

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 164–178, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Case-Based Goal-Driven Coordination
of Multiple Learning Agents

Ulit Jaidee1, Héctor Muñoz-Avila1, and David W. Aha2

1 Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA 18015
2 Navy Center for Applied Research in AI, Naval Research Laboratory (Code 5514),

Washington, DC 20375
{ulj208,munoz}@lehigh.edu, david.aha@nrl.navy.mil

Abstract. Although several recent studies have been published on goal
reasoning (i.e., the study of agents that can self-select their goals), none have
focused on the task of learning and acting on large state and action spaces. We
introduce GDA-C, a case-based goal reasoning algorithm that divides the state
and action space among cooperating learning agents. Cooperation between
agents emerges because (1) they share a common reward function and (2)
GDA-C formulates the goal that each agent needs to achieve. We claim that its
case-based approach for goal formulation is critical to the agents’ performance.
To test this claim we conducted an empirical study using the Wargus RTS
environment, where we found that GDA-C outperforms its non-GDA ablation.

Keywords: Goal-driven autonomy, case-based reasoning, multi-agent systems.

1 Introduction

Goal reasoning is the study of introspective agents that can reason about what goals
they should dynamically pursue (Klenk et al., in press). Goal-driven autonomy
(GDA) (Muñoz-Avila et al., 2010; Molineaux et al., 2010) is a model of goal
reasoning in which an agent revises its goals by reasoning about discrepancies it
encounters during plan execution monitoring (i.e., when its expectations are not met)
and their explanation.

GDA agents have not been designed to learn and act with large state and action
spaces. This can be a problem when applying them to real-time strategy (RTS) games,
which are characterized by large state and action spaces. In these games, agents
control multiple kinds of units and structures, each with the ability to perform certain
actions in certain states, while competing versus an opponent who is controlling his
own units and structures. To date, GDA agents that learn to play RTS games can be
applied to only limited scenarios (e.g., Jaidee et al., 2011) or control only a small set
of decision-making tasks within a larger hard-coded system that plays the full game
(e.g., (Weber et al., 2012)).

To address this limitation, we introduce GDA-C, a partial GDA agent (i.e., it
implements only two of GDA’s four steps) that divides the state and action space
among multiple reinforcement learning (RL) agents, each of which acts and learns in

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 165

the environment. Each RL agent performs decision making for all the units with a
common set of actions. For example, in an RTS game, it will assign one RL agent to
control all footmen, which is a melee combat unit, and another RL agent to control the
barracks, which is a building that produces units (e.g., footmen).

That is, each RL agent αk is responsible for learning and reasoning on a space of
size |Sk| |ࣛ௞ |, where Sk is agent αk’s set of states and ࣛ௞ is its set of actions. Thus,
GDA-C’s overall memory requirement, assuming n RL agents, is |S1||ࣛଵ| +…+
|Sn||ࣛ௡ |. This is a substantial reduction in memory requirements compared to a system
that must reason with a space of size |S||ࣛ|, where ܵ ൌ ڂ ௜ܵଵஸ௜ழ௡ and ࣛ ൌ ڂ ࣛ௜ଵஸ௜ழ௡
(i.e., all combinations of states and actions).

Cooperation among GDA-C’s agents emerges as a result of combining two factors:
(1) all its agents share a common reward function and (2) it uses case-based reasoning
(CBR) techniques to acquire/retain and reuse/apply its goal formulation knowledge.

We claim that agents which share the same reward function, augmented with
coordination provided by GDA-C, outperform agents that coordinate by sharing only
the reward function. To test this claim we conducted an empirical evaluation using the
Wargus RTS environment in which we compared the performance of GDA-C versus
CLASSQL (Jaidee et al., 2012), an ablation of GDA-C where the RL agents coordinate
by sharing only the same reward function. We first compared GDA-C and CLASSQL
indirectly by testing both against the built-in AI in Wargus, a proficient AI that comes
with the game and is designed to be competitive versus a mid-range player. We also
compared their performance in direct competitions. Our main findings are:

• Versus the Wargus built-in AI, GDA-C outperformed CLASSQL
• GDA-C also outperformed CLASSQL in most direct comparisons

Our paper continues as follows. In Section 2 we describe related work, and then
present a formalization of the problem we are studying in Section 3. Section 4
discusses the RL agents and Section 5 presents the GDA-C algorithm. Section 6
discusses the states and actions defined in Wargus, while Section 7 presents the
empirical evaluation. Finally, Section 8 concludes with future work suggestions.

