryption
queries. Suppose that the queried ciphertext C = (u, û, c, v) is an encryption of
message m under public key pki. The simulator can prepare a new ciphertext
C∗ = (u, û, c, v∗) that is an encryption of some message m∗ under public key
pk∗. The message m∗ can be used by the simulator to recover the real message
m. So, the simulator only needs the decryption oracle with respect to pk∗ to get
m∗ and then recover message m. The above analysis suggests that the CCA2
security of the CS scheme implies the KDM-CCA2 security of our proposal.

Proof. For any PPT adversary A attacking on CS’s KDM-CCA2 security, Let
Qe denote the number of queries to the encryption oracle and Qd the number

146 B. Qin, S. Liu, and Z. Huang

of queries to the decryption oracle. The proof proceeds through a sequence of
games. Denote by outi the output of A in Gamei.

Game0 is the original KDM-CCA2 security experiment for b = 0. Thus,

Pr[out0 = 1] := Pr
[
ExpKDM-CCA2

CS,A (κ, 0) = 1
]

Game1 is the same as Game0 except for the way the challenger answers the
encryption queries of A. The challenger first computes and stores in a list L
all the differences between any pair of the n secret keys.

L = {(i, j, ski − skj)i,j∈[n] = (i, j, xi,1−xj,1, xi,2−xj,2, . . . , xi,6−xj,6)i,j∈[n]},
where all operations are over Fq.
For each encryption query (ik, fk), k ∈ [Qe], the challenger computes the
key-dependent message

fk(sk1, . . . , skn) =

L∑
t=1

∏
i,j∈[n],s∈[6]

αi,j,t(xi,s − xj,s)
ai,j,t (mod q),

with the values (xi,s − xj,s) stored in L, instead of the secret keys sk1, . . . ,
skn. Then the challenger computes

Ck = CS.Enc(pp, pkik , fk(sk1, . . . , skn))

and returns Ck to A.
This change does not affect A’s view in Game0 at all. Thus,

Pr[out1 = 1] = Pr[out0 = 1].

Game2 is defined as the KDM-CCA2 security experiment for b = 1, i.e., the
challenger answers all the responses of the encryption queries with encryp-
tions of 0|M|.
To show Game1 and Game2 are indistinguishable, it needs to prove that the
following sub-games Game1.� (� = 0, 1, . . . , Qe) are indistinguishable.
Denote by (ik, fk) the k-th encryption query by A, k = 1, 2, . . . , Qe.
In Game1.� (� = 0, 1, . . . , Qe), the challenger responds the k-th encryption
query (ik, fk) with

Ck =

{
Enc(pp, pkik , 0

|M|) if k = 1, 2, . . . , �
Enc(pp, pkik , fk((skj)j∈[n])) if k = �+ 1, �+ 2, . . . , Qe

It is easy to see that Game1.0 is the same as Game1, Game1.� is the same as
Game2, and

|Pr[out2 = 1]− Pr[out1 = 1]| ≤
Qe∑
�=1

|Pr[out1.� = 1]− Pr[out1.�−1 = 1]|.

We postpone the proof of the following claim.

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 147

Lemma 6. For all 1 ≤ � ≤ Qe,

Pr[out1.� = 1]− Pr[out1.�−1 = 1] ≤ nAdvCCA2
CS,A′ (κ)

for a suitable adversary A′ on CS’s CCA2-security.

Then, it follows that

Pr[out1 = 1]− Pr[out2 = 1] ≤ nQeAdv
CCA2
CS,A′ (κ).

Finally, combining all the three games, we have

AdvKDM-CCA2
CS,A (κ) ≤ nQeAdv

CCA2
CS,A′ (κ).

��
We now turn to prove Lemma 6.

Proof (proof of Lemma 6). We construct a PPT adversary A′ who implements
an attack on CS’s CCA2-security using A as a subroutine. Remember in the
IND-CCA2 game, A′ is given public parameters pp = (q,G, g, ĝ,H) which is
the output of CS.Sys(1κ), a public key pk∗ = (h∗1, h

∗
2, h

∗
3), which is generated

via (pk∗, sk∗) ← CS.Gen(pp), and access to a decryption oracle O′
sk∗(·) which

answers A′’s decryption query C with CS.Dec(pp, sk∗, C).
In order to simulate Game1.� (or Game1.�−1) for A, A′ prepares the public

parameters and public keys, the encryption and decryption oracles for A as
follows.

Simulating Public Parameters and Public Keys:Given public parameters
pp = (q,G, g, ĝ,H) and the public key pk∗ = (h∗1, h

∗
2, h

∗
3), A′ computes

(pk1, pk2, . . . , pkn) as follows.

– Choose i∗ $← [n];

– Choose (xi,1, xi,2, xi,3, xi,4, xi,5, xi,6)
$← Z6

q for i ∈ [n \ i∗];
– Compute

hi,1 = h∗1 · gxi,1 ĝxi,2 , hi,2 = h∗2 · gxi,3 ĝxi,4 , hi,3 = h∗3 · gxi,5 ĝxi,6 , (4)

for i ∈ [n \ i∗];
– Set hi∗,1 = h∗1, hi∗,2 = h∗2, hi∗,3 = h∗3;
– Set pki = (hi,1, hi,2, hi,3) for i ∈ [n].

Return pp = (q,G, g, ĝ,H) and (pk1, pk2, . . . , pkn) to A.
All the public keys are distributed exactly like the original KDM-CCA2
security game.
Note that A′ does not know the values of the secret keys (sk1, sk2, . . . , skn)
at all, but it does know all the differences between any pair of secret keys

ski − skj =

⎧⎨
⎩

(xi,1 − xj,1, xi,2 − xj,2, . . . , xi,6 − xj,6) if i, j 	= i∗

(xi,1, xi,2, . . . , xi,6) if i 	= i∗, j = i∗

(−xj,1,−xj,2, . . . ,−xj,6) if i = i∗, j 	= i∗
(5)

for i, j ∈ [n], and stores all the secret key differences in a list

L = {(i, j, ski − skj)i,j∈[n]}.

148 B. Qin, S. Liu, and Z. Huang

Simulating Encryption Oracle: There are totally Qe queries from the ad-
versary. Let (ik, fk) be the k-th query from A.
– For k = 1, . . . , �− 1, A′ responds the query (ik, fk) with

Ck = Enc(pp, pkik , 0
|M|).

– For k = �, A′ checks whether i� = i∗. If i� 	= i∗, A′ aborts the game
with ⊥; Otherwise, A′ submits m0 = 0|M| and m1 = f�(sk1, . . . , skn)
(mod q) to its own encryption oracle and gets the challenge ciphertext
C∗. A′ sets

Ck = C∗.

– For k = �+ 1, �+ 2, . . . , Qe, A responds the query (ik, fk) with

Ck = Enc(pp, pkik , fk((skj)j∈[n])).

Since A′ knows all the differences ski − skj between any secret key pair, A′

is able to compute Ck without knowing secret keys.
Finally, A′ stores (i1, C1), (i2, C2), . . . , (iQe , CQe) in the ciphertext list CL.

Simulating Decryption Oracle: Given the decryption oracle O′
sk∗(·) to

which A′ has access in the IND-CCA2 security game, A′ is able to provide
decryption services to A with help of O′

sk∗(·) .
Denote by (i, C) the decryption query submitted by A, then A′ proceeds as
follows.
1. If (i, C) ∈ CL, then return ⊥ to A.
2. If (i, C) /∈ CL and i = i∗, then A′ submits C to its own decryption oracle

O′
sk∗(·) and returns the output of O′

sk∗(·) to A.
3. If (i, C) /∈ CL and i 	= i∗, parse C as (u, û, c, v) and then compute

t = H(u, û, c) and v′ =
v

uxi,3t+xi,5 · ûxi,4t+xi,6
.

Next, A′ submits the ciphertext C′ = (u, û, c, v′) to O′
sk∗(·). Let m′ be

the output of its decryption oracle O′
sk∗(·). If m′ =⊥, then A′ returns

⊥ to A, otherwise A′ computes

m = decode

(
encode(m′)
uxi,1 · ûxi,2

)
and returns this message (i.e. m) to A.

The correctness of the decryption services provided by A′ is justified by the
the correctness of O′

sk∗(·) and the following facts.
Suppose sk∗ = (x∗1, x

∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6) be the corresponding secret key of

pk∗ = (h∗1, h∗2, h∗3). For i 	= i∗, according to Eq.(4),

pki = (hi,1, hi,2, hi,3) = (h∗1 · gxi,1 ĝxi,2 , h∗2 · gxi,3 ĝxi,4 , h∗3 · gxi,5 ĝxi,6),

and the secret key is

ski = (x∗1+xi,1, x∗2+xi,2, x∗3+xi,3, x∗4+xi,4, x∗5+xi,5, x∗6+xi,6).

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 149

The ciphertext C′ = (u, û, c, v′) is consistent under pk∗ = (h∗1, h
∗
2, h

∗
3) if

v′ = ux
∗
3t+x∗

5 · ûx∗
4t+x∗

6 .

Meanwhile the ciphertext C = (u, û, c, v) is consistent under
pki = (hi,1, hi,2, hi,3) if

v = u(x
∗
3+xi,3)t+(x∗

5+xi,5) · û(x∗
4+xi,4)t+(x∗

6+xi,6).

Note that v = v′ · uxi,3t+xi,5 · ûxi,4t+xi,6 , so C′ = (u, û, c, v′) is consistent
under pk∗ iff C = (u, û, c, v) is consistent under pki.
For consistent ciphertext C′ = (u, û, c, v′) under pk∗, O′

sk∗(·) returns m′ =
decode

(c

ux
∗
1 ûx

∗
2

)
. For consistent ciphertext C = (u, û, c, v) under pki, the

decryption result should be m = decode
(c

ux
∗
1+xi,1 ûx

∗
2+xi,2

)
. Note that m =

decode
(

encode(m′)
uxi,1 ·ûxi,2

)
.

As long as A′ does not abort in the simulation, A′ perfectly simulates Game1.� if
C∗ is an encryption of message m0 = 0|M| and Game1.�−1 if C∗ is an encryption
of message m1 = f�(sk1, . . . , skn) (mod q).

Finally, A′ outputs whatever A outputs.
Since Pr[A′ does not abort] = Pr[i� = i∗] = 1/n, we have

Pr[out1.� = 1]− Pr[out1.�−1 = 1] ≤ nAdvCCA2
CS,A′ (κ).

This completes the proof of Lemma 6. ��

5 Conclusion and Further Work

This paper introduced a new function ensemble and showed the relation between
this new ensemble with the ensemble of affine functions. A tailored Cramer-
Shoup (CS) cryptosystem was proved to be key-dependent message chosen-
ciphertext secure with respect to the new function ensemble. We also presented
an efficient instantiation of the tailored CS cryptosystem. Though the new func-
tion ensemble does not cover all the affine functions over Zq, it suffices for some
applications like the anonymous credential systems. Due to the efficiency of the
CS system, our proposal is much more efficient than the known KDM-CCA2
secure schemes [11, 22]. Our result shows the elegance of the (CS) cryptosystem
and promote the applications of KDM secure PKE in practice.

It may be of independent interest to exploit other applications of the new
functions ensemble. Another interesting challenge is design practical scheme,
as efficient as the CS system, with KDM-CCA2 security with respect to affine
functions.

150 B. Qin, S. Liu, and Z. Huang

Acknowledgements. We are grateful to the anonymous ACISP 2013 reviewers
for many helpful comments. This work was supported by the National Natural
Science Foundation of China (Grant No. 61170229 and No. 61133014), the Spe-
cialized Research Fund for the Doctoral Program of Higher Education (Grant
No. 20110073110016), and the Innovation Program of Shanghai Municipal Edu-
cation Commission (Grant No. 12ZZ021).

References

1. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal encryption in the
presence of key-cycles. In: De Capitani di Vimercati, S., Syverson, P., Gollmann, D.
(eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)

2. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based en-
cryption. In: Fischlin, et al. (eds.) [16], pp. 334–352

3. Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under ac-
tive attacks - BRSIM/UC-soundness of dolev-yao-style encryption with key cycles.
Journal of Computer Security 16(5), 497–530 (2008)

4. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM Conference on Computer and Communications Security, pp. 62–73.
ACM (1993)

6. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

7. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

8. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

9. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

10. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
201–218. Springer, Heidelberg (2011)

11. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

12. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

13. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, et al. (eds.) [16], pp. 540–557

KDM-CCA2 Security of the Cramer-Shoup Cryptosystem 151

14. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2004), http://dx.doi.org/10.1137/S0097539702403773

16. Fischlin, M., Buchmann, J., Manulis, M. (eds.): PKC 2012. LNCS, vol. 7293.
Springer, Heidelberg (2012)

17. Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-
dependent message security and leakage-resilience. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer,
Heidelberg (2012)

18. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

19. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

20. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

21. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart (ed.) [31], pp. 415–432

22. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. Cryp-
tology ePrint Archive, Report 2012/150 (2012), http://eprint.iacr.org/ (to ap-
pear, Eurocrypt 2013)

23. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

24. Hofheinz, D., Unruh, D.: Towards key-dependent message security in the standard
model. In: Smart (ed.) [31], pp. 108–126

25. Lu, X., Li, B., Mei, Q., Xu, H.: Key-dependent message security for division func-
tion: Discouraging anonymous credential sharing. In: Boyen, X., Chen, X. (eds.)
ProvSec 2011. LNCS, vol. 6980, pp. 297–308. Springer, Heidelberg (2011)

26. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key en-
cryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 507–526. Springer, Heidelberg (2011)

27. Malkin, T., Teranishi, I., Yung, M.: Key dependent message security: recent results
and applications. In: Sandhu, R.S., Bertino, E. (eds.) CODASPY, pp. 3–12. ACM
(2011)

28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Ortiz, H. (ed.) STOC, pp. 427–437. ACM (1990)

29. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

30. Shacham, H.: A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007/074 (2007), http://eprint.iacr.org/

31. Smart, N.P. (ed.): EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg
(2008)

http://dx.doi.org/10.1137/S0097539702403773
http://eprint.iacr.org/
http://eprint.iacr.org/

Black-Box Separations
and Their Adaptability to the Non-uniform Model

Ahto Buldas1,2,3 and Margus Niitsoo4,�

1 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

3 Guardtime AS, Tammsaare tee 60, 11316 Tallinn, Estonia
4 University of Tartu, Liivi 2, 50409 Tartu, Estonia

Abstract. Oracle separation methods are used in cryptography to rule out black-
box reductions between cryptographic primitives. It is sufficient to find an oracle
relative to which the base primitive exists but there are no secure instances of
the constructed primitive. It is often beyond our current reach to construct a fixed
oracle with such properties because it is difficult to prove the existence of secure
base primitives. To overcome this gap, randomized oracles are used to create
random base primitives that are secure on average. After that, a fixed oracle is
extracted from the probability distribution by using non-constructive probabilistic
arguments and the countability of the set of adversaries. Such extraction only
applies to uniform reductions because the set of non-uniform adversaries is not
countable. We study how to adapt oracle separation results to the non-uniform
model. The known separation techniques are capable of ruling out the so-called
fully black-box reductions and a certain strong form of semi black-box reductions
also in the non-uniform model. We study how to go beyond the barrier of strong
semi black-box reductions and show that this is possible by using random oracles
with auxiliary advice. For that end, we prove a conjecture of Unruh (2007) about
pre-sampling being a sufficient substitute for advice for any oracle distribution.

1 Introduction

Complex cryptographic protocols are often built from simpler building blocks called
primitives. Usually, the security of such protocols is proved based solely on the security
guarantees of the original primitives independent of their actual implementation details.
Such constructions are called black-box reductions. To date, almost all security proofs
for efficient cryptographic constructions utilize black-box reductions.

Although back-box reductions are extremely useful cryptographic tools, there exist
limits on where they can be applied. There are many known cases for which it is proved
that such a reduction cannot exist. This usually means that a very clever proof construc-
tion is necessary if the reduction can be achieved at all. As very few of these clever
constructions are known, the power and limits of black-box reductions are of a rather
special interest to many people working in the field.

� This research was supported by the European Regional Development Fund through the Esto-
nian Center of Excellence in Computer Science, EXCS, and by Estonian Research Council’s
personal research grant PUT-2.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 152–167, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Black-Box Separations and Their Adaptability to the Non-uniform Model 153

The first separation result involving black-box reductions was given in 1989 by Im-
pagliazzo and Rudich [7]. They showed that there are no such reductions from key
agreement protocols to one-way functions. Their seminal paper was followed by a long
line of similar types of results [5,6,10]. The approach was even generalized by Kim,
Simon and Tetali [8] to give bounds on reduction efficiency. Though all these results
leave open the existence of more specific security proofs they are still valuable hard-
ness indicators as they rule out the most obvious approaches.

Non-existence of black-box reductions is commonly shown by oracle separation
techniques. In complexity theory, oracle separation has been widely applied to prove
limits of the proof techniques capable of establishing set-theoretical inclusions between
complexity classes. For example, with oracle separation one can easily show that diag-
onal arguments are insufficient to solve the famous P vs NP question. This is done by
showing two oracles—one relative to which the conjecture holds and another for which
it does not. In cryptography, oracle separation is used to argue that it is impossible to
securely implement a primitive or a protocol P given only black-box access to a secure
low-level primitive f as an instance of a class of primitives Q. This is done by defining
an oracle so that f remains secure even if the adversary can access the oracle but any
instance Pf of the protocol P being considered is insecure relative to the oracle.

In classical separation results of complexity theory, oracles are defined as fixed func-
tions that always behave the same way. In cryptographic separations, it is often hard
to explicitly define a fixed separation oracle. For example, if one wishes that one way
functions exist relative to the oracle, an explicit functional description of such function
should then be given (as a part of the oracle). This is however still unreachable for the
state of the art computer science—the existence of one way functions is conjectured but
not yet proved. So, in cryptographic separations we often assume that oracles are cho-
sen randomly from certain probability distributions. We then prove that the separation
statements hold on average and then argue that there exists a particular choice of the
oracle for which the statements hold. For example, one-way functions indeed exist in
the random oracle model because random functions are one-way on average [7].

It would then seem natural that the oracle separation results would also be stated with
respect to the random oracles. However, as the classical separation theorems are adopted
from the classical model, the authors still try to make their oracle choice deterministic.
Such an oracle extraction approach, though, has a big limitation—it usually requires
that the number of adversaries is countable, and hence the whole approach is usable
only in the uniform model, where the adversaries are ordinary Turing machines.

To avoid the countability argument, Buldas, Laur and Niitsoo [2] proposed an alter-
native oracle extraction approach where the oracle extraction step is unnecessary. Rather
than trying to extract a suitable deterministic oracle from a probability distribution, they
assumed that there exists a black-box reduction (that works for every f) and derived a
contradiction by assuming the probabilistic separation condition and the average (over
f) version of the reduction condition. We call the method they introduced the averaging
approach. They proved that the averaging approach is capable of showing that there are
no semi black-box reductions between two primitives. However, they were able to do
this only for a strong version of semi black-box reduction where the simulator A does
not depend on the instance f of the source primitive.

154 A. Buldas and M. Niitsoo

In this paper, we give an overview on both the traditional oracle extraction based sep-
aration and the averaging-based separation techniques. For each type of the reduction,
we outline the main steps of the separation and point out the steps where the countabil-
ity assumption is used. Thereby, we determine the exact reason why the separation fails
in the non-uniform model. We achieved the following results:

– The traditional oracle extraction approach still works for the strong semi black-box
reductions, because the separation oracle can be chosen for a fixed adversaryA and
a fixed simulator S. Similar to the averaging approach, this is not so for the weak
semi black-box reductions, and from this viewpoint, the averaging approach has no
advantage over the traditional methods.

– We derive sufficient average-based separation criterions for the weak semi black-
box and the variable semi black-box reductions. It turns out that proving the se-
curity condition of the oracle separation for the weak semi black-box reduction is
equivalent of proving the security of a cryptographic construction in a model where
the adversary is given a function ϕ(O) of the oracle.

– We generalize the results of Unruh [11] about oracles with auxiliary strings so that
they would apply to arbitrary oracle distributions.

2 Notation

By x ← D we mean that x is chosen randomly according to a distribution D. We use
the Big Oh notation for describing asymptotic properties of functions. In particular,
f(k) = O(1) means that f is bounded and f(k) = k−ω(1) means that f(k) decreases
faster than any polynomial, i.e., f is negligible. A Turing machine M is poly-time if
it runs in time kO(1), where k denotes the input size that is mostly referred to as the
security parameter.

By an oracle Turing machine we mean an incompletely specified Turing machine S
that comprises calls to oracles. The description can be completed by defining the oracle
as a function O : {0, 1}∗ → {0, 1}∗. In this case, the machine is denoted by SO. The
function y ← O(x) does not have to be computable but has a conditional running time
t(x), which does not necessarily reflect the actual amount of computations needed to
produce y from x. The running time of SO comprises the conditional running time of
oracle calls—each call O(x) takes t(x) steps. We assume that all the oracles O are poly-
time, that is t(x) = {x}O(1), where {x} denotes the bit-length of x. Note that though
the classical complexity-theoretic oracles only require a single step, this more general
notion is appropriate in cryptography where oracles often model abstract adversaries
with running time t. We say that S is a poly-time oracle machine if SO runs in poly-
time, wheneverO is poly-time. By a non-uniform poly-time oracle machine we mean an
ordinary poly-time oracle machine S together with a family A = {ak}k∈N of (advice)
bit-strings ak with length kO(1). For any oracle O and any input x, it is assumed that
SO(x) has access to the advice string a{x}. Usually, the advice strings are omitted for
simplicity, but their presence must always be assumed when S is non-uniform. One
of the most important facts about non-uniform machines is that there are uncountably
many of them, whereas the set of ordinary Turing machines is countable.

Black-Box Separations and Their Adaptability to the Non-uniform Model 155

3 Basic Lemmas

Lemma 1 (Probabilistic Argument). Let F be a probability space and P be a predi-
cate function. Then Pr

f←F
[P(f)] > 0 ⇒ ∃f : P(f).

Lemma 2 (Countability Argument). Let F be a probability space and P(f,A) be a
predicate function where A varies over all poly-time Turing machines, then

∀
pol

A : Pr
f←F

[P(f,A)] = 1 ⇒ Pr
f←F

[
∀
pol

A : P(f,A)

]
= 1 .

Proof. Countable intersection of measure one sets is a measure one set. ��
Lemma 3 (Borel-Cantelli). Let {Ei}i∈N be a countable set of events and E∞ be the
event that infinitely many of these events happen. If

∑
n Pr [En]<∞ then Pr [E∞]=0.

Proof. Indeed, let Bk =
⋃∞

n=k Ek. If x ∈ E∞ then x ∈ ∩kBk, because otherwise
x only belongs to a finite sequence E1, . . . ,Ek−1 of events. Hence, E∞ ⊆ ∩kBk and
Pr [E∞] ≤ Pr [∩kBk] ≤ Pr [Bk]. From

∑
n Pr [En] <∞ it follows that for every ε > 0

there is k such that
∑∞

n=k Pr [Ek] < ε. Thus, Pr [E∞] ≤ Pr [Bk] = Pr [∪∞
n=kEk] ≤∑∞

n=k Pr [Ek] < ε, which implies Pr [E∞] = 0. ��
Lemma 4 (Negligible Average Argument). Let F be a distribution so that for every
f ← F there is a real-valued function δf : N → [0, 1]. If E

f←F
[δf (k)] = ε(k) = k−ω(1),

then δf (k) = k−ω(1) for measure one of f ’s.

Proof. As Pr
f←F

[
δf (k) > k2 · ε(k)] ≤ k−2 and Pr

f←F

[
δf(k) ≤ k2 · ε(k)] ≥ 1 − k−2

by Markov inequality, we define Ek as the event that δf (k) > k2 · ε(k). Now we use
the Borel-Cantelli lemma and

∑
k Pr [Ek] ≤

∑
k k

−2 < ∞ to imply

Pr
f←F

[
”δf (k) > k2 · ε(k) for infinitely many k-s”

]
= Pr [E∞] = 0 .

Thus, for measure one of f ’s: ∃k0∀k > k0 : δf (k) ≤ k2 · ε(k) = k−ω(1). ��
Lemma 5 (Overwhelming Average Argument). Let F be a distribution so that for
every f ← F there is a function δf : N → [0, 1]. If E

f←F
[δf (k)] = 1 − k−ω(1), then

δf (k) = 1− k−ω(1) for measure one of f ’s.

Proof. E
f←F

[1− δf (k)] = 1 − E
f←F

[δf (k)] = 1 − (1 − k−ω(1)) = k−ω(1), which by

Lemma 4 implies that 1− δf (k) = k−ω(1) for measure one of f ’s. ��
Lemma 6. There exist quantities δi(k) = k−ω(1) for which E

i
[δi(k)] 	= k−ω(1).

Proof. Let I = {1, 2, . . .} and pi = 6
π2i2 for all i ∈ I . Then

∑
i∈I pi = 1. For all

i ∈ I we define the function δi by δi(k) = δik, where δik is the Kronecker delta. Now
we define a probability space on {δi}i∈I such that Pr[δi] = pi for all i ∈ I . Note
that δi(k) = k−ω(1) for all i ∈ I but the average of all δi-s is non-negligible, because
E
i
[δi(k)] =

6
π2 · k−2 = k−O(1) 	= k−ω(1). ��

156 A. Buldas and M. Niitsoo

4 Primitives

Complex cryptographic constructions can often be decomposed into a few fundamen-
tal building blocks that are called primitives. One is usually interested in proving the
security of constructions based solely on the properties of the underlying primitives.
Reingold et al. [9] give a formal definition by considering primitives as families of
functions of type f : {0, 1}∗ → {0, 1}∗ along with a matching between these functions
and Turing machines implementing them. Indeed, for many common primitives such as
one-way permutations or collision-resistant hash functions this formalization coincides
with our intuition—an instance of a primitive is indeed just one function.

In some more complicated cases that actually have more than one type of function-
ality, it may make more sense to define a primitive as a tuple of functions. However, we
can usually concatenate these functions into one single function – we just use the first
few input bits to tell the function which sub-function we want to use. This means that
we can still formalize the primitive as one single function, although it may be a little
counter-intuitive.

A primitive is usually defined in terms of functional requirements that the instances
of the primitive must satisfy before it makes sense to talk about their security. These
requirements, though, are just syntactic and have nothing to do with security. For exam-
ple, every permutation is an instance of the one-way permutation primitive, however, it
does not have to be a secure instance.

In cryptography we also have to define the security of primitives. Reingold et al. [9]
define security as a relation between primitives and Turing machines that possibly break
them. That is, a machine either breaks the primitive or not. In this work, we use a
more specific (but still sufficiently general) definition of security given in [2], where the
breakage advantage is a real-valued function that also depends on the security parameter
k which is usually tied to the actual input (or output) lengths of the primitive:

Definition 1 (Primitives, Adversaries and Advantage). A primitiveP is a set of func-
tions of type f : {0, 1}∗ → {0, 1}∗. Primitives have an advantage function ADVP

k (·, ·),
which given as input the security parameter k ∈ N, an instance f of P, and an ora-
cle Turing machine AO (an adversary) returns a real number ADVP

k (A
O, f) ∈ [0, 1]

(the advantage of AO). The function ADVP
k (·, f) is extended to probabilistic Turing ma-

chines by taking the average over their randomness strings1. We say that AO breaks
an instance f of P if ADVP

k (A
O, f) 	= k−ω(1). If for a fixed oracle O no probabilistic

poly-time oracle Turing machine AO breaks f then f is said to be secure relative to O.

We emphasize that our definition says nothing about the efficiency of f . The function
may even be non-computable, as long as the advantage that can be gained by any ad-
versary is negligible. In practice, one needs an instantiation of a primitive that is both
efficient and secure. Commonly, it is required that we can compute the function f with
a (uniform) poly-time Turing machine for f to be called efficient.

1 Each fixed randomness string gives a deterministic poly-time Turing machine for which
ADVP

k () is already defined.

Black-Box Separations and Their Adaptability to the Non-uniform Model 157

5 Black-Box Reductions

Reductions capture the relations between different security notions. A primitive P can
be reduced to a primitive Q if there exists a construction that given a secure instance of
the primitive Q yields a secure instance of P. Most common cryptographic reductions
are black-box reductions, where an instance f of a primitive Q is treated as an atomic
object in the construction and in the security proof. In this work, we consider four
sub-notions of black-box reductions: fully-black box reductions, strong and weak semi
black box reductions, and variable semi black box reductions.

The first step towards classification of black-box reductions was made by Reingold,
Trevisan and Vadhan [9]. They showed a complex hierarchy of 7 types of different re-
ductions. Our classification is based on their work but leaves out some of the more
general reductions and introduces one that actually arises quite often in practice. Also,
we assume that the reduction construction is deterministic whereas the original hier-
archy uses probabilistic Turing machines everywhere. This is necessary for reductions
between deterministic primitives as the reduction cannot be allowed any randomization
in that case. If we consider randomized primitives,G can usually be made deterministic
even when it is randomized in essence – the key idea is to use the oracle as a source of
randomness. This approach was already used by Impagliazzo and Rudich [7] in the first
paper about oracle separations in cryptology.

In the first three definitions, the construction of a derived primitive is independent
of the actual implementation of P, whereas the construction itself may depend on the
implementation in the last definition. The reduction in question is uniform if all oracle
machines in the corresponding definition are uniform, otherwise the reduction is non-
uniform. We assume that the construction G is always deterministic but the adversaries
are allowed to be randomized.

Definition 2 (Fully black-box reduction). A fully black-box reduction P=⇒f Q is de-
termined by two poly-time oracle machinesG and S, satisfying the next two conditions:
(C) If f implements Q then Gf implements P.
(S) For every instance f ∈ Q, if A breaks Gf (as P) then SA,f breaks f (as Q).

In brief, we must to provide a universal oracle algorithm S that can handle all suc-
cessful adversaries to establish a fully black-box reduction. So-called semi-black-box
reductions weaken this restriction by allowing for some specialization in the security
proofs. The degree to which the specialization can go is different for different authors.
We give two possible definitions, one just slightly stronger than the other.

Definition 3 (Strong semi black-box reduction). A strong semi-black-box reduction
P=⇒ss Q is a poly-time oracle machine G, satisfying the next two conditions:

(C) If f correctly implements Q then Gf correctly implements P.
(S) For all poly-time oracle machines A there exists a poly-time oracle machine B such

that for every instance f ∈ Q if Af breaks Gf then Bf breaks f .

Definition 4 (Weak semi black-box reduction). By weak semi-black-box reduction
P=⇒ws Q we mean a poly-time oracle machine G, satisfying the next two conditions:2

2 This was the reduction given by Reingold et al. [9] as the semi-black-box reduction.

158 A. Buldas and M. Niitsoo

(C) If f correctly implements Q then Gf correctly implements P.
(S) For every instance f ∈ Q and a poly-time oracle machineA, there exists a poly-time

oracle machine B such that if Af breaks Gf then Bf breaks f .

The difference between the two reduction types is very subtle. In the strong case, the
construction of B may non-constructively depend on A and G but it has to be universal
for all f ∈ Q. In the weak case, such a universal B might not exist – the construction of
B may depend on f as well as on A and G. This subtle difference is however extremely
important, as it seems to create a theoretical boundary for at least one general separation
method we show later.

In both semi-black-box reductionsG must be universal for all valid instances f ∈ Q

and as such, specific properties of an instance f cannot be used in the construction.
Variable semi-black-box reductions 3 weaken even this restriction so that the construc-
tions of bothG and B may depend on the instance f . However, such constructions must
exist for all instances of Q regardless of the actual efficiency of f . If we restrict f in
the following definition to efficiently implementable instances of Q, then we get the
definition of white-box reductions, which is the most general type of reductions.

Definition 5 (Variable semi black-box reduction). We say that there is a variable
semi-black-box reduction P=⇒v Q iff for any correct implementation f of Q:
(C) there exists a poly-time oracle machine Gf that correctly implements P;
(S) for every instance f ∈ Q and for any poly-time oracle machine A, there exists a

poly-time oracle machine B such that if Af breaks Gf , then Bf breaks f .

These reduction types form a linear hierarchy with fully black-box reductions being
the strongest and white-box reductions being the weakest. Existence of a reduction of
one type also trivially implies the existence of reductions of all weaker types. This
is important as it means that non-existence of a weaker reduction also implies non-
existence of all stronger reductions.

6 Oracle-Extraction Based Separation

Showing the non-existence of black-box reductions of a primitive P to a primitive Q by
oracle separation involves two major steps:

– (Breakage argument) Define an oracle O relative to which there is no secure P;
– (Security argument) Show that there is secure Q relative to O.

In cryptography, oracle separation is almost never done with an explicitly defined or-
acle. Instead of that, the existence of a suitable oracle is proved by using probabilistic
arguments, i.e. it is shown that an oracle with the desired properties can be extracted
from a probability space of oracles. So, the first step of an oracle separation is to define
a probability distribution O ← F of oracles and show that there is secure instance fO

of Q but no instance GO of P is secure relative to O. By using the so-called oracle em-
bedding techniques first introduced by Simon [10], the secure instance f of Q can be
identified with the oracle O, i.e. the oracle distribution is f ← F. To show the security
argument in the oracle-extraction based separation techniques we show that:

3 They were called ∀∃-semi-black-box by Reingold et al.

Black-Box Separations and Their Adaptability to the Non-uniform Model 159

s1: Every fixed poly-time adversary S that uses f as an oracle can break f only with
negligible success, on average, i.e. ∀

pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1).

s2: Pr
f←F

[
ADVk(S

f , f) = k−ω(1)
]
= 1, i.e. for measure one of f ’s, no poly time S can

break f (by s1 and Lemma 4).
s3: For measure one of oracles f , no poly-time Sf can break f better than with negli-

gible success, i.e. Pr
f←F

[
∀
pol
S : ADVk(S

f , f) = k−ω(1)

]
= 1 (by s2, Lemma 2).

To show the breakage argument we have to show that:

b1: Every instance Gf of P can be broken by a poly-time A with overwhelming prob-
ability, i.e. ∀

pol

G ∃
pol

A : E
f←F

[
ADVk(A

f , Gf)
]
= 1− k−ω(1).

b2: For every instanceGf of P there is a poly-timeA, so thatAf breaksGf for measure
one of f ’s, i.e. ∀

pol

G ∃
pol

A : Pr
f←F

[
ADVk(A

f , Gf) = 1− k−ω(1)
]
= 1 (b1, Lemma 5).

b3: For measure one of oracles f , every Gf can be broken by a poly-time machine A,

i.e. Pr
f←F

[
∀
pol

G ∃
pol

A : ADVk(A
f , Gf) = 1− k−ω(1)

]
= 1 (b2, Lemma 2).

Finally, by combining these two sets of measure one, we have that measure one of or-
acles satisfy both the breakage and the security conditions, which means that by the
probabilistic argument (Lemma 1) there exists a fixed separation oracle. Note that (b1)
cannot be replaced with the weaker statement E

f←F

[
ADVk(A

f , Gf)
]
= k−O(1), be-

cause it does not imply that there is an f for which ADVk(A
f , Gf) = k−O(1). There

exists a counterexample (Lemma 6) for which ADVk(A
f , Gf) = k−ω(1) for all f .

Table 1. Reduction types and separation conditions for oracle extraction based separations. The
quantifier ∀

of
means that the quantified variable varies over all oracle functions.

Type Reduction Condition Separation Condition

Fully ∃
of
p ∃

pol
S∀f∀A : ∀

of
p ∀

pol
S∃F : E

f,A←F
[ADVk(A, p(f))] = 1− k−ω(1)

bb Abr p(f)⇒ SA,f br f E
f,A←F

[
ADVk(S

f,A, f)
]
= k−ω(1)

Strong ∃
of
p ∀

pol
A ∃

pol
S∀f : ∀

of
p ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f , p(f))
]
= 1− k−ω(1)

Semi bb Af br p(f)⇒ Sf br f E
f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Weak ∃
of
p ∀

pol
A∀f ∃

pol
S : ∀

of
p ∃

pol
A∃F : E

f←F

[
ADVk(A

f , p(f))
]
= 1− k−ω(1)

Semi bb Af br p(f)⇒ Sf br f ∀
pol
S E

f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Countability argument for S
Variable ∀f ∃

pol
G ∀

pol
A ∃

pol
S : ∃F : ∀

pol
G ∃

pol
A E

f←F

[
ADVk(A

f , Gf)
]
= 1− k−ω(1)

Semi bb Af brGf ⇒ Sf br f ∀
pol
S E

f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Countability arguments for G and S

160 A. Buldas and M. Niitsoo

The steps s1, s2, b1 and b2 also apply to non-uniform reductions, whereas the steps
s3 and b3 do not, because there are uncountably many non-uniform machines S and G.

In order to still apply the separation technique in the non-uniform model, there are
several ways to go on. The first way is to use the fact that stronger types of black-box
reductions may need weaker separation arguments and perhaps there is no need to use
the countability argument, i.e. the existence of the separation oracle may be deducible
without extraction. Indeed, if we examine the negations of the reduction statements
for all four types of black-box reductions (Table 1), we observe that the non-existence
of fully black-box and the strong semi black-box reductions can be proven without the
countability argument. The main reason is that the oracle distribution F must be defined
for a particular choice ofA and S. Formally, this means that in the separation condition,
the quantifier ∃F stands after the quantifiers ∃

pol

A and ∀
pol

S (Table 1).

It also turns out in a natural way that in order to show non-existence of fully black-
box reductions, we may use two separate oracles A and f , where the secure instance
(f) of Q only has access to f , while the adversary S has access to both oracles. This
fact was first pointed out by Hsiao and Reyzin [6]. In Table 1, we list the separation
conditions for all four types of reductions. All proofs are given in Appendix A.

To conclude, the oracle extraction based separation techniques are applicable to the
strong semi black-box reductions (and hence also for the fully black-box reductions) but
not for the weak semi black-box and variable semi black-box reductions, because the
latter would require the countability argument.

7 Averaging-Based Separation

In practical separations, both the security- and the breakage assumption are probabilis-
tic, i.e. involve an average success over the oracle. The reduction condition (for fully
black-box reduction) is deterministic and has the form:

ADVP
k (A,G

f) 	= k−ω(1) ⇒ ADVQ
k (S

f,A, f) 	= k−ω(1) . (1)

For showing that there are no fully black-box reductions of P to Q, we have to derive a
contradiction based on the reduction condition (1) and the separation conditions:

(S) E
f,A←F

[
ADVP

k (A,G
f)
]
= 1− k−ω(1)

(B) ∀
pol

S : E
f,A←F

[
ADVQ

k (S
f,A, f)

]
= k−ω(1) .

To derive a contradiction from (S), (B), and (1), the traditional approach focuses on
conditions (S) and (B) and tries to derive a negation of (1) from these two conditions.
This is done by using oracle extraction, i.e. by extracting a fixed oracles f andA from F

so that (1) is not satisfied. The average-based separation technique [2] does the opposite:
it first focuses on (1) and tries to derive the following averaged version:

E
f,A←F

[
ADVP

k (A,G
f)
]
	= k−ω(1) ⇒ E

f,A←F

[
ADVQ

k (S
f,A, f)

]
	= k−ω(1) , (2)

Black-Box Separations and Their Adaptability to the Non-uniform Model 161

and then derive a contradiction based on (S), (B) and (2). Indeed, from (S) it fol-

lows that E
f,A←F

[
ADVP

k (A,G
f)
]

= 1 − k−ω(1) 	= k−ω(1). By (2) we imply that

E
f,A←F

[
ADVQ

k (S
f,A, f)

]
	= k−ω(1) which contradicts (B).

7.1 Poly-Preserving Reductions

The main problem with the the averaging approach described above is that the averaged
condition (2) cannot be derived from the general reduction condition (1). Indeed, let
af (k) = ADVP

k (A,G
f) and bf(k) = ADVQ

k (S
f,A, f). We would like to prove that if

(for all f) bf(k) = k−ω(1) implies af (k) = k−ω(1), then

E
f
[bf (k)] = k−ω(1) ⇒ E

f
[af (k)] = k−ω(1) .

The negligible average argument (Lemma 4) implies that af (k) = k−ω(1) for measure
one of f ’s, but this does not mean that E

f
[af (k)] is negligible (Lemma 6).

So, for average-based separation, the guarantee condition (S) is too weak—much
weaker than what is usually expected when constructing practical reductions. For these
reasons, the guarantee condition was strengthened [2] and the class of reductions re-
stricted in the following reasonable way:

Definition 6 (Poly-preserving reductions). A reduction of P to Q is poly-preserving
if the security guarantee (S) decreases the advantage by at most a polynomial amount,
i.e. there exists c ≥ 1 (independent of f , A and k) such that

ADVQ
k (S

f , f) ≥
[

ADVP
k (A

f , p(f))
]c

. (3)

7.2 Averaging-Based Separation for Poly-Preserving Reductions

For fully-black box reductions, (3) is in the form ADVQ
k (S

f,A, f) ≥
[
ADVP

k (A,G
f)
]c

.

For poly-preserving reductions, the averaged reduction condition (2) easily follows:

E
f,A←F

[
ADVQ

k (S
f,A, f)

]
≥ E

f,A←F

[(
ADVP

k (A,G
f)
)c]

≥
(

E
f,A←F

[
ADVP

k (A,G
f)
])c

,

where the second inequality is an application of the Jensen inequality. This implies that

if E
f,A←F

[
ADVP

k (A,G
f)
]

is non-negligible, then so is E
f,A←F

[
ADVQ

k (S
f,A, f)

]
.

Table 2 lists the separation conditions for all four types of reductions. Note that the
breakage condition for averaging-based separation can be somewhat weaker than in the
traditional extraction-based approach. We only have to assume that the success of A is
non-negligible. All proofs are given in Appendix B.

162 A. Buldas and M. Niitsoo

Table 2. Reduction types and separation conditions for averaging-based separation in the case of
poly-preserving black-box reductions

Type Reduction Condition Separation Condition

Full ∃
of
p ∃

pol
S∀f∀A : ∀

of
p ∀

pol
S∃F : E

f,A←F
[ADVk(A, p(f))] 	=k−ω(1)

bb ADVk(S
f,A, f)≥[ADVk(A

f, p(f))
]c

E
f,A←F

[
ADVk(S

f,A, f)
]
= k−ω(1)

Str ∃
of
p ∀

pol
A ∃

pol
S∀f : ∀

of
p ∃

pol
A ∀

pol
S∃F : E

f←F

[
ADVk(A

f, p(f))
] 	=k−ω(1)

s-bb ADVk(S
f, f) ≥ [

ADVk(A
f, p(f))

]c
E

f←F

[
ADVk(S

f , f)
]
= k−ω(1)

Weak ∃
of
p ∀

pol
A∀f ∃

pol
Sf : ∀

of
p ∃

pol
A∃F : E

f←F

[
ADVk(A

f , p(f))
] 	= k−ω(1)

s-bb ADVk(S
f
f ,f)≥

[
ADVk(A

f, p(f))
]c ∀

pol
S ∀

of
ϕ E

f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1)

Vari ∀f ∃
pol
Gf ∀

pol
A ∃

pol
Sf : ∀

of
ψ∃F :∀

pol
G ∃

pol
A E
f←F

[
ADVk(A

f , Gf
ψ(f))

]
	=k−ω(1)

s-bb ADVk(S
f
f , f)≥

[
ADVk(A

f , Gf
f)
]c

∀
pol
S ∀

of
ϕ E

f←F

[
ADVk(S

f
ϕ(f)

, f)
]
=k−ω(1)

8 Going beyond the Strong Semi Black-Box Boundary

The strong Semi Black-box separations are a clear boundary for oracle extraction based
approaches, as anything below that requires the use of countability arguments, which
fail in the non-uniform model. It therefore seems that the best hope of proving stronger
reductions would rest with the averaging-based approach. For this to succeed, however,
one would have to be able to account for oracle-dependent advice strings ϕ(F) being
available to the adversary construction. This is by not a trivial obstacle to overcome.

The most promising approach for doing so stems from the work of Unruh [11],
where they showed that under reasonable assumptions, the oracle could be switched
out with one fairly independent from the original without the adversary having a sig-
nificant chance of noticing the switch. A problem with his approach was that it only
applies to standard random oracles, which separation oracles rarely are. If this idea was
to be used, the result first needed to be generalized to work for other, less standard
oracles as well. This turned out to be possible as we managed to prove one of the con-
jectures presented in the original paper [11] pertaining to the fully general choice of
oracle distributions.

Theorem 1. Let F be any distribution of Oracles and let f ← F. We say that f is
consistent with a matching M = {x1 → y1, . . . , xm → ym} if f(xi) = yi for all
i ∈ {1, 2, . . . ,m}. Let ϕ(f) be an oracle function with an output of length p. Then
there is an oracle function S such that Sf is a matching of length m and the following
holds: For any probabilistic oracle Turing machine B that makes at most q queries to
its oracle, Δ(BF

ϕ(F);B
F/S
ϕ(F)) ≤

√
pq
2m , where F/S is an oracle sampled according to F

conditioned only on being consistent with SF (which is also a random variable).

We will generalize the proof for Theorem 2 of Unruh [11] to work for arbitrary oracle
distributions. The proof is quite similar to the original one, with only the notion of

Black-Box Separations and Their Adaptability to the Non-uniform Model 163

information J(M) gathered by an adaptive list M about the advice string z given a more
general definition. Since most of the proofs are completely analogous, we will only give
a detailed description of the parts that have to be changed. We will use the notion of
adapative lists from the original paper. To reiterate, a adaptive list is a Turing Machine
that takes as input a finite advice string z and then proceeds to make a number of oracle
queries, terminating in finite time, outputting all the oracle queries that it made along
with their results. It is assumed that the query responses are cached so that oracle is
never queried twice with the same input. It is further assumed that F is deterministic,
although this does not seem to be an essential assumption in our treatment. We will
define a TM G so that when given such an input, it will methodically query the oracle
on all the yet unqueried inputs.

For an adaptive list F, we will define the variable F o,z
k as the response to the k-th

oracle query made by G ◦ Fo(z) when run with the oracle o and input z. According
to the preceeding assumptions, F o,z

k is well defined for all k ≤ |Range|, o ∈ O and
z ∈ Z . Let FO,Z

k be the variable induced by Fk by choosing o ← O and z ← Z. For
convenience, we note Fk→l = Fk+1, . . . ,Fl and F∗l = F0→l.

Let the distribution of advice strings Z be dependent on the distribution of oracles O.
Let O′ stand for the distribution of oracles that is distributed identically to O but that is
independent from Z. Let O′/Sk denote the distribution O′ conditioned on agreeing with
O on all the queries FO,Z

∗k . The goal is then to show a bound on the statistical distance

Δ(FO,Z
∗k ,F

O′/Sk,Z
k→k+q ;FO,Z

∗(k+q)). We will use the Kullback-Leibler distance:

D(X||Y|Z) =
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x|Z = z]

Pr[Y = x|Z = z]

)
.

The following useful properties (Gibbs inequality, chain rule, and funcion applications
only decreasing the distance) are well known and easy to verify.

D(X||Y) ≥ 0 ,

D(X1, . . . ,Xk||Y1, . . . ,Yk) =

D(X1||X2) +D(X2||Y2|X1) + . . . D(Xk||Yk|X1, . . . ,Xk−1) ,

D(f(X)||f(Y)) ≤ D(X||Y) .

It is worth noting that for the chain rule,

D(X2||Y2|X1) =∑
x1∈X1

Pr[X1 = x1]
∑

x2∈X2

Pr[X = x2|X = x1] lg

(
Pr[X2 = x2|X1 = x1]

Pr[Y2 = x2|Y1 = x1]

)
,

the conditioning is actually over both the values of X1 and Y1. We define4 Jk(F) =

D(FO,Z
∗k ||FO′,Z

∗k |Z) and Jk→l(F) = Jl(F) − Jk(F) = D(FO,Z
k→l||FO′/Sk,Z

k→l |FO,Z
∗k ,Z).

We note that although we use a slightly different notation for J that makes the length

4 Introduction of Sk is due to the chain rule conditioning over both distibutions.

164 A. Buldas and M. Niitsoo

of the list k explicit, this is purely for syntactic convenience. As in the original, let
Jk = maxF Jk(F).

The proof in the original paper requires three properties from J(F). Two of them
(Jk(F) ≥ 0 and Jl(F) ≤ Jk→l(F) + Jk(F)) follow directly from the properties of
Kullback-Leibler distance. The third property Jk(F) ≤ H(Z) is just slightly trickier,
but follows trivially from the following lemma.

Lemma 7. Let X and Y be identically distributed. Additionally, let Z be variable in-
dependent from Y (but possibly related to X). In such a case, D(X||Y|Z) ≤ H(Z).

Proof.

D(X||Y|Z) =
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x|Z = z]

Pr[Y = x|Z = z]

)
=
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
Pr[X = x,Z = z]

Pr[Y = x] Pr[Z = z]

)
≤
∑
z∈Z

Pr[Z = z]
∑
x∈X

Pr[X = x|Z = z] lg

(
1

Pr[Z = z]

)
=
∑
z∈Z

Pr[Z = z] lg

(
1

Pr[Z = z]

)
= H(Z) ,

where the inequality is due to Pr[X=x,Z=z]
Pr[X=x] ≤1 and X,Y are identically distributed. ��

Corollary 1. Jk(F) ≤ H(Z).

Proof.

Jk(F) = D(FO,Z
∗k ||FO′,Z

∗k |Z) = D(f(O,Z)||f(O′,Z)|Z) ≤ D(O,Z||O′,Z|Z)
= D(O||O′|Z) ≤ H(Z) .

��
The only piece missing is to use D(X||Y|Z) for bounding Δ(X,Z;Y, Z). This is also
completely analogous to the proof in Unruh, as

Δ(X,Z;Y,Z)=
∑
z∈Z

Pr[Z = z]Δ(X;Y|Z = z)≤
∑
z∈Z

Pr[Z = z]

√
D(X||Y|Z = z)

2

≤
√

1

2

∑
z∈Z

Pr[Z = z]D(X||Y|Z = z) =

√
1

2
D(X||Y|Z) ,

where the first inequality is due to Kullback-Leibler and the second is an application
of Jensen’s inequality. All the other parts of the proof remain fairly unaltered, with a
few pieces (such as replacing G with ∇G) becoming obsolete due to independence
requirements being relaxed.

Black-Box Separations and Their Adaptability to the Non-uniform Model 165

This theorem basically allows one to formally replace a polynomial-length oracle-
dependent advice string with just fixing a super-polynomial number of responses to
oracle queries, with only negligible chance of the adversary behaving differently. This
fits in well with many of the already known proofs for separation results, which will
still work even when the number of queries is slightly super-polynomial just as long
as it is still negligible when compared with the full domain and range of the oracle
function. In such cases, one can then replace the original usually oracle extraction based
argumentation with the averaging-based argumentation to yield a stronger result that
holds also in the non-uniform model. For instance, this seems to be the case with the
work of Simon [10] where it was shown that collision-resistant hash functions cannot
be constructed based purely on one-way functions. As his argumentation still remains
valid when the adversary makes a super-polynomial number of queries, the result can
be generalized to the non-uniform model.

References

1. Buldas, A., Jürgenson, A., Niitsoo, M.: Efficiency bounds for adversary constructions in
black-box reductions. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594,
pp. 264–275. Springer, Heidelberg (2009)

2. Buldas, A., Laur, S., Niitsoo, M.: Oracle separation in the non-uniform model. In: Pieprzyk,
J., Zhang, F. (eds.) ProvSec 2009. LNCS, vol. 5848, pp. 230–244. Springer, Heidelberg
(2009)

3. Gennaro, R., Gertner, Y., Katz, J.: Lower bounds on the efficiency of encryption and digital
signature schemes. In: STOC 2003, pp. 417–425 (2003)

4. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic crypto-
graphic constructions. SIAM Journal on Computing 35, 217–246 (2006)

5. Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between
public key encryption and oblivious transfer. In: FOCS 2000, pp. 325–335 (2000)

6. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need
secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer,
Heidelberg (2004)

7. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations.
In: STOC 1989, pp. 44–61 (1989)

8. Kim, J.H., Simon, D.R., Tetali, P.: Limits on the efficiency of one-way permutation-based
hash functions. In: FOCS 1999, pp. 535–542 (1999)

9. Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryptographic primi-
tives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)

10. Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be based
on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
334–345. Springer, Heidelberg (1998)

11. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 205–223. Springer, Heidelberg (2007)

A Oracle Extraction Examples

Theorem 2. If ∀
pol

G ∃
pol

A ∀
pol

S∃F : so that (I) E
f←F

[
ADVk(A

f , Gf)
]
= 1 − k−ω(1) and

(II) E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there exist no strong semi black-box reductions.

166 A. Buldas and M. Niitsoo

Proof. Using the overwhelming average argument for (I) and the negligible average ar-
gument for (II), we imply that Pr

f←F

[
Af brGf

]
= 1 and Pr

f←F

[
Sf 	 brf] = 1, which

implies ∀
pol

G ∃
pol

A ∀
pol

S∃F : Pr
f←F

[
Af brGf ∧ Sf 	 brf] = 1 and hence from the prob-

abilistic argument: ∀
pol

G ∃
pol

A ∀
pol

S∃f : [Af brGf ∧ Sf 	 brf], which is the negation of

the strong semi black-box reduction condition.5 ��
Theorem 3. If ∀

pol

G ∃
pol

A∃F : so that (I) E
f←F

[
ADVk(A

f , Gf)
]
= 1 − k−ω(1) and (II)

∀
pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there exist no uniform weak semi b-b reductions.

Proof. The overwhelming average argument for (I) and the negligible average argu-
ment for (II) imply Pr

f←F

[
Af brGf

]
= 1 and ∀

pol

S : Pr
f←F

[
Sf 	 brf] = 1. By the

countability argument for S, we obtain Pr
f←F

[
∀
pol
S : Sf 	 brf

]
= 1, which implies

∀
pol

G ∃
pol

A∃F : Pr
f←F

[
Af brGf ∧ ∀

pol

S : Sf 	 brf
]
= 1, and we have the negation of

the weak semi black-box reduction: ∀
pol

G ∃
pol

A∃f ∀
pol

S :
[
Af brGf ∧ Sf 	 brf]. 6 ��

Theorem 4. If ∃F : so that (I) ∀
pol

G ∃
pol

A : E
f←F

[
ADVk(A

f , Gf)
]
= 1 − k−ω(1) and

(II) ∀
pol

S : E
f←F

[
ADVk(S

f , f)
]
= k−ω(1), there are no uniform variable semi b-b re-

ductions.

A proof was already presented by the steps s1-b3 in Section 6.

B Averaging Examples

Lemma 8. The existence of weak semi black-box reductions is equivalent to:

∃
of

p ∀
pol

A ∃
pol

S ∃
of

ϕ∀f : ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

where c ≥ 1 . (4)

Proof. Assume first that ∃
of

p ∀
pol

A∀f ∃
pol

Sf : ADVk(S
f
f , f) ≥ [ADVk(A

f , p(f))
]c

, i.e.

there exists a weak semi black-box reduction and prove (4). Let ϕ be an oracle function
so that ϕ(f) is a bit-representation of Sf . Let S be the universal f -oracle machine,
which when given as input a bit-representation ϕ(f) behaves exactly like Sf . This
means that ADVk(S

f
ϕ(f), f) = ADVk(S

f
f , f). Moreover, as such simulation is possible

with logarithmic overhead, it follows that Sϕ(f) is poly-time. As S and ϕ are the same
for all instances of f , the statement (4) follows.

From (4) by defining Sf := Sϕ(f), there exists p such that for all poly-time A and

for all f there is Sf , so that ADVk(S
f
f , f) = ADVk(S

f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

,
which proves the existence of weak semi black-box reduction. ��

5 No countability arguments were used.
6 As we used the countability argument for S, the result does not apply to the models where the

adversaries are allowed to be non-uniform.

Black-Box Separations and Their Adaptability to the Non-uniform Model 167

Theorem 5. If ∀
of

p ∃
pol

A∃F : so that (I) E
f←F

[
ADVk(A

f , p(f))
] 	= k−ω(1) and (II)

∀
pol

S ∀
of

ϕ E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1), there exist no weak semi b-b reductions.

Proof. By using (4), (I) and (II), we will derive a contradiction. Let p be as in (4).
By applying the assumption of the theorem to this p, we conclude that there exist a
poly-time oracle machine A and a distribution F with the properties (I) and (II). Now,
from (4) it follows that for thisA, there exist a poly-time oracle machine S and an oracle
functionϕ such that (*) ADVk(S

f
ϕ(f), f) ≥

[
ADVk(A

f , p(f))
]c

holds for all f . By (II),

we have (**) E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1). Finally, by averaging (*) and using the

Jensen’s inequality we have:

E
f←F

[
ADVk(S

f
ϕ(f), f)

]
≥ E

f←F

[
ADVk(A

f , p(f))c
]≥[E

f←F

[
ADVk(A

f , p(f))
]]c

,

which is a contradiction between (I) and (**). ��
Lemma 9. The existence of variable semi black-box reductions is equivalent to:

∃
of

ψ ∃
pol

P ∀
pol

A ∃
pol

S ∃
of

ϕ∀f : ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f ,Pf
ψ(f))
]O(1)

. (5)

Proof. Assume first that ∀f ∃
pol

Gf ∀
pol

A ∃
pol

Sf : ADVk(S
f
f , f) ≥

[
ADVk(A

f , Gf
f)
]c

, i.e.

there exists a variable semi black-box reduction, and prove (5). Let ψ be a mapping so
that ψ(f) is the bit-string representation ofGf . Let P be the universal f -oracle machine
so that Pψ(f) behaves identical to Gf . Hence, ADVk(A

f ,Pf
ψ(f)) = ADVk(A

f , Gf
f),

and due to the efficiency of simulation, Pψ(f) is poly-time. For everyA we define S and
ϕ like in Lemma 8. The statement (5) follows. ��
Theorem 6. If ∀ψ∃F : so that (I) ∀

pol

G ∃
pol

A E
f←F

[
ADVk(A

f , Gψ(f))
] 	= k−ω(1) and

(II) ∀
pol
S ∀

of
ϕ E

f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1), there exist no weak semi b-b reductions.

Proof. By using (5), (I) and (II), we derive a contradiction. Let ψ and P be as in (4). By
applying the assumption of the theorem to ψ, we conclude that a distribution F with the
properties (I) and (II). By applying (I) to P, we conclude that there exists A such that
(*) E

f←F

[
ADVk(A

f ,Pψ(f))
] 	= k−ω(1). From (5) it follows that there exist a poly-time

S and an oracle function ϕ so that (**) ADVk(S
f
ϕ(f), f) ≥

[
ADVk(A

f ,Pf
ψ(f))
]c

for all

f . By (II), we have (***) E
f←F

[
ADVk(S

f
ϕ(f), f)

]
= k−ω(1). Finally, by averaging (**)

and using the Jensen’s inequality, we have

E
f←F

[
ADVk(S

f
ϕ(f), f)

]
≥ E

f←F

[
ADVk(A

f ,Pf
ψ(f))

c
]
≥
[

E
f←F

[
ADVk(A

f ,Pf
ψ(f))
]]c

.

A contradiction between (*) and (***). ��

Attribute-Based Identification:

Definitions and Efficient Constructions�

Hiroaki Anada, Seiko Arita, Sari Handa, and Yosuke Iwabuchi

Graduate School of Information Security, Institute of Information Security, Japan
2-14-1 Tsuruya-Cho, Kanagawa-Ku, Yokohama-Shi, 221-0835, Japan

hiroaki.anada@gmail.com, {arita,mgs125502,mgs123101}@iisec.ac.jp

Abstract. We propose a notion of attribute-based identification
(ABID) in two flavors: prover-policy ABID (PP-ABID) and verifier-
policy ABID (VP-ABID). In a PP-ABID scheme, a prover has an au-
thorized access policy written as a boolean formula over attributes,
while each verifier maintains a set of attributes. The prover is accepted
when his access policy fits the verifier’s set of attributes. In a VP-
ABID scheme, a verifier maintains an access policy written as a boolean
formula over attributes, while each prover has a set of authorized at-
tributes. The prover is accepted when his set of attributes satisfies the
verifier’s access policy. Our design principle is first to construct key-
policy and ciphertext-policy attribute-based key encapsulation mecha-
nisms (KP-ABKEM and CP-ABKEM). Second, we convert KP-ABKEM
and CP-ABKEM into challenge-and-response PP-ABID and VP-ABID,
respectively, by encapsulation-and-decapsulation. There, we show that
KP-ABKEM and CP-ABKEM only have to be secure against chosen-
ciphertext attacks on one-wayness (OW-CCA secure) for the obtained
PP-ABID and VP-ABID to be secure against concurrent man-in-the-
middle attacks (cMiM secure). According to the design principle, we
construct concrete KP-ABKEM and CP-ABKEM with the OW-CCA
security by enhancing the KP-ABKEM of Ostrovsky, Sahai and Waters
and CP-ABKEM of Waters, respectively. Finally, we obtain concrete PP-
ABID and VP-ABID schemes that are proved to be selectively secure in
the standard model against cMiM attacks.

Keywords: access policy, attribute, identification, key encapsulation
mechanism.

1 Introduction

An identification (ID) scheme enables a prover to convince a verifier that the
prover certainly knows a secret key that corresponds to the matching public
key. For example, Σ-protocols [7] such as the Schnorr protocol [14,5] are widely
recognized. In these ID schemes, the public key to which the verifier refers limits
the corresponding secret key uniquely, and also, the corresponding prover.

� Supported by MEXT-Supported Program for the Strategic Research Foundation at
Private Universities, 2011-2013.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 168–186, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Attribute-Based Identification: Definitions and Efficient Constructions 169

In this paper, we will describe an attribute-based identification (ABID). In an
ABID scheme, each entity has credentials called attributes. On the other hand,
an access policy is written as a boolean formula over those attributes. Then,
a verifier can identify that a prover certainly belongs to a set of entities that
have authorized access policies that fit the verifier’s attributes, or, in the dual
flavor, a verifier can identify that a prover certainly belongs to a set of entities
that possess authorized attributes that satisfy the verifier’s access policy. Hence,
ABID schemes can be considered as an expansion of the usual ID schemes.

However, ABID schemes are not a mere expansion, but have useful applica-
tions beyond those of the usual ID schemes. For example, the following scenarios
of smart card systems motivate us to apply ABID.

Functional Tickets. Suppose that we are going to stay at a resort complex, a
ski resort, for instance. We search Web sites or brochures for information about
services: available dates, accommodation, ski lifts, restaurants in ski areas and
hot springs around the areas. For each service, we usually buy a ticket, paying
with money or using a credit card. However, acquiring many tickets and carrying
a wallet is inconvenient, and therefore, it would be more convenient if we could
gain access to these services by using only one smart card. In the smart card,
a service authority writes an access policy in terms of the service names that
we choose, for instance, [January 1 to 4, 2014] AND [[Hotel A] OR [Ski Lift
AND [Day OR Night]] OR [Lunch OR Beer] OR [Hot Spring X]]. A functional
ticket is a ticket embedded in a smart card that realizes an access policy as
a boolean formula over services, as in this scenario. Here, the access policy is
chosen according to our requirements.

Functional Gates. Suppose that we have to design a security gate system for
an office building in which different kinds of people work: employees of several
companies holding many different positions, security guards, food service staffs,
cleaning staffs and janitors. There are also many types of security gates to be
designed: building entrances, intelligent elevators to limit available floors, com-
pany gates, common refreshment areas and room doors for the above staffs. In
this case, one solution is to use smart cards and gates with sensors. That is,
an authority issues each person a smart card in which a set of attribute data is
written. Each gate decides whether to “pass” each person carrying a smart card
according to the gate’s access policy, for instance, [Year 2014] AND [[[Company
A] AND [Manager]] OR [Security Guard]]. A functional gate is a gate that main-
tains an access policy as a boolean formula over attributes of people, as in this
scenario. Here, the access policy is chosen according to the kind of people that
the gate should allow to pass.

1.1 Our Contributions

Bearing the above scenarios in mind, we propose a notion of attribute-based
identification (ABID) that has two flavors corresponding to the scenarios: prover-
policy ABID and verifier-policy ABID.

170 H. Anada et al.

Prover-Policy ABID. In a prover-policy ABID scheme (PP-ABID, for short),
a prover has his own authorized access policy, while each verifier maintains its
attributes. Here, the access policy is described over the verifier’s attributes. Send-
ing his access policy, each prover queries an authority for his secret key. Then,
using this secret key, each prover can convince the verifier that his access pol-
icy fits the verifier’s attributes. Our PP-ABID defined in this way realizes a
functional ticket system.

Verifier-Policy ABID. In a verifier-policy ABID scheme (VP-ABID, for short),
a verifier maintains its access policy, while each prover has his own authorized at-
tributes. Here, the access policy is described over the prover’s attributes. Sending
his attributes, each prover queries an authority for his secret key. Then, using this
secret key, each prover convinces the verifier that his attributes satisfy the verifier’s
access policy. Our VP-ABID defined in this way realizes a functional gate system.

Attack and Security Analysis. An adversary’s objective is impersonation:
giving a target set of attributes (or, a target access policy) to a verifier, the
adversary tries to make the verifier accept him.

First, to reflect a collusion attack (that is, an attack launched by collecting
secret keys that satisfy a condition), we consider an attack model in which an
adversary issues key-extraction queries, as is the case for attribute-based encryp-
tions [13,15]. The condition is that the adversary cannot collect any secret key
whose intrinsic access policy fits the target set of attributes (or, whose intrinsic
set of attributes satisfies the target access policy).

Our main objective is to define a model of concurrent man-in-the-middle at-
tack (cMiM attack) in the setting of ABID. “Concurrent” means that an adver-
sary can invoke provers that have different secret keys corresponding to different
access policies (or, different sets of attributes). The adversary interacts with these
provers in an arbitrarily interleaved order of messages. Then, interacting with a
verifier on a target set of attributes (or, on a target access policy, respectively)
the adversary tries to impersonate a prover. The concurrent attack modeled in
this way is a real threat, especially to smart card systems. On the other hand,
“man-in-the-middle (MiM)” means that an adversary stands between a prover
and a verifier simultaneously. Typically, the adversary first receives a message
from the verifier, and then, the adversary begins to interact with the prover adap-
tively to the verifier’s message. The MiM attack and the cMiM attack modeled
in this way are real threats, especially to network applications.

As is the case for usual ID schemes, reset attacks should be considered. In a
reset attack, an adversary aborts an interaction at any point, and then rewinds
the interaction back to any other point to start the interaction again. At that
re-starting point, the adversary is allowed to change messages as long as the
interaction remains valid (as captured by the word “reset”). Such a reset attack
is a strong threat, not only to smart card systems [4] (including the functional
tickets and functional gates described above) but also to virtual machine services
in cloud computing [17]. As our contribution, an ABID constructed using our

Attribute-Based Identification: Definitions and Efficient Constructions 171

generic conversion becomes secure against the reset attacks in both senses of
prover-resettable and verifier-resettable [4].

It is desirable that a verifier learns nothing about a prover more than that
he belongs to the set of entities that have access policies fitting the verifier’s
attributes (or, belongs to the set of entities that possess attributes satisfying
the verifier’s access policy). In fact, by this property (anonymity), the prover’s
privacy is protected when using a functional ticket, as opposed to using a credit
card the track of which is recorded. As our contribution, our concrete ABID in
Section 5 possesses this anonymity.

Design Principle. First, we construct key-policy and ciphertext-policy
attribute-based key encapsulation mechanisms (KP-ABKEM and CP-ABKEM
[13,15]). Second, we convert the KP-ABKEM and CP-ABKEM into challenge-
and-response PP-ABID and VP-ABID, respectively, by encapsulation-and-
decapsulation. There, we show that KP-ABKEM and CP-ABKEM only have
to be secure against chosen-ciphertext attacks on one-wayness (OW-CCA se-
cure) for the obtained PP-ABID and VP-ABID to be secure against cMiM at-
tacks (cMiM secure). We stress that the security of indistinguishability against
chosen-ciphertext attacks (the IND-CCA security) is excessive, and the OW-
CCA security is enough for constructing a cMiM secure ABID.

Concrete Constructions. We construct KP-ABKEM and CP-ABKEM with
the OW-CCA security from the KP-ABKEM of Ostrovsky, Sahai and Waters
[13] and CP-ABKEM of Waters [15]. Their KEMs are secure in the indistin-
guishability game of chosen-plaintext attack (IND-CPA secure). Our strategy is
to apply the algebraic trick of Boneh and Boyen [3] and Kiltz [11] to attain CCA
security. Then our generic conversions yield concrete PP-ABID and VP-ABID.

New Number Theoretic Assumptions. We will introduce the Computa-
tional Bilinear Diffie-Hellman Assumption with Gap on Target Group and the
Computational q-Parallel Bilinear Diffie-Hellman Exponent Assumption with
Gap on Target Group. These assumptions are reasonable, for example, for the
bilinear map of a pairing on a elliptic curve. We need these assumptions for
security proofs of concrete constructions.

1.2 Related Works

Anonymous Deniable Predicate Authentication. First, we should refer
to the work of Yamada et al. [16]. Our generic construction of ABID can be
considered as a special case of their predicate authentication; however, it differs
in at least two points. The first point is that our objective is to provide a simple,
fast ABID. In contrast, Yamada et al.’s objective is to apply their verifiable
predicate encryption to yield an anonymous deniable message authentication.
In fact, we simply consider a 2-round challenge-and-response ABID, whereas
they proposed a 6-round protocol for deniability. The second point is that we
provide more efficient concrete ABID by using the algebraic trick ([3,11]). In
contrast, they used their generic transformation which causes a longer secret key,

172 H. Anada et al.

a longer ciphertext and more computational costs for encryption and decryption
than ours, because a verification key of a one-time signature is involved in their
generic transformation.

Identification Scheme from KEM. Anada and Arita [1] proposed a design
principle of obtaining a cMiM secure ID scheme by constructing KEM. Their
concrete ID scheme is more efficient than known Σ-protocol-based cMiM secure
ID schemes ([9]). Our scheme can be seen as an attribute-based version of theirs.

1.3 Organization of the Paper

In Section 2, we survey the required terms. In Section 3, we define the notions
of PP-ABID and VP-ABID, cMiM attacks and security against it. In Section 4,
we provide generic conversions from KP-ABKEM to PP-ABID and from CP-
ABKEM to VP-ABID. In Section 5, we construct concrete KP-ABKEM and
CP-ABKEM. Finally, we obtain concrete PP-ABID and VP-ABID. In Section
6, we present the conclusions of our study. Because of space limitation, the case
of PP-ABID is described in the main text and the case of VP-ABID is only
shortly described in the Appendix.

2 Preliminaries

The security parameter is denoted by λ. A prime of bit length λ is denoted by
p. A multiplicative cyclic group of order p is denoted by G. The ring of the
exponent domain of G, which consists of integers from 0 to p − 1 with modulo
p operation, is denoted by Zp. When an algorithm A with input a outputs z,
we denote it as z ← A(a). When A with input a and B with input b interact
with each other and B outputs z, we denote it as z ← 〈A(a), B(b)〉. When A has
oracle-access to O, we denote it as AO. When A has concurrent oracle-access to
n oracles O1, . . . ,On, we denote it as AOi|ni=1 . Here “concurrent” means that A
accesses to oracles in arbitrarily interleaved order of messages. A probability of
an event E is denoted by Pr[E]. A probability of an event E on condition that
events E1, . . . ,Em occur in this order is denoted as Pr[E1; · · · ; Em : E].

2.1 Access Structure

Let U = {χ1, . . . , χu} be an attribute universe, or simply set U = {1, . . . , u}.
We must distinguish two cases: the case that U is small (i.e. |U| = u is bounded
by some polynomial in λ) and the case that U is large (i.e. u is not necessarily
bounded). We assume the small case unless we state the large case explicitly. An
access structure, which reflects a given access policy, is defined as a collection A
of non-empty subsets of U . That is, A ⊂ 2U\{φ}. An access structure A is called
monotone if for any B ∈ A and B ⊂ C, C ∈ A holds. We will consider in this
paper only monotone access structures.

Attribute-Based Identification: Definitions and Efficient Constructions 173

2.2 Linear Secret-Sharing Scheme

A secret-sharing scheme Π over a set of parties P is called a linear secret-sharing
scheme (LSSS) over Zp ([2]), if Π satisfies the following conditions.

1. The shares for each party form a vector over Zp

2. There exists a matrix M called the share-generating matrix for Π , of size
l × n, and a function ρ which maps each row index i of M to a party P ,
ρ : {1, ..., l} → P .

To make shares for a secret s ∈ Zp, we first choose n − 1 random values
v2, . . . , vn ∈ Zp and form a vector v = (s, v2, . . . , vn). For i = 1 to l, we cal-
culate each share λi = v ·Mi, where Mi denotes the i-th row vector of M and ·
denotes the formal inner product. The share λi belongs to the party ρ(i).

Looking at P as an attribute universe U , Π determines an access structure A
as (M,ρ) ([13,15]). Suppose that an attribute set S ⊂ U satisfies A (S ∈ A) and
put IS = ρ−1(S) ⊂ {1, . . . , l}. Then, there exists a set of constants {ωi ∈ Zp; i ∈
IS} called linear reconstruction constants ([2]) that satisfies

∑
i∈IS

ωiλi = s.
These constants {ωi}i∈IS can be computed in time polynomial in the size of
M . We denote the algorithm by Recon(IS ,M). If S does not satisfy A (S 	∈
A), then no such constants {ωi}i∈IS exist, but instead, there is a vector w =
(w1, . . . , wn) ∈ Zn

p such that w1 = 1 and w ·Mi = 0 for all i ∈ IS . w also can be
computed in time polynomial in the size of M ([15]).

2.3 Key-Policy Attribute-Based KEM

Scheme. A key-policy ABKEM, KP-ABKEM, consists of four probabilistic poly-
nomial time (PPT, for short) algorithms (Setup, KeyGen, Encap, Decap).

Setup(λ,U) → (PK,MSK). Setup takes as input the security parameter λ
and the attribute universe U . It returns a public key PK and a master secret key
MSK.

KeyGen(PK,MSK,A) → SKA. A key generation algorithm KeyGen takes as
input the public key PK, the master secret key MSK and an access structure A.
It returns a secret key SKA that corresponds to A.

Encap(PK, S) → (κ, ψ). Encap takes as input the public key PK and an at-
tribute set S. It returns a random KEM key κ and its encapsulation ψ (we
also call it a ciphertext). We denote the set of all possible output (κ, ψ) of
Encap(PK, S) by [Encap(PK, S)]. If (κ̃, ψ̃) ∈ [Encap(PK, S)], then (κ̃, ψ̃) is
called consistent and otherwise, inconsistent.

Decap(PK,SKA, ψ) → κ̂. Decap takes as input the public key PK, an encap-
sulation ψ and a secret key SKA. It returns a decapsulation result κ̂ of ψ under
SKA. We demand correctness of KP-ABKEM that for any λ and U , and if S ∈ A,
then Pr[(PK,MSK) ← Setup(λ,U); SKA ← KeyGen(PK,MSK,A); (κ, ψ) ←
Encap(PK, S); κ̂ ← Decap(PK, SKA, ψ) : κ = κ̂] = 1.

174 H. Anada et al.

Exprmtow-cca
A,KP-ABKEM(λ,U): //Adaptive S∗ Exprmtow-sel-cca

A,KP-ABKEM(λ,U): //Selective S∗

(PK,MSK)← Setup(λ,U) (PK,MSK)← Setup(λ,U)
S∗ ← AKG(PK,MSK,·),DEC(PK,SK·,·)(PK,U) S∗ ← A(λ,U)
(κ∗, ψ∗)← Encap(PK, S∗) (κ∗, ψ∗)← Encap(PK, S∗)
κ̂∗ ← AKG(PK,MSK,·),DEC(PK,SK·,·)(ψ∗) κ̂∗ ← AKG(PK,MSK,·),DEC(PK,SK·,·)(PK, ψ∗)
If κ̂∗ = κ∗ Return Win else Return Lose If κ̂∗ = κ∗ Return Win else Return Lose

Fig. 1. The experiment of an adversary A that executes a chosen-ciphertext attack on
one-wayness of KP-ABKEM. The left side: the case of adaptive S∗; the right side: the case
of selective S∗.

Chosen-Ciphertext Attack on One-Wayness of KP-ABKEM and Se-
curity. The following experiment Exprmtow-cca

A,KP-ABKEM(λ,U) of an adversary A
defines the game of chosen-ciphertext attack on one-wayness of KP-ABKEM (the
OW-CCA game).

In the experiment, A issues two types of queries. One is key-extraction queries
to the key-generation oracle KG. Giving an attribute set Ai, A queries KG(PK,
MSK, ·) for the secret key SKAi . Another is decapsulation queries to the decapsu-
lation oracleDEC. Giving a pair (Aj , ψj) of an attribute set and an encapsulation,
A queries DEC(PK, SK·, ·) for the decapsulation result κ̂j . Here an attribute set
Sj , which is used to generate a ciphertext, is included in ψj . When Sj 	∈ Aj ,
κ̂j =⊥ is replied to A.

The attribute set S∗ declared by A is called a target attribute set. The en-
capsulation ψ∗ is called a challenge ciphertext. Two restrictions are imposed
on A concerning S∗ and ψ∗. In key-extraction queries, each attribute set Ai

must satisfy S∗ /∈ Ai. In decapsulation queries, each pair (Aj , ψj) must satisfy
S∗ 	∈ Aj ∨ ψj 	= ψ∗. Both types of queries are at most qk and qd times in total,
respectively, which are bounded by a polynomial in λ.

The advantage of A over KP-ABKEM in the OW-CCA game is defined as 1

Advow-cca
A,KP-ABKEM(λ)

def
= Pr[Exprmtow-cca

A,KP-ABKEM(λ,U) returns Win].

KP-ABKEM is called secure against chosen-ciphertext attacks on one-wayness if,
for any PPT A and for any U , Advow-cca

A,KP-ABKEM(λ) is negligible in λ.

Selective Security. In the selective game on a target attribute set (OW-sel-
CCA game), A declares S∗ before A receives PK. Exprmtow-sel-cca

A,KP-ABKEM(λ,U) defines
the selective game. The advantage in the OW-sel-CCA game is defined as

Advow-sel-cca
A,KP-ABKEM(λ)

def
= Pr[Exprmtow-sel-cca

A,KP-ABKEM(λ,U) returns Win].

KP-ABKEM is called selectively secure against chosen-ciphertext attacks on one-
wayness if, for any PPT A and for any U , Advow-sel-cca

A,KP-ABKEM(λ) is negligible in λ.

1 Although we follow the convention, we should write the advantage as a function of
λ and u: Advow-cca

A,KP-ABKEM(λ, u), where u is the size of the attribute universe U .

Attribute-Based Identification: Definitions and Efficient Constructions 175

2.4 Bilinear Map

Let G and GT be two multiplicative cyclic groups of prime order p. We call G
a source group and GT a target group. Let g be a generator of G and e be a
bilinear map, e : G×G → GT . The map e satisfies

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 	= idGT (: the identity element of the group GT).

Groups and a bilinear map are generated by a PPT algorithm Grp on input λ:
(p,G,GT , g, e) ← Grp(λ). We assume that the group operation in G and GT

and the bilinear map e : G×G → GT are computable in time polynomial in λ.

2.5 Computational Bilinear Diffie-Hellman Assumption with Gap
on Target Group

We introduce in this paper a new number theoretic assumption, which we call the
Computational Bilinear Diffie-Hellman Assumption with Gap on Target Group.
Let e : G × G → GT be a bilinear map. Let a, b, c ∈ Zp, a, b, c 	= 0, be chosen
at random. Put A := ga, B := gb, C := gc. Then our new assumption says
it is at most with a negligible probability in λ that, for any PPT algorithm
B given input (g,A,B,C), to output Z = e(g, g)abc ∈ GT , even with the aid
of the decisional Diffie-Hellman oracle for GT : DDHGT (·, ·, ·, ·). Here a tuple
(g, gz1 , gz2 , gz3) ∈ G4

T (g := e(g, g)) is called a Diffie-Hellman tuple (in GT)
if z1z2 = z3. The oracle DDHGT returns True or False according to whether
an input tuple is a Diffie-Hellman tuple or not, respectively. The probability for
B to output e(g, g)abc is denoted as Advc-bdh-gap

B,(e,G,GT)(λ) (the advantage of B in the

computational BDH game with gap on GT). Note that the above assumption is
different from the Gap Bilinear Diffie-Hellman Assumption [6].

2.6 Target Collision Resistant Hash Functions

Target collision resistant (TCR) hash functions [12] are treated as a family
Hfamλ = {Hμ}μ∈HKeyλ . The advantage Advtcr

CF ,Hfamλ
(λ) of a PPT algorithm

CF over Hfamλ is defined as the success probability to find a target collision.

3 Attribute-Based Identification

In this section, we define a notion of prover-policy attribute-based identification
(PP-ABID), a concurrent man-in-the-middle attack on PP-ABID and security
against it. The case of verifier-policy ABID is described in Appendix A in a dual
manner to PP-ABID on an access structure A and an attribute set S.

3.1 Prover-Policy ABID

Scheme. PP-ABID consists of four PPT algorithms (Setup, KeyGen, P, V).

176 H. Anada et al.

Setup(λ,U) → (PK,MSK). Setup takes as input the security parameter λ and
the attribute universe U . It outputs a public key PK and a master secret key
MSK.

KeyGen(PK,MSK,A) → SKA. A key-generation algorithm KeyGen takes as
input the public key PK, the master secret key MSK and an access structure A.
It outputs a secret key SKA corresponding to A.

P(PK,SKA) and V(PK, S). P and V are interactive algorithms called a prover
and a verifier, respectively. P takes as input the public key PK and the secret
key SKA. Here the secret key SKA is given to P by an authority that runs
KeyGen(PK,MSK,A). V takes as input the public key PK and an attribute set
S. P is provided V’s attribute set S by the first round. P and V interact with
each other for some, at most constant rounds. Then, V finally returns its decision
bit b. b = 1 means that V accepts P in the sense P has a secret key SKA such that
S satisfies A. b = 0 means that V rejects P. We demand correctness of PP-ABID
that for any λ and U , and if S ∈ A, then Pr[(PK,MSK) ← Setup(λ,U); SKA ←
KeyGen(PK,MSK,A); b ← 〈P(PK, SKA),V(PK, S)〉 : b = 1] = 1.

3.2 Concurrent Man-in-the-Middle Attack on PP-ABID and
Security

An adversary A’s objective is impersonation. A tries to make a verifier V accept
with a target attribute set S∗. The following experiment Exprmtcmim

A,PP-ABID(λ,U)
of an adversary A defines the game of concurrent man-in-the-middle attack
(cMiM attack, for short) on PP-ABID.

Exprmtcmim
A,PP-ABID(λ,U): //Adaptive S∗ Exprmtsel-cmim

A,PP-ABID(λ,U): //Seletive S∗

(PK,MSK)← Setup(λ,U) (PK,MSK)← Setup(λ,U)
S∗ ← AKG(PK,MSK,·),Pi(PK,SKAi

)|q
′
p

i=1(PK,U) S∗ ← A(λ,U)
b← 〈AKG(PK,MSK,·),Pi(PK,SKAi

)|qpi=1 , b← 〈AKG(PK,MSK,·),Pi(PK,SKAi
)|qpi=1(PK),

V(PK, S∗)〉 V(PK, S∗)〉
If b = 1 Return Win else Return Lose If b = 1 Return Win else Return Lose

Fig. 2. The experiment of an adversary A that executes a cMiM attack on PP-ABID.
The left side: the case of adaptive S∗; the right side: the case of selective S∗.

In the experiment, A issues key-extraction queries to the key-generation or-
acle KG. Giving an access structure Ai, A queries KG(PK,MSK, ·) for the se-
cret key SKAi . In addition, the adversary A invokes provers Pj(PK, SKAj) (j =
1, . . . , q′p, . . . , qp) by giving an access structure Aj of A’s choice. Acting as a
verifier with an attribute set Sj , A interacts with each Pj .

The attribute set S∗ declared by A is called a target attribute set. Two re-
strictions are imposed on A concerning S∗. In key-extraction queries, each access
structure Ai must satisfy S∗ /∈ Ai. In interactions with each prover, every tran-
script of messages of a whole interaction with a prover Pj(PK, SKAj) must not be

Attribute-Based Identification: Definitions and Efficient Constructions 177

equal to a transcript of messages of a whole interaction with a verifier V(PK, S∗)
(that is, a mere relay of messages is prohibited in the game of man-in-the-middle
attack), or, S∗ /∈ Aj . The number of key-extraction queries and the number of
invoked provers are at most qk and qp in total, respectively, which are bounded
by a polynomial in λ.

The advantage of A over PP-ABID in the game of cMiM attack is defined as

Advcmim
A,PP-ABID(λ)

def
= Pr[Exprmtcmim

A,PP-ABID(λ,U) returns Win].

PP-ABID is called secure against cMiM attacks if, for any PPT A and for any
attribute universe U , Advcmim

A,PP-ABID(λ) is negligible in λ.

Selective Security. In the selective game on a target attribute set (the game of
sel-cMiM attack), A declares S∗ before A receives PK. Exprmtsel-cmim

A,PP-ABID(λ,U)
defines the selective game. The advantage in the game of sel-cMiM attack is
defined as

Advsel-cmim
A,PP-ABID(λ)

def
= Pr[Exprmtsel-cmim

A,PP-ABID(λ,U) returns Win].

PP-ABID is called selectively secure against cMiM attacks if, for any PPT A and
for any U , Advsel-cmim

A,PP-ABID(λ) is negligible in λ.

4 Generic Conversions from ABKEM to ABID

In this section, we provide a generic conversion from a key-policy ABKEM to
a prover-policy ABID. The conversion yields a challenge-and-response protocol
of encapsulation-and-decapsulation. We show that KP-ABKEM only has to be
OW-CCA secure for the obtained PP-ABID to be cMiM secure. A generic con-
version from a ciphertext-policy ABKEM to a verifier-policy ABID is provided
in a similar way (in the full version).

4.1 Generic Conversion from KP-ABKEM to PP-ABID

Let KP-ABKEM= (KEM.Setup, KEM.KeyGen, KEM.Encap, KEM.Decap) be a
KP-ABKEM. Then PP-ABID= (Setup, KeyGen, Encap, Decap) is obtained as
a challenge-and-response protocol of encapsulation-and-decapsulation. Figure 3
shows this conversion. Setup of PP-ABID uses KEM.Setup. KeyGen of PP-ABID
uses KEM.KeyGen. The verifier V, given a public key PK and an attribute set S
as input, invokes the encapsulation algorithm KEM.Encap on (PK, S). V gets a
return (κ, ψ). V sends the encapsulation ψ to the prover P as a challenge message.
P , given a public key PK and the secret key SKA as input, and receiving ψ as a
message, invokes the decapsulation algorithm KEM.Decap on (PK, SKA, ψ). P
gets a return κ̂. P sends the decapsulation κ̂ to V as a response message. Finally,
V, receiving κ̂ as a message, verifies whether κ̂ is equal to κ. If so, then V returns
1 and otherwise, 0.

178 H. Anada et al.

Setup(λ,U): KeyGen(PK,MSK,A):
(PK,MSK)← KEM.Setup(λ,U) SKA ← KEM.KeyGen(PK,MSK,A)
Return (PK,MSK) Return (SKA)

P(PK, SKA): V(PK, S):
(κ, ψ)← KEM.Encap(PK, S)

Receiving ψ as input:
ψ←− Send ψ to P

κ̂← KEM.Decap(PK,SKA, ψ)

Send κ̂ to V
κ̂−→ Receiving κ̂ as input:

If κ̂ = κ then b := 1 else b := 0, Return b

Fig. 3. A generic conversion from KP-ABKEM to PP-ABID

Theorem 1. If KP-ABKEM is OW-CCA secure, then the derived PP-ABID is cMiM
secure. More precisely, for any given PPT adversary A on PP-ABID in the game
of cMiM attack, and for any given attribute universe U , there exists a PPT ad-
versary B on KP-ABKEM in the OW-CCA game that satisfies the following tight
reduction.

Advcmim
A,PP-ABID(λ) � Advow-cca

B,KP-ABKEM(λ).

Proof. Employing any given PPT cMiM adversary A on PP-ABID in Theorem 1,
we construct a PPT OW-CCA adversary B on KP-ABKEM. The left side of Figure
4 shows the construction.

On input (PK,U), B initializes its inner state and invokes A on (PK,U).
When A issues a key-extraction query for A, B queries its key-generation oracle
KG(PK,MSK, ·) for the answer for A and gets a reply SKA. B reply SKA to A.
When A sends a challenge message (A, ψ) to a prover P, B queries its decapsula-
tion oracle DEC(PK, SK·, ·) for the answer for (A, ψ) and gets a reply κ̂. B reply
κ̂ to A. When A outputs a target attribute set S∗, B output S∗ as its target at-
tribute set. Then B receives a challenge ciphertext ψ∗ from its challenger. When
A queries V for a challenge message, B sends ψ∗ to A as a challenge message.
When A sends the response message κ̂∗ to V, B returns κ̂∗ as its guess.

The view of A in B is the same as the real view of A. If A wins, then B wins.
Hence the inequality in Theorem 1 holds. �

4.2 Discussion

Selective Security. The right side of Figure 4 shows the construction of B in
the game of selective S∗. The inequality of advantages becomes

Advsel-cmim
A,PP-ABID(λ) � Advow-sel-cca

B,KP-ABKEM(λ).

Resettable Security. We note that the derived PP-ABID is prover-resettable in
the sense in [4] because underlying KP-ABKEM has the OW-CCA security. PP-ABID
is also verifier-resettable because PP-ABID consists of two rounds interaction.

Attribute-Based Identification: Definitions and Efficient Constructions 179

B(PK,U): //Adaptive S∗ B(PK,U): //Selective S∗

//Set up //Set up
Initialize inner state, Invoke A on (PK,U) Initialize inner state, Invoke A on (λ,U)

//Answering A’s Queries //Answering A’s Queries
When A issues a key-ext. query for A S∗ ← A(λ,U)

SKA ← KG(PK,MSK,A) Output S∗ as its target attribute set
Reply SKA to A Receive ψ∗ as a chal. ciphertext

When A sends a chal. msg. (A, ψ) to P Give PK to A
κ̂← DEC(PK,SKA, ψ) When A issues a key-ext query for A
Send κ̂ to A as the res. msg. SKA ← KG(PK,MSK,A)

When A outputs a target attribute set S∗ When A sends a chal. msg. (A, ψ) to P
Output S∗ as its target attribute set κ̂← DEC(PK,SKA, ψ)
Receive ψ∗ as a chal. ciphertext Send κ̂ to A as the res. msg.

When A queries V for a chal. msg. When A queries V for a chal. msg.
Send ψ∗ to A as a chal. msg. Send ψ∗ to A as a chal. msg.

When A sends the res. msg. κ̂∗ to V When A sends the res. msg. κ̂∗ to V
Return κ̂∗ Return κ̂∗

Fig. 4. A one-way CCA adversary B on KP-ABKEM that employs a given cMiM adversary
A on the PP-ABID. The left side: the case of adaptive S∗; the right side: the case of
selective S∗.

5 Concrete Constructions of ABKEM

In this section, we construct a concrete KP-ABKEM that is OW-sel-CCA secure.
Using the algebraic trick of Boneh and Boyen [3] and Kiltz [11], we build an en-
hanced version,KP-ABKEM, of theKP-ABKEMofOstrovsky, Sahai andWaters [13]
(OSW, for short). Then we obtain our concrete PP-ABID by applying the generic
conversion. (Our concrete CP-ABKEM and VP-ABID is described in Appendix C).

5.1 Our Enhanced OSW KP-ABKEM and PP-ABID

The construction of our concrete KP-ABKEM is described in Figure 5. We only ex-
plain the enhanced part from the original [13]. We indicate the part of the original
scheme by the index: cpa. In Setup, a second component α2 ∈ Zp is added to the
master secret key MSKcpa. Also, the corresponding Y2 := e(g, g)α2b and a hash
key η is added to the public key PKcpa. In KeyGen, components in SKcpa,A are
doubled reflecting the index 2 (but randomness is chosen independently of index
1). So computational cost for KeyGen is doubled. In Encap, a temporal KEM
key κ2 is generated in the same way as κ1. Next, a hash value τ ← Hη(ψcpa)
and a check sum d := κτ1κ2 are computed. Then (κ, ψ) := (κ1, (ψcpa, d)) is a
new KEM key and encapsulation. In Decap, first, Decapcpa is executed twice
for index 1 and 2 to yield κ̂1 and κ̂2. Then, whether ψcpa is a consistent cipher-
text and (e(g, g), Y τ

1 Y2, e(C
′, g), d) is a Diffie-Hellman tuple is verified. These

two conditions are verified by one equation κ̂1
τ κ̂2 = d, though the verification

equation overlooks inconsistent ψcpa only with a negligible probability. Finally,
κ̂ := κ̂1 is returned only when the verification equation holds.

180 H. Anada et al.

Setup(λ,U): KeyGen(PK,MSK,A = (M,ρ)):
(p,G,GT , g, e)← Grp(λ) For k = 1, 2: For j = 2 to n: vk,j ← Zp

For x = 1 to u: Tx ← G For k = 1, 2: vk := (αk, vk,2, . . . , vk,n)

b← Zp, B := gb, α1, α2 ← Zp For i = 1 to l: λk,i := vk ·Mi

Y1 := e(g, g)α1b, Y2 := e(g, g)α2b For k = 1, 2: For i = 1 to l:

η ← HKeyλ rk,i ← Zp, Kk,i := Bλk,iT
rk,i

ρ(i) ,

PK := (g, T1, . . . , Tu, B, Y1, Y2, η) Lk,i := grk,i

MSK := (α1, α2) SKA := (((Kk,i, Lk,i); i = 1, . . . , l); k = 1, 2)
Return (PK,MSK) Return SKA

Encap(PK, S): Decap(PK,SKA, ψ):
s← Zp, C

′ = gs, For x ∈ S : Cx = T s
x If S /∈ A Return κ̂ :=⊥

ψcpa := (S,C′, (Cx;x ∈ S)) else IS := ρ−1(S)
τ ← Hη(ψcpa) {ωi; i ∈ IS} ← Recon(IS,M)
For k = 1, 2: κk := Y s

k ; d := κτ
1κ2 For k = 1, 2:

(κ, ψ) := (κ1, (ψcpa, d)) κ̂k :=
∏

i∈IS
(e(Kk,i, C

′)/e(Lk,i, Cρ(i)))
ωi

Return (κ, ψ) τ ← Hη(ψcpa)
If κ̂1

τ κ̂2 	= d then κ̂ :=⊥ else κ̂ := κ̂1

Return κ̂

Fig. 5. Our concrete KP-ABKEM (an enhanced OSW KP-ABKEM)

Theorem 2. If the computational bilinear Diffie-Hellman assumption with gap
on target group holds, and an employed hash function family has target collision
resistance, then our KP-ABKEM is OW-sel-CCA secure. More precisely, for any
given PPT adversary A on KP-ABKEM in the OW-sel-CCA game and for any
given attribute universe U , there exist a PPT adversary B on (e,G,GT) in the
computational BDH game with gap on GT and a PPT target collision finder CF
on Hfamλ that satisfy the following tight reduction.

