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Abstract. A new paradigm for case-based reasoning described here assembles a 
set of cases similar to a new case, solicits the opinions of multiple agents on 
them, and then combines their output to predict for a new case. We describe the 
general approach, along with lessons learned and issues identified. One applica-
tion of the paradigm schedules constraint satisfaction solvers for parallel 
processing, based on their previous performance in competition, and produces 
schedules with performance close to that of an oracle. A second application 
predicts protein-ligand binding, based on an extensive chemical knowledge 
base and three sophisticated predictors. Despite noisy, biased biological data, 
the paradigm outperforms its constituent agents on benchmark protein-ligand 
data, and thereby promises faster, less costly drug discovery.  
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1 Introduction 

As the problems presented to computers become increasingly difficult, the techniques 
researchers develop to address them become increasingly sophisticated and complex. 
Although these programs may perform unevenly, ensembles of them often smooth 
performance [1]. At the same time, data pertinent to difficult problems has burgeoned, 
even though it is often noisy and incomplete. Rather than trust the evidence of a sin-
gle data point, it may be more informative, to consider several. The case-based rea-
soning paradigm described here, MAMC (Multi-Agent Multi-Case-based reasoning), 
takes both routes: it consults multiple agents and it uses multiple cases. We report 
here on two MAMC applications: construction of a parallel schedule for constraint 
satisfaction search, and prediction about the binding energy between two proteins, a 
key to rational drug design. Although many such agents (here, solvers or predictors) 
exist, none consistently outperforms all the others on a large, diverse set of bench-
mark examples. The thesis of this paper is that the effectiveness of a set of agents on a 
set of similar cases supports reasoning about the agents’ performance on a new case. 
Given a new case, MAMC selects from its knowledge base the cases most similar to 
it, and examines the accuracy of a set of agents on those cases. The principal result 
reported here is that MAMC improves predictive accuracy in both applications. 
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Fig. 1. High-level pseudocode for MAMC 

MAMC is outlined in Figure 1. For a particular domain, MAMC’s pre-existing 
agents A are assumed to be the result of extensive research and development, and 
generally regarded by experts as among the best. The corresponding case base C, 
shared by all the agents, consists of published results for those agents on their com-
mon task. Finally, the features on which similarity is gauged to select the reference 
cases L are assumed available from other experts’ work in the domain of interest, but 
deliberately differ from those of any individual agent for their prediction.  

Unlike earlier work with multiple cases, which drew from case bases for related tasks 
[2] or focused on distributed resources across multiple machines [3], MAMC reasons 
over multiple cases resident on the same computer and for the same task. Rather than 
use portions of multiple cases or multiple agents to produce a solution, as in [4], MAMC 
uses multiple cases to select one agent most appropriate for a new case. MAMC can 
also estimate the reliability of its output, an essential but rarely available property in 
bioinformatics. MAMC’s confidence is based not on the quality of its cases, as in [5], 
but on the degree of similarity it detects between the new case e and the reference cases 
L, along with the performance of the selected agent on those cases.  

The applications described here face similar challenges: development of an exten-
sive case base with an incisive feature-based index, a pairwise similarity metric for 
cases, and a way to combine the agents’ output to make a decision. Each of the next 
two sections details an application, with relevant background; related work; the origin 
of C, A, and s; and empirical design and results. The discussion mines this experience 
to establish commonalities, issues, and promise for future MAMC applications. 

2 Parallel Portfolio Construction for Constraint Satisfaction 

Constraint satisfaction is a powerful representation for many real-world problems, but 
search for a solution to a constraint satisfaction problem (CSP) is in general NP-hard. 
Many solvers succeed on quite difficult problems, but unevenly and unpredictably. 
Our goal is to schedule solvers on multiple processors to solve one problem. 