2 Related Work

Weber et al. (2012) report on EISBot, a system that can play a complete RTS game.
EISBot plays complete games by using six managers (e.g., for building an economy,
combat), only one of which uses GDA (i.e., it selects which units to produce). The
GDA system GRL (Jaidee et al., 2012) plays RTS game scenarios were each side
starts with a fixed number of units. No buildings are allowed and hence no new units
can be produced, which drastically reduces the GRL’s state and action space. In
contrast to these and other GDA systems that play RTS games (e.g., Weber et al.,
2010), GDA-C controls most aspects of an RTS game by assigning units and
buildings of the same type to a specialized agent.

Many GDA systems manage expectations that are predicted outcomes from the
agent’s actions. Most work on GDA assumes deterministic expectations (i.e., the
same outcome occurs when actions are taken in the same state). These expectations
are computed in a number of ways. Cox (2007) generates instances of expectations by

166 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

using a given model of abstract explanation patterns. Molineaux et al. (2011) use
planning operators to define expectations. Borrowing ideas from Weber et al. (2012),
GDA-C uses vectors of numerical features to represent the states and expects that
actions will increase their values (e.g., sample features include total gold generated or
number of units, both of which a player would like to increase). When this does not
happen (i.e., when this constraint is violated), a discrepancy occurs.

When most GDA algorithms detect a discrepancy between an observed and an
expected state, they formulate new goals in response. Some systems use rule-based
reasoning to select a new goal (Cox, 2007), while others rank goals in a priority list
and use truth–maintenance techniques to connect discrepancies with new goals to
pursue (Molineaux et al., 2010). Interactive techniques have also been used to elicit
new goals from a user (Powell et al., 2011). GDA-C instead learns to rank goals by
using RL techniques based on the performance of the individual agents.

GDA-C has some characteristics in common with GRL (Jaidee et al., 2012), which
also uses RL for goal formulation. However, GRL is a single agent system and, unlike
GDA-C, cannot scale to play complete RTS games.1

3 Multi-agent Setting

The task we focus on is to control a set Γ of agents α1,…,αn, where each belongs to
one class ck in ܥ ൌ ሼܿଵ, ܿଶ, … , ܿ௡ሽ. Each class ck has its own set of class-specific states
Sk. The collection of all states is denoted by S (i.e., ܵ ൌ ڂ ܵ௞ଵஸ௞௡). Each agent αk can
execute actions in ࣛ௞for every class specific state.

A stochastic policy is a mapping ߨ௞: ܵ௞ ՜ ሼሺܽ, ܽ|ሻ݌ א ࣛ௞, ݌ א ሾ0,1ሿሽ. That is, for
every state ݏ א ܵ௞, ߨ௞ሺݏሻ defines a distribution ሼሺܽଵ, ,ଵሻ݌ … , ሺܽ௡, ௡ሻሽ, where ܽ௜ is an݌
action in ࣛ௞ and ݌௜ is the expected return from taking action ܽ௜ in state s and
following policy ߨ௞ thereafter. The return is a function of the rewards obtained. For
example, the return can be defined as the summation of the future rewards. Our goal
is to find an optimal policy ߨ௞כ : ܵ௞ ՜ ሼሺܽ, ܽ|ሻ݌ א ࣛ௞, ݌ א ሾ0,1ሿሽ such that ߨ௞כ
maximizes the expected return.

It is easy to prove that, given a collection of n independent policies π1,…,πn where
each πk maximizes the returns for class k, then π = (π1,…,πn) is an optimal policy. As
we will see in Section 4, GDA-C uses this fact by running n RL agents, one for each
class ck. If each converges to an optimal policy, their n-tuple policies will be an
optimal policy for the overall problem. This results in a substantial reduction of the
memory requirement compared to a conventional RL agent that is attempting to learn
a combined optimal policy π* = (π1,…,πn) where each πi must reason on all states and
actions. This conventional RL agent will require |S| × |ࣛ| space, where ܵ ൌ ڂ ௜ܵଵஸ௜ழ௡
and ࣛ ൌ ڂ ࣛ௜ଵஸ௜ழ௡ (i.e., counting all combinations of state n-tuples times all
combinations of n-tuple actions).

