
Sarah Jane Delany
Santiago Ontañón (Eds.)

 123

LN
AI

 7
96

9

21st International Conference, ICCBR 2013
Saratoga Springs, NY, USA, July 2013
Proceedings

Case-Based Reasoning
Research
and Development

Lecture Notes in Artificial Intelligence 7969

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Sarah Jane Delany Santiago Ontañón (Eds.)

Case-Based Reasoning
Research
and Development
21st International Conference, ICCBR 2013
Saratoga Springs, NY, USA, July 8-11, 2013
Proceedings

13

Volume Editors

Sarah Jane Delany
Dublin Institute of Technology, School of Computing
Kevin Street, Dublin 8, Ireland
E-mail: sarahjane.delany@dit.ie

Santiago Ontañón
Drexel University, Department of Computer Science
3141 Chestnut Street, Philadelphia, PA 19104, USA
E-mail: santi@cs.drexel.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39055-5 e-ISBN 978-3-642-39056-2
DOI 10.1007/978-3-642-39056-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013940603

CR Subject Classification (1998): I.2.1, I.2.3-4, I.2.6, I.2.8, I.2.11, H.3.3-5, H.2.8,
H.4, H.5.3, J.1, J.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at ICCBR 2013: the 21st Inter-
national Conference on Case-Based Reasoning (http://www.iccbr.org/iccbr13/)
held during July 8–11, 2013, in Saratoga Springs, USA. There were 39 submis-
sions and each one was reviewed by at least three Program Committee members
using the criteria of relevance, significance, originality, technical quality, and
presentation. The committee accepted 17 papers for oral presentation and nine
papers for poster presentation at the conference.

The International Conference on Case-Based Reasoning (ICCBR) is the pre-
eminent international meeting on case-based reasoning (CBR). Previous IC-
CBR conferences have been held in Sesimbra, Portugal (1995), Providence, USA
(1997), Seeon Monastery, Germany (1999), Vancouver, Canada (2001), Trond-
heim, Norway (2003), Chicago, USA (2005), Belfast, UK (2007), Seattle, USA
(2009), Alessandria, Italy (2010), London, UK (2011), and most recently in Lyon,
France (2012).

Day 1 of ICCBR 2013 included the Industry Day and the Doctoral Con-
sortium, which were very kindly hosted by General Electric on their premises
at GE Global Research in Niskayuna, New York. The industry day consisted
of eight presentations on applications of CBR. Concurrently with the industry
presentations was the annual Doctoral Consortium that involved presentations
by seven research students in collaboration with their respective senior CBR
research mentors.

Day 2 was dedicated to workshops on current and interesting aspects of CBR
including CBR in Social Web Applications, CBR in Health Sciences and Expe-
rience Reuse: Provenance, Process Orientation and Traces.

Days 3 and 4 consisted of scientific paper presentations on theoretical and
applied CBR research as well as invited talks from two distinguished scholars:
Ashok K. Goel, Professor of Computer and Cognitive Science in the School of
Interactive Computing at Georgia Institute of Technology in Atlanta, USA, and
Igor Jurisica, Senior Scientist at the Ontario Cancer Institute and Professor in
the Departments of Computer Science and Medical Biophysics at the Univer-
sity of Toronto, Canada. Ashok Goel gave a keynote address on exploring and
exploiting case-based reasoning in biologically inspired design – the invention
of new sustainable technologies by analogy to biological systems. He described
how we can view nature as a large library of sustainable designs and use human
case-based reasoning for designing novel technological products, processes, and
systems. Igor Jurisica discussed scaling up case-based reasoning for “big data”
applications, describing two main systems. The first involved estimating a job
at runtime during scheduling functional regression tests for the IBM DB2 Uni-
versal Database on an internal, heterogeneous computer grid, and the second

VI Preface

was a computational biology application for managing protein crystallization
experiments.

The presentations and posters covered a wide range of CBR topics of interest
both to researchers and practitioners including case retrieval and adaptation,
similarity assessment, case base maintenance, knowledge management, recom-
mender systems, multiagent systems, textual CBR, and applications to health-
care and computer games. Day 3 also hosted the Computer Cooking Contest,
the aim of which is to encourage the use of AI technologies such as case-based
reasoning, semantic technologies, search, and information extraction.

As part of the main conference, David Aha and Odd Erik Gundersen con-
ducted and presented a Reproducibility Process for Case-Based Reasoning that
involved confirming the results for voluntarily provided empirical studies re-
ported at ICCBR 2013. It is hoped that this will become a fixture of the ICCBR
conferences of the future.

Many people participated in making ICCBR 2013 a success.William Cheetham,
GE Research, USA, served as the Conference Chair with Sarah Jane Delany,
Dublin Institute of Technology, Ireland, and Santiago Ontañón, Drexel Univer-
sity, USA, as ProgramCo-chairs.We would like to thank Michael Floyd, Carleton
University, Canada, and Jonathan Rubin, PARC, USA, who acted as Workshop
Chairs as well as William Cheetham, GE Research, USA, and Frode Sørmo, Ver-
dande Technology, Norway, who coordinated the Industry Day. Our thanks also
go to Thomas Roth-Berghofer, University of West London, UK, and Rosina We-
ber, Drexel University, USA, for organizing the Doctoral Consortium. We thank
Michel Manago, Kiolis, France, who was responsible for the Computer Cooking
Competition and to David Aha, who acted as Sponsorship Chair. We are very
grateful also to all our sponsors, which at the time of printing included General
Electric, AAAI, Knexus Research Corporation, Empolis, Artificial Intelligence
Journal and Drexel University.

We thank the Program Committee and the additional reviewers for their
timely and thorough participation in the reviewing process. We appreciate the
time and effort put in by the local organizers at GE Global Research, partic-
ularly Aisha Yousuf. Finally, we acknowledge the support of EasyChair in the
submission, review, and proceedings creation processes and thank Springer for
its continued support in publishing the proceedings of ICCBR.

May 2013 Sarah Jane Delany
Santiago Ontañón

Organization

Program Chairs

Sarah Jane Delany Dublin Institute of Technology, Ireland
Santiago Ontañón Drexel University, USA

Conference Chair

William Cheetham GE Global Research, USA

Workshop Chairs

Michael Floyd Carleton University, Canada
Jonathan Rubin PARC, A Xerox Company, USA

Industry Day Coordinators

William Cheetham GE Global Research, USA
Frode Sørmo Verdande Technology, Norway

Doctoral Consortium Chairs

Thomas Roth-Berghofer University of West London, UK
Rosina Weber Drexel University, USA

Sponsorship Chair

David W. Aha Naval Research Laboratory, USA

Program Committee

David W. Aha Naval Research Laboratory, USA
Klaus-Dieter Althoff DFKI / University of Hildesheim, Germany
Kevin Ashley University of Pittsburgh, USA
Ralph Bergmann University of Trier, Germany
Isabelle Bichindaritz State University of New York at Oswego, USA
Derek Bridge University College Cork, Ireland
William Cheetham GE Global Research, USA
Amélie Cordier LIRIS, France

VIII Organization

Susan Craw The Robert Gordon University, UK
Sarah Jane Delany Dublin Institute of Technology, Ireland
Belen Diaz-Agudo Universidad Complutense de Madrid, Spain
Michael Floyd Carleton University, Canada
Ashok Goel Georgia Institute of Technology, USA
Mehmet H. Goker salesforce.com, USA
Pedro González Calero Complutense University of Madrid, Spain
Deepak Khemani Indian Institute of Technology, Madras, India
Luc Lamontagne Laval University, Canada
David Leake Indiana University, USA
Jean Lieber LORIA - INRIA Lorraine, France
Ramon Lopez De Mantaras IIIA - CSIC, Spain
Cindy Marling Ohio University, USA
Lorraine McGinty University College Dublin, Ireland
David McSherry University of Ulster, UK
Manish Mehta Accenture Technology Labs, USA
Mirjam Minor Goethe University Frankfurt, Germany
Stefania Montani University Piemonte Orientale, Italy
Héctor Muñoz-Avila Lehigh University, USA
Santiago Ontañón Drexel University, USA
Miltos Petridis Brighton University, UK
Enric Plaza IIIA-CSIC, Spain
Luigi Portinale Università Piemonte Orientale, Italy
Ashwin Ram Georgia Tech, USA
Juan Recio-Garcia Universidad Complutense de Madrid, Spain
Thomas Roth-Berghofer University of West London, UK
Jonathon Rubin University of Auckland, New Zealand
Antonio Sanchez-Ruiz Universidad Complutense de Madrid, Spain
Barry Smyth University College Dublin, Ireland
Armin Stahl Insiders Technologies GmbH, Germany
Ian Watson University of Auckland, New Zealand
David C. Wilson University of North Carolina, USA
Nirmalie Wiratunga The Robert Gordon University, UK

Additional Reviewers

Kerstin Bach
Ben Horsburgh
Stewart Massie

N.S. Narayanaswamy
Lara Quijano-Sanchez
Saurav Sahay

Sadiq Sani
Pol Schumacher

Sponsoring Institutions

ICCBR 2013 was supported by General Electric, AAAI, Knexus Research Cor-
poration, Empolis, Artificial Intelligence Journal and Drexel University.

Table of Contents

Preference-Based CBR: A Search-Based Problem Solving Framework . . . 1
Amira Abdel-Aziz, Weiwei Cheng, Marc Strickert, and
Eyke Hüllermeier

Applying MapReduce to Learning User Preferences in Near
Real-Time . 15

Ian Beaver and Joe Dumoulin

Case-Based Goal Selection Inspired by IBM’s Watson 29
Dustin Dannenhauer and Héctor Muñoz-Avila

Opinionated Product Recommendation . 44
Ruihai Dong, Markus Schaal, Michael P. O’Mahony,
Kevin McCarthy, and Barry Smyth

Mining Features and Sentiment from Review Experiences 59
Ruihai Dong, Markus Schaal, Michael P. O’Mahony,
Kevin McCarthy, and Barry Smyth

Multi-Agent, Multi-Case-Based Reasoning . 74
Susan L. Epstein, Xi Yun, and Lei Xie

Case-Based Learning of Applicability Conditions for Stochastic
Explanations . 89

Giulio Finestrali and Héctor Muñoz-Avila

Case-Based Reasoning on E-Community Knowledge 104
Emmanuelle Gaillard, Jean Lieber, Yannick Naudet, and
Emmanuel Nauer

On the Plan-Library Maintenance Problem in a Case-Based Planner 119
Alfonso Emilio Gerevini, Anna Roub́ıčková, Alessandro Saetti, and
Ivan Serina

Learning Feature Weights from Positive Cases . 134
Sidath Gunawardena, Rosina O. Weber, and Julia Stoyanovich

User Perceptions of Relevance and Its Effect on Retrieval in a Smart
Textile Archive . 149

Ben Horsburgh, Susan Craw, Dorothy Williams, Simon Burnett,
Katie Morrison, and Suzanne Martin

X Table of Contents

Case-Based Goal-Driven Coordination of Multiple Learning Agents 164
Ulit Jaidee, Héctor Muñoz-Avila, and David W. Aha

On Deriving Adaptation Rule Confidence from the Rule Generation
Process . 179

Vahid Jalali and David Leake

Extending Case Adaptation with Automatically-Generated Ensembles
of Adaptation Rules . 188

Vahid Jalali and David Leake

iCaseViz: Learning Case Similarities through Interaction with a Case
Base Visualizer . 203

Debarun Kar, Anand Kumar, Sutanu Chakraborti, and
Balaraman Ravindran

A Multi-Objective Evolutionary Algorithm Fitness Function
for Case-Base Maintenance . 218

Eduardo Lupiani, Susan Craw, Stewart Massie,
Jose M. Juarez, and Jose T. Palma

Mining and Retrieving Medical Processes to Assess the Quality
of Care . 233

Stefania Montani, Giorgio Leonardi, Silvana Quaglini,
Anna Cavallini, and Giuseppe Micieli

Leveraging Historical Experience to Evaluate and Adapt Courses
of Action . 241

Alice M. Mulvehill, Brett Benyo, and Fusun Yaman

The COLIBRI Open Platform for the Reproducibility of CBR
Applications . 255

Juan A. Recio-Garćıa, Belén Dı́az-Agudo, and
Pedro Antonio González-Calero

Refinement-Based Similarity Measure over DL Conjunctive Queries 270
Antonio A. Sánchez-Ruiz, Santiago Ontañón,
Pedro Antonio González-Calero, and Enric Plaza

Should Term-Relatedness Be Used in Text Representation? 285
Sadiq Sani, Nirmalie Wiratunga, Stewart Massie, and Robert Lothian

Recommending Audio Mixing Workflows . 299
Christian Sauer, Thomas Roth-Berghofer, Nino Auricchio, and
Sam Proctor

An Agent Based Framework for Multiple, Heterogeneous Case Based
Reasoning . 314

Elena Irena Teodorescu and Miltos Petridis

Table of Contents XI

Learning-Based Adaptation for Personalized Mobility Assistance 329
Cristina Urdiales, Jose Manuel Peula,
Manuel Fernández-Carmona, and Francisco Sandoval

Biological Solutions for Engineering Problems: A Study in
Cross-Domain Textual Case-Based Reasoning . 343

Swaroop S. Vattam and Ashok K. Goel

Similarity Measures to Compare Episodes in Modeled Traces 358
Raafat Zarka, Amélie Cordier, Elöd Egyed-Zsigmond,
Luc Lamontagne, and Alain Mille

Author Index . 373

Preference-Based CBR:

A Search-Based Problem Solving Framework

Amira Abdel-Aziz, Weiwei Cheng, Marc Strickert, and Eyke Hüllermeier

Department of Mathematics and Computer Science
Marburg University, Germany

{amira,cheng,strickert,eyke}@mathematik.uni-marburg.de

Abstract. Preference-based CBR is conceived as a case-based reasoning
methodology in which problem solving experience is mainly represented
in the form of contextualized preferences, namely preferences for can-
didate solutions in the context of a target problem to be solved. This
paper is a continuation of recent work on a formalization of preference-
based CBR that was focused on an essential part of the methodology:
a method to predict a most plausible candidate solution given a set of
preferences on other solutions, deemed relevant for the problem at hand.
Here, we go one step further by embedding this method in a more general
search-based problem solving framework. In this framework, case-based
problem solving is formalized as a search process, in which a solution
space is traversed through the application of adaptation operators, and
the choice of these operators is guided by case-based preferences. The
effectiveness of this approach is illustrated in two case studies, one from
the field of bioinformatics and the other one related to the computer
cooking domain.

1 Introduction

A preference-based approach to case-based reasoning (CBR) has recently been
advocated in [1]. Building on general ideas and concepts for preference handling
in artificial intelligence (AI), which have already been applied successfully in
other fields [2–4], the goal of preference-based CBR, or Pref-CBR for short, is
to develop a coherent and universally applicable methodological framework for
CBR on the basis of formal concepts and methods for knowledge representation
and reasoning with preferences.

In fact, as argued in [1], a preference-based approach to CBR appears to
be appealing for several reasons, notably because case-based experiences lend
themselves to representations in terms of preference relations quite naturally.
Moreover, the flexibility and expressiveness of a preference-based formalism well
accommodate the uncertain and approximate nature of case-based problem solv-
ing. In this sense, the advantages of a preference-based problem solving paradigm
in comparison to the classical (constraint-based) one, which have already been
observed for AI in general, seem to apply to CBR in particular. These advan-
tages are nicely explained in [5]: “Early work in AI focused on the notion of a

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A. Abdel-Aziz et al.

goal—an explicit target that must be achieved—and this paradigm is still dom-
inant in AI problem solving. But as application domains become more complex
and realistic, it is apparent that the dichotomic notion of a goal, while adequate
for certain puzzles, is too crude in general. The problem is that in many con-
temporary application domains [...] the user has little knowledge about the set
of possible solutions or feasible items, and what she typically seeks is the best
that’s out there. But since the user does not know what is the best achievable
plan or the best available document or product, she typically cannot character-
ize it or its properties specifically. As a result, she will end up either asking for
an unachievable goal, getting no solution in response, or asking for too little,
obtaining a solution that can be substantially improved.”

In [1], we made a first step toward preference-based CBR by addressing the
important part of case-based inference, which is responsible for predicting a
“contextualized” preference relation on the solution space. More specifically, the
latter consists of inferring preferences for candidate solutions in the context of
a new problem, given knowledge about such preferences in similar situations. In
this paper, we go one step further by embedding this inference procedure in a
more general, search-based problem solving framework. In this framework, case-
based problem solving is formalized as a search process, in which a solution space
is traversed through the application of adaptation operators, and the choice of
these operators is guided by case-based preferences.

The remainder of the paper is organized as follows. By way of background,
Section 2 recapitulates the main ideas of Pref-CBR, and Section 3 briefly recalls
the case-based inference procedure of [1]. Although these two sections are to
some extent redundant, they are included here to increase readability of the
paper and to make it more self-contained. In Section 4, we introduce and detail
our search-based problem solving framework. In Section 5, two case studies are
presented to illustrate the effectiveness of this approach, one from the field of
bioinformatics (molecular docking, drug discovery) and the other one related to
the computer cooking domain. The paper ends with some concluding remarks
and an outlook on future work in Section 5.

2 Preference-Based CBR

2.1 Conventional CBR

Experience in CBR is most commonly (though not exclusively) represented in
the form of problem/solution tuples (x,y) ∈ X × Y, where x is an element
from a problem space X, and y an element from a solution space Y. Despite
its generality and expressiveness, this representation exhibits some limitations,
both from a knowledge acquisition and reuse point of view.

– Existence of correct solutions : It assumes the existence of a “correct” solution
for each problem, and implicitly even its uniqueness. This assumption is
often not tenable. In the cooking domain, for example, there is definitely not
a single “correct” recipe for a vegetarian pasta meal. Instead, there will be
many possible alternatives, maybe more or less preferred by the user.

Preference-Based CBR: A Search-Based Problem Solving Framework 3

– Verification of optimality: Even if the existence of a single correct solution
for each problem could be assured, it will generally be impossible to verify
the optimality of the solution that has been produced by a CBR system.
However, storing and later on reusing a suboptimal solution y as if it were
optimal for a problem x can be misleading. This problem is less critical,
though does not dissolve, if only “acceptable” instead of optimal solutions
are required.

– Loss of information: Storing only a single solution y for a problem x, even
if it can be guaranteed to be optimal, may come along with a potential loss
of information. In fact, during a problem solving episode, one typically tries
or at least compares several candidate solutions, and even if these solutions
are suboptimal, preferences between them may provide useful information.

– Limited guidance: From a reuse point of view, a retrieved case (x,y) only
suggests a single solution, namely y, for a query problem x0. Thus, it does
not imply a possible course of action in the case where the suggestion fails:
If y is not a good point of departure, for example since it cannot be adapted
to solve x0, there is no concrete recommendation on how to continue.

Table 1. Notations

notation meaning

X, x problem space, problem
Y, y solution space, solution
CB case base (storing problems with preferences on solutions)
SX , ΔX similarity/distance measure on X

SY , ΔY similarity/distance measure on Y

N (y) neighborhood of a solution y
P(Y) class of preference structures on Y

P(x) set of (pairwise) preferences associated with a problem
CBI case-based inference using ML estimation (see equation (4))

2.2 Preference-Based Knowledge Representation

To avoid these problems, preference-based CBR replaces experiences of the form
“solution y (optimally) solves problem x” by information of the form “y is better
(more preferred) than z as a solution for x”. More specifically, the basic “chunk
of information” we consider is symbolized in the form y �x z and suggests that,
for the problem x, the solution y is supposedly at least as good as z.

This type of knowledge representation obviously overcomes the problems dis-
cussed above. As soon as two candidate solutions y and z have been tried as
solutions for a problem x, these two alternatives can be compared and, corre-
spondingly, a strict preference in favor of one of them or an indifference can be
expressed. To this end, it is by no means required that one of these solutions is
optimal. It is worth mentioning, however, that knowledge about the optimality
of a solution y∗, if available, can be handled, too, as it simply means that y∗ � y

4 A. Abdel-Aziz et al.

for all y �= y∗. In this sense, the conventional CBR setting can be considered as
a special case of Pref-CBR.

The above idea of a preference-based approach to knowledge representation in
CBR also suggests a natural extension of the case retrieval and inference steps,
that is, the recommendation of solutions for a new query problem: Instead of
just proposing a single solution, it would be desirable to predict a ranking of
several (or even all) candidate solutions, ordered by their (estimated) degree of
preference:

y1 �x y2 �x y3 �x . . . �x yn (1)

Obviously, the last problem mentioned above, namely the lack of guidance in
the case of a failure, can thus be overcome.

In order to realize an approach of that kind, a number of important questions
need to be addressed, including the following: How to represent, organize and
maintain case-based experiences, given in the form of preferences referring to a
specific context, in an efficient way? How to select and access the experiences
which are most relevant in a new problem solving situation? How to combine
these experiences and exploit them to infer a solution or, more generally, a
preference order on a set of candidate solutions, for the problem at hand?

2.3 Formal Setting and Notation

In the following, we assume the problem space X to be equipped with a similarity
measure SX : X×X→ R+ or, equivalently, with a (reciprocal) distance measure
ΔX : X× X→ R+. Thus, for any pair of problems x,x′ ∈ X, their similarity is
denoted by SX(x,x′) and their distance by ΔX(x,x′). Likewise, we assume that
the solution spaceY to be equipped with a similarity measure SY or, equivalently,
with a (reciprocal) distance measure ΔY . While the assumption of a similarity
measure on problems is common in CBR, the existence of such a measure on the
solution space is often not required. However, the latter is neither less natural
than the former nor more difficult to define. In general,ΔY (y,y

′) can be thought
of as a kind of adaptation cost, i.e., the (minimum) cost that needs to be invested
to transform the solution y into y′.

In Pref-CBR, problems x ∈ X are not associated with single solutions but
rather with preferences over solutions, that is, with elements from a class of
preference structures P(Y) over the solution space Y. Here, we make the as-
sumption that P(Y) is given by the class of all weak order relations � on Y, and
we denote the relation associated with a problem x by �x; recall that, from a
weak order �, a strict preference � and an indifference ∼ are derived as follows:
y � y′ iff y � y′ and y′ �� y, and y ∼ y′ iff y � y′ and y′ � y.

More precisely, we assume that �x has a specific form, which is defined by an
“ideal” solution y∗ ∈ Y and the distance measure ΔY : The closer a solution y to
y∗ = y∗(x), the more it is preferred; thus, y �x y′ iff ΔY (y,y

∗) ≤ ΔY (y
′,y∗).

Please note that, when starting from an order relation �x, then the existence of
an “ideal” solution is in principle no additional assumption (since a weak order
has a maximal element, at least if the underlying space is topologically closed).

Preference-Based CBR: A Search-Based Problem Solving Framework 5

Instead, the additional assumption we make is that the order relations �x and
�x′ associated with different problems x and x′ have a common structure, which
is determined by the distance measure ΔY . In conjunction with the regularity
assumption that is commonly made in CBR, namely that similar problems tend
to have similar (ideal) solutions, this property legitimates a preference-based ver-
sion of this assumption: Similar problems are likely to induce similar preferences
over solutions.

3 Case-Based Inference

The key idea of Pref-CBR is to exploit experience in the form of previously
observed preferences, deemed relevant for the problem at hand, in order to sup-
port the current problem solving episode; like in standard CBR, the relevance
of a preference will typically be decided on the basis of problem similarity, i.e.,
those preferences will be deemed relevant that pertain to similar problems. An
important question that needs to be answered in this connection is the following:
Given a set of observed preferences on solutions, considered representative for
a problem x0, what is the underlying preference structure �x or, equivalently,
what is the most likely “ideal” solution y∗ for x0?

3.1 Case-Based Inference as Probability Estimation

We approach this problem from a statistical perspective, considering the true
preference model �x0

∈ P(Y) associated with the query x0 as a random variable
Z with distribution P(· |x0), where P(· |x0) is a distribution Pθ(·) parametrized
by θ = θ(x0) ∈ Θ. The problem is then to estimate this distribution or, equiva-
lently, the parameter θ on the basis of the information available. This information
consists of a set D of preferences of the form y � z between solutions.

The basic assumption underlying nearest neighbor estimation is that the con-
ditional probability distribution of the output given the input is (approximately)
locally constant, that is, P(· |x0) ≈ P(· |x) for x close to x0. Thus, if the above
preferences are coming from problems x similar to x0 (namely from the near-
est neighbors of x0 in the case base), then this assumption justifies considering
D as a representative sample of Pθ(·) and, hence, estimating θ via maximum
likelihood (ML) by

θML = argmax
θ∈Θ

Pθ(D) . (2)

An important prerequisite for putting this approach into practice is a suitable
data generating process, i.e., a process generating preferences in a stochastic
way.

3.2 A Discrete Choice Model

Our data generating process is based on the idea of a discrete choice model as
used in choice and decision theory [6]. Recall that the (absolute) preference for a

6 A. Abdel-Aziz et al.

solution y ∈ Y supposedly depends on its distance ΔY (y,y
∗) ≥ 0 to an “ideal”

solution y∗, where Δ(y,y∗) can be seen as a “degree of suboptimality” of y.
As explained in [1], more specific assumptions on an underlying (latent) utility
function on solutions justify the logit model of discrete choice:

P(y � z) =
(
1 + exp

(
− β(ΔY (z,y

∗)−ΔY (y,y
∗))

))−1

(3)

Thus, the probability of observing the (revealed) preference y � z depends on
the degree of suboptimality of y and z, namely their respective distances to the
ideal solution, ΔY (y,y

∗) and ΔY (z,y
∗): The larger the difference ΔY (z,y

∗)−
ΔY (y,y

∗), i.e., the less optimal z in comparison to y, the larger the probabil-
ity to observe y � z; if ΔY (z,y

∗) = ΔY (y,y
∗), then P(y � z) = 1/2. The

coefficient β can be seen as a measure of precision of the preference feedback.
For large β, the probability (3) converges toward 0 if ΔY (z,y

∗) < ΔY (y,y
∗)

and toward 1 if ΔY (y
′,y∗) > ΔY (y,y

∗); this corresponds to a deterministic
(error-free) information source. The other extreme case, namely β = 0, models
a completely unreliable source reporting preferences at random.

3.3 Maximum Likelihood Estimation

The probabilistic model outlined above is specified by two parameters: the ideal
solution y∗ and the (true) precision parameter β∗ ∈ R+. Depending on the
context in which these parameters are sought, the ideal solution might be unre-
stricted (i.e., any element of Y is an eligible candidate), or it might be restricted
to a certain subset Y0 ⊆ Y of candidates.

Now, to estimate the parameter vector θ∗ = (y∗, β∗) ∈ Y0 × R
∗ from a

given set D = {y(i) � z(i)}Ni=1 of observed preferences, we refer to the maximum
likelihood (ML) estimation principle. Assuming independence of the preferences,
the log-likelihood of θ = (y, β) is given by

�(θ) = �(y, β) = −
N∑
i=1

log
(
1 + exp

(
− β(Δ(z(i),y)−Δ(y(i),y))

))
. (4)

The maximum likelihood estimation (MLE) θML = (yML, βML) of θ∗ is given
by the maximizer of (4):

θML =
(
yML, βML

)
= arg max

y∈Y0, β∈R+

�(y, β)

The problem of finding this estimation in an efficient way is discussed in [1].

4 CBR as Preference-Guided Search

Case-based reasoning and (heuristic) search can be connected in various ways.
One idea is to exploit CBR in order to enhance heuristic search, which essentially
comes down to using case-based experience to guide the search behavior [7–9].

Preference-Based CBR: A Search-Based Problem Solving Framework 7

The other way around, the CBR process itself can be formalized as a search
process, namely a traversal of the space of potential solutions [10]. This idea is
quite appealing: On the one side, it is close to practical, human-like problem
solving, which is indeed often realized as a kind of trial-and-error process, in
which a candidate solution is successively modified and improved until a sat-
isfactory solution is found. On the other side, this idea is also amenable to a
proper formalization and automation, since searching is what computers are re-
ally good at; besides, heuristic search is one of the best developed subfields of
AI.

Needless to say, both directions (enhancing search through CBR and formal-
izing CBR as search) are not mutually exclusive and can be combined with each
other. In our approach, this is accomplished by implementing case-based prob-
lem solving as a search process that is guided by preference information collected
in previous problem solving episodes. The type of application we have in mind
is characterized by two important properties:

– The evaluation of candidate solutions is expensive. Therefore, only relatively
few candidates can be considered in a problem solving episode before a se-
lection is made. Typical examples include cases where an evaluation requires
time-consuming simulation studies or human intervention. In the cooking
domain, for example, the evaluation of a recipe may require its preparation
and tasting. Needless to say, this can only be done for a limited number of
variations.

– The quality of candidate solutions is difficult to quantify. Therefore, instead
of asking for numerical utility degrees, we make a much weaker assumption:
Feedback is only provided in the form of pairwise comparisons, informing
about which of two candidate solutions is preferred (for example, which of
two meals tastes better). Formally, we assume the existence of an “oracle”
(for example, a user or a computer program) which, given a problem x0 and
two solutions y and z as input, returns a preference y � z or z � y (or
perhaps also an indifference y ∼ z) as output.

We assume the solution space Y to be equipped with a topology that is defined
through a neighborhood structure: For each y ∈ Y, we denote by N (y) ⊆ Y

the neighborhood of this candidate solution. The neighborhood is thought of as
those solutions that can be produced through a single modification of y, i.e., by
applying one of the available adaptation operators to y (for example, adding or
removing a single ingredient in a recipe). Since these operators are application-
dependent, we are not going to specify them further here.

Our case base CB stores problems xi together with a set of preferences P(xi)
that have been observed for these problems. Thus, each P(xi) is a set of prefer-
ences of the form y �xi

z. As will be explained further below, these preferences
are collected while searching for a good solution to xi.

We conceive preference-based CBR as an iterative process in which problems
are solved one by one; our current implementation of this process is described in
pseudo-code in Algorithm 1. In each problem solving episode, a good solution for
a new query problem is sought, and new experiences in the form of preferences

8 A. Abdel-Aziz et al.

are collected. In what follows, we give a high-level description of a single problem
solving episode (lines 5–23 of the algorithm):

– Given a new query problem x0, the K nearest neighbors1 x1, . . . ,xK of
this problem (i.e., those with smallest distance in the sense of ΔX) are re-
trieved from the case base CB, together with their preference information
P(x1), . . . ,P(xK).

– This information is collected in a single set of preferences P , which is consid-
ered representative for the problem x0 and used to guide the search process
(line 8).

– The search for a solution starts with a initial candidate y∗ ∈ Y chosen at
random (line 9) and iterates L times. Restricting the number of iterations by
an upper bound L reflects our assumption that an evaluation of a candidate
solution is costly.

– In each iteration, a new candidate yquery is determined and given as a query
to the oracle (line 15), i.e., the oracle is asked to compare yquery with the
current best solution y∗ (line 16). The preference reported by the oracle is
memorized by adding it to the preference set P0 = P(x0) associated with
x0 (line 17), as well as to the set P of preferences used for guiding the
search process. Moreover, the better solution is retained as the current best
candidate (line 18).

– When the search stops, the current best solution y∗ is returned, and the case
(x0,P0) is added to the case base.

The preference-based guidance of the search process is realized in lines 9 and
14–15. Here, the case-based inference method (referred to as CBI in the pseudo-
code) described in Section 3 is used to find the most promising candidate among
the neighborhood of the current solution y∗ (excluding those solutions that have
already been tried). By providing information about which of these candidates
will most likely constitute a good solution for x0, it (hopefully) points the search
into the most promising direction. Please note that in line 15, case-based infer-
ence is not applied to the whole set of preferences P collected so far, but only to
a subset of the J preferences Pnn that are closest (and hence most relevant) to
the current search state y∗; here, the distance between a preference y � z and
a solution y∗ is defined as

Δ (y∗,y � z) = min {ΔY (y∗,y) , ΔY (y∗, z)} , (5)

i.e., the preference is considered relevant if either y is close to y∗ or z is close to
y∗. This is done in order to allow for controlling the locality of the search: The
smaller J , the less preferences are used, i.e., the more local the determination
of the direction of the search process2 becomes (by definition, CBI returns a
random element from Y

nn if Pnn = ∅, i.e., if J = 0). Note that, if J = 1, then
only the preference that has been added in the last step is looked at (since this

1 As long as the case base contains less than K cases, all these cases are taken.
2 The term “direction” is used figuratively here; if Y is not a metric space, there is
not necessarily a direction in a strictly mathematical sense.

Preference-Based CBR: A Search-Based Problem Solving Framework 9

Algorithm 1. Pref-CBR Search(K, L, J)

Require: K = number of nearest neighbors collected in the case base
L = total number of queries to the oracle
J = number of preferences used to guide the search process

1: X0 ← list of problems to be solved � a subset of X

2: Q← [·] � empty list of performance degrees

3: CB← ∅ � initialize empty case base

4: while X0 not empty do
5: x0 ← pop first element from X0 � new problem to be solved

6: {x1, . . . ,xK} ← nearest neighbors of x0 in CB (according to ΔX)
7: {P(x1), . . . ,P(xK)} ← preferences associated with nearest neighbors
8: P ← P(x1) ∪ P(x2) ∪ . . . ∪ P(xk) � combine neighbor preferences

9: y∗ ← CBI(P ,Y) � select an initial candidate solution

10: Y
vis ← {y∗} � candidates already visited

11: P0 ← ∅ � initialize new preferences

12: for i = 1 to L do
13: Pnn = {y(j) � z(j)}Jj=1 ← J preferences in P ∪ P0 closest to y∗

14: Y
nn ← neighborhood N (y∗) of y∗ in Y \ Yvis

15: yquery ← CBI(Pnn,Ynn) � find next candidate

16: [y � z]← Oracle(x0,y
query ,y∗) � check if new candidate is better

17: P0 ← P0 ∪ {y � z} � memorize preference

18: y∗ ← y � adopt the current best solution

19: Y
vis ← Y

vis ∪ {yquery}
20: end for
21: q ← performance of solution y∗ for problem x0

22: Q← [Q, q] � store the performance

23: CB← CB ∪ {(x0,P0)} � memorize new experience

24: end while
25: return list Q of performance degrees

preference involves y∗, and therefore its distance according to (5) is 0). Thus,
search will move ahead in the same direction if the last modification has led to an
improvement, and otherwise reverse its direction. In general, a larger J increases
the bias of the search process and makes it more “inert”. This is advantageous if
the preferences coming from the neighbors of x0 are indeed representative and,
therefore, are pointing in the right direction. Otherwise, of course, too much
reliance on these preferences may prevent one from searching in other regions of
the solution space that might be more appropriate for x0.

Although we did not implement this alternative so far, let us mention that a
stochastic component can be added to our search procedure in a quite natural
way. To this end, the case-based inference procedure CBI simply returns one of
the candidate solutions y ∈ Y

cand with a probability that is proportional to the

10 A. Abdel-Aziz et al.

corresponding likelihood degrees of these solutions (instead of deterministically
choosing the solution with the highest likelihood).

5 Case Studies

5.1 Drug Discovery

The function of a protein in a living organism can be modulated by ligand
molecules that specifically bind to the protein surface and thereby block or en-
hance its biochemical activity. This is how a drug becomes effective: By docking
to a protein and changing its activity, it (hopefully) interrupts a cascade of
reactions that might be responsible for a disease.

The identification and selection of ligands targeting a specific protein is of
high interest for de-novo drug development, and is nowadays supported by com-
putational tools and molecular modeling techniques. Molecular docking is an in
silico technique to screen large molecule databases for potential ligands. Using
the spatial (three-dimensional) structure and physicochemical properties of pro-
teins, it tries to identify novel ligands by estimating the binding affinity between
small molecules and proteins. However, since docking results are not very reli-
able, they need to be controlled by human experts. This is typically done through
visual inspection, i.e., by looking at the docking poses predicted by the software
tool and judging whether or not a molecule is indeed a promising candidate.
Needless to say, this kind of human intervention is costly. Besides, a human will
normally not be able to score a docking pose in terms of a numerical (affinity)
degree, whereas a comparison of two such poses can be accomplished without
much difficulties. Therefore, the search for a ligand that well interacts with a
target protein is a nice example of the kind of problem we have in mind.

0 50 100 150
1

1.5

2

2.5

3

3.5

4

4.5

5

problem solving episode

av
er

ag
e

po
si

tio
n

random search

preference−based CBR

Fig. 1. Average performance of Pref-CBR and random search on the drug discovery
problem in the first 150 problem solving episodes

Preference-Based CBR: A Search-Based Problem Solving Framework 11

We conducted experiments with a data set consisting of 588 proteins, which
constitute the problem space X, and 38 molecules, which correspond to the so-
lution space Y; this data set is an extension of the data used in [11]. For each
protein/molecule pair, the data contains an affinity score (pairwise binding en-
ergy) computed by a docking tool. We make use of these scores in order to mimic
a human expert, i.e., to realize our oracle: Given a protein and two candidate
molecules, the oracle can provide a preference by looking at the corresponding
affinity scores. As a similarity SX on problems (proteins), we used the measure
that is computed by the CavBase database; this measure compares proteins in
terms of the spatial and physicochemical properties of their respective binding
sites [12]. For the solutions (ligands), a similarity SY was determined based on
molecular fingerprints derived from the SMILES code using a molecular operat-
ing environment. These fingerprints were used to create a graph representation
of the molecules, for which the Tanimoto similarity was determined [13]. Both
similarities SX and SY were normalized to the unit interval, and corresponding
distances ΔX and ΔY were defined as 1− SX and 1− SY , respectively.

We applied Algorithm 1 with X0 as a random order of the complete problem
space X. Since the solution space is quite small, we used a global neighborhood
structure, i.e., we defined the neighborhood of a solution y as N (y) = Y \ {y}.
As a performance q of a proposed solution y∗ for a problem x0 (line 21), we
computed the position of this solution in the complete list of |Y| = 38 ligands
ranked by affinity to x0 (i.e., 1 would be the optimal performance). To stabilize
the results and make trends more visible, the corresponding sequence of |X| =
588 performance degrees produced by a single run of Algorithm 1 was averaged
over 1000 such runs.

As a baseline to compare with, we used a search strategy in which the
preference-guided selection of the next candidate solution in line 15 of Algo-
rithm 1 is replaced by a random selection (i.e., an element from Y

nn is selected
uniformly at random). Although this is a very simple strategy, it is suitable to
isolate the effect of guiding the search behavior on the basis of preference in-
formation. Fig. 1 shows the results for parameters K = 3, L = 5, J = 15 in
Algorithm 1 (other settings let to qualitatively similar results). As can be seen,
our preference-based CBR approach shows a clear trend toward improvement
from episode to episode, thanks to the accumulation and exploitation of prob-
lem solving experience. As expected, such an improvement is not visible for the
random variant of the search algorithm.

5.2 The Set Completion Problem

In a second experiment, we considered a set completion problem that is similar
to the problem solved by the Bayesian set algorithm proposed in [14]. Given a
(small) subset of items as a seed, the task is to extend this seed by successively
adding (or potentially also removing) items, so as to end up with a “good” set of
items. As a concrete example, imagine that items are ingredients, and itemsets
correspond to (simplified) representations of cooking recipes. Then, the problem

12 A. Abdel-Aziz et al.

is to extend a seed like {noodles, chicken}, suggesting that a user wants a meal
including noodles and chicken, to a complete and tasty recipe.

More formally, both the problem space and the solution space are now given
by X = Y = 2I , where I = {ι1, . . . , ιN} is a finite set of items; thus, both
problems and solutions are itemsets. We define the distance measures ΔX and
ΔY in terms of the size of the symmetric difference Δ, i.e.,

ΔX(x,x′) = |xΔx′| = |x \ x′|+ |x′ \ x| .

Let Y
∗ ⊂ Y be a set of reference solutions (e.g., recipes of tasty meals). For a

y ∈ Y, define the distance to Y
∗ as

d(y) = min
y∗∈Y∗

|yΔy∗| .

Moreover, for a problem x ∈ X, we define a preference relation on Y as follows:
y � z if either c(y |x) < c(z |x) or c(y |x) = c(z |x) and |y| < |z|, where

c(y |x) =
{
d(y) if y ⊇ x
∞ otherwise

Thus, the worst solutions are those that do not fully contain the original seed.
Among the proper extensions of the seed, those being closer to the reference
solutions Y

∗ are preferred; if two solutions are equally close, the one with less
items (i.e., the less expensive one) is preferred to the larger one. For a candidate
solution y, we define the neighborhood as the set of those itemsets that can be
produced by adding or removing a single item:

Y
nn = {y′ |ΔY (y,y

′) = 1 } .

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

problem solving episode

av
er

ag
e

co
st

random search

preference−based CBR

Fig. 2. Average performance of Pref-CBR and random search on the set completion
problem in the first 100 problem solving episodes

Preference-Based CBR: A Search-Based Problem Solving Framework 13

Finally, for a given problem x0, we define the performance of a found solution
y∗ in terms of c(y∗ |x0).

We applied this setting to a database of pizzas extracted from the website
allrecipes.com, each one characterized by a number of toppings (typically be-
tween 6 and 10). Seeds (problems) were produced at random by picking a pizza
and removing all except three toppings. The task is then to complete this seed
by adding toppings, so as to produce a tasty pizza (preferably one of those in
the database, which plays the role of the reference set Y∗). Again, we compared
Algorithm 1 with the random search variant as a baseline. The results for pa-
rameters K = 5, L = 10, J = 50, shown in Fig. 2, which are qualitatively similar
to those of the previous study.

6 Conclusion

In this paper, we have presented a general framework for CBR in which experi-
ence is represented in the form of contextualized preferences, and these prefer-
ences are used to direct an adaptive problem solving process that is formalized
as a search procedure. This kind of preference-based CBR is an interesting al-
ternative to conventional CBR whenever solution quality is a matter of degree
and feedback is only provided in an indirect or qualitative way. The effectiveness
of our generic framework has been illustrated in two concrete case studies.

For future work, we plan to extend and generalize our framework in various
directions. First, the search procedure presented here can essentially be seen
as a preference-based variant of a simple hill-climbing method. Needless to say,
the idea of using preferences for guiding the search process can be applied to
other, more sophisticated search methods (including population-based stochastic
search algorithms) in a quite similar way. Second, since the number of prefer-
ences collected in the course of time may become rather large, effective methods
for case base maintenance ought to be developed. Third, as already mentioned,
the similarity (distance) measure in the solution space has an important in-
fluence on the preference relations �x associated with problems x ∈ X and
essentially determines the structure of these relations (cf. Section 2.3). There-
fore, a proper specification of this measure is a prerequisite for the effectiveness
of our preference-guided search procedure. It would hence be desirable to allow
for a data-driven adaptation of this measure, that is, to enable the CBR system
to adapt this measure whenever it does not seem to be optimal. The method for
learning similarity measures from qualitative feedback proposed in [15] appears
to be ideally suited for this purpose.

