
iCaseViz: Learning Case Similarities through

Interaction with a Case Base Visualizer

Debarun Kar, Anand Kumar, Sutanu Chakraborti, and Balaraman Ravindran

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai- 600036, India

{debarunk,anandkr,sutanuc,ravi}@cse.iitm.ac.in

Abstract. Since the principal assumption in case-based reasoning
(CBR) is that “similar problems have similar solutions”, learning a suit-
able similarity measure is an important aspect in CBR. However, learning
case-case similarities is often a non-trivial task and involves significant
amount of domain expertise. Most techniques that arrive at a pertinent
similarity measure are often incomprehensible to the domain experts.
These techniques also rarely enable the user to provide expert feedback
which can then be utilized to develop better similarity measures. Our
work attempts to bridge this knowledge gap by developing an iterative
and interactive visualization framework called iCaseViz which learns the
domain experts’ notion of similarity by utilizing the user feedback. This
work is different from similar work in other communities in the sense that
it is tailored to cater to the needs of a system built primarily based on
the CBR hypothesis. The case base visualizer demonstrated in this pa-
per is also very efficient as it has insignificant delay during real-time user
interaction on large case bases. We provide preliminary results on the ef-
ficiency of the visualizer and the effectiveness of our similarity learning
algorithm on UCI datasets and a real world high dimensional case base.

1 Introduction

In the past decade the emergence of vast collections of data from various sources
has resulted in researchers exploring different avenues of data analysis. Most of
the datasets, like the astronomical, textual and social networks data, are high-
dimensional which makes interpretation and analysis difficult, even for the do-
main experts. Different research communities have thus focussed on developing
techniques to explore the huge amount of hidden information in the data. Sta-
tistical and machine learning techniques are often employed to gain meaningful
insights about the data. However, the knowledge possessed by domain experts
are mostly left unutilized in these kinds of information extraction processes. This
is because it is difficult for them to interpret the data while manipulating cer-
tain unknown parameters. Similar issues are encountered in case base reasoning
(CBR) when trying to mine meaningful information, like the identification of
important features, from large and noisy case bases, like textual case bases.

Case base visualization is therefore important to make sense of the underlying
representation of the data and to facilitate analysis. A domain expert can use

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 203–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



204 D. Kar et al.

the knowledge acquired from the visualization to reform his understanding of
the data and make informed decisions regarding certain aspects of the data, like
the identification of noisy cases and attributes in a case base. The importance of
case base visualization and several CBR visualization techniques has been the
topic of discussion in the past. However, most of these visualizers do not support
interaction with the user, in the sense that the user cannot manipulate elements
in the visualization to obtain a refined representation. This is mostly due the fact
that real-time interaction with a visualizer is either very slow or not supported
when dealing with data sets with large number of cases and attributes. This
prevents the user from further analysis and gaining deeper insights about the
data. Also, it is not always clear how to elicit user feedback. In this paper we
present an application that allows the user to visualize and iteratively interact
with it and then utilize the user feedback for effective and efficient multi-variate
data analysis.

CBR systems are primarily built on the hypothesis that “similar problems
have similar solutions”. However, identifying the most appropriate similarity
measure for a given case base is often a non-trivial task and requires significant
amount of domain knowledge. The failure to encode a suitable similarity mea-
sure results in incorrect retrieval of cases. This, in turn, leads to poor quality
solutions and the failure of a CBR system as a whole. Therefore, it is sometimes
important to involve the domain experts in the process of explicitly specifying
the similarity between two cases in a case base. However, reviewing the similarity
between all pairs of cases as computed by a pre-determined similarity measure
and modifying the incorrect similarities is an incredibly arduous, if not infeasi-
ble, task especially if the case base consists of a large number of cases. Also, the
notion of similarity between cases cannot always be explicitly stated. The qual-
itative notion of similarity can be captured by showing two cases to the users
and allowing them to manipulate a slider, specifying the extent of similarity on
a normalized scale, say 0 to 1. However, doing this for every pair in a large case
base is also laborious and time consuming. Moreover, the case base may contain
noisy samples due to erroneous recording of past experiences. It is therefore im-
portant to identify and eliminate such noisy cases so as to form a case base which
is representative of the problem solving domain under consideration. With the
help of our visualizer and the user feedback we will attempt to learn a suitable
similarity measure and also recognize noisy cases and eliminate them as part of
the case base maintenance procedure.