1 This means that the player starts with limited resources, units, and structures but can (1)

harvest additional resources, (2) build any structure, (3) train any unit, (4) research any
technology, and (5) control the units to defeat an opponent.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 167

In contrast the n agents α1,…,αn each attempt to learn an optimal policy π*k, which
requires |S1×ࣛଵ| + … + |Sn-1×ࣛ௡ | space (i.e., adding the memory requirements of
each individual agent αk). The following inequality holds:

|S × ࣛ| ≥ |S1×ࣛଵ| + … + |Sn-1×ࣛ௡|,

assuming that ∀i,j (i≠j) (ࣛ௜ ௝ࣛ = {} ∧ ௜ܵ ௝ܵ = {}). This is common in RTS games
where the actions that a unit of a certain type can take are disjoint from the actions of
units of a different type. Under these assumptions, and for n ≥ 2, the expression on the
right is substantially lower than the expression on the left. For example, assuming ∀k

|Sk|=t and |ࣛ௞ |=m, then the LHS is equal to (n×t×n×m) whereas the RHS is equal to

(n×t×m). That is, the space saved is (1 െ ଵ௡)×100%. The following table summarizes

some of the savings for these assumptions:

Table 1. Space saved by GDA-C compared to a conventional RL agent

n % of saved space n % of saved space n % of saved space
1 0 4 75 10 90
2 50 5 80 20 95

In our work, we use Q-learning (Sutton and Barto, 1998) to control each of the αk

agents. Thus, our baseline system consists of n Q-learning agents that are guaranteed,
after a number of iterations, to converge to an optimal policy. We refer to this
baseline system as CLASSQL because each Q-learning (QL) agent controls a class of
units in Wargus.

4 Case Bases and Information Flow in the GDA-C Agent

We now discuss how case-based reasoning techniques are used in GDA-C to manage
goals on top of CLASSQL. Figure 1 depicts a high-level view of the information flow
in GDA-C, which embeds the standard RL model (Sutton and Barto, 1998). GDA-C
has two threads that execute in parallel. First, the GDA thread selects a goal, which in
turn determines the policy that each RL agent will use and refine. Second, the
CLASSQL thread performs Q-learning to control each of the αk agents.

The two case bases, Policies and GFCB, are learned from previous instances (e.g.,
previously played Wargus games). Given a policy ࣊, a trajectory is a sequence of
states ൏ ࢙૙, … , ࢓࢙ ൐ visited when following ࣊ from the starting state ࢙૙. Any such
state in this trajectory is a goal that can be achieved by executing ࣊. The policy is
assigned the last state in a trajectory as its goal. The case base Policies is a collection
of pairs ሺg, ࣊gሻ, where ࣊g is a policy that should be used when pursuing goal g. GDA-
C stores such pairs as it encounters them.

168 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

The other case base assists
with goal formulation. When a
discrepancy d occurs between
the expected state X and the
actual state observed by the
Discrepancy Detector, this
discrepancy is passed to the
Goal Formulator, which uses
GFCB to formulate a new
goal. GFCB maintains, for
each (current) goal discrepancy
pair, (g,d), a collection
{(g1,v1),..,(gm,vm)}, where gi is
a goal to pursue next and vi is
the expected return of pursuing
it. It outputs the next goal g to
achieve.

The Goal-Specific Policy
Selector selects a policy π
based on the current goal g.
The Class-Specific Policy
Learner learns policies for
new goals and refines the
policies of existing goals. It
uses Q-learning to update the
Q-table entry Q(s,a), given
current state s and action
taken a, as well as next state
s' and next reward r (Sutton
and Barto, 1998).

In many environments, there is no optimal policy for all situations. For example, in
an adversarial game, a policy might be effective against one opponent’s strategy but
not versus others. By changing the goal when the system is underperforming, GDA-C
changes the policy that is being executed, thereby making it more likely to adjust to
different strategies.