Acknowledgments. This work has been supported by the German Research
Foundation (DFG). We are grateful to Peter Kolb and Denis Schmidt for pro-
viding us the data used for in the drug discovery experiment.

14 A. Abdel-Aziz et al.

References

1. Hüllermeier, E., Schlegel, P.: Preference-based CBR: First steps toward a method-
ological framework. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS,
vol. 6880, pp. 77–91. Springer, Heidelberg (2011)

2. Doyle, J.: Prospects for preferences. Comput. Intell. 20(2), 111–136 (2004)
3. Goldsmith, J., Junker, U.: Special issue on preference handling for Artificial Intel-

ligence. Computational Intelligence 29(4) (2008)
4. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview.

Artificial Intelligence (2011)
5. Brafman, R.I., Domshlak, C.: Preference handling–an introductory tutorial. AI

Magazine 30(1) (2009)
6. Peterson, M.: An Introduction to Decision Theory. Cambridge Univ. Press (2009)
7. Kraay, D.R., Harker, P.T.: Case-based reasoning for repetitive combinatorial opti-

mization problems, part I: Framework. Journal of Heuristics 2, 55–85 (1996)
8. Grolimund, S., Ganascia, J.G.: Driving tabu search with case-based reasoning.

European Journal of Operational Research 103(2), 326–338 (1997)
9. Hüllermeier, E.: Focusing search by using problem solving experience. In: Horn, W.

(ed.) Proceedings ECAI 2000, 14th European Conference on Artificial Intelligence,
Berlin, Germany, pp. 55–59. IOS Press (2000)

10. Bergmann, R., Wilke, W.: Towards a new formal model of transformational adap-
tation in case-based reasoning. In: Prade, H. (ed.) ECAI 1998, 13th European
Conference on Artificial Intelligence, pp. 53–57 (1998)

11. Karaman, M.W., et al.: A quantitative analysis of kinase inhibitor selectivity. Na-
ture Biotechnology 26, 127–132 (2008)

12. Schmitt, S., Kuhn, D., Klebe, G.: A new method to detect related function among
proteins independent of sequence and fold homology. Journal of Molecular Biol-
ogy 323(2), 387–406 (2002)

13. Stock, M.: Learning pairwise relations in bioinformatics: Three case studies. Mas-
ter’s thesis, University of Ghent (2012)

14. Ghahramani, Z., Heller, K.A.: Bayesian sets. In: Proceedings NIPS 2005 (2005)
15. Cheng, W., Hüllermeier, E.: Learning similarity functions from qualitative feed-

back. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008.
LNCS (LNAI), vol. 5239, pp. 120–134. Springer, Heidelberg (2008)

Applying MapReduce

to Learning User Preferences in Near Real-Time

Ian Beaver and Joe Dumoulin

NextIT Corporation,
421 W. Riverside Ave, Spokane WA 99201 USA

{ibeaver,jdumoulin}@nextit.com
http://www.nextit.com

Abstract. When computer programs participate in conversations, they
can learn things about the people they are conversing with. A conversa-
tional system that helps a user select a flight may notice that a person
prefers a particular seating arrangement or departure airport. In this
paper we discuss a system which uses the information state accumu-
lated during a person-machine conversation and a case-based analysis
to derive preferences for the person participating in that conversation.
We describe the implementation of this system based on a MapReduce
framework that allows for near real-time generation of a user’s pref-
erences regardless of the total case memory size. We also show some
preliminary performance results from scaling tests.

Keywords: case-based reasoning, dialogue systems, natural language.

1 Introduction

Next IT is a company in Spokane WA, USA that builds natural language appli-
cations for the worldwide web and for mobile device applications. Recently we
have been working on features to improve the performance of machine directed
conversations. This paper describes one of those enhancements, the development
of a scalable system for learning user preferences from past experience in near
real-time.

The system we developed is closely tied to our existing natural language sys-
tem (NLS) so this paper will begin with a discussion of the behaviour of this
system and how it interacts with people. The following sections discuss the archi-
tecture, operation, and performance testing of our CBR-based learning system.

1.1 User-Directed and Machine-Directed Conversations

The NLS in question enables designers to craft user-directed and machine-
directed conversation templates. Users of the system can initiate these templates
by starting a conversation with the system. The conversation can take the form
of a chat or a task to complete. For example, we can assume that the application
is running in an airline domain. A person can ask the system “how much does it

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 15–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.nextit.com

16 I. Beaver and J. Dumoulin

cost to check an extra bag?” and the system may respond with a simple answer
like “$10.” This is a user-directed conversation.

In contrast, a machine-directed conversation turns the user’s request into a
task to be completed, and the system asks the user a series of subsequent ques-
tions to support that task. The system keeps track of what information has been
gathered and what is still required to complete the task in a form, or conversa-
tion state object. For example, suppose the person wants to book a flight. They
may start by saying “I need to fly to Seattle on Tuesday.” The system can then
ask a series of questions of the user to fill in the remaining information needed
to complete the task.

There may be a validation step to perform for each form component, or slot,
to ensure that the user has supplied valid information and to re-prompt the user
in the case of invalid data. When the user has filled in all of the slots in the form
through conversation, the system has enough information to complete the task
by booking the flight the user requested.

To summarize, a user-directed conversation is conducted by the user asking
questions of the system. A machine-directed conversation is conducted by a
system asking questions of a user. Systems which perform both of these tasks
are sometimes called mixed-initiative systems. Mixed-initiative dialogue systems
have been proposed as far back as the 1970’s[1] and have been shown to both
perform well[2] and adapt well to different domains[3].

1.2 Machine-Directed Conversations and Personal Preferences

Designing a machine directed conversation includes a number of steps. The first
step is creating the tasks the system will be capable of performing (defining the
set of available forms). For each task in the system, the next step is determining
the data needed to complete the task (defining the slots in the form to be filled).
Once the task is well-defined, a final optimization step is looking at ways to
minimize the number of questions the system must ask in order to complete the
task. This is especially important if a person is expected to return to the system
and complete this task many times, as may be the case when booking travel.

Something we noticed while investigating the need to minimize the number of
questions being asked is that, for a given person, the answers to certain questions
are consistently the same. For example, if a person is a frequent traveller and
books flights through the system, there is a high likelihood that the flight’s
departure airport will be the home airport of the person. In another example,
suppose the person prefers aisle seats. This will become evident after only a small
number of bookings. We concluded that in order to shorten the task completion
turns, we could learn a person’s preferences based on previous conversations with
the user.

The remainder of this paper describes the system that we constructed to learn
user preferences in the scope of any machine-directed conversation and to make
that learned behaviour accessible to subsequent sessions with the same person.
This learned preferences system can then be applied to any of the domains in
which our natural language system is deployed. In Section 2 we outline the

Applying MapReduce to Learning User Preferences in Near Real-Time 17

implementation goals and the component architecture used to achieve them. In
Section 3 we describe how we applied case-based reasoning methods to address
some of the implementation goals. Section 4 describes the testing methodology
we used to ensure that our system could perform adequately when installed on
production hardware and under load. Finally, Section 5 outlines our Conclusions.

Fig. 1. A component view of the NLS and the CBR Learning system and the services
that support it

2 Implementation Goals and Architecture

There were several general properties that we hoped to obtain from adding a
learning component to our existing NLS. We will later show how the case-based
reasoning (CBR) system we developed satisfied each of these properties:

– Reduce the number of turns required to complete a task for a returning user,
thereby increasing the user’s satisfaction with the system.

– Allow the user to adjust the level of personalization the system displays to
them.

– Store the learned preferences in a way that they can be quickly and easily
retrieved and displayed to the end user.

– Create preferences from user input in near real-time.
– Confirm new preferences with the user to prevent unexpected user experi-

ences.

18 I. Beaver and J. Dumoulin

– Allow users to change their preferences at any time.
– Scale easily as the number of users and input history grows.

Figure 1 shows a simplified component view of the entire NLS with the CBR
Learning System. There are two integration points for the CBR Learning System:

The first is where the NLS queues user responses for the Data Collection
Services to process and insert into the Data Store. The actual processing steps
are performed in the Learned Preferences Generation Services (LPGS) outlined
in Section 3.

The second area of integration is the Search Service. The NLS uses the Search
Service to check for learned preferences, which we refer to as rules, that might be
available to help derive information for the in-focus task. The NLS also retrieves
rules to verify with the current user through the user interface. The user can
then indicate whether or not the system should keep the retrieved rule.

The results of the LPGS processing is a set of rules that is placed in the Data
Store. The Data Store contains:

1. User inputs for analysis (case memory) - Individual task-related user inter-
actions with the NLS. Includes the user input text and meta data such as
input means, timestamp, and NLS conversation state variables. The com-
plete structure of each case is detailed in Appendix A.

2. Learned preferences (case-base) - Rules created from successful cases that
have been analysed and retained for use in future cases. The complete struc-
ture of each rule is detailed in Appendix B.

3. User defined settings - Settings such as if the use of preferences are enabled
for a user, and per user thresholds of repetitive behaviour before creating a
preference solution.

3 Application of Case-Based Reasoning

The primary design idea for the learning system was to look at entire user
histories and group their NLS interactions by task. If a user consistently provides
the same value for a given slot, we can assume it instead of prompting in future
conversations. This was a perfect fit for a CBR methodology since we are looking
at specific instances in a user’s history and reusing that information to solve a
future problem, namely minimizing the number of steps required to repeat the
task in the future.

Similar systems have been proposed to learn user preferences for the purpose
of creating user recommendations [4]([5] compares many such approaches) or
generating a user profile[6,7]. The primary difference in our system is that in-
stead of learning preferences for the purpose of filtering or ordering information
presented to the user, we are attempting to anticipate responses to specific NLS
prompts. Another key difference is that we require these rules to be constructed
in near real-time as the user is aware of exactly when a rule should exist based
on their personal settings. Our system must be able to maintain this near real-
time property as the number of users and cases grow, as we have many existing

Applying MapReduce to Learning User Preferences in Near Real-Time 19

natural language systems deployed to large companies with very large numbers
of users.

Taking the scale into consideration, we decided on a MapReduce programming
model as it allows functions to be applied to large datasets in an automatically
parallelized fashion[8]. As the dataset grows it can be partitioned across more re-
sources as needed to maintain the near real-time requirement without additional
complexity or code changes.

3.1 Case Structure

The major issue that had to be addressed was how to structure the case feature
set so that it was general enough that unique information like timestamps and
sequences would not prevent a match with a similar conversation, but specific
enough to maintain a distinction between conversations with different outcomes.

We overcame this problem by requiring the task designers to specify the set
of features in the conversation state that were important for each slot in a task.
Since the task designer is the knowledge expert that is defining the ontology of
the system, they know ahead of time what feature variables exist in the conver-
sation state and which ones are important to the slot that is being prompted for.
When the set of available forms is generated for the NLS system to consume, a
separate file is created that defines these relationships, which the learning system
uses to identify features for each case.

This solution can still be error prone when feature variable names are too
generic or are reused for several different values. For example, suppose we are
trying to learn a preferred email address for the user and the designated variable
is named EmailAddr. If Sally were to ask the system to ”Send an email to
Fred”, and the same variable name is re-used for both source and destination
addresses, it can lead to a rule never being generated for Sally’s preferred email
address because the addresses contained in EmailAddr will never agree. After
a few iterations of conversation template deployment and testing most of these
variable name issues became apparent and were resolved.

3.2 Case Storage

Every task-related user interaction with the NLS is saved as a case. Simple user-
directed interactions are not retained as they are not a multi-step process that
we can attempt to optimize for repeat users.

MongoDB was chosen as the Data Store for its schema flexibility[9] and its
ability to easily scale as the number of cases increases[10]. It also includes a
MapReduce mechanism which allows for complex parallel searching of the case
memory. Any MapReduce framework and distributed file system could have been
used for the learning system such as Hadoop or Disco, but we chose MongoDB
as it supported our requirements in a single simple to deploy package.

20 I. Beaver and J. Dumoulin

3.3 Case Retrieval

When a user begins a task in the NLS, before the NLS prompts the user for each
slot in the form (the new case to be solved), it first sends the new case features
to the Search Service to see if there is an existing preferential value to place
in the slot from the case-base. Fig. 2 shows an example of preferring learned
preferences over asking the user.

Fig. 2. Flow diagram for a portion of ’Book A Flight’ dialogue. The system is resolving
whether or not rules exist in order to avoid an explicit prompt for ’Departure City’.

The features of this new case are defined by:

1. A Universally Unique Identifier (UUID) generated for this new case.
2. The current UserID.
3. The array of variable-value pairs that make up the current conversation

state, for example: [(IsLoggedIn,True), (LatLong,[47.656918,-117.418356])]
4. The active task the user has initiated in the NLS.

By ordering the array of context pairs by variable name, and then generating
a SHA-1 hash of the string representation of the array, a search key is generated.
Using this search key, the UserID, and TaskID, we query the case-base for an
existing preference rule. If no preference is found in the case-base, the NLS will
then prompt the user to fill in the slot.

3.4 Case Reuse

If a preference is found that is both active and valid, it will be used to fill in the
slot value, and the NLS will then repeat this process to try and fill in the next
slot in the form.

3.5 Case Revision

If a preference is matched and it has been inactivated, it will not be used. If
it is active but has not been validated by the user yet, the NLS will ask the

Applying MapReduce to Learning User Preferences in Near Real-Time 21

user if they would like to use the historical value from now on. If so, the learned
preference will be validated and used without prompting the user in the future.
Otherwise, it will be marked inactive and will not be returned by future queries.
Fig. 3 shows how the verification event takes place during a conversation. This
example was taken from a live system and shows how the user’s repeat task is
optimized by the learning system, satisfying our primary goal of reducing the
number of steps for repetitive tasks. Note that the initial conversation will need
to be repeated as many times as this specific user has defined in their preferences
before a rule will be constructed.

Initial
Conversation(s)

User: text Fred
NLS: I found more than
one phone number for
’Fred’. Which do you
mean?

Home - ###
Mobile - ###
Work - ###

User: Home number
NLS: What do you want
the text to say?

Verification of New
Rule

User: text Fred
NLS: I notice that in the
past when you’ve asked
me to send a text message
to Fred you chose to use
the phone number ###.
Would you like me to
assume you mean ###
now and in the future?
User: Yes.
NLS: Great! I’ll make a
note of it. What do you
want the text to say?

Rule in Use

User: text Fred
NLS: What do you want
the text to say?

Fig. 3. Conversations from the same user over time using the learning system

3.6 Case Retainment: Learning Preferences from Case Memory

The NLS forwards all attempts to fill slots to the Learning System by placing
them in the Message Queue where they will be stored in case memory by the
Data Collection Service. The NLS does this even when a learned preference rule
was used to fill the slot.

The LPGS receives events that new cases are available and does reanalysis
on the affected user’s entire case memory. The LPGS is looking for repetitive
behaviours by the specific user that lead to the same outcome in completing a
slot for a given task. This is accomplished by two MapReduce jobs applied to
the user’s history in the case memory collection.

First MapReduce Job. The first MapReduce job compresses continuous user
inputs that are trying to complete the same slot within the same task. It may
take the user several interactions with the NLS to resolve a specific slot. The
user may give incorrect or incomplete data, or respond to the system prompt
with a clarifying question of their own.

22 I. Beaver and J. Dumoulin

The compression is done by keeping track of when the user was first prompted
for the slot, and when the slot was either filled in or abandoned. The system
evaluates a few scenarios to determine the correct cases to use for the learning
step.

In some scenarios, we know that the slot was not successfully completed be-
cause the NLS re-prompted the user for the same slot variable. Multiple prompts
are merged into a single case. The earlier case’s slot value and starting context
are combined with the later case’s slot value and ending context.

This reduction process continues until either 1) the slot was satisfied or aban-
doned and the NLS prompted for a new slot; or 2) no more cases are found in
that sequence of interactions, meaning that either the user is currently in the
middle of the conversation or they abandoned the entire conversation without
completing the task.

When this first job completes, its combined results are stored with the single
cases where the slot was resolved in a single interaction.

Second MapReduce Job. The LPGS starts a second MapReduce job on the
first job’s results. This job attempts to count all of the slot outcomes for this user
that are equivalent. The job first groups all of the cases where the end context
was the same. When it finds two cases that meet this criteria, it checks to see if
the final answers matched. If that is not the case, later analysis will be done to
determine which answer (if any) is most appropriate to learn.

Finalize. After this step completes, the LPGS starts a finalize function over
the resulting groups. It filters out any group whose slot was never satisfied. For
example, if the starting value for the slot is “null” and, after all of the attempts
to resolve it, the value remains “null”, we know that the slot was never satisfied.

The finalize step also filters out any groups where the count of observed cases
is less than an adjustable threshold. This threshold is in place to define how many
times a user needed to repeat a behaviour before it was considered a preference.

For example, the very first time a user completes a slot, it should not be
considered a “preference” since there is not enough historical data to support
that they will do it again. However, each user may have a different expectation
of how many times they need to repeat an answer before it is saved.

Since one of our system goals is to allow a user to adjust the level of person-
alization, we exposed this threshold to them in a “Settings” screen within the
application. This setting is saved with their user preferences and looked up when
that user’s inputs are analysed by the LPGS. The finalize function filters out
any answers that do not meet the user’s threshold for repeat behaviours. There
are pre-set defaults so that users are not required to configure the system before
using it and we impose a lower bound of two, for the above mentioned reason.
Currently this setting is used for all forms but we have considered implementing
form ”groups” of similar tasks and allowing users to control the settings per
group. We do not expect that this would add significant load to the LPGS since
it would only involve adding a group key to the user setting query that it is

Applying MapReduce to Learning User Preferences in Near Real-Time 23

already performing. It would, however, add more complexity to the application
interface, and possibly add confusion to users so more research needs to be done
on the benefits of adding this feature.

Analysis of Results. At this point we have a second temporary collection that
contains cases where the slot was satisfied, and the count of how many times
each answer was observed in the user’s history. The LPGS now analyses these
cases to determine if an answer can be assumed.

For the purposes of this analysis, the LPGS runs a set of functions over the
data. Each of these functions can output rules, but they use different criteria to
determine the rules. Currently, we have two functions in the set but we anticipate
using more in the future.

The first function looks for a user-specified number of contiguous cases with
identical values for the slot in a group. If found, a rule is created for the slot
using the value of the case.

The second function checks for a percentage of final slot values to be the same.
The specific percentage used is user-defined.

The value of this second function is that a user does not have to repeat the
same answer many more times if they had a single different answer for some
reason. For example, consider a frequent traveller. Most of the time they book
a flight from their home airport, but sometimes they are in a different city and
they book a flight leaving from there. We can still learn which airport they prefer
since the majority of the time they choose their home airport.

More specifically, suppose they have their percentage set to 75% and the se-
quential threshold set to 3 for example. If their answers for the DepartureAirport
slot from case memory ordered by time looks like [SEA,SEA,LAX,SEA], we can
still assume that they prefer to leave from Seattle, even though the sequential
function could not assume that.

After a function analyses the composite cases, any new preferences found by
it are saved into the case-base. New preferences will be verified or ignored the
next time the user initiates the task. The two temporary collections are then
deleted and the MapReduce jobs are applied to another slot in the user’s task
history. This re-analysis process is completed for each user that has added new
cases since the last time the LPGS fetched updated users.

4 Testing and Performance

4.1 System Evaluation

The primary measure of success for the learning system is reducing the number
of steps required for the user to complete a task in the future. To evaluate this
measure we needed to ensure that when a user repeats a task the same way their
configured amount of times, a rule is created and that rule is found on the next
attempt to complete the task. The evaluation was done following these steps:

24 I. Beaver and J. Dumoulin

1. Create a new user account
2. Choose custom threshold settings or use system defaults
3. Walk through a task in the system conversationally
4. Repeat the conversation enough times to meet the set thresholds
5. Assert that on the next attempt to complete the task a prompt to validate

a learned preference appears
6. Assert that on the next attempt to complete the task no prompt appears

but the task is completed using the learned preference

Once the system was shown to be working correctly for a single user, we released
access to the UI in the form of a mobile application to a limited group of 35
testers. The testers had the ability to enable and disable the use of the learned
preferences during their conversation to compare the change in experience. In
our limited release testing user feedback was very positive. One user commented
that “Using the application without learning enabled is annoying”, compared
to the experience with it enabled. This was due to the decrease in prompting
by the NLS on repeat uses with the learning system enabled. An example of a
conversation collected from this evaluation was shown in Fig. 3 above.

4.2 System Performance

The system was functioning as intended, but we had to ensure that the solution
would be able to scale to a production capacity. Since the majority of the analysis
work is done within the MapReduce jobs, the ability for the LPGS to scale is
closely tied to the ability for the MapReduce engine (MongoDB) to scale. One
of the goals of the system is that the creation of new preferences for a specific
user must happen in near real-time from when a user input is received.

The definition of near real-time in this context is driven purely by user ex-
perience. There is an expectation by the user that, for example, after the third
time booking a flight it will not ask them for their departure airport that they
have given the last three times in a row. This would happen if this user has their
learned threshold setting at three. If the system were then to ask them for that
information, their expectations would not be met. In this example the definition
of near real-time must be less than a realistic window of time before the user
would repeat this task.

In this domain of booking flights, several hours may be an acceptable time
frame since it is rare that users would book multiple flights in a several hour
period leaving from the same airport. There may be domains where the same
tasks are completed many times a day, as in a personal assistant domain where
the user wants the system to learn that a nickname is associated to a specific
contact they write text messages to often. In this domain the acceptable time
frame may be only a matter of minutes.

Therefore we recognize that since this acceptable time frame varies by domain
and expectations of the user base, we can only show how the system performs
with the testing hardware available to us and know there will be larger computing
capacity needed to cover domains with fast preference availability expectations.

Applying MapReduce to Learning User Preferences in Near Real-Time 25

To test that the system was capable of scaling to large numbers of cases, we
needed to create a test data set in incremental sizes and show how performance
degrades. We measure how long it took to analyse a single user for the set of
tasks in the NLS and the total time it took the system to analyse all users in the
data set for each case memory size. Since the LPGS only works on users that
added new cases since the last time it ran, running against all users would be a
test of the worse case scenario in the system.

4.3 Test Dataset Creation

In order to create a data set to test with, we used actual conversations from users
of an existing NLS in the personal assistant domain. These conversations were
inserted into the case memory directly, truncated in a way that the number of
inputs or cases per user would form a Normal Distribution where μ = 365, σ =
168 with negatives remapped as

f(n) =

{
χ χ ≥ 1
χ ∈ 1 ≤ Z ≤ 10 χ < 1

Where 1 ≤ Z ≤ 10 is generated at random. This larger distribution between
1. . . 10 is to simulate users that try the NLS out of curiosity with no intention
of accomplishing any task and then abandon it. We chose μ and σ values based
on projected usage expectation in the personal assistant domain after review-
ing historical NLS usage in current production environments. A custom Data
Collection Service was used that simply marked all of the users as having new
cases available instead of reading off the Message Queue and marking users with
queued messages. This way the LPGS would have to look at all users at the
same time, creating the maximum load on the system.

4.4 Testing Environment

TheMongoDB cluster was constructed with 8 homogeneous servers with 2xE5450
CPUs, 16GB RAM and 2x73GB 15k rpm drives with RAID0. The system OS is
Ubuntu Server 12.04LTS and the database and MapReduce system is MongoDB
v2.2.3-rc1.

MongoDBwas configured as 4 shards of 2-node replica sets. In the case memory
and case-base collections, the IDwas used as the shard key. In the user settings col-
lection theUserIDwas used as the shard key.The learning service itselfwas running
on a workstationwith an Intel i7-3930KCPU and 64GBRAM and was configured
to use 32 worker threads, meaning 32 users would be worked on in parallel. This
number is configurable based on the computing power of the machine the learning
system is running on. Multiple instances of the learning system can be started on
multiple machines in order to reduce the total analysis time.

4.5 Performance Results

Table. 1 shows the results of running the LPGS against all of the users in the
database. After each run more users were imported in case memory and the

26 I. Beaver and J. Dumoulin

database cluster was fully restarted in order to clear out any cached data that
may skew the benchmarks. The Total Cases column shows the number of cases
in the case memory collection, all of which would have to be looked at if all
user histories are analysed. The Analysis Time column is the wall-clock time
from when the LPGS started to the time it completed the last user. The Avg.
User Time column is the wall-clock time it took to complete all of the historical
analysis on a single user.

Table 1. Performance (MongoDB v2.2.3-rc1)

Total Cases Users Avg. User Cases Analysis Time (H:M:S) Avg. User Time (S)

369,536 1,000 369 0:07:22 2.839

743,719 2,000 371 0:14:39 6.279

3,622,196 10,000 362 0:47:12 8.416

7,200,767 20,000 360 1:34:00 8.407

MongoDB handles the load of 32 parallel MapReduce jobs on completely sep-
arate (meaning uncached) data very well. The total time it takes to process
20,000 users would be acceptable in most domains without needing to use mul-
tiple instances of the LPGS. The Avg. User Time meets our definition of near
real-time given the size of the data we tested with. This is also testing the ab-
solute worst case, in a real world case where 20,000 unique users would need to
be reviewed every 1.5 hours would in all likelihood mean there was a great deal
more total users in the system. Notice that the Avg. User Time does not change
when the case memory size is doubled from 3.6M to 7.2M cases. Once MongoDB
has reached a stable load, the job time appears to flat line, at least until the
indexes would no longer fit in memory[11]. Further testing is needed with larger
data sets to know if this assumption holds true and where the limitations of our
testing hardware are.

In order to compare how the performance changes with a different M/R en-
gine, the same cluster was rebuilt using a developer preview version of MongoDB
2.4 (2.3.2) using the V8 JavaScript engine[12], which supports multi-threaded
MapReduce execution compared to the single-threaded execution in the Spi-
derMonkey engine used in versions 2.2 and below. This release proved to be
still unstable, with several memory leaks observed and occasional long pauses in
MapReduce job execution. In spite of this, as Table. 2 shows1, the results are
very promising as the average user analysis time was sped up between 50-62%2.

1 The apparent discrepancy on Table. 2 in the 2,000 user test between the Avg. User
Time and the Analysis Time appears to be due to one of the jobs hanging for several
minutes before returning. This seemed to be repeatable but since this was a developer
preview version of MongoDB and the job did eventually return successfully it was
not a cause for concern, other than making an inconsistent benchmark.

2 Because of the stability issues, we were not able to reproduce the 20K data set size
to compare.

Applying MapReduce to Learning User Preferences in Near Real-Time 27

Table 2. MongoDB v2.3.2 Performance

Total Cases Users Avg. User Cases Analysis Time (H:M:S) Avg. User Time (S)

754,748 2,000 377 0:12:44 2.364

4,130,057 10,000 413 0:25:50 4.175

5 Conclusion

We have shown how we applied CBR to the problem of automatically learning
user preferences for repeat users. We have also shown how this system satisfied
all of our initial goals, as well as shown that it has the ability to scale very well
to millions of cases and tens of thousands of users. Given that our test cluster
used 4 shards when MongoDB supports up to 1,000[13], we are confident that
the solution we presented would continue to scale several orders of magnitude
more than our test data size.

Appendix A Case Memory Document Structure

ID - The case identifier.
UserID - System wide unique user identifier.
PreviousPrompt - The slot variable the user was previously prompted for.
JustPrompted - The slot variable the NLS just prompted the user for after

their answer.
Context - A JSON object holding pairs of conversation state variable names

and values at the time the user was prompted for the slot variable.
SearchContext - A case-normalized form of the Context stored as an array

of [name,value] pairs sorted by variable names.
Answer - The value of the slot variable named by PreviousPrompt that was

filled in from the users input.
Order - Sequence number used to order inputs for this user.
TimeStamp - Time from web server when user input occurred.

Appendix B Case-Base Document Structure

ID - The learned preference identifier.
Active - Flag used to determine if this specific preference is available for use.
Prompt - The slot variable name the user was prompted for.
EndContext - A JSON object holding pairs of conversation state variable

names and values representing the state of the system after the user had
successfully filled in the slot variable contained in Prompt.

Type - The function type that discovered this learned preference.
UserID - System wide unique user identifier.
Verified - Flag used to determine if the user has verified that this preference is

acceptable.

28 I. Beaver and J. Dumoulin

StartContext - A JSON object holding pairs of conversation state variable
names and an array of values observed at the time the user was prompted
for the slot variable contained in Prompt.

SearchKeys - Array of SHA-1 hex strings computed for each combination of
name:value pairs in StartContext.

length(SearchKeys) =

vars∏
var

length(StartContext(var))

TaskID - The task that this preference relates to.
SlotFeatures - The set of variable relationships defined for this Prompt in

this TaskID that was created by the domain knowledge expert when the
task was defined. It is saved with the learned preference built from it for
reporting and system auditing purposes.

Entries - A list of case IDs that contributed to this preference.

References

1. Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D.A., Thompson, H., Winograd,
T.: GUS, a frame-driven dialog system. Artificial Intelligence 8(2), 155–173 (1977)

2. Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., Di Fabbrizio,
G., Walker, M.: The AT&T-DARPA Communicator mixed-initiative spoken dialog
system. In: Proc. of ICSLP, vol. 2, pp. 122–125 (October 2000)

3. Bohus, D., Rudnicky, A.I.: The RavenClaw dialog management framework: Archi-
tecture and systems. Computer Speech & Language 23(3), 332–361 (2009)

4. Saaya, Z., Smyth, B., Coyle, M., Briggs, P.: Recommending case bases: applications
in social web search. Case-Based Reasoning Research and Development, 274–288
(2011)

5. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. The Knowledge Engineering Review 20(03), 315–320 (2005)

6. Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user
profile constructed without any effort from users. In: Proceedings of the 13th In-
ternational Conference on World Wide Web, pp. 675–684. ACM (May 2004)

7. Schiaffino, S.N., Amandi, A.: User profiling with case-based reasoning and bayesian
networks. In: IBERAMIA-SBIA 2000 Open Discussion Track, pp. 12–21 (2000)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

9. Berube, D.: Encode video with MongoDB work queues,
http://www.ibm.com/developerworks/library/os-mongodb-work-queues

10. Bonnet, L., Laurent, A., Sala, M., Laurent, B., Sicard, N.: Reduce, You Say: What
NoSQL Can Do for Data Aggregation and BI in Large Repositories. In: 2011 22nd
International Workshop on Database and Expert Systems Applications (DEXA),
pp. 483–488. IEEE (August 2011)

11. Horowitz, E.: Schema Design at Scale. Presentation, MongoSV (2011),
http://www.10gen.com/presentations/mongosv-2011/schema-design-at-scale

12. MongoDB 2.4 Release Notes, http://docs.mongodb.org/manual/release-notes/
2.4/#default-javascript-engine-switched-to-v8-from-spidermonkey

13. Horowitz, E.: The Secret Sauce of Sharding. Presentation, MongoSF (2011),
http://www.10gen.com/presentations/mongosf2011/sharding

http://www.ibm.com/developerworks/library/os-mongodb-work-queues
http://www.10gen.com/presentations/mongosv-2011/schema-design-at-scale
http://docs.mongodb.org/manual/release-notes/2.4/#default-javascript-engine-switched-to-v8-from-spidermonkey
http://docs.mongodb.org/manual/release-notes/2.4/#default-javascript-engine-switched-to-v8-from-spidermonkey
http://www.10gen.com/presentations/mongosf2011/sharding

Case-Based Goal Selection Inspired

by IBM’s Watson

Dustin Dannenhauer and Héctor Muñoz-Avila

Department of Computer Science and Engineering, Lehigh University, Bethlehem PA
18015, USA

Abstract. IBM’s Watson uses a variety of scoring algorithms to rank
candidate answers for natural language questions. These scoring algo-
rithms played a crucial role in Watson’s win against human champions
in Jeopardy!. We show that this same technique can be implemented
within a real-time strategy (RTS) game playing goal-driven autonomy
(GDA) agent. Previous GDA agents in RTS games were forced to use
very compact state representations. Watson’s scoring algorithms tech-
nique removes this restriction for goal selection, allowing the use of all
information available in the game state. Unfortunately, there is a high
knowledge engineering effort required to create new scoring algorithms.
We alleviate this burden using case-based reasoning to approximate past
observations of a scoring algorithm system. Our experiments in a real-
time strategy game show that goal selection by the CBR system attains
comparable in-game performance to a baseline scoring algorithm system.

1 Introduction

This work presents a new solution to the problem of goal selection within a
goal-driven autonomy agent. Goal-driven autonomy (GDA) is a reasoning model
in which an agent selects the goals it will achieve next by examining possi-
ble discrepancies between the agent’s expectations and the actual outcome of
the agent’s actions. GDA agents explain these discrepancies and generate new
goals accordingly [10, 13–15]. The computer program Watson developed by IBM
achieved fame when it defeated two previous (human) winners from the United
States television show Jeopardy!. Watson’s use [16, 17] of a variety of scoring
algorithms to rank answers from evidence snippets can be applied to a game
playing agent for ranking which goal to achieve next. We present two goal se-
lection implementations: a baseline system inspired by Watson’s answer scoring
algorithms and a case-based reasoning system that approximates this baseline
system.

In RTS games, players manage armies of units to defeat an opponent. Actions
in the game are executed in real time (i.e., players do not wait for the opponent
to make a move). RTS games follow a combat model where units of a certain
kind are particularly effective against units of some other kind but particularly
vulnerable against units of a third kind. For this reason RTS games are frequently
used in case-based reasoning research [9]. A challenge of using CBR (or any

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 29–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

30 D. Dannenhauer and H. Muñoz-Avila

other AI technique) in these domains is the large amount of state information.
With such large state spaces, AI systems’ state representations must exclude
many details about the state (e.g., by using state abstraction techniques [20]). A
primary motivation for borrowing the scoring algorithm technique from Watson
is to make use of potentially all information in the game state.

A major drawback of this evidence-scoring technique is the significant knowl-
edge engineering effort required to create new scoring algorithms. Each scoring
algorithm contains heuristic-like knowledge that relates evidence to an answer
by means of a numerical score. Such effort is apparent in Watson, which made
use of thousands of scoring algorithms (sometimes referred to as evidence scoring
strategies, in this paper we refer to them as evidence scorers). At least some (it
is not clear how many) scoring algorithms used by Watson were NLP-based and
were easily available due to research in the NLP community [19]. However, for
other domains, including RTS games, it may not be the case that evidence scor-
ing functions are readily available. Our work is partly motivated by the fact that
creating evidence scorers may be too high of a knowledge engineering burden but
past observations (e.g., made by experts) are available. Case-based reasoning can
approximate evidence scorers by capturing and reusing the results from previ-
ous observations (e.g., scores given by human experts in previous episodes). We
found that a CBR system with a simple state representation, a straightforward
similarity function, and nearest neighbor retrieval approached the performance
of the baseline evidence scoring system.

This paper is organized as follows: Section 2 discusses IBM’s Watson and the
core technique relevant to the work in this paper. Section 3 discusses the base-
line Watson-inspired goal selection component using evidence scorers. Section
4 discusses an implementation of the CBR system using the ideas described in
Section 3. We present our experiments and results in Section 5, followed by Re-
lated Work in Section 6, and finally end with Conclusions and Future Work in
Section 7.

2 IBM’s Watson’s Evidence Scoring Algorithms

Jeopardy! is a game in which 3 competitors are given clues in natural language
about some information that must be guessed and the first person to answer
the information correctly wins. A wrong answer carries a penalty, so good play-
ers must be highly confident of their answers before choosing to respond. Suc-
cessful play requires rapid understanding of English sentences and substantial
background knowledge on a variety of topics [16, 17]. The heart of Watson is an
extensible software architecture named DeepQA [16]. DeepQA is best thought of
as a pipeline, where the question is given at the start and an 〈answer,confidence-
score〉 pair is produced at the end (a full diagram of the pipeline can be found
in [16]). This pipeline has many phases, we are only interested in the final stage
of the pipeline, which ranks potential answers based on the evidence scores pro-
vided by the evidence scorers [19].

When the DeepQA pipeline reaches the final stage it has accumulated a list of
candidate answers along with supporting pieces of evidence for each answer. An

Case-Based Goal Selection Inspired by IBM’s Watson 31

example of a supporting piece of evidence may be a sentence or passage from an
encyclopedia that contains keywords from the question and candidate answer.
During the final stage, thousands of answer scorers each produce a numeric
score representing the degree to which a piece of evidence supports or refutes a
candidate answer. [19] The goal of the final stage is to combine all evidence scores
for each candidate answer in order to determine the best candidate answer and
its corresponding confidence score. To best combine evidence scores, DeepQA
uses machine learning to train over a corpus of previously used questions and
their correct answers [19]. DeepQA then produces a model describing how the
evidence scorers should be combined (i.e., assigning different weights to different
evidence scorers). Sometimes a single evidence scorer or group of evidence scorers
are highly indicative of the correctness of an answer, and therefore should be
given more importance when aggregating scores.

3 Goal Selection Using Case-Based Reasoning

3.1 Case Representation

We describe a system that takes an approach to goal selection that is inspired by
IBM’s Watson. As mentioned before, Watson ranks candidate answers accord-
ing to scores produced by what are called evidence scorers. Evidence scorers are
essentially functions that take the question posed to the contestant combined
with a candidate answer, and a piece of evidence (i.e. a sentence or paragraph
from an encyclopedia) and produce a score of how well that piece of evidence
supports the given candidate answer for the given question. This can be repre-
sented as a triple: 〈question, answer, score〉. All of the scores from each piece
of evidence for a candidate answer are aggregated into a single score for that
candidate answer. This aggregated score reflects how well the pieces of evidence
support the candidate answer. The candidate answers are then ranked based on
their aggregated scores and the highest scoring answer is chosen.

Our baseline evidence scorer system takes the same approach, except instead
of evidence scoring functions that take a candidate answer and a piece of textual
evidence (such as a paragraph), our evidence scoring functions take a goal and
features of the current game state in the RTS game Wargus. Analogous to the
representation of 〈question, answer, score〉 in Watson playing Jeapordy!, we use
〈gamestate features, goal, score〉 as the representation in our system playing
Wargus. In the same way as Watson, we produce aggregated scores for each goal
that we may decide to pursue next. After each goal’s scores are aggregated, the
highest scoring goal is chosen.

Such an approach allows the goal selection component to neither restrict nor
conform to models of the game state used in other GDA components. For ex-
ample, perhaps the planning component of a GDA agent uses a compact state
representation (as is the case in LGDA and GRL [1, 15]). The goal selection
component is not forced to use that state representation, nor does it impose any
restriction on the planning component’s use of a compact game state. The goal
selection component of the GDA agent may make use of more or all information

32 D. Dannenhauer and H. Muñoz-Avila

in the game state at the time of goal selection. This is a benefit of modularity
and would allow a component like the one presented in this paper to easily fit
into a current GDA system.

3.2 Information Flow

Our main motivation is for situations in which the system neither has access
to the internal functioning of the evidence scorers nor to the evidence scorers
themselves. For example, the evidence scorers are humans that we observed in
past instances solving problems. Ontañón et al., 2007 show how domain experts
annotate input traces by the goals they achieve [6]; in our situation, we would
ask the experts to also annotate the goals’ scores. The primary objective is to
create a system by reusing previous instances of these evidence scorers providing
scores for specific situations. We present a case-based reasoning system that
approximates an evidence scoring system by reusing past instances.

Given a sufficiently large number of past instances 〈gamestate features, goal,
score〉 from an evidence scoring system, a case-based reasoning component can
be constructed. For each instance, it is necessary to have the results from each
evidence scorer and features from the game state at the time of the instance.

Figure 1 depicts a high level overview of the Watson-inspired evidence scoring
component as well as the information available to the case-based reasoning sys-
tem. Immediately to the right of the “Watson-inspired Component” are the evi-
dence scorers, denoted as the functions ES1(Gi, S), ES2(Gi, S), . . . ESN (Gi, S).
Each evidence scorer is invoked for every goal, resulting in N ∗M intermedi-
ate scores denoted by G1,E1 . . .GM,E1 , G1,E2 , . . .GM,E2 , G1,EN . . .GM,EN . These
intermediate scores are then aggregated to produce a single score, one for each
goal, denoted by the G1 . . . GM scores. The goal with the highest aggregate score
is chosen.The evidence scoring functions each take an additional argument, S,
representing features from the current game state from Wargus. The case-base
of the case-based reasoning component is shown in the lower right. The area
within the double line represents all of the information available to be stored in
each new case. Our case-based reasoning system records features from the game
state, the highest scoring goal, and the score.

4 A CBR System for Goal Scoring

We now present a detailed walk-through of a system that implements the ideas
discussed in the previous section. A goal is a task we want to achieve. Akin to [1],
in our implementation we assume there is one way to achieve a goal. However,
our ideas are amenable to situations in which there is more than one way to
achieve a goal. Table 1 shows the goals used in our implementation. These are
high level goals that require multiple actions in order to be achieved.

The baseline evidence scoring component that chooses goals within Wargus
uses three specific evidence scoring functions, described in Table 2. Each of these
evidence scorers produce a score based on specific features of the current game
state and a goal. Designing evidence scorers can require significant knowledge

Case-Based Goal Selection Inspired by IBM’s Watson 33

Fig. 1. Cases built from observing Watson-inspired evidence scoring component

engineering. Every instance of the evidence scoring system selecting a goal, a
new case 〈map features,goal,score〉 is created that is then used in the case-based
goal selection component.

We now walk through an example taking place using the scenario in Figure
2. In this scenario, the darker tiles are water and inaccessible by land units,
and the lighter tiles are land tiles. In our experiments, goals were selected at
the beginning of a scenario and their corresponding strategy was continuously
executed. An agent playing full RTS games would encounter many such scenarios.
In a GDA agent, components related to acting on discrepancies would determine
when new goals were chosen. We take the perspective that new goals would only
be chosen at the start of each micro-battle similar to those depicted in these
scenarios.

4.1 Evidence Scoring System

When each game starts, the evidence scoring component will first calculate inter-
mediate scores for each goal by invoking each evidence scorer on each goal. (Refer
back to Figure 1, the intermediate scores are G1,E1 . . .GM,E1 , G1,E2 , . . .GM,E2 ,
G1,EN . . . GM,EN). With M = 7 goals and N = 3 evidence scorers, N ∗M = 21
intermediate scores produced. It is important that the evidence scorers only score

34 D. Dannenhauer and H. Muñoz-Avila

Table 1. Summary of Goals in Wargus

Goal # Goal Name Strategy to Achieve Goal

1 High Range
Attack ranged enemy units first before attacking
melee units

2 Passive

All units hold position and only attack if enemy
units enter within attacking range. Units remain
in position, even when engaged. This means melee
units will not be able to attack ranged units unless
ranged units are directly adjacent to the melee
unit.