In this paper, in order to learn a new set of similarities between cases we will
learn an appropriate set of feature weights. We will see in the subsequent sections
how we perform feature weighting to obtain an estimate of the relative impact
of each feature on a particular target variable and also to compute the suitable
global similarity between cases. For large number of features, this automated
learning of feature weights not only spares the domain expert from manually
encoding the weight of each feature, but it is also applicable in situations where
the importance of every feature is unknown even to the experts.



iCaseViz: Learning Case Similarities 205

The main motivation for our work comes while trying to find an important
set of features and a suitable similarity measure for the soil nutrients’ prediction
task using a CBR system called InfoChrom [1]. In our previous work [2], we
attempted to solve the problem of feature weighting by using alignment as a
guiding measure. However, we were still unable to exploit the domain experts’
knowledge of similarity between the cases present in the case base of InfoChrom.
Due to the presence of a large number of cases (15167) in a high dimensional
(176) feature space, the problem of manually encoding the relative similarities
between cases became an uphill task. In this paper we attempt to address this
problem by focussing on two important issues. Firstly, we want to emphasize
the need for an interactive case base visualization tool which is efficient for large
case bases. Secondly, we want to present a way to utilize user feedback from the
visualizer to learn the domain experts’ notion of similarity by finding a suitable
set of feature weights. In Section 2, we discuss related work regarding visual-
ization and similarity learning. We present the algorithm used by iCaseViz to
revise the similarity measure in Section 3. In Section 4, we describe our appli-
cation framework, its various components and the process of interaction with
the visualizer. This is followed by preliminary experimental results and analysis
on UCI data sets and the case base of InfoChrom in Section 5. Finally, we con-
clude by discussing how our work is different from a similar existing work and
by describing a few possible extensions of our work in Section 6.

2 Related Work

Encoding a suitable similarity measure for a given data set has been an active
research topic in several AI communities, like machine learning, case-based rea-
soning and data mining. Some papers focus on learning similarity measures by
computing a set of relevant feature weights and combining the weighted feature
level similarities to arrive at a global similarity measure. Our approach to learn-
ing similarity is based on the above idea. Research on feature weight learning
primarily focusses on eliminating the “curse of dimensionality” problem for k-
nearest neighbor (k-NN) based approaches by finding features which are more
important than others for a particular prediction task [3–7]. An informative
survey of similarity mechanisms in case base reasoning can be found in [8].

Past work on information visualization focuses mainly on visualizing high di-
mensional data with the help of Parallel Coordinates (PC) andMulti-Dimensional
Scaling (MDS) plots. PC [9] draws features or coordinates as lines, parallelly and
equidistant to each other (Fig. 1). A point in the n-dimensional coordinate space
is drawn as a polyline in the PC plot, where the polyline connects all the parallel
axes. Therefore, this parallel coordinates representation in 2-d space enables us
to view and find complex patterns in multivariate datasets. However, the biggest
drawback of this technique is that the PC plot becomes cluttered as the number
of data points and the number of coordinates increase. This hinders the user from
gaining any insightful patterns about the data being viewed. PC has been used
in case base visualization in [10]. This work also addressed the problem of axes



206 D. Kar et al.

reordering by utilizing feature similarities. Falkman [11] presents a visualization
tool that projects cases onto a three dimensional PC plot.

Work involving lower dimensional projections in visual data analytics mostly
involves projection using MDS [12]. This includes several spring layout based vi-
sualizations for clustering problems as well as applications to manipulate certain
parameters to modify the visualization [13–18]. The task of feature selection and
distance function learning using 2-d projection has been most recently addressed
in [19]. Other past research on case base visualization which are closely aligned
with our work include [20, 21], which uses a force-directed graph drawing algo-
rithm for visualizing an evolving case base. Cbtv [22] allows the user to visualize
the effect of several similarity measures on a case base. Other related work on
the same topic include [23–25].