We now provide formal definitions for the GDA process. Here we assume a state is
represented as a vector ݏ ൌ ሺݒଵ, … , ௡ሻ of numeric features, where vi is a value of aݒ
feature fi. Borrowing ideas from Weber et al. (2012), the agent uses optimistic
expectations. An expectation is optimistic iff ݒԢ௜ ث ௜ݒ , where expectation ݁ ൌሺݒଵᇱ , … , ௡ᇱݒ ሻ and previous state ݏ ൌ ሺݒଵ, … , ௡ሻ. We use optimistic expectationݒ
implicitly in our algorithm. That is, if the previous state is ݏ ൌ ሺݒଵ, … , ௡ሻ and, afterݒ
executing an action, we reach a current state ݏԢ ൌ ሺݒଵᇱ , … , ௡ᇱݒ ሻ such that, for some k,
v′k < vk holds, then a discrepancy occurs. We represent a discrepancy as a vector of
Boolean values d = (b1,…,bn), where bk is true iff v′k < vk holds. Basically, the agent
expects that actions will not decrease the features’ values. As we will see in Section 6,
our state model consists of numeric features (e.g., the numbers of our own units)
whose values the agent expects will remain the same or increase, but not decrease.

Fig. 1. Information flow in GDA-C

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 169

5 The GDA-C Algorithm

GDA-C coordinates the execution of a set of RL agents and how they learn. GDA-C
uses an online learning process to update the Policies and GFCB case bases. Each
GDA-C agent has its own individual Q-table. All q-values in Q-tables are initialized
to zero. In each iteration of the algorithm, only some units (i.e., class instances such
as peasants and archers) will be ready to execute a new action because others may be
busy. Every unit records the state when it starts executing its current action. This is
necessary for updating values in Q-tables. Below we present the pseudo-code of
GDA-C, followed by its description.

GDA-C (Δ, Π, GFCB, ࣝ, ࣛ, ε, g0) =

Ԣ ← GETSTATE(); ݀Ԣݏ :1 ՚ CALCULATEDISCREPANCY(ݏԢ, ߨ ;(Ԣݏ ՚ Πሺg଴ሻ; g ՚ g଴
2: //-------- GDA thread --------
3: while episode continues
 ()GETSTATE ← ݏ :4
5: WAIT(Δ)
– ሻݏ ܷሺ ݎ :6 ܷሺݏԢሻ // ݏԢ is the prior state
7: if ݎ ൏ 0 then
8: ݀ ՚ CALCULATEDISCREPANCY(ݏԢ, ݏ)
9: GFCB ← Q-LEARNINGUPDATE(GFCB, ݀Ԣ, g, ݀, ݎ)

10: g ← GET(GFCB, d, ε) // ε-greedy selection
ߨ :11 ՚ Πሺgሻ
ᇱݏ :12 ՚ ;ݏ ݀Ԣ ← ݀
13: //-------- CLASSQL thread --------
14: while episode continues
15: s ← GETSTATE()
16: parallel for each class ܿ א ࣝ // this loop controls agent αc
௖ݏ :17 ← GETCLASSSTATE(c, s)
18: ࣛ௖← GETCLASSACTIONS(ࣛ,c); A ← GETVALIDACTIONS(ࣛ௖, ݏ௖)
19: ௖ ← π(c)
20: for each instance u ∈ c // this loop controls each unit or instance of class c
21: if ݑ is a new instance then
௨ᇱݏ :22 ௖; ܽ௨ᇱݏ ← ← do-nothing
23: if instance u finished its action then
௨ᇱݏ)U – (௖ݏ)௨ ← Uݎ :24) // U(s) is the utility of state s
25: ௖ ← Q-LEARNINGUPDATE(௖, ݏ௨ᇱ , ܽ௨ᇱ ௖ݏ , (௨ݎ ,
26: ܽ ← GETACTION(௖, ε, ݏ௖ , A)
27: EXECUTEACTION(a)
௨ᇱݏ :28 ՚ ௖; ܽ௨ᇱݏ ՚ ܽ
29: return Π, GFCB

GDA-C has two threads that execute in parallel and begin simultaneously when a

game episode starts. The GDA thread (lines 3-12) selects a goal, which in turn

170 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

determines the policy π = (π1,…,πn) that each RL agent will use and refine. The
CLASSQL thread (Lines 14-28) performs Q-learning control on each of the αk agents.
When the GDA thread is deactivated (which is how our baseline system CLASSQL
works), the CLASSQL thread refines the same policy from the beginning of the
episode to the end. When the GDA thread is activated, the policy that CLASSQL
refines is the most recent one selected by the GDA thread.

GDA-C receives as input a constant number Δ (a delay before selecting the next
goal), a policy case base Π, a goal formulation case base (GFCB), a set of classes ࣝ, a
set of actions ࣛ, a constant value ε (for ε–greedy selection in Q-learning, whereby the
action with the highest value is chosen with a probability 1−ε and a random action is
chosen with a probability ε), and the initial goal g0.

