
S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 74–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Multi-Agent, Multi-Case-Based Reasoning

Susan L. Epstein1,2, Xi Yun1, and Lei Xie1,2

1 Department of Computer Science,
The Graduate Center of The City University of New York, New York, NY 10016, USA

2 Department of Computer Science,
Hunter College of The City University of New York, New York, NY 10065, USA

{susan.epstein,lei.xie}@hunter.cuny.edu, xyun@gc.cuny.edu

Abstract. A new paradigm for case-based reasoning described here assembles a
set of cases similar to a new case, solicits the opinions of multiple agents on
them, and then combines their output to predict for a new case. We describe the
general approach, along with lessons learned and issues identified. One applica-
tion of the paradigm schedules constraint satisfaction solvers for parallel
processing, based on their previous performance in competition, and produces
schedules with performance close to that of an oracle. A second application
predicts protein-ligand binding, based on an extensive chemical knowledge
base and three sophisticated predictors. Despite noisy, biased biological data,
the paradigm outperforms its constituent agents on benchmark protein-ligand
data, and thereby promises faster, less costly drug discovery.

Keywords: multiple cases, multiple agents, confidence-based reasoning.

1 Introduction

As the problems presented to computers become increasingly difficult, the techniques
researchers develop to address them become increasingly sophisticated and complex.
Although these programs may perform unevenly, ensembles of them often smooth
performance [1]. At the same time, data pertinent to difficult problems has burgeoned,
even though it is often noisy and incomplete. Rather than trust the evidence of a sin-
gle data point, it may be more informative, to consider several. The case-based rea-
soning paradigm described here, MAMC (Multi-Agent Multi-Case-based reasoning),
takes both routes: it consults multiple agents and it uses multiple cases. We report
here on two MAMC applications: construction of a parallel schedule for constraint
satisfaction search, and prediction about the binding energy between two proteins, a
key to rational drug design. Although many such agents (here, solvers or predictors)
exist, none consistently outperforms all the others on a large, diverse set of bench-
mark examples. The thesis of this paper is that the effectiveness of a set of agents on a
set of similar cases supports reasoning about the agents’ performance on a new case.
Given a new case, MAMC selects from its knowledge base the cases most similar to
it, and examines the accuracy of a set of agents on those cases. The principal result
reported here is that MAMC improves predictive accuracy in both applications.

 Multi-Agent, Multi-Case-Based Reasoning 75

Fig. 1. High-level pseudocode for MAMC

MAMC is outlined in Figure 1. For a particular domain, MAMC’s pre-existing
agents A are assumed to be the result of extensive research and development, and
generally regarded by experts as among the best. The corresponding case base C,
shared by all the agents, consists of published results for those agents on their com-
mon task. Finally, the features on which similarity is gauged to select the reference
cases L are assumed available from other experts’ work in the domain of interest, but
deliberately differ from those of any individual agent for their prediction.

Unlike earlier work with multiple cases, which drew from case bases for related tasks
[2] or focused on distributed resources across multiple machines [3], MAMC reasons
over multiple cases resident on the same computer and for the same task. Rather than
use portions of multiple cases or multiple agents to produce a solution, as in [4], MAMC
uses multiple cases to select one agent most appropriate for a new case. MAMC can
also estimate the reliability of its output, an essential but rarely available property in
bioinformatics. MAMC’s confidence is based not on the quality of its cases, as in [5],
but on the degree of similarity it detects between the new case e and the reference cases
L, along with the performance of the selected agent on those cases.

The applications described here face similar challenges: development of an exten-
sive case base with an incisive feature-based index, a pairwise similarity metric for
cases, and a way to combine the agents’ output to make a decision. Each of the next
two sections details an application, with relevant background; related work; the origin
of C, A, and s; and empirical design and results. The discussion mines this experience
to establish commonalities, issues, and promise for future MAMC applications.

2 Parallel Portfolio Construction for Constraint Satisfaction

Constraint satisfaction is a powerful representation for many real-world problems, but
search for a solution to a constraint satisfaction problem (CSP) is in general NP-hard.
Many solvers succeed on quite difficult problems, but unevenly and unpredictably.
Our goal is to schedule solvers on multiple processors to solve one problem.

Here, a CSP <X, D, R> is a set X of variables, a set D of finite domains associated
with those variables, and a set R of constraints that restrict how values from their
respective domains may be assigned to variables simultaneously. A solution assigns a
value to each variable and satisfies all of R. A solvable CSP has at least one solution.
The solvers used here assign a value to one variable at a time, and temporarily remove
inconsistent values from the domains of as-yet-unassigned variables. If a domain
becomes empty, the solver backtracks to the most recent alternative and chooses a
new value. Search returns the first solution found, or halts when it shows the problem

Input: new case e, case base C, agents A, pairwise similarity metric s,
 number of reference cases q
Output: prediction or recommendation for e
 Select a subset L of q cases in C most similar to e as measured by s
 Predict or recommend on each case in L with Aj for all Aj ∈ A
 Combine output from all Aj ∈ A by their performance on L as output for e

76 S.L. Epstein, X. Yun, and L. Xie

is unsolvable (i.e., the domain of the variable at the top of the search tree becomes
empty). A variable-ordering heuristic determines the order in which the solver ad-
dresses variables, and a restart policy begins search on the problem again, probably
with a different root variable. This remainder of this section summarizes work that
appeared in the optimization literature, and detailed its rationale and development
saga more theoretically [6].