Advow-sel-cca
A,KP-ABKEM(λ) � Advc-bdh-gap

B,(e,G,GT)(λ) +Advtcr
CF ,Hfamλ

(λ).

5.2 Proof for Theorem 2

Using any given OW-sel-CCA adversary A as a subroutine, we construct a PPT
solver B of the problem of the computational bilinear Diffie-Hellman assumption
with gap on target group, as follows.

Set Up. B is given a random instance of the problem, g,A = ga, B = gb, C =
gc, as input. B initializes its inner state. B chooses an attribute universe U =
{1, . . . , u} at random. B invokes A on input (λ,U).

In return, B receives a target attribute set S∗ ∈ U from A, For each x =
1, . . . , u, B puts each component Tx of PK as

If x ∈ S∗ then tx ← Zp, Tx := gtx else θx, ηx ← Zp s.t. θx 	= 0, Tx := Bθxgηx .

Here, in else case, we have implicitly set tx := bθx + ηx. B sets Y1 := e(A,B) =
e(g, g)ab and PKcpa := (g, T1, . . . , Tu, B, Y1). Here we have implicitly set α1 := a.

Challenge ciphertext are computed as follows (we implicitly set s∗ = c):

Attribute-Based Identification: Definitions and Efficient Constructions 181

ψ∗
cpa := (S∗, C′∗ = gs

∗
:= C, (C∗

x := Ctx , x ∈ S∗)).

Then a public key PK and a whole challenge ciphertext ψ∗ is computed as

η ← HKeyλ, τ
∗ ← Hη(ψ

∗
cpa), μ← Zp, Y2 := e(B, g)μ/Y τ∗

1 ,

PK := (PKcpa, Y2, η), d
∗ := e(B,C′∗)μ, ψ∗ := (ψ∗

cpa, d
∗).

Here we have an implicit relation α2b = bμ− α1bτ
∗, b 	= 0. That is,

α2 = μ− α1τ
∗. (1)

B inputs (PK, ψ∗) to A.

Answering A’s Queries. (1) Key-Extraction Queries. When A issues a
key-extraction query for an attribute set A = (M,ρ), where M is of size l × n,
B has to reply a corresponding secret key SKA.

B computes a vector w = (w1, . . . , wn) ∈ Zn
p such that w1 = 1 and for all

i ∈ ρ−1(S∗),w · Mi = 0. Note here that S∗ /∈ A, so such w surely exists. B
chooses random values u1,1, . . . , u1,n ∈ Zp and put u1 := (u1,1, . . . , u1,n). Then
we implicitly set v1 := u1 + (a− u1,1)w.

Here for each i = 1, . . . , l, B can compute gλ1,i as gMi·v1 = gMi·(u1−u1,1w)

AMi·w. Then B computes the index 1 components of SKS as

For i = 1 to l : If i ∈ ρ−1(S∗) then r1,i ← Zp,K1,i := BMi·u1T
r1,i
ρ(i) , L1,i := gr1,i

else r′1,i ← Zp,K1,i := (gλ1,i)−ηρ(i)/θρ(i)(Bθρ(i)gηρ(i))r
′
1,i , L1,i := (gλ1,i)−1/θρ(i)gr

′
1,i .

Here, in else case, we implicitly set r1,i := r′1,i − λ1,i/θρ(i).
Now B has to compute the index 2 components K2,i, L2,i for i = 1, . . . , l. To

do so, B chooses random values u2′,1, . . . , u2′,n, r2′,i(or r
′
2′,i) ∈ Zp and computes

K2′,i, L2′,i, i = 1, . . . , l just in the same way as to the index 1. Then B converts
them as follows:

K2,i := BMi,1μ(K2′,i)
−τ∗

, L2,i := (L2′,i)
−τ∗

, i = 1, . . . , l.

Then B replies SKA = (((Kk,i, Lk,i); i = 1, . . . , l); k = 1, 2) to A.

(2) Decapsulation Queries. When A issues a decapsulation query for (A, ψ =
(ψcpa, d)) (where ψcpa is about S), B has to reply the decapsulation κ̂ to A. To
do so, B computes as follows. (Note that the oracle DDHGT is accessed.)

If S /∈ A then κ̂ :=⊥
else If Verify(PKcpa, ψcpa) = False then κ̂ :=⊥

else τ ← Hη(ψcpa) If DDHGT (e(g, g), Y
τ
1 Y2, e(C

′, g), d) = False then κ̂ :=⊥
else If τ = τ∗ then Abort //Call this case Abort

else κ̂ := (d/e(B,C′)μ)1/(τ−τ∗)

182 H. Anada et al.

where Verify is the following PPT algorithm to check consistency of ψcpa:

Verify(PKcpa, ψcpa) :For x ∈ S : If e(Tx, C
′) 	= e(Cx, g) then Return False

Return True.

Guess. When A returns A’s guess κ̂∗, B returns Z := κ̂∗ as B’s guess.
B can perfectly simulate the real view of A until the case Abort happens. To

see why, we prove the following claims. (The proofs will be in the full version.)

Claim 1. The reply SKA to a key-extraction query is a perfect simulation. �

Claim 2. The reply κ̂ to a decapsulation query is a simulation that is computa-
tionally indistinguishable from a real, until the case Abort happens. �

Claim 3. The challenge ciphertext ψ∗ = (ψ∗
cpa, d

∗) is correctly distributed. �

Now we are ready to evaluate the advantage of B in the OW-sel-CCA game.
First, the following claim holds. (The proof will be described in the full version.)

Claim 4. The probability that Abort occurs is negligible in λ. More precisely,
the following equality holds: Pr[Abort] = Advtcr

CF ,Hfamλ
(λ). �

By definition, A wins in the OW-sel-CCA game if and only if κ̂∗ is correctly
guessed. That is, κ̂∗ = Y s∗

1 = e(g, g)abs
∗
= e(g, g)abc. This is the definition that

B succeeds in computing the answer for the given instance (g,A,B,C).
Therefore, the probability that B wins is equal to the probability that A wins

and Abort never occurs. So we have:

Pr[B wins] = Pr[(A wins) ∧ (¬Abort)] � Pr[A wins]− Pr[Abort].

Substituting advantages and using the equality in Claim 4, we have:

Advc-bdh-gap
B,(e,G,GT)(λ) � Advow-sel-cca

A,KP-ABKEM(λ)−Advtcr
CF ,Hfamλ

(λ).

This is what we should prove. �

Theorem 3 (Corollary to Theorem 1 and 2). Our PP-ABID is selectively
secure against cMiM attacks. More precisely, the following inequality holds:

Advsel-cmim
A,PP-ABID(λ) � Advc-bdh-gap

B,(e,G,GT)(λ) +Advtcr
CF ,Hfamλ

(λ).

Figure 6 shows an interaction of our PP-ABID.

Attribute-Based Identification: Definitions and Efficient Constructions 183

P(PK = (g, T1, . . . , Tu, B, Y1, Y2, η), V(PK, S):

SKA = (((Kk,i = Bλk,iT
rk,i

ρ(i) , s← Zp, C
′ := gs, For x ∈ S : Cx := T s

x

Lk,i = grk,i); ψcpa := (S,C′, (Cx;x ∈ S))
i = 1, . . . , l); k = 1, 2)): τ ← Hη(ψcpa)

For k = 1, 2: κk := Y s
k ; d := κτ

1κ2

(κ, ψ) := (κ1, (ψcpa, d))

Receiving ψ as input:
ψ←− Send ψ to P

If S 	∈ A then κ̂ :=⊥
else τ ← Hη(ψcpa), IS := ρ−1(S)
{ωi; i ∈ IS} ← Recon(IS,M)
For k = 1, 2:
κ̂k :=

∏
i∈IS

(e(KK,i, C
′)

/e(LK,i, Cρ(i)))
ωi

If κ̂1
τ κ̂2 	= d then κ̂ :=⊥ else κ̂ := κ̂1

Send κ̂ to V
κ̂−→ Receiving κ̂ as input:

If κ̂ = κ then b := 1 else b := 0, Return b

Fig. 6. An interaction of our concrete PP-ABID

5.3 Discussion

Anonymity. Consider the following experiment in Figure 7. (In the experiment,
an adversary A interacts with P(PK, SKAb

) as a verifier with S∗.)
We say that PP-ABID have anonymity if, for any PPT A and for any U ,

Advanonym
A,PP-ABID(λ)

def
= |Pr[ExprmtanonymA,PP-ABID(λ,U) returns Win]− 1/2| is negligible

in λ. Our concrete PP-ABID possesses the anonymity because, in the case that
ψ is inconsistent, the randomness in SKAb

is not canceled out correctly in the
computation of a response message κ̂b.

ExprmtanonymA,PP-ABID(λ,U):
(PK,MSK)← Setup(λ,U), (A0,A1, S

∗)← A(PK)
s.t. (S∗ ∈ A0 ∧ S∗ ∈ A1) ∨ (S∗ /∈ A0 ∧ S∗ /∈ A1)

SKA0 ← KeyGen(PK,MSK,A0),SKA1 ← KeyGen(PK,MSK,A1)

b← {0, 1}, b̂← AP(PK,SKAb
)(PK,SKA0 ,SKA1)

If b = b̂ Return Win else Return Lose

Fig. 7. The anonymity experiment of an adversary A on PP-ABID

Large Universe Case. If the attribute universe U is large, we have to modify
our concrete schemes to make security reductions in time polynomial in λ. As
is proposed by Waters [15], we use for x ∈ U a hashed value H(x) instead of Tx
(and hence Tx is removed from PK). Although the resulting schemes are proved
to be secure only in the random oracle model, we get relief from rewriting the
public key PK each time when a new attribute x is added.

Exiting the Gap Assumption. Instead of the oracle DDHGT , we can apply
the twin Diffie-Hellman trapdoor test of Cash, Kiltz and Shoup [8] in the security

184 H. Anada et al.

proofs. In compensation, the resulting schemes become to have a twice as long
secret key and twice as much computational cost in decapsulation.

Security against Adaptive Target. To attain the adaptive security in the
OW-CCA game, we can apply our enhancing technique to the dual system en-
cryption of Lewko, Okamoto, Sahai, Takashima and Waters [10] in the random
oracle model.

6 Conclusions

We proposed PP-ABID and VP-ABID. We established a design principle. We
constructed concrete KP-ABKEM and CP-ABKEMwith the OW-CCA security.
Finally, we obtained concrete PP-ABID and VP-ABID. Functional tickets and
functional gates are realized by those PP-ABID and VP-ABID, respectively.

References

1. Anada, H., Arita, S.: Identification Schemes from Key Encapsulation Mechanisms.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
59–76. Springer, Heidelberg (2011)

2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

3. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

4. Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Se-
cure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 495–511. Springer, Heidelberg (2001)

5. Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

6. Baek, J., Safavi-Naini, R., Susilo, W.: Efficient Multi-receiver Identity-Based En-
cryption and Its Application to Broadcast Encryption. In: Vaudenay, S. (ed.) PKC
2005. LNCS, vol. 3386, pp. 380–397. Springer, Heidelberg (2005)

7. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

8. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008); Full version available at Cryptology ePrint Archive, 2008/067,
http://eprint.iacr.org/

9. Gennaro, R.: Multi-trapdoor Commitments and their Applications to Proofs of
Knowledge Secure Under Concurrent Man-in-the-Middle Attacks. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 220–236. Springer, Heidelberg (2004)

10. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Prod-
uct Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010); Full version available at IACR Cryptology
ePrint Archive, 2010/110, http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Attribute-Based Identification: Definitions and Efficient Constructions 185

11. Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006)

12. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic
Applications. In: The 21st Symposium on Theory of Computing 1989, pp. 33–43.
Association for Computing Machinery, New York (1989)

13. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

14. Schnorr, C.P.: Efficient Identification and Signatures for Smart Cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

15. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidel-
berg (2011), Full version available at IACR Cryptology ePrint Archive,2008/290,
http://eprint.iacr.org/

16. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro,
N.: Verifiable Predicate Encryption and Applications to CCA Security and Anony-
mous Predicate Authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012)

17. Yilek, S.: Resettable Public-Key Encryption: How to Encrypt on a Virtual Ma-
chine. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer,
Heidelberg (2010)

A Verifier-Policy ABID

We define a notion of verifier-policy attribute-based identification (VP-ABID).

Scheme. VP-ABID consists of four PPT algorithms (Setup, KeyGen, P, V).

Setup(λ,U) → (PK,MSK). Setup takes as input the security parameter λ and
the attribute universe U . It outputs public a public key PK and a master secret
key MSK.

KeyGen(PK,MSK, S) → SKS . A key-generation algorithm KeyGen takes as
input the public key PK, the master secret key MSK and an attribute set S. It
outputs a secret key SKS corresponding to S.

P(PK,SKS) and V(PK,A). P and V are interactive algorithms called a prover
and a verifier, respectively, which are defined in a similar way as in Section
3.1. A cMiM attack on VP-ABID is defined in a similar way as in Section 3.2.
CP-ABKEM=(Setup,KeyGen,Encap,Decap) is defined in a dual manner to
KP-ABKEM on an access structure A and an attribute set S. Then a generic con-
version from CP-ABKEM to VP-ABID is defined in a similar way as in Section 4.1.

Theorem 4. If CP-ABKEM is OW-CCA secure, then the derived VP-ABID is
cMiM secure.

http://eprint.iacr.org/

186 H. Anada et al.

B Computational Parallel Bilinear Diffie-Hellman
Exponent Assumption with Gap on Target Group

Let a, s, b1, . . . , bq ∈ Zp, all of which is not zero, be chosen at random. Let y :=

(g, gs, ga, . . . , g(a
q), g(a

q+2), . . . , g(a
2q), ∀1�j�qg

sbj , ga/bj , . . . , g(a
q/bj), g(a

q+2/bj),

. . . , g(a
2q/bj), ∀1�j,k�q,k �=jg

asbk/bj , . . . , ga
qsbk/bj). Then our new assumption says

it is at most with a negligible probability in λ that, for any PPT algorithm B
given input y (parametrized by q), to output Z = e(g, g)a

q+1s ∈ GT , even with
the aid of the oracle DDHGT (·, ·, ·, ·).

C Our Enhanced Waters CP-ABKEM and VP-ABID

We can build an enhanced version, CP-ABKEM, of the CP-ABKEM of Waters [15].
Then we can obtain our concrete VP-ABID as in Figure 8.

P(PK = (g, T1, . . . , Tu, A, Y1, Y2, η), V(PK,A) :
SKS = ((Kk = gαkAlk , Lk = glk , s← Zp, For j = 2 to n: vj ← Zp,

(Kk,x = T
lk
x ;x ∈ S);k = 1, 2))): v := (s, v2, . . . , vn)

For i = 1 to l: λi := v ·Mi, ri ← Zp

C′ := gs

For i = 1 to l: Ci := AλiT−ri
ρ(i) , Di := gri

ψcpa := (A, C′, ((Ci, Di); i = 1, . . . , l))
τ ← Hη(ψcpa)
For k = 1, 2: κk := Y s

k ; d := κτ
1κ2

(κ, ψ) := (κ1, (ψcpa, d))

Receiving ψ as input:
ψ←− Send ψ to P

If S 	∈ A then κ̂ :=⊥
else τ ← Hη(ψcpa), IS := ρ−1(S)
{ωi; i ∈ IS} ← Recon(IS,M)
For k = 1, 2 : κ̂k := e(Kk, C

′)/∏
i∈IS

(e(Lk, Ci)e(Kk,ρ(i), Di))
ωi

If κ̂1
τ κ̂2 	= d then κ̂ :=⊥ else κ̂ := κ̂1

Send κ̂ to V
κ̂−→ Receiving κ̂ as input:

If κ̂ = κ then b := 1 else b := 0, Return b

Fig. 8. An interaction of our concrete VP-ABID

Theorem 5. If the computational q-parallel bilinear Diffie-Hellman exponent
assumption with gap on target group holds, and an employed hash function family
has target collision resistance, then our CP-ABKEM is OW-sel-CCA secure with a
challenge matrix of size l∗ × n∗, l∗, n∗ � q.

Theorem 6 (Corollary to Theorem 4 and 5). Our VP-ABID is selectively
secure against cMiM attacks.

The proof of Theorem 5 will be described in the full version.

Relations among Privacy Notions

for Signcryption and Key Invisible
“Sign-then-Encrypt”

Yang Wang1, Mark Manulis2, Man Ho Au1, and Willy Susilo1,�

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
yw990@uowmail.uow.edu.au,

{wsusilo,aau}@uow.edu.au
2 Department of Computing, University of Surrey, United Kingdom

mark@manulis.eu

Abstract. Signcryption simultaneously offers authentication through
unforgeability and confidentiality through indistinguishability against
chosen ciphertext attacks by combining the functionality of digital sig-
natures and public-key encryption into a single operation. Libert and
Quisquater (PKC 2004) extended this set of basic requirements with the
notions of ciphertext anonymity (or key privacy) and key invisibility to
protect the identities of signcryption users and were able to prove that
key invisibility implies ciphertext anonymity by imposing certain condi-
tions on the underlying signcryption scheme.

This paper revisits the relationship amongst privacy notions for sign-
cryption. We prove that key invisibility implies ciphertext anonymity
without any additional restrictions. More surprisingly, we prove that key
invisibility also implies indistinguishability against chosen ciphertext at-
tacks. This places key invisibility on the top of privacy hierarchy for
public-key signcryption schemes.

On the constructive side, we show that general “sign-then-encrypt”
approach offers key invisibility if the underlying encryption scheme sat-
isfies two existing security notions, indistinguishable against adaptive
chosen ciphertext attacks and indistinguishability of keys against adap-
tive chosen ciphertext attacks. By this method we obtain the first key
invisible signcryption construction in the standard model.

1 Introduction

Signcryption methods. The concept of signcryption was introduced by Zheng
in 1997 [26], with the initial goal to achieve performance increase for simulta-
neous signing and public-key encryption. His idea was to derive the combined
functionality by optimizing computations at the algorithmic level rather than
considering joint execution of two different signing and encryption procedures.

� W. Susilo is supported by ARC Future Fellowship FT0991397.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 187–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

188 Y. Wang et al.

This idea was reflected in various signcryption constructions, including those
based on discrete logarithms [4, 21, 25], factoring assumptions [18, 22], and hard
problems in groups with bilinear maps [15, 16]. Some of these designs were less
successful, e.g. [4,25] were cryptanalyzed in [21], a problem in [15] was identified
in [23] and repaired in [9].

A more general approach to signcryption was initiated by An, Dodis, and Ra-
bin [1]. They considered different methods for obtaining the signcryption func-
tionality through a black-box composition of arbitrary signature and public-key
encryption schemes, in particular showing that “encrypt-then-sign” (EtS) and
“sign-then-encrypt” (StE) lead to secure singcryption schemes (as opposed to
the symmetric-key setting [6]). They also introduced another approach, termed
“commit-then-sign-and-encrypt” (CtS&E) that admits parallelization of the sign-
ing and encryption operations, motivated by the insecurity of the plain “sign-
and-encrypt” (S&E) method. Dent et al. [10] recently proved security of S&E
in the setting of high-entropy messages, assuming the confidentiality property
of signatures. Alternative generic methods for (parallel) signcryption were intro-
duced by Pieprzyk and Pointcheval [19] based on secret sharing techniques, by
Dodis et al. [11] using trapdoor permutations and probabilistic padding schemes,
and by Malone-Lee [17] from the hybrid KEM/DEM framework.

Privacy notions for signcryption. The first formal security model for signcryp-
tion in the public-key setting was introduced by Baek et al. [3], encompassing
the requirements of message confidentiality (indistinguishability against adaptive
chosen ciphertext attacks) and unforgeability against chosen-message attacks in
the multi-user setting. This model has been strengthened by An, Dodis, and
Rabin [1] towards the insider security setting that admits corruptions of senders
and receivers, as opposed to the outsider security guarantees from [3] in which
all involved parties must remain uncorrupted. The insider security setting be-
came the de facto standard security setting for modern public-key signcryption
schemes.

Libert and Quisquater [15], inspired by Boyen’s work [7] on identity-based
signcryption and the earlier definition of key privacy for public-key encryption
schemes by Bellare et al. [5], formalized the notions of ciphertext anonymity (or
key privacy) for public-key signcryption. This requirement, modeled within the
insider security framework, prevents the adversary that is not in possession of
the recipient’s decryption key from obtaining information about the sender and
the recipient of the signcrypted message. Libert and Quisquater also introduced
the notion of key invisibility, for which they could prove that it implies cipher-
text anonymity as long as signcryption ciphertexts have uniform distribution for
random recipients’ public keys.

1.1 Our Contribution

In this paper we focus on privacy notions for signcryption schemes and aim at
closing gaps from previous work.

Relations among Privacy Notions for Signcryption 189

Relations among privacy notions. Using public-key signcryptionnotions from [15],
namelykey invisibility (SC-INVK-CCA), ciphertext anonymity (SC-INDK-CCA),
and indistinguishability against chosen ciphertext attacks (SC-IND-CCA), we in-
vestigate their relationships and come to the following surprising results (cf. Figure
1): first, we show that key invisibility implies ciphertext anonymity without re-
quiring uniformity of ciphertexts for random public keys (as opposed to the proof
from [15]). Our proof of this implication involves a two-step approach: we first
give a new definition of ciphertext anonymity, which we term SC-ANON-CCA
and for which we prove the equivalence to SC-INDK-CCA from [15], before prov-
ing that SC-ANON-CCA is implied by SC-INVK-CCA. Even more surprising, we
prove that SC-INVK-CCA implies SC-IND-CCA, that is key invisible signcryption
schemes readily providemessage confidentiality.Our analysis thus implies that key
invisibility is strictly stronger than ciphertext anonymity and message confiden-
tiality.

SC-IND-CCA SC-INDK-CCA

SC-INVK-CCA

L2

L1

Fig. 1. Relationships among privacy notions for signcryption. An arrow de-
notes an implication while a barred arrow denotes a separation. T and L stand for
Theorem and Lemma, respectively.

Key invisibility of “Sign-then-Encrypt”. As observed in [15], parallel signcryp-
tion methods (incl. S&E and CtS&E) do not satisfy ciphertext anonymity —
the recipient needs to know who is the sender in order to verify the signature.
The key invisible signcryption scheme from [15], which has been revised in [9]
following the analysis in [23], is a concrete construction based on bilinear maps
and random oracles. As a second contribution we explore the key invisibility
of the StE signcryption method, showing that it achieves SC-INVK-CCA (and
by this SC-INDK-CCA and SC-IND-CCA) provided that the underlying pub-
lic key encryption scheme satisfies two existing requirements, which are named
indistinguishability against adaptive chosen ciphertext attacks (IND-CCA) and
indistinguishability of keys against adaptive chosen ciphertext attacks (IK-CCA),
respectively. It is well-known that Cramer-Shoup encryption scheme [8] offers
both IND-CCA and IK-CCA security. In this way we readily obtain the first key
invisible signcryption scheme in the standard model.

190 Y. Wang et al.

2 Preliminaries

2.1 Digital Signatures

SYNTAX. A signature scheme S comprises four efficient algorithms: S = (Setup,
KGen, Sig,Ver). The setup algorithm Setup takes as input a security parameter
1k and outputs the public parameters λS . The key generation algorithm KGen
takes as input λS and outputs a signing key sk and a verification key vk. The
signing algorithm Sig takes as input a signing key sk and a message m from
the associated message space M, and outputs a signature σ ← Sigsk(m). The
verification algorithm Ver takes a message m, a signature σ and a verification
key pk and outputs either a valid symbol * or an invalid symbol ⊥. We require
that Vervk(m, Sigsk(m)) = *, for any m ∈ M.

SECURITY. We consider a standard security notion for signatures: existential
unforgeability under adaptive chosen message attacks [13], denoted by UF-CMA.
Intuitively, we require that an adversary is not able to generate a signature on a
new message on behalf of a target signer. We define the adversary A’s advantage
AdvUF-CMA

S,A (k) as

Pr

[
S.Vervk(m,σ) = *

∣∣∣∣λS ← Setup(1k), (sk, vk) ← S.KGen(λS),
(m,σ) ← AOSig(·)(vk), m 	∈ Query(A, OSig(·))

]
,

where A is allowed to make a sequence of queries to the signing oracle OSig(·),
and Query(A, OSig(·)) is the set of queries made by A to oracle OSig(·). S is said

to be UF-CMA-secure, if the advantage function AdvUF-CMA
S,A (k) is negligible in k

for any PPT adversary A.

2.2 Public-Key Encryption

SYNTAX. A public key encryption scheme E comprises four efficient algorithms:
E = (Setup, KGen,Enc,Dec). The setup algorithm Setup takes as input a security
parameter 1k and outputs the public parameters λE . The key generation algo-
rithm KGen takes as input λE and outputs a decryption key dk and an encryption
key ek. The encryption algorithm Enc takes as input an encryption key ek and
a message m from the associated message space M, and outputs a ciphertext
c ← Encek(m). The decryption algorithm Dec takes a decryption key dk and a
ciphertext c to return the corresponding message m; we write m ← Decdk(c).
We require that Decdk(Encek(m)) = m, for any m ∈ M.

SECURITY. We consider indistinguishability against adaptive chosen cipher-
text attacks [20], denoted by IND-CCA, and indistinguishability of keys against
adaptive chosen ciphertext attacks [5], denoted by IK-CCA. Intuitively, IND-CCA
means that given a properly generated encryption key, no adversary A can dis-
tinguish encryptions of any two-equal length messages m0, m1 under this key.

Relations among Privacy Notions for Signcryption 191

IND-CCA security captures strong message (data)-privacy property and guaran-
tees that, given a challenge ciphertext, no valid information about the underlying
message (plaintext, or data) will be leaked. On the other hand, IK-CCA captures
strong key-privacy property. It means that given two randomly selected encryp-
tion keys ek1 and ek2, no adversary A can distinguish encryptions of a same
message m under the two different keys. Given a challenge ciphertext, no valid
information about the underlying key will be leaked in an IK-CCA-secure en-
cryption scheme. For b = 0, 1 and an adversary A = (A1,A2), which runs in two
stages of find and guess, consider the experiments

Experiment ExpIND-CCA,b
E,A (k) :

λE ← E .Setup(1k)
(dk, ek) ← E .KGen(λE)
(m0,m1, ω) ← ADdk(·)

1 (λE , ek, find)
cb ← Encek(mb)

d ← ADdk(·)
2 (cb, ω, guess)

Experiment ExpIK-CCA,bE,A (k) :

λE ← E .Setup(1k)
(dk0, ek0) ← E .KGen(λE
(dk1, ek1) ← E .KGen(λE)
(m,ω) ← ADdk0

(·),Ddk1
(·)

1 (λE , ek0, ek1, find)
cb ← Encekb

(m)

d← ADdk0
(·),Ddk1

(·)
2 (cb, ω, guess)

where |m0| = |m1|, ω is some state information and A is allowed to invoke
the decryption oracle Ddk(·) (or Ddk1(·) and Ddk2(·)) at any point with the only
restriction that cb is not queried during the guess stage. We define the advantages
AdvIND-CCA

E,A (k) and AdvIK-CCAE,A (k), respectively, as follows:

AdvIND-CCA
E,A (k) =

∣∣Pr[ExpIND-CCA,0
E,A (k) = 1]− Pr[ExpIND-CCA,1

E,A (k) = 1]
∣∣

AdvIK-CCAE,A (k) =
∣∣Pr[ExpIK-CCA,0E,A (k) = 1]− Pr[ExpIK-CCA,1E,A (k) = 1]

∣∣.
E is said to be IND-CCA (resp. IK-CCA) secure, if the advantage function
AdvIND-CCA

E,A (k) (resp. AdvIK-CCAE,A (k)) is negligible in k for any PPT adversary A.

2.3 Signcryption Syntax

We will review the signcryption syntax used in [14, 15, 24]. A signcryption
scheme is formalized by five PPT algorithms SC = (Setup, KeyGen, SignCrypt,
UnSignCrypt, Verify). The setup algorithm generates public parameters λsc ←

192 Y. Wang et al.

Setup(1k). Taking as input the public parameters λsc, the key-generation al-
gorithm outputs a key pair (skU , pkU) ← KGs(λsc). On input a message
m from the associated message space M, a private key skU , and a public
key pkR, the signcryption algorithm outputs a signcryption ciphertext C ←
SC.SignCrypt(m, skU , pkR). On input a private key skR and a signcryption ci-
phertext C, the unsigncryption algorithm UnSignCrypt (skR, C) outputs either
a tuple (m, s, pkU) where m ∈ M, s is auxiliary non-repudiation information
(allowing to convince a third party of the origin of the message) and pkU is a
public key, or a special symbol ⊥ indicating failure. The verification algorithm
Verify(m, s, pkU) taking as input a message m, additional information s, and
a public key pkU , outputs either * if the additional information s authenti-
cates the message m for the sender pkU , or ⊥ otherwise. The correctness re-
quires that for any m ∈ M, any correctly generated key pairs (skU , pkU) and
(skR, pkR), we have (m, s, pkU) ← UnSignCrypt(skR, SignCrypt(m, skU , pkR))
and Verify(m, s, pkU) = ⊥.

Remark 1. Note the slightly different syntax in comparison to [1]. The difference
is that the unsigncryption algorithm takes as input sender’s public key pkS ,
receiver’s secret key skR, and signcryption ciphertext C, and outputs either
message m or ⊥. In this paper, we will adopt the signcryption syntax reviewed
above since we intend to study various privacy notions in which the sender’s
identity may be unknown prior to the execution of the unsigncryption algorithm.

3 Security Notions for Signcryption Schemes

The existing security notions cover four aspects: existential unforgeability against
chosen-message attacks, indistinguishability against chosen ciphertext attacks,
ciphertext anonymity and key invisibility, which we recall in the following.

3.1 Unforgeability

A fundamental notion for signcryption schemes is existential unforgeability
against chosen-message attacks [1]. This property prevents the adversary from
forging a signcryption ciphertext on a new message or with respect to a new
receiver on behalf of the target sender, and is formalized in the following exper-
iment

Experiment ExpUF-CMA
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU) ← SC.KeyGen(λsc)

(C, skR, pkR) ← ASC.SskU
(·,·),SC.DskU

(·)(λsc, pkU)
success of A := [(m, s, pkU) ← SC.UnSignCrypt(skR, C)

∧ Verify(m, s, pkU) = *
∧ (m, pkR) 	∈ Query(A, SC.SskU (·, ·))]

Relations among Privacy Notions for Signcryption 193

where the signcryption oracle SC.SskU (·, ·) takes as input (m′, pk′R) and outputs
a signcryption ciphertext, the unsigncryption oracle SC.DskU (·) takes as input a
signcryption ciphertext and outputs either ⊥ or a tuple (m′, s′, pk′U) such that
Verify(m′, s′, pk′U) = *, and Query(A, SC.SskU (·, ·)) is the set of queries made
by A to oracle SC.SskU (·, ·).
Definition 1. A signcryption scheme is existentially unforgeable against chosen-
message attacks (SC-UF-CMA), if for all PPT adversaries A the following ad-
vantage function is negligible in k:

AdvUF-CMA
SC,A (k) := Pr[A success].

We remark existence of a stronger notion named strong existentially unforge-
ability against chosen-message attacks (SC-SUF-CMA), c.f. [14, 15, 24], which
requires that the challenge signcryption ciphertext C was not previously output
by the signcryption oracle SC.SskU (·, ·) on input (m, pkR). However, as pointed
out in [1] and similar to the signature setting in [13], the conventional (i.e. non-
strong) unforgeability is sufficient for most scenarios in practice.

3.2 Confidentiality

The notion of indistinguishability against chosen ciphertext attacks [15] cap-
tures confidentiality of messages. That is, given a signcryption ciphertext, no
valid information about the message that was signcrypted will be exposed to an
adversary without the designated receiver’s private key. Formally, for b = 0, 1
we consider the following experiments

Experiment ExpIND-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skU , pkU) ← SC.KeyGen(λsc)

(m0,m1, skS , ω) ← ASC.SskU
(·,·),SC.DskU

(·)
1 (λsc, pkU)

Cb ← SC.SignCrypt(mb, skS , pkU)

d← ASC.SskU
(·,·),SC.DskU

(·)
2 (Cb, ω)

where |m0| = |m1|, ω is some state information, and oracles SC.SskU (·, ·) and
SC.DskU (·) are the same as in the previous experiment ExpUF-CMA

SC,A (k) with the
only limitation of A2 not querying the challenge ciphertext Cb to the unsign-
cryption oracle SC.DskU (·).
Definition 2. A signcryption scheme is semantically secure against chosen ci-
phertext attacks (SC-IND-CCA), if for all PPT adversaries A = (A1,A2) the
following advantage function is negligible in k:

AdvIND-CCA
SC,A (k) := |Pr[ExpIND-CCA,0

SC,A (k) = 1]− Pr[ExpIND-CCA,1
SC,A (k) = 1]|.

194 Y. Wang et al.

3.3 Ciphertext Anonymity

Intuitively, a signcryption scheme has ciphertext anonymity property [15] if sign-
cryption ciphertexts reveal no information about the identities of the sender and
receiver. Formally, consider the following experiment

Experiment ExpINDK-CCA
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0) ← SC.KeyGen(λsc)

(skR,1, pkR,1) ← SC.KeyGen(λsc)

O := {SC.SskR,0(·, ·), SC.SskR,1(·, ·), SC.DskR,0(·), SC.DskR,1(·)}
(m, skS,0, skS,1, ω) ← AO

1 (λsc, pkR,0, pkR,1)

(b, b′) ← {0, 1}
C ← SC.SignCrypt(m, skS,b, pkR,b′)

(d, d′) ← AO
2 (C, ω)

where ω is some state information and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query C to the unsigncryption oracles SC.DskR,0(·) and SC.DskR,1(·).
Definition 3. A signcryption scheme is said to satisfy ciphertext anonymity
(SC-INDK-CCA), if for all PPT adversaries A = (A1,A2) the following advan-
tage function is negligible in k:

AdvINDK-CCA
SC,A (k) := |Pr[(d, d′) = (b, b′)]− 1

4
|.

3.4 Key Invisibility

The notion of key invisibility for signcryption was formalized by Libert and
Quisquater in [15]. It can be viewed as an extension of the invisibility concept
proposed by Galbraith and Mao [12] for undeniable signatures. Intuitively, this
notion captures that given a receiver, a specific signcryption ciphertext gener-
ated with respect to a chosen message, a chosen sender and a given receiver is
indistinguishable to a random ciphertext uniformly chosen from the signcryption
ciphertext space. Formally, for b = 0, 1 we consider the following experiments

Experiment ExpINVK-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR, pkR) ← SC.KeyGen(λsc)

(m, skS , ω) ← ASC.SskR
(·,·),SC.DskR

(·)
1 (λsc, pkR)

C0 ← SC.SignCrypt(skS , pkR,m)

C1 ← C
d← ASC.SskR

(·,·),SC.DskR
(·)

2 (Cb, ω)

Relations among Privacy Notions for Signcryption 195

where ω is some state information, C is the signcryption ciphertext space, C1 is
uniformly chosen at random from C, and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query Cb to the unsigncryption oracle SC.DskR(·).

Definition 4. A signcryption scheme is said to satisfy key invisibility (SC-
INVK-CCA), if for all PPT adversaries A = (A1,A2) the following advantage
function is negligible in k:

AdvINVK-CCA
SC,A (k) := |Pr[ExpINVK-CCA,0

SC,A (k) = 1]− Pr[ExpINVK-CCA,1
SC,A (k) = 1]|.

4 Relations among Privacy Notions for Signcryption

We now define anonymity, an equivalent notion for ciphertext anonymity of sign-
cryption schemes. This notion is conceptually simpler in comparison to ciphertext
anonimity from [15] in that the adversary only needs to distinguish between two
cases, depending on a single bit b = 0, 1, rather than between four cases in [15].
Formally, we consider the following experiments

Experiment ExpANON-CCA,b
SC,A (k) :

λsc ← SC.Setup(1k)

(skR,0, pkR,0) ← SC.KeyGen(λsc)

(skR,1, pkR,1) ← SC.KeyGen(λsc)

O := {SC.SskR,0(·, ·), SC.SskR,1(·, ·), SC.DskR,0(·), SC.DskR,1(·)}
(m, skS,0, skS,1, ω) ← AO

1 (λsc, pkR,0, pkR,1)

Cb ← SC.SignCrypt(m, skS,b, pkR,b)

d← AO
2 (Cb, ω)

where ω is some state information and A can have access to the signcryption
and unsigncryption oracles at any point with the two limitations that A2 does
not query Cb to the unsigncryption oracles SC.DskR,0(·) and SC.DskR,1(·).

Definition 5. A signcryption scheme is said to satisfy anonymity (SC-ANON-
CCA), if for all PPT adversaries A = (A1,A2), the advantage function is neg-
ligible in k:

AdvANON-CCA
SC,A (k) := |Pr[ExpANON-CCA,0

SC,A (k) = 1]− Pr[ExpANON-CCA,1
SC,A (k) = 1]|.

We now show that ciphertext anonymity and anonymity are equivalent.

Theorem 1 (SC-INDK-CCA ⇔ SC-ANON-CCA). For signcryption
schemes, anonymity is equivalent to ciphertext anonymity.

Proof of Theorem 1 is presented in the full version of this paper. �

196 Y. Wang et al.

4.1 Separation between Ciphertext Anonymity and SC-IND-CCA

Intuitively, ciphertext anonymity captures identity privacy and indistinguisha-
bility against chosen ciphertext attacks captures message privacy. The goals of
ciphertext anonymity and indistinguishability against chosen ciphertext attacks
are orthogonal. Formally, Lemmas 1 and 2 proven in the full version of this
paper, separate the two notions.

Lemma 1 (SC-IND-CCA � SC-INDK-CCA). Let SC = (Setup, KeyGen,
SignCrypt,UnSignCrypt) be a signcryption scheme. If the scheme SC satisfies
indistinguishability against chosen ciphertext attacks, then it may not satisfy
ciphertext anonymity.

Lemma 2 (SC-INDK-CCA � SC-IND-CCA). Let SC = (Setup, KeyGen,
SignCrypt,UnSignCrypt) be a signcryption scheme. If the scheme SC satisfies
ciphertext anonymity, then it may not satisfy indistinguishability against chosen
ciphertext attacks.

4.2 Relationship between Key Invisibility and Ciphertext
Anonymity

Next, we investigate the relationship between key invisibility and ciphertext
anonymity. We shall use anonymity instead of ciphertext anonymity in our anal-
ysis, as these two are equivalent by Theorem 1.

Theorem 2 (SC-INVK-CCA ⇒ SC-ANON-CCA). Let SC be a signcryp-
tion scheme. If the scheme SC satisfies key invisibility, then it satisfies anonymity.

Proof of Theorem 2 is presented in the full version of this paper. �

Note that Libert and Quisquater [15] were only able to prove implication of ci-
phertext anonymity by key invisibility for a class of signcryption schemes satisfy-
ing a particular property, namely that for a given message and a given sender’s
private key, the output of the signcryption algorithm must be uniformly dis-
tributed in the ciphertext space when the receiver’s public key is random. Our
results in Theorems 1 and 2 lift this restriction.

4.3 Relationship between Key Invisibility and SC-IND-CCA

Our next result shows that key invisibility, which originally was viewed as a
notion for protecting privacy of user identities [15], is in fact a much stronger
notion that implies indistinguishability against chosen ciphertext attacks.

Theorem 3 (SC-INVK-CCA ⇒ SC-IND-CCA). Let SC be a signcryption
scheme. If the scheme SC satisfies key invisibility, then it satisfies indistinguisha-
bility against chosen ciphertext attacks.

Relations among Privacy Notions for Signcryption 197

Proof of Theorem 3 is presented in the full version of this paper. �

From Theorem 1, Lemma 1, Lemma 2, Theorem 2 and Theorem 3, we can safely
conclude that key invisibility is strictly stronger than both indistinguishability
against chosen ciphertext attacks and ciphertext anonymity.

5 Sign-then-Encrypt Generic Construction

In this section, we revisit the generic construction of signcryption schemes based
on the sign-then-encrypt method [1,2]. We show that the resulting signcryption
schemes can achieve key invisibility when appropriate encryption schemes are
employed.

5.1 Scheme

Let S = (Setup,KGen, Sig,Ver) be a signature scheme and E = (Setup, KGen,Enc,
Dec) be a public key encryption scheme. Signcryption schemes based on the sign-
then-encrypt method can be constructed as follows:

– Setup(1k): On input a security parameter k, this algorithm runs λS ←
S.Setup(1k) and λE ← E .Setup(1k), respectively. The public parameters are
set as λsc := (λS , λE).

– KeyGen(λsc): The user Ui runs S.KGen(λS) → (ski, vki) and E .KGen(λE) →
(dki, eki), respectively. The secret and public key pair is set as (skUi , pkUi) :=
((ski, dki), (vki, eki)).

– SignCrypt(m, skUi , pkUj): To signcrypt a message m for the receiver Uj ,
Ui first produces a signature σ on m||pkUj , i.e., σ ← S.Sigski

(m||pkUj),
and then encrypts m||σ||pkUi under receiver Uj ’s encryption key, i.e. c ←
E .Encekj (m||σ||pkUi). The signcryption ciphertext is set as C := c.

– UnSignCrypt(skUj , C): On receiving a signcryption ciphertext C, receiver
Uj firstly decrypts it using its own decryption key dkj , i.e., m||σ||pkUi ←
E .Decdkj (C), and then checks if S.Vervki (m||pkUj , σ) = *. If so, it outputs
(m, s, pkUi) where s = (pkUj , σ); otherwise, it returns ⊥.

– Verify(m, s, pkUi): This algorithm parses s and pkUi as (pkUj , σ) and (vki, eki),
respectively, and outputs S.Vervki(m||pkUj , σ).

5.2 Security of the Generic Construction

From the relations discussed in Section 4, we only need to show that the above
generic construction results in signcryption schemes that are existentially un-
forgeable against chosen-message attacks and satisfy key invisibility. The former
requirement has already been proven in [1], who stated the following theorem:

Theorem 4 ([1]). Let SC be the above generic signcrypiton scheme. If the sig-
nature scheme S is UF-CMA-secure, then SC is existentially unforgeable against
chosen-message attacks.

198 Y. Wang et al.

We thus focus on key invisibility, for which we need to specify how to uniformly
sample signcryption ciphertexts from the ciphertext space. Here we will adopt
the very natural method for uniform sampling, i.e., uniformly and independently
choosing a messagem ∈ M , a sender’s secret key skUi , and a receiver’s public key
pkUj , and returning a signcryption ciphertext C ← SC.SignCrypt(m, skUi , pkUj).

Theorem 5. Let S be a signature scheme, E be a public-key encryption scheme
that is both IND-CCA-secure and IK-CCA-secure. Then the above generic sign-
crypiton scheme SC satisfies key invisibility.

Proof. To show the security, we first define two games, and then show in Claims
1 and 2 that no adversary A can break the key invisibility property of SC.

Game 0. This is the real experiment between the challenger and an adver-
sary A. This means that the challenger firstly correctly generates the target
receiver’s key pairs (skR, pkR) := ((sk0, dk0), (vk0, ek0)), forwards pkR to the
adversary A, and then provides accesses to signcryption oracle SC.SskR(·, ·)
and unsigncryption oracle SC.DskR(·). In the challenge phase, after A submits
(m∗, skS = (sk1, dk1)), the challenger randomly flips a coin b ∈ {0, 1}. If b = 0,
the challenger produces a signature σ0 on m∗||pkR under the signing key sk1,
i.e., σ0 ← S.Sigsk1

(m∗||pkR), encrypts m∗||σ0||pkS under the receiver’s encryp-
tion key, i.e. C0 ← E .Encek0(m

∗||σ0||pkS), and returns C0 to A. If b = 1, the
challenger independently and uniformly chooses m′ ∈ M, a sender’s secret key
sk′S := (sk′1, dk′1) and a receiver’s public key pk′R := (vk′0, ek′0), produces a sig-
nature σ1 on m′||pk′R, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R), encrypts m′||σ1||pk′S under

the receiver’s encryption key, i.e. C1 ← E .Encek′
0
(m′||σ1||pk′S), and returns C1

to A. Besides, the challenger provides access to signcryption oracle SC.SskR(·, ·)
and unsigncryption oracle SC.DskR(·).
Game 1. This is the same as Game 0, with the exception that in the challenge
phase, the challenger computes C1 ← E .Encek0(m

′||σ1||pk′S), and returns C1 to
A when b = 1.

Next we link the probability that A wins in Game 0 and Game 1. Let S1 be
the advantage that A wins in Game 1. Thus Pr[S1] = |Pr[ExpGame 1,0

SC,A (k) =

1]−Pr[ExpGame 1,1
SC,A (k) = 1]|, where ExpGame 1,b

SC,A (k) is the output of A in Game
1 when the challenge ciphertext is Cb.

Claim 1

|AdvINVK-CCA
SC,A (k)− Pr[S1]| = 2 · AdvIK-CCAE,B (k), (1)

where AdvIK-CCAE,B (k) is the advantage of an adversary B that breaks the IK-CCA
security of the encryption scheme E .

We show that any difference between AdvINVK-CCA
SC,A (k) and Pr[S1] can be par-

layed into an algorithm B = (B1,B2) that breaks the IK-CCA security of the
encryption scheme E . Recall that B1 gets (λE , ek, ek′) as input and has access to
decryption oraclesDdk(·) andDdk′(·). B1 runs λS ← S.Setup(1k), S.KGen(λS) →

Relations among Privacy Notions for Signcryption 199

(sk0, vk0) and sets λsc := (λS , λE) and pkR := (vk0, ek). B1 runs A1 as a sub-
routine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU)) to SC.SskR(·, ·),
B1 first produces a signature σ on m||pkU under the signing key sk0, i.e.,
σ ← S.Sigsk0

(m||pkU), and then encrypts m||σ||pkR under the encryption key
ekU , i.e. c ← E .EncekU (m||σ||pkR). The signcryption ciphertext is set as C := c,
and returned to A1 as the reply. When A1 makes a unsigncryption query C
to SC.DskR(·), B1 submits C to its own decryption oracle Ddk(·). If the reply
is not of the form m||σ||pkU where pkU is a public key, then B1 returns ⊥ to
A1. Otherwise, B1 decomposes pkU as (vkU , ekU), and further checks whether
S.VervkU (m||pkR, σ) = *. If so, B1 returns (m, (pkR, σ), pkU) to A1, and other-
wise ⊥ is returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). B1 randomly flips a coin
b̃ ∈ {0, 1}. If b̃ = 0, B first produces a signature σ0 on m∗||pkR under the signing
key sk1, i.e., σ0 ← S.Sigsk1

(m∗||pkR), encrypts m∗||σ0||pkS under the receiver’s

encryption key, i.e. C0 ← E .Encek(m∗||σ0||pkS), and returns C0 to A. If b̃ = 1,
B independently and uniformly chooses m′ ∈ M, a sender’s secret key sk′S :=
(sk′1, dk′1) and a public verification key vk′0, sets pk′R := (vk′0, ek′), produces a
signature σ1 on m′||pk′R using the signing key sk′1, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R),

and submits m′||σ1||pk′S where pk′S is the corresponding public key of sk′S to its
own challenger. Let C1 denote the reply of B’s own challenger. B returns C1 to
A. B2 simulates the oracles in the same way as B1 did.

Note that A2 never makes an unsigncryption query Cb where b ∈ {0, 1} to
SC.DskR(·), thus B2 does not make the query Cb to its decryption oracles Ddk(·)
or Ddk′(·). Finally A2 outputs a bit d. B2 outputs d when b̃ = 1, and returns
failure when b̃ = 0. When C1 is the encryption of m′||σ1||pk′S under ek, the
environment simulated by B is exactly the same as in Game 1. While C1 is the
encryption of m′||σ1||pk′S under ek′, the environment simulated by B is exactly
the same as in Game 0. Thus we have

AdvIK-CCAE,B (k) =
∣∣Pr[ExpIK-CCA,0E,B (k) = 1]− Pr[ExpIK-CCA,1E,B (k) = 1]

∣∣
=
∣∣Pr[b̃ = 1] · Pr[ExpGame 1,1

SC,A (k) = 1]

− Pr[b̃ = 1] · Pr[ExpINVK-CCA,1
SC,A (k) = 1]

∣∣
=
∣∣(1
2
· Pr[ExpGame 1,0

SC,A (k) = 1]− 1

2
· Pr[ExpGame 1,1

SC,A (k) = 1])

− 1

2
· Pr[ExpINVK-CCA,0

SC,A (k) = 1]

+
1

2
· Pr[ExpINVK-CCA,1

SC,A (k) = 1]
∣∣ (2)

=
1

2
· ∣∣Pr[S1]− AdvINVK-CCA

SC,A (k)
∣∣.

Equation (2) follows from the fact that Pr[ExpGame 1,0
SC,A (k) = 1] equals to

Pr[ExpINVK-CCA,0
SC,A (k) = 1], as the experiments are exactly the same.

200 Y. Wang et al.

Claim 2
Pr[S1] ≤ AdvIND-CCA

E,C (k), (3)

where AdvIK-CCAE,C (k) is the advantage of an adversary C that breaks the IND-CCA
security of the encryption scheme E .

To show this, we build an algorithm C that employs the adversary A in Game
1 to break the IND-CCA security of the encryption scheme E . Recall that C gets
(λE , ek) as input and has access to a decryption oracle Ddk(·). C runs λS ←
S.Setup(1k), S.KGen(λS) → (sk0, vk0) and sets λsc := (λS , λE) and pkR :=
(vk0, ek). C runs A1 as a subroutine by forwarding (λsc, pkR).

When A1 makes a signcryption query (m, pkU = (vkU , ekU)) to SC.SskR(·, ·),
C first produces a signature σ on m||pkU , i.e., σ ← S.Sigsk0

(m||pkU), and then
encrypts m||σ||pkR under the encryption key ekU , i.e. c ← E .EncekU (m||σ||pkR).
The signcryption ciphertext is set as C := c, and returned to A1 as the reply.
When A1 makes a unsigncryption query C to SC.DskR(·), C submits C to its
own decryption oracle Ddk(·). If the reply is not of the form m||σ||pkU where
pkU is a public key, then C returns ⊥ to A1. Otherwise, C decomposes pkU as
(vkU , ekU), and further checks whether S.VervkU (m||pkR, σ) = *. If so, C returns
(m, (pkR, σ), pkU) to A1, and otherwise ⊥ is returned.

At some time, A1 submits (m∗, skS = (sk1, dk1)). C first produces a signature
σ0 on m∗||pkR under the signing key sk1, i.e., σ0 ← S.Sigsk1

(m∗||pkR). Then
C independently and uniformly chooses m′ ∈ M, a sender’s secret key sk′S :=
(sk′1, dk′1) and a receiver’s public pk′R, produces a signature σ1 on m′||pk′R under
the signing key sk′1, i.e., σ1 ← S.Sigsk′

1
(m′||pk′R). C sets m̄0 := m∗||σ0||pkS ,

m̄1 := m′||σ1||pk′S where pkS and pk′S are the corresponding public keys of skS
and sk′S respectively, and submits m̄0 and m̄1 to its own challenger. Let Cb

denote the reply of C’s own challenger. C returns Cb to A. C then simulates the
oracles in the same way as it did before.

Note that A2 never makes an unsigncryption query Cb to SC.DskR(·), thus B2

does not make the query Cb to its decryption oracle Ddk(·). Finally A2 outputs
a bit d. C outputs d. The environment simulated by C is exactly the same as in
Game 1. Thus we have AdvIND-CCA

E,C (k) = Pr[S1].

As a sequence of equations (1), (3) gained above, we have AdvINVK-CCA
SC,A (k) ≤

2 · AdvIK-CCAE,B (k) + AdvIND-CCA
E,C (k) . This concludes the proof. �

6 Conclusion

In this paper, we first revisited the existing privacy notions of signcryption
schemes, namely indistinguishability against chosen ciphertext attacks, cipher-
text anonymity and key invisibility. We demonstrated the separation between
indistinguishability against chosen ciphertext attacks and ciphertext anonymity,
and showed that both notions are implied by key invisibility. Finally we pro-
posed the first generic construction for key invisible signcryption schemes in the
standard model.

Relations among Privacy Notions for Signcryption 201

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer,
Heidelberg (2002)

2. Au, J.H., Rabin, T.: Security for Signcryption: The Two-User Model. In: Dent, A.,
Zheng, Y. (eds.) Practical Signcryption, Information Security and Cryptography.
Springer (2010)

3. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002)

4. Bao, F., Deng, R.H.: A Signcryption Scheme with Signature Directly Verifiable by
Public Key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998)

5. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

6. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

7. Boyen, X.: Multipurpose identity-based signcryption – a Swiss Army
knife for identity-based cryptography. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003),
http://www.cs.stanford.edu/~xb/crypto03/

8. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

9. Dent, A.W., Zheng, Y. (eds.): Practical Signcryption. Springer (2010)
10. Dent, A.W., Fischlin, M., Manulis, M., Stam, M., Schröder, D.: Confidential Sig-

natures and Deterministic Signcryption. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 462–479. Springer, Heidelberg (2010)

11. Dodis, Y., Freedman, M.J., Jarecki, S., Walfish, S.: Optimal Signcryption from
Any Trapdoor Permutation. Cryptology ePrint Archive, Report 2004/020 (2004),
http://eprint.iacr.org/

12. Galbraith, S.D., Mao, W.: Invisibility and anonymity of undeniable and confirmer
signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer,
Heidelberg (2003)

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

14. Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.S.M.: An efficient signcryption
scheme with key privacy. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI
2007. LNCS, vol. 4582, pp. 78–93. Springer, Heidelberg (2007)

15. Libert, B., Quisquater, J.-J.: Efficient Signcryption with Key Privacy from Gap
Diffie-Hellman Groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

16. Libert, B., Quisquater, J.-J.: Improved Signcryption from q-Diffie-Hellman Prob-
lems. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 220–234.
Springer, Heidelberg (2005)

17. Malone-Lee, J.: A General Construction for Simultaneous Signing and Encrypt-
ing. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp.
116–135. Springer, Heidelberg (2005)

http://www.cs.stanford.edu/~xb/crypto03/
http://eprint.iacr.org/

202 Y. Wang et al.

18. Malone-Lee, J., Mao, W.: Two Birds One Stone: Signcryption Using RSA. In: Joye,
M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 211–225. Springer, Heidelberg (2003)

19. Pieprzyk, J., Pointcheval, D.: Parallel Authentication and Public-Key Encryption.
In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 387–401.
Springer, Heidelberg (2003)

20. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

21. Shin, J.-B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg
(2003)

22. Steinfeld, R., Zheng, Y.: A Signcryption Scheme Based on Integer Factorization.
In: Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp.
308–322. Springer, Heidelberg (2000)

23. Tan, C.-H.: On the security of signcryption scheme with key privacy. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E88-A(4), 1093–1095 (2005)

24. Yang, G., Wong, D.S., Deng, X.: Analysis and improvement of a signcryption
scheme with key privacy. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC
2005. LNCS, vol. 3650, pp. 218–232. Springer, Heidelberg (2005)

25. Yum, D.H., Lee, P.J.: New Signcryption Schemes Based on KCDSA. In: Kim, K.-C.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 305–317. Springer, Heidelberg (2002)

26. Zheng, Y.: Digital signcryption or how to achieve cost (Signature & encryption)
<< cost(Signature) + cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

Injective Encodings to Elliptic Curves

Pierre-Alain Fouque1, Antoine Joux2, and Mehdi Tibouchi3

1 University of Rennes
pierre-alain.fouque@ens.fr

2 CryptoExperts and Université de Versailles–Saint-Quentin
antoine.joux@m4x.org

3 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

Abstract. For a number of elliptic curve-based cryptographic protocols,
it is useful and sometimes necessary to be able to encode a message (a bit
string) as a point on an elliptic curve in such a way that the message can
be efficiently and uniquely recovered from the point. This is for exam-
ple the case if one wants to instantiate CPA-secure ElGamal encryption
directly in the group of points of an elliptic curve. More practically rele-
vant settings include Lindell’s UC commitment scheme (EUROCRYPT
2011) or structure-preserving primitives.

It turns out that constructing such an encoding function is not easy in
general, especially if one wishes to encode points whose length is large rel-
ative to the size of the curve. There is a probabilistic, “folklore” method
for doing so, but it only provably works for messages of length less than
half the size of the curve.

In this paper, we investigate several approaches to injective encoding
to elliptic curves, and in particular, we propose a new, essentially opti-
mal geometric construction for a large class of curves, including Edwards
curves; the resulting algorithm is also quite efficient, requiring only one
exponentiation in the base field and simple arithmetic operations (how-
ever, the curves for which the map can be constructed have a point of
order two, which may be a limiting factor for possible applications). The
new approach is based on the existence of a covering curve of genus 2 for
which a bijective encoding is known.

Keywords: Elliptic Curve Cryptography, Injective Encoding, Algebraic
Curves.

1 Introduction

Various cryptographic protocols based on the hardness of Diffie-Hellman-like
problems in a group G, such as ElGamal encryption [7] or Lindell’s recent
universally-composable commitment scheme [14], assume the existence of an
efficient (possibly randomized) algorithm f mapping messages m ∈ {0, 1}� to
elements of G, in such a way that m can also be recovered efficiently from f(m).

For example, ElGamal encryption is a priori defined on group elements, so
that a message needs to be mapped to an element of G before encrypting it,

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 203–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 P.-A. Fouque, A. Joux, and M. Tibouchi

and mapped back to a bit string upon decryption. Similarly, such a function
f is an important ingredient for structure-preserving cryptography [1]: indeed,
inputs and outputs of structure-preserving primitives are all group elements;
this offers convenient composability properties, but to use e.g. commitments or
encryption on actual bit strings, a way to map strings to the group and conversely
is required.

Moreover, the size � of supported bit strings should preferably be as close as
possible to the bit size of G to optimize bandwidth. We call such an algorithm
f an injective encoding.

For certain groups G, like multiplicative groups of finite fields or some su-
persingular elliptic curves, it is not difficult to construct injective encodings
achieving the optimal value of �. On the other hand, for a general group G, it is
not obvious how to construct a function f with � even super-logarithmic in the
size of G. In §2.3, we prove that this is not possible with a deterministic generic
group algorithm.

When G is the group of points of any elliptic curve over a finite field, one can
construct a probabilistic injective encoding with � equal to about half of the size
of G, as we show in §2.4, but we do not know of provable constructions achieving
a better � in general. Works on deterministic hashing to elliptic curves, such as
[17,11], typically do not help addressing this problem, as the functions they
construct are not injective, and it is not clear how to find a convenient subset
of their domain on which they become injective. Recently, however, a solution
was proposed by Farashahi [8] in the special case of Hessian elliptic curves over
finite fields Fq with q ≡ 2 (mod 3).

In §3, we propose an essentially optimal construction for all ordinary elliptic
curves over fields Fq with q ≡ 3 (mod 4) with group order divisible by 4; this in-
cludes the well-known Edwards curves studied by Edwards and Bernstein–Lange
[2], as well as twisted Huff curves, as studied by Joye et. al. [13]. Our construc-
tion is based on the bijective encoding from [10] to certain hyperelliptic curves of
genus 2, and on the observation from [12] that those curves are quadratic covers
of elliptic curves.

2 Injective Encodings

2.1 Definition

To fix ideas, and although it is not essential for our main purpose, let us first
give a formal definition of what we mean by an “injective encoding”.

Let us say that a cyclic group family (Gk)k∈N consists in the data of a sequence
of integers nk ≥ 1 converging to infinity, a sequence of integers sk ≥ 0 that is
at most polynomial in lognk, and for each k, an efficiently computable bijection
σk between the cyclic group Z/nkZ of order nk and a set Gk ⊂ {0, 1}sk of bit
strings of length sk, as well as efficient algorithms:

⊕k : {0, 1}sk × {0, 1}sk → {0, 1}sk ∪ {⊥} +k : {0, 1}sk → {0, 1}sk ∪ {⊥}

Injective Encodings to Elliptic Curves 205

which induce on the Gk the group addition and negation obtained by transport
of structure via σk. Here, “efficient” means with a time complexity polynomial
in lognk (or equivalently, in sk).

For example, if qk is an increasing sequence of positive primes, we can con-
struct a cyclic group family Gk = F∗

qk
with nk = qk − 1 and sk = O(log qk)

by representing invertible elements in Fqk as integers in {1, . . . , qk} (themselves
regarded as bit strings). Similarly, if E is an elliptic curve over Z[1/N] with N
coprime with the qk’s such that E(Fqk) is cyclic for all k, we have a cyclic group
family Gk = E(Fqk) with nk = qk + O(

√
qk) and sk = O(log qk) obtained by

representing curve points in e.g. affine coordinates (with a special string for the
point at infinity).

Given such a cyclic group family (Gk) and a sequence of non negative integers
�k, we define an �k-injective encoding to (Gk) be the data consisting of a pair of
efficient, possibly randomized algorithms:

Fk : {0, 1}�k → Gk ⊂ {0, 1}sk Ik : {0, 1}sk → {0, 1}�k ∪ {⊥}
for all k, which satisfy Ik(Fk(m)) = m for all m ∈ {0, 1}�k with overwhelming
probability over the randomness involved. We will typically express �k in terms
of νk = �log2 nk�, which is the optimal bound, in the sense that we clearly have
�k ≤ νk for all k by injectivity.

In what follows, the indices k, as well as references to sequences of integers
and groups, will be omitted most of the time for simplicity’s sake.

2.2 Some Simple, Optimal Examples

Let p be an odd prime number. The bijection [1, p− 1] → F∗
p yields an obvious

injective encoding to the multiplicative group G = F∗
p which is optimal, in the

sense that � = ν.
Similarly, we obtain an optimal injective encoding to the group of squares

G = (F∗
p)

2 ⊂ F∗
p from the bijection [1, p−1

2] → (F∗
p)

2 given by x ,→ x2. The
inversion algorithm I then computes the unique square root of an element
in (F∗

p)
2 contained in [1, p−1

2]. This is sufficient to obtain IND–CPA ElGamal
encryption in the group (F∗

p)
2 when p is a safe prime, assuming the Decisional

Diffie–Hellman assumption in that group (though one typically wouldn’t want to
use it for efficiency reasons). On the other hand, it is not clear how to construct
a close to optimal injective encoding to the subgroup of prime order q in F∗

p

when p is a Diffie–Hellman prime p = 2r · q + 1.
Some elliptic curve groups also have optimal injective encodings. This is for

example the case for the supersingular elliptic curves given by an equation of
the form:

E : y2 = x3 + b

over a field Fq with q ≡ 2 (mod 3). Then, as observed e.g. by Boneh and Franklin
[4], the map Fq → E(Fp) \ {∞} given by u ,→ ((u2 − b)1/3, u

)
is an efficient

bijection, and its inverse is clearly efficient as well. This gives, again, an optimal
injective encoding to G = E(Fq). Similarly, the genus 1 case of the construction

206 P.-A. Fouque, A. Joux, and M. Tibouchi

proposed in [10] provides an optimal injective encoding to supersingular elliptic
curves of the form:

E : y2 = x3 + ax

over fields Fq with q ≡ 3 (mod 4). However, we are not aware of any strictly
optimal injective encoding to groups of points of ordinary elliptic curves, or even
supersingular curves of embedding degree greater than 2.

2.3 Generic Injective Encodings

It is easy to construct �k-injective encodings to any cyclic group family (Gk)
provided that �k = O(log νk) (and of course �k ≤ νk for all k). Indeed, in that
case, the set {0, 1}�k of elements to be encoded contains only polynomially many
elements: therefore, Fk and Ik can be defined as mutually inverse dictionary
lookups for each k, and still be efficient. For example, we can define Fk to be
the restriction of σk to {0, 1, . . . , 2�k − 1} ⊂ Z/nkZ (coded as bit strings in the
obvious way), and Ik as a series of 2�k successive comparisons. Moreover, Fk

and Ik are generic, in the sense that they only require black-box access to Gk

(see [15]).
On the other hand, if �k = ω(log νk), then it is easy to see that Fk and Ik

cannot be both generic for all k if the Fk’s are deterministic. Indeed, suppose
that it were the case. Since it doesn’t take any group element as input, Fk must
be of the form:

Fk(m) = σk
(
fk(m)

)
for some efficiently computable function fk : {0, 1}�k → Z/nkZ. Then, let S =
Fk({0, 1}�k) be the image of Fk. In the terminology of Shoup [18], the algorithm
fk ◦ Ik is a generic group algorithm for Z/nkZ on {0, 1}sk that computes the
discrete logarithm σ−1

k (g) of any element g ∈ S with overwhelming probability
in poly(νk) steps, regardless of the choice of the bijection σk. As a result, by
Shoup’s argument in op. cit., we must have #S = poly(νk): a contradiction.

This means that deterministic injective encodings from sets of superlogarith-
mic bit size must use the particular representation of individual group elements.
We conjecture that no probabilistic generic ω(log ν)-injective encoding exists ei-
ther, although this seems less easy to establish.

2.4 Injective Encodings to Elliptic Curves

For groups of points of arbitrary (even ordinary) elliptic curves over finite prime
fields, it is possible to construct �-injective encodings for much larger values �
than in the generic case. We describe one such construction here, which is more
or less folklore.

Let E be an elliptic curve over Fp (p ≥ 5) in short Weierstrass form, and �
an integer such that � ≤ (1/2 − ε) log2 p for some fixed constant ε ∈ (0, 1/2).
We define the encoding algorithm F : {0, 1}� → E(Fp) as follows (this encoding
is probabilistic: it is not a map). To compute F (m), pick a random integer x
in [0, p− 1] whose least significant � bits coincide with m. If there are points in

Injective Encodings to Elliptic Curves 207

E(Fp) of abscissa x mod p, return one of those (at most two) points; otherwise,
start over. The inversion algorithm I then simply maps a point (x, y) ∈ E(Fp)
to the bit string m formed by the � least significant bits of x.

To prove that this method works, it suffices to show that F terminates in
expected polynomial time on any input m. We obtain the following, more precise
result.

Theorem 1. If p is large enough, the expected number of iterations in F on
any input is less than 3.

Proof. Let P (m) be the success probability of F on input m after a single
iteration; in other words, P (m) is the probability that a random integer x in
[0, p− 1] whose least significant � bits coincide with m is the abscissa of a point
in E(Fp). Since for each such x there are at most two corresponding points in
E(Fp), we have:

P (m) ≥ 1

2
· #{(x, y) ∈ E(Fp) | lsb�(x) = m}
#{x ∈ [0, p− 1] | lsb�(x) = m} (1)

where lsb�(x) denotes the bit string formed by the � least significant bits of x.
Clearly we have

#{x ∈ [0, p− 1] | lsb�(x) = m} ≤ 2−� · p.
On the other hand, the value #{(x, y) ∈ E(Fp) | lsb�(x) = m} can be estimated
as in [9, §6]. It is the number of Fp-points (x, y) of E such that x/p is in a certain
interval of R/Z of length ≥ 2−� ·(1−2/p) (because x can be of the form m+2� ·r
at least for any r ∈ [0, �p/2��−1]). But the values x/p in R/Z for (x, y) ∈ E(Fp)
are close to equidistributed. More precisely, we know from Bombieri’s bound on
character sums [3] that for any nontrivial additive character ψ of Fp, we have:

T (ψ) =

∣∣∣∣∣ ∑
(x,y)∈E(Fp)\{∞}

ψ(x)

∣∣∣∣∣ ≤ 4
√
p. (2)

As a result, the (1-dimensional) Erdős–Turán–Koksma inequality [6, Th. 1.21]
gives, for any interval I ⊂ R/Z of length L and any positive integer H < p:∣∣∣∣∣#{(x, y) ∈ E(Fp) \ {∞} | x

p ∈ I}
N

− L

∣∣∣∣∣ ≤ 3

H + 1
+

3

N

H∑
h=1

T (ψh)

h

where ψh is the additive character x ,→ e2iπhx/p and N = #E(Fp)\{∞}. Setting
H =

√
p− 1, we get, in view of (2):

#{(x, y) ∈ E(Fp) \ {∞} | x
p
∈ I} ≥ L ·N − 3N√

p
− 3 · 4√p log√p

≥ L · p− 2L
√
p− 3

√
p− 6− 6

√
p log p

≥ L · p− 12
√
p log p

208 P.-A. Fouque, A. Joux, and M. Tibouchi

since |N − p| ≤ 2
√
p by the Hasse bound. Plugging this estimate back into (1),

we finally obtain:

P (m) ≥ 1

2
· 2

−�(1− 2/p)p− 12
√
p log p

2−� · p =
1

2
− 1

p
− 6 log p

pε

since � ≤ (1/2 − ε) log2 p. Hence, the expected number of iteration in F is
1/P (m) ≤ 3 for large enough p as required. ��

Thus, we can construct �-injective encodings to elliptic curves over prime fields
for � = (1/2− ε)ν: this is much better than the logarithmic bound we get in the
generic case, but this still falls short of optimality by a constant factor greater
than 2. It is conceivable that the same algorithm does in fact work with a larger
� still, possibly as large as (1− ε)ν or even ν − logO(1) ν; we doubt that current
results on the distribution of points on elliptic curves are sufficient to prove that
the algorithm terminates on all inputs on those cases, however (though it might
be possible to bound its complexity on average over all inputs m).

The only injective encoding to ordinary elliptic curves in the literature achiev-
ing a better bound is, to our knowledge, the one proposed by Farashahi in [8].
It applies to Hessian curves (i.e. elliptic curves with a rational point of order 3)
over fields Fq with q ≡ 2 (mod 3), and achieves � = ν − 1, a single bit short
of optimal. In the next sections, we construct a similar deterministic injective
encoding to all ordinary elliptic curves over fields Fq with q ≡ 3 (mod 4) with
group order divisible by 4, also achieving � = ν − 1.

3 Our New Elliptic Curve Encoding

3.1 Main Construction

As mentioned in the introduction, we now construct a new injective encoding for
a large family of elliptic curves that are covered by certain hyperelliptic curves
of genus 2.

More precisely, fix some finite field Fq with q ≡ 3 (mod 4), and constants
c ∈ Fq \ {−1, 0, 1}, δ = ±1. We consider the following hyperelliptic curve of
genus 2:

Hδ
c : y

2 = f(x) = δx5 +

(
c2 +

1

c2

)
· x3 + δx. (3)

The main result of this paper can then be stated as follows.

Theorem 2. The following properties hold.

1. In addition to the hyperelliptic involution τ : (x, y) ,→ (x,−y), Hδ
c admits an

additional involution σ defined over Fq and given by σ(x, y) = (1/x, y/x3).

Injective Encodings to Elliptic Curves 209

2. The quotient curve Hδ
c /〈σ〉 is an elliptic curve isomorphic to:

Eδ
c : y

2 = x3 − 4δx2 + δ(c+ δ/c)2x. (4)

The quotient map G : Hδ
c → Eδ

c commutes with hyperelliptic involutions, in
the sense that if we denote by τ ′ the involution of Eδ

c given by (x, y) ,→
(x,−y), we have G ◦ τ = τ ′ ◦G.

3. There is a well-defined map F : Fq → Hδ
c (Fq) given by

F (t) =

(
χq(f(t)) · t, χq

(
ct+ δt3/c

)√
χq(f(t)) · f(t)

)
, (5)

where χq(·) is the quadratic character of F∗
q (extended by zero to all of Fq)

and
√· is the usual square root on the squares in Fq (namely exponentiation

by (q + 1)/4). This map F satisfies, for all t ∈ F∗
q:

F (1/t) = σ
(
F (t)
)

and F (−t) = τ
(
F (t)
)
.

4. Fix I ⊂ Fq a subset of Fq with (q−1)/2 elements such that I∩(−I) = ∅ and
−1 	∈ I, and let I0 be the set obtained from I by removing all elements of the
form 1−t

1+t for t a root of f , and adding 0 and 1. Then, the restriction to I0 of

the map Finj : u ,→ G
(
F
(
1−u
1+u

))
is injective, and can be computed very effi-

ciently as can its inverse (computing either of them costs one exponentiation
in the base field and a few multiplications and divisions).

Proof. The first claim is clear. To prove the second claim, the idea is to write
the equation of Hδ

c in terms of a rational function that transforms in a simple
way under σ, such as t = 1+x

1−x , which satisfies σ∗t = −t. Concretely, we observe
that (when t is regarded as an indeterminate over Fq):

(1 + t)6f

(
1− t

1 + t

)
= δ(1 − t)5(1 + t) + ω(1− t3)(1 + t)3 + δ(1− t)(1 + t)5

= −(2δ + ω)t6 − (10δ − 3ω)t4 + (10δ − 3ω)t2 + (2δ + ω).

where ω = c2+1/c2. From this relation, it is easily verified that Hδ
c is isomorphic

to the curve:

H ′ : v2 = −(2δ + ω)t6 − (10δ − 3ω)t4 + (10δ − 3ω)t2 + (2δ + ω),

a pair of mutually inverse rational maps between Hδ
c and H ′ being given by:

Hδ
c −→ H ′

(x, y) ,−→
(
1− x

1 + x
, y
(2

1 + x

)3)
;(

1− t

1 + t
,

v

(1 + t)3

)
←− � (t, v).

210 P.-A. Fouque, A. Joux, and M. Tibouchi

Moreover, the involution σ on Hδ
c corresponds, under this isomorphism, to the

involution σ′ : (x, y) ,→ (−x, y) of H ′, and hence Hδ
c /〈σ〉 ∼= H ′/〈σ′〉 is isomorphic

to:

E′ : v2 = h(u) = −(2δ + ω)u3 − (10δ − 3ω)u2 + (10δ − 3ω)u+ (2δ + ω).

Now, since h(1−u) = (2δ+ω)x3−16δx2+16δx, we see by applying the change of
coordinates (u, v) ,→ (1− u, v) and then the scaling (u, v) ,→ ((2δ+ω)u/4, (2δ+

ω)v/8
)
that E′ is itself isomorphic to

Eδ
c : y

2 = x3 − 4δx2 + δ(2δ + ω)x

as required (this is the same as (4) since 2δ+ ω = (c+ δ/c)2). Furthermore, the
discriminant of this curve is:

Δ = 16(c+ δ/c)4 · (16− 4δ(c+ δ/c)2
)
= −64δ(c+ δ/c)4 · (c− δ/c)2,

which is necessarily non-zero since c 	= ±1 and −1 is a non quadratic residue.
It follows that Eδ

c is indeed an elliptic curve. Finally, each of the maps in the
diagram Hδ

c → H ′ → E′ → Eδ
c commutes with hyperelliptic involutions, so the

compose map G does as well.
We now turn to the third claim. For any t ∈ Fq, χq(f(t)) · f(t) has a square

image under χq so it is itself a square, and thus equation (5) correctly defines
F (t) = (x, y) as a point in F2

q. We have to check that it lies in Hδ
c (Fq). Suppose

first that f(t) 	= 0. In that case, we cannot have ct+ δt3/c = 0 since:

(ct+ δt3/c) · (ct2 + δ/c) = c2t3 + δt+ δt5 + t3/c2 = f(t) 	= 0.

Therefore, the first factor in y is ±1, and thus:

y2 = χq(f(t)) · f(t) = f (χq(f(t)) · t) = f(x)

so that F (t) ∈ Hδ
c (Fq) as required. On the other hand, if f(t) = 0, we get

x = y = 0 and again F (t) ∈ Hδ
c (Fq).

It remains to show that F (1/t) = σ
(
F (t)
)
and F (−t) = τ

(
F (t)
)
for all t 	= 0.

The latter is easy:

F (−t) =
(
χq(f(−t)) · (−t), χq

(−ct− δt3/c
)√

χq(f(−t)) · f(−t)
)

=

(
χq(f(t)) · t, −χq

(
ct+ δt3/c

)√
χq(f(t)) · f(t)

)
= τ
(
F (t)
)
.

To obtain the former, note that f(1/t) = f(t)/t6. In particular, f(t) and f(1/t)
have the same quadratic residue. Moreover, if we let α(t) = χq

(
ct+ δt3/c

)
, we

have:

α(t) · α(1/t) = χq

(
(ct+ δt3/c) · (ct2 + δ/c)/t3

)
= χq

(
f(t)/t3

)
.

Injective Encodings to Elliptic Curves 211

Now write F (t) = (x, y) and F (1/t) = (x′, y′). We have:

x′ = χq(f(t)) · 1
t
=

1

x

y′ = α(1/t) ·
√
χq(f(t))

f(t)

t6

= α(1/t) ·
√
χq(f(t)) f(t) · 1

t3
χq

(
1/t3
)

= α(1/t) · α(t)y · χq

(
t3
)

t3
= y · χq(f(t))

1

t3
=

y

x3
,

hence F (1/t) = σ
(
F (t)
)
as required.

Regarding the fourth assertion of the theorem, the injectivity claim is a direct
consequence of Lemma 1 below. The efficiency claim for Finj follows from the
fact that F can be computed at the cost of one exponentiation in the base field,
some quadratic character evaluations1 and a few multiplications, while G is the
simple rational function described explicitly above. Similarly, computing G−1

costs one square root to lift a point from E′(Fq) back to H ′(Fq) and a few
arithmetic operations for the isomorphisms Eδ

c
∼= E′ and H ′ ∼= Hδ

c , whereas
the inverse of F (outside of the Weierstrass points of Hδ

c) admits the following
simple expression:

F−1(x, y) = α(x) · χq(y) · x.
Indeed, if (x, y) = F (t), we have α(x)χq(y) = α(x)α(t) = χq(xt) ·χq

(
c+ δx2/c

)2
= χq(xt) since t

2 = x2. Hence the claim on the efficiency of F−1
inj . ��

Lemma 1. Let S ⊂ Fq be any subset of Fq containing no root of f , and such
that S ∩S−1 = ∅ (i.e. for all x ∈ S, 1/x 	∈ S). Then, the restriction of G ◦F to
S is injective. Moreover, the result still holds if we replace S by S ∪ {0, 1}.
Proof. Consider t, t′ ∈ S such that G

(
F (t)
)
= G
(
F (t′)
)
. We must have either

F (t) = F (t′) or F (t) = σ
(
F (t′)
)
= F (1/t′).

In the latter case, we see in particular that the first coordinates of F (t) and
F (1/t′) coincide, so that t = ±1/t′. By definition of S, t = 1/t′ is excluded, so
we must have t = −1/t′. Now since G commutes with hyperelliptic involutions,
we can write:

G
(
F (t′)
)
= G
(
F (−1/t′)

)
= G
(
τF (1/t′)

)
= τ ′G

(
σF (t′)

)
= τ ′G

(
F (t′)
)
.

Therefore, G
(
F (t′)
)
is a Weierstrass point on Eδ

c . Given the expression of G,
this implies that F (t′) is a Weierstrass point on Hδ

c , and hence that t′ is a root
of f , which is a contradiction.

If on the other hand F (t) = F (t′), we see in particular by comparing the first
coordinates of F (t) and F (t′) that t′ = ±t. But since S contains no root of f ,
F (t) is not a Weierstrass point, so it is not equal to its image F (−t) under the
1 In fact, using the techniques from [10], they can be optimized away.

212 P.-A. Fouque, A. Joux, and M. Tibouchi

hyperelliptic involution τ . Hence t′ = −t is impossible, and we must have t = t′

as required.
Turning to the second claim, we compute the images of 0 and 1 under G ◦ F .

We have G ◦ F (0) = G
(
(0, 0)
)
= (0, 0) ∈ Eδ

c (Fq), and similarly, since f(1) =

(c+δ/c)2, we find that G◦F (1) = G
(
(1, c+δ/c)

)
=
(
(c+δ/c)2/4, (c+δ/c)3/8

) ∈
Eδ

c (Fq). In particular, these images are distinct. Moreover, it follows from the
above that for all t ∈ S, G

(
F (t)
)
is never a Weierstrass point on Eδ

c , and

hence is always distinct from G
(
F (0)
)
. Finally, if there was some t ∈ S such

that G
(
F (t)
)
= G
(
F (1)
)
, then, using the same argument as above, we would

have t = ±1 (or 1/t = ±1, which is equivalent), and this is impossible since
S ∩ S−1 = ∅. ��

3.2 Description of the Target Curves

The result of Theorem 2 is an injective encoding Finj to any elliptic curve of
the form Eδ

c . Its range I0 is of cardinality exactly (q − 1)/2 + δ. Indeed, we can
write f(x) for x 	= 0 as x3 · (cx2 + δ/c) · (c/x2 + δ/c). When δ = +1, none of
the factors can vanish for x 	= 0, so 0 is the only root of f . Therefore, the range
I0 of Finj is of cardinality (q + 1)/2; when q is prime, we can take the interval
[0, (q − 1)/2]. On the other hand, when δ = −1, the roots of f are 0,±c,±1/c,
and I0 is then of cardinality (q+1)/2− 2 = (q− 3)/2; when q is prime, it is the
interval [0, (q − 1)/2] from which one has removed ±t,±1/t where t = 1−c

1+c .
In both cases, we see that the size of the set from which we encode is a single

bit less than the cardinality #Eδ
c (Fq) = q + O(

√
q) of the target group. Hence,

we do get a deterministic (ν − 1)-injective encoding as stated.
It is desirable to have a simple description of the class of curves Eδ

c for which
we obtain this encoding. It is given by the following theorem.

Theorem 3. Denoting Eδ
c by E+

c or E−
c for δ = 1 and δ = −1 respectively, the

following hold:

1. The point (0, 0) is the only rational point of exact order 2 on E+
c and it is

divisible by 2. In particular, the rational 4-torsion subgroup of E+
c is equal

to Z/4Z.
2. All three points of exact order 2 on E−

c are rational, but (0, 0) is not divisible
by 2. In particular, E−

c has full rational 2-torsion, and the rational 4-torsion
of is equal to (Z/2Z)2 or Z/2Z × Z/4Z, depending on whether one of the
other points of order 2 is divisible by 2.

3. Any ordinary elliptic curve over Fq with rational 4-torsion equal to Z/4Z is
isomorphic to E+

c or to its twist for some c.
4. Any ordinary elliptic curve over Fq with full rational 2-torsion is isomorphic

to E−
c or to its twist for some c.

Proof. Statements 1 and 2. The curve Eδ
c obviously has a rational point of exact

order 2, namely (0, 0). When δ = +1, it is the only one; indeed, the trinomial
x2−4x+(c+1/c)2 has discriminant 16−4(c+1/c)2 = −4(c−1/c)2 which is a non
quadratic residue. On the other hand, if δ = −1, all three points of exact order 2

Injective Encodings to Elliptic Curves 213

are rational, since x2+4x−(c−1/c)2 has discriminant 16+4(c−1/c)2 = 4(c+1/c)2

which is a square.
Furthermore, there is a rational point P such that [2]P = (0, 0) if and only

if δ = +1. To see that, it suffices to show that there is a line through (0, 0)
which is tangent to the curve, since the intersection point will clearly satisfy the
requirement. Now if y = tx is a line through (0, 0), the other intersection points
with the curve have their abscissa given by t2x = x2 − 4δx + δ(c + δ/c)2, and
the line is tangent when the discriminant of this quadratic equation vanishes,
i.e. when t satisfies:

(4δ + t2)2 = 4δ

(
c+

δ

c

)2
.

There is no solution when δ = −1 since the right-hand side is not square. On
the other hand, when δ = +1, this is equivalent to:

t2 = −4± 2

(
c+

1

c

)
and this equation has a solution for one of the two possible signs, because

(−4+

2(c + 1/c)
) · (−4 − 2(c + 1/c)

)
= −4(c − 1/c)2 is a non quadratic residue, and

hence exactly one of the factors must be square.
Thus, in all cases, we see that the curve admits a rational subgroup of order

4. In fact, the rational 4-torsion is of order 4 or 8: namely Z/4Z when δ = +1,
and (Z/2Z)2 or Z/2Z × Z/4Z when δ = −1 depending on whether one of the
points of order 2 other than (0, 0) is divisible by two. This completes the proof
of statements 1 and 2.

Statement 3. Conversely, we now prove that, up to a quadratic twist, any ordinary
elliptic curve over Fq with a point of order 4 and only one point of order 2 is
isomorphic to E+

c for some c. Indeed, let E be any such elliptic curve. We can
put E in Weierstrass form, translate so that the point of order 2 is (0, 0), and
scale the coordinates to get an equation of the form:

E : y2 = x3 ± 4x2 + ax

for some a ∈ Fq, with a 	= 0, 4 since the right-hand side must have no double
root. Note that the nontrivial quadratic twist of E has the same equation, only
with the sign of the coefficient of x2 reversed.

Since there is a single point of order 2, the discriminant 16−4a of the trinomial
x2± 4x+a must be a non quadratic residue. Hence, a− 4 is a square. Moreover,
(0, 0) is divisible by two: therefore, there exists a t such that the line of slope
t through (0, 0) is tangent to the curve. This t is such that the equation t2x =
x2 ± 4x+ a has a double root, so we must have (−t2 ± 4)2 − 4a = 0, hence a is
a square. And the discriminant of the trinomial c2 −√

a · c+ 1 is a− 4, so there
is a c ∈ Fq \ {0,±1} such that a = (c+1/c)2. This shows that E is either E+

c or
its quadratic twist as required.

214 P.-A. Fouque, A. Joux, and M. Tibouchi

Statement 4. Finally, consider any elliptic curve E over Fq with full rational
2-torsion. As above, we can put E in the form:

E : y2 = x3 ± 4x2 + ax (6)

for some a ∈ Fq with a 	= 0, 4, and since the right-hand side splits in linear
factors, 4 − a is a square. Assume for the moment that a is a non quadratic
residue, then E is isomorphic to either E−

c or its twist. Indeed, −a is then a
square, and the discriminant of the trinomial c2 −√−a · c− 1 is −a+4 which is
a square as well; hence, we can find c ∈ Fq \ {0,±1} such that a = −(c− 1/c)2,
as required.

To complete the proof, we need to show that we can always find a Weierstrass
equation (6) for E such that a is a non quadratic residue. To see this, first observe
that if we start from a Weierstrass equation of the form

y2 = x(x − λ)(x − μ) (7)

for E (which certainly exists) and scale the coefficients to get (6), the scaling
factor s satisfies λ+ μ = ±4s2 and λμ = as4, so that:

a =
16λμ

(λ+ μ)2
.

Now clearly, starting from (7), we can translate the origin to one of the other
two points of order 2, and get one of the other two Weierstrass forms:

y2 = x′(x′ + λ)(x′ + λ− μ) or y2 = x′′(x′′ + μ)(x′′ + μ− λ).

These correspond to the canonical form (6) with the coefficient of x equal to:

a′ =
16(−λ)(−λ+ μ)

(−2λ+ μ)2
, resp. a′′ =

16(−μ)(−μ+ λ)

(−2μ+ λ)2
.

But at least one of a, a′ and a′′ must be a non quadratic residue, since:

χq(a · a′ · a′′) = χq(λμ · (−λ)(−λ+ μ) · (−μ)(−μ+ λ)) = −1.

This concludes the proof. ��

Note that elliptic curves with rational 4-torsion equal to Z/4Z are birational to
Edwards curves x2 + y2 = 1+ dx2y2 with non square d [2]. Bernstein and Lange
showed that these curves are quite interesting for computation and cryptography,
as they admit a complete addition law, and admit the fastest arithmetic known
to date. Similarly, curves with full rational 2-torsion are also isomorphic to curves
with fast arithmetic and unified addition laws, namely twisted Huff curves [13].
Together, they comprise all ordinary curves with order divisible by 4.

Injective Encodings to Elliptic Curves 215

3.3 Mapping to the Twist

The previous paragraph suggests that if E is an elliptic curve with order divisible
by 4, then we know an injective encoding to either E(Fq) itself or to its nontrivial
quadratic twist. But we can in fact do better and map to E(Fq) itself.

Indeed, it is classical (see e.g. [16] or [5, Ch. 14]) that Hδ
c does not only cover

the elliptic curve E′ : v2 = h(u) given by the quotient by σ (using the notations
of the proof of Theorem 2), but also v2 = u3h(1/u) given by the quotient by
στ . Moreover, we have u3h(1/u) = −h(u), so that Hδ

c /〈στ〉 is the nontrivial
quadratic twist of Eδ

c .
It is easy to adapt the construction of Theorem 2 to obtain a similar injective

function to Hδ
c /〈στ〉, and hence a (ν − 1)-injective encoding to the twists of the

curves Eδ
c . We conclude:

Theorem 4. Let E be an ordinary elliptic curve over a finite field Fq with q ≡ 3
(mod 4), such that 4 divides #E(Fq). Then there is an efficient, efficiently in-
vertible injective encoding to E(Fq) from an interval of cardinality q/2 + O(1)
(i.e. a (ν − 1)-injective encoding, in the terminology of §2.1). Both the encod-
ing and its inverse can be computed with one exponentiation in Fq and a few
multiplications and divisions.

In Appendix A, we give pseudocode for the encoding to and decoding from E+
c .

The other cases (viz. E−
c and the twists of E±

c) are treated similarly.

4 Conclusion

In this paper, we proposed an efficient injective encoding with almost optimally
large image for a new class of elliptic curves including important examples like
Edwards curves. The only previous construction in that direction was for Hessian
curves.

Note that, from a cryptographic perspective, this does not completely solve
the problem of constructing an encoding for ElGamal encryption, as the curves
we encode to have a small subgroup which can reveal information about the
message (i.e. ElGamal is one-way but not semantically secure in this setting).
This is similar to the situation of ElGamal in multiplicative groups F∗

p when p
is not a safe prime. Similarly, since Lindell’s UC commitment scheme works in
prime order groups, our construction is a priori not applicable to that setting.

However, we believe that the possibility of encoding messages as elliptic curve
points can be of sufficient interest to protocol designers that designing around
this cofactor limitation might be worthwhile.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

216 P.-A. Fouque, A. Joux, and M. Tibouchi

2. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer,
Heidelberg (2007)

3. Bombieri, E.: On exponential sums in finite fields. In: Les Tendances Géom. en
Algèbre et Théorie des Nombres, pp. 37–41. Éditions du CNRS (1966)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

5. Cassels, J., Flynn, E.: Prolegomena to a middlebrow arithmetic of curves of genus 2.
London Mathematical Society Lecture Note Series, vol. 230. Cambridge University
Press (1996)

6. Drmota, M., Tichy, R.F.: Sequences, discrepancies and applications. Springer
(1997)

7. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Farashahi, R.R.: Hashing into Hessian curves. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 278–289. Springer, Heidelberg (2011)

9. Farashahi, R.R., Fouque, P.-A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.:
Indifferentiable deterministic hashing to elliptic and hyperelliptic curves. Math.
Comp. 82, 491–512 (2013)

10. Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyper-
elliptic curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 265–277. Springer, Heidelberg (2010)

11. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

12. Joux, A., Vitse, V.: Cover and decomposition index calculus on elliptic curves made
practical. Application to a previously unreachable curve over Fp6 . In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 9–26. Springer,
Heidelberg (2012)

13. Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In:
Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX. LNCS, vol. 6197, pp.
234–250. Springer, Heidelberg (2010)

14. Lindell, Y.: Highly-efficient universally-composable commitments based on the
DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 446–466. Springer, Heidelberg (2011)

15. Maurer, U.M.: Abstract models of computation in cryptography. In: Smart, N.P.
(ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer,
Heidelberg (2005)

16. Paulhus, J.: Decomposing Jacobians of curves with extra automorphisms. Acta
Arith. 132(3), 231–244 (2008)

17. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS,
vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

18. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

Injective Encodings to Elliptic Curves 217

A Pseudocode for the Encoding to E+
c

We give formulas for computing the injective encoding to E+
c (Fq) both in short

Weierstrass form and in Edwards form. Fix a subset I0 ⊂ Fq\{−1} of cardinality
(q + 1)/2 such that I ∩ (−I) = {0}. We can for example pick I0 = [0, (q − 1)/2]
if q is prime.

ShortWeierstrass form. The image (x, y) ofu ∈ I0 is obtainedwith theEncodeE+
c

algorithmbelow,anddecoding incarriedoutwiththe inversealgorithmDecodeE+
c
.

1: function Encode
E+

c
(u)

2: t← (1− u)/(1 + u)
3: f ← t5 + (c2 + 1/c2) · t3 + t
4: ε← χq(f)
5: α← χq

(
ct+ t3/c

)
6: xH ← ε · t
7: yH ← α · √ε · f
8: uE′ ← (

1−xH
1+xH

)2
9: vE′ ← yH

(
2

1+xH

)3
10: x← (c+ 1/c)2 · (1− uE′)/4
11: y ← (c+ 1/c)2 · vE′/8
12: return (x, y)

1: function Decode
E+

c
(x, y)

2: uE′ ← 1− 4x/(c+ 1/c)2

3: vE′ ← 8y/(c+ 1/c)2

4: uH′ ← √uE′

5: xH ← 1−uH′
1+uH′

6: yH ← vE′
(1+uH′)3

7: α← χq

(
cxH + x3

H/c
)

8: t← α · χq(yH) · xH

9: u← (1− t)/(1 + t)
10: if u 	∈ I0 then
11: u← −u
12: return u

A number of optimizations of these algorithms are possible: for example, the
decoding function only uses the quadratic character of yH , so it is not necessary
to compute yH in full; similarly, one can speed up the first part of the encoding
algorithm by using the implementation techniques from [10] and noticing that
α = χq(c/t+ t/c). Such improvements, however, only marginally affect the run-
ning time, which is dominated in both cases by the square root evaluation, so
we chose to closely follow the steps of §3.1.
Edwards form. Clearly, E+

c and E+
−c are identical curves, so we may assume

without loss of generality that c is of the form 2s2. Then, consider the birational
transformation (X,Y) ,→ (x, y) given by:

x =

(
c+

1

c

)
1 + Y

1− Y
and

y

x
=
c− 1

sX
.

It maps E+
c to the curve given by the equation:(
c− 1

sX

)2
= x− 4 +

(
c+

1

c

)2
1

x

2
(c− 1)2

cX2
=

(
c+

1

c

)
·
(
1 + Y

1− Y
+

1− Y

1 + Y

)
− 4

(c− 1)2

X2
= (c2 + 1)

1 + Y 2

1− Y 2
− 2c =

(c− 1)2 + (c+ 1)2Y 2

1− Y 2

1− Y 2 = X2 ·
(
1 +

(
c+ 1

c− 1

)2
Y 2

)

218 P.-A. Fouque, A. Joux, and M. Tibouchi

which is exactly the Edwards curve Ed : X
2 + Y 2 = 1 + dX2Y 2 for:

d = −
(
c+ 1

c− 1

)2
.

Since we constrained c to be of the form 2s2, this shows that about half of all
Edwards curves Ed with non square d are isomorphic to some E+

c (the other half
being isomorphic to the twists of those).