The GDA Thread: The variable ݏԢ is initialized by observing the current state, ݀Ԣ is
initialized with a null discrepancy (e.g., CalculateDiscrepancy(ݏԢ, Ԣ)), and a policy πݏ
is retrieved from Π for the initial goal g଴ (all in Line 1). While the episode continues
(Line 3), the current state s is observed (Line 4). After waiting for Δ time (Line 5), the
reward r is obtained by comparing the utilities of current state s and previous state ݏԢ
(Line 6). Our utility function calculates, for a given state, the total “hit-points” of the
controlled team’s units and subtracts those of the opponent team. When a unit is “hit”
by other units, its hit-points will be decreased. A unit “dies” when its hit-points
decrease to zero. If the reward is negative (Line 7), a new goal (and hence a new
policy) will be selected as follows. First, the discrepancy d between ݏԢ and s is
computed (Line 8). GFCB is then updated via Q-learning, taking into account
previous discrepancy ݀Ԣ, current goal g, discrepancy d, and reward r (Line 9). Then ε-
greedy selection is used to select a new goal g from GFCB with discrepancy d (Line
10). Next, a new policy π is retrieved from Π for goal g (Line 11). Policy π will be
updated in the CLASSQL thread. Finally, previous state ݏԢ and discrepancy ݀Ԣ are
updated (Line 12).

The CLASSQL Thread: While the episode continues (Line 14), the current state s is
updated (Line 15). For each class c in the set of classes ࣝ (Line 16), the class-specific
state sc is acquired from s (Line 17). Agents from different classes have different sets
of actions that they can perform. Therefore, a set of valid actions A must be obtained
for each class sc (Line 18). πc is initialized with the policy for class c, which depends
on the overall policy π updated in the GDA thread (Line 19). For each instance (or
unit) u of class c (Line 20), if u is a new instance, initialize its state and action (Line
21-22). If u finished its action then calculate the reward ru and update the policy πc via
Q-learning (Line 23-25). A new action is selected based on policy πc using ε-greedy
action selection (Line 26). Finally, the action is executed and the previous state ݏ௨ᇱ and
previous action ܽ௨ᇱ are updated (Lines 27-28).

When the episode ends, GDA-C will return the policy case base Π and the goal
formulation case base GFCB (Line 29).

Although at any point each agent αk is following and updating a policy πk, this does
not mean that all units controlled by αk will execute the same action. This is due to a
combination of three factors. First, even when two units u and u' start executing the
same action at the same time, there is no guarantee that they will finish at the same
time. For example, if the action is to move u and u' to a specific location L, one of
them might be hindered (e.g., engaged in combat with an enemy unit). Hence, u and u'
might reach L at different times and therefore the subsequent actions they execute

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 171

might differ because the state may have changed between the times that they arrive at
L. Second, actions are stochastic (chosen with the ε-greedy method). Third, the
policies are changing over time as a result of Q-learning or even altogether as a result
of the GDA thread. Therefore, at different times, even if in the same state, units might
perform different actions.

6 States and Actions in Wargus

In this paper, we use Wargus in our experiments. Wargus is a widely used testbed for
adversarial environments (e.g., (Aha et al., 2005; Judah et al., 2010; Mehta et al.,
2009; Ontañón and Ram, 2011)). In Wargus decision making must be conducted in
real time. Wargus follows a rock-paper-scissors model for unit-versus-unit combat.
For example, archers are strong versus footmen but weak versus knights. For these
reasons, Mehta et al. (2009) argue that Wargus is a good research testbed for studying
agent-based control methods. Each type of unit defines a unique class c so that every
unit in that class can execute a set of actions ࣛ௖. For example, an Archer can shoot an
enemy from a distance while Gryphon Rider can fly across any barriers. Analogously,
we also model each type of building (e.g., a Blacksmith, which can improve a unit’s
defense and damage, and a Barracks, which produces units such as Archers and
Footmen for a specified amount of resources) as a class. In total, we modeled the
following 12 classes:

1. Town Hall
2. Blacksmith
3. Lumber Mill
4. Church
5. Barrack
6. Knight
7. Footman
8. Archer
9. Ballista
10. Gryphon Rider
11. Gryphon Aviary
12. Peasant Builder