2.1 The Task for MAMC

In this application, the agents A are CSP solvers, C is a set of CSPs, and T is a set of
consecutive, unit time intervals. A simple schedule σ for a problem on one processor
specifies at most one agent to address the problem in each time interval, that is,
σ: T→ A. A schedule for k processors is a set of k simple schedules, one for each pro-
cessor. On any one processor, at most T time can be allotted to any solver on any
problem. We represent the performance of A on C in a |C| × |A| performance matrix τ,
where entry τij ∈ {1,2,…, T} means that the jth solver solves the ith problem in time
τij; otherwise the problem goes unsolved in time T. The solvers used here are determi-
nistic, that is, each τij is a fixed, positive integer.

A CSP portfolio is a combination of solvers intended to outperform each of its con-
stituents [7-12]. A solver portfolio <A, k, S, T> proposes a set S of k simple schedules
that deploy agents A on k processors to solve a problem in time T. For k = 1, a solver
portfolio is simple; for k > 1, it is parallel. If it is deterministic, neither a simple nor a
parallel solver portfolio can exceed the performance of an oracle, which always se-
lects the single fastest solver. We focus here on offline solver portfolio constructors,
which observe the performance of A on C and then build a portfolio to optimize per-
formance on new cases [8, 9, 11]. We consider only switching schedules, which pre-
serve each solver’s intermediate search state when its time elapses, for reuse only by
that solver if time is allocated to it on the same processor later.

Given cases C, a new problem e, similarity metric s, and performance matrix τ for
solvers A on C, MAMC’s task is to find the best parallel schedule σ that uses A to
solve e on k processors. The portfolio constructors most relevant here, CPHYDRA [8]
and GASS [13], were both intended for a single processor. CPHYDRA is case-based; it
selects a small set of problems in C similar to e, and searches all possible schedules,
in time O(2|A|). It weights problems in C by their Euclidean distance from e, and seeks
an optimal schedule, one that maximizes the number of problems solved within T. In
contrast, GASS is greedy, and its performance depends on |C|. At each step, GASS
selects the agent that maximizes the number of problems solved per unit of time, and
counts only problems solved for the first time during the current time step. GASS
creates schedules in time O(|C| ⋅ |A| log |C| ⋅ min{|C|, T ⋅ |A|}) that are at most four
times worse than optimal; any better approximation was shown to be NP-hard [13].

2.2 Cases, Similarity, and Combination

The case base was developed from the 3307 problems in 5 categories at the Third
International CSP solver competition (CPAI’08), where problems represent a wide

 Multi-Agent, Multi-Case-Based Reasoning 77

Table 1. CPAI’08 problems by category

Applicable
solvers

Category

Competition
problems

Experiment
problems

Solvable
experiment problems

17 GLOBAL 556 493 256
22 k-ARY-INT (k≥2) 1412 1303 739
23 2-ARY-EXT 635 620 301
24 N-ARY-EXT (N>2) 704 449 156

Table 2. Problems in Table 1 solved by non-parallel solver portfolios in 1800 seconds

Solver Oracle GASS CPHYDRA10 CPHYDRA40
Number solved 2865 2773 2577 2573
% solved 100% 96.79% 89.95% 89.81%

variety of challenges and are intended to be difficult [14]. Cases were represented by
the same 36 numeric features (e.g., number of variables, maximum domain size) used
by CPHYDRA. To extract feature values, we ran the solver Mistral 1.550 on an 8 GB
Mac Pro with a 2.93 GHz Quad-Core Intel Xeon processor. We excluded any problem
whose full set of features was not calculated within 1 second, and any problem never
solved by any solver at CPAI’08. Table 1 summarizes the remaining 2865 problems.

Agents in A are the 24 solvers in CPAI’08. They include CPHYDRA10 and
CPHYDRA40, versions of CPHYDRA that used the same 3 solvers, but with 10 or 40 cases
respectively (CPHYDRA won all but one category at CPAI’08.) The CPAI’08 results
provide the performance matrix τ. For neighbor set ratio r (0 ≤ r ≤ 1), the neighbor set
L of any case e is the r ⋅ |C| problems in C with feature vectors most similar to e.