We can easily encode to and decode from Ed(Fq) using the birational trans-
formation described above. This gives the following algorithms.

1: function EncodeEd
(u)

2: (x, y)← Encode
E+

c
(u)

3: X ← c−1
s
· x
y

4: Y ← x+c+1/c
x−c−1/c

5: return (X,Y)

1: function DecodeEd
(X,Y)

2: x← (c+ 1/c) · 1+Y
1−Y

3: y ← c−1
s
· x
X

4: u← Decode
E+

c
(x, y)

5: return u

Membership Encryption and Its Applications�

Fuchun Guo1, Yi Mu1, Willy Susilo1,��, and Vijay Varadharajan2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Wollongong, Australia
{fg278,ymu,wsusilo}@uow.edu.au

2 Information and Networked Systems Security Research
Department of Computing, Faculty of Science

Macquarie University, Sydney, Australia
vijay.varadharajan@mq.edu.au

Abstract. We propose a new encryption primitive called Membership
Encryption. Let P(G) be a privacy-preserving token on a group at-
tribute/identity G, such that given P(G) it is hard to know the at-
tributes in G. In this membership encryption, if an encryption takes
as input an attribute A and the token P(G), the decryption requires
holding the membership A ∈ G, i.e., A belongs to this group attribute.
Membership encryption is applicable in constructing membership proof
A ∈ P(G) with privacy preserving on group attribute and the member-
ship. Membership encryption can be also utilized to construct an effi-
cient two-round K-out-of-N oblivious transfer protocol. In this paper,
we construct a provably secure membership encryption where the group
token P(G) is constant-size with maximum number accountability on
attributes. Using our scheme, the proposed oblivious transfer protocol
exhibits the nice feature of O(1) communication cost for any K from re-
ceiver to sender, and O(N) communication cost from sender to receiver.

1 Introduction

Membership Proof. Proving that an attribute A belongs to a group attribute
G, denoted by group membership A ∈ G, is useful and non-trivial especially
when privacy protections are essential. Let P(O) denote privacy protection (e.g.
commitment) on the object O, such that given P(O) it is hard to know the object
O. The privacy-preserving membership proof falls into two different cases:

– P(A) ∈ G. The verifier knows the token P(A) and all attributes in G. The
prover wants to prove that the attribute in P(A) belongs to G without
leaking the real attribute A to the verifier. Assuming that each attribute is
an individual, this membership proof is towards privacy protection on the
involved individual. We found the technique called set membership proof
[11,8,6] is proposed for P(A) ∈ G.

� This work is supported by ARC Discovery Grant DP110101951.
�� W. Susilo is supported by ARC Future Fellowship FT0991397.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 219–234, 2013.
© Springer-Verlag Berlin Heidelberg 2013

220 F. Guo et al.

– A ∈ P(G). The verifier knows the attribute A and the token P(G). The
prover wants to prove that the group attribute in P(G) contains A without
leaking other attributes inG to the verifier. This membership proof is aiming
at protecting the privacy of non-involved individuals. We found the technique
called accumulator with witness [3,2,17,14,7,1] can be seen as a membership
proof for A ∈ P(G).

Membership proof is useful in those privacy-preserving applications (see
[11,8,6,3,2,17,14,7,1]), where P(O) instead of O is certified for privacy purpose,
and the prover wants to prove that the certified P(O) satisfies some membership.

Motivation. In this work, we extend the membership by proof to member-
ship by encryption. We are interested in exploring the notion of membership
encryption. Let G = {A1, A2, · · · , Ak} be a finite set of group attribute, and
P(G) denote the privacy-preserving group G. Following the membership proof
A ∈ P(G), the membership encryption A ∈ P(G) is defined as follows: when
the encryption takes as input A and P(G), the decryption requires holding the
membership A ∈ G.

We focus on the membership encryption A ∈ P(G) only as it can be naturally
transferred into the membership encryption P(A) ∈ G, when P(·) contains
only one attribute. For example, let G = {A1, A2}. To generate a membership
encryption P(A) ∈ {A1, A2}, we run membership encryption A1 ∈ P(A) and
A2 ∈ P(A) on the same message and R, where R = {r1, r2} and ri is the
randomness for Ai ∈ P(A) encryption. It is not hard to verify that this is
equivalent to the membership encryption P(A) ∈ G.

Encryption vs Proof. Membership encryption is more powerful compared
to membership proof in terms of three reasons. Firstly, a membership proof
A ∈ P(G) cannot be converted into a membership encryption, but a success-
ful decryption of membership encryption with A and P(G) as input naturally
implies the membership A ∈ P(G). Secondly, given a membership proof, the ver-
ifier might be able to compromise the privacy of P(G) to others by publishing
the membership proof A ∈ P(G). While the membership proof from member-
ship encryption is non-transferable. Finally, considering the scenario that Alice
would send a message to Bob if he can prove the membership A ∈ P(G). Us-
ing the membership proof, Bob needs to generate the proof first and then Alice
sends messages to Bob after checking the proof, which costs two separated steps.
Membership encryption combines the two steps into one, which improves the
communication efficiency.

Membership encryption is also useful in other applications. One of them is the
oblivious transfer protocol [19]. Suppose there are N messagesM1,M2, · · · ,MN ,
and a receiver wants to get part of them without leaking her/his choice to the
message owner (sender). Using the membership encryption, the receiver gen-
erates P(C) and sends it to sender, where C ⊆ {1, 2, · · · , N} is the receiver’s
choice. The sender then encrypts message Mi with the index i and P(C). If
i ∈ C, the receiver can decrypt the message Mi; otherwise i /∈ C, the receiver
will not be able to extract Mi. Suppose the number of choices is accountable

Membership Encryption and Its Applications 221

from P(C), we will obtain a two-round K-out-of-N protocol for any K from the
membership encryption A ∈ P(G).

Contributions. We propose a new encryption primitive called membership en-
cryption where the decryption satisfies the privacy-preserving group membership
A ∈ P(G). To be precise, in our membership encryption definition, P(G) is gen-
erated from the group attribute G and a secret token S. If the encryption takes
as input A and P(G), the decryption is successful if and only if the decryptor
knows (G,S) and A ∈ G is true.

We construct a provably secure membership encryption, which exhibits the
following nice features.

– The group token P(G) is constant-size and independent of the number of
attributes in G.

– The upper bound attribute number in P(G) is accountable.
– The ciphertext is constant-size and dependent on the length of security pa-

rameter only.

We show how to apply membership encryption in constructing a two-round K-
out-of-N oblivious transfer protocol OTK

N for any 1 ≤ K ≤ N . Our protocol sat-
isfies the security model defined in [10]. In our protocol, messages from receiver
to sender are the group token P(G) only and messages from sender to receiver
are N constant-size ciphertexts. Using our proposed scheme, the communica-
tion cost from receiver to sender is O(1) or constant-size, and communication
cost from sender to receiver is O(N) or linear in N . This is the first two-round
OTK

N protocol with the least communication cost compared to existing two-round
oblivious transfer protocols [16,18,10,9].

Roadmap. The rest of this paper is organized as follows. We give the definition
and security models of membership encryption in Section 2. Our construction is
proposed in Section 3 with the security proof in Section 4. We show how to apply
membership encryption to the construction of two-round K-out-of-N oblivious
transfer protocols in Section 5. In the final section, we conclude this paper.

2 Membership Encryption

2.1 Description of Membership Encryption

A membership encryption A ∈ P(G) with maximum number accountability on
group attribute consists of the following five algorithms:

Setup: Taking as input a security parameter 1λ, an integer n and all attributes
{A1, A2, · · · , An}, the setup algorithm generates the system parameter SP .
Here, n denotes the upper bound attribute number of group tokens.

GroupGen: Taking as input the system parameter SP and a group attribute
G = {A1, · · · , Ak} (1 ≤ k ≤ n), the group token generation algorithm
returns the token P(G) and the secret key S.

222 F. Guo et al.

Verify: Taking as input P(G) and an integer k, the verification algorithm re-
turns true if the attribute number in P(G) satisfying |P(G)| ≤ k; otherwise,
outputs false.

Encrypt: Taking as input the system parameter SP , an attribute A, a group
token P(G) and a messageM , the encryption algorithm returns a ciphertext
C of M . We define the ciphertext as C ← ME[A,P(G),M].

Decrypt: Taking as input the attribute A, the group attribute G, the secret
key S and the ciphertext C, the decryption algorithm returns the message
M or ⊥. We define the decryption as {M,⊥} ← MD[C,G,S].

Correctness: The membership encryption must satisfy that for any system pa-
rameter SP , group token (P(G),G,S) and ciphertext ME[A,P(G),M], if A ∈
G, we have MD[ME[A,P(G),M],G,S] = M ; Otherwise, A /∈ G, we have
MD[ME[A,P(G),M],G,S] =⊥ .

2.2 Security Models of Membership Encryption

Definition 1 (Message Security). A membership encryption captures the
message security if given a ciphertext generated with A and P(G), it is com-
putationally hard to know the encrypted message when

– The decryptor does not have the secret key S of P(G), or
– The attribute A does not satisfy the membership, i.e., A /∈ G.

We define two games to capture message security. The first game is about indis-
tinguishability against secret key and says that if the corresponding secret key
S is unknown, it is indistinguishable to decide the message in a ciphertext for
the corresponding token P(G) and any attribute A. The second game is about
indistinguishability against membership and says that it is indistinguishable to
decide the message in a ciphertext for any attribute A and any group token
P(G) if A /∈ G holds.

Game 1: Indistinguishability against Secret Key

– Setup: The challenger runs the Setup algorithm to generate the system
parameter SP , and sends it to the adversary.

– Phase 1: The adversary queries group tokens and decryption as follows.
• For a token query on group attribute Gi that is adaptively chosen by
the adversary, the challenger responds by generating (P(Gi),Si) and
sending P(Gi) to the adversary.

• For a decryption query on a ciphertext Ci for (A,P(Gi)) where P(Gi) is
generated by the challenger, if A /∈ G, the challenger returns ⊥ to the ad-
versary; otherwise, the challenger responds by decrypting the ciphertext
with Si, and sending the decryption result to the adversary.

Membership Encryption and Its Applications 223

– Challenge: The adversary gives the challenger one attribute A∗, one group
token P(G∗) and two messages M0,M1, where P(G∗) was generated in the
query phase. The challenger responds by randomly choosing a coin c ∈ {0, 1},
generating a ciphertext C∗ ← ME[A∗,P(G∗),Mc], and sending the challenge
ciphertext to the adversary.

– Phase 2: The adversary can continue the query the same as Phase 1 except
no decryption query on the challenge ciphertext C∗ for (A∗,P(G∗)).

– Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

We define the advantage of adversary as AdvI1 =
∣∣Pr[c′ = c]− 1/2

∣∣.
Definition 2. A membership encryption generated with a security parameter 1λ

is (t, qk, qd, ε)-secure against secret key if for all t-polynomial time adversaries
who make qk token key queries at most and qd decryption queries at most, we
have ε = AdvI1 is a negligible function of λ.

Game 2: Indistinguishability against Membership

– Setup: The challenger runs the Setup algorithm to generate the system
parameter SP , and sends it to the adversary.

– Challenge:The adversary gives the challenger one attribute A∗, P(G∗),G∗,
S and two messages M0,M1. The challenger first verifies that A /∈ P(G∗)
with G∗ and S. Then, the challenger responds by randomly choosing a coin
c ∈ {0, 1}, generating a ciphertext C∗ ← ME[A∗,P(G∗),Mc], and sending
the challenge ciphertext to the adversary.

– Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

We define the advantage of adversary as AdvI2 =
∣∣Pr[c′ = c]− 1/2

∣∣.
Definition 3. A membership encryption generated with a security parameter 1λ

is (t, ε)-secure against membership if for all t-polynomial time adversaries, we
have ε = AdvI2 is a negligible function of λ. We call the membership encryption
selectively secure [4] against membership if the adversary must output A∗ and
G∗ before the setup of system parameters.

Definition 4 (Privacy). A membership encryption preserves the privacy of
group attributes if given a group token P(G) and two group attributes G0 = {A1,
A2, · · · , Ak1} and G1 = {A′

1, A
′
2, · · · , A′

k2
}, it is computationally hard to decide

whether G = G0 or G = G1.

A secure membership encryption only guarantees the decryptor has the secret
key S and A belongs to G. To protect the privacy of group tokens, the mem-
bership encryption must capture the privacy property defined above. The game
playing of privacy is defined as follows.

Game 3: Privacy

– Setup: The challenger runs the Setup algorithm to generate the system
parameter SP , and sends it to the adversary.

224 F. Guo et al.

– Challenge: The adversary gives the challenger two group attributes G0 =
{A1, A2, · · · , Ak1} and G1 = {A′

1, A
′
2, · · · , A′

k2
}. The challenger responds by

randomly choosing a coin c ∈ {0, 1} and generating P(Gc) for Gc. Then,
the challenger sends P(Gc) to the adversary.

– Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

We define the advantage of adversary as AdvP =
∣∣Pr[c′ = c]− 1/2

∣∣.
Definition 5. A membership encryption generated with a security parameter
1λ preserves the privacy of group tokens with (t, ε) if for all t-polynomial time
adversaries, we have ε = AdvP is a negligible function of λ. We say it uncondi-
tionally preserves the privacy of group tokens if ε = 0 for any time t and SP is
generated by the adversary.

The properties of message security and privacy are sufficient for the definition of
membership encryption. We define the additional maximum number accountabil-
ity so as to apply it to constructing a flexible (K,N)-oblivious transfer protocol
for any K ≤ N .

Definition 6 (Maximum Number Accountability). A membership encryp-
tion captures the property of maximum number accountability, if it is computa-
tionally hard to generate a group token pair (P(G),S) for G with k attributes,
but the verification shows that |P(G)| < k.

Game 4: Maximum Number Accountability

– Challenge: The challenger runs the Setup algorithm to generate the system
parameter SP , and sends it to the adversary.

– Win: The adversary outputs (P(G∗),G∗,S) and wins the game if G∗ con-
tains k numbers of attributes but the verification on P(G∗) shows that it
contains less than k attributes.

We define the advantage of adversary as AdvA.

Definition 7. A membership encryption generated with a security parameter 1λ

is (t, ε)-secure with maximum number accountability if for all t-polynomial time
adversaries, we have ε = AdvA is a negligible function of λ.

3 Our Membership Encryption

3.1 Pairing Group

Our membership encryption can be built from any pairing group. Let GB be a
generator of pairing groups. Taking as input a security parameter 1λ, it outputs
a pairing group PG = (G, GT , e, p, g

′), where G,GT are two cyclic groups of
prime order p, g′ is a generator of G, and e : G × G → GT is the bilinear map.
The bilinear map e is a map with the following three properties:

– For all u, v ∈ G, a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

– e(g′, g′) is a generator of GT .
– It is efficient to compute the bilinear map e(u, v) for any u, v ∈ G.

Membership Encryption and Its Applications 225

3.2 The Scheme

Our group token generation is extended from the accumulator scheme in [17] with

two secret keys α and β. Let u ∈ G and u, uα, uα
2

, · · · , uαn

, uβα, uβα
2

, · · · , uβαn

be the components of system parameter. The group token P(G) forG = {A1, A2,
· · · , Ak} ∈ Zp is defined as

P(G) = (w1, w2, w3) =
(
uτ

∏k
i=1(α+Ai), uτβ

∏k
i=1(α+Ai), uτβα

n−k ∏k
i=1(α+Ai)

)
where S = τ ∈ Zp is randomly chosen, and w3 is the element for attribute

number verification. Suppose u
1

(α+A)(β+A) is also in the system parameters and r
is a randomness from Zp. Our approach for membership is described as follows:

– If A ∈ G, we have w2w
A
1 contains (α+A)(β +A) such that

e
((
w2w

A
1

)r
, u

1
(α+A)(β+A)

)
= e(u, u)r

∏
Ai∈G/A(α+Ai)

is computable from ur and the system parameter.

– Otherwise, A /∈ G, we have w2w
A
1 = uτ(β+A)

∏k
i=1(α+Ai) such that

e
(
(w2w

A
1)

r, u
1

(α+A)(β+A)
)
= e(u, u)r·

τ
∏

Ai∈G(α+Ai)

α+A

contains the inversion exponent 1
α+A , which cannot be computed from ur

and the system parameter.

We use the above two different results to encrypt messages so that the decryption
requires A ∈ G. The detailed construction modified from [15] with security
against chosen-plaintext attack (qd = 0 in Game 1) is described as follows.

Setup: Taking as input a security parameter 1λ, let n be the upper bound
attribute number in group token generation and let all attributes be A = {A1, A2,
· · · , An} ⊆ Zp, the setup algorithm works as follows:

– Choose a pairing group PG = (G, GT , e, p, g
′).

– Choose α, β, γ ∈ Zp and g, h ∈ G at random. Compute e(gγ , h) and gγα.

– Compute ui = hγα
i

and vi = hγβα
i

for all i = 0, 1, · · · , n.
– Randomly choose si from Zp and compute dAi for i = 1, 2, · · · , n as

dAi =
(
g

si
(α+Ai)(β+Ai) , h

si−1

α , hsi , hsiα, · · · , hsiα
n−2)

.

The system parameter SP is defined as

SP =
(
PG, u0, u1, u2, · · · , un, v0, v1, v2, · · · , vn, e(gγ , h), gγα, dA1 , dA2 , · · · , dAn

)
.

GroupGen: Taking as input the group attribute G = {A1, A2, · · · , Ak} ∈ Zp

for any k ≤ n, let F (x) =
∏k

i=1

(
x + Ai

)
and Fi be the coefficient of xi, the

226 F. Guo et al.

group token generation algorithm randomly chooses τ from Zp, sets S = τ and
computes P(G) as

P(G) = (w1, w2, w3) =
(
hτγF (α), hτγβF (α), hτγβα

n−kF (α)
)

=
(k∏

i=0

uFiτ
i ,

k∏
i=0

vFiτ
i ,

k∏
i=0

vFiτ
n−k+i

)
.

Verify: Taking as input P(G) and k, accept |P(G)| ≤ k if e(w2, un) = e(w3, uk).

Encrypt: Taking as input an attribute A ∈ A, a group token P(G) = (w1, w2,
w3), a message M ∈ GT and the system parameter, the encryption algorithm
works as follows:

– Verify that w2 = wβ
1 by checking e(w1, v1) = e(w2, v0).

– Randomly choose r from Zp. Compute the ciphertext on the message M as

C = (c1, c2, c3) =
((
w2w

A
1

)r
, (gγα)r, e(gγ , h)r ·M

)
.

Decrypt: Taking as input the ciphertext C, the secret key S, the attribute A,
the group attribute G and the system parameter, the decryption algorithm is
described as follows.

– Compute

c′1 = c
1
S
1 =
(
hrτγ(β+A)F (α)

) 1
τ

= hrγ(β+A)F (α).

– Compute the pairing

e1 = e
(
c′1, g

s
(α+A)(β+A)

)
= e(g, h)rsγ

F (α)
α+A .

– If A ∈ G, we have A is a root of F (x). Let F ′
i be the coefficient of xi in F (x)

x+A .
Compute the pairing

e2 = e
(
(h

s−1
α)F

′
0 ·

k−1∏
i=1

(hsα
i−1

)F
′
i , c2

)
= e(g, h)rsγ

F (α)
α+A−F ′

0rγ .

– Compute M by

c3 ·
(
e2e

−1
1

) 1
F ′
0 = e(gγ , h)rM · (e(g, h)−F ′

0rγ
) 1

F ′
0 =M.

3.3 Discussions

The above membership encryption is proposed for security against chosen-
plaintext attack (CPA), i.e., the adversary cannot make decryption queries. Let
ME [M, r] be our ciphertext on M encrypted with the randomness r. Using the
Fujisaki-Okamoto approach [13] in the random oracle model, we can easily extend

Membership Encryption and Its Applications 227

it to the security against chosen-ciphertext attack (CCA). Let H1 : {0, 1}∗ → Zp

and H2 : {0, 1}∗ → {0, 1}lm be cryptographic hash functions, where lm denotes
the length of messages. If ME [M, r] is secure against CPA, the following mem-
bership encryption construction for (A,P(G)) is secure against CCA

ME[σ, H1(A,P(G), σ,M)
]
, H2(σ)⊕M.

It is not hard to prove CCA security under our security model definition in Game
1 with the proof in [13]. We omit it here.

Our membership encryption captures the following nice features.

– Constant-size P(G). Our group token P(G) consists of three group elements
only independent of the number of attributes in G.

– Maximum number accountability. According to our setting, we have

P(G) = (w1, w2, w3) = (w1, w
β
1 , w

βαn−k

1)

for k numbers of attributes. Through the verification, the verifier knows
that the exponent of w3 contains αn−k. We have F (α) in w1 = hτγF (α) has

k degrees at most; otherwise, computing w3 needs hγβ, hγβα
1

, · · · , hγβαn′
for

n′ > n and they are not given in the system parameter.
– Constant-size ciphertext. Our ciphertext is constant-size and is composed of

two group elements from G and one group element from GT . The length of
ciphertext depends on the length of security parameter only.

4 Proof of Security

In this section, we prove the security of our membership encryption. Before the
security analysis, we introduce three hard problems adopted in our reduction
proof.

4.1 Hard Problems

Our membership encryption uses a pairing group as an ingredient and its security
relies on the hardness of three problems that are slightly modified from the
GDDHE problem [12], the a-MSE-DDH problem [15] and the DHE problem [7].
The new hard problems are (f, n)-GDDHE problem that is adopted to prove
message security against secret key (Game 1), (f, g, n)-aMSE-DDHE problem
which is used to prove message security against membership (Game 2), and
(f, n)-DHE problem that is used to prove the property of maximum number
accountability (Game 4). We notice that the intractability of these three hard
problems can be analysed in the generic group model by following the proof
in [5,12] for the original GDDHE problem. For completeness, we analyse these
problems based on the Theorem 2 in [12] in the full version of this paper.

Let g0, h0, w be random generators from G and a, γ be random integers from
Zp. The three hard problems are defined as follows.

228 F. Guo et al.

(f, n)-GDDHE Problem:
Instance: Any (2n+ 1)-degree polynomial function f(x) ∈ Zp[x].

g0, ga0 , ga
2

0 , · · · , ga
2n

0 , g
af(a)
0 g

af(a)θ
0 .

h0, ha0 , ha
2

0 , · · · , ha
2n

0

w, wa, wa2

, · · · , wa2n

, wθ waθ

T ∈ GT , which is either at random or equal to e(g0, h0)
f(a)θ

Target: Return b = 1 if T = e(g0, h0)
f(a)θ; otherwise, b = 0.

Definition 8. The (f, n)-GDDHE problem holds with (t, ε) if given an instance
generated from a security parameter 1λ and any (2n+1)-degree polynomial func-
tion f(x) ∈ Zp[x], the advantage of solving this problem in t polynomial time is
ε at most which is a negligible function of λ.

(f, g, n)-aMSE-DDH Problem:
Instance: Any (2n+ 1)-degree polynomial function f(x) ∈ Zp[x], and

any degree ≤ 2n polynomial function g(x) ∈ Zp[x], such that
gcd(f(x), g(x)) = 1 (or any nonzero number).

g0, ga0 , ga
2

0 , · · · , ga
2n

0 , g
θaf(a)
0

gγ0 , gγa0 , gγa
2

0 , · · · , gγa
2n+2

0

h0, ha0 , ha
2

0 , · · · , ha
2n

0 , h
θg(a)
0

hγ0 , hγa0 , hγa
2

0 , · · · , hγa
2n

0

T ∈ GT , which is either at random or equal to e(g0, h0)
f(a)θ

Target: Return b = 1 if T = e(g0, h0)
f(a)θ; otherwise, b = 0.

Definition 9. The (f, g, n)-aMSE-DDH problem holds with (t, ε) if given an in-
stance generated from a security parameter 1λ and any two co-prime polynomial
functions f(x), g(x) in Zp[x] with (2n+1) degrees and ≤ 2n degrees respectively,
the advantage of solving this problem in t polynomial time is ε at most which is
a negligible function of λ.

(f, n)-DHE Problem:

Instance: g0, ga0 , ga
2

0 , · · · , ga
n

0 .

Output: Return (f(x), g
f(a)
0), where f(x) ∈ Zp[x] is an

n′-degree polynomial function n′ > n.

Definition 10. The (f, n)-DHE problem holds with (t, ε) if given an instance
generated from a security parameter 1λ, the advantage of solving this problem in
t polynomial time is ε at most which is a negligible function of λ.

4.2 Security Proof

Theorem 1 (Indistinguishability against Secret Key). Suppose the (f, n)-
GDDHE problem is (t, ε)-hard, we can construct (t′, qk, ε′)-secure membership
encryption against secret key. Here, t′ = t − O(qknte) and ε′ = ε

qk
, where te

denotes the average time of an exponentiation in G.

The proof is given in the full version of this paper.

Membership Encryption and Its Applications 229

Theorem 2 (Indistinguishability against Membership). Suppose the
(f, g, n)-aMSE-DDH problem is (t, ε)-hard, we can construct (t′, qk, ε′) selectively
secure membership encryption against membership. Here, t′ = t − O(n2te) and
ε′ = ε, where te denotes the average time of an exponentiation in G.

We prove the security of membership in the selective security model in which
the adversary must output A∗ and G∗ before the setup of system parameter.
The security proof can be transformed into full security by correctly guessing
the challenge target, but it is only suitable for small n and G∗.

Proof. Suppose there exists an adversary who can break the membership en-
cryption against membership under selective security model. We construct an
algorithm B that solves the (f, g, n)-aMSE-DDH problem. B interacts with the
adversary as the follows.

Initialization. Let PG = (G, GT , e, p, g
′) be the pairing group and A =

{A1, A2, · · · , An} be all attributes. The adversary outputs (A∗,G∗) for chal-
lenge where A∗ /∈ G∗.

Setup. The algorithm B works as follows to simulate the system parameter.

– Let G∗ = {A∗
1, A

∗
2, · · · , A∗

k} be the attributes in G∗. Define the set G1 as
follows

G1 = {A1, A2, · · · , An}/{A∗
1, A

∗
2, · · · , A∗

k, A
∗}.

– Randomly choose β0, β1 from Zp. Let f(x) be a (2n+ 1)-degree polynomial
function and g(x) be a (k + 1)-degree polynomial function defined as

(x+A∗)
∏

Ai∈G1

(x+Ai) ·
∏
Ai∈A

(β0x+ β1 +Ai)
∣∣∣f(x)

g(x) = (β0x+ β1 +A∗)
∏

Ai∈G∗
(x+Ai),

such that gcd
(
f(x), g(x)

)
= 1 (or any nonzero number).

– Send f(x), g(x) to the (f, g, n)-aMSE-DDH problem generator. Let be chal-
lenge instance be

g0, ga0 , ga
2

0 , · · · , ga
2n

0 , g
θaf(a)
0

gγ0 , gγa0 , gγa
2

0 , · · · , gγa
2n+2

0

h0, ha0 , ha
2

0 , · · · , ha
2n

0 , h
θg(a)
0

hγ0 , hγa0 , hγa
2

0 , · · · , hγa
2n

0

T ∈ GT

– Set α, β, γ, g, h as

α = a, β = β0a+ β1, γ = γ, g = g
f(a)
0 , h = h0,

where a, γ are the randomness in the challenge instance.

230 F. Guo et al.

– Compute e(gγ , h), gγα, ui, vi, as

e(gγ , h) = e(g0, h0)
γf(a), gγα = g

af(a)γ
0 , ui = hγα

i

= hγa
i

0

vi = hγβα
i

= hβ0γa
i+1+β1γa

i

0 .

– Compute dAi as follows.

• Randomly choose s′i from Zp and set

si = (s′iγa+ 1)fAi(a),

where fAi(x) is defined as follows

fAi(x) =

⎧⎨
⎩

1
β1+A∗ (β0x+ β1 +A∗) if Ai = A∗,
1
Ai

(x+Ai) else if Ai ∈ G∗,
1 otherwise Ai ∈ G1.

We have

fAi(a)− 1

a
=

⎧⎨
⎩

β0

β1+A∗ if Ai = A∗,
1
Ai

else if Ai ∈ G∗,
0 otherwise Ai ∈ G1.

such that

si − 1

α
=

(s′iγa+ 1)fAi(a)− 1

a
= f ′

Ai
(a)

= γs′ifAi(a) +
fAi(a)− 1

a
= a2γa+ a1γ + a0,

where a2, a1, a0 are coefficients. Let f ′′
Ai
(x) be defined as

f ′′
Ai
(x) =

f(x)fAi(x)

(x+Ai)(β0x+ β1 +Ai)
.

We have f ′′
Ai
(x) is a polynomial function with 2n degrees at most.

• Compute dAi as(
g
s′iγaf

′′
Ai

(a)+f ′′
Ai

(a)

0 , h
f ′
Ai

(a)

0 , h
(s′iγa+1)fAi

(a)
0 , · · · , h(s

′
iγa+1)fAi

(a)an−2

0

)
.

According to the setting of the randomness si = (s′iγa + 1)fAi(a), we
have

dAi =
(
g
s′iγaf

′′
Ai

(a)+f ′′
Ai

(a)

0 , h
f ′
Ai

(a)

0 , h
(s′iγa+1)fAi

(a)

0 , · · · , h(s′iγa+1)fAi
(a)an−2

0

)

=
(
g

si
(α+Ai)(β+Ai) , h

si−1
α , hsi , · · · , hsiα

n−2
)
.

Membership Encryption and Its Applications 231

All elements are computable from the challenge instance and setting. B generates
the system parameter and sends it to the adversary.

Challenge.The adversary returns (A∗,P(G)∗,G∗,S∗,M0,M1) for challenge. Let
S = τ∗, P(G∗) = (w1, w2, w3) andG∗ = {A∗

1, A
∗
2, · · · , A∗

k}. The algorithm B ran-
domly chooses a coin c ∈ {0, 1}, and simulates the challenge ciphertext as follows

C = (c∗1, c
∗
2, c

∗
3) =
((
h
θg(a)
0

)τ∗
, g

θaf(a)
0 , T ·Mc

)
.

Let r = θ
γ . If T = e(g0, h0)

θf(a), we have

(w2w
A∗
1)r = (hτ

∗γ
∏k

i=1(α+A∗
i)(β+A∗))r = (h

τ∗γg(a)
0)

θ
γ =
(
h
θg(a)
0

)τ∗

(gγα)r = (g
γaf(a)
0)

θ
γ = g

θaf(a)
0

e(gγ , h)r = e(g
γf(a)
0 , h0)

θ
γ = e(g0, h0)

θf(a) = T.

Therefore, C = (c∗1, c
∗
2, c

∗
3) is a valid ciphertext on Mc for (A∗,P(G∗)). B sends

it to the adversary.

Win: The adversary outputs c′ ∈ {0, 1}, and the algorithm B outputs c′ as the
guess of T .

This completes the description of our simulation. If T = e(g0, h0)
θf(a), the

challenge ciphertext is valid and the adversary will output c′ = c with advantage
1/2 + ε; otherwise, T is universally random and the adversary’s advantage is
1/2. The simulation time is mainly dominated by the dA simulation, and each
dAi costs O(n) exponentiations. No abortion occurs during our simulation. We
therefore obtain the Theorem 2. �

Theorem 3 (Privacy). P(G) unconditionally preserves the privacy of all at-
tributes in G.

Proof. Let P(G) be a group token generated from G = {A1, A2, · · · , Ak1} and
S = τ . We have

P(G) = (w1, w2, w3) =
(
hτγ

∏k1
i=1(α+Ai), hτγβ

∏k1
i=1(α+Ai), hτβαn−k1

∏k1
i=1(α+Ai)

)
.

Since there exists G′ = {A′
1, A

′
2, · · · , A′

k2
} and τ ′ ∈ Zp satisfying

τ

k1∏
i=1

(α+Ai) = τ ′
k2∏
i=1

(α +A′
i),

we have P(G) can be also seen as a group token generated for G′ = {A′
1, A

′
2, · · · ,

A′
k2
} and τ ′. Thus, the privacy of all attributes in P(G) is unconditionally

preserved. This completes the proof and we obtain the Theorem 3. �

Theorem 4 (Maximum Number Accountability). Suppose the (f, n)-DHE
problem is hard, the group token P(G) is secure with maximum number account-
ability.

The proof is given in the full version of this paper.

232 F. Guo et al.

5 Oblivious Transfer from Membership Encryption

In this section, we show how to construct an efficient K-out-of-N oblivious trans-
fer protocol (OTK

N) from membership encryption. Our OTK
N protocol only requires

two rounds between receiver and sender. Using our construction, the OTK
N proto-

col exhibits the nice property of constant communication cost, where the receiver
sends constant-size messages to the sender independent of K and N .

Suppose the sender has messages M1,M2,M3, · · · ,MN for any N ≤ n, and
the receiver wants to receive messagesMi1 ,Mi2 , · · · ,MiK for any {i1, i2, · · · , iK}
⊆ {1, 2, · · · , N}. Let SP be the system parameter of membership encryption,
where all attributes are the indices, i.e. A = {1, 2, · · · , n}. Our OT protocol from
membership encryption depicted in Fig. 1 is described as follows.

Receiver Sender
Choices: i1, i2, · · · , iK Messages: M1,M2, · · · ,MN

G = {i1, i2, · · · , iK}
S = τ
P(G) ← GroupGen[S,G, SP]

P(G)−−−−−−−−−−−→
Verify that |P(G)| ≤ K
C1 = ME[1, P(G),M1]
C2 = ME[2, P(G),M2]

· · ·
CN = ME[N,P(G),MN]
C = (C1, C2, · · · , CN).

C←−−−−−−−−−−−
Mi1 = MD[Ci1 , G,S]
Mi2 = MD[Ci2 , G,S]

· · ·
MiK = MD[CiK ,G,S]

Fig. 1. K-Out-of-N Oblivious Transfer

– The receiver runs the GroupGen algorithm to generate P(G) on G = {i1, i2,
· · · , iK}, and sends P(G) to the sender.

– Upon receiving P(G) from the receiver, the sender verifies that |P(G)| ≤
K. If it is false, reject. Otherwise, runs the encryption algorithm Ci =
ME[i,P(G),Mi] for all i = 1, 2, · · · , N and sends all ciphertexts C = (C1, C2

, · · · , CN) to the receiver.
– Upon receiving all ciphertexts from the sender, the receiver runs the decryp-

tion algorithm MD[Ci,G,S] to get the message Mi for all i = i1, i2, · · · , iK .

Our OTK
N scheme preserves receiver’s privacy and protects sender’s messages

against malicious receivers under the security model definition in [10]. According

Membership Encryption and Its Applications 233

to the Theorem 3, given P(G), the sender cannot distinguish P(G) which is
generated from either G = {i1, i2, · · · , iK} or G = {i′1, i′2, · · · , i′K}. According
to the Theorems 2 and 4, the receiver can only obtain chosen messages Mj for
all j ∈ {i1, i2, · · · , iK}.

The system parameter SP in our OT protocol can be generated by the sender
or the trust third party for the universal application. In our OTK

N scheme, the
receiver sends the group token P(G) aggregated for all K choices and the sender
responds with N ciphertexts. The OTK

N protocol is composed of two rounds
only. Using our membership encryption, our group token is constant-size and is
independent of the number of choice K, and our ciphertext is also constant-size
and is dependent on the security parameter only. In Table 1, we compare the
communication cost of all two-round K-out-of-N oblivious transfer protocols
in the literature. It shows that OTK

N protocol from our membership encryption
requires the smallest communication cost.

Table 1. Communication cost of two-round K-out-of-N oblivious transfer

[16] [18,10,9] Ours
Messages from Receiver to Sender O(N) O(K) O(1)
Messages from Sender to Receiver O(N) O(N) O(N)

6 Conclusion

Protecting membership privacy is essential in many applications. Existing solu-
tions were based on membership proof for P(A) ∈ G and A ∈ P(G). In this
work, we extended the membership proof to membership encryption. We in-
troduced the notion of membership encryption, where if the encryption takes
as input an attribute A and a privacy-preserving group token P(G), successful
decryption must satisfy A ∈ G. We constructed a provably secure membership
encryption where the group token P(G) is constant-size and the maximum at-
tribute number is accountable. The ciphertext is also constant and is dependent
on security parameter only. We showed how to apply our encryption scheme
to the construction of two-round K-out-of-N oblivious transfer protocols OTK

N.
Using our membership encryption, the OTK

N protocol only requires O(1) com-
munication cost from receiver to sender, against the other existing two-round
oblivious transfer protocols.

Acknowledgement. We would like to thank the anonymous reviewers for their
helpful comments and suggestions.

References

1. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for
DDH groups and their application to attribute-based anonymous credential sys-
tems. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 295–308. Springer,
Heidelberg (2009)

234 F. Guo et al.

2. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997)

3. Benaloh, J.C., de Mare, M.: One-way accumulators: A decentralized alternative to
digital signatures (extended abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)

4. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005)

6. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

7. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

9. Chen, Y., Chou, J.S., Hou, X.W.: A novel k-out-of-n oblivious transfer protocols
based on bilinear pairings. IACR Cryptology ePrint Archive 2010, 27 (2010)

10. Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 172–183. Springer, Heidelberg (2005)

11. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

12. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts
and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp.
200–215. Springer, Heidelberg (2007)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

14. Guo, F., Mu, Y., Chen, Z.: Mutative identity-based signatures or dynamic creden-
tials without random oracles. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing,
C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 1–14. Springer, Heidelberg (2007)

15. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)

16. Mu, Y., Zhang, J., Varadharajan, V.: m out of n oblivious transfer. In: Batten,
L.M., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 395–405. Springer,
Heidelberg (2002)

17. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)

18. Ogata, W., Kurosawa, K.: Oblivious keyword search. J. Complexity 20(2-3),
356–371 (2004)

19. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive 2005, 187 (2005)

Security Proofs for Hash Tree Time-Stamping

Using Hash Functions with Small Output Size

Ahto Buldas1,2,3 and Risto Laanoja1,2,�

1 GuardTime AS, Tammsaare tee 60, 11316 Tallinn, Estonia
2 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

3 Cybernetica AS, Mealuse 2/1, 12618 Tallinn, Estonia

Abstract. The known security proofs for hash tree time-stamping as-
sume collision-resistance (CR). An asymptotically optimally tight proof

has the security loss formula t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
, where t′

δ′ is the time-
success ratio of a collision-finder, t

δ
is the ratio of a back-dating adversary

and C is the size of the hash tree created in every time unit. Practi-
cal schemes use 256-bit hash functions that are just 2128-secure because
of the birthday bound. For having a 280-secure time-stamping scheme,
we have C < 103 that is insufficient for global scale solutions. Due to
tightness bounds for CR, practically relevant security proofs must use
assumptions stronger than CR. We show that under the random oracle
(RO) assumption, the security loss is independent of C. We establish
a linear-preserving security reduction under the Pre-Image Awareness
(PrA) assumption. We present a new slightly stronger assumption SPrA
that leads to much tighter proofs. We also show that bounds on C are
necessary—based on any PrA/SPrA function, we construct a PrA/SPrA
function that is insecure for unbounded time-stamping.

1 Introduction

Hash tree (keyless) time-stamping was first introduced by Haber and Stornetta
[11] in order to eliminate secret-based cryptography and trusted third parties. In
their scheme, a collection ofN documents is hashed down to a single digest of few
dozen bytes that is then published in widely available media such as newspapers.
Merkle hash trees [14] enable to create compact certificates (of size logN) for
each of the N documents. Such certificates just consist of all sibling hash values
in the path from a document (a leaf of the tree) to the root of the tree. The
certificate is sufficient to re-compute the root hash value from the document
and can be used as a proof of membership. Haber and Stornetta drafted a large-
scale time-stamping scheme [1] where at every unit of time a large hash tree is
created co-operatively by numerous servers all over the world and the root value
is published in newspapers.

� This research was supported by the European Regional Development Fund through
the Estonian Center of Excellence in Computer Science, EXCS, and by Estonian
Research Council’s personal research grant PUT-2.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 235–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 A. Buldas and R. Laanoja

It might seem obvious that the security of a hash-then-publish time-stamping
scheme can be reduced to collision-resistance of the hash function. However, the
first correct security proof of such a scheme was published as late as in 2004 [6].
It turned out that the potential number N of time-stamps explicitly affects the
tightness of security proofs. The proof in [6] shows that if there is an adversary
with running time t that backdates a document with probability δ, then there

is a collision-findiner with running time t′ ≈ 2t and success probability δ′ ≈ δ2

N .
When measuring security in terms of time-success ratio [12] we have to use 2N ·
t
δ2 -collision resistant hash functions to have a t

δ -secure time-stamping scheme,

i.e. the hash function must be roughly 2N
δ times more secure than the time-

stamping system constructed from it. As N could be very large in considering
global-scale time-stamping, the security requirements for the hash function may
grow unreasonably large. Indeed, it is said in [6] that such a security proof is
practical only for hash functions with about 400-bit output.

The tightest known security proof [4] for hash tree time-stamping has the

security loss formula t′
δ′ ≈ 14

√
N t

δ1.5 , which is insufficient because the security
level it implies for systems that use 256-bit hash functions is not that one expects
today. In order to have a 280-secure system with the total capacity of N times-
tamps, we need n = log2N + 248 output bits. If n = 256, then N < 28 = 256,
which is clearly too small. Moreover, the proof of [4] is asymptotically optimally
tight, if the collision-resistance property is used as the security assumption. So,
the only way out is to use stronger (or incomparable) security assumptions for
hash functions. In this paper, we first show that if the hash function is assumed
to be a random oracle, the security loss does not depend on N . Next, we establish
a linear-preserving reduction that assumes the hash functions to be pre-image
aware (PrA) constructions from ideal components. We also present a new slightly
stronger than PrA security condition (SPrA) under which the security proof is
much tighter than all previous ones and is very close to the tightness in the ran-
dom oracle model. Finally, we show that the bounded capacity N is a necessary
assumption to prove the security of hash-tree time-stamping schemes under the
PrA/SPrA assumption. Based on arbitrary PrA/SPrA hash function, we con-
struct another PrA/SPrA hash function that is totally insecure for unbounded
time-stamping. This negativity result is a generalization of a somewhat weaker
oracle-separation based result [6] presented in Asiacrypt 2004 about the proofs
that use collision-resistance.

2 Preliminaries

2.1 Security Proofs and Their Tightness

The security of a cryptographic protocol (or a primitive) is measured by the
amount of resources (such as running time) needed for an adversary to break the
primitive. A protocol is said to be S-secure, if it can be broken by no adversaries
with less than S units of resources available. Considering that the running time t
and the success probability δ of the known practical attacks against the protocol

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 237

may vary, Luby [12] proposed the time-success ratio t
δ as a universal security

measure. This means that a protocol is S-secure, if the success probability of
any t-time adversary does not exceed t

S .
In a typical security proof for a protocol P built from a primitive Q, it is

shown that if Q is Sq-secure, then P is Sp-secure. Bellare and Rogaway [2,3]
first emphasized the importance of studying the tightness of security proofs
in practical applications. Informally, tightness shows how much security of the
primitive is transformed to the protocol. Numerically, we may express tightness
as the ratio Sp/Sq. The notion opposite to tightness is security loss.

Security proofs are often presented as reductions, i.e. we assume that we have
an adversary for the protocol P with running time t and success probability
δ and then construct an adversary for the primitive Q with running time t′

and success probability δ′. This means that for having a protocol that is secure
against adversaries with running time t and with success probability δ, we have
to use a t′

δ′ -secure primitive. The ratio t′
δ′ is a function of t and δ, but not always

the function of t
δ . For example, if t′

δ′ = c · t
δ2 , then there is no dependence of type

t′
δ′ = F

(
t
δ

)
. However, due to t ≥ 1, we have an inequality t′

δ′ ≤ c · (tδ)2.
2.2 Security Properties of Hash Functions

In this paper, we study the security properties of hash functions HP that use
some kind of ideal functionality P (random permutations, random functions,
ideal ciphers, etc.) as an oracle. For example, in case of the Merkle-Damg̊ard
hash functions, the compression function and the output transform are often
assumed to be ideal objects. In this section, we describe some of the properties
of hash functions, starting from the strongest ones.

Random- and Pseudorandom Oracles. By a fixed length (FIL-) random or-
acle R, we mean a function that is chosen randomly from the set of all functions

of type {0, 1}m → {0, 1}n. There are (2n)
2m

= 2n2
m

possible choices of R. By a
variable length (VIL-) random oracle V, we mean a function that is chosen ran-
domly from the set Ω of all functions of type {0, 1}∗ → {0, 1}n. The probability
distribution of V is defined so that for any fixed input length m, the restriction
of Vm to {0, 1}m is distributed like a FIL-random oracle.

By the random oracle heuristic we mean a security argument when an appli-
cation of a hash function (e.g. a time-stamping scheme, a signature scheme) is
proved to be secure in the so-called random oracle model, where the hash func-
tion is replaced with a VIL-random oracle. The random oracle heuristic was first
introduced by Bellare and Rogaway [2]. Although it was proved later by Canetti
et al [7] that the random oracle heuristic fails in certain theoretical cases, proofs
in the random oracle model are still considered as valuable security arguments,
especially if no better security proofs are known.

Definition 1 (PRO). We say that HP is a pseudo-random oracle (PRO) if
there is an efficient simulator SV, such that for every efficient distinguisher D,
the following difference is negligible:

238 A. Buldas and R. Laanoja

⎪⎪⎪⎪⎪⎪Pr [1 ← DHP ,P
]
− Pr
[
1 ← DV,SV

]⎪⎪⎪⎪⎪⎪ .

This notion is first studied by Maurer et al [13] and was adapted to hash functions
by Coron et al [9]. The most important practical implication of the pseudo-
random oracle property of HP is that any application (e.g. a time-stamping
scheme) that uses HP as a hash function is almost as secure as if a variable
length random oracle V is used instead of HP . This means that the random
oracle heuristics applies in case of the particular application, i.e. we can prove
the security of the application in the random oracle model and then replace the
oracle by a more realistic (but still ideal!) model HP of the hash function. Note
that the PRO-property is a very strong assumption and often we would like
to know if some lighter assumptions would also be sufficient for the security of
the application. For example, it was shown [9] that the commonly used Merkle-
Damg̊ard style hash functions do not satisfy the PRO property.

Pre-image Awareness. Informally, pre-image awareness of a (hash) function
H means, that if we first commit an output y and later come up with an input x,
such that y = H(x), then it is safe to conclude that we knew x before committing
y. This notion was first formalized by Dodis et al. [10] for hash functions HP

that are built using an ideal primitive P in a black box way. For HP being pre-
image aware, there has to be an efficient deterministic algorithm E (the so-called
extractor) which when given y and the list α of all previously made P -calls (by
the adversary), outputs x, such that HP (x) = y, or ⊥ if E was unable to find such
an x. The adversary tries to find x and y so that E(α, y) 	= x and y = HP (x).

To define pre-image awareness of HP in a precise way, we set up an experi-
ment Exp (see Figure 1), specified as a game which an attacker B is trying to
win. B is constrained to oracle access to P , via a wrapper oracle P, which records
all P -calls made by B as an advise string α. Likely, the extractor E is also acces-
sible through another wrapper oracle Ex, which uses global arrays Q (initially ⊥
everywhere) and V (initially blank). Q is used to record all input parameters to
E; V is used to store all successfully extracted values corresponding to E’s inputs.
The adversary B tries to output a value x such that HP (x) = y, Q[y] = 1 and
V[y] 	= x, i.e. E tried to invert y, but was either unsuccessful (V[y] = ⊥) or found
a different pre-image x′ 	= x (a collision for HP). As P- and Ex-calls are unit
cost, the running time of B does not depend on the running time of E.

Definition 2 (Pre-image Awareness). A function HP is S-secure pre-image
aware (PrA) if there is an efficient extractor E, so that for every t-time B:

Advpra
H,P,E(B) = Pr

[
1 ← Exppra

H,P,E,B

]
≤ t

S
. (1)

It is easy to see that pre-image awareness of HP implies collision-resistance of
HP . Hence, as there is the so-called birthday bound for the collision-resistance
which says that no function with n-bit output can be more than 2n/2-secure,
we conclude that no function with n-bit output can be more than 2n/2-secure

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 239

pre-image aware. The Pre-image awareness property alone is not sufficient for
proving the PRO property. However, together with some additional assumptions
this has been proved to be possible [10,8].

Exppra
H,P,E,B:

x← BP,Ex

y ← HP (x)
If Q[y] = 1 and V[y] 	= x return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle Ex(y):
Q[y]← 1
V[y]← E(y, α)
return V[y]

Fig. 1. Preimage awareness experiment and the wrapper oracles

Collision Resistance. Informally, the collision resistance of a hash function
HP means that it is infeasible for adversaries to find two different inputs x and
x′ that have the same hash value, i.e. HP (x) = HP (x′). This definition makes
sense only if the ideal primitive P contains some randomness, because for fixed
functions, there always exist collisions that can be “wired” into the adversary.

Definition 3 (Collision Resistance). A function HP is S-secure collision
resistant (CR) if for every adversary B with running time t:

Advcr
H,P (B) = Pr

[
x, x′ ← BP :x 	= x′, HP (x) = HP (x′)

] ≤ t

S
. (2)

Note that due to the so-called Birthday attack, functions with n-bit output can
only be 2

n
2 -secure collision resistant.

2.3 Hash-Tree Time-Stamping Schemes and Their Security

Hash trees were introduced by Merkle [14]. Let h: {0, 1}2n → {0, 1}n be a hash
function. By a hash-tree we mean a tree-shaped data structure that consists of
nodes each of which contains an n-bit hash value. Each node is either a leaf
which means it has no child nodes, or an internal node that has two child nodes
(the left- and the right child) whereas the hash value y of an internal node is
computed as a hash y = h(y0, y1), where y0 and y1 are the hash values of the left-
and the right child, respectively. There is one root node that is not a child of any
other node. If T is a hash tree with m leaves with hash values x1, . . . , xm and r
is the hash value of the root node, then we use the notation r = T(x1, . . . , xm).

Encoding the Leaves of a Hash Tree. Each node in a hash tree can be
naturally named by using finite bit-strings in the following way. The root node
is named by the empty string ��. If a node is named by a bit-string �, then its
left- and right child nodes are named by �0 and �1, respectively. The name � of a
node resembles an address of the node, considering that one starts the searching
process from the root node, and then step by step, chooses one of the child nodes
depending on the corresponding bit in �, i.e. 0 means “left” and 1 means “right”.

240 A. Buldas and R. Laanoja

Shape of a Hash Tree. Hash tree has a particular shape by which we mean
the set of all names of the leaf-nodes. For example a balanced complete tree
with four nodes (Fig. 2, left) has shape {00, 01, 10, 11}. If the root hash value
is denoted by r (instead of r��) and r� denotes the hash value of a node with
name �, then in this example, the relations between the nodes are the following:
r = h(r0, r1), r0 = h(r00, r01), and r1 = h(r10, r11). The shape {000, 001, 01, 1}
represents a totally unbalanced tree with four leaves (Fig. 2, right), with the
hash values being in the following relations: r = h(r0, r1), r0 = h(r00, r01), and
r00 = h(r000, r001). Note also that the shape is always a prefix-free code.

r

r0

r00 r01

r1

r10 r11

r

r0

r00

r000 r001

r01

r1

Fig. 2. A balanced tree (left) and an unbalanced tree (right)

Hash Chains. In order to prove that a hash value r� (where �1�2 . . . �m is the
binary representation of �) participated in the computation of the root hash
value r, it is sufficient to present all the sibling hash values of the nodes on the
unique path from r� to the root r. For example, in the balanced tree with four
leaves (Fig. 2, left), to prove that r01 belongs to the tree, we have to show the
sibling hash values r00 and r1, which enable a verifier to compute r0 = h(r00, r01)
and r = h(r0, r1). In general, we define a hash chain as follows:

Definition 4 (Hash-chain). A hash-link from x to r (where x, r ∈ {0, 1}n)
is a pair (s, b), where s ∈ {0, 1}n and b ∈ {0, 1}, such that either b = 0 and
r = h(x‖s), or b = 1 and r = h(s‖x). A hash-chain from x to r is a (possibly
empty) list c = ((s1, b1), . . . , (sm, bm)), such that either c = () and x = r; or
there is a sequence x0, x1, . . . , xm of hash values, such that x = x0, r = xm, and
(si, bi) is an hash-link from xi−1 to xi for every i ∈ {1, . . . ,m}. We denote by

x
c� r the proposition that c is a hash chain from x to r. Note that x

()� x for
every x ∈ {0, 1}n. By the shape �(c) of c we mean the m-bit string b1b2 . . . bm.

Hash-Tree Time-Stamping Schemes. The time-stamping procedure runs as
follows. During every time unit t (e.g. one second) the time-stamping server
receives a list Xt = (x1, . . . , xm) of requests (n-bit hash values) from clients,
computes the root hash value r(t) = T(x1, . . . , xm) of a hash tree T and publishes
r(t) in a public repository R = (r(1), r(2), . . . , r(t)) organized as an append-only
list. Each request xi is then provided with a hash chain ci (the time stamp for
xi) that proves the participance of xi in the computation of the root hash value

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 241

r(t). A request x ∈ Xt is said to precede another request x′ ∈ Xt′ if t < t′. The
requests of the same batch are considered simultaneous. In order to verify the
time stamp ci of a request xi, one computes the output hash value of ci (the last
hash value xm in the sequence) and checks whether xm = r.

Bounded, Unbounded and Shape-Compact Time-Stamping Schemes.
It was first mentioned by Buldas et al [6] that for proving the security of time-
stamping schemes, there must be restrictions on the shape �(c) of the hash chains
that are acceptable in time stamps. In general, we denote the set of allowed
shapes by S. If S is finite then there is always a binary tree T(S) such that for any
� ∈ S it contains a node with name �. For example, if S = {0, 000, 01, 1, 11, 100},
the smallest such binary tree (assuming that every non-leaf node has two chil-
dren) is depicted in Fig. 3. We say that a time-stamping scheme is unbounded,

.

0

.

000 .

01

1

.

100 .

11

Fig. 3. The smallest binary tree induced by S = {0, 000, 01, 1, 11, 100}

if S = {0, 1}∗. We say that a hash-tree time-stamping scheme is C-bounded
if |S | ≤ C. A C-bounded hash-tree time-stamping scheme is said to be shape-
compact if the tree T(S) induced by allowed shapes has no more than 2C vertices
and |� | ≤ 2 log2 C for every � ∈ S, where |� | denotes the bit length of �.

Security of Time-Stamping. Informally, we want that no efficient adversary
can back-date any request x, i.e. first publishing a hash value r, and only after
that generating a new “fresh” x (not pre-computed by the adversary), and a

hash chain c, so that x
c� r. To formalize the security condition, we use the

so-called entropy-based security condition [5] inspired by the following attack-
scenario with a two-stage adversary A = (A1, A2) cooperating with the server.
At the first stage A1 the adversary forces server to create a public repository
R of commitments. Note that there is no guarantee that the hash values in R

are created in the proper way, i.e. by using the hash tree. After that, the second
stage A2 of the adversary presents a high-entropy (unpredictable) x and a hash

chain c so that x
c� r for an r ∈ R. The unpredictability of x is crucial because

otherwise x could have been pre-computed (guessed) by A before r is published
and hence x could be in fact older than r and thereby not back-dated by A.

Hence, for defining the security of time-stamping schemes, the class of pos-
sible adversaries is restricted. Only unpredictable adversaries that produce un-
predictable x are considered, i.e. the output component x is assumed to be

242 A. Buldas and R. Laanoja

unpredictable even if the contents of R and all the internal computations of the
adversary (while computing R) are known. The original security definition from
[5] is somewhat inconvenient to use for exact security estimations, because it ex-
tensively uses the polynomial security model. In this paper, we slightly weaken
the adversary by assuming the so-called strong unpredictability. Intuitively, the
strong unpredictability means that x ∈ {0, 1}n is almost identically distributed,
i.e. its conditional min-entropy H∞[x | R, a] must be at least n− 1 bits, i.e. for
every input of A2 and for any possible value x0 of x, the probability of x = x0
is upper bounded by 1

2n−1 . For practical justification of such an assumption,
note that in practical applications, x is mostly a cryptographic hash of a (much)
longer document X that contains a considerable amount of new (fresh) informa-
tion. Cryptographic hash functions are assumed to be good entropy-extractors,
and hence the assumption of strong unpredictability is practically reasonable.

Definition 5 (Security against back-dating). A time-stamping scheme is
S-secure against back-dating if for every t-time strongly unpredictable (A1, A2):

Pr
[
(R, a)←A1, (x, c)←A2(R, a): x

c� R, �(c) ∈ S
]
≤ t

S
, (3)

where by x
c� R we mean that x

c� r for some r ∈ R, and a is an advice string
that contains possibly useful information that A1 stores for A2.

Existing Security Proofs and Their Tightness. We present the tightness
parameters of two known security proofs for hash-tree time-stamping schemes:
the first correct proof [6] that was presented in Asiacrypt 2004, and a tighter
proof [4] from ACISP 2010 that was also proved to be asymptotically optimally
tight. Both proofs assume the collision-resistance property of the hash function.
Both proofs apply only to N -bounded time-stamping schemes and their tight-
ness depends on the capacity N of the system. It was proved in [6] by using
oracle separation that collision-resistance is insufficient for proving the security
of unbounded time-stamping schemes. Both proofs are in the form of a reduc-
tion: a t-time backdating adversary with success probability δ is converted to a
t′-time collision-finding adversary with success probability δ′.

In Tab. 1 we present the parameters of these two security proofs. Closer
analysis shows that the parameter N used in these security proofs [6,4] can be
expressed by N = C · |R | in terms of this paper, where R is the hash reposi-
tory created by the first stage A1 of the back-dating adversary. As |R | is always
upper bounded by the running time t of the adversary, we have N ≤ C · t.
The third column of Tab. 1 presents the converted tightness formulae assuming
N ≈ Ct. The fourth column presents a formula for the required output size n of
the hash function, assuming that we want the time-stamping scheme to be S-
secure and that the hash function is secure near to the birthday barrier, i.e. n-bit
hash function is assumed to be 2n/2-secure. The last column presents the output
size in a particular case, where S = 280 (standard requirement for “commercial”

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 243

security), and C = 264, i.e. acceptable hash chains are assumed to be no longer
than 64 steps. Note that this does not mean that we assume a hash-tree with
264 nodes is built in every second! The exponent 64 is only a theoretical bound
for the length of a hash chain, which is quite realistic in a system of global scale
with a multi-level structure of servers all over the world that compute hash trees.

The required output size 312 is too large, because one would like to use smaller
hash functions such as SHA2-256 in time-stamping schemes. As the proof of
ACISP 2010 is optimally tight, we have no hope to construct tighter proofs
under the collision-resistance assumption. Schemes with smaller hash functions
can only be proved secure under assumptions stronger than collision-resistance.

Table 1. Tightness parameters of two security proofs

Proof Formula Output Size Formula n = n(C,S) n(264, 280)

Asiacrypt 2004 t′
δ′ ≈ 2C

(
t
δ

)2
n = 2 log2 C + 4 log2 S + 2 448

ACISP 2010 t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 C + 3 log2 S + 8 312

3 Security under RO and PrA Assumptions

Theorem 1. If h : {0, 1}2n → {0, 1}n is a random oracle, then the correspond-

ing (bounded or unbounded) hash-tree time-stamping schemes are 2
n−1
2 -secure.

Proof. Let A = (A1, A2) be a strongly unpredictable adversary with running
time t, as described in (3). Let t1, t2 denote the running times of A1 and A2,
respectively. Considering that (R, a) ← A1, let R1 ⊆ {0, 1}n be the set of all x-s
so that the h-calls performed by A1 induce a hash-chain from x to an r ∈ R. Note
that R ⊆ R1, as an empty hash-chain is always induced by any set of h-calls. We
assume without loss of generality that the advice string a contains R1. Because

of strong unpredictability of A, we have Pr [x ∈ R1] ≤ |R1|
2n−1 .

In case of x /∈ R1, in order to be successful, A2 has to make additional h-calls
so that a chain from x to r ∈ R is induced. A necessary condition that A2 has to
satisfy is that it has to find x′ = x′1‖x′2 so that x′1 /∈ R1 or x′2 /∈ R1 (this means
that A1 did not make h-calls with input x′), but h(x′) ∈ R1. The probability

of this condition does not exceed t2
|R1|
2n , hence, considering that |R1 | ≤ 2t1 and

t1, t2 ≥ 1, the overall success probability δ of A can be estimated as follows:

δ ≤ |R1 |
2n−1

+

(
1− |R1 |

2n−1

)
t2
|R1 |
2n

≤ 2t1
2n−1

+
t1t2
2n−1

≤ 3t1t2
2n−1

≤ (t1 + t2)
2

2n−1
=

t2

2n−1
.

Hence, as δ2 ≤ δ ≤ t2

2n−1 , we have t
δ ≥ 2

n−1
2 . ��

244 A. Buldas and R. Laanoja

Corollary 1. Hash-tree time-stamping schemes (bounded/non-bounded) are S-
secure in the RO model if they use hash functions with 2 log2 S + 1 output bits.

Theorem 2. If HP : {0, 1}2n → {0, 1}n is a hash-function built from an ideal
primitive P that is S-secure PrA, then the corresponding C-bounded shape-
compact hash-tree time-stamping schemes are S

2C -secure against strongly unpre-

dictable adversaries with running time t" 2n

C .

Proof. Due to the PrA assumption there exists an efficient extractor E. Let
AP = (AP

1 , A
P
2) be a strongly unpredictable back-dating adversary with running

time t" 2n/C and success probability δ.
We construct a PrA-adversary BP,Ex that first simulates (R, a) ← AP

1 so that
all P -calls of are executed through the P-oracle. After that, for every r ∈ R, the
adversary builds a hash-tree by using the Ex-oracle in the following way. It calls
z ← Ex(r) and if z = ⊥, then no more extractions are performed. If z 	= ⊥ (this
means r = HP (z)), then B assigns r0 = z1...n and r1 = zn+1...2n, i.e. r0 equals to
the first n bits of z and r1 equals to the last n bits of z. The same procedure is
then applied to r0 and r1, etc. until the whole hash-tree T(S) (induced by the set S
of allowed shapes) is filled with hash values. If the extractor fails in some branches
of the tree, the extraction procedure is stopped in this branch but is continued
in other branches. For example, in case S = {00, 01, 10, 11} the adversary tries
to extract (r0, r1) ← Ex(r), (r00, r01) ← Ex(r0), (r10, r11) ← Ex(r1). Due to the
shape-compactness, the Ex-oracle is called no more than C · |R | ≤ Ct times.

Finally, B simulates AP
2 so that all its P calls are executed through the P-

oracle. With probability δ we obtain a hash value x and a hash chain c such
that �(c) ∈ S and x

c� r for some r ∈ R. Due to the strong unpredictability of A
and Ct " 2n, the probability that x coincides with some of the extracted hash
values r� is upper bounded by 2Ct

2n−1 which is negligible. Hence, with probability
almost δ, we have a hash value x that is not in the extracted tree, and still there
is a hash chain c = {(c1, b1), (c2, b2), . . . , (cm, bm)} with output hash value r that
certainly is in the extracted tree. Let x0, x1, . . . , xm be the intermediate hash
values (outputs of hash links) as described in Def. 4. Let k be the smallest index
such that xk−1 is not in the extracted tree but xk is. For such k,{

HP(ck‖xk−1) = xk and Ex(xk) 	= (ck‖xk−1) if bk = 0 ;
HP(xk−1‖ck) = xk and Ex(xk) 	= (xk−1‖ck) if bk = 1 .

The adversary B outputs (ck‖xk−1) if bk = 0 or (xk−1‖ck) if bk = 1. Hence, an
adversary B with approximate running time t′ = Ct + t ≤ 2Ct wins the PrA
experiment with probability δ′ ≈ δ. Hence, t

δ ≥ t′
2Cδ′ ≥ S

2C . ��
Analysis. Tightness of security proofs under the CR, PrA, and RO assumptions
is compared in Tab. 2. In case of PrA, we assume that the hash function is about
2n/2-secure, which is a limit because PrA implies CR and the birthday barrier
applies. We see that even though PrA seems to be much stronger than CR, the
required output length is not much smaller. This is because the security loss is
linear in C and not in

√
C as in the case of the CR assumption.

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 245

Table 2. Tightness parameters of security proofs under different assumptions

Assumption Formula Output Size Formula n = n(C, S) n(264, 280)

CR t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 C + 3 log2 S + 8 312

PrA t′
δ′ ≈ 2C t

δ
n = 2(log2 C + log2 S + 1) 290

RO t
δ
≥ 2

n−1
2 n = 2 log2 S + 1 161

4 Strong Pre-image Awareness

By studying the proof of Theorem 2, we may see the following way to improve
the tightness of the proof. Why should we extract the whole tree T (S)? Maybe

we just extract the hash chain x
c� r instead. This would mean that we call the

Ex-oracle only 2 log2 C times instead of C ·|R | times. However, this is not allowed.
First, we do not know x before simulating A2 and second, after executing A2,
we have changed the string α in the wrapper oracle. If we extract the tree T (S)
after executing A2, then the contents of the tree (the hash values) depend on x
and we cannot apply the strong unpredictability argument. The probability that
x is in the tree may not be negligible any more. But, what if we still extract the
tree after the execution of A2 but use the same “old” α that was created after
the simulation of A1? The problem is that though we are able to execute the
extractor E directly with an old α, the results will not be saved in the arrays V
and Q and the adversary is unable to win the game for “technical reasons”.

This inspires a new stronger notion of PrA in which “old” advise strings α
can be used in those queries Ex(y) where y is created not later than α was
formed. So, we define a new Ext-oracle that always uses the “oldest” possible α.
For example, if we obtain x ← Ext(y) (where x = x1x2 and x1, x2 ∈ {0, 1}n)
for which the oracle uses α, and later we call Ext(x1), the same α is used for
extraction, because the oracle remembers that x1 was created by just “parsing”
x and it is thereby as old as x and the use of α is “legal”. If the ordinary Ex
oracle is replaced with the Ext-oracle, then we call the corresponding security
property strong pre-image awareness (SPrA). For the SPrA condition to make
sense for functions with variable input length, we use the notion of a parser. We
also assume a quite natural additional property of the extractor algorithm. We
use the notation α ⊆ α′ to mean that α is an initial segment of α′, i.e. α′ is
created from α by adding some extra pairs to the top of it.

Definition 6 (Natural extractor). An extractor E is natural, if α ⊆ α′ and
E(α, x) 	= E(α′, x) implies E(α, x) = ⊥.

Definition 7 (n-parser). By an n-parser Π, we mean any efficiently com-
putable deterministic (not necessarily invertible) function that converts a finite
bit-string x to a finite set Xx of n-bit strings.

246 A. Buldas and R. Laanoja

Expspra
H,P,E,Π,A:

x← AP,ExtΠ

y ← HP (x)
If Q[y] = 1 and V[y] 	= x
return 1,
else return 0

oracle P(m):
c← P (m)
α← α||(m, c)
return c

oracle ExtΠ(y):
if A[y] = ⊥ then A[y]← α
Q[y]← 1
V[y]← E(y, A[y])
if V[y] 	= ⊥ and Π(V [y]) =
{y1, . . . , ym} then for every i = 1 . . .m:

if A[yi] = ⊥ then A[yi]← A[y]
return V[y]

Fig. 4. Strong pre-image awareness experiment and the wrapper oracles

Definition 8 (Strong Pre-image Awareness). A function HP : {0, 1}∗ →
{0, 1}n is S-secure strongly pre-image aware (SPrA) if there is an efficient nat-
ural extractor E, so that for every n-parser Π and for every t-time A:

Advspra
H,P,E,Π(A) = Pr

[
1 ← Expspra

H,P,E,Π,A

]
≤ t

S
. (4)

It can be shown that random oracles are SPrA and the next theorem shows that
SPrA is a property the strength of which lies between RO and PrA.

Theorem 3. SPrA implies PrA.

Proof. Let HP be strongly pre-image aware with the corresponding natural ex-
tractor E and let B be an PrA-adversary. We define an SPrA-adversary A so
that it simulates B and its P- and Ex oracle calls, ret aining their results in
arrays α′, Q′ and V′ that A maintains itself. In parallel, A calls the real oracles P
and Ext that maintain the arrays Q and V. For B, the simulated oracles behave
exactly like P and Ex (Fig. 5). However, for some of the outputs y it might be

Expspra
H,P,E,Π,A:

x← AP,ExtΠ ≡
{
Initialize α′, V′ and Q′

x← BP′,Ex′

y ← HP (x)
If Q[y] = 1 and V[y] 	= x return 1,
else return 0

simulated P′(m):
call c← P(m)
α′ ← α′||(m, c)
return c

simulated Ex′(y):
Q′[y]← 1
V′[y]← E(y, α′)
call v ← ExtΠ(y)
return V′[y]

Fig. 5. Simulation of oracles by Expspra
H,P,E,Π,A

that E(α, y) = V[y] 	= V′[y] = E(α′, y) because the extractions are made using
different advise strings. But our construction guarantees that α ⊆ α′ and thus

V[y] 	= V′[y] =⇒ V[y] = ⊥ (5)

because E is natural. If B is successful, i.e. finds x with output y = HP (x), such
that Q′[y] = 1 and V′[y] 	= x, then also Q[y] = 1 and V[y] 	= x, because V[y] = x
implies V[y] 	= V′[y] which by (5) gives x = V[y] = ⊥, a contradiction. Hence,
Advpra

H,P,E(B) ≤ Advspra
H,P,E,Π(A). ��

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 247

Theorem 4. If HP : {0, 1}2n → {0, 1}n is a hash function with ideal primitive
P that is S-secure SPrA, then the corresponding C-bounded shape-compact hash-
tree time-stamping schemes are S

4 log2 C -secure against strongly unpredictable ad-

versaries with running time t" 2n

C .

Proof. Let E be an SPrA-extractor and AP = (AP
1 , A

P
2) be a strongly unpre-

dictable back-dating adversary with running time t" 2n/C and success δ. We
construct an SPrA-adversary BP,Ext which first simulates (R, a) ← A1 and then
calls Ext(r) for every r ∈ R. This step fixes the advice string α, thus the follow-
ing tree extraction will be independent of the computations of A2. After that,
B simulates (x, c) ← AP

2 (R, a) so that all P -calls of H are executed through the
P-oracle. Note that as Ct " 2n, the probability that x is in the extraction tree
T(S) is negligible. Finally, B uses the Ext-oracle to extract the hash values along
the hash chain c (there are at most 2 log2 C of them). The proof is exactly like
in the case of the PrA assumption, except we have a much smaller tree (i.e. a
chain instead of a tree). Hence, an adversary B with approximate running time

t′ ≈ t+ |R |+ 2 log2 C ≤ 2t+ 2 log2 C ≤ 4t log2 C

wins the SPrA game with probability δ′ ≈ δ. Hence, t
δ ≥ t′

4 log2 C·δ′ ≥ S
4 log2 C . ��

Tab. 3 summarizes the results. As we see, a seemingly minor and natural strength-
ening of PrA leads to much tighter security proofs for time-stamping schemes.

Table 3. Tightness parameters of security proofs under different assumptions

Assumption Formula Output Size Formula n = n(C, S) n(264, 280)

CR t′
δ′ ≈ 14

√
C
(
t
δ

)1.5
n = log2 N + 3 log2 S + 8 344

PrA t′
δ′ ≈ 2C t

δ
n = 2(log2 C + log2 S + 1) 290

SPrA t′
δ′ ≈ 4 log2 C

t
δ

n = 2(log2 log2 C + log2 S + 2) 176

RO t
δ
≥ 2

n−1
2 n = 2 log2 S + 1 161

5 Necessity of Boundedness

The security proof in the pure random oracle model does not depend on the
capacity C of the time-stamping scheme. In all other cases, the assumption
about the boundedness is necessary and the tightness of the reduction depends
on C. We show in this section that even under assumptions so strong as PrA,
the boundedness is a necessary assumption. Namely, under the assumption that
PrA hash functions exist, we construct another PrA hash function that is totally
insecure for unbounded time-stamping schemes. For every n ≥ 2 let In be a
subset of {0, 1}2n defined as follows:

In = {(0x0, 0x1):x ∈ {0, 1}n−2, x 	= 0n−2} .

248 A. Buldas and R. Laanoja

Define ιn: In → {0, 1}n−1 so that ιn(0x0, 0x1)=0x for any x∈{0, 1}n−2\{0n−2}.
Clearly, ιn is injective and easily invertible. The computations with ιn form a
tree (with nodes of the form x = 0x′, where x′ ∈ {0, 1}n−1\{0n−1}). The main
property of this tree is that for every x = 0x′, where x′ 	= 0n−1 there is an
easily computable hash chain from x to the root node r = 0n−11. For every
FP : {0, 1}∗ → {0, 1}n−1 and for every extractor E: {0, 1}n−1 × {0, 1}∗ → {0, 1}∗
define FP

0 : {0, 1}∗ → {0, 1}n and E0: {0, 1}n × {0, 1}∗ → {0, 1}∗ so that:

FP
0 (x) =

{
0‖ιn(x) if x ∈ In
1‖FP (x) if x 	∈ In

E0(y, α) =

⎧⎨
⎩
ι−1
n (y′) if 0n 	= y = 0‖y′ ∈ {0, 1}n
E(y′, α) if y = 1‖y′
⊥ otherwise.

Theorem 5. FP
0 is insecure for unbounded time-stamping, i.e. there is an effi-

cient strongly unpredictable adversary (A1, A2) with success probability ≈ 1
2− 1

2n .

Proof. The first stage A1 outputs the root value r = 0n−11 of the computational
tree for ιn. The second stage choses randomly and uniformly x← {0, 1}n, which
with probability ≈ 1

2 − 1
2n belongs to the computational tree and hence there is

an easily computable hash chain x
c� r. ��

Theorem 6. If FP is PrA then so is FP
0 .

Proof. Let E be the extractor for FP and let E0 be the corresponding extractor
for FP

0 . LetB0 be a PrA adversary for FP
0 . Let Ex0 be the oracle that corresponds

to E0. We modify the adversary B0 to an adversary B that uses the Ex-oracle
(that corresponds to E) and simulates B’s Ex0-calls with input y as follows:

– if y = 0‖y′ ∈ {0, 1}n\{0n}, the Ex0-call is answered with ι−1
n (y′);

– if y = 1‖y′, it makes an oracle call x ← Ex(y′) and answers the call with x;
– otherwise, the call is answered with ⊥.

If 1 ← Exppra
F0,P,E0,B0

, then during the execution x ← BP,Ex0
0 an Ex0-call was

made with an input y = FP
0 (x) such that E0(F

P
0 (x), α) 	= x. Note that y 	= 0‖y′,

because otherwise (due to the definition of FP
0) we would have y′ ∈ In, y

′ =
ιn(x), and E0(F

P
0 (x), α) = E0(0‖y′, α) = ι−1(y′) = ι−1

n (ιn(x)) = x.
Therefore, y = FP

0 (x) = 1‖y′, which means that y′ = FP (x) and E0(y, α) =
E(y′, α). This also means that B makes an Ex-call with parameter y′, such that

E(FP (x), α) = E(y′, α) = E0(y, α) = E0(F
P
0 (x), α) 	= x ,

and we have 1 ← Exppra
F,P,E,B. Hence, Advpra

F0,P,E0
(B0) ≤ Advpra

F,P,E(B). ��

Theorem 7. If FP is SPrA then so is FP
0 .

Proof. Let E be the extractor for FP and let E0 be the corresponding extractor
for FP

0 . Let Π0 be an arbitrary n-parser and B0 be an SPrA adversary for FP
0 .

Let Ext0 be the oracle that corresponds to E0 and Π0. We define an (n−1)-parser
Π in the following way: if Π0(x) = {y1, . . . , ym} and y1 = b1‖y′1 . . . ym = bm‖y′m

Security Proofs for Hash Tree Time-Stamping Using Hash Functions 249

(where b1, . . . , bm ∈ {0, 1}), then Π(x) = {y′1, . . . , y′m}. Let Ext be the oracle
that corresponds to E and Π . We modify the adversary B0 to an adversary B
that uses the Ext-oracle (that corresponds to E) and simulates B’s Ext0-calls
with input y as follows:

– if y = 0‖y′ ∈ {0, 1}n\{0n}, then the Ext0-call is answered with ι−1
n (y′);

– if y = 1‖y′, it makes an oracle call x← Ext(y′) and answers the call with x;
– otherwise, the call is answered with ⊥.

If 1 ← Expspra
F0,P,E0,Π0,B0

, then during the execution x ← BP,Ext0
0 an Ext0-call

was made with an input y = FP
0 (x) such that E0(F

P
0 (x), α) 	= x. Note that

y 	= 0‖y′, because otherwise (due to the definition of FP
0) we would have y′ ∈ In,

y′ = ιn(x), and E0(F
P
0 (x), α) = E0(0‖y′, α) = ι−1(y′) = ι−1

n (ιn(x)) = x.
Therefore, y = FP

0 (x) = 1‖y′, which means that y′ = FP (x) and E0(y, α) =
E(y′, α). This also means that B makes an Ext-call with parameter y′, such that

E(FP (x), α) = E(y′, α) = E0(y, α) = E0(F
P
0 (x), α) 	= x .

Note that due to the definition of the parserΠ , the Ext-oracle uses the same α for
extracting y′ then the EXT0-oracle would use for extracting y = 1‖y′. Thereby
1 ← Expspra

F,P,E,Π,B, and hence, Advpra
F0,P,E0,Π0

(B0) ≤ Advpra
F,P,E,Π(B). ��

Generalization of an Oracle Separation Result from Asiacrypt 2004.
The construction of FP

0 from FP allows to generalize and simplify the result in
[6] which says that there are no black-box reductions that prove the security of
unbounded time-stamping scheme based on the collision-freeness of the underly-
ing hash function. Using the construction F ,→ F0 enables to extend this result
form black-box reductions to arbitrary proofs. This is due to the next theorem:

Theorem 8. If FP is CR then so is FP
0 (even if FP does not use P at all).

The proof relies on the fact that the function FP
0 is injective on In and hence

finding a collision for FP
0 is equivalent to finding collisions for F0.

Corollary: If there exist collision-free hash functions, then there also exist col-
lision free hash functions that are insecure for unbounded hash-then-publish
time-stamping schemes. Note that this corollary is a much stronger statement
than an oracle separation because it rules out any proving attempts, not only the
black-box ones. Therefore, the implication “F is CR⇒ F is secure for unbounded
time-stamping” is true only if there exist no collision-free hash functions.

6 Open Questions and Further Research

It would be interesting to know whether the SPrA assumption can be used in the
indifferentiability framework in a way analogous to the PrA assumption, i.e. is
it weak enough for being preserved by the Merkle-Damg̊ard transform, and can
the conventional compression functions (like Davies-Meyer) to be proven SPrA.

250 A. Buldas and R. Laanoja

References

1. Bayer, D., Haber, S., Stornetta, W.-S.: Improving the efficiency and reliability of
digital timestamping. In: Sequences II: Methods in Communication, Security, and
Computer Sci., pp. 329–334. Springer, Heidelberg (1993)

2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: The 1st ACM Conference on Computer and Communications
Security: CCS 1993, pp. 62–73. ACM (1993)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

4. Buldas, A., Niitsoo, M.: Optimally tight security proofs for hash-then-publish time-
stamping. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp.
318–335. Springer, Heidelberg (2010)

5. Buldas, A., Laur, S.: Do broken hash functions affect the security of time-stamping
schemes? In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp.
50–65. Springer, Heidelberg (2006)

6. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004)

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
JACM 51(4), 557–594 (2004)

8. Chang, D., Yung, M.: Adaptive preimage resistance analysis revisited: require-
ments, subtleties and implications. In: IACR Cryptology ePrint Archive 209 (2012)

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

10. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging Merkle-Damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

11. Haber, S., Stornetta, W.-S.: How to time-stamp a digital document. Journal of
Cryptology 3(2), 99–111 (1991)

12. Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Univer-
sity Press, Princeton (1996)

13. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

14. Merkle, R.C.: Protocols for public-key cryptosystems. In: Proceedings of the 1980
IEEE Symposium on Security and Privacy, pp. 122–134 (1980)

Improved Boomerang Attacks on SM3�

Dongxia Bai1, Hongbo Yu1,��, Gaoli Wang2, and Xiaoyun Wang3,4,5

1 Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

baidx10@mails.tsinghua.edu.cn, yuhongbo@mail.tsinghua.edu.cn
2 School of Computer Science and Technology,
Donghua University, Shanghai 201620, China

wanggaoli@dhu.edu.cn
3 Institute for Advanced Study, Tsinghua University, Beijing 100084, China

4 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

5 School of Mathematics, Shandong University, Jinan 250100, China
xiaoyunwang@mail.tsinghua.edu.cn

Abstract. The cryptographic hash function SM3 is designed by X.
Wang et al. and published by Chinese Commercial Cryptography Ad-
ministration Office for the use of electronic certification service system
in China. It is based on the Merkle-Damg̊ard design and is very sim-
ilar to SHA-2 but includes some additional strengthening features. In
this paper, we apply the boomerang attack to SM3 compression func-
tion, and present such distinguishers on up to 34/35/36/37 steps out of
64 steps, with time complexities 231.4, 233.6, 273.4 and 293 compression
function calls respectively. Especially, we are able to obtain the exam-
ples of the distinguishers on 34-step and 35-step on a PC due to their
practical complexities. In addition, incompatible problems in the recent
boomerang attack are pointed out.

Keywords: SM3, hash function, boomerang attack, cryptanalysis.

1 Introduction

Cryptographic hash functions play a significant role in the modern cryptology.
The perfect hash function is required to satisfy three certain properties: preimage
resistance, 2nd preimage resistance and collision resistance. In recent years, the
cryptanalysis of hash functions has become an important topic within the cryp-
tographic community, and the significant advances of hash function research have
a formative influence on the field of hash functions. The breakthrough results
that many well-known hash functions including MD5 and SHA-1 were broken by

� Supported by 973 program (No. 2013CB834205), the National Natural Science Foun-
dation of China (No. 61133013 and No. 61103238), the Tsinghua University Initiative
Scientific Research Program (No. 20111080970), and Tsinghua National Laboratory
for Information Science and Technology.

�� Corresponding author.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 251–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

252 D. Bai et al.

X. Wang et al. in 2005 [18,19] convinced lots of cryptographers that these most
widely used hash functions can no longer be considered secure. As a consequence,
NIST proposed the transition from SHA-1 to SHA-2 family, and many compa-
nies and organizations are also migrating to SHA-2. Furthermore, in 2007 NIST
started a hash function competition to develop a new hash standard (SHA-3),
and the competition ended in 2012 when NIST announced that Keccak would
be the new SHA-3 hash algorithm. Meanwhile, people are evaluating these hash
functions, not only consider the three classical security requirements, but also re-
gard near-collision, rebound distinguisher, differential distinguisher, boomerang
distinguisher, etc. Whenever a hash function behaves differently from the one
expected of a random function, it is regarded as the weaknesses of the hash func-
tion, whose security is considered to be suspect. Therefore, many attack results
in such framework are proposed recently.

Especially, the idea of boomerang attack has been applied to hash functions
as part of the new and useful hash function results. A. Biryukov et al. [5] and M.
Lamberger et al. [8] independently applied boomerang attack to hash function
and mount distinguishers on compression functions of BLAKE-32 and SHA-
2 respectively. In [4] boomerang attack on SHA-2 was extended to 47 steps
with practical complexity. In [10], F. Mendel and T. Nad presented boomerang
distinguishers for SIMD-512 compression function. Y. Sasaki [12] proposed a
boomerang distinguisher for the full compression function of 5-pass HAVAL.
Y. Sasaki et al. also gave a 2-dimension sums attack on 48-step RIPEMD-128
and 42-step RIPEMD-160 in [13] and boomerang distinguishers for full HAS-160
compression function in [14]. Boomerang distinguishers have also been applied
to Skein. In [1], J.-P. Aumasson et al. proposed a related-key boomerang distin-
guisher on 34-step and a known-related-key boomerang distinguisher on 35-step
for the core algorithm of Skein (the block cipher Threefish-512). In [9], G. Leurent
and A. Roy pointed out the incompatibility between the differential characteris-
tics used in [1] and gave a boomerang distinguisher for 32-step Skein-256. Then
H. Yu et al. [20] presented the first valid boomerang attacks on 32/33/34-step
Skein-512.

SM3 [15] is the Chinese cryptographic hash function standard which is de-
signed by X. Wang et al., and is used in applications such as the electronic
certification service system. The design of SM3 builds on the Merkle-Damg̊ard
design, and is very similar to the MD4 family of hash functions and in partic-
ular to SHA-2, but introducing some additional strengthening features, such as
a more complex step function and stronger message dependency than SHA-256.
In this work, we study the security of SM3, and present boomerang attacks on
step-reduced SM3.

Related Work. In the last few years, the amount of cryptanalytic results on
SM3 is much lower than other hash function standards. In [21], J. Zou et al.
present the first preimage attacks on SM3 reduced to 30 steps out of 64 steps with

Improved Boomerang Attacks on SM3 253

time complexity 2249, starting from step 6, and 28 steps with time complex-
ity 2241.5, starting from step 0. At SAC 2012 A. Kircanski et al. [7] apply the
boomerang attack to SM3 compression function for 32/33/34/35 steps, and give
examples of zero-sum quartets for 32-step and 33-step distinguishers. Mean-
while, they also expose a side-rotational property of SM3-XOR function and
give a slide-rotational pair for SM3-XOR compression function. Moreover, G.
Wang et al. [17] propose preimage attacks on SM3 reduced to 29/30 steps, and
pseudo-preimage attacks reduced to 31/32 steps, with lower complexities than
[21] and all from the first step (step 0), and they also convert those (pseudo)
preimage attacks into pseudo-collision attacks on 29/30/31/32-step on SM3 for
the first time. Then F. Mendel et al. [11] provide the first security analysis of
step-reduced SM3 regarding its collision resistance, and they present a collision
attack for 20 steps and a free-start collision attack for 24 steps of SM3, both
with practical complexity. The above are all the previous results that we are
aware of on the analysis of SM3.

Our Contribution. In this work, we study the security of the Chinese hash
function standard SM3, and show the application of boomerang attack to step-
reduced SM3 compression function. Our analysis is based on the two high prob-
ability differential characteristics of SM3. Then we use these differential char-
acteristics to build boomerang distinguishers for step-reduced SM3 compression
function on up to 34 and 35 steps with practical complexity, and the examples of
boomerang quartets are also given. Moreover, the distinguishers can be extended
to attacks on 36-step and 37-step SM3. Finally, we show some incompatible prob-
lems existed in the differential characteristics used in the previous work [7]. With
respect to the attack in the framework of boomerang distinguisher, our results
of SM3 are the best as far as we know. The summary of previous results and
ours are given in Table 1.

Outline. The structure of the paper is as follows. In Section 2, we provide a short
description of SM3 hash function. Section 3 briefly overviews the boomerang at-
tack. In Section 4, we present the differential characteristics, and build boomerang
distinguishers for step-reduced SM3 compression function on up to 34/35/36/37
steps out of 64 steps. Finally, we conclude our paper in Section 5.

2 Description of SM3

SM3 is an iterated hash function that processes 512-bit input message blocks
and produces a 256-bit hash value. It basically consists of two parts: the message
expansion and the state update transformation. A detailed description of SM3
hash function is given in [15].

Message Expansion. The message expansion of SM3 splits the 512-bit mes-
sage block into 16 words mi (0 ≤ i ≤ 15), and expands them into 68 expanded

254 D. Bai et al.

Table 1. Summary of the attacks on SM3

attack type target rounds time source

preimage attack HF 28 2241.5
[21]

preimage attack HF 30† 2249

preimage attack HF 29 2245

[17]

preimage attack HF 30 2251.1

pseudo-preimage attack HF 31 2245

pseudo-preimage attack HF 32 2251.1

pseudo-collision attack HF 29 2122

pseudo-collision attack HF 30 2125.1

pseudo-collision attack HF 31 2122

pseudo-collision attack HF 32 2125.1

collision attack HF 20 practical
[11]

free-start collision attack CF 24 practical

boomerang attack CF 32 214.4

[7]
boomerang attack CF 33∗ 232.4

boomerang attack CF 34 253.1

boomerang attack CF 35 2117.1

boomerang attack CF 34 231.4

Sect.4
boomerang attack CF 35 233.6

boomerang attack CF 36 273.4

boomerang attack CF 37 293

†: the attack starts from step 6;
∗: the attack has some incompatible problems shown later.

message words wi (0 ≤ i ≤ 67) and 64 expanded message words w′
i (0 ≤ i ≤ 63)

as follows:

wi =

{
mi, 0 ≤ i ≤ 15
P1(wi−16 ⊕ wi−9 ⊕ (wi−3 ≪ 15))⊕ (wi−13 ≪ 7)⊕ wi−6, 16 ≤ i ≤ 67

w′
i = wi ⊕ wi+4, 0 ≤ i ≤ 63.

The function P1(X) is given by

P1(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23).

State Update Transformation. The state update transformation starts from
an (fixed) initial value IV = (A0, B0, C0, D0, E0, F0, G0, H0) of eight 32-
bit words and updates them in 64 steps. In each step the two 32-bit words wi

and w′
i are used to update the state variables Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi as

follows:

Improved Boomerang Attacks on SM3 255

SS1i = ((Ai ≪ 12) + Ei + (Ti ≪ i)) ≪ 7,

SS2i = SS1i ⊕ (Ai ≪ 12),

TT 1i = FFi(Ai, Bi, Ci) +Di + SS2i + w′
i,

TT 2i = GGi(Ei, Fi, Gi) +Hi + SS1i + wi,

Ai+1 = TT 1i,

Bi+1 = Ai,

Ci+1 = Bi ≪ 9,

Di+1 = Ci,

Ei+1 = P0(TT 2i),

Fi+1 = Ei,

Gi+1 = Fi ≪ 19,

Hi+1 = Gi.

The step constants are Ti = 0x79cc4519 for i ∈ {0, . . . , 15} and Ti = 0x7a879d8a
for i ∈ {16, . . . , 63}. The bitwise Boolean functions FF (X,Y, Z) andGG(X,Y, Z)
used in each step are defined as follows:

FFi(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ i ≤ 63

GGi(X,Y, Z) =

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y) ∨ (¬X ∧ Z), 16 ≤ i ≤ 63.

The linear function P0(X) is defined as follows:

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17).

Gi
Gi

Fi
Fi

Ei
Ei

Di
Di

Ci
Ci

Bi
Bi

Hi
Hi

Gi+1Fi+1Ei+1Di+1Ci+1Bi+1 Hi+1

<<<9 <<<19

FF

w’i

P0

wi

GG

<<<12

T

<<<i

<<<7

Ai

Ai+1

Fig. 1. The i-th step function of SM3

256 D. Bai et al.

After the last step of the state update transformation, the initial values are
added to the output values of the last step. The result is the final hash value or
the input of the next message block. One step of the SM3 compression function
is illustrated in Fig. 1.

3 The Boomerang Attack

The boomerang attack was introduced by D. Wagner in 1999 [16] as a tool
for the cryptanalysis of block cipher. It is an adaptive chosen plaintext and
ciphertext attack utilizing differential cryptanalysis. The cipher is treated as a
cascade of two sub-ciphers, where a short differential is used in each of these sub-
ciphers. These differentials are combined to exploit an adaptive chosen plaintext
and ciphertext property of the cipher that has high probability. Then J. Kelsey
et al. [6] further developed it into a chosen plaintext attack called the ampli-
fied boomerang attack, and later it was developed by E. Biham et al. [3] into
the rectangle attack. Then E. Biham et al. [2] combined the boomerang (and
the rectangle) attack with related-key differentials and proposed the related-key
boomerang and rectangle attacks, which use the related-key differentials instead
of the single-key differentials.

We mainly review the known-related-key boomerang attack [4] which can be
used to distinguish a given permutation from a random oracle. Applying the
known-related-key boomerang attack to the compression function in the MMO
mode, i.e, CF (M,K) = E(M,K) +M , it is possible to start from the middle
steps since the messageM and the keyK can be chosen randomly (refer to [4,9]).
Then we have a backward differential characteristic (β, βk) → α with probability
p for CF−1

0 , and another forward differential characteristic (γ, γk) → δ with
probability q for CF1. Next the known-related-key boomerang attack can be
constructed using these two differentials as follows:

– Choose a random value X1 and K1, compute X2 = X1 ⊕ β, X3 = X1 ⊕ γ,
X4 = X3 ⊕ β, and K2 = K1 ⊕ βk, K3 = K1 ⊕ γk, K4 = K3 ⊕ βk.

– Compute backward from (Xi,Ki) using CF
−1
0 to obtain Pi (i=1,2,3,4).

– Compute forward from (Xi,Ki) using CF1 to obtain Ci (i=1,2,3,4).
– Check whether P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ.

We can deduce that P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ hold
with probability at least p2 in the backward direction and q2 in the forward
direction. Hence, the attack succeeds with probability p2q2 when assuming that
the differentials are independent.

4 The Boomerang Attacks on SM3

In this section, we present the boomerang attacks on the SM3 compression func-
tion reduced to 34 and 35 steps with practical examples of boomerang quartets,
and then extend the attacks to 36 and 37 steps. Firstly, we have to find the dif-
ferential characteristics used in the attack to distinguish the target compression

Improved Boomerang Attacks on SM3 257

function from random functions. Secondly, we derive the sufficient conditions in
the intermediate steps, and correct these conditions by using message modifica-
tion technique. Finally, we evaluate the complexities of our attacks and search
right quartet examples.

4.1 Step-Reduced Differential Trails

We give the two differential characteristics which are used to attack 34-step
SM3 compression function and find boomerang distinguishers, where the top
differential characteristic is from step 15 to 0, and the bottom one is from step
16 to 33. Note that we all use the XOR difference Δa = a⊕ a′, and let Δa: i for
1 ≤ i ≤ 32 denotes that the i-th bit of a is different from the i-th bit of a′, and
all the other bits of a and a′ are the same.

We start from the middle states of the distinguisher quartet (V1, V2, V3, V4),
and for the top differential characteristic, the differences of the message word wi

and the chaining values A16 to H16 are chosen as follows:

– Δw2 : 32 (the MSB difference), Δwi = 0 (0 ≤ i ≤ 15, i 	= 2), if we choose
the message word with this difference, we will find that 13 steps (step 1 to
13) are passed for free according to the message expansion of SM3. This is
significant for us to get the high probability differential characteristic.

– ΔA16 : 2, 3, 10, 12, 15, 19, 23, 27, 32, ΔB16 : 15, 23, 32, ΔE16 : 2, 4, 10, 11, 19,
27, 28, these differences are decided by the difference of the message word
Δw2 above. We can easily get the differences of the message words Δw0–
Δw15, Δw

′
0–Δw

′
15 in the top differential characteristic from above: Δw2 : 32,

Δw′
2 : 32, Δw′

14 : 15, 23, 32, and all the other ones are zero. Then we directly
derive the differences of the chaining values of step 14 and 15 with some
sufficient conditions.