3 Ranged Passive
Only ranged units hold their ground, any melee
units attack the closest enemy and will move to
engage the enemy.

4 Half Ranged Passive
A randomly chosen group of half of the ranged
units hold their ground. The remaining units at-
tack the closest enemy and will move to engage.

5 Closest Distance All units attack the unit closest to them.

6 Spread Out
Units attack-move* into a grid formation such
that there is 1 tile of space between them and
the next closest friendly unit.

7 Huddle

Calculate the center of mass of the army and order
all units to attack-move* to this position. This
results in a tightly packed, constantly shifting blob
where all units attempt to occupy the center tile.

* attack-move is a Wargus game command that orders units to move to a specific
location. Unlike the move command, units commanded to attack-move will pursue
and attack any enemy that comes into their line of sight at any time.

goals that have supporting evidence. When no supporting evidence exists, the
evidence scorer returns a value of zero. For the sake of space, we only show the in-
termediate scores that are not zero in Table 3. Observe that the goal Half Ranged
Passive was scored by two evidence scorers, but because Huddle was scored so
highly by a single evidence scorer, and we do not weight intermediate scores,
Huddle obtains the highest aggregated score. In our implementation, evidence
scorers produced scores between 0 and 7. Assigning weights to different evidence
scorers is another place where knowledge engineering is required (although ma-
chine learning can be used to figure out how to best combine intermediate scores
- IBM’s Watson made heavy use of machine learning to combine the thousands
of intermediate scores that were produced by thousands of evidence scorers over
hundreds of answers. See [19] for more details.).

The Army Distance evidence scorer calculated that the distance between each
army in this scenario was relatively far, and therefore gave a score of 5 to the
Closest Distance goal (Table 3). The Army Distance evidence scorer produced
zeros for all other goals, indicating it did not think the current game state
provided any evidence to choose a goal when taking into account the distance
between opposing units.

Case-Based Goal Selection Inspired by IBM’s Watson 35

Table 2. Summary of Evidence Scorers in Wargus

#
Evidence Scorer
Name

Function

1 Army Distance

Finds the single minimum distance of all distances
between each friendly unit and the closest enemy
unit. Goals are scored based on this distance. Dis-
tance is calculated between each units location us-
ing the formula:

√
(x2 − x1)2 + (y2 − y1)2

2 Ratio Water to Land

Draws a straight line between each of friendly unit
and the closest enemy unit, and counts all tiles
touching this line, recording if each tile is a water
tile or land tile. If the ratio of water to land is
high, that indicates there is a greater chance of a
choke point between the two armies. Scores goals
based on this ratio of water to land tiles between
the opposing forces.

3 Ratio Ranged to Melee
Calculates the ratio of ranged units to melee units.
Scores goals based on the this ratio.

The Ratio Ranged to Melee evidence scorer gave a low score of 1 to goals
Passive, Ranged Passive, and Half Ranged Passive, indicating that given the
current number of ranged and melee units, it would be slightly advantageous
for ranged units to hold position. When there are no ranged units, this evidence
scorer produces a score of all zeros for every goal. This evidence scorer also
produced a high score of 7 for Huddle, indicating that whenever there is a low
ratio of ranged to melee units, Huddle is a strong goal. The intuition is that
by huddling the army, the chances of surrounding ranged units by melee units
increases and would result in ranged units having greater chances of survival
and increased damage output. In our implementation, Ratio Ranged to Melee
chose Huddle over Spread Out when the ratio of melee units to ranged is greater
than 1.

The Ratio Water to Land evidence scorer detects a low ratio of water to land
tiles in between the enemy armies, suggesting that there is a wide chokepoint, in
which case it is somewhat advantageous to keep half of the ranged units holding
position. Thus, this evidence scorer produces a score of 4 for the HalfRangedPas-
sive goal. For more narrow chokepoints, it would rate Ranged Passive or Passive
higher, with the intuition being that the more narrow the chokepoint, the more
ranged units should hold their ground on the opening of the chokepoint.

It is easy to see that the Huddle goal is the highest ranked goal when the
intermediate scores for each goal are aggregated. At this point the evidence
scoring system executes the Huddle goal and the goal selection process finishes.

4.2 Case-Based Goal Selection Component Example

The case base is populated with each instance of the evidence scoring system
selecting a goal. The case-based system performs on each scenario only after a

36 D. Dannenhauer and H. Muñoz-Avila

Table 3. Intermediate Scores for each goal

Evidence Scorer Goal Score

Army Distance ClosestDistance 5

Ratio Ranged to Melee Passive 1

Ratio Ranged to Melee RangedPassive 1

Ratio Ranged to Melee HalfRangedPassive 1

Ratio Ranged to Melee Huddle 7

Ratio Water to Land HalfRangedPassive 4

Fig. 2. Screenshot of the Example Scenario

sufficient number of cases are constructed from observing the evidence scoring
system in action. At the start of the scenario, the case-based system obtains
game state information, specifically the number of water and land tiles and the
numbers of each type of unit (however, much more information could be used,
such as the locations of each unit). In the scenario in Figure 2, it counted 6, 4, 12
for ballista’s, rangers, and footmen respectively and 129 and 895 water and land
tiles specifically (Figure 2 shows only the main part of the scenario; some wa-
ter and land tiles are not shown). The case-based system uses a straightforward
similarity function shown in Figure 3 whereWTci and LTci represent the number

Case-Based Goal Selection Inspired by IBM’s Watson 37

sim(c1, c2) = 1−
(
1

4

)
WTc1 −WTc2

WTmax
−

(
1

4

)
LTc1 − LTc2

LTmax
−

(
1

2

) K∑
i=1

(
1

K

)
Ui,c1 − Ui,c2

Umax

Fig. 3. CBR Similarity Function

of water tiles and land tiles for case ci, respectively, and Ui,ci represents the
number of units of type i found in case ci. WTmax and LTmax are the maximum
number of water and land tiles of any scenario. K is the number of different
types of units in each team.

In one of our experiments, for this scenario, the case-based reasoning system
retrieved a very similar case where the number of ballistas and rangers differed by
2 and 8 respectively (the number of land and water tiles remained the same). In
the retrieved case, the evidence scoring system had chosen the goal Spread Out
instead of Huddle. Surprisingly, Spread Out ended up being a slightly better goal
than Huddle. While the case-based reasoning system was incorrect in choosing
the same goal as the evidence scoring system, it actually ended up performing
better. This is the result of two important considerations. First, the evidence
scoring system is not perfect, and would need machine learning techniques such
as ensemble methods [21] to learn the appropriate weights to achieve a very high
accuracy (as well as a proper set of evidence scorers). One reason DeepQA is
attributed to the success of IBM’s Watson is the ease in which different answer
scorers could be experimented with. Described as a process like a running trial
and error, the sets of evidence scorers that performed increasingly well were
kept and continuously revised [19]. Both the set of evidence scorers and the
corresponding weights play a significant role. Second, the strategies to achieve
different goals in Wargus have varied performance and often pursuing multiple
goals results in decent performance in some scenarios. This is much different
from Jeopardy!, where it is rare for more than one answer to be correct.

5 Experiments

Our hypothesis is that a case-based reasoning system that is able to observe an
evidence-scoring system can learn to accurately choose the same goals, given a
sufficiently large and comprehensive case base. Additionally we hypothesize that
the case-based reasoning system can perform close to the performance of the
evidence-scoring system. While the case-based reasoning system may choose a
different goal than the evidence scoring system, resulting in lower accuracy for
the first hypothesis, it may still be a fairly good goal (perhaps even better), and
therefore result in relatively good performance to that of the evidence scoring
system.

38 D. Dannenhauer and H. Muñoz-Avila

In order to test both hypotheses, we hand crafted 48 unique scenarios for the
goal-selection systems. Each scenario was one of 6 unique terrain layouts, 2 of
which were pure land maps (no water tiles) and 4 of which had varying amounts
of water tiles. For each of the 6 unique terrain maps, 8 different configurations
of number of units and unit types were created. The configurations of units
was either all melee, melee outnumbering ranged, ranged outnumbering melee,
or all ranged. For each of these four relative unit configurations, two different
maps were created, differing slightly. For all 8 variations for each unique terrain
map, the locations of units were kept approximately the same. Every scenario
was symmetrical about the terrain and units, except for 1 scenario in which
one team surrounded another. Both goal systems faced the same opponent im-
plemented by the strategy achieving the goal Closest Distance. This is the most
general strategy and generally performed well in every scenario. For every match
(scenario) the system played on either side and the resulting score is the average
difference in scores from both runs. The score in Wargus is calculated by adding
the score for every enemy unit you defeat, with different units being worth dif-
ferent point values. For example, rangers are worth 70 points and ballistas are
worth 100. So if both teams score 1000, it means they each killed 1000 points
worth of units on the opposing team, resulting in a tie.

5 10 15 20 25 30 35 40
Case Base Size

0

20

40

60

80

100

A
v
e
ra

g
e
 A

c
c
u
ra

c
y

Avg Accuracy per Case-base Size

Fig. 4. Accuracy per Case-base Size

1 2 3 4 5 6 7
Goal

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

%
 C

h
o
s
e
n

Distribution of Goals Chosen by Evidence Scoring System

Fig. 5. Goal Selection Distribution

5.1 Results

The first graph, Figure 4, shows the accuracy of the case-based system against
the evidence-based system. We ran the evidence scoring system on each of the
48 scenarios, and recorded the goals chosen. Next, we randomly picked X cases
(where X varied from 5 to 40 by intervals of 5) from those 48 scenarios to use
as cases in the case base. Each case only recorded the game state features and
final goal chosen by the evidence scoring system. Each data point is the result
of the average of 5 rounds, where each round consisted of randomly picking a
case base of size X and recording the accuracy of choosing the same goal as the
evidence scoring system on the remaining scenarios. For example, using a case
base of size 15, the testing set was of size 48− 15 = 33 scenarios.

Case-Based Goal Selection Inspired by IBM’s Watson 39

A random system would choose the correct goal once out of seven times,
roughly 14% shown by the straight line in Figure 4. The first case base of size
5 exceeds random goal selection, and this is partly due to obtaining a diverse
case base and to the distribution over the goals chosen by the evidence scoring
system shown in Figure 5. Because goals 5, 6, and 7 were chosen much more
often by the evidence scoring system, if the case base of size 5 contained cases
where goals 5 and 6 were chosen, it would likely score highly in the remaining
scenarios. Only if the case base consisted of mostly goals 2, 3 or 4 would the
performance be near or worse than random. This distribution of goals in Figure
5 is also the reason for the dip in accuracy for case base of size 5. Depending on
what scenario’s were chosen in the case base, the range of the accuracy is quite
large. The important result from Figure 4 is that the case base system becomes
more accurate with more cases in the case base, and approaches 70% accuracy.

The following graphs, Figures 6 to 9, show the average performance of the
case-based reasoning system compared to the evidence scoring system. Each
bar represents the difference in score of the goal selection system against the
opponent (the strategy for Closest Distance). These results are broken into 4
different figures to allow for closer inspection. Each graph depicts the difference
in scores for 12 scenarios. For each scenario, the first bar is the evidence scoring
system, the second is the case-based system with a case base of 5 cases, the third
bar is the case based system using a case base of 10 cases, etc until the last bar is
the case base containing 40 cases. The angled lines above or below each set of bars
for each scenario help display the difference from the evidence scoring system and
the last case based system. A angle with an end point higher than the starting
point represents the case based system outperforming the evidence based system
(example is scenario 31) and vice versa. Whenever the goal selection system tied
with the opponent (each army defeated the other) the difference in scores is
0, and no bar is shown. Generally, we expect to see that the evidence-scoring
system scores relatively highly (the first bar should be a high positive value),
and the case-based systems progressively get closer and closer to the evidence
scoring system score. We see this happen approximately in Figure 6 for scenarios
1, 2, 5, 11, and 12, Figure 7 for scenarios 15 and 16, Figure 8 for scenarios 26, 28,
31, 34, and 35 and in Figure 9 scenarios 38, 40, 44, 46, 47, and 48. Even when
the evidence scoring system performs poorly (shown by negative bars) the case-
based system approximates it. Also, notice that in Figure 7 the last 8 scenario’s
are almost all blank (the lone vertical bar in them is the case-based system
of size 5). This is because the evidence based system and case-based system
(except for case base size of 5 in some instances) chose the same goal as the
opponent, Closest Distance, and resulted in tied games, and further shows that
the case-based system performs approximately as well as the evidence scoring
system, despite only achieving a 70% accuracy in pure goal selection. For 70% of
the scenarios, when the case base had the most cases, the case-based prediction
system had the same or better performance than the evidence scoring system.

40 D. Dannenhauer and H. Muñoz-Avila

1 2 3 4 5 6 7 8 9 10 11 12

Scenario

500

0

500

1000

1500

D
if
fe

re
n
ce

 in
 S

co
re

Fig. 6. Average Performance in Each Scenario (1 to 12)

13 14 15 16 17 18 19 20 21 22 23 24

Scenario

1000

500

0

500

1000

1500

D
if
fe

re
n
ce

 in
 S

co
re

Fig. 7. Average Performance in Each Scenario (13 to 24)

25 26 27 28 29 30 31 32 33 34 35 36

Scenario

1000

500

0

500

1000

1500

D
if
fe

re
n
ce

 in
 S

co
re

Fig. 8. Average Performance in Each Scenario (25 to 36)

37 38 39 40 41 42 43 44 45 46 47 48

Scenario

1000

500

0

500

D
if
fe

re
n
ce

 in
 S

co
re

Fig. 9. Average Performance in Each Scenario (37 to 48)

Case-Based Goal Selection Inspired by IBM’s Watson 41

When running these experiments, occasionally matches would fail for seem-
ingly no reason, but in a deterministic manner. We ran 336 unique match ups
(goal strategy and unique scenario), and only 9 of these failed before the game
finished. However, 3 of these failed with only 1 unit left on one team and at
least 4 units alive on the other team. For these 3, we calculated the worth of
the single unit and assumed it would have been killed, and manually adjusted
the winning team’s score appropriately. For the remaining 6 failed matches, we
re-ran the match until right before it crashed, recorded the score and the loca-
tions of each of the remaining units on each team. We then reconstructed a new
match exactly as it was left off, ran it, and added the score to the match before
it failed. Because there is no way to start a Wargus match so that units have less
than maximum health, there was some information loss, but because this only
occurred on 6 out of the 336 matches the overall results were not significantly
affected.

6 Related Work

We discussed IBM Watson in Section 2. Here, we discuss other related works. As
previously mentioned our objective is to embed these goal selection techniques
into GDA agents. GDA agents select their goals based on the explanation of a
discrepancy. A number of techniques have been suggested for goal selection in
GDA research. These include using rules that map the explanation to the goal to
pursue next [11, 14]. A more common technique is to rank the goals according to
priority lists (i.e., the goals having higher priorities are more likely to be selected
than goals that have a lower priority) (e.g., [10]). We believe that using priority
lists is a natural way to integrate our work with GDA; since each goal will be
assigned a score, these scores can be used to update the priorities in the list.
Mechanisms will be needed to merge the priorities suggested by GDA with the
scoring suggested by the CBR system.

Outside of GDA research, goal selection has been a recurrent topic in planning
research [8]. Typically, the higher level goals to achieve are fixed and the problem
is to select subgoals that achieve those goals. Research has been done to relax the
requirement that the goals are fixed; over-subscription planning aims at finding
the maximal subset of the goals that can be achieved [12]. In principle, the user
could input a large set of possible goals and let the system figure out which
subset of these goals can be achieved in the given situation.

Wargus has been extensively used as a testbed in case-based reasoning re-
search. Among many others, Mehta et al. (2009) used case-based learning tech-
niques to learn from failure patterns in a Wargus game trace [9]. It has also been
used to retrieve cases aimed to counter an adversary [4] and to evaluate online
case-based adaptation algorithms [3]. Outside of CBR, Wargus has been used
to demonstrate concurrent reinforcement learning techniques [5] and to acquire
playing strategies using evolutionary computation among many others [2]. A
common motivation among these works for using Wargus is that it provides a
rich environment for decision making. This is precisely the motivation for using

42 D. Dannenhauer and H. Muñoz-Avila

Wargus in our work as we want to test the goal selection mechanism and observe
how it affects this environment.

7 Conclusions and Future Work

IBM’s Watson demonstrated the effectiveness of using a variety of evidence scor-
ers to rank potential answers. However, one of the biggest issues is the knowledge
engineering burden to create the ranking algorithms. In this paper we explored
a CBR solution to an instance of this problem in which episodic knowledge of
the form 〈gamestate features, goal, scores〉 are retained and reused. We tested
our ideas in the Wargus RTS game using a hand-crafted evidence scoring sys-
tem inspired from IBM’s Watson as our baseline. We use this baseline system to
generate cases that are fed into a CBR system. Our experiments demonstrated
that the CBR system can attain comparable performance to the baseline system
after sufficient cases have been retained in the case base.

For future research directions we wish to explore a number of ideas. (1) Given
the independent nature of evidence scorers, we would like to explore running
more complex and potentially computationally expensive evidence scorers in
parallel. (2) We will like to use ensemble methods [21] to aggregate the individual
information from the scoring algorithms. The tuning of this feature can lead to
significant performance improvements. (3) We will like to study the use of an
adaptation algorithm, where there can be multiple alternative ways to take the
k-retrieved cases and select goals (such as taking into account the intermediate
scores from the evidence scorers). These alternative ways could be ranked using
techniques such as the ones shown in this paper.

Acknowledgments. We would like to thank David W. Aha (Naval Research
Laboratory) for suggesting the idea of using IBM Watson in the context of goal-
driven autonomy research. We would also like to thank Ulit Jaidee for his code
used to run automated experiments in Wargus. This research is funded in part
by NSF 1217888.

References

1. Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Learning and Reusing Goal-Specific Poli-
cies for Goal-Driven Autonomy. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012.
LNCS, vol. 7466, pp. 182–195. Springer, Heidelberg (2012)

2. Ponsen, M., Muñoz-Avila, H., Spronck, P., Aha, D.: Automatically Acquiring Do-
main Knowledge For Adaptive Game AI Using Evolutionary Learning. In: Proceed-
ings of the Seventeenth Innovative Applications of Artificial Intelligence Conference
(IAAI 2005). AAAI Press (2005)

3. Sugandh, S., Ontañón, S., Ram, A.: On-Line Case-Based Plan Adaptation for
Real-Time Strategy Games. In: Proceedings of the AAAI Conference (AAAI 2008).
AAAI Press (2008)

Case-Based Goal Selection Inspired by IBM’s Watson 43

4. Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection
in a real-time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005.
LNCS (LNAI), vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

5. Marthi, B., Russell, S., Latham, D., Guestrin, C.: Concurrent hierarchical reinforce-
ment learning. In: International Joint Conference of Artificial Intelligence (IJCAI
2005). AAAI Press (2005)

6. Ontañón, S.: Case Acquisition Strategies for Case-Based Reasoning in Real-Time
Strategy Games. In: FLAIRS 2012. AAAI Press (2012)

7. Ontañón, S., Mishra, K., Sugandh, N., Ram, A.: Case-Based Planning and Execu-
tion for Real-Time Strategy Games. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626, pp. 164–178. Springer, Heidelberg (2007)

8. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann (2004)

9. Mehta, M., Ontañón, S., Ram, A.: Using Meta-reasoning to Improve the Perfor-
mance of Case-Based Planning. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009.
LNCS, vol. 5650, pp. 210–224. Springer, Heidelberg (2009)

10. Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a Navy strategy
simulation. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence. AAAI Press, Atlanta (2010)

11. Cox, M.T.: Perpetual self-aware cognitive agents. AI Magazine 28(1), 23–45 (2007)
12. van den Briel, M., Sanchez Nigenda, R., Do, M.B., Kambhampati, S.: Effective

approaches for partial satisfaction (over-subscription) planning. In: Proceedings of
the Nineteenth National Conference on Artificial Intelligence, pp. 562–569. AAAI
Press, San Jose (2004)

13. Powell, J., Molineaux, M., Aha, D.W.: Active and interactive discovery of goal se-
lection knowledge. In: To Appear in Proceedings of the Twenty-Fourth Conference
of the Florida AI Research Society. AAAI Press, West Palm Beach (2011)

14. Muñoz-Avila, H., Jaidee, U., Aha, D.W., Carter, E.: Goal-Driven Autonomy with
Case-Based Reasoning. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 228–241. Springer, Heidelberg (2010)

15. Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Integrated learning for goal-driven au-
tonomy. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, vol. 3. AAAI Press (2011)

16. Ferrucci, D.A.: Introduction to This is Watson. IBM Journal of Research and
Development 56(3.4), 1 (2012)

17. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally,
A., Murdock, J.W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: BBuilding
Watson: An Overview of the DeepQA Project. AI Mag. 31(3), 59–79 (2010)

18. Lally, A., Fodor, P.: Natural Language Processing With Prolog in the IBM Watson
System (retrieved June 15, 2011)

19. Gondek, D.C., et al.: A framework for merging and ranking of answers in DeepQA.
IBM Journal of Research and Development 56(3-4), 14:1–14:12 (2012)

20. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artificial Intelligence 57(2-3),
323–390 (1992)

21. Dietterich, T.G.: Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

22. Hunter, J.D.: Matplotlib: a 2D graphics environment. Computing in Science &
Engineering, 90–95 (2007)

Opinionated Product Recommendation

Ruihai Dong, Markus Schaal, Michael P. O’Mahony, Kevin McCarthy,
and Barry Smyth

CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics

University College Dublin, Ireland

Abstract. In this paper we describe a novel approach to case-based
product recommendation. It is novel because it does not leverage the
usual static, feature-based, purely similarity-driven approaches of tradi-
tional case-based recommenders. Instead we harness experiential cases,
which are automatically mined from user generated reviews, and we use
these as the basis for a form of recommendation that emphasises simi-
larity and sentiment. We test our approach in a realistic product recom-
mendation setting by using live-product data and user reviews.

1 Introduction

Recommendation services have long been an important feature of e-commerce
platforms, making automated product suggestions that match the learned pref-
erences of users. Ideas from case-based reasoning (CBR) can be readily found in
many of these services — so-called content-based (or case-based) recommenders
— which rely on the similarity between product queries and a database of product
cases (the case base). However, the relationship between CBR — which empha-
sises the reuse of experiences — and many of these ‘case-based’ recommenders
can be tenuous. For example, many case-based recommenders do borrow simi-
larity assessment techniques from CBR, as a basis for query-product similarity,
but the idea that product cases (which are typically static feature-based records)
are experiential is at best a stretch. Does this matter? After all such approaches
have met with considerable success and have proven to be useful in practical
settings. But how might we harness genuine experiential knowledge as part of a
case-based product recommender? This is the question that we address in this
paper. We do this by describing and evaluating a novel approach to product
recommendation that relies on product cases that are genuinely experiential in
nature as well as a unique approach to retrieval that is based on the combination
of feature similarity and user sentiment.

Consider the Fujifilm X100 camera. At the time of writing the product fea-
tures listed by Amazon cover technical details such as resolution (12.3 MP),
sensor-type (APS-C), aperture (f2), and price($1,079.00). These are the type of
features that one might expect to find in a conventional product recommender,
facilitating the recommendation of other products that share similar values for
these same features. The features are clearly few in number: this limits the scope

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 44–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Opinionated Product Recommendation 45

of assessing inter-product similarity at recommendation time. Moreover, features
are often technical in nature, so it can be difficult to judge the importance of fea-
ture similarities in any practical sense. Is a 13.3 MP camera more or less similar
to the X100 than a 11.3 MP alternative? However, the X100 has 149 reviews
which encode valuable insights into a great many features of the X100, from
its beautiful design to its quirky interface, and from its great picture quality
to the limitations of its idiosyncratic auto-focus or the lack of optical stabilisa-
tion. Clearly these features capture far more detail than the handful of technical
‘catalog’ features. The reviews also encode the opinions of users and as such
provide a subjective basis for comparison; all other things being equal, for ex-
ample, the “beautiful retro design” of the X100 certainly beats another camera
suffering from “terrible design”. A key idea of this work is that we can mine
these opinion-rich features directly from user-generated reviews and use them as
detailed experiential product cases to provide a basis for recommendation.

The key contributions of this work are three-fold. Firstly, we describe how
product features can be automatically mined from the plentiful user-generated
reviews on sites like Amazon.com and TripAdvisor etc. These features are aggre-
gated at the product-level to produce product cases. Secondly, we explain how
these product features can be associated with sentiment information to reflect
the opinions of reviewers, whether positive, negative, or neutral. The resulting
product cases are thus genuinely experiential in nature, in the sense that they
are based wholly on the opinions and experiences of the users of these products.
Thirdly, we describe a novel approach to “more-like-this” style recommenda-
tions that are based on a combination of similarity and sentiment, to prioritise
products that are similar to, but better than, a given target (query) product.

2 Related Work

Recent research highlights how online product reviews have a significant influ-
ence on the purchasing behavior of users; see [1–3].To cope with growing re-
view volume retailers and researchers have explored different ways to help users
find high quality reviews and avoid malicious or biased reviews. This has led
to a body of research focused on classifying or predicting review helpfulness.
For example [4–7] have all explored different approaches for extracting features
from user-generated reviews in order to build classifiers to identify helpful ver-
sus unhelpful reviews as the basis for a number of review ranking and filtering
strategies.

It is becoming increasingly important to weed out malicious or biased re-
views, so-called review spam. Such reviews can be well written and so appear
to be superficially helpful. However reviews of this nature often adopt a biased
perspective that is designed to help or hinder sales of the target product [8]. For
example, Li et al. describe an approach to spam detection that is enhanced by
information about the identity of the spammer as part of a two-tier, co-learning
approach [9]. O’Callaghan et al. use network analysis techniques to identify re-
curring spam in user generated comments associated with YouTube videos by
identifying discriminating comment motifs that are indicative of spambots [10].

46 R. Dong et al.

In this work we are also interested in mining useful information from reviews
and employ related feature extraction and opinion mining techniques to the
above. However, our aim is to use this information to build novel product case
descriptions that can be used for recommendation rather than review filtering or
classification. As such our work can be framed in the context of past approaches
for case-based product recommendation including conversational recommenders
[11] and critiquing-based techniques [12], for example. For the most part, such
past approaches are unified by their use of static case descriptions based around
technical features. It is not the type of case representation that is situated in
any experiential setting. In contrast the cases that we produce from reviews
are experiential: they are formed from the product features that users discuss
in their reviews and these features are linked to the opinions of these users.
Past approaches also rely (usually exclusively) on query-case similarity as the
primary recommendation ranking metric. In this work, while acknowledging that
query similarity is an important way to anchor recommendations, we argue the
importance of looking for cases that also differ from the query case, at least in
terms of the opinions of users at the feature level; see also [13]. We recommend
cases that are similar to the query but preferred by end users.

3 Recommending Experiential Product Cases

A summary of our overall approach is presented in Figure 1. Briefly, a case for
a product P is made up of a set of product features and their sentiment scores
mined from Reviews(P), the set of reviews written for product P . The sentiment
of each feature is evaluated at the review-level first and then aggregated at the
case-level as an overall sentiment score for that feature. At recommendation time
suitable cases are retrieved and ranked based on their similarity and sentiment
with respect to a given query case Q.

3.1 Extracting Review Features

When it comes to extracting features from reviews for a particular product
category (for example, Laptops, Tablets), we consider two basic types of features
— bi-gram features and single-noun features. We use a combination of shallow
NLP and statistical methods, by combining ideas from Hu and Liu [14] and
Justeson and Katz [15]. To produce a set of bi-gram features we look for bi-grams
in the review cases which conform to one of two basic part-of-speech co-location
patterns: (1) an adjective followed by a noun (AN) such as wide angle; and (2) a
noun followed by a noun (NN) such as video mode. These are candidate features
but need to be filtered to avoid including AN ’s that are actually opinionated
single-noun features; for example, great flash is a single-noun feature (flash) and
not a bi-gram feature. To do this we exclude bi-grams whose adjective is found to
be a sentiment word (for example, excellent, great, terrible, horrible etc.) using
Hu and Liu’s sentiment lexicon [16].

To identify single-noun features we extract a candidate set of nouns from the
reviews. Often these candidates will not make for good case features however; for

Opinionated Product Recommendation 47

The Fuji X100 is a great camera. It looks beautiful and takes great quality images.

I have found the battery life to be superb during normal use. I only seem to charge

after well over 1000 shots. The build quality is excellent and it is a joy to hold.

The camera is not without its quirks however and it does take some getting used to.

The auto focus can be slow to catch, for example. So it's not so good for action shots

but it does take great portraits and its night shooting is excellent.

great camera. great camera. great quality images.g

 build quality is excellent ae build quality is excellent a

great portraits agreat portraits a night shooting is excellent.n

camera is not without its quirks camera is not without its quirks

not so good for action shotsauto focus can be slow auto focus can be slow

battery life to be superb dbattery life to be superb d

The Fuji X100 is a great camera. It looks beautiful and takes great quality images.

I have found the battery life to be superb during normal use. I only seem to charge

after well over 1000 shots. The build quality is excellent and it is a joy to hold.

The camera is not without its quirks however and it does take some getting used to.

The auto focus can be slow to catch, for example. So it's not so good for action shots

but it does take great portraits and its night shooting is excellent.

great camera. great camera. great quality images.g

 build quality is excellent ae build quality is excellent a

great portraits agreat portraits a night shooting is excellent.

camera is not without its quirks camera is not without its quirks

not so good for action shotsauto focus can be slow auto focus can be slow

battery life to be superb dbattery life to be superb d

The Fuji X100 is a great camera. It looks beautiful and takes great quality images.

I have found the battery life to be superb during normal use. I only seem to charge

after well over 1000 shots. The build quality is excellent and it is a joy to hold.

The camera is not without its quirks however and it does take some getting used to.

The auto focus can be slow to catch, for example. So it's not so good for action shots

but it does take great portraits and its night shooting is excellent.

great camera. great camera. great quality images.g

 build quality is excellent ae build quality is excellent a

great portraits agreat portraits a night shooting is excellent.n

camera is not without its quirks camera is not without its quirks

not so good for action shotsauto focus can be slow auto focus can be slow

battery life to be superb dbattery life to be superb d

Reviews(P)

Recommended Cases

Retrieval Ranking

F
ea

tu
re

 E
xt

ra
ct

io
n

S
en

tim
en

t A
na

ly
si

s

Case Base
Query

Fig. 1. An overview of how we mine user-generated reviews to create experiential
product case bases for sentiment-based recommendation

example, they might include words like family or day or vacation which do not
relate to product features. Hu and Liu [16] propose a solution to validate such
features by eliminating those that are rarely associated with opinionated words.
The intuition is that nouns that frequently co-occur with opinion laden words in
reviews are likely to be relevant product features. We calculate how frequently
each feature co-occurs with a sentiment word in the same sentence (again, as
above, we use Hu and Liu’s sentiment lexicon [16]), and retain a single-noun
only if its frequency is greater than some threshold (in this case 70%).

This produces a set of bi-gram and single-noun features which we filter based
on their frequency of occurrence, keeping only those features that occur in at
least k of the s reviews; in this case, for bi-gram features we set kbg = s/20 and
for single noun features we set ksn = 10 × kbg, where s is the total number of
reviews for a category.

3.2 Evaluating Feature Sentiment

For each feature we evaluate its sentiment based on the sentence containing the
feature. We use a modified version of the opinion pattern mining technique pro-
posed by Moghaddam and Ester [17] for extracting opinions from unstructured
product reviews. Once again we use Hu and Liu’s sentiment lexicon as the basis
for this analysis. For a given feature Fi and corresponding review sentence Sj

from review Rk, we determine whether there are any sentiment words in Sj. If
there are not then this feature is marked as neutral, from a sentiment perspec-
tive. If there are sentiment words then we identify the word wmin which has the
minimum word-distance to Fi.

Next we determine the part-of-speech (POS) tags for wmin, Fi and any words
that occur between wmin and Fi. The POS sequence corresponds to an opinion
pattern. For example, in the case of the bi-gram feature noise reduction and the

48 R. Dong et al.

review sentence, “...this camera has great noise reduction...” then wmin is the
word “great” which corresponds to an opinion pattern of JJ-FEATURE as per
Moghaddam and Ester [17]. After a complete pass of all features through all
reviews we can compute the frequency of all opinion patterns that have been
recorded. A pattern is deemed to be valid (from the perspective of our ability to
assign sentiment) if it occurs more than the average number of times. For valid
patterns we assign sentiment to Fi based on the sentiment of wmin and subject
to whether Sj contains any negation terms within a 4-word-distance of wmin.
If there are no such negation terms then the sentiment assigned to Fi in Sj is
that of the sentiment word in the sentiment lexicon. Otherwise this sentiment is
reversed. If an opinion pattern is deemed not to be valid (based on its frequency)
then we assign a neutral sentiment to each of its occurrences within the review
set.

3.3 Generating Experiential Cases

For each review Ri the above methods generate a set of valid features F1, ..., Fmi

and their associated sentiment scores positive, negative, or neutral. We can
now construct experiential product cases in a straightforward fashion, as a set of
product features paired with corresponding sentiment scores as per Equation 1.

Case(P) = {(Fj , Sentiment(Fj, P)) : Fj ∈ Features(P)} (1)

The case features (Features(P)) for a product P are the union of the valid
features extracted from its reviews. Each of these features may be present in a
number of P ’s reviews and with different sentiment scores. To assign a sentiment
score to a feature at the case-level we aggregate the individual review-based
sentiment scores according to Equation 2, where Pos(Fj , P) is the number of
positive sentiment instances of Fj among the reviews of product P , and likewise
for Neg(Fj, P) and Neutral(Fj, P). Thus, Sentiment(Fj, P) will return a value
between -1 (negative sentiment) and +1 (positive sentiment). For example, one
of the features extracted for the X100 camera mentioned earlier is its lens quality
which is invariably mentioned in a positive fashion across many reviews. As such
its overall sentiment score is 0.72 (25 positive mentions, 5 neutral mentions, and
only 2 negative mentions).

Sentiment(Fj, P) =
Pos(Fj , P)−Neg(Fj, P)

Pos(Fj , P) +Neg(Fj, P) +Neutral(Fj , P)
(2)

3.4 From Case Retrieval to Sentiment-Enhanced Recommendation

Now that we have a case base of experiential cases we can describe our approach
to recommendation. First it is worth stressing again that, unlike many more
conventional approaches to product recommendation, these experiential cases
do not have a fixed set of shared static features. Instead each case is represented
by its own (possibly unique) set of features, mined from its own product reviews.

Opinionated Product Recommendation 49

We must ensure some minimal set of shared features between cases to serve as
the basis for comparison. First we define k-comparability as a boolean property
of two cases Pu and Pv which is true if and only if Pu and Pv share at least k
features. During retrieval we only consider cases that are at least k-comparable
(have at least k features in common) with the target query case Q; see Equation
3, where CB denotes the case base of all product cases.

Retrievek(Q) = {P ∈ CB : k − comparable(Q,P)} (3)

In a conventional product recommender system, we would likely rank these cases
in decreasing similarity to the query case, for some suitable similarity metric (for
example, Jaccard or Cosine similarity). However, we adopt a very different ap-
proach in this work. Remember that the values of our case features are sentiment
scores; that is, overall judgements by real users about how good or bad a given
feature is. It stands to reason that we would like to rank cases according to how
much better their respective feature scores are compared to the query case. If
the query case has a sentiment score of 0.5 for lens quality then we would surely
prefer to rank another case with a score of 0.8 for lens quality ahead of a case
with a lens quality of score 0.6, all other things being equal, and even though the
latter case has a more similar lens quality sentiment score than the former case
compared to the query. Thus, cases that have a better sentiment score across
their shared features (Features(Q) ∩ Features(C)) should be preferred.

better(F,Q, P) =
Sentiment(F, P)− Sentiment(F,Q)

2
(4)

Better(Q,P) =

∑
∀F∈Features(Q)∩Features(P) better(F,Q, P)

|Features(Q) ∩ Features(P)| (5)

We compute a better score between the sentiment for a feature F in a query
Q and a retrieved case P ; see Equation 4. This returns a value from -1 (the
sentiment for F in Q is better than in P) to +1 (the sentiment for F in P
is better than in Q). Then we calculate a Better score at the case-level as the
average better scores for the features shared between Q and P ; see Equation 5.

Thus, for a given query case we first retrieve a set of k-comparable cases for a
suitable value of k (k = 15 in this work) and then these cases are ranked in terms
of the degree to which their sentiment scores are better over the shared features in
the query case. We then return the top n ranked products as recommendations.

4 Evaluation

In this section we test how well this experience-based product recommendation
works in practice. We do this by using a large corpus of more than 12,000 product
reviews for about 1,000 consumer electronic products, ultimately comparing the
performance of our sentiment-based recommendation to a more conventional
recommendation approach using a reliable and objective ground-truth.

50 R. Dong et al.

4.1 Data Sets and Setup

The review data for this experiment was extracted from Amazon.com during
October 2012. We focused on 3 different product categories: GPS Devices, Lap-
tops, Tablets. For the purpose of our experiments, we filtered for products with
10 or more reviews. Table 1 shows the number of products and reviews in the
raw data, and the number of products with at least 10 reviews, per product
category. Each of these 3 product categories is turned into a product case base
using the approach described previously, and Table 1 also shows the mean and
standard deviation of the number of features extracted per product type.

Table 1. Evaluation of product categories and case bases

Category #Reviews #Prod. #Prod.(Filtered) # Features Mean (Std. Dev.)

GPS Devices 12,115 192 119 24.32 (10.82)

Laptops 12,431 785 314 28.60 (15.21)

Tablets 17,936 291 166 26.15 (10.48)

4.2 Feature Sparsity and Case k-Comparability

The statistics above suggest that cases are being generated with a rich set of
20-30 features. This bodes well but it is of limited use unless these features are
shared among the products in a case base. Small numbers of shared features
greatly restrict our ability to compare cases during retrieval and lead to the
type of sparsity problem that is common in collaborative filtering systems [18].

Fig. 2. The average percentage of cases with a minimum of k shared features with the
query case

To explore this we can examine the average size of the k-comparability sets,
as a percentage of case base size, for each product type across different levels of
k; see Figure 2. We can see that for k = 15, in all three case bases (Laptop, GPS
Devices, and Tablets) the average number of k-comparable cases is about 35%

Opinionated Product Recommendation 51

of all cases (approximately 109 Laptops, 41 GPS Devices, or 58 Tablets). This
is important for a few reasons. It helps to validate the type of features that we
are extracting from reviews. The fact that there are so many cases sharing at
least k features, even for relatively large values of k, means that we are extracting
features that are frequently recurring in product reviews. It also means that there
is no significant feature sparsity problem in any of the case bases examined. From
a recommendation standpoint this means that we are able to compare product
cases based on a rich set of shared features since it is now practical to set k to
be between 10 and 20, for example, in these case bases and to still ensure large
enough retrieval sets to form the basis for final recommendation.

4.3 Recommendation Quality as Sentiment Improvement

It is good that we are extracting many features from reviews and it is promising
that these features tend to recur across many case base products. But are these
features, and their associated sentiment scores, effective from a recommendation
perspective? Do they facilitate the recommendation of useful products? To test
this we consider a number of recommendation strategies as follows:

– Jaccard —cases are ranked based on a simple Jaccard metric (|Features(Q)∩
Features(C)|/|Features(Q)∪Features(C)|) over case features; that is, sen-
timent information is not used and cases are preferred if they share a higher
percentage of features with the query case.

– Cosine — cases are ranked based on a standard cosine similarity metric
calculated from the sentiment scores of shared features.

– Better — cases are ranked based on the Better metric described previously,
which prioritises cases that enjoy improved sentiment scores relative to the
query. Again, Better scores are calculated from shared features only.

Using a standard leave-one-out methodology, each one of these strategies pro-
duces a different ranking of retrieved cases. To evaluate the quality of these
rankings we consider two different types of ground-truth data: (1) relative sen-
timent and (2) independent product ratings.

Relative Sentiment. First, we can measure the relative improvement in the
sentiment of the recommended cases compared to the query case from the average
Better scores for the recommended products. Obviously this is biased towards
the Better technique because it uses this very metric to rank its own recommen-
dations. Nevertheless it provides a useful guide to understanding the extent to
which there is room to improve upon alternative strategies. The results are pre-
sented in Figure 3 as a graph of the averageBetter scores for recommended cases
for increasing large recommendation lists and for each of the recommendation
strategies above; we use a k-comparability threshold of k = 15. We can see that
there is a significant uplift in the relative sentiment of the Better recommenda-
tion lists, which is sustained, albeit decreasing, over all values of n. For instance,

52 R. Dong et al.

for Laptops we can see that for recommendation lists of size 3 the Better strat-
egy recommends cases that are more positively reviewed on average than the
query case (Better(Q,P) = 0.11). By comparison the cases recommended by
the Jaccard or Cosine strategies offer little or no sentiment improvement.

(a) GPS (b) Laptop

(c) Tablet

Fig. 3. Mean relative sentiment versus recommendation list size (k = 15)

Residual Sentiment. As an aside it is also worth considering the relative
sentiment of those features in the query case and the recommended cases that are
not among the k or more shared features. We can estimate a residual sentiment
score (RSS) for these features by subtracting the average sentiment score for
the residual query case features from the average sentiment score of each of
the recommended cases’ residual features, such that an RSS > 0 means that
the residual features of the recommended cases tend to be better than those
of the query case. These results are also shown in Figure 3 for each of the
recommendation strategies but using dashed lines. The RSS values tend to fall
close to zero in most scenarios especially for larger values of n, thereby indicating
that there is little lost sentiment due to these residual features. Nonetheless there
does appear to be some limited sacrifice associated with the Better strategy since
its RSS scores tend to be slightly less than 0 for the GPS product case base. In
general, however, this type of tradeoff seems justified given the much improved
sentiment scores of the shared features for the Better strategy.

Opinionated Product Recommendation 53

4.4 Recommendation Quality as Relative Ratings Differences

Obviously the above results are somewhat limited by the fact that our measure
of recommendation quality (sentiment improvement) is closely coupled to the
ranking metric used by the Better strategy. As an alternative, in this section we
consider our second ground-truth — the average user-provided product ratings
— as a truly independent measure of recommendation quality. In other words, we
can evaluate recommendation quality in terms of whether or not recommended
cases tend to attract higher overall product ratings than the query case. Rather
than report changes in product ratings directly we look at the rank improvement
of a recommended product relative to the query case with respect to the rating-
ordered list of products in the case base. In other words we rank all cases in a case
base by overall ratings score and then calculate the quality of a recommended
case in terms of its percentage rank difference to the query case. Thus if the query
case is ranked 50th in a case base of 100 products by rating and a recommended
case is ranked 25th then the relative rank improvement is +25%. We do this
because it provides a more consistent basis for comparison across different case
bases with different numbers of products and ratings distributions.