Portfolio construction experiments performed 10-fold cross-validation. Each itera-
tion partitioned the 2685 into a set of testing problems and a set of training problems
(i.e., the case base C). Stratified partitioning maintained the proportions of problems
from different categories in each subset. Table 2 reports the performance of an oracle
and three non-parallel solver portfolio constructors, given 1800 seconds per problem.

RSR-WG (Retain, Spread and Return with a Weighted Greedy approach) is the
MAMC implementation for this task. As in Figure 2, it formulates a parallel schedule
for problem e based on τ, A, C, and L, the set of cases most similar to e. RSR-WG
tries to build a schedule that solves as many cases as it can from L, under the assump-
tion that the same schedule will then do well on e. RSR-WG tries, heuristically and
greedily, to schedule L, and measures the similarity of case ci ∈ L to e based on its
Euclidean distance d(ci, e) from e (here, ε= 0.001):

si = 1−

(1− ε) d(ci, e) − dmin[]
dmax − dmin

 (1)

where dmax = max({d(ci, e) | ci ∈ L}) and dmin = min({d(ci, e) | ci ∈ L}). Given execu-
tion time t for Aj, RSR-WG counts (from performance matrix τ) and weights (with
corresponding similarity) how many problems Aj could solve from L in time t:

78 S.L. Epstein, X. Yun, and L. Xie

N j
z (t) = siζ ij

xi∈L
 (t) where ζ ij (t) =

1 if τ ij ≤ t

0 otherwise

(2)

Then, at time t, RSR-WG greedily maximizes (2) per unit of time expended over all
solvers and their possible execution duration Δz, that is, it calculates:

 argmax
Aj , Δz

N j
z (t + Δ z)

Δ z

 (3)

and removes those now-solved similar problems from L. Retain (line 6) places solver
Aj on processor π u if that maximizes equation (2) per unit of expended time and π u
still has time available (Tu < T). Among such processors, Retain prefers one that has
hosted Aj earlier (tuj ≠ 0); otherwise it selects one that has thus far been used the least
(i.e., has minimum Tu). If a parallel schedule σ solves all of L without making full use
of all the processors, Spread (line 11) places the solver Aj that solves the most prob-
lems in L but does not appear in σ on a processor that was idle throughout σ (if such
an Aj exists), breaking ties at random. (The rationale here is that Aj may be generally
effective but not outstanding on a particular e.) Finally, if a processor is not fully used
in σ (i.e., Tu

 < T), Return (line 14) places the first solver it executed there on that pro-
cessor until the time limit. Obviously, RSR-WG achieves the performance of an
oracle when k = |A|, but it is also effective when k is relatively small compared to |A|.

Fig. 2. High-level pseudocode for RSR-WG

Input: case base C, solvers A, time limit T, testing problem e, distance function d,
 similarity function s, neighbor set ratio r, processors {π1, π 2, …, π k}
Output: schedule σ = { σ1, σ 2, …, σk} for a parallel switching portfolio
1 Compute distance d(ci, e) for all ci in C
2 L ← {100r% of problems in C closest to y}
3 Compute similarity si for each ci in L with equation (1)
4 Initialize time step z ← 1, overall time Tu ← 0 on processor π u,

time tuj ← 0 for Aj on π u
5 While L ≠ Ø and Tu < T for at least one u
6 Select Aj on π u with time Δz to maximize equation (3) ** Retain **
7 Remove from L all problems solved by Aj during step z
8 Schedule Aj with execution time Δz on π u
9 Update times: tuj ← tuj + Δz, T

u ← Tu + Δz, and z ← z + 1
10 For each π u where Tu < T
11 If Tu = 0 ** Spread **
12 then assign A j to π u for T, where A j solves the most problems in L and A j ∉ σ
13 update times: tuj ← T, Tu ← T, and z ← z + 1
14 else π u executes the first solver placed on π u until T ** Return **
15 update times: tuj ← tuj + (T – Tu), Tu ← T, and z ← z + 1
16 Return σ

 Multi-Agent, Multi-Case-Based Reasoning 79

2.3 Experimental Design and Results

The parallel constructors tested here are RSR-WG, PGASS (a naïve parallel version
of GASS with uniform weights si = 1), and PCPHYDRA (a naïve parallel version of

CPHYDRA that randomly partitions L into k subsets and then uses CPHYDRA on each
subset to construct a schedule for each processor). PCPHYDRA selects |L| = 10k neigh-
bors, randomly distributes them to k processors, and executes a complete search for
the optimal schedule on each processor. If it does not produce an optimal schedule
within 180 seconds, it takes the best schedule it has found so far. For RSR-WG, we
simulated all 24 solvers from the original competition [15].

All portfolio experiments ran on a Dell PowerEdge 1850 cluster with 696 Intel
2.80 GHz Woodcrest processors. We gauged performance as in recent competitions,
on the number of problems solved with a fixed, per-problem time limit, with ties bro-
ken on average solution time across solved problems [15, 16]. Time for RSR-WG
included both portfolio construction (i.e., scheduling) and search, but time for PGASS
and PCPHYDRA excluded portfolio construction, which gave them a slight advantage.