3 Our Approach to Learning Similarity

Learning similarity with the help of our visualizer is an iterative process and the
steps are explained in detail in Sections 3.1, 3.2, 3.3 and 3.4. Let us assume that
we are given a set of N cases C1, C2,..., CN , with the problem space P consisting
of the values of q features F1, F2, ..., Fq and the solution space S consisting of
the target variable T. Also, let the weight of feature Fi be wi (1 ≤ i ≤ q), where
0 ≤wi ≤ 1. Then we calculate the dissimilarity in the problem space between
two cases Ca and Cb as the weighted sum of their feature space dissimilarities:

DisSimP (Ca, Cb,w) =

q∑

i=1

wi ∗DisSimF (Cai, Cbi) (1)

where, DisSimF(Cai,Cbi) denotes the dissimilarity between the corresponding
values of feature Fi for the cases Caand Cb, and is computed as follows:

DisSimF (Cai, Cbi) =
DistF (Cai, Cbi)−Min(DistFi)

Max(DistFi)−Min(DistFi)
(2)

Here, DistF(Cai,Cbi) denotes the city-block distance between the values Cai and
Cbi. Max(DistFi) and Min(DistFi) are the maximum and minimum distances
between all pairs of values for feature Fi respectively. The target space dissimi-
larity between any two cases is calculated in the same way and is represented as
DisSimS(Ca,Cb). Please note that our formulation of feature space dissimilarity
is such that the feature space similarity between two cases Cai and Cbi for fea-
ture Fi will be (1-DisSimF(Cai,Cbi)). The overall similarity between two cases
can then be computed as the weighted sum of these feature space similarities. In
our application, we work with dissimilarities between cases so that we can use
in-built Matlab functions which takes a dissimilarity matrix as an argument, to
perform the projection in Section 3.1.

3.1 Projecting the Case Base in Two Dimensions

We use classical multi-dimensional scaling (MDS) to project the high-dimensional
case base onto two dimensions and show the output to the user in the form of



iCaseViz: Learning Case Similarities 207

a scatter plot. The MDS algorithm is provided with a dissimilarity matrix con-
taining the dissimilarities between case pairs, computed in the original high di-
mensional space based on the current measure of dissimilarity. It then attempts
to find a projection in lower dimensions that best preserves the relative dissim-
ilarity between the cases. We use the MDS plot to help the user visualize the
relative dissimilarities between the cases in the original high dimensional space.
We also color the points in this MDS plot for effective visualization and analysis.
The coloring scheme for the cases is discussed in Section 4.1.

3.2 User Action

The application provides the user with the capability to select any case from
the scatter plot and move it, thus changing the relative similarities between the
selected case and other cases in the case base. The facility to select multiple cases
together and move them in the plot is also provided. This will affect the relative
dissimilarities between the selected set of cases and all other cases in the case
base, while the relative dissimilarities between the untouched cases remains the
same. More details about the features that are incorporated in the application
can be found in Section 4.1.

3.3 Capturing the Experts’ Notion of Similarity

Once the user has changed the relative dissimilarities between the cases, we
obtain the new locations of the cases in the 2-d scatter plot and compute the
Euclidean distance between every pair of cases in the case base. This gives us
an estimate of the domain experts’ notion of similarity between the cases.

3.4 Feature Weighting and Similarity Learning

Once the user has modified the relative dissimilarities between the cases, the
system solves an optimization problem to learn an appropriate feature weight
vector w. These relative importance values for each feature denoted as wi (1 ≤
i ≤ q) are then used to derive new dissimilarity values with the help of Eqn. 1.

In order to obtain the revised feature weight set wt at time t, we solve the
optimization problem as specified by Equation 3. For every pair of cases Ci

and Cj , we take the squared difference between the user specified dissimilarities
DisSimPuser(Ci, Cj) as obtained by the users’ modification of the scatter plot
and the dissimilarities DisSimP (Ci, Cj ,w) in the high dimensional space ob-
tained for a particular weight vector w. Alignment measures the extent to which
the similarity hypothesis holds good in a particular case base. Local alignment
measures this property of the case base in the neighbourhood of a particular case
while global alignment is measured across the entire case base. Now, consider
the scenario where the user moves all cases which are highly similar both in the
problem and solution spaces to a single point. This is clearly not desirable even
though this increases the local as well as the global alignment. Thus the need to