(a) GPS (b) Laptop

(c) Tablet

Fig. 4. Mean relative rank improvement versus recommendation list size(k = 15)

Relative Ratings Ranks. The results are presented in Figure 4 as the relative
rank difference (or improvement) versus n (for k = 15). These results demon-
strate a clear benefit to the Better strategy for all values of n and across all
product types. For example, for Laptops we can see that the Better strategy

54 R. Dong et al.

tends to recommend cases with a relative rank improvement of between 24%
(n = 1) and 13% (n = 10); given the 314 laptop cases this means that this
strategy is recommending cases that are, on average, up to 75 rank positions
better than the query case in terms of overall product rating (n = 1). This is
a significant improvement compared to the baseline strategies, which achieve a
rank improvement of only about 4% or 12-13 rank positions (Jaccard) and 9%
(or 28 rank positions) for Cosine. In other words for each recommendation cycle
the Better strategy is capable of suggesting new cases that are objectively bet-
ter than the current query case. It is also worth highlighting that this particular
quality measure is obviously considering the ‘whole product’ quality of recom-
mended cases; we do not need to separately consider the quality of the shared
and residual features because user ratings are applied at the product case level
and not at the feature level. Thus, even though our recommendations are made
on the basis of a set of k = 15 or more shared features we can say with some
certainty that the products recommended by Better are better overall than the
query product, and not just with respect to the features that they share with
the query case.

(a) GPS (b) Laptop

(c) Tablet

Fig. 5. Mean relative rank improvement versus minimum shared features and average
percentage of product cases retrieved (n = 3)

Relative Rank Versus k. We have yet to consider the impact of k (the mini-
mum number of overlapping features between query and retrieved cases) on rec-
ommendation quality. By increasing k we can narrow the scope of comparable
products considered for recommendation. This will inevitably limit our ability

Opinionated Product Recommendation 55

to recommend products that offer large improvements in quality relative to the
query product; it is the nature of product spaces that competition increases as
one narrows the product focus, thereby offering less scope for improvement from
one product to the next. To test this hypothesis we fix the number of recom-
mended cases (n = 3) and compare the relative rank improvement for different
values of k, as shown in Figure 5; for reference, we also include a bar chart of
the average number of cases retrieved at these k values. Once again we can see
a consistent benefit accruing to our Better strategy compared to Cosine and
Jaccard. And as predicted, by and large, the relative rank improvement tends to
decrease for increasing k. For example, for Tablets we see that the relative rank
difference of 27% (around 45 rank positions) for k = 10 falls to about 12% (or
20 rank positions) for k = 25. This compares to rank improvements that are less
than 10% for Cosine and hardly more than 5% for Jaccard, a comparison that
is broadly repeated for the GPS and Laptop case bases too.

4.5 Query Case Similarity

These recommendation quality improvements demonstrate the ability of the
Better strategy to recommend higher quality products than both alternatives.
This is very encouraging but one point that is not clear is the balance between
query similarity and this sentiment improvement. If, for example, the cases rec-
ommended by Better were very different from the query then perhaps these sen-
timent improvements would be less appealing. To explore this Figure 6 presents
the average similarity between the query case and the top n (n = 10) recom-
mended cases for the 3 case bases; the standard Jaccard similarity metric is used
over features in the query case and the recommended cases.

Fig. 6. The average feature similarity between the query case and recommended cases
(n = 10) for Jaccard, Cosine and Better strategies (k = 15)

The results show that there is a reduction in query case similarity for the
Cosine and Better techniques, as expected. However the scale of the reduction
is small since it corresponds to only about 2 or 3 features of difference between
Jaccard and Better, for example. And in practice the type of products recom-
mended by Better are similar to those recommended by the other techniques.

56 R. Dong et al.

Moreover, we know from the results above that this relaxation in similarity
translates into significant improvements in the quality of recommended cases.

5 Discussion

Our core contributions are: (1) mining product features from user-generated
reviews; (2) assigning sentiment to these features to produce experiential prod-
uct cases; and (3) a novel approach to recommendation that combines product
similarity and sentiment to improve recommendation quality.

We believe that the combination of these contributions is important for a
number of reasons. Conceptually it keeps the spirit of experience reuse that is
the core of CBR, but which is often not deeply ingrained in more traditional
case-based recommenders; our product cases are fundamentally experiential in
the sense that they are based wholly on the experiences of the users of these
products. Furthermore, the combination of similarity and sentiment during re-
trieval facilitates the prioritisation of cases that are not only similar to a query
case but also objectively better, at least with respect to the views and usage
experiences of product owners. Moreover, the proposed approach is eminently
practical: user generated reviews are plentiful even if the type of technical feature
specifications used in more traditional product case representations are not. And
this means that our approach can be readily deployed in most real-world settings
without the need for additional knowledge. Finally, the approach is adaptive and
self-regulating. As product reviews accumulate over time the views of users on a
particular product or feature may change, and these changes will be reflected in
the product cases as they are regularly re-generated from the evolving review-set.

Our results show this approach to be practical and it delivers strong product
recommendations that are objectively better than the query, instead of just sim-
ilar to it. This is important when helping users to explore a product space during
the early stages of their pre-purchase research. These users are unlikely to have
a clear picture of the product they want. The role of the recommender is to help
them to explore the trade-offs within the product-space but without prematurely
narrowing their search. Critiquing-based recommenders [12, 19] and other forms
of conversational recommenders [11, 20] do support this type of discovery, but
are based on fixed feature similarities. Our approach combines similarity and
sentiment and allows to guide recommendation by quality rather than just sim-
ilarity. Thus, a user who starts with a point-and-shoot camera might be guided
towards more flexible and powerful DSLR models based on superior picture qual-
ity, flexibility, and general price-performance features. These products might not
be considered in more traditional case-based recommenders due to the lack of
similarity between point-and-shoot and DSLR market segments.

In a practical setting for the product types considered in this paper a k com-
parability score of 15 to 25 provides the right balance of similarity (between the
query and retrieved cases) and opportunity for recommendation improvement.
These levels of minimum feature overlap provide a suitable basis for case com-
parison. They constrain the type of cases that are retrieved to be more or less

Opinionated Product Recommendation 57

related to the query case and at the same time include cases that are likely to
offer improved quality. Smaller values of k provide even greater opportunities for
higher quality recommendations but run the risk that the retrieved cases will no
longer be sufficiently similar to the query case.

6 Conclusions

In this paper we have described a novel approach to case-based product rec-
ommendation. Experiential cases are automatically mined from plentiful user-
generated product reviews as the basis for a novel sentiment-based product
recommendation strategy. We have demonstrated the benefits of this approach
across a number of product domains, in a realistic recommendation setting, and
using objective real-user judgements as an objective ground-truth. The results
are very promising:

– The generated cases are feature-rich, in the sense that typical cases include
25-30 distinct features and corresponding sentiment scores;

– There is a reasonably dense pattern of overlapping features between cases,
thus providing a strong basis for comparison and recommendation;

– It is possible to make recommendations that represent significant improve-
ments in quality with respect to the query case.

In closing our aim has been to describe and demonstrate the viability of a novel
approach to case-based product recommendation. But in doing so we have only
taken the first step in what has the potential to be a powerful general approach
to recommendation on the experience web. There is much potential to improve
and extend this work by exploring different techniques for topic mining and
feature extraction, for example, or alternative ways to evaluate and aggregate
sentiment. And of course there are many opportunities to further improve case
retrieval, for instance by exploring the use of different feature weighting models.
These and other matters reflect our current priorities for future research.

Acknowledgments. This work is supported by Science Foundation Ireland
under grant 07/CE/I1147.

References

1. Zhu, F., Zhang, X.M.: Impact of online consumer reviews on sales: The moderating
role of product and consumer characteristics. Journal of Marketing 74(2), 133–148
(2010)

2. Dhar, V., Chang, E.A.: Does chatter matter? the impact of user-generated content
on music sales. Journal of Interactive Marketing 23(4), 300–307 (2009)

3. Dellarocas, C., Zhang, M., Awad, N.F.: Exploring the value of online product
reviews in forecasting sales: The case of motion pictures. Journal of Interactive
Marketing 21, 23–45 (2007)

58 R. Dong et al.

4. Kim, S.-M., Pantel, P., Chklovski, T., Pennacchiotti, M.: Automatically assessing
review helpfulness. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Sydney, Australia, July 22-23, pp. 423–430 (2006)

5. Baccianella, S., Esuli, A., Sebastiani, F.: Multi-facet rating of product reviews. In:
Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS,
vol. 5478, pp. 461–472. Springer, Heidelberg (2009)

6. Hsu, C.-F., Khabiri, E., Caverlee, J.: Ranking comments on the social web. In:
International Conference on Computational Science and Engineering, CSE 2009,
vol. 4, pp. 90–97. IEEE (2009)

7. O’Mahony, M.P., Smyth, B.: Learning to recommend helpful hotel reviews. In:
Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys 2009),
New York, NY, USA, October 22-25 (2009)

8. Lim, E.-P., Nguyen, V.-A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product
review spammers using rating behaviors. In: Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management, CIKM 2010, pp.
939–948. ACM, New York (2010)

9. Li, F., Huang, M., Yang, Y., Zhu, X.: Learning to identify review spam. In: Proceed-
ings of the Twenty-Second international Joint Conference on Artificial Intelligence,
IJCAI 2011, vol. 3, pp. 2488–2493. AAAI Press (2011)

10. O’Callaghan, D., Harrigan, M., Carthy, J., Cunningham, P.: Network analysis of
recurring Youtube spam campaigns. In: ICWSM (2012)

11. Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender sys-
tems. The Knowledge Engineering Review 20(03), 315–320 (2005)

12. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777.
Springer, Heidelberg (2004)

13. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.)
ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

14. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2004, pp. 168–177. ACM, New York (2004)

15. Justeson, J., Katz, S.: Technical terminology: Some linguistic properties and an
algorithm for identification in text. In: Natural Language Engineering, pp. 9–27
(1995)

16. Hu, M., Liu, B.: Mining opinion features in customer reviews. Science 4, 755–760
(2004)

17. Moghaddam, S., Ester, M.: Opinion digger: An unsupervised opinion miner from
unstructured product reviews. In: Proceedings of the 19th ACM International Con-
ference on Information and Knowledge Management, CIKM 2010, pp. 1825–1828.
ACM, New York (2010)

18. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

19. Burke, R.D., Hammond, K.J., Yound, B.: The findme approach to assisted brows-
ing. IEEE Expert. 12(4), 32–40 (1997)

20. Thompson, C.A., Goeker, M.H., Langley, P.: A personalized system for conversa-
tional recommendations. J. Artif. Intell. Res. 21, 393–428 (2004)

Mining Features and Sentiment

from Review Experiences

Ruihai Dong, Markus Schaal, Michael P. O’Mahony, Kevin McCarthy,
and Barry Smyth

CLARITY: Centre for Sensor Web Technologies
School of Computer Science and Informatics

University College Dublin, Ireland
http://www.clarity-centre.org

Abstract. Supplementing product information with user-generated con-
tent such as ratings and reviews can help to convert browsers into buyers.
As a result this type of content is now front and centre for many major
e-commerce sites such as Amazon. We believe that this type of content
can provide a rich source of valuable information that is useful for a
variety of purposes. In this work we are interested in harnessing past re-
views to support the writing of new useful reviews, especially for novice
contributors. We describe how automatic topic extraction and sentiment
analysis can be used to mine valuable information from user-generated
reviews, to make useful suggestions to users at review writing time about
features that they may wish to cover in their own reviews. We describe
the results of a live-user trial to show how the resulting system is ca-
pable of delivering high quality reviews that are comparable to the best
that sites like Amazon have to offer in terms of information content and
helpfulness.

1 Introduction

User-generated product reviews are now a familiar part of most e-commerce
(and related) sites. They are a central feature of sites like Amazon1, for exam-
ple, featuring prominently alongside other product information. User-generated
reviews are important because they help users to make more informed decisions
and ultimately, improve the conversion rate of browsers into buyers [13].

However, familiar issues are starting to emerge in relation to the quantity
and quality of user-generated reviews. Many popular products quickly become
overloaded with reviews and ratings, not all of which are reliable or of a high
quality [6, 9]. As a result some researchers have started to look at ways to
measure review quality (by using information such as reviewer reputation, review
coverage, readability, etc.) in order to recommend high quality reviews to users
[8, 10, 12]. Alternatively, others have focused on supporting users during the
review-writing phase [1–3], the intent being to encourage the creation of high
quality, more informative reviews from the outset. For example, the work of

1 http://www.amazon.co.uk

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 59–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.clarity-centre.org
http://www.amazon.co.uk

60 R. Dong et al.

Healy and Bridge [3] proposed an approach to suggest noun phrases, which were
extracted from past product reviews that were similar to the review the user
was currently writing; see also the work of Dong et al. [1] for a comparison of
related approaches. More recently, Dong et al. described a related approach that
focused on recommending product topics or features, rather than simple nouns
or noun phrases, to users, based on a hand-coded topic ontology [2].

In this work, we focus on supporting the user at the review-writing stage. We
describe a browser-based application called the Reviewer’s Assistant (RA) that
works in concert with Amazon to proactively recommend product features to
users that they might wish to write about. These recommendations correspond to
product features which are extracted from past review cases; for example, a user
reviewing a digital camera might be suggested a feature such as “image quality”
or “battery life”. This paper extends our previous work [2] in two ways. First,
unlike our previous work [2], which relied on hand-coded product features/topics,
this paper will describe an approach to automatic feature extraction that does
not rely on any hand-coded ontological knowledge. Second, in addition to mining
topical features we also evaluate the sentiment of these features, as expressed by
the reviewer, to capture whether specific product features have been discussed in
a positive, negative or controversial sense. For example, a reviewer might be told
that “image quality” has been previously reviewed positively while “battery life”
has largely received negative reviews. We demonstrate how these extensions can
be added to the RA system and compare different versions, with and without
sentiment information, to examine the quality of the reviews produced.

2 Mining Product Review Experiences

This work is informed by our perspective that user-generated product reviews are
an important class of experiential knowledge and that, by adopting a case-based
reasoning perspective, we can better understand the value of these experiences
as they are reused and adapted in different ways to good effect. For example,
O’Mahony et al. described how past review cases can be used to train a classi-
fier that is capable of predicting review quality [12]. In this paper, we adopt a
different challenge. We are interested in supporting the review writing process
and we describe how we can do this by reusing similar past review experiences
as the basis for recommending topics to a reviewer for consideration.

The summary RA system architecture is presented in Figure 1. Briefly, the
starting point for this work is the availability of a case-base of user-generated
product review cases {R1, ..., Rn} for a given class of products such as Digital
Cameras, for example. These cases are simply composed of the product id, the
text of the review, an overall product rating, and a helpfulness score (based on
user feedback). The RA system extends these review cases by augmenting them
with a set of review features {F1, ..., Fm} and corresponding sentiment scores,
which correspond to the features covered in the review text. These features and
scores are automatically mined from the review case-base, mapped back to the
relevant review text, and then used as the basis for recommendation during
review writing as described below.

Feature Extration and Sentiment Analysis 61

Fig. 1. System architecture

The client-side component of the RA system is designed as a browser plugin
that is ‘sensitive’ to Amazon’s review component, which is to say that it becomes
activated when the user lands on a review page. When activated it overlays a
set of recommendations r1, . . . , rk, marked as the suggestion box in Figure 2.
These recommendations are essentially sets of product features that have been
automatically mined from past reviews for this product and, by default, they are
ranked based on the review text at a particular point in time. In this example, the
recommendations are enhanced with additional sentiment information, which has
also been mined from past reviews by aggregating the sentiment predictions for
different review sentences mentioning the feature in question. The colour of the
recommendation indicates the relative sentiment label, whether positive (green),
negative (red), controversial (yellow), or without sentiment (blue); controversial
features are those which divide reviewer opinions. In addition each feature is
annotated with a sentiment bar to visualise the number of positive, negative, and
neutral instances for the feature in question. For example, the battery feature is
marked as negative (red) and the sentiment bar shows that the vast majority
of users have reviewed the battery of this camera as either negative or neutral,
with very few positive opinions expressed.

62 R. Dong et al.

Fig. 2. The RA browser plugin

2.1 Extracting Review Features

We consider two basic types of review features — bi-gram features and single-
noun features — which are extracted using a combination of shallow NLP and
statistical methods, by combining ideas from related research [4, 7]. Briefly, to
produce a set of bi-gram features we look for bi-grams in the review cases which
conform to one of two basic part-of-speech co-location patterns: (1) an adjective
followed by a noun (AN) such as wide angle; and (2) a noun followed by a noun
(NN) such as video mode. These are candidate features but need to be filtered
to avoid including AN ’s that are actually opinionated single-noun features; for
example, great flash is a single-noun feature (flash) and not a bi-gram feature.
To do this we exclude bi-grams whose adjective is found to be a sentiment word
(e.g. excellent, good, great, lovely, terrible, horrible, etc.) using Hu and Liu’s
sentiment lexicon [5].

To identify the single-noun topics we extract a candidate set of (non stop-
word) nouns from the review cases. Often these single-noun candidates will not
make for good case features however; for example, they might include words such
as family or day or vacation. The work of Hu and Liu [5] proposes a solution
for validating such features by eliminating those that are rarely associated with
opinionated words. The intuition is that nouns that frequently occur in reviews
and that are often associated with opinion laden words are likely to be popular
product features. We calculate how frequently each feature co-occurs with a
sentiment word in the same sentence (again, as above, we use Hu and Liu’s
sentiment lexicon [5]), and retain the single-noun only if its frequency is greater
than some threshold (in this case 70%).

Feature Extration and Sentiment Analysis 63

This produces a set of bi-gram and single-noun features which we further filter
based on their frequency of occurrence in the review cases, keeping only those
features ({F1, . . . , Fm}) that occur in at least k reviews out of the total number
of n reviews; in this case, for bi-gram features we set kbg = n/20 and for single
noun topics we set ksn = 10 × kbg via manual testing. The result is a master
list of features for a product case-base and each individual case can then be
associated with the set of features that occur within its review text.

2.2 Evaluating Feature Sentiment

Next for each case feature we can evaluate it’s sentiment based on the review
text that covers the feature. To do this we use a modified version of the opinion
pattern mining technique proposed by Moghaddam and Ester [11] for extracting
opinions from unstructured product reviews. Once again we use the sentiment
lexicon from Hu and Liu [5] as the basis for this analysis. For a given feature, Fi,
and corresponding review sentence, Sj , from review case Ck (that is the sentence
in Ck that mentions Fi), we determine whether there are any sentiment words
in Sj . If there are not then this feature is marked as neutral, from a sentiment
perspective. If there are sentiment words (w1, w2, ...) then we identify that word
(wmin) which has the minimum word-distance to Fi.

Next we determine the part-of-speech (POS) tags for wmin, Fi and any words
that occur between wmin and Fi. The POS sequence corresponds to an opinion
pattern. For example, in the case of the bi-gram topic noise reduction and the
review sentence, “...this camera has great noise reduction...” then wmin is the
word “great” which corresponds to an opinion pattern of JJ-TOPIC as per [11].

Once an entire pass of all features has been completed we can compute the
frequency of all opinion patterns that have been recorded. A pattern is deemed
to be valid (from the perspective of our ability to assign sentiment) if it occurs
more than some minimum number of cases (we use a threshold of 2). For valid
patterns we assign sentiment based on the sentiment of wmin and subject to
whether Sj contains any negation terms within a 4-word-distance either side of
of wmin. If there are no such negation terms then the sentiment assigned to Fi in
Sj is that of the sentiment word in the sentiment lexicon. If there is a negation
word then this sentiment is reversed. If an opinion pattern is deemed not to be
valid (based on its frequency) then we assign a neutral sentiment to each of its
occurrences within the review set.

As a result our review cases now include not only the product features identi-
fied in their text but also the sentiment associated with these features (positive,
neutral, negative). Each of these features is also linked to the relevant fragment
of text in the review.

2.3 Reusing Review Cases for Feature Recommendation

For the RA system the primary purpose of review cases is to provide product
insights to reviewers for consideration as they write new reviews. This means

64 R. Dong et al.

recommending product features, from relevant past reviews, which fit the con-
text of the current review. This is triggered as the user is writing their review:
whenever the user has written a couple of words, or completed a sentence, for
example, the recommender returns a new (or updated) set of recommendations.

The recommendations are ranked by default according to a relevance metric
based on an association rule mining technique which orders features based on
their frequency of occurrence in a subset of the most similar reviews to the
target review so far. This approach is based on the technique described in Dong
et al. [2] and is summarised as follows. The relevance ranking process includes
the following key steps: (1) review case retrieval; (2) rule mining; (3) transaction
extraction; and (4) recommendation generation.

Review Case Retrieval. The current review text is used as a textual query
against a relevant set of review cases for the same product to retrieve a set of
similar reviews. In the current implementation we rely on a simple term-based
Jaccard similarity metric to retrieve a set of review cases that are most similar
to the query.

Transaction Extraction. Each of these review cases is converted into a set of
sentence-level transactions and review-level transactions. Briefly, each sentence
is converted into the set of features it mentions. If, for example, the review is
“The camera takes good pictures. A flash is needed in poor light.”, then we would
have sentence transactions {camera, pictures} and {flash, light}. And the review
level transaction corresponds to the set of features mentioned in the review; if
in the above example the review was made up just of these two sentences then
the review-level transaction would be {camera, pictures, flash, light}.

Rule Mining. We apply standard association rule mining techniques across
all transactions from the k similar cases to produce a set of feature-based as-
sociation rules, ranked in descending order of their confidence. For example, we
may identify a rule weight→ batterylife to indicate that when reviews mention
camera weight they tend to also discuss battery-life.

Recommendation Ranking. To generate a set of ranked recommendations
we apply each of the extracted rules, in order of confidence, to the features of the
current review text. If the current review text triggers a rule of the form Fx → Fy ,
that is because it mentions feature Fx, then the feature Fy is added to the
recommendation list. This process terminates when a set of k recommendations
has been generated.

2.4 Discussion

This completes our overview of the RA system. Its aim is to provide users with
targeted product feature suggestions based on their review to date and the fea-
tures discussed in similar reviews that have proven to be helpful in the past.

Feature Extration and Sentiment Analysis 65

Ultimately our objective with this work is to make a systems contribution. That
is to say our aim is to develop a novel system and evaluate it in the context of a
realistic application setting. Specifically, the primary contribution of this work
is to describe the RA as a system that combines automatic feature extraction
and sentiment analysis techniques as part of a recommendation system that is
designed to support users during the product review process. This builds on pre-
vious work by Dong et al. [2] but distinguishes itself in two important ways: (1)
by the use of automatic techniques for feature extraction, versus hand-crafted
topics; and (2) by exploring the utility of sentiment as part of the recommenda-
tion interface.

3 Evaluation

How well does the RA system perform? Does it facilitate the generation of high
quality reviews? How do these reviews compare with the best of what a site like
Amazon has to offer? What is the impact of including sentiment information as
part of the recommendations made to reviewers? These are some of the questions
that we will seek to answer in this section via an initial live-user trial of the new
RA system.

3.1 Setup

This evaluation is based on an authentic digital camera product review set con-
taining 9,355 user-generated reviews for 116 distinct camera products mined
from Amazon.com during October 2012. We implemented two versions of the
RA system: (1) RA, which uses automatic feature extraction but does not use
sentiment information; (2) RA+S, which uses automatic feature extraction and
uses sentiment information to distinguish between, for example, positive and
negative features as part of the RA recommendation interface.

For the purpose of this evaluation we recruited 33 participants (mainly college
students and staff with ages between 17 and 50). These trial participants were
mostly novice or infrequent review writers. When asked, 48% (16 out of 33) said
they had never submitted an online product review and of those who had, 65%
(11 out of 17) of them had written less than 5 product reviews. Each participant
was randomly assigned to one of the versions of the RA system; 17 participants
were assigned to RA and 16 were assigned to RA + S. Each participant was
asked to produce a review of a digital camera that was familiar to them and the
text of their review was stored for later analysis.

As a competitive baseline for review quality we also extracted 16 high-quality
camera reviews from the Amazon data-set; we will refer to these as the
Amazon(+) review set. In order to ensure comparability, we chose these reviews
of be of similar lengths as the ones created manually with the help of RA and
RA+S. These 16 reviews were chosen from the subset of the most helpful Ama-
zon reviews by only selecting reviews with a helpfulness score of greater than 0.7.
As a result the average helpfulness score of these Amazon(+) reviews was 0.86,

66 R. Dong et al.

meaning that 86% of users found them to be helpful. These are clearly among the
best of the user-generated reviews found on Amazon for digital cameras. There-
fore this constitutes a genuinely challenging baseline review-set against which to
judge the quality of the reviews produced by the trial participants.

3.2 Depth, Breadth and Redundancy

We describe a quantitative analysis of the three sets of reviews (RA, RA+S and
Amazon(+)) by adopting the approach taken by Dong et al. [2]. For each review
we note its length and compute its breadth, depth and redundancy. Briefly, the
breadth of a review is the number of product features covered by the review. The
depth of a review is the number of words per feature; that is the word-count of
the sentences referring to a given feature. And finally, the redundancy of a review
is the word-count of the sentences that are not associated with any particular
feature.

Table 1. A quantitative analysis of review depth, breadth and redundancy; * indicates
pairwise significant difference between Sentiment(RA+S)/ Non-Sentiment(RA) and
Amazon+ only, at the 0.05 level; ** indicates significant difference between all pairs at
the 0.1 level (using two-tailed t-test)

RA+S RA Amazon(+)

Breadth* 8.44 7.53 3.63

Depth* 9.41 9.01 17.23

Redundancy** 3.75 10.24 23.63

Length 81.88 81.94 81.50

The result of this analysis, for the three sets of reviews, are presented in Table
1 as averages for review breadth, depth, redundancy and length. We can see that
both RA systems (RA and RA+S) deliver reviews that are broader (greater fea-
ture coverage) than the high-quality Amazon reviews, and with less redundancy.
For example, RA and RA+ S both lead to reviews that cover more than twice
as many product features as the Amazon(+) reviews with less than half of the
redundancy. The best performing RA+S condition produces reviews that cover
8.44 product features on average compared to less than 4 product features per
review for Amazon(+). Moreover, the RA+S reviews display very low levels of
redundancy (3.75 words per review on average) compared to more than 10 and
23 redundant words per review for RA and Amazon(+), respectively. However
the reviews produced by RA and RA + S offer less depth of feature coverage
than Amazon(+), so although RA and RA + S participants are writing about
more features, they are not writing as much about each individual feature.

In relation to the breadth differences, our view is that the RA system helps
take some of the “guess work” out of the review-writing process. Reviewers have

Feature Extration and Sentiment Analysis 67

instant access to a list of meaningful product features (and examples of what
other reviewers have written about these features). This reduces some of the
friction that is inherent in the review-writing process since the users are no
longer solely responsible for prioritising a set of features to write about. Thus
users find it easier to identify a set of features to write about and they are
naturally inclined to discuss more of these features.

Concerning the difference in depth between the sets of reviews, it is reasonable
to take review length as a proxy for the amount of time that users spend writing
a review. All three sets of reviews are similar in this regard. Then, per unit time
spent writing a review, it is perhaps not surprising that the Amazon(+) reviews
enjoy improved depth of feature coverage when compared to RA and RA + S;
if all 3 sets of users are spending the same time on reviews and Amazon(+)
reviewers are covering fewer features, then either they are covering these features
in greater depth or they are including more redundant sentences in their reviews.
As it turns out both effects are evident: there is a greater depth of coverage for
the Amazon(+) reviews but there is also a significant amount of additional
redundancy.

There is less of a difference between the RA and RA + S conditions. The
additional depth and breadth values for RA + S compared with RA are not
statistically significant in this trial. It is worth noting, however, that RA + S
does enjoy significantly less levels of redundancy than the RA reviews (an av-
erage of 3.75 versus 10.24 redundant words per review). Given that RA and
RA + S reviews are similar in terms of depth and breadth, then perhaps there
are other metrics that might help us to understand other meaningful differ-
ences between these review sets — we consider such metrics in the following
sections.

Finally, we appreciate that our measurement of breadth, depth and redun-
dancy depends on the performance of our feature extraction method and so we
examined its accuracy against the Amazon data-set. We randomly selected 200
sentences from the more than 99,000 review sentences contained in the 9,355
reviews. From each of these sentences we manually identified a set of features
(typically a word or pair of words) and manually judged their sentiment as pos-
itive, negative or neutral. This manual annotation process was conducted by 4
independent ‘experts’ and serves as our ground-truth. We compared our pre-
dicted features (sentence by sentence) to the ground-truth for the corresponding
sentences and found a precision of 63% and a recall of 67%. The overall accuracy
of sentiment prediction is 71%. While these results indicate that there is scope to
improve our feature extraction method, it is important to note that the results
correspond to a strict matching criterion, i.e. a predicted feature lens would not
match a ground-truth feature lens quality. Given this approach and the large
(and statistically significant) differences in breadth, depth and redundancy be-
tween the RA+ S/RA and Amazon(+) reviews, we believe that the findings as
reported above reflect true differences in performance.

68 R. Dong et al.

3.3 Sentiment Density

Clearly the process by which RA + S reviews are produced is different in one
important way from the process that produces RA reviews. The former is in-
formed by indicators of sentiment attached to recommended features. Do these
labels influence the actual reviews that are produced? Are users more likely to
express opinions on sentiment-laden features?

One way to explore this is to look at what we call the sentiment density of a
review, by which we mean the percentage of sentences that discuss features in
an opinionated manner. The intuition here is that reviews that contain content
that is neutral is likely to be less useful, when it comes to making a decision.
Sentiment density can be calculated in a straightforward fashion by counting the
number of review features with positive or negative sentiment as a fraction of
the total number of features in reviews.

Table 2. The sentiment density of RA, RA+ S and Amazon(+) reviews; * indicates
significant difference between Sentiment and Non-Sentiment at the 0.05 level; ** in-
dicates significant difference between RA + S and Amazon(+) at the 0.1 level (using
two-tailed t-test)

RA+S RA Amazon(+)

Density*/** 65% 48% 49%

Table 2 presents the sentiment density results for our three sets of reviews
and clearly points to a significant benefit for those produced using the RA+ S
condition. The sentiment density of the RA + S reviews is 65% compared to
48% and 49% for the non-sentiment RA and Amazon(+) conditions. In other
words, almost two thirds of the features discussed in RA + S reviews are dis-
cussed in an opinionated manner; i.e. the reviewer expresses a clear positive or
negative viewpoint. By comparison a little less that half of the features men-
tioned in the RA and Amazon(+) reviews are discussed in an opinionated
manner.

As a result, one might expect there to be some benefit in the utility of the
RA + S reviews, at least in so far as they contain opinions or viewpoints that
are more likely to influence buyers. Clearly the sentiment information that is
presented alongside the feature recommendations is influencing users to express
stronger (more polarised) opinions for those features that they choose to write
about. One caveat here is whether or not the sentiment information is biasing
what the reviewers write? For example, if they see that image quality has been
previously reviewed in a positive manner for a particular product, then is the
user more likely to write positively about this feature? Obviously this would not
be desirable and we will return to this point later.

Feature Extration and Sentiment Analysis 69

3.4 Review Quality

Clearly there is a difference between the type of reviews produced with recom-
mendation support (whether with or without sentiment) when compared to the
Amazon(+) reviews: both RA and RA+S reviews tend to cover more topics but
in less detail than the Amazon(+) reviews; the RA and RA+S reviews contain
less redundancy; and the RA+S reviews tend to contain more opinionated con-
tent. But how does this translate into the perceived utility of these reviews from
a user perspective? The Amazon(+) reviews have been selected from among the
most helpful of Amazon’s reviews. How will the reviews produced by the less
experienced reviewers using RA and RA+ S compare?

To answer this question we recruited a set of 12 people to perform a blind
evaluation of the three sets of reviews. Each evaluator was asked to rate the
helpfulness, completeness and readability of the reviews on a 5-point scale (with
a rating of 1 indicating ‘poor’ and a rating of 5 indicating ‘excellent’). Every
review was evaluated by 3 of the 12 participants and their ratings were averaged
to calculate mean helpfulness, completeness and readability scores for each set
of reviews.

Table 3. A qualitative analysis of review quality showing mean (median) ratings

RA+S RA Amazon(+)

Helpfulness 3.42 (4) 3.33 (3) 3.23 (3)

Completeness 3.06 (3) 3.08 (3) 2.71 (3)

Readability 3.60 (4) 3.51 (4) 3.69 (4)

The results are presented in Table 3 as mean and median (bracketed) ratings.
As expected the Amazon(+) reviews are rated highly, they are after all among
the best reviews that Amazon has to offer. Importantly, we can see however that
the reviews produced using the RA and RA+S conditions perform equally well
and, in fact, marginally better in terms of review helpfulness and completeness.
Although these findings are not definitive — the differences were not found to
be statistically significant, not surprising given the scale of the trial — the data
bodes well for the approach we are taking. At the very least the additional
breadth of coverage offered by RA and RA + S reviews is found to be just as
helpful as the best Amazon reviews, for example.

3.5 System Usability and Influence

At the end of the trial each participant was also asked to rate the RA system
on a 3-point scale (agree, neutral, disagree) under the following criteria:

1. User Statisfaction – Were you satisfied with the overall user experience?
2. Helpfulness – Did the RA help you in writing a review?

70 R. Dong et al.

3. Relevance – Were the specific recommendations relevant to the review you
were writing?

4. Comprehensiveness – Did the recommendations comprehensively cover the
product being reviewed?

(a) RA non-sentiment version.

(b) RA+S sentiment version.

Fig. 3. User feedback

The results of this feedback for RA and RA + S are presented in Figures
3(a) and 3(b). Broadly speaking users were very satisfied with the RA varia-
tions; about 78% of RA users and 82% of RA+ S users found the system to be
satisfactory and none of the users reported being unhappy with the overall expe-
rience. Users also found the reviews to be relevant and mostly helpful, although
the RA+ S suggestions were judged to be less helpful (62%) that those for the
RA system (86%). Interestingly a similar difference is noted with respect to how
comprehensive the RA+S suggestions were in comparison to those provided by
RA.

Remember that the difference between the RA and RA + S systems is the
absence or presence of sentiment information. The above differences would seem

Feature Extration and Sentiment Analysis 71

to be a result of this interface difference. It is a matter of future work to further
explore this by testing different interface choices and different ways to display
sentiment information.

Finally,we mentioned earlier the possibility that by displaying sentiment in-
formation to users at review time we may lead to biased reviews. As part of the
the post-trial feedback (for RA + S participants only) we also asked them to
comment on this aspect of the trial as follows:

1. Influence – Do you think that the sentiment information influences your own
judgement?

2. Encouragement – Does the additional sentiment information encourage you
to write about your own judgement?

3. Interruption – Do you think the additional sentiment information inter-
rupted the review writing process?

Fig. 4. User feedback on influence, encouragement and interruption – RA+S version

The results are presented in Figure 4. On the positive side, the participants
agreed strongly that the recommendations did not interrupt the review writing
process. This finding is not surprising since, as above, participants found the
recommendations to be mostly helpful and relevant. A majority of RA + S
participants (58%) felt that the availability of sentiment information actually
encouraged them to write about features, with less than 20% disagreeing with
this proposition. Again this is not surprising given that the RA + S reviews
benefit from improved breadth characteristics in particular.

However, a small majority of participants (58%) also felt that the availability
of sentiment information was likely to influence the reviews they wrote. This
may be an issue and certainly raises the need for additional work to explore this
particular aspect of the RA+S system, especially if it turns out to be responsible
for reviews that are biased with respect to the sentiment of the recommended
features.

72 R. Dong et al.

3.6 Discussion

The primary objective of this work has been to explore the role of the RA system
when it comes to helping users to write high quality reviews based on the recom-
mendation of mined features and sentiment information. The evidence suggests
that there are good reasons to be optimistic about this approach. For example,
the overall review quality, completeness, and readability of reviews produced us-
ing RA and RA+ S is at least equivalent to the best of Amazon’s reviews even
though they were produced by more novice reviewers. The reviews produced
with support from RA and RA + S tend to offer broader coverage of product
features with less redundancy and so, perhaps, provide a useful counterpoint
to the more in-depth Amazon reviews that tend to focus on a narrower set of
product features.

There are a number of questions that remain to be answered. For example,
there is evidence, as discussed above, that the display of sentiment information
at review writing time may exert undue influence over reviewers, which may
lead to more biased reviews. It remains to be seen whether this will help users
to make more informed decisions than with less opinionated reviews.

Of course there are limitations to the evaluation we have presented in this
work. On the positive side it is a genuine attempt to evaluate a working system
in a realistic context using independent trial participants and real products. How-
ever, it is a small-scale evaluation and although some performance differences
were found to be statistically significant, others were not, which ultimately limits
what we can conclude from the results. Of course our future work will seek to
expand this evaluation to a larger set of users. Nevertheless the results presented
do provide compelling evidence that the RA system is providing a useful ser-
vice. In particular, it is worth re-emphasising that the baseline Amazon reviews
chosen as a benchmark were selected among the best quality Amazon reviews
available, and so represent a particularly high benchmark for our evaluation.

4 Conclusions

This paper describes an experience-based recommender system that is designed
to help users to write better product reviews by passively making suggestions to
reviewers as they write. It extends the work of Dong et al. [2] in two important
ways. First it is based on a fully automatic approach to review feature extraction
without the need for hand-crafted topics or ontologies as in [2]. Secondly, it
explores the use of feature sentiment during recommendation and presentation.
We have described the results of a detailed live-user trial to consider review
quality in terms of metrics, such as feature depth, breadth and sentiment density,
demonstrating the quality of RA reviews compared to the best that sites like
Amazon has to offer.

Acknowledgments. This work is supported by Science Foundation Ireland
under grant 07/CE/I1147.

Feature Extration and Sentiment Analysis 73

References

1. Dong, R., McCarthy, K., O’Mahony, M.P., Schaal, M., Smyth, B.: Towards an
intelligent reviewer’s assistant: Recommending topics to help users to write better
product reviews. In: Procs. of IUI: 17th International Conference on Intelligent
User Interfaces, Lisbon, Portugal, February 14-17, pp. 159–168 (2012)

2. Dong, R., Schaal, M., O’Mahony, M.P., McCarthy, K., Smyth, B.: Harnessing the
experience web to support user-generated product reviews. In: Agudo, B.D., Wat-
son, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 62–76. Springer, Heidelberg (2012)

3. Healy, P., Bridge, D.: The GhostWriter-2.0 system: Creating a virtuous circle in
web 2.0 product reviewing. In: Bridge, D., Delany, S.J., Plaza, E., Smyth, B.,
Wiratunga, N. (eds.) Procs. of WebCBR: The Workshop on Reasoning from Expe-
riences on the Web (Workshop Programme of the Eighteenth International Con-
ference on Case-Based Reasoning), pp. 121–130 (2010)

4. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2004, pp. 168–177. ACM, New York (2004)

5. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: AAAI 2004,
vol. 4, pp. 755–760 (2004)

6. Jindal, N., Liu, B.: Review spam detection. In: Proceedings of the 16th Interna-
tional Conference on World Wide Web, WWW 2007, pp. 1189–1190. ACM, New
York (2007)

7. Justeson, J., Katz, S.: Technical terminology: Some linguistic properties and an
algorithm for identification in text. In: Natural Language Engineering, pp. 9–27
(1995)

8. Kim, S.-M., Pantel, P., Chklovski, T., Pennacchiotti, M.: Automatically assessing
review helpfulness. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP 2006), Sydney, Australia, July 22-23, pp.
423–430 (2006)

9. Lappas, T.: Fake reviews: The malicious perspective. In: Bouma, G., Ittoo, A.,
Métais, E., Wortmann, H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 23–34. Springer,
Heidelberg (2012)

10. Liu, Y., Huang, X., An, A., Yu, X.: Modeling and predicting the helpfulness of
online reviews. In: Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining (ICDM 2008), Pisa, Italy, pp. 443–452. IEEE Computer Society
(2008)

11. Moghaddam, S., Ester, M.: Opinion digger: An unsupervised opinion miner from
unstructured product reviews. In: Proceedings of the 19th ACM International Con-
ference on Information and Knowledge Management, CIKM 2010, pp. 1825–1828.
ACM, New York (2010)

12. O’Mahony, M.P., Smyth, B.: Learning to recommend helpful hotel reviews. In:
Proceedings of the 3rd ACM Conference on Recommender Systems (RecSys 2009),
New York, NY, USA, October 22-25 (2009)

13. Zhu, F., Zhang, X(M.): Impact of online consumer reviews on sales: The moder-
ating role of product and consumer characteristics. Journal of Marketing 74(2),
133–148 (2010)

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 74–88, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Multi-Agent, Multi-Case-Based Reasoning

Susan L. Epstein1,2, Xi Yun1, and Lei Xie1,2

1 Department of Computer Science,
The Graduate Center of The City University of New York, New York, NY 10016, USA

2 Department of Computer Science,
Hunter College of The City University of New York, New York, NY 10065, USA

{susan.epstein,lei.xie}@hunter.cuny.edu, xyun@gc.cuny.edu

Abstract. A new paradigm for case-based reasoning described here assembles a
set of cases similar to a new case, solicits the opinions of multiple agents on
them, and then combines their output to predict for a new case. We describe the
general approach, along with lessons learned and issues identified. One applica-
tion of the paradigm schedules constraint satisfaction solvers for parallel
processing, based on their previous performance in competition, and produces
schedules with performance close to that of an oracle. A second application
predicts protein-ligand binding, based on an extensive chemical knowledge
base and three sophisticated predictors. Despite noisy, biased biological data,
the paradigm outperforms its constituent agents on benchmark protein-ligand
data, and thereby promises faster, less costly drug discovery.

Keywords: multiple cases, multiple agents, confidence-based reasoning.

1 Introduction

As the problems presented to computers become increasingly difficult, the techniques
researchers develop to address them become increasingly sophisticated and complex.
Although these programs may perform unevenly, ensembles of them often smooth
performance [1]. At the same time, data pertinent to difficult problems has burgeoned,
even though it is often noisy and incomplete. Rather than trust the evidence of a sin-
gle data point, it may be more informative, to consider several. The case-based rea-
soning paradigm described here, MAMC (Multi-Agent Multi-Case-based reasoning),
takes both routes: it consults multiple agents and it uses multiple cases. We report
here on two MAMC applications: construction of a parallel schedule for constraint
satisfaction search, and prediction about the binding energy between two proteins, a
key to rational drug design. Although many such agents (here, solvers or predictors)
exist, none consistently outperforms all the others on a large, diverse set of bench-
mark examples. The thesis of this paper is that the effectiveness of a set of agents on a
set of similar cases supports reasoning about the agents’ performance on a new case.
Given a new case, MAMC selects from its knowledge base the cases most similar to
it, and examines the accuracy of a set of agents on those cases. The principal result
reported here is that MAMC improves predictive accuracy in both applications.