As Table 3 shows, for k > 1, RSR-WG consistently solved more problems than
PGASS or PCPHYDRA. For RSR-WG only, we also tested k = 16 processors, which
produced near-oracle performance. Although 2 of the 10 runs for k = 16 were perfect,
this becomes very nearly a race among solvers that did well on the cases in L. The
near-optimal performance of k = 8, or even k = 4, along with the fact that only RSR-
WG was charged for scheduling time, is more noteworthy.

Figure 3 compares an oracle’s runtime to that of RSR-WG with r = 0.005. Each
circle represents one of the 2865 problems. Those at the far right are problems un-
solved by RSR-WG in 1800 seconds; those on the diagonal were solved by RSR-WG
as quickly as an oracle. Clearly, more processors solved more problems (from 2769 to
2859 in this particular run) and solved more problems as quickly as an oracle.

Fig. 3. (Ideal) oracle runtime (y-axis) compared to RSR-WG time (x-axis) on k processors with
neighbor set ratio r = 0.005. Each circle is a result on one of the 2865 problems.

0 500 1500

k = 1

0 500 1500

0
10

00

k = 2

0 500 1500

0
10

00

k = 3

0 500 1500

k = 4

0 500 1500

0
10

00

k = 5

0 500 1500

0
10

00

k = 6

80 S.L. Epstein, X. Yun, and L. Xie

Table 3. Mean performance of 3 constructors on 2865 problems over 10 runs, with the (signifi-
cantly) best value for k processors in boldface. * denotes RSR-WG outperformed PGASS;
† denotes RSR-WG outperformed PCPHYDRA (p < 0.005). Neighbor set ratio was r = 0.005.

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

PCPHYDRA 2779 2807 2817 2827 2830 2831 2834 2834
PGASS 2771 2801 2808 2810 2817 2821 2823 2825
RSR-WG 2773 2826*† 2841*† 2850*† 2855*† 2857*† 2858*† 2859*†

MAMC’s computational cost for parallel schedule construction is worthwhile,

compared to that of other schedulers. Recall that the time allotted to each problem is
1800 seconds. RSR-WG constructs its schedules quickly. For example, it averages
less than 15 seconds (σ ≈ 6) with r = 0.16 and 8 processors, and is faster for smaller r
and k. Recall, however that PCPHYDRA sometimes fails to compute its (optimal)
schedule within 180 seconds. Indeed, given its O(2|A|) complexity, it produced no
schedule at all on 4.81% of the cases when k = 1, and 14.39% of the cases when k = 8.
Because it learns on all the cases, however, GASS was even slower; its single entry in
Table 2 required more than 5 days to compute.

3 Protein-Ligand Docking

The central topic of rational drug design is protein-ligand interaction, where a small
molecule (a ligand) binds to a specific position (e.g., an open cavity) in a protein [17].
Protein-ligand docking (PLD) evaluates the ligand’s orientations and conformations
(three-dimensional coordinates) when bound to a receptor. PLD seeks ligands with
the strongest (i.e., minimal) total binding energy in a protein-ligand complex, but
most PLD software predicts binding energy poorly. Thus, for reliability, conventional
PLD meta-predictors use consensus scoring, which averages scores or takes a majori-
ty prediction from several predictors [18-20]. Consensus scoring ignores similarities
between examples, as well as domain-specific and example-specific data about its
individual predictors. Thus it is inaccurate when most of its component predictors are.

In a single docking run, virtual high-throughput screening predicts which of thou-
sands of compounds should be tested in the laboratory [21-23]. Recent approaches
tried chaining [24] or bootstrapping with an ensemble based on a single function [25].
The work reported here, however, is the first to combine different PLD predictors
based on case similarity plus information from and about individual predictors.

3.1 The Task for MAMC

Here the agents A are three pre-existing PLD scoring functions: eHiTS1, AutoDock
Vina,2, and AutoDock3. Although all rely on some form of machine learning, each has

1 http://www.simbiosys.ca/ehits/ehits_overview.html
2 http://vina.scripps.edu/
3 http://autodock.scripps.edu/

 Multi-Agent, Multi-Case-Based Reasoning 81

its own conformational sampling, scoring, and feature-based representation. They
often perform dramatically differently on the same data, with no consistent winner.

A case is the binding energy measured in the laboratory between a given receptor
(a target in a protein) and a chemical compound. Each compound is a potential ligand,
represented by a feature vector that reports chemical properties (e.g., whether it is a
hydrogen-bond donor, or whether its topological distance between two atoms lies in
some range). These are different features from those used by the agents; the agents
consider three-dimensional chemical conformation, while the cases describe physio-
chemical and topological properties derived from two-dimensional chemical structure.
In a case base C, all cases address the same receptor. To describe a case, values for its
standard chemical footprint of 1024 boolean features were calculated offline with
programs such as openbabel4. Given a case base C, a new chemical e, chemical-
similarity metric s, and performance matrix τ for the agents A on C, MAMC’s task is
to predict the binding energy between C’s receptor and e.