208 D. Kar et al.

preserve the structure in the original data in terms of inter-case similarities might
pose a threat to the goal of improving the alignment. We devise the objective
function to capture the tradeoff between these conflicting requirements. Now,
consider another situation where the user moves two cases, which are highly
similar both in the problem and solutions spaces, too far apart from each other.
This will decrease the alignment and is also undesirable. To discourage the user
movements as explained in the above two scenarios, we give weights to each of
the squared difference terms in Equation 3. This is an important design step
in our application. To do this, we first compute the complexity between two
cases Ci and Cj as the product of their problem and solution side dissimilarities
(Equation 6), normalize it (Equation 5) and replace the value thus obtained in
Equation 4. The hyperbolic tangent function is used in Equation 4 as a smooth-
ing function. The trade-off term will ensure that the squared difference term in
Equation 3 receives less importance if the value of complexity between two cases
is low and vice versa. Thus, if the user moves two cases, which are already highly
similar both in the problem and solutions spaces, too close or too far apart from
each other, the tradeoff term (Eqn. 4) will ensure that the movement receives less
weight. Therefore, by incorporating the tradeoff term, random movements in the
case space is prevented and the global structure of the case base is maintained
in accordance with the CBR hypothesis.

wt = argmin
w

(
∑

i≤j≤N

(tanh(Compnorm
ij )∗(DisSimPuser(Ci, Cj)−DisSimP (Ci, Cj ,w))2))

(3)
subject to wi ≥ 0, (1 ≤ i ≤ q)

tanh(Compnorm
ij ) = (2/(1 + exp(−2 ∗ Compnorm

ij )))− 1 (4)

Compnorm
ij =

Compij −Min(Compij)

Max(Compij)−Min(Compij)
(5)

Compij = DisSimP (Ci, Cj) ∗DisSimS(Ci, Cj) (6)

4 The iCaseViz Application Framework and Its
Components

This section describes the different components of our application and the fea-
tures provided to the user. We also discuss the implementation details and how
we obtain fast responses while loading and interacting with the data as compared
to similar existing tools. It is divided into two sections: the visualizer (Sec. 4.1)
and the analyzer (Sec. 4.2).

4.1 The Visualizer

The visualizer portion of the application is written in C++ using the Qt open
source library. It has two main modules: the Parallel Coordinates (PC) visualizer



iCaseViz: Learning Case Similarities 209

Fig. 1. The Parallel Coordinates visualizer

Fig. 2. The MDS Scatter Plot visualizer

(Figure 1) and the Scatter Plot visualizer (Figure 2). The PC module allows one
to reposition axis, change the spacing between axes, zoom along the X and Y
axes independently and scroll horizontally and vertically. It is also capable of
displaying axis specific information like the axis name when one selects an axis.
The Scatter Plot module displays an interactive two dimensional plot. One can
move the cases around and save the resulting plot data to a file. The Scatter
Plot gives the user multiple options to select the cases:



210 D. Kar et al.

Fig. 3. A zoomed view of the MDS Scatter Plot visualizer. In the left view, two test
cases (green in the visualizer) are circled to show that these were misclassified (into
the class represented by the color green). The right view shows the MDS plot after
a few iterations. The same circled cases (represented in black color in the visualizer)
have now been correctly classified.

– Click on a case and it gets highlighted.
– Hold down the CTRL key and click on multiple cases to select.
– Select by dragging a selection box around a group of cases.
– Select all cases that are of the same colour.
– Select cases of only a given colour from currently selected set of cases.

Our 2-dimensional Scatter Plot has an additional feature in terms of the pro-
jection, which is missing from the earlier work on the same topic. In addition
to the cases in the case base, we also project the test cases onto this 2-d space.
The Scatter Plot visualizer represents cases in the case base as circles and the
test cases as squares. The cases in the case base are colored both in the PC
and Scatter Plot visualizer and their color is determined by the solution side
similarity between the cases. Test cases whose solutions are satisfactory to the
user are colored black while the other cases are colored according to the color
of the case whose solution is most similar to the proposed solution of that case.
For example, in the case of classification tasks, each class can be represented by
a particular color as shown in Figures 1 and 2, which displays the Iris dataset
from the UCI repository. The correctly classified test samples are colored black
while the incorrectly classified test cases has the same color as the class it has
been classified into. This enhances the visualization by providing additional in-
formation to the domain expert in the form of relative dissimilarities between
the cases in the case base and the test cases. He gets an idea about the quality
of the current similarity metric by not only viewing the relative positions of the
cases but also the quality of the solutions produced for the test cases as can
be seen by the color of a particular case. However, the test cases are only for
viewing purpose and cannot be moved around in the scatter plot. Note that
even if the expert is aware of the quality of solutions of the test cases, improving
it cannot be enforced by arbitrarily moving the cases around. This is because