Here, a CSP <X, D, R> is a set X of variables, a set D of finite domains associated 
with those variables, and a set R of constraints that restrict how values from their 
respective domains may be assigned to variables simultaneously. A solution assigns a 
value to each variable and satisfies all of R. A solvable CSP has at least one solution. 
The solvers used here assign a value to one variable at a time, and temporarily remove 
inconsistent values from the domains of as-yet-unassigned variables. If a domain 
becomes empty, the solver backtracks to the most recent alternative and chooses a 
new value. Search returns the first solution found, or halts when it shows the problem 

Input: new case e, case base C, agents A, pairwise similarity metric s,  
     number of reference cases q  
Output: prediction or recommendation for e 
  Select a subset L of q cases in C most similar to e as measured by s 
  Predict or recommend on each case in L with Aj for all Aj ∈ A 
  Combine output from all Aj ∈ A by their performance on L as output for e 
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is unsolvable (i.e., the domain of the variable at the top of the search tree becomes 
empty). A variable-ordering heuristic determines the order in which the solver ad-
dresses variables, and a restart policy begins search on the problem again, probably 
with a different root variable. This remainder of this section summarizes work that 
appeared in the optimization literature, and detailed its rationale and development 
saga more theoretically [6]. 

2.1 The Task for MAMC 

In this application, the agents A are CSP solvers, C is a set of CSPs, and T is a set of 
consecutive, unit time intervals. A simple schedule σ for a problem on one processor 
specifies at most one agent to address the problem in each time interval, that is, 
σ: T→ A. A schedule for k processors is a set of k simple schedules, one for each pro-
cessor. On any one processor, at most T time can be allotted to any solver on any 
problem. We represent the performance of A on C in a |C| × |A| performance matrix τ, 
where entry τij ∈ {1,2,…, T} means that the jth solver solves the ith problem in time 
τij; otherwise the problem goes unsolved in time T. The solvers used here are determi-
nistic, that is, each τij is a fixed, positive integer. 

A CSP portfolio is a combination of solvers intended to outperform each of its con-
stituents [7-12]. A solver portfolio <A, k, S, T> proposes a set S of k simple schedules 
that deploy agents A on k processors to solve a problem in time T. For k = 1, a solver 
portfolio is simple; for k > 1, it is parallel. If it is deterministic, neither a simple nor a 
parallel solver portfolio can exceed the performance of an oracle, which always se-
lects the single fastest solver. We focus here on offline solver portfolio constructors, 
which observe the performance of A on C and then build a portfolio to optimize per-
formance on new cases [8, 9, 11]. We consider only switching schedules, which pre-
serve each solver’s intermediate search state when its time elapses, for reuse only by 
that solver if time is allocated to it on the same processor later.  

Given cases C, a new problem e, similarity metric s, and performance matrix τ for 
solvers A on C, MAMC’s task is to find the best parallel schedule σ that uses A to 
solve e on k processors. The portfolio constructors most relevant here, CPHYDRA [8] 
and GASS [13], were both intended for a single processor. CPHYDRA is case-based; it 
selects a small set of problems in C similar to e, and searches all possible schedules, 
in time O(2|A|). It weights problems in C by their Euclidean distance from e, and seeks 
an optimal schedule, one that maximizes the number of problems solved within T. In 
contrast, GASS is greedy, and its performance depends on |C|. At each step, GASS 
selects the agent that maximizes the number of problems solved per unit of time, and 
counts only problems solved for the first time during the current time step. GASS 
creates schedules in time O(|C| ⋅ |A| log |C| ⋅ min{|C|, T ⋅ |A|}) that are at most four 
times worse than optimal; any better approximation was shown to be NP-hard [13]. 

2.2 Cases, Similarity, and Combination 

The case base was developed from the 3307 problems in 5 categories at the Third 
International CSP solver competition (CPAI’08), where problems represent a wide 
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Table 1. CPAI’08 problems by category 

Applicable 
solvers 

Category 
 

Competition 
problems 

Experiment 
problems 

Solvable 
experiment problems 

17 GLOBAL 556 493 256 
22 k-ARY-INT (k≥2) 1412 1303 739 
23 2-ARY-EXT 635 620 301 
24 N-ARY-EXT (N>2) 704 449 156 

Table 2. Problems in Table 1 solved by non-parallel solver portfolios in 1800 seconds 

Solver Oracle GASS CPHYDRA10 CPHYDRA40 
Number solved 2865 2773 2577 2573 
% solved 100% 96.79% 89.95% 89.81% 

 
variety of challenges and are intended to be difficult [14]. Cases were represented by 
the same 36 numeric features (e.g., number of variables, maximum domain size) used 
by CPHYDRA. To extract feature values, we ran the solver Mistral 1.550 on an 8 GB 
Mac Pro with a 2.93 GHz Quad-Core Intel Xeon processor. We excluded any problem 
whose full set of features was not calculated within 1 second, and any problem never 
solved by any solver at CPAI’08. Table 1 summarizes the remaining 2865 problems.  