3.2 Cases, Similarity, and Combination

We tested MAMC on datasets from DUD (Directory of Useful Decoys), a set of
benchmarks for virtual screening [26]. A decoy is a molecule similar to its ligand in
its physical properties but dissimilar in its topology. DUD has multiple ligands for
each receptor, and 36 decoys for each of its ligands. We considered two receptors
from DUD: gpb and pdg. All three agents perform relatively poorly on them. More-
over, eHiTS, is the worst of the three on gpb but the best on pdg. Together these
receptors challenge MAMC to choose the most accurate predictor for each chemical.

The similarity metric s on example e and case ci ∈ C is defined by the Tanimoto
coefficient, the ratio of the number of features present in their intersection to the num-
ber of features present in their union, where N(c) is the number of 1’s in c:

 s(e, ci) = N(e & ci) / N(e | ci) (4)

Each predictor Aj was asked to calculate a score for each ligand and decoy in the data-
set. We eliminated the very few chemicals that did not receive three scores; this left
1901 chemicals for gpb, and a separate set of 5760 for pdg. The agents’ incompara-
ble scales, however, required a simple but robust rank-regression scoring mechanism
to map raw scores uniformly to a normalized rank score that reflects only the prefe-
rence of an agent for one case over another. For each agent Aj ∈ A, MAMC sorts the
raw scores from Aj for all ci ∈ C in ascending order, replaces each score with its rank,
and normalizes the ranks in [0,1]. The normalized rank, denoted by p(ci, Aj), predicts
the score of Aj on ci. Higher-ranked cases thereby receive lower scores, in line with
the premise that lower binding energy is better.

We again represent the performance of A on C in a |C| × |A| performance matrix τ.
To evaluate the performance τ(e, Aj) of Aj ∈ A on e, we use the set of cases L similar
to e, but weight more heavily those more similar to it:

4 http://openbabel.org/wiki/Main_Page

82 S.L. Epstein, X. Yun, and L. Xie

τ e, A

j() = s(e,c
i
)

ci ∈L τ
ij
 (5)

Then, to predict on e with all of A, we take the agent Aj with the highest τ(e, Aj) and
combine its predicted scores on L, again weighting more similar cases more heavily:

p e() = s(e,c

i
)

ci ∈L p(c
i
, A

j
)

(6)

Intuitively, a scoring function that accurately distinguishes ligand set G from decoy
set Y (where Y ∪ G = C) should predict lower scores for ligands and higher scores for
decoys. In other words, agent Aj is more accurate on ligand g only if its prediction for
g is generally lower than its predictions for Y, and it is more accurate on decoy y only
if its prediction for y is generally higher than its predictions for G. The performance
score of agent Aj on case c is thus

τ c, Aj() =

y ∈Y p y, Aj() > p c, Aj(){ }
y ∈Y{ } if c ∈G

g ∈G p g, Aj() < p c, Aj(){ }
g ∈G{ } if c ∈Y

(7)

Scores in equation (7) lie in [0,1], where a higher value indicates better performance.

3.3 Experimental Design and Results

Each of these experiments predicts the binding energy of a chemical e to a receptor.
We examine the accuracy of five predictors: the three individual agents (eHiTS, Au-
toDock Vina, AutoDock) and two meta-predictors: MAMC and RankSum, a typical
bioinformatics consensus-scoring meta-predictor. To predict the score on example e,
RankSum adds the rank-regression scores from the three predictors, where a lower
sum is better. In advance, for MAMC, we computed the similarities between all nC2
pairs of chemicals (about 1.8 million for gpb and 16.6 million for pdg) with equa-
tion (4), and recorded the five chemicals most similar to each chemical, along with
their similarity scores. Experiments ran on an 8 GB Mac Pro with a 2.93 GHz Quad-
Core Intel Xeon processor, and analysis used the R package ROCR.

First, we evaluated the three individual predictors with leave-one-out validation: in
turn, each of the n chemicals for a receptor served as the testing example e, while the
other n-1 served as C. MAMC extracted the |L| cases in C most similar to e, and then
used equation (5) to gauge the accuracy of each individual predictor across all the
cases in L. MAMC then chose the individual predictor with the best predictive accu-
racy on L and reported as a score the rank-regression score on e from that best indi-
vidual predictor as in (6).