iCaseViz: Learning Case Similarities 211

of the tradeoff term in Section 3.4. So the cases in the case base have to be
moved around so that some latent notion of similarity is captured. Hence this
is a valuable technique even though the test data is shown to the user. Two
zoomed views of the MDS Scatter Plot are given in Figure 3. The view on the
left highlights two misclassified test cases and the right view highlights the same
cases after a few iterations, when they have been correctly classified. Note that
one iteration corresponds to a single user interaction with the MDS plot. This
figure also displays the various components as tabs which the user can use during
the interaction. The two visualizer modules are linked to each other. So when
the user selects case(s) on the Scatter Plot, the corresponding polyline(s) on the
PC plot is highlighted. Our PC visualizer thus provides a consolidated view of
the entire case base and cases of interest across multiple dimensions and aids the
domain expert in his interaction with the MDS Scatter Plot. Discussion of the
implementation details of the two visualization components is provided below.

Parallel Coordinates Visualizer: The PC Visualizer reads data in CSV
format. The first row is expected to be the headings row, for example the names
of the features. Each subsequent row is expected to have an extra column that
gives the quality of the solution for the corresponding case, represented by a
particular colour. Figure 4 shows the sequence of activities that lead to the
image getting drawn on screen. Once the data is loaded, a layout is created. The
height of the layout is determined by the axis that has the largest range. The
inter-axis interval and the number of axis determine the length of the canvas.
This canvas is logically split into canonical rectangles the size of the viewing
area (dimensions of the viewing windows scaled according to zoom factors). This
means the visible rectangle on screen (determined by zoom setting and position
of the scroll bars) can be made of at most four adjacent canonical rectangles.
The canonical rectangles’ dimensions change when the view is zoomed in or out.
For large datasets, to make the application responsive, these canonical rectangles
are cached. This allows the application to save time spent on repetitive drawing.

MDS Plot Visualizer: The scatter plot is realized using the capabilities of
QGraphicsScene and QGraphicsView. The Qt Graphics View framework allows

Fig. 4. Sequence of activities for the Parallel Coordinates visualizer



212 D. Kar et al.

the developer to describe a scene in terms of its constituent items. The frame-
work allows for easy implementation of user interaction with object like selection
and moving objects through Qt’s event system.

In our implementation, the Scatter Plot modules load data from the files into
a QGraphicsScene. This scene is attached to a view that displays the contents
of the scene. The Scatter Plot is linked to the PC visualizer through the event
system. Whenever the user selects cases in the scatter plot, a signal is passed to
the PC module indicating the change in status. This in turn marks the appro-
priate polyline as selected, resulting in a change in its colour. The image cache
is purged and the view is redrawn to show the change.

4.2 The Analyzer

The analyzer module uses Matlab to perform the data analysis task. This in-
volves, among other things, computing the dissimilarity between pairs of cases
and finding the most similar cases to suggest a solution. We have used in-built
Matlab functions to perform MDS. To solve the optimization problem in Equa-
tion 3, we use the default solver (SDPT3) in CVX, a Matlab-based convex op-
timization tool for specifying and solving convex programs [26, 27]. We have
found that SDPT3 is slow when we are working with large case bases and we are
currently looking for fast solvers to enhance the performance of our application.

5 Evaluation

All our experiments have been conducted on an Intel Core i5 processor (M450
2.40 GHz) with 4GB RAM and 64-bit Windows 7 operating system. In our
experiments we use k-NN based retrieval strategy to propose a solution for a
test case. We calculate its dissimilarity with all the other cases in the case base
using Equation 1. Then we obtain the solution for the test sample by taking a
weighted average of the solutions of its k nearest neighbors, with the problem
side dissimilarities acting as weights. Please note that we have considered wi

= 1 (1 ≤ i ≤ q) when no feature weighting is employed while calculating the
dissimilarity between the cases.