 Multi-Agent, Multi-Case-Based Reasoning 75

Fig. 1. High-level pseudocode for MAMC

MAMC is outlined in Figure 1. For a particular domain, MAMC’s pre-existing
agents A are assumed to be the result of extensive research and development, and
generally regarded by experts as among the best. The corresponding case base C,
shared by all the agents, consists of published results for those agents on their com-
mon task. Finally, the features on which similarity is gauged to select the reference
cases L are assumed available from other experts’ work in the domain of interest, but
deliberately differ from those of any individual agent for their prediction.

Unlike earlier work with multiple cases, which drew from case bases for related tasks
[2] or focused on distributed resources across multiple machines [3], MAMC reasons
over multiple cases resident on the same computer and for the same task. Rather than
use portions of multiple cases or multiple agents to produce a solution, as in [4], MAMC
uses multiple cases to select one agent most appropriate for a new case. MAMC can
also estimate the reliability of its output, an essential but rarely available property in
bioinformatics. MAMC’s confidence is based not on the quality of its cases, as in [5],
but on the degree of similarity it detects between the new case e and the reference cases
L, along with the performance of the selected agent on those cases.

The applications described here face similar challenges: development of an exten-
sive case base with an incisive feature-based index, a pairwise similarity metric for
cases, and a way to combine the agents’ output to make a decision. Each of the next
two sections details an application, with relevant background; related work; the origin
of C, A, and s; and empirical design and results. The discussion mines this experience
to establish commonalities, issues, and promise for future MAMC applications.

2 Parallel Portfolio Construction for Constraint Satisfaction

Constraint satisfaction is a powerful representation for many real-world problems, but
search for a solution to a constraint satisfaction problem (CSP) is in general NP-hard.
Many solvers succeed on quite difficult problems, but unevenly and unpredictably.
Our goal is to schedule solvers on multiple processors to solve one problem.

Here, a CSP <X, D, R> is a set X of variables, a set D of finite domains associated
with those variables, and a set R of constraints that restrict how values from their
respective domains may be assigned to variables simultaneously. A solution assigns a
value to each variable and satisfies all of R. A solvable CSP has at least one solution.
The solvers used here assign a value to one variable at a time, and temporarily remove
inconsistent values from the domains of as-yet-unassigned variables. If a domain
becomes empty, the solver backtracks to the most recent alternative and chooses a
new value. Search returns the first solution found, or halts when it shows the problem

Input: new case e, case base C, agents A, pairwise similarity metric s,
 number of reference cases q
Output: prediction or recommendation for e
 Select a subset L of q cases in C most similar to e as measured by s
 Predict or recommend on each case in L with Aj for all Aj ∈ A
 Combine output from all Aj ∈ A by their performance on L as output for e

76 S.L. Epstein, X. Yun, and L. Xie

is unsolvable (i.e., the domain of the variable at the top of the search tree becomes
empty). A variable-ordering heuristic determines the order in which the solver ad-
dresses variables, and a restart policy begins search on the problem again, probably
with a different root variable. This remainder of this section summarizes work that
appeared in the optimization literature, and detailed its rationale and development
saga more theoretically [6].

2.1 The Task for MAMC

In this application, the agents A are CSP solvers, C is a set of CSPs, and T is a set of
consecutive, unit time intervals. A simple schedule σ for a problem on one processor
specifies at most one agent to address the problem in each time interval, that is,
σ: T→ A. A schedule for k processors is a set of k simple schedules, one for each pro-
cessor. On any one processor, at most T time can be allotted to any solver on any
problem. We represent the performance of A on C in a |C| × |A| performance matrix τ,
where entry τij ∈ {1,2,…, T} means that the jth solver solves the ith problem in time
τij; otherwise the problem goes unsolved in time T. The solvers used here are determi-
nistic, that is, each τij is a fixed, positive integer.

A CSP portfolio is a combination of solvers intended to outperform each of its con-
stituents [7-12]. A solver portfolio <A, k, S, T> proposes a set S of k simple schedules
that deploy agents A on k processors to solve a problem in time T. For k = 1, a solver
portfolio is simple; for k > 1, it is parallel. If it is deterministic, neither a simple nor a
parallel solver portfolio can exceed the performance of an oracle, which always se-
lects the single fastest solver. We focus here on offline solver portfolio constructors,
which observe the performance of A on C and then build a portfolio to optimize per-
formance on new cases [8, 9, 11]. We consider only switching schedules, which pre-
serve each solver’s intermediate search state when its time elapses, for reuse only by
that solver if time is allocated to it on the same processor later.

Given cases C, a new problem e, similarity metric s, and performance matrix τ for
solvers A on C, MAMC’s task is to find the best parallel schedule σ that uses A to
solve e on k processors. The portfolio constructors most relevant here, CPHYDRA [8]
and GASS [13], were both intended for a single processor. CPHYDRA is case-based; it
selects a small set of problems in C similar to e, and searches all possible schedules,
in time O(2|A|). It weights problems in C by their Euclidean distance from e, and seeks
an optimal schedule, one that maximizes the number of problems solved within T. In
contrast, GASS is greedy, and its performance depends on |C|. At each step, GASS
selects the agent that maximizes the number of problems solved per unit of time, and
counts only problems solved for the first time during the current time step. GASS
creates schedules in time O(|C| ⋅ |A| log |C| ⋅ min{|C|, T ⋅ |A|}) that are at most four
times worse than optimal; any better approximation was shown to be NP-hard [13].

2.2 Cases, Similarity, and Combination

The case base was developed from the 3307 problems in 5 categories at the Third
International CSP solver competition (CPAI’08), where problems represent a wide

 Multi-Agent, Multi-Case-Based Reasoning 77

Table 1. CPAI’08 problems by category

Applicable
solvers

Category

Competition
problems

Experiment
problems

Solvable
experiment problems

17 GLOBAL 556 493 256
22 k-ARY-INT (k≥2) 1412 1303 739
23 2-ARY-EXT 635 620 301
24 N-ARY-EXT (N>2) 704 449 156

Table 2. Problems in Table 1 solved by non-parallel solver portfolios in 1800 seconds

Solver Oracle GASS CPHYDRA10 CPHYDRA40
Number solved 2865 2773 2577 2573
% solved 100% 96.79% 89.95% 89.81%

variety of challenges and are intended to be difficult [14]. Cases were represented by
the same 36 numeric features (e.g., number of variables, maximum domain size) used
by CPHYDRA. To extract feature values, we ran the solver Mistral 1.550 on an 8 GB
Mac Pro with a 2.93 GHz Quad-Core Intel Xeon processor. We excluded any problem
whose full set of features was not calculated within 1 second, and any problem never
solved by any solver at CPAI’08. Table 1 summarizes the remaining 2865 problems.

Agents in A are the 24 solvers in CPAI’08. They include CPHYDRA10 and
CPHYDRA40, versions of CPHYDRA that used the same 3 solvers, but with 10 or 40 cases
respectively (CPHYDRA won all but one category at CPAI’08.) The CPAI’08 results
provide the performance matrix τ. For neighbor set ratio r (0 ≤ r ≤ 1), the neighbor set
L of any case e is the r ⋅ |C| problems in C with feature vectors most similar to e.

Portfolio construction experiments performed 10-fold cross-validation. Each itera-
tion partitioned the 2685 into a set of testing problems and a set of training problems
(i.e., the case base C). Stratified partitioning maintained the proportions of problems
from different categories in each subset. Table 2 reports the performance of an oracle
and three non-parallel solver portfolio constructors, given 1800 seconds per problem.

RSR-WG (Retain, Spread and Return with a Weighted Greedy approach) is the
MAMC implementation for this task. As in Figure 2, it formulates a parallel schedule
for problem e based on τ, A, C, and L, the set of cases most similar to e. RSR-WG
tries to build a schedule that solves as many cases as it can from L, under the assump-
tion that the same schedule will then do well on e. RSR-WG tries, heuristically and
greedily, to schedule L, and measures the similarity of case ci ∈ L to e based on its
Euclidean distance d(ci, e) from e (here, ε= 0.001):

si = 1−

(1− ε) d(ci, e) − dmin[]
dmax − dmin

 (1)

where dmax = max({d(ci, e) | ci ∈ L}) and dmin = min({d(ci, e) | ci ∈ L}). Given execu-
tion time t for Aj, RSR-WG counts (from performance matrix τ) and weights (with
corresponding similarity) how many problems Aj could solve from L in time t:

78 S.L. Epstein, X. Yun, and L. Xie

N j
z (t) = siζ ij

xi∈L
 (t) where ζ ij (t) =

1 if τ ij ≤ t

0 otherwise







(2)

Then, at time t, RSR-WG greedily maximizes (2) per unit of time expended over all
solvers and their possible execution duration Δz, that is, it calculates:

 argmax
Aj , Δz

N j
z (t + Δ z)

Δ z

 (3)

and removes those now-solved similar problems from L. Retain (line 6) places solver
Aj on processor π u if that maximizes equation (2) per unit of expended time and π u
still has time available (Tu < T). Among such processors, Retain prefers one that has
hosted Aj earlier (tuj ≠ 0); otherwise it selects one that has thus far been used the least
(i.e., has minimum Tu). If a parallel schedule σ solves all of L without making full use
of all the processors, Spread (line 11) places the solver Aj that solves the most prob-
lems in L but does not appear in σ on a processor that was idle throughout σ (if such
an Aj exists), breaking ties at random. (The rationale here is that Aj may be generally
effective but not outstanding on a particular e.) Finally, if a processor is not fully used
in σ (i.e., Tu

 < T), Return (line 14) places the first solver it executed there on that pro-
cessor until the time limit. Obviously, RSR-WG achieves the performance of an
oracle when k = |A|, but it is also effective when k is relatively small compared to |A|.

Fig. 2. High-level pseudocode for RSR-WG

Input: case base C, solvers A, time limit T, testing problem e, distance function d,
 similarity function s, neighbor set ratio r, processors {π1, π 2, …, π k}
Output: schedule σ = { σ1, σ 2, …, σk} for a parallel switching portfolio
1 Compute distance d(ci, e) for all ci in C
2 L ← {100r% of problems in C closest to y}
3 Compute similarity si for each ci in L with equation (1)
4 Initialize time step z ← 1, overall time Tu ← 0 on processor π u,

time tuj ← 0 for Aj on π u
5 While L ≠ Ø and Tu < T for at least one u
6 Select Aj on π u with time Δz to maximize equation (3) ** Retain **
7 Remove from L all problems solved by Aj during step z
8 Schedule Aj with execution time Δz on π u
9 Update times: tuj ← tuj + Δz, T

u ← Tu + Δz, and z ← z + 1
10 For each π u where Tu < T
11 If Tu = 0 ** Spread **
12 then assign A j to π u for T, where A j solves the most problems in L and A j ∉ σ
13 update times: tuj ← T, Tu ← T, and z ← z + 1
14 else π u executes the first solver placed on π u until T ** Return **
15 update times: tuj ← tuj + (T – Tu), Tu ← T, and z ← z + 1
16 Return σ

 Multi-Agent, Multi-Case-Based Reasoning 79

2.3 Experimental Design and Results

The parallel constructors tested here are RSR-WG, PGASS (a naïve parallel version
of GASS with uniform weights si = 1), and PCPHYDRA (a naïve parallel version of

CPHYDRA that randomly partitions L into k subsets and then uses CPHYDRA on each
subset to construct a schedule for each processor). PCPHYDRA selects |L| = 10k neigh-
bors, randomly distributes them to k processors, and executes a complete search for
the optimal schedule on each processor. If it does not produce an optimal schedule
within 180 seconds, it takes the best schedule it has found so far. For RSR-WG, we
simulated all 24 solvers from the original competition [15].

All portfolio experiments ran on a Dell PowerEdge 1850 cluster with 696 Intel
2.80 GHz Woodcrest processors. We gauged performance as in recent competitions,
on the number of problems solved with a fixed, per-problem time limit, with ties bro-
ken on average solution time across solved problems [15, 16]. Time for RSR-WG
included both portfolio construction (i.e., scheduling) and search, but time for PGASS
and PCPHYDRA excluded portfolio construction, which gave them a slight advantage.

As Table 3 shows, for k > 1, RSR-WG consistently solved more problems than
PGASS or PCPHYDRA. For RSR-WG only, we also tested k = 16 processors, which
produced near-oracle performance. Although 2 of the 10 runs for k = 16 were perfect,
this becomes very nearly a race among solvers that did well on the cases in L. The
near-optimal performance of k = 8, or even k = 4, along with the fact that only RSR-
WG was charged for scheduling time, is more noteworthy.

Figure 3 compares an oracle’s runtime to that of RSR-WG with r = 0.005. Each
circle represents one of the 2865 problems. Those at the far right are problems un-
solved by RSR-WG in 1800 seconds; those on the diagonal were solved by RSR-WG
as quickly as an oracle. Clearly, more processors solved more problems (from 2769 to
2859 in this particular run) and solved more problems as quickly as an oracle.

Fig. 3. (Ideal) oracle runtime (y-axis) compared to RSR-WG time (x-axis) on k processors with
neighbor set ratio r = 0.005. Each circle is a result on one of the 2865 problems.

0 500 1500

k = 1

0 500 1500

0
10

00

k = 2

0 500 1500

0
10

00

k = 3

0 500 1500

k = 4

0 500 1500

0
10

00

k = 5

0 500 1500

0
10

00

k = 6

80 S.L. Epstein, X. Yun, and L. Xie

Table 3. Mean performance of 3 constructors on 2865 problems over 10 runs, with the (signifi-
cantly) best value for k processors in boldface. * denotes RSR-WG outperformed PGASS;
† denotes RSR-WG outperformed PCPHYDRA (p < 0.005). Neighbor set ratio was r = 0.005.

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

PCPHYDRA 2779 2807 2817 2827 2830 2831 2834 2834
PGASS 2771 2801 2808 2810 2817 2821 2823 2825
RSR-WG 2773 2826*† 2841*† 2850*† 2855*† 2857*† 2858*† 2859*†

MAMC’s computational cost for parallel schedule construction is worthwhile,

compared to that of other schedulers. Recall that the time allotted to each problem is
1800 seconds. RSR-WG constructs its schedules quickly. For example, it averages
less than 15 seconds (σ ≈ 6) with r = 0.16 and 8 processors, and is faster for smaller r
and k. Recall, however that PCPHYDRA sometimes fails to compute its (optimal)
schedule within 180 seconds. Indeed, given its O(2|A|) complexity, it produced no
schedule at all on 4.81% of the cases when k = 1, and 14.39% of the cases when k = 8.
Because it learns on all the cases, however, GASS was even slower; its single entry in
Table 2 required more than 5 days to compute.

3 Protein-Ligand Docking

The central topic of rational drug design is protein-ligand interaction, where a small
molecule (a ligand) binds to a specific position (e.g., an open cavity) in a protein [17].
Protein-ligand docking (PLD) evaluates the ligand’s orientations and conformations
(three-dimensional coordinates) when bound to a receptor. PLD seeks ligands with
the strongest (i.e., minimal) total binding energy in a protein-ligand complex, but
most PLD software predicts binding energy poorly. Thus, for reliability, conventional
PLD meta-predictors use consensus scoring, which averages scores or takes a majori-
ty prediction from several predictors [18-20]. Consensus scoring ignores similarities
between examples, as well as domain-specific and example-specific data about its
individual predictors. Thus it is inaccurate when most of its component predictors are.

In a single docking run, virtual high-throughput screening predicts which of thou-
sands of compounds should be tested in the laboratory [21-23]. Recent approaches
tried chaining [24] or bootstrapping with an ensemble based on a single function [25].
The work reported here, however, is the first to combine different PLD predictors
based on case similarity plus information from and about individual predictors.

3.1 The Task for MAMC

Here the agents A are three pre-existing PLD scoring functions: eHiTS1, AutoDock
Vina,2, and AutoDock3. Although all rely on some form of machine learning, each has

1 http://www.simbiosys.ca/ehits/ehits_overview.html
2 http://vina.scripps.edu/
3 http://autodock.scripps.edu/

 Multi-Agent, Multi-Case-Based Reasoning 81

its own conformational sampling, scoring, and feature-based representation. They
often perform dramatically differently on the same data, with no consistent winner.

A case is the binding energy measured in the laboratory between a given receptor
(a target in a protein) and a chemical compound. Each compound is a potential ligand,
represented by a feature vector that reports chemical properties (e.g., whether it is a
hydrogen-bond donor, or whether its topological distance between two atoms lies in
some range). These are different features from those used by the agents; the agents
consider three-dimensional chemical conformation, while the cases describe physio-
chemical and topological properties derived from two-dimensional chemical structure.
In a case base C, all cases address the same receptor. To describe a case, values for its
standard chemical footprint of 1024 boolean features were calculated offline with
programs such as openbabel4. Given a case base C, a new chemical e, chemical-
similarity metric s, and performance matrix τ for the agents A on C, MAMC’s task is
to predict the binding energy between C’s receptor and e.

3.2 Cases, Similarity, and Combination

We tested MAMC on datasets from DUD (Directory of Useful Decoys), a set of
benchmarks for virtual screening [26]. A decoy is a molecule similar to its ligand in
its physical properties but dissimilar in its topology. DUD has multiple ligands for
each receptor, and 36 decoys for each of its ligands. We considered two receptors
from DUD: gpb and pdg. All three agents perform relatively poorly on them. More-
over, eHiTS, is the worst of the three on gpb but the best on pdg. Together these
receptors challenge MAMC to choose the most accurate predictor for each chemical.

The similarity metric s on example e and case ci ∈ C is defined by the Tanimoto
coefficient, the ratio of the number of features present in their intersection to the num-
ber of features present in their union, where N(c) is the number of 1’s in c:

 s(e, ci) = N(e & ci) / N(e | ci) (4)

Each predictor Aj was asked to calculate a score for each ligand and decoy in the data-
set. We eliminated the very few chemicals that did not receive three scores; this left
1901 chemicals for gpb, and a separate set of 5760 for pdg. The agents’ incompara-
ble scales, however, required a simple but robust rank-regression scoring mechanism
to map raw scores uniformly to a normalized rank score that reflects only the prefe-
rence of an agent for one case over another. For each agent Aj ∈ A, MAMC sorts the
raw scores from Aj for all ci ∈ C in ascending order, replaces each score with its rank,
and normalizes the ranks in [0,1]. The normalized rank, denoted by p(ci, Aj), predicts
the score of Aj on ci. Higher-ranked cases thereby receive lower scores, in line with
the premise that lower binding energy is better.

We again represent the performance of A on C in a |C| × |A| performance matrix τ.
To evaluate the performance τ(e, Aj) of Aj ∈ A on e, we use the set of cases L similar
to e, but weight more heavily those more similar to it:

4 http://openbabel.org/wiki/Main_Page

82 S.L. Epstein, X. Yun, and L. Xie

τ e, A

j() = s(e,c
i
)

ci ∈L τ
ij
 (5)

Then, to predict on e with all of A, we take the agent Aj with the highest τ(e, Aj) and
combine its predicted scores on L, again weighting more similar cases more heavily:

p e() = s(e,c

i
)

ci ∈L p(c
i
, A

j
)

(6)

Intuitively, a scoring function that accurately distinguishes ligand set G from decoy
set Y (where Y ∪ G = C) should predict lower scores for ligands and higher scores for
decoys. In other words, agent Aj is more accurate on ligand g only if its prediction for
g is generally lower than its predictions for Y, and it is more accurate on decoy y only
if its prediction for y is generally higher than its predictions for G. The performance
score of agent Aj on case c is thus

τ c, Aj() =

y ∈Y p y, Aj() > p c, Aj(){ }
y ∈Y{ } if c ∈G

g ∈G p g, Aj() < p c, Aj(){ }
g ∈G{ } if c ∈Y















(7)

Scores in equation (7) lie in [0,1], where a higher value indicates better performance.

3.3 Experimental Design and Results

Each of these experiments predicts the binding energy of a chemical e to a receptor.
We examine the accuracy of five predictors: the three individual agents (eHiTS, Au-
toDock Vina, AutoDock) and two meta-predictors: MAMC and RankSum, a typical
bioinformatics consensus-scoring meta-predictor. To predict the score on example e,
RankSum adds the rank-regression scores from the three predictors, where a lower
sum is better. In advance, for MAMC, we computed the similarities between all nC2
pairs of chemicals (about 1.8 million for gpb and 16.6 million for pdg) with equa-
tion (4), and recorded the five chemicals most similar to each chemical, along with
their similarity scores. Experiments ran on an 8 GB Mac Pro with a 2.93 GHz Quad-
Core Intel Xeon processor, and analysis used the R package ROCR.

First, we evaluated the three individual predictors with leave-one-out validation: in
turn, each of the n chemicals for a receptor served as the testing example e, while the
other n-1 served as C. MAMC extracted the |L| cases in C most similar to e, and then
used equation (5) to gauge the accuracy of each individual predictor across all the
cases in L. MAMC then chose the individual predictor with the best predictive accu-
racy on L and reported as a score the rank-regression score on e from that best indi-
vidual predictor as in (6).

We compare predictors’ performance by their hit ratio across C. ROC (Receiver
Operating Characteristic) curves illustrate the tradeoff between true positive and false
positive rates, an important factor in the decision to test a likely ligand in the laborato-
ry. (Classification accuracy alone would be less helpful, because the prevalence of so

 Multi-Agent, Multi-Case-Based Reasoning 83

many decoys heavily biases the data sets. Simple prediction of every chemical as a
decoy would be highly accurate but target no chemicals for investigation as likely
ligands.) A predictor p on any c ∈ C produces true positives C1 = {g ∈ G | p(g) ≤
p(c)} and false positives C2 = {y ∈ Y | p(y) ≤ p(c)}. Thus the true positive rate for c is
|C1|/|G| and the false positive rate is |C2|/|Y|.

We report first on |L| = 1, using the single case ci most similar to e. (For |L| > 1, see
the next section.) In this case, MAMC need only reference τij for each Aj ∈ A. The
ROC curves in Figure 4 compare the performance of all five predictors on receptors
gpb and pdg for |L| = 1, based on the predictors’ scores and DUD’s class labels.

MAMC clearly outperforms the other predictors on both gpb and pdg. In particu-
lar, MAMC outperforms the best individual predictor eHiTS on pdg, even though the
majority of its individual predictors perform poorly. In contrast, the performance of
the consensus scorer RankSum on pdg was considerably worse than MAMC; it re-
quires accurate rankings from most of its constituent predictors for satisfactory
performance, rankings the individual predictors could not provide.

4 Discussion

We remind the reader that each of the applications described here was developed in
part because carefully honed individual agents produced after many millions of hours
of development had proved unsatisfactory. Not only is there no reliable way to predict
the difficulty of a CSP, but also the solvers’ performances vary from one problem to
the next. A similar situation exists with predictors for PLD binding energy: their per-
formance varies unpredictably. Both are hard problems on which MAMC has made
some progress. Some choices, however, require further examination.

MAMC assumes that an agent’s accuracy on similar cases will also be similar, but
the number of those cases (i.e., the size of L) is an important decision. For portfolio
construction, Table 3 reports on r = 0.005 which, given 10-fold cross validation, selects
|L| = 13 cases from among the 2578 eligible ones. This enabled RSR-WG to outperform
its competitors for k > 1 (p < 0.005). Table 4 explores values of r that enlarge L to as
many as 412 cases. The data there suggest that, while the smallest r is reliable, occasio-
nally a larger neighbor set pays off, particularly for the (non-parallel) k = 1.

Fig. 4. ROC curves for PLD predictors on receptors gpb (left) and pdg (right)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

MAMC
RankSum
Vina
Autodock
eHiTS

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

MAMC
eHiTS
Vina
RankSum
Autodock

84 S.L. Epstein, X. Yun, and L. Xie

Table 4. Mean and standard deviation for the number of problems solved by RSR-WG out of
2865 over 10 runs with k processors. Best value for k processors is in boldface, p <0.005.

k

Neighbor set ratio r
0.005 0.01 0.02 0.04 0.08 0.16

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43

16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47

Next we consider the impact of larger |L| on PLD prediction. Again, each of the

three scoring functions predicts for e, and then MAMC evaluates its performance on L
with equation (5). MAMC then combines the predicted scores from all three predic-
tors with equation (6), which allows it to consider the overall weighted performance
of each predictor on a set of similar cases, and then takes the weighted prediction of
the agent with the best overall performance on those similar cases. Although Figure 5
shows a clear performance improvement for |L| = 2 on both receptors, the improve-
ment of |L| = 3 over |L| = 2 is only marginal, despite the fact that under leave-one-out
validation, |C| = 1900 for gpb and 5759 for pdg.

The nature of the data, we believe, accounts for the difference in the appropriate
choice for |L|. The PLD data is inherently noisy and incomplete; the cases in C are
only those that have been tested by a laboratory and made publicly available. The
dismal performance of a case, for example, may have dissuaded further testing of
similar ones. For such a case there would be very few similar cases, so a larger L
would provide little benefit. In contrast, competition CSPs are typically submitted by
researchers who expect their own solvers to have an advantage on those problems. A
class of CSPs consists of problems that may vary somewhat in their size or antic-
ipated difficulty but have some structural or modeling commonality. Each CPAI’08
problem class typically had dozens of problems, so that, even under 10-fold cross-
validation, MAMC is likely to find more than a few similar cases. Thus neighbor set
size should be dependent on how likely MAMC is to find truly similar cases.

Fig. 5. ROC curves for MAMC with different |L|. on gpb (left) and pdg (right)

 Multi-Agent, Multi-Case-Based Reasoning 85

Given a fixed size for L, MAMC’s confidence about its results is still likely to vary
from one case to the next. For example, as noted above, a particular case may have an
L whose members are only slightly similar to it. Moreover, individual agents may
perform poorly on some members of L. In both situations, MAMC should be less
confident about its prediction on the original case. Intuitively, if MAMC could cate-
gorize individual cases by confidence level, it might improve its performance on the
cases where its confidence level is high.

Our confidence analysis considers three kinds of predictions, demonstrated here on
protein-ligand docking where confidence before real-world laboratory testing is par-
ticularly important. Two cases ci and cj are said to be similar if and only if s(ci,cj) > t1
(here, 0.8), and dissimilar otherwise. A reliable predictor is one whose performance,
as calculated by equation (7), is greater than t2 (here, 0.9); otherwise it is unreliable.
Together t1 and t2 define three categories of agent Aj’s ability to decide on example e.
A prediction has high confidence if e’s closest neighbor c is similar to e and Aj is reli-
able on c. A prediction has low confidence if c is dissimilar to e and Aj is unreliable on
c. In all other situations, a prediction has normal confidence.

Figure 6 isolates the performance of MAMC at these three confidence levels for
gpb and pdg. For gpb, 31.77%, 49.50%, and 18.73% of the chemicals had high,
normal, and low confidence, respectively. For pdg, these percentages were 19.77%,
60.63%, and 19.60%. As expected, MAMC performed far better on the high-
confidence chemicals for both receptors than it did on the full set. The benefit intro-
duced by the confidence-based classification for pdg is particularly promising:
although most candidate scoring functions had unreliable performance, confidence-
based MAMC achieved almost perfect prediction on the high-confidence chemicals.

Might s alone have accurately predicted whether a chemical was a ligand? To in-
vestigate, we ranked by similarity all pairs of cases that included at least one ligand:
each pair is either a match (two ligands) or a non-match (a ligand and a decoy). Ideal-
ly, match pairs should have higher similarity scores than non-match pairs. In Figure 7,
the ROC curve for each receptor is based only on s and whether or not a pair was a
match. Although chemical similarity alone clearly distinguishes ligands from decoys
in the DUD benchmark data set, it provides fewer likely ligands than MAMC, whose
predictive performance is considerably better, especially when its confidence is high.

Fig. 6. ROC curves for confidence analysis on gpb (left) and pdg (right)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

high
normal
low

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

high
normal
low

86 S.L. Epstein, X. Yun, and L. Xie

Fig. 7. ROC curves for gpb and pdg based on computed similarity and match/non-match
labels of chemical pairs. The marks at lower left correspond to the predictions based only on
the minimum chemical similarity score 0.8.

Diversity is essential in MAMC. For parallel scheduling we used 24 agents, 36 fea-
tures, and 2578 cases per run under 10-fold cross validation. For PLD, we used 3
agents, 1024 features, and 1710 or 5183 cases per run. We believe that MAMC suc-
ceeds in part because it can draw upon such diversity. For PLD, there may be only
three agents, but they are quite diverse both in their knowledge base and in their ap-
proach: AutoDock and AutoDock Vina use a genetic algorithm to search the ligand
conformational space, while eHiTS uses systematic search in the conformational
space of ligands. They variously consider force fields, energy terms (e.g., Van der
Waals, electrostatic), empirical binding affinities, and knowledge-based scores trained
from known protein-ligand complexes. Moreover, the different features in the PLD
case representation provided an entirely different perspective on the cases. Although
the construction of each case base required machine-months of computation, we view
the increased availability of data not as a burden but as an opportunity.

Many sophisticated agents now offer the ability to set parameters. Future work will
investigate the use of copies of one agent with different parameter settings or an ele-
ment of randomization, as well as information flow algorithms to improve the case-
similarity metric s. Moreover, although here τ was known in advance, it could be
computed during MAMC’s execution, after L has been chosen.

5 Conclusion

MAMC’s reliance on multiple, well-respected agents draws strength from each of
them, and its use of multiple, weighted, similar cases provides greater resiliency when
its agents err. MAMC integrates similarity-based reference-case selection with per-
formance-based predictor selection in a single framework. In addition, MAMC can
report its confidence in its prediction, and achieves greater accuracy on confident
cases. In practice, this will allow real-world laboratory experiments to focus on
MAMC’s high-confidence predictions, which promise a high success rate.

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

gpb
pdg

 Multi-Agent, Multi-Case-Based Reasoning 87

MAMC’s portfolios of deterministic constraint solvers outperform those from
naïve parallel versions of popular portfolio constructors. With only a few additional
processors MAMC’s schedules are competitive with an oracle solver on one proces-
sor. MAMC’s improved predictions on compound virtual screening for protein-ligand
docking suggests that PLD could support real drug-discovery. Moreover, with careful
formulation of C, s, and A, MAMC should readily apply to other challenging bioin-
formatics and chemo-informatics tasks, including prediction of two- and
three-dimensional protein structures, protein-protein interaction, protein-nucleotide
interaction, disease-causing mutation, and the functional roles of non-coding DNA.
Highly-confident predictions from MAMC there should be worthy of particular attention.

Acknowledgements. This work was supported in part by the National Science Foun-
dation under grants IIS-1242451, IIS-0811437, CNS-0958379 and CNS-0855217, and
the City University of New York High Performance Computing Center. Weiwei Han
prepared the cases for PLD.

References

1. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

2. Leake, D.B., Sooriamurthi, R.: Automatically Selecting Strategies for Multi-Case-Base
Reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416,
pp. 204–233. Springer, Heidelberg (2002)

3. Plaza, E., McGinty, L.: Distributed Case-Based Reasoning. The Knowledge Engineering
Review 20(3), 261–265 (2005)

4. Redmond, M.: Distributed Cases for Case-Based Reasoning: Facilitating Use of Multiple
Cases. In: Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI
1990), pp. 304–309 (1990)

5. Kar, D., Chakraborti, S., Ravindran, B.: Feature Weighting and Confidence Based Predic-
tion for Case Based Reasoning Systems. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012.
LNCS, vol. 7466, pp. 211–225. Springer, Heidelberg (2012)

6. Yun, X., Epstein, S.L.: Learning Algorithm Portfolios for Parallel Execution. In: Hamadi,
Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 323–338. Springer, Heidel-
berg (2012)

7. Guerri, A., Milano, M.: Learning Techniques for Automatic Algorithm Portfolio Selection.
In: Proceedings of the Sixteenth European Conference on Artificial Intelligence,
pp. 475–479 (2004)

8. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-Based
Reasoning in an Algorithm Portfolio for Constraint Solving. In: Proceedings of the Nine-
teenth Irish Conference on Artificial Intelligence and Cognitive Science (2008)

9. Silverthorn, B., Miikkulainen, R.: Latent Class Models for Algorithm Portfolio Methods.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
pp. 167–172 (2010)

10. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for
Portfolio-Based Selection. In: Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, pp. 210–216 (2010)

88 S.L. Epstein, X. Yun, and L. Xie

11. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-Based Algorithm
Selection for SAT. Journal of Artificial Intelligence Research 32, 565–606 (2008)

12. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A Baye-
sian Approach to Tackling Hard Computational Problems. In: Proceedings of the Seven-
teenth Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kauf-
mann Publishers Inc. (2001)

13. Streeter, M., Golovin, D., Smith, S.F.: Combing Multiple Heuristics Online. In: Proceed-
ings of the Twenty-Second National Conference on Artificial Intelligence, pp. 1197–1203
(2007)

14. Mistral, http://4c.ucc.ie/~ehebrard/Software.html
15. Third International CSP Solver Competition (CPAI 2008),

http://www.cril.univ-artois.fr/CPAI08/
16. Fourth International CSP Solver Competition (CSC 2009),

http://www.cril.univ-artois.fr/CSC09/
17. Huang, S.-Y., Zou, X.: Advances and Challenges in Protein-Ligand Docking. International

Journal of Molecular Science 11, 3016–3034 (2010)
18. Charifson, P.S., Corkery, J.J., Murcko, M.A., Walters, W.P.: Consensus Scoring: A Me-

thod for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional
Structures into Proteins. Journal of Medicinal Chemistry 42, 5100–5109 (1999)

19. Clark, R.D., Strizhev, A., Leonard, J.M., Blake, J.F., Matthew, J.B.: Consensus Scoring for
Ligand/Protein Interactions. Journal of Molecular Graphics Modelling 20, 281–295 (2002)

20. Wang, R., Wang, S.: How Does Consensus Scoring Work for Virtual Library Screening?
An Idealized Computer Experiment. Journal of Chemical Information and Computer
Sciences 41, 1422–1426 (2001)

21. Zsoldos, Z., Reid, D., Simon, A., Sadjad, B.S., Johnson, P.A.: Ehits: An Innovative Ap-
proach to the Docking and Scoring Function Problems. Current Protein and Peptide
Science 7, 421–435 (2006)

22. Trott, O., Olson, A.J.: Autodock Vina: Improving the Speed and Accuracy of Docking
with a New Scoring Function, Efficient Optimization and Multithreading. Journal of Com-
putational Chemistry 31, 455–461 (2010)

23. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson,
A.J.: Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding
Free Energy Function. Journal of Computational Chemistry 19, 1639–1662 (1998)

24. Miteva, M.A., Lee, W.H., Montes, M.O., Villoutreix, B.O.: Fast Structure-Based Virtual
Ligand Screening Combining Fred, Dock, and Surflex. Journal of Medicinal Chemistry 48,
6012–6022 (2005)

25. Fukunishi, H., Teramoto, R., Takada, T., Shimada, J.: Bootstrap-Based Consensus Scoring
Method for Protein-Ligand Docking. Journal of Chemical Information and Modeling 48,
988–996 (2008)

26. Huang, N., Shoichet, B.K., Irwin, J.J.: Benchmarking Sets for Molecular Docking. Journal
of Medicinal Chemistry 49, 6789–6801 (2006)

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 89–103, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Case-Based Learning of Applicability Conditions
for Stochastic Explanations

Giulio Finestrali and Héctor Muñoz-Avila

Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA 18015
gif311@lehigh.edu, munoz@cse.lehigh.edu

Abstract. This paper studies the problem of explaining events in stochastic
environments. We explore three ideas to address this problem: (1) Using the
notion of Stochastic Explanation, which associates with any event a probability
distribution over possible plausible explanations for the event. (2) Retaining as
cases (event, stochastic explanation) pairs when unprecedented events occur.
(3) Learning the probability distribution in the stochastic explanation as cases
are reused. We claim that a system using stochastic explanations reacts faster to
abrupt changes in the environment than a system using deterministic
explanations. We demonstrate this claim in a CBR system, incorporating the 3
ideas above, while playing a real-time strategy game. We observe how the CBR
system when using stochastic explanations reacts faster to abrupt changes in the
environment than when using deterministic explanations.

Keywords: case-based learning, explanations, stochastic explanations.

1 Introduction

A good way to evaluate an agent’s intelligence is by measuring its ability to react to
unprecedented events. An agent interacts with the environment by performing actions,
and expecting these actions to have a certain effect. In a stochastic domain (i.e.,
agent’s actions can have multiple outcomes and events happen independently of the
agent’s actions), though, unexpected and often unprecedented events can always
happen. Whenever the results of an agent’s action on the environment are different
than what the agent expected them to be, this situation is called a discrepancy (Cox,
2007). Whenever an unexpected event occurs, we have two choices: relying on the
previously collected knowledge to react to the event, or trying to explain the event
and then reacting accordingly to the explanation. The first method can be effective but
if the unexpected event is completely new, the knowledge acquired in the past might
not be sufficient to react effectively to it.

Explaining unexpected events is a much more complicated task, but offers a higher
degree of flexibility than merely relying on previously acquired knowledge to react to
discrepancies. The process of explaining an event can be divided in two tasks: given
an event, provide a set of possible explanations for it; after that, pick the best
explanation among the possible ones. In this paper, we present a novel method to
perform the second task efficiently using Case-Based Reasoning (CBR).

At the center of our approach are three ideas: (1) Using the notion of Stochastic
Explanations, which associates with any event a probability distribution over possible

90 G. Finestrali and H. Muñoz-Avila

plausible explanations for the event. Stochastic explanations are necessary when
operating in a stochastic domain, because in such domains it is implausible to have a
set of fixed cause-effect rules for unexpected events. (2) Retaining as cases (event,
stochastic explanation) pairs when such unexpected events occur. (3) Learning the
probability distribution in the stochastic explanation as the cases are retrieved in
subsequent episodes.

In stochastic environments, abrupt changes can make explanations that were
previously true suddenly become false. We claim that a system using stochastic
explanations reacts faster to such changes in the environment than a system using
deterministic explanations. We demonstrate this claim with a CBR system,
implementing the three ideas above, while playing the real-time strategy Wargus
game. This game is an example of a stochastic domain. We observe how the CBR
system when using stochastic explanations reacts faster to abrupt changes in the
environment than when using deterministic explanations.

2 Related Work

There have been many studies about explanations. A thorough discussion on the types
of reasoning failure can be found in Cox (1996). Using Cox’s categorization, in our
work we deal with contradiction: a failure condition characterized by an agent’s
expectations not matching the resulting state; we refer to this as unexpected failure.
Whenever an agent performs an action, it expects the environment to be modified in a
certain way as a result of the action performed. When the actual state of the
environment does not match these expectations, we have a contradiction.

Cox (2007) provides an interesting insight on the difference between Learning
Goals and Achievement Goals. Whenever an anomaly happens, we try to generate an
explanation for it; this process involves finding the culprit of the anomaly. An
intelligent agent must be able to blame itself and its own cognitive process in order to
improve it: this can be done by generating a Learning Goal. Achievement Goals are
the regular goals the agent pursues to accomplish its task. In our work we use
stochastic explanations to determine the learning goal.

Existing work on generating explanations to reasoning failures use deterministic
explanations (e.g. (Molineaux et al., 2011; 2012)). We label the kind of explanations
generated by these systems as deterministic because when provided with the same
discrepancy, the system will output the same explanation. DiscoverHistory relies on a
deterministic Hierarchical Task Network planner. The planner cannot account for
every plausible event in the domain; it makes assumptions that the conditions of the
environment are static to generate its plan. The system then uses the DiscoverHistory
algorithm whenever one of these assumptions fails. The way DiscoverHistory works
is by modifying the generated plan, introducing new elements that solve
discrepancies, or by modifying the initial assumptions. Often, this process introduces
new contradictions, which are then recursively solved until the whole plan is
consistent, or until a maximum number of modifications have been made. This
process is deterministic: if we provide to the algorithm the same anomaly twice, given
the same state of knowledge, the system will produce the same explanation.

More recently, Klenk et al. (2012) presented ARTUE, which uses a direct
application of explanations in a strategy simulation. ARTUE is based on a modified
version of the SHOP2 planner, and it tries to explain discrepancies similarly to

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 91

DiscoverHistory. When ARTUE cannot create an explanation, it discards the
discrepancy entirely. ARTUE’s approach is deterministic and does not deal with
anomalies that should trigger the generation of Learning Goals. This means that
ARTUE is not able to blame itself to explain the discrepancies that arise.

Explaining discrepancies is a hard problem, and research efforts to solve it are a
recurrent research topic. DiscoverHistory and ARTUE generate explanations by
blaming the environment for any given discrepancy, and by then finding a set of
modifications to the previous plan that resolve the inconsistencies. This solution is
greedy and deterministic, and does not change over time. Stochastic explanations
represent a novel approach to the problem: instead of blaming the environment, we
blame the agent itself. When the culprit of the discrepancy is the environment,
blaming the agent will make the agent learn that it is operating in an environment
where this kind of discrepancies can happen, and should account for them in the
future. Not only does our system reacts to discrepancies by selecting an explanation,
but the explanation can change over time, adapting to changes in the environment.
Once an explanation is selected, the agent follows the results of the reaction,
increasing the likelihood of selecting the same explanation again in the future in case
of success, and decreasing it otherwise. Obviously, a stochastic approach requires
many iterations to perform well, because it learns by failure. Nonetheless, we believe
that the flexibility and dynamicity of this approach justify the learning curve.

3 Stochastic Explanation

We begin by defining explanations in general, and then we will focus on stochastic
explanations and how they differ from deterministic explanations. We will show a
motivating example for stochastic explanations in the RTS game Wargus.

3.1 Definitions

The task of generating an explanation for a given discrepancy can be divided in two
parts: (1) generating a set of possible explanations and (2) choosing among the
explanations in the set the one we think is correct. In this work we are tackling the
second part.

In our representation, an explanation is merely a label, which can be more or less
descriptive of the discrepancy it is trying to explain. More importantly, each
explanation is associated with a reaction: a goal that the agent will try to pursue after
the explanation is picked in attempt to solve a discrepancy. Learning the reaction
associated with each explanation is still an open problem.

Let us now discuss what a stochastic explanation is and how it differs from
deterministic explanations. Intuitively, stochastic explanations have a probability
value associated to them, which expresses the likelihood of an explanation to be
correct. Formally, let E be the set of all possible explanations. For any set A, the
notation 2A is the power set of A; the collection of all subsets of A. A stochastic
explanation is an element ε in 2E×{0,1} such that ε is a probability distribution. That is,
ε = {(e1,p1),…,(en,pn)} such that each ek ∈E and Σk pk = 1 hold.