Each unit type has a different state representation. To reduce the number of states, we
discretized features (italicized below) with many values (e.g., we used 18 bins for
gold, where bin 1 means 0 gold and bin 18 corresponds to more than 4000). We also
measure the distances from an enemy’s units to the controlled player’s camp using
Manhattan distance. The features of the state representations per class are:

• Town Hall: food, peasants
• Blacksmith, Lumber Mill and Church: gold, wood
• Barrack: gold, food, footmen, archer, ballista, knight
• Knight, Footman, Archer, Ballista and Gryphon Rider: our footmen, enemy

footmen, number of enemy town halls, enemy peasants, enemy attackable units

172 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

that are stronger than our footmen, enemy attackable units that are weaker
than our footmen

• Gryphon Aviary: gold, food, gryphon rider
• Peasant Builder: gold, wood, food, number of barracks, lumber mill built?,2

blacksmith built?, church built?, gryphon built?, path to a gold mine?, town
hall built?

CLASSQL (and, hence, GDA-C) reasons with composite actions such as “knight
attack enemy camp”, which are composed of several primitive actions such as
selecting a building in the enemy camp, navigating to that building, and attacking it.
Below is the list of all possible actions per class (by default every class can perform
the action do-nothing):

• Town Hall: train peasant, upgrade to keep/castle
• Blacksmith: upgrade sword level 1, same but 2, upgrade human shield level 1,

same but 2, upgrade ballista level 1, same but 2
• Lumber Mill: upgrade arrow level 1, same but 2, elven ranger training, ranger

scouting, research longbow, ranger marksmanship
• Church: upgrade knights, research healing, research exorcism
• Barrack: train a footman, train an elven archer/ranger,

train a knight/paladin, train a ballista
• Knight, Footman, Archer, Ballista, Gryphon Rider: wait for attack, attack the

enemy’s town hall/great hall, attack all enemy’s peasants, attack all enemy’s
units that are near to our camp, attack all enemy’s units that have their range of
attacking equal to one, same but more than one, attack all enemy’s land units,
attack all enemy’s air units, attack all enemy’s units that are weaker (the
enemy’s units that have hit-points less than those of us), and attack all enemy’s
units (no matter what kind)

• Gryphon Aviary: train a gryphon rider
• Peasant Builder: build farm, build barracks, build town hall, build lumber mill,

build black smith, build a stable, build a church, and build a gryphon aviary.

Our reward function is:

total-hit-points(controlled team) − total-hit-points(enemy team)

Each unit and building is assigned a number of hit points based on their type (e.g.,
Paladins have more than Peasants). Games are typically played until either the
controlled team or the enemy is reduced to 0 points, at which time it loses the game.

7 Empirical Study

We measured the performance of GDA-C versus its ablation CLASSQL in experiments
on small, medium, and large Wargus maps whose sizes are 32×32, 64×64, and 128×128
cells, respectively. In each map, we have two opponent teams (human and orc). Each
starts with only one Peasant/Peon (i.e., a unit used to harvest resources and construct
new buildings), one Town Hall/Great Hall, and a nearby gold mine. Each competitor

2 The question mark signals that this is a binary feature.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 173

also starts on one side of a forest that divides the map into two parts. We added this
forest and walls to provide opponents with sufficient time to build their armies.
Otherwise, our algorithms will learn an efficient early attack (called a “rush”), which
will end the game when the opponents have produced only a few units or buildings.

7.1 Experimental Setup

We conducted two experiments. In the first, we compared the performance of each
algorithm (i.e., GDA-C or CLASSQL) against Wargus’s built-in AI. The built-in AI in
Wargus is quite good; it provides a challenging game to an average human player. In
the second, we instead compared their performance in a direct competition. We use
five adversaries (defined below) and the Wargus’ built-in AI to train and test each
algorithm. These adversaries can construct any type of unit unless otherwise stated:

• Land Attack: This tries to balance offensive/defensive actions with research. It
builds only land units.

• Soldier’s Rush: This attempts to overwhelm the opponent with cheap military
units early in the game.

• Knight’s Rush: This attempts to quickly research advanced technologies, and
launch large attacks with the strongest units in the game (knights for humans and
ogres for orcs).

• Student Scripts: We included the top two competitors that were created by
students for a classroom tournament.

To ensure there is no bias because of the landscape, we swapped the sides of each
team in each round. Also, to prevent race inequities, in each round each team plays
once with each race (i.e., human or orc).