Agents in A are the 24 solvers in CPAI’08. They include CPHYDRA10 and 
CPHYDRA40, versions of CPHYDRA that used the same 3 solvers, but with 10 or 40 cases 
respectively (CPHYDRA won all but one category at CPAI’08.) The CPAI’08 results 
provide the performance matrix τ.  For neighbor set ratio r (0 ≤ r ≤ 1), the neighbor set 
L of any case e is the r ⋅ |C| problems in C with feature vectors most similar to e. 

Portfolio construction experiments performed 10-fold cross-validation. Each itera-
tion partitioned the 2685 into a set of testing problems and a set of training problems 
(i.e., the case base C). Stratified partitioning maintained the proportions of problems 
from different categories in each subset. Table 2 reports the performance of an oracle 
and three non-parallel solver portfolio constructors, given 1800 seconds per problem. 

RSR-WG (Retain, Spread and Return with a Weighted Greedy approach) is the 
MAMC implementation for this task. As in Figure 2, it formulates a parallel schedule 
for problem e based on τ, A, C, and L, the set of cases most similar to e. RSR-WG 
tries to build a schedule that solves as many cases as it can from L, under the assump-
tion that the same schedule will then do well on e. RSR-WG tries, heuristically and 
greedily, to schedule L, and measures the similarity of case ci ∈ L to e based on its 
Euclidean distance d(ci, e) from e (here, ε= 0.001):  

 
si = 1−

(1− ε ) d(ci, e) − dmin[ ]
dmax − dmin

 (1) 

where dmax = max({d(ci, e) | ci ∈ L}) and dmin = min({d(ci, e) | ci ∈ L}). Given execu-
tion time t for Aj, RSR-WG counts (from performance matrix τ)  and weights (with 
corresponding similarity) how many problems Aj could solve from L in time t: 
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N j
z (t) = siζ ij

xi∈L
 (t) where ζ ij (t) =

1 if τ ij ≤ t

0 otherwise






 

 
(2) 

Then, at time t, RSR-WG greedily maximizes (2) per unit of time expended over all 
solvers and their possible execution duration Δz, that is, it calculates: 

  argmax
Aj , Δz

N j
z (t + Δ z )

Δ z

 (3) 

and removes those now-solved similar problems from L. Retain (line 6) places solver 
Aj on processor π u if that maximizes equation (2) per unit of expended time and π u 
still has time available (Tu < T). Among such processors, Retain prefers one that has 
hosted Aj earlier (tuj ≠ 0); otherwise it selects one that has thus far been used the least 
(i.e., has minimum Tu). If a parallel schedule σ solves all of L without making full use 
of all the processors, Spread (line 11) places the solver Aj that solves the most prob-
lems in L but does not appear in σ on a processor that was idle throughout σ (if such 
an Aj exists), breaking ties at random. (The rationale here is that Aj may be generally 
effective but not outstanding on a particular e.) Finally, if a processor is not fully used 
in σ (i.e., Tu

 < T), Return (line 14) places the first solver it executed there on that pro-
cessor until the time limit. Obviously, RSR-WG achieves the performance of an 
oracle when k = |A|, but it is also effective when k is relatively small compared to |A|. 
 