For the bottom differential characteristic, we select the differences as follows:

– Δw20 : 20 (the 20-th bit difference), Δwi = 0 (21 ≤ i ≤ 35), so we can pass
11 steps (step 21 to 31) for free similarly.

– ΔC16 : 9, 16, 18, 23, 25, 26, 30, 31, ΔD16 : 11, 20, ΔG16 : 9, 16, 18, 24, 25,
26, 30, 32, ΔH16 : 1, 3, 4, 10, 12, 19, 20, 28, according to the differences of the
message words above, and also considering the compatibility with the top
differential characteristic in the middle steps which cannot contain any con-
tradiction, the differences of chaining values in bottom differential charac-
teristic are derived with some sufficient conditions. For example, to cancel
the 9-th and 10-th bit differences of w′

17, we choose the difference in D17

only on bit 9 but not on bits 9 and 10, because if we has difference in D17 on
bit 10, then in step 16 the condition A16,10 = B16,10 (note that C16 = D17)
cannot be satisfied in the other side (V2, V4).

In Table 2 and Table 3 the differential characteristics for both forward and
backward directions are shown. Furthermore, the conditions and probabilities
for each step of the differential characteristics are given.

258 D. Bai et al.

Table 2. Differential characteristic for steps 0-15 using XOR differences (34 steps)

i chaining value message conditions prob

0 B0 : 23 (A0 ⊕B0 ⊕ C0)23 	= D0,23, 2−2

C0 : 32 (E0 ⊕ F0 ⊕G0)13 	= H0,13

D0 : 23, 32
F0 : 13
G0 : 32
H0 : 13, 32

1 C1 : 32 1
D1 : 32
G1 : 32
H1 : 32

2 D2 : 32 w2 : 32 1
H2 : 32 w′

2 : 32

3 1
...

...
...

...
...

14 w′
14 : 15, 23, 32 TT114,i = w′

14,i(i = 15, 23) 2−2

15 A15 : 15, 23, 32 SS115,(2,10,19) = A15,(15,23,32) , 2−14

TT115,i = (A15 ⊕B15 ⊕ C15)i
(i = 15, 23),
TT115,i = SS215,i
(i = 2, 3, 10, 12, 19, 27),
TT215,i = SS115,i(i = 2, 10, 19)

16 A16 : 2, 3, 10, 12, 15, —
19, 23, 27, 32

B16 : 15, 23, 32
E16 : 2, 4, 10, 11, 19,

27, 28

Improved Boomerang Attacks on SM3 259

Table 3. Differential characteristic for steps 16-33 using XOR differences (34 steps)

i chaining value message conditions prob

16 C16 : 9, 16, 18, w′
16 : 20 A16,i = B16,i 2−27

23, 25, 26, (i = 9, 16, 18, 23, 25, 26, 30, 31),
30, 31 D16,20 	= w′

16,20,
D16 : 11, 20 TT116,11 = D16,11,
G16 : 9, 16, 18, E16,i = 1(i = 9, 16, 24, 25, 26, 30, 32),

24, 25, 26, E16,18 = 0,
30, 32 TT216,i = H16,i

H16 : 1, 3, 4, 10, (i = 1, 3, 4, 10, 12, 19, 20, 28),
12, 19, 20, TT216,18 = G16,18

28

17 A17 : 11 w17 : 8, 9, 10, SS117,30 = A17,11, SS117,8 = E17,1, 2−26

D17 : 9, 16, 18, 16, 18, B17,11 = C17,11, w
′
17,8 	= SS217,8,

23, 25, 26, 24, 25, D17,9 = w′
17,9 	= w′

17,10,
30, 31 27, 32 D17,i 	= w′

17,i(i = 16, 18),
E17 : 1 w′

17 : 8, 9, 10, D17,23 = SS217,23 	= w′
17,24,

H17 : 9, 16, 18, 16, 18, D17,25 = w′
17,25 = D17,26 	= w′

17,27,
24, 25, 26, 24, 25, D17,30 = SS217,30 = D17,31,
30, 32 27, 32 F17,1 = G17,1, w17,8 	= SS117,8 ,

H17,9 = w17,9 	= w17,10,
H17,i 	= w17,i(i = 16, 18, 24),
H17,25 = w17,25 = H17,26 	= w17,27,
H17,30 	= SS117,30

18 B18 : 11 A18,11 = C18,11, 2−2

F18 : 1 E18,1 = 0

19 C19 : 20 A19,20 = B19,20, 2−2

G19 : 20 E19,20 = 1

20 D20 : 20 w20 : 20 D20,20 	= w′
20,20, 2−2

H20 : 20 w′
20 : 20 H20,20 	= w20,20

21 1
...

...
...

...
...

32 w′
32 : 3, 11, 20 TT132,i = w′

32,i(i = 3, 11, 20) 2−3

33 A33 : 3, 11, 20 SS133,(22,30,7) = A33,(3,11,20) , 2−14

B33,i = C33,i(i = 3, 11, 20),
TT133,i = SS233,i
(i = 7, 15, 22, 23, 30),
TT233,i = SS133,i(i = 7, 22, 30)

34 A34 : 7, 15, 22, —
23, 30, 32

B34 : 3, 11, 20
E34 : 7, 15, 16,

22, 24, 30,
31

260 D. Bai et al.

4.2 Message Modification for the Middle Steps

Here we use the message modification technique to modify the chaining values
and message words to satisfy the conditions of the middle steps to improve the
complexity of our attack.

In the top differential characteristic, there are 16 sufficient conditions from
step 15 to 14, which can be satisfied both in two sides (V1, V2) and (V3, V4) by
modifying A16, B16 and F16. Therefore, the conditions of this part (step 15 to
14) can hold with probability 1.

Similarly, 59 conditions in total from step 16 to 20 in the bottom differen-
tial characteristic need to be corrected in each side. We can make all these
conditions hold in one side (V1, V3) by the message modification. Furthermore,
part of the conditions in the other side (V2, V4) can be corrected, and 14 condi-
tions including SS117,30 = A17,11, SS117,8 = E17,1, w

′
17,8 	= SS217,8, D17,23 =

SS217,23 	= w′
17,24, D17,30 = SS217,30 = D17,31, w17,8 	= SS117,8, H17,30 	=

SS117,30, A18,11 = C18,11, E18,1 = 0, A19,20 = B19,20, E19,20 = 1, and H20,20 	=
w20,20 are not corrected. As a result, all the conditions of step 16 to 20 in the
bottom differential characteristic hold with probability at least 2−14, rather than
the much lower average probability 2−2×59 = 2−118.

4.3 Complexity of the Attack

After the message modification, the boomerang distinguisher in the middle steps
(14 to 20) hold with a much higher probability 2−14. Meanwhile, the probability
of step 0 to 13 in the top differential characteristic is 2−2, and for step 21 to 33
in the bottom differential characteristic is 2−17. So the complexity of the 34-step
boomerang distinguisher is 214 + 22×(2+17) ≈ 238. Note that it can be further
reduced to 214 +22×3 × 32+14 ≈ 214 +231.4 ≈ 231.4 if we only obtain a zero-sum
distinguisher.

Due to the low complexity, our distinguisher on up to 34-step compression
function of SM3 is practical, and we are able to find boomerang quartets on a
PC quickly. We give an example of 34-step boomerang distinguisher in Table 4.

4.4 Attacks on 35/36/37-Step SM3 Compression Function

35-step attack(steps 0-34). Using the same top differential characteristic
shown in Table 2, we add one more step as the new 16-th step in the bottom
differential characteristic as illustrated in Table 5 to mount a 35-step attack.
So the step where the single bit difference in the message word wi in the bot-
tom differential characteristic has been set should slip to step 21. Now we look
at the choice of differences in bottom differential characteristic, if we still use
the same bit difference on bit 20 in w21, some contradictions will emerge, and
through theoretical derivation and program tests we find that only the 24-th
bit difference in w21 is applicable and compatible between the two differential
characteristics. We only correct all conditions in the side (V1, V2) of the top

Improved Boomerang Attacks on SM3 261

Table 4. Example of a boomerang quartet for 34-step CF of SM3. Pi, Ci and Mi

respectively denote the chaining values of step 0, 33 and message words.

P1 8e328bf1 540ba9e5 026995ca d1271808 8afc4d19 95bddaa7 a56d9207 a2c44d1c

P2 8e328bf1 544ba9e5 826995ca 51671808 8afc4d19 95bdcaa7 256d9207 22c43d1c

P3 11ee1c76 ee57de46 54838689 0665bf71 df61a977 5f4c46e9 d42981b4 c15ec4f8

P4 11ee1c76 ee17de46 d4838689 8625bf71 df61a977 5f4c56e9 542981b4 415eb4f8

M1 d7a6bd34 66fa6efa 78ce08a1 9a585055 94c8bc0b 3b679ebd 3910da41 f0e82d8a
d5f41b80 64f0041d 947bccb4 4344d2ed bcc94a67 6b5f97ff 79000306 16233872

M2 d7a6bd34 66fa6efa f8ce08a1 9a585055 94c8bc0b 3b679ebd 3910da41 f0e82d8a
d5f41b80 64f0041d 947bccb4 4344d2ed bcc94a67 6b5f97ff 79000306 16233872

M3 d7acbd36 26fbaefa 50ce00a1 1fdad3d5 94c2b90e 333fb685 3918da41 70e8ad8c
d5f49b80 64f0041d 9570c9b3 c3c4d3ed bcc94a67 6b5797ff f9008304 16233872

M4 d7acbd36 26fbaefa d0ce00a1 1fdad3d5 94c2b90e 333fb685 3918da41 70e8ad8c
d5f49b80 64f0041d 9570c9b3 c3c4d3ed bcc94a67 6b5797ff f9008304 16233872

C1 5cc18f78 adf682b8 837bc39c 1550ef7d 5e6d092c b95a7f10 0fdde16d 3dc6bf65

C2 35437883 a37697ca 94fa71b5 169e842d 07d1f375 e5e58686 e97b5e86 72b07d54

C3 bcd1cfbd adee86bc 837bc39c 1550ef7d fecc48ec b95a7f10 0fdde16d 3dc6bf65

C4 d5533846 a36e93ce 94fa71b5 169e842d a770b2b5 e5e58686 e97b5e86 72b07d54

differential characteristic and the side (V1, V3) of the bottom differential charac-
teristic, and part of conditions (12 conditions) in the other side (V3, V4) of the
top differential characteristic. The remaining conditions in middle steps have
not been dealt with. So in theory the boomerang distinguisher in the middle
steps (14 to 21) holds with probability 2−46. However, according to our ex-
periments, on average, only about 32 conditions in the middle steps have not
been corrected. As a result, the complexity of 35-step boomerang distinguisher
is 232 + 22×3 × 32+15 ≈ 232 + 233 ≈ 233.6, and the practical example of 35-step
boomerang distinguisher quartet can be found on a PC, see Table 6.

36-step attack(steps 0-35). The 36-step attack is obtained with the same dif-
ferential characteristics as 35-step attack by adding one step in the top differen-
tial characteristic as the new first step, where the top differential characteristic is
from step 0 to 16 and the bottom differential characteristic is from step 17 to 35.
In order to keep the conditions of connection part between the top and bottom
differential characteristics mostly unchanged, we change the differences of the top
differential characteristic slightly: Δw0 : 4, 5, 7, 12, 20, 21, 22, 28, 30, Δw3 : 32,
Δwi = 0 (0 ≤ i ≤ 15, i 	= 0, 3), ΔA17 : 2, 3, 10, 12, 19, 27, ΔB17 : 15, 23, 32,
ΔE17 : 2, 4, 10, 11, 19, 27, 28, see Table 7. The complexity of the 36-step attack
is 232 + 22×(2+3) × 325+15 ≈ 232 + 273.4 ≈ 273.4.

37-step attack(steps 0-36). Extending the 36-step boomerang distinguisher
for one more step at the end of the top differential characteristic, by using the
message modification technique, we get a 37-step attack with a complexity of
293 + 22×(2+3) × 325+15 ≈ 293 + 273.4 ≈ 293.

262 D. Bai et al.

Table 5. Differential characteristic for steps 16-34 using XOR differences (35 steps)

i chaining value message conditions prob

16 B16 : 4, 5, 11, 13, A16,i = B16,i(i = 15, 22, 23), 2−27

18, 20, 21, A16,i = C16,i

25, 26 (i = 4, 5, 11, 13, 18, 20, 21, 25, 26),
C16 : 15, 22, 23 E16,i = 0
F16 : 1, 3, 9, 12, (i = 1, 3, 9, 12, 15, 17, 26),

15, 17, 26 E16,i = 1
G16 : 5, 7, 8, 14, (i = 5, 7, 8, 14, 16, 23, 24, 32)

16, 23, 24,
32

17 C17 : 2, 3, 13, 14, w′
17 : 24 A17,i = B17,i 2−28

20, 22, 27, (i = 2, 3, 13, 14, 20, 27, 29, 30),
29, 30 A17,22 	= B17,22, TT117,15 = D17,15,

D17 : 15, 22, 23 C17,22 = D17,22 = D17,23 	= w′
17,24,

G17 : 2, 4, 13, 20, E17,i = 1(i = 2, 4, 13, 20, 28, 31),
22, 28, 31 E17,22 = 0,

H17 : 5, 7, 8, 14, TT217,i = H17,i

16, 23, 24, (i = 5, 7, 8, 14, 16, 23, 24),
32 TT217,22 = G17,22

18 A18 : 15 w18 : 4, 12, 13, SS118,2 = A18,15, SS118,12 = E18,5, 2−27

D18 : 2, 3, 13, 14, 14, 20, D18,2 = SS218,2 = D18,3 	= w′
18,4,

20, 22, 27, 22, 28, SS218,12 	= w′
18,12,

29, 30 29, 31 D18,i 	= w′
18,i(i = 13, 14, 20, 22),

E18 : 5 w′
18 : 4, 12, 13, D18,27 = SS218,27 	= w′

18,28,
H18 : 2, 4, 13, 20, 14, 20, D18,29 = w′

18,29 = D18,30 	= w′
18,31,

22, 28, 31 22, 28, B18,15 = C18,15, SS118,12 = w18,12,
29, 31 H18,i 	= w18,i(i = 4, 20, 22, 31),

H18,i = w18,i 	= w18,i+1(i = 13, 28),
H18,2 	= SS118,2, F18,5 = G18,5

19 B19 : 15 A19,15 = C19,15, 2−2

F19 : 5 E19,5 = 0

20 C20 : 24 A20,24 = B20,24, 2−2

G20 : 24 E20,24 = 1

21 D21 : 24 w21 : 24 D21,24 	= w′
21,24, 2−2

H21 : 24 w′
21 : 24 H21,24 	= w21,24

22 1
...

...
...

...
...

33 w′
33 : 7, 15, 24 TT133,i = w′

33,i(i = 7, 15, 24) 2−3

34 A34 : 7, 15, 24 SS134,(26,2,11) = A34,(7,15,24) , 2−15

B34,i = C34,i(i = 7, 15, 24),
TT134,i = SS234,i
(i = 2, 4, 11, 19, 26, 27),
TT234,i = SS134,i(i = 2, 11, 26)

35 A35 : 2, 10, 15, —
19, 23, 32

B35 : 15, 23, 32
E35 : 2, 4, 10, 11,

19, 27, 28

Improved Boomerang Attacks on SM3 263

Table 6. Example of a boomerang quartet for 35-step CF of SM3

P1 7f57e38d 801906df caf2cf8c 42c58fba 9feec59b ef5ab3fc d261869c 892ca15c

P2 7f57e38d 805906df 4af2cf8c c2858fba 9feec59b ef5aa3fc 5261869c 092cb15c

P3 0188f80d 5d3b7666 9f941688 fc411326 3a674355 2c6075fb 85a38600 892e081b

P4 0188f80d 5d7b7666 1f941688 7c011326 3a674355 2c6065fb 05a38600 092e181b

M1 f5bc88b9 af543ad9 f5068596 beaebbf0 9984c067 ed6e551a 7973166d cef6b36f
c6978096 fdba14b7 2872ffba 2cf314e6 750499b3 4ceb9f22 bd2d99db 71cc928b

M2 f5bc88b9 af543ad9 75068596 beaebbf0 9984c067 ed6e551a 7973166d cef6b36f
c6978096 fdba14b7 2872ffba 2cf314e6 750499b3 4ceb9f22 bd2d99db 71cc928b

M3 75bc89b9 aff43af9 f51a8592 3eae3bf2 c1acf86f edce054a fcf195ed ce76b36f
c69f80fe fdb214b7 2872ffba 3c434496 7d0489bb 4ceb9f22 bdad99db 71c492a3

M4 75bc89b9 aff43af9 751a8592 3eae3bf2 c1acf86f edce054a fcf195ed ce76b36f
c69f80fe fdb214b7 2872ffba 3c434496 7d0489bb 4ceb9f22 bdad99db 71c492a3

C1 ecda4c19 39e58fb5 8fbc81e3 75eec099 655e3f8b f4273d52 94532c77 6967f472

C2 93ffb93f e7e2ffb3 447c0e9f b8ff8f6c 37a12b0a ca38d92c 7eb36c56 899e0baf

C3 f2de485f 3965cff5 8fbc81e3 75eec099 6f523b8d f4273d52 94532c77 6967f472

C4 8dfbbd79 e762bff3 447c0e9f b8ff8f6c 3dad2f0c ca38d92c 7eb36c56 899e0baf

4.5 The Incompatibility in Previous Boomerang Attacks on SM3

In [7], boomerang distinguishers for SM3 compression function reduced to 33
steps and the corresponding example of zero-sum quartet for 33 steps are given.
However, we find that the proposed example of quartet is not consistent with
the differential characteristics shown in table 4 and 5 in that paper. According
to the differences of the given example, it is supposed to be generated from the
another boomerang distinguisher which is the same with their 32-step attack
by adding one step at the end of the bottom differential characteristic with the
same single bit difference on bit 15 in message word w19. Then we study the
given boomerang distinguisher in [7] and find some contradictions between the
two differential characteristics.

For the differences in step 20 in the bottom differential characteristic, it is
easy to deduce that D20,28 = C19,28 = B18,19 = A17,19 = TT 116,19 = D16,19, so
the condition D20,28 	= w′

20,28 in step 20 can be rewritten as D16,19 	= w′
20,28.

From the top differential characteristic, we get that ΔD16 = 0 (so ΔD16,19 = 0),
Δw′

20,28 = 1 (according to the message expansion), so the condition D20,28 	=
w′

20,28 in step 20 cannot be satisfied in the other side (V2, V4) for the bottom
differential characteristic. We can correct the bottom differential characteris-
tic by simply changing the single bit difference of message word w20 from bit
28 to 20.

264 D. Bai et al.

Table 7. Differential characteristic for steps 0-16 using XOR differences (36 steps)

i chaining value message conditions prob

0 A0 : 23 w0 : 4, 5, 7, 12, SS10,10 = A0,23, 2−25

B0 : 23 20, 21, 22, SS10,20 = E0,13,
C0 : 23, 32 28, 30 D0,23 	= (A0 ⊕B0 ⊕ C0)23,
D0 : 3, 4, 5, 7, 10, w′

0 : 4, 5, 7, 12, D0,i 	= SS20,i(i = 3, 10),
12, 21, 22, 23, 20, 21, 22, D0,i 	= w′

0,i

28, 30, 32 28, 30 (i = 4, 5, 7, 12, 21, 22, 28, 30),
E0 : 13 SS20,20 	= w′

0,20,
F0 : 13 H0,13 	= (E0 ⊕ F0 ⊕G0)13,
G0 : 13, 32 H0,i 	= w0,i

H0 : 4, 5, 7, 10, 12, (i = 4, 5, 7, 12, 21, 22, 28, 30),
13, 21, 22, 28, H0,10 	= SS10,10,
30, 32 SS10,20 	= w0,20

1 B1 : 23 (A1 ⊕B1 ⊕ C1)23 	= D1,23, 2−2

C1 : 32 (E1 ⊕ F1 ⊕G1)13 	= H1,13

D1 : 23, 32
F1 : 13
G1 : 32
H1 : 13, 32

2 C2 : 32 1
D2 : 32
G2 : 32
H2 : 32

3 D3 : 32 w3 : 32 1
H3 : 32 w′

3 : 32

4 1
...

...
...

...
...

15 w′
15 : 15, 23, 32 TT115,i = w′

15,i(i = 15, 23) 2−2

16 A16 : 15, 23, 32 SS116,(2,10,19) = A16,(15,23,32) , 2−15

B15,i = C15,i(i = 15, 23, 32),
TT115,i = SS215,i
(i = 2, 3, 10, 12, 19, 27),
TT216,i = SS116,i(i = 2, 10, 19)

17 A17 : 2, 3, 10, 12, —
19, 27

B17 : 15, 23, 32
E17 : 2, 4, 10, 11,

19, 27, 28

Improved Boomerang Attacks on SM3 265

5 Conclusion

In this paper, we present step-reduced differential characteristics of SM3 hash
function with high probabilities and construct boomerang distinguishers for the
compression function of SM3 reduced to 34/35/36/37 steps out of 64 steps, and
give the examples of quartet of attacks on up to 34-step and 35-step. These are
the best attack results to date. Our attacks do not contradict the security claims
of SM3.

Acknowledgment. We are grateful to the anonymous reviewers for their valu-
able comments on this paper.

References

1. Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Im-
proved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

2. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

3. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling
the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
340–357. Springer, Heidelberg (2001)

4. Biryukov, A., Lamberger, M., Mendel, F., Nikolić, I.: Second-Order Differential
Collisions for Reduced SHA-256. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 270–287. Springer, Heidelberg (2011)

5. Biryukov, A., Nikolić, I., Roy, A.: Boomerang Attacks on BLAKE-32. In: Joux, A.
(ed.) FSE 2011. LNCS, vol. 6733, pp. 218–237. Springer, Heidelberg (2011)

6. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

7. Kircanski, A., Shen, Y., Wang, G., Youssef, A.M.: Boomerang and Slide-Rotational
Analysis of the SM3 Hash Function. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 304–320. Springer, Heidelberg (2013)

8. Lamberger, M., Mendel, F.: Higher-Order Differential Attack on Reduced SHA-
256, http://eprint.iacr.org/2011/037.pdf

9. Leurent, G., Roy, A.: Boomerang Attacks on Hash Function Using Auxiliary Dif-
ferentials. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 215–230.
Springer, Heidelberg (2012)

10. Mendel, F., Nad, T.: Boomerang Distinguisher for the SIMD-512 Compression
Function. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 255–269. Springer, Heidelberg (2011)

11. Mendel, F., Nad, T., Schläffer, M.: Finding Collisions for Round-Reduced SM3.
In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 174–188. Springer,
Heidelberg (2013)

12. Sasaki, Y.: Boomerang Distinguishers on MD4-Family: First Practical Results on
Full 5-Pass HAVAL. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 1–18. Springer, Heidelberg (2012)

http://eprint.iacr.org/2011/037.pdf

266 D. Bai et al.

13. Sasaki, Y., Wang, L.: 2-Dimension Sums: Distinguishers Beyond Three Rounds of
RIPEMD-128 and RIPEMD-160, http://eprint.iacr.org/2012/049.pdf

14. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang Distin-
guishers for Full HAS-160 Compression Function. In: Hanaoka, G., Yamauchi, T.
(eds.) IWSEC 2012. LNCS, vol. 7631, pp. 156–169. Springer, Heidelberg (2012)

15. Specification of SM3 cryptographic hash function, http://www.oscca.gov.cn/

UpFile/20101222141857786.pdf (in Chinese)
16. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,

vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
17. Wang, G., Shen, Y.: Preimage and Pseudo-Collision Attacks on Step-Reduced SM3

Hash Function. Information Processing Letters 113(8), 301–306
18. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.

(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
19. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.

(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)
20. Yu, H., Chen, J., Wang, X.: The Boomerang Attacks on the Round-Reduced Skein-

512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 287–303.
Springer, Heidelberg (2013)

21. Zou, J., Wu, W., Wu, S., Su, B., Dong, L.: Preimage Attacks on Step-Reduced
SM3 Hash Function. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 375–390.
Springer, Heidelberg (2012)

http://eprint.iacr.org/2012/049.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
http://www.oscca.gov.cn/UpFile/20101222141857786.pdf

Expressive Cryptography: Lattice Perspectives

Xavier Boyen

Queensland University of Technology

Abstract of the Invited Lecture

The invention of asymmetric encryption back in the seventies was a conceptual
leap that vastly increased the expressive power of encryption of the times. For the
first time, it allowed the sender of a message to designate the intended recipient
in an cryptographic way, expressed as a “public key” that was related to but
distinct from the “private key” that, alone, embodied the ability to decrypt. This
made large-scale encryption a practical and scalable endeavour, and more than
anything else—save the internet itself—led to the advent of electronic commerce
as we know and practice it today.

An equally significant transition is currently underway. Just as public keys
gave us the first workable if unpronounceable cryptographic vocabulary, a flurry
of advances in the past twelve years have expanded this metaphor in a num-
ber of ways. Ranging from intuitive “identity-based” orthography, to modular
“attribute-based” grammars, all the way to programmatic “functional” inference
semantics, much progress has been made, driven by the common goal to express,
in increasingly powerful and flexible ways, the exact beneficiaries of the right to
decrypt a given ciphertext.

Under the hood, and even more so than vanilla public-key encryption itself,
such expressive achievements have tended to rely on mathematical principles
that would, quite unfortunately, render them utterly insecure against quantum
computers, should those ever become a working reality. And being that the
consensus opinion has shifted from viewing this event as a scientific uncertainty
to an engineering challenge, it behooves us to acknowledge and prepare for its
eventuality.

In this context, Euclidean lattices are enjoying great interest on the part of
the cryptographic research community, owing to a rather unique combination of
(conjectured) “post-quantum” resistance and a fertile mathematical structure
propitious to the design of rich and expressive cryptosystems.

In this lecture, we shall give an overview of a number of recent results in this
area, and discuss the underlying principles that (currently) drive this new and
exciting branch of cryptographic research, with an emphasis on the similarities
and differences between lattice-based and non-lattice constructions.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, p. 267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Related-Key Boomerang Attacks

on KATAN32/48/64

Takanori Isobe1, Yu Sasaki2, and Jiageng Chen3

1 Kobe University
Takanori.Isobe@jp.sony.com

2 NTT Secure Platform Laboratories
sasaki.yu@lab.ntt.co.jp

3 Japan Advanced Institute of Science Technology
jg-chen@jaist.ac.jp

Abstract. KATAN/KTANTAN is a family of hardware oriented block
ciphers proposed at CHES 2009. Although the KTANTAN family have
been broken by a meet-in-the-middle approach, the KATAN family are
secure at present. In this paper, we investigate the KATAN family in
the related-key boomerang framework with several techniques. By using
an efficient differential characteristics search method, long boomerang
distinguishers can be built. Furthermore, the key recovery phase is opti-
mized by exploiting several properties of the round function such as the
high linearity of the round function and the slow key diffusion. As a re-
sult, we can attack 174, 145 and 130 rounds of KATAN32, KATAN48 and
KATAN64, which substantially improve the known best results whose at-
tacked rounds are 120, 103, 94 rounds, respectively. Our attacks are con-
firmed by various experimental verifications, especially, we give concrete
right quartets for KATAN32.

Keywords: KATAN32/48/64, ultra lightweight block cipher, related-
key attack, boomerang attack, differential.

1 Introduction

KATAN/KTANTAN is a family of lightweight block ciphers designed for ex-
tremely resource-constrained devices such as RFID and sensor nodes [1]. After
its publication in CHES 2009, the full-round KTANTAN family was theoretically
broken by using a meet-in-the-middle approach [2]. The attack takes advantage
of the simple key scheduling algorithm for the KTANTAN family. The complex-
ity of the attack was later improved by using the splice-and-cut technique [3].
Armed with related-key model, KTANTAN family can even be broken in prac-
tical time [4]. For the KATAN family where the key is loaded into a register
and updated in each round, the meet-in-the-middle approach is not likely to
work well as the cases of KTANTAN. In the single-key setting, a conditional
differential attack is applied to 78, 70 and 68 rounds of KATAN32, KATAN48
and KATAN64, respectively [5]. These results were further improved by using a

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 268–285, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Related-Key Boomerang Attacks on KATAN32/48/64 269

variant of the meet-in-the-middle approach to 110, 100 and 94 rounds [6]. Also, a
differential-style attack broke the 115-round KATAN32 [7]. Even in the related-
key setting, only 120, 103 and 90 rounds for the respective three versions were
broken by the conditional differential attack [8]. Given the full 254 rounds, the
KATAN family seem to have enough security margin at present. Note that the
accelerating key searches for the full KATAN32/48/64 were presented in [9].

In this paper, we further investigate the security of the KATAN family in
the related-key boomerang framework. In order to build a long and efficient
boomerang distinguisher, we use an efficient differential characteristics search
strategy. Generally speaking, this strategy is inspired by observing that there
exists 39 consecutive rounds where the related key difference is zero. We call
it blank step, and by fixing the starting round of the blank step, we can go
backwards and forwards to compute the input and output differences for both
E0 and E1. Since the key scheduling algorithm is linear for the KATAN family,
key difference fixed in E1 can still be propagated in backwards deterministically.
Although a similar strategy was used for conditional differential attacks [5,8], we
optimize it for boomerang-type attacks. In particular, we carefully choose sets
of input differences which are likely to produce differential characteristics with
very high probability, and then exhaustively search for differential characteristics
of each input set. The probability for E0 can be further controlled by adding
conditions in the plaintexts. By taking multiple output differences for E0 and
multiple input differences for E1 into consideration, we are able to build 140,
119 and 113 rounds related-key boomerang distinguisher for the corresponding
three versions. Based on the boomerang distinguisher, we further optimize the
key recovery phase by exploiting the property of the round function in order to
reduce the complexity as well as increasing the number of attacked rounds. The
comparison of the attacks against the KATAN family is summarized in Table
1. Our attacks substantially improve previous attacks for all variants, and are
confirmed by various experimental verifications, especially, we give the concrete
right quartets for KATAN32 which supports the feasibility of the attack.

Outline of the Paper This paper is organized as follows. A description of
KATAN and related-key boomerang attack are given in Section 2. The related-
key boomerang distinguisher on KATAN32 is shown in Section 3. In Section 4, we
present a key recovery attack using the boomerang distinguisher on KATAN32.
The analysis of KATAN48/64 is given in Section 5. Finally, we present conclu-
sions in Section 6 with various experimental results showed in Appendix.

2 Preliminaries

2.1 KATAN Block Cipher

The KATAN family [1] is a feedback shift register-based block cipher consisting
of three variants : KATAN32, KATAN48, KATAN64, whose block sizes are 32
bits, 48 bits and 64 bits, respectively. All variants use the same LFSR(Linear
Feedback Shift Register)-type key scheduling function accepting an 80-bit key.

270 T. Isobe, Y. Sasaki, and J. Chen

Table 1. Comparison of attacks against KATAN family

Cipher Attacking Technique #Rounds Time Data Mem. Reference

KATAN32 Differential (SK) 78 276 216 CP Not given [5]

MitM (SK) 110 277 138 KP 275.1 [6]

Differential (SK) 115 279 138 KP 275.1 [7]

Differential (RK) 120 231 Practical (CP) Practical [8]

Boomerang (RK) 172 276.2 227.6 CP 226.6 Ours

Boomerang (RK) 173 277.5 227.6 CP 226.6 Ours

Boomerang (RK) 174 278.8 227.6 CP 226.6 Ours

KATAN48 Differential (SK) 70 278 231 CP Not given [5]

MitM (SK) 100 278 128 KP 278 [6]

Differential (RK) 103 225 Practical (CP) Practical [8]

Boomerang (RK) 145 278.5 238.4 CP 237.4 Ours

KATAN64 Differential (SK) 68 278 232 CP Not given [5]

MitM (SK) 94 277.68 116 KP 277.68 [6]

Differential (RK) 90 227 Practical (CP) Practical [8]

Boomerang (RK) 130 278.1 253.1 CP 252.1 Ours

SK: Single Key, RK: Related Key, KP: Know Plaintext, CP:Chosen Plaintext.

The key scheduling function expands an 80-bit user-provided key ki (0 ≤ i <
80) into a 508-bit subkey ski (0 ≤ i < 508) by the following linear operations,

ski =

{
ki (0 ≤ i < 80),

ki−80 ⊕ ki−61 ⊕ ki−50 ⊕ ki−13 (80 ≤ i < 508).

These operations are expressed as an 80-bit LFSR whose polynomial is x80 +
x61 + x50 + x13 + 1 as shown in Fig 1.

In the round function, each bit of a plaintext is loaded into registers L1 and
L2. Then, these are updated as follows:

fa(L1) = L1[x1]⊕ L1[x2]⊕ (L1[x3] · L1[x4])⊕ (L1[x5] · IR)⊕ ka,

fb(L2) = L2[y1]⊕ L2[y2]⊕ (L2[y3] · L2[y4])⊕ (L2[y5] · L2[y6])⊕ kb,

L1[i] = L1[i− 1] (1 ≤ i < |L1|), L1[0] = fb(L2),

L2[i] = L2[i− 1] (1 ≤ i < |L2|), L2[0] = fa(L1),

where ⊕ and · are bitwise XOR and AND operations, respectively, and L[x] de-
notes the x-th bit of L, IR is the round constant value defined in the specifica-
tion, and ka and kb are two subkey bits. Table 2 shows the detailed parameters of
KATAN32/48/64. For round i, ka and kb correspond to sk2(i−1) and sk2(i−1)+1,
respectively. After 254 rounds (from 1 to 254) values of registers are output as
a ciphertext. Fig. 2 illustrates the round function of KATAN32.

Related-Key Boomerang Attacks on KATAN32/48/64 271

79 67 30 19 0

Fig. 1. Key scheduling function of
KATAN32/48/64

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 1 2 3 4 5 6 7 8 9 10 11 12
IR

ka

kb

Fig. 2. Round function of KATAN32

Table 2. Parameters of KATAN family

Algorithm |L1| |L2| x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6
KATAN32 13 19 12 7 8 5 3 18 7 12 10 8 3
KATAN48 19 29 18 12 15 7 6 28 19 21 13 15 6
KATAN64 25 39 24 15 20 11 9 38 25 33 21 14 9

2.2 Related-Key Boomerang Attack

The related-key boomerang attack [10,11,12] is a combination of the boomerang
attack [13], and the related-key differential attack [14,15,16].

Boomerang-Type Attack. The main idea behind the boomerang attack [13] is
to use two short differentials with high probability instead of one long differential
with low probability. Suppose that a block cipher with n-bit block and k-bit key,
E : {0, 1}n × {0, 1}k → {0, 1}n, is expressed as a cascade cipher E = E1 ◦ E0,
where E0 has a differential α → β with probability p, and E1 has a differential
γ → δ with probability q. Then, the distinguisher is mounted as follows:

1 : Ask for the ciphertexts C1 = E(P1) and C2 = E(P2), where P2 = P1 ⊕ α.
2 : Ask for the plaintexts P3 = E−1(C3) and P4 = E−1(C4), where C3 = C1 ⊕ δ

and C4 = C2 ⊕ δ.
3 : Check whether P3 ⊕ P4 = α.

Here, E satisfies the condition of P3 ⊕ P4 = α with probability of p2q2, while
that of a random permutation is 2−n. Note that the attack can be mounted for
all possible β’s and γ’s simultaneously. Therefore, the probability is improved to

p̂2q̂2 from p2q2, where p̂ =
√∑

β Pr
2[α→ β] and q̂ =

√∑
γ Pr

2[γ → δ].

The amplified boomerang attack converts the adaptive setting into the non-
adaptive one [17]. It exploits the birthday paradox in the middle round. An
attacker encrypts many plaintext pairs with a difference α, and collects plain-
text/ciphertext quartets. Then, she searches for right quartets in the form of
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ. For E, this event occurs if
the following three conditions are satisfied:

272 T. Isobe, Y. Sasaki, and J. Chen

αP1

P2

P3

P4

α

β β

γ

γ

C1

C2

C3

C4

δ

δ

E0

E0

E0

E0

E1

E1

E1

E1

K1

K2

K3

K4

K2 = K1 Ka

K3 = K1 Kb

K4 = K1 Ka Kb

K1

Fig. 3. Related-key boomerang quartet

Collision

Blank

Brute force

Δ = 0

Δ = 0

Δ = 0

Δ = 0

KSA

P

C

Δ = 0
k

Δ = 0

Δ = 0

Δ = 0

sk

sk

sk

Cancel

Pcol

Pblk = 1

Pbf

Fig. 4. Strategy for finding differential
characteristics

Condition 1 : E0(P1)⊕ E0(P2) = E0(P3)⊕ E0(P4) = β,
Condition 2 : E0(P1)⊕ E0(P3)(or E0(P2)⊕ E0(P4)) = γ,
Condition 3 : C1 ⊕ C3 = C2 ⊕ C4 = δ.

The probability that a quartet is the right one is 2−np2q2. For a random per-
mutation, this event occurs with probability of 2−2n. Thus, if pq > 2−n/2, we
can distinguish E from a random permutation. Given N plaintext pairs having
α difference, there are

(
N
2

) × 2 ≈ N2 quartets. Thus, the expected number of
right quartets in N pairs is N2 · 2−np2q2. The rectangle attack [18] exploits all
β and γ to improve the amplified boomerang attack. If p̂2q̂2 > 2−n/2, this dis-
tinguisher works. Though the rectangle attack requires a large amount of data,
it can perform a key recovery phase in the non-adaptive setting.

In this paper, we refer boomerang-type attack using amplified and rectangle
techniques to boomerang attack for sake of simplicity.

Related-Key Boomerang Attack. The related-key boomerang attack
[10,11,12] additionally uses key differences. See Fig. 3 for its illustration. Assume
that E0 has a differential α→ β under a key difference ΔKa with probability p̂,
and E1 has a differential γ → δ under a key difference ΔKb with probability q̂.
A related-key distinguisher is constructed by using four different unknown keys,
K1, K2 = K1 ⊕Ka, K3 = K1 ⊕Kb, K4 = K1 ⊕Ka ⊕Kb, as follows:

1 : Ask N ciphertext pairs (C1, C2), where C1 = EK1(P1), C2 = EK2(P2) and
P1 ⊕ P2 = α. Define the set of these pairs as S.

2 : Ask N ciphertext pairs (C3, C4), where C3 = EK3(P3), C4 = EK4(P4) and
P3 ⊕ P4 = α. Define the set of these pairs as T .

3 : Find right quartets satisfying the following conditions from S and T :
P1 ⊕ P2 = P3 ⊕ P4 = α and C1 ⊕ C3 = C2 ⊕ C4 = δ,

Related-Key Boomerang Attacks on KATAN32/48/64 273

Table 3. Output differences
of z for each input value
(x, y) and its difference

Value of Difference of (x, y)
(x, y) (0,1) (1,0) (1,1)

(0,0) 0 0 1

(0,1) 0 1 0

(1,0) 1 0 0

(1,1) 1 1 1

Table 4. Sets of input diff. with Hamming weight 2

set key difference no-difference subkeys plaintext differences Pcol

0 0, 19 20− 98 L2[9], L1[12] 2−2

1 1, 20 21− 99 L2[18], L1[2, 7, 12] 2−3

2 2, 21 22− 100 L2[8], L1[11] 2−3

3 3, 22 23− 101 L2[17], L1[1, 6, 11] 2−3

4 4, 23 24− 102 L2[7, 18], L1[10] 2−3

5 5, 24 25− 103 L2[16], L1[0, 5, 10] 2−4

6 6, 25 26− 104 L2[6, 17], L1[9] 2−3

7 7, 26 27− 105 L2[15, 18], L1[4, 9] 2−3

8 8, 27 28− 106 L2[5, 16], L1[8] 2−4

9 9, 28 29− 107 L2[14, 17], L1[3, 8] 2−5

10 10, 29 30− 108 L2[4, 15], L1[7, 12] 2−4

3 Related-Key Boomerang Distinguisher on KATAN32

In this section, we introduce an effective search strategy for finding good related-
key differential characteristics. This technique exploits the linearity of the key
scheduling and the low dependency of subkey bits. Although a similar search
strategy was used in [5,8], we optimize it for a boomerang-type attack.

3.1 Differential Properties of KATAN

Round Function. Let us consider an XOR differential property of the round
function of KATAN in which there are four nonlinear components, i.e., AND
operations. Table 3 shows the differential property of the AND operation whose
inputs are x, y and the output is z, namely z = x · y. For example, for the value
(1, 0) and the difference (1, 0), the difference of z is obtained as (x · y) ⊕ ((x ⊕
1) · (y ⊕ 0)) = (1 · 0) ⊕ (0 · 1) = 0. From Table 3, when input values have any
differences, the output also has a difference with probability 2−1(= 6/12).

Besides, one AND operation takes IR as one of the input bits. If one of input
bits is public and constant, the corresponding output difference is deterministic.
Thus, we can focus on only three AND operations as nonlinear operations.

Key Scheduling Function. The key scheduling function employs only linear
operations based on the LFSR. Then, we obtain the following observation.

Observation. Choosing input key differences properly, 79 consecutive
subkey bits have no differences after the key scheduling function.

Since the key scheduling function is the 80-bit LFSR-type construction, any
80 consecutive subkeys surely contain some differences if the key has differences.
However, if only one bit of ki (0 ≤ i ≤ 18) has a difference, there is no differences
in ki+1 − ki+79, because ki is not used until ki+80. As for the other case, Table 4
shows all possible sets of 2-bit input key differences producing such 79-bit no
differences subkeys. For example, assuming that k0 and k19 have differences (set
0), k20 − k98 do not have differences because the difference k0 is canceled by k19
when it is used for computing k80. The same event occurs in other sets 1-10.

274 T. Isobe, Y. Sasaki, and J. Chen

Note that, for all 79 consecutive subkey bits, we can generate the subkey
difference which does not make any difference for the target 79 subkey bits. This
can be done by the kernel computing approach in [19]. However these sets do
not give advantage compared to the sets 1-10, and thus we omit the details.

3.2 Strategy for Finding Differential Characteristics

We introduce an effective search strategy for finding good related-key differen-
tial characteristics. It is well-suited for boomerang-type attacks in terms of short
differential characteristics with very high probability. In general, it is difficult to
find good differential characteristics for a bit-oriented cipher due to the large
search space. Besides, the related-key setting where key differences are addition-
ally inserted makes it more difficult. In order to get rid of this problem, our
strategy is focusing on particular input differential sets which are expected to
give good characteristics for boomerang-type attacks.

The differential characteristic search strategy consists of a collision step, a
blank step and a brute force step as shown in Fig.4.

Collision Step : Plaintext difference and key difference cancel each other.
Blank Step : No difference exists in registers and inserted subkeys.
Brute Force Step : Subkey differences propagate to the registers.

The key idea of this strategy is to construct the rounds having no difference called
blank round. Since the blank round does not reduce the differential probability,
i.e., differential probability of such rounds is one, we expect to obtain differential
characteristics with high probability. For constructing a long blank round, we
utilize the observation 1: we can set 79 consecutive subkey bits having no differ-
ence. If there is no difference in registers where these 79-bit subkeys are used,
the blank round can be easily constructed. In other words, we properly choose
plaintext difference for canceling out subkey differences just before the blank
round. Table 4 shows the plaintext differences for canceling the corresponded
input key differences before the blank round and its probability. After the blank
round, we search for all differential characteristics. As mentioned before, we re-
gard three AND operations as nonlinear components. Let Pcol, Pblk and Pbf

be the differential probability of each step, respectively. The whole differential
characteristic probability is calculated as Pcol · Pblk · Pbf , where Pblk = 1.

Input key differences are restricted to the set satisfying the property of the
observation 1. Then, plaintext differences are also determined from the set of
input key differences for constructing the blank round (see Table 4).

3.3 Related-Key Boomerang Distinguisher on 140-Round
KATAN32

Using the efficient differential characteristics search, we obtain the maximum
probability of differential characteristics of each input set in E0 starting from
round 1 (see Table 5).

Related-Key Boomerang Attacks on KATAN32/48/64 275

Table 5. Maximum probability of differential characteristics of each set in E0

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−9 2−9 2−7 2−8 2−7 2−8 2−7 2−7 2−7 2−7 2−7

66 2−10 2−10 2−7 2−9 2−7 2−9 2−7 2−8 2−8 2−8 2−8

67 2−12 2−10 2−8 2−10 2−7 2−10 2−7 2−9 2−8 2−9 2−9

68 2−13 2−11 2−9 2−10 2−8 2−11 2−7 2−11 2−8 2−10 2−10

69 2−14 2−12 2−10 2−12 2−9 2−11 2−8 2−12 2−8 2−11 2−11

70 2−15 2−12 2−12 2−12 2−10 2−12 2−9 2−12 2−9 2−12 2−12

71 2−16 2−13 2−13 2−12 2−12 2−13 2−10 2−14 2−10 2−12 2−12

Table 6. Maximum probability of differential characteristics of each set in E1

Round set0 set1 set2 set3 set4 set5 set6 set7 set8 set9 set10

65 2−6 2−10 2−7 2−8 2−9 2−8 2−7 2−7 2−8 2−7 2−6

66 2−7 2−11 2−7 2−9 2−9 2−9 2−7 2−8 2−9 2−8 2−7

67 2−8 2−11 2−8 2−10 2−10 2−11 2−7 2−9 2−10 2−9 2−8

68 2−9 2−13 2−9 2−10 2−11 2−12 2−7 2−10 2−10 2−10 2−8

69 2−11 2−13 2−10 2−12 2−13 2−12 2−8 2−11 2−11 2−11 2−8

70 2−12 2−13 2−12 2−12 2−14 2−13 2−9 2−11 2−12 2−12 2−8

71 2−15 2−14 2−13 2−12 2−15 2−14 2−10 2−12 2−14 2−12 2−9

To construct a distinguisher, we choose 70 rounds of set 8 whose probability
is highest of all the sets. E0 has 8 characteristics with probability p = 2−9,
16 characteristics with probability p = 2−10, 16 characteristics with probability
p = 2−11 and 64 characteristics with probability p = 2−12, which are generated
from the same input. Thus, the overall probability for E0 is

p̂ =
√
(2−9)2 · 8 + (2−10)2 · 16 + (2−11)2 · 16 + (2−12)2 · 64 ≈ 2−7.1.

Table 11 in Appendix gives a single differential trail of E0 with probability of
2−9, where round 0 means initial differences, i.e., differences of a plaintext.

Since KATAN employs the LFSR-based key scheduling, all 508 subkey bits
can be calculated from any consecutive 80 subkey bits. It means that we can
use the efficient differential characteristics search strategy from any round by
regarding the consecutive 80 subkey bits as the master key bits. Thus, we search
for differential characteristics of E1 from round 71 with the same strategy.

Table 6 shows the maximum probability of differential characteristics of each
set in E1 starting from round 71. We choose set 1 as E1 with probability 2−8.
In addition, E1 has 4 characteristics with probability 2−8, 8 characteristics with
probability 2−9 and 32 characteristics with probability 2−10, which produce the
same output difference. Thus, the total probability for E1 is estimated as

q̂ =
√
(2−8)2 · 4 + (2−9)2 · 8 + (2−10)2 · 32 ≈ 2−6.5.

Table 12 in Appendix gives a single differential trail of E1 with probability 2−8.
Combining these two-type differential characteristics, 140 (=70+70)-round

related-key boomerang distinguisher can be constructed with probability of

276 T. Isobe, Y. Sasaki, and J. Chen

p̂2 · q̂2 = (2−7.1)2 · (2−6.5)2 = 2−27.2 (> 2−32).

The probability of the boomerang distinguisher, 2−27.2, is possible to verify prac-
tically. We performed the experiment on a standard PC and found right quartets
within a few minutes. One example is shown in Table 10 in Appendix.

4 Related-Key Recovery Attack on KATAN32

In this section, a related-key attack on KATAN32 is proposed given the 140-
round boomerang distinguisher. One of the challenging problems is how to reduce
the candidate quartets. This is usually achieved by studying the propagation of
the difference to the ciphertext in order to filter out definitely wrong quartets.
For the KATAN family, this may not be the best option. When we extend the
attacking rounds as long as possible, the difference propagation will leave us
with no clue. Instead, we try to choose plaintext so that the characteristic for
the first several rounds are always satisfied. This strategy is also used in previous
KATAN attacks [5,8]. We further optimize the key recovery phase by exploiting
the property of the round function, in order to reduce the complexity as well as
increasing the number of attacked rounds.

4.1 Conditions for Chosen Plaintexts

In the collision step for E0, we have calculated that pcol = 2−4. Recall that for
two inputs to an AND gate, one input with value 1 will guarantee the propagation
of the difference from the other input, and difference will disappear when the
value is fixed to 0. Thus we can assure the difference propagation with probability
1 by fixing some of the plaintext bits. For KATAN32, the probability for the
collision steps can be increased to 1. The conditions on plaintext bits are L2[0] =
L2[3] = L2[7] = L1[5] = 0, and the increased probability for E0 is

p̂ =
√
(2−9+4)2 · 8 + (2−10+4)2 · 16 + (2−11+4)2 · 16 + (2−12+4)2 · 64 ≈ 2−3.1.

This indicates that we can expect one right quartet in 251.2(= (2−3.1)2 · (2−6.5)2 ·
2−32). As a result, the number of quartet candidates is reduced to 251.2.

4.2 Optimizing Key Recovery Phase

Suppose that we append x rounds to the end of the 140-round distinguisher.
The attacker queries N pairs of plaintexts to oracles with K1 and K2. She also
queries N pairs of plaintexts to oracles with K3 and K4. Then, N

2 quartets are
constructed. We set N ← p̂−1 · q̂−1 · 2n/2 so that a right quartet is generated.

To recover subkeys for the last x rounds with a straight-forward method,
the attacker guesses all subkeys for the last x rounds, and performs partial
decryptions until the end of the 140-round distinguisher for each of N2 quar-
tets. Let gi, where i ∈ {1, 2, 3, 4} be a set of subkey bits used in the last x

Related-Key Boomerang Attacks on KATAN32/48/64 277

rounds for the Ki oracle. Because KATAN uses two subkey bits in each round,
each gi contains 2x subkey bits. We denote the x-round partial decryption for
a ciphertext Ci with a guessed key gi by Dgi(Ci). Note that if the guess for
K1 oracle, g1, is determined, the corresponding g2, g3, and g4 are determined
uniquely. If the guessed value is correct, the attacker will find one quartet such
that Dg1(C1)⊕Dg3(C3) = Dg2(C2)⊕Dg4(C4) = δ. If such a quartet is not found,
the guess is wrong. Unfortunately, the complexity of this approach is too high.
Let #g be the number of subkey bits in each of gi, namely 2x. The approach
requires N2 ·#g · 4 partial decryptions, where a factor of N2 is too high.

Pairwise Approach. We propose a more efficient method. For each guess of
g1 and corresponding g2, g3, g4, we perform the partial decryption for N pairs of
(C1, C2) and N pairs of (C3, C4) independently, and identify the right quartet
by checking their match as follows:

1. Make a guess for g1 and determine the corresponding values for g2, g3, g4.
2. For all N pairs of (C1, C2), compute (Dg1(C1) ⊕ δ,Dg2(C2) ⊕ δ) and store

them in a table with N entries.
3. For all N pairs of (C3, C4), compute (Dg3(C3), Dg4(C4)) and store them in

another table.
4. If the guess is correct, a match is found. Otherwise, the guess is discarded.

This method requires only N ·#g · 2 partial decryptions for Step 2 and Step 3
respectively, in totalN ·#g·4 partial decryptions. The memory requirement is 2N
state. The memory for Step 3 can be saved by checking the match as soon as we
obtain a pair. Each guess is judged as a right-key candidate if one of N2 quartets
satisfies two n-bit relations δ. We denote this probability by Pright, which is
N2 · 2−2n. After the analysis, the key space will be #g · Pright = #g ·N2 · 2−2n.
The remaining key space will be later examined by the exhaustive search.

Exploiting Linear Subkey Insertion. We further optimize the attack by
exploiting the round function structure. Recall Fig. 2. If the output value for
some round r is known, the input difference for round r can be computed without
guessing subkeys. This is because the 1-round decryption uses subkey values
only in the linear operation. The situation continues until unknown values are
used as an input of AND operations. In the end, the difference after the x-round
decryption can be computed only with guessing subkeys for the last x−4 rounds.

Partial Matching. Another optimization is possible by exploiting the property
that only 2 bits are updated in each decryption round. Let us see what will
happen if we go back 5 rounds without guessing subkeys. As mentioned above,
the difference in all bits can be computed up to 4 rounds. In the next round,
the attacker cannot compute the difference of the updated bit L1[12], while she
knows the difference of the other 31 bits (L2[18] can be computed at this stage).
Hence, the match can be performed for 31 bits. The analysis is summarized in

278 T. Isobe, Y. Sasaki, and J. Chen

Table 7. Partial-matching technique for KATAN32

#Skipped rounds Number of bits with unknown differences Pright

L1 L2 Total

1–4 0 0 0 N2 · 2−64

5 1 0 1 N2 · 2−62

6 2 0 2 N2 · 2−60

7 3 1 4 N2 · 2−56

r(≥ 6) r − 4 r − 6 2r − 10 N2 · 2−84+4r

If one subkey bit for the first skipped round is guessed, Pright decreases by 22.

Table 7. Let r be the number of rounds which we compute without guessing
subkeys. Let z be the number of bits with unknown difference. The match is
performed for 32− z bits. From Table 7, z = 2r − 10 for r ≥ 6. Because 2 pairs
exist in a quartet, Pright is N

2 ·2−2(32−z), which is N2 ·2−84+4r. As long as Pright

is small enough, subkeys can be recovered faster than the exhaustive search.
The idea of checking the difference only for a part of the state is similar to the

early abort technique [20]. Our idea is different because the pairwise approach
is used and the match of difference cannot be checked round by round.

Partial Key Guessing. The last technique for the optimization is partially
guessing a subkey, i.e., only guessing 1 bit of a subkey in the first skipped rounds.
In Table 7, this makes the number of unknown bits be 2r − 11 and Pright be
N2 · 2−86+4r when r ≥ 6. Intuitively, the technique increases the computational
complexity by 1 bit due to the additional guessed bit, while it increases the
efficiency of the filtering function by 2 bits due to two pairs in a quartet.

4.3 Attack Procedure and Complexity Evaluation

We append x = 34 rounds to the end of the 140-round distinguisher. The number
of rounds which we do not guess subkey values, r, is 8, but we use the partial
key guessing technique. Therefore, #g = 53, where each gi consists of 52 bits for
the last 26 rounds and 1 bit of subkey (either bit is fine) for the 27th last round.

1. Choose N = 225.6 plaintext pairs (P1, P2) so that P1 ⊕ P2 = α and satisfy
the 4-bit conditions L2[0] = L2[3] = L2[7] = L1[5] = 0. Query them to the
oracles with K1 and K2, and store the corresponding 225.6 pairs of (C1, C2).

2. Do the same for (P3, P4) to obtain N = 225.6 ciphertext pairs (C3, C4).
3. Guess g1 and the corresponding g2, g3, g4. For each guess, do as follows.

(a) For 225.6 pairs of (C1, C2), decrypt them for 26 rounds. Then, further
decrypt them by 8 rounds to obtain differences in 32− (2× 8− 11) = 27
bits, and take the XOR with δ. Store them in a table with 225.6 entries.

(b) For 225.6 pairs of (C3, C4), do as follows.
i. Similarly decrypt the pair for 26 + 8 = 34 rounds to obtain the

differences in 27 bits.
ii. Check if the match exists between the stored values. If no match is

found, delete the guess from the candidate. Otherwise, do as follows.

Related-Key Boomerang Attacks on KATAN32/48/64 279

iii. For exhaustive guesses of 80 − 53 = 27-bit subkeys which are not
guessed yet, check the correctness of the guess by using any pair of
plaintext and ciphertext (32-bit match). It it passes the check, then
further check the correctness of the guess with two more plaintext-
ciphertext pairs. If it passes all checks, output it as the correct key.

For Step 1 and 2, we need 4 ∗ 225.6 = 227.6 chosen plaintexts. Step 3a requires
253+25.6 ·2 ·34/174 ≈ 277.25 174-round KATAN32 computations. The memory re-
quirement for Step 3a is about 2·225.6 = 226.6 state values. Step 3(b)i also requires
277.25 computations. After Step 3(b)ii, 253 ·Pright = 253 · (251.2 ·2−86+4·8) = 250.2

key candidates will remain. Step 3(b)iii requires 250.2+27 = 277.2 174-round
KATAN32 computations for the first plaintext-ciphertext pair. Only 277.2−32 =
245.2 key candidates are examined for the second pair, and only 245.2−32 = 213.2

candidates are examined for the third pair. Hence, the complexity for Step 3(b)iii
is 277.2 + 245.2 + 213.2 ≈ 277.2 174-round KATAN32 computations.

In summary, the data complexity is 227.6 chosen plaintexts, the time com-
plexity is 277.25 +277.25 +277.2 ≈ 278.8 174-round KATAN32 computations. The
memory requirement is 225.6 state.

Note that our attack succeeds only if the right quartet is obtained i.e., the
differential with a probability of 2−51.2 is satisfied with 251.2 quartets. Hence,
the success probability of our attack is 1 − 1/e ≈ 0.63. On the other hand, the
success probability of the brute force attack with 278.8 trials is 0.44. Hence, our
attack is better than the brute force attack with the same complexity.

Also note that the advantage of our attack becomes clearer if the number of
rounds is reduced more. For example, the complexity for 173 or 172 rounds is
277.5 or 276.2 computations, respectively, with the same data and memory.

5 Related-Key Boomerang Attack on KATAN48/64

5.1 Differential Characteristics and Plaintext Conditions

First we give differential characteristic for KATAN48. Similar to KATAN32, we
start from finding collision steps, and by changing the starting point of the colli-
sion steps, we go backwards to derive the input differences and key differences. As
a result we build a 119-round boomerang distinguisher for KATAN48. Table 13
and 14 in Appendix demonstrate one characteristic for E0 and E1. We use a fixed
characteristic between rounds 1 to 49 of E0 and rounds 70 to 119 for E1, while
we use a differential for the other rounds. In total, for E0 there are 32 charac-
teristics with probability 2−14, 128 characteristics with probability 2−15 and 128
characteristics with probability 2−16. For E1 there are 128 characteristics with
probability 2−12. As a result, p̂ =

√
(2−14)2 · 32 + (2−15)2 · 128 + (2−16)2 · 128 =

2−10.9, q̂ =
√
(2−12)2 · 128 = 2−8.5.

Differential characteristics for E0 and E1 of KATAN64 are summarized in
Table 15 and 16 in Appendix. Due to the more scrambling in each round, the
number of the collision steps and the brute force steps are reduced. We use a
fixed characteristic between rounds 1 to 46 of E0 and rounds 103 to 113 for

280 T. Isobe, Y. Sasaki, and J. Chen

Table 8. Partial-matching for KATAN48

#skipped#bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−96

2 1 0 1 N2 · 2−94

3 3 0 3 N2 · 2−90

4 5 1 6 N2 · 2−84

5 7 3 10 N2 · 2−76

6 9 5 14 N2 · 2−68

r(≥ 4) 2r − 3 2r − 7 4r − 10N2 · 2−116+8r

If one subkey bit for the first skipped round is
guessed, Pright decreases by 24.

Table 9. Partial-matching for KATAN64

#skipped#bits with unknown diff. Pright

rounds L1 L2 Total

1 0 0 0 N2 · 2−128

2 2 1 3 N2 · 2−122

3 5 4 9 N2 · 2−110

4 8 7 15 N2 · 2−98

r(≥ 3) 3r − 4 3r − 5 6r − 9 N2 · 2−146+12r

If one subkey bit for the first skipped round is
guessed, Pright decreases by 26.

E1, while we use a differential for the other rounds. For E0 there are 64, 256,
512, 1024, and 1024 characteristics with probability 2−16, 2−17, 2−18, 2−19, and
2−20, respectively. For E1 there are 4, 24, 88, 224, 416, 608, 704, 640, and 256
characteristics with probability 2−16, 2−17, 2−18, 2−19, 2−20, 2−21, 2−22, 2−23,
and 2−24, respectively. As a result, p̂ = 2−12.25, and q̂ = 2−13.8.

The probabilities of the collision steps of E0 for KATAN48/64 are both 2−7,
but this can be improved by 27 by choosing the plaintext satisfying the condi-
tions. The conditions are given below along with the improved probability for p̂.
q̂ is not affected by the chosen plaintext.

KATAN48. Conditions: L2[0] = L2[1] = L2[2] = L2[11] = L2[17] = 0, L2[10] 	=
L2[18]. p̂ =

√
(2−14+7)2 · 32 + (2−15+7)2 · 128 + (2−16+7)2 · 128 = 2−3.9. We ex-

pect 272.8(= (23.9)2 · (28.5)2 · 248) quartets before a right one shows up.

KATAN64. Conditions: L2[6] = L2[7] = L2[8] = L2[21] = L2[30] = 0, L2[20] 	=
L2[32], L2[19] 	= L2[31]. p̂ becomes 2−5.25. We expect 2102.1(= (25.25)2 · (213.8)2 ·
264) quartets before a right one shows up.

5.2 Optimization and Summary of Key Recovery Attacks

The overall strategy is the same as the one for KATAN32. The only difference
from KATAN32 is the impact of the partial-matching technique, which comes
from the different register sizes |L1|, |L2| and input-bit positions for AND oper-
ations. The results are summarized in Table 8 and Table 9.

145-Round KATAN48. The attack generates p̂−1 · q̂−1 ·248/2 = 23.9+8.5+24 =
236.4 pairs of (P1, P2), and 236.4 pairs of (P3, P4). This makes 272.8 quartets, which
include a right quartet with probability 0.63. We append 26 rounds after the 119-
round distinguisher. Hence, 145 rounds are attacked. In the key recover phase, we
guess 42 bits of subkeys for the last 21 rounds. Therefore, the number of skipped
steps, r, is 5. This makes the time complexity for the analysis for P1, P2 pairs
be 236.4+42 · 2 · 26/145 ≈ 276.9 145-round KATAN48 computations. The memory

Related-Key Boomerang Attacks on KATAN32/48/64 281

requirement is 2 · 236.4 = 237.4 state values. The analysis for P3, P4 pairs also
requires 276.9 145-round KATAN48 computations. Pright is 2

72.8 · 2−76 = 2−3.2.
Hence, the complexity for the exhaustive check becomes 280·Pright = 276.8. In the
end, the data complexity is 4 ·236.4 = 238.4 chosen plaintexts. The computational
complexity is 276.9 + 276.9 + 276.8 ≈ 278.5 145-round KATAN48 computations.
The success probability of our attack is 0.63, while the success probability of the
brute force attack with the same complexity is 0.35.

130-Round KATAN64. The attack generates p̂−1·q̂−1·264/2 = 25.25+13.8+32 =
251.05 pairs of (P1, P2), and 251.05 pairs of (P3, P4). This makes 2102.1 quartets,
which include a right quartet with probability 0.63. We append 17 rounds after
the 113-round distinguisher. Hence, 130 rounds are attacked. In the key recover
phase, we guess 28 bits of subkeys for the last 14 rounds. Therefore, the number of
skipped steps, r, is 3. This makes the time complexity for the analysis for P1, P2

pairs be 251.05+28 · 2 · 17/130 ≈ 277.1 130-round KATAN64 computations. The
memory requirement is 2·251.05 ≈ 252.1 state values. The analysis for P3, P4 pairs
also requires 277.1 130-round KATAN64 computations. Pright is 2

102.1 · 2−110 =
2−7.9. Hence, the complexity for the exhaustive check becomes 280 ·Pright = 272.1.
In the end, the data complexity is 4 · 251.05 ≈ 253.1 chosen plaintexts. The
computational complexity is 277.1 + 277.1 + 272.1 ≈ 278.1 130-round KATAN64
computations. The success probability of our attack is 0.63, while the success
probability of the brute force attack with the same complexity is 0.27.

6 Conclusion

In this paper, we proposed the related-key boomerang attack to 174, 145 and
130 rounds of KATAN32/48/64, respectively, which dramatically improved the
number of attacked rounds compared with the previous results. Examples of the
right quartet on KATAN32 confirmed the feasibility of our attack. As far as we
know, this is the best result achieved on the KATAN family.

References

1. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

2. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanaly-
sis of the Lightweight Block Cipher KTANTAN. In: Biryukov, A., Gong, G., Stin-
son, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg
(2011)

3. Wei, L., Rechberger, C., Guo, J., Wu, H., Wang, H., Ling, S.: Improved Meet-in-
the-Middle Cryptanalysis of KTANTAN (Poster). In: Parampalli, U., Hawkes, P.
(eds.) ACISP 2011. LNCS, vol. 6812, pp. 433–438. Springer, Heidelberg (2011)

282 T. Isobe, Y. Sasaki, and J. Chen

4. Ågren, M.: Some Instant- and Practical-Time Related-Key Attacks on KTAN-
TAN32/48/64. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp.
213–229. Springer, Heidelberg (2012)

5. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanaly-
sis of NLFSR-Based Cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 130–145. Springer, Heidelberg (2010)

6. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

7. Albrecht, M.R., Leander, G.: An All-In-One Approach to Differential Cryptanal-
ysis for Small Block Ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 1–15. Springer, Heidelberg (2013)

8. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional Differential Cryptanal-
ysis of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS,
vol. 7118, pp. 200–212. Springer, Heidelberg (2012)

9. Knellwolf, S.: Accelerated Key Search for the KATAN Family of Block Ciphers.
In: ECRYPT Workshop on Lightweight Cryptography (2011)

10. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

11. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

12. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack
– Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

13. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

14. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. Cryptol-
ogy 7(4), 229–246 (1994)

15. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

16. Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)

17. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

18. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling
the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
340–357. Springer, Heidelberg (2001)

19. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

20. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the Efficiency of Impossible
Differential Cryptanalysis of Reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

Related-Key Boomerang Attacks on KATAN32/48/64 283

Appendix

Table 10. Example of confirmed boomerang quartets for KATAN32

P1 0x46ec3236 C1 0xee39e8a1 K1 0x22fe640869975423bce9

P2 0x4eed3216 C2 0xf19133e1 K2 0x22fe640869975c23bde9

P3 0xd2379460 C3 0xee11e925 K3 0xa6ffe4826d8d3228d6c1

P4 0xda369440 C4 0xf1b93265 K4 0xa6ffe4826d8d3a28d7c1

P1 ⊕ P2 0x08010020 C1 ⊕ C3 0x00280184 K1 ⊕K2 = K3 ⊕K4 0x00000000000008000100

P3 ⊕ P4 0x08010020 C2 ⊕ C4 0x00280184 K1 ⊕K3 = K2 ⊕K4 0x8401808a041a660b6a28

Table 11. Differential characteristic of
KATAN32 E0 (1 - 70)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

0 0000010000000000100 0000000010000 0 0 1

1 0000001000000000010 0000000001000 0 0 2−1

2 0000000100000000001 0000000000100 0 0 2−1

3 0000000010000000000 0000000000010 0 0 2−1

4 0000000001000000000 0000000000001 1 0 2−2

5 0000000000100000000 0000000000000 0 0 2−2

6 0000000000010000000 0000000000000 0 0 2−3

7 0000000000001000000 0000000000000 0 0 2−3

8 0000000000000100000 0000000000000 0 0 2−4

9 0000000000000010000 0000000000000 0 0 2−4

10 0000000000000001000 0000000000000 0 0 2−4

11 0000000000000000100 0000000000000 0 0 2−4

12 0000000000000000010 0000000000000 0 0 2−4

13 0000000000000000001 0000000000000 0 1 2−4

14 0000000000000000000 0000000000000 0 0 2−4

53 0000000000000000000 0000000000000 0 1 2−4

54 0000000000000000000 1000000000000 0 0 2−4

55 0000000000000000000 0100000000000 0 0 2−4

56 0000000000000000000 0010000000000 0 0 2−4

57 0000000000000000000 0001000000000 0 0 2−4

58 0000000000000000000 0000100000000 0 0 2−4

59 0000000000000000000 0000010000000 0 0 2−4

60 0000000000000000000 0000001000000 1 0 2−5

61 1000000000000000000 0000000100000 0 0 2−5

62 1100000000000000000 0000000010000 0 0 2−5

63 0110000000000000000 0000000001000 0 0 2−6

64 0011000000000000000 0000000000100 0 0 2−6

65 0001100000000000000 0000000000010 0 0 2−7

66 0000110000000000000 0000000000001 0 1 2−8

67 1000011000000000000 1000000000000 0 0 2−8

68 0100001100000000000 0100000000000 0 0 2−8

69 0010000110000000000 1010000000000 0 0 2−8

70 0001000011000000000 1101000000000 0 0 2−9

Table 12. Differential characteristic
of KATAN32 E1 (71 - 140)

Round L2[0] . . . L2[18] L1[0] . . . L1[13] KaKb Pr.

70 0000100000000001000 0000000100001 0 0 1

71 0000010000000000100 0000000010000 0 0 1

72 0000001000000000010 0000000001000 0 0 2−1

73 0000000100000000001 0000000000100 0 0 2−1

74 0000000010000000000 0000000000010 0 0 2−1

75 0000000001000000000 0000000000001 1 0 2−2

76 0000000000100000000 0000000000000 0 0 2−2

77 0000000000010000000 0000000000000 0 0 2−3

78 0000000000001000000 0000000000000 0 0 2−3

79 0000000000000100000 0000000000000 0 0 2−4

80 0000000000000010000 0000000000000 0 0 2−4

81 0000000000000001000 0000000000000 0 0 2−4

82 0000000000000000100 0000000000000 0 0 2−4

83 0000000000000000010 0000000000000 0 0 2−4

84 0000000000000000001 0000000000000 0 1 2−4

124 0000000000000000000 0000000000000 0 1 2−2

125 0000000000000000000 1000000000000 0 0 2−2

126 0000000000000000000 0100000000000 0 0 2−3

127 0000000000000000000 0010000000000 0 0 2−3

128 0000000000000000000 0001000000000 0 0 2−3

129 0000000000000000000 0000100000000 0 0 2−4

130 0000000000000000000 0000010000000 0 0 2−4

131 0000000000000000000 0000001000000 1 0 2−5

132 1000000000000000000 0000000100000 0 0 2−5

133 1100000000000000000 0000000010000 0 0 2−5

134 0110000000000000000 0000000001000 0 0 2−6

135 0011000000000000000 0000000000100 0 0 2−6

136 0001100000000000000 0000000000010 0 0 2−7

137 0000110000000000000 0000000000001 0 1 2−8

138 1000011000000000000 1000000000000 0 0 2−8

139 0100001100000000000 0100000000000 0 0 2−8

140 0010000110000000000 1010000000000 0 0 2−8

284 T. Isobe, Y. Sasaki, and J. Chen

Table 13. Differential characteristic of KATAN48 E0 (1 - 60)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

0 00000000011000000011000000011 0000000000000000011 1 0 1

1 00000000000110000000110000000 0000000000000000000 0 0 1

2 00000000000001100000001100000 0000000000000000000 0 0 2−2

3 00000000000000011000000011000 0000000000000000000 0 0 2−4

4 00000000000000000110000000110 0000000000000000000 0 0 2−5

5 00000000000000000001100000001 0000000000000000000 0 0 2−5

6 00000000000000000000011000000 0000000000000000000 0 0 2−6

7 00000000000000000000000110000 0000000000000000000 0 0 2−7

8 00000000000000000000000001100 0000000000000000000 0 0 2−7

9 00000000000000000000000000011 0000000000000000000 0 1 2−7

10 00000000000000000000000000000 0000000000000000000 0 0 2−7

49 00000000000000000000000000000 0000000000000000000 0 1 2−7

50 00000000000000000000000000000 1100000000000000000 0 0 2−7

51 00000000000000000000000000000 0011000000000000000 0 0 2−7

52 00000000000000000000000000000 0000110000000000000 0 0 2−7

53 10000000000000000000000000000 0000001100000000000 0 0 2−7

54 00100000000000000000000000000 0000000011000000000 0 0 2−9

55 00001000000000000000000000000 0000000000110000000 0 0 2−9

56 10000010000000000000000000000 0000000000001100000 1 0 2−9

57 10100000100000000000000000000 0000000000000011000 0 0 2−10

58 00101000001000000000000000000 0000000000000000110 0 0 2−12

59 10001010000010000000000000000 0000000000000000001 0 0 2−12

60 01100010100000100000000000000 0000000000000000000 0 0 2−14

Table 14. Differential characteristic of KATAN48 E1 (61 - 119)

Round L2(L2[0]...L2[28]) L1(L1[0]...L1[18]) KaKb Pr.

60 00000000011000000011000000011 0000000000000000011 1 0 1

61 00000000000110000000110000000 0000000000000000000 0 0 1

62 00000000000001100000001100000 0000000000000000000 0 0 2−2

63 00000000000000011000000011000 0000000000000000000 0 0 2−4

64 00000000000000000110000000110 0000000000000000000 0 0 2−5

65 00000000000000000001100000001 0000000000000000000 0 0 2−5

66 00000000000000000000011000000 0000000000000000000 0 0 2−6

67 00000000000000000000000110000 0000000000000000000 0 0 2−7

68 00000000000000000000000001100 0000000000000000000 0 0 2−7

69 00000000000000000000000000011 0000000000000000000 0 1 2−7

70 00000000000000000000000000000 0000000000000000000 0 0 2−7

109 00000000000000000000000000000 0000000000000000000 0 1 2−7

110 00000000000000000000000000000 1100000000000000000 0 0 2−7

111 00000000000000000000000000000 0011000000000000000 0 0 2−7

112 00000000000000000000000000000 0000110000000000000 0 0 2−7

113 10000000000000000000000000000 0000001100000000000 0 0 2−7

114 00100000000000000000000000000 0000000011000000000 0 0 2−9

115 00001000000000000000000000000 0000000000110000000 0 0 2−9

116 10000010000000000000000000000 0000000000001100000 1 0 29

117 10100000100000000000000000000 0000000000000011000 0 0 2−10

118 00101000001000000000000000000 0000000000000000110 0 0 2−12

119 10001010000010000000000000000 0000000000000000001 0 0 2−12

Related-Key Boomerang Attacks on KATAN32/48/64 285

Table 15. Differential characteristic of KATAN64 E0 (1 - 56)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

0 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

1 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

2 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

3 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

4 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

5 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

6 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

7 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

46 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

47 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

48 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

49 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

50 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

51 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

52 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

53 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

54 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

55 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

56 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16

Table 16. Differential characteristic of KATAN64 E1 (57 - 113)

Round L2(L2[0]...L2[38]) L1(L1[0]...L1[24]) KaKb Pr.

56 000000000000000111000000000011100000000 0000000000000000000000000 0 0 1

57 000000000000000000111000000000011100000 0000000000000000000000000 0 0 1

58 000000000000000000000111000000000011100 0000000000000000000000000 0 0 2−3

59 000000000000000000000000111000000000011 0000000000000000000000000 0 0 2−4

60 000000000000000000000000000111000000000 0000000000000000000000000 0 0 2−4

61 000000000000000000000000000000111000000 0000000000000000000000000 0 0 2−4

62 000000000000000000000000000000000111000 0000000000000000000000000 0 0 2−6

63 000000000000000000000000000000000000111 0000000000000000000000000 0 1 2−7

64 000000000000000000000000000000000000000 0000000000000000000000000 0 0 2−7

103 000000000000000000000000000000000000000 0000000000000000000000000 0 1 2−7

104 000000000000000000000000000000000000000 1110000000000000000000000 0 0 2−7

105 000000000000000000000000000000000000000 0001110000000000000000000 0 0 2−7

106 000000000000000000000000000000000000000 0000001110000000000000000 0 0 2−7

107 000000000000000000000000000000000000000 0000000001110000000000000 0 0 2−7

108 000000000000000000000000000000000000000 0000000000001110000000000 0 0 2−10

109 110000000000000000000000000000000000000 0000000000000001110000000 0 0 2−10

110 001110000000000000000000000000000000000 0000000000000000001110000 1 0 2−10

111 111001110000000000000000000000000000000 0000000000000000000001110 0 0 2−13

112 110111001110000000000000000000000000000 0000000000000000000000001 0 0 2−14

113 001110111001110000000000000000000000000 0000000000000000000000000 0 0 2−16

Highly Accurate Key Extraction Method

for Access-Driven Cache Attacks
Using Correlation Coefficient�

Junko Takahashi1, Toshinori Fukunaga2, Kazumaro Aoki1, and Hitoshi Fuji1

1 NTT Secure Platform Laboratories,
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585, Japan

{takahashi.junko,aoki.kazumaro,fuji.hitoshi}@lab.ntt.co.jp
2 NTT Technology Planning Department,

3-1, Otemachi 2-chome, Chiyoda-ku, Tokyo 100-8116, Japan
toshi.fukunaga@hco.ntt.co.jp

Abstract. This paper proposes a new highly-accurate key extraction
method for access-driven cache attacks (CAs). We show that a mathe-
matical correlation method can be utilized to evaluate quantitatively the
access-driven CAs. To the best of our knowledge, this is the first study
on CAs that clarifies precisely and mathematically the key candidate
space based on memory allocation, and analyzes quantitatively how the
correlation values change based on the number of plaintexts. We show
empirical improvement of the proposed method based on real processors.
We correctly examine the correlation between the access timing data and
the key within a few minutes even in a noisy environment. Based on the
proposed method, we show the key candidate space with the mathe-
matical proof and find the relationship between the correlation values
and the number of plaintexts needed to examine the required number of
plaintexts for a successful attack.

Keywords: Side-Channel Attacks, Cache Attacks, Access-Driven Cache
Attacks, Block Ciphers, AES, Software Implementation.

1 Introduction

Nowadays, side-channel attacks (SCAs), which intentionally reveal a secret key
using physical leakage, represent a real threat to cryptographic devices. A cache
attack (CA) is a well-known SCA that utilizes timing differences whether data
are loaded from the main memory (hereafter simply memory) or the cache mem-
ory. In fact, the cache memory access speed is typically up to two orders of mag-
nitude faster than that for the memory. When some applications access memory,
the processor first looks for data in the cache memory. If data are already in the
cache memory, a cache hit occurs and data are accessed from the cache memory

� This paper is an extended and improved version of two technical reports: concept
[1] and its application [2].

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 286–301, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 287

without touching the memory. If not, a cache miss occurs and data are accessed
from the memory or a higher level cache memory. Thus, there are large gaps in
the accessing speed between these cases, and a CA utilizes the characteristics of
the timing differences. A CA is considered to be powerful because the key can
be remotely extracted.

The initial idea of CAs was presented in [3] and [4], and the theoretical studies
based on CAs were given later in [5] and [6]. CAs against some block ciphers were
experimentally presented in [7] and [8]. It is well-known that CAs are effective
against cryptographic implementations that use substitution box (S-box) tables,
which are employed in most block ciphers to speed up cryptographic calculation.
Three kinds of CAs were proposed based on timing measurements: time-driven
CAs, trace-driven CAs, and access-driven CAs. In time-driven CAs [5,8,9,10], the
information of the total calculation time is used. In trace-driven CAs [5,11,12],
the traces of the timing of the cache hits or cache misses such as those related
to power consumption are employed. In access-driven CAs [13,14], the cache
behavior is precisely examined by dynamically accessing the cache memory that
is shared with a victim. We focus on the access-driven CA because this attack
is more powerful compared to the other CAs.

The original idea of access-driven CAs was proposed in [13] and [14]. These
studies employed a simplified cryptanalysis to analyze the correct key by predict-
ing the memory accesses. The key analysis is mainly based on a picture analysis
of a distribution of the timing data. It is examined whether the predictions are
consistent with the correct data to calculate the candidate scores using a guessed
key. In fact, the AES key is found using 8000 plaintexts on Athlon 64 without
any knowledge about address mapping. In this approach, a rough estimate of the
key hypotheses is possible; however, precise and quantitative evaluation cannot
be achieved. Furthermore, an erroneous decision may easily occur especially in
an environment with severe noise when a picture analysis is employed. Some
extended studies of access-driven CAs were proposed in [15], [16], as examples.
Neve and Seifert [15] theoretically showed the expected number of outputs for
the final round key without noise. Xinjie et al. [16] showed an improved attack
using 350 plaintexts on AMD 64 and showed the key candidate space could be
reduced based on the memory allocation of the S-box tables.

In this paper, we propose a quantitative approach to evaluate the correlation
between the timing data and the key. We show that a mathematical correla-
tion method can be quantitatively utilized to evaluate access-driven CAs. The
contributions of this paper are: (1) we quantitatively and correctly analyze the
correlation between the access timing data and the key even when it is difficult
to distinguish the correct key in a noisy environment using a picture analysis;
(2) we precisely and mathematically clarify the key candidate space based on
the S-box table allocation in the memory; and (3) we quantitatively analyze
the relationship between the correlation values and an increase in the number
of plaintexts. We experimentally show the above contributions when we mea-
sure the timing data on real processors. We believe that we can quantitatively
analyze the correctness of the key hypotheses even in noisy environments such

288 J. Takahashi et al.

(a)

(b)

Cache memory Main memory

Cache line
(bytes)

Way () S-box table

Cache sets ()

W W

D

S B

…..

…..

…..

…..

…..

…..

…..

…..

…..

…..

…..

…..

Fig. 1. Depiction of the Prime+Probe method

as virtualized environment in which the possibility of CAs was indicated as in
[18].

The remainder of this paper is organized as follows. Section 2 gives an overview
of access-driven CAs. We present the concept of the proposed method in Section
3 and present the experimental results in Section 4. In Section 5, we give the
discussion about the key candidate space based on the memory allocation and
the relationship between the correlation values and the number of plaintexts.
Finally, our conclusions are given in Section 6.

2 Overview of Access-Driven CAs

This section describes the access-driven CAs originally proposed in [13] and
[14]. An access-driven CA comprises two attack procedures: the timing data
measurements and off-line analysis of the key based on the measured timing
data. This paper targets the cache memory with a set-associative cache scheme
for the attack. Refer to Appendix A for the details of the cache scheme.

There are two timing measurements: Evict+Time and Prime+Probe methods
in [13] and [14]. In this paper, we use Prime+Probe method because it is more
practical. Prime+Probe method shown in Fig. 1 comprises in the following steps.
First, we allocate a (S ·B ·W)-byte array of the memory D, whose start address
is a multiple of S ·B, where S is the number of cache sets, B is the cache line size,
and W is the number of ways as described in Fig. 1. It is normally at least as
large as the size of the cache memory as indicated by the dark gray area in Fig. 1
(a). We read a value from every memory block in D (Fig. 1(a)) and data will be
automatically filled in the cache memory. Then, a single encryption is performed.
After the encryption, we read the same value in D again. Thus, we can discern
which parts of the data were pushed out of the cache memory (Fig. 1(b)). If
a cache line is accessed (untouched) by the encryption, a cache miss (hit) will
occur when we read a value in D again. Thus, the timing differences are induced.

In the analysis of the key, we try to examine the correlation between the cor-
rect key and the measured timing data given a known plaintext. In the analysis,

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 289

we deduce unit of the key (usually one byte) based on the picture analysis of
the cache memory access patterns. The interested reader can refer to the previ-
ous studies in [13] and [14]. We can guess that the timing data correlate to the
correct key, when a visible diagonal line appears in the picture display. Thus,
we repeatedly examine whether the visible diagonal line appears or not in the
picture display of the cache memory access pattern for all key hypotheses.

3 Proposed Quantitative Approach

This section describes the concept and the details of the proposed approach.

3.1 Concept Behind Proposed Approach

As described in Section 2, a rough analysis of the key estimation for access-
driven CAs was achieved in previous studies in [13] and [14]. This approach only
uses simple analysis based on the prediction of memory access to examine the
correlation with the correct key. Thus, we cannot achieve precise and quantitative
analysis to evaluate the key in details.

We employ a mathematical correlation analysis to evaluate quantitatively the
relationship between the access timing data and the correct key. And, we show
that this method is useful in quantitatively evaluating the access-driven CAs.
A correlation analysis is based on deducing a correlation coefficient between
all possible computed memory accesses and the real memory accesses. Then, we
consider that the highest correlation value reveals the correct key. The correlation
method is also used in the field of power analysis to construct a power trace model
[19]. In the field of CAs, this method is used to construct an analytical model for
time-driven CAs and the required number of cache traces for a successful attack
is theoretically estimated based on the perfect environment without noise [10].

In this paper, using a correlation analysis, we show that we can correctly ex-
amine the correlation between the timing data and the key even in the noisy
environment. And, we precisely and mathematically show that the remaining
key candidate space can be reduced even further compared to the previous re-
sults [13,14] when the first element of the S-box table is not allocated with the
boundary of the cache memory corresponded to the memory (we call this case
as a misalignment). Additionally, we present a mathematical proof of the size
of the key candidate space in general. We further present the transition of the
correlation values with the number of plaintexts, which was not predicted in the
previous analyses [10,13,14,15]. We obtain interesting results that differ from the
results of other SCAs such as power analysis.

3.2 Detailed Description of Proposed Approach

An overview of the proposed method is given in Fig. 2. We describe the measured
timing data and construct an ideal data based on all possible computed memory
accesses. And, we calculate the correlation coefficient between the measured
timing data and the ideal data.

290 J. Takahashi et al.

Description of Measured Timing Data. We describe the measured timing
data collected on the real processors. To measure the timing data effectively, after
the single encryption, we access the data in a row of D (in the direction of cache
set in Fig. 1) corresponded in one way in the cache memory and measure the
timing data in a row of D. Then, the timing data consists of S elements that is
the same with the number of cache sets. We select the timing data measured after
the encryption in which the target byte of the plaintext is p (p = 0x00, . . . , 0xFF)
and calculate the average of them for each p. We set the averaged timing data
per p that contain S elements as t̃(p) and we describe t̃(p) as follows,

t̃(p) = (τ0(p), τ1(p), . . . , τS−1(p)), (1)

where each element τj(p) (j = 0, . . . , S−1) represents the measured timing data
for a cache set. Here, we consider that the index j is calculated as j modulo S.

In general, an S-box table is allocated to a part of a cache set S that cor-
responds to the memory. Then, the measured timing data corresponded to the
S-box table calculation are a part of t̃(p). We set the region of an S-box table as
l (= 28/δ = 28 · L/B) depending on the sizes of the cache line B and an S-box
table element L. Notation δ (= B/L) is the number of the S-box table elements
in a cache line. Here, we assume that l (= 28/δ) is known.1

As shown in the framed rectangle of t̃(p) in Fig. 2, the measured timing
data that correspond to the S-box table calculation are expressed as (τa(p) , . . . ,
τa+m−1(p)), where m = l when Δ = 0 and m = l+1 when Δ 	= 0 (Δ is the offset
from the cache memory boundary to the first element of the S-box table and the
details are given in the next section). We select the unit of l and a as the cache
line size. Notation a is the offset from the start address of the cache memory
corresponding to D that is first allocated in the memory to the cache memory
boundary including the first element of the S-box table. Because the value of a
depends on the S-box table allocation in the memory and it is determined by the
compiled results, a is an unknown value. We calculate the correlation coefficient
while changing a and we obtain the highest correlation value when a matches
the actual allocation in the memory.

In order to calculate the correlation coefficient at one time, we select the
elements of the timing data, ta(p) = (τa(p), . . . , τa+m−1(p)) per p, and represent
them as shown in the dotted arrow line in Fig. 2. We denote the timing data as

Ta = (ta(0x00), ta(0x01), . . . , ta(0xFF)). (2)

Then, we calculate the correlation coefficient between Ta and the ideal data.

Construction of Ideal Data. The ideal data are constructed by theoretically
simulating the distribution of the memory access using plaintext when we focus

1 When we do not know this value, we can guess it by trying all acceptable δ (= B/L)
values. The value of δ may only accept a few patterns because the size of cache line
B and S-box table element L accept a limited number of values based on the general
cryptographic implementation and the specifications for the processors.

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 291

Measured timing data

Ideal data

))xFF0(,),01x0(,)00x0((aaaa tttT K=

))xFF0(,),01x0(),00x0(()0,00x0(oook K==Δ=Ο

…
.

))00x0(,),00x0(,),00x0(,),00x0(),00x0(()00x0(~
1110 −−+== Smaapt τττττ KKK

))01x0(,),01x0(,),01x0(,),01x0(),01x0(()01x0(~
1110 −−+== Smaapt τττττ KKK

))xFF0(,),xFF0(,),xFF0(,),xFF0(),xFF0(()xFF0(~
1110 −−+== Smaapt τττττ KKK

))xFF0(,),01x0(),00x0(()0,01x0(oook K==Δ=Ο
))xFF0(,),01x0(),00x0(()0,02x0(oook K==Δ=Ο

…
.

))xFF0(,),01x0(),00x0(()0,xEF0(oook K==Δ=Ο

))xFF0(,),01x0(),00x0(()0,xFF0(oook K==Δ=Ο

Correlation

Fig. 2. Overview of proposed method. As an example, we show an ideal data (Δ = 0).

on an S-box table input corresponding to the target one-byte key k. We construct
the ideal data O(k,Δ) that can be described by k and offset Δ that represents a
misalignment in the memory block. Offset Δ (0 ≤ Δ < δ) is defined as shown in
Fig. 3 and select the unit of Δ as an element of the S-box table L.2 In general, Δ
is an unknown value and we construct ideal data by changing Δ to calculate the
correlation coefficient precisely. We obtain the highest correlation value when Δ
matches the actual allocation in the memory.

The ideal data O(k,Δ) is constructed by o(p, k,Δ) and is expressed as:

O(k,Δ) = (o(0x00, k,Δ), o(0x01, k,Δ), . . . , o(0xFF, k,Δ)), (3)

o(p, k,Δ) = (ω0(p, k,Δ), ω1(p, k,Δ), . . . , ωm−1(p, k,Δ)),

where p is the target byte of plaintext (from 0x00 to 0xFF), m = l when Δ = 0
and m = l + 1 when Δ 	= 0. Each element, ωi(p, k,Δ) (i = 0, . . . ,m − 1), is
described as 1 when the access timing data are slow, or as 0 when the access
timing data are fast.

Here, we describe how to construct o(p, k,Δ), that is, ωi(p, k,Δ) by consid-
ering the location in the cache memory corresponded to the memory, where the
S-box tables are used in encryption. When the S-box tables are used in en-
cryption, the access timing data after the encryption are slow and described as
ωi(p, k,Δ) = 1 (i ∈ {0, . . . ,m − 1}). The S-box table elements used in encryp-

tion are located at the �Δ+(p⊕k)
δ �-th cache line (�Δ+(p⊕k)

δ � = 0, 1, 2, . . .) from
the start address of the cache memory including the first element of the S-box
table in the cache memory. Thus, the access timing data at this location are set
as ωi(p, k,Δ) = 1. Then, the access timing data at other locations are fast and
are set as ωi(p, k,Δ) = 0 (i ∈ {0, . . . ,m− 1}). Notation ωi(p, k,Δ) can be set as

2 We consider that an S-box table element is mapped into the same cache line even
when an S-box table element consists of multiple bytes because the operating system
or compiler usually assigns an S-box table element to the same cache line.

292 J. Takahashi et al.

Cache memory

One cache line
()32=δ

….

Corresponding S-box table region

6=Δ Boundary

Fig. 3. Schematic of cache memory with offset Δ

described above and o(p, k,Δ) is constructed using these values. As an example,

when p = 0x05, k = 0x80, Δ = 2, δ = 24, and �Δ+(p⊕k)
δ � = 8, o(p, k,Δ) is

o(0x05, 0x80, 2) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . . , 0, 0). (4)

We generate 28 · δ patterns of an ideal data O(k,Δ) by changing key hypothesis
k(= 28) and offset Δ (the number of Δ is δ).

Calculation of Correlation Coefficient. The correlation coefficient is com-
monly used to mathematically measure a relationship between two data [19]. We
employ this method in order to examine mathematically the statistical depen-
dence between Ta and O(k,Δ). We calculate the correlation coefficient R(a, k,Δ)
by changing a, k and Δ,

R(a, k,Δ) =

∑255
p=0

∑m−1
i=0 (τ(a+i)(p)− τ̄)(ωi(p, k,Δ)− ω̄)√∑255

p=0

∑m−1
i=0 (τ(a+i)(p)− τ̄)2

√∑255
p=0

∑m−1
i=0 (ωi(p, k,Δ)− ω̄)2

,

(5)
where τ̄ or ω̄ is an arithmetic average of τi(p) or ωi(p, k,Δ). We determine k as
the correct key when R(a, k,Δ) is the highest value among other key hypotheses.

4 Experimental Results

In this section, we describe the experimental results when examining the corre-
lation between the access timing data and the key using the proposed approach.

4.1 Experimental Conditions

We describe the experimental conditions.

– We target an AES encryption with a 128-bit secret key implemented in C
code of OpenSSL 1.0.1e [20]. We select the C code without countermeasures
against CAs. This code consists of four kinds of S-box tables (referred to as
T-tables) in the data part of the encryption, and each element of a T-table
is 4 bytes and the total size is 1024 (= 256 · 4) bytes.

– We try to deduce the first byte of the first round key of AES. We set the
value to 0x96.

– The plaintext is known value and is randomly set.
– We measure the access timing for the L1 data cache memory.

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 293

Table 1. Processors Used in Experiments

Processor Number of Number of Cache Line Way (W)
Processor Cores Cache Sets (S) Size (B)

Intel Core Solo 1 64 64 bytes 8-way set associative

Intel Core i7 620M 2† 64 64 bytes 8-way set associative

† Four logical cores. All of the processor cores have their own cache.

4.2 Experimental Results

We apply the proposed approach described in Section 3.2 using the actual access
timing data. Hereafter, we target the first byte of the key; however, we can obtain
all 16 bytes of the AES key by repeatedly performing the same procedures. Table
1 gives the target processors used in the experiments.3 Each CPU has 32 KB
of L1 data cache memory. We perform the timing measurements on a Core Solo
processor which operating system is Windows XP (32 bits) and on a Core i7
processor which operating system is Windows 7 (64 bits). We use Microsoft
Visual C++ 2008 on Core Solo processor and Microsoft Visual C++ 2010 on
Core i7 processor to compile source code.4

Timing Data Measurements. We measure the access timing data after a
single AES encryption using Prime+Probe method and repeat the procedure of
Prime+Probe method 2400 times. When we measure the timing data, we use
the standard sequence of cpuid, rdtsc, /* access the data in area of the memory
to which we first allocate */, cpuid, rdtsc, so that the RDTSC instruction is
sequentially-processed. To measure the timing data effectively, after an encryp-
tion, we access the data in a row of D which we first allocate (see in Fig. 1).
Furthermore, we consider the access timing data that exceed the average timing
data as noise and eliminate them from the analysis of the key.