We compare predictors’ performance by their hit ratio across C. ROC (Receiver
Operating Characteristic) curves illustrate the tradeoff between true positive and false
positive rates, an important factor in the decision to test a likely ligand in the laborato-
ry. (Classification accuracy alone would be less helpful, because the prevalence of so

 Multi-Agent, Multi-Case-Based Reasoning 83

many decoys heavily biases the data sets. Simple prediction of every chemical as a
decoy would be highly accurate but target no chemicals for investigation as likely
ligands.) A predictor p on any c ∈ C produces true positives C1 = {g ∈ G | p(g) ≤
p(c)} and false positives C2 = {y ∈ Y | p(y) ≤ p(c)}. Thus the true positive rate for c is
|C1|/|G| and the false positive rate is |C2|/|Y|.

We report first on |L| = 1, using the single case ci most similar to e. (For |L| > 1, see
the next section.) In this case, MAMC need only reference τij for each Aj ∈ A. The
ROC curves in Figure 4 compare the performance of all five predictors on receptors
gpb and pdg for |L| = 1, based on the predictors’ scores and DUD’s class labels.

MAMC clearly outperforms the other predictors on both gpb and pdg. In particu-
lar, MAMC outperforms the best individual predictor eHiTS on pdg, even though the
majority of its individual predictors perform poorly. In contrast, the performance of
the consensus scorer RankSum on pdg was considerably worse than MAMC; it re-
quires accurate rankings from most of its constituent predictors for satisfactory
performance, rankings the individual predictors could not provide.

4 Discussion

We remind the reader that each of the applications described here was developed in
part because carefully honed individual agents produced after many millions of hours
of development had proved unsatisfactory. Not only is there no reliable way to predict
the difficulty of a CSP, but also the solvers’ performances vary from one problem to
the next. A similar situation exists with predictors for PLD binding energy: their per-
formance varies unpredictably. Both are hard problems on which MAMC has made
some progress. Some choices, however, require further examination.

MAMC assumes that an agent’s accuracy on similar cases will also be similar, but
the number of those cases (i.e., the size of L) is an important decision. For portfolio
construction, Table 3 reports on r = 0.005 which, given 10-fold cross validation, selects
|L| = 13 cases from among the 2578 eligible ones. This enabled RSR-WG to outperform
its competitors for k > 1 (p < 0.005). Table 4 explores values of r that enlarge L to as
many as 412 cases. The data there suggest that, while the smallest r is reliable, occasio-
nally a larger neighbor set pays off, particularly for the (non-parallel) k = 1.

Fig. 4. ROC curves for PLD predictors on receptors gpb (left) and pdg (right)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

MAMC
RankSum
Vina
Autodock
eHiTS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

MAMC
eHiTS
Vina
RankSum
Autodock

84 S.L. Epstein, X. Yun, and L. Xie

Table 4. Mean and standard deviation for the number of problems solved by RSR-WG out of
2865 over 10 runs with k processors. Best value for k processors is in boldface, p <0.005.

k

Neighbor set ratio r
0.005 0.01 0.02 0.04 0.08 0.16

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43

16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47

Next we consider the impact of larger |L| on PLD prediction. Again, each of the

three scoring functions predicts for e, and then MAMC evaluates its performance on L
with equation (5). MAMC then combines the predicted scores from all three predic-
tors with equation (6), which allows it to consider the overall weighted performance
of each predictor on a set of similar cases, and then takes the weighted prediction of
the agent with the best overall performance on those similar cases. Although Figure 5
shows a clear performance improvement for |L| = 2 on both receptors, the improve-
ment of |L| = 3 over |L| = 2 is only marginal, despite the fact that under leave-one-out
validation, |C| = 1900 for gpb and 5759 for pdg.

The nature of the data, we believe, accounts for the difference in the appropriate
choice for |L|. The PLD data is inherently noisy and incomplete; the cases in C are
only those that have been tested by a laboratory and made publicly available. The
dismal performance of a case, for example, may have dissuaded further testing of
similar ones. For such a case there would be very few similar cases, so a larger L
would provide little benefit. In contrast, competition CSPs are typically submitted by
researchers who expect their own solvers to have an advantage on those problems. A
class of CSPs consists of problems that may vary somewhat in their size or antic-
ipated difficulty but have some structural or modeling commonality. Each CPAI’08
problem class typically had dozens of problems, so that, even under 10-fold cross-
validation, MAMC is likely to find more than a few similar cases. Thus neighbor set
size should be dependent on how likely MAMC is to find truly similar cases.

Fig. 5. ROC curves for MAMC with different |L|. on gpb (left) and pdg (right)

 Multi-Agent, Multi-Case-Based Reasoning 85

Given a fixed size for L, MAMC’s confidence about its results is still likely to vary
from one case to the next. For example, as noted above, a particular case may have an
L whose members are only slightly similar to it. Moreover, individual agents may
perform poorly on some members of L. In both situations, MAMC should be less
confident about its prediction on the original case. Intuitively, if MAMC could cate-
gorize individual cases by confidence level, it might improve its performance on the
cases where its confidence level is high.

