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Abstract. Similarity assessment is a key operation in case-based reason-
ing and other areas of artificial intelligence. This paper focuses on mea-
suring similarity in the context of Description Logics (DL), and specif-
ically on similarity between individuals. The main contribution of this
paper is a novel approach based on measuring similarity in the space of
Conjunctive Queries, rather than in the space of concepts. The advan-
tage of this approach is two fold. On the one hand it is independent of the
underlying DL, and thus, there is no need to design similarity measures
for different DL, and on the other hand, the approach is computationally
more efficient than searching in the space of concepts.

1 Introduction

Description Logics (DL) are one of the most widespread standards for knowledge
representation in many application areas [3]. Gaining momentum through the
Semantic Web initiative, DL popularity is also related to a number of tools
for knowledge acquisition and representation, as well as inference engines, that
have been made publicly available. For these reasons, DL has also become the
technology of choice for representing knowledge in knowledge-intensive case-
based reasoning systems [19,7,10].

In this paper, we focus on the problem of similarity assessment in DL, in
order to enable general purpose case-based reasoning systems that use this for-
malism to represent domain knowledge. Specifically, we focus in the problem of
measuring similarity between individuals. The similarity measure presented in
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this paper, SQ, works as follows: 1) given two individuals, we convert them into
DL Conjunctive Queries, 2) the similarity between the two queries is measured
using a refinement-operator-based similarity measure [17,20]. The approach pre-
sented in this paper differs from previous work [8,20] in that the SQ similarity
is defined over the space of DL Conjunctive Queries, rather than in the space of
DL concepts.

There are three main advantages in the SQ similarity approach: 1) the conver-
sion process from individuals to queries does not lose information (the conversion
to concepts usually causes some loss of information), 2) the language used to rep-
resent conjunctive queries is independent of the particular DL being used (and
thus our approach can be applied to any DL), and 3) assessing similarity in the
space of queries is computationally more efficient than assessing similarity in the
space of concepts, as we will show in the experimental evaluation section.

The rest of this paper is organized as follows. Section 2 introduces the neces-
sary concepts of Description Logics, Conjunctive Queries and Refinement Oper-
ators respectively. Then, in Section 3, we introduce a new refinement operator
for Conjunctive Queries. Section 4 presents the SQ similarity measure between
individuals, which is illustrated with an example in §4.3. Section 5 presents an
experimental evaluation of our approach. The paper closes with related work,
conclusions and directions for future research.

2 Background

Description Logics [3] are a family of knowledge representation formalisms, which
can be used to represent the conceptual knowledge of an application domain in
a structured and formally well-understood way.

Description Logics (DL) represent knowledge using three types of basic en-
tities: concepts, roles and individuals. Concepts provide the domain vocabulary
required to describe sets of individuals with common features, roles allow to
describe relationships between individuals, and individuals represent concrete
domain entities. DL expressions are built inductively starting from finite and dis-
joint sets of atomic concepts (NC), atomic roles (NR) and individual names (NI).

The expressivity and the reasoning complexity of a particular DL depends on
the available concept constructors in the language. Although the proposed simi-
larity measure is independent of the description logic being used (the only effect
being computation time), in this paper we will use the EL logic, a light-weight
DL with good computational properties that serves as a basis for the OWL 2
EL profile1. EL is expressive enough to describe large biomedical ontologies, like
SNOMED CT [6] or the Gene Ontology [2],while maintaining important proper-
ties such as concept subsumption being polynomial. The EL concept constructs
are the top concept, intersection and existential restrictions (see Table 1).

A DL knowledge base (KB), K = (T ,A), consists of two different types of
information: T , the TBox or terminological component, which contains concept
and role axioms and describes the domain vocabulary; and A, the ABox or

1 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/
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Table 1. EL concepts and semantics

Concept Syntax Semantics

Top concept � ΔI

Atomic concept A AI

Conjunction C �D CI ∩DI

Existential restriction ∃R.C {x ∈ ΔI | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

Table 2. TBox axioms

Axiom Syntax Semantics

Concept inclusion C � D CI ⊆ DI

Disjointness C �D ≡ ⊥ CI ∩DI = ∅
Role domain domain(R) = A (x, y) ∈ RI → x ∈ AI

Role range range(R) = A (x, y) ∈ RI → y ∈ AI

assertional component, which uses the domain vocabulary to assert facts about
individuals. For the purposes of this paper, a TBox is a finite set of concept and
role axioms of the type given in Table 2, and an ABox is a finite set of axioms
about individuals of the type shown in Table 3.