92 G. Finestrali and H. Muñoz-Avila

A discrepancy occurs whenever the state s’ resulting after taking an action in a
state s doesn’t match an expectation X. Frequently, the expectation X is defined as the
expected state. In this situation a discrepancy occurs if X ≠ s’ holds (e.g., (Jaidee et
al., 2012)). In our work a discrepancy happens when the attempt to accomplish a goal
fails. This is because the system keeps a positive outlook on the goal it generates.
Since we generate only one kind of goal for now, we also have one possible kind of
discrepancy. There are many possible explanations for the same discrepancy.
Whenever a discrepancy happens, the system classifies it (see Section 4), and then
provides a stochastic explanation ε. The probabilities in ε are constantly updated
during the execution of the system. The system will then pick an explanation from ε,
according to the probability distribution. If every time we picked the most likely
explanation, the one having the highest probability, our system would behave like
existing explanation-generating systems. For a given stochastic explanation ε, we
refer to the explanation in ε that has the highest probability as the greedy explanation
and denote it by greedy(ε): greedy(ε) = max arg p {(e1,p1),…,(en,pn)}.

The probability distribution of a stochastic explanation changes during execution.
More concretely, the system learns these probabilities from experience by using
reinforcement learning (RL). Once the system picks an explanation for a discrepancy,
the reaction associated to the explanation is executed, and has two possible outcomes:
success or failure. In case of success, we consider the explanation to be correct, and
we increase its probability. In case of failure, we consider the explanation as incorrect
and we decrease its probability. After several iterations, RL guarantees that the
correct probability distribution of each stochastic explanation is learned.

3.2 Motivating Example

To better understand the shortcomings of greedy explanations, we will now consider a
motivating example. First, let us describe in more detail the Wargus domain. We
focus on combat tasks in our experiments. Any scenario starts with a predetermined
number of units both for the player and the adversary; these units battle and as soon as
one player has no units left, the scenario is concluded. The units are balanced with a
typical rock-paper-scissors mechanism: every unit has other units that it’s strong
against, weak against, and fairly balanced against. On top of this, some units can be
“upgraded” to become more powerful units. For example, an archer can be upgraded
to a ranger, improving its health points and other stats. Finally, the units are divided
in three categories: land units, air units, and sea units. Units usually have constraints
on the kinds of units they can attack; for example, knights cannot attack flying units.
Our agent starts its execution having none of these notions: it does not know which
units every unit can attack, or which units are strong against a specific type of unit.
The only information the agent knows at the beginning of the system’s execution is
how to perform the basic policy attack unit, needed to achieve the only goal generated
by the system kill unit A with unit B, where A and B are picked randomly between the
enemy units and our units respectively.

The agent always keeps an optimistic outlook on the generated goal. In case the
attack fails, we have a discrepancy. This triggers the Explanation Generator,
assigning it the task of explaining the discrepancy. As previously explained, the set of
possible explanation is predetermined. In our example, we have three possible

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 93

explanations to why the attack failed: (e1) unit A was not upgraded; (e2) unit A is a
bad choice for attacking unit B; (e3) unit B has an environmental advantage. The
latter explanation needs some clarification. We consider an environmental advantage
an obstacle on the map that prevents unit A to attack unit B. For example, unit B
could be surrounded by trees, preventing close-ranged land units to attack it. The
reactions for these explanations are as follows: (1) attack unit B with the upgraded
version of unit A; (2) attack unit B with a better unit; (3) attack with a ranged or a
flying unit. As we said before, the agent has no knowledge of which unit is strong
against unit B, therefore to perform Reaction 2, the system keeps track of success
rates for every attack it performs, learning with time the rock-paper-scissors
mechanism of the game.

Our motivating example is composed of two scenarios. We play the first scenario
for 50 iterations, and then the second scenario for 50 iterations. The knowledge
acquired during the execution of the first scenario, is kept when switching to the
second scenario. The agent has no perception about the change of scenario: we treat
this as an unexpected event, very similar to the kinds of unpredictable events that can
always happen in a stochastic domain. In the first scenario (See Figure 1), the agent
has several knight units, some paladin units (which is the upgraded version of a
knight), and also several griffin units, which are powerful flying units that can attack
land units. The enemy AI, which is a passive script that only attacks back when
attacked, only controls one paladin, surrounded by trees (environmental advantage).
During the execution of the first scenario, whenever the agent attacks the paladin with
a land unit, it fails. With time, it learns that the right explanation for this fact is that
the enemy has an environmental advantage, and therefore the right thing to do is
attack with a griffin. After many iterations the system will learn a stochastic
explanation such as ε1 = {(e1,p1), (e2,p2), (e3,p3)} where p3 > p1 and p3 > p2. Hence
greedy(ε1) = e3 holds.

In the second scenario (see Figure 2), we have basically the same situation, but our
agent does not have any griffin units, and there are no more trees surrounding the
enemy paladin; this can happen in a regular RTS game, because the peasant units can
chop trees down. Now, when attacking the paladin with a knight, the system fails but
the correct explanation changed: the knight is not upgraded (i.e., explanation e1), and
we should have attacked with a paladin. At first, when we switch to the second
scenario, when we fail to kill the enemy paladin, the system will have a high
probability associated with the explanation environmental advantage (i.e., explanation
e3). This means that the greedy explanation will always pick environmental
advantage, as long as the probability is higher than the others. Therefore, a greedy
approach would have to wait until the probability of environmental advantage falls
below the probability of the other explanations, making a lot of mistakes until then.
Stochastic explanations, instead, will pick a different explanation sooner, and it will
actually realize much faster that the correct explanation changed.

This is the reason that motivates the experiments we present in Section 5. If an
intelligent agent operates in a stochastic domain, then greedy explanations will have a
hard time reacting effectively and in a timely manner to the sudden changes that
happen in such domain. If the agent still had griffin units in the second scenario, then
both explanations ݁ଷ and ݁ଵ are plausible, since both their reactions would provide a
positive outcome. In this case, stochastic explanations would learn a probability

94 G. Finestrali and H. Muñoz-Avila

distribution that represents these conditions. Greedy would keep using explanation ݁ଷ
instead, since the outcome received from it remained positive. While the performance
of the two approaches would be similar in this case, the stochastic explanation’s
representation is more representative of the situation. If, eventually, the agent won’t
be able to use griffins anymore, an agent using stochastic explanations will then be
able to recover rapidly, while an agent Greedy Explanations will suffer greatly, taking
a much longer time to re-establish good performance.

Fig. 1. Scenario 1. A are the griffins, B are the paladins and C are the knights. D is the enemy
paladin surrounded by trees and hence inaccessible for land units.

4 Case-Based Learning of Applicability Conditions for
Explanations

We use case-based learning techniques to acquire knowledge when generating and
testing an explanation for a given discrepancy and use case retrieval to dynamically
recognize the applicability of explanations captured in a previous episode.

Whenever a discrepancy happens, the system takes a snapshot of the state of the
environment. This snapshot contains a set of feature-value pairs that are domain-
dependent. For our experiments in Wargus we use five features: the Euclidean
distance between the attacker and the target, the difference in health points between
the attacker in the retained case and the query and the same difference for the target in
the retained case and the query, and the types of both attacker and target.

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 95

Fig. 2. Scenario 2. A are the knights, B are the paladins. C is the enemy paladin, now accessible
from land units.

The system then checks if a similar discrepancy ever happened in the past by
measuring the similarity of the current discrepancy with the previous ones that are
stored in the system’s case base. To do so, the system has to compute the local
similarity simi(xi,yi) between pairs of features xi, and yi (Ricci and Avesani, 1995).
The global similarity between two discrepancies is then computed with an
aggregated similarity metric SIMagg is defined as: SIMagg(X,Y) = Σi=1,n αi ⋅
simi(xi,yi). This similarity and its weights αi are also domain-dependent. If the
similarity of the nearest neighbor for the current situation is above a user-defined
threshold, then the system considers the unexpected event as “already seen” in the
past, and will utilize the learned explanations for it. Otherwise, the current situation
is considered as “unprecedented”, and the case (features, equiprobable stochastic
explanation) is retained in the case-base. Since we don’t know anything about
unprecedented situations, we associate the equiprobable stochastic explanation (i.e.,
every known explanation has the same probability). These probabilities are refined
over time.

The following is a pseudo-code presenting how the system handles the task of
retrieving and generating explanations for any given discrepancy. The algorithm
requires five elements in input: the case-base CB which contains the discrepancies
previously encountered (CB will be empty at the first iteration of the system), the
policies Π to execute the goals as defined by their reactions (e.g., pre-coded
instructions of what to do next), the pre-determined set E of (explanations, reaction)
pairs <e,r>, the similarity threshold ߪ, and the maximum number of goals ߠ.

96 G. Finestrali and H. Muñoz-Avila

 EXP_GEN(CB, Π, E, ߪ, (ߠ
1: GoalsInProgress ← ∅; ExplanationsInProgress ← ∅, FailedGoals ← ∅
2: while true
3:
4: s ← GetState() // Get the current state from the environment
5: if ScenarioOver
6: return CB
7:
8: for-each ݃ א Generate Explanations for discrepancies // ݏ݈ܽ݋ܩ݈݀݁݅ܽܨ
9: c ← NewCase(g,s) //Create query case

10: c’ ← GetNearestNeighbor(CB, c)//Retrieve NN(c)
11: if (Similarity(c’,c) ൒ ߪ)
12: // Consider the query case as the same case of c’
13: e ← PickStochasticExplanation(c’.Explanations)
14: else
15: // Consider case c as unprecedented
16: CB.retain(c)
17: for-each <e,r> in E
18: //initialize every explanation as equiprobable
19: c.addExplanation() ← (<e,r>, 1/|E|)
20: e ← PickStochasticExplanation (c.Explanations)
21: ReactToExplanation(e, Π௘)
22: ExplanationsInProgress.add(e)
23:
24: for-each ݁ א ݏݏ݁ݎ݃݋ݎܲ݊ܫݏ݊݋݅ݐ݈ܽ݊ܽ݌ݔܧ
25: UpdateExplanationState(e)
26: if (e.state == success)
27: RaiseProbability(e.p)
28: if (e.state == failed)
29: LowerProbability(e.p)
30: if (e.state != in_progress)
31: ExplanationsInProgress = ExplanationsInProgress – {e}
32:
33: if GoalsInProgress < ߠ & ExplanationsInProgress =∅
34: g ← GenerateGoal()
35: PerformGoal(g, Π௚)
36: GoalsInProgress.add(g)
37:
38: for-each ݃ א ݏݏ݁ݎ݃݋ݎܲ݊ܫݏ݈ܽ݋ܩ
39: UpdateGoalState(g)
40: if (g.state == failed)
41: FailedGoals.add(g)
42: if (g.state != in_progress)
 {g} – ݏݏ݁ݎ݃݋ݎܲ݊ܫݏ݈ܽ݋ܩ = ݏݏ݁ݎ݃݋ݎܲ݊ܫݏ݈ܽ݋ܩ :43
44: //end while

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 97

After resetting Goals and Explanations in progress in Line 1, the algorithm enters a
loop, which will be terminated when the scenario ends (Line 5). At Line 4, we update
the agent’s state of the environment representation; if the scenario is over, the
algorithm returns the updated case base.

At Line 8, the algorithm loops through the failed goals (if any), generating a new
case for each one. Then, at Line 10, the algorithm looks for the most similar case to c
in the case base. If the similarity of c’ and c is greater than ߪ (Line 11), the system
picks the explanation from c’ at Line 13, otherwise the case c is considered
unprecedented. It is then added to the case base (Line 16), its explanations are
initialized with the given input set E all having the same probability 1/|E|, and an
explanation is then picked at Line 20. The function PickStochasticExplanation takes a
stochastic explanations c’.Explanations as input. It picks an explanation <e,p>
according to the probability distribution in c’.Explanations

At Line 21 we call the function ReactToExplanation, which takes in input the
explanation e and the reaction associated to it in order to perform the reaction. Then,
at Line 22 we add this explanation to the ExplanationInProgress collection. Lines 24-
31 handle the update of the state of each explanation in progress. In case the reaction
succeeds, which means the explanation was correct, the probability of the explanation
e is raised. If the executing the reaction fails to achieve the goal, the probability of e is
reduced. Finally, unless the reaction associated with explanation e is still in progress,
we remove it from the ExplanationInProgress collection at Line 31.

The probability value of an explanation is the sum of the ratio of successes over the
total number of trials, and an additive term called booster value. ܲሺ݁݊݋݅ݐ݈ܽ݊ܽ݌ݔሻ ൌ ݀݁ݐݏ݁ܶ ݏ݁݉݅ܶ݀݁݀݁݁ܿܿݑܵ ݏ݁݉݅ܶ ൅ 1 ൅ ݎ݈݁݅݌݅ݐ݈ݑ݉ · ݁ݑ݈ܸܽݎ݁ݐݏ݋݋ܾ

There are two kinds of booster values: a reward booster value and a punishment one.
The former is positive; the latter is zero or negative. If in the future the explanation is
tested again, and the outcome is again positive, the multiplier will be now 2 and
therefore the probability will be raised more. The multiplier will increase by one for
each consecutive success/failure and will be reset to 0 (no booster) whenever a
success-failure or failure-success pattern occurs. The two booster values are user-
defined parameters and they can impact on the reaction time of the EXP_GEN agent.
In our experiments, we use a value of .12 for rewarding correct explanations and a
value of .01 to punish incorrect ones. When applying the formula above, values fall
off the [0,1] range: in this case we re-scale them so they will fall into [0,1].

Goal Generation in EXP_GEN. We generate a new goal only if there are no
explanations in progress (Line 33) and only if there are no more than ߠ goals already
in progress; in our experiments, we set ߠ ൌ 1. This makes the system pursue one goal
at a time, eliminating possible noise from the performance analysis we will present in
Section 5. The GenerateGoal function generates only one kind of goal: kill unit A with
unit B, where A and B are randomly chosen (so there are many goals that can be
pursued, one for every pair (A,B). This goal then gets started by the PerformGoal
function, which takes the goal and its associated reaction as input (Line 35). The goal
is then added to the GoalsInProgress collection (Line 36). At Line 38 we handle the
update of the state of the current goal. For each goal g, if g failed then we add it to the
GoalsFailed collection. And finally, unless the goal is still in progress, we remove it
from the GoalsInProgress collection (Line 43).

98 G. Finestrali and H. Muñoz-Avila

GENERATE_GOAL+. The EXP_GEN pseudo-code learns over time the
applicability conditions and probability distribution of the stochastic explanations. We
can exploit this learned knowledge to prevent discrepancies from happening in the
future. The GENERATE_GOAL+ function uses the case base before selecting the
next goal to pursue. In case the goal that was picked originally generated
discrepancies in the past (we can compute this with a relaxed similarity metric over
the case base), then it has a high chance of failure and the goal should be changed.
This will not prevent discrepancies from happening, because we cannot know the
future events that might occur in a stochastic domain, but we expect that it will
nonetheless dramatically decrease the number of times that our agent will find its
expectations inconsistent with the state of the world. The GENERATE_GOAL+
function is represented in the following pseudo-code.

 GENERATE_GOAL+(CB, ߬)
1: g ← CreateGoal()
2: if FindDiscrepancies(g, CB) > ߬
3: PickBestGoal(g)
4: return g

At Line 1, the function CreateGoal will generate a domain-specific goal. As

explained before, the goal generated will always be KillUnit(A,B) where A and B can
be any unit. At Line 2 the function FindDiscrepancies will scan the case base CB,
looking for previous failures that involved the same kinds of unit that were picked for
g. This is a retrieval operation from the case base that involves a similar, but more
relaxed, similarity metric. Here we consider only the unit types as features to compute
the similarity.

If FindDiscrepancies can find more than ߬ previous failures, where ߬ is a user-
defined threshold, then the algorithm calls PickBestGoal at Line 3. This function will
look for the best unit to attack the target among the agent’s units. To do this, we rely
on knowledge acquired during the execution of the system. Recall that the system
starts its execution knowing nothing about the rock-paper-scissors mechanism of the
game, but improves its knowledge during its execution. Therefore, this algorithm will
improve its performance over time, effectively learning from past mistakes.

5 Empirical Study

We claim that an agent using Stochastic Explanations will better react to sudden
changes in the environment than an agent using Deterministic Explanations. Also, we
will show how an agent that learns from past mistakes greatly outperforms an agent
that does not perform this process.

5.1 Experimental Setup

In our scenarios, we used a similarity threshold ߪ ൌ 0.7, and the explanation for each
discrepancy is chosen from a predetermined set of three possible explanations: Unit
not upgraded, Wrong Unit, and Environmental advantage. The first represents the
situation where the target should be attacked with an upgraded version of the unit that

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 99

was used originally (e.g. ranger instead of archer). The second is probably the most
intuitive explanation, and means that the attacker should have been a completely
different unit (e.g. knight instead of peasant). Finally, the latter explanation,
Environmental Advantage, represents the situation where the enemy has some kind of
obstacle protecting it from being attacked by closed-range land units and should
therefore be attacked with flying or ranged units.

In the description below we refer to team A to the one controlled by our AI and
team B to the opponent.

As in other works on explanations (Molineaux et al. 2012), our scenarios are hand-
crafted to reduce noise and present more accurately the effectiveness of our theories. We
will present the results from three scenarios, each composed by two parts. In the first
part, the system acquires knowledge about the environment, the discrepancies that can
happen within it, and their corresponding explanations. In the second part the scenario is
slightly modified, so that the previously acquired knowledge is now flawed and not
effective for the new conditions. We will show how Stochastic Explanations react to
these events in comparison with Greedy Explanations and Random Explanations.

In the first scenario, the first part presents team A consisting of archers and
rangers attacking team B which consisted of rangers only. When archers are selected
to accomplish the goal, they will fail because rangers are stronger. The correct
explanation for this kind of discrepancy is Upgraded Unit. In the second part, we also
have griffins available, and the enemy rangers are now surrounded by trees. When the
rangers attack they will sometimes fail. The correct explanation becomes
Environmental Advantage; it is best to attack with the griffins.

The second scenario is similar to the first one, except that now Team A have
knights and paladins but neither archers nor rangers; team B controls only paladins.
The main difference between the first scenario and the second one is that paladins
cannot attack griffins, while rangers can. Therefore in the first scenario the
Environmental Advantage explanation has a small chance to fail, while in the second
it can only fail in case of a timeout, which happens when the griffin does not kill the
paladin in a reasonable amount of time.

Finally, the third scenario is the same as the second one, except that we switch the
order of the first and second part.

Stochastic Explanations behave as explained in Section 3 and 4; Greedy
Explanations utilize the same mechanics, except for the explanation decision part:
here, the system will always pick the explanation having the highest probability.
Random Explanations, intuitively, will just pick a random explanation among the
three possible ones for each discrepancy that occurs during the system’s execution.
We expect Greedy to be a very effective heuristic during the first part of each
experiment because we repeatedly try the same scenario, but then to perform much
worse than Stochastic in the second part, having a much harder time to adapt to
changes in the environment. We also expect Random not to present behavioral
differences between part one and two, and to be worse than both Stochastic and
Greedy Explanations.

In the charts that we will show, the x-axis will represent the number of iterations:
for our experiments, we ran part one of each experiment for 50 iterations before
switching to part two, which was then ran for 50 iterations, totaling 100 iterations per-
experiment. Each experiment was also run 5 times, and the results were then
averaged. The y-axis shows the number of failed explanations – that is, explanations
generated by the system that failed when tested, providing a negative feedback.

100 G. Finestrali and H. Muñoz-Avila

5.2 Results

Figures 3, 4, and 5 show the results for first, second and third scenario respectively.
The results meet the expectations: while in part 1 Greedy Explanations outperform
Stochastic Explanations, in part 2 Stochastic outperforms Greedy for all the three
scenarios. Random Explanations, as expected, have a consistent behavior in all the
scenarios, and are consistently outperformed both in part 1 and 2 and in all three
scenarios by both Greedy and Stochastic Explanations.

Fig. 3. Results for the first scenario for parts 1 (left) and 2 (right)

Fig. 4. Results for the second scenario for parts 1 (left) and 2 (right)

Fig. 5. Results for the third scenario for parts 1 (left) and 2 (right)

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Greedy Stochastic Random

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Greedy Stochastic Random

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Greedy Stochastic Random

0

10

20

30

40

50

60

70

0 10 20 30 40 50

Greedy Stochastic Random

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50

Greedy Stochastic Random

0
10
20
30
40
50
60
70
80

0 10 20 30 40 50

Greedy Stochastic Random

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 101

The implications of these results are deeper and more subtle that one might think.
A stochastic explanation-generating agent, as opposed to a deterministic one, will
always question its own experience and expectations. While this line of thought will
penalize its performance in deterministic scenarios (represented by the first part of
each experiment), it will be extremely helpful in case of sudden environment changes
(the second part of our experiments). A deterministic agent cannot react this quickly
to unseen events, because for functioning correctly such an agent must entirely rely
on its own previous experiences. A stochastic agent, instead, constantly keeps
questioning itself and its past experiences, which might be influenced not only by the
nature of the environment but also by the limitedness of the agent’s perception of the
environment. Therefore, depending on the nature of the domain we operate in, one or
the other approach can be better. In the case of a stochastic domain, Stochastic
Explanations is a more suitable choice. If anomalies are extremely rare in the domain
we operate in, then using greedy explanations would be better; if, instead, anomalies
are common, then using Stochastic Explanations is preferred.

We did a second experiment showing how GENERATE_GOAL+ (see Section 4)
exploits knowledge learned from past mistakes. Learning from past mistakes reduces
substantially the number of discrepancies occurring. For the same 3 scenarios, Figures
6, 7, and 8 show a substantial reduction in the number of discrepancies generated with
error learning (i.e., using GENERATE_GOAL+) compared to normal (i.e., using the
goal generation code in EXP_GEN). In these experiments, we use Stochastic
Explanations in both parts and the settings are the same as the previous experiment.

Using GENERATE_GOAL instead of the goal generation code in EXP_GEN
shows the potential of taking advantage of the knowledge acquired by explaining
discrepancies. This is even more pronounced in the second part of our scenarios,
where the agent is presented with an unexpected event; if an agent is able to reason on
its own past mistakes and on the explanation that it gave to those mistakes, then it is
able to greatly outperform an agent that does not perform this kind of analysis.

Fig. 6. Results with learning for the first scenario for parts 1 (left) and 2 (right)

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

102 G. Finestrali and H. Muñoz-Avila

Fig. 7. Results with learning for the second scenario for parts 1 (left) and 2 (right)

Fig. 8. Results with learning for the third scenario for parts 1 (left) and 2 (right)

6 Conclusions and Future Work

We studied the problem of explaining events in stochastic environments. A challenge
in such environments is that unpredicted changes can make explanations that were
previously true suddenly become false. We explore three ideas to address this
problem: (1) Using the notion of Stochastic Explanations, (2) Retaining as cases
(event, stochastic explanation) pairs when unexpected events occur. (3) Learning the
probability distribution in the stochastic explanation as the cases are retrieved. We
conducted experiments with a CBR system, implementing the three ideas above,
while playing Wargus. We observe how the CBR system when using stochastic
explanations reacts faster to abrupt changes in the environment than when using
deterministic explanations.

In future work, we will like to learn new explanations. This is a challenging problem
because of the need for a vocabulary from which these explanations will be formulated.
Furthermore, this will also involve learning the reaction for the explanation.

Acknowledgements. This work was supported in part by NSF grant 1217888.

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

0
5

10
15
20
25
30
35
40
45

0 10 20 30 40 50

Normal Error Learning

 Case-Based Learning of Applicability Conditions for Stochastic Explanations 103

References

Cox, M.T.: Introspective Multistrategy Learning: Constructing a Learning Strategy under
Reasoning Failure. Doctoral dissertation, Georgia Institute of Technology (1996)

Cox, M.T.: Perpetual self-aware cognitive agents. AI Magazine 28(1), 32 (2007)
Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Learning and Reusing Goal-Specific Policies for

Goal-Driven Autonomy. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466,
pp. 182–195. Springer, Heidelberg (2012)

Molineaux, M., Aha, D.W., Kuter, U.: Learning Event Models that Explain Anomalies. In:
Roth-Berghofer, T., Tintarev, N., Leake, D.B. (eds.) Explanation-Aware Computing: Papers
from the IJCAI Workshop, Barcelona, Spain (2011)

Molineaux, M., Kuter, U., Klenk, M.: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (2012)

Klenk, M., Molineaux, M., Aha, D.W.: Goal-Driven Autonomy For Responding To
Unexpected Event. Strategy Simulations. In: Computational Intelligence (2012)

Ricci, F., Avesani, P.: Learning a local similarity metric for case-based reasoning. In: Aamodt,
A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 301–312. Springer, Heidelberg
(1995)

Case-Based Reasoning

on E-Community Knowledge

Emmanuelle Gaillard1,2,3, Jean Lieber1,2,3,
Yannick Naudet4, and Emmanuel Nauer1,2,3

1 Université de Lorraine, LORIA 54506 Vandœuvre-lès-Nancy, France
2 CNRS 54506 Vandœuvre-lès-Nancy, France

3 Inria 54602 Villers-lès-Nancy, France
firstname.lastname@loria.fr

4 CRP Henri Tudor, Luxembourg
firstname.lastname@tudor.lu

Abstract. This paper presentsMKM, a meta-knowledge model to man-
age knowledge reliability, in order to extend a CBR system so that it
can reason on partially reliable, non expert, knowledge from the Web.
Knowledge reliability is considered from the point of view of the deci-
sion maker using the CBR system. It is captured by the MKM model
including notions such as belief, trust, reputation and quality, as well as
their relationships and rules to evaluate knowledge reliability. We detail
both the model and the associated approach to extend CBR. Given a
problem to solve for a specific user, reliability estimation is used to filter
knowledge with high reliability as well as to rank the results produced
by the CBR system, ensuring the quality of results.

Keywords: case-based reasoning, meta-knowledge, reliability, filtering,
ranking, personalization.

1 Introduction

The social Web is known to generate an enormous amount of information, con-
stituting virtually a big knowledge base about almost any kind of subject. This
knowledge base is mainly created by e-communities, consisting of people shar-
ing common ideas, goals or interests, communicating over the Internet or any
other technological communication network. The knowledge asset built by e-
communities on the Web has a high exploitation potential ranging from knowl-
edge management to, e.g., data-mining applications for detecting interesting
trends or tracking users for personalization purposes. Such knowledge is influ-
enced by different human factors such as belief, confidence, or trust, which in-
fluence its reliability, not only from a human perspective but also for automated
reasoning and decision making [1].

In this context, the work presented here focuses on the exploitation of partially
reliable e-community knowledge for Case-Based Reasoning (CBR), in contrast
to classical approaches that rely on consensual and validated expert knowledge.

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 104–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Case-Based Reasoning on E-Community Knowledge 105

In order to preserve the quality of reasoning, we have designed a meta-knowledge
model, calledMKM, tomanage knowledge coming from (non-expert) users.MKM
represents knowledge reliability using meta-knowledge such as belief, trust, repu-
tation, quality, so that the CBR engine can take it into account in its reasoning
process.

This paper is organized as follows. Section 2 gives the motivations for this
research. We present the state of the art related to the use of meta-knowledge to
characterize knowledge reliability and especially in CBR systems in Section 3.
Section 4 details the global process for meta-knowledge management, and Sec-
tion 5 shows how to extend a classical CBR system to handle partially reliable
knowledge. Section 6 presents a use-case in the cooking domain and Section 7
concludes this paper.

2 Motivation

The research work presented here is motivated by the will to extend the tra-
ditional application field of CBR systems, and especially adapt the latter for
processing web-originated data. Indeed, traditional CBR systems are used in a
closed world where the manipulated knowledge base is fed with expert data, con-
sensual and validated. Because of this, CBR systems can hardly be used when
expert data is sparse and especially on the web, where knowledge reliability is
not guaranteed and difficult to measure.

Knowing this, an important question is to evaluate if reasoning on not fully
reliable knowledge coming from e-communities can be exploited in a CBR ap-
proach and if at least results of a similar quality than when reasoning on expert
knowledge can be obtained.

Classical CBR systems are usually composed of four knowledge containers:
the cases, the domain knowledge (i.e., ontology of the domain), the adapta-
tion knowledge, and the similarity (i.e., retrieval) knowledge. Knowledge is val-
idated by experts; this entails to reason with a limited amount of knowledge.
Some studies, like the Kolflow project (http://kolflow.univ-nantes.fr/),
have investigated ways to manage knowledge provided by an e-community. The
Kolflow approach consists in improving the man-machine collaboration to en-
sure a collaborative knowledge construction. It allows to collect big amount of
knowledge from users, and uses non-regression tests to ensure that new incom-
ing knowledge does not affect the results of the reasoning process that exploits
the knowledge [2]. More particularly in the CBR domain, Richards [3] has in-
vestigated decision support from a knowledge base constituted of experts and
informal knowledge gathered from collective tools. She has proposed a collab-
orative knowledge engineering approach mixing CBR and rules, named Col-
laborative Multiple Classification Ripple Down Rules (C-MCRDR). C-MCRDR
proved being efficient to build collaboratively a knowledge base. However, partial
reliability of knowledge is handled implicitly in a manual human-driven review
and negotiation process. Knowledge reliability related to truth, belief, trust or
reputation, is not considered and not directly exploited in the reasoning process.

http://kolflow.univ-nantes.fr/

106 E. Gaillard et al.

Fig. 1. CBR system classical architecture vs. architecture using meta-knowledge

We propose to associate meta-knowledge about reliability to each knowledge
unit (KU) in order to allow inferences on e-community originated knowledge,
while ensuring the quality of results. Our solution consists in establishing a
meta-knowledge model to describe e-communities knowledge. A new container,
the meta-knowledge base, is thus added to the classical CBR architecture.

Fig. 1 shows the difference of architecture between a classical CBR system
and a CBR system based on meta-knowledge. In the classical CBR system
architecture, (1) the knowledge base is produced by experts of the domain. (2)
A user queries the CBR engine which (3) uses the expert validated knowledge
for (4) computing its answers. In a meta-knowledge based CBR system, (1) the
knowledge base is produced by the e-community and (2) users and (3) knowledge
are linked to meta-knowledge. When (4) a user queries the CBR engine, the
latter (5) uses the e-community knowledge, (6) filtered by the meta-knowledge
model. The final answers of the CBR engine (8) may be ranked (7) using also
the meta-knowledge. Moreover, if the user who queries the system is a member
of the e-community, the filtering and ranking operations produce personalized
results since some meta-knowledge are user-specific.

3 State of the Arts

3.1 Meta-knowledge About Reliability

While philosophical studies (e.g, [4]) associate knowledge reliability to safety and
robustness, using reliable knowledge element in a knowledge-based system allows
to infer knowledge with an acceptable level of trustworthiness. Knowledge relia-
bility is influenced by several factors, sometimes interrelated, as discussed in [1],
where a generic model for representing knowledge generated by e-communities is
proposed. In an effort to provide a basis for exploiting partially reliable knowl-
edge in a reasoning process, this work identifies the following dimensions for

Case-Based Reasoning on E-Community Knowledge 107

knowledge reliability: origin, context, truth, belief, value, quality, and trust. Ori-
gin (or provenance) is the source of a KU; context concerns validity conditions
associated to knowledge use; truth is the knowledge validity in the considered
world, while belief is the knowledge truth from the author, provider or commu-
nity perspective; value stands for the importance of the KU for its consumer;
quality accounts for characteristics of the KU (e.g., precision, completeness) and
finally trust, impacting many relationships in the model and more particularly
between knowledge, author/provider and community.

In order to assess at best the impact of these parameters on knowledge relia-
bility, it is necessary to first work with a reduced set of meta-knowledge. In this
work we focus on knowledge quality, belief, trust and reputation. Context, as a
complex notion, is not considered for the moment, as well as value, since it can
be considered that a knowledge of high quality is valuable for the community.
Finally, truth is highly correlated with belief notion, and they can be considered
as synonyms in a first approach.

Quality is considered by researchers as a complex notion, and it is perceived
as a multi-dimensional concept [5]. The nature of data and measurement of its
quality have an important impact on the success of decision making. So it is im-
portant to evaluate the quality of knowledge, when creating a knowledge base.
Several criteria of quality are listed in [5], such as completeness, consistency,
freshness, and accuracy. Quality assessment is obtained by using a set of formu-
las aggregating the different criteria. [6] proposes a data quality measurement
framework that takes into account the context of use and the utility of data.
The quality measurement in MKM focuses on the satisfaction a user (measured
thanks to a 5-star rating system) will have when using a KU.

Trust, belief and reputation are closely related terms. Trust is largely studied
in literature and multiple viewpoints exist, because trust is both a component of
our everyday life and of each application domain [7]. Trust is generally defined
as a ternary relation, valid in a given context, between a truster, a trustee and
an object, as originally proposed by Cook et al. [8]. As for Grandison [9], the
trusted object is often related to an action performed by the trustee or its ability
to do it. In other words, independently of whether the trustee is a person or not,
the trustee is viewed as some entity that will actually perform the action the
truster expects him to do. Trust is a social process, and evolves dynamically
following the history of the relationship. In the human computer interaction
domain, Golbeck [10] asserts that “A trusts B if A commits to an action based
on the belief that B’s future actions will lead to a good outcome.” She used
this definition in her recommending system for movies, where users can rate
both movies and other users. For a given user, movie recommendation scores
are computed by taking into account the community opinion: scores depends on
movies ratings weighted by user reputation.

Several models have been proposed, both for conceptualizing and evaluating
trust. The most common systems exploiting trust are based on reputation
[11,12,13,14] and some of them take also belief into account. For example, the
model proposed in [15] shows the relation between trust, belief and reputation

108 E. Gaillard et al.

in a social network. This model relates trust to a set of relevant beliefs on the
evaluated user, for example if a user is an expert, or if a user is honest.

In [16], a movie is recommended to a user u if this movie has been well rated
by users belonging to the trust network of u. Trust is computed in [16] from the
proportion of common ratings users have put on movies they evaluated. The cold
start problem is handled by finding in the available users one that is similar to
a newcomer, where similarity is computed from demographic data. In our work,
the MKM solution relies on predefined default values.

Trust and reputation management has been addressed in multiple domains
like in multi-agent systems (MASs) (see, e.g., [17]), network security and Service
Oriented Architectures [18]. Regarding e-communities, trust is used in social
networks applications and addressed in the Web of Trust initiative.

3.2 Meta-knowledge in CBR Systems

Usually, user feedback on proposed answers in CBR systems allows to judge the
quality of the new cases and to repair a failed adaptation [19]. However, some
authors think that the feedback approach is insufficient (by observing missing
or delayed feedback) and that meta-knowledge is more relevant to improve the
reasoning results [20]. In [20], the authors propose to integrate the provenance
of a case, as a meta-knowledge, in a CBR system to guide the case base main-
tenance and increase confidence in future results. For example, a repair is prop-
agated through generated cases from the initial case and the quality of a case
is measured by the length of the adaptation path. However, quality of initial
cases is set to a same maximum value. The quality does not depend on external
factors and additional meta-knowledge like, e.g., provenance of initial cases is
not taken into account.

In [21], authors integrate trust in addition to provenance in a CBR approach
to propose a model of collaborative web search. During a user search, web pages
are filtered and ranked using their relevance to the query and the reputation of
users having already selected the pages. Reasoning is guided by preferences of
users and not by reliability of cases. Besides, the indicator of quality acts only
on the case base containers and on cases which have already been found.

In conclusion, the state of the art shows that meta-knowledge is introduced
to provide explanations on CBR results or recommendations. To the best of our
knowledge, during the reasoning of a CBR system, meta-knowledge like trust,
belief and reputation are only used for cases created by the adaptation process
or cases which have already been retrieved during a previous reasoning. Meta-
knowledge representing reliability of cases are not yet used for representing new
external cases. Besides, reliability of knowledge of the other containers is not
represented. The novelty of MKM is to represent reliability of KUs of all the
containers: cases (not only learned cases), domain, adaptation and similarity
KUs. Reliability is then used to filter KUs and to rank personalized answers
returned by the CBR system.

Case-Based Reasoning on E-Community Knowledge 109

Fig. 2. Dependencies between users, knowledge units and meta-knowledge

4 Meta-knowledge Management for a CBR System

This section presents MKM, the meta-knowledge model, used to represent and
to compute the reliability of knowledge coming from an e-community. The objec-
tive is to compute the reliability of each KU (of the four containers) for a given
user, in order to improve the CBR system reasoning and personalize the answers
returned to a user. The reliability is represented by a score that depends on sev-
eral meta-knowledge elements presented in the following. Some meta-knowledge
is inferred by the system while some other is entered in the system by the users
who evaluate KUs or by other community members. These evaluations are the
foundations of MKM. Fig. 2 introduces the links between users, KUs and meta-
knowledge:

– A user u may evaluate a KU ku of a knowledge container by a belief score
which represents the belief u has in ku.

– A user u may evaluate another user v by an a priori trust score which rep-
resents the trust u has towards v.

– A trust score from a user u towards a user v, which represents how u trusts
v, is inferred from the a priori trust score that u has assigned to v and from
the belief scores that u has assigned to KUs produced by v.

– A reputation score of a user u, which represents the reputation of u in the
e-community, is inferred from all the trust scores about u.

– A quality score of a KU ku, which represents the global quality of ku for the
e-community, is inferred from all the belief scores about ku.

– Finally, a reliability score of a KU ku for a user u, which represents the
personalized reliability of ku for u, is inferred from quality, reputation and
trust scores.

To summarize, the meta-knowledge represented on a white background in Fig. 2
(belief and a priori trust) are initially entered by the users. Sayya et al. [22]
show that collecting such items works well when there is a small number of users
who rate frequently, leading other users of the community to give feedback.

110 E. Gaillard et al.

Fig. 3. A priori Trust and Belief: Evaluation of knowledge and users

The meta-knowledge on the light-grey background (trust, reputation and qual-
ity) are computed meta-knowledge, that change dynamically according to the
community inputs. And finally, reliability (dark-grey background) is the meta-
knowledge that will be used by the CBR system to filter knowledge and to rank
answers with respect to the users trusts and beliefs. in the following, we detail
all these elements and the way they are computed.

User interactions and evaluations. Fig. 3 illustrates how users may interact
with the system, by editing some KUs, by evaluating some KUs, and by evalu-
ating other users. In the model, let User be the set of all the users of the system
and let KU be the set of all KUs (of all the containers) used in the system.

The ku from function returns the KUs edited by a user, for u, v ∈ User,
ku from(u) ∩ ku from(v) = ∅ (a ku ∈ KU has only one producer):

ku from : KU→ 2KU

u �→ ku from(u)

Users may evaluate KUs or other users with, e.g., a numerical scale or a star
system. In MKM, these evaluations are normalized in [0, 1].

– When a user u evaluates a ku ∈ KU, u assigns a belief score to the KU ku.
This belief score represents the degree of acceptance, for u, that ku may be
true, according to his/her own knowledge.

belief : User× KU→ [0, 1] ∪ {?}
(u, ku) �→ belief(u, ku)

where ? stands for the unknown value (belief(u, ku) = ? means that u has
not evaluated ku).

– When a user u evaluates another user v, u assigns an a priori trust score
for v. This a priori trust score represents the degree of acceptance that v is
a trustworthy user for u according to subjective information independently
from the KUs produced by v. The higher this a priori trust score is, the
higher u expects that a KU ku produced by v is true.

a priori trust : User× User→ [0, 1] ∪ {?}
(u, v) �→ a priori trust(u, v)

Belief scores and a priori trust scores are directly given by users when evaluating
KUs or other users. The other meta-knowledge is inferred from these two scores.

Case-Based Reasoning on E-Community Knowledge 111

Fig. 4. Trust of a user u towards a user v, computed from the a priori trust score of u
towards v, and belief scores of u towards KUs produced by v

Trust. The trust of user u (the truster) regarding a user v (the trustee) repre-
sents the degree of expectation that the knowledge brought by v to the commu-
nity is true for u. The trust score depends on the a priori trust score assigned
by u to v, and on all the belief scores assigned by u to the knowledge produced
by v (see Fig. 4).

The multi-set of belief scores that u assigns to the knowledge produced by v,
is returned by the function user belief scores(u, v). This multi-set is inferred
thanks to the function ku from(v) and belief(u, ku) where ku is the KU that
v has produced:

user belief scores : User× User→ 2[0,1]

(u, v) �→ {belief(u, ku) | ku ∈ ku from(v)} \ {?}

trust(u, v) is a measure of the trust the user u has towards the user v.

trust : User× User→ [0, 1] ∪ {?}

Trust is computed as follows (for u, v ∈ User):

– If u has never evaluated any KUs produced by v
(i.e., user belief scores(u, v) = ∅)
then, trust(u, v) = a priori trust(u, v) ∈ [0, 1] ∪ {?}

– Else, let n = |user belief scores(u, v)|, n �= 0.

• If u has not assigned an a priori trust score to v
(i.e., a priori trust(u, v) = ?)

then, trust is the average of the belief scores that u assigned to KUs
produced by v (i.e., user belief scores(u, v)).

trust(u, v) =
1

n

∑
s∈user belief scores(u,v)

s (1)

112 E. Gaillard et al.

Fig. 5. Reputation of a user v is inferred from all trust scores assigned to v

• Else, the trust is computed by a combination of the a priori trust and
the belief scores given by u:

trust(u, v) = αn a priori trust(u, v)

+ (1 − αn)
1

n

∑
s∈user belief scores(u,v)

s (2)

where αn =
1

n+ 1

The more scores have been assigned by u to the KUs provided by v,
the less is the influence of the a priori trust score (since lim

n→∞
αn = 0):

asymptotically, the expressions (1) and (2) are equivalent.

Reputation. The reputation of a user v is the perception all the users in the
community have of v, based on their previous experience with v. Reputation
provides an indicator of the truth of knowledge produced by v. It depends on
the inferred trust scores of the community towards v (see Fig. 5).

The multi-set of trust scores inferred for the community towards v, is returned
by the function community trust scores(v):

community trust scores : User→ 2[0,1]

v �→ {trust(u, v) | u ∈ User} \ {?}

reputation(v) is an estimation of the measure of the trust that has all the
community towards v.

reputation : u→ [0, 1] ∪ {?}

For v ∈ User, reputation is computed as follows:

– If |community trust scores(v)| < τ
then reputation(v) = default reputation,

– Else reputation(v) =

∑
u∈User,u
=v

trust(u, v)

|community trust scores(v)| .

Case-Based Reasoning on E-Community Knowledge 113

Fig. 6. Quality of a knowledge computed from its belief scores

The reputation score of v is the average of the set of trust(u, v). For users
that have obtained a number of evaluation less than a given threshold τ , the
reputation score is assigned to a default value between 0 and 1 (for example,
0.5) and is denoted by default reputation.