Analysis of the Key Using the Proposed Method. Before calculating
the correlation coefficients, we perform the following steps. First, we collect the
timing data which the first byte of the plaintext is the same and calculate the
average of them per byte. Second, we try to remove the effects other than that
from the encryption such as the background noise of the operating systems to
obtain high correlation coefficients. Details are given in Appendix B. Third, we
normalize the average timing data, i.e., the slowest timing data are set to 1 and
the fastest timing data are set to 0. Finally, we generate 212 (= 28 · 24) patterns
(δ is 24 in both processors) of the ideal data O(k,Δ). Then, we calculate the
correlation coefficients between the measured timing data and the ideal data. We
implement the codes to calculate the above using MATLAB software (R2011b).

3 In the Core i7 620M processor, the instruction set of AES (AES-NI) can be used;
however, we do not use this instruction in the experiment to verify the effect of the
cache memory.

4 We compile the code of the timing measurements without optimization.

294 J. Takahashi et al.

Fig. 4. (a) Correlation coefficients on a Core Solo processor. Key hypotheses are rep-
resented on the horizontal axis and the correlation coefficients are represented on the
vertical axis. (b) Enlarged figure of (a) around k = 0x96.

Fig. 5. (a) Correlation coefficients on a Core i7 processor. The horizontal and vertical
axes are the same as Fig. 4. (b) Enlarged figure of (a) around k = 0x96.

Results on Calculating Correlation Coefficient. Hereafter, we show the
examples of the experimental results on both processors. Fig. 4 (a) shows the
results of the correlation coefficient on a Core Solo processor when we set a = 38.
In Fig. 4 (b), an extended view is presented with the correlation coefficients
around k = 0x96. These figures show the maximum values at k = 0x96 and
k = 0x97 among all key hypotheses when Δ = 2. Thus, we can reduce the size
of the key candidate space from 28 to 21. Fig. 5 (a) shows the results on a Core
i7 processor when we set a = 48. In Fig. 5 (b), an extended view is presented
around k = 0x96 and show the maximum value only at k = 0x96 when Δ = 3.
Thus, we can uniquely determine the correct key. In both cases, we can calculate
the maximum value within a few minutes, which is a practical computational
time. In the above, we can distinguish the correct key when Δ = 2 and Δ = 3.
In the case of other values of Δ, we can also obtain the correct results.

We note that the experimental results show that the key candidate space is
reduced to less than δ. Thus, the consideration of the effect ofΔ gives the precise

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 295

0.0 0.2 0.4 0.6 0.8 1.0

(a)

Fig. 6. (a) Histogram of the access timing data. Total number of samples is 214 (the
number of k · the number of S). The horizontal axis is the access timing data and the
vertical axis is the number of occurrences. Based on the histogram, we use the color bar
shown below the figure. (b) Picture display of the access timing data. The horizontal
axis is the cache set number and the vertical axis is the first byte of the plaintext. We
cannot discern a visible diagonal line by appropriately changing the color bar setting.

results of the key candidate space. In Section 5.1, we examine in detail how much
the size of the key candidate space can be reduced depending on Δ.

Results on Histogram and Picture Analysis for Reference. For refer-
ence, Fig. 6 (a) shows a histogram of the same timing data as that used in Fig. 5
measured on a Core i7 processor and Fig. 6 (b) shows the same timing data when
we use a previous picture display. Based on the distribution of the timing data
in the histogram, we appropriately set the color bar shown below the figure to
see the figure clearly. In this case, even when we appropriately change the color
bar setting, we cannot discern a visible diagonal in the picture display. Then, it
is difficult to examine whether or not the access timing data are correlated with
the correct key in such an environment using the previous approach.

5 Discussion

In this section, we precisely examine the key candidate space and we show that
the proposed approach can quantitatively examine the relationship between the
correlation values and the number of plaintexts.

5.1 Evaluation of Size of Key Candidate Space

We mathematically show the key candidate space can be reduced to 2ntz(Δ)

depending on the offset Δ, where ntz(·) is the number of trailing zeros and it
represents the number of sequences of 0s from the least significant bit in the
binary representation. In [13] and [14], the authors claimed that the number of
recoverable key bits of a one-byte key was limited by the number of S-box tables
that are allocated to one cache line. In [16] and [21], the authors claimed that the

296 J. Takahashi et al.

size of the key candidate space could be reduced to less than δ when the S-box
table was not aligned to the multiple of B, the size of the cache line; however, it
was not clear to what degree size of the key candidate space could be reduced in
general. Later, [17] showed the reduction of the key candidate space in all cases
of the misalignment when δ = 16; however, they did not show the verification or
the proof of the size of the key candidate space based on the misalignment. In
the following discussion, we show the size of the key candidate space in general
depending on the offset Δ and give a mathematical proof of it.

Here, we assume that the size of one cache line is an integral multiple of an
S-box table element. This assumption is applicable to an architecture of general
processor and the cryptographic implementation. We also assume that δ is the
power-of-two. We focus on the (δ−Δ)-elements of the S-box table from the first
element, which are allocated in the same cache line. When Δ is constant, we can
calculate the ideal data O(k,Δ) for all k because the number of ks is the same
with the number of the index of the S-box table. At this time, there are some
keys k that accept the same ideal data, but the values of k are different. Then,
the number of the ideal data patterns reduces to less than 28 for one-byte key.

In the following discussion, we show that the key candidate space can be
reduced to 2ntz(Δ). As an example, when Δ is odd, ntz(Δ) = 0, then, the key
candidate space is 20 (= 1). We prove the following lemma to show that the key
candidate space is reduced to 2ntz(Δ) (detail proof is given in Appendix C).

Lemma 1. For arbitrary key values ka and kb that satisfy

ka&(2ntz(Δ) − 1) 	= kb&(2ntz(Δ) − 1), there exists input p such that
p⊕ ka < Δ ≤ p⊕ kb, where x is the bitwise complement of x.

In AES as an example, ka and kb are one-byte keys and p is a one-byte plaintext.
When Δ is odd, the lemma states that p⊕ ka and p⊕ kb (ka 	= kb) do not exist
in the same cache line with appropriate selection of p. Then, we can uniquely
determine a one-byte key. The key candidate space is represented as 2ntz(Δ).
When Δ is even, the lemma states that the high (8 − ntz(Δ)) bits of ka and kb
can be distinguished and the key candidate space is equal to 2ntz(Δ) (the detailed
proof is given in Appendix D). Therefore, this proves that the key candidate
space is 2ntz(Δ) for 0 ≤ Δ < δ.

5.2 Significance of S-box Table Alignment for Implementation

We claim that it is better to align the S-box table in the memory. When the S-box
table is aligned, the key candidate space for 16 bytes will remain to (24)16 = 264

at least when δ = 24 and the brute-force search is not practical. However, when
the S-box table is not aligned, the key candidate space can further be reduced
shown in Section 5.1 and we can uniquely determine a 16-byte key especially in
the case that Δ is odd. Thus, for the cryptographic implementation, the S-box
table alignment is significant. To prevent the misalignment, as an example, when
we use an assembly language for the implementation, it is recommended that an
alignment macro is inserted in the code. Using the C code, it is recommended
that the “align” attribute is added to the declaration of the S-box table.

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 297

5.3 Relationship Between Correlation and Number of Plaintexts

We quantitatively examine the relationship between the correlation values and
the number of plaintexts. In power analysis (PA), the transition of the correla-
tion values with the number of plaintexts is essential to examine the required
number of plaintexts for a successful attack [19]. In CAs, the expected number
of plaintexts to deduce the correct key was theoretically estimated in [10] and
[15]; however, there is no method and results to experimentally evaluate the
transition in the correlation values with the number of plaintexts to examine
the required number of plaintexts. In the following discussion, we quantitatively
examine the correlation coefficients, while increasing the number of plaintexts.

Fig. 7 shows examples of correlation coefficients on a Core Solo and a Core
i7 processors with the number of plaintexts. In the experiments, we select the
first byte of the plaintexts to uniformly appear from 0x00 to 0xFF, and other
15 bytes are randomly set. The total number of plaintexts is calculated as 256 ·
(the number of vertical lines). From the figures, we can distinguish the highest
correlation values while increasing the number of plaintexts and we can find the
correct hypothesis. This feature is very similar to that of PA [19].

In PA, it is well-known that the correlation coefficient converges to a constant
values with increasing the number of plaintexts [19]. On the contrary, in Fig. 7,
the correlation values do not converge to a constant value. As shown in (I)
of Fig. 7 (a) and (I) of Fig. 7 (b), the correlation values increase with more
plaintexts even when we use the wrong key hypotheses; however the correlation
values are not higher than that of the correct key hypothesis. As described in
Section 5.1, in CAs, multiple elements of the S-box table are stored in one cache
line. Then, more of the same cache lines are accessed when we use the correct
key and some wrong keys. That is, the cache access patterns are almost the same
and the correlation values increase with more plaintexts even when we assume
the wrong keys, which have some low-bit differences from the correct key. Thus,
the correlation values increase even when we guess the wrong keys.

From figures, we can find the required number of plaintexts to achieve a
successful attack. In Fig. 7 (a), 256 · 2 (= 29) plaintexts are needed and we
reduce the size of the key candidate space to 21 when Δ = 2 represented as the
plots in black in the figure. Similarly, in Fig. 7 (b), 256 · 17 (≈ 212) plaintexts
are needed and we reduce the size of the key candidate space to 22 when Δ = 4.

Therefore, using the proposed method, we quantitatively evaluate the number
of plaintexts in CAs even when it is difficult to do using the previous approach.

6 Conclusions

This paper proposed a key extraction method that quantitatively examines the
correlation between the access timing data and the key. We showed that a mathe-
matical correlation method can be utilized to evaluate quantitatively the access-
driven CAs. To the best of our knowledge, this was the first study to examine the
key candidate space precisely and mathematically by considering the effect of
the S-box table allocation in the memory and show the relationship between the

298 J. Takahashi et al.

Correct hypotheses

Wrong
hypotheses(I)

(a)
Wrong hypotheses

(I)

(b)

Correct hypotheses

Fig. 7. Correlation values for 256 key hypotheses on a Core Solo CPU (a) and on a
Core i7 CPU (b). Key hypotheses including correct key are plotted in black, while
other key hypotheses are plotted in gray. The horizontal line represents the number of
appearances for each byte and the vertical line represents correlation values.

correlation values and the number of plaintexts. Using the proposed approach,
we could examine the correlation correctly in a noisy environment even when it
was difficult to do using a previous picture analysis. The experimental results
on two kinds of processors confirmed the effectiveness of the proposed approach.
We first showed that the key candidate space can be reduced to 2ntz(Δ) with the
mathematical proof, where ntz(·) is the number of trailing zeros. And, we showed
that we could quantitatively analyze the number of plaintexts. We believe that
the proposed approach contributes to the development of a key analysis for CAs
and this approach can be applied in evaluating on other cryptographic primitives
against CAs. In the future, we study the boundary condition exactly where this
approach would work well based on the amount of noise from other operations.

Acknowledgments. The authors would like to thank Fumitaka Hoshino, Hikaru
Sakamoto and Prof. Kazuo Sakiyama for giving us valuable comments on this
paper. The authors also thank anonymous reviewers for suggestions to improve
the quality of this paper.

References

1. Takahashi, J., Sakamoto, H., Fukunaga, T., Fuji, H., Sakiyama, K.: Automatic
Evaluation Method of Access-Driven Cache Attack. In: The 29th Symposium on
Cryptography and Information Security (SCIS 2012), p. 2C2-2, 7 pages (2012) (in
Japanese)

2. Takahashi, J., Fukunaga, T.: Analysis on Number of Plaintexts for Cache At-
tacks Using Highly Accurate Key Extraction Method. In: The 30th Symposium on
Cryptography and Information Security (SCIS 2013), p. 3E3-3, 8 pages (2013) (in
Japanese)

3. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 299

4. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 97–110. Springer, Heidelberg (1998)

5. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.
Technical Report CSTR-02-003, Department of Computer Science, University of
Bristol (2002)

6. Page, D.: Defending against cache based side-channel attacks. Information Security
Technical Report 8(1), 30–44 (2003)

7. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of Block
Ciphers Implemented on Computers with Cache. In: Proc of ISITA 2002 (2002)

8. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
Implemented on Computers with Cache. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

9. Bernstein, D.J.: Cache Timing Attacks on AES (April 2005), http://cr.yp.to/
antiforgery/cachetiming-20050414.pdf

10. Tiri, K., Acıiçmez, O., Neve, M., Andersen, F.: An Analytical Model for Time-
Driven Cache Attacks. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp.
399–413. Springer, Heidelberg (2007)

11. Acıiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In:
Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 112–121. Springer,
Heidelberg (2006)

12. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power
Attack Based on Induced Cache Miss and Countermeasure. In: ITCC 2005, vol. 1,
pp. 586–591. IEEE Computer Society (2005)

13. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. Journal of Cryptology 23(1), 37–71 (2010)

14. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

15. Neve, M., Seifert, J.-P.: Advances on Access-Driven Cache Attacks on AES. In:
Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 147–162. Springer,
Heidelberg (2007)

16. Xinjie, Z., Tao, W.: Dong, Mi., Yuanyuan, Z., Zhaoyang, L.: Robust First Two
Rounds Access Driven Cache Timing Attack on AES. In: CSSE 2008, pp. 785–788.
IEEE Computer Society (2008)

17. Spreitzer, R., Plos, T.: Cache-Access Pattern Attack on Disaligned AES T-Tables.
Pre-Proceedings of the Fourth International Workshop on Constructive Side-
Channel Analysis and Secure Design, COSADE 2013 (2013)

18. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: ACM
CCS 2009, pp. 199–212 (2009)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks -Revealing the Secret
of Smart Cards. Springer-Verlag New York Inc. (C); ISBN: 978-0-387-30857-9

20. OpenSSL, Cryptography and SSL/TLS Toolkit, http://www.openssl.org/

21. Xinjie, Z., Tao, W.: Improved Cache Trace Attack on AES and CLEFIA by Con-
sidering Cache Miss and S-box Misalignment. IACR Cryptology ePrint Archive
2010/056 (2010)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://www.openssl.org/

300 J. Takahashi et al.

Appendices

A Cache Memory Organization

Cache memory is small high-speed memory that contains the most recently ac-
cessed piece of the main memory. In Fig. 8, a set associative cache memory and
the memory organizations are shown. In general, the cache memory is broken
into a cache line comprising B bytes and the size of a cache line is determined
by both the processor and the cache design. The access to the cache memory is
performed per the size of the cache line. Cache memory is classified as groups
of row of cache lines that is referred to a cache set S, each containing W cache
lines. Example values of B, S, and W on the processors are shown in Table
1. Each memory block is cached only in a specific cache set shown as a double
headed outlined arrow in Fig. 8.5 Memory block starting address d can be cached
only in the W cache lines belonging to a cache set �d/B� modS and replaces
the most previous content in W cache lines. As an example, when the S-box
table is allocated in the memory in Fig. 8, each element of it is cached in the
corresponding cache sets in Fig. 8 when a cache miss occurs.

…
.

…
.

…
.

…
.

…
.

Cache memory
…

.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

…
.

Main memory

….

….

….

….

….

….

….

….

….

….

S
e
t(

)

Way ()

1 line = bytes

…
.. S-box table

0

1

2

3

4

5

…
..

BS ⋅0 BS ⋅2 BS ⋅3 …..

S

B

W

1−S

Fig. 8. Schematic of memory organizations. Each row of memory blocks is mapped to
the corresponding row in the cache memory as indicated by a double headed outlined
arrows. The gray color represents S-box tables in the encryption. The memory address
is represented as the values in the vertical and horizontal lines in the main memory.

B Noise Reduction of Timing Data

In the experiments in Section 4.2, we try to remove the effect of other operations
that are independent of encryption. As an example, we subtract the average tim-
ing data from each set of measured access timing data [13], to remove the effect
of other operations, τi(p)− τ̄i where τi(p) (p = 0x00, . . . , 0xFF, i = 0, . . . , S − 1)
is the original timing data and τ̄i is the average timing data per cache set.

5 The unit of the memory block corresponds to the cache line size.

Highly Accurate Key Extraction Method for Access-Driven Cache Attacks 301

C Proof of Key Candidate Space Depending on S-Box
Table Allocation in Memory (Proof of Lemma 1)

We prove the lemma in Section 5.1. Without loss of generality, assume ka = 0
and kb = k2ntz(Δ) where k 	= 0 (we can represent other values if we calculate
the XOR values for ka and set the arbitrary k (k = 1, 2, 3, . . .) for kb). We let
�p/2ntz(Δ)� → p′ and Δ/2ntz(Δ) → Δ′. Then, we prove the following.

For arbitrary k (k 	= 0), there exists p′ such that p′ < Δ′ ≤ p′ ⊕ k.
At this time, we derive 0 < Δ′ and Δ′ is odd from the definition.

Case 1: Δ′ ≤ k,
Select p′ = 0. Clearly, 0 < Δ′ and Δ′ ≤ 0⊕ k from the assumption.

Case 2: k ⊕Δ′ < Δ′,
Select p′ = k ⊕ Δ′. Clearly, p′ = k ⊕ Δ′ < Δ′ from the assumption. In
addition, Δ′ = p′ ⊕ k satisfies.

Case 3: Otherwise,
Select p′ = Δ′ ⊕ 1. As Δ′ is odd, p′ = Δ′ ⊕ 1 < Δ′.
In addition, calculate,

p′ ⊕ k = Δ′ ⊕ k ⊕ 1

=

{
(Δ′ ⊕ k) + 1 (k is odd)

(Δ′ ⊕ k)− 1 (k is even)

≥ (Δ′ ⊕ k)− 1 > Δ′ − 1

From Δ′ − 1 ≤ (Δ′ ⊕ k)− 1, then, Δ′ ≤ (Δ′ ⊕ k)− 1. Thus, Δ′ ≤ p′ ⊕ k. �

D Proof That Key Candidate Space Equals 2ntz(Δ) When
Δ Is Even

We prove that the key candidate space is 2ntz(Δ), i.e., the low (ntz(Δ)) bits
cannot be distinguished when Δ is even. Without loss of generality, assume
ka = 0 and kb = ka ⊕ k̃ (= 0⊕ k̃), k̃ = {1, 2, . . . , 2ntz(Δ) − 1}. From 2ntz(Δ) ≤ Δ,
k̃ ≤ Δ. Then, kb ≤ Δ, and p⊕ka and p⊕kb are within Δ in the same cache line,
i.e., the low (ntz(Δ)) bits are not distinguished. Thus, the key candidate space
is 2ntz(Δ). �

Upper Bounds for the Security of Several Feistel

Networks

Yosuke Todo

NTT Corporation, Japan
todo.yosuke@lab.ntt.co.jp

Abstract. In this paper, we are dealing with upper bounds for the se-
curity of some Feistel networks. Such a topic has been discussed since
the introduction of Luby-Rackoff construction, but it is unrealistic con-
struction because its round functions must be chosen at random from
the set of all functions. Knudsen dealt with more practical construction
where its round functions are chosen at random from a family of 2k ran-
domly chosen functions, and showed an upper bound for the security by
demonstrating generic key recovery attacks. However it is still difficult for
designers to choose functions randomly. Then, this paper considers the
security of some Feistel networks which have more efficient and practical
round functions and are indeed used by some Feistel ciphers in practice.
For this Feistel ciphers, we discover new properties using the relation
of plaintexts and ciphertexts. By using our properties, we propose new
generic key recovery attacks, and confirm the feasibility by implementing
the attack for small block sizes. Our results indicate that the 6 round
networks are not enough to complicate the relationship between plain-
texts and ciphertexts, and how to insert a round key is very influential
in the upper bound for the security. This feature should be taken into
account when the round function is designed in future. Moreover, for im-
munity to our attacks and maintenance of the efficiency, we show design
principles for efficient and secure Feistel ciphers.

Keywords: Block cipher, Feistel networks, Round functions, Key re-
covery attacks.

1 Introduction

By using Feistel networks, we can construct n-bit pseudo-random permutations
from n/2-bit pseudo-random functions effectively. Luby and Rackoff [8] proved

(n=2)2n=2

Fig. 1. Some Constructions for the round function

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 302–317, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

todo.yosuke@lab.ntt.co.jp

Upper Bounds for the Security of Several Feistel Networks 303

that 3 and 4 round Feistel networks are sufficient to make a pseudo-random per-
mutation and a super pseudo-random permutation, respectively, when the round
functions are pseudo-random functions. Since then, many results for pseudo-
randomness on Feistel networks have been proposed [11,9,12,14,6]. Luby and
Rackoff also showed that attackers can distinguish the 3 round Feistel network
from random permutations by using an adaptive chosen plaintext and cipher-
text attack with 3 texts. Since then, many generic attacks on Feistel networks
have been proposed [4,13,5,15]. If the round functions are pseudo-random, there
exists the distinguishing attack on the 5 round Feistel network by using a chosen
plaintext attack (CPA) with O(23n/4) texts [13]. Moreover, if the round func-
tions are pseudo-random permutations, there exists the distinguishing attack on
the 5 round Feistel network by using CPA with O(2n/2) texts [4].

Luby-Rackoff construction has the round functions which are chosen at ran-

dom from a family of 2
n
2 ×2n/2

randomly chosen functions (see the leftmost of
Fig.1). This means the key size for the r-round Feistel network is r× n

2 2
n/2-bit,

and it is unrealistic for real Feistel ciphers to have the enormous key size. Then,
Knudsen introduced more practical Feistel network where the round functions
are chosen at random from a family of 2k randomly chosen functions, and we
call this network the FKi -Feistel (see the second from the left of Fig.1). In this
Feistel network, attackers can search for one round function by an exhaustive
search over all 2k possible round functions. Moreover, Knudsen proposed the key
recovery attack on 5 and 6 round Feistel networks by using CPA. Time com-

plexity of these attacks is 2k+
n+6
4 and 2k+n/2+1, respectively, but unfortunately

the Knudsen’s attack for 6 rounds is as expensive as the brute force attack when
the round key size is the same as the input size of round function (k = n/2-bit)
and the master key size is the same as the block length (n-bit).

Now, we revisit the Knudsen’s Feistel network where the round functions are
defined as 2k random functions or random permutations. To implement Knud-
sen’s Feistel network, designers must design ideal compression functions which
have k+n/2-bit input and n/2-bit output. However, it is difficult to design such
ideal compression functions. On the other hand, the ideal permutations seem to
be researched better than the ideal compression functions. Then we introduce
more efficient and simple Feistel networks where the round function consists of
ideal permutations not compression functions. In our Feistel networks, we split
the round function into “the key insert operation ∗” and “the nonlinear bijective
function F ,” where the operation ∗ is a function to mix an input with a round
key by a simple operation, for example, we deal with an exclusive OR (⊕) and
a modular addition (�) as the operation ∗. In the function F , a mixed data of
an input and a round key is confused and is diffused.

Next we consider how to construct the function F . In the secure construction,
we use different functions F in every round. However it is not efficient because
it must have r ideal bijective functions with r rounds. Then, in this paper, we
consider two practical constructions. The function F of many Feistel ciphers
consists of the confusion and the diffusion, and it is more difficult to design the
confusion than to design the diffusion. In the first construction, we only use the

304 Y. Todo

Table 1. Summary of attacks on several Feistel networks whose round key size is
n/2-bit

Target
5 rounds 6 rounds

Reference
Time Number of texts Time Number of texts

FKi 23n/4+3/2 √
n2n/4 CPA 2n+1 n

2
2n/2 CPA [4]

KiF (⊕) 2n/2+3 2n/2+2 KPA n
2
2n/2 n

2
2n/2 CPA Ours

KiFPi(⊕) t2n/2 t2n/2 KPA 27n/8+1 27n/8 CPA Ours

KiF (�) 2n/2+3 2n/2+2 KPA - - Ours

same confusion function F , and use different functions for the diffusion in every
round. This method is called the diffusion switching mechanism [16], which is an
effective mechanism for design of practical and secure block ciphers. We call this
network the KiFPi-Feistel (see the third from the left of Fig.1). In the second
construction, we consider more efficient construction than the KiFPi-Feistel,
namely we only use the same function F , do not use a diffusion. We call this
network the KiF -Feistel (see the rightmost of Fig.1). This is very efficient, for
example, Camellia [1], SEED [7] and GOST cipher [10] have this construction.

In this paper, we first show the upper bound for the security of the 5 round
KiF -Feistel. For the 5 round KiF -Feistel, we can know a plaintext and the
ciphertext by querying plaintext, but we can not know the internal states. How-
ever we show that there exists the special relationship between plaintext and
ciphertext, if an internal state of the encryption circuit has the specific prop-
erty. Therefore we can distinguish whether the text has the specific property by
observing the relationship between plaintext and ciphertext. By using the distin-
guisher, we propose a new key recovery attack which is similar to the all subkeys
recovery attack [3]. The time complexity is O(2n/2) and the attack model is a
known plaintext attack (KPA) not a chosen plaintext attack (CPA). Moreover
we show the upper bound for the security of the 6 round KiF -Feistel. Unfor-
tunately, for the 6 round KiF -Feistel, we can not distinguish whether the text
has the specific property, because we can not know the value of R6 which is ci-
phertext for the 5 round KiF -Feistel. Then we aim to separate 2n all texts into
several sets, and one of the separated sets includes exactly one text satisfying
this property. If the key insert operation ∗ is XOR, we can separate into such sets
efficiently in a CPA. By analyzing in every set, we propose a new key recovery
attack on the 6 round KiF -Feistel, and the time complexity is only O(k2n/2).

Next, we show the upper bound for the security of the 5 round KiFPi-Feistel.
In the 5 round KiFPi-Feistel, we can not distinguish exactly whether the text
has the specific property by observing the relationship between plaintext and
ciphertext, because different round functions are used in every round. However
if the key insert operation is XOR, we can distinguish it probabilistically. By
using the probabilistic distinguisher, we propose a new key recovery attack on
the 5 roundKiFPi-Feistel. The time complexity is O(2n/2) and the attack model
is a KPA not a CPA. Moreover, we show the upper bound for the security of the
6 round KiFPi-Feistel. For the 6 round KiFPi-Feistel, we decrypt one round
by exhaustive search over all 2n/2 round keys, and use the property for the 5

Upper Bounds for the Security of Several Feistel Networks 305

round KiFPi-Feistel. However the bias of the 5 round property is very small to
recover round key efficiently. Then we propose a new technique called the chosen
texts technique. By using this technique, we can choose a subset of plaintexts
whose members have more bias than that of original. By using this chosen subset,
we propose a new key recovery attack on the 6 round KiFPi-Feistel. The time
complexity is O(27n/8) and the attack model is a CPA.

We summarize existing and our results in Table 1, where t is function of n and
see Section 4.1 in detail. From Table 1, we can conclude that how to insert round
key is very influential in the upper bound for the security. Moreover we confirm
the feasibility of all of our attacks by a machine experiment for small block sizes.
We show the experimental report in Appendix A. Finally, we discuss our new
results and show design principles for efficient and secure Feistel network. To
prevent our attack with maintaining the efficiency, we show the diffusion part
should use a nonlinear operation with respect to XOR.

This paper is organized as follows. Section 2 gives notations, Feistel networks
evaluated in this paper, and the Knudsen’s attacks. Section 3 gives new prop-
erties and key recovery attacks for the KiF -Feistel, and Section 4 gives new
properties and key recovery attacks for the KiFPi-Feistel. We discuss results of
our attack and show design principles for efficient and secure Feistel ciphers in
Section 5 and conclude this paper in Section 6.

2 Preliminary

2.1 Notations

Let n be the block length for the Feistel cipher. p and c denote plaintexts and
ciphertexts, respectively. Let ki be a round key of i-th round. For a value x,
xL denotes the left half of x and xR denotes the right half of x. In the r-round
Feistel network, the ciphertext is calculated as c = EK(p, k) = Swap ◦Ψkr ◦ · · · ◦
Ψk1(pL, pR), where Ψki is defined as follows:

(Li+1, Ri+1) = Ψki(Li, Ri) = (yi ⊕Ri, Li) = (ψki(Li)⊕Ri, Li),

where Li and Ri denotes left half and right half of the i-th round input, and ψki

denotes round function of the i-th round. Moreover, let yi be an output of i-th
round function.

In the Luby-Rackoff construction, ψki must be chosen at random from the
set of all functions in every round, and 4 rounds are sufficient to make a super
pseudo-randomness. Unfortunately, it is an unrealistic construction, because the
secret information of this construction is r round functions ψk1 · · ·ψkr and the
key size is very huge.

2.2 Feistel Networks

We define some Feistel networks discussed in this paper. For more practical con-
struction than the Luby-Rackoff construction, Knudsen defined the ideal round
function as follows:

306 Y. Todo

Definition 1 (Knudsen’s ideal round function).
Let Fk be an n/2-bit function or permutation chosen from a family of 2k function.
Then Fk is called ideal, if exhaustively search at least 2k possible function is
necessary to find the correct function.

We call this construction FKi -Feistel. It is more practical than the Luby-Rackoff
construction, because the size of secret information is only r · k-bit in the FKi -
Feistel with r rounds. However, to achieve the FKi -Feistel, designers must design
ideal compression functions which have (k + n/2)-bit input and n/2-bit output,
and it is not easy to design such functions. On the other hand, the ideal per-
mutations seem to be researched better than the ideal compression functions.
Then we introduce more efficient and simple Feistel networks where the round
functions consist of ideal permutations not compression functions.

We define a construction called KiF -Feistel which does not have an ideal
compression function. In the KiF -Feistel, we split a round function into “the key
insert operation *” and “the ideal bijective function F ,” where the operation * is
a function to mix an input with a round key by a simple operation, for example,
an exclusive OR (⊕) or a modular addition (�). In this time, we consider only
when the function F is bijective, because many Feistel ciphers use bijective
functions for the function F . Moreover, there exist impossible outputs of the
round function independent of the round key when the function F is not bijective,
and it appears that the network is not secure1. TheKiF -Feistel is used widely for
design of Feistel ciphers. Examples of the construction are Camellia [1], SEED [7]
and GOST cipher [10]. As an existing result for the security of the KiF -Feistel,
Knudsen and Rijmen proposed the known-key distinguishing attack [5].

Now we consider a more secure construction. Surely, the KiF -Feistel is effi-
cient and simple, but it appears that it is not secure because a common round
function is used in every round. Then, we want to use different round functions
in every round, but the construction is not efficient because it must have r ideal
bijective functions with r rounds. Then, we add the diffusion part P after the
functions F , and apply the diffusion switching mechanism [16]. In the diffusion
switching mechanism, different functions are used for diffusion in every round,
and it is an effective mechanism for design of practical and secure block ciphers.
In this paper, we assume the diffusion part P contains only linear operation of
XOR. Specifically, the multiplication by the constant over GF (2n/2) is available
to the diffusion part P . We express the constant value of the i-th round as Pi,
and can use different constants in every round. Moreover we express the mul-
tiplicative inverse of Pi as P−1

i . We call this network KiFPi-Feistel, and it is
more secure than the KiF -Feistel.

2.3 Knudsen’s Attack

Here, we show the outline of the Knudsen’s attack on the FKi-Feistel whose round
functions consist of permutations. For the detailed procedures and evaluations

1 The round function of DES is not bijective. However, DES comes under the FKi -
Feistel because it has the expansion permutation before the key mixing.

Upper Bounds for the Security of Several Feistel Networks 307

for the 5 round and 6 round key recovery attacks, see Sect.3.3 and Sect.3.4 in
the original paper [4], respectively.

For a key recovery attack on the 5 round FKi -feistel, attackers use the follow-
ing impossible differential [2] characteristic of the 4 round FKi-Feistel:

(0, α)
Ψ1−→ (α, 0)

Ψ2−→ (β, α)
Ψ3−→ (γ, ·) 	= (α, ·) Ψ−1

4←−−− (·, α),
where α 	= 0, β 	= 0 and γ 	= α because round functions are permutations. The
probability that it satisfies (0, α) → (·, α) is 2−n/2 for random permutations,
but it is an impossible event for the FKi -Feistel. By using

√
k · 2n/4+1/2 chosen

plaintexts, they can recover the correct key with a high probability. The time

complexity is at most 2n/4+1/2(2k + 2k−1 + · · ·+ 2 + 1) ≈ 2k+
n/2+3

2 .
For a key recovery attack on the 6 round FKi-Feistel, attackers use the fol-

lowing impossible differential characteristic of the 5 round FKi-Feistel:

(0, α)
Ψ1−→ (α, 0)

Ψ2−→ (β, α)
Ψ3−→ (γ, β) 	= (α, ·) Ψ−1

4←−−− (0, α)
Ψ−1

5←−−− (α, 0),

where α 	= 0, β 	= 0 and γ 	= α because round functions are permutations. The
probability that it satisfies (0, α) → (α, 0) is 2−n for random permutations, but
it is an impossible event for the FKi-Feistel. For distinguishing attack on the
5 round FKi-Feistel, with 2n/2 chosen texts, the probability of success for the
distinguishing attack on the 5 round FKi-Feistel is 1 − e−1/2 ≈ 0.393 because(
2n/2

2

)
2−n ≈ 1

2 . By using k · 2n/2 chosen plaintexts, they can recover the correct

key with a high probability. The time complexity is at most 2n/2(2k + 2k−1 +
· · ·+ 2 + 1) ≈ 2k+1+n/2.

This key recovery attack can not attack the 6 round FKi -Feistel where the
round functions are chosen at random from a family of 2n/2 random permutations
and the master key size is n-bit. Hereafter, we assume that the round key size k
is n/2-bit and the master key size is n-bit. In this setting, the time complexity of
the 6 round key recovery attack is at most 2n+1 which is the same as the brute
force attack. Finally we remark that the Knudsen’s attack can be executed to
our new constructions: the KiF -Feistel and the KiFPi-Feistel, because our new
constructions are subset of the KiF -Feistel. Note that our new attacks explained
in later sections are specialized for the new constructions and more efficient than
the Knudsen’s attack.

3 New Key Recovery Attack on the KiF -Feistel

3.1 New Key Recovery Attack for the 5 Round KiF -Feistel

First we propose a new property which uses some relationship between plaintext
and ciphertext of the 5 round KiF -Feistel. Based on this property, we propose
a new key recovery attack for the 5 round KiF -Feistel (see Fig. 2). This attack
can be executed with time complexity smaller than the Knudsen’s attack, and
it is KPA not CPA.

308 Y. Todo

F

F

F

F

F

Fig. 2. The 5 round KiF -Feistel

n/2

R2
Permutation

5 round Feistel

F

Fig. 3. The 6 round KiF -Feistel

Overview. Our attack aims to detect some relationship between plaintext
(pL, pR) and ciphertext (cL, cR). For the 5 round KiF -Feistel, cL can be ex-
pressed only with pL, y2 and y4 as follows:

cL = pL ⊕ y2 ⊕ y4, (1)

and it indicates pL⊕cL = y2⊕y4. Therefore if there exists some linear relationship
between y2 and y4, we can observe some linear relationship between pL and
cL. Unfortunately, there does not exist general linear relationship between y2
and y4, because y2 and y4 are outputs of the round function which is a non-
linear function. However if y2 = y4 is satisfied, it always satisfies F−1(y2) =
F−1(y4) and then L2 ∗ k2 = L4 ∗ k4. At the same time, y2 = y4 guarantees
pL = cL from Equation 1. Therefore we can choose texts which satisfy L2 ∗
k2 = L4 ∗ k4 by observing pL and cL. We can neglect round keys k2 and k4
by computing differences of two chosen texts. Namely it satisfies (L2 ∗ k2) −
(L′

2 ∗ k2) = (L4 ∗ k4) − (L′
4 ∗ k4) and then L2 − L′

2 = L4 − L′
4, where we use

XOR or modular subtraction as the operation “−,” if an operation “∗” is XOR
or modular addition, respectively. As a result, for two distinct texts satisfying
pL = cL, the relationshipΔL2 = ΔL4 is always satisfied. Now L2 is computed by
plaintext and round key k1, and L4 is computed by ciphertext and round key k5.
Consequently, we can execute a meet-in-the-middle-attack using two differences
ΔL2 = L2−L′

2 and ΔL4 = L4−L′
4 which are calculated by an exhaustive search

over all 2n/2 possible round keys k1 and k5, respectively.

Theorem 1.
For the 5 round KiF -Feistel, a text always satisfies pL = cL if the text satisfies
L2 ∗ k2 = L4 ∗ k4. Moreover a text always satisfies L2 ∗ k2 = L4 ∗ k4 if the text
satisfies pL = cL.

Upper Bounds for the Security of Several Feistel Networks 309

Procedure and Evaluation. The key recovery attack goes as follows. In the
first step, we analyze 2n/2 known plaintexts and pick one text satisfying an n/2-
bit relation pL = cL. We express this text as (p, c). By an exhaustive search over
all 2n/2 possible round keys k1, calculate and store X [k1] = pR ⊕ F (pL ∗ k1). In
parallel, by an exhaustive search over all 2n/2 possible round keys k5, we calculate
and store Y [k5] = cR⊕F (cL ∗k5). In the second step, get another text satisfying
pL = cL, and we express this chosen text as (p′, c′). Like the first step, calculate
X ′[k1] and Y ′[k5], respectively, and calculate and store ΔX [k1] = X [k1]−X ′[k1]
and ΔY [k5] = Y [k5]− Y ′[k5], respectively. In this time, round key pairs (k1, k5)
satisfying ΔX [k1] = ΔY [k5] are left as key candidates. Finally, by executing the
second step several times, we can find the correct key k1 and k5.

For each key guess, the probability satisfying ΔX [k1] = ΔY [k5] is 2
−n/2, then

about 2n × 2−n/2 = 2n/2 keys will be left for each execution of the second step.
By executing the second step 3 times, we can discard all key candidates except
for the correct key, because 2n × (2−n/2)3 = 2−n/2 keys will be left by this
attack and it is under one. For each text, computing X [k1] requires 2n/2 and
computing Y [k5] requires 2

n/2. We analyze 1 text for the first step and 3 texts
for the second step. Therefore the time complexity is (1+3)× 2× 2n/2 = 2n/2+3

by using (1 + 3)× 2n/2 = 2n/2+2 known plaintexts.

3.2 New Key Recovery Attack for the 6 Round KiF -Feistel

Next if the key insert operation uses XOR, we propose an extension of our
property. By applying this extended property, we propose a new key recovery
attack for the 6 round KiF -Feistel (see Fig.3) which is immune to the Knudsen’s
attack.

Overview. For the 5 round KiF -Feistel, we could exactly pick the texts satis-
fying L2 ∗ k2 = L4 ∗ k4 by observing pL = cL. Unfortunately, for the 6 round,
we can not pick those texts efficiently, because we can not know the value of
R6 which is cL for the 5 round. Then we aim to detect a set in which exactly
one text satisfying L2 ∗ k2 = L4 ∗ k4 is included. We can detect such a set effi-
ciently if the key insert operation is XOR. Our new attack always suggests the
correct round key from the text satisfying L2⊕k2 = L4⊕k4, on the other hand,
it never suggests the correct key from the text satisfying L2 ⊕ k2 	= L4 ⊕ k4.
Consequently, we execute our new attack for all texts in every set. We can know
that key candidates are wrong if the number of the suggestions is not one. By
repeating this attack for n/2 sets, we can recover the correct key.

Why the Attack Is Applied Only for XOR? From the Overview, we must
pick a set in which only one text satisfying L2 ∗ k2 = L4 ∗ k4 is included. We can
pick such a set efficiently if the key insert operation is XOR.

If the key insert operation is XOR, it satisfies L2 ⊕ k2 = L4 ⊕ k4 and then
L2 ⊕ L4 = k2 ⊕ k4. From Fig. 2, L3 is expressed as F−1(L2 ⊕ L4) ⊕ k3. When
L2 ⊕ L4 is a constant value which only depends on the round key values, L3 is

310 Y. Todo

also a constant value which only depends on the round key values. Due to the
condition L2 ⊕L4 = k2 ⊕ k4, actually L3 only depends on the round key values.
Moreover L3 is expressed by pL, pR, k1 and k2 as follows:

L3 = F (F (pL ⊕ k1)⊕ pR ⊕ k2)⊕ pL, (2)

where pR is used only once. When we pick a set whose 2n/2 members have the
structure that pL is a constant and pR is chosen from all values, the values of
L3 are all values ranging from 0 to 2n/2 − 1 exactly once because of Equation 2.
In this time, if a text satisfies L2 ⊕ k2 = L4 ⊕ k4, L3 is the constant value which
only depends on the round key values. Consequently, by using all 2n/2 chosen
plaintexts such that pL is a constant and pR is a variable, we can pick a set in
which exactly one text satisfying L2 ⊕ k2 = L4 ⊕ k4 is included.

Now we can pick a set in which exactly one text satisfying L2⊕k2 = L4⊕k4 is
included. From theorem 1, we can pick a set in which exactly one text satisfying
pL = R6 is included. By using this property, the following lemma is satisfied.

Lemma 1.
For a set whose members are all 2n/2 chosen plaintexts such that pL is a constant
and pR is a variable, exactly one text satisfies F−1(pL ⊕ cR)⊕ cL = k6.

Proof. In a first step, we suppose the texts satisfying L2 ⊕ k2 = L4 ⊕ k4. From
theorem 1, it always satisfies R6 = pL. Then it satisfies the following equation:

k6 = F−1(R6 ⊕ cR)⊕ cL = F−1(pL ⊕ cR)⊕ cL.

On the other hand, if it satisfies L2 ⊕ k2 	= L4 ⊕ k4, it always satisfies R6 	= pL.
Then it satisfies the following equation:

k6 = F−1(R6 ⊕ cR)⊕ cL 	= F−1(pL ⊕ cR)⊕ cL.

Thus we complete the proof. �

Procedure and Evaluation. By using lemma 1, we can attack the 6 round
KiF -Feistel. We assume that attackers can access the inverse of the function F ,
and it is popular because the inverse functions are open to the public in various
environment.

The key recovery attack by using lemma 1 goes as follows. First, choose all 2n/2

chosen plaintexts such that pL is a constant and pR is a variable, p[i] = (pL, pR[i])
for i = 1, . . . , 2n/2. Query these chosen plaintexts and get the ciphertexts. Next,
for all chosen texts, calculate v = F−1(pL ⊕ cR[i]) ⊕ cL[i] (1 ≤ i ≤ 2n/2), and
count the number of occurrences of each v. From lemma 1, the number #v is
always 1 for any pL when it satisfies v = k6. However the probability of #v = 1
is given e−1 in every wrong key, and keys which satisfy #v 	= 1 are discarded.
By repeating the attack n/2 times, the probability that a wrong key is left is
given e−n/2 and it is negligible. Therefore attackers can recover the correct key
with high probability in time n

2 2
n/2 by using CPA with n

2 2
n/2 texts.

Upper Bounds for the Security of Several Feistel Networks 311

F F F F F

P1 P2 P3 P4 P5

Fig. 4. The 5 round KiFPi-Feistel

4 New Key Recovery Attacks on the KiFPi-Feistel

4.1 A New Property for the 5 Round KiFPi-Feistel

Similarly to the KiF -Feistel, we aim to detect a property about relationship
between plaintext and ciphertext of the 5 round KiFPi-Feistel. Based on this
property, we propose a new key recovery attack for the 5 round KiFPi-Feistel.
This attack can be executed with time complexity smaller than the Knudsen’s
attack, and it is KPA not CPA.

Overview. The KiF -Feistel is an efficient construction, but the upper bound
for the security is lower than that of the FKi -Feistel. One of the reasons is
that attackers can pick the texts which satisfy L2 ∗ k2 = L4 ∗ k4 easily by
observing pL = cL from theorem 1. Now we consider the KiFPi-Feistel. In this
construction, a text satisfying pL = cL does not always satisfy L2 ∗ k2 = L4 ∗ k4
because different round functions are used in every round. Then we can not pick
the texts which satisfy L2 ∗k2 = L4 ∗k4 efficiently. Therefore one may think that
the KiFPi-Feistel is more secure than the KiF -Feistel. However, if the key insert
operation is XOR, attackers can still exploit the property for L2 ∗ k2 = L4 ∗ k4
in a probabilistic manner.

For the 5 round KiFPi-Feistel (see Fig. 4), we focus our attention on the
texts satisfying L2 ⊕ k2 = L4 ⊕ k4 similarly to the KiF -Feistel. In this time,
L3 is a constant value which only depends on the round key values because
L3 = F−1(P−1

3 (L2 ⊕ L4)) ⊕ k3. For the 5 round KiFPi-Feistel, the plaintext
is expressed as pL = P2(F (L2 ⊕ k2)) ⊕ L3 and the ciphertext is expressed as
cL = P4(F (L4⊕k4))⊕L3. Then if it satisfies L2⊕k2 = L4⊕k4, cL is expressed by
pL and k′ which only depends on the round key values. Therefore the relationship
between plaintext and ciphertext is expressed by the constant value which only
depends on the round key values. By using this relationship, we propose an
algorithm to recover the value of k′. Our algorithm always returns the correct
key k′ from the text satisfying L2 ⊕ k2 = L4 ⊕ k4. On the other hand, from the
others, namely L2 ⊕ k2 	= L4 ⊕ k4, our algorithm returns one value at random
from all 2n/2 values. Consequently, our algorithm suggests the correct key with
probability (2−n/2 ·1)+((1−2−n/2)·2−n/2) ≈ 2−n/2+1, but suggests other wrong
keys with probability ((1 − 2−n/2) · 2−n/2) = 2−n/2. By analyzing several texts,
our algorithm suggests the correct key two times more than other wrong keys.

312 Y. Todo

An Algorithm for the Key Recovery Attack of 5 Round KiFPi-Feistel.
We propose an algorithm which returns the correct key k′ with probability
2−n/2+1, and the probability is double compared with that of other wrong keys.
This algorithm uses the following property:

Theorem 2 (New property for the 5 round KiFPi-Feistel).
For the 5 round, the relationship between plaintext and ciphertext is expressed
as follows:

cL = P4(P
−1
2 (pL))⊕ k′ (3)

with probability about 2−n/2+1. Then k′ is a constant value which is determined
by round keys.

Proof. To prove theorem 3, we separate one incident satisfying Equation 3 from
two cases: one satisfies L2 ⊕ L4 = k2 ⊕ k4 and Equation 3, the other satisfies
L2 ⊕ L4 	= k2 ⊕ k4 and Equation 3. In a first step, we analyze texts satisfying
L2 ⊕ L4 = k2 ⊕ k4, then L3 is expressed as k3 ⊕ F−1(P−1

3 (k2 ⊕ k4)), and L3 is
a constant value which is determined by round keys k2, k3 and k4. In this time,
the relationship between plaintext and ciphertext is expressed as follows:

cL = P4(F (L4 ⊕ k4))⊕ L3

= P4(P
−1
2 (P2(F (L4 ⊕ k4)))) ⊕ L3

= P4(P
−1
2 (P2(F (L2 ⊕ k2)))) ⊕ L3 = P4(P

−1
2 (pL ⊕ L3))⊕ L3

= P4(P
−1
2 (pL))⊕ P4(P

−1
2 (L3))⊕ L3 = P4(P

−1
2 (pL))⊕ k′.

The probability satisfying L2⊕L4 = k2⊕k4 is 2−n/2, and cL = P4(P
−1
2 (pL))⊕k′

is always satisfied under this condition. Thus the probability satisfying Equation
3 is 2−n/2 × 1 = 2−n/2.

Next, we consider case with L2 ⊕ k2 	= L4 ⊕ k4. In this time, the following
equation:

cL = P4(F (L4 ⊕ k4))⊕ L3

= P4(P
−1
2 (pL))⊕ P4(P

−1
2 (pL))⊕ P4(F (L4 ⊕ k4))⊕ L3

= P4(P
−1
2 (pL))⊕ P4(F (L2 ⊕ k2))⊕ P4(P

−1
2 (L3))⊕ P4(F (L4 ⊕ k4))⊕ L3

is satisfied. If the following equation

k′ = P4(F (L2 ⊕ k2))⊕ P4(P
−1
2 (L3))⊕ P4(F (L4 ⊕ k4))⊕ L3

is satisfied by chance, it satisfies Equation 3, and its probability is 2−n/2. The
probability satisfying L2⊕L4 	= k2⊕k4 is 1−2−n/2, and the probability satisfying
Equation 3 is 2−n/2 when it satisfies L2 ⊕ L4 	= k2 ⊕ k4. Thus the probability
satisfying Equation 3 is (1− 2−n/2)× 2−n/2 ≈ 2−n/2.

Consequently, the total probability is given by about 2−n/2+2−n/2 = 2−n/2+1

and we complete the proof. �

Procedure and Evaluation. The key recovery attack by using theorem 2
goes as follows. First, analyze t · 2n/2 known plaintexts, and calculate v = cL ⊕
P4(P

−1
2 (pL)), count the number of occurrences of each v. From theorem 2, the

Upper Bounds for the Security of Several Feistel Networks 313

Fig. 5. The relationship between plaintext and ciphertext of the 6 round KiFPi-Feistel

number #v is about t · 2n/2 · 2−n/2+1 = 2t for v = k′ On the other hand, the
number #v is about t·2n/2 ·2−n/2 = t on average for v 	= k′. Then we can recover
the correct k′ by analyzing t · 2n/2, where t is a function of n. This attack can
only recover k′, but once k′ is recovered, we can recover k1 and k5 to execute
similar attack for the 5 round KiF -Feistel.

4.2 New Key Recovery Attack on the 6 Round KiFPi-Feistel

Overview. For the 5 round KiF -Feistel, we showed cL is expressed by pL
and the constant value k′ which only depends on the round key values with
probability 2−n/2+1. Therefore by using the relationship between pL and cL
with a double bias, we could recover k′. On the other hand, for the 6 round, we
can not use this method because we can not know the value of R6 which is cL
for the 5 round. Then we first assume that all texts satisfy L2 ⊕ k2 = L4 ⊕ k4,
and calculate R6 as follows:

R6 = P4(P
−1
2 (pL))⊕ k′,

and the relationship between ciphertext and plaintext is expressed as follows:

cR ⊕ P4(P
−1
2 (pL)) = P6(F (cL ⊕ k6))⊕ k′, (4)

where k6 and k′ are unknown constant values which only depend on the round
key values. Figure 5 shows the circuit of the Equation 4. Then if we exhaustively
search for over all 2n/2 possible round keys k6, we can recover k′ from Equation
4 by using several texts. Unfortunately, this attack is not effective. The reason
is that the probability satisfying the Equation 4 is at most probability 2−n/2+1.
If we aim to recover k′ by using this bias, we have to search for all 2n/2 possible
round keys k6 against over 2n/2 texts. This time complexity is over 2n.

Then we consider the chosen ciphertext attack. In this attack, attackers can
choose all 2n/2 chosen ciphertexts such that cL is a constant and cR is a variable.
In this model, we propose a new technique called “the chosen texts technique.”
By using the chosen texts technique, we can choose a set whose members satisfy
Equation 4 with higher probability than 2−n/2+1. Namely the chosen set from
the chosen texts technique is more biased than original set. For this chosen set,
we exhaustively search for over all 2n/2 possible round keys k6 and recover k′.
We stress that we can attack the 6 round KiFPi-Feistel by using CPA, because
the encryption and the decryption for this cipher have symmetry. Here, keys
which are recoverd by this attack are round key k1 and constant value k′ which
is uniquely determined by round key k3, k4 and k5. However we show this attack
by using a chosen ciphertext attack for simplicity in this section.

314 Y. Todo

Overview of the Chosen Texts Technique. We propose the chosen texts
technique by which we can choose a set whose members satisfy Equation 4
with higher probability than 2−n/2+1. First, we analyze all 2n/2 chosen cipher-
texts such that cL is a constant and cR is a variable. From Equation 4, if cL
is a constant, we know cR ⊕ P4(P

−1
2 (pL)) is uniquely determined by k6 and k′.

Moreover we know that Equation 4 is satisfied with probability 2−n/2+1. Among
several texts with satisfying Equation 4, with a fixed value of cL but different
values of cR, the values of cR ⊕ P4(P

−1
2 (pL)) are the same, and the probabil-

ity is 2−n/2+1 which is double compared with the others. Namely, we calculate
v = cR ⊕ P4(P

−1
2 (pL)) and count the number of occurrences of each v. The

number #v is about 2n/2 ·2−n/2+1 = 2 when it satisfies v = P6(F (cL⊕k6))⊕k′.
On the other hand, the number #v is about 2n/2 · 2−n/2 = 1 when it satis-
fies v 	= P6(F (cL ⊕ k6)) ⊕ k′. By using this slight bias, the chosen texts tech-
nique choose a set whose members satisfy Equation 4 with high probability than
2−n/2+1.

Lemma 2 (Chosen texts technique).
Choose all 2n/2 chosen ciphertexts such that cL is a constant and cR is a variable,
and query these chosen ciphertexts and get the plaintexts. Count the number
of occurrences of each v = cR ⊕ P4(P

−1
2 (pL)). Choose (cL, v) whose number of

occurrences is maximum. In this time, PT denotes the probability that the chosen
text satisfies Equation 4, and the probability PT is expressed as

PT >

2n/2∑
i=0

2i

i!
e−2

⎛⎝1

e

i∑
j=0

1

j!

⎞⎠2n/2

> 2−n/2.

Procedure and Evaluation. By using lemma 2, we show a key recovery attack
on the 6 round KiFPi-Feistel, and the attack goes as follows. In the first step,
choose all 2n/2 chosen ciphertexts such that cL is a constant and cR is a variable,
c[i] = (cL, cR[i]) for i = 1, . . . , 2n/2. Query these chosen ciphertexts and get
the plaintexts. In the second step, execute the chosen texts technique. Namely,
calculate v = cR[i] ⊕ P4(P

−1
2 (pL[i])), count the number of occurrences of each

v, and pick (cL, v) whose number of occurrences is maximum. In the third step,
for the picked text (cL, v), exhaustively search for over all 2n/2 possible round
keys k6 and calculate k′ from Equation 4, and vote 2n/2 key candidates (k6, k

′)
to the key space of size 2n. For a picked text, if the text satisfying Equation 4 is
chosen in the second step, it votes the correct (k6, k

′) and 2n/2 − 1 random key
candidates except the correct key. If the text satisfying Equation 4 is not chosen
in the second step, it votes the 2n/2 random key candidates except the correct
key. Finally, by repeating the first, second and third step 2d times, we recover
the correct key (k6, k

′). The correct key (k6, k
′) is voted at least 2d · Pt, but the

wrong key is voted 2d · 2n/2 · 2−n = 2d−n/2 on average.
Now we give the suitable number of chosen ciphertext. Here we consider n =

128 because many current block ciphers have 128-bit block size. For n = 128,
it satisfies Pt > 2−44 because of lemma 2. By repeating the first, second and

Upper Bounds for the Security of Several Feistel Networks 315

third step 23n/8 times (namely, using 27n/8 chosen ciphertexts), The correct key
(k6, k

′) is voted at least 23n/8 · 2−44 = 16. On the other hand, the wrong key
is voted about 27n/8 key candidates to the key space of size 2n at random. The
probability that one of the wrong keys is voted over 16 is at most 1

16! [17].
Consequently, our new attack can recover the correct (k6, k

′).
Next we show the time complexity. First wemust calculate the calculation 27n/8

times for the second step.Nextwemust evaluate in every roundkey (k6, k
′), and the

time complexity is 27n/8. Therefore the time complexity for this attack is 27n/8+1.
We show the experimental report of this attack in Appendix A.

5 Discussions

In this section, we discuss our results and give observations on the design of
Feistel ciphers. From our results, we can conclude that the FKi -Feistel and the
KiF -Feistel have different upper bounds for the security, so it is an important
problem to consider how to insert round keys. Instead of the KiF -Feistel, we can
use the KiFPi-Feistel which is more secure than the KiF -Feistel and easier to
design than the FKi -Feistel. Surely, from the time complexity and the number
of texts, the network is more secure on our attacks than the KiF -Feistel, but
we can still attack the 6 round network whose operation is XOR. Namely, the
KiFPi-Feistel is still more insecure than the FKi -Feistel. On the other hand,
when the key insert operation is a modular addition, we can not attack the 6
round network, because our properties for the 6 round key recovery attacks does
not work. It seems these results show a conclusion that use of a modular addition
is more secure than that of XOR for the key insert operation. Accordingly, we
analyze a peculiar Feistel network whose Ψki is defined as follows:

(Li+1, Ri+1) = (Ri � PiF (Li � ki), Li),

where Pi is the linear operation of a modular addition. As a result, we can attack
on this 6 round network by the similar attack to that for the 6 round KiFPi-
Feistel. Our attacks use some relationship between plaintext and ciphertext when
it satisfies L2∗k2 = L4∗k4. Generally, it is not efficient to have a modular addition
for the hardware implementation, so we consider that the diffusion part should
be used a nonlinear operation with respect to XOR. Even if we observe the
relationship between plaintext and ciphertext, we can not distinguish whether
the text satisfies L2∗k2 = L4∗k4. More detailedly, if it uses a nonlinear operation
which satisfies Pix⊕Pjx = (Pi⊕Pj)x with a negligible probability, the network
is immune to our attacks.

6 Conclusion

We revisited the Knudsen’s Feistel networks where the round functions are cho-
sen at random from a family of 2k randomly chosen function. In this paper,
we considered that simple construction, the KiF -Feistel, and showed that the
6 round construction was not secure. Moreover, for the KiFPi-Feistel which is

316 Y. Todo

more secure than KiF -Feistel, we showed that the 6 round construction was not
as secure as the KiF -Feistel. This means that how to insert round key is very
influential in the upper bound for the security. Moreover this means that the
6 round networks are not enough to complicate the relationship between plain-
text and ciphertext. To complicate the relationship, we propose the diffusion
part for the KiFPi-Feistel should be used a nonlinear operation with respect to
XOR. This construction has the immunity to our attacks and maintenance of
the efficiency.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001)

2. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

3. Isobe, T., Shibutani, K.: All Subkeys Recovery Attack on Block Ciphers: Extending
Meet-in-the-Middle Approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013)

4. Knudsen, L.R.: The Security of Feistel Ciphers with Six Rounds or Less. J. Cryp-
tology 15(3), 207–222 (2002)

5. Knudsen, L.R., Rijmen, V.: Known-Key Distinguishers for Some Block Ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007)

6. Lampe, R., Patarin, J.: Security of Feistel Schemes with New and Various Tools.
IACR Cryptology ePrint Archive 2012, 131 (2012)

7. Lee, H., Lee, S., Yoon, J., Cheon, D., Lee, J.: The SEED Encryption Algo-
rithm RFC4269 (2005)

8. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

9. Lucks, S.: Faster Luby-Rackoff Ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

10. National Soviet Bureau of Standards: Information Processing System – Crypto-
graphic Protection – Cryptographic Algorithm GOST 28147-89 (1989)

11. Patarin, J.: How to Construct Pseudorandom and Super Pseudorandom Per-
mutations from one Single Pseudorandom Function. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 256–266. Springer, Heidelberg (1993)

12. Patarin, J.: Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ε)Security. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

13. Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer,
Heidelberg (2004)

14. Patarin, J.: Security of balanced and unbalanced Feistel Schemes with Linear Non
Equalities. IACR Cryptology ePrint Archive 2010, 293 (2010)

15. Sasaki, Y., Yasuda, K.: Known-Key Distinguishers on 11-Round Feistel and Colli-
sion Attacks on Its Hashing Modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733,
pp. 397–415. Springer, Heidelberg (2011)

Upper Bounds for the Security of Several Feistel Networks 317

16. Shirai, T., Shibutani, K.: On Feistel Structures Using a Diffusion Switching Mech-
anism. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,
Heidelberg (2006)

17. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-
collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40.
Springer, Heidelberg (2006)

Appendix A: The Feasibility by Implementing the Attack
for Small Block Sizes

For feasibility evaluation of our attack, we execute experiments for our attacks
on the KiF -Feistel and KiFPi-Feistel which have small block sizes. In our ex-
periments, we evaluate by the average of 1,000 samples in every block length. In
all samples, we choose functions F and round keys randomly. In this paper, we
show only key recovery attack on the 6 round KiFPi-Feistel due to limitations
of space.

Key Recovery Attack on the 6 Round KiFPi-Feistel

We show the experimental results for the key recovery attack on the 6 round
KiFPi-Feistel. When the correct key (k6, k

′) is one of the most voted candidates,
we define it as “the success.” We summarize experimental results in Figure 6.
Here the horizontal axis shows block lengths, the right vertical axis shows the
average number of the vote to the correct key (k6, k

′), and the left vertical axis
shows the success probability on our attack. In our experiments, we always use
23n/8 for the value 2d. From Fig. 6, the average number of the vote to the correct
key is always higher than the lower bound, it means the chosen texts technique
is valid. Moreover, the longer the block length becomes, the more quantity the
average number of the vote to the correct key is. Accordingly, the probability of
success is close to one.

 2

 4

 6

 8

 10

 12

 14

 10 15 20 25 30 35
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

T
he

 v
ot

e
nu

m
be

r
to

 th
e

co
rr

ec
t k

ey

P
ro

ba
bi

lit
y

Block lengths

Experimental results for our attacks

Average of the vote to the correct key
Lower bound of the vote to the correct key

Probability of success

Fig. 6. Experimental results for new attacks of the 6 round KiFPi-Feistel

Fairness in Concurrent Signatures Revisited

Willy Susilo1,�, Man Ho Au1, Yang Wang1, and Duncan S. Wong2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

University of Wollongong, Australia
{wsusilo,aau}@uow.edu.au,
yw990@uowmail.uow.edu.au

2 City University of Hong Kong, Hong Kong
duncan@cityu.edu.hk

Abstract. Concurrent signature, introduced by Chen, Kudla and Pa-
terson, is known to just fall short to solve the long standing fair exchange
of signature problem without requiring any trusted third party (TTP).
The price for not requiring any TTP is that the initial signer is always
having some advantage over the matching signer in controlling whether
the protocol completes or not, and hence, whether the two ambiguous
signatures will bind concurrently to their true signers or not. In this
paper, we examine the notion and classify the advantages of the initial
signer into three levels, some of which but not all of them may be known
in the literature.
– Advantage level 0 is the commonly acknowledged fact that concur-

rent signature is not abuse-free since an initial signer who holds a
keystone can always choose to complete or abort a concurrent sig-
nature protocol run by deciding whether to release the keystone or
not.

– Advantage level 1 refers to the fact that the initial signer can con-
vince a third party that both ambiguous signatures are valid without
actually making the signatures publicly verifiable.

– Advantage level 2 allows the initial signer to convince a third party
that the matching signer agrees to commit to a specific message, and
nothing else. We stress that advantage level 2 is not about proving
the possession of a keystone. Proving the knowledge of a keystone
would make the malicious initial signer accountable as this could
only be done by the initial signer.

We remark that the original security models for concurrent signature do
not rule out the aforementioned advantages of the initial signer. Indeed,
we show that theoretically, the initial signer always enjoys the above ad-
vantages for any concurrent signatures. Our work demonstrates a clear
gap between the notion of concurrent signature and optimistic fair ex-
change (OFE) in which no party enjoys advantage level 1. Furthermore,
in a variant known as Ambiguous OFE, no party enjoys advantage level
1 and 2.

Keywords: concurrent signatures, scenarios, fairness.

� W. Susilo is supported by ARC Future Fellowship FT0991397.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 318–329, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Fairness in Concurrent Signatures Revisited 319

1 Introduction

Fair exchange of digital signatures has been considered as a fundamental problem
in cryptography. It is a useful cryptographic protocol that allows secure and fair
e-commerce applications to exchange digital signatures for legal contracts or
agreements. Nowadays, goods and services are being exchanged electronically
over the Internet. Our main goal is to ensure that the exchanges are fair, which
means that at the end of an exchange between two parties, either both parties
receive the complete items or none of them obtains anything.

Fairness in exchanging signatures is normally achieved with the help of a
trusted third party (TTP), which is often offline. There were several attempts
where a fair exchange of signatures can be achieved with a “semi-trusted” TTP
who can be called upon to handle disputes between signers [2]. This type of fair
exchanges is also referred to as an optimistic fair exchange (OFE) [3,4]. A well-
known open problem in fair exchange is the requirement of a dispute resolving
TTP whose role cannot be replaced by a normal certification authority.

In Eurocrypt 2004 [6], Chen, Kudla and Paterson presented a new crypto-
graphic primitive called “concurrent signature” to allow two parties to produce
two ambiguous signatures, such that both signatures do not bind to their true
signers. Upon the release of the signatures, any third party cannot identify the
true signer who generated the signature. However, upon the release of an extra
piece of information called the keystone, both signatures will bind concurrently.
The merit of concurrent signature relies on the fact that there is no TTP re-
quired. This has been considered to be very practical, and hence, concurrent
signatures have been promising to be adopted in practice (c.f. OFE where the
need for a TTP may not exist in the real scenario). The demand of requiring
a TTP in cryptographic schemes has made cryptographic schemes less attrac-
tive for adoption in practice, and hence, concurrent signatures have been very
promising in bridging the gap between theoreticians and practitioners. Further,
Chen, Kudla and Paterson presented a concrete concurrent signature scheme
based on a variant of Schnorr based ring signature scheme [1]. In their scheme,
any third party cannot be convinced that a signature has indeed been signed
by one particular signer, since any signer can always generate this signature by
himself/herself.

In a concurrent signature protocol run, there are two parties involved, namely
Alice and Bob (or A and B, respectively). Since one party is required to create a
keystone and sends the first message to the other party, we call this party as the
initial signer. A party who responds to the initial signature by creating another
signature is called a matching signer. Without losing generality, throughout this
paper, we assume that Alice (or A, resp.) is the initial signer and Bob (or B,
resp.) is the matching signer.

It is acknowledged that concurrent signature is not perfectly fair, since Alice
is in control of the time at which the keystone is released and thus, control
when the ambiguous signatures become binding to their respective signers. Alice
can even decide not to complete a concurrent signature protocol run if Alice
decided not to to release the keystone ultimately. Nonetheless, the concept of

320 W. Susilo et al.

fairness in a concurrent signature is defined as follows: “once Alice releases the
keystone, both ambiguous signatures from Alice and Bob binds concurrently”.
Specifically, it is required that Alice cannot output a maliciously crafted keystone
so that the ambiguous signature from Bob together with this keystone passes
the verification algorithm, yet verification of the ambiguous signature created by
Alice (perhaps also maliciously) together with this keystone would output failure.
We call this definition of fairness a “white-box” guarantee, as the malicious Alice
is required to convert the ambiguous signature corresponding to Bob to a “well-
formed” publicly verifiable signature under Bob to be considered successful. This
is possibly sufficient for legal contract signing purpose, since the contract is only
valid if and only if a “well-formed” signature is present. This definition is adopted
in Chen et al.’s paper and the subsequent works.

1.1 Fairness in Practice

In this paper, we make the observation that the formal definition of fairness
does not necessarily capture the fairness in practice completely. For example,
there is no guarantee that Alice could not convince a third party Carol that
Bob has signed a message,MB, that is, committed to MB, without revealing the
keystone. We identify that a malicious initial signer may enjoy three levels of
advantages in concurrent signature.

(a) Level 0 advantage is inherent in concurrent signature. The initial signer can
always choose to abort or complete a concurrent signature protocol run.

(b) Level 1 advantage allows the initial signer to demonstrate the fact that
he/she is capable of making both signatures valid if he/she wanted to, with-
out actually making both signatures publicly verifiable.

(c) Level 2 advantage allows the initial signer to convince a third party that the
matching signer has agreed to committed to a certain message, for example,
MB, without revealing anything else.

These advantage levels have concrete implications regarding the use of concur-
rent signatures in practical scenarios. As discussed by Chen et al. in their seminal
paper [6], it is very often the case that the matching signer would not mind sacri-
ficing level 0 advantage. However, regarding level 1 and 2 advantages, concurrent
signatures may not be suitable in some other scenarios such as tendering systems
(c.f. [6] as we will show with details in the later part of this paper). On the other
hand, contrary to the common belief that concurrent signature is applicable to
tendering systems (such as [6, 17, 18]), level 1 advantage to a malicious initial
signer could be unacceptable to some of the suppliers. Hence, in those scenarios,
the OFE [2–4, 7] or Ambiguous OFE [10–12] systems are indeed more suitable
compared to concurrent signatures.

1.2 Our Contributions

Firstly, we show that any constructions of concurrent signature following Chen,
Kudla and Peterson is always subject to abuse by the initial signer, with advan-
tage level 1 and 2, in addition to the commonly acknowledged advantage level 0.

Fairness in Concurrent Signatures Revisited 321

We present generic methods that allow a malicious initial signer to convince any
third party that he/she has the ability to make both signatures verifiable (level
1), or that the matching signer has committed to his message (level 2). Secondly,
we examine one variant of concurrent signatures, namely, asymmetric concur-
rent signature [13] and demonstrate how a malicious initial signer can exhibit
his/her level 1 advantage in an effective manner. Our attack is practical and
its implication may discourage the adoption of concurrent signatures in some
application scenarios, and particularly, when it is undesirable to allow a mali-
cious initial signer to convince anyone of the binding of the matching signer’s
signature without making the signature publicly verifiable.

1.3 Related Work

Following the seminal work by Chen et al., many subsequent concurrent signa-
ture schemes have been proposed (such as [13,14,16,17]). Nguyen [13] proposed
an interesting variant that embraces the asymmetric property of concurrent sig-
natures (c.f. the symmetric property of all the previously known concurrent sig-
nature schemes). Furthermore, Nguyen noted that the construction techniques
of an asymmetric concurrent signature scheme can be used for constructing a
multi-party concurrent signature scheme, which is the solution to the open prob-
lem stated in Chen et al.’s seminal work [6]. Subsequently, Tonien, Susilo and
Safavi-Naini [16] proposed a multi-party concurrent signature scheme that uses
a different model from the construction achieved from [13].

In an orthogonal direction, Susilo, Mu and Zhang [14] investigated the pri-
vacy issue in concurrent signatures. They observed that prior the release of a
keystone, and just from the two ambiguous signatures, any third party can al-
ready conclude that the two ambiguous signatures must be created by these two
possible signers. At the same time, if the possible signers are believed to be hon-
est, the outsider can already tell who the actual signer is corresponding to each
ambiguous signature. They then introduced a stronger requirement called perfect
ambiguity, which requires the ambiguous signatures to remain “ambiguous” even
if the two potential signers are known to be honest. Unfortunately, their scheme
is shown to be insecure by Wang, Bao and Zhou [17], and subsequently, Wang et
al. proposed a modified scheme that is proven secure under this stronger notion.

Yuen, Wong, Susilo and Huang [18] constructed a concurrent signature variant
that supports negotiation between the initial signer and the matching signer on
who will control the final binding of the ambiguous signatures. They showed
that their model is compatible with the original definition by Chen et al. [6].

Very recently, Tan, Huang and Wong [15] presented the first concurrent signa-
ture scheme that is based on the standard assumption. Their ambiguity model
is very similar to the one proposed by Yuen et al. [18].

1.4 Roadmap

In the next section, we review the notion of concurrent signatures due to Chen
et al. and the notations used in the rest of this paper. In Section 3, we present

322 W. Susilo et al.

our classification of advantage levels to the initial signer in detail, discuss their
implications and present generic techniques which allows the initial signer to
enjoy these advantages. In Section 4, we show how an initial signer can enjoy level
1 advantage in the asymmetric concurrent signature scheme due to Nguyen [13].
Finally, we conclude the paper in Section 5.

2 Notions and Definitions of Concurrent Signature

2.1 Notations

For a finite set S, we will denote by x ∈R S the operation of selecting an element
x uniformly at random from S. If p is a positive integer, we use ZZp to denote
the set {0, . . . , p− 1}.

2.2 Concurrent Signatures

In the following, we review the definition of concurrent signatures from [6].
A concurrent signature comprises four algorithms (SETUP, ASIGN, AVERIFY,
VERIFY). Their formal definitions are given below.

SETUP. On input security parameter 1λ, this probabilistic algorithm outputs
the description of the set of participants U , the message space M, the signa-
ture space S, the keystone space K, the keystone fix space F , and a function
KGEN : K → F . It is also assumed the public keys {Xi} and their respective
secret keys {xi} are also generated by this algorithm. We use π to denote ad-
ditional system parameters. We assume (π,U ,M,S,K,F ,KGEN, {Xi}) are
available to all participants while each user retain his/her own secret key xi.

ASIGN. On input (Xi, Xj , xi, h2,M) where Xi, Xj ∈ {Xi} such that Xi 	= Xj ,
xi being the secret key corresponds to the public key Xi, h2 ∈ F , M ∈ M,
this algorithm outputs an ambiguous signature σ = (s, h1, h2) on message
M , where s ∈ S, h1, h2 ∈ F .

AVERIFY. On input (σ,Xi, Xj,M), where σ = (s, h1, h2), s ∈ S, h1, h2 ∈ F ,
Xi, Xj are distinct public keys and M ∈ M, outputs 0/1. It is required that
AVERIFY((s, h1, h2), Xi, Xj, M) = AVERIFY((s, h2, h1), Xj , Xi, M).

VERIFY. On input (k, (σ,Xi, Xj ,M)) such that k ∈ K and σ = (s, h1, h2), it
outputs 0 if h2 	= KGEN(k). Otherwise, it outputs AVERIFY(σ,Xi, Xj,M).

Below is a recap of the interactive protocol in which the above algorithms
are used in the exchange of signatures in a concurrent manner amongst two
participants.

1. We assume SETUP has been executed and all participants have their own key
pair already. Below we describe how Alice with key pair (XA, xA) exchanges
signatures with Bob with key pair (XB , xB).

2. Alice picks a random k ∈ K, computes f = KGEN(k) and obtains σA :=
(sA, hA, f) from ASIGN(XA, XB, xA, f,MA). Alice sends σA,MA to Bob.

Fairness in Concurrent Signatures Revisited 323

3. Bob verifies Alice’s ambiguous signature by invoking AVERIFY(σA, XA, XB,
MA). If σA is valid, Bob obtains σB := (sB , hB, f) fromASIGN(XB, XA, xB, f,
MB). Bob sends (σB ,MB) to Alice.

4. Alice verifies Bob’s ambiguous signature by invoking AVERIFY(σB , XB, XA,
MB). If σB is valid, Alice releases the keystone k. Parse SA as (k, σA, XA,
XB, MA) and SB as (k, σB , XB, XA,MB).

5. Everybody can now verify both signatures SA and SB using VERIFY.

The correctness is defined in the usual manner. Specifically, if σ = ASIGN(Xi,
Xj , xi, f , M) and S = (k, σ, Xi, Xj , M), then AVERIFY(σ, Xi, Xj , M) = 1.
In addition, if f = KGEN(k) for some k ∈ K, then VERIFY(S) = 1.

2.3 Security Model

As discussed in [6], a concurrent signature should satisfy three security require-
ments, namely, unforgeability, ambiguity and fairness. For completeness, we re-
view these security requirements as follows.

Unforgeability. The following game is used to capture the existential unforge-
ability of a concurrent signature.

Definition 1 (Unforgeability). A concurrent signature is unforgeable if no
PPT adversary A can win the following game with a challenger C.
Setup. C invokes SETUP(1λ) for a security parameter 1λ and obtains a set

of parameters (π,U ,M, S,K,F ,KGEN, {Xi}) and the corresponding set of
secret keys {xi}. C gives the set of parameters to A while retaining the set
of secret keys {xi}.

Queries. A is allowed to issue to following queries in an adaptive manner.

1. KGEN: C randomly generates k ∈R K and returns f = KGEN(k) to A.

2. Keystone Reveal: On input f such that f is an output of the KGEN query,
C returns k such that f = KGEN(k). Otherwise C returns ⊥.

3. ASIGN: On input (Xi, Xj , h2,M) such that Xi, Xj ∈ {Xi}, h2 ∈ F ,
M ∈ M, C replies with ASIGN(Xi, Xj , xi, h2,M).

4. Secret Key Reveal: On input Xi ∈ {Xi}, C returns xi.

Output. Finally A outputs a signature σ∗ = (s∗, h∗, f∗), a message M∗ and two
public keys X∗

c , X
∗
d . A wins the game if AVERIFY(σ∗, X∗

c , X
∗
d ,M

∗ = 1) and
either one of the following is true:

– (X∗
c , X

∗
d , f

∗,M∗) is not an input to the ASIGN query and X∗
c , X

∗
d is not

an input to the secret key reveal query.

– A has not made any ASIGN query of the form (X∗
c , X, f

∗,M∗) for all
X ∈ {Xi} \ {X∗

c }, no secret key reveal query was made with input X∗
c

and f∗ is the output of KGEN query or A also outputs k∗ such that
f∗ = KGEN(k∗).

324 W. Susilo et al.

Ambiguity. The following game is used to capture ambiguity of a concurrent
signature.

Definition 2 (Ambiguity). A concurrent signature is ambiguous if no PPT
adversary A can win the following game with a challenger C.

Setup. Same as Setup in the game in Definition 1.

Phase 1. A is allowed to made a sequence of KGEN, Keystone Reveal, ASIGN
and Secret Key Reveal query, which are answered as in the game of subsec-
tion 2.3.

Challenge. A outputs two public keys Xi, Xj and a message M as challenge. C
randomly picks k ∈R K and computes f = KGEN(k). C then flips a fair coin
b ∈R {0, 1}. If b = 0, C computes σ0 = ASIGN(Xi, Xj, xi, f,M). Otherwise,
C computes (s, h, f) = ASIGN(Xj , Xi, xj , f,M) and parse σ1 as (s, f, h). C
returns σb to A.

Phase 2. A can make another sequence of queries as in phase 1.

Output. Finally A outputs a guess bit b′. A wins the game if b = b′ and A did
not make any Keystone Reveal query on input f or h.

Fairness. The following game is used to capture fairness of a concurrent signa-
ture.

Definition 3 (Fairness). A concurrent signature is fair if no PPT adversary
A can win the following game with a challenger C.

Setup. Same as Setup in the game of subsection 2.3

Queries. A is allowed to made a sequence of KGEN, Keystone Reveal, ASIGN
and Secret Key Reveal query, which are answered as in the game of subsec-
tion 2.3.

Challenge. A outputs two public keys Xi, Xj and two messagesMi,Mj, together
with σi = (si, h1, h2) such that AVERIFY((si, h1, h2), Xi, Xj, Mi) = 1. C
returns σj = (sj , h3, h2) = ASIGN(Xj , Xi, xj , h2,Mj).

Output. Finally A either outputs a value k. A wins the game if f = KGEN(k)
such that f was a previous output from KGEN query and no Keystone Reveal
query on f was made.

3 Abusing Fairness in Concurrent Signatures

In this section, we discuss the various advantage levels enjoyed by the initial
signer, their implications and how they could be acquired. At the high level, it is
often the case that exhibiting such advantage requires the use of zero-knowledge
proof [9], which is reviewed as follows.

Fairness in Concurrent Signatures Revisited 325

3.1 Zero-Knowledge Proof

A zero-knowledge proof [9] is an interactive protocol for one party, the prover,
to prove to another party, the verifier, that some statement is true, without
revealing anything other than the veracity of the statement. In [8], it has been
shown that, assuming the existence of one-way function, one can create a zero-
knowledge proof system for the NP-complete graph coloring problem with three
colors. Since every problem in NP can be efficiently reduced to this problem, it
means that all problems in NP have zero-knowledge proofs. Later in [5], it has
been shown that anything that can be proved by an interactive proof system can
be proved with zero knowledge.

3.2 Advantage Level 0

Level 0 advantage is inherent in concurrent signatures, as the initial signer, Alice,
is in possession of the keystone, which is under the full control of Alice on when
and whether the keystone will be released to the public. Thus, the primitive
is not suitable if the matching signer will be at a disadvantage if withholding
the keystone or delaying the release of the keystone would cause harm to the
matching signer.

The Implications. Consider the tendering systems as discussed in the seminal
paper of Chen et al. [6]. They described a scenario where A has a bridge-building
contract that she would like to put out to tender. Suppose there are two compa-
nies B and C that wish to put in proposals to win this contract. In this scenario,
B acts as the initial signer, as this is to prohibit A to show this contract to C
to get a better proposal from C. We note that in this particular scenario, B has
the full control of the keystone, since the keystone is selected by B. Therefore, if
at the end of the tender, if A would like to select B as the winner of the tender,
B may still have the liberty for not completing the contract by not releasing the
keystone, and hence, it is unfair to A.

3.3 Advantage Level 1

The Abuse. Assume Alice is a malicious initial signer, whose purpose is to
convince a third party Carol that the matching signer Bob and herself are about
to exchange signatures on messages MA and MB. Assume Alice and Bob have
completed step 3 of the concurrent signature protocol (as described in Section
2.2). That is, Alice is in possession of a keystone k and the ambiguous signa-
ture from Bob σB := (sB, hB, f) on message MB. At the same time, Bob is in
possession of Alice’s ambiguous signature σA := (sA, hA, f) on message MA. In
our generic attack, Alice reveals σA, σB, MA, MB to Carol and then conducts a
zero-knowledge proof-of-knowledge of the value k with Carol such that

f = KGEN(k).

Carol is convinced that Alice and Bob are exchanging signatures on messages
MA and MB and that Alice has the ability to complete the transaction.

326 W. Susilo et al.

The Implications. Consider an open auction [17, 18] in which Alice’s am-
biguous signature is a contract to sell a certain goods while Bob’s ambiguous
signature is a contract of a bid. Level-1 advantage allows Alice to convince Carol
that she has the ability to seal the contract with Bob and the bid is specified
in MB. This allows Alice to safely urge Carol for a higher bid, and Bob is at a
disadvantage.

We note that this implication is also applicable to the tendering systems as
discussed previously. However, in this scenario, let us consider the case where A,
who would like to put the bridge-building tender, is the initial signer. Hence, the
company B and C will act as the matching signers. In this setting, A will take
the advantage level 1 to convince C about B’s tender, so that C will increase
the value of her tender, and hence, disadvantaging B.

3.4 Advantage Level 2

The Abuse. Assume Alice is a malicious initial signer, whose purpose is to
convince a third party Carol that the matching signer Bob has committed to
message MB. Assume Alice and Bob have completed step 3 of the concurrent
signature protocol (as described in Section 2.2). That is, Alice is in possession of a
keystone k and the ambiguous signature from Bob σB := (sB, hB, f) on message
MB. At the same time, Bob is in possession of Alice’s ambiguous signature
σA := (sA, hA, f) on message MA. Our observation on the incompleteness of
the original fairness definition in [6] arises from the fact that to convince Carol
about Bob’s commitment to MB does not necessarily involve outputting some
maliciously crafted keystone k̂. Specifically, in our generic attack, Alice conducts
a zero-knowledge proof-of-knowledge of the tuple (k, σB) with Carol such that
the following statements are true:

1. f = KGEN(k), and
2. AVERIFY(σB , XA, XB,MB) = 1.

This would be sufficient to convince a third party about Bob’s intention to
sign a message MB, without revealing anything about Alice’s intention, thus
undermining the fairness guarantees of the concurrent signature schemes, and
put Bob into disadvantage.

The Implications. Note that in the zero-knowledge proof, Alice does not reveal
the keystone k, the keystone fix f , nor Bob’s ambiguous signature. Thus, even if
Carol is presented with the secret key of Bob, the ambiguous signatures σA and
σB from Bob, she could not conclude that Alice has committed to MA. In other
words, the only thing that Carol can be assured of is that Alice is in possession
of a signature from Bob on message MB. Bob is left at an unfair position.

We would like to remark that both level 1 and 2 advantages are outside the
security definition presented in Section 2.3. We also do not claim that existing
concurrent signature schemes are broken for two reasons. Firstly, they are not

Fairness in Concurrent Signatures Revisited 327

within the security model. Secondly, even though they are theoretically possible,
it is not always feasible. Thus, people should bear in mind any concurrent signa-
ture following this syntax could be abused by the initial signer, and hence, the
adoption of concurrent signatures in application scenario should be examined
to make sure that either the level 1 and 2 advantages of the initial signer are
acceptable or that the advantages cannot be claimed efficiently.

4 Abusing Fairness in Asymmetric Concurrent Signatures

In this section, we demonstrate a practical abuse in advantage level 1 of the
asymmetric concurrent signature due to Nguyen [13]. In this abuse, the initial
signer can convince any verifier that he/she has the ability to make both ambigu-
ous signatures verifiable. We would like to stress again that the attack is outside
their original model and we therefore do not claim that we break Nguyen’s orig-
inal scheme.

4.1 Review of Nguyen’s asymmetric concurrent signatures

For completeness, we will first review Nguyen’s scheme.

Setup. Let G = 〈g〉 be a group of prime order p. The key pair of Alice and Bob
are respectively (XA = gxA , xA) ∈ G × ZZp, (XB = gxB , xB) ∈ G × ZZp. Let
H : G×{0, 1}∗ → ZZp be a hash function that would be modeled as random
oracle.

Generation of Alice’s ambiguous signature. On input a message MA ∈ {0, 1}∗
and Bob’s public key XB, Alice randomly generates r ∈R ZZp and computes
c = H(gr,MA), s = gr+cxA . Alice sets her ambiguous signature as (c, s) and
sends it to Bob. The keystone is defined as k = r + cxA such that s = gk.

Generation of Bob’s ambiguous signature. On input a message MB ∈ {0, 1}∗
and an ambiguous signature (c, s) on messageMA from Alice, Bob first check
if c = H(sX−c

A ,MA). Bob continues if the check is successful. He computes

s′ = sxB , c′ = H(s′gr
′
,MB) and k

′ = r′−c′
xB

. He sets his ambiguous signature
as (c′, s′, k′) and sends it to Alice.

Binding of both signatures. Upon receiving (c′, s′, k′) from Bob, Alice first
checks if

c′ = H(gc
′
Xk′

B s
′,MB)

and s′ = Xk
B. If the check is successful and if Alice decides to have both

signatures binded, she releases the value k. Both signatures are now publicly
verifiable by checking the following verification equations.

Verification of Alice’s signature:

c
?
= H(X−c

A s,MA) ∧ s
?
= gk

Verification of Bob’s signature:

c′ ?
= H(gc

′
Xk′

B s
′,MB) ∧ s′ ?

= Xk
B

Remark. Nguyen’s construction is asymmetric in the sense that Alice’s signature
and Bob’s signature are of different form with different verification equations.

328 W. Susilo et al.

4.2 A Concrete Level-1 Abuse on Nguyen’s Scheme

Given the pair of ambiguous signatures (c, s), (c′, s′, k′) on message MA and
MB respectively, Alice, who is in possession of the keystone k satisfying the
relationship s = gk and s′ = Xk

B can convince a third party Carol that she has
the ability to bind both ambiguous signatures by proving she knows the value k
in zero-knowledge. The full proof protocol is shown below.

1. Alice sends both (c, s), (c′, s′, k′) MA, MB to Carol.
2. Carol checks c = H(X−c

A s,MA) and c′ = H(gc
′
Xk′

B s
′,MB). If yes, she ran-

domly generates two values t1, t2 ∈R ZZp and sends T0 = gt1ht2 to Alice.
3. Alice randomly generates a value t ∈R ZZp, computes T1 = gt, T2 = Xt

B and
sends T1, T2 to Carol.

4. Carol sends t1, t2 to Alice
5. Alice checks if T0 = gt1ht2 . If yes, she computes z = t− t1k and sends z to

Carol.
6. Carol checks if T1 = st1gz and T2 = s′t1Xz

B and accepts the the proof if both
equations hold.

5 Conclusion

We pointed out the advantage gained by the initial signer in a concurrent sig-
nature scheme, and classified into three levels. In fact, any concurrent signature
satisfying Chen, Kudla and Paterson’s syntax can be abused in different ways.
This is a very important observation in particular where concurrent signatures
are used in different scenarios. Cautions must be exercised when concurrent sig-
natures are to be adopted in real applications to ensure either the matching
signer can accept the inherent unfairness of concurrent signatures or it is hard
for the initial signer to claim the advantage. In particular, we demonstrated that
concurrent signatures are not suitable for tendering systems (in contrast to the
seminal paper of Chen et al. [6]).

Acknowledgements. We would like to thank anonymous reviewers of ACISP
2013 who have helped us to improve the clarity and quality of this paper.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

2. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
Proc. 4th ACM Conference on Computer and Communications Security, pp. 8–17
(1997)

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer,
Heidelberg (1998)

Fairness in Concurrent Signatures Revisited 329

4. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Journal of Selected Areas Communications 18(4), 593–610 (2000)

5. Ben-Or, M., Goldreich, O., Goldwasser, S., H̊astad, J., Kilian, J., Micali, S.,
Rogaway, P.: Everything provable is provable in zero-knowledge. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)

6. Chen, L., Kudla, C., Paterson, K.G.: Concurrent signatures. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer,
Heidelberg (2004)

7. Dodis, Y., Lee, P.J., Yum, D.H.: Optimistic fair exchange in a multi-user setting. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 118–133. Springer,
Heidelberg (2007), Also at Cryptology ePrint Archive, Report 2007/182

8. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM 38, 690–728
(1991)

9. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

10. Huang, Q., Wong, D.S., Susilo, W.: Efficient designated confirmer signature and
DCS-based ambiguous optimistic fair exchange. IEEE Transactions on Information
Forensics and Security 6(4), 1233–1247 (2011)

11. Huang, Q., Wong, D.S., Susilo, W.: The construction of ambiguous optimistic fair
exchange from designated confirmer signature without random oracles. In: Fischlin,
M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 120–137.
Springer, Heidelberg (2012)

12. Huang, Q., Yang, G., Wong, D.S., Susilo, W.: Ambiguous optimistic fair exchange.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 74–89. Springer,
Heidelberg (2008)

13. Nguyen, K.: Asymmetric concurrent signatures. In: Qing, S., Mao, W., López, J.,
Wang, G. (eds.) ICICS 2005. LNCS, vol. 3783, pp. 181–193. Springer, Heidelberg
(2005)

14. Susilo, W., Mu, Y., Zhang, F.: Perfect concurrent signature schemes. In: López, J.,
Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 14–26. Springer,
Heidelberg (2004)

15. Tan, X., Huang, Q., Wong, D.S.: Concurrent signature without random oracles.
Cryptology ePrint Archive, Report 2012/576 (2012), http://eprint.iacr.org/

16. Tonien, D., Susilo, W., Safavi-Naini, R.: Multi-party concurrent signatures. In:
Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006.
LNCS, vol. 4176, pp. 131–145. Springer, Heidelberg (2006)

17. Wang, G., Bao, F., Zhou, J.: The fairness of perfect concurrent signatures. In: Ning,
P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 435–451. Springer,
Heidelberg (2006)

18. Yuen, T.H., Wong, D.S., Susilo, W., Huang, Q.: Concurrent signatures with fully
negotiable binding control. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS,
vol. 6980, pp. 170–187. Springer, Heidelberg (2011)

http://eprint.iacr.org/

Formalizing Group Blind Signatures

and Practical Constructions
without Random Oracles

Essam Ghadafi

University of Bristol, United Kingdom

Abstract. Group blind signatures combine anonymity properties of
both group signatures and blind signatures and offer privacy for both the
message to be signed and the signer. The primitive has been introduced
with only informal definitions for its required security properties. In this
paper, we offer two main contributions: first, we provide foundations for
the primitive and present formal security definitions. In the process, we
identify and address some subtle issues which were not considered by pre-
vious constructions and (informal) security definitions. Our second main
contribution is a generic construction that yields practical schemes with
a round-optimal signing protocol and constant-size signatures. Our con-
structions permit dynamic and concurrent enrollment of new members
and satisfy strong security requirements. To the best of our knowledge,
our schemes are the first provably secure constructions in the standard
model. In addition, we introduce some new building blocks which may
be of independent interest.

Keywords: Blind signatures, group signatures, group blind signatures.

1 Introduction

Background. Group signatures, introduced by Chaum and van Heyst [9], allow
a member of a group to sign a message anonymously on behalf of the group
with the option for a tracing authority to revoke anonymity. A Blind Signature
(BS), introduced by Chaum [8], allows a user to obtain a signature on a hidden
message. The security of blind signatures [17,23] requires that the user is unable
to fake new signatures for new messages (unforgeability) and that the signer
does not learn the message he is signing nor be able to link a signature to its
signing session (blindness).

A Group Blind Signature (GBS), introduced by Lysyanskaya and Zulfikar [19],
combines the properties of both a group signature scheme and a blind signature
scheme and therefore it maintains the anonymity of the signer as well as the
privacy of the message. Group blind signatures provide bi-directional privacy
and are thus useful for many applications such as distributed e-cash systems,
e.g. [19], where it is required that a digital coin reveals neither the identity
of its holder nor that of the issuing bank/branch. Other non-exhaustive list of
applications where the primitive is deployed include multi-authority e-voting and
e-auction systems.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 330–346, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formalizing GBS and Practical Constructions without Random Oracles 331

Related Work. The primitive was first introduced by Lysyanskaya and Zulfikar
[19] where it was used to design a distributed e-cash system in which coins could
be issued by different banks. Group blind signatures are much harder to construct
than their traditional group signatures counterparts, especially in the standard
model, and that is the reason only a few constructions were proposed [19,21] and
all of them require random oracles [3]. The subtlety faced when designing such
schemes lies in the dual privacy requirement. On the one hand, the signer needs
to hide his identity and parts of the signature that could identify him (i.e. the
anonymity requirement). On the other hand, the user needs to hide the message
and parts of the signature which could lead to a linkage between a signature and
its sign request (i.e. the blindness requirement).

The schemes in [19] are based on variants of the Camenisch-Stadler group
signature [7]. Other schemes, e.g. [21], use divertible zero-knowledge proofs [22]
to realize those conflicting anonymity requirements. A divertible proof allows
a mediator to use a proof it got from a party to prove a statement to a third
party. Constructions relying on such proofs require many rounds of interaction
in the signing protocol and/or the Fiat-Shamir transformation [10] to eliminate
the interaction and hence lying in the random oracle model.

Our Contribution. Our first contribution is a formal security model for the
primitive. Providing such a model would allow for proving the security of con-
structions formally and more rigorously. In the process, we identify and address
some subtle issues which were not considered by previous constructions and
informal security definitions.

Our second contribution is a generic construction which yields practical
schemes in the standard model. We exploit new properties of Groth-Sahai proofs
[16] and show how to transform a witness-indistinguishable proof into a new
witness-indistinguishable/zero-knowledge proof without knowledge of the wit-
ness of the original proof. Such observations are useful and may be of indepen-
dent interest. These observations combined with other properties of the proofs
is what allows us to efficiently realize the subtle dual privacy requirement re-
quired for the blind signing protocol. We apply the new techniques to some of
the recent Groth-Sahai based instantiations of Fischlin’s generic construction
[11] for obtaining round-optimal blind signatures. By transforming those blind
signing protocols, exploiting the different properties of the proofs, combined with
suitable and compatible building blocks we construct our schemes.

We provide two example instantiations of the construction. The first instan-
tiation relies solely on falsifiable intractability assumptions [20]. To improve the
efficiency, our second instantiation uses a new structure-preserving signature
scheme [1] based on a variant of the standard LRSW assumption [18] which we
show holds in the generic group model [24]. All our constructions are round-
optimal, yield constant-size signatures, and allow for members of the group to
join dynamically and concurrently. Moreover, their security is proven in the stan-
dard model. We start by showing how to construct CPA-anonymous schemes and
then outline how they can be extended to provide full anonymity. We also provide
a proof of security for our constructions.