Regarding semantics, an interpretation is a pair I = (ΔI , ·I), where ΔI is
a non-empty set called the interpretation domain, and ·I is the interpretation
function. The interpretation function relates each atomic concept A ∈ NC with
a subset of ΔI , each atomic role R ∈ NR with a subset of ΔI × ΔI and each
individual a ∈ NI with a single element of ΔI . The interpretation function can
be extended to complex concepts as shown in Table 1.

An interpretation I is a model of a knowledge base K iff the conditions de-
scribed in Tables 2 and 3 are fulfilled for every axiom in K. A concept C is
satisfiable w.r.t. a knowledge base K iff there is a model I of K such that CI �= ∅.

The basic reasoning operation in DL is subsumption, that induces a subcon-
cept-superconcept hierarchy. We say that the concept C is subsumed by the
concept D (C is more specific than D) if all the instances of C are also instances
of D. Formally, C is subsumed by D w.r.t. the knowledge base K (C �K D) iff
CI ⊆ DI for every model I of K. When the knowledge base K is known we can
simplify the notation and write C � D. Finally, an equivalence axiom C ≡ D
is just an abbreviation for when both C � D and D � C hold, and a strict
subsumption axiom C � D simply means that C � D and C �≡ D.

Table 3. ABox axioms

Axiom Syntax Semantics

Concept instance C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Same individual a = b aI = bI

Different individual a �= b aI �= bI
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TBox

Topping � �
Cheese � Topping

Mozzarella � Cheese

. . .

P izza � �
CheesyP izza ≡ Pizza � ∃hasTopping.Cheese

MeatyP izza ≡ Pizza � ∃hasTopping.Meat

Margherita � Pizza � ∃hasTopping.T omato�
∃hasTopping.Mozzarella

range(hasTopping) � Topping

ABox

Margherita(p1), P izza(p2), hasTopping(p2, t1), Chicken(t1), hasTopping(p2, t2),
V egetable(t2)

Fig. 1. Example of knowledge base

Figure 1 shows an example knowledge base that we will use in the rest of the
paper. The TBox contains axioms to define some vocabulary about pizzas and
ingredients: Mozzarella is a type of Cheese; Margherita is a type of Pizza
with Tomato and Mozzarella; a CheesyP izza is any Pizza with Cheese, etc.
The ABox, in turn, contains axioms to describe two individuals: a margherita
pizza and a pizza with chicken and vegetable toppings.

2.1 DL Conjunctive Queries

DL knowledge bases can be queried in order to retrieve individuals that meet
certain conditions –in a way similar to that queries are used to retrieve data
in databases. In order to define queries, along with the set of atomic concepts
(NC), atomic roles (NR) and individual names (NI) from knowledge bases, we
need as well a disjoint set of variable names (NV ).

Definition 1. (Conjunctive Query)
A DL conjunctive query Q(x,y) is a logic formula ∃y.ψ(x,y) where ψ is con-
junction of terms of the form A(x), R(x, y), x = y and x �= y, in which A ∈ NC

is an atomic concept, R ∈ NR is an atomic role, and x and y are either individual
names from NI or variable names taken from the sets x,y ⊂ NV .

The sets x and y contain, respectively, all the answer variables and quantified
variables of the query. A boolean conjunctive query Q(∅,y), or just Q(y), is a
query in which all the variables are quantified.
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To define the semantics of general DL queries, let us begin considering only
boolean queries. Let V I(Q) be the set of variables and individuals in the queryQ.
An interpretation I is a model of a boolean query Q(y), noted as I |= ∃y : Q(y)
or shortly as I |= Q, if there is a variable substitution θ : V I(Q) → ΔI such
that θ(a) = aI for each individual a ∈ V I(Q), and I |= αθ for each term α in
the query. The notation αθ denotes the query atom α where the variables of α
are substituted according to θ. A knowledge base K entails a boolean query Q,
noted as K |= Q, if every model of K satisfies Q.

Now let us consider queries with answer variables.