Quality. The quality score of a KU ku is the computed community quality
of ku. This score is independent from the KU’s producer and represents the
estimation of the degree of satisfaction of users after the use of ku. The quality
score of ku depends on all the belief scores assigned to ku (see Fig. 6).

The multi-set of belief scores of a KU ku, denoted by ku belief scores(ku),
represents all the evaluations the community has assigned to ku:

ku belief scores : KU→ 2[0,1]

ku �→ {belief(u, ku) | u ∈ User} \ {?}

The quality knowledge of ku, denoted by community quality(ku), is the average
of ku belief scores(ku):

community quality : KU→ [0, 1] ∪ ?

ku �→

∑
s∈ku belief scores(ku)

s

|ku belief scores(ku)|

Reliability. The reliability corresponds to how much a user u can rely on a KU
ku, or how ku is actually useful for him/her. This reliability score will be used
by the CBR system for filtering knowledge, as well as for ranking.

For a user u (see Fig. 7), the reliability of a KU ku produced by a user v,
depends of the reputation of v, the trust score of u towards v (if it exists), and
the quality of ku (if it exists). Because reliability is based on the trust score of
u towards v, the reliability of knowledge is a personalized score (the trust score
varies from one user to another).

reliability : User× KU→ [0, 1]

(u, ku) �→ wreputationreputation(v) + wtrusttrust(u, v)

+ wqualitycommunity quality(ku)

where wreputation + wtrust + wquality = 1

This function assumes that trust(u, v) �= ? and community quality(ku) �= ?.
If trust(u, v) = ? and/or community quality(ku) = ? then they are not taken
into account.

114 E. Gaillard et al.

Fig. 7. Reliability of a KU ku for a user u is computed from the quality score of ku,
the reputation score of v, the producer of ku, and the trust of u towards v

5 Plugging the Meta-model into a CBR System

This section presents how a classical CBR system can be modified in order to
take into account the reliability of knowledge (see Fig. 1). A filter function is
used to select the more reliable set of knowledge according to the query and to
the user who queries the system. A ranking function is used to order the set of
answers according to the meta-knowledge associated to the KUs involved in the
computation of the results.

5.1 Filtering

According to MKM, the knowledge which is not sufficiently reliable for
a user is filtered according to the reliability score. The filtering function,
to be filtered(u, ku), depends on reliability(u, ku). It returns true iff the
reliability score ku for u is higher than a given threshold β ∈ [0, 1].

to be filtered : User× KU→ {true, false}
(u, ku) �→ (reliability(u, ku) ≥ β)

If to be filtered(u, ku), then ku is used in inferences by the CBR engine, else
it is not considered.

5.2 Ranking

The answers computed by the CBR engine will be ranked according to MKM.
The idea is to associate to a user u and an inference, a score, called the inferred
reliability. Let {ku1, . . . , kun} � ku denote an inference performed by the CBR
engine: the kui’s are the KUs taken from the knowledge containers and ku is
an inferred knowledge unit. For example, if a case c is adapted thanks to an
adaptation rule a into a case c′, {c, a} � c′ denotes this adaptation inference. The

Case-Based Reasoning on E-Community Knowledge 115

inference reliability is computed thanks to an aggregation function � applied
to the reliability of the kui’s:

inferred reliability(u, {ku1, . . . , kun} � ku) �→ �
1≤i≤n

reliability(u, kui)

There are several possible aggregation functions �: it can be an average ag-
gregation function (corresponding to a probabilistic approach) or a minimum
(corresponding to a necessity measure of a possibilistic approach).

By abuse of notation, inferred reliability(u, {ku1, . . . , kun} � ku) is de-
noted by inferred reliability(u, ku). Thus, given several inferred knowledge
units ku1, . . . , kup and a user u, the kuj’s can be ranked according to decreasing
inferred reliability(u, kuj).

5.3 Prerequisites

To apply the filter and ranking functions, a classical CBR system that would
be adapted to reason on an e-community knowledge, must:

– provide the possibility for users to manage KUs of the different containers
in order to assign them a belief score;

– be able to filter KUs it will use according to their reliability;
– return the set of KUs that are involved in the computation of each answers,

in order to rank these answers.

6 Use Case: Adapting Cooking Recipes

This section presents a use case, in the framework of Taaable
(http://taaable.fr/). Taaable is a CBR system which retrieves and cre-
ates cooking recipes by adaptation [23].

Taaable is based on the four classical knowledge containers. The domain
knowledge container contains an ontology of the cooking domain that is used
to retrieve the source cases that are the most similar to a target case (i.e. the
query). This ontology includes several hierarchies (about food, dish types, etc.).
A generalization cost is associated to each edge in the hierarchy, and is used to
compute similarity between cases and the query. For example, cost associated
on the edge connecting GreenOnion and Onion is 0.3.

The case base is composed of recipes. Each recipe R is transformed into
idx(R), the index of the recipe R which is a conjunction of concepts of the
domain ontology. Four recipes are given in example in Table 1. idx(R1) is a
formal and abstracted representation of the recipe R1 which is a gratin dish and
whose ingredients are green onion, leek, béchamel sauce, and ham (and nothing
else).

According to a query entered in the system by a user, and also represented by
a conjunction of concepts, the system searches in the case base for some cases
(recipes) satisfying the query. For example, Q = GratinDish ∧ Leak ∧Ham ∧

http://taaable.fr/

116 E. Gaillard et al.

Table 1. Four examples of recipes and their indexes

Id T itle idx(Ri)

R1 Leeks gratin GratinDish ∧ Leek ∧ Potato ∧Bechamel ∧Ham
R2 Carrots gratin GratinDish ∧GreenOnion ∧ Carrot ∧ Bechamel ∧Ham
R3 Endives gratin GratinDish ∧ Endive ∧ Lemon ∧Bechamel ∧Ham
R4 Salmon paste GratinDish ∧ Pasta ∧ Salmone ∧Bechamel ∧Ham

Table 2. Reliability inferred for Tom, for recipes and adaptations

Id T itle Reliability

R1 Leeks gratin 0.4
R2 Carrots gratin 0.6
R3 Endives gratin 0.9
R4 Salmon paste 0.8

Id σ Reliability

A1 GreenOnion � Leek 0.5
A2 Endive � Leek 0.6
A3 Salmon � Leek 0.8

Bechamel represents the query “I would like a recipe of gratin dish with leak,
ham and béchamel sauce.” Recipes matching exactly the query, if they exist, are
returned to the user and are ranked at the first place (for example R1 matches
exactly Q). The system searches also similar recipes, using the hierarchies to
generalize the user query. Recipes that have a similarity measure higher than a
given threshold are retrieved and ranked by similarity. Adaptation consists in
substituting some ingredients of the source cases by the ones required by the
user, and is encoded by a substitution σ = A � B, meaning that “A has to
be substituted by B”. An adaptation has a cost, denoted by cost(A � B). The
lesser the cost of adaptation of R1 is, the higher is the similarity of R1 with
Q. The final result of Taaable for Q, ordered by increasing similarity, is R1

(no adaptation), R2 with the adaptation GreenOnion � Leek, R3 with the
adaptation Endive � Leek, R2 is retrieved before R3 because GreenOnion is
closer to Leek than Endive (i,e. cost(GreenOnion � Leek) < cost(Endive �
Leek)). R4 is not retrieved because the cost of substitution of Salmon by Leek
is too high to adapt R4 to Q.

Taaable uses also adaptation knowledge (AK) of the form (context, σ) [24]:
context is the recipe or the class of recipes on which the substitution σ can be
applied. For example, the AK where Salmon could be replaced with Leek in
R4 is represented by (R4, Salmon � Leek). Using this AK, R4 which was not
proposed by the query generalization process is now proposed.

Example of Reasoning with the Meta-knowledge Approach

A meta-knowledge container is added to take into account reliability. It will be
used to modify the list of answers returned by Taaable. Table 2 shows the
reliability of recipes and reliability of adaptations for a specific user: Tom.

Using MKM, unreliable KUs (e.g. which are lower than a given reliability
threshold) will be filtered and will not participate to the reasoning process. For

Case-Based Reasoning on E-Community Knowledge 117

example, with a threshold fixed to 0.6, the recipe R1 and the adaptations A1 are
eliminated, for the user Tom.

The answers can be ranked according to the reliability of the KUs that are
involved, for example, when using the average aggregation function, in the fol-
lowing order: R4 with A3, R3 with A2. Indeed, with the average aggregation
function, the ranking score of R4 with A3, which is 0.8, is higher than the rank-
ing score of R3 with A2, which is 0.75. R2 with A1 is not proposed because A1

cannot be applied anymore. These ranked answers are specific to Tom, because
the reliability of a knowledge for Tom is influenced by the trust score he has
towards users of the system who produced the knowledge.

7 Conclusion

In this paper, we presented an approach for reasoning on partially reliable e-
community knowledge by contrast to consensual and validated knowledge in
classical CBR systems. The approach proposes to associate meta-knowledge
about reliability of knowledge, based on user evaluations, and a model has been
presented.

We have illustrated the interest of the approach with an example in the com-
munity cooking domain. Ongoing work consists in implementing the use case
presented in section 6 in the framework of the Taaable project. A collabora-
tive web space which allows to manage cases, AK, and users, and in which users
may evaluate these KUs and other users has already been developed. The func-
tions for computing the different meta-knowledge scores must yet be integrated
in this collaborative work space. Experiments with the Taaable e-community
will be driven at short term in order to evaluate if using MKM and knowledge
from an e-community provides similar or better results than those obtained using
the classical architecture exploiting consensual knowledge.

References

1. Naudet, Y., Latour, T., Vidou, G., Djaghloul, Y.: Towards a novel approach for
high-stake decision support system based on community contributed knowledge
base. In: 10th International Conference on Intelligent Systems Design and Appli-
cations (ISDA), pp. 730–736 (2010)

2. Skaf-Molli, H., Desmontils, E., Nauer, E., Canals, G., Cordier, A.E., Lefevre, M.:
Knowledge Continuous Integration Process (K-CIP). In: 21st World Wide Web
Conference - Semantic Web Collaborative Spaces Workshop, pp. 1075–1082 (2012)

3. Richards, D.: A social software/web 2.0 approach to collaborative knowledge engi-
neering. Information Sciences 179(15), 2515–2523 (2009)

4. Hendricks, V.F., Pritchard, D.: New waves in epistemology. New Waves in Philos-
ophy. Palgrave Macmillan (2008)

5. Wang, R.Y.: A product perspective on total data quality management. Commun.
ACM 41(2), 58–65 (1998)

6. Even, A., Shankaranarayanan, G.: Utility-driven assessment of data quality. SIG-
MIS Database 38(2), 75–93 (2007)

118 E. Gaillard et al.

7. Marsh, S.P.: Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling (1994)

8. Cook, K.S., Hardin, R., Levi, M.: Cooperation Without Trust? The Russell Sage
Foundation Series on Trust. Russell Sage (2007)

9. Grandison, T., Sloman, M.: Trust management tools for internet applications. In:
First International Conference on Trust Management, pp. 91–107 (2003)

10. Golbeck, J.A.: Computing and applying trust in web-based social networks. PhD
thesis, University of Maryland (2005)

11. Castelfranchi, C., Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy,
Social Importance, and Quantification. In: Third International Conference on Multi
Agent Systems (ICMAS 1998), p. 72 (1998)

12. Artz, D., Gil, Y.: A survey of trust in computer science and the Semantic Web.
Web Semantics: Science, Services and Agents on the WWW 5(2), 58–71 (2007)

13. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference, pp. 324–337 (2002)

14. Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In:
HICSS, p. 9 (2000)

15. Knap, T., Mlýnková, I.: Revealing beliefs influencing trust between members of the
czech informatics community. In: Datta, A., Shulman, S., Zheng, B., Lin, S.-D.,
Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS, vol. 6984, pp. 226–239. Springer,
Heidelberg (2011)

16. Quijano-Sánchez, L., Bridge, D., Dı́az-Agudo, B., Recio-Garćıa, J.A.: A case-based
solution to the cold-start problem in group recommenders. In: Agudo, B.D.,Watson,
I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 342–356. Springer, Heidelberg (2012)

17. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputa-
tion model for open multi-agent systems. Autonomous Agents and Multi-Agent
Systems 13(2), 119–154 (2006)

18. Neisse, R., Wegdam, M., Van Sinderen, M., Lenzini, G.: Trust management model
and architecture for context-aware service platforms. In: On theMove toMeaningful
Internet Systems: CoopIS, DOA, ODBASE, GADA, and IS, pp. 1803–1820 (2007)

19. Cordier, A., Fuchs, B., Lana de Carvalho, L., Lieber, J., Mille, A.: Opportunistic
acquisition of adaptation knowledge and cases - The IaKa Approach. In: Althoff,
K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI),
vol. 5239, pp. 150–164. Springer, Heidelberg (2008)

20. Leake, D.B., Whitehead, M.: Case provenance: The value of remembering case
sources. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI),
vol. 4626, pp. 194–208. Springer, Heidelberg (2007)

21. Saaya, Z., Smyth, B., Coyle, M., Briggs, P.: Recommending case bases: Applica-
tions in social web search. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS,
vol. 6880, pp. 274–288. Springer, Heidelberg (2011)

22. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: The adaptive web. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 291–324. Springer, Heidelberg (2007)

23. Badra, F., Bendaoud, R., Bentebitel, R., Champin, P.-A., Cojan, J., Cordier, A.,
Després, S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E.,
Napoli, A., Toussaint, Y.: Taaable: Text Mining, Ontology Engineering, and Hi-
erarchical Classification for Textual Case-Based Cooking. In: ECCBR Workshops,
Workshop of the First Computer Cooking Contest, pp. 219–228 (2008)

24. Gaillard, E., Lieber, J., Nauer, E.: Adaptation knowledge discovery for cooking us-
ing closed itemset extraction. In: The Eighth International Conference on Concept
Lattices and their Applications, CLA 2011 (2011)

On the Plan-Library Maintenance Problem

in a Case-Based Planner

Alfonso Emilio Gerevini1, Anna Roub́ıčková2,
Alessandro Saetti1, and Ivan Serina1

1 Dept. of Information Engineering, University of Brescia, Brescia, Italy
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

{gerevini,saetti,serina}@ing.unibs.it, anna.roubickova@stud-inf.unibz.it

Abstract. Case-based planning is an approach to planning where pre-
vious planning experience stored in a case base provides guidance to
solving new problems. Such a guidance can be extremely useful when
the new problem is very hard to solve, or the stored previous experience
is highly valuable (because, e.g., it was provided and/or validated by
human experts) and the system should try to reuse it as much as pos-
sible. However, as known in general case-based reasoning, the case base
needs to be maintained at a manageable size, in order to avoid that the
computational cost of querying it excessively grows, making the entire
approach ineffective. We formally define the problem of case base mainte-
nance for planning, discuss which criteria should drive a successful policy
to maintain the case base, introduce some policies optimizing different
criteria, and experimentally analyze their behavior by evaluating their
effectiveness and performance.

1 Introduction

It is well known that AI planning is a computationally very hard problem [9]. In
order to address it, over the last two decades several syntactical and structural
restrictions that guarantee better computational properties have been identified
(e.g., [3,4]), and various algorithms and heuristics have been developed (e.g.,
[7,16]). Another complementary approach, that usually gives better computa-
tional performance, attempts to build planning systems that can exploit ad-
ditional knowledge not provided in the classical planning domain model. This
knowledge is encoded as, e.g., domain-dependent heuristics, hierarchical task
networks and temporal logic formulae controlling the search, or it can be auto-
matically derived from the experiences of the planning system in different forms.

Case-based planning (e.g., [8,15,17,21]) follows this second approach and con-
cerns techniques that improve the overall performance of the planning system by
reusing its previous experiences (or “cases”), provided that the system frequently
encounters problems similar to those already solved and that similar problems
have similar solutions. If these assumptions are fulfilled, a well-designed case-
based planner gradually creates a plan library that allows more problems to be
solved (or higher quality solutions to be generated) compared to using a clas-
sical domain-independent planner. Such a library is a central component of a

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 119–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

120 A.E. Gerevini et al.

case-based planning system, which needs a policy to maintain the quality of the
library as high as possible in order to be efficient. Even though this problem
has been studied in the context of case-based reasoning, comparable work in the
planning context is still missing.

In this paper, we define the assumptions underlying the case-based methodol-
ogy in the context of planning, which characterize the typical distribution of the
cases in a plan library. Then we formalize the problem of maintaining the plan
library, we introduce criteria for evaluating its quality, and we propose different
policies for maintaining it. Such policies are experimentally evaluated and com-
pared using a recent case-based planner, OAKplan [17], and considering some
benchmark domains from the International Planning Competitions [10].

2 Preliminaries

In this section, we give the essential background and notation of (classical) plan-
ning problem [9], as well as some basic concepts in case-based reasoning and
planning. A planning problem is a tuple Π = 〈F , I,G,A〉 where: F is a finite
set of ground atomic propositional formulae; I ⊆ F is the set of atoms that are
true in the initial state; G ⊆ F is a set of literals over F defining the problem
goals; A is a finite set of actions, where each a ∈ A is defined by a set pre(a) ⊆ F
forming the preconditions of a, and a set eff(a) ⊆ F forming the effects of a.

A plan π for a planning problem Π is a partially ordered set of actions of
Π . A plan π solves Π if the application of the actions in π according to their
planned order transforms the initial state to a state Sg where the goals G of
Π are true (G ⊆ Sg). Classical generative planning is concerned with finding a
solution plan for a given planning problem.

Case-based planning (CBP) is a type of case-based reasoning, exploiting the
use of different forms of planning experiences concerning problems previously
solved and organized in cases forming a case base or plan library. The search
for a solution plan can be guided by the stored information about previously
generated plans in the case base, which may be adapted to become a solution
for the new problem. When a CBP system solves a new problem, a new case is
generated and possibly added to the library for potential reuse in the future. In
order to benefit from remembering and reusing past plans, a CBP system needs
efficient methods for retrieving analogous cases and for adapting retrieved plans,
as well as a case base of sufficient size and coverage to yield useful analogues.

In our work, we focus on planning cases that are planner-independent and
consist of a planning problem Π and a solution plan π of Π . A plan library is a
set of cases {〈Πi, πi〉 | i ∈ {1, . . . , N}}, constituting the experience of the planner
using this library. In our approach, the relevant information of each library case
is encoded using a graph-based representation called planning problem graph
(for a detailed description about this representation, the interested reader can
see [17]). A case-based planner follows a sequence of steps typical in CBR [1]:

– Retrieve - querying the library to identify cases suitable for reuse and select
the best one(s) of these;

On the Plan-Library Maintenance Problem in a Case-Based Planner 121

– Reuse - adapting the retrieved plans to solve the new problem;
– Revise - testing the validity of the adapted plan in the new context by, e.g.,

a (simulated) execution of the plan repairing it in case of failures;
– Retain - possibly storing the new problem and the corresponding solution

plan into the library,

where the first three steps composed the adaptation phase and the fourth one the
maintenance phase. The general CBR schema may differ depending on various
implementation choices, e.g., the retrieval phase may provide one or more cases
to be reused, or, the reuse may discard the proposed cases for insufficient quality
and generate a solution from scratch, i.e., behave like classical generative planner.

3 Related Work

The topic of case base maintenance has been of a great interest in the case-based
reasoning community for the last two decades. However, the researchers studying
case-based planning have not paid much attention to the problem of case base
maintenance yet. Therefore, the related work falls mostly in the field of CBR,
where most of the proposed systems handle classification problems.

Leake and Wilson [11] defined the problem of case-based maintenance as “an
implementation of a policy to revise the case base to facilitate future reasoning for
a particular set of performance objectives”. Depending on the evaluation criteria,
they distinguish two types of CB maintenance techniques — the quantitative
criteria (e.g., time) lead to performance-driven policies, while the qualitative
criteria (e.g. coverage) lead to competence-driven policies.

The quantitative criteria are usually easier to compute; among these policies
belong the very simple random deletion policy [13] and a policy driven by a case
utility metric [14], where the utility of a case is increased by its frequent reuse
and decreased by costs associated with its maintenance and matching.

The most used qualitative criterion corresponds to the notion of “competence”
introduced by Smyth [18]. Intuitively, the elements are removed from the case
base in reverse order w.r.t. their importance, where the importance of a case is
determined by the case “coverage” and “reachability”. The two notions capture
how many problems the case solves and how many cases it is solved by. Note,
however, that differently form our approach to CBP, in his work Smyth considers
systems without an underlying generic generative solver. With such a solver the
case-based system can solve any problem independently of the quality of the
case base, and the notion of competence needs to be reconsidered.

The notion of competence was also used to define footprint deletion and
footprint-utility deletion policies [19]. Another extension is the RC-CNN al-
gorithm [20], which compresses the case base using the compressed-nearest-
neighbor algorithm and ordering derived by relative coverages of the cases.
Furthermore, Leake and Wilson [12] suggested replacing the relative coverage
by relative performance of a case. Zhu and Yang [23] however claim that the
competence-driven policies of Smyth and his collaborators do not ensure compe-
tence preservation. They propose a case addition policy which mimics a greedy

122 A.E. Gerevini et al.

algorithm for set covering, adding always the case that has the biggest coverage
until the whole original case base is covered or the limit size is reached. The
policies we propose in this paper differ from the approach of Zhu and Yang [23]
mainly in the condition guiding the selection of the cases to keep in the case
base — Zhu and Yang evaluate the utility of each case based on the frequency of
its reuse in comparison with the frequency with which its neighbors are reused.
Moreover, their policy does not consider the quality with which the original case
base is covered, whereas the weighted approach proposed here does. In a sense,
we generalize the work of Zhu and Yang and adapt it for using it in the context
of planning.

Muñoz-Avila studied the case retention problem in order to filter redundant
cases [15], which is closely related to the problem studied here. However, the
policy proposed in [15] is guided by the case reuse effort, called the benefit of
the retrieval, required by a specific “derivational” case-based planner to solve the
problem. Intuitively, a case c is kept only if there is no other case in the case base
that could be easily adapted by the planner to solve the problem represented by
c. In our approach, the decision of keeping a case is independent from adaptation
cost of the other cases. Moreover, the policy proposed in [15] can decide only
about problems solved by the adopted derivational case-based planner; while the
policies studied in this paper are independent from the planner used to generate
the solutions of the cases.

4 Case Base Maintenance

The core idea of CBP is providing a complementary approach to traditional
generative planning under some assumptions. Coming from the field of case-
based reasoning, the world needs to be regular and problems need to recur. The
regularity of the world requires that similar problems have similar solution. Such
an assumption obviously links together the similarities between problems and
between solutions, which (among others) provides a guarantee that a retrieved
case containing a problem similar to the new problem to solve will provide a
good solution plan for the reuse.1 The later assumption (the problems recur) is
meant to ensure that a case base contains a good reuse candidate to retrieve.

In addition to the assumptions on the problems and their solutions, there are
assumptions coming from the design of the case-based methodology — a case
base needs to represent as many various experiences the system has made as
possible, while remaining of manageable size. The interplay between these two
parameters has a significant impact on the observed performance of the case-
based planner, because a too large case base requires a vast amount of time
to be queried, whereas even well designed retrieval algorithm fails to provide a
suitable case to the reuse procedure if such a case is not present in the case base.

These assumptions seem quite reasonable and not overly restrictive, however,
they are not very formal. In the following, we propose some definitions that allow
us to formalize the assumptions and to define a maintenance policy.

1 During the retrieval, the system has no information about the solution it is looking
for and so it needs to decide solely based on the properties of the problem.

On the Plan-Library Maintenance Problem in a Case-Based Planner 123

4.1 The Maintenance Problem

The case base maintenance is responsible for preserving and improving the qual-
ity of the case base. So far the planning community has focused the research on
CBP mostly on the problems related to the reuse and retrieval steps. The reten-
tion usually settled with one of the extremes — either maintaining everything
or using a pre-built case base which is fixed during the lifetime of the system.

To design a procedure for the maintenance, we start by deciding which pa-
rameters of the case base define its quality, and so which criteria should guide
the maintenance policy in determining which experiences to keep and which to
discard. Obviously, an important criterion is the variety of problems the case
base can address, which is also referred to as the case base competence [18], and
its interplay with the size, or cardinality, of the case base.

However, the notion of competence used in CBR cannot be directly adapted
to the use in the planning context. Differently from CBR, where a case usually
either can or cannot be adapted to solve a problem, the reuse procedure of
planning systems can change any unfit part of the stored solution, or it can
even disregard the whole stored solution and attempt to find a new solution
from scratch. In modern case-based planners, any case can be used to solve any
problem; the system will decide how much the new solution deviates from the
stored one, how expensive the reuse is, and therefore, how useful the stored
solution is. Consequently, we define some criteria for guiding the maintenance.

There are two different kinds of maintenance policies — an additive policy,
which considers inserting a new case into the case base when a new solution is
found/provided, and a removal policy, which identifies cases that can be removed
without decreasing the quality of the case base too much. Hence, we formalize
the general maintenance problem as a two-decision problem.

Definition 1 (Case Base Maintenance Problem)

– Given a case base L = {ci | ci = 〈Πi, πi〉, i ∈ {1, . . . , n}}, decide for each i ∈
{1, . . . , n} whether the case ci should be removed from L.

– Given a new case c = 〈Π, π〉, c �∈ L , decide whether c should be added to L.

In our work, we focus on the removal maintenance, as we see it as the most
critical one — in the absence of a policy to decide which elements to add, we
can simply add every new case until the case base reaches a critical size, and
then employ the removal maintenance policy to obtain a small case base of good
coverage. The alternative approach, which adds “useful” cases until the case base
reaches a critical size, may perform not that well, as, differently from the first
approach, it needs to estimate the distribution of the future problems, whereas
the first approach operates on known past data.

We start by considering when a case can address another problem, or rather
how well it can do so. Intuitively, planning can be interpreted as a search problem
in the space of plans (e.g., [9]), where classical planners start from an empty plan,
while case-based planners start from a plan retrieved from the plan library (see,
e.g., LPG-Adapt [6]). We can define the distance between the stored solution and
the solution of the new problem as the minimum number of actions that need

124 A.E. Gerevini et al.

to be added/removed in order to convert the stored plan to the new one. Let ℘
denote the space of plans for a given planning domain. Then, a distance function
da : (℘ × ℘) → [0, 1] measures the distance of any two plans πi, πj ∈ ℘, where
the greater distance indicates greater effort needed during the adaptation phase.
However, computing such a function can be very hard as, in the worst case, it
can be reduced to searching for the solution plan from an empty plan (i.e., to the
classical planning problem), which is known to be PSPACE-hard [4]. Therefore
we define da(πi, πj) as the number of actions that are in πi and not in πj plus
the number of actions that are in πj and not in πi, normalized over the total

number of actions in πi and πj [22], that is, da(πi, πj) =
|πi−πj |+|πj−πi|

|πi|+|πj| , unless

both plans are empty, in which case their distance is 0.
Clearly, if the case-based system needs to revert to an empty plan and search

from there, the provided case is not considered useful. Hence, we can say that a
case can be useful to solve a problem if the distance between the corresponding
plans is not bigger than the distance from an empty plan. The distance from the
empty plan estimates the effort the case-based system needs to spend in order
to generate a solution from scratch, which is equivalent to the estimated work
a generative planner requires in order to find a solution as the reuse procedures
often perform the same kind of search as generative planners do. Consequently,
it is not worth trying to reuse more distant plans than the empty one.

Definition 2. Given a finite value δ ∈ R, we say that a case ci = 〈Πi, πi〉 can
be useful to solve problem Π, that is addressesδ(ci, Π), if there exists a solution
plan π for Π such that da(πi, π) < δ.

Note that the definition of addressesδ(ci, Π) heavily relies on the distance be-
tween the solutions, and completely disregards the relation of the relative prob-
lems. However, also the structural properties of the problems play a considerable
role, as the case retrieval step is based on the planning problem descriptions.
Therefore, we also use a distance function dr that is intended to reflect the sim-
ilarity of the problems. Let P denote the space of problems in a given planning
domain, Π ∈ P be a new problem, and Π ′ ∈ P be a problem previously solved.
Assuming that the matching between the objects of Π and Π ′ has been already
performed, and that I ′∪G �= ∅, a problem distance function dr : (P×P)→ [0, 1]

is defined as follows [17]: dr(Π
′, Π) = 1− |I′∩I|+|G′∩G|

|I′|+|G| , where I and I ′ (G and

G′) are the initial states (sets of goals) of Π and Π ′, respectively. If I ′ ∪ G = ∅,
dr(Π

′, Π) = 0.
The smaller distance dr between two problems is, the more similar they are;

consequently, by the regular world assumption, they are more likely to have sim-
ilar solutions, and so it is useful to retrieve from the case base the case for a
problem that is mostly similar to the problem to solve. We can say that dr guides
the retrieval phase while da estimates the plan adaptation effort. The mainte-
nance policy should consider both distances, in order not to remove important
cases, but also to support the retrieval process. Therefore, we combine the two
functions, obtaining distance function d : ((P ×℘)× (P×℘))→ [0, 1] measuring
distance between cases. The combination of dr and da allows us to assign differ-

On the Plan-Library Maintenance Problem in a Case-Based Planner 125

ent importance to the similarity of problems and their solutions, depending on
the application requirements.2

The assumption of regular world presented at the beginning of this section
was using a notion of similarity between problems and solutions, neither pro-
viding details on how the similarity should be interpreted, nor specifying which
solutions are considered. This is an important concern when a problem may have
several significantly different solutions. We formalize this assumption keeping the
notion of similarity undetailed to preserve the generality of the definition, but
establishing the quantification over the solutions as follows:

Definition 3 (Regular World Assumption). If Π and Π ′ ∈ P be two simi-
lar planning problems of a planning domain with plan space ℘ such that Π �=Π ′.
If the world is regular, then ∀π ∈ ℘ that is a solution for Π ∃π′ ∈ ℘ that is a
solution for Π ′ such that π and π′ are similar, and ∀π′ ∈ ℘ that is a solution
for Π ′ ∃π ∈ ℘ that is a solution for Π such that π′ and π are similar.

We interpret problem and plan similarity using the distance functions dr and da.
Specifically, we consider two problems Π , Π ′ similar iff dr(Π,Π ′) < δ, and two
solutions π, π′ similar iff da(π, π

′) < δ′, where δ and δ′ are reals whose specific
values depend on the particular distance function and on the planning domain
considered. Next, we formalize the notion of problem recurrence:

Definition 4 (Recurring Problems Assumption). For every new problem a
case-based planner encounters, it is likely that a similar problem has been already
encountered and solved.

Case-based planning relies on the two assumptions of Def. 3-4 to be fulfilled.
If that indeed is the case, since in our approach every encountered problem is
simply added to the case base, when a new problem Π is encountered, the case
base likely contains a case ci = 〈Πi, πi〉 such that addressesδ(ci, Π) holds for
some (small) value of δ, and, by Def. 3, the case-based planning system can
produce solutions similar to the previous ones for Π by reusing those. Moreover,
by Def. 4, it can be expected that the cases in the case base create groups of
elements, that we call case clusters, similar to each other and that could be
reduced to smaller groups without significant loss of information.

Definition 4 does not define how much likely similar problems are assumed
to be encountered. This means that there can be different degrees of problem
recurrence. In the strongest case, all new encountered problems are similar to
a problem in the case base. Different degrees of problem recurrence lead to
differently structured plan libraries in terms of case clusters, which can affect
the performance of a plan library maintenance policy exploiting them.

In our work, case similarity is interpreted by means of the distance function
d, i.e., c is similar to c′ iff d(c, c′) < δ′′, where a specific value of δ′′ ∈ R depends
on the specific implementation choices as well as on the domain.

2 We use a linear combination d = α ·dr +(1−α) ·da, where α = 0.5 for domains that
exhibit very regular behavior (e.g. Logistics), while we used α = 1, i.e., d = dr,
for domains where the solutions generated for the case base using planner TLplan [2]
differed even for similar problems (e.g. ZenoTravel), being quite irregular w.r.t. da.

126 A.E. Gerevini et al.

4.2 Maintenance Policies

Instead of maximizing competence as an absolute property of a case base, the
maintenance is guided by minimizing the amount of knowledge that is lost in
the maintenance process, where removing a case from the library implies losing
the corresponding knowledge, unless the same information is contained in some
other case. The following notions of case covering and case base coverage are
defined to capture this concept:

Definition 5. Given a case base L and a case distance threshold δ ∈ R, we say
that a case ci ∈ L covers a case cj ∈ L, that is, covers(ci, cj), if d(ci, cj) ≤ δ.

Definition 6. Let L,L′ denote two case bases and let C denote the set of all
cases in L that are covered by the cases in L′, i.e., C = {ci ∈ L | ∃c′i ∈
L′, covers(c′i, ci)}. The coverage of L′ over L, denoted coverage(L′,L), is de-

fined as |C|
|L| .

We can now formally define the outcome of an algorithm addressing the plan
library maintenance problem — it should be a case base L′ that is smaller than
the original case base L, but that contains very similar experiences. Under such
conditions, we say that L′ reduces L:

Definition 7. Case base L′ reduces case base L, denoted as reduces(L′,L), if
and only if L′ ⊆ L and coverage(L′,L) = 1.

In the previous definition, we may set additional requirements on L′ to find a
solution that is optimal in some ways. For example, we may want to minimize the
size of L′, or we may try to maximize the quality of the coverage. The structure
of the policy remains the same — it constructs L′ by selecting the cases that
satisfy a certain condition optimizing L′. Such a condition corresponds to a
specific criterion the maintenance policy attempts to optimize.

Random Policy [18]. This policy reduces the case base by randomly removing
cases [13], which is easy to implement and fast to compute. However, the coverage
of the reduced case base L′ over the original case base L cannot be guaranteed.

Distance-Guided Policy. Due to the assumption of recurring problems, we
expect that the problems in the library can be grouped into sets of problems
that are similar (close in the sense of dr) to each other. Consequently, by the
assumption of regular world, for a problem Π ′ there exists a solution π′ that is
similar to the solution π of a stored case c = 〈Π, π〉 where Π is similar to Π ′.
Case c′ = 〈Π ′, π′〉 is similar to c (close in the sense of d) and its inclusion in the
case base introduces some redundancy because of its similarity with c.

We propose a distance-guided policy that attempts to remove the cases that
are mostly redundant. Intuitively, these cases are those having their distance
from other cases too small. In particular, the distance-guided policy identifies
the cases to remove by exploiting the notion of average minimum distance δμ
in the case base. Given a case ci ∈ L, the minimum distance case c∗i of ci is a
case in L such that d(ci, c

∗
i) < d(ci, cj), ∀cj ∈ L\ c∗i . The distance guided policy

On the Plan-Library Maintenance Problem in a Case-Based Planner 127

keeps a case ci in the case base if and only if d(ci, c
∗
i) ≥ δμ, where δμ is defined

as follows: δμ = Σci∈L
d(ci,c

∗
i)

|L| .3

The distance-guided policy is clearly better informed than the random pol-
icy, and it can recognize cases of high importance for the coverage of the case
base (e.g., isolated elements that are dissimilar to any other case). The better
information is however reflected by increased computational complexity – the
distance-guided policy needs to consider the distance between all pairs of cases
in order to find the closest one; therefore it requires quadratic number of dis-
tance evaluations, resulting in run-time of O(|L|2 · td), where td denotes the
time needed to compute the distance between two cases.

Coverage-Guided Policy. The distance-guided policy can preserve the knowl-
edge in the case base better than the random policy does. However, it is not
optimal, as some information is missed when only pairs of cases are considered.
We generalize the approach by considering all the cases that may contain re-
dundant information at once. For that we define the notion of neighborhood of
a case c with respect to a certain similarity distance value δ, denoted nδ(c).

The idea of the case neighborhood is to group elements which contain re-
dundant information and hence that can be reduced to a single case. The case
neighborhood uses a value of δ in accordance with Def. 5. Note that such a
value, together with the structure and distribution of the cases in the case base,
influences the cardinality of the case neighborhoods and therefore determines
the amount by which L can be reduced.

Definition 8 (Case neighbourhood). Given a case base L, a case c ∈ L and
a similarity distance threshold δ ∈ R, the neighborhood of c is nδ(c) = {ci ∈
L | d(c, ci) < δ}.

The Coverage-Guided policy is concerned with finding a set L′ of cases such
that the union of all their neighborhoods covers all the elements of the given case
base L, or, using the terminology of Def. 7, finding a case base L′ such that
reduces(L′,L) holds.

There are many possible ways to reduce a case base in accordance with this
policy, out of which some are more suitable than others. We introduce two cri-
teria for reducing the case base that we observed can significantly influence the
performance of a case-based system adopting the coverage-guided policy: mini-
mizing the size of the reduced case base, which has a significant impact on the
efficiency of the retrieval phase, and maximizing the quality of the coverage of
the reduced case base, which influences the adaptation costs. Considering the
first criterion, the optimal result of the coverage-guided policy takes account of
the number of elements in the reduced set:

Definition 9 (Cardinality Coverage-Guided Policy). Given a similarity
threshold value δ ∈ R and a case base L, find a reduction L′ of L with minimal
cardinality.

3 The isolated cases are excluded in the computation of δμ. A case ci is considered
isolated if distance d(ci, c

∗
i) = 0.5.

128 A.E. Gerevini et al.

Algorithm: CoverageBasedPolicy(L, δ)
Input: a case base L = {ci | i ∈ 1 ≤ i ≤ n}, a threshold δ ∈ R.5

Output: a case base L′ reducing L
1. L′ ← ∅;
2. Uncovered ← L;
3. repeat
4. select ci ∈ Uncovered that satisfies condition(ci);
5. Uncovered ← Uncovered \ nδ(ci);
6. L′ ← L′ ∪ {ci};
7. until Uncovered = ∅;
8. return L′;

Fig. 1. A greedy algorithm computing a Coverage-Based Policy approximation

Concerning the second criterion, consider three cases c, c1, c2 so that d(c, c1) <
d(c, c2) < δ. By Def. 5, c covers both c1 and c2, however, the expected adaptation
cost of c1 is lower than the cost of c2, and therefore c1 is better covered. The qual-
ity of the case base coverage can intuitively be defined as the average distance
from the removed cases to the closest kept case (average coverage distance). Re-
garding the coverage quality, the optimal result of the coverage-guided policy is a
case base L′ reducing L with minimal average coverage distance. Note, however,
that if only the coverage distance was considered, then L = L′ would be a spe-
cial case of optimal reduced case base. Therefore, the quality measure to optimize
needs to be more complex in order to take account of the size of the reduced case
base. In particular, given a reduction L′ of L, we define the uncovered neighbor-
hood Uδ(c) of an element c ∈ L as its neighbors in L \ L′, i.e., [Uδ(c) = {cj ∈
L | cj ∈ {nδ(c) ∩ L \ L′} ∪ {c}}. Then, we define the cost of a case c as a real

function vδ(c) =
(

Σcj∈Uδ(c)d(c,cj)

|Uδ(c)| + p
)
. The first term within the brackets indi-

cates the average coverage distance of the uncovered neighbors; the second term,
p ∈ R, is a penalization value that is added in order to favorite reduced case bases
with fewer elements and to assign a value different from 0 also to isolated cases
in the case base.4 The sum of these costs for all the elements of a reduced set L′

defines the costMδ(L′) of L′, i.e.,Mδ(L′) = Σc∈L′vδ(c). The policy optimizing
the quality of the case base coverage can then be defined as follows:

Definition 10 (Weighted Coverage-Guided Policy). Given a similarity
threshold value δ ∈ R and a case base L, find a reduction L′ of L that mini-
mizes Mδ(L′) .

Unfortunately, computing the reduction of Def. 10 can be computationally very
expensive. Therefore, we propose to compute an approximation of the reduced
case base of this policy using the greedy algorithm described by Fig. 1. This
algorithm has two variants that depend on how line 4 is implemented and cor-
responds to the two proposed versions of the coverage-guided policy. For the

4 In our experiments, we use p = maxci∈Ld(ci, c∗i).
5 If the δ value is not provided, the algorithm uses the average minimum distance (δμ).

On the Plan-Library Maintenance Problem in a Case-Based Planner 129

Cardinality Coverage-Guided Policy, the condition test at line 4 of the algo-
rithm is used to select the uncovered element ci with greatest |Uδ(ci)| in order
to maximize the number of uncovered elements in nδ(ci) that can be covered by
inserting ci into L′. While, for the Weighted Coverage-Guided Policy, in order
to optimize the quality of the reduced case base L′, the condition of line 4 is

used to select the uncovered element ci with the minimum vδ(ci)
|Uδ(ci)| value, where

the vδ(ci) value is scaled down by |Uδ(ci)| to favor the cases that cover higher
number of still-uncovered elements.

5 Experimental Results

The policies presented in the previous sections have been implemented in a new
version of the CBP system OAKPlan [17]. In our experiments, the plan retrieved
by OAKPlan is adapted using planner LPG-Adapt [7]. The benchmark domains
considered in the experimental analysis are the available domains DriverLog,
Logistics, Rovers, and ZenoTravel from the 2nd, 3rd and 5th International
Planning Competitions. [10]

For each considered domain we generated a plan library with ∼5000 cases.
Specifically, each plan library contains a number of case clusters ranging from
34 (for Rovers) to 107 (for ZenoTravel), each cluster c is formed by using either
a large-size competition problem or a randomly generated problem Πc (with a
problem structure similar to the large-size competition problems) plus a random
number of cases ranging from 0 to 99 that are obtained by changingΠc. Problem
Πc was modified either by randomly changing at most the 10% of the literals
in its initial state and set of goals, or adding/deleting an object to/from the
problem. The solution plans of the planning cases were computed by planner
TLPlan [2]. TLPlan exploits domain-specific control knowledge to speedup the
search significantly, so that large plan libraries can be constructed by using a
relatively small amount of CPU time. In our libraries, plans have a number
of actions ranging from 68 to 664. For each considered domain, we generated
25 test problems, each of which derived by (randomly) changing problem of a
cluster randomly selected among those in the case base. Note that the cases in
the library are grouped into clusters and test problems were generated from the
library problems because the aim of our experimental analysis is studying the
effectiveness of the proposed techniques for domains with recurring problems.
We experimentally compared nine specific maintenance policies:

– three random policies, R50, R75, and R90, that remove a case from the full
plan library with probability 0.50, 0.75, and 0.90, respectively;

– three distance-guided policies, D1, D2, and D3, that remove the mostly re-
dundant cases from (a) the full plan library, (b) the library obtained from
D1, and (c) the library obtained from D2, respectively;

– three coverage-guided policies, C1, C2, and C3, that compute a reduced case
base by using the greedy algorithm in Fig. 1 with (a) the full plan library,
(b) the library obtained from D1, and (c) the library obtained from D2,
respectively.