 

Fig. 2. High-level pseudocode for RSR-WG 

Input: case base C, solvers A, time limit T, testing problem e, distance function d,  
 similarity function s, neighbor set ratio r, processors {π1, π 2, …, π k} 
Output: schedule σ = { σ1, σ 2, …, σk} for a parallel switching portfolio  
1  Compute distance d(ci, e) for all ci in C 
2  L ← {100r% of problems in C closest to y} 
3  Compute similarity si for each ci in L with equation (1) 
4  Initialize time step z ← 1, overall time Tu ← 0 on processor π u,  

time tuj ← 0 for Aj on π u 
5  While L ≠ Ø and Tu < T for at least one u 
6   Select Aj on π u with time Δz to maximize equation (3)       ** Retain ** 
7   Remove from L all problems solved by Aj during step z  
8   Schedule Aj with execution time Δz on π u  
9   Update times: tuj ← tuj + Δz, T

u ← Tu + Δz, and z ← z + 1 
10 For each π u where Tu < T  
11   If Tu = 0                                ** Spread ** 
12   then assign A j to π u for T, where A j solves the most problems in L and A j ∉ σ 
13      update times: tuj ← T, Tu ← T, and z ← z + 1           
14   else π u executes the first solver placed on π u until T       ** Return ** 
15       update times: tuj ← tuj + (T – Tu), Tu ← T, and z ← z + 1   
16  Return σ 
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2.3 Experimental Design and Results 

The parallel constructors tested here are RSR-WG, PGASS (a naïve parallel version 
of GASS with uniform weights si = 1), and PCPHYDRA (a naïve parallel version of 

CPHYDRA that randomly partitions L into k subsets and then uses CPHYDRA on each 
subset to construct a schedule for each processor). PCPHYDRA selects |L| = 10k neigh-
bors, randomly distributes them to k processors, and executes a complete search for 
the optimal schedule on each processor. If it does not produce an optimal schedule 
within 180 seconds, it takes the best schedule it has found so far. For RSR-WG, we 
simulated all 24 solvers from the original competition [15].  

All portfolio experiments ran on a Dell PowerEdge 1850 cluster with 696 Intel 
2.80 GHz Woodcrest processors. We gauged performance as in recent competitions, 
on the number of problems solved with a fixed, per-problem time limit, with ties bro-
ken on average solution time across solved problems [15, 16]. Time for RSR-WG 
included both portfolio construction (i.e., scheduling) and search, but time for PGASS 
and PCPHYDRA excluded portfolio construction, which gave them a slight advantage.  

As Table 3 shows, for k > 1, RSR-WG consistently solved more problems than 
PGASS or PCPHYDRA. For RSR-WG only, we also tested k = 16 processors, which 
produced near-oracle performance. Although 2 of the 10 runs for k = 16 were perfect, 
this becomes very nearly a race among solvers that did well on the cases in L. The 
near-optimal performance of k = 8, or even k = 4, along with the fact that only RSR-
WG was charged for scheduling time, is more noteworthy. 

Figure 3 compares an oracle’s runtime to that of RSR-WG with r = 0.005. Each 
circle represents one of the 2865 problems. Those at the far right are problems un-
solved by RSR-WG in 1800 seconds; those on the diagonal were solved by RSR-WG 
as quickly as an oracle. Clearly, more processors solved more problems (from 2769 to 
2859 in this particular run) and solved more problems as quickly as an oracle.  

 

 

Fig. 3. (Ideal) oracle runtime (y-axis) compared to RSR-WG time (x-axis) on k processors with 
neighbor set ratio r = 0.005. Each circle is a result on one of the 2865 problems. 
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Table 3. Mean performance of 3 constructors on 2865 problems over 10 runs, with the (signifi-
cantly) best value for k processors in boldface. * denotes RSR-WG outperformed PGASS;  
† denotes RSR-WG outperformed PCPHYDRA (p < 0.005). Neighbor set ratio was r = 0.005. 

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 

PCPHYDRA 2779 2807 2817 2827 2830 2831 2834 2834 
PGASS 2771 2801   2808 2810 2817 2821 2823 2825 
RSR-WG 2773 2826*† 2841*† 2850*† 2855*† 2857*† 2858*† 2859*† 

 
MAMC’s computational cost for parallel schedule construction is worthwhile, 

compared to that of other schedulers. Recall that the time allotted to each problem is 
1800 seconds. RSR-WG constructs its schedules quickly. For example, it averages 
less than 15 seconds (σ ≈ 6) with r = 0.16 and 8 processors, and is faster for smaller r 
and k. Recall, however that PCPHYDRA sometimes fails to compute its (optimal) 
schedule within 180 seconds. Indeed, given its O(2|A|) complexity, it produced no 
schedule at all on 4.81% of the cases when k = 1, and 14.39% of the cases when k = 8. 
Because it learns on all the cases, however, GASS was even slower; its single entry in 
Table 2 required more than 5 days to compute. 