5.1 Datasets

To demonstrate the efficiency of the visualizer and the effectiveness of our weight
learning algorithm, we experimented on classification data sets from the UCI
machine learning repository and a subset of the case base of InfoChrom. The
InfoChrom case base originally contains 15167 cases represented in terms of 176
features and we have to predict the values of 15 target variables. In this paper
we provide prediction results for one target variable with a subset of 250 cases
in the original 176 dimensional feature space. We averaged the performance
results over 5 random train-test splits with 70% of the original data used as
the case base and the rest form the test cases. All results are reported with
the value of k set to 3. For the data sets referred to in this paper, a brief



iCaseViz: Learning Case Similarities 213

Table 1. Characteristics of the UCI data sets used for evaluation purposes

Data set Kind of
Prediction Task

Number of
Features (all
continuous)

Number of Classes
(for Classification)

/ Range of the target
variable (for Regression)

Iris Classification 4 3
Glass

Identification
Classification 9 7

Waveform-21 Classification 21 3
InfoChrom Case Base Regression 176 26-246

description about the number and types of features and target variables are
shown in Table 1. We measured performance in terms of classification accuracy
and percentage error for classification and regression tasks respectively. Due to
the lack of domain knowledge for the UCI data sets, the user interacted with
the application based on the class information of each case, as indicated by the
colour. For the InfoChrom case base, the users utilized their domain expertise
to move the cases in the MDS plot.

5.2 Experimental Results and Observations

Figures 5 and 6 show the change in performance of iCaseViz on the Iris and
Glass Identification data and the InfoChrom case base over several iterations. It
is evident from the figures that as the domain expert interacts more with the
system and the notion of similarity as captured by the system evolves, there is
a noticeable improvement in performance of the system. For the case bases used
to demonstrate the effectiveness of our similarity learning algorithm, we show
the correlation between the dissimilarities in the original and MDS spaces in

0 1 2 3 4
93

94

95

96

97

98

99

100

Iterations

A
cc
u
ra
cy

(a) Iris

T1

T2

T3

T4

T5

0 1 2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

75

Iterations

A
cc
u
ra
cy

(b) Glass Identification

T1

T2

T3

T4

T5

Fig. 5. Performance of iCaseViz on (a)Iris and (b)Glass Identification data sets. T1-T5
indicate 5 different random test sets. Note that in (a), the performance curve for T1 is
not clearly visible as portions of it have merged with those of T3 and T4.



214 D. Kar et al.

0 1 2 3 4 5 6
18

23

28

33

38

43

Iterations

P
er
ce
n
ta
g
e
E
rr
o
r

T1

T2

T3

T4

T5

Fig. 6. Performance of iCaseViz on a subset of the InfoChrom case base for predicting
the target variable ‘potassium’. T1-T5 indicate 5 different random test sets.

Table 2. Correlation between dissimilarities calculated in original and MDS spaces

Data Set Correlation

Iris 0.9905

Glass Identification 0.9188

InfoChrom Case Base 0.8563

Table 3. The time taken (in milliseconds) by various components of the visualizer. ε
indicates that the time taken is negligible (of the order of nanoseconds).

Data set
Parallel Coordinates Plot Scatter

Plot
Reading
from file

Layout
the data

Decide
what to
put on
display

Filter the
polylines

Draw onto
memory
image and
display on
screen

Reading
from file,
creating
object &
adding to
QGraphics

Scene

Iris ε ε ε ε 5 56

Glass Identification ε ε ε ε 11 4

Waveform-21 ε ε ε 6 202 126

InfoChrom Case Base ε ε ε ε 109 94

Table 2. These correlations show the extent to which the MDS algorithm main-
tains the relative dissimilarities of the original space, when projecting it to two
dimensions.

We also report the time taken, in milliseconds, by the various components of
the visualizers to display on a screen with a resolution of 1366 x 768, when the
display window is maximized. We can see from Table 3 that the time taken are
negligible and therefore the system is well-suited for real-time interaction, even



iCaseViz: Learning Case Similarities 215

on large case bases. Also, we noted that the response time of our system for user
movements on the PC as well as the MDS plot is of the order of nanoseconds.