332 E. Ghadafi

Paper Organization. The rest of the paper is organized as follows: In Section
2, we give some preliminary definitions. In Section 3 we define dynamic group
blind signatures and provide their security model. We list the building blocks we
use in Section 4. In Section 5, we present our constructions and provide a proof
of their security. In Section 6, we outline how we can achieve full anonymity.

2 Preliminaries

Notation. A function ν(.) : N → R+ is negligible in c if for every polynomial
p(.) and all sufficiently large values of c, it holds that ν(c) < 1

p(c) . Given a prob-

ability distribution S, we denote by y ← S the operation of selecting an element
according to S. If A is a probabilistic machine, we denote by A(x1, . . . , xn) the
output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in
probabilistic polynomial time in the relevant security parameter. By [1, n], we
mean the set {1, 2, . . . , n}. We denote by 〈A,B〉 an interactive protocol involving
algorithms A and B. Occasionally we will use the notation 〈A,B〉i for i ∈ N de-
noting the number of times such an interactive protocol is allowed to take place.
If i = ∗, such an interaction can be invoked unlimited number of times.

Bilinear Groups. A bilinear group is a tuple P := (p,G1,G2,GT , ê, G1, G2)
where G1,G2 and GT are groups of a prime order p and G1 and G2 generate G1

and G2 respectively. The function ê is a non-degenerate bilinear map G1×G2 −→
GT . We will use multiplicative notation for all the groups although usually G1

and G2 are chosen to be additive groups. We let G× := G \ {1G}.
We use asymmetric bilinear groups (which are more efficient), for which there

are no known efficiently computable homomorphisms fromG1 toG2 or vice versa.
We assume an algorithm BGrpSetup which takes as input a security parameter
λ and produces a description of bilinear groups P .

Complexity Assumptions. In this paper we use the following assumptions:

SXDH. The DDH assumption holds in both groups G1 and G2.

AWFCDH [1]. Given (G1, G
a
1 , G2) ∈ G×

1

2×G×
2 for a ← Zp, it is hard to output

a tuple (Gb
1, G

ab
1 , G

b
2, G

ab
2) ∈ G×

1

2 ×G×
2

2
for an arbitrary b ∈ Zp.

q-ADHSDH [1]. Given (G1, F,K,G
x
1 , G2, G

x
2) ∈ G×

1

4 × G×
2

2
and q − 1 tuples

(Ai := (K · Gri
1)

1
x+ci , C1,i := F ci , C2,i := Gci

2 , R1,i := Gri
1 , R2,i := Gri

2)q−1
i=1 ,

where x, ci, ri ← Zp, it is hard to output a new tuple (A∗, C∗
1 , C

∗
2 , R

∗
1, R

∗
2).

DH-LRSW. This a new variant of the LRSW assumption [18] that we intro-
duce in this paper. It stands for Dual-Hidden LRSW and states that given
(Gx

2 , G
y
2) for random (x, y) ← Z2

p and access to an oracle OX,Y (·) that, on
input a pair (M1,M2) ∈ G1 ×G2 satisfying ê(M1, G2) = ê(G1,M2), picks a
random a ← Zp and outputs a DH-LRSW tuple (Ga

1 , G
ay
1 ,May

1 , Gax
1 ·Maxy

1),
it is hard to compute a DH-LRSW tuple for (M∗

1 ,M
∗
2) that was never queried

to the oracle. We show in the full version of the paper [13] that the assump-
tion holds in the generic group model [24].

Formalizing GBS and Practical Constructions without Random Oracles 333

3 Dynamic Group Blind Signatures

Our model builds on the security models for dynamic group signatures [4] and
blind signatures [17,23]. The parties involved in a group blind signature are: an
authority called the Issuer who controls who can join the group, an authority
called the Opener who can open signatures and reveal who signed them. A num-
ber of signers Signeri each of which has a unique identity and can sign on behalf
of the group once they have joined the group. External users Useri which can
ask for messages to be blindly signed by members of the group.

In our definition, we do not require that users (i.e. entities who request sig-
natures) are traceable (unless the identifying information is embedded in the
messages themselves) and thus we do not assign keys to them. However, the
model can be extended to provide that functionality.

A group blind signature scheme GBS is a tuple of polynomial-time algorithms

GBS := (GKg, SKg, 〈Join, Issue〉, 〈Obtain, Sign〉,GVf,Open, Judge),

GKg takes as input a security parameter λ and generates the group public key
gpk, the Issuer’s key ik and the Opener’s key ok.

SKg generates a pair of personal secret/public keys (ssk[i], spk[i]) for a potential
group member Signeri. We assume that the public key table spk is publicly
accessible (possibly via some PKI).

〈Join(gpk, i, ssk[i]), Issue(ik, i, spk[i])〉 is an interactive protocol between a signer
Signeri and the Issuer. After a successful completion of this protocol, Signeri
becomes a member of the group. If successful, the final state of the Issue
algorithm is stored in the registration table at index i (i.e. reg[i]), whereas
that of the Join algorithm is stored in gsk[i]. We assume that the communi-
cation in this protocol takes place over a secure (i.e. private and authentic)
channel.

〈Obtain(gpk,m), Sign(gsk[i])〉 is an interactive protocol between a user User and
an anonymous member of the group. If the protocol completes successfully,
User obtains a blind signature Σ on the message m. If any of the parties
abort, User outputs ⊥.

GVf(gpk,m,Σ) is a deterministic algorithm to verify if Σ is a valid signature on
the messagem w.r.t. the group public key gpk. It outputs 1 or 0 accordingly.

Open(gpk, ok, reg,m,Σ) is a deterministic algorithm in which the Opener uses
his key ok to identify the identity i of the signer form the group blind signa-
ture Σ and produces a proof τ attesting to this claim.

Judge(gpk, i, spk[i],m,Σ, τ) is a deterministic algorithm which verifies whether
or not the owner of spk[i] has indeed produced the signature Σ returning 0
or 1 accordingly.

Security of Dynamic Group Blind Signatures. The security properties we
require from a dynamic GBS scheme are: correctness, anonymity, traceability,
non-frameability, and blindness. Those security requirements are formulated via
a set of experiments in which the adversary has access to a set of oracles.

334 E. Ghadafi

In the experiments, the following global lists are maintained: a set HSL of
honest signers; a set CSL of corrupt signers whose keys have been chosen by the
adversary and whose states have been learned by the adversary; a set BSL of
bad signers whose secret keys have been revealed to the adversary; a set CLA
containing the identities of the challenge signers used in the anonymity game;
a list CLB containing pairs of challenge message-signature used in the blindness
game; a table reg where the element i in this table contains the registration
information of the group member Signeri; a table spk where spk[i] contains the
personal public key of the group member Signeri. The lists HSL, CSL, BSL, CLA
and CLB are empty at initialization, whereas the entries of the tables reg and
spk are initialized to ε. The oracles we use are:

– AddS(i) is used to add an honest signer Signeri to the group.

– CrptS(i, pk) is used to create a new corrupt signer Signeri, where Signeri’s
public key spk[i] is chosen by the adversary. This is usually called in prepa-
ration for calling the SndToI oracle.

– SndToI(i,Min) is used to engage in the Join-Issue protocol with the honest,
Issue-executing Issuer.

– SndToS(i,Min) models the scenario that the adversary has corrupted the
Issuer. The adversary uses this oracle to engage in the Join-Issue protocol
with an honest, Join-executing Signer.

– ReadReg(i) is used to obtain the content of entry reg[i].

– ModifyReg(i, val) is used to modify the content of entry reg[i] by setting
reg[i] := val.

– SSK(i) returns the personal secret key ssk[i] and the group signing key gsk[i]
of group member Signeri.

– OSign(i) is an interactive oracle (i.e. the adversary must engage in an interac-
tion with this oracle). If the interaction completes successfully, the adversary
obtains a blind signature by member Signeri on a message of its choice.

– CHb(i0, i1) is a left-right oracle for defining anonymity and is only called
once. The adversary sends a couple of identities (i0, i1) and interacts with
this oracle in order to produce a blind signature on a message of its choice
by the group member Signerib for b ← {0, 1}.

– Open(m,Σ) allows the adversary to ask for signatures to be opened.

We give the details of those oracles in Figure 1. We define the security require-
ments as follows where we use a set of experiments as in Figure 2.

Correctness. A dynamic GBS scheme is correct if: all correctly produced sig-
natures are accepted by the GVf algorithm, the Opener is always able to identify
the honest group member who produced a signature and the Judge algorithm
always accepts the decision made by the Opener.

Formally, a dynamic GBS scheme is correct if for all λ ∈ N , all PPT adver-
saries A have a negligible advantage AdvCorr

GBS,A(λ) := Pr[ExpCorr
GBS,A(λ) = 1].

Anonymity. A dynamic GBS scheme is anonymous if given two members of its
choice, the adversary is unable to tell which member produced a signature.

Formalizing GBS and Practical Constructions without Random Oracles 335

AddS(i):

– If i ∈ HSL ∪ CSL ∪ BSL Then Return ⊥.

– HSL := HSL ∪ {i}.
– (ssk[i], spk[i]) ← SKg(1λ).

– certi :=⊥, deciIssue := cont.

– StiJoin := (gpk, i, ssk[i]), StiIssue := (ik, i, spk[i]).

– (StiJoin,MIssue, dec
i
Join) ← Join(StiJoin,⊥).

– While (deciIssue = cont and deciJoin = cont) Do

• (StiIssue,MJoin, dec
i
Issue) ← Issue(StiIssue,MIssue).

• (StiJoin,MIssue, dec
i
Join) ← Join(StiJoin,MJoin).

– If deciIssue = accept Then reg[i] := StiIssue.

– If deciJoin = accept Then gsk[i] := StiJoin.

– Return spk[i].

SSK(i):

– If i /∈ HSL \ {CSL ∪ BSL} Then Return ⊥.

– BSL := BSL ∪ {i}.
– Return (gsk[i], ssk[i]).

OSign(i):

– If i ∈ CSL ∪ BSL Then Return ⊥.

– If gsk[i] = ε Then Return ⊥.

– Call Sign(gsk[i]).

CHb(i0, i1):

– If i0 or i1 /∈ HSL ∪ BSL Then Return ⊥.

– If gsk[i0] = ε or gsk[i1] = ε Then Return ⊥.

– CLA := CLA ∪ {i0, i1}.
– Call Sign(gsk[ib]).

Open(m,Σ):

– If GVf(gpk,m,Σ) = 0 Then Return (⊥,⊥).

– (id, τ) ← Open(gpk, ok, reg,m,Σ).

– If Anonymity: Return (⊥,⊥) if id ∈ CLA.

– If Blindness: Return (⊥,⊥) if (m,Σ) ∈ CLB.1

– Return (id, τ).

CrptS(i, pk):

– If i ∈ HSL ∪ CSL ∪ BSL Then Return ⊥.

– CSL := CSL ∪ {i}.
– spk[i] := pk.

– StiIssue := (ik, i, spk[i]).

– deciIssue := cont.

– Return 1.

SndToI(i,Min):

– If i �∈ CSL ∪ BSL Then Return ⊥.

– If deciIssue �= cont Then Return ⊥.

– If StiIssue is undefined

• StiIssue := (ik, i, spk[i]).

– (StiIssue,Mout, dec
i
Issue) ← Issue(StiIssue,Min).

– If deciIssue = accept Then reg[i] := StiIssue.

– Return (Mout, dec
i
Issue).

SndToS(i,Min):

– If i ∈ CSL ∪ BSL Then Return ⊥.

– If i /∈ HSL Then

• HSL := HSL ∪ {i}.
• (ssk[i], spk[i]) ← SKg(1λ).

• gsk[i] := ε, Min := ε.

– If deciJoin �= cont Then Return ⊥.

– If StiJoin is undefined

• StiJoin := (gpk, i, ssk[i]).

– (StiJoin,Mout, dec
i
Join) ← Join(StiJoin,Min)

– If deciJoin = accept Then gsk[i] := StiJoin.

– Return (Mout, dec
i
Join).

ReadReg(i):

– Return reg[i].

ModifyReg(i, val):

– reg[i] := val.

Fig. 1. Oracles used in the security experiments for dynamic group blind signatures

We distinguish between CPA-Anonymity and Full Anonymity (FA). In the
former the adversary is not granted access to an Open oracle, whereas in the
latter it has access to such an oracle at any stage of the game with the exception
that it may not be queried on the challenge signature. One can also consider a
weaker non-adaptive variant of full anonymity which we refer to as Weak Full
Anonymity (WFA) where the adversary can only ask Open queries before seeing
the challenge signature.

The issuewith defining full anonymity for groupblind signatures is that the sign-
ing protocol is a blind one and unlike in group signatures, the challenge message-
signature pair is only revealed by the adversary (playing the role of the user) at

1 This assuming strong unforgeability. If weak unforgeability is required then this is
replaced by the following check: Return (⊥,⊥) if (m, ·) ∈ CLB.

336 E. Ghadafi

Experiment ExpCorr
GBS,A(λ)

– (gpk, ik, ok) ← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (i,m) ← A(gpk : AddS(·),ReadReg(·)).
– If i /∈ HSL or gsk[i] = ε Then Return 0.

– (Σ,⊥) ← 〈Obtain(gpk,m), Sign(gsk[i])〉.
– If GVf(gpk,m,Σ) = 0 Then Return 1.

– (j, τ) ← Open(gpk, ok, reg,m,Σ); If i �= j Then Return 1.

– If Judge(gpk, i, spk[i],m,Σ, τ) �= 1 Then Return 1 Else Return 0.

Experiment ExpAnon-b
GBS,A (λ)

– (gpk, ik, ok) ← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅; CLA := ∅.
– b∗ ← A〈·,CHb(·,·)〉1 (gpk, ik : CrptS(·, ·), SndToS(·, ·),ModifyReg(·, ·),Open(·, ·), SSK(·)).
– Return b∗.

Experiment ExpTrace
GBS,A (λ)

– (gpk, ik, ok) ← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (m,Σ) ← A(gpk, ok : AddS(·),CrptS(·, ·), SndToI(·, ·),ReadReg(·), SSK(·)).
– If GVf(gpk,m,Σ) = 0 Then Return 0.

– (i, τ) ← Open(gpk, ok, reg,m,Σ).

– If i = 0 or Judge(gpk, i, spk[i],m,Σ, τ) = 0 Then Return 1 Else Return 0.

Experiment ExpNon-Frame
GBS,A (λ)

– (gpk, ik, ok) ← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅.
– (id, (mi, Σi)

l+1
i=1) ← A〈·,OSign(·)〉∗ (gpk, ok, ik : CrptS(·, ·), SndToS(·, ·),ModifyReg(·, ·), SSK(·)).

– If id /∈ HSL \ BSL or gsk[id] = ε Then Return 0.

– If all of the following conditions are satisfied Then Return 1 Else Return 0:

• GVf(gpk,mj , Σj) = 1 for all j ∈ [1, l + 1].

• (idj , τj) ← Open(gpk, ok, reg,mj , Σj); id = idj for all j ∈ [1, l + 1].

• Judge(gpk, id, spk[id],mj , Σj , τj) = 1 for all j ∈ [1, l + 1].

• A interacted with OSign(id) no more than l times.

• ∀i, j where 1 ≤ i, j ≤ l + 1, we have that if i �= j then mi �= mj .

Experiment ExpBlind-b
GBS,A (λ)

– (gpk, ik, ok) ← GKg(1λ); HSL := ∅; CSL := ∅; BSL := ∅; CLB := ∅.
– (m0,m1, statefind) ← Afind(gpk, ik : CrptS(·, ·), SndToS(·, ·),ReadReg(·), SSK(·),Open(·, ·)).
– statesign ← A〈Obtain(gpk,mb),·〉1,〈Obtain(gpk,m1−b),·〉1

sign (statefind).

– Let Σb and Σ1−b be the outputs of the above interactions on mb and m1−b, respectively.

– If Σ0 =⊥ or Σ1 =⊥ or ∃i ∈ {b, 1 − b} s.t. GVf(gpk,mi, Σi) = 0 Then (Σ0, Σ1) := (⊥,⊥)

Else CLB := CLB ∪ {(mb, Σb), (m1−b, Σ1−b)}.
– b∗ ← Aguess(statesign, Σ0, Σ1 : CrptS(·, ·), SndToS(·, ·),ReadReg(·), SSK(·),Open(·, ·)).
– Return b∗.

Fig. 2. Security experiments for dynamic group blind signatures

the end of the signing interaction with the CHb oracle. Therefore, it is problem-
atic to identify the challenge signature the adversary obtained from interacting
with the CHb oracle. An adversary can trivially break anonymity by revealing a
bogus message-signature pair different from the one it got from interacting with
the CHb oracle and then at a later stage queries the Open oracle on the original
challenge signature.

In the definition we propose (shown in Figure 2), if the adversary queries
the Open oracle on a signature that opens to a signer in the challenge list, the
oracle returns a special symbol instead of returning the identity of the signer.

Formalizing GBS and Practical Constructions without Random Oracles 337

This restriction, which is similar to that used for IND-RCCA security [6] for
encryption schemes, ensures that the Open oracle does not open a challenge
signature. Our definition provides the adversary with strong capabilities, for
instance, it can fully corrupt the Issuer and can ask for signers’ personal secret
keys/group signing keys to be revealed including the two signers it chooses for
the challenge (and thus capturing full key exposure attacks). The definition is
appropriate even for the case where the final signature is weakly unforgeable,
i.e. given a signature on a message, anyone can generate a new signature on the
same message without knowledge of the signing key. WLOG in order to simplify
the resulting security proofs, we only allow the adversary a single invocation
of the challenge oracle. We show in the full version [13] that this is sufficient
by showing a reduction from an adversary that invokes the challenge oracle
polynomially many times to one which is allowed a single invocation. We also
provide discussions about alternative definitions in the full version [13].

Our definition of anonymity also captures unlinkability of signatures. If an
adversary can link signatures by the same signer, it can break our notion of
anonmity. Note that the adversary in our definition is allowed to learn the secret
keys of any group member including the challenge signers it uses in calling the
CHb oracle. Thus, it can produce signatures on behalf of any group member.
Therefore, unlike [19], we do not define unlinkability as a separate requirement.

Formally, a dynamic GBS scheme is anonymous if for all λ ∈ N , all PPT
adversaries A have a negligible advantage AdvAnon

GBS,A(λ) where AdvAnon
GBS,A(λ) :=∣∣∣Pr[ExpAnon−0

GBS,A (λ) = 1]− Pr[ExpAnon−1
GBS,A (λ) = 1]

∣∣∣.
Traceability. A dynamic GBS scheme is traceable if the Opener is always able
to identify the signer. Also, the honest Opener is able to produce a proof for his
claim that will be accepted by the Judge algorithm. We require that the Issuer
is honest because a dishonest Issuer will always be able to create dummy signers
whose signatures cannot be traced. In addition, we require that the Opener is
partially but not fully corrupt because a fully corrupt Opener can simply refuse
to open signatures.

Formally, a dynamic GBS scheme is traceable if for all λ ∈ N , all PPT adver-
saries A have a negligible advantage AdvTrace

GBS,A(λ) := Pr[ExpTrace
GBS,A(λ) = 1].

Non-Frameability. A dynamic GBS scheme is non-frameable if it is impossible
to prove that a particular group member produced a signature unless the member
has indeed produced the signature.

Note that since the signing is done blindly, the signer does not know what
message he has signed. To capture this, we use a similar definition to that used
for the unforgeability of blind signatures [17,23]. The adversary wins if it outputs
l+1 signatures on l+1 distinct messages that all open to the same honest group
member but the adversary only asked for l signatures by that group member.
This requirement should hold even if both the Opener and the Issuer are fully
corrupt and that is the reason we give A access to both ik and ok keys. If strong
unforgeability is required, we drop the condition that the messages have to be
distinct from the definition.

338 E. Ghadafi

Formally, a dynamic GBS scheme is non-frameable if for all λ ∈ N , all PPT
adversaries A have a negligible advantage AdvNon−Frame

GBS,A (λ) where the advan-

tage is defined as AdvNon−Frame
GBS,A (λ) := Pr[ExpNon−Frame

GBS,A (λ) = 1].

Blindness. A dynamic GBS scheme is blind if the adversary is unable to tell
which message it is signing. Also, the adversary cannot link a signature to its
signing session. In traditional blind signatures [17], blindness is defined via a
game in which the adversary freely chooses two messages, and then after in-
teracting with an honest Obtain oracle that requests signatures on those two
messages in an arbitrary order (unknown to the adversary), the adversary wins
if it correctly guesses the order in which the two messages were signed.

To capture the case that group members (including the Issuer) might collude to
break blindness, the adversary is allowed to use different (possibly corrupt) keys
in producing the challenge signatures. This definition would then also imply the
anonymity requirement, i.e. if a malicious signer from the group can recognize
a signature he has produced then he can trivially break blindness. Also, un-
like [25] which necessitates that the group must be static, we only require that
both challenge signatures verify w.r.t. the same group public key. Otherwise, the
adversary can trivially break blindness.

In the definition (in Figure 2), we equip the adversary with strong capa-
bilities such as corrupting the Issuer as well as corrupting and/or learning the
personal secret key/group signing key of any group member. However, the
adversary is denied access to the Opener’s key. If either of the challenge in-
teractions does not finish successfully (i.e. if either Σ0 =⊥ or Σ1 =⊥), the ad-
versary is not informed about the other signature. It is sufficient to run the
challenge phase only once because the adversary has access to all the keys
and the messages and hence it can replicate the signing multiple times by
itself.

As was the case with the anonymity definition, one can consider different
variants depending on whether or not the adversary is given access to the
Open oracle with Full Blindness (FB) being the strongest among those vari-
ants. Refer to the full version [13] for more discussion about the different
variants.

In FB the adversary can query the Open oracle at any stage on any signa-
ture except the two challenge signatures. If security is w.r.t. weak unforgeability
then the Open oracle returns a special symbol if the signature is on either chal-
lenge message. On the other hand, if security is w.r.t. strong unforgeability,
it returns the special symbol if queried on either challenge message-signature
pair.

Formally, a dynamic GBS scheme is blind if for all λ ∈ N , all PPT adversaries
A have a negligible advantage AdvBlind

GBS,A(λ) where the advantage is defined as

AdvBlind
GBS,A(λ) :=

∣∣∣Pr[ExpBlind−0
GBS,A (λ) = 1]− Pr[ExpBlind−1

GBS,A (λ) = 1]
∣∣∣.

Formalizing GBS and Practical Constructions without Random Oracles 339

4 Building Blocks

In this section, we present the building blocks we use in our constructions.

4.1 Groth-Sahai (GS) Proofs

Groth-Sahai (GS) proofs [16] are non-interactive proofs in the Common Refer-
ence String (CRS) model. We use the SXDH-based instantiation of the proofs
(which, as noted by [14], are the most efficient instantiation) and that prove
knowledge of a satisfying assignment for a Pairing-Product Equation (PPE):

E :=

n∏
j=1

ê(Aj , Yj)

m∏
i=1

ê(Xi, Bi)

m∏
i=1

n∏
j=1

ê(Xi, Yj)
γi,j = tT , (1)

where X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 are the secret variables (hence
underlined) and Ai ∈ G1, Bi ∈ G2, γi,j ∈ Zp and tT ∈ GT are public constants.

The proof system is defined by the algorithms

(GSSetup,GSProve,GSVerify,GSExtract,GSSimSetup,GSSimProve).

GSSetup takes as input the description of bilinear groups P and outputs a binding
reference string crs and a trapdoor key xk which allows for witness extraction.
GSProve takes as input a CRS, a witness (which we underline to distinguish it
from public constants) and a set of equations, and outputs a proof Ψ for the
satisfiability of the equations. GSVerify takes as input a CRS, a proof Ψ and a
set of equations, and outputs 1 if the proof is valid or 0 otherwise. In the rest of
the paper we will omit the equations from the input to the GSVerify algorithm.
GSExtract takes as input a binding CRS, a valid proof Ψ and the extraction key
xk, and outputs the witness used in the proof. GSSimSetup takes as input the
description of bilinear groups P and outputs a hiding reference string, crssim, and
a trapdoor key tr which allows for proof simulation. GSSimProve takes as input
a hiding CRS, crssim, the simulation key tr and a set of equations, and outputs
a simulated proof Ψsim.

The distributions of strings crs and crssim are computationally indistinguish-
able and simulated proofs are indistinguishable from proofs output by GSProve.
The proof system has prefect completeness, perfect soundness, composable wit-
ness-indistinguishability or composable zero-knowledge. We refer to [16] for the
formal definitions.

As formalized by [2], GS proofs can be re-randomized by re-randomizing the
associated GS commitments and updating the proofs accordingly so that we
obtain fresh proofs that are unlinkable to the original ones. This requires knowl-
edge of neither the witness nor the associated randomness used in the original
GS commitments. We define an algorithm GSRandomize which takes as input a
CRS and a proof Ψ and outputs a proof Ψ ′ which is a randomized version of the
proof Ψ .

340 E. Ghadafi

4.2 Blind Signatures

Blind signatures [8] allow a user to obtain signatures on messages hidden from
the signer. Their security [17,23] consists of two requirements: blindness and
unforgeability. Blindness requires that an adversarial signer cannot learn the
message being signed and that he is not able to match a signature to its signing
session. On the other hand, unforgeability deals with an adversarial user whose
goal is to obtain l + 1 distinct message-signature pairs given only l interactions
with the honest signer.

In [1], the authors presented a blind signature scheme whose unforgeability re-
duces to the AWFCDH and q-ADHSDH assumptions (cf. Section 2). The scheme
uses GS proofs and is akin to the idea used in Fischlin’s generic construction [11].
The signer signs a commitment to the message. However, unlike the generic con-
struction, the user transforms the signature on the commitment to the message
into a signature on the message itself instead of proving that he knows a signa-
ture on a commitment to the message. In addition, the user proves knowledge
of the message and the randomness used in the commitment when requesting a
signature. The message space of the scheme is M := {(Gm

1 , G
m
2)|m ∈ Zp}.

Exploiting some properties of this blind signature scheme, we will show later
how this scheme can be used to hide the identity of the signer while signing
hidden messages. We refer to [1,13] for details of the scheme.

4.3 A New Structure-Preserving Signature Scheme

We present here a new structure-preserving signature scheme [1], i.e. whose mes-
sages, signatures and verification keys are group elements, and whose verification
is a conjunction of PPE equations. The scheme which we call NCL is a variant of
the CL signature scheme [5]. It is unforgeable under the DH-LRSW assumption
(cf. Section 2).

The scheme is given by the following triple of algorithms. Given the description
of bilinear groups P output by BGrpSetup(1λ).

– NCLKeyGen(P): Select x, y ← Zp, set skNCL := (x, y) ∈ Z2
p and pkNCL :=

(X,Y) := (Gx
2 , G

y
2) ∈ G2

2.
– NCLSign(skNCL, (M1,M2)): To sign a message (M1,M2) ∈ G1 × G2, return

⊥ if ê(M1, G2) 	= ê(G1,M2). Otherwise, select a ← Z∗
p, and set A := Ga

1 ,
B := Ay, C := May

1 , D := Ax ·Maxy
1 . Output σ := (A,B,C,D) ∈ G4

1.
– NCLVerify(pkNCL, (M1,M2), σ): Output 1 iff A 	= 1G1 ∧ ê(A, Y) = ê(B,G2)

∧ ê(B,M2) = ê(C,G2) ∧ ê(D,G2) = ê(A·C,X) ∧ ê(G1,M2) = ê(M1, G2).

The proof for the following theorem is straightforward.

Theorem 1. Assuming the DH-LRSW assumption holds, the NCL signature
scheme is existentially unforgeable against adaptive chosen-message attacks.

5 Our Construction

In this section we present our constructions.

Formalizing GBS and Practical Constructions without Random Oracles 341

5.1 Techniques Used

We identify and utilize a number of observations and desired properties the
building blocks we use have. We summarize those as follows:

1. Groth-Sahai proofs are independent of any public terms (i.e. public monomi-
als) in the equations being proven.2 Thus, given a witness-indistinguishable
GS proof, Ψ , (i.e. one for an equation with a non-trivial public right-hand side
τ), we can later (without knowing the original witnesses in the proof) trans-
form Ψ into a related witness-indistinguishable/zero-knowledge proof Ψ ′ by
splitting the public right-hand side τ into a set of witnesses and adding them
to the witness of the original proof and then updating the proof accordingly.
One can construct GS NIZK proofs for pairing-product equations (Equation
1) if either tT = 1 or if one can factor tT by finding Pi, Qi such that tT =∏n

i=1 ê(Pi, Qi). It is the latter case that applies to our construction as the
user knows how to open the commitment to the message and therefore can
factor tT . This will become clearer when we present our construction.

2. We prove in the full version [13] the following lemma (which is analogous to
Lemma 4 [12] for PPE equations) for multi-scalar multiplication equations.

Lemma 1. Let ((Cz , CA), Ψ) be a GS proof for the equation E := Az = Z,
where Cz, CA are the GS commitments to z ∈ Zp and A ∈ G respectively and

Z ∈ G then ((Czz
′
, CA), Ψz′

) is a GS proof for the equation E ′ := Az′·z = Zz′
.

The same argument holds for quadratic equations over Zp where exponenti-
ation of the public right-hand side is replaced by multiplication.

5.2 Overview of the Construction

The Broad Idea. In Fischlin’s generic construction for blind signatures [11],
the user sends a commitment to the message to the signer, who in turn returns
a signature on the commitment. The final blind signature is a NIZK proof of
knowledge of the signature and the commitment s.t. the signature is valid on
the commitment and the commitment is to the message in question.

Now assume in the above framework we want to hide the signer’s identity
from the user. So instead of sending the signature on the user’s commitment (to
the message) in the clear, the signer sends a proof of knowledge of such a signa-
ture and his verification key to the user. If the proofs used are re-randomizable
and transformable in the sense of Observation 1 from Section 5.1, where in the
equations used in the signer’s proofs, the terms involving the commitment are
public, then the user can re-randomize the proofs and transform them to hide
the commitment to the message and compute the final blind signature. Unforge-
ability follows from that of Fischlin’s framework, blindness also follows from that
of the framework plus the re-randomizability of the proofs, and the anonymity
of the signer is ensured by the hiding properties of the proofs. Thus, we obtain
a signer-anonymous blind signature scheme.

2 This observation was also independently noted by [12].

342 E. Ghadafi

Join(gpk, i, ssk[i]) Issue(ik, i, spk[i])

s ← Zp, ski := s, pki := ((S1, S2) := (Gs
1, G

s
2))

sigi ← CERTSign(ssk[i], pki) sigi, pki−−−−−→ Parse pki as (S1, S2)

If CERTVerify(spk[i], pki, sigi) = 0

OR ê(S1, G2) �= ê(G1, S2)

OR pki = pkj for any j Then Abort

Abort if CERTVerify(pkCERT, pki, certi) = 0 certi←−−− certi ← CERTSign(ik, pki)

gsk[i] := (ski, pki, certi) reg[i] := (pki, sigi)

Fig. 3. The Join/Issue protocol for our construction

What remains is to extend the signer-anonymous blind signature to the group
setting by requiring a compatible signature scheme to certify signer’s keys when
they join the group, and also providing a tracing mechanism for the Opener.

The Construction. We base our signing protocol on the blind signature scheme
from [1], which uses GS proofs and has the required properties needed for our
construction. The same methodology can similarly be applied to other GS based
instantiations of Fischlin’s construction satisfying the properties required for our
paradigm, e.g. the instantiation by Abe et al. in [1].

To issue membership certificates (i.e. credentials) for new group members,
we can use any structure-preserving signature scheme [1]. We will use the pre-
fix CERT for this scheme. The Issuer gets the secret signing key skCERT for the
CERT signature scheme. Each potential group member Signeri would have cre-
ated his pair of personal secret/public keys (ssk[i], spk[i]) prior to joining the
group. When requesting to join the group, Signeri generates a pair of secret
signing/public verification keys (ski, pki) for the blind signature scheme. To stop
a corrupt Issuer from framing group members, we ask that the group member
signs his verification key pki with his personal secret key ssk[i], the resulting
signature sigi will be used as a proof when verifying the Opener’s claim. We will
use the CERT scheme for this purpose as well. Thus, WLOG we assume that the
key pair (ssk[i], spk[i]) is a valid pair for the CERT scheme.

The Issuer first verifies the signature sigi and if it is valid, he issues a sig-
nature on pki using the CERT signature scheme and his secret issuing key ik.
After successfully joining the group, Signeri’s secret group signing key gsk[i] is
(ski, pki, certi), whereas his registration information is set to reg[i] := (pki, sigi).

The group public key gpk contains the public key of the CERT signature
scheme, the public values used in the blind signature scheme and two GS refer-
ence strings crs1 and crs2, which are used in constructing GS proofs used in the
first and second rounds of the signing protocol, respectively. We use separate
GS reference strings because we believe this provides extra functionality such
as preventing the opener from revoking the anonymity of the message in the
signing phase or to allow for having a different opener for revoking anonymity
of the message if needed. To open signatures, the Opener is given the extraction
key for the GS proof system.

The signing protocol 〈Obtain, Sign〉 is a two-move protocol between a user
with a message (M1,M2) ∈ G1 × G2 and an anonymous group member Signeri

Formalizing GBS and Practical Constructions without Random Oracles 343

GKg(1λ)

− P ← BGrpSetup(1λ); F,K, T ← G1

− (crsi, xki) ← GSSetup(P) for i=1,2

− (skCERT, pkCERT) ← CERTKeyGen(P)

− gpk := (P, crs1, crs2, F,K, T, pkCERT)

− ik := skCERT; ok := xk2

− Return (gpk, ik, ok)

SKg(P)

− (ssk[i], spk[i]) ← CERTKeyGen(P)

− Return (ssk[i], spk[i])

GVf(gpk, (M1,M2), Σ)

− Parse Σ as Ω

− Return GSVerify(crs2,Ω) = 1

Open(gpk, ok, reg, (M1,M2), Σ)

− Parse gpk as (P, crs1, crs2, F,K, T, pkCERT)

− Parse Σ as Ω and ok as xk2

− (σ, cert, pk) ← GSExtract(crs2, xk2,Ω)

− If ∃i s.t. reg[i].pk = pk Then

Return (i, (σ, cert, pk, reg[i].sig))

Else Return (0, (σ, cert, pk, ε))

Judge(gpk, i, spk[i], (M1,M2), Σ, τ)

− Parse gpk as (P, crs1, crs2, F,K, T, pkCERT)

− Parse τ as (i, σ, cert, pk, sig)

− If i > 0 and Verify(pk, (M1,M2), σ) = 1

and CERTVerify(spk[i], pk, sig) = 1

and CERTVerify(pkCERT, pk, cert) = 1

Then Return 1 Else Return 0

The signing protocol 〈Obtain(gpk, (M1,M2)), Sign(gsk[i])〉
Obtain → Sign: − Choose q ← Zp and set Q1 := Gq

1, Q2 := Gq
2 and Co := M1 · T q .

− Ψ ← GSProve
(
crs1, {M1,M2, Q1, Q2},

{
ê(M1, G2) = ê(G1,M2)

∧ ê(Q1, G2) = ê(G1, Q2) ∧ ê(M1, G2)ê(T, Q2) = ê(Co,G2)
})

.

− Send (Co,Ψ) to Sign.

Sign → Obtain: − If GSVerify(crs1,Ψ) �= 1 Then Abort().

− Choose r, c ← Zp and set H := (K · T r · Co)
1

s+c , R′
1 := Gr

1, R
′
2 := Gr

2,

C1 := F c and C2 := Gc
2.

− Set σ := (H,C1, C2, R
′
1, R

′
2) and parse pki as (S1, S2).

− Compute Ω′ ← GSProve (crs2, {cert, S1, S2, H,C1, C2},{
CERTVerify(pkCERT, (S1, S2), cert) = 1

∧ ê(S1, G2) = ê(G1, S2) ∧ ê(C1, G2) = ê(F,C2)

∧ ê(H,S2 · C2) = ê(K · Co,G2)ê(T,R′
2)

})
.

− Send
(
R′

1, R
′
2,Ω

′) to Obtain.

Obtain: If GSVerify(crs2,Ω
′) �= 1 or ê(R′

1, G2) �= ê(G1, R
′
2) Then Abort().

− Ω′ ← GSRandomize(crs2,Ω
′) and set Ri := R′

i · Qi for i = 1, 2

− Modify2 Ω′ to Ω ← GSProve (crs2, {cert, S1, S2, H,C1, C2, R1, R2},{
CERTVerify(pkCERT, (S1, S2), cert) = 1

∧ ê(S1, G2) = ê(G1, S2) ∧ ê(C1, G2) = ê(F,C2)

∧ ê(H,S2 · C2)ê(T
−1, R2) = ê(K ·M1, G2)

∧ ê(R1, G2) = ê(G1, R2)
})

.

− Output Σ := Ω.

3 The transformation is done without knowledge of the original witness of the proof.

Fig. 4. The Construction

with a secret group signing key gsk[i]. The user commits to the message using
Pedersen commitment Co := M1 · T q for some random q ← Zp and computes
Qi := Gq

i for i=1,2. He then sends the commitment Co along with GS proofs of
knowledge Ψ to prove that: the commitment Co is indeed to the message M1

and that the message and the randomness pairs are well-formed.
The signer first verifies the proofs and if they are valid, produces a signature

σ on the commitment Co as in the blind signature scheme in [1], where σ :=
(H,C1, C2, R

′
1, R

′
2). However, instead of sending the signature in the clear as in

in [1], the signer sends a GS proof of knowledge Ω′ of his public verification key
pki, his membership certificate certi and the signature σ such that the signature

344 E. Ghadafi

verifies w.r.t. his key, the certificate is valid on his key and the key is well-formed.
Note that R′

1 and R′
2 are independent of the signing key and hence we can send

them in the clear to the user. The signer’s response is (R′
1, R

′
2,Ω

′).
The user first verifies the GS proofs Ω′ and that the pair (R′

1, R
′
2) is well-

formed. If they are valid, the user re-randomizes those proofs using the algorithm
GSRandomize. The new proofs are unlinkable to the original ones. Note that the
last equation proven in Ω′ is ê(H,S2 · C2) = ê(K · Co,G2)ê(T,R

′
2), where Co

and R′
2 are public at this stage and hence not part of the witness. The user

now updates the components R′
1 and R′

2 to include the randomness used in the
commitment (by computing Ri := R′

i · Qi for i = 1, 2) and then (by applying
Observation (1) from Section 5.1) decomposes the commitment and transforms
the proof for the last equation in Ω′ into a proof based on the message M1

instead of the commitment Co by adding the value R2 to the witness. The
transformation is done without knowledge of H,C2 or S2. The proof is now for
the equation ê(H,S2 · C2)ê(T

−1, R2) = ê(K ·M1, G2), where H,S2, C2 and R2

are parts of the witness. In addition, the user adds to Ω a new GS proof to prove
that R1 and R2 hide the same exponent.

The final signature Σ is a set of GS proofs of knowledge Ω to prove that: the
group member has a valid credential from the Issuer, his public key is well-formed
and the blind signature verifies w.r.t. his key.

To open a signature, the Opener uses his secret extraction key to extract the
verification key pk, the signature σ and the membership certificate cert from the
proofs. Besides those, the Opener returns the index i of the group member and
the signature sig in support of his claim. The Judge algorithm can verify the
correctness of the Opener’s decision by verifying those components and checking
that the group member has indeed signed the key pk with his secret key ssk[i].

The construction is illustrated in Figure 4, whereas the joining protocol is in
Figure 3.

We provide a proof for the following Theorem in the full version [13].

Theorem 2. The construction in Figures 3 and 4 is a secure group blind sig-
nature scheme (with CPA-anonymity and CPA-blindness) if the CERT scheme
is unforgeable, the GS proof system is sound, hiding (i.e. witness-indistingui-
shable/zero-knowledge) and re-randomizable, and the blind signature scheme is
secure.

Next we present two example instantiations of the construction.

Instantiation I. Here we instantiate the CERT scheme using the asymmetric
automorphic signature scheme (AFPV) from [1]. Thus, we get an instatiation
whose security is solely based on non-interactive complexity assumptions. If GS
proofs are instantiated in the SXDH setting, the final signature size is 42 · |G1|+
38 · |G2|. Refer to the full version [13] for details.

Instantiation II. To get better efficiency, we instantiate the CERT scheme using
our new NCL signature scheme (cf. Section 4.3). Since in our construction, the
final group blind signature hides the components of the certificate and hence
one cannot directly verify that the certificate is non-trivial, in the instantiation

Formalizing GBS and Practical Constructions without Random Oracles 345

the signer additionally needs to prove that the certificate is non-trivial (i.e. that
A 	= 1G1). Otherwise, the adversary can create untraceable signatures by faking
trivial certificates. We suggest two re-randomizable proofs for this statement in
the full version [13]. Despite the need for this extra proof, this instantiation is
more efficient than instantiation I and yields signatures of size 38 · |G1|+36 · |G2|.
Refer to the full version [13] for details.

6 Achieving Full Anonymity

Groth-Sahai proofs do not provide simulation and extractability simultaneously
and hence when simulating, the Opener can no longer answer Open queries.

One way to get full anonymity is to combine GS proofs with an IND-CCA
secure encryption scheme to encrypt the witness used in the proofs and add
an extra GS proof to prove that the encrypted information is the same as that
used as a witness in the other proofs. We give the Opener the decryption key
for the encryption scheme which allows him to recover the information from the
ciphertext if it cannot be extracted from GS proofs.

It appears that the encryption scheme we require has to be re-randomizable
but yet the IND-CCA security contradicts re-randomizability of ciphertexts
which is in some sense a form of malleability. However, there are a number
of schemes with properties that seem to suffice for this purpose, e.g. [15].

Acknowledgements. This work was supported by ERC Advanced Grant ERC-
2010-AdG-267188-CRIPTO and EPSRC via grant EP/H043454/1. We thank
Georg Fuchsbauer, Nigel Smart and Bogdan Warinschi for many useful discus-
sions. We also thank anonymous reviewers for valuable comments.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

5. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

346 E. Ghadafi

7. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

8. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp.
199–203. Plenum Press (1983)

9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

10. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

11. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

12. Fuchsbauer, G.: Commuting Signatures and Verifiable Encryption and an Applica-
tion to Non-Interactively Delegatable Credentials. In Cryptology ePrint Archive,
Report 2010/233 (2010), http://eprint.iacr.org/2010/233.pdf

13. Ghadafi, E.: Formalizing group blind signatures and practical constructions with-
out random oracles. In Cryptology ePrint Archive, Report 2011/402 (2011),
http://eprint.iacr.org/2011/402.pdf

14. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer,
Heidelberg (2010)

15. Groth, J.: Rerandomizable and Replayable Adaptive Chosen Ciphertext Attack
Secure Cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp.
152–170. Springer, Heidelberg (2004)

16. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

17. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg
(1997)

18. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended
abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp.
184–199. Springer, Heidelberg (2000)

19. Lysyanskaya, A., Ramzan, Z.: Group blind digital signatures: A scalable solution
to electronic cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197.
Springer, Heidelberg (1998)

20. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003)

21. Nguyen, K.Q., Mu, Y., Varadharajan, V.: Divertible Zero-Knowledge Proof of Poly-
nomial Relations and Blind Group Signature. In: Pieprzyk, J.P., Safavi-Naini, R.,
Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 117–128. Springer, Heidelberg
(1999)

22. Okamoto, T., Ohta, K.: Divertible Zero Knowledge Interactive Proofs and Com-
mutative Random Self-Reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990)

23. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of Cryptology 13(3), 361–396 (2000)

24. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,W.
(ed.)EUROCRYPT1997.LNCS,vol. 1233,pp. 256–266. Springer,Heidelberg (1997)

25. Wu, Q., Zhang, F., Susilo, W., Mu, Y.: An Efficient Static Blind Ring Signature
Scheme. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 410–423.
Springer, Heidelberg (2006)

http://eprint.iacr.org/2010/233.pdf
http://eprint.iacr.org/2011/402.pdf

Analysis of the Non-perfect Table

Fuzzy Rainbow Tradeoff�

Byoung-Il Kim and Jin Hong��

Department of Mathematical Sciences and ISaC,
Seoul National University, Seoul 151-747, Korea

{samaria2,jinhong}@snu.ac.kr

Abstract. Time memory tradeoff algorithms are tools for inverting one-
way functions, and they are often used to recover passwords from un-
salted password hashes. There are many publicly known tradeoff al-
gorithms, and the rainbow tradeoff is widely believed to be the best
algorithm. This work provides an accurate complexity analysis of the
non-perfect table version of the fuzzy rainbow tradeoff algorithm, which
has not yet received much attention. It is shown that, when the pre-
computation cost and the online efficiency are both taken into consider-
ation, the non-perfect fuzzy rainbow tradeoff is preferable to the original
rainbow tradeoff in many situations.

Keywords: time memory tradeoff, rainbow table, fuzzy rainbow, dis-
tinguished point.

1 Introduction

Cryptanalytic time memory tradeoff algorithms are tools for quickly inverting
one-way functions with the help of pre-computed data. They are used by law
enforcement agencies and hackers to recover passwords from unsalted password
hashes, and the multi-target variants of the algorithms have been used [7, 10,
11, 15] to show that the GSM mobile phones are insecure.

There are a multitude of publicly known tradeoff algorithms. However, a quick
search for password recovery tools on the Web reveals [1–4] that the rainbow
tradeoff [23] is by far the most popular algorithm, and this seems to indicate
that the rainbow tradeoff is widely believed among implementers to be the best
tradeoff algorithm.

Although it is difficult to clearly specify what is meant by one tradeoff al-
gorithm to be better than another, the recent work [18] has given a plausible
method for comparing the performances of different tradeoff algorithms. Unlike
previous comparison attempts that had focused mainly on the optimal online

� This work was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea(NRF) funded by the Ministry of Education,
Science and Technology(2012R1A1B4003379).

�� JH is the corresponding author.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 347–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

348 B.-I. Kim and J. Hong

phase behavior of the algorithms, the recently suggested method takes both the
pre-computation cost and the online efficiency into account. Hence, the new
method reflects our intuition concerning the practicality, usefulness, or value of
the algorithms more closely. This approach was used in [18, 20] to show that
the perfect and non-perfect rainbow tradeoffs perform better than the classical
Hellman [16], perfect distinguished point [12–14], and non-perfect distinguished
point tradeoff algorithms, under typical environments, thus supporting the afore-
mentioned beliefs.

In this work, we analyze the execution behavior of the non-perfect table fuzzy
rainbow tradeoff [6, 8], which has not yet received much attention, and compare
its performance against the original perfect and non-perfect rainbow tradeoffs.
It is confirmed that the degree of online phase efficiency made possible by the
original rainbow tradeoff through appropriate parameter choices is higher than
that reachable with the fuzzy rainbow tradeoff. However, we find that, for on-
line efficiency levels that can be reached by both tradeoff algorithms, the fuzzy
rainbow tradeoff requires less pre-computation effort than the original rainbow
tradeoff. In other words, up to a certain point, for the same pre-computation
investment, higher online efficiency is returned by the fuzzy rainbow tradeoff.
Since the massive pre-computation requirement stands as a significant barrier to
any large scale deployment of the tradeoff technique, the fuzzy rainbow tradeoff
will often be preferable to the original rainbow tradeoff.

The comparison given in this work follows the framework set by [18], and our
main contribution is in providing an accurate execution behavior analysis of the
non-perfect table fuzzy rainbow tradeoff. However, even the comparison task
does require us to overcome new difficulties arising from the extra parameter
introduced by the fuzzy rainbow tradeoff.

The fuzzy rainbow tradeoff is a combination of the distinguished point tradeoff
and the rainbow tradeoff, and both of these tradeoffs can be seen as special cases
of the fuzzy rainbow tradeoff corresponding to extreme choices of parameters.
Hence, one might expect the performance of the fuzzy rainbow tradeoff to come
somewhere in between those of the two tradeoffs. The findings of this paper,
which indicate otherwise, could be seen as unexpected.

Arguments supporting the efficiency of the fuzzy rainbow tradeoff were given
in the original publications [6, 8]. However, they were based on the concept of
hidden states, which totally disregarded pre-computation cost, and the compu-
tations made there were not tight enough to be accurate up to small constant
factors. Since the performances of tradeoff algorithms often differ only by small
constant factors, which nevertheless have heavy consequences in practice, it was
not possible to provide an appropriate comparison of algorithms based on their
claims.

There are only two works concerning the fuzzy rainbow tradeoff, other than [6,
8], that we are aware of. The multi-target version of the fuzzy rainbow tradeoff
is described as having been used during the presentation [21, 22] of a fully imple-
mented attack on GSM phones, but no theoretical analysis was given there. The
work [25] provides an entry-level analysis of the same algorithm, but incorrect

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 349

assumptions were made concerning the parameters. Neither work mentions that
the algorithm being dealt with appeared previously in [6, 8].

The rest of this paper is organized as follows. In the next section, we re-
view the fuzzy rainbow tradeoff algorithm. The execution behavior of the fuzzy
rainbow tradeoff is analyzed in Section 3 with accuracy that does not ignore
any small constant factors. The obtained results are used in Section 4 to present
a fair comparison between the fuzzy rainbow tradeoff and the original rainbow
tradeoffs. Concluding remarks are made in Section 5.

Much of the proofs in this article have been removed or condensed to ad-
here to the space requirement. Readers are referred to [19] for a presentation
with arguments that are easier to follow and some extra material that are not
mentioned here, such as experimental verification of our theoretical findings.

2 Preliminaries

The reader is assumed to be familiar with the basic tradeoff techniques and
terminology. Throughout this paper, the one-way function f is taken to act
on a search space of size N. The composition of the one-way function and the
reduction function of i-th color will be written as fi. The standard notation for
the number of chains m per table, the chain length t, and the number of tables �
will be used. When dealing with DPs (distinguished points), the distinguishing
property will always be assumed to be of probability 1

t , so that the expected
length of a random chain is t. The collection of all chains associated with one
pre-computation table is referred to as a pre-computation matrix.

The fuzzy rainbow tradeoff [6, 8] is a combination of the rainbow tradeoff
and the DP tradeoff. Recall that each pre-computation matrix for the rainbow
tradeoff contains m pre-computation chains, each of length t, that take the form

SP
f1−−→ ◦ f2−−→ ◦ · · · ◦ ft−−→ EP, (1)

where SP and EP denote the starting and ending points, respectively. The color
of the one-way function is changed at each iteration of the chain generation for
a total of t different colors, for each matrix.

Also recall that each DP matrix contains m chains of variable lengths that
take the form

SP
fi−−→ ◦ fi−−→ ◦ · · · ◦ fi−−→ DP = EP. (2)

That is, each chain is generated using a single color until the appearance of a
DP and this point is taken to be the ending point. One-way function colors are
changed only when the pre-computation starts on a new DP matrix.

In the case of the fuzzy rainbow tradeoff, a distinguishing property of proba-
bility 1

t and a positive integer s are fixed, and chains of the form

SP
f1−−→ ◦ · · · ◦ f1−−→ DP

f2−−→ ◦ · · · ◦ f2−−→ DP
f3−−→ ◦ · · ·

· · · fs−1−−−−→ DP
fs−−→ ◦ · · · ◦ fs−−→ DP = EP

(3)

350 B.-I. Kim and J. Hong

are used. The colored one-way function iterations are continued under a fixed
color until a DP is reached, after which the iterations are continued with a
different color. A total of s colors are used for each pre-computation chain. As
with other tradeoff algorithms, m chains are generated for each of the � pre-
computation tables, and only the starting point and ending point pairs, sorted
according to the ending points, are stored in the pre-computation tables. The
DP (s = 1) and rainbow (t = 1) tradeoffs are degenerate forms of the fuzzy
rainbow tradeoff.

The algorithm we have just described is the non-perfect table version of the
fuzzy rainbow tradeoff. One can also consider the perfect tables version of this
algorithm, obtained by retaining just one chain from every set of merging chains.
However, only the non-perfect table version of the fuzzy rainbow tradeoff will
be studied in this work. The perfect table version is likely to have better online
efficiency, but will require larger pre-computation, and its study is deferred to a
future work.

The fuzzy rainbow tradeoff analogue of the matrix stopping rules ismt2s ≈ N.
That is, we always assume that the fuzzy rainbow tradeoff parameters m, t,

and s are chosen in such a way that the matrix stopping constant Fmsc =
mt2s
N is

neither too large nor very close to zero. We shall express such a situation simply
as Fmsc = Θ(1). The appropriateness of this matrix stopping rule can be found
in [6]. The theoretical arguments of this paper will be easier to comprehend when
s is assumed to be much smaller than m or t, even though no such assumption
appears in [6, 8]. It will later become clear that the s values of interest will
mostly be in the range 10 ∼ 300.

To complete the description of the fuzzy rainbow tradeoff algorithm, the order
of online chain creation needs to be clarified. In short, the multiple tables are
processed in parallel, in a manner analogous to the online phase of the rainbow
tradeoff. At the initial pass, the online chains that start from the final s-th colors
are generated for all the pre-computation tables. If the treatment of all alarms
generated by these online chains did not succeed in recovering the correct answer,
one moves to the second pass of the online phase. At the second pass, the online
chains that start from the (s − 1)-th colors and extend into the s-th colors are
generated for all the pre-computation tables. This process continues until either
the correct answer is found or all the s passes are complete. As with the original
rainbow tradeoff, generation of the shorter online chains before the longer ones
reduces the expected time complexity.

The fuzzy rainbow tradeoff algorithm as introduced by [6, 8] was a time mem-
ory data tradeoff algorithm. The intension of [6, 8] was to create a variant of
the rainbow tradeoff that has a multi-target tradeoff curve of the TM2D2 ≈ N2

form, as with the multi-target versions of Hellman or DP tradeoffs, since the
original rainbow tradeoff was shown to be inferior [9] in this respect. However,
in this work, we shall restrict to the D = 1 case and treat the fuzzy rainbow
tradeoff as a single target inversion algorithm. The multi-target version of the
fuzzy rainbow tradeoff must be compared against the multi-target versions of
the classical Hellman and DP tradeoffs, but nothing similar to [18, 20] has yet

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 351

appeared for the multi-target versions. Furthermore, rudimentary arguments
seem to indicate that the analyses done for the single target inversion algorithms
will carry over to the multi-target algorithm setting with minimal changes.

A single fuzzy rainbow matrix may be understood as a concatenation of s DP
sub-matrices. Throughout this work, the i-th (i = 1, . . . , s) DP sub-matrix will
be denoted by DMi. The only difference between a DMi and a normal non-perfect
DP matrix is that DMi may contain duplicate starting points, that bring about
fully identical chains.

Any implementation of a tradeoff algorithm that relies on DPs will place a
chain length bound to detect chains falling into loops. In this work, we assume
that a sufficiently large chain length bound is used. This is not exactly equivalent
to sending the chain length bound to infinity during analysis, and a discussion
of the precise meaning of this assumption may be found in [18, 20].

There will be many approximations made throughout this paper. Many of
these will depend on the observation (1 − 1

b)
a ≈ e−

a
b , which is accurate when

a = O(b) [18]. Another class of approximations will involve interpreting a finite
sum as a definite integral. Under any reasonable choice of tradeoff parameters,
these approximations will be very accurate, whenever we use them, and they
will be written as equalities rather than as approximations.

3 Analysis of the Fuzzy Rainbow Tradeoff

The online behavior of the fuzzy rainbow tradeoff is analyzed in this section. The
analysis will focus on the average online time complexity, rather than the worst
case time complexity, and take the effects of false alarms fully into account.

3.1 Probability of Success

Comparisons of different tradeoff algorithms must surely be done under identical
requirements on the success probability of inversion. This subsection is devoted
to obtaining an expression for the success rate of the fuzzy rainbow tradeoff.

Let us define the pre-computation coefficient of a fuzzy rainbow tradeoff to
be

Fpc =
mts�

N
, (4)

so that FpcN is the cost of pre-computation. We also define the coverage rate of
a fuzzy rainbow matrix as

Fcr =
1

mts

(|DM1|+ |DM2|+ · · ·+ |DMs|
)
, (5)

where |DMi| is the number of distinct points expected in the i-th DP sub-matrix.
The following proposition, which is easy to prove, shows that this is a natural
definition.

Proposition 1. The success probability of the fuzzy rainbow tradeoff is Fps =
1− e−FcrFpc .

352 B.-I. Kim and J. Hong

To utilize this proposition, we need a way to express the coverage rate in terms
of the tradeoff algorithm parameters. Recall from [17, 20] that the number of
distinct entries |DM| contained in a non-perfect DP matrix satisfies

|DM| = mept, (6)

where mep denotes the number of distinct ending points of the DP matrix. The
work [20] uses this fact in conjunction with another expression for |DM|, found
in [18], to obtain the formula

mep = msp
2

1 +

√
1 +

2mspt2

N

, (7)

that relates the number of distinct starting points msp to the number of distinct
ending points mep of a non-perfect DP matrix.

Returning to the fuzzy rainbow matrices, let us use mi−1 and mi to denote
the number of distinct starting points and ending points, respectively, expected
in each DP sub-matrix DMi. In particular, m0 = m and ms are the numbers of
distinct starting and ending points, respectively, of the full fuzzy rainbow matrix.
We shall refer to each collection of mi points as the i-th color boundary points
of a fuzzy rainbow matrix, where i = 0, 1, . . . , s. Adopting the above two facts
to our situation, we can state that

|DMi| = mit (8)

and

mi+1 = mi
2

1 +
√
1 + 2mit2

N

with m0 = m (9)

are to be expected at each color index i. The following closed-form formula formi

is easier to handle than the iterative formula (9).

Lemma 1. When the number of colors s used in each pre-computation table
is large, the number of i-th color boundary points in a fuzzy rainbow matrix is
expected to be mi =

2m
2+Fmsc

i
s

, for i = 0, 1, . . . , s.

Proof. Since the assumption is that mit
2

N = O
(
1
s

)
is small, one can use series

expansion to approximate the iterative formula (9) by mi+1 = mi

(
1 − 1

2
mit

2

N

)
.

After rewriting this as a certain difference equation, one can apply the Euler
method to view it as the differential equation y′ = − Fmsc

2s y2, with the initial
condition y(0) = m0

m = 1, and solve for y to obtain mi

m = 2
2+Fmsc

i
s

. ��

The coverage rate given below follows from a combination of Lemma 1 and (8).

Proposition 2. When the number of colors s is large, we have

1

mts

s∑
k=i+1

|DMk| = 2

Fmsc
ln
(2 + Fmsc

2 + Fmsc
i
s

)
.

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 353

In particular, the coverage rate is Fcr = 2
Fmsc

ln
(
1 + Fmsc

2

)
, for a single fuzzy

rainbow matrix.

Remark 1. The statement of Proposition 2 assumes s to be large, but when
explicit values of mi

m are iteratively computed through (9) and compared against
the values given by Lemma 1, the two are seen to agree accurately, even for small
positive integer values of s. Hence, we shall treat Lemma 1 and Proposition 2 as
being valid for all s values of interest.

Remark 2. Proposition 1 implies that any set of parameters m, t, s, and � that
achieves the success rate Fps must satisfy the relation

�

t
=

Fpc

Fmsc
=

{− ln(1− Fps)}
FmscFcr

.

Recall that we are working with parameters for which Fmsc is of Θ(1) order,
so that, according to Proposition 2, the coverage rate Fcr is also of Θ(1) order.
Hence, unless the success rate requirement Fps is unrealistically close to 100%,
parameters � and t must be of similar order.

3.2 Online Complexity

Having secured full knowledge concerning the success rate of the fuzzy rainbow
tradeoff, we next discuss the online execution complexities. We start with the
cost of generating the online chains. Note that our interest is in the average case
complexity, rather than the worst case complexity.

We first need to obtain the probability for each pass of the online phase to be
executed.

Lemma 2. The probability for the online chains that start from the i-th color
of each fuzzy rainbow matrix to be generated is(2 + Fmsc

i
s

2 + Fmsc

)2 �
t

.

Proof. The online chains that start from the i-th color of each fuzzy rainbow
matrix will be generated if and only if the correct answer to the inversion target
does not belong to the DP sub-matrices DMi+1, . . . , DMs contained in the � fuzzy
rainbow matrices. Hence, the probability under consideration is

s∏
j=i+1

(
1− |DMj |

N

)�
= exp

(
− �

t
Fmsc

s∑
j=i+1

|DMj |
mts

)
=
(2 + Fmsc

i
s

2 + Fmsc

)2 �
t

,

where the second equality follows from Proposition 2 and Remark 1. ��
Since each of the � online chains that start from the i-th color is expected to
require (s− i+1)t iterations of the one-way function, the following statement is
a direct consequence of Lemma 2.

354 B.-I. Kim and J. Hong

Proposition 3. The generation of the online chains during the online phase of
a fuzzy rainbow tradeoff is expected to require

t�

s∑
i=1

(s− i+ 1)
(2 + Fmsc

i
s

2 + Fmsc

)2 �
t

iterations of the one-way function.

The remaining component of the online time complexity is the cost of dealing
with alarms. The proof of the following claim is quite technical and can be found
in [19].

Proposition 4. The resolving of alarms during the online phase of a fuzzy rain-
bow tradeoff is expected to require

t�
Fmsc

s

s∑
i=1

{
i(s− i+ 1) + 1

}(2 + Fmsc
i
s

2 + Fmsc

)2 �
t

iterations of the one-way function.

We can now combine the two components of the online time complexity for the
fuzzy rainbow tradeoff and state its tradeoff coefficient.

Theorem 1. The time memory tradeoff curve for the non-perfect table fuzzy
rainbow tradeoff that uses s colors per pre-computation matrix is TM2 = Ftc,sN

2,
where the tradeoff coefficient is

Ftc,s = F2msc

(�
t

)3 s∑
i=1

⎧⎪⎩(1− i− 1

s

)(
1 + Fmsc

i

s

)
+

Fmsc

s2

⎫⎪⎭(2 + Fmsc
i
s

2 + Fmsc

)2 �
t 1

s
.

Proof. The storage complexity of the fuzzy rainbow tradeoff is M = m�, and
the time complexity is the sum

T = t�

s∑
i=1

{
(s− i+ 1)

(
Fmsc

i

s
+ 1
)
+

Fmsc

s

}(2 + Fmsc
i
s

2 + Fmsc

)2 �
t

of the two terms given by Proposition 3 and Proposition 4. The tradeoff curve
is obtained by appropriately combining the two complexities M and T . ��
In passing, we state that Lemma 2 allows the number of table lookups expected

during the online phase to be written as �
∑s

i=1

(2+Fmsc
i
s

2+Fmsc

)2 �
t , which is of Θ(ts)

order.

3.3 Storage Optimization

The storage complexity M appearing in the tradeoff curve of Theorem 1 refers
to the total number of entries, i.e., starting and ending point pairs, in the pre-
computation tables. In practice, the physical storage size, which depends not

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 355

only on the number of table entries, but also on how many bits of storage must
be allocated to each table entry, will be more important.

The use of sequentially generated starting points [5, 11, 12] allows each start-
ing point to be recorded in logm bits. The issue of storing the ending points effec-
tively is more complicated. The known techniques are the removal of ending point
portions that can be recovered from the definition of the distinguishing prop-
erty [11, 24], truncation of ending points[8, 11], and the index file method [11].
A brief explanation of these techniques can be found in [18, 20].

The first and third techniques are rather well known and will not be discussed
here. The second technique is to truncate the ending points to a certain length
before recording them to storage. During the online phase, the terminating DP
of an online chain is likewise truncated before being searched for in the pre-
computation table. Truncation reduces the physical storage requirement, but
causes occasional alarms to be generated even when the online chain did not
merge into any pre-computation chain. Thus, we need to find the degree of
truncation that restricts the side effects to a negligible fraction of the online
time complexity.

Let us assume a fixed truncation method for ending points with a truncated
match probability of 1

r . That is, we assume that the truncated outcome of two
random ending points, which are a priori DPs, will be identical with probabil-
ity 1

r . For example, one could retain log r bits of each ending point, that are
unrelated to the distinguishing property, to obtain this effect.

An explicit expression for the expected extra cost of dealing with truncation-
related alarms is given in [19]. We will not go into the details, but one can
deduce from this result that the extra cost is of Θ

(
t2s2m

r

)
order. On the other

hand, similar treatment of the time complexity T , appearing in the proof of
Theorem 1, shows that T is of Θ(t2s2) order. Hence, if m

r is a sufficiently small
fraction, the added cost of treating truncation-related alarms will be insignificant
in comparison to the time complexity T of the algorithm that does not use
truncation of ending points. In other words, the side effects of ending point
truncation will be negligible if the truncated ending points contain slightly more
than logm bits of information. Of course, the ending point portion that can be
recovered from the DP definition contain no information, and almost logm bits
of the ending point can be further removed without any information loss through
the index table method.

In summary, storage of each starting point of the fuzzy rainbow tradeoff re-
quires logm bits and the storage of each ending point requires a very small
number ε of bits. Each entry of the fuzzy rainbow tradeoff can be recorded in
logm+ ε bits.

4 Comparison of Tradeoff Algorithms

To compare the performances tradeoff algorithms, we follow the framework
of [18] and present the pre-computation coefficient versus tradeoff coefficient
curves for the non-perfect fuzzy rainbow, perfect rainbow, and non-perfect rain-
bow tradeoffs, at several fixed success rate requirements. The curves present

356 B.-I. Kim and J. Hong

the range of options made available by each algorithm concerning the degree
of online efficiency that can be achieved after the investment of certain amount
of pre-computation effort. The perfect and non-perfect rainbow tradeoffs were
chosen as the comparison targets, because the two were shown by the recent
works [18, 20] to be the most competitive algorithms among the five major
tradeoff algorithms, under typical conditions.

The information required to draw the curves for the comparison target al-
gorithms can be found in [18, 20]. The fuzzy rainbow tradeoff similarly allows
the Fpc versus Ftc,s curve, under fixed Fps and s, to be plotted as a curve param-
eterized by the single variable Fmsc.

4.1 Optimal s

Before comparing the fuzzy rainbow tradeoff with the original rainbow tradeoff,
let us first discuss the effects of the parameter s on the performance of the fuzzy
rainbow tradeoff.

Consider a fuzzy rainbow tradeoff implementer that is working with a certain
fixed s. Suppose that a set of parameters m, t, and � achieving all desired prop-
erties have been found. These parameters need not be optimal in any particular
sense, and we only assume that the desired success rate is met, while the balance
between resource requirements, such as pre-computation cost, physical storage
size, and expected online time, is suitable for the intended purpose and environ-
ment. The implementer is willing to further tweak the parameters slightly, but
large changes to logm, log t, and log �, that would destroy the favorable balance
between pre-computation cost, storage size, and online time will not be made.

The implementer still wishes to explore the possibility of using a different
s values, as long as the three resource requirements remain largely unchanged.
Consider another s-value s′ and the associated parameter setm′ = s′

s m, t′ = s
s′ t,

and �′ = s
s′ �. It is clear that the pre-computation coefficient Fpc = mts�

N =
m′t′s′�′

N = F′pc and number of table entries M = m� = m′�′ = M ′, for the new
set of parameters, are identical to those of the original parameters. Furthermore,

Fmsc =
mt2s
N = m′t′2s′

N = F′msc implies that the coverage rate Fcr (Proposition 2)
and success rate Fps (Proposition 1) also remain unchanged.

Since the algorithm behavior corresponding to the two sets of parameters
seems to differ only in their time complexities T ′ and T , it may be tempting

to simply compare Ftc,s′ = T ′M ′2
N2 = T ′M2

N2 against Ftc,s = TM2

N to determine
which of the two are better. However, one must keep in mind that M does not
represent the physical amount of storage. Recall from Section 3.3 that logm+ ε
bits of storage are required per table entry, where ε corresponds to the bits used
to record the partial ending points that remain after applications of the ending
point truncation and the index table techniques. Hence, to be fair, one must
compare

(logm+ε)2 Ftc,s and (logm′+ε)2 Ftc,s′ =
{
logm+ε+log

(s′
s

)}2
Ftc,s′ (10)

against each other.

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 357

: Ftc,24

: Ftc,25

: Ftc,26

Fps�90�

2.4 2.6 2.8 3.0 3.2
2

3

4

5

6

7

8

: 252Ftc,24

: 262Ftc,25

: 272Ftc,26

Fps�90�

2.6 2.7 2.8 2.9 3.0 3.1 3.2
3200

3300

3400

3500

3600

3700

3800

: 262Ftc,25

: 272Ftc,26

: 282Ftc,27

Fps�99�

5.0 5.2 5.4 5.6 5.8 6.0
11 000

11 500

12 000

12 500

13 000

13 500

Fig. 1. The tradeoff coefficient Ftc in relation to their respective pre-computation costs,
at small s (x-axis: pre-computation coefficient; y-axis: tradeoff coefficients)

Let us briefly work with explicit example figures. The first box of Figure 1
presents the Fpc versus Ftc,s curves at 90% success rate, for the s = 24, s = 25,
and s = 26 cases. The x-axis gives the pre-computation coefficient Fpc and the
y-axis gives the tradeoff coefficients Ftc,s. The lower parts in each box correspond
to better online efficiency and parts closer to the left edge correspond to smaller
pre-computation requirements. The parameters corresponding to dotted parts of
the curves should not be used, since they correspond to worse online efficiency
at more pre-computation cost than the lowest point of each curve. It is evident
that increasing the s value brings the Fpc versus Ftc,s curve closer to the bottom
left corner. However, as previously noted, this observation alone should not be
used to draw any premature conclusions.

Suppose that a certain parameter set appropriate for the resources available
to the tradeoff implementer is such that logm + ε = 25, when s = 24 is used.
Under this situation, the discussion above shows that, in order to compare the
performances of the fuzzy rainbow tradeoffs running with different s, we should
be focusing on the second box of Figure 1 that present curves for the adjusted
tradeoff coefficients. The change from s = 24 to s = 25 follows the trend seen in
the first box, but the transition from s = 25 to s = 26 does not, worsening the
performance of the fuzzy rainbow tradeoff. The choice of s = 25 is seen to be
optimal, at least among the powers of 2, for this situation.

The optimal choice of s certainly would have been different if we had started
from a different pairing of logm+ ε and s. Comparison of the second and third
boxes of Figure 1 shows that the optimal choice of s also depends on the success
rate requirement.

In summary, using a larger s reduces the tradeoff coefficient Ftc,s, but increases
the number of bits required to store each table entry. In order to find the value
of s that is optimal for the specific situation in hand, it suffices to draw curves,
similar to the second and third boxes of Figure 1, corresponding to various
s options, with appropriate adjustment factors multiplied to Ftc,s. A table of
optimal s values for each situation is given in the full version [19] of this article.

358 B.-I. Kim and J. Hong

4.2 Fuzzy Rainbow Tradeoff versus Rainbow Tradeoff

To compare the fuzzy rainbow tradeoff directly with the perfect and non-perfect
rainbow tradeoffs, we need to find the appropriate adjustment factors to be
multiplied to the tradeoff coefficients, and this starts with a discussion of the
fuzzy rainbow tradeoff parametersmF, tF, �F, and s that would make the resource
requirements of the algorithm comparable to those of the perfect or non-perfect
rainbow tradeoffs running under parameters mR, tR, and �R.

We had mentioned in Section 3.3 that the time complexity for the fuzzy
rainbow tradeoff satisfies TF ≈ t2Fs

2 and we know that the time complexity for
the two usual rainbow tradeoffs satisfies TR ≈ t2R . Equating the very rough time
and storage complexities of the two algorithms and using the facts �F ≈ tF
(Remark 2) and �R ≈ 1, we see that one must require

t2Fs
2 ≈ t2R and mFtF ≈ mF�F ≈ mR�R ≈ mR. (11)

These should be taken as extremely rough requirements, but the relations

log tF + log s ≈ log tR and logmF + log tF ≈ logmR (12)

are somewhat reasonably accurate requirements one should adhere to, if the two
algorithms are to be using similar resources.

Recall from [18] and [20] that each pre-computation table entry of both the
perfect and non-perfect rainbow tradeoffs consumes logmR + εR bits of storage,
where εR is a small positive integer. We have already seen that the fuzzy rainbow
tradeoff similarly consumes logmF + εF bits of storage per table entry.

Our interest lies in the ratio of bits required per table entry, and the use
of (12) implies

logmF + εF
logmR + εR

≈ logmR − log tR + log s+ εF
logmR + εR

≈
1
3 logN+ log s+ εF

2
3 logN+ εR

, (13)

where the second approximation is for the parameter set mR = N
2
3 and tR = N

1
3

that is typically considered during theoretical analyses of tradeoff algorithms. In
the extreme, by ignoring the small integers εF and εR, and also assuming s to be
small, one might argue that this ratio could be as small as 1

2 , at the theoretically
typical parameters. However, this is a rather optimistic figure that is biased in
favor of the fuzzy rainbow tradeoff.

Consider the very large example of logN ≈ 75 and the corresponding theoret-
ically typical parameter set

logmR ≈ 50 and log tR ≈ 25, (14)

for the rainbow tradeoff. According to (12), the parameter set for the fuzzy
rainbow tradeoff of s = 25 that calls for comparable resources would satisfy

logmF ≈ 30 and log tF ≈ 20. (15)

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 359

When εR ≈ εF ≈ 7, the ratio of bits per table entry is logmF+εF
logmR+εR

≈ 37
57 . Hence,

if one’s favored balance of resources corresponds to rainbow tradeoff parame-

ters of (14), one must compare the adjusted tradeoff coefficient
(
37
57

)2
Ftc,25 =

0.42 Ftc,25 against Rtc (non-perfect rainbow) and R̄tc (perfect rainbow).
Similarly, for the rather small example of logN ≈ 40, logmR ≈ 27, log tR ≈ 13,

εR ≈ 7, and εF ≈ 7, with log s ≈ 5, the ratio would be logmF+εF
logmR+εR

≈ 13
17 , and a fair

comparison would let
(
13
17

)2
Ftc,25 = 0.58 Ftc,25 compete against Rtc and R̄tc.

Different Ftc,s adjustment factors will need to be applied, depending on s and
the rough range of online resources that are appropriate for the situation in
hand. However, taking the experience obtained from Figure 1 and the above two
examples into account, we will somewhat arbitrarily choose to compare the two
explicit choices 0.5 Ftc,24 and 0.5 Ftc,26 against Rtc and R̄tc. The full version [19]
of this paper treats the adjustment factors and s values more carefully.

We clearly state that there could be situations that call for a tradeoff coeffi-
cient adjustment factor that is much larger than the 0.5 we will be using. The
appropriate adjustment factor depends not only on the externally given imple-
mentation environment, but also on the taste of the implementer concerning the
balance between online efficiency and pre-computation cost, so that the adjust-
ment factor cannot be fixed in an objective manner. In any case, the discussion
given below can easily be adjusted to work for any specific situation.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

25�

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

50�

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

75�

0 1 2 3 4 5 6
0

1

2

3

4

5

6

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

90�

0 2 4 6 8
0

2

4

6

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�

�

�

�

95�

0 2 4 6 8 10 12
0

2

4

6

8

10

12

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�
�
�
�
�
�
�

99�

0 5 10 15 20
0

5

10

15

20

Fig. 2. The tradeoff coefficients Rtc (empty circles), R̄tc (filled dots), 0.5 Ftc,24 (dashed),
and 0.5 Ftc,26 (line), in relation to their respective pre-computation costs, at various
success rates (x-axis: pre-computation coefficients; y-axis: tradeoff coefficients).

360 B.-I. Kim and J. Hong

The pre-computation coefficient versus tradeoff coefficient curves for the var-
ious tradeoff algorithms are given in Figure 2. Each box presents data corre-
sponding to the success rate requirement indicated at its upper right corner.
The curves for the fuzzy rainbow tradeoffs are given as the dashed line (s = 24

case) and the thin line (s = 26 case). As mentioned before, the dotted parts of
the curves should be ignored. The data for the perfect rainbow tradeoff (filled
dots) and non-perfect rainbow tradeoff (empty circles) appear as discrete set of
points, due to their small number of tables.

In all the boxes the two curves for the fuzzy rainbow tradeoff are situated
closer to the lower left corner than the data points for the two rainbow trade-
offs. The fuzzy rainbow tradeoff provides better online efficiency for the same
pre-computation investment. Thus a very rough conclusion would be that the
fuzzy rainbow tradeoff is better in performance than the perfect and non-perfect
rainbow tradeoffs.

At the 75%and higher success rates, the lowest dot for the perfect rainbow curve
is situated lower than the lowest point of the two fuzzy rainbow tradeoff curves.
This shows that the perfect rainbow tradeoff is able to provide better online effi-
ciency than the fuzzy rainbow tradeoff at high success rates. That is, no choice of
fuzzy rainbow tradeoff parameters will make its online efficiency better than the
optimal efficiency reachable with the perfect rainbow tradeoff. Hence, the perfect
rainbow tradeoff can be advantageous over the fuzzy rainbow tradeoff when the
success rate requirement is high and the online efficiency is important.

However, it must be understood that the higher online efficiency option can
be utilized only if it is paid for with higher pre-computation cost. Since the
pre-computation cost is the largest barrier in any large scale deployment of the
tradeoff technique, the higher cost cannot be ignored, even though it could be
amortized through multiple uses of the online phase. At the high success rates,
the decision as to whether the fuzzy rainbow or the perfect rainbow tradeoff is
better will be different depending on how costly the additional pre-computation
will be, relative to the value of better online efficiency, with its multiple uses
taken into account, to the implementer.

At the low success rates 25% and 50%, the lowest point of the fuzzy rainbow
curve is lower than the lowest point of the two original rainbow tradeoffs. For
these low success rates, fuzzy rainbow tradeoff is always advantageous over the
two original rainbow tradeoffs in terms of both the online efficiency and pre-
computation cost.

Finally, a second pass through all six boxes, with focus on the empty circles,
reveals that the performance of the non-perfect rainbow tradeoff is always inferior
to that of the fuzzy rainbow tradeoff. The degree of online efficiency that can be
provided by the non-perfect rainbow tradeoff can always be obtained with the
fuzzy rainbow tradeoff at a lower pre-computation cost.

5 Conclusion

The online execution behavior of the non-perfect table fuzzy rainbow tradeoff
was analyzed in this work. The success rate, the accurate average case online

Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff 361

execution time that accounts for false alarms, and the physical storage size re-
quired to hold the pre-computation tables have all been obtained.

The information obtained through our analyses was used to compare the fuzzy
rainbow tradeoff against the original rainbow tradeoff algorithm, which is widely
taken to be the best tradeoff algorithm. The tradeoff coefficient adjustment factor
and the color count s per table had to be fixed to somewhat arbitrary values
for the comparison. However, our choices were based on figures obtained from
reasonable examples, and the ensuing conclusions should be valid for the most
part of the practical parameter range. Furthermore, the process can be repeated
easily for any other choices, should there be the need to work with a drastically
different range of parameters.

We discovered that the fuzzy rainbow tradeoff is always advantageous over the
non-perfect rainbow tradeoff. The fuzzy rainbow tradeoff also outperforms the
perfect rainbow tradeoff at low success rate requirements. For high success rate
requirements, the situation is less conclusive. It is possible for the perfect rainbow
tradeoff to provide online efficiency that cannot be reached by the fuzzy rainbow
tradeoff, but the advantage must be paid for with higher pre-computation cost.
For efficiency levels that are reachable by both algorithms, the fuzzy rainbow
tradeoff required less pre-computation.

It remains to analyze the perfect table version of the fuzzy rainbow tradeoff.
The good performance of the non-perfect table fuzzy rainbow tradeoff witnessed
through this work is an optimistic sign. On the other hand, the relatively poor
performance of the perfect table DP tradeoff [20] could be interpreted as a neg-
ative indication.

References

1. Cryptohaze, GPU Rainbow Cracker, https://www.cryptohaze.com/

2. L0phtCrack, L0phtCrack 6, http://www.l0phtcrack.com/

3. Objectif Sécurité, Ophcrack, http://ophcrack.sourceforge.net/

4. RainbowCrack Project, RainbowCrack and RainbowCrack for GPU,
http://project-rainbowcrack.com/

5. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inform. Syst. Secur. 11(4),
17:1–17:22 (2008); Preliminary version presented at INDOCRYPT 2005

6. Barkan, E.P.: Cryptanalysis of Ciphers and Protocols. Ph.D. Thesis, Technion—
Israel Institute of Technology (March 2006)

7. Barkan, E., Biham, E., Keller, N.: Instant ciphertext-only cryptanalysis of GSM
encrypted communication. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 600–616. Springer, Heidelberg (2003)

8. Barkan, E., Biham, E., Shamir, A.: Rigorous bounds on cryptanalytic
time/Memory tradeoffs. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 1–21. Springer, Heidelberg (2006)

9. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006)

https://www.cryptohaze.com/
http://www.l0phtcrack.com/
http://ophcrack.sourceforge.net/
http://project-rainbowcrack.com/

362 B.-I. Kim and J. Hong

10. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

11. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

12. Borst, J.: Block Ciphers: Design, Analysis, and Side-Channel Analysis. Ph.D. The-
sis, Katholieke Universiteit Leuven (September 2001)

13. Borst, J., Preneel, B., Vandewalle, J.: On the time-memory tradeoff betweeen
exhaustive key search and table precomputation. In: Proceedings of the 19th Sym-
posium on Information Theory in the Benelux, WIC (1998)

14. Denning, D.E.: Cryptography and Data Security1. Addison-Wesley (1982)
15. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.)

EUROCRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)
16. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. on Infor.

Theory 26, 401–406 (1980)
17. Hong, J., Lee, G.W., Ma, D.: Analysis of the parallel distinguished point tradeoff.

In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp.
161–180. Springer, Heidelberg (2011)

18. Hong, J., Moon, S.: A comparison of cryptanalytic tradeoff algorithms. To appear
in J. Cryptology, http://dx.doi.org/10.1007/s00145-012-9128-3

19. Kim, B.-I., Hong, J.: Analysis of the non-perfect table fuzzy rainbow tradeoff. IACR
Cryptology ePrint Archive, Report 2012/612, version 20121116:123317 (2012)

20. Lee, G.W., Hong, J.: A comparison of perfect table cryptanalytic tradeoff algo-
rithms. IACR Cryptology ePrint Archive, Report 2012/540 (2012)

21. Nohl, K.: Attacking phone privacy. Presented at Black Hat USA 2010, Las Vegas
(July 2010)

22. Nohl, K., Paget, C.: GSM-SRSLY? Presented at 26th Chaos Communication
Congress (26C3), Berlin (December 2009)

23. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)

24. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: A time-memory
tradeoff using distinguished points: New analysis & FPGA results. In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593–609.
Springer, Heidelberg (2003)

25. van den Broek, F., Poll, E.: A comparison of time-memory trade-off attacks on
stream ciphers. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 406–423. Springer, Heidelberg (2013)

1 On p.100, credit is given to Rivest for suggesting to apply the notion of distinguished
points to the classical Hellman tradeoff.

http://dx.doi.org/10.1007/s00145-012-9128-3

Complexity of Increasing the Secure

Connectivity in Wireless Ad Hoc Networks

Seyit A. Camtepe

Queensland University of Technology

Abstract. We consider the problem of maximizing the secure connectiv-
ity in wireless ad hoc networks, and analyze complexity of the
post-deployment key establishment process constrained by physical layer
properties such as connectivity, energy consumption and interference.
Two approaches, based on graph augmentation problems with nonlinear
edge costs, are formulated. The first one is based on establishing a se-
cret key using only the links that are already secured by shared keys.
This problem is in NP-hard and does not accept polynomial time ap-
proximation scheme PTAS since minimum cutsets to be augmented do
not admit constant costs. The second one extends the first problem by
increasing the power level between a pair of nodes that has a secret
key to enable them physically connect. This problem can be formulated
as the optimal key establishment problem with interference constraints
with bi-objectives: (i) maximizing the concurrent key establishment flow,
(ii) minimizing the cost. We prove that both problems are NP-hard and
MAX-SNP (i.e., it is NP-hard to approximate them within a factor of
1 + ε for ε > 0) with a reduction to MAX3SAT problem.

1 Introduction

Efficient key management schemes are essential to ensure the integrity and confi-
dentiality in wireless ad hoc networks. An example of such networks are wireless
sensor networks operating in adversarial conditions. Many different key man-
agement schemes are proposed for the wireless sensor networks. Some solutions
assign (a.k.a. pre-distribute) each node a key-chain, a set of symmetric keys or
keying materials (e.g., ID, master keys, hash functions, pseudo random func-
tions, shared polynomials, key matrices and location information), to be shared
with some of its neighbors after deployment with high probability. Others are
based on trusted entities (e.g., base stations, trusted nodes and certificate au-
thorities) to establish symmetric or asymmetric keys between sensor nodes. The
unique key-chain assigned to each node creates a binding between the identity
of a node and its set of keys; thus, provides authentication which is limited by
the resilience of the underlying key distribution scheme. A detailed comparative
survey on wide range of key management schemes can be found in [1, 2].

We consider the problem of how to maximize the number of secure links in
a wireless sensor network in order to increase its secure connectivity after de-
ployment. In most deployment schemes, sensor nodes are randomly scattered

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 363–378, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

364 S.A. Camtepe

over a large application area which might be inaccessible or infeasible to access
after the deployment. Even with the controlled placement of sensor nodes, due
to environmental challenges and deployment errors, the post-deployment net-
work configuration might be unknown a priori. After the deployment, each node
discovers its neighbors and tries to find a key to secure its wireless links in key
discovery phase. Key management schemes are mostly blind to after deployment
properties [1, 2]; therefore, many physical links may be left unprotected (i.e.,
without a key on them) which may result in a suboptimal secure routing, or
even worse: secured links may not induce a connected network. What is needed
is to optimally increase the secure connectivity after deployment (Figure 1). In
the key establishment phase, each pair of neighboring nodes, which do not have
common keys, establish one or more keys. Key establishment between two nodes
can be achieved by exchanging messages directly over their insecure wireless link
or over one or more secure paths on which each link is secured with a symmetric
key as illustrated in Figure 1. Focus of this work is to understand complexity of
the key establishment process in distributed wireless sensor networks subject to
the physical layer properties such as connectivity, energy consumption and inter-
ference. In the broader sense, we would like to understand feasibility of existing
key management schemes which trust on post deployment key establishment
processes for secure connectivity.

Utilization ofmulti-hopwireless networks is investigated as thewireless schedul-
ing problemwhich assigns transmissionpower levels to the network nodes and tries
to schedule all the links in an arbitrary network topology. Scheduling complexity
of arbitrary topologies in wireless networks in the context of physical Signal-to-
Interference-plus-Noise-Ratio (SINR) has been investigated in [3–5] and shown to
be NP-complete in various formulations. Secure capacity of a randomly deployed
network is analyzed in [6] where each node receives a key-chain due to the random
key pre-distribution scheme [7]. In [8], a framework is proposed to improve existing
key pre-distribution schemes by assuming that sensors are deployed in groups and
group members are located close to each other after deployment. Hence, more re-
search is required on analyzing the complexity of increasing the secure connectivity
and secure capacity in wireless ad hoc networks.
Contribution: Our contribution is theoretical as we formulate the different
variants of the problem and analyze their complexity. In particular, we present
two approaches: (i) establish new symmetric keys for the existing physical links
(problem P1), and (ii) establish new physical links by increasing transmission
power to connect the nodes that they do share a key (problem P2). Both of the
problems are variants of the graph augmentation problem which are in general
NP-hard for fixed cost functions and accept polynomial time constant approxi-
mation schemes (PTAS) [9].

Problem P1 is a variant of the optimal graph (edge) augmentation prob-
lem on key graph GK (Figure 1). However, instead of a fixed cost assignment,
it defines a nonlinear cost function on the links since the order of augmenta-
tion changes the cost assignment. In problem P2, new physical links can be
created by increasing the power levels to reach a node with a shared secret key.

Secure Connectivity in Wireless Ad Hoc Networks 365

Although this problem can also be formulated as an optimal graph augmenta-
tion problem on the physical graph GP (Figure 1), it has two main differences.
First, increasing power levels induce interference on the nodes and may have
an adverse effect on the overall network capacity. Thus, there are interference
constraints on the nodes in P2 to ensure an acceptable signal to interference
plus noise ratio (SINR). Second, the cost of each link has two parameters: (i)
energy cost for establishing this link, and (ii) amount of interference this link
induces on the other nodes. We prove that neither P1 nor P2 accepts PTAS.
Organization: Rest of the paper is organized as follows: in Section 2, we de-
scribe the network model and basic notations. We break the problem of opti-
mally increasing secure connectivity into three optimization problems. In Section
3, we formulate the first problem P1 as an instance of edge augmentation prob-
lem on the key graph. In Section 4, we formulate the second problem P2 as a
constrained optimization problem with interference constraints on the physical
graph. Finally, in Section 5, we conclude.

2 Network Model and Problem Definition

2.1 Network Model and Notations

We model a wireless sensor network as a set of nodes WN = { n1, n2, . . . , nN}
distributed over an Euclidean plane. The Euclidean distance between two nodes
ns (sender) and nr (receiver, 1 ≤ s, r ≤ N) is represented by d(ns, nr). In this
work, we assume that each node ns has discrete power levels (1, 2, 3, . . . , limax

where 1 ≤ i ≤ N). Each node may have different maximum power level lmax due
to its battery condition. By changing their power levels (P l

s: node ns transmitting

at power level l), nodes can control the received signal strength
P l

s

d(ns,nr)α
(α is

a constant that depends on the medium) on the intended recipient r. We use
the Signal-to-Interference-plus-Noise-Ratio (SINR) model because the graph-
theoretic modeling of interference ignores the fact that interference coming from
different transmitters accumulate and can not be limited to a specific border.
SINR model considers that a message is successfully received by a receiver if
the ratio between received signal strength and noise plus interference from other
nodes exceeds a threshold β (Equation 1) which is defined by the hardware.

P l
s

d(ns,nr)α

Noise+
∑

nk∈WN\ns

P l
k

d(nk,nr)α

≥ β (1)

Wireless networks are generally represented with undirected graphs where the
uniform transmission range and symmetric links are assumed. Physical Graph
GP = (V,EP) represents a network where each node is represented with a vertex,
and there is an edge between two vertices if the corresponding nodes are within
each others transmission range. For the same vertex set V , Key Graph GK =
(V,EK) represents the key connectivity where there is an edge in between two
vertices if the corresponding nodes share or can establish one or more symmetric

366 S.A. Camtepe

keys to secure their communication. In Secure Graph GS = (V,ES), there is
an edge in between two vertices if they have an edge both in GP and GK . In
other words, ES = EP

⋂
EK as illustrated in Figure 1.

Fig. 1. Physical graph GP = (V,EP), Key graph GK = (V,EK) and Secure graph
GS = (V,ES) where ES = EP

⋂
EK

Notations: Nodes which are within each other’s radio range are called neigh-
boring nodes. A wireless link between two neighboring nodes is called a phys-
ical link. A physical link between two neighboring nodes that share a key is
called a secure link. If the nodes don’t share a key, then it is an insecure
link. A secure path is a path on which each physical link is a secure link. A
key path is a secure path which is used to exchange a shared-key (i.e. with a
mechanism similar to Diffie-Hellman). Table 1 lists notations used throughout
this paper.

Table 1. Abbreviations

WN Network with N nodes {n1, . . . , nN} F Set of flows (s, t)
T , Set of transmitters (ni,l) R Set of receivers (ni)
T (i) Transmitters of node ni R(j) Receiver of the transmitter j ∈ T

P l
i Transmission power of ni,l at level l f

s,t Flow (s, t), fs,t ∈ {0, 1}
fs,t
i,j Flow on edge (i, j) due to flow fs,t ni,l ith node transmitting at level l

limax Maximum power level of node ni Ki,j Shared key between nodes ni and nj

KCi Key-chain of node ni ER Receive cost of a unit flow
ET Transmission cost of a unit flow GP Physical graph GP (V,EP)
GK Key graph GK(V,EK) GS Secure graph GS(V, ES)
GA Auxiliary graph GA(VA, EA)

2.2 Problem Definition

Upon deployment of a wireless sensor network, the induced secure graph may
be under-utilized because, although GS = GK ∩GP is connected many physical
links may not be secured by a key resulting in inefficient routing as shown in
Figure 2-C. It may be even disconnected as depicted in Figure 2-E.

Secure Connectivity in Wireless Ad Hoc Networks 367

In this paper we consider the problem of optimally increasing secure con-
nectivity either by establishing new keys using the secure paths (we rule out
executing Diffie-Hellman (DH) or similar techniques over an insecure wireless
link due to lack of authentication that makes man-in-the-middle attacks possi-
ble), or by adding new physical links (i.e., increasing the transmission power)
between nodes that share a key. We consider two optimization problems:

– P1 (GK → GS): Find order of shared key establishment for unsecured phys-
ical links. Find optimal secure paths to establish shared keys (Approach:
graph augmentation on GK).

– P2 (GP → GS): Find optimal set of new physical links to be established
between the nodes with shared keys (Approach: graph augmentation on GP).

3 Problem P1: Augmenting the Key Graph GK

Problem P1 assumes both key graph GK and physical graph GP are connected
and it adds edges to GK to increase key connectivity of an under-utilized wireless
sensor network to obtain κ− connected secure graph where κ ≥ 2

In problem P1, adding an edge between the nodes ni and nj in GK means
establishing keys between nodes ni and nj through a secure path by using Diffie-
Hellman (DH) or similar key establishment algorithms. Recall that DH itself
does not provide authentication, thus it should be applied through a secure path
where each pair of neighboring nodes on the path shares a key.

Consider Figure 2-(A,B) as an example where secure graph is connected. Al-
though each node pairs (n1, n2), (n3, n4) and (n2, n7) has a physical link, they
do not share a key to secure their links. These node pairs have to communicate
through secure paths, rather than using their direct link, yielding an under-
utilized network. In this problem, our challenge is three-fold. First, a pair of
nodes should be identified to establish a key between them. Second, a minimum
cost (e.g., shortest hop count) secure path for each node pair should be found
through which DH key establishment can be executed. Third, the order in which
DH key establishment is executed should be identified. In the secure graph of
Figure 2-(A,B), establishing a key first for (n1, n2) results in a shorter secure
path for the nodes (n3, n4).

Problem P1 is a variant of graph augmentation problem on the keying graph
GK . Given a graph G = (V,E) with n nodes and m edges where each edge (u, v)
has an arbitrary non-negative weight c(u,v), let G

′ = (V,E′) be its subgraph
where E′ ⊆ E. The edge augmentation problem is to find minimum-weight set
of edges from the edge set E \E′ whose addition makes G′ κ−edge− connected.
The node connectivity augmentation version is slightly different. Given a graph
G = (V,E) and a set of vertices V ′ ⊆ V , problem is to find a set of edges
with minimum-weight whose addition provides connectivity between every pair
of vertices in V ′.