Definition 2. (Query Answer)
An answer to a query Q(x,y) w.r.t. a knowledge base K is a variable substitution
θ that maps the answer variables in x to individuals in K such that the boolean
query Q(xθ,y) is entailed by K as defined above.

The notation Q(xθ,y) represents the query where all the distinguished variables
have been replaced according to θ. Note that, for interpreting boolean queries,
we use a substitution that maps variables to arbitrary elements of the domain
ΔI whereas for a query answer we require the answer variables to be mapped
to named individuals in the ABox.

Definition 3. (Query Answer Set)
The answer set of a query Q(x,y) w.r.t. K, noted as Q(K), is the set containing
all the answers to the query Q(x,y) w.r.t. K.

For example, given the knowledge base in Figure 1, let us consider the queries:

Q1({x1}, {}) = Pizza(x1)

Q2({x1}, {y1}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Tomato(y1)

Now, the query Q1 below will retrieve all the existing pizzas (Q1(K) = {{p1/x1},
{p2/x1}}), while the queryQ2 will retrieve only those pizzas with tomato (Q2(K)
= {{p1/x1}}). Notice that the reasoner infers that p1 has tomato because it is
a marguerita pizza although there is no individual of type tomato explicitly
asserted in the ABox.

2.2 Query Subsumption

We can define a subsumption relation between queries similar to the subsumption
relation between concepts. In this way, queries can be organized into a hierarchy
where the most general queries are above the most specific ones.

Definition 4. (Query Subsumption)
A query Q(x,y) is subsumed by another query Q′(x,y′) w.r.t. K = (T ,A) (noted
as K |= Q � Q′) if, for every possible ABox A′ and the knowledge base K′ =
(T ,A′) it holds that Q(K′) ⊆ Q′(K′) (i.e. that the answer set of Q is contained
in the answer set of Q′).
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Query containment is very closely related to query answering. The standard
technique of query freezing [21] can be used to reduce query containment to
query answering in DL [16]. To decide query subsumption, we build a canonical
ABox AQ from the query Q(x,y) by replacing each of the variables in x and y
with fresh individual names not appearing in the KB. Let θ be the substitution
denoting the mapping of variables x to the fresh individuals. Then, for K =
(T ,A), K |= Q � Q′ iff θ is in the answer set of Q′ w.r.t. to KQ = (T ,AQ).

Note that Definition 4 assumes that both Q and Q′ share the same set of
answering variables, which is enough for the purposes of this paper. For example,
considering the pizza knowledge base, query Q3 below subsumes Q4 because any
margherita pizza is also a pizza with tomato and thus any answer to Q4 is also
an answer to Q3.

Q3({x1}, {y1}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Tomato(y1)
Q4({x1}) =Margherita(x1)

2.3 Refinement Operators

This section briefly summarizes the notion of refinement operator and the con-
cepts relevant for this paper (see [13] for a more in-depth analysis of refinement
operators). Refinement operators are defined over quasi-ordered sets. A quasi-
ordered set is a pair (S,≤), where S is a set, and ≤ is a binary relation among
elements of S that is reflexive and transitive. If a ≤ b and b ≤ a, we say that
a ≈ b, or that they are equivalent. Refinement operators are defined as follows:

Definition 5. (Refinement Operator)
A refinement operator ρ over a quasi-ordered set (S,≤) is a function such that
∀a ∈ S : ρ(a) ⊆ {b ∈ S|b ≤ a}.
In other words, refinement operators (sometimes called downward refinement
operators) generate elements of S which are “smaller” (which in this paper means
“more specific”). The complementary notion of an upward refinement operator,
that generates elements that are “bigger”, also exists, but is irrelevant for this
paper. Typically, the following properties of operators are considered desirable:

– A refinement operator ρ is locally finite if ∀a ∈ S : ρ(a) is finite.
– A downward refinement operator ρ is complete if ∀a, b ∈ S|a ≤ b : a ∈ ρ∗(b).
– A refinement operator ρ is proper if ∀a, b ∈ S, b ∈ ρ(a) ⇒ a �≈ b.

where ρ∗ means the transitive closure of a refinement operator. Intuitively, locally
finitenessmeans that the refinement operator is computable, completenessmeans
we can generate, by refinement of a, any element of S related to a given element
a by the order relation ≤ (except maybe those which are equivalent to a), and
properness means that a refinement operator does not generate elements which
are equivalent to a given element a.