6 Conclusions and Future Work

In this paper, we have introduced iCaseViz, an interactive visualization frame-
work that not only shows the relative positions of the cases in the original high
dimensional problem space by projecting them onto a lower dimensional space
but also lets the user explore this space by allowing them to change the rela-
tive similarities between the cases. Both the notions of problem side similarity
and solution side similarity are captured by this visualization technique. This
is coupled with a CBR centric optimization function that learns the domain
experts’ notion of similarity by arriving at an optimal set of feature weights.
This work attempts to bridge the gap between the experts’ knowledge about
the problem domain and the case-based reasoning methodology by providing
an iterative and interactive visualization application. The weighting term in the
optimization function ensures that even though the domain expert is given the
freedom to change the relative similarities between cases, attempts to modify the
similarities in a way which destroys the inherent structure of the case base to a
large extent, are strongly discouraged by the system. This contributes towards
making the system robust to any unwarranted changes. We also show that the
system is able to learn a suitable set of feature weights very fast over a small
number of iterations, not only for UCI datasets but also for high dimensional
real world data, as is evident from the performance graphs. The visualizer in
its current format can handle case bases with more than 20,000 cases and over
175 features very easily and with minimal delay in response during interactions.
This is a significant development over previous applications which became unre-
sponsive and most often even failed to load case bases with around 10,000 cases
represented in terms of around 15 features.

Our work is most similar to [19] as we have a common objective of interacting
with an MDS plot to learn a dissimilarity measure by finding an appropriate set
of feature weights. However, our work is different from [19] in a lot of aspects.
Firstly, our work is more CBR-specific in the sense that we discourage the users
from making any updates that can possibly lead to a configuration where the
CBR hypothesis is violated both locally and across the entire case base. We do
this by introducing a tradeoff term that prevents a potential decrease in the
alignment of the case base. Dis-Function [19], on the other hand, provides an
inertia against any updates made by the expert to the MDS plot. Secondly, in
[19], a user is only allowed to select two sets of points and change the relative
distances between them, while in our work we allow the expert to select any
number of cases and modify the relative dissimilarities between those and the
remaining cases in the case base. So, once the cases are moved, the user has
an idea about the relative positions of all the cases in the case base which he
is going to see in the next update. Since we also show the test cases, colored
according to the quality of their solutions, along with the cases in the case base,



216 D. Kar et al.

this gives the domain expert a global picture at any point of time and thus helps
him make informed decisions.

In the future we would like to perform more experiments on large case bases
with various fast optimization problem solvers. This is because the current solver
we are using is slowwhenworkingwith large datasets and therefore the application
takes time to compute the revised similarity values once the expert is done with the
modifications. Also, currently the expert can only use the PC visualizer for view-
ing the data at several zoom levels and can re-position the axes in any order and
with arbitrary gaps between them. We are looking to develop on this by providing
an innovative visualization scheme based on parallel coordinates that will enable
further interaction with the PC plot. Also, other modules are being developed and
integrated with the existing tool which will provide additional information about
the cases selected in the MDS plot. For example, a data viewer module will show
the cases in terms of the features and their corresponding values. Selected cases
will be highlighted in the data viewer. For the InfoChrom case base, where each
case is a chromatogram image, an additional module to show the chromatogram
for a selected case is being developed. We would also like to find out the utility of
the PC visualizer in terms of the extent to which it aids the user in making de-
cisions. This can be done by comparing the performance of the system when the
PC plot is shown to the user as compared to when it is not. An integrated visu-
alization and analysis application can then be built with further options to delete
noisy cases and attributes, with the changes reflecting instantaneously in the PC
and MDS visualizers. We are also interested in exploring various ways to learn a
suitable kernel for a case base by using the expert information obtained through
interaction with the scatter plot. We believe that encoding domain knowledge in
the kernel function will be the key towards developing more accurate similarity
measures for a particular prediction task.