The augmentation problem is NP-Hard when κ− edge or κ− vertex disjoint
paths are required between every pair of nodes in V ′ for κ ≥ 2. However, for fixed

368 S.A. Camtepe

Fig. 2. (A) Under-utilized secure graph GS = (V,ES). (B) Order of Diffie-Hellman key
establishment for the minimized cost (e.g., establishing key for (n1, n2) first results in
shorter secure path for (n3, n4)). (C) Secure graph is connected. Nodes n1,1 and n2,1

have a physical link but don’t share a key. They can communicate through a secure
path of 3 hops to establish a key. (D) Nodes n2, n3 or n6 can establish new secure links
at the power level 2 to provide shorter secure paths for nodes n1 and n2. (E) Secure
graph is disconnected. Nodes n1 and n2 have a link but they do not share a key, and
they can not find a secure path to establish key. (F) Nodes n2 and n6 share a key, and
they can establish a new link at the power level 3 to provide the secure connectivity.

cost assignment on the edges it has an approximation (PTAS) which achieves
a factor of 2 for κ = 2 [9]. There is a rich literature of previous work for such
tractable variants of P1 that offer both deterministic [10, 11] and randomized
[12] approaches.

However, the cost function to be minimized in P1 is different from classical
graph augmentation since the cost of each edge-to-be-inserted (call this a new-
edge) to GS may change as the new edges are added to GK . For example, suppose
the cost or weight of a new-edge (i, j) is the length of the shortest path between
i and j in GS , then this cost will change depending on the order of insertion.
This dependency presents a non-linear cost function on the links and makes the
order of augmentation important. Thus, optimality depends upon the ordering
of the set of node pairs (EW ⊆ EP \EK) as illustrated in Figure 2-(A,B). This
problem is not only NP-Hard but also it does not admit a PTAS since minimum
cutsets to be augmented do not admit constant costs.

4 Problem P2: Augmenting the Physical Graph GP

In this problem, we consider adjusting power levels to create a (new) physical link
between a pair of nodes that share a symmetric key. The optimization problem
here is to determine which nodes should increase their power levels to provide

Secure Connectivity in Wireless Ad Hoc Networks 369

the secure connectivity at a minimum cost (Figures 2-E,F). Increasing power
levels decreases the number of hops in a secure path as illustrated in Figures
2-(C,D). However, increasing transmission power generates more interference on
surrounding nodes. Enforcing a bound on instantaneous interference to ensure
acceptable SINR for wireless communications yields to a mixed integer non-linear
optimization problem [13]. Thus, problem P2 has two parts: (i) identification of
optimal number of edges to augment GP , and (ii) interference constrained power
selection for materializing these edges. We use an auxiliary graph representation
similar to [13] for representing the power levels and formulating the interference
constraints.

We note that problem P2 can be formulated also as an instance of the edge
augmentation problem. However, there are two complications: (i) interference
constraints on the nodes, and (ii) a complex cost function on the edge set that
must capture not only the energy cost but also the interference induced on the
other nodes. Thus, P2 is optimal augmentation of GP subject to interference
constraints with a nontrivial cost function.

We formulate edge augmentation problem with the interference constraints
on nodes and transmission costs on edges as a flow problem using an auxiliary
graph GA = (VA, EA) similar to [13].

4.1 Auxiliary Graph Representation

In this representation, for each node ni, auxiliary GA includes a receiver ver-
tex ni and l

i
max transmitter vertices (ni,1, ni,2, . . . , ni,limax

) corresponding to the
each discrete power level. Receivers from all nodes form the receiver set R =
{n1, n2, . . . , ni}, and transmitters form the transmitter set T = { n1,1, . . . , n1,l1max

,
n2,1, . . . , n2,l2max

, . . . , ni,1, . . . , ni,limax
} where VA = R

⋃
T . T (i) represents all

transmitters {ni,1, ni,2, . . . , ni,limax
} of the receiver ni, and R(j) represents re-

ceiver nj of the transmitter nj,l. Edge set EA includes edges (i, j) of types: (1)
i ∈ R and j ∈ T (i), and (2) i ∈ T and j ∈ R where there is a shared-key
between nodes ni and nj (i.e. (i, j) ∈ EK). First rule states that there are edges
from the receiver of each node to all of its transmitters (dashed edges in Figure
3-A). Second rule states that there is an edge from each transmitter to each
receiver located within the transmission range required that both nodes share
a key (solid edges in Figure 3-A). These edges have cost associated with them
as the amount of energy consumed to transfer one unit of flow. For simplicity,
all edges considered to have unlimited capacities but the network is capacitated
due to interference. There is a limit on the amount of interference a receiver can
handle meaning that not all transmitters can transmit at the same time.

We force a limit on the amount of interference-plus-noise that a node can toler-
ate as the Reception Quality constraint. This constraint requires that a message
is received by a receiver if the ratio between the received signal strength and the
interference-plus-noise due to surrounding transmitters do not exceed a thresh-
old as specified in Equation 1. Then, our optimization problem becomes finding
a minimum cost set of edges on the auxiliary graph subject to the interference

370 S.A. Camtepe

Fig. 3. (A) Auxiliary graph GA = (VA, EA) corresponding to the secure graph
GS = (V,ES) of Figure 1. Black vertices are receivers R = {n1, n2, n3, n4, n5, n6}.
Each node has two transmit power levels which are the white transmitter vertices
T = {n1,1, n1,2, n2,1, n2,2, . . . , n6,1, n6,2}. Each solid edge has a cost associated which
is the total energy used by the system to pass one unit of flow and/or the energy
consumption due to interference created on the surrounding receivers. Dashed edges
have no cost. All edges have unlimited capacities but the network is capacitated due
to the interference because there is a limit on the amount of interference a receiver
can handle due to SINR model. (B) Receiver flow conservation for Equation 2, (C)
Transmitter flow conservation for Equation 3, (D) Receiver utilization for Equation 5,
and (E) Transmitter utilization for Equation 6.

constraint where cost of an edge is E = ET +ER so that resulting secure graph
is κ− connected.

The optimization problem P2 has bi-objectives: (1) maximizing the number
of concurrent flows -this is the augmentation part, and (2) minimizing the cost
which is defined w.r.t. power consumption (since we handle the interference in
constraints). Thus, we break the problem into two subproblems and formulate
two integer programs. In maximum key establishment flow problem P2.1, we
seek for the maximum amount of flow FMax ⊆ F that we can grant subject to
interference constraints. In minimum cost key establishment flow problem P2.2,
we seek for minimum cost flow assignment on the auxiliary graph edges while
keeping |FMax| and the interference as constraints.

Having formulated the problem as an auxiliary graph, it can be shown that
both problems P2.1 and P2.2 are NP −Hard andMAX−SNP−Hard based
on a reduction from MAX3SAT (see the appendix for formal proofs). Thus, they
are intractable and it is NP-Hard to approximate them within a factor 1 + ε for
some fixed ε > 0.

Secure Connectivity in Wireless Ad Hoc Networks 371

4.2 Problem P2.1: Mathematical Programming Formulation

We formulate P2.1 as a constrained optimization problem. The optimization
problem aims to maximize the number of source-destination pairs (s, t) ∈ F be
granted on the auxiliary graph concurrently subject to interference thresholds
on each vertex.

Definition 1 (MaxKeyEstabFlow Problem P2.1). Given GA = (VA, EA)
the auxiliary graph representation of a deployment, euclidian distances d(ni, nj)
between nodes for all node pairs (ni, nj), SINR constants β and α, power lev-
els (1, 2, 3, . . . , limax) for all nodes ni and set of flows F for the key establish-
ment traffic, P2.1 is the problem of maximizing the number X (X = |F ′| where
F ′ ⊆ F) of source-destination pairs that can exchange key establishment mes-
sages concurrently on the auxiliary graph GA subject to interference constraints.
Solution to the problem is the subset F ′ of source-destination pairs, and flows of
source-destination pairs (s, t) ∈ F ′ assigned to a subset of edges E′

A ⊆ EA.

Problem is similar to integer multiflow optimization problem [14] because flows
belonging to multiple source-destination pairs (s, t) ∈ F is assigned to edges of
the auxiliary graph. Vertices of the edges having non-zero flow in the auxiliary
graph will correspond to power level of the corresponding pairwise communica-
tion.

Let GA be the auxiliary graph corresponding to a deployment with N nodes.
Also, F is the set of node pairs (s, t) representing neighboring nodes which don’t
share a key, and which need to exchange key establishment messages. We assume
that the key establishment is done by exchanging two units of messages between
s and t, thus the demand for (s, t) and (t, s) are both one. Then, the problem is to
find largest routable subset of F in GA subject to: (i) flow conservation (receiver
and transmitter), (ii) flow symmetry, (iii) utilization (receiver and transmitter),
and (iv) reception quality:
(i.a) Receiver flow conservation constraint requires that the difference be-
tween flows coming and leaving a receiver (as in Figure 3-B) due to a flow
between (s, t) should be: (i) zero if the node is not the source or the destination,
(ii) fs,t ∈ {0, 1} if the node is destination, and (iii) (−fs,t) ∈ {−1, 0} if the node
is source. Thus, for each j ∈ R and ∀(s, t) ∈ F :

∑
i∈T

f s,t
i,j −

∑
i∈T (j)

f s,t
j,i = x s. t.

⎧⎨
⎩
x = fs,t, j=t;
x = −f s,t, j=s;
x = 0, o/w.

(2)

(i.b) Transmitter flow conservation constraint requires that all flows coming
and leaving a transmitter (as in Figure 3-C) due to a flow between (s, t) should
be equivalent. Thus, for each j ∈ T and ∀(s, t) ∈ F :∑

i∈R(j)

f s,t
i,j −
∑
i∈R

f s,t
j,i = 0. (3)

(ii) Flow symmetry constraint requires that when there is a flow on link
(ni,l, nj) (1 ≤ l ≤ limax) due to the flow between (s, t) ∈ F , there should be a

372 S.A. Camtepe

flow on link (nj,l′ , ni) (1 ≤ l′ ≤ ljmax) due to the flow between (t, s) ∈ F . In other
words, key exchange request and response messages between two nodes use the
same path in the secure graph. This assumption helps in that whenever one of
the transmitters ni,l or nj,l′ can not be activated due to the interference, the
other one should not be. Thus, for each node pair ni and nj , and ∀(s, t) ∈ F :

limax∑
l=1

f s,t
ni,l,nj

−
ljmax∑
l′=1

f t,s
nj,l′ ,ni

= 0. (4)

(iii.a) Receiver utilization constraint requires that the receiver utilization (as
in Figure 3-D) due to a flow should not exceed the unity. Thus, for each j ∈ R
and ∀(s, t) ∈ F : ∑

i∈T

f s,t
i,j ∈ {0, 1}. (5)

(iii.b) Transmitter utilization constraint requires that the transmitter uti-
lization (as in Figure 3-E) due to a flow should not exceed unity. Thus, for each
j ∈ R and ∀(s, t) ∈ F : ∑

i∈T (j)

f s,t
j,i ∈ {0, 1}. (6)

(iv) Reception Quality constraint states that flow fs,t
i,j (flow on edge (i, j) due

to flow fs,t) exists (non-zero) if the ratio between the received signal strength
and the interference-plus-noise, due to surrounding transmitters, do not exceed
a threshold as specified in Equation 1. This threshold is applicable to a receiver
if there exists a flow on this receiver. Thus, given δk and f s,t

i,j which are the
indicator of a flow on each transmitter k and on the receiver j respectively:

∀k ∈ T, δk =

{
1,
∑

(s,t)∈F
∑

m∈R f
s,t
k,m > 0;

0, o/w.

For each j ∈ R:

P l
i

d(ni,nj)α

Noise+
∑

k∈T\{i}
P l

k×δk

d(nk,nj)α

≥ β × f s,t
i,j (7)

Our mathematical program then becomes:

Maximize X =
∑

(s,t)∈F
f s,t Subject to (2), (3), (4), (5), (6), (7).

Proof sketch: We prove that MaxKeyEstabFlow is NP-hard by using a reduc-
tion from MAX3SAT problem, which is a truth assignment to the variables, to
find maximum number of clauses that can be satisfied in a boolean formula in the
3CNF form.We define a reduction fromMAX3SAT to MaxKeyEstabFlow in two
steps. First, given a boolean formula in the 3CNF form with n variables and m

Secure Connectivity in Wireless Ad Hoc Networks 373

clauses, we create a WSN deployment in an Euclidian plane. We create sensor
nodes Ci and Di for i

th clause, and sensor nodes xj and xj for j
th variable where

only the sensor nodes xj and xj create interference on each other (a.k.a. both vari-
ables can not be set as TRUE). We define set of flows F = {(Ci, Di), (Di, Ci)|1 ≤
i ≤ m}. Second, using this WSN deployment we create an auxiliary graph rep-
resentation as described in Section 4.1. Thus, the objective of finding a truth as-
signment to the variables so that maximum number of clauses that can be satisfied
becomes finding maximum number of source-destination pairs in F which can be
granted concurrently both on the WSN and on the auxiliary graph GA subject to
interference constraints. Inapproximability results for P2.1 comes from the inter-
ference created by the links and the interference threshold constraint. We show
that for every ε > 0, there is a gap preserving reduction from the MAX3SAT to
MaxKeyEstabFlow that has parameters (c, 1+ε, c|F|/2, 1+ε) where F is the set
of flows. We show that the MAX3SAT (ϕ) = c ⇔ MaxKeyEstabFlow (τ(ϕ)) =
c.m. (see the appendix for formal proofs).

4.3 Problem P2.2 Mathematical Programming Formulation

Definition 2 (MinCostKeyEstabFlow Problem P2.2). Given the auxil-
iary graph representation GA = (VA, EA) of a deployment, euclidian distances
d(ni, nj) between nodes for all node pairs (ni, nj), SINR constants β and α,
power levels (1, 2, 3, . . . , limax) for all nodes ni, set of flows F for the key es-
tablishment traffic and the maximum number X of concurrent key establishment
flow, it is the problem of finding at least X source-destination pairs which can
exchange key establishment messages on the auxiliary graph GA at a minimum
cost subject to interference constraints. Solution to the problem is the subset F ′

of source-destination pairs, flows of source-destination pairs (s, t) ∈ F ′ assigned
to a subset of edges E′

A ⊆ EA and the overall cost.

Our objective is to grant at least X flows through the auxiliary graph GA

with a minimum cost. Result of the program is the flow assigned to each link on
the auxiliary graph GA. This result will also imply the power level assignment
to each sensor node so to grant at least X flows between source-destination
pairs. Our formulation has the same constraints as the maximization problem: (i)
flow conservation (receiver and transmitter), (ii) flow symmetry, (iii) utilization
(receiver and transmitter), and (iv) reception quality. Flow bound is additional
constraint which requires total flow granted by the flow assignment should be at
least X . Thus: ∑

(s,t)∈F
f s,t ≥ X . (8)

Our mathematical program becomes:

Minimize
∑

(s,t)∈F

∑
i∈T, j∈R

f s,t
i,j Ci,j Subject to (2), (3), (4), (5), (6), (7), (8).

374 S.A. Camtepe

Ci,j = ET + ER is the energy cost of a unit flow on the edge (i, j) where i ∈ T
and j ∈ R. All other edges have zero costs.

Proof Sketch: We prove that MinCostKeyEstabFlow is NP-hard by using a
reduction from theWeighted MAX3SAT problem where each clause has a weight,
and the problem is to maximize the sum of the weights of satisfied clauses. The
Weighted MAX3SAT is both NP-hard and MAX-SNP [15] problem. We use
similar approach as in MaxKeyEstabFlow to show that MinCostKeyEstabFlow
problem is both NP-hard and MAX-SNP (see the appendix for formal proofs).

5 Conclusion and Discussions

Focus of this work is first to formulate the key establishment problem in wireless
sensor networks together with the physical layer properties, then to analyze its
complexity. We present mathematical programming formulations maximum key
establishment flow andminimum cost key establishment flow as variants of graph
augmentation problems. We prove that finding optimum solutions and finding
polynomial time approximations are both NP-hard. We place these problems in
inapproximability Class I [9] which is the richest class of all. Our results show
that post-deployment key establishment in distributed wireless sensor networks
is a hard problem. Most key management schemes trusting on post deployment
key establishment for secure connectivity may not be feasible and applicable to
practical solutions. Research should focus on making efficient use of deployment
knowledge, or on developing deterministic key management schemes (such as
[16–18]) which can ensure that any pair of nodes secure their communication
using symmetric or asymmetric keys without explicit key establishment flows.

References

1. Zhang, J., Varadharajan, V.: Wireles ssensor network key management survey and
taxonomy. J. Netw. and Com. App. 33 (2010)

2. Camtepe, S.A., Yener, B.: Key Management. In: Wireless Sensor Network Security.
Cryptology and Information Security Series. IOS Press (2008)

3. Santi, P., Maheshwari, R., Resta, G., Das, S., Blough, D.M.: Wireless link schedul-
ing under a graded sinr interference model. In: ACM FOWANC (2009)

4. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric sinr.
In: ACM MobiHoc (2007)

5. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets sinr: the
scheduling complexity of arbitrary topologies. In: ACM MobiHoc (2006)

6. Bhandari, V., Vaidya, N.H.: Secure capacity of multi-hop wireless networks with
random key pre-distribution. In: IEEE MCN (2008)

7. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: ACM CCS (2002)

8. Liu, D., Ning, P., Du, W.: Group-based key predistribution for wireless sensor
networks. ACM TOSN 4(2) (2008)

9. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company (1997)

Secure Connectivity in Wireless Ad Hoc Networks 375

10. Naor, D., Gusfield, D., Martel, C.: A fast algorithm for optimally increasing the
edge connectivity. SIAM J. of Comp. 26(4) (1997)

11. Nagamochi, H., Ibaraki, T.: Augmenting edge-connectivity over the entire range
in o(nm) time. J. Alg. 30(2) (1999)

12. Benczúr, A.A., Karger, D.R.: Augmenting undirected edge connectivity in (n2)
time. In: ACM-SIAM SODA (1998)

13. Savas, O., Alanyali, M., Yener, B.: Joint route and power assignment in asyn-
chronous multi-hop wireless networks. In: MedHocNet (2004)

14. Costa, M.C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer
multiflow: a survey. Elsevier J. of Op. Res. 162 (2005)

15. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comp. and Sys. Sci. 43(3) (1991)

16. Camtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms
for wireless sensor networks. IEEE/ACM TON 15(2) (2007)

17. Blom, R.: An optimal class of symmetric key generation systems. In: Beth, T.,
Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 335–338.
Springer, Heidelberg (1985)

18. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.:
Perfectly-secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)

A Proofs

Proof. (P2.1 MaxKeyEstabFlow is in NP-hard) We prove that MaxKeyEstab-
Flow is NP-Hard using a reduction from the MAX3SAT problem which is a truth
assignment to the variables {x1, x2, . . . , xn} to find maximum number of clauses
that can be satisfied in a boolean formula ϕ in the 3CNF form with clauses {C1,
C2, . . . , Cm}. We define a reduction τ from MAX3SAT to MaxKeyEstabFlow
in two steps. The first step reduces a MAX3SAT problem instance into a WSN
problem instance, and the second step derives an auxiliary graph formulation.
Step 1: Given a boolean formula ϕ in the 3CNF form with n variables and m
clauses, create a WSN deployment in an Euclidian plane (for 1 ≤ i ≤ m and
1 ≤ j ≤ n):

1. Create sets of sensor nodes: C = {Ci|1 ≤ i ≤ m}, D = {Di|1 ≤ i ≤ m},
X = {xj|1 ≤ j ≤ n} and X = {xj |1 ≤ j ≤ n}. Namely, create sensor nodes
Ci and Di for i

th clause, and sensor nodes xj and xj for jth variable.
2. Sensor nodes xj and xj have a maximum power level of ljmax = 1. Sensor

nodes Ci and Di have a maximum power level of limax = Lmax which covers
whole WSN and can use the RTS/CTS signalling to check availability of the
channel at receivers.

3. Only the sensor nodes xj and xj create interference on each other (a.k.a.
boolean variables xj and xj can not be true at the same time).

4. Distribute a key-chain KC to each sensor node. KCCi and KCxj (a.k.a.,
KCxj) should share a key if variable xj (a.k.a., xj) appears in ith clause.
Similarly, KCDi and KCxj (a.k.a., KCxj

) should share a key if variable xj
(a.k.a., xj) appears in ith clause. All other pairs of key-chains should not
share a key.

376 S.A. Camtepe

5. Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}. These are the pairs
of nodes which have physical links but do not share keys to secure their
communication.

6. Place the sensor nodes on a unit disk area: (a) Draw v × v (v = �√n�) grid
for n variables. (b) Each grid location should be a square of size 2αI × 2αI
where I is the distance below which SINR on receiving node due to other
nodes is less than the threshold based on Formula 1. αI (for a constant α) is
the distance over which interference is negligible. (c) For each sensor node xj ,
select a random empty grid coordinate and locate the node at the center of
the grid location. (d) Place each sensor node xj at a random location where
Euclidian distance between d(xj , xj) < I. Thus, SINR on xj as receiver can
be less than the threshold only due to xj .

Step 2: Given a WSN deployment which is reduced from a boolean formula ϕ
in the 3CNF form with n variables and m clauses, develop an auxiliary graph
formulation as described in Section 4.1 and as illustrated in Figure 4:

1. Create auxiliary graph GA = (VA, EA) (for 1 ≤ i ≤ m, 1 ≤ j ≤ n and
1 ≤ g ≤ Lmax):
(a) Receiver nodes are R = C

⋃
D
⋃
X
⋃
X.

(b) Add transmitter nodes C
Tg

i , D
Tg

i , xTj and xTj .

(c) Add directed edges (CR
i , C

Tg

i) and (DR
i , D

Tg

i), (xRj , x
T
j) and (xRj , x

T
j).

(d) Add directed edges (C
Tg

i , xRj) (a.k.a., xRj) and (xTj , C
R
i) (a.k.a, xTj) if

xj (a.k.a, xj) shares a key with Ci.

(e) Add directed edges (D
Tg

i , xRj) (a.k.a., xRj) and (xTj , D
R
i) (a.k.a, xTj) if

xj (a.k.a, xj) shares a key with Di.
2. Set edge capacities as unlimited.
3. Create set of flows F = {(Ci, Di), (Di, Ci)|1 ≤ i ≤ m}.
This algorithm transforms a boolean formula ϕ in 3CNF form with n variables
and m clauses first into a WSN deployment with 2(m + n) nodes, and then
formulates it as an auxiliary graph GA with (2m(Lmax + 1) + 4n) nodes and
O(m+2n) edges where |F| = 2m. Objective of finding a truth assignment to the
variables so that number of clauses that can be satisfied is maximized becomes
finding maximum number of flows in F which can be granted concurrently both
on the WSN and on the auxiliary graph GA subject to interference constraints.
Thus, the transformation from MAX3SAT to MaxKeyEstabFlow can be carried
out in polynomial time.

A solution to the problem instance τ(ξ) of MaxKeyEstabFlow in auxiliary
graph representation can be converted to a solution of problem instance ξ of
MAX3SAT in two easy steps in linear time. First, if total flow on the transmitter
xTj ≥ 1 (a.k.a. xTj ≥ 1) then set boolean variables xj = True (a.k.a. xj = True)
and xj = False (a.k.a. xj = False) for 1 ≤ j ≤ n. Note that the interference
constraint does not permit both flows xTj ≥ 1 and xTj ≥ 1. Second, if total flow

on both transmitters are xTj = 0 and xTj = 0, then set either (xj = True and
xj = False) or (xj = False and xj = True) for 1 ≤ j ≤ n. This assignment

Secure Connectivity in Wireless Ad Hoc Networks 377

Fig. 4. Auxiliary graph GA = (VA, EA) reduced from sample boolean formula ϕ =
((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)). There is only one transmit power level for the nodes
corresponding to the boolean variables. Nodes C1, C2, D1, D2 have Lmax transmit
power levels. Set of receivers are R = {xR

1 , x
R
2 , x

R
3 , x

R
1 , x

R
2 , x

R
3 , C

R
1 , CR

2 , DR
1 , DR

2 }, and
set of transmitters are T = {xT

1 , x
T
2 , x

T
3 , x

T
1 , x

T
2 , x

T
3 , C

Tg

1 , C
Tg

2 , D
Tg

1 , D
Tg

2 } for 1 ≤ g ≤
Lmax where VA = R

⋃
T . All edges have unlimited capacities. Finally set of flow is

F = {(C1, D1), (C2, D2), (D1, C1), (D2, C2)}.

does not change the number of the satisfied clauses in ξ, but some satisfied
clauses may have more than one variable set to True. Very similar steps apply
for converting the solution to the problem instance τ(ξ) of MaxKeyEstabFlow
in WSN to solution to the problem instance ξ of MAX3SAT in linear time. The
flows on sensor nodes xj and xj should be considered instead of the flows on
transmitters xTj and xTj .

Optimal solution to the instance ξ of MAX3SAT has c satisfied clauses if and
only if the optimal solution to the instance τ(ξ) of MaxKeyEstabFlow on WSN
and auxiliary graph representations has c flows (C,D) (i.e. flows (C,D), (D,C) ∈
F) which are granted. (1)MAX3SAT →MaxKeyEstabF low: assume that τ(ξ)
has an optimal solution d > c. Then it would be possible to satisfy more than
c clauses by simply setting True value for the respective variables. This con-
tradicts the fact that ξ has an optimal solution c. (2) MaxKeyEstabF low →
MAX3SAT : assume that ξ has an optimal solution d > c. Then it would be
possible to grant flow for d source-destination pairs without contradicting the in-
terference constraint. This contradicts the fact that τ(ξ) has an optimal solution
c. ��
Definition 3. [9, Definition 10.4] A maximization problem Π is MAX-SNP-
Hard if for every MAX-SNP problem Γ and every two constants c ≤ 1, ρ > 1,
there are two constants c′ ≤ 1, ρ′ > 1 such that there is a gap preserving reduction
from Γ to Π with parameters (c, ρ, c′, ρ′).

Proof. (P2.1 MaxKeyEstabFlow is in MAX-SNP) MAX3SAT is a MAX-SNP
problem [15] where its optimum c is a fraction equivalent to the maximum

378 S.A. Camtepe

number of satisfiable clauses divided by the total number of clauses. It is NP-
Hard to approximate MAX3SAT within a fixed ratio ρ = 1 + ε for ε > 0.
For proving inapproximability results, we use gap preserving reduction as de-
scribed in Definition 3. For every ε > 0, there is a gap preserving reduction
from MAX3SAT to MaxKeyEstabFlow that has parameters (c, 1+ε, c|F|/2,
1+ε) where F is the set of flows. We use the polynomial time reduction τ from
MAX3SAT to MaxKeyEstabFlow described in the NP-hard proof of MaxKey-
EstabFlow. Let ϕ be a boolean formula in 3CNF form with n variables and
m clauses. MAX3SAT(ϕ) represents the maximum number of satisfiable clauses
divided by the total number of clauses, and MaxKeyEstabFlow (τ(ϕ)) repre-
sents the maximum number of flows that can be granted. We will show that
MAX3SAT (ϕ) = c ⇔ MaxKeyEstabFlow (τ(ϕ)) = c.m. First, assume that
MAX3SAT(ϕ)=c. There must be c.m satisfied clauses. Each satisfied clause Ci

must have at least one satisfied variable where each of the corresponding trans-
mitter nodes has one unit of flow, meaning that corresponding flow (Ci, Di) can
be granted. Thus,MaxKeyEstabF low (τ(ϕ)) ≥ c.m. Second, assume that Max-
KeyEstabFlow (τ(ϕ)) = c.m. There must be c.m flows granted. Each granted
flow (Ci, Di) means one satisfied clause Ci so that MAX3SAT(ϕ) ≥ c. Thus:

– MAX3SAT (ϕ) = c ⇒ MaxKeyEstabF low(τ(ϕ)) = c.m
– MAX3SAT (ϕ) < c

1+ε ⇒MaxKeyEstabF low(τ(ϕ)) < c.m
1+ε .

This gap-preserving reduction from MAX3SAT shows that it is NP-Hard to
approximate MaxKeyEstabFlow within factor 1 + ε. Thus, MaxKeyEstabFlow
is MAX-SNP-Hard, meaning also that MaxKeyEstabFlow doesn’t have a poly-
nomial time approximation scheme (PTAS) unless P = NP . ��
Proof. (P2.2 MinCostKeyEstabFlow is in both NP-hard and MAX-SNP-hard)
We use the Weighted MAX3SAT problem where each clause has a weight, and
the problem is to maximize the sum of the weights of satisfied clauses. Weighted
MAX3SAT is a both NP-Hard and MAX-SNP-Hard [15] problem. We can show
that MinCostKeyEstabFlow problem is both NP-Hard and MAX-SNP-Hard by
using a polynomial time reduction from Weighted MAX3SAT to MinCostKey-
EstabFlow which is obtained by adding two simple steps to reduction algorithm τ
of NP-hard proof of MaxKeyEstabFlow. Consider a boolean formula ϕ in 3CNF
form with n variables and m clauses with weights (i.e. weight wi for the clause
Ci). First, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, set cost (−wi/2) for the edge (Ci, xj)
(a.k.a. (Ci, xj)) of WSN deployment where xj (a.k.a xj) appears in clause Ci

(set cost (−wi/2) for the edge (C
Tg

i , xRj) (a.k.a. (C
Tg

i , xRj)) of auxiliary graph
representation where 1 ≤ g ≤ Lmax. All other edges have zero costs. Second, set
X = 1. Problem of maximizing the sum of the weights of the satisfied clauses
becomes problem of minimizing the cost of granting one or more flows subject to
interference constraint. The rest of the proof follows the discussions in NP-hard
and MAX-SNP proofs of MaxKeyEstabFlow. We conclude that MinCostKey-
EstabFlow problem is both NP-Hard and MAX-SNP-Hard, meaning also that
MinCostKeyEstabFlow doesn’t have a polynomial time approximation scheme
(PTAS) unless P = NP . ��

Towards Privacy Preserving Mobile Internet

Communications – How Close Can We Get?�

Kristian Gjøsteen, George Petrides, and Asgeir Steine

NTNU, Trondheim, Norway

Abstract. In today’s 3rd Generation mobile communications, some pri-
vacy concerns of mobile phone users are still not dealt with. Most promi-
nent of these is the fact that mobile network operators learn both the
identity and location of each device at any given time in order to be
able to provide seamless services like telephony and internet access. In
addition, the same information can leak to independent eavesdroppers
using special equipment. The purpose of this paper is to investigate the
possibility of a privacy preserving alternative. Our findings show that we
can achieve anonymous internet access for mobile devices, and can build
conditional privacy preserving persistent connections to service providers
on top of it. As an alternative to mobile telephony, user-to-user mobile
internet telephony providing improved but not optimal levels of privacy
can be achieved under realistic assumptions, the limitations being due
to traffic analysis attacks.

Keywords: Privacy, Anonymity, Mobile communications.

1 Introduction

A functional requirement in mobile communications is that users of mobile
phones give frequent updates of their location to the mobile network operator
(MNO) they are connected to in order to be continuously able to receive calls and
enjoy seamless communication. In today’s 3rd Generation systems (UMTS [1])
this updating is done by initially sending the International Mobile Subscriber
Identity (IMSI) that is embedded on their smart card and uniquely identifies
them, and subsequently a Temporary Mobile Subscriber Identity (TMSI) gener-
ated by the MNO, to the MNO.

Despite the fact that IMSIs are transmitted as rarely as possible and TM-
SIs are changed frequently by the MNO in order to prevent user tracing by
eavesdroppers on the radio link, no protection is currently offered against ac-
tive attackers forcing the transmission of IMSIs instead of TMSIs1. Even if this
issue gets resolved by modifications to the current architecture [1], more seri-
ous privacy concerns are raised by the MNO’s ability to effortlessly learn each

� Funded by the Norwegian Research Council’s VERDIKT programme project 183195.
1 Such an attack is possible since an MNO can request a user’s IMSI (sent in clear)
before it authenticates itself to him, and can be mounted using an IMSI-catcher [6].

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 379–387, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

380 K. Gjøsteen, G. Petrides, and A. Steine

user’s location at any given time, which can lead to abuse similar to that in the
Deutsche Telekom scandal [9].

A related privacy issue is that when a mobile phone user wants to make a
call, he has to inform his MNO of the callee’s identity in order to get connected.
In addition, the contents of telephone conversations are available to the MNO
of both the caller and the callee. To sum it all up, MNOs learn everything there
is to know: who, where, and what.

Our contribution. In this article we investigate the extent to which the above
concerns can be addressed. The natural approach is to eliminate the source of
the problem, namely the MNO’s knowledge of the connecting user’s identity, and
see what can be achieved.

Although public key cryptography can offer solutions (anonymous authenti-
cation schemes such as [7,8] or the more general anonymous credential schemes
of [2] for instance), and modern mobile devices often have adequate computing
power to handle the associated expensive computations, it can also open up for
denial of service (DoS) attacks against MNOs by anonymous attackers: since
it is much easier to create a fake ciphertext than to validate one, a malicious
user can anonymously send large amounts of fake ciphertexts to the MNO, thus
forcing it to exhaust its resources in trying to check their validity. Preferably, we
would like to reserve a player’s ability to mount denial of service attacks until
after that player has been authenticated and thus become identifiable.

For this reason we propose a solution under a modified setting, similar to
what is realised today with virtual mobile network operators (VMNOs): MNOs
own and maintain the network infrastructure but do not have direct relationship
with customers. Instead, distinct intermediaries, the service providers (SPs), deal
with user subscriptions for network access.

Assuming such a setting, mobile phone users (henceforth simply referred to
as users) can anonymously establish encrypted communication channels with
MNOs with indirect authentication via their subscribed SP every time they
change their location. As a result, MNOs and active attackers cannot follow
users as they move around network locations (except by a specific DoS attack
or ordinary traffic analysis), while at the same time important features like user
and network authentication and radio link encryption are maintained (Sect. 3).

The next step is to provide equivalents to today’s services that preserve the
acquired anonymity. First, we argue that it is straightforward for users to anony-
mously access the internet using ephemeral pseudonyms provided by MNOs
(Sect. 3) and then sketch how through this anonymous internet connection users
can establish persistent connections with various content SPs (CSPs) (Sect. 4).

Finally, we outline how seamless privacy preserving mobile telephony is pos-
sible with the aid of a CSP, the telephony provider (TP), but unfortunately only
if both communicating parties are stationary. If at least one of them changes lo-
cation during a call then traffic analysis can correlate new and old pseudonyms.
Nonetheless, it is an improvement on the current state of affairs as both caller
and callee are anonymous and the contents of their conversation private for the
call’s duration (Sect. 5).

Towards Privacy Preserving Mobile Internet Communications 381

At a first glance, the solutions we have proposed might seem not to comply
with the laws of several countries, such as the European Union’s Data Retention
Directive [5], which require that records of information related to the activity of
users, like network entry point location for instance, are kept for some specified
amount of time. However, as will be seen in Sect. 3, anonymity and location
hiding are made possible by replacing TMSIs by temporary user-generated ses-
sion identifiers (SIDs) shared between MNOs and SPs. Therefore, if MNOs keep
records of the locations of SIDs, and SPs records of users’ identities associ-
ated with SIDs, a judicially invoked MNO–SP collaboration can disclose all the
required information about specific users. Similarly, MNOs, SPs and TPs can
together reveal all information regarding internet telephony since pseudonyms
are associated with SIDs. Moreover, dividing the stored information into parts
that on their own leak almost none of the private data of users, might have the
effect of lessening the security impact of such controversial laws.

Crucial for the viability of our proposal is billing. Possible solutions that do
not violate any of the anonymity requirements include fixed term contracts be-
tween users and SPs and SPs and MNOs (similar to current agreements between
MNOs and VMNOs), or having MNOs charge SPs according to the number of
their (anonymous) subscribers that connect to the network, without revealing
any location information. This should be possible as MNOs and SPs will be re-
sponsible only for connecting users to the network. Additional services will be
delivered by TPs and other CSPs, which for example can charge fixed subscrip-
tion fees. In general, devising a suitable business plan can vary from entity to
entity.

Related work. Anonymity has been considered in many fields of cryptography.
Modern anonymising networks, which are based on the mix networks of [3] and
onion routers (most notably the Tor project [11]), enhance user privacy by mixing
up the network traffic of different users to make tracing and traffic analysis
more difficult. Although they are interesting tools for obtaining unlinkability, in
the mobile devices case they can only be used once the device has established
connection to an MNO, a connection we require to be anonymous.

Other work on anonymity in mobile communications concerns a user’s privacy
with respect to various CSPs and eavesdroppers, whereas the MNO is assumed
to know both his identity and location (e.g. [12]).

2 Model and Privacy Goals

Users are assumed to have direct communication only with MNOs over a radio
link (RL). They enter and leave network positions (corresponding to base sta-
tions) and once in one, they receive all messages sent to it over the RL. In order
to identify messages intended for them, they need to prepend every message
they send to an MNO with a session identifier SID (like the IMSI or TMSI in
the present-day setting), with which the MNO will also prepend the reply. An
eavesdropper may choose to listen to the RL at certain positions, in which we
assume he gains full control (i.e. the ability to intercept and inject messages).

382 K. Gjøsteen, G. Petrides, and A. Steine

We also assume the existence of a secure communication channel (SEC) be-
tween all MNOs and SPs to which the adversary has no access, and that the
adversary is in full control of the internet over which all entities can have direct
communication, apart from users which have to go through an MNO over RL.

Our privacy requirement is that each entity should only ever learn one piece
of information about a user. MNOs and potential eavesdroppers always learn
a user’s position (i.e. the base station of connection) hence should never learn
his identity or be able to correlate his various positions. As will be seen, in the
schemes we develop SPs and CSPs learn the user’s identity from the user himself,
so they should never learn his position.

3 Secure and Anonymous Network Connection

A first step in achieving secure and anonymous connection between users and
MNOs is establishing a common secret. The kind of key establishment suitable
for the privacy issues we are trying to address is authenticated with one-sided
anonymity, in the sense that only one of the parties (the user) is anonymous with
respect to the other (the MNO). To achieve such anonymous authentication, a
third party (the SP) needs to vouch that the user is indeed a subscriber without
disclosing his identity and without learning his location. Note that vouching is
not an uncommon technique but in this case implies that an MNO–SP collusion
reveals everything. Figure 1 sketches a suitable protocol.

U: k, g MNO: g SP: k
sid,Token, gx,S sid,Token, n1

sid,Enck(sid,n1,n2,Token,Token
′,N) sid,Enck(sid,n1,n2,Token,Token

′,N)

sid, n1

sid, gy, signature

sid, n2,MAC sid, n2

sid, ok

Fig. 1. Outline of an anonymous key establishment protocol. The user U anonymously
authenticates to the local MNO N with the aid of his subscribed SP S. Communication
between users and MNOs is over RL and between MNOs and SPs over SEC, both using
a user-generated session identifier sid. Enck denotes encryption using the symmetric
key k, and the signature and MAC (keyed with a function of the agreed secret gxy,
where g is a generator of a multiplicative cyclic group of suitable prime order) are on
the common user-MNO view at the time. A user should not run concurrent sessions.

The main idea is that instead of having a unique IMSI and a subscriber
key (both shared with the MNO) embedded on their smart cards, users have a
subscriber key shared with their subscribed SP, and an identity token created by

Towards Privacy Preserving Mobile Internet Communications 383

the SP. As a result, instead of identifying themselves directly to the MNO using
the IMSI, they can do so to the SP using the token which is indecipherable to the
MNO. The SP can then confirm to the MNO that users are subscribers without
disclosing their identity. Users and MNOs establish authenticated secrets using
essentially a Diffie–Hellman key agreement [4].

Authentication: First note the requirement that the user never runs two instances
of the protocol in parallel. If the ciphertext is decipherable, he knows it came
from his SP, and if it contains the identifier sid it is not a replayed message. If it
contains the original token sent, it means no one is trying to link this session to a
previous one. When he successfully verifies the MNO’s signature, he is convinced
about the MNO’s identity and hence the origin of the Diffie–Hellman partial key.

When the MNO receives its nonce n1 from the user, it concludes that the user
is a subscriber of SP since he was able to decrypt the ciphertext. On receiving the
MAC from the user, the MNO is convinced that the user accepted the signature
and agrees on all previous messages. At this point there are two possibilities for
the origin of the Diffie–Hellman partial key: either an honest subscriber of the SP
or a corrupted SP eavesdropping the radio link at this position, masquerading
as a user. The latter case, though possible, is improbable as it lacks motivation.

Finally, when the SP receives back its nonce n2, it is convinced of the user’s
identity and acknowledges this with the final ok message to the MNO.

Anonymity and location privacy: The SP should construct tokens as independent
encryptions of the user’s identity, and since no other part of the protocol contains
information about the user’s identity, users remain anonymous to anyone else.

The SP, unless listening from beforehand at the particular position and sees
the token, learns nothing about the user’s location.

Linkability issues: To avoid linkability, fresh secrets should be established using
distinct tokens every time a user enters a new location. For this reason, tokens are
independent encryptions of a user’s identity and fresh tokens are sent encrypted
during a protocol run. However, in case the protocol fails before a user receives
a new token, reuse of the old token can make linking the new session with
previous ones possible both for the MNO and any eavesdroppers. This situation
is insignificant if the user remains in the same location, but can otherwise allow
the tracking of anonymous users as they move around the network.

As an alternative that could prevent linkability, one can always choose to
modify the protocol to use public key cryptography for the user’s identification
to the SP rather than tokens. We, however, prefer not to do so for the reason that
token verification uses symmetric encryption which allows for fast and inexpen-
sive ciphertext validity checks by the SP, whereas if using public key methods
this can lead to troublesome DoS attacks, just as we mentioned in Sect. 1. In
comparison, UMTS employs neither tokens nor public key cryptography: as al-
ready pointed out, IMSIs are sent in cleartext with consequence the possibility
to track specific users.

384 K. Gjøsteen, G. Petrides, and A. Steine

After successfully establishing a secret, the user and the MNO can extract
from it a temporary session identifier for the radio link, and two keys for en-
crypting the radio link communication, separated in upstream and downstream
(a standard tool), thus achieving the required anonymous and secure connection.
If secrets are authenticated and uncorrelated, then so are the communication
channels, and if transmitted ciphertexts are authenticated then the adversary
cannot create valid ones and inject them, but can only replay observed ones.

MNOs can then provide on-demand ephemeral pseudonyms to connected users
for use as identifiers in internet communication. On providing them, a fresh nonce
should be used to prevent replays that would result in users re-obtaining and
reusing the same ones and hence in user tracking. Since internet communication
for users is via MNOs which forward messages from senders to recipients (as
assumed in Sect. 2), if pseudonyms are session-tied and contain identifying in-
formation on the issuing MNO, communication will be possible without leaking
any user related information. Thus, internet access will be anonymous.

4 Persistent Connection to Content Service Providers

Users can utilise their internet pseudonyms in establishing location hiding per-
sistent connections to various content SPs (CSPs) as sketched in Fig. 2.

U CSP
EncpkS(U, k)

ps1
Enck(nonce,Token)

ps1
Enck(signature)

ps1

1. User’s registration to a CSP.

U : k CSP: k
Token,Enck(Renew)

ps2

Enck(Token
′)

ps2

2. User’s pseudonym update to a CSP.

U : k CSP: k
Enck(message1)

ps1

Enck(message2)
ps1

3. User’s communication with a CSP.

Fig. 2. Outline of a persistent connection protocol. Communication is over the internet
using pseudonyms psi via the issuing MNO. EncpkS and Enck respectively denote en-
cryption using CSP’s public key and symmetric key k. The signature is on the common
user-CSP view at the time.

Authentication: A user authenticates to a CSP during registration using a signa-
ture that includes the fresh nonce sent by the CSP. The CSP is authenticated by

Towards Privacy Preserving Mobile Internet Communications 385

using the key sent by the user, as he is the sole owner of his decryption key. Use
of the shared key authenticates any further communication between the two.

A user re-authenticates to a CSP from a new position by using the token
received from the CSP encrypted under the shared symmetric key and receives
a new token for further re-authentication.

Note that using public key encryption in the first communication between a
user and a CSP can allow for a DoS attack as we have described earlier. How-
ever, a user mounting such an attack can be tracked down via his pseudonym.
Therefore, the only real threat is when the attacker is someone with a radio
transmitter that uses bogus pseudonyms, which is very difficult to track down.

Anonymity and location privacy: As in Sect. 3, if the CSP constructs tokens
independently, users remain anonymous to anyone else.

By using pseudonyms, users do not leak any information on their location to
the CSP they connect to.

Linkability issues: As a user moves around the network, neither the MNO nor
external attackers should be able to correlate the user’s various pseudonyms.
Receiving a fresh token every time the user authenticates to the CSP from a
new position makes subsequent re-authentication messages unlinkable. In case
this new token is not received after a specified amount of time, the user re-
registers with the CSP from scratch, thus retaining unlinkability. However, in
special cases of identifiable traffic flow patterns (e.g. heavy flow), traffic analysis
is enough to make the linking between pseudonyms possible, both by the MNO
and external attackers.

5 Seamless Internet Telephony Services

By subscribing and establishing a persistent connection to a special CSP, the
telephony provider (TP), a user can be called by other users as sketched in Fig. 3.

UA TPB : k UB : k

EncpkT(EncpkB(UA, k
′, signature),UB)

ps1

Enck(cid,EncpkB(UA, k
′, signature))

ps2Enck(cid,Enck′(ps3))

ps2

Enck′(ps3)

ps1 Enck′(m)

ps4 ps3
1. User A calls user B via B’s TP.

Fig. 3. Outline of call initialisation in a calling protocol. Communication is over the
internet using pseudonyms psi via the issuing MNO. EncpkT and EncpkB denote en-
cryption using TP’s and UB ’s public keys, Enck and Enck′ encryption using symmetric
keys k and k′, and cid is a temporary call identifier.

386 K. Gjøsteen, G. Petrides, and A. Steine

The idea is that the caller requests, via the callee’s TP (found in a publicly
available phone directory), a pseudonym at which he can reach the callee directly.
Once the callee accepts a call by sending the requested pseudonym via his TP,
further communication with the caller will be private with respect to the TP
via the direct sending of a symmetric encryption key and use of pseudonyms
unknown to the TP.

Authentication: The caller need not authenticate to the TP, and authenticates to
the callee using a signature. The callee is authenticated to the caller by using the
symmetric key the caller sent him, as he is the only one who could decrypt the
message containing it. Use of the shared symmetric key authenticates any further
communication between the two. Regarding DoS attacks, the same applies as in
Sect. 4.

Anonymity and location privacy: The use of public key cryptography and pseudo-
nyms ensures that the caller’s identity is revealed only to the callee and no one
but the TP learns that someone is calling the callee.

Once again, due to the use of pseudonyms, no part of the protocol contains
information on the user’s location and hence TPs learn nothing about it.

Linkability issues: If a user moves while engaged in a conversation, changing
his pseudonym cannot protect him from traffic analysis by eavesdroppers as the
person he is calling with will still be using the same pseudonym (or a different
one that the MNO can associate to the previous) and the pseudonyms can be
correlated.

6 Conclusions

In this paper we have sketched how a privacy-preserving alternative to the cur-
rent state of affairs in mobile communications can be achieved, though with
certain limitations and without considering access to location based services.
The added computational overhead due to the required signature verification
and key establishment exponentiations should not have a noticeable impact on
the batteries of mobile phones, unless users move around base stations too fre-
quently. What we have presented is quite abstract, and the interested reader is
referred to [10] where universally composable protocols capturing most of these
ideas are described and analysed.

References

1. 3GPP TS 33.102: Security Architecture, Ver. 11.5.0 (2013),
www.3gpp.org/ftp/Specs/html-info/33102.htm

2. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

www.3gpp.org/ftp/Specs/html-info/33102.htm

Towards Privacy Preserving Mobile Internet Communications 387

3. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of ACM 24(2), 84–88 (1981)

4. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

5. The European Parliament and Council: Directive 2006/24/EC. L 105, pp. 54–63
(2006)

6. Fox, D.: Der IMSI-Catcher. Datenschutz und Datensicherheit 26(4) (2002)
7. Lindell, Y.: Anonymous Authentication. Journal of Privacy and Confidential-

ity 2(2), 35–63 (2010), repository.cmu.edu/jpc/vol2/iss2/4
8. Nguyen, L., Safavi-Naini, R.: Dynamic k-Times Anonymous Authentication. In:

Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
318–333. Springer, Heidelberg (2005)

9. Spiegel Online: Did Deutsche Telekom Spy on Journalists and Board Members?
(2008), www.spiegel.de/international/business/0,1518,555363,00.html

10. Steine, A.: Privacy-Preserving Cryptographic Protocols. PhD Thesis, Norwegian
University of Science and Technology (2012)

11. The Tor Project, www.torproject.org/index.html.en
12. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.-R., Winter, J.:

Lightweight Anonymous Authentication with TLS and DAA for Embedded Mo-
bile Devices. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84–98. Springer, Heidelberg (2011)

repository.cmu.edu/jpc/vol2/iss2/4
www.spiegel.de/international/business/0,1518,555363,00.html
www.torproject.org/index.html.en

Count-Min Sketches for Estimating Password

Frequency within Hamming Distance Two

Leah South and Douglas Stebila

School of Mathematical Sciences, Queensland University of Technology,
Brisbane, Queensland, Australia

leah.south@connect.qut.edu.au, stebila@qut.edu.au

Abstract. The count-min sketch is a useful data structure for recording
and estimating the frequency of string occurrences, such as passwords,
in sub-linear space with high accuracy. However, it cannot be used to
draw conclusions on groups of strings that are similar, for example close
in Hamming distance. This paper introduces a variant of the count-min
sketch which allows for estimating counts within a specified Hamming
distance of the queried string. This variant can be used to prevent users
from choosing popular passwords, like the original sketch, but it also
allows for a more efficient method of analysing password statistics.

Keywords: count-min sketch, Bloom filter, password frequency, approx-
imate string matching.

1 Introduction

The use of passwords for identity verification is widespread. There is a long line
of research on analyzing the security and guessability of password [8,3]. In large
online systems that we see on the Internet today, an important characteristic that
affects the overall security of the system is that passwords within the system
should not be too popular. In an ideal setting, of course, users would create
a unique password that is hard to guess, and not popular, so that only that
user and no one else could access their account. However, users tend to choose
passwords that are easy to remember and familiar to them, such as dictionary
words, or perhaps strings associated with the system in question. This tendency
means that certain passwords are used with higher frequency, making them
popular.

If an attacker knew the distribution of passwords, they could use its statis-
tics and guess the most popular passwords first. This is known as the statistical
guessing technique [9]. When there is a high percentage of popular passwords,
the attacker can compromise a high percentage of accounts. For example, the
2009 breach of RockYou.com’s 32 million account password database showed that
the most popular password (123456) was used by 0.9% of all accounts, and the
next 4 most popular passwords (12345, 123456789, password, and iloveyou)
were used by another 0.8% of all accounts. Clearly, the system was not screening
passwords for popularity. As a result, a statistical guessing attack would lead to

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 388–402, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Count-Min Sketches for Estimating Password Frequency 389

millions of accounts being compromised. In order to prevent a successful statis-
tical guessing attack such as this, it is common to limit the number of guesses;
more recently, it has been proposed [9] to limit the popularity of passwords:
when users try to set their password to a string that is used in a percentage of
accounts above some threshold, it is rejected and the user is required to choose
another password.

In order to keep track of password popularity, some sort of system which
counts passwords must be used. Online sites with a large number of users are
best suited for systems which restrict popular passwords, as such sites are at
high risk of trawling attacks, in which attackers aim to guess the passwords to
many accounts without targeting any single account.

How can we store password information in a way that allows us to calculate
frequency when users attempt to register a password? The simplest technique for
calculating frequency during password registration would be to store a separate
table of passwords along with their frequency. This is undesirable both for effi-
ciency reasons (since the size of the table grows linearly in the number of distinct
passwords) and for security reasons (since it immediately provides an attacker
with the full distribution of passwords). Best-practice recommendations for stor-
ing passwords for login involve storing salted password hashes for each account;
the set of such passwords does not admit statistical analysis since, by design,
the hash of the same password under different salts yields different, seemingly
independent, outputs, thus yielding no information about the frequency with
which a password is used.

1.1 Bloom Filters and Count-Min Sketches

The Bloom filter [2] can be used [10] to store in sub-linear space a table repre-
senting a dictionary of prohibited passwords. The system is setup as follows.
A w × h table T of bits is used, along with h independent hash functions
hash1, . . . , hashh : {A−Z, a−z, 0−9, . . .}∗ → {1, . . . , w}. Each word x in the dic-
tionary of prohibited passwords is hashed under each hash function hashk, and
the entry Thashk(x),k is set to 1. When a proposed password y is to be tested for
membership in the list of prohibited passwords, if all of the values Thashk(y),k are
equal to 1, then y is deemed to be prohibited, but if at least one of those table
entries is zero, then y is not prohibited. There are no false negatives, meaning
that it is impossible for a password that is prohibited to not be recognized as
such, but there may be false positives, meaning that some passwords that are
not prohibited may, due to collisions on all rows, still be identified by the table
as prohibited. Assuming the hash functions are independent random functions,
the false positive rate (1 − (1 − h

w)N)h, where N is the number of prohibited
passwords originally added to the table [10].

The count-min sketch [5] enhances the Bloom filter by storing a table of in-
tegers, not bits. The update(x, c) function records that string x has been used
c more times by adding c to each table entry Thashk(x),k. The estimate(x) func-
tion returns an estimate on the number of times that string x has been used
by computing min{Thashk(x),k : 1 ≤ k ≤ h}. The use of count-min sketches for

390 L. South and D. Stebila

recording password frequency was proposed by Schechter, Herley, and Mitzen-
macher [9], who propose preventing users from registering with passwords whose
current popularity is above a certain threshold. As with the Bloom filter, false
negatives cannot occur, meaning that for any password x it is impossible for
the estimate(x) to return a value lower than the sum of the c over all calls of
update(x, c). However, false positives may still occur, meaning that estimate(x)
may over-estimate the frequency of password x, due to collisions across all hash
functions. For a single hash, the expected error due to collisions is N/w, where
N is the total sum of the counts of all passwords; this is because the total count
of N will spread approximately evenly across all w columns in the table. By the
Markov inequality, the error of the count min-sketch (the minimum across all
hash functions) is at most 2N/w with probability at least 1− (12)

h.

1.2 Contributions

When used for passwords, the Bloom filter and the count-min sketch can be
useful in prohibiting certain passwords or limiting the frequency with which
any password is registered. However, they cannot accommodate any relation
between ‘similar’ passwords. For example, a user who tries to register the pass-
word password and finds that it is prohibited may try again with p@ssword or
passw∅rd. An attacker, knowing this prevalence for ‘leetspeak’, may also make
use of these similarities in an attack strategy that targets ‘almost popular’ pass-
words. Since the Bloom filter and count-min sketch use independent random
passwords, they lose any semantic connection between such similar strings.

In this work, we explore a variant of the count-min sketch that allows one
to compute estimates not only for the given string but for all strings within
a fixed Hamming distance of the given string. This technique allows a system
to detect frequently used passwords at the registration phase. Our technical
approach is to introduce ‘wildcard’ characters and then record and estimate
based on all strings that can be constructed with wildcard characters within the
required Hamming distance. This technique imposes a computational overhead
of
(
�
d

)
, where � is the length of the password in question and d is the maximum

Hamming distance. This compares favourably with the naive technique which
would have a computational overhead of

(
�α
d

)
, where α is the size of the alphabet.

We provide false positive error rates as well, and compared with the naive method
our technique provides better accuracy for the same size table for a wide range of
password lengths. Our technique can naturally be extended to higher Hamming
distances.

2 Related Work

While the Bloom filter and count-min sketch are widely used, there are several
other methods to store estimate counts, some of which may be useful in obtaining
statistics on groups of similar passwords.

There have been some systems in the past which have stored cleartext pass-
words alongside their counts. This method is mostly outdated due to the lack of

Count-Min Sketches for Estimating Password Frequency 391

security it provides. If attackers gain access to password databases such as these,
a highly successful statistical guessing attack can be carried out because the
actual passwords are visible and there are no false positives - the exact counts
are known. Using hash functions is preferable to this method.

Decision trees, as suggested by Bergadano, Crispo and Ruffo, can be used to
determine password membership. These decision trees consist of nodes for par-
ticular attributes, arcs for values of these attributes and leaves for classification
of whether or not the password has been used before in that database [1]. When
using decision trees, there is a training phase in which the nodes, arcs and leaves
are chosen to produce the best results. For each update to the database, the
training phase must be repeated. Due to this, decision trees can be used for
determining membership but are not as practical when frequent updates may be
involved.

There has also been some work on the topic of determining popularity of sim-
ilar words. This includes work which allows for checking membership of words
within Levenshtein distance 1, that is words which have only one insertion, dele-
tion or substitution. Manber and Wu [7] suggested an approach similar to the
original Bloom filter, with the main difference being that the membership of
words within Levenshtein distance 1 are checked in the estimation stage. It is
proposed that if any password within distance 1 appears to be positive, the pass-
word cannot be used [7]. As with all Bloom filter-based techniques, this only
records the binary data of whether two similar passwords have been used, not
counts on how frequently similar passwords are used.

3 Construction

The adaptation of the original count-min sketch that is introduced in this paper
allows for the popularity estimations of words within Hamming distance zero
to two, that is words that differ by up to two substitutions. Like the count-min
sketch, this adaptation consists of three main parts: hashing the passwords, up-
dating the table and estimating the counts. In Appendix A, we provide a worked
example of each of the three operations—hashing, updating, and estimating.

3.1 Hash

We represent passwords x as integers X . Any canonical representation of a word
as an integer will suffice. For expository convenience, we can imagine a mapping
of an �-letter word x = x1 . . . x� where each character xi is coded as a two-digit
integer Xi ∈ {00, . . . , 98}; the integer 99 is reserved to represent a wildcard char-

acter *. The vector 〈X1, . . . , X�〉 is then viewed as an integerX =
∑�

i=1 100
i−1Xi.

This suffices to encode for example all passwords that can be typed using char-
acters on a standard US keyboard.

As in [6], each hash function hashk is a Carter–Wegman 2-universal hash
function [4] of the form

hashk(x) = (((akX + bk) mod pk) mod w) + 1 ,

392 L. South and D. Stebila

where X is the canonical integer representation of the word x, pk is a prime
number much larger than w (recall w is the width of the table), say pk = 231−1 or
pi = 261−1, and ak and bk are chosen uniformly at random from {0, . . . , pk−1}.
We can simplify to using the same prime p = p1 = · · · = ph across all hash
functions, but all ak and bk need to be chosen independently to ensure negligible
probability of collisions; otherwise the benefits of using multiple hash functions
will be eliminated.

We define the vector-wise hash function hash(x) where the kth entry of hash(x)
consists of hashk(x) with ak and bk.

3.2 Update

The function update(T, x, a, b, c) → T ′ updates the sketch based on the previous
table T , the password x to be updated, the values or vectors of a and b for the hash
functions and the amount of times c that the password is being added. The update
algorithm in this work differs greatly to that in the traditional count-min sketch.

Firstly, the count for the actual password is updated. Like the original count-
min sketch, this is done by finding the hash of the password for each hash function
then updating the count at these positions in the table. Next, the updates are
done for words within distance 1. To do this, a ‘wildcard character’ is introduced.
This wildcard character, which for our canonical encoding above is denoted by
99, is used to group similar passwords together: for example if the word abcd, or
〈a, b, c, d〉, is represented in integer form as 〈1, 2, 3, 4〉, then 〈99, 2, 3, 4〉 represents
*bcd, all four letter words ending in bcd. A wildcard character indicates that any
character could go in its place. After the count of the actual password is updated,
all wildcard passwords within Hamming distance 1 are updated by creating
� = length(x) variations of the password, each with a different character from
the initial word replaced with 99, then hashing these variations and updating
their positions in the table. Next, the wildcard words within Hamming distance
2 of the password x are hashed and their positions in the table are updated.

In Algorithm 1, update, using the wildcard character means that � additional
updates are done for adding wildcard words within distance 1. The alternative,
naive technique, would be to search all α� passwords within distance 1 during
the estimate algorithm, where α is the size of the alphabet. When the password
length � " α, the proposed technique is much more efficient than the naive
technique.

3.3 Estimate

The function estimate(T, x, a, b) is used to obtain estimates of the count of pass-
words at exactly Hamming distances 0, 1, and 2 of x and is specified in full in
Algorithm 2.1

1 Note that we have estimate return estimates for counts of passwords at exactly, rather
than within, the specified Hamming distance for clarity of exposition; estimates
within the specified distance can be found by summing the estimates exactly at all
distances less than or equal to.

Count-Min Sketches for Estimating Password Frequency 393

Algorithm 1. update(T, x, a, b, c)

1: T ′ ← T
2: H ← hash(x, a, b)
3: for k = 1 to h do
4: T ′

Hk,k
← T ′

Hk,k
+ c

5: for i = 1 to � = length(x) do
6: x′ ← x
7: x′

i ← 99
8: H ′ ← hash(x′, a, b)
9: for k = 1 to h do
10: T ′

H′
k
,k ← T ′

H′
k
,k + c

11: for i = 1 to �− 1 do
12: for j = i+ 1 to � do
13: x′′ ← x
14: x′′

i ← 99
15: x′′

j ← 99
16: H ′′ ← hash(x′′, a, b)
17: for k = 1 to h do
18: T ′

H′′
k
,k ← T ′

H′′
k
,k + c

19: return T ′

At distance 0. When the specified Hamming distance d is zero, that is, when the
count of the actual word is desired, the estimate process is very similar to the
original count-min sketch. The h different hashes of the password and the counts
at all h positions in the table are found. These counts can then be put into a
vector est0 of length h, where each element represents the count at a different
hash function. The resulting estimate est

0
is the minimum of these counts.

At distance 1. At a maximum Hamming distance of one, the process is slightly
more complex. First, estimates est1i , i = 1, . . . , �, for the frequency of words that
may differ from x in the ith character; each of these estimates can be found using
the technique estimating the (distance 0) occurrences of the wildcard word. In
other words, est1i is the (distance 0) estimate for the wildcard “word” x′ where
the ith character of x has been replaced with the special wildcard character.
Once estimates est1i for the frequency of words that may differ from x in the

ith character have been found, we can find an estimate est
1
for the number of

occurrences of words at distance 1 from x by summing est1i for all i, then subtract

�est
0
.

The reason for the subtraction is as follows. As explained in the update section,
when a single password x is added into the database, the counts for the exact
password and the counts for all � = length(x) passwords within distance 1 are all
increased. In the estimation stage, the counts for all passwords with one wildcard
character, or within distance 1, are summed together. This means that the count
for the exact password has been included � times in the calculation, when it

394 L. South and D. Stebila

should only have been included once. To overcome this problem, the count of
that exact password multiplied by the length of the password is subtracted.

At distance 2. The frequency estimate est
2
for passwords at distance 2 is found

in a similar manner to that of distance 1. For each of the
(
�
2

)
wildcard passwords

of x that may differ in the ith and jth characters, we compute (distance 0)
estimates est2i,j of the wildcard “word” x′′ where the ith and jth characters of
x have been replaced with the special wildcard character. We then sum these
estimates of words within distance 2. However, again we have overcounted. The
words at precisely distance 1 have been counted �− 1 times. Similarly, the word
at precisely distance 0 has been counted

(
�
2

)
times.

Algorithm 2. estimate(T, x, a, b)

1: H ← hash(x, a, b)
2: for k = 1 to h do
3: est0k ← THk,k

4: est
0 ← mink{est0k}

5: for i = 1 to � = length(x) do
6: x′ ← x
7: x′

i ← 99
8: H ′ ← hash(x′, a, b)
9: for k = 1 to h do
10: est1i,k ← TH′

k
,k

11: est1i ← mink{est1i,k}
12: est

1 ← (∑
i est

1
i

)− � est
0

13: for i = 1 to �− 1 do
14: for j = i+ 1 to � do
15: x′′ ← x
16: x′′

i ← 99
17: x′′

j ← 99
18: H ′′ ← hash(x′′, a, b)
19: for k = 1 to h do
20: est2i,j,k ← TH′′

k
,k

21: est2i,j ← mink{est2i,j,k}
22: est

2 ←
(∑

i,j est
2
i,j

)
− (�− 1) est

1 − (
�
2

)
est

0

23: return 〈est0, est1, est2〉

4 Analysis of Construction

4.1 Error

Like the original count-min sketch, collisions can occur in this adaptation. These
collisions result in some error, causing either slight overestimations of counts or
false positives.

Count-Min Sketches for Estimating Password Frequency 395

The error in estimating exact words can be expressed fairly simply. In deter-
mining this error relative to the original sketch, it is important to note that the
total count for this method is not the same as what it would be in the original
count-min sketch. In this adaptation of the sketch, the total count across the
sketch is (1+ �+

(
�
2

)
) times larger than the actual total of passwords used. This

additional count is the result of the update stage, in which the password itself,
all � passwords within distance 1 and all

(
�
2

)
combinations of passwords within

distance 2 are added into the sketch. Let N̂ = (1 + � +
(
�
2

)
)N denote the total

count on the new sketch, where N is the total number of (non-distinct) passwords
entered. In general, hash outputs are expected to spread approximately evenly
across all columns of the table, making the average count per hash the quotient
of the total sum of counts and the width w of the table: N̂/w. The expected
maximum error is therefore N̂/w, which may occur, for example, if an estimate
is done on a password which is not present but happens to have the same hash
across all h hash functions as other passwords which have a count of N̂/w.

The expected maximum error for estimating counts of passwords at distance
1 can be derived from the formula for distance 1 in Algorithm 2:

error(est
1
) ≤ error

(∑
i

est1i

)
+ error(� est

0
) .

Since each term of
∑

i est
1
i is calculated as distance-0 estimate, the error of each

term is the same as the error in a distance-0 estimate, and thus

error(est
1
) ≤ � error(est

0
) + error(� est

0
) ≤ 2� error(est

0
) = 2�

N̂

w
.

For passwords at distance 2, there is another increase in error. Based on the
estimate for words at distance 2 in Algorithm 2, the expected maximum error is

error(est
2
) ≤ error

⎛⎝∑
i,j

est2i,j

⎞⎠+ error((� − 1) est
1
) + error

((
�

2

)
est

0

)
.

Since each term of
∑

i,j est
2
i,j is calculated as distance-0 estimate, the error of

each term is the same as the error in a distance-0 estimate, and thus

error(est
2
) ≤
(
�

2

)
error(est

0
) + error((� − 1) est

1
) + error

((
�

2

)
est

0

)
.

396 L. South and D. Stebila

Simplifying and substituting, we get

error(est
2
) ≤
(
�

2

)
error(est

0
) + (�− 1) error(est

1
) +

(
�

2

)
error(est

0
)

≤
((

�

2

)
+ (�− 1)(2�) +

(
�

2

))
error(est

0
)

=

(
2

(
�

2

)
+ 2�(�− 1)

)
error(est

0
)

=

(
2

(
�

2

)
+ 4

(
�

2

))
error(est

0
)

= 6

(
�

2

)
error(est

0
) = 6

(
�

2

)
N̂

w
.

4.2 Comparison with Naive Method

The purpose of the adaptation is to provide a more effective method of estimating
counts of passwords within specified Hamming distances. While the count-min
sketch can be used to do this, this naive method using the original sketch—
incrementing the entry for every one of the α

(
�
d

)
words within distance d in an

alphabet of size α—would be less efficient and have a higher error rate.
In this section, a comparison of efficiency and error is carried out. All of the

following graphs have the same response variable: the expected average error as
a multiple of N

w where N is the total number of passwords entered (also the total
count in the original sketch) and w is the width of the table.

Estimates at distance 0. When estimating how many times a specific word ap-
pears in a database (i.e. estimating passwords at distance zero), the original
count-min sketch is more effective. The expected maximum error in estimating

counts is N
w in the original method and N̂

w , or (1+ �+
(
�
2

)
)N/w, in this variation.

Therefore the expected maximum error for estimating counts at distance zero
will always be 1+ �+

(
�
2

)
times larger in this variation. However, this increase in

error is not a major problem since this sketch was not designed for estimating
exact word counts.

Estimates at distance 1. The benefits of using this modified sketch are more
evident when estimating counts at distance 1 of a password. In order to es-
timate counts at distance 1 of a specified password using the original sketch,
multiple estimates would have to be done. More specifically, the number of es-
timates would be α�, where α is the size of the alphabet and � is the length
of the password. Since the error in estimating each individual password is N

w ,
the expected maximum error in estimating α� passwords is α�N/w. With the
new method, the expected maximum error in estimating words at distance 1 is
2�N̂/w = 2�(1 + � +

(
�
2

)
)N/w. A comparison of these errors can be seen in Fig-

ure 1, where the size of the alphabet has been set to α = 72 (26 uppercase and

Count-Min Sketches for Estimating Password Frequency 397

26 lowercase letters, 10 numbers, and 10 special characters). From this graph, it
can be seen that the error for the proposed method is lower until the length of
the password reaches nine characters.

2 3 4 5 6 7 8 9 10

500

1,000

Password length

E
rr
o
r
fa
ct
o
r

naive scheme

proposed scheme

Fig. 1. Error as a multiple of N/w for passwords at distance 1, using a count-min
sketch supporting maximum distance of 2, compared with naive scheme

Note that this calculation above assumes that the update stage is as described
in Section 3.2, allowing for estimates within distance 2, even though we are
currently estimating distance 1. If the sketch is not going to be used to estimate
counts at distance 2 at all, then it is possible to remove the distance 2 section.
Updates for passwords at distance 2 would then not be included, making the
expected maximum error for words at distance 1 equal to 2�(1+�)N/w. A graph
comparing the expected maximum error using the traditional method and this
variation in which only distance 1 is included can be seen below, in Figure 2. For
this graph, the size of the alphabet is again α = 72. The proposed method has
a lower error than the naive method until the length of the password reaches 36
characters.

Estimates at distance 2. For passwords at distance 2,
(
�
2

)
α estimates would have

to be done using the original sketch. This makes the error for the original sketch
α
(
�
2

)
N/w whereas our proposed technique has an error of 6

(
�
2

)
(1 + �+

(
�
2

)
)N/w.

When the size of the alphabet is α = 72, the resulting differences in error can be
seen in Figure 3: the error when using our proposed scheme is better than the
naive method when the length of the word is less than 24 characters.

5 Example Parameter Instantiation

By using the error estimates found in previous sections, it is possible to estimate
the size of the table required in order to obtain certain levels of accuracy. To do
this, the Markov inequality can be applied to all expected maximum errors. The
results are as follows:

398 L. South and D. Stebila

5 10 15 20 25 30 35

1,000

2,000

Password length

E
rr
o
r
fa
ct
o
r

naive scheme

proposed scheme

Fig. 2. Error as a multiple of N/w for passwords at distance 1, using a count-min
sketch supporting maximum distance of 1, compared with naive scheme

2 4 6 8 10 12 14 16 18 20 22 24
0

2

4

·105

Password length

E
rr
o
r
fa
ct
o
r

naive scheme

proposed scheme

Fig. 3. Error as a multiple of N/w for passwords at distance 2, compared with naive
scheme

– When estimating the number of times a specific word appears, there is an
error of at most 2(1+�+

(
�
2

)
)N/w with probability of at least 1−(12)

h, where
h is the number of hash functions.

– There is an error of at most 4�(1 + �+
(
�
2

)
)N/w with probability of at least

1− (12)
h when estimating words within distance 1.

– There is an error of at most 12
(
�
2

)
(1 + � +

(
�
2

)
)N/w with probability of at

least 1− (12)
h when estimating words within distance 2.

Count-Min Sketches for Estimating Password Frequency 399

The following exact parameter calculations are done for distances one and two,
but not for Hamming distance zero because, if the user desires a certain error rate
for estimating exact words, it is preferable to use the original count-min sketch.

If the purpose of this sketch was to estimate passwords within distance 1 with
an error of at most 1% with probability of at least 99.9%, then the width w of
the table and the number h of hash functions would have to be as follows:

4�(1 + �+
(
�
2

)
)

w
=

1

100
=⇒ w = 100 · 4�

(
1 + �+

(
�

2

))

1−
(
1

2

)h
=

999

1000
=⇒ h ≈ 6.64

The number of hash functions would have to be 7 or more and the width of the
table would depend on the length of the password. If the length of the passwords
is 6 characters, then the width of the table would have to be at least 48,400. This
size would be smaller if the table only included passwords within distance zero
to one, as suggested previously.

Similarly, if the sketch was needed to estimate passwords within distance 2
with an error of at most 1% with probability of at least 99.9%, then the number
of hash functions would still be at least 7 but the width of the table would be:

12
(
�
2

)
(1 + �+

(
�
2

)
)

w
=

1

100
=⇒ w = 100 · 12

(
�

2

)(
1 + �+

(
�

2

))
For 6-character passwords, this would make the width 338,800. While this width
seems large, it is possible that the false positive (or error) rate could be higher
when estimating words within specified distances.

6 Conclusion

When no restrictions are placed on passwords choices, users tend to choose popu-
lar passwords. This leaves systems vulnerable to statistical guessing attacks. By
limiting the percentage of popular passwords, these attacks are not as successful.
In order to do this, efficient tools must be available to track password usage. The
count-min sketch can be used to estimate the counts of password usage within
a system. However, the count-min sketch is not as effective when estimating the
counts of passwords within specified Hamming distances. In this paper, we have
proposed a variant of the count-min sketch using wildcard characters that can
be used to calculate estimates of words that are close in Hamming distance.

As with the original count-min sketch, there will never be false negatives —
where the estimate algorithm under-reports usage of the password — but there
may be false positives — meaning the estimate algorithm may over-report usage
of the password due to collisions. We have calculated the error rate for estimation
as the Hamming distance increases, which allows for calculation of sketch size
for a given error rate. For a reasonable alphabet size, the error rates in our

400 L. South and D. Stebila

proposed method are lower than they would be using the naive approach on
a standard count-min sketch for a wide range of password lengths, up to 36-
and 24-character passwords when estimating passwords within distances 1 and
2 respective.

Our technique is most suited when all passwords in the database have the
same length. In future work, it may be desirable to develop another variation
in which edit distance, such as Levenshtein distance, is used, rather than Ham-
ming distance, to take into account passwords that are close due to deletions
or insertions of characters. Other future work may be to consider the impact of
using fractional contributions for passwords within a certain distance, where the
fraction is either a function of the Hamming distance divided by the password
length, or based on some model of textual similarity: for example, in ‘leetspeak’,
5 is a common substitution for s.

References

1. Bergadano, F., Crispo, B., Ruffo, G.: Proactive password checking with decision
trees. Computer and Communications Security 4(1), 67–77 (1997)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

3. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: Proc. 2012 IEEE Symposium on Security and Privacy, S&P (2012)

4. Lawrence Carter, J., Wegman, M.N.: Universal classes of hash functions. Journal
of Computer and System Sciences 18(2), 143–154 (1979)

5. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. Journal of Algorithms 55(1), 58–75 (2005)

6. Cormode, G., Muthukrishnan, S.: Approximating data with the count-min sketch.
IEEE Software 29(1), 64–69 (2012)

7. Manber, U., Wu, S.: An algorithm for approximate membership checking with appli-
cation to password security. Information Processing Letters 50(1), 191–197 (1994)

8. Pliam, J.O.: On the incomparability of entropy and marginal guesswork in brute-
force attacks. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977,
pp. 67–79. Springer, Heidelberg (2000)

9. Schechter, S., Herley, C., Mitzenmacher, M.: Popularity is everything: A new ap-
proach to protecting passwords from statistical guessing attacks. In: Proc. 5th
USENIX Conference on Hot Topics in Security, HotSec (2010)

10. Spafford, E.: Preventing weak password choices. Purdue University Com-
puter Science Technical Reports, paper 875, report number 91-028 (1991),
http://docs.lib.purdue.edu/cstech/875

A Example Count-Min Sketch Calculation

Fix the table T to be of width w = 101 and height h = 2.

A.1 Hash

First we show how the hash values can be calculated for a single password, say
abcd, under two hash functions.

http://docs.lib.purdue.edu/cstech/875

Count-Min Sketches for Estimating Password Frequency 401

We encode each character as two-digit integer, say abcd ,→ x = 〈1, 2, 3, 4〉,
then find the integer representation, X = 01020304.

Set a common prime p = 3571, and for each of the two hash functions
hashk, choose the parameters ak and bk at random modulo p; for example,
a = [1151, 2111] and b = [941, 1433].

The hashes of abcd are as follows:

hash1(X) = ((1151 · 01020304+ 2111) mod 3571) mod 101 = 20

hash2(X) = ((941 · 01020304+ 1433) mod 3571) mod 101 = 83 .

The vector-wise hash is thus hash(abcd, a, b) = 〈20, 83〉.

A.2 Update

We now show how to update the table T to record the use of a password, first
updating just the entries for the password itself, then the entries for passwords
within Hamming distance 2.

Suppose the table T is currently as follows:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Update at distance 0. Now, suppose we call update(T, x = abcd, a, b, c = 1) ,→ T ′,
which is meant to increment (since c = 1) the use of the password abcd. Assume a
and b are as in the previous subsection. Then we have that hash(abcd) = 〈20, 83〉.
Thus, we increment the 20th entry of row 1 and the 83rd entry of row 2, to obtain
T ′:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

Update at distance 1. Next, we increment all four wildcard passwords within dis-
tance 1 of abcd, namely *bcd, a*cd, ab*d, and abc*. This is done by computing
the corresponding hashes

hash(*bcd) = 〈38, 17〉 hash(a*cd) = 〈37, 47〉
hash(ab*d) = 〈37, 63〉 hash(abc*) = 〈78, 1〉

and updating all the corresponding entries of the table accordingly. Notice that
a few partial collisions occur, for example, both ab*d and a*cd collide under
hash1, but fortunately do not collide under hash2.

In our table extract, we only see a few of the 8 updates since not all columns
are shown (though we imagine all the updates are applied):

402 L. South and D. Stebila

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

2 1 0

0 0 0

0 0 0

0 1 0

Update at distance 2. Finally, we increment all
(
4
2

)
= 6 wildcard passwords

within distance 2 of abcd; namely

hash(**cd) = 〈55, 82〉 hash(*b*d) = 〈55, 33〉
hash(*bc*) = 〈31, 36〉 hash(a**d) = 〈18, 27〉
hash(a*c*) = 〈95, 66〉 hash(ab**) = 〈95, 82〉

In our table extract, we again only see a few of the 12 updates:

column

row 1

row 2

19 20 21 37 38 39 82 83 84

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

0 1 0

0 0 0

2 1 0

0 0 0

0 0 0

2 1 0

A.3 Estimate

Suppose we now estimate(T, x = bbcd, a, b) to obtain the estimate est
1
of the

frequency of passwords at distance 1 of bbcd.

Estimate at distance 0. First, we need to compute an estimate est
0
for the

number of times bbcd itself has been used. We do this by computing hashk(bbcd)
and retrieving the corresponding cell from row i, then taking the minimum. In
this case, hash(bbcd) = 〈76, 53〉. The 76th entry in the first row and the 53rd
entry in the second row are both 0, so this yields a (correct) estimate that the
exact password bbcd has been seen 0 times before.

Estimate at distance 1. To compute an estimate est
1
for the number of times

any password at distance 1 of bbcd has been used, we first need to compute
estimates for the number of times each of the four wildcard passwords *bcd,
b*cd, bb*d, and bbc* has been used before.

hash(*bcd) = 〈38, 17〉 =⇒ est11 = min{1, 1} = 1

hash(b*cd) = 〈100, 8〉 =⇒ est12 = min{0, 0} = 0

hash(bb*d) = 〈100, 60〉 =⇒ est13 = min{0, 0} = 0

hash(bbc*) = 〈76, 63〉 =⇒ est14 = min{0, 1} = 0

Then, we sum these values and subtract the estimate for the number of times
the string bbcd itself was used:

est
1
=

(∑
i

est1i

)
− � est

0
= 1 .

A Rational Secret Sharing Protocol

with Unconditional Security
in the Synchronous Setting

Yang Yu1,2 and Zhanfei Zhou1

1 State Key Laboratory of Information Security
Institute of Information Engineering, Chinese Academy of Sciences

2 University of Chinese Academy of Sciences
Beijing 100093, P.R. China
{yyu,zhouzhanfei}@is.ac.cn

Abstract. In order to realize unconditionally secure rational secret shar-
ing over a synchronous (non-simultaneous) channel, previous works ei-
ther rely on the existence of honest players or induce the approximate
notion of ε-Nash equilibrium. In this paper, we design two rational t-
out-of-n secret sharing protocols for t < �n

3
� and t < �n

2
� respectively,

which achieve unconditional security and run in the synchronous setting
without requiring any honest player. The former protocol is based on
the use of verifiable secret sharing, and the latter protocol extends the
former one by using the information checking protocol. Moreover, both
of our protocols achieve an enhanced notion of C-resilient strict Nash
equilibrium (C consists of the coalitions of less than t players), which
guarantees that the prescribed strategy is the only best response even
for colluding players, and is stronger than ε-Nash equilibrium.

Keywords: Rational secret sharing, strict Nash equilibrium, coalition,
synchronous, unconditionally secure.

1 Introduction

1.1 Background

Rational secret sharing (RSS) proposed by Halpern and Teague [8] has attracted
much attention in recent years. It studies the problem of secret sharing in the
game-theoretic model under the assumption that all players are rational. Unlike
honest players who stick to the protocol and malicious players who always disrupt
the execution of the protocol in cryptography, rational players are selfish and
try to maximize their payoffs.

Many classical secret sharing schemes fail in the rational setting, because
rational players prefer to keep silent in the reconstruction stage. Halpern and
Teague designed the first randomized RSS protocol, where all players are mo-
tivated to cooperate, and suggested the notion of Nash equilibrium surviving
iterated deletion of weakly dominated strategies as a standard for capturing the

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 403–418, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

404 Y. Yu and Z. Zhou

stability of a protocol. Some subsequent works [1,11,10,15] using cryptographic
techniques needed to weaken this notion, so as to tolerate the small probability
of the broken of cryptography, and they achieved an approximate equilibrium
(ε-Nash equilibrium). Kol and Naor [10] pointed out that the iterated deletion
cannot rule out all bad strategies, and suggested the enhanced notion of strict
Nash equilibrium, where the equilibrium strategy is strictly better.

In order that all players can recover the secret in the rational setting, many
works [8,6,1,11] relied on the assumption of simultaneous communication, which
requires that a player cannot receive messages from other players before sending
out his message. Since this assumption is too strong, it is necessary to realize
rational secret sharing and achieve fairness that all players get the secret over
standard (synchronous but non-simultaneous) channels, where players move se-
quentially. Fuchsbauer et al. [5] and Zhang et al. [14] did so by delaying the sig-
nal which identifies the last iteration. Their protocols induced a (t− 1)-resilient
computational strict Nash equilibrium. However, they relied on cryptographic
primitives for authentication, which may be broken after an exponential num-
ber of rounds. As pointed out in [10], this instability makes rational protocols
problematic. To avoid this problem, many works [12,15,9] designed uncondition-
ally secure protocols where players have unbounded computing power by special
means. Ong et al. [12] gave a fair RSS protocol by considering the mixture of ra-
tional players and honest players, but it cannot resist the collusion attack of even
two players. Based on the existence of honest players, William K. Moses Jr. and
C. Pandu Rangan [9] designed an efficient protocol tolerating coalitions, which
induces a strict Nash equilibrium and ε-Nash equilibrium with probability k+1

n

and n−k−1
n respectively. However, the assumption of honest players makes their

model slightly different from the classical RSS model where all players are ratio-
nal, and limits the realization of these protocols. Thus, Zhang and Liu [15] got
rid of honest players. However, they can only achieve ε-Nash equilibrium, which
cannot ensure the only best response and is weaker than strict Nash equilibrium,
so does the protocol of [10]. Moreover, they needed information theoretically se-
cure MACs for detecting deviations, it may be problematic when their scheme
is used as a subroutine for rational multiparty computation.

Problem Statement. The protocols [12,9,15,10] realized RSS with information-
theoretic security over synchronous channels, but they either achieved (ε-)Nash
equilibrium which is not appealing, or relied on the existence of honest players.
Strict Nash equilibrium is a much stronger equilibrium notion, but the work [9]
cannot always induce it. In this paper, we remove the honest players and design
protocols inducing strict Nash equilibrium.

1.2 Our Contribution

We first design a protocol with unconditional security for rational t-out-of-n
secret sharing where t < �n

3 � based on verifiable secret sharing, and then extend
it to allow t < �n

2 � by using the information checking protocol. Our protocols
do not rely on simultaneous channels. Instead, they only require synchronous

A RSS Protocol with Unconditional Security in the Synchronous Setting 405

broadcast channels and synchronous private channels. Compared with previous
constructions [12,9,15], our protocols do not rely on the existence of honest
players, and tolerate the set C of coalitions of size less than t. Moreover, they
induce an enhanced notion of C-resilient strict Nash equilibrium, which is more
appealing than (ε-)Nash equilibrium. As previous works [15,10], we remove the
on-line dealer. However, unlike them, we do not require players to store all the
shares to be used during the protocol in the initial stage.

2 Model and Definitions

2.1 Game Theoretic Model

The execution of a rational protocol is a game Γ . At each step, a player decides
how to move based on all the messages he has received. The visible history h
records the sequence of all the actions that have happened. The history after
which no more choices have to be made is terminal. With each terminal history
h we can associate players’ utilities, denoted u(h).

Definition 1. The game Γ consists of

– A finite set P = {Pi|i ∈ {1, ..., n}} (the set of players).
– For each player Pi ∈ P a nonempty set Ai (the set of actions available to
Pi), let A = A1 ×A2 × ...×An be the set of action profiles.

– A set of sequences H = {(ak)k=0,...,T |ak ∈ A, T ∈ N} that satisfies the
following properties.
• a0 = ∅ ∈ H
• If (ak)k=0,...,K ∈ H and L < K then (ak)k=1,...,L ∈ H
• If an infinite sequence (ak)k=1,... satisfies (ak)k=1,...,L ∈ H for every
positive integer L then (ak)k=1,... ∈ H

Each member of H is a history. A history (ak)k=0,...,K ∈ H is terminal if
there is no aK+1 s.t. (ak)k=0,...,K+1 ∈ H or if it is infinite. Z denotes the
set of terminal histories.

– For each player Pi ∈ P , a function ui (the utility function) assigns to
each terminal history a real value, ui : Z −→ R.

Let σi : H\Z −→ Ai be the strategy of player Pi (i ∈ {1, ..., n}), which deter-
mines Pi’s action after each history. σ = (σ1, ..., σn) denotes players’ strategy
profile. We define the outcome O(σ) of σ to be the terminal history (possibly
infinite) (a0, ...,aK) ∈ Z that results when each player follows the precepts of
σ, it holds that for 0 ≤ k < K, σ(a0, ...,ak) = ak+1. We can define the utility
function over strategies ui(σ) = ui(O(σ)).

To describe the scenario where players form coalitions, we consider the game
Γ with respect to coalitions C. C ⊂ 2P denotes the set of coalitions (subsets of
players) that can be formed. It satisfies that if C ∈ C and C′ ⊂ C then C′ ∈ C.
For a given coalition C ∈ C, let AC = ×Pi∈CAi, we can define its strategy
σC : H\Z −→ AC . SC denotes the set of strategies of C, and S−C = ×Pj /∈CSj .
Following [7], we treat the coalition as a whole. Colluding players share all their

406 Y. Yu and Z. Zhou

information, have the same output and a common utility, instead of an inde-
pendent utility function for each player. Let uC : Z −→ R denote the uniform
utility function of coalition C, which describes colluding players’ common pref-
erence over the outcomes. Once a coalition C is formed, it has a uniform utility
function uC , instead of ui for each Pi ∈ C. Let uC(σ) = uC(O(σ)). Our defi-
nition captures the scenario where one player controls a number of players. We
assume that, in our work other than the coalition C all the other players behave
individually (Pi /∈ C has his own utility ui); there is at most one coalition in a
game. Next we define the subgame.

Definition 2. The subgame of the game Γ =< P,A,H,u > with respect to
coalition C that follows the history h is the game Γ (h) =< P,A,H |h,u|h > with
respect to coalition C, where H |h is the set of h′ for which (h, h′) ∈ H. For each
C ∈ C, uC |h is defined by uC |h(h′) = uC(h, h

′).
Given a strategy σC of coalition C and a history h in the game Γ with coalition

C, denote by σC |h the strategy that σC induces in the subgame Γ (h) with respect
to coalition C, i.e. σC |h(h′) = σC(h, h

′).

2.2 Utility Assumption

Let μ(σ) = (out1, ..., outn) be a tuple such that, outi = 1 if Pi learns the secret
when all players follow σ and outi = 0 otherwise. For a given coalition C,
μC(σ) = (outi)Pi∈C . C is said to learn the secret and outi = 1 for each Pi ∈ C
if at least one colluding player learns the secret, otherwise outi = 0 (∀Pi ∈ C).
Following [8] we assume that all rational players prefer to get the secret and
prefer the fewest of other players who get the secret. We formalize the utility
assumption of C ∈ C as follows (it is just the utility assumption of a rational
player if the size of C is 1):

A1. uC(σ) = uC(σ
′) if μ(σ) = μ(σ′)

A2. uC(σ) > uC(σ
′) if μi(σ) = 1 and μi(σ

′) = 0 for each Pi ∈ C
A3. uC(σ) > uC(σ

′) if μC(σ) = μC(σ
′), for each Pj /∈ C μj(σ) ≤ μj(σ

′) and
there exists a Pk /∈ C such that μk(σ) < μk(σ

′)
Among all utilities, we define the following utilities of C [2].
1. U+

C is the utility of C when only C gets the secret.
2. UC is the utility of C when all players get the secret.
3. U−

C is the maximal utility of C when C gets no secret.
4. U r

C is the utility of C if C tries to guess the secret.
Let S be the field from which the secret is chosen, C can guess the secret

successfully with negligible probability 1/|S|, we have U r
C = 1

|S|U
+
C +(1− 1

|S|)U
−
C .

To motivate players to participate, we assume that players cannot benefit from
guessing. Based on our assumption it holds that U+

C > UC > U r
C > U−

C .

2.3 Equilibrium

We strengthen the notion of strict Nash equilibrium to allow for deviating coali-
tions, (a similar computational version of strict Nash equilibrium was proposed

A RSS Protocol with Unconditional Security in the Synchronous Setting 407

by Fuchsbauer et al. [5]). We first pay attention to the following phenomenon.
In rational secret sharing over synchronous channels, players may not learn the
secret at the same time. Rational players who have learned the secret cannot
be motivated to follow the protocol. Once enough of them deviate, some players
may be cheated and are not able to learn the secret. It may even happen in
the protocol achieving strict Nash equilibrium, because the equilibrium can only
guarantee that one player’s deviation is not preferable, but does not consider
the deviation of several players. However few previous works pay attention to
it. Since rational players cannot be prevented from deviating after learning the
secret, in order to achieve fairness that all players get the secret, it should be
guaranteed that all deviations have no bad influence after at least one player out-
puts. In addition, strict equilibrium requires that all deviations decrease utilities
before at least one player outputs.

We consider the terminal history hσ ∈ Z that results when all players follow
the prescribed strategy profile σ. Let h∗σ be the shortest truncation of hσ such
that at least one player gets the output after it, and we call it σ-effective history.
hC = (a0, ...,aK) is the shortest truncation of hσ such that a given coalition
C ∈ C can output after hC . We find it useful to avoid distinguishing the strategies
of a player which are different after he outputs, so we define the reduced strategy
of σC to be the strategy σ′

C which satisfies σ′
C(a

0, ...,ak) = σC(a
0, ...,ak) for

0 ≤ k < K, denoted σ′
C ≈ σC . To motivate players not to deviate, we require

that τC 	≈ σC is strictly worse than σC (Definition 3 Item 1), which ensures that
a coalition decreases utility if it deviates before outputting. To achieve fairness
we require that in Γ (h∗σ) no strategy profile earns a better outcome than the
prescribed strategy profile for each coalition. (Definition 3 Item 2). Now we define
what it means to ′′induce a C-resilient strict Nash equilibrium′′ (which is just
strict Nash equilibrium when each C ∈ C has only one player).

Definition 3. σ is the prescribed strategy of a protocol Π, h∗σ is the σ-effective
history. Π induces a C-resilient strict Nash equilibrium, if

1. ∀C ∈ C, it holds that uC(σC ,σ−C) > uC(τC ,σ−C), ∀τC ∈ SC, τC 	≈ σC .
2. Π is seen as a game Γ with respect to C, in Γ (h∗σ) with respect to C it holds

that uC |h∗
σ
(σ|h∗

σ
) + ξ ≥ uC |h∗

σ
(τ), ∀C ∈ C, ∀τ ∈ S (ξ is negligible).

3 Verifiable Secret Sharing

In (t, n) threshold secret sharing, the dealer generates shares s1, ..., sn based on
the secret s and gives si to Pi as his share, so that any subset of at least t players
can jointly recover s. However, in the rational setting, rational players do not
trust each other. They may distribute inconsistent shares or forge shares in the
reconstruction stage if it is in their interest to do so. Hence, we rely on verifiable
secret sharing (VSS) technology to prevent players being cheated. This section
gives a VSS scheme (a simplified version of [4]), which will be used as a tool in
our RSS protocols for authentication.

The (t, n) VSS protocol (t ≤ �n
2 �): M is a n× t matrix, vi = (1, xi, ..., x

t−1
i)

is the i-th row of M , x1, ..., xn are n distinct points in field Z∗
q .

408 Y. Yu and Z. Zhou

1. To share a secret s ∈ Zq, the dealer chooses a symmetric t × t matrix R
randomly, except that it has s in the upper left corner. He sends ui = R ·vT

i

to Pi, the first coordinate of ui is the share si given to Pi.
2. Pi computes vj · ui and sends it to Pj as his sub-share sij . Pj compares it

to vi · uj , and broadcasts a complaint (i, j) if the values are not equal.

Definition 4. In the (t, n) VSS scheme above, let S = {s1, ..., sn}, Si = {sij |j ∈
{1, ..., n}} for i ∈ {1, ..., n}. We say that {s1, ..., sn} are t-consistent if:

1. For i ∈ {1, ..., n}, there exists a polynomial fi(x) of degree t− 1, such that
fi(xj) = sij , ∀sij ∈ Si and fi(0) = si.

2. There exists a polynomial f(x) of degree t−1, such that f(xi) = si, ∀si ∈ S.
We say that f(0) is reconstructed from S consistently.

In this VSS scheme, players can verify the consistency of shares without reveal-
ing their shares. If the dealer shares inconsistently, he is sure to be caught since
at least one player complains. If the dealer behaves honestly, all the shares de-
termine the secret uniquely. In the reconstruction stage, players broadcast all
their shares and sub-shares, so they can detect deviations of less than t forged
shares through the verification of consistency. Thereby, we will use this VSS
scheme in our two RSS protocols for catching the deviating player who shares
inconsistently and detecting forged shares in the reconstruction stage.