3 Protein-Ligand Docking 

The central topic of rational drug design is protein-ligand interaction, where a small 
molecule (a ligand) binds to a specific position (e.g., an open cavity) in a protein [17]. 
Protein-ligand docking (PLD) evaluates the ligand’s orientations and conformations 
(three-dimensional coordinates) when bound to a receptor. PLD seeks ligands with 
the strongest (i.e., minimal) total binding energy in a protein-ligand complex, but 
most PLD software predicts binding energy poorly. Thus, for reliability, conventional 
PLD meta-predictors use consensus scoring, which averages scores or takes a majori-
ty prediction from several predictors [18-20]. Consensus scoring ignores similarities 
between examples, as well as domain-specific and example-specific data about its 
individual predictors. Thus it is inaccurate when most of its component predictors are. 

In a single docking run, virtual high-throughput screening predicts which of thou-
sands of compounds should be tested in the laboratory [21-23]. Recent approaches 
tried chaining [24] or bootstrapping with an ensemble based on a single function [25]. 
The work reported here, however, is the first to combine different PLD predictors 
based on case similarity plus information from and about individual predictors. 

3.1 The Task for MAMC 

Here the agents A are three pre-existing PLD scoring functions: eHiTS1, AutoDock 
Vina,2, and AutoDock3. Although all rely on some form of machine learning, each has 

                                                           
1 http://www.simbiosys.ca/ehits/ehits_overview.html 
2 http://vina.scripps.edu/ 
3 http://autodock.scripps.edu/ 
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its own conformational sampling, scoring, and feature-based representation. They 
often perform dramatically differently on the same data, with no consistent winner. 

A case is the binding energy measured in the laboratory between a given receptor 
(a target in a protein) and a chemical compound. Each compound is a potential ligand, 
represented by a feature vector that reports chemical properties (e.g., whether it is a 
hydrogen-bond donor, or whether its topological distance between two atoms lies in 
some range). These are different features from those used by the agents; the agents 
consider three-dimensional chemical conformation, while the cases describe physio-
chemical and topological properties derived from two-dimensional chemical structure. 
In a case base C, all cases address the same receptor. To describe a case, values for its 
standard chemical footprint of 1024 boolean features were calculated offline with 
programs such as openbabel4. Given a case base C, a new chemical e, chemical-
similarity metric s, and performance matrix τ for the agents A on C, MAMC’s task is 
to predict the binding energy between C’s receptor and e. 

3.2 Cases, Similarity, and Combination 

We tested MAMC on datasets from DUD (Directory of Useful Decoys), a set of 
benchmarks for virtual screening [26]. A decoy is a molecule similar to its ligand in 
its physical properties but dissimilar in its topology. DUD has multiple ligands for 
each receptor, and 36 decoys for each of its ligands. We considered two receptors 
from DUD: gpb and pdg. All three agents perform relatively poorly on them. More-
over, eHiTS, is the worst of the three on gpb but the best on pdg. Together these 
receptors challenge MAMC to choose the most accurate predictor for each chemical. 

The similarity metric s on example e and case ci ∈ C is defined by the Tanimoto 
coefficient, the ratio of the number of features present in their intersection to the num-
ber of features present in their union, where N(c) is the number of 1’s in c: 

 s(e, ci) = N(e & ci) / N(e | ci ) (4) 

Each predictor Aj was asked to calculate a score for each ligand and decoy in the data-
set. We eliminated the very few chemicals that did not receive three scores; this left 
1901 chemicals for gpb, and a separate set of 5760 for pdg. The agents’ incompara-
ble scales, however, required a simple but robust rank-regression scoring mechanism 
to map raw scores uniformly to a normalized rank score that reflects only the prefe-
rence of an agent for one case over another. For each agent Aj ∈ A, MAMC sorts the 
raw scores from Aj for all ci ∈ C in ascending order, replaces each score with its rank, 
and normalizes the ranks in [0,1]. The normalized rank, denoted by p(ci, Aj), predicts 
the score of Aj on ci. Higher-ranked cases thereby receive lower scores, in line with 
the premise that lower binding energy is better.  