In Experiment 1, we trained GDA-C and CLASSQL by playing one game versus
each of the five adversaries. We then tested GDA-C and CLASSQL by playing one
game against the Wargus’s built-in AI. The performance metric is:

(wins(GDA-C) − wins(built-in AI)) − (wins(CLASSQL) − wins(built-in AI)),

where wins(A) is the number of wins for team A. For Experiment 2, we trained GDA-
C and CLASSQL with all five adversaries and then tested them in combat against each
other. We report results for the average of ten runs, where the performance metric is:

wins(GDA-C) – wins(CLASSQL)

In Experiment 1, the matches pitting the two algorithms versus the built-in AI took
place after training GDA-C and CLASSQL against each of the other five adversaries
for n games, where we varied n = 0,1,2,…,N. Similarly, in Experiment 2 the matches
pitting GDA-C versus CLASSQL took place after training them against each of the

Table 2. The average time of running a game for both experiments

Map size One game Experiment 1 Experiment 2
small 31 sec 25 hours 38 hours
medium 3 min 27 sec 115 hours 172 hours
large 11 min 28 sec 191 hours 286 hours

174 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

Fig. 2. The results of Experiment 1: The relative performance of GDA-C versus CLASSQL
playing against the built-in Wargus AI on the three maps

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

GDA-C & ClassQL vs the built-in AI (small map)

Score Difference

Cumulative Score

Trendline

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

GDA-C & ClassQL vs the built-in AI
(medium map)

Score Difference

Cumulative Score

Trendline

-10

0

10

20

30

40

50

0 10 20 30 40 50

GDA-C & ClassQL vs the built-in AI (large map)

Score Difference

Cumulative Score

Trendline

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 175

Fig. 3. The results of Experiment 2: GDA-C versus CLASSQL on the small, medium, and large
maps

-30

-20

-10

0

10

20

30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

GDA-C vs ClassQL (small map)

Score Difference

Cumulative Score

Trendline

-20

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

GDA-C vs ClassQL (medium map)

Score Difference

Cumulative Score

Trendline

-60

-50

-40

-30

-20

-10

0

10

0 10 20 30 40 50 60 70 80

GDA-C vs ClassQL (large map)

Score Difference

Cumulative Score

Trendline

176 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

adversaries for n games, where again n = 0,1,2,…,N. The total number N of games
varied as indicated in the results. Table 2 shows the running times for the
experiments.

7.2 Results

Figures 2 and 3 display the results for Experiments 1 and 2, respectively. For both
experiments each data point is the average of 10 tests, and the graphs display the
results for the small, medium, and large maps. There are two curves: the score
difference for each data point and the cumulative score difference up to that data
point. The x-axis refers to the training iteration number.

Results for Experiment 1: For all three maps, both GDA-C and CLASSQL
outperform the built-in AI (not shown in the graphs) but GDA-C does so at a higher
rate than CLASSQL, as shown in Figure 2. These results illustrate the effectiveness of
changing policies as GDA-C does when underperforming compared to sticking to the
current policies and refining them by using reinforcement learning.

Results for Experiment 2: For the small map CLASSQL initially outperforms GDA-
C but its performance improves and it eventually outperforms CLASSQL. From x =
110 (i.e., after 110 training iterations), it begins to outperform CLASSQL and
surpasses it by x =117. For the medium map, the algorithms start evenly but then
GDA-C quickly outperforms CLASSQL. For the large map CLASSQL outperforms
GDA-C. We ran further iterations (not shown) and this trend continues. We believe
that for the large map, CLASSQL is learning a very good strategy, perhaps even
optimal for the map, and GDA-C will continue to retrieve policies that cannot
outperform the one executed by CLASSQL. This suggests that, at some point, GDA-C
should deactivate its GDA thread and continue only with the CLASSQL thread. How
we would identify such a point is a topic left for future research.

There is a lot of fluctuation in individual data points. For example, despite the
cumulative trends in the medium map for Experiment 2, which show that GDA-C
outperforms CLASSQL, the reverse occasionally occurs (e.g., at x = 70). The reason
for this fluctuation is that Wargus is a stochastic environment that introduces a lot of
randomness in the outcomes of individual actions and, hence, in the overall outcome
of individual games.