Let viewC denote all the messages C receives during the protocol. Lemma
1,2 prove the privacy and the correctness of the VSS scheme. We will show
that rational players prefer not to deviate from the VSS scheme in the security
analysis of our RSS protocols.

Lemma 1. In the (t, n) VSS scheme, for any subset C of less than t players, it
holds that Pr[C learn s|viewC] = Pr[C learn s].

Proof. Given t− 1 shares (s′1, ..., s
′
t−1), for every s

′ ∈ Zq, there exists a polyno-
mial f of degree t − 1, s.t. f(0) = s′, f(xb) = s′b, ∀b = {1, ..., t− 1}. It follows
that players cannot recover a secret from less than t shares.

Start from the subset C of size t − 1, let C = {P1, ..., Pt−1}. Note that
viewC = (s1, ..., st−1, {sj1, ..., sj(t−1)|j ∈ {1, ..., n}}). Players in C cannot re-
cover the unknown share sk (k ∈ {t, ..., n}) because they have only t− 1 shares
of each sk, not to mention s. The subset C of size less than t−1 has fewer shares,
so it also gets no information about s. �

Lemma 2. In the VSS scheme all players are rational. When < t players deviate
from the protocol, if no one complains, there is a polynomial of degree t− 1 that
passes through the interpolation points of the members who behave faithfully.

Proof. Without loss of generality, we assume that P1, ..., Pn−t+1 follow the pro-
tocol, and we call them honest players. If there is no complaint, then each pair of
honest players agrees with the sub-shares they have in common. We can define a
symmetric n×n matrix S, which contains all sij agreed by all honest players (sij
i, j > n− t+1 is undefined), so all the values in S are correct. For i ≤ n− t+1,

A RSS Protocol with Unconditional Security in the Synchronous Setting 409

the i-th column uniquely defines si. The liner combination of the first n− t+ 1
rows determines the shares (s1, ..., sn), which determine s consistently. Thus, if
the dealer passes the verification, all players who behave faithfully are sure to
hold consistent shares. �

Let a and b be two secrets shared through the VSS scheme respectively. We
now show how to compute a+ b and a · b. To compute the addition of a and b is
simple, we just add the corresponding shares and sub-shares, i.e. ai + bi is the
share of a + b held by Pi. The multiplication of a and b is more complex. Let
a be shared through a t− 1 degree polynomial f(x), the coefficients of which is
the first row of matrix R in the VSS scheme. b is assumed to be shared through
g(x). The multiplication is done as follows.

1. For i ∈ {1, ..., n}, Pi multiplies his shares of a and b, ci denotes the product,
then Pi shares ci through a (t, n) VSS scheme. Players check whether ci =
ai · bi, we omit the details here, which can be found in [3,13].

2. By the extrapolation theorem, there exist constants γ1, ..., γ2t−1 such that
a · b =

∑2t−1
j=1 γj · cj . For i ∈ {1, ..., n}, Pi computes c′i ← ∑2t−1

k=1 γk · cki,
c′ji ←

∑2t−1
k=1 γk · ckji, which are the share and sub-share of a · b.

4 Rational Secret Sharing Protocol Π: t ≤ �n
3
�

We provide a RSS protocol that is resilient to coalitions of less than t players.
Here all players are computationally unbounded. The protocol runs in a sequence
of true/false iterations, only the last one is true where players can recover the
secret s. We do not assume any on-line dealer. Unlike previous works [15,9], to do
so, we do not require players to store all the shares to be used during the entire
protocol in the initial stage, which is inconvenient. Instead, players generate
′′one-time′′ shares in each iteration by themselves. Thus, a credible dealer can
quit after sharing the secret s in the initial stage.

We give the main idea of our protocol. In each iteration, players generate a
parameter c and the shares for s + c, which are valid shares for s when c is 0.
After that players recover s+ c first, and then verify the current iteration status
(i.e. whether c is 0 or not), so as to run the protocol over synchronous channels.
To keep the secret private in the false iteration, no information about c except
whether it is 0 should be revealed. Thus, when verifying the iteration status,
players negotiate a non-zero g and calculate c ·g. If c ·g 	= 0 players restart a new
iteration, otherwise, players can believe c = 0 and output the secret. We ensure
that the faithful players get as much information as the deviating players, if not
more. Now we describe the protocol in details.

Initialization. Let s ∈ Z∗
q be the secret (q is large enough), the dealer distributes

s through a double sharing protocol: when the dealer shares s through (t, n)
threshold secret sharing and generates the shares s1, ..., sn, he also shares each

410 Y. Yu and Z. Zhou

si through (t, n) threshold secret sharing and generates the sub-shares si1, ..., sin,
so Pi gets si, s1i, ..., sni.

The Protocol in Iteration r. Each iteration consists of two phases: the new
shares generation phase and the reconstruction phase, which run as follows.

New shares generation phase:

1. Generating parameter c: Each Pi chooses c̃i ∈R Zq s.t. Pr[c̃i = 0] = δ0 >
1
q ,

Pr[c̃i = l] = 1−δ0
q−1 (∀l ∈ Z∗

q), and then shares c̃i through the VSS scheme.

Let c =
∑n

i=1 c̃i. Pi computes ci =
∑n

k=1 c̃ki, cji =
∑n

k=1 c̃kji.
2. Generating parameter g: Each Pi shares g̃i ∈R Z∗

q through the VSS scheme.
Calculate the shares of g =

∏n
i=1 g̃i through the multiplication of VSS.

3. Computing s+ c: Generate the shares of s+ c by adding the corresponding
shares. Each Pi gets si + ci and sji + cji, j ∈ {1, ..., n}.

4. Computing c · g: Generate the shares of c · g through the multiplication of
VSS. Each Pi gets (c · g)i and (c · g)ji, j ∈ {1, ..., n}.

5. Halt the protocol and output a random guess of the secret once there is a
complaint.

Reconstruction phase:

1. Players broadcast the shares of s+c and recover s(r) = s+c. If the shares are
inconsistent, players halt the protocol and then output s(r). If s(r) cannot
be computed, players guess the secret.

2. Open c · g to each player in private, take Pi as an example:
– Each Pj sends (c · g)j , (c · g)1j , ..., (c · g)nj to Pi privately.
– Pi halts the protocol and outputs s(r) if he receives partial messages or

the shares are inconsistent.
Proceed to the next iteration if c ·g 	= 0. Terminate the protocol and output
s(r) if c · g = 0.

Remark 1. We check the iteration status by calculating c ·g instead of opening c
directly. This is done to prevent the parameter c from leaking, so that the secret
s is private in the false iteration.

Remark 2. Opening c · g in private prevents players who learn the secret earlier
from forging shares undetected, so it avoids the acceptance of a forged c · g.

4.1 Protocol Analysis

This protocol is feasible. As long as all players do not deviate, valid shares for
s + c are revealed in the reconstruction stage, so that all players can recover
the secret when c is 0. This protocol guarantees the privacy. Without loss of
generality, we assume P1, ..., Pt−1 collude. According to Lemma 1, they cannot
learn s or c from their t − 1 shares in the new shares generation phase. In the

A RSS Protocol with Unconditional Security in the Synchronous Setting 411

first step of the reconstruction phase it is obvious that no information about
s or c can be revealed from the sum of them. In the second step, although
(c · g)i =

∑2t−1
k=1 γk · (ck · gk)i (i ∈ {1, ..., n}) are published, coalition members

cannot compute (cj · gj)l (j, l ≥ t), since they have no enough sub-shares, and
then they cannot compute cj ·gj (j ≥ t) from t−1 shares. Hence, c is not revealed
if c 	= 0. We can conclude that, players cannot identify the true iteration before
s+ c is recovered, and cannot compute s from the sum of s and an unknown c
in the false iteration.

When all players follow the protocol, the parameter c equals 0 with probability

δ = 1
q (1 + (δ0·q−1)n

(q−1)n−1). Let C be any coalition of size at most t − 1 (|C| is the

cardinality of C), coalition members can compute c−∑Pi∈C c̃i, which equals 0

with probability δC = 1
q (1+

(δ0·q−1)n−|C|

(q−1)n−1−|C|). When C has t− 1 players, δC reaches

a maximum δmax = 1
q (1+

(δ0·q−1)n−t+1

(q−1)n−t). Now we show why our protocol induces

a C-resilient strict Nash equilibrium for an appropriate choice of δ0.

Theorem 1. Let C consist of the subsets of < t players, the (t, n) RSS protocol

Π (t ≤ �n
3 �) induces a C-resilient strict Nash equilibrium if δmax <

UC−U−
C

U+
C−U−

C

.

Proof. Let C be any coalition of size at most t − 1. All players can learn the
secret if they all follow the protocol, in this case C gets utility UC . We first show
that C decreases utility by deviating before it outputs the secret. Let σ denote
the prescribed strategy of the protocol. Assume that the players not in C stick
to the strategy profile σ−C , and coalition members follow the deviating strategy
τC 	≈ σC , which requires C to deviate in the l-th iteration before learning the
secret. Players may deviate by keeping silent or sending forged messages, both
of these deviations lead to the same outcome once they are detected. Since the
deviation of keeping silent is sure to be detected, for simplicity, we analyze the
scenario where players deviate by forging messages as follows.

In the new shares generation phase, there are four possible deviations. (1) A
player in C shares inconsistently among non-coalition members. There must be
a pair of non-coalition members who disagree with the sub-shares they have in
common, even if at most t− 1 coalition members cheat. As a result the protocol
halts and all players output a random guess of the secret. (2) Coalition members
declare a complaint when there is no need to. However, the protocol halts and
all players guess the secret. (3) Pi ∈ C shares a forged ci · gi (or g̃ji · g̃ki) when
computing c · g (or g̃j · g̃k). However, he is sure to be caught and the outcome
is the same as above. Therefore, the utility that C gets from the above three
deviations is U r

C < UC . (4) C deviates by sharing gi = 0 (Pi ∈ C). However, all
players output s(l) = s+ c and terminate the protocol since c · g = 0, it means
that all players output the real secret or the false secret at the same time. Thus,
using this type of deviation, C can get the maximum utility δUC + (1 − δ)U−

C ,
which is less than UC independently of δ.

In the reconstruction phase. (1) Coalition members broadcast forged shares
when recovering s+ c. Since at least n− t+1 ≥ 2t− 1 players behave faithfully,
so the revealed shares are not t-consistent and the protocol will halt. However,

412 Y. Yu and Z. Zhou

we can find a subset of at least 2t − 1 players whose shares are consistent, and
recover s(l) = s + c from their shares, since at least t players of them behave
faithfully. The scenario where C deviates in the process of opening c · g is same,
i.e. the protocol halts and s+ c has been recovered. Thus, this deviation earns C
the maximum utility δUC +(1− δ)U−

C < UC . (2) After s+ c has been recovered,
coalition C quits the protocol and outputs s+ c. However, all players output the
same value, so C gets the maximum utility δUC+(1−δ)U−

C < UC . (3) After s+c
has been recovered, coalition C quits the protocol and outputs s+ c−∑Pi∈C c̃i.
If c−∑Pi∈C c̃i equals 0 (with the probability δC), then only C learns the secret

and gets utility U+
C , otherwise C gets at most U−

C . Thus, the expected utility of
C with this type of deviation is at most δmaxU

+
C + (1− δmax)U

−
C , which is less

than UC if δmax <
UC−U−

C

U+
C−U−

C

. Even if C can compute the same s + c −∑Pi∈C c̃i

in two iterations, they cannot ensure whether c−∑Pi∈C c̃i equals 0, thus, they
will not deviate.

Putting all these analysis together, we have that ∀ C ∈ C and ∀ τC ∈ SC ,
τC 	≈ σC , it holds that uC(σC ,σ−C) > uC(τC ,σ−C) for an appropriate δ0.

Next we prove the fairness. When all players follow, P1 is the first player who
learns the secret, just after players open c · g = 0 to him. Let h∗σ be the shortest
history after which P1 learns the secret, we consider the scenario in the subgame
Γ (h∗σ). If someone is cheated to believe c · g 	= 0 then he may not be able to
learn the secret. We show that it happens with negligible probability.

Without loss of generality, we assume that in subgame Γ (h∗σ) with respect to
C players follow deviating strategy τ , which requires m players to deviate when
it is time to open c · g to Pi. Sending no message at all will be caught, so we
analyze the scenario where players forge shares here. When m ≤ n− t, at least t
shares of c ·g are valid, so Pi receives inconsistent shares and can output the real
secret. When m > n− t, Pi will be deceived into believing c · g 	= 0 if the forged
shares can be accepted and are consistent with the valid shares. Since players
send shares to Pi in private, no one can see the shares sent by others, so in order
to cheat Pi successfully players can only guess. Given g1, ..., gt (some of them
may be forged), a player can guess gt+1 that is consistent with g1, ..., gt with
probability ε = 1/q (q is large enough that ε is negligible). To forge shares that
determine c · g 	= 0 consistently, at least n− t deviating players should guess the
corresponding shares correctly, which happens with probability εn−t. In addition,
each forged share (c · g)j should be recovered from its sub-shares consistently,
of which at least n − t + 1 should be forged, and it happens with probability
εn−t+1. We can get that the probability that players cheat Pi successfully is at
most εn−t · (εn−t+1)n−t+1, which is negligible. Thus, in the subgame following
h∗σ all kinds of deviations lead to the outcome that all players learn the secret
except with negligible probability, so that deviating players can only increase
their utility by negligible amount. ∀ C ∈ C and ∀ τ ∈ S|h∗

σ
there exists a

negligible ξ such that uC |h∗
σ
(σ|h∗

σ
) + ξ ≥ uC |h∗

σ
(τ).

We conclude that Π induces a C-resilient strict Nash equilibrium. �

A RSS Protocol with Unconditional Security in the Synchronous Setting 413

5 Rational Secret Sharing Protocol Π ′: t ≤ �n
2
�

We extend the protocol in section 4 to the case where t ≤ �n
2 �. Here we use the

information checking protocol (ICP) to provide a check vector for each share, so
that players can authenticate the revealed shares by using check vectors over a
broadcast channel, not only by checking the consistency of shares.

5.1 The Information Checking Protocol

We use the information checking protocol of [13] to carry out the authentication,
which does not rely on any cryptographic assumption. We roughly introduce the
process. The dealer D holding a secret s ∈ Zp chooses two random numbers
b 	= 0 and y both in Zp, and hands to an intermediary INT the pair (s, y). The
dealer D computes s + by = d, then sends to the recipient R the vector (b, d)
which is called Check Vector. At a later time, the intermediary passes s on to R
and provides the verification information y, then R computes s+ by and accepts
s if s+by = d, which means R believes that the value originated with the dealer.
This scheme is secure and no information about the secret reveals, we omit the
proof of Lemma 3 here, which can be found in [13].

Lemma 3. When the dealer is honest, INT will deceive R with probability 1
p−1 .

The receiver has no information about the secret from his check vector.

5.2 Our Construction

Our new construction of RSS is based on the protocol in section 4. Players not
only generate shares for s+ c through the VSS scheme, but also provide check
vectors for shares through ICP. In the reconstruction phase, players need to send
out their shares together with the verification information, so that the deviation
of less than a half of players can be caught. The same as the protocol in section 4,
a credible dealer distributes the secret s ∈ Z∗

p through a double sharing protocol
during the process of initialization. Now we give a detailed description of the
protocol in iteration r as follows.

Negotiation about parameters:

1. Generating parameter c: Each Pi shares c̃i ∈R Zp through the VSS scheme

such that Pr[c̃i = 0] = β0 > 1
p , Pr[c̃i = l] = 1−β0

p−1 (∀l ∈ Z∗
p). Players

compute the shares of c =
∑n

i=1 c̃i.

2. Generating parameter h: Each Pi shares h̃i ∈ Zp which is chosen uniformly

through the VSS scheme. Players compute the shares of h =
∑n

i=1 h̃i.
3. Halt the protocol and guess the secret once there is a complaint.

414 Y. Yu and Z. Zhou

Generation of new shares:

1. Each Pi calculates si + ci, sji + cji, j ∈ {1, ..., n}.
2. Each Pi creates check vectors for each sij + cij and sends them to players,

i.e. Pi hands yij1, ..., yijn and check vectors (bi1j , di1j), ..., (binj , dinj) over
to Pj , where (bikj , dikj) is the check vector of Pj for sik + cik.

3. Calculate the shares of c ·h through the multiplication of the VSS scheme.
4. Each Pi creates check vectors for each hij . Pi hands y′ij1, ..., y

′
ijn over to

Pj , and hands check vectors (b′i1j , d
′
i1j), ..., (b

′
inj , d

′
inj) over to Pj .

Reconstruction:

1. Reconstruction of s+ c.
(a) Each Pi broadcasts his shares si + ci, sji + cji and yji1, ..., yjin (j ∈

{1, ..., n}).
(b) Each Pi checks for each (sjk + cjk, yjki) whether he accepts sjk + cjk

by using his check vector (bjki, djki).
(c) Pi accepts sj + cj if he accepts at least t shares of sj + cj and these

shares determine sj + cj consistently.
(d) Pi recovers s(r) = s + c if he accepts at least t shares and all these

shares are consistent.
(e) If a player rejects a sub-share or the shares are inconsistent, then play-

ers halt the protocol and output s(r).
2. Reconstruction of c · h.

Each Pi broadcasts the shares of c · h. If the shares are consistent,
players reconstruct c ·h; otherwise, they halt the protocol and output s(r).
If c ·h 	= 0, players proceed to the next iteration, otherwise, they enter the
next step to verify h.

3. Checking h.
(a) Each Pi broadcasts {hi, hji, y′ji1, ..., y′jin|j ∈ {1, ..., n}}.
(b) Each Pi checks for (hjk, y

′
jki) if he accepts hjk by using his check vector

(b′jki, d
′
jki). hj is accepted if all its shares are accepted and determine

hj consistently. Players halt the protocol and output s(r) if someone
rejects a share or the shares are inconsistent.

(c) Players reconstruct h if the shares are consistent and are accepted. If
h = 0, players proceed to the next iteration, otherwise, they terminate
the protocol and output s(r).

Remark 3. Players continue to open h when c · h = 0. If h = 0, we treat this
iteration as a fake one. Although it may happen that c = 0, we do not further
identification of c. If h 	= 0, we can believe that the true iteration arrives.

Analysis. Each Pi can verify whether each sjk + cjk is valid by using check
vectors. The cheaters will be caught except with negligible probability. As long
as all the players follow the protocol, valid shares of s + c will be broadcasted,

A RSS Protocol with Unconditional Security in the Synchronous Setting 415

so players can recover the real secret in the true iteration. Moreover, since the
information checking protocol is secure, so the same as the protocol Π , no infor-
mation about the secret is revealed before the protocol ends, and no information
about the iteration status is revealed before s+ c is recovered.

The probability that c = 0 is β = 1
p (1 + (β0·p−1)n

(p−1)n−1) when players stick to

the protocol. Let C be any coalition of size at most t− 1. The probability that

c −∑Pi∈C c̃i = 0 is βC = 1
p (1 + (β0·p−1)n−|C|

(p−1)n−1−|C|). t − 1 coalition members can

increase the probability that c = 0 to a maximum βmax = 1
p (1 +

(β0·p−1)n−t+1

(p−1)n−t)

by picking c̃i = 0. Similarly, they may not choose hi uniformly, but Pr[h = 0] = 1
p

will not be changed, let α = 1
p . Next we show that players prefer not to deviate

from the protocol, and the change of Pr[c = 0] has no bad influence.

Theorem 2. Let C consist of subsets of < t players, the (t, n) RSS protocol Π ′

(t ≤ �n
2 �) induces a C-resilient strict Nash equilibrium, if βmax

α(1−βmax)
<

UC−U−
C

U+
C−UC

.

Proof. Let C ∈ C be any coalition of size at most t − 1. σ is the prescribed
strategy of the protocol Π ′. It is obvious that C gets utility UC when all players
follow the protocol. Now we analyze the scenario where C sticks to the deviating
strategy τC 	≈ σC as follows, which deviates from σC in iteration l. The remaining
rational players are assumed to follow the strategy profile σ−C .

Firstly, we consider the deviations during the first phase. (1) A member of
coalition C shares inconsistently or keeps silent. However he will fail even if all
coalition members deviate, since at least one non-coalition members complains.
(2) Coalition members complain when there is no need to. In this case the
protocol halts at once. Both of these deviations result in the halt of the protocol.
The best thing C can do is to guess the secret, which earns at most U r

C < UC .
Secondly, coalition C forges check vectors for the shares of si + ci or hi (Pi ∈

C). However, the protocol halts in the reconstruction stage, when some sub-
shares are rejected because of the forged check vectors. Fortunately, players
can still recover s + c because at least t shares are accepted, so all players get
the same output. In this case the maximum expected utility that C gets is
βUC + (1− β)U−

C < UC .
Thirdly, when players compute c · h, C may cheat others by sharing a forged

c′i · h′i 	= ci · hi (Pi ∈ C). Then non-coalition members recover a forged value
c′ · h′ and only C learns c · h, although it happens with negligible probability
since we use the multiplication scheme of [13]. (1) If c · h is 0, C will forge a
non-zero c′ · h′, then players proceed to the next iteration. However, coalition
members do not know whether c is 0 or not. If c = 0, they will get U+

C at most by
outputting s+ c and deviating (keeping silent or forging values), otherwise, they
will get U−

C at most. Pr[c = 0|c · h = 0] = β
α+β−α·β , so the expected utility that

C gets from deviations is U1 = β
α+β−α·β ·U+

C + α−α·β
α+β−α·β ·U−

C . C can also output

s+c−∑Pi∈C c̃i. As we pointed out above, when C always picks c̃i = 0, C can get

the maximum utility U3 = βmax

α+βmax−α·βmax
·U+

C + α−α·βmax

α+βmax−α·βmax
·U−

C . (2) If c·h is

not 0, C can forge c′ ·h′ = 0 with probability 1
p . In this case, players continue to

416 Y. Yu and Z. Zhou

verify h, which is not 0 actually, and then terminate the protocol and output the
fake secret s(l). However, C can learn c after h is published and then calculate s.
In addition, C forges a non-zero c′ ·h′ with probability 1− 1

p . In this case, players
proceed to the next iteration. Since c is not 0, coalition members can quit the
protocol and output s+ c−∑Pi∈C c̃i, which equals s when c−∑Pi∈C c̃i is 0. C

can get utility at most β′U+
C +(1−β′)U−

C , β′ = βmax(1−α)
1−2α+α·βmax

. Therefore, we can
get that when c·h is not 0, the maximum expected utility that C gets by cheating
during the process of computing c·h is U4 = αU+

C +(1−α)(β′U+
C +(1−β′)U−

C) <
U3. Therefore, in this stage C suffers losses by deviating if it holds that:

βmax

α+ βmax − α · βmax
· U+

C +
α− α · βmax

α+ βmax − α · βmax
· U−

C < UC (1)

Fourthly, C keeps silent or forges shares when reconstructing s+ c, however, the
revealed shares are inconsistent. If C is caught, other players can recover the
secret, in this case C gets the maximum utility βUC + (1 − β)U−

C < UC . If C
cheats during carrying out ICP and forges a share undetected, then non-coalition
players cannot recover s+ c, although it happens with negligible probability. In
this case, only C gets the secret s+ c when the current iteration is true, and the
expected utility that C gets is at most U2 = βU+

C + (1 − β)U−
C < U3. C may

output s + c −∑Pi∈C c̃i, which earns it U+
C when c −∑Pi∈C c̃i is 0. Thus, C

gets the maximum utility U5 = βmaxU
+
C + (1− βmax)U

−
C < U3. Both deviations

earn C a utility less than UC if equation 1 is satisfied.
Fifthly, coalition members quit before s + c is recovered, then the protocol

halts and C gets utility U r
C < UC . Coalition members quit after s+c is recovered.

If coalition members output the same value s+ c as other players, all players get
the real secret or the false secret at the same time, which earns C a utility less
than UC . If coalition members output s+c−∑Pi∈C c̃i before verifying c ·h, they
get utility U5 at most. After c · h is published, the maximum expected utility
that coalition members get is β′U+

C +(1−β′)U−
C < U3, when c ·h is not 0. Thus,

the above deviations earn C a utility less than UC if equation 1 is satisfied.
Finally, if C provides forged verification information or rejects a valid sub-

shares in the reconstruction stage, the protocol halts, but all players can output
s+c. If C forges shares when reconstructing c ·h or h, the protocol halts because
of the inconsistent shares and then all players output s+ c. As analyzed above,
deviating is strictly worse than following.

We can conclude that if βmax

α−α·βmax
<

UC−U−
C

U+
C−UC

(equation 1 is satisfied), it holds

that uC(σC ,σ−C) > uC(τC ,σ−C), ∀C ∈ C, ∀τC 	≈ σC .
Next we consider the situation in the subgame Γ (h∗σ) with respect to C (h∗σ

is the σ-effective history). Only if 0 is recovered from the revealed shares consis-
tently can some players be deceived. A given coalition C ∈ C can recover h after
t− |C| non-coalition members broadcast their shares (1 ≤ |C| ≤ t− 1). Thus in
this subgame a player Pc ∈ C ∩ {P1, ..., Pt−1} may deviate first after he learns
the secret, or Pt becomes the first deviating player after the first t − 1 players
reveal shares faithfully. We consider that all players follow the strategy profile
τ that m players deviate by forging shares of h. If m < n − t + 1, the shares

A RSS Protocol with Unconditional Security in the Synchronous Setting 417

cannot be consistent. If m ≥ n − t + 1, some players will be deceived when all
the forged shares pass the verification. Actually, a forged share h′j can pass the
verification only if all its sub-shares are accepted and determine h′j consistently,
so there must exist at least n− t+1 forged sub-shares h′jk. In the ICP, a player

can be deceived with probability 1
p−1 , denoted ε. We assume that there are x

coalition members among these m deviating players. When Pj ∈ C, all the coali-
tion members know the check vectors held by Pi, so they can forge sub-shares
accepted by Pi. Thus Pi accepts h

′
j with probability at most ε(n−t+1)−x, when

m − x non-coalition members guess the check vectors. When Pj /∈ C, only he
knows the check vector, so Pi accepts h′j with probability at most ε(n−t+1)−1.
Therefore, we can calculate that Pi can be cheated with probability at most
η = (ε(n−t+1)−x)x(εn−t)m−x. In this protocol, at least one player is deceived
with probability at most η′ = 1− (1−η)t−1. The expected utility that C gets by
following the strategy profile τ is at most η′U+

C +(1−η′)UC = UC+η′(U+
C −UC).

Since η′ is negligible, η′(U+
C −UC) is also negligible. We can get that there exists

a negligible ξ such that uC |h∗
σ
(σ|h∗

σ
) + ξ ≥ uC |h∗

σ
(τ), ∀ C ∈ C, ∀ τ ∈ S|h∗

σ
.

Therefore, our protocol induces a C-resilient strict Nash equilibrium. �

6 Discussion

Our two rational secret sharing protocols and previous works [12,15,9,10] have
some similar features: all of them are secure against coalitions; none of them
relies on simultaneous channels; all of them are information-theoretically secure.
However, we have advantages over previous works:

– Equilibrium notion. Our protocols induce a strong notion of C-resilient strict
Nash equilibrium, which ensures that the equilibrium strategy is the only
best response. The works [12,15,9,10] achieve (ε-)Nash equilibrium.

– No honest player. In contrast with the works [12,9], we do not assume any
honest player in our two protocols. Hence, our protocols are easier to be
realized and is more appropriate to be generalized.

7 Conclusion

This paper studies t-out-of-n rational secret sharing with unconditional security
over synchronous channels. We design two protocols based on verifiable secret
sharing, the first one tolerates less than t < �n

3 � colluding players, the second
one is secure against coalitions of less than t < �n

2 � players based on the use
of ICP. Both of the two protocols remove the assumption of honest players and
induce the enhanced notion of C-resilient strict Nash equilibrium. In addition,
compared with the work [15], we do not use MACs for authentication, so our
protocols can be used in rational multiparty computation conveniently.

418 Y. Yu and Z. Zhou

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, pp. 53–62. ACM, New York (2006)

2. Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret
sharing. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 559–576. Springer,
Heidelberg (2009)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988: Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM, New York (1988)

4. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

5. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010)

6. Gordon, S.D., Katz, J.: Rational secret sharing, revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

7. Halpern, J.Y., Pass, R.: A computational game-theoretic framework for cryptog-
raphy (2009)

8. Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Proceedings of the Thirty-Sixth Annual ACM Symposium
on Theory of Computing, STOC 2004, pp. 623–632 (2004)

9. Moses Jr., W.K., Pandu Rangan, C.: Rational secret sharing over an asynchronous
broadcast channel with information theoretic security. CoRR, abs/1112.4033 (2011)

10. Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432
(2008)

11. Lysyanskaya, A., Triandopoulos, N.: Rationality and adversarial behavior in multi-
party computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
180–197. Springer, Heidelberg (2006)

12. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority
and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009)

13. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, STOC 1989, pp. 73–85. ACM, New York (1989)

14. Zhang, Y., Tartary, C., Wang, H.: An efficient rational secret sharing scheme based
on the chinese remainder theorem. In: Parampalli, U., Hawkes, P. (eds.) ACISP
2011. LNCS, vol. 6812, pp. 259–275. Springer, Heidelberg (2011)

15. Zhang, Z., Liu, M.: Unconditionally secure rational secret sharing in standard
communication networks. In: Rhee, K.-H., Nyang, D. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 355–369. Springer, Heidelberg (2011)

Secret Sharing Schemes with Conversion Protocol
to Achieve Short Share-Size and Extendibility

to Multiparty Computation

Ryo Kikuchi, Koji Chida, Dai Ikarashi, Koki Hamada, and Katsumi Takahashi

NTT Secure Platform Laboratories
{kikuchi.ryo,chida.koji,ikarashi.dai,hamada.koki,

takahashi.katsumi}@lab.ntt.co.jp

Abstract. Secret sharing scheme (SSS) has been extensively studied since SSSs
are important not only for secure data storage but also as the fundamental building
block for many cryptographic protocols such as multiparty computation (MPC).
Although both code efficiency and application of MPC are important for SSSs, it
is difficult to satisfy both. There have been many studies about MPC on Shamir’s
and replicated SSS while their share size is large, and computationally secure
SSS and a ramp scheme have a short share size while there have been few studies
concerning their MPC. We propose a new computational SSS, and show how
to convert shares of our SSS and a ramp SSS to those of multiparty-friendly
SSS such as Shamir’s and replicated SSS. This enables one to secretly-share data
compactly and extend secretly-shared data to MPC if needed.

Keywords: secret-sharing scheme, multiparty computation, code efficiency.

1 Introduction

Blakley [2] and Shamir [24] independently proposed a secret-sharing scheme (SSS).
An SSS has been extensively studied since SSSs are important not only for secure
data storage and disaster recovery, but also as the fundamental building block for many
cryptographic protocols. In the SSS model, a dealer first divides a secret into shares
and distributes them among parties. After that, a qualified coalition of parties can re-
construct the secret from their shares, and no one else can obtain information about
that secret. (k, n)-threshold secret-sharing schemes ((k, n)-SSSs) are a common class of
SSSs. In this class, there are n parties and any coalition that includes k or more parties is
qualified.

Coding efficiency is one of the most important measures for evaluating the perfor-
mance of SSSs. This represents how many times the total amount of shares is larger
than that of a secret. For example, the code efficiency of Shamir’s (k, n)-SSS [24] is n
since there are n parties and each share is the same size as the secret. This means that
if one wants to secretly-share 2 GB of data to five parties with Shamir’s SSS, the total
amount of shares is 10 GB. Such a large amount of data is objectionable not only in
terms of storage cost but also communication cost between a dealer and parties.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, pp. 419–434, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

420 R. Kikuchi et al.

An SSS is applied to many cryptographic protocols. For example, threshold cryp-
tosystems [12] and, fuzzy identity-based encryption for biometrics [23]. A secure multi-
party computation (MPC) is especially closely linked to an SSS. MPC on an SSS is
conducted such that a secret is preliminary secretly-shared among parties, and compu-
tations, such as addition and multiplication, are conducted while keeping a secret-shared
form. There have been many studies of MPCs on SSSs about classical theoretical re-
sults, such as those by Ben-Or et al. [1] and Chaum et al. [7] and recent practical results
such as those by Bogdanov et al. [5] and Damgård et al. [11].

1.1 Compatibility of Code Efficiency and Extendibility to Multiparty
Computation

Although both code efficiency and application of MPC are important for SSSs, it is
difficult to satisfy both simultaneously.

To reduce the amount of share size, variants of SSSs have been proposed. One is an
SSS with computational security proposed by Krawczyk et al. [17], denoted as compu-
tational SSS. A computational SSS is secure against only polynomially bounded adver-
saries, while Shamir’s SSS is secure against unbounded adversaries. Another approach
is a ramp scheme independently proposed by Blakley and Meadows [3], and Yamamoto
[25]. A ramp scheme allows unqualified coalitions to obtain partial information of a se-
cret according to a number of corrupted parties.

Next we discuss the extendibility of an SSS to MPC. While Cramer et al. [10] showed
that MPC can be conducted on a wide class of SSSs called linear SSSs, most prac-
tical results of MPC are on a specific SSSs such as Shamir’s (k, n)-SSS or replicated
(k, n)-SSS [16], which have certain preferred properties, perfect privacy and homomor-
phicity. Consequently, an SSS with good code efficiency does not extend to MPC and
vice-versa.

1.2 Our Contribution

We propose a method for satisfying both good code efficiency and extendibility to MPC.
In the dealing and reconstruction phase, an SSS is with a high regard for code efficiency.
If one can conduct MPC on an SSS, parties convert shares to those of an multiparty-
friendly SSS. More precisely, we propose a new computationally secure SSS, and two
conversion protocols which convert a share of our new computational SSS or homo-
morphic ramp schemes into one of any any SSSs with homomorphic property includ-
ing Shamir’s and replicated SSS. Therefore, This enables one to secretly-share data
compactly and extend secretly-shared data to MPC if needed.

We assume that our proposed schemes is used in secure data storage with MPC,
which is a real-use model for MPC on an SSS such as a data aggregation of network
traffic statistics [6]. There are users and servers. Users store their data in servers through
SSS, and MPC is conducted among servers if needed. In this model, it seems that some
of the data is stored but never used in MPC. Therefore, the code efficiency should be
small while an additional protocol is required when MPC is conducted.

Our conversion protocols are secure against a semi-honest adversary with static cor-
ruption. That is, the adversary corrupts some parties upto k in the beginning of the

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 421

protocol, and follow the protocol but tries to obtain some information about a secret.
This model roughly corresponds to the real-world situation in which we assume the
protocol implementations are fairly difficult to tamper with, whereas their inputs and
outputs could be eavesdropped on. This model can be a reasonable assumption for most
practical purposes. In fact, practical result of MPC on an SSS is usually in the same
security model.

1.3 Related Works

Krawczyk [17] first proposed a computationally secure SSS. This scheme is proceeded
as follows. In the dealing phase, a dealer encrypts a secret with a symmetric key encryp-
tion, a symmetric key is distributed through an ordinary (k, n)-SSS, and the ciphertext
is distributed through (k, n)-IDA [18]. The coding efficiency of (k, n)-IDA is n/k, and
the share size of a symmetric key is relatively small. Therefore, the code efficiency
of Krawczyk’s scheme is almost optimal for (k, n)-SSS. Resch and Plank [20] modi-
fied Krawczyk’s SSS using the All-Or-Nothing Transform (AONT) [21]. The modified
scheme eliminates the use of the symmetric key due to the AONT: thus, code efficiency
is slightly reduced. However, it is not trivial to perform MPC on Krawczyk’s SSS or the
modified scheme since they have no homomorphisms.

As a different approach to the schemes described above for reducing code efficiency,
Cramer et al. [9] proposed pseudo-random secret sharing which replaces the shares
of random numbers in a replicated additive SSS setting with pseudo-random numbers.
Moreover, their scheme converts the replicated shares into the Shamir representation
locally. Note that also discussed a negative result for the conversion from Shamir shares
to replicated ones locally.

On the other hand, some MPCs based on a ramp scheme have been proposed so far.
Franklin and Yung [13] achieved parallel multiplications on MPC setting to increase
computational efficiency. In their scheme some secrets are shared by a ramp scheme
after being defined as a vector of finite field. Cramer et al. [8] presented an efficient MPC
based on a ramp scheme that achieves one-round secure multiplication and arithmetic
circuits. Their scheme allows one to convert shares between different types of linear
ramp schemes, while at the same time computing a number of linear functions on secret
values in the ramp scheme in parallel.

Unlike the previous works based on a ramp scheme described above, our scheme can
use existing MPCs by converting share of homomorphic ramp schemes to that of any
homomorphic SSS.

Ghodosi et al. [14] proposed a conversion protocol of multiplicative secret sharing
into the additive secret sharing with the help of some auxiliary information distributed
in a trusted setup phase. Their conversion protocol is not for better code-efficiency but
for efficient MPCs under the case of dishonest majority.

2 Preliminaries

We review the notations we use in this paper and the primitives used as components of
our constructions and their security notions. We consider the case in which there are n

422 R. Kikuchi et al.

parties P1, . . . , Pn who receive a share, execute a protocol, and are connected by secure
channels.

First, we introduce the notations and notions we use. x← y means that x is uniformly
at random if y is a finite set; otherwise, simply substitute y into x. For probabilistic
algorithm A, y ← A(x) means that y is the output of A with input x and uniformly
picked randomness. If T is a set, |T| means the number of elements that belong to T. We
say a function f (x) is negligible in x if for all polynomial g(x), limx→∞ f (x)g(x) = 0
holds. We denote a probabilistic polynomial time as PPT.

2.1 Multiparty Computation against Semi-honest Adversasries

We propose conversion protocols that belong to MPCs. Therefore, we give their security
definition.

We assume unconditional/computational security against a semi-honest adversary
with static corruption of at most t. This means that the adversary can execute un-
bounded/polynomially bounded computation, must follow a protocol, and corrupt at
most t parties only before the protocol is conducted. More technically, we say that a
protocol is secure if there is a simulator that simulates the view of corrupted parties
from the inputs and outputs of the protocol. We use U to denote the set of all parties,
and I = {Pi1 , . . . , Pit } ⊂ U to denote the parties that are corrupted.

Now we give the formal definition of security against a semi-honest adversary with
static corruption. Let −→x = (x1, . . . , xn), −→x I = (xi1 , . . . , xit), fi(

−→x) be the i-th output of
f (−→x), and fI(

−→x) = (fi1 (−→x), . . . , fit (
−→x)). We denote the view of Pi during the execution

of protocol ρ on inputs −→x as ViewρPi
(−→x) = (xi, ri; μ1, . . . , μ�) where ri is Pi’s random

tape, and μ j is the j-th message Pi received in the protocol execution. We also denote
the output of Pi as OutputρPi

(−→x).
We are now ready to define the security notion in the presence of semi-honest

adversaries.

Definition 1 ([15]). Let f : ({0, 1}∗)n → ({0, 1}∗)n be a probabilistic n-ary function-
ality, ρ be a protocol, Viewρ

I
(−→x) = (ViewρPi1

(−→x), . . . ,ViewρPit
(−→x)), and Outputρ(−→x) =

(OutputρP1
(−→x), . . . ,OutputρPn

(−→x)).
We say that ρ perfectly/statistically/computationally t-privately computes f if there

exists a PPT algorithm S such that for all I ⊂ U of cardinality of at most t and all −→x ,
it holds that

{(S(I,−→x I, fI(
−→x)), f (−→x)

)} p/s/c≈
{(

Viewρ
I
(−→x),Outputρ(−→x)

)}

, where
p/s/c≈ means that two joint distributions are perfectly/statistically/computationally

indistinguishable.

2.2 Information Dispersal Algorithm

An information dispersal algorithm (IDA) is used for splitting data into some pieces in
such a way that one can reconstruct data from a certain set of pieces. A threshold case

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 423

of IDA, denoted as (k, n)-IDA, was proposed by Rabin [18,19]. (k, n)-IDA is the same
as (k, n)-SSS except that data privacy is not considered. Alternatively, (k, n)-IDA has
optimal code efficiency, n/k, where each k-coalitions can reconstruct the original data.

We denote a (k, n)-IDA as a tuple of two algorithms. One is the data splitting algo-
rithm IDA.Split, which on input s outputs (a1, . . . , an). The other is the data reconstruc-
tion algorithm IDA.Rec, which on input (ai1 , . . . , aik) outputs s. An (k, n)-IDA must sat-
isfy correctness such that for all s and for all (i1, . . . , ik), Pr[(a1, . . . , an)← IDA.Split(s) :
s = IDA.Rec(ai1 , . . . , aik)] = 1 holds. Furthermore, we assume a (k, n)-IDA to be sam-
plable. This means that when (ai1 , . . . , aik−1) is given, one can sample aik with the distri-
bution that satisfies

Pr[s′ = IDA.Rec(ai1 , . . . , aik−1 , aik)] =
1∣∣∣{s′ | Pr[s′ ← IDA.Rec(ai1 , . . . , aik−1 , ·)] � 0

}∣∣∣

for all s′ ∈ {s′ | Pr[s′ ← IDA.Rec(ai1 , . . . , aik−1 , ·)] � 0
}
. Rabin’s scheme satisfies this

property. This is required when we strictly estimate the security of MPC.

2.3 Pseudorandom Generator

Intuitively speaking, a pseudorandom generator (PRG) is a function that takes a short
random string and stretches it to a longer string that seems to be random, in the sense
that any PPT algorithm cannot distinguish the output string from a truly random string
except with negligible probability. We formally define a PRG as follows.

Definition 2. We call a function G : {0, 1}k → {0, 1}�(k) as ε-secure PRG if for any PPT
adversaryA, it holds that

∣∣∣Pr[x← {0, 1}k : A(G(x)) = 1] − Pr[x′ ← {0, 1}�(k) : A(x′) = 1]
∣∣∣ ≤ ε(k).

3 Secret-Sharing Schemes

In this section, we introduce a model, definitions, and security notions for certain vari-
ants of SSSs. First, we explain the commonality of certain variants of SSSs we use in
this paper.

We focus on a class of SSSs called (k, n)-threshold ((k, n)-SSS.). This means that the
shares are shared by n parties in such a way that any coalition of k or more parties can
together reconstruct the secret, but no coalition fewer than k parties can.

Let [s]Pi be a share for party Pi where a secret is s ∈ R. In this paper, a secret
belongs to a ring R including not only Z/pZ, which is common and used in Shamir’s
SS, but also Z232 , which is used for efficient MPC [4]. Let Q be a coalition of parties
and [s]Q denote a set of shares

{
[s]Pi | Pi ∈ Q}. We assume that the number of corrupted

parties is t such that t < k holds. We say ([s]P1 , . . . , [s]Pn) is uniformly random if it
is uniformly randomly chosen from the set of shares whose secret is s. Let SSS be a
secret-sharing scheme and if we classify a share [s]Pi as belonging to which SSSs, we
denote is as [s]SSS

Pi
where [s]Pi is a share of SSS.

An SSS consists of two algorithms, a share generation algorithm Share and share
reconstruction algorithm Reconst. The share generation algorithm takes a secret s as

424 R. Kikuchi et al.

input and outputs a uniformly random a set of shares ([s]P1 , . . . , [s]Pn). The reconstruc-
tion algorithm takes k shares and outputs s.

The security requirement of (k, n)-SSS is that no coalition fewer than k parties can
know the information of the secret. This requirement is guaranteed by a security notion
called privacy. We define perfect privacy as follows:

Definition 3. Let S Pi be the random valuable of sPi for 1 ≤ i ≤ n and S be the random
valuable corresponding to s. We say a secret-sharing scheme SSS has perfect privacy
if the following holds for all i1, . . . , ik−1 ∈ {1, . . . , n}.

Pr[S = s | S Pi1
= sPi1

, . . . , S Pik−1
= sPik−1

] = Pr[S = s].

Furthermore, we require an SSS to be simulatable. Intuitively speaking, simulatability
means one can choose a share from a group of shares in such a way that the distri-
bution of a set of shares is the same as that generated in an ordinary way. We for-
mally define simulatability as follows. If an SSS is simulatable, one can derive [♦] from
([s]Pi1

, . . . , [s]Pik−1
) such that the distribution of [♦] is identical to that of [s]Pik

where
([s]Pi1

, . . . , [s]Pik−1
, [s]Pik

) ← Share(Reconst([s]Pi1
, . . . , [s]Pik−1

, [♦])). It is easy to con-
firm that Shamir’s and replicated SSS are simulatable since one simply sets [♦] as the
random element in the share space.

3.1 Computationally Secure SSS

A computationally secure SSS was first proposed by Krawczyk [17]. This scheme’s
procedure is as follows. In the dealing phase, a dealer encrypts a secret with a symmetric
key encryption, a symmetric key is distributed through an ordinary (k, n)-SSS, and the
ciphertext is distributed through (k, n)-IDA. The coding efficiency of (k, n)-IDA is n/k,
and the share size of a symmetric key is relatively small. Therefore, the code efficiency
of Krawczyk’s scheme is roughly n/k, which is optimal for (k, n)-SSS. However, it
seems difficult to conduct MPC on Krawczyk’s SSS since a secret is encrypted with the
symmetric key encryption.

In the computational setting, perfect privacy described in the previous section can
no longer be satisfied. Therefore, another definition of privacy is required. We use the
computational privacy defined in [22]. To separate a computational SSS from other
SSSs, we denote it as Comp consisting of (Comp.Share,Comp.Reconst). The compu-
tational privacy for (k, n)-SSS is formally defined through the following game between
a challenger C and an adversaryA.

1. A outputs (s0, s1) where |s0| = |s1|.
2. C randomly chooses b ∈ {0, 1} and computes ([sb]P1 , . . . , [sb]Pn) ←

Comp.Share(sb).
3. A is permitted to issue queries to a corrupt oracle. If A issues i, C responds with

[sb]Pi until the number of issues is up to k − 1. After this, C responds with ⊥.
4. A outputs b′ ← {0, 1}.
A wins the above game if b′ = b and its advantage is defined by Advprivacy

Comp (A) =
2 Pr[b = b′] − 1.

Definition 4. We say a Comp has ε-computational privacy if Advprivacy
Comp (A) ≤ ε for any

PPT adversaryA.

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 425

3.2 Ramp Scheme

Ramp schemes are a variant of an SSS, and were independently proposed by Blakley
and Meadows [3], and Yamamoto [25]. The advantage of a ramp scheme is its short
share size. while keeping information theoretical security.

We focus on threshold and ramp schemes which is parameterized by three integers,
(k, L, n). That is, we can reconstruct an s from arbitrary k or more shares but cannot
derive any information from k − L or less shares. Furthermore, any t shares in which
k − L < t < k leaks partial information of a secret such that the amount of information
increases with the number of collected shares. If L = 1, a ramp scheme is identical to an
ordinary perfect SSS. To separate a ramp scheme from other SSSs, we denote a ramp
scheme as Ramp, which consists of (Ramp.Share,Ramp.Rec).

Ramp schemes may leak partial information of a secret. Therefore, they also cannot
have perfect privacy; therefore an other privacy notion is proposed. A privacy notion of
ramp schemes is formally defined as follows where H represents entropy.

Definition 5. Let s be a secret and [s]Ramp
P1
, . . . , [s]Ramp

Pn
be a set of shares of s. We

say (k, L, n)-Ramp scheme (Ramp.Share,Ramp.Rec) has privacy if following require-
ments are satisfied:

1. For any coalition ([s]Ramp
Pi1
, . . . , [s]Ramp

Pit
), where k ≤ t,

H(s | [s]Ramp
Pi1
, . . . , [s]Ramp

Pit
) = 0 holds.

2. For any coalition ([s]Ramp
Pi1
, . . . , [s]Ramp

Pit
), where k − L < t < k,

H(s | [s]Ramp
Pi1
, . . . , [s]Ramp

Pit
) = k−t

L H(s) holds.

3. For any coalition ([s]Ramp
Pi1
, . . . , [s]Ramp

Pit
), where t ≤ k − L,

H(s | [s]Ramp
Pi1
, . . . , [s]Ramp

Pit
) = H(s) holds.

3.3 (Additively) Homomorphic Secret-Sharing Scheme

Our aim was to first store secrets through an SSS with better code efficiency and convert
shares to “multiparty-friendly” shares if one want to conduct MPC. Although we con-
cretely assume that the output of conversion is shares of Shamir’s and replicated SSS,
we propose a conversion protocol whose output is the shares of a homomorphic SSS,
which is a broad class that includes Shamir’s and replicated SSS.

Roughly speaking, if an SSS is homomorphic, a party can compute from shares
whose secrets are a1 and a2, to a share of a1 + a2 locally. This property is of great help
in MPC since one fundamental operation can be conducted efficiently.

A homomorphic SSS, denote as Hom = (Hom.Share,Hom.Rec), formally allows
the following property. There exists an operation
 such that for all s ∈ R and i, it holds
that

[s1 + s2]Hom
Pi
= [s1]Hom

Pi

 [s2]Hom

Pi
.

3.4 Conversion Protocol

A conversion protocol converts a set of shares to another set of shares while preserving
a secret.

426 R. Kikuchi et al.

Different from the share generation and reconstruction algorithm, the conversion
protocol is executed among certain parties. Therefore, it belongs to MPC. To prove
the security, we define that the functionality of conversion, which is a description of
the conversion protocol, should be satisfied. Given a coalition of parties Q, where
Q = {Pi1 , . . . , Pik } and U is all parties, we define the conversion function f Convert

SSS1,SSS2

as follows.

f Convert
SSS1,SSS2

: On input [s]SSS1
Pi j

for each Pij ∈ Q, it reveals a secret s with the reconstruc-

tion algorithm of SSS1, and generates a set of shares ([s]SSS2
Pi1
, . . . , [s]SSS2

Pik
) with the

share generation algorithm of SSS2. Finally, it outputs [s]SSS2
Pi

for each Pi ∈ U.

4 Computational Secret Sharing Scheme with Conversion Protocol

In this section we propose a new computational SSS, denoted as Comp, and a con-
version protocol for it. The scheme consists of two algorithms and a protocol, the share
generation algorithm Comp.Share, share reconstruction algorithm Comp.Reconst, and
share conversion protocol Comp.Convert, where a secret belongs to a certain ring R,
φ is a PRG such that φ : S → R, SSS = (SSS.Share,SSS.Rec) and Hom =

(Hom.Share,Hom.Rec) are (k, n)-SSS and Hom with homomorphicity, and IDA =
(IDA.Split, IDA.Rec) is the information dispersal algorithm.

Roughly speaking, in Comp.Share a secret is masked by pseudo-random value. The
masked secret is then distributed through IDA, and seeds of PRG are distributed through
SSS. Each seed is unknown if SSS has perfect privacy, and the masked secret is just
a ciphertext of one-time pad with pseudo-random value instead of true randomness.
Therefore, our proposed scheme is computationally private. The code efficiency of IDA
is n/k, and the size of seed |S | is much smaller than |R |. Therefore, the code effi-
ciency of our scheme is almost n/k, which is optimal for (k, n)-threshold. Note that if
we consider share generation and reconstruction only, just one pseudo-random value is
sufficient to prove computational privacy. However, Comp.Convert requires k pseudo-
random value, so we choose ei for i ≤ k.

Our proposed scheme is described as follows.

Share Generation: On input of a secret s ∈ R, Comp.Share outputs a set of shares
([s]Comp

P1
, . . . , [s]Comp

P2
) as follows:

1. Choose random seeds e1, . . . , ek ∈ S .
2. Compute ti = φ(ei) for i ≤ k.
3. Set s′ = s −∑i≤k ti.
4. Compute shares of each seed as ([ei]SSS

P1
, . . . , [ei]SSS

Pn
) ← SSS.Share(ei) for i ≤ k

and split s′ with IDA as (aP1 , . . . , aPn)← IDA.Split(s′).
5. Set a share of party Pi as [s]Comp

Pi
= ([e1]SSS

Pi
, . . . , [ek]SSS

Pi
, aPi) for i ≤ k and output

([s]Comp
P1
, . . . , [s]Comp

Pn
).

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 427

Share Reconstruction: On input of a list of k shares ([s]Comp
Pi1
, . . . , [s]Comp

Pik
),

Comp.Reconst outputs an s as follows:

1. Parse [s]Comp
Pi�

to ([e1]SSS
Pi�
, . . . , [ek]SSS

Pi�
, aPi�

) for � ≤ k.

2. Reconstruct ei ← SSS.Rec([ei]SSS
Pi1
, . . . , [ei]SSS

Pik
) for i ≤ k and compute ti = φ(ei).

3. Reconstruct s′ ← IDA.Rec(aPi1
, . . . , aPik

).
4. Set s = s′ +

∑
i≤k ti and output s.

Share Conversion: Let parties Pi1 , . . . , Pik be a coalition of parties and preliminarily
determined. Each party Pi has a share [s]Comp

Pi
. After Comp.Convert, each party Pi has

a share of homomorphic SSS [s]Hom
Pi

. The precise procedure of the protocol is as follows:

1. Each Pi� for � ≤ k parses [s]Comp
Pi�

to ([e1]SSS
Pi�
, . . . , [ek]SSS

Pi�
, aPi�

).

2. Each Pi� sends [e j]SSS
Pi�

to Pij for j ≤ k.

3. Each Pi� reconstructs e� ← SSS.Rec([e�]SSS
Pi1
, . . . , [e�]SSS

Pik
) and computes t� =

φ(e�).
4. Each Pi� sends aPi�

to Pi1 .
5. Pi1 reconstructs s′ ← IDA.Rec(aPi1

, . . . , aPik
), generates ([s′]Hom

P1
, . . . , [s′]Hom

Pn
) ←

Hom.Share(s′) and sends [s′]Hom
Pi

to P j for j ≤ n.
6. Each Pi� computes ([t�]Hom

P1
, . . . , [t�]Hom

Pn
)← Hom.Share(t�) and sends [t�]Hom

P j
to P j

for j ≤ n.
7. Each Pi computes [s]Hom

Pi
= [s′]Hom

Pi

 (
⊙

i≤k[t�]Hom
Pi

).

4.1 Security

First, we show that Comp has computational privacy. We now consider Comp.Share
and Comp.Reconst and then discuss the security of Comp.Convert.

Theorem 1. Suppose the SSSs SSS and Hom have perfect privacy, and φ : S → R is
a εk -secure pseudorandom generator. Comp then has ε-computational privacy.

Proof. We first define a series of games between an adversary A and challengers Ci,
where Ci corresponds to the i-th game. We denote the probability of A outputting b′
such that b′ = b in the i-th game as Pr[GAi]. A series of games is described as follows.

– Game 0: C0 runs an original computational privacy game on Comp.
– From Game 1 to Game k: A series of games from Game 1 to Game k is almost

the same. We denote Game i as a representative of these games.
Ci is identical to Ci−1 except that Ci substitutes ti−1 by a uniformly random element
in R.

Next we estimate the following equation.

Advprivacy
SSS (A) = Pr[GA0] =

∑

1≤i≤k

(
Pr[GAi−1] − Pr[GAi]

)
+ Pr[GAk].

428 R. Kikuchi et al.

First, we claim that for 1 ≤ i ≤ k, Pr[GAi−1] − Pr[GAi] ≤ εk holds. Consider an adversary
Bi that distinguishes a random element in R from an output of φ with the use of A.
On input of x∗ that is either a uniformly random element in R or pseudo-random value
generated by φ, Bi andA runs as follows:

1. A outputs (s1, s2) where |s1| = |s2| to Bi.
2. Bi randomly choose b ∈ {0, 1} and computes ([sb]P1 , . . . , [sb]Pn) as the same as

the original algorithm Share except that Bi just substitutes ti as ti = x∗ instead of
ti = φ(ei).

3. A is permitted to issue queries to a corrupt oracle. If A issues i, Bi responds with
[sb]Pi where [sb]Pi is modified as step 2 until the number of issues is up to k − 1.

4. A outputs b′ ← {0, 1}.
5. Bi outputs 1 if b′ = b, 0 otherwise.

The above simulation is identical to Game i if x∗ is a random element in R, and is
identical to Game (i − 1) if x∗ is pseudo-random value generated by φ. Therefore, the
following equation holds.

Pr[GAi−1] − Pr[GAi] = Pr[x← S : Bi(φ(x)) = 1] − Pr[x′ ← R : Bi(x′) = 1]

≤ ∣∣∣Pr[x← S : Bi(φ(x)) = 1] − Pr[x′ ← R : Bi(x′) = 1]
∣∣∣

≤ ε
k

for 1 ≤ i ≤ k. Finally, we claim that Pr[GAk] = 0 holds. In Game k, ti for 1 ≤ i ≤ k is
a uniformly random element in R. Therefore, s′ is uniformly random and independent
of b. Other elements are also independent of b from the beginning.

Consequently, the following equation holds.

Advprivacy
SSS (A) = Pr[GA0] =

∑

1≤i≤k

(
Pr[GAi−1] − Pr[GAi]

)
+ Pr[GAk] ≤ ε.

�
Next, we discuss the security of conversion protocol. We consider a semi-honest adver-
sary with static corruption.

Theorem 2. Suppose SSSs Hom and SSS have perfectly privacy, Hom is homomor-
phic, SSS is simulatable, a PRG φ is ε-secure where ε is negligible, and an IDA IDA is
samplable. Comp.Convert then computationally (k − 1)-privately computes f Convert

Comp,Hom.

Without loss of generality, we consider the case in which Comp.Convert is conducted
by P1, . . . , Pk, s′ is reconstructed by P1, and a set of corrupted parties is I = {P1,
P2, . . . , Pk−1}.

The view of adversaries consists of their inputs [s]I = ([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ran-

dom tapes, their outputs [s]Hom
I

, and shares sent from Pk where Pk sends ([e1]SSS
Pk
, . . . ,

[ek−1]SSS
Pk

), [tk]Hom
I

, and ak to corrupted parties.
We construct the simulator S as follows. Inputs and outputs are the same as those

of adversaries, and S selects random tapes uniformly at random. For the simulation of
([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), S chooses [♦[e1]SSS

I

]SSS, . . . , [♦[ek−1]SSS
I

]SSS such that êi, where

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 429

êi ← SSS.Rec([ei]SSS
I
, [♦[ei]SSS

I

]SSS) is uniformly randomly distributed in S . This can

be done thanks to the simulatability of SSS. For the simulation of [tk]Hom
I

, S randomly
chooses t̂k ∈ R, generates ([t̂k]Hom

P1
, . . . , [t̂k]Hom

Pn
) ← Hom.Share(t̂k), and sets [t̂k]Hom

I
as

the simulation of [tk]Hom
I

. For the simulation of ak, S randomly chooses âk in the possi-
ble space such that {aik | Pr[(b1, . . . , bn)← IDA.Split

(
IDA.Rec(ai1 , . . . , aik−1 , aik)

)
: bi� =

ai� for 1 ≤ � ≤ n] � 0}. This random sampling can be done thanks to the samplability.
We consider a series of distributions from

{(S(I,−→x I, f Convert
Comp,Hom I(

−→x)), f Convert
Comp,Hom(−→x)

)}

and switches them in such a way that no PPT adversary can distinguish them. We have
already written S such that

{(
S(I,−→x I, f Convert

Comp,Hom I(
−→x)), f Convert

Comp,Hom(−→x)
)}

is

{(
([e1]SSS

I
, . . . , [ek]SSS

I
, aI), ([♦[e1]SSS

I

]SSS, . . . , [♦[ek−1]SSS
I

]SSS), [t̂k]Hom
I
, âk , [s]Hom

I

)
, [s]Hom

U

}
,

where ([e1]SSS
I
, . . . , [ek]SSS

I
, aI) are input, ([♦[e1]SSS

I

]SSS, . . . , [♦[ek−1]SSS
I

]SSS), [t̂k]Hom
I
, âk

are the simulated values described in a previous paragraph, and [s]Hom
I

is output. We
omit random tapes for simplicity. Notice that [ek]SSS

I
and [t̂k]Hom

I
are uniformly random

and independent of any other values since SSS and Hom have a perfect privacy and
there are less than k shares in the above joint distribution.

We claim that
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([♦[e1]SSS

I

]SSS, . . . , [♦[ek−1]SSS
I

]SSS), [t̂k]Hom
I
, âk, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

([ê1]SSS
I
, . . . , [êk−1]SSS

I
, [ek]SSS

I
, aI), ([ê1]SSS

Pk
, . . . , [êk−1]SSS

Pk
), [t̂k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}
,

where êi = SSS.Rec([ei]SSS
I
, [♦[ei]SSS

I

]SSS), for 1 ≤ i ≤ k − 1 since [♦[ei]SSS
I

]SSS is gener-
ated with simulatability that guarantees the equality of distributions between honestly
generated shares and simulated shares,

We next claim that
{(

([ê1]SSS
I
, . . . , [êk−1]SSS

I
, [ek]SSS

I
, aI), ([ê1]SSS

Pk
, . . . , [êk−1]SSS

Pk
), [t̂k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

([ê1]SSS
I
, . . . , [êk−1]SSS

I
, [ek]SSS

I
, aI), ([ê1]SSS

Pk
, . . . , [êk−1]SSS

Pk
), [t̂′k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}
,

where ŝ′ = IDA.Rec(aI, âI) and t̂′k = (s − ŝ′) − ∑1≤i≤k−1 φ(êi) since Hom has perfect
privacy.

We next claim that
{(

([ê1]SSS
I
, . . . , [êk−1]SSS

I
, [ek]SSS

I
, aI), ([ê1]SSS

Pk
, . . . , [êk−1]SSS

Pk
), [t̂′k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

([e1]SSS
I
, . . . , [ek−1]SSS

I
, [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̃k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}
,

where t̃k = t̂′k +
∑

1≤i≤k−1(φ(êi) − φ(ei)) since each ei for 1 ≤ i ≤ k − 1 is chosen
uniformly at random in S , and t̂′k changes to t̃k in such a way that the distribution of s
is unchanged.

430 R. Kikuchi et al.

We next claims that
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̃k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}

c≈
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̀k]Hom

I
, ak, [s]Hom

I

)
, [s]Hom

U

}
,

where ŝ′ = IDA.Rec(aI, âk), s′ = IDA.Rec(aI, ak), and t̀k = t̃k + (ŝ′ − s′). We changes
t̃k to t̀k in such a way that the distribution of s is unchanged. This switch of the joint
distribution is not perfectly indistinguishable. Intuitively speaking, âk is generated with
samplability that guarantees the uniformity of ŝ in the “possible” space determined
by aI. However, an unbounded adversary can determine the range of φ, which may
narrow the “possible” space. Therefore, we claim that if there exists an adversary A
that distinguishes these two joint distribution, we can construct an adversary B that
distinguishes a random element in R from an output of φ with the use of A. Before
we describe the behavior of B, we confirm that t̃ is uniformly at random in R since t̂
is uniformly at random, and t̀ is an output of φ(ek), where ek ← S , since e1, . . . , ek−1,
s, a1, . . . , ak have already been determined. On input of x∗, which is either a uniformly
random element in R or pseudo-random value generated by φ, B andA run as follows:

1. B randomly chooses e1, . . . , ek and computes ([ei]SSS
P1
, . . . , [ei]SSS

Pn
) ←

SSS.Share(ei) for 1 ≤ i ≤ k.
2. B chooses s ∈ R according to some distribution over R. This distribution is unfixed

but there exists B that can choose according to it since someone choose s on his
own. Then B computes ([s]Hom

P1
, . . . , [s]Hom

Pn
)← Hom.Share(s).

3. B computes ti ← φ(ei) for 1 ≤ i ≤ k − 1, sets s′ = s − ∑1≤i≤k−1 ti − x∗, computes
(a1, . . . , ak)← IDA.Split(s′), and ([x∗]Hom

P1
, . . . , [x∗]Hom

Pn
)← Hom.Share(s).

4. B sends
((

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [x∗]Hom

I
, ak, [s]Hom

I

)
, [s]Hom

U

)

toA.
5. IfA outputs b′, then B also outputs b′.

In the above simulation, the view ofA is sampled either from
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̃k]Hom

I
, âk, [s]Hom

I

)
, [s]Hom

U

}

if x∗ is uniformly at random in R, or from
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̀k]Hom

I
, ak, [s]Hom

I

)
, [s]Hom

U

}

if x∗ is pseudo-random value of φ. Therefore, the advantage of B is equal to that ofA,
which contradicts that φ is an ε-secure PRG where ε is negligible.

Finally we claim that
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [t̀k]Hom

I
, ak, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

([e1]SSS
I
, . . . , [ek]SSS

I
, aI), ([e1]SSS

Pk
, . . . , [ek−1]SSS

Pk
), [tk]Hom

I
, ak, [s]Hom

I

)
, [s]Hom

U

}

since Hom has a perfect privacy. �

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 431

5 Conversion Protocol for Homomorphic Ramp Schemes

In this section we propose a conversion protocol that convert shares of homomorphic
ramp schemes to the one of any homomorphic SSS.

A ramp scheme can be extended to MPC without conversion [8]. However, there is
the difficulty to an operation between data which are embedded in different point such
as s1 × s2 where s = (s1, s2). Furthermore, there have been more results in ordinary
homomorphic SSSs. Therefore, we propose the conversion protocol.

We propose a protocol for converting (k, L, n)-ramp schemes to (k − L, n)-
homomorphic SSSs and assume an adversary corrupts up to k − L instead of an ad-
versary corrupts up to k. This is because If an adversary has already corrupted more
than k − L, he/she knows a partial information about the secret after the conversion.
However, usual MPC protocols do not consider such case. and they may be insecure
and cannot be used. This does not meet our aim.

Let Hom = (Hom.Share,Hom.Rec) be (k − L, n)-SSS and Ramp and Hom be ho-
momorphic. Roughly speaking, in the protocol we first reconstruct them in such a way
that k parties add a randomness to each secret si for i ≤ L using homomorphicity, and
then re-share si with homomorphic SSSs.

Our proposed conversion protocol for ramp schemes, denoted as Ramp.Convert, is
described as follows.

Share Conversion: Let parties Pi1 , . . . , Pik be a coalition of parties and preliminarily
determined. Each party Pi has a share [s]Ramp

Pi
where s = (s1, . . . , sL) ∈ RL. After

Ramp.Convert, each party Pi has a tuple of shares ([s1]Hom
Pi
, . . . , [sL]Hom

Pi
). The precise

procedure of the protocol is as follows:

1. Each Pi� randomly picks ri� = (ri�,1, . . . , ri�,L) ∈ RL.
2. Each Pi� generates ([ri�]

Ramp
P1
, . . . , [ri�]

Ramp
Pn

) ← Ramp.Share(ri�) and sends

[ri�]
Ramp
P j

to P j for j ≤ n.

3. Each Pi� generates ([ri�,m]Hom
P1
, . . . , [ri�,m]Hom

Pn
) ← Hom.Share(ri�,m) for m ≤ L, and

sends ([ri�,1]Hom
P j
, . . . , [ri�,L]Hom

P j
) to P j for j ≤ n.

4. Each P j computes [s′]Ramp
P j

= [s]Ramp
P j

−∑�≤k[ri�]
Ramp
P j

and sends [s′]Ramp
P j

to P1.

5. P1 reconstructs s′ ← Ramp.Rec([s′]Ramp
Pi1
, . . . , [s′]Ramp

Pik
) and parses s′ to

(s′1, . . . , s
′
L).

6. P1 generates ([s′m]Hom
P1
, . . . , [s′m]Hom

Pn
) ← Hom.Share(sm) for m ≤ L and sends

([s′1]Hom
P j
, . . . , [s′L]Hom

P j
) to P j for j ≤ n.

7. Each P j computes [sm]Hom
P j
= [s′m]Hom

P j

(⊙

�≤k[ri�,m]Hom
P j

)
for m ≤ L.

5.1 Security

Unlike the case of a computational SSS, The conversion of ramp schemes is uncondi-
tionally secure since ramp schemes is unconditionally secure too.

Theorem 3. Suppose the SSS Hom has perfect privacy, and Hom and Ramp are ho-
momorphic. Ramp.Convert then perfectly (k − L − 1)-privately computes f Convert

Ramp,Hom.

432 R. Kikuchi et al.

Without loss of generality, we consider the case in which Ramp.Convert is conducted
by P1, . . . , Pk and a set of corrupted parties is I = {P1, P2, . . . , Pk−1}.

The view of adversaries consists of their inputs [s]Ramp
I

, random tapes, their out-

puts [s]Hom
I

, and shares sent from Pk, where Pk sends [rk]Ramp
I

, [rk,i]Hom
I

for i ≤ L, and

[s′]Ramp
Pk

to corrupted parties.
We construct the simulator S as follows. Inputs and outputs are the same as those

of adversaries, and S selects random tapes uniformly at random. For the simulation of
[rk]Ramp

I
and [rk,i]Hom

I
for i ≤ L, S does exactly the same as Pk. For the simulation of

[s′]Ramp
Pk

, S selects ŝ′ ← R, computes ([ŝ′]Ramp
P1
, . . . , [ŝ′]Ramp

Pn
)← Ramp.Share(ŝ′), and

sets [ŝ′]Ramp
Pk

as the simulation of [s′]Ramp
Pk

.

We consider a series of distributions from
{(S(I,−→x I, f Convert

Ramp,HomI(
−→x)), f Convert

Ramp,Hom(−→x)
)}

and switches them in such a way that the distributions are identical.
We have already written S such that

{(
S(I,−→x I, f Convert

Ramp,HomI(
−→x)), f Convert

Ramp,Hom(−→x)
)}

is

{(
[s]Ramp
I
, [rk]Ramp

I
, [rk,1]Hom

I
, . . . , [rk,L]Hom

I
, [ŝ]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}
,

where [s]Ramp
I

is input, ([rk]Ramp
P1
, . . . , [rk]Ramp

Pk−1
), ([rk,1]Hom

P1
, . . . , [rk,1]Hom

Pk−1
), . . . , ([rk,L]Hom

P1
,

. . . , [rk,L]Hom
Pk−1

), [ŝ]Hom
Pk

are the simulated values described in the previous paragraph, and
[s]Hom
I

is output. We omit random tapes for simplicity.
We claim that

{(
[s]Ramp
I
, [rk]Ramp

I
, [rk,1]Hom

I
, . . . , [rk,L]Hom

I
, [ŝ′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

[s]Ramp
I
, [r̂k]Ramp

I
, [r̂k,1]Hom

I
, . . . , [r̂k,L]Hom

I
, [ŝ′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}
,

where r̂k = (r̂k,1, . . . , r̂k,L) satisfies
∑

1≤i≤k−1 ri + r̂k = s − ŝ′ since r̂k = (r̂k,1, . . . , r̂k,L) are
distributed through a perfectly private SSS and there are less than k − L shares.

We next claim that
{(

[s]Ramp
I
, [r̂k]Ramp

I
, [r̂k,1]Hom

I
, . . . , [r̂k,L]Hom

I
, [ŝ′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

[s]Ramp
I
, [r̃k]Ramp

I
, [r̃k,1]Hom

I
, . . . , [r̃k,L]Hom

I
, [s′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}
,

where r̃k = (r̃k,1, . . . , r̃k,L) satisfies r̃k = (ŝ′ − s′) + r̂k due to the same reason described
in the previous paragraph.

We finally claim that
{(

[s]Ramp
I
, [r̃k]Ramp

I
, [r̃k,1]Hom

I
, . . . , [r̃k,L]Hom

I
, [s′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}

p≈
{(

[s]Ramp
I
, [rk]Ramp

I
, [rk,1]Hom

I
, . . . , [rk,L]Hom

I
, [s′]Hom

Pk
, [s]Hom

I

)
, [s]Hom

U

}

also holds due to the same reason. �

6 Conclusion

We propose a new computationally secure SSS and two conversion protocols which
convert a share of our new SSS and ramp schemes whose coding efficiency is good to

SSS with Conversion Protocol to Achieve Short Share-Size and Extendibility to MPC 433

that of any homomorphic threshold SSS including Shamir’s SSS and replicated SSS.
This enables one to store data efficiently and extend secretly-shared data to MPC if
needed. Our proposed scheme and protocols are especially suitable for the secure data
storage with MPC.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)

2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer
Conference, vol. 48, pp. 313–317 (1979)

3. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum, D. (eds.)
CRYPTO 1984. LNCS, vol. 196, pp. 242–268. Springer, Heidelberg (1985)

4. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving
computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
192–206. Springer, Heidelberg (2008)

5. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party
computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)

6. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.A.: Sepia: Privacy-preserving aggre-
gation of multi-domain network events and statistics. In: USENIX Security Symposium, pp.
223–240 (2010)

7. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended
abstract). In: STOC, pp. 11–19 (1988)

8. Cramer, R., Damgård, I., de Haan, R.: Atomic secure multi-party multiplication with low
communication. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 329–346.
Springer, Heidelberg (2007)

9. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and appli-
cations to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362.
Springer, Heidelberg (2005)

10. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any
linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
316–334. Springer, Heidelberg (2000)

11. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

12. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

13. Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended ab-
stract). In: STOC, pp. 699–710 (1992)

14. Ghodosi, H., Pieprzyk, J., Steinfeld, R.: Multi-party computation with conversion of secret
sharing. Des. Codes Cryptography 62(3), 259–272 (2012)

15. Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press (2004)

16. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure.
In: Proc. of the IEEE Global Telecommunication Conf., Globecom 1987, pp. 99–102 (1987);
Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology 6(1), 15–20
(1993)

17. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 136–146. Springer, Heidelberg (1994)

434 R. Kikuchi et al.

18. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault toler-
ance. Journal of the ACM 36(2), 335–348 (1989)

19. Rabin, M.O.: Sequences, pp. 406–419. Springer-Verlag New York, Inc., New York (1990)
20. Resch, J.K., Plank, J.S.: Aont-rs: Blending security and performance in dispersed storage

systems. In: FAST, pp. 191–202 (2011)
21. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE

1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)
22. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of clas-

sical secret-sharing goals. In: ACM Conference on Computer and Communications Security,
pp. 172–184 (2007)

23. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

24. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
25. Yamamoto, H.: Secret sharing system using (k,l,n) threshold scheme. IECE Trans. J68-

A(9), 945–952 (1985) (in Japanese); English translation: Electronics and Communications
in Japan, Part I, vol. 69(9), pp. 46–54. Scripta Technica, Inc. (1986)

Public Key Cryptography for Mobile Cloud

Yuliang Zheng

The University of North Carolina at Charlotte

Abstract of the Invited Lecture

Mobile cloud is the integration of cloud computing and mobile communication
systems to benefit mobile device users. As a mobile device such as a smartphone
and a tablet computer has a limited amount of onboard storage, participation
in mobile cloud provides the mobile device with access to a virtually unlimited
amount of storage on an on-demand basis. In this talk I will focus on a specific
technical challenge in building security-enhanced mobile cloud, namely how to
encrypt data using public key cryptography in such a way that a sender can
recover the data from a ciphertext stored in the cloud without reliance on the
recipient of the ciphertext.

As a motivating example, consider a scenario where Alice has an important
message to be sent to Bob in a secure manner. She can accomplish this by
employing Bob’s public key to encrypt the message into a ciphertext, followed
by emailing Bob the ciphertext. After sending the encrypted message to Bob,
Alice’s email system dutifully keeps an identical copy of the ciphertext in her
“Sent” folder in the cloud storage. Some time later Alice finds herself in a position
where she needs to recover the message from the ciphertext, without access to
Bob’s decryption key. Obviously Alice would be out of luck if a regular public
key encryption scheme is employed.

I will explain how the above problem can be solved by a new type of public
key encryption techniques that admit decryption by the sender, without the need
to modify existing messaging protocols typified by “sendmail”. I will also show
two generic methods for converting a regular public key encryption scheme into
one that admits decryption by the sender, in such a way that the security of the
resultant mechanism can be formally proven.

C. Boyd and L. Simpson (Eds.): ACISP 2013, LNCS 7959, p. 435, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Author Index

Anada, Hiroaki 168
Aoki, Kazumaro 286
Aono, Yoshinori 88
Arita, Seiko 168
Au, Man Ho 187, 318

Bai, Dongxia 251
Banik, Subhadeep 13
Boyen, Xavier 267
Buldas, Ahto 152, 235

Camtepe, Seyit A. 363
Chen, Jiageng 268
Chida, Koji 419

Feng, Dengguo 27
Fouque, Pierre-Alain 203
Fuji, Hitoshi 286
Fukumitsu, Masayuki 72
Fukunaga, Toshinori 286

Ghadafi, Essam 330
Gjøsteen, Kristian 379
Guo, Fuchun 219

Hamada, Koki 419
Handa, Sari 168
Hasegawa, Shingo 72
Hong, Jin 347
Huang, Zhengan 136

Ikarashi, Dai 419
Isobe, Shuji 72
Isobe, Takanori 268
Iwabuchi, Yosuke 168

Joux, Antoine 203

Kikuchi, Ryo 419
Kim, Byoung-Il 347
Koizumi, Eisuke 72
Kunihiro, Noboru 118

Laanoja, Risto 235
Lin, Dongdai 57
Liu, Shengli 136
Lu, Yao 57

Maitra, Subhamoy 13
Manulis, Mark 187
Mitchell, Chris J. 1
Mu, Yi 219

Niitsoo, Margus 152

Petrides, George 379
Plantard, Thomas 104

Qin, Baodong 136

Sarkar, Santanu 13
Sasaki, Yu 268
Shi, Zhenqing 27
Shizuya, Hiroki 72
Sönmez Turan, Meltem 13
South, Leah 388
Stebila, Douglas 388
Steine, Asgeir 379
Susilo, Willy 104, 187, 219, 318

Takagi, Tsuyoshi 41
Takahashi, Junko 286
Takahashi, Katsumi 419
Takayasu, Atsushi 118
Tibouchi, Mehdi 203
Todo, Yosuke 302

Varadharajan, Vijay 219

Wang, Gaoli 251
Wang, Xiaoyun 251
Wang, Yang 187, 318
Wong, Duncan S. 318

Yu, Hongbo 251
Yu, Yang 403

Zhang, Bin 27
Zhang, Hui 41
Zhang, Rui 57
Zhang, Zhenfei 104
Zheng, Yuliang 435
Zhou, Zhanfei 403

	Preface
	Organization
	Table of Contents
	Cryptanalysis I
	Analysing the IOBC Authenticated Encryption Mode
	1
Introduction
	2
The Recacha IOBC Mode
	2.1
Initial Assumptions
	2.2
Initialization Vectors
	2.3
Operation
	2.4
itional Remarks
	2.5
Using IOBC for Integrity Protection

	3
Preliminary Observations
	4
A Known-Plaintext Forgery Attack on IOBC
	4.1
The Case n=64
	4.2
The Case n=128
	4.3
Other Values of n

	5 Can IOBC be Fixed?

	6
A Chosen-Plaintext Forgery Attack
	7
ummary and Conclusions
	References

	A Chosen IV Related Key Attack on Grain-128a
	1
Introduction
	2
Preliminaries
	2.1
Chosen IV Attacks
	2.2
Grain Family of Stream Ciphers
	2.3
Description of Grain-128a

	3
Key-IV Pairs That Produce Shifted Keystream in Grain-128a
	4
A Chosen IV Related Key Attack on Grain-128a
	4.1
Complexity of the Attack
	4.2
Experimental Results
	4.3
Possible Countermeasures

	5
Conclusion
	References

	Cryptanalysis of Helix and Phelix Revisited
	1
Introduction
	2
Description of Helix and Phelix
	2.1
General Structure of Helix
	2.2
The Block Function
	2.3
The Key Words
	2.4
Initialization
	2.5 The Keystream Words

	3
Muller's Distinguishing Attack on Helix
	3.1�Influence of Each Nonce Word
	3.2
Forcing the Collisions

	4 Our Attacks on Helix and Phelix

	4.1
The Success Probability and the Advantage of the Attack
	4.2
A Flaw in Muller's Attack on Helix
	4.3
Distinguishing Attack on Modified Helix
	4.4
Distinguishing Attack on Helix
	4.5
Key Recovery Attack on Modified Helix
	4.6
Distinguishing Attack on Phelix
	4.7
Cryptanalysis of a General Type of Enhanced Version of Helix

	
5 Conclusion
	References

	RSA
	 Attacks on Multi-Prime RSA with Small Prime Difference
	1
Introduction
	2
Previous Attacks on Original RSA
	2.1
Wiener's Small Private Exponent Attack
	2.2
Boneh & Durfee's Small Private Exponent Attack
	2.3
Fermat's Factoring Attack
	2.4
De Weger's Improvements on the Small Private Exponent Attacks

	3
Previous Attacks on MPRSA
	3.1
Ciet et al.'s Extensions of the Small Private Exponent Attacks
	3.2
Bahig et al.'s Extension of de Weger's Attack

	4
The Proposed Attacks
	4.1
Small Private Exponent Attack
	4.2
Fermat-Like Factoring Attack

	5
xperimental Results
	6
Conclusion
	References

	Factoring Multi-power RSA Modulus N=pr q with Partial Known Bits
	1
Introduction
	2
Preliminary
	3
Previous Works
	3.1
BDH Method
	3.2
Herrmann-May Method

	4
Our Results
	4.1
The Main Theorem

	5 Proof of Theorem 3

	5.1
Our First Approach
	5.2
Our Second Approach
	5.3
Discussions

	6
Conclusion
	References

	Toward Separating the Strong Adaptive Pseudo-freeness from the Strong RSA Assumption
	1
Introduction
	2
Preliminaries
	2.1
Pseudo-free Groups
	2.2
Strongly-Adaptive Pseudo-free Groups
	2.3
Algebraic Algorithms
	2.4
Strong RSA Assumption

	3
Main Theorem
	References

	Minkowski Sum Based Lattice Construction for Multivariate Simultaneous Coppersmith's Technique and Applications to RSA
	1
Introduction
	1.1
Contributions of This Work

	2
Preliminaries
	2.1
Overview of the Coppersmith Technique

	3
Coppersmith Technique for Simultaneous Equations
	3.1
Minkowski Sum Based Lattice Construction
	3.2
Minkowski Sum of Lower Triangular Lattices

	4
Cryptanalysis of RSA with Short Secret Exponents
	4.1
RSA Equation and Its Limit by a Counting Argument
	4.2
Our Lattice Construction and Bound

	5
Application to Partial Key Exposure Attack on RSA
	6
Computer Experiments of our RSA Cryptanalysis
	6.1
Experiments for Short RSA Secret Exponents
	6.2
Experiments for Partial Key Exposure Situation

	7
Discussion and Open Problems
	References

	Lattices and Security Proofs
	Adaptive Precision Floating Point LLL
	1
Introduction
	2
Background
	2.1
Lattice Basics
	2.2
The LLL Algorithm
	2.3
Floating Point LLL Algorithm

	3
Our Adaptive Precision Floating Point LLL Algorithm
	3.1
The Algorithm
	3.2
Worst-Case Complexity
	3.3
Average Behaviors

	4
Implementation
	5
Conclusion
	References

	Better Lattice Constructions for Solving Multivariate Linear Equations Modulo Unknown Divisors
	1
Introduction
	2
Preliminaries
	3
The Strategy for Lattice Constructions
	4
Improved Algorithm for (n,1)-ME
	5
Improved Algorithm for (1,n)-ME
	5.1
Improved Algorithm for (1,2)-ME
	5.2
Extension to (1,n)-ME

	6
Implementation
	References

	Key-Dependent Message Chosen-Ciphertext Security of the Cramer-Shoup Cryptosystem
	1 Introduction

	1.1 Our Contribution

	1.2 Organization

	2 Preliminaries

	2.1 Definitions of KDM-CCA2 Security

	2.2 Target-Collision Resistant Hashing

	2.3 The DDH Assumption

	3 New Function Ensemble and Application

	3.1 New Function Ensemble

	3.2 Application to Anonymous Credential Systems

	4 The CS Scheme Tailored for KDM-CCA2 Security

	4.1 The Tailored CS Scheme

	4.2 KDM-CCA2 Security of the Tailored CS Scheme

	5 Conclusion and Further Work
	References

	Black-Box Separations and Their Adaptability to the Non-uniform Model
	1 Introduction

	2 Notation

	3 Basic Lemmas

	4 Primitives

	5 Black-Box Reductions

	6 Oracle-Extraction Based Separation

	7 Averaging-Based Separation

	7.1 Poly-Preserving Reductions

	7.2 Averaging-Based Separation for Poly-Preserving Reductions

	8 Going beyond the Strong Semi Black-Box Boundary

	References

	Public Key Cryptography

	Attribute-Based Identification: Definitions and Efficient Constructions
	1 Introduction

	1.1 Our Contributions

	1.2 Related Works

	1.3 Organization of the Paper

	2 Preliminaries

	2.1 Access Structure

	2.2 Linear Secret-Sharing Scheme

	2.3 Key-Policy Attribute-Based KEM

	2.4 Bilinear Map

	2.5 Computational Bilinear Diffie-Hellman Assumption with Gap on Target Group

	2.6 Target Collision Resistant Hash Functions

	3 Attribute-Based Identification

	3.1 Prover-Policy ABID

	3.2 Concurrent Man-in-the-Middle Attack on PP-ABID and Security

	4 Generic Conversions from ABKEM to ABID

	4.1 Generic Conversion from KP-ABKEM to PP-ABID

	4.2 Discussion

	5 Concrete Constructions of ABKEM

	5.1 Our Enhanced OSW KP-ABKEM and PP-ABID

	5.2 Proof for Theorem 2

	5.3 Discussion

	6 Conclusions
	References

	Relations among Privacy Notions for Signcryption and Key Invisible ``Sign-then-Encrypt''

	1 Introduction

	1.1 Our Contribution

	2 Preliminaries

	2.1 Digital Signatures

	2.2 Public-Key Encryption

	2.3 Signcryption Syntax

	3 Security Notions for Signcryption Schemes
	3.1 Unforgeability

	3.2 Confidentiality

	3.3 Ciphertext Anonymity

	3.4 Key Invisibility

	4 Relations among Privacy Notions for Signcryption

	4.1 Separation between Ciphertext Anonymity and SC-IND-CCA

	4.2 Relationship between Key Invisibility and Ciphertext Anonymity

	4.3 Relationship between Key Invisibility and SC-IND-CCA

	5 Sign-then-Encrypt Generic Construction

	5.1 Scheme

	5.2 Security of the Generic Construction

	6 Conclusion
	References

	Injective Encodings to Elliptic Curves
	1 Introduction

	2 Injective Encodings

	2.1 Definition

	2.2 Some Simple, Optimal Examples

	2.3 Generic Injective Encodings

	2.4 Injective Encodings to Elliptic Curves

	3 Our New Elliptic Curve Encoding

	3.1 Main Construction

	3.2 Description of the Target Curves

	3.3 Mapping to the Twist

	4 Conclusion

	References

	Membership Encryption and Its Applications
	1 Introduction

	2 Membership Encryption

	2.1 Description of Membership Encryption

	2.2 Security Models of Membership Encryption

	3 Our Membership Encryption

	3.1 Pairing Group

	3.2 The Scheme

	3.3 Discussions

	4 Proof of Security

	4.1 Hard Problems

	4.2 Security Proof

	5 Oblivious Transfer from Membership Encryption

	6 Conclusion

	References

	Hashing

	Security Proofs for Hash Tree Time-Stamping Using Hash Functions with Small Output Size
	1 Introduction

	2 Preliminaries

	2.1 Security Proofs and Their Tightness

	2.2 Security Properties of Hash Functions

	2.3 Hash-Tree Time-Stamping Schemes and Their Security

	3 Security under RO and PrA Assumptions

	4 Strong Pre-image Awareness

	5 Necessity of Boundedness

	6 Open Questions and Further Research
	References

	Improved Boomerang Attacks on SM3
	1 Introduction

	2 Description of SM3

	3 The Boomerang Attack
	4 The Boomerang Attacks on SM3

	4.1 Step-Reduced Differential Trails

	4.2 Message Modification for the Middle Steps

	4.3 Complexity of the Attack

	4.4 Attacks on 35/36/37-Step SM3 Compression Function

	4.5 The Incompatibility in Previous Boomerang Attacks on SM3

	5 Conclusion

	References

	Invited Talk
	Expressive Cryptography: Lattice Perspectives

	Cryptanalysis II

	Related-Key Boomerang Attacks on KATAN32/48/64
	1 Introduction

	2 Preliminaries

	2.1 KATAN Block Cipher

	2.2 Related-Key Boomerang Attack

	3 Related-Key Boomerang Distinguisher on KATAN32

	3.1 Differential Properties of KATAN

	3.2 Strategy for Finding Differential Characteristics

	3.3 Related-Key Boomerang Distinguisher on 140-Round KATAN32

	4 Related-Key Recovery Attack on KATAN32

	4.1 Conditions for Chosen Plaintexts

	4.2 Optimizing Key Recovery Phase

	4.3 Attack Procedure and Complexity Evaluation

	5 Related-Key Boomerang Attack on KATAN48/64

	5.1 Differential Characteristics and Plaintext Conditions

	5.2 Optimization and Summary of Key Recovery Attacks

	6 Conclusion
	References

	Highly Accurate Key Extraction Method
for Access-Driven Cache Attacks
Using Correlation Coefficient

	1 Introduction

	2 Overview of Access-Driven CAs

	3 Proposed Quantitative Approach

	3.1 Concept Behind Proposed Approach

	3.2 Detailed Description of Proposed Approach

	4 Experimental Results

	4.1 Experimental Conditions

	4.2 Experimental Results

	5 Discussion

	5.1 Evaluation of Size of Key Candidate Space

	5.2 Significance of S-box Table Alignment for Implementation

	5.3 Relationship Between Correlation and Number of Plaintexts

	6 Conclusions
	References

	Upper Bounds for the Security of Several Feistel
Networks

	1 Introduction

	2 Preliminary
	2.1 Notations

	2.2 Feistel Networks

	2.3 Knudsen's Attack

	3 New Key Recovery Attack on the Ki F-Feistel

	3.1 New Key Recovery Attack for the 5 Round Ki F-Feistel

	3.2 New Key Recovery Attack for the 6 Round Ki F-Feistel

	4 New Key Recovery Attacks on the Ki F Pi-Feistel

	4.1 A New Property for the 5 Round Ki F Pi-Feistel

	4.2 New Key Recovery Attack on the 6 Round Ki F Pi-Feistel

	5 Discussions

	6 Conclusion

	References

	Signatures

	Fairness in Concurrent Signatures Revisited
	1 Introduction

	1.1 Fairness in Practice

	1.2 Our Contributions

	1.3 Related Work

	1.4 Roadmap

	2 Notions and Definitions of Concurrent Signature

	2.1 Notations

	2.2 Concurrent Signatures

	2.3 Security Model

	3 Abusing Fairness in Concurrent Signatures

	3.1 Zero-Knowledge Proof

	3.2 Advantage Level 0

	3.3 Advantage Level 1

	3.4 Advantage Level 2

	4 Abusing Fairness in Asymmetric Concurrent Signatures

	4.1 Review of Nguyen's asymmetric concurrent signatures

	4.2 A Concrete Level-1 Abuse on Nguyen's Scheme

	5 Conclusion
	References

	Formalizing Group Blind Signatures and Practical Constructions without Random Oracles
	1 Introduction

	2 Preliminaries

	3 Dynamic Group Blind Signatures

	4 Building Blocks

	4.1 Groth-Sahai (GS) Proofs

	4.2 Blind Signatures

	4.3 A New Structure-Preserving Signature Scheme

	5 Our Construction

	5.1 Techniques Used

	5.2 Overview of the Construction

	6 Achieving Full Anonymity
	References

	Passwords and Mobile Security
	Analysis of the Non-perfect Table Fuzzy Rainbow Tradeoff
	1 Introduction

	2 Preliminaries

	3 Analysis of the Fuzzy Rainbow Tradeoff

	3.1 Probability of Success

	3.2 Online Complexity

	3.3 Storage Optimization

	4 Comparison of Tradeoff Algorithms

	4.1 Optimal s

	4.2 Fuzzy Rainbow Tradeoff versus Rainbow Tradeoff

	5 Conclusion
	References

	Complexity of Increasing the Secure Connectivity in Wireless Ad Hoc Networks
	1 Introduction

	2 Network Model and Problem Definition

	2.1 Network Model and Notations

	2.2 Problem Definition

	3 Problem P1: Augmenting the Key Graph GK

	4 Problem P2: Augmenting the Physical Graph GP

	4.1 Auxiliary Graph Representation

	4.2 Problem P2.1: Mathematical Programming Formulation
	4.3 Problem P2.2 Mathematical Programming Formulation

	5 Conclusion and Discussions
	References

	Towards Privacy Preserving Mobile Internet Communications – How Close Can We Get?
	1 Introduction

	2 Model and Privacy Goals

	3 Secure and Anonymous Network Connection

	4 Persistent Connection to Content Service Providers

	5 Seamless Internet Telephony Services

	6 Conclusions
	References

	Count-Min Sketches for Estimating Password Frequency within Hamming Distance Two
	1 Introduction

	1.1 Bloom Filters and Count-Min Sketches

	1.2 Contributions

	2 Related Work

	3 Construction

	3.1 Hash

	3.2 Update

	3.3 Estimate

	4 Analysis of Construction

	4.1 Error

	4.2 Comparison with Naive Method

	5 Example Parameter Instantiation

	6 Conclusion

	References

	Secret Sharing
	A Rational Secret Sharing Protocol
with Unconditional Security
in the Synchronous Setting

	1 Introduction

	1.1 Background

	1.2 Our Contribution

	2 Model and Definitions

	2.1 Game Theoretic Model

	2.2 Utility Assumption

	2.3 Equilibrium

	3 Verifiable Secret Sharing

	4 Rational Secret Sharing Protocol : t ≤ �n 3

	4.1 Protocol Analysis

	5 Rational Secret Sharing Protocol ': t "4264306 n2"5265307

	5.1 The Information Checking Protocol

	5.2 Our Construction

	6 Discussion

	7 Conclusion
	References

	Secret Sharing Schemes with Conversion Protocol to Achieve Short Share-Size and Extendibility to Multiparty Computation
	1 Introduction

	1.1 Compatibility of Code Efficiency and Extendibility to Multiparty Computation

	1.2 Our Contribution

	1.3 Related Works

	2 Preliminaries

	2.1 Multiparty Computation against Semi-honest Adversasries

	2.2 Information Dispersal Algorithm

	2.3 Pseudorandom Generator

	3 Secret-Sharing Schemes

	3.1 Computationally Secure SSS

	3.2 Ramp Scheme

	3.3 (Additively) Homomorphic Secret-Sharing Scheme

	3.4 Conversion Protocol

	4 Computational Secret Sharing Scheme with Conversion Protocol

	4.1 Security

	5 Conversion Protocol for Homomorphic Ramp Schemes

	5.1 Security

	6 Conclusion
	References

	Invited Talk
	Public Key Cryptography for Mobile Cloud

	Author Index