We again represent the performance of A on C in a |C| × |A| performance matrix τ. 
To evaluate the performance τ(e, Aj) of Aj ∈ A on e, we use the set of cases L similar 
to e, but weight more heavily those more similar to it: 

                                                           
4 http://openbabel.org/wiki/Main_Page 
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τ e, A

j( ) = s(e,c
i
)

ci ∈L τ
ij
 (5) 

Then, to predict on e with all of A, we take the agent Aj with the highest τ(e, Aj) and 
combine its predicted scores on L, again weighting more similar cases more heavily: 

 
p e( ) = s(e,c

i
)

ci ∈L p(c
i
, A

j
)
                             

(6) 

Intuitively, a scoring function that accurately distinguishes ligand set G from decoy 
set Y (where Y ∪ G = C) should predict lower scores for ligands and higher scores for 
decoys. In other words, agent Aj is more accurate on ligand g only if its prediction for 
g is generally lower than its predictions for Y, and it is more accurate on decoy y only 
if its prediction for y is generally higher than its predictions for G. The performance 
score of agent Aj on case c is thus 

τ c, Aj( ) =

y ∈Y p y, Aj( ) > p c, Aj( ){ }
y ∈Y{ }      if c ∈G

g ∈G p g, Aj( ) < p c, Aj( ){ }
g ∈G{ }     if c ∈Y















               

(7) 

Scores in equation (7) lie in [0,1], where a higher value indicates better performance. 

3.3 Experimental Design and Results 

Each of these experiments predicts the binding energy of a chemical e to a receptor. 
We examine the accuracy of five predictors: the three individual agents (eHiTS, Au-
toDock Vina, AutoDock) and two meta-predictors: MAMC and RankSum, a typical 
bioinformatics consensus-scoring meta-predictor. To predict the score on example e, 
RankSum adds the rank-regression scores from the three predictors, where a lower 
sum is better. In advance, for MAMC, we computed the similarities between all nC2 
pairs of chemicals (about 1.8 million for gpb and 16.6 million for pdg) with equa-
tion (4), and recorded the five chemicals most similar to each chemical, along with 
their similarity scores. Experiments ran on an 8 GB Mac Pro with a 2.93 GHz Quad-
Core Intel Xeon processor, and analysis used the R package ROCR. 

First, we evaluated the three individual predictors with leave-one-out validation: in 
turn, each of the n chemicals for a receptor served as the testing example e, while the 
other n-1 served as C. MAMC extracted the |L| cases in C most similar to e, and then 
used equation (5) to gauge the accuracy of each individual predictor across all the 
cases in L. MAMC then chose the individual predictor with the best predictive accu-
racy on L and reported as a score the rank-regression score on e from that best indi-
vidual predictor as in (6).  

We compare predictors’ performance by their hit ratio across C. ROC (Receiver 
Operating Characteristic) curves illustrate the tradeoff between true positive and false 
positive rates, an important factor in the decision to test a likely ligand in the laborato-
ry. (Classification accuracy alone would be less helpful, because the prevalence of so 
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many decoys heavily biases the data sets. Simple prediction of every chemical as a 
decoy would be highly accurate but target no chemicals for investigation as likely 
ligands.) A predictor p on any c ∈ C produces true positives C1 = {g ∈ G | p(g) ≤ 
p(c)} and false positives C2 = {y ∈ Y | p(y) ≤ p(c)}. Thus the true positive rate for c is 
|C1|/|G| and the false positive rate is |C2|/|Y|. 

We report first on |L| = 1, using the single case ci most similar to e. (For |L| > 1, see 
the next section.) In this case, MAMC need only reference τij for each Aj ∈ A. The 
ROC curves in Figure 4 compare the performance of all five predictors on receptors 
gpb and pdg for |L| = 1, based on the predictors’ scores and DUD’s class labels.  

MAMC clearly outperforms the other predictors on both gpb and pdg. In particu-
lar, MAMC outperforms the best individual predictor eHiTS on pdg, even though the 
majority of its individual predictors perform poorly. In contrast, the performance of 
the consensus scorer RankSum on pdg was considerably worse than MAMC; it re-
quires accurate rankings from most of its constituent predictors for satisfactory  
performance, rankings the individual predictors could not provide.  