8 Conclusions and Future Work

We introduced GDA-C, an algorithm that divides the state and action spaces among
multiple, cooperating RL agents, where each agent uses Q-learning to learn a different
policy for controlling units of a single class. Because these agents share a common
reward function, they can coordinate. GDA-C augments this coordination by using a
partial goal-driven autonomy (GDA) agent to retrieve previously stored policies for
the RL agents to apply and further revise. Our experiments demonstrate that GDA-C
outperforms its ablation, CLASSQL, in most situations.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 177

For future work we want to explore two directions. First, we plan to make the state
representation more general so it does not depend on the expectation that the feature’s
values must increase. To do this, we will borrow ideas from our previous GDA
research (e.g., (Jaidee et al., 2011; 2012)), in which we used more general state
representations. Second, we will examine alternative GDA agents. GDA-C does not
include two steps that are common to the GDA model, namely discrepancy
explanation and goal management. We will assess the utility of generating
explanations of discrepancies for GDA-C. That is, recent research on GDA
(Molineaux et al., 2012) has demonstrated the value of using discrepancy
explanations to determine which goals to select, and this may also be true for our
studies. Alternative methods for goal management also exist. GDA-C simply replaces
one goal with another, without considering, for example, whether the initial goal
should simply be delayed. We will study more comprehensive strategies for goal
management in our future research.

Acknowledgements. This work was supported in part by NSF grant 1217888.

References

Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection in a real-
time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI),
vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

Cox, M.T.: Perpetual self-aware cognitive agents. AI Magazine 28(1), 23–45 (2007)
Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Integrated learning for goal-driven autonomy. In:

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.
AAAI Press, Barcelona (2011)

Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Learning and reusing goal-specific policies for goal-
driven autonomy. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466,
pp. 182–195. Springer, Heidelberg (2012)

Judah, K., Roy, S., Fern, A., Dietterich, T.G.: Reinforcement learning via practice and critique
advice. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI Press, Atlanta (2010)

Klenk, M., Molineaux, M., Aha, D.W.: Goal-driven autonomy for responding to unexpected
events in strategy simulations. To Appear in Computational Intelligence (in press)

Mehta, M., Ontañón, S., Ram, A.: Using meta-reasoning to improve the performance of case-
based planning. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650,
pp. 210–224. Springer, Heidelberg (2009)

Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a Navy strategy simulation.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI
Press, Atlanta (2010)

Molineaux, M., Kuter, U., Klenk, M.: What just happened? Explaining the past in planning and
execution. In: Roth-Berghofer, T., Tintarev, N., Leake, D.B. (eds.) Explanation-Aware
Computing: Papers from the IJCAI Workshop, Barcelona, Spain (2011)

Molineaux, M., Kuter, U., Klenk, M.: DiscoverHistory: Understanding the past in planning and
execution. In: Proceedings of the Eleventh International Conference on Autonomous Agents
and Multiagent Systems (pp, pp. 989–996. ACM Press, Valencia (2012)

178 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

Muñoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., Molineaux, M.: Applying goal directed
autonomy to a team shooter game. In: Proceedings of the Twenty-Third Florida Artificial
Intelligence Research Society Conference, pp. 465–470. AAAI Press, Daytona Beach (2010)

Ontañón, S., Ram, A.: Case-based reasoning and user-generated AI for real-time strategy
games. In: González-Calero, P.A., Gómez-Martín, M.A. (eds.) Artificial Intelligence for
Computer Games, Springer, Berlin (2011)

Powell, J., Molineaux, M., Aha, D.W.: Active and interactive discovery of goal selection
knowledge. In: Proceedings of the Twenty-Fourth Conference of the Florida AI Research
Society, AAAI Press, West Palm Beach (2011)

Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge
(1998)

Weber, B., Mateas, M., Jhala, A.: Applying goal-driven autonomy to StarCraft. In: Proceedings
of the Sixth Conference on Artificial Intelligence and Interactive Digital Entertainment.
AAAI Press, Stanford (2010)

Weber, B., Mateas, M., Jhala, A.: Learning from demonstration for goal-driven autonomy. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI Press,
Toronto (2012)

	Case-Based Goal-Driven Coordination
of Multiple Learning Agents
	1 Introduction
	2 Related Work
	3 Multi-agent Setting
	4 Case Bases and Information Flow in the GDA-C Agent
	5 The GDA-C Algorithm
	6 States and Actions in Wargus
	7 Empirical Study
	7.1 Experimental Setup
	7.2 Results

	8 Conclusions and Future Work
	References