Our confidence analysis considers three kinds of predictions, demonstrated here on
protein-ligand docking where confidence before real-world laboratory testing is par-
ticularly important. Two cases ci and cj are said to be similar if and only if s(ci,cj) > t1
(here, 0.8), and dissimilar otherwise. A reliable predictor is one whose performance,
as calculated by equation (7), is greater than t2 (here, 0.9); otherwise it is unreliable.
Together t1 and t2 define three categories of agent Aj’s ability to decide on example e.
A prediction has high confidence if e’s closest neighbor c is similar to e and Aj is reli-
able on c. A prediction has low confidence if c is dissimilar to e and Aj is unreliable on
c. In all other situations, a prediction has normal confidence.

Figure 6 isolates the performance of MAMC at these three confidence levels for
gpb and pdg. For gpb, 31.77%, 49.50%, and 18.73% of the chemicals had high,
normal, and low confidence, respectively. For pdg, these percentages were 19.77%,
60.63%, and 19.60%. As expected, MAMC performed far better on the high-
confidence chemicals for both receptors than it did on the full set. The benefit intro-
duced by the confidence-based classification for pdg is particularly promising:
although most candidate scoring functions had unreliable performance, confidence-
based MAMC achieved almost perfect prediction on the high-confidence chemicals.

Might s alone have accurately predicted whether a chemical was a ligand? To in-
vestigate, we ranked by similarity all pairs of cases that included at least one ligand:
each pair is either a match (two ligands) or a non-match (a ligand and a decoy). Ideal-
ly, match pairs should have higher similarity scores than non-match pairs. In Figure 7,
the ROC curve for each receptor is based only on s and whether or not a pair was a
match. Although chemical similarity alone clearly distinguishes ligands from decoys
in the DUD benchmark data set, it provides fewer likely ligands than MAMC, whose
predictive performance is considerably better, especially when its confidence is high.

Fig. 6. ROC curves for confidence analysis on gpb (left) and pdg (right)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

high
normal
low

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

high
normal
low

86 S.L. Epstein, X. Yun, and L. Xie

Fig. 7. ROC curves for gpb and pdg based on computed similarity and match/non-match
labels of chemical pairs. The marks at lower left correspond to the predictions based only on
the minimum chemical similarity score 0.8.

Diversity is essential in MAMC. For parallel scheduling we used 24 agents, 36 fea-
tures, and 2578 cases per run under 10-fold cross validation. For PLD, we used 3
agents, 1024 features, and 1710 or 5183 cases per run. We believe that MAMC suc-
ceeds in part because it can draw upon such diversity. For PLD, there may be only
three agents, but they are quite diverse both in their knowledge base and in their ap-
proach: AutoDock and AutoDock Vina use a genetic algorithm to search the ligand
conformational space, while eHiTS uses systematic search in the conformational
space of ligands. They variously consider force fields, energy terms (e.g., Van der
Waals, electrostatic), empirical binding affinities, and knowledge-based scores trained
from known protein-ligand complexes. Moreover, the different features in the PLD
case representation provided an entirely different perspective on the cases. Although
the construction of each case base required machine-months of computation, we view
the increased availability of data not as a burden but as an opportunity.

Many sophisticated agents now offer the ability to set parameters. Future work will
investigate the use of copies of one agent with different parameter settings or an ele-
ment of randomization, as well as information flow algorithms to improve the case-
similarity metric s. Moreover, although here τ was known in advance, it could be
computed during MAMC’s execution, after L has been chosen.

5 Conclusion

MAMC’s reliance on multiple, well-respected agents draws strength from each of
them, and its use of multiple, weighted, similar cases provides greater resiliency when
its agents err. MAMC integrates similarity-based reference-case selection with per-
formance-based predictor selection in a single framework. In addition, MAMC can
report its confidence in its prediction, and achieves greater accuracy on confident
cases. In practice, this will allow real-world laboratory experiments to focus on
MAMC’s high-confidence predictions, which promise a high success rate.

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

gpb
pdg

 Multi-Agent, Multi-Case-Based Reasoning 87

MAMC’s portfolios of deterministic constraint solvers outperform those from
naïve parallel versions of popular portfolio constructors. With only a few additional
processors MAMC’s schedules are competitive with an oracle solver on one proces-
sor. MAMC’s improved predictions on compound virtual screening for protein-ligand
docking suggests that PLD could support real drug-discovery. Moreover, with careful
formulation of C, s, and A, MAMC should readily apply to other challenging bioin-
formatics and chemo-informatics tasks, including prediction of two- and
three-dimensional protein structures, protein-protein interaction, protein-nucleotide
interaction, disease-causing mutation, and the functional roles of non-coding DNA.
Highly-confident predictions from MAMC there should be worthy of particular attention.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under grants IIS-1242451, IIS-0811437, CNS-0958379 and CNS-0855217, and
the City University of New York High Performance Computing Center. Weiwei Han
prepared the cases for PLD.