4 Discussion 

We remind the reader that each of the applications described here was developed in 
part because carefully honed individual agents produced after many millions of hours 
of development had proved unsatisfactory. Not only is there no reliable way to predict 
the difficulty of a CSP, but also the solvers’ performances vary from one problem to 
the next. A similar situation exists with predictors for PLD binding energy: their per-
formance varies unpredictably. Both are hard problems on which MAMC has made 
some progress. Some choices, however, require further examination.  

MAMC assumes that an agent’s accuracy on similar cases will also be similar, but 
the number of those cases (i.e., the size of L) is an important decision. For portfolio 
construction, Table 3 reports on r = 0.005 which, given 10-fold cross validation, selects 
|L| = 13 cases from among the 2578 eligible ones. This enabled RSR-WG to outperform 
its competitors for k > 1 (p < 0.005). Table 4 explores values of r that enlarge L to as 
many as 412 cases. The data there suggest that, while the smallest r is reliable, occasio-
nally a larger neighbor set pays off, particularly for the (non-parallel) k = 1. 

 

Fig. 4. ROC curves for PLD predictors on receptors gpb (left) and pdg (right) 
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Table 4. Mean and standard deviation for the number of problems solved by RSR-WG out of 
2865 over 10 runs with k processors. Best value for k processors is in boldface, p <0.005. 

 
k 

Neighbor set ratio r 
0.005 0.01 0.02 0.04 0.08 0.16 

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51 
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87 
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07 
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50 
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26 
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07 
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14 
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43 

16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47 

 
Next we consider the impact of larger |L| on PLD prediction. Again, each of the 

three scoring functions predicts for e, and then MAMC evaluates its performance on L 
with equation (5). MAMC then combines the predicted scores from all three predic-
tors with equation (6), which allows it to consider the overall weighted performance 
of each predictor on a set of similar cases, and then takes the weighted prediction of 
the agent with the best overall performance on those similar cases. Although Figure 5 
shows a clear performance improvement for |L| = 2 on both receptors, the improve-
ment of |L| = 3 over |L| = 2 is only marginal, despite the fact that under leave-one-out 
validation, |C| = 1900 for gpb and 5759 for pdg. 

The nature of the data, we believe, accounts for the difference in the appropriate 
choice for |L|. The PLD data is inherently noisy and incomplete; the cases in C are 
only those that have been tested by a laboratory and made publicly available. The 
dismal performance of a case, for example, may have dissuaded further testing of 
similar ones. For such a case there would be very few similar cases, so a larger L 
would provide little benefit. In contrast, competition CSPs are typically submitted by 
researchers who expect their own solvers to have an advantage on those problems. A 
class of CSPs consists of problems that may vary somewhat in their size or antic-
ipated difficulty but have some structural or modeling commonality. Each CPAI’08 
problem class typically had dozens of problems, so that, even under 10-fold cross-
validation, MAMC is likely to find more than a few similar cases. Thus neighbor set 
size should be dependent on how likely MAMC is to find truly similar cases. 

 
Fig. 5. ROC curves for MAMC with different |L|. on gpb (left) and pdg (right) 
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Given a fixed size for L, MAMC’s confidence about its results is still likely to vary 
from one case to the next. For example, as noted above, a particular case may have an 
L whose members are only slightly similar to it. Moreover, individual agents may 
perform poorly on some members of L. In both situations, MAMC should be less 
confident about its prediction on the original case. Intuitively, if MAMC could cate-
gorize individual cases by confidence level, it might improve its performance on the 
cases where its confidence level is high. 

Our confidence analysis considers three kinds of predictions, demonstrated here on 
protein-ligand docking where confidence before real-world laboratory testing is par-
ticularly important. Two cases ci and cj are said to be similar if and only if s(ci,cj) > t1 
(here, 0.8), and dissimilar otherwise. A reliable predictor is one whose performance, 
as calculated by equation (7), is greater than t2 (here, 0.9); otherwise it is unreliable. 
Together t1 and t2 define three categories of agent Aj’s ability to decide on example e. 
A prediction has high confidence if e’s closest neighbor c is similar to e and Aj is reli-
able on c. A prediction has low confidence if c is dissimilar to e and Aj is unreliable on 
c. In all other situations, a prediction has normal confidence.  