Regarding DL queries, the set of DL conjunctive queries and the subsumption
relation between queries (Definition 4) form a quasi-ordered set. In this way, we
only need to define a refinement operator for DL conjunctive queries to specialize
or generalize them.
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3 A Refinement Operator for DL Conjunctive Queries

The following rewriting rules define an downward refinement operator for DL
Conjunctive Queries. A rewriting rule is composed of three parts: the applicabil-
ity conditions of the rewriting rule (shown between square brackets), the original
DL query (above the line), and the refined DL query (below the line).

(R1) Concept Specialization

[A2(x1) �∈ Q ∧A2 � A1∧ � ∃A′ : A2 � A′ � A1]

Q(x,y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

Q′(x,y) = A1(x1) ∧A2(x1) ∧ α1 ∧ . . . ∧ αn

(R2) Concept Introduction

[x1 ∈ V (Q) ∧ A1 ∈ max{A ∈ NA | ∀A′(x1) ∈ Q : A �� A′ ∧A′ �� A}]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

(R3) Role Introduction

[x1, x2 ∈ V (Q) ∧R1 ∈ max{R ∈ NR | ∀R′(x1, x2) ∈ Q : R �� R′ ∧R′ �� R}]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = R1(x1, x2) ∧ α1 ∧ . . . ∧ αn

(R4) Variable Introduction

[x1 ∈ V I(Q), x2 ∈ NV \ V (Q)]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y ∪ {x2}) = α1 ∧ . . . ∧ αn ∧ �(x2)

(R5) Variable Instantiation
[θ : V (Q) → NI ]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = α1θ ∧ . . . ∧ αnθ

Rules R1 and R2 refine a query either specializing an existing type or introducing
a new type that is neither more general nor more specific than the existing ones
(for example a sibling in the concept hierarchy). Rule R3 works analogously to
R2 but introducing roles instead of concepts. Note that we do not provide a rule
to specialize role assertions since the EL logic does not allow role hierarchies.
Rule R4 introduces a new quantified variable in the query, and R5 binds an
existing variable to a concrete individual in the knowledge base.

For the sake of space we do not provide proofs, but it is easy to verify that
the previous refinement operator is locally finite and not proper. The refinement
operator is also complete if we only consider the space of DL conjunctive queries
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with a fixed set of answer variables (none of the above rules adds new answer
variables) in which all the variables represent distinct individuals.

Although the assumption that all the variables are different restricts the set of
queries that can be represented, it also simplifies to a large degree the similarity
assessment process that we introduce in the following section, since it prevents
refinement chains of infinite length in which all the queries are equivalent:

A(x1) → A(x1) ∧ �(y1) → A(x1) ∧ �(y1) ∧ �(y2) → . . .

Dealing with these infinite chains using other approaches and exploring different
refinement operators that offer a different trade-off of completeness and efficiency
is part of our future work.

4 Similarity Based on Query Refinements

The similarity SQ proposed in this paper consists of two main steps (described
in the following two subsections). First, given individuals a and b, we transform
them into conjunctive DL queries, Qa and Qb. Second, using the refinement
operator presented above, we measure the similarity between Qa and Qb.

4.1 From Individuals to Queries

Given an individual a and an ABox, A, we can define the individual graph of a
as follows.

Definition 6. (Individual graph)
An individual graph Ga ⊆ A is a set of ABox axioms with one distinguished
individual a ∈ NI such that:

– ∀C ∈ NC, if C(a) ∈ A then C(a) ∈ Ga

– ∀C ∈ NC, if C(b) ∈ Ga then ∀R ∈ NR, if R(b, c) ∈ A then R(b, c) ∈ Ga

– ∀R ∈ NR, C ∈ NC , if C(b) ∈ Ga and R(b, c) ∈ A then ∀D ∈ NC if D(c) ∈ A
then D(c) ∈ Ga

In other words, if we represent the ABox as a graph, where each individual
is a node, and each role axiom is a directed edge, the individual graph of an
individual a would be the connected graph resulting from all the nodes and
edges reachable from a.

We can transform an individual graph to an equivalent conjunctive query ap-
plying a substitution that replaces the distinguished individual by a new answer
variable, and the remaining individuals by new quantified variables. Note that
the conversion is straightforward since ABox axioms and DL query terms are
alike and, what is more important, no information is lost in the translation.