References

1. Khemani, D., Joseph, M.M., Variganti, S.: Case based interpretation of soil chro-
matograms. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS (LNAI), vol. 5239, pp. 587–599. Springer, Heidelberg (2008)

2. Kar, D., Chakraborti, S., Ravindran, B.: Feature weighting and confidence based
prediction for case based reasoning systems. In: Agudo, B.D., Watson, I. (eds.)
ICCBR 2012. LNCS, vol. 7466, pp. 211–225. Springer, Heidelberg (2012)

3. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (1992)

4. Wettschereck, D.: A study of distance-based machine learning algorithms. Ph.D.
dissertation, Department of Computer Science, Oregon State University (1994)

5. Wettschereck, D., Aha, D.W.: Weighting features. In: Aamodt, A., Veloso, M.M.
(eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

6. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artif. Intell.
Rev. 11(1-5), 273–314 (1997)

7. Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Wat-
son, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Hei-
delberg (2001)



iCaseViz: Learning Case Similarities 217

8. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Transactions on Knowledge and Data Engineering 21(11), 1532–1543 (2009)

9. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In: Proceedings of the 1st Conference on Visualization 1990,
VIS 1990, pp. 361–378. IEEE Computer Society Press (1990)

10. Massie, S., Craw, S., Wiratunga, N.: Visualisation of case-based reasoning for ex-
planation. In: Proceedings of ECCBR Workshop, Madrid, pp. 135–144 (2004)

11. Falkman, G.: The use of a uniform declarative model in 3D visualisation for case-
based reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI),
vol. 2416, pp. 103–117. Springer, Heidelberg (2002)

12. Borg, I., Groenen, P.: Modern Multidimensional Scaling: theory and applications.
Springer (2005)

13. Broekens, J., Cocx, T., Kosters, W.A.: Object-centered interactive multi-
dimensional scaling: Ask the expert. In: Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligencem, BNAIC (2006)

14. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H.: Xgvis: Interactive
data visualization with multidimensional scaling. Technical report (2001)

15. desJardins, M., MacGlashan, J., Ferraioli, J.: Interactive visual clustering. In: Pro-
ceedings of the 12th International Conference on Intelligent User Interfaces, IUI
2007, pp. 361–364. ACM, New York (2007)

16. May, T., Bannach, A., Davey, J., Ruppert, T., Kohlhammer, J.: Guiding feature
subset selection with an interactive visualization. In: IEEE VAST, pp. 111–120
(2011)

17. Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-
level interaction with statistical models for visual analytics. In: IEEE VAST,
pp. 121–130 (2011)

18. Okabe, M., Yamada, S.: An interactive tool for human active learning in con-
strained clustering. Journal: Emerging Technologies in Web Intelligence 3(1) (2011)

19. Brown, E.T., Liu, J., Brodley, C.E., Chang, R.: Dis-function: Learning distance
functions interactively. In: IEEE VAST, pp. 83–92 (2012)

20. Smyth, B., Mullins, M., McKenna, E.: Picture perfect: Visualisation techniques for
case-based reasoning. In: ECAI, pp. 65–72 (2000)

21. McArdle, G., Wilson, D.: Visualising case-base usage. In: Workshop Proceedings
ICCBR, pp. 105–114 (2003)

22. Namee, B.M., Delany, S.J.: Cbtv: Visualising case bases for similarity measure
design and selection. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 213–227. Springer, Heidelberg (2010)

23. McKenna, E., Smyth, B.: An interactive visualisation tool for case-based reasoners.
Appl. Intell. 14(1), 95–114 (2001)

24. Chakraborti, S., Cerviño Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Khe-
mani, D.: Visualizing and evaluating complexity of textual case bases. In: Althoff,
K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI),
vol. 5239, pp. 104–119. Springer, Heidelberg (2008)

25. Freyne, J., Smyth, B.: Creating visualizations: A case-based reasoning perspective.
In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS, vol. 6206, pp. 82–91. Springer,
Heidelberg (2010)

26. CVX Research Inc.: CVX: Matlab software for disciplined convex programming,
version 2.0 beta (September 2012)

27. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In:
Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and
Control. LNCIS, vol. 371, pp. 95–110. Springer, Heidelberg (2008)


	iCaseViz: Learning Case Similarities through 
Interaction with a Case Base Visualizer
	1 Introduction
	2 Related Work
	3 Our Approach to Learning Similarity
	3.1 Projecting the Case Base in Two Dimensions
	3.2 User Action
	3.3 Capturing the Experts’ Notion of Similarity
	3.4 Feature Weighting and Similarity Learning

	4 The iCaseViz Application Framework and Its Components
	4.1 The Visualizer
	4.2 The Analyzer

	5 Evaluation
	5.1 Datasets
	5.2 Experimental Results and Observations

	6 Conclusions and Future Work
	References