Figure 6 isolates the performance of MAMC at these three confidence levels for 
gpb and pdg. For gpb, 31.77%, 49.50%, and 18.73% of the chemicals had high, 
normal, and low confidence, respectively. For pdg, these percentages were 19.77%, 
60.63%, and 19.60%. As expected, MAMC performed far better on the high-
confidence chemicals for both receptors than it did on the full set. The benefit intro-
duced by the confidence-based classification for pdg is particularly promising:  
although most candidate scoring functions had unreliable performance, confidence-
based MAMC achieved almost perfect prediction on the high-confidence chemicals.  

Might s alone have accurately predicted whether a chemical was a ligand? To in-
vestigate, we ranked by similarity all pairs of cases that included at least one ligand: 
each pair is either a match (two ligands) or a non-match (a ligand and a decoy). Ideal-
ly, match pairs should have higher similarity scores than non-match pairs. In Figure 7, 
the ROC curve for each receptor is based only on s and whether or not a pair was a 
match. Although chemical similarity alone clearly distinguishes ligands from decoys 
in the DUD benchmark data set, it provides fewer likely ligands than MAMC, whose 
predictive performance is considerably better, especially when its confidence is high. 

 

Fig. 6. ROC curves for confidence analysis on gpb (left) and pdg (right) 
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Fig. 7. ROC curves for gpb and pdg based on computed similarity and match/non-match 
labels of chemical pairs. The marks at lower left correspond to the predictions based only on 
the minimum chemical similarity score 0.8. 

Diversity is essential in MAMC. For parallel scheduling we used 24 agents, 36 fea-
tures, and 2578 cases per run under 10-fold cross validation. For PLD, we used 3 
agents, 1024 features, and 1710 or 5183 cases per run. We believe that MAMC suc-
ceeds in part because it can draw upon such diversity. For PLD, there may be only 
three agents, but they are quite diverse both in their knowledge base and in their ap-
proach: AutoDock and AutoDock Vina use a genetic algorithm to search the ligand 
conformational space, while eHiTS uses systematic search in the conformational 
space of ligands. They variously consider force fields, energy terms (e.g., Van der 
Waals, electrostatic), empirical binding affinities, and knowledge-based scores trained 
from known protein-ligand complexes. Moreover, the different features in the PLD 
case representation provided an entirely different perspective on the cases. Although 
the construction of each case base required machine-months of computation, we view 
the increased availability of data not as a burden but as an opportunity. 

Many sophisticated agents now offer the ability to set parameters. Future work will 
investigate the use of copies of one agent with different parameter settings or an ele-
ment of randomization, as well as information flow algorithms to improve the case-
similarity metric s. Moreover, although here τ was known in advance, it could be 
computed during MAMC’s execution, after L has been chosen.  

5 Conclusion 

MAMC’s reliance on multiple, well-respected agents draws strength from each of 
them, and its use of multiple, weighted, similar cases provides greater resiliency when 
its agents err. MAMC integrates similarity-based reference-case selection with per-
formance-based predictor selection in a single framework. In addition, MAMC can 
report its confidence in its prediction, and achieves greater accuracy on confident 
cases. In practice, this will allow real-world laboratory experiments to focus on 
MAMC’s high-confidence predictions, which promise a high success rate.  
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MAMC’s portfolios of deterministic constraint solvers outperform those from 
naïve parallel versions of popular portfolio constructors. With only a few additional 
processors MAMC’s schedules are competitive with an oracle solver on one proces-
sor. MAMC’s improved predictions on compound virtual screening for protein-ligand 
docking suggests that PLD could support real drug-discovery. Moreover, with careful 
formulation of C, s, and A, MAMC should readily apply to other challenging bioin-
formatics and chemo-informatics tasks, including prediction of two- and  
three-dimensional protein structures, protein-protein interaction, protein-nucleotide 
interaction, disease-causing mutation, and the functional roles of non-coding DNA.  
Highly-confident predictions from MAMC there should be worthy of particular attention.  
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