For example, next we show an individual graph and its equivalent DL query:

Gp1 = Pizza(p1) ∧ hasTopping(p1, t1)∧Chicken(t1) ∧
hasTopping(p1, t2)∧ V egetable(t2)

Qp1({x1}, {y1, y2}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Chicken(y1) ∧
hasTopping(x1, y2) ∧ V egetable(y2)
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Fig. 2. Query distance based on refinements

4.2 Similarity over in the CQ Space

Our proposed similarity measure for conjunctive DL queries is based on the
following intuitions (see Figure 2):

First, given two queries Q1 and Q2 such that Q2 � Q1, it is possible to reach
Q2 from Q1 by applying a complete downward refinement operator ρ to Q1 a
finite number of times, i.e. Q2 ∈ ρ∗(Q1).

Second, the number of times a refinement operator needs to be applied to
reach Q2 from Q1 is an indication of how much more specific Q2 is than Q1.
Note, however, that since our refinement operator is not proper, some of the
refinements in the refinement chain do not add new information to the previous
query, and they should not be taken into account. The length of the chain of
useful refinements (those that produce proper specializations) to reach Q2 from

Q1, which will be noted as λ(Q1
ρ−→ Q2), is an indicator of how much information

Q2 contains that was not contained in Q1. In our experiments, we used a greedy
search algorithm to compute this length, which does not ensure obtaining the
shortest chain, but that is computationally efficient.

Third, given any two queries, their least common subsumer (LCS) is the most
specific query which subsumes both. The LCS of two queries contains all that is
shared between two queries, and the more they share the more similar they are.

λ(Q�
ρ−→ LCS) measures the distance from the most general query, Q�, to the

LCS, which is a measure of the amount of information shared by Q1 and Q2.
Finally, the similarity between two queries Q1 and Q2 can be measured as

the ratio between the amount of information contain in their LCS and the total
amount of information contained in Q1 and Q2. These ideas are collected in the
following formula:

Sρ(Q1, Q2) =
λ1

λ1 + λ2 + λ3
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where:

λ1 = λ(Q�
ρ−→ LCS(Q1, Q2))

λ2 = λ(LCS(Q1, Q2)
ρ−→ Q1)

λ3 = λ(LCS(Q1, Q2)
ρ−→ Q2)

Thus, the similarity between two individuals a and b, is defined as:

SQ(a, b) = Sρ(Qa, Qb)

where Qa and Qb are the queries corresponding to the individual graphs of a
and b, respectively.

4.3 Example

In this section we show an example of the SQ similarity works. Suppose we want
to compute the similarity between a pizza margherita p1 and a pizza p2 with
some vegetable and chicken. Figure 3 shows the queries representing both pizzas
and the chain of refinements used to compute their similarity. Note that the
refinements marked with an asterisk do not add new information and therefore
they are not taken into account while computing the length of the refinement
paths (steps 5 and 9 do not add new information because the role hasTopping
has range Topping and thus we can infer that type for y3 and y4). Their LCS
describes the common part of the pizzas: both have at least two ingredients and
one of them is a vegetable. Their similarity is determined as follows:

SQ(p1, p2) = Sρ(Qp1, Qp2) =
6

6 + 3 + 5
= 0.43

5 Experiments

In order to evaluate the SQ similarity measure, we used the trains data set
shown in Figure 4 as presented by Michalski [14]. Like in our previous work on
similarity assessment [20], we selected this dataset since it is available in many
representation formalisms (Horn clauses, feature terms and description logic),
and therefore, we can compare our similarity measure with existing similarity
measures in the literature. The dataset consists of 10 trains, 5 of them labelled
as “West”, and 5 of them labelled as “East.”