References

1. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

2. Leake, D.B., Sooriamurthi, R.: Automatically Selecting Strategies for Multi-Case-Base
Reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416,
pp. 204–233. Springer, Heidelberg (2002)

3. Plaza, E., McGinty, L.: Distributed Case-Based Reasoning. The Knowledge Engineering
Review 20(3), 261–265 (2005)

4. Redmond, M.: Distributed Cases for Case-Based Reasoning: Facilitating Use of Multiple
Cases. In: Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI
1990), pp. 304–309 (1990)

5. Kar, D., Chakraborti, S., Ravindran, B.: Feature Weighting and Confidence Based Predic-
tion for Case Based Reasoning Systems. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012.
LNCS, vol. 7466, pp. 211–225. Springer, Heidelberg (2012)

6. Yun, X., Epstein, S.L.: Learning Algorithm Portfolios for Parallel Execution. In: Hamadi,
Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 323–338. Springer, Heidel-
berg (2012)

7. Guerri, A., Milano, M.: Learning Techniques for Automatic Algorithm Portfolio Selection.
In: Proceedings of the Sixteenth European Conference on Artificial Intelligence,
pp. 475–479 (2004)

8. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-Based
Reasoning in an Algorithm Portfolio for Constraint Solving. In: Proceedings of the Nine-
teenth Irish Conference on Artificial Intelligence and Cognitive Science (2008)

9. Silverthorn, B., Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
pp. 167–172 (2010)

10. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for
Portfolio-Based Selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, pp. 210–216 (2010)

88 S.L. Epstein, X. Yun, and L. Xie

11. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-Based Algorithm
Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

12. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A Baye-
sian Approach to Tackling Hard Computational Problems. In: Proceedings of the Seven-
teenth Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kauf-
mann Publishers Inc. (2001)

13. Streeter, M., Golovin, D., Smith, S.F.: Combing Multiple Heuristics Online. In: Proceed-
ings of the Twenty-Second National Conference on Artificial Intelligence, pp. 1197–1203
(2007)

14. Mistral, http://4c.ucc.ie/~ehebrard/Software.html
15. Third International CSP Solver Competition (CPAI 2008),

http://www.cril.univ-artois.fr/CPAI08/
16. Fourth International CSP Solver Competition (CSC 2009),

http://www.cril.univ-artois.fr/CSC09/
17. Huang, S.-Y., Zou, X.: Advances and Challenges in Protein-Ligand Docking. International

Journal of Molecular Science 11, 3016–3034 (2010)
18. Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P.: Consensus Scoring: A Me-

thod for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional
Structures into Proteins. Journal of Medicinal Chemistry 42, 5100–5109 (1999)

19. Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F., Matthew, J.B.: Consensus Scoring for
Ligand/Protein Interactions. Journal of Molecular Graphics Modelling 20, 281–295 (2002)

20. Wang, R., Wang, S.: How Does Consensus Scoring Work for Virtual Library Screening?
An Idealized Computer Experiment. Journal of Chemical Information and Computer
Sciences 41, 1422–1426 (2001)

21. Zsoldos, Z., Reid, D., Simon, A., Sadjad, B.S., Johnson, P.A.: Ehits: An Innovative Ap-
proach to the Docking and Scoring Function Problems. Current Protein and Peptide
Science 7, 421–435 (2006)

22. Trott, O., Olson, A.J.: Autodock Vina: Improving the Speed and Accuracy of Docking
with a New Scoring Function, Efficient Optimization and Multithreading. Journal of Com-
putational Chemistry 31, 455–461 (2010)

23. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson,
A.J.: Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding
Free Energy Function. Journal of Computational Chemistry 19, 1639–1662 (1998)

24. Miteva, M.A., Lee, W.H., Montes, M.O., Villoutreix, B.O.: Fast Structure-Based Virtual
Ligand Screening Combining Fred, Dock, and Surflex. Journal of Medicinal Chemistry 48,
6012–6022 (2005)

25. Fukunishi, H., Teramoto, R., Takada, T., Shimada, J.: Bootstrap-Based Consensus Scoring
Method for Protein-Ligand Docking. Journal of Chemical Information and Modeling 48,
988–996 (2008)

26. Huang, N., Shoichet, B.K., Irwin, J.J.: Benchmarking Sets for Molecular Docking. Journal
of Medicinal Chemistry 49, 6789–6801 (2006)

	Multi-Agent, Multi-Case-Based Reasoning
	1 Introduction
	2 Parallel Portfolio Construction for Constraint Satisfaction
	2.1 The Task for MAMC
	2.2 Cases, Similarity, and Combination
	2.3 Experimental Design and Results

	3 Protein-Ligand Docking
	3.1 The Task for MAMC
	3.2 Cases, Similarity, and Combination
	3.3 Experimental Design and Results

	4 Discussion
	5 Conclusion
	References