We compared our similarity measure against 7 others: SDLρ [20], a similarity
measure for the EL description logic; González et al. [10], a similarity measure for
acyclic concepts in description logic; RIBL [9], which is a Horn clause similarity
measure; SHAUD [1], which is a similarity measure for feature terms; and Sλ,
Sπ, and Swπ [18], which are similarity measures for feature terms but also based
on the idea of refinement operators. For RIBL, we used the original version of the
trains dataset, for SHAUD, Sλ, Sπ, and Swπ, we used the feature term version
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Queries for Gp1 and Gp2

Qp1({x1}, {}) = Margherita(x1)
Qp2({x2}, {y1, y2}) = Pizza(x2) ∧ hasTopping(x2, y1) ∧ Chicken(y1)∧

hasTopping(x2, y2) ∧ V egetable(y2)

Path from QT to LCS(Qp1, Qp2)
1 : �(x3)
2 : Pizza(x3)
3 : Pizza(x3) ∧ �(y3)
4 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ �(y3)
5∗ : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Topping(y3)
6 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3)
7 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ �(y4)
8 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ �(y4)
9∗ : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ Topping(y4)

Path from LCS(Qp1, Qp2) to Qp1

10 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Tomato(y3) ∧ hasTopping(x3, y4) ∧ Topping(y4)
11 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Tomato(y3) ∧ hasTopping(x3, y4) ∧Mozzarella(y4)
12 : Pizza(p1) ∧ hasTopping(p1, y3) ∧ Tomato(y3) ∧ hasTopping(p1, y4) ∧Mozzarella(y4)

Path from LCS(Qp1, Qp2) to Qp2

13 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧Meat(y4)
14 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ Chicken(y4)
15 : Pizza(p2) ∧ hasTopping(p2, y3) ∧ V egetable(y3) ∧ hasTopping(p2, y4) ∧ Chicken(y4)
16 : Pizza(p2) ∧ hasTopping(p2, t1) ∧ V egetable(t1)∧ hasTopping(p2, y4) ∧ Chicken(y4)
17 : Pizza(p2) ∧ hasTopping(p2, t1) ∧ V egetable(t1)∧ hasTopping(p2, t2) ∧ Chicken(t2)

Fig. 3. Refinement paths to compute Sρ(Qp1, Qp2)

of the dataset used in [17], which is a direct conversion from the original Horn
clause dataset without loss, and for the DL similarity measures, we used the
version created by Lehmann and Hitzler [15].

We compared the similarity measures in five different ways:

– Classification accuracy of a nearest-neighbor algorithm.
– Average best rank of the first correct example: if we take one of the trains,

and sort the rest of the trains according to their similarity with the selected
train, which is the position in this list (rank) of the first train with the same
solution as the selected train (West or East).

– Jaro-Winkler distance: the Jaro-Winkler measure [22] can be used to com-
pare two orderings. We measure the similarity of the rankings generated by
our similarity measure with the rankings generated with the others.

– Mean-Square Difference (MSD): the mean square difference with respect to
our similarity measure, SQ.

– Average time take to compute similarity between two individuals.

Table 4 shows the results we obtained by using a leave-one-out evaluation.
Concerning classification accuracy, we can see that our similarity measure SQ
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1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 4. Trains data set as introduced by Michalski [14]

Table 4. Comparison of several similarity metrics in the trains dataset (* These times
do not take into account data preprocessing, required for these two techniques). Note
that the Jaro-Winkler and MSD values are computed with respect to SQ.

SQ SDLρ González et al. RIBL SHAUD Sλ Sπ Swπ

Accuracy 1-NN 70% 70% 50% 60% 50% 40% 50% 80%

Best Rank 1.4 1.4 1.5 2.0 2.0 2.3 2.1 1.7

Jaro-Winkler - 0.75 0.68 0.79 0.73 0.76 0.76 0.77

MSD - 0.03 0.21 0.07 0.06 0.07 0.11 0.16

Avg. Time 0.55s 175.74s 0.01s 0.01s 0.07s 0.04s 0.00s* 0.00s*

achieves a high classification accuracy, higher than most other similarity mea-
sures, except Swπ. We would like to emphasize that the trains data-set is only
apparently simple, since the classification criteria is a complex pattern which in-
volves several elements from different cars in a train. The only similarity measure
that came close is Swπ, which achieved an 80% accuracy (it misclassified trains
west 1 and west 3). Concerning the average best rank, our measure obtains the
best score (tied with our previous measure SDLρ). Concerning the Jaro-Winkler
and MSD results, we can see that in the trains data set SQ produces similarities
similar to SDLρ, RIBL, and Sλ.

Where our new similarity measure stands out is in terms of time. We can
see that, compared to our previous SDLρ similarity measure, the SQ similarity
is very fast. This is because the space of queries is narrower than the space of
concepts since queries can only contain atomic concepts and roles while general
DL concepts can combine any of the constructors in the language. However,
this limitation does not necessarily affect the quality of the similarity, since
atomic concepts represent the vocabulary chosen by domain experts to describe
domain entities, and therefore atomic concepts represent the most important
conceptualizations in the domain. Also, many practical optimizations can be
performed, such as sorting the query term in such a way that the most restrictive
axioms ones are evaluated first.
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The other similarity measure for DL (González et al.’s) is much faster, but it
is specialized to individual graphs that can be represented as trees, and would
not work for individual graphs that contain cycles.

In summary, SQ is a new practical approach to assess similarity for expres-
sive DL, with a similar classification accuracy or better than existing similarity
measures, but more general than González et al.’s, and more efficient than our
previous measure SDLρ.

6 Related Work

The work presented in this paper extends our previous work on similarity on
Description Logics [20], where we studied how to assess similarity between indi-
viduals by transforming them to concepts, and then assessing the similarity of
these concepts. The approach presented in this paper is more general (since the
language DL queries is common to all DL), more efficient, and more accurate
(since we might lose information when converting individuals to concepts).

D’Amato et al. [8] propose to measure concept similarity as a function of the
intersection of their interpretations, which is, in fact, an approximation to the
semantic similarity of concepts. The approximation is better or worse depending
on how good is the sample of individuals used for assessing similarity. Thus, a
good sample of individuals is required.

Other approaches have been proposed in order to assess similarity between
individuals or concepts without requiring the use of a good sample of individuals.
González et al. [10] present a similarity measure for description logic designed
for case-based reasoning systems. This similarity measure is based on the idea
of hierarchical aggregation, in which the similarity between two instances is
computed as an aggregation of the similarity of the values in their roles.

In addition to similarity in Description Logics, there has been a significant
amount of work in the more general topic of similarity assessment for other
forms of complex data representation formalisms. Hutchinson [12] presented a
distance based on the anti-unification of two terms. The Hutchinson distance is
the addition of the sizes of the variable substitutions required to move from the
anti-unification of two terms to each of these terms. This measure is related to
the refinement-based approaches in [20] and [18], but is more coarse grained.

RIBL (Relational Instance-Based Learning) is an approach to apply lazy
learning techniques while using Horn clauses as the representation formalism [9].
An earlier similarity measure related to RIBL was that of Bisson [5]. Horváth
et al [11] presented an extension of RIBL that is able to deal with lists and
terms. The downside of the RIBL approach is that specialized measures have to
be defined for different types of data, while other approaches, such as the ones
based on refinement operators, do not have this downside.

Bergmann and Stahl [4] present a similarity metric specific for object ori-
ented representations based on the concepts of intra-class similarity (measuring
similarity among all the common features of two objects) and inter-class simi-
larity (providing a maximum similarity given to object classes). This similarity is



Refinement-Based Similarity Measure over DL Conjunctive Queries 283

defined in a recursive way, thus following the same “hierarchical decomposition”
idea as RIBL, and limiting the approach to tree representations.

SHAUD, presented by Armengol and Plaza [1], is another similarity measure
following the “hierarchical decomposition” approach but designed for feature
terms. SHAUD also assumes that the terms do not have cycles, and in the same
way as RIBL and Bergmann and Stalh’s it can handle numerical values by using
specialized similarity measures for different data types.

7 Conclusions and Future Work

This paper has presented a new approach to assess similarity between individuals
in Description Logics. Our approach is based on first converting the individuals
to conjunctive queries, and then assessing the similarity between the queries.
Converting individuals to queries has several advantages with respect to con-
verting individuals to concepts, and then assessing the similarity between the
concepts: first, the conjunctive query language is shared among different DLs,
and thus, our similarity measure is more generic (although in this paper we fo-
cused on the EL logic). Second, search in the space of queries is more efficient
than search in the space of concepts, thus gaining a computational advantage.
Our empirical results show that the resulting measure obtains similar results as
previous comparable measures, but at a much lower computational cost.

As part of our future work, in addition to evaluation with larger and more
complex datasets, we would like to fully explore the applicability of our similarity
measure for more expressive description logics. Specifically, we would like to
investigate the tradeoffs between relaxing the requirement of having a complete
refinement operator (reducing the search space, and thus the computational
complexity), and the performance of the resulting similarity measure.
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