130 A.E. Gerevini et al.

Table 1. Evaluation of nine reduced plan libraries. Gray boxes indicate the best results.

Domain Random policy Distance-Guided policy Coverage-Guided policy
R50 R75 R90 D1 D2 D3 C1 C2 C3

DriverLog
Case-base size 2617 1368 566 3152 2253 1727 2318 1222 684

Coverage 0.776 0.628 0.501 0.972 0.857 0.733 0.956 0.681 0.502

#Uncovered 1177 1957 2623 146 754 1404 231 1679 2617

Avg. uncov. dist. 0.067 0.112 0.171 0.017 0.035 0.058 0.022 0.069 0.130

Logistics
Case-base size 2615 1274 462 2826 1443 659 2767 1283 460

Coverage 0.888 0.767 0.572 1 0.996 0.874 1 0.999 0.862

#Uncovered 583 1213 2226 0 21 658 0 5 720

Avg. uncov. dist. 0.036 0.064 0.103 0.018 0.043 0.057 0.018 0.042 0.059

Rovers
Case-base size 2107 1012 518 2130 1358 1165 1758 1018 720

Coverage 0.599 0.358 0.227 0.672 0.476 0.387 0.586 0.375 0.294

#Uncovered 1730 2770 3336 1416 2261 2646 1786 2696 3044

Avg. uncov. dist. 0.131 0.218 0.295 0.065 0.120 0.156 0.080 0.150 0.210

ZenoTravel
Case-base size 2493 1242 479 2718 1729 1240 2588 1205 538

Coverage 0.989 0.959 0.873 1 1 0.993 1 0.999 0.999

#Uncovered 56 202 632 0 0 36 0 1 1

Avg. uncov. dist. 0.027 0.046 0.067 0.014 0.027 0.036 0.015 0.031 0.042

Table 1 compares the reduced plan libraries by using the nine considered
maintenance policies in terms of size, coverage (using δ = 0.1) w.r.t. the full
plan library, number of elements of the full plan library that are not covered
by the reduced plan libraries, and average distance from any uncovered case
to the closest case in the reduced plan library. Obviously, the closer the cover-
age is to 1, or, equally, the lower the number of uncovered cases is, the better
the maintenance policy is. Moreover, since a high-quality policy should remove
only redundant cases, lower values of the average minimum distance from the
uncovered cases indicates better plan libraries.

While the size of the case bases obtained by C1 and D1 is often comparable
with the case base obtained by using R50, C1 and D1 are always better (and
usually much better) than R50 in terms of coverage, number of uncovered ele-
ments and average minimum distance from the uncovered cases. Similarly, while
the sizes of the case bases are often comparable, C2 and D2 are better than R75,
and C3 and D3 are better than R90. The results in Table 1 also confirm the fact
that the random policy may remove important cases, since, for instance, the
number of uncovered elements is often high, while the other policies can com-
pute reduced case bases of comparable size but with fewer uncovered elements.
Moreover, it is interesting to note that the case bases with the best coverage are
computed by D1, although those obtained by C1 have a similar coverage while
contain fewer cases. For ZenoTravel, even if the case bases obtained through
the distance-guided policies contain many more cases, the coverage of the case
bases obtained by the coverage-guided policies is similar to or better than by
the distance-guided policies.

On the Plan-Library Maintenance Problem in a Case-Based Planner 131

Table 2. Performance of OAKPlan. Gray boxes indicate the best results.

Domain Full Random policy Distance-Guided policy Coverage-Guided policy
library R50 R75 R90 D1 D2 D3 C1 C2 C3

DriverLog

Avg. CPU seconds 19.8 11.1 6.7 5.7 12.9 9.4 7.5 9.6 5.6 3.3

Speed score 3.76 6.83 11.93 20.39 5.90 8.08 10.01 7.86 14.30 22.70

Avg. plan stability 0.801 0.817 0.787 0.751 0.818 0.823 0.811 0.812 0.829 0.839

Logistics

Avg. CPU seconds 34.4 22.2 22.2 15.0 21.5 13.9 10.2 21.3 12.7 8.9

Speed score 6.13 9.83 13.16 17.62 10.42 15.84 22.44 10.55 17.31 24.88

Avg. plan stability 0.953 0.945 0.920 0.912 0.952 0.950 0.950 0.952 0.952 0.952

Rovers

Avg. CPU seconds 160.3 82.8 44.5 78.0 67.3 27.0 19.7 53.3 18.6 17.6

Speed score 3.54 6.27 10.36 15.02 7.58 15.73 20.25 8.40 21.76 22.30

Avg. plan stability 0.975 0.956 0.953 0.870 0.970 0.969 0.969 0.969 0.970 0.969

ZenoTravel

Avg. CPU seconds 28.2 29.8 21.9 21.7 22.7 21.3 20.6 22.7 19.3 17.1

Speed score 13.19 12.62 16.66 16.92 16.19 17.10 17.94 16.13 20.16 24.14

Avg. plan stability 0.892 0.853 0.866 0.831 0.892 0.882 0.877 0.897 0.897 0.897

Table 2 shows the performance of planner OAKPlan using the full plan library
and the reduced libraries derived by the nine considered maintenance policies
for the considered domains DriverLog, Logistics, Rovers and ZenoTravel

in terms of average CPU seconds, average plan stability and IPC speed score
(defined below). Given a library plan π′ and a new plan π computed for solving
a test problem, the plan stability of π with respect to π′ can be defined as
1−da(π, π

′), where da is the plan distance function defined in Section 4.1. Having
a high value of plan stability can obviously be very important in plan adaptation,
because, e.g., high stability reduces the cognitive load on human observers of a
planned activity by ensuring coherence and consistency of behaviors [6]. A good
reduced case base should allow the planner to produce stable solutions. Given two
compared policies and a problem set, the average CPU time and plan stability
for each policy is computed over the test problems in the set that are solved by
both the compared policies.

The speed score function was first introduced and used by the organizers
of the 6th International Planning Competitions [5] for evaluating the relative
performance of the competing planners, and since then it has been a standard
method for comparing planning systems performances. The speed score for a
maintenance policy m is defined as the sum of the speed scores assigned to m
over all the considered test problems. The speed score for m with a planning
problem Π is defined as: 0 if Π is unsolved using policy m and T ∗

Π/T (m)Π
otherwise, where T ∗

Π is the lowest measured CPU time to solve problem Π
and T (m)Π denotes the CPU time required to solve problem Π using the case
base reduced through policy m. Higher values of the speed score indicate better
performance.

The results in Table 2 indicate that OAKPlan using the libraries reduced
through the compared distance-guided and coverage-guided policies is always

132 A.E. Gerevini et al.

faster than using the full library. Moreover, even the use of the simple random
policies makes OAKPlan almost always faster than using the full library.

Concerning plan stability, the plans computed using the libraries reduced by
the distance-guided and the coverage-guided policies are always on average as
much stable stable as the plans computed using the full library. Surprisingly, for
DriverLog and ZenoTravel, OAKPlan with policy C3 computes plans that are
even more stable than with the full library. The rationale of this is related to the
use of LPG-Adapt in OAKPlan: since LPG-Adapt is based on a stochastic local
search algorithm, it may happen that LPG-Adapt computes plans that are far
from the library plans even if there exist solution plans similar to some of them.

OAKPlan using C1 andD1 is always on average faster than usingR50, while the
size of the case bases is often comparable, except for D1 and domain DriverLog.
For DriverLog, OAKPlan using D1 is slower than using R50, because the library
reduced by D1 is much bigger than the one reduced by R50. Moreover, OAKPlan
using C1 and D1 computes plans that are almost always on average more stable
than using R50. The performance gaps of C2 and D2 w.r.t. R75, and of C3 and
D3 w.r.t. R90 are similar. Finally, in terms of average CPU time, speed score,
and average plan distance, the coverage-guided policies perform almost always
better than, or similarly to, the distance-guided policies.

6 Conclusion

In this work, we have addressed the problem of maintaining a plan library for
case-based planning by proposing and experimentally evaluating some main-
tenance policies of the case base. The investigated policies optimize different
quality criteria of the reduced case base.

The random policy, that is also used in general case-based reasoning, does
not optimize any criterion but is very fast to compute. We have introduced two
better informed policies, the distance-guided and the coverage-guided policies,
which attempt to generate reduced case bases of good quality. Since computing
such policies can be computationally hard, we have proposed a greedy algorithm
for effectively computing an approximation of them. An experimental analysis
shows that these approximated policies can be much more effective compared to
the random policy, in terms of quality of the reduced case base and performance
of a case-base planner using them.

There are several research directions to extend the work presented here. We
intend to study in detail additional distance functions to assess the similarity
between problems and solutions, to develop and compare additional policies, to
investigate alternative methods for efficiently computing good policy approxima-
tions, and to extend the experimental analysis with a larger set of benchmarks.
Moreover, current work includes determining the computational complexity of
the two proposed (exact) coverage-guided policies, that we conjecture are both
NP-hard.

On the Plan-Library Maintenance Problem in a Case-Based Planner 133

References
1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological

variations, and system approaches. AI Communications 7(1), 39–59 (1994)
2. Bacchus, F., Kabanza, F.: Using temporal logic to express search control knowledge

for planning. Artificial Intelligence 116(1-2), 123–191 (2000)
3. Bäckström, C., Chen, Y., Jonsson, P., Ordyniak, S., Szeider, S.: The complexity of

planning revisited – a parameterized analysis. In: 26th AAAI Conf. on AI (2012)
4. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational

Intelligence 11, 625–655 (1996)
5. Fern, A., Khardon, R., Tadepalli, P.: The first learning track of the int. planning

competition. Machine Learning 84(1-2), 81–107 (2011)
6. Fox, M., Gerevini, A., Long, D., Serina, I.: Plan stability: Replanning versus plan

repair. In: 16th Int. Conf. on AI Planning and Scheduling (2006)
7. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and

temporal action graphs. JAIR 20, 239–290 (2003)
8. Gerevini, A., Saetti, A., Serina, I.: Case-based planning for problemswith real-valued

fluents: Kernel functions for effective plan retrieval. In: 20th European Conf. on AI
(2012)

9. Ghallab, M., Nau, D.S., Traverso, P.: Automated planning - theory and practice.
Elsevier (2004)

10. Koenig, S.: Int. planning competition (2013),
http://ipc.icaps-conference.org/

11. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and
directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 196–207. Springer, Heidelberg (1998)

12. Leake, D.B., Wilson, D.C.: Remembering why to remember: Performance-guided
case-base maintenance. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS
(LNAI), vol. 1898, pp. 161–172. Springer, Heidelberg (2000)

13. Markovitch, S., Scott, P.D., Porter, B.: Information filtering: Selection mechanisms
in learning systems. In: 10th Int. Conf. on Machine Learning, pp. 113–151 (1993)

14. Minton, S.: Quantitative results concerning the utility of explanation-based learn-
ing. Artificial Intelligence 42(2-3), 363–391 (1990)

15. Muñoz-Avila, H.: Case-base maintenance by integrating case-index revision and
case-retention policies in a derivational replay framework. Computational Intelli-
gence 17(2), 280–294 (2001)

16. Richter, S., Westphal, M.: The lama planner: Guiding cost-based anytime planning
with landmarks. JAIR 39, 127–177 (2010)

17. Serina, I.: Kernel functions for case-based planning. Artificial Intelligence 174(16-
17), 1369–1406 (2010)

18. Smyth, B.: Case-base maintenance. In: Mira, J., Moonis, A., de Pobil, A.P. (eds.)
IEA/AIE 1998. LNCS, vol. 1416, pp. 507–516. Springer, Heidelberg (1998)

19. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: Questioning the similarity
assumption in reasoning. Artificial Intelligence 102(2), 249–293 (1998)

20. Smyth, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann,
R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, p. 343. Springer,
Heidelberg (1999)

21. Spalazzi, L.: A survey on case-based planning. AI Review 16(1), 3–36 (2001)
22. Srivastava, B., Nguyen, T.A., Gerevini, A., Kambhampati, S., Do, M.B., Serina,

I.: Domain independent approaches for finding diverse plans. In: 20th Int. Joint
Conf. on AI (2007)

23. Zhu, J., Yang, Q.: Remembering to add: Competence-preserving case-addition poli-
cies for case-base maintenance. In: 16th Int. Joint Conf. on AI (1998)

http://ipc.icaps-conference.org/

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 134–148, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Learning Feature Weights from Positive Cases

Sidath Gunawardena, Rosina O. Weber, and Julia Stoyanovich

The iSchool, Drexel University, Philadelphia, Pennsylvania, USA
{sidath.gunawardena,rosina,stoyanovich}@drexel.edu

Abstract. The availability of new data sources presents both opportunities and
challenges for the use of Case-based Reasoning to solve novel problems. In this
paper, we describe the research challenges we faced when trying to reuse expe-
riences of successful academic collaborations available online in descriptions of
funded grant proposals. The goal is to recommend the characteristics of two
collaborators to complement an academic seeking a multidisciplinary team; the
three form a collaboration that resembles a configuration that has been success-
ful in securing funding. While seeking a suitable measure for computing simi-
larity between cases, we were confronted with two challenges: a problem con-
text with insufficient domain knowledge and data that consists exclusively of
successful collaborations, that is, it contains only positive instances. We present
our strategy to overcome these challenges, which is a clustering-based approach
to learn feature weights. Our approach identifies poorly aligned cases, i.e., ones
that violate the assumption that similar problems have similar solutions. We use
the poorly aligned cases as negatives in a feedback algorithm to learn feature
weights. The result of this work is an integration of methods that makes CBR
useful to yet another context and in conditions it has not been used before.

Keywords: Case Alignment, Case Cohesion, Density Clustering, Multidiscipli-
nary Collaboration, Recommender Systems, Single Class Learning, Subspace
Clustering.

1 Introduction

Case-based Reasoning (CBR) enables the reuse of experiences to perform a variety of
reasoning tasks based on learning from a collection of those experiences. Advances in
information technology are increasing the types and quantities of experiences that are
available, providing new avenues for CBR applications [23]. Sometimes new data is
made available that poses novel challenges to using the CBR methodology.

One crucial step in adopting CBR is to design a similarity measure that will sup-
port the most accurate solutions possible. As widely discussed in the literature (e.g.,
[2]), the quality of the CBR solution depends on accurately representing the relative
relevance of the features used to represent cases.

The two main approaches for assigning feature weights are domain knowledge and
feedback algorithms. The algorithms use feedback to adjust feature weights such that
cases from the same class are made more similar and cases from different classes are
made less similar [2]. As is typical of learning algorithms, a dense dataset containing

 Learning Feature Weights from Positive Cases 135

both positive and negative instances is required. In this problem context the data has
only positive instances posing the challenge of how to learn feature weights.

The goal of this paper is to enable the use of CBR in the absence of ideal condi-
tions to adopt it, i.e., when domain knowledge is insufficient and only positive in-
stances are available to learn feature weights. We explore the feasibility of using
feedback algorithms with only positive instances. Our approach considers cases based
on how they are distributed in the problem and solution spaces.

Our strategy is based on the premise that a problem context suitable for CBR is one
where similar problems have similar solutions. This has been explored through meas-
ures such as alignment [21] and cohesion [16]. Likewise, our approach seeks to iden-
tify cases that are well aligned versus cases that are poorly aligned. In our approach
we use the well and poorly aligned cases to play the respective roles of positive and
negative instances to learn feature weights with feedback algorithms.

To identify these cases, we employ clustering methods based on the intuition that
the difference between well and poorly aligned cases is revealed when outliers are
identified in the problem and solution spaces. In [12] we show that our clustering-
based approach consistently identifies poorly aligned cases that are low in alignment
[21] and cohesion [16].

We organize this paper as follows. We start by explaining the problem that moti-
vates this research in Section 2. The following sections describe the steps of our in-
vestigation. As these sections vary greatly in their content, we include in each section
related and background work instead of having one single section. Then, in Section 3,
we describe our approach to learning feature weights from only positive cases. In
Section 4, we present measures of case alignment and compare to our approach for
finding well and poorly aligned cases. In Section 5, we discuss the clustering methods
for determining aligned cases. In Section 6, we present studies with different case
bases in support of the quality and generalization of our approach. In Section 7, we
implement our approach on case bases that have negatives to evaluate how the nega-
tives learned from our approach performs in comparison. In Section 8, we investigate
Single Class Learning and how it performs in comparison with and in complement to
our approach. Section 9 summarizes, concludes, and presents future work.

2 Motivating Problem

This section describes the motivation for this work in detail: the dataset, the problem
context, case representation, and evaluation.

2.1 Recommending Characteristics of Academic Collaborators

The problem context is a user (i.e., collaboration seeker) who is an academic seeking
to engage in multidisciplinary research. The solution is a configuration (i.e., set of
features) of two collaborators that, together with the seeker, will form a collaboration.
This recommendation of multiple members differentiates this problem from similar
problems in group recommendation [24].

136 S. Gunawardena, R.O. Weber, and J. Stoyanovich

For a new collaboration seeker, the task is to find the most similar member of an
existing collaboration, and then replace that member with the seeker to create a rec-
ommendation. These three form a collaboration that resembles a configuration that
has been successful in securing funding. The experiences of successful multidiscipli-
nary collaborations we use are grants that were awarded funding. A detailed descrip-
tion of how the grant case base was assembled can be found in [10].

A particularity of such data is that it does not include grants that were not funded.
Thus, the experiences are all positive instances of collaboration. It should be noted
that there is no evidence that a collaboration would not be successful simply because
it is not in the data.

Furthermore, these experiences are not in traditional problem-solution form of
many recommender systems [3, 4]. An n-member collaboration can take the form of a
case by identifying each member in turn as the problem part of the case (the collabo-
ration seeker). When the seeker is the problem, the remaining n-1 members comprise
the solution. As each collaboration can be perceived from the perspective of each
member, an n-member collaboration can be reconfigured as m cases, where n = m.
Each collaboration produces as many cases as the number of its members. For the
purpose of this work, we consider collaborations of three members only. Thus, for a
3-member collaboration the number of cases created is three. Our dataset has 66
three-member collaborations, and thus is transformed into 198 cases in the case base
(henceforth referred to as the collaboration case base).

Table 1. A Collaboration Case

Fea-
tures

Collaboration
members

Feature
Name

Description Example values

P
ro

bl
em

 F
ea

-
tu

re
s

Collaboration
Seeker

Title Academic
Title

{Full Professor, Associate Pro-
fessor, Assistant Professor}

Research
Interest

Areas of
research

Genetics, Mechanical Engineer-
ing, Economics, …

Institution
Type

Highest degree
granted by inst.

{Doctoral, Masters,
 Bachelors}

S
ol

ut
io

n
F

ea
tu

re
s

Recommended
Characteristics
Collaborator
#1

Title,
Research
Interest,
Inst. Type

Same as problem features

Recommended
Characteristics
Collaborator
#2

Title,
Research
Interest,
Inst. Type

Same as problem features

The features used in the experiments are title, research interest and institution type

as shown in (Table 1). The recommendation consists of the characteristics of two
collaborators who, when combined with the seeker, create a combination of these
features that are consistent with successful collaborations. The selection of these three

 Learning Feature Weights from Positive Cases 137

features to describe this problem is discussed in [13]. We next describe how we eva-
luate the quality of the recommended solutions.

2.2 Quality of Solutions

Given that this work is of investigative nature, we evaluate the quality of the solutions
via Leave-One-Out Cross-Validation (LOOCV). For the collaboration case base, ac-
curacy is measured based on the number of edits required to transform the solution
suggested by the algorithm into the solution of the left out case. Each feature that
needs to be changed is one edit. Related features count as one half edit (e.g., if Assis-
tant Professor is changed to Associate Professor). The solutions have a total of six
features, thus the range of this measure is 0 (a perfect match) to 6 (completely inaccu-
rate). For clarity this is expressed as a percentage. For example, a distance of two
edits implies that 4 out of the 6 features are a match, giving an accuracy of 66.7%.

3 Learning Feature Weights from Positive Instances

When both positive and negative instances are present, feedback algorithms use the
correct and incorrect solutions to learn weights. Lacking negative instances due to the
availability of the data, we seek an alternative to play the role of negative instances.

Our strategy is based on the intuition that if a standard premise for CBR holds i.e.,
that similar problems have similar solutions [17] then cases that do not follow this
premise can be used as negatives in order to learn weights. Based on previous related
works (e.g., [21]) we refer to cases where similar problems have similar solutions as
well aligned. Cases that do not meet this premise are not well aligned, i.e., they are
poorly aligned cases. Poorly aligned cases have no, or very few, close neighbors ei-
ther in the problem space or the solution space (or both). Our approach is premised on
determining which cases are poorly aligned and using them in the role of negative
instances in a feedback algorithm to learn weights.

The rationale behind this clustering-based approach is that the poorly aligned cases
perform the same function as negative instances in the context of the feedback algo-
rithm. They allow us to learn weights that when presented with a new case will be
able to find a similar case in the subset of cases that are well aligned.

The poorly aligned cases are still legitimate cases, using them in the role of nega-
tive instances is exclusively for the purposes of learning feature weights via a feed-
back algorithm. We note that these poorly aligned cases can bring valuable diversity
to the case base. Even though we have established that they are poorly aligned, we
including these cases in the evaluation to provide a consistent overall evaluation and
avoids the tradeoff between the number of removed cases and accuracy.

Cases that are poorly aligned occur in areas of low density in either the problem or
solution space (or both). We seek to identify therefore areas of the problem and solu-
tion space that are more versus less dense. Density clustering is the recommended
method for this task [25]. Density clustering creates clusters of high density areas,
with those points in low density areas being classified as outliers. The outliers in the

138 S. Gunawardena, R.O. Weber, and J. Stoyanovich

context of the case base are poorly aligned as they do not have sufficient neighbors to
form, or to be included in, a cluster. We discuss the particulars of the clustering me-
thods in more detail in Section 5, and for now speak in general terms.

We apply a clustering algorithm first in the problem space and then in the solution
space. In each space the clustering algorithm will identify cases that have neighbors
and flag those that do not have neighbors as outliers. Our assumption is that if a case
is an outlier in either of these spaces it is a case that is poorly aligned. Our clustering-
based approach provides proxy for negatives to allow the use of feedback algorithms
to learn weights in datasets with only positive cases and is described in Fig. 1.

Given a case base CB

Cluster cases in the problem space

Label outliers as negative

Cluster cases in the solution space

Label outliers as negative

Label remaining unlabeled cases as positive

Apply feedback algorithm to learn weights using labeled positives and

negatives

Evaluate average accuracy of resulting solutions via LOOCV for all

cases in CB

Fig. 1. Approach to Use Feedback Algorithm with Positive Cases

We provide evaluation of this approach in later sections. Prior to the evaluation, we
next demonstrate that this clustering-based approach is consistent with related me-
thods in the CBR literature for computing measures of alignment and cohesion.

4 Identifying Aligned Cases

We premise our approach on determining which cases in a case base are well aligned
and which are poorly aligned. Note that when we, in this paper, refer to aligned cases
we are not referring to a specific measure, but to the general concept of problems that
are neighbor having solutions that are also neighbors.

Poorly aligned cases may occur due to diversity of cases, or even corruption from
errors within the case [20]. However, even when every case is a legitimate expe-
rience, some cases may have a greater or a lesser or even a negative impact on the
performance of the case base [26]. Cases that have solutions dissimilar to their nearest
neighbors can create noise in the case-base [23] and particularly for classification
tasks such cases can lead to misclassification [7]. Given the impact of poorly aligned
cases, several measures have been used to determine which cases poorly aligned.

Case cohesion [16] quantifies how similarly a case behaves to its nearest neighbors
in terms of both its problem and its solution. This measure requires two similarity
thresholds, one for the problem space and one for the solution space to determine
which cases are similar enough to be considered neighbors. Case alignment [21]

 Learning Feature Weights from Positive Cases 139

considers the similarity of both the problem and the solution spaces for a pre-specified
number of neighboring cases.

These two previous measures locally compare an individual case to its neighbors.
The method presented by [28] determines aligned cases by ranking, for each case, its
nearest neighbors in the problem and solution space by decreasing similarity. Rank
correlation provides a measure of the level of alignment by determining how similar
the two rankings are. The Global Alignment MEasure (GAME) [6] provides a single
measure of how well the entire case base is aligned by measuring, for the case base as
a whole, the extent to which problems and solutions overlap.

We verify our method by demonstrating that cases identified by density clustering
as poorly aligned have low cohesion [16] and alignment scores [21], using the colla-
boration case base described in Section 2. We calculate the cohesion scores for each
case in the case base and then select the bottom 5% of cases, i.e. the cases with the
lowest cohesion scores. We then determine what proportion of that set of cases is
identified as poorly aligned by the clustering-based approach. This process is the re-
peated for the bottom 10% of cases. These studies are detailed in [12] and we present
a summarized result in Fig. 2. In [12] we experimented with different parameters for
cohesion and density clustering and best results are presented here in Fig. 2a. We
repeat the process using the alignment scores, and show the best results in Fig. 2b.

Fig. 2. Overlap of Poorly Aligned Cases with Low Cohesion and Low Alignment Cases

These results indicate that a major proportion of the cases identified by density
clustering as poorly aligned also have low alignment and cohesion scores. This veri-
fies that density clustering is consistent with analogous measures in the literature.

5 The Selection of Clustering Methods

In our approach (see pseudocode in Fig. 1), we identify poorly aligned cases by clus-
tering on the problem and solutions spaces. Here, we implement our approach using

Bottom 5%
of cases

Bottom 10%
of cases

Bottom 5%
of cases

Bottom 10%
of cases

Case overlap vs. Alignment (shaded)
(b)

Case overlap vs. Cohesion (shaded)
(a)

140 S. Gunawardena, R.O. Weber, and J. Stoyanovich

two clustering methods: density clustering and subspace clustering. We explore which
method is more suitable based on the dimensionality of the data.

5.1 Density Clustering and Subspace Clustering

It is not our goal to test the specific merits of different implementations of density or
subspace clustering algorithms; we use two representative implementations:
DBSCAN and PROCLUS. We highlight the differences between these in Table 2.

Table 2. Chracteristics of Clustering Algorithms Used

 Required Parameters Cluster Shape Feature
Usage

Solution
Format

DBSCAN Neighborhood size, Epsilon Less Regular All Multi-valued
PROCLUS Number of clusters, average

number of dimensions
More Regular Varying

Subsets
Single-valued

Density clustering creates clusters of high density areas, with those points in low

density areas being classified as outliers. Density clustering was chosen as it is rec-
ommended for this type of problem [25]. For demonstrating density clustering, we use
DBSCAN, a standard density clustering algorithm [9]. DBSCAN requires two para-
meters. The first is epsilon (ε), the maximum distance between any two points for
them to be considered to be directly density reachable. The second is the neighbor-
hood size, the minimum number of points required to form a cluster. If there are a
sufficient number of points within epsilon distance of each other a cluster is formed.

Subspace clustering selects clusters using subsets of the features. We select sub-
space clustering as we see potential applications for this approach in big data con-
texts, and subspace clustering is a natural choice for such high dimensional spaces
[15]. Due to the distance measure employed, density clustering would be less suitable
for high dimensional data. For demonstrating subspace clustering, we use the sub-
space clustering tool implemented by [22] from the WEKA package [14]. This me-
thod does not eliminate features at the global level; different sets of features may be
selected as relevant for the different clusters [15]. The clustering algorithm used for
the subspace is PROCLUS [1] a k-mediod based clustering approach. PROCLUS also
identifies a set of outliers that do not fall with the clusters it generates. These points
do not lie close to the mediods identified.

5.2 Comparing Clustering Methods

We use two case bases the first is low dimensional, and the second is high dimension-
al. The two case bases have both positive and negative cases. However, to test our
approach we ignore the solution classes when we learn feature weights through our
approach. We only use the solution for evaluation purposes. The first is a case base of
football plays (Table 3).

 Learning Feature Weights from Positive Cases 141

Table 3. Football Case Base

 Feature Name Description Example Values

Problem
Features

Time Time remaining (mins) {60-33, 32-30, 29-3, 2-0}

Down Period of play {1,2,3, 4}

Distance Distance to get a first down {Short, Medium, Long}

Field Position Position on field (yards) {1-15, 16-60, 61-99 }

Score Current score differential {within 7 pts, ahead by more than
7 pts, behind by more than 7 pts}

Solution Play The football play executed Pass Deep, Run Left, Punt, …

The five problem features of this case base reflect a game state of an American

Football game. The solution is the play that was executed in the given game state. The
case base consists of 106 cases. The density clustering uses a distance matrix that is
the unweighted sum of the similarity between features. As the features are ordinal, if
the features are one step apart (e.g. Short Distance vs. Medium Distance) the distance
is 0.5, otherwise the distance is 0 or 1 if the features match or do not. To implement
the subspace clustering algorithm, the ordinal features are converted to numeric (e.g.,
short, medium, and long to 1, 2 and 3).

The second case base consists of business project management cases (Table 4), for
brevity only a seven of the 23 features is shown. The problem features describes the
characteristics of a project. The solution is a binary feature signifying whether the
project was a success or a failure. There are 88 cases, with 67 successful projects and
21 failed ones. The density clustering uses a distance matrix that is the unweighted
sum of the similarity between features. The similarity for all features is Boolean.

Table 4. Project Management Case Base

 Feature Name Example Values
Problem
Features

Project manager was given full authority {Yes, No}

The project began with a committed champion {Yes, No}

The sponsor was involved with decisions {Yes, No}

Developers were involved in the estimates {Yes, No}

There was well defined scope {Yes, No}

The requirements were complete and accurate {Yes, No}

Customers had realistic expectations {Yes, No}

Solution Project outcome {Success, Failure}

The implementation of the approach follows the same form that is described in

Fig. 1. First the cases are clustered in the problem space using the chosen clustering
method and any outliers are labeled as negatives. Then this process is repeated for the
solution space. The unlabeled cases are then labeled as positives, and a feedback algo-
rithm is used to learn the feature weights. In this and subsequent experiments we use a
genetic algorithm to learn weights, but this approach can be used with any feedback
algorithms.

142 S. Gunawardena, R.O. Weber, and J. Stoyanovich

The quality of the solutions selected by each set of feature weights is evaluated
through LOOCV. For both case bases, accuracy is measured by the percentage of
correctly classified cases using the solutions as class labels. For evaluation all the
cases are used, including the poorly aligned cases. We investigate the following hypo-
theses:

H1: the average accuracy from using density clustering will be greater than us-
ing subspace clustering when the dimensionality of the data is low.
H2: the average accuracy from using subspace clustering will be greater than
using density clustering when the dimensionality of the data is high.

Table 5. Average Accuracy, % of Correct Classifications

Case Base Density Clustering Subspace Clustering
Football 70% 67%
Project Management 84% 91%

From Table 5 we see that H1: density clustering performs better in the context of

low dimensional data, and H2: the subspace clustering performs better with higher
dimensional data. These observations are preliminary, and we use them only as a
guide for our further experiments.

Table 6. Percentage of Cases Identified as Poorly Aligned

Case Base Density Clustering Subspace Clustering
Football 20% 25%
Project Management 6% 5%

The two clustering method also behave similarly in the proportion of cases identi-
fied as poorly aligned (Table 6). In the next section we explore the quality of the
solutions arising from the use of the feature weights learned via our approach

6 Quality and Generalization of the Approach

In this section, we first present the quality of our proposed approach by showing how
it improves the average accuracy of the recommendations for the collaboration case
base (Section 2). Second, we present how the approach generalizes by showing how it
improves average accuracy over no feature weights for different case bases. Based on
the results of our investigations in Section 5, we use density clustering when the di-
mensionality is low, and subspace clustering when dimensionality is high.

We investigate the hypothesis H3: the average accuracy using the clustering-based
approach is statistically significantly better than using no feature weights. We show,
for the collaboration case base, the average accuracy when we implement the ap-
proach described in Fig. 1 versus no feature weights (Table 7).

The average accuracy is measured as described in section 2.2, and is expressed as a
percentage that denotes how well the recommendation matches the case left out by the
LOOCV. As this is one of several comparisons we will do using these results, a

 Learning Feature Weights from Positive Cases 143

one-way ANOVA test is used to determine if there is a significant difference between
the means of the various methods (α = 0.05). The post hoc analysis is via the Bonfer-
roni Correction using α = 0.0083 to maintain the significance level of 0.05.

Table 7. Average Accuracy, (* α = 0.05)

Case Base Clustering Method Average Accuracy No Feature Weights
Collaboration Density 67.2%* 63.5%

Next we show results of the density-based and subspace implementations of our

approach for the different case bases. Again we compare the average accuracy from
using the approach versus having no feature weights. In Table 8 we show the results
for the two classification case bases already described in the previous section. The
average accuracy is now computed as the the percentage of correct classifications. We
test the difference in error rates at α = 0.05 for statistical significance [8]. This is a
separate experiment than the previous so a Bonferroni Correction of α = 0.025 is used.

Table 8. Average Accuracy, (* α = 0.05)

Case Base Clustering Method Average Accuracy No Feature Weights
Football Density *70% 48%
Project Subspace *91% 76%

We show that H3: using the clustering-based approach produces an average accu-

racy that is statistically significantly higher than when using no feature weights across
all three case bases. Based on our previous experiments subspace clustering is used in
high dimensional spaces. The asterisks indicate statistical significance (α = 0.05).

7 Quality of the Approach with Negative Instances

The main reason for the proposed clustering-based approach is the need to learn fea-
ture weights when only positive cases are available. In this section, we compare the
quality of the resulting solutions by using the clustering-based approach in case bases
where negative instances are available. We learn feature weights via a feedback algo-
rithm using the actual labeled negatives. We compare the resulting accuracy to the
accuracy obtained from learning weights using the poorly aligned cases as negatives
using the approach as presented in Fig. 1.

In order to demonstrate the quality of approach, we propose H4: average accuracy
using the clustering-based approach is NOT statistically significantly different from
the average accuracy using weights learned with labeled negatives in case bases that
have negatives. We test the difference in error rates for statistical significance to
determine if there is any diffence between the average accuracies (α = 0.05).

144 S. Gunawardena, R.O. Weber, and J. Stoyanovich

Table 9. Percentage of Correctly Classified Cases (* α = 0.05)

Case Base Clustering Method Clustering-based Labeled Negatives
Football Density 70% 68%
Project Subspace 91% 85%

In Table 9 we show the average accuracy for the case bases computed as the per-

centage of correct classifications for the clustering-based approach compared to using
actual negatives. These results confirm H4 showing that the clustering-based ap-
proach produces feature weights of quality not significantly different to when nega-
tives are available. We next compare our approach to an alternative method for rea-
soning with positive instances.

8 Comparison to Alternative Method for Reasoning with
Positive Instances

In previous sections, we explored studies to substantiate the approach we proposed in
Section 3. In this section we consider an alternative machine learning method for
learning from positive instances.

8.1 Single Class Learning

Single Class Learning (SCL) [18, 19] is used for some classification tasks where the
data has only positive examples. SCL is used in a context of datasets with a small
number of positive and a large set of unlabeled instances. In contexts such as web
page classification [27], or gene classification [5], obtaining complete training data to
be used in conjunction with supervised methods may be problematic. SCL uses the
characteristics of the positive instances to build rules to identify likely negative in-
stances in the set of unlabeled instances. SCL methods have been implemented with
support vector machines [19] and expectation maximization (EM) [18].

To apply this method in a problem context where there are only positive instances,
we start from all the possible problem and solution combinations in the respective
spaces of problem and solution features. Then we consider the problems and solutions
not represented in the case base as unlabeled data. Next we assume the cases with
combinations of features that are very different from the positive instances to be in-
stances that are likely negative. These can then be translated into rules to identify
negative instances based on their feature values. A problem-solution whose feature
combination matches one of those rules is interpreted as a negative instance.

We only learned rules for the features rank and institution type. The large number of
allowable values and the taxonomic nature of the feature research interest prevented its
inclusion. An example of a learned rule might identify as a negative instance a collabo-
ration of two assistant professors and one associate professor who are faculty at non-
research institutions. Thus, SCL operates differently compared to our approach. SCL

 Learning Feature Weights from Positive Cases 145

determines whether an entire recommendation is a negative instance or not. It considers
the combination of the features in both problem and solution spaces.

It is technically possible to represent the combinations of characteristics of nega-
tives learned from the SCL in the form of cases. However, because we only included
the rank and institution features, it would not be possible to use this representation to
learn the weights for all three features.

8.2 Recommending Characteristics of Collaborators with SCL

A preliminary method using the ideas behind SCL in our motivating case base is giv-
en in [12]; we expand the treatment here, by implementing an SCL-based approach
using the EM algorithm based on [18].

We implement it by randomly selecting 10% of the original positive cases to act as
‘spies’ on the unlabeled data. Thus we have two class labels, the original positives P
and the spies S. The EM algorithm is used to classify unlabeled data as either S or P.
The intuition is that the instances that are likely negatives will be classified as S, but
with the lowest probability as being in class S. We take those instances and classify
them as possibly negative instances N, we then return the spies S to their original
classification P. We again have two classes: S, the original positive instances, and N
the possible negatives. We rerun the EM algorithm using these new classes. The unla-
beled instances that now show a high probabilistic classification to be in class N are
chosen as likely negative instances.

We use the resulting combinations of problem and solution deemed as likely nega-
tives as rules combined with CBR using no feature weights to obtain recommenda-
tions. This way we can compare the average accuracy of the recommendations pro-
duced by the clustering-based approach against the average accuracy of recommenda-
tions produced with rules from the SCL-based approach.

Furthermore, as our goal is to find the most accurate solution to our motivating
problem context, we also examine the knowledge learned from SCL and use it in
combination with our approach. The combination of the two methods is straight for-
ward. From the recommendation produced by the clustering-based approach (again
we refer to Fig. 1), we eliminate the solutions that violate the rules produced by SCL.
To this end we investigate the following hypotheses:

H5: average accuracy using the clustering-based approach is NOT statistically sig-
nificantly different from the average accuracy learned using the SCL-based ap-
proach.
H6: A combination of the two approaches will result in average accuracy that is
statistically better than the average accuracy of each individual approach.

In Table 10 we present the average accuracy resulted from the SCL-based approach,
from the clustering-based approach, and the combination of the two methods. A one-
way ANOVA test is used to determine if there is a significant difference between the
means of the different methods (α = 0.05), post hoc analyses is done using a Bonfer-
roni Correction of α = 0.0083.

146 S. Gunawardena, R.O. Weber, and J. Stoyanovich

Table 10. Average Accuracy (* α = 0.05)

Clustering-based Approach SCL-based Approach Combined
67.2% 67.0% 70.8%*

The results in Table 10 confirm H5, there is no statistically significant difference

in accuracy between the clustering-based and the SCL-based approaches, (p = 0.059).
H6 is also confirmed; the combined clustering-based and SCL-based approach outper-
forms the individual approaches to a statistically significant extent (p = 0.000).

9 Conclusions and Future Work

We have shown through our experiments (Section 6) that our clustering-based ap-
proach makes it feasible to learn feature weights in problem contexts with only posi-
tive instances and insufficient domain knowledge. We are motivated by a context with
only positive instances: recommending characteristics of collaborators. Note that the
goal is to recommend the characteristics of the collaborators, not specific individuals.
Preliminary studies on additional case bases suggest generality of the approach.

Our approach relies on using poorly aligned cases in the role of negatives to learn
feature weights with a feedback algorithm. We show our approach is consistent with
other alignment methods from the literature (Section 4).

The proposed approach requires the use of a clustering method. We showed that
the choice of the clustering method varies depending on the dimensionality of the
targeted case base. Our preliminary tests confirm the intuition that density clustering
should be superior for low dimensional case bases, while subspace clustering should
be more suitable for high dimensional ones (Section 5).

In order to further determine the quality of our proposed approach, we also apply it
in case bases that do have negative instances to compare the results. We found that
our clustering-based approach leads to comparable accuracy to when the actual nega-
tive instances with state of the art methods are used (Section 7).

 We compared our approach to an alternative to deal with lack of negatives, SCL.
SCL assigns as a positive or negative instance a problem and solution combination.
We do not learn weights using the knowledge from the SCL-based approach as we
did not learn rules about all features. Thus, if we converted the learned knowledge
into class labels for the cases, we would not be able to learn weights for all features.
Therefore, we chose to use the rules directly to determine whether a recommendation
is consistent or violates any rules. We compared our approach to SCL combined with
CBR using no feature weights and find the performances to be comparable.

The similarity function recommends the solution of the candidate most similar to
the target collaboration seeker. Due to the existence of poorly aligned cases, it is poss-
ible that the recommendation is a configuration that does not exist in the case base.
Thus, the negative instances learned from the SCL-based approach can be used as
rules to enhance the similarity function to prevent the recommendation of configura-
tions that are not present in the case base that may be negatives. This is seen by the
superior performance of the combined approach over other approaches.

 Learning Feature Weights from Positive Cases 147

We seek to investigate our approach further by developing it for collaborations
larger than three members and by examining additional clustering methods such as bi-
clustering. We also wish to further investigate a representation of cases that would
allow us to use the knowledge learned from the SCL-based approach to learn feature
weights. To further develop our contribution in the collaboration sphere, the know-
ledge learned is being investigated via a survey with reviewers with experience in
grant funding. We see this approach to determining poorly aligned cases assisting in
automating the determination of the suitability of CBR in the context of big data.

Acknowledgements. This work is supported in part by U.S. EPA STAR Program and
the U.S. Dept. of Homeland Security; Grant # R83236201. The authors wish to thank
Joe Healy, Alinafe Matenda, & Joe Smith for the use of the football dataset in our
experiments. We also thank our reviewers for their comments that helped improve the
paper.

References

1. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast Algorithms for Pro-
jected Clustering. ACM SIGMOD Record 28(2), 61–72 (1999)

2. Aha, D.W.: Feature weighting for lazy learning algorithms. In: Liu, H., Motoda, H. (eds.)
Feature Extraction, Construction and Selection: A Data Mining Perspective, pp. 13–32.
Kluwer, Norwell (1998)

3. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems: A
Survey of the State-Of-The-Art and Possible Extensions. IEEE Transactions on Know-
ledge and Data Engineering 17(6), 734–749 (2005)

4. Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and
User-adapted Interaction 12(4), 331–370 (2002)

5. Calvo, B., López-Bigas, N., Furney, S.J., Larrañaga, P., Lozano, J.A.: A Partially Super-
vised Classification Approach to Dominant and Recessive Human Disease Gene Predic-
tion. Computer Methods and Programs in Biomedicine 85(3), 229–237 (2007)

6. Chakraborti, S., Cerviño Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Watt, S.: Vi-
sualizing and Evaluating Complexity of Textual Case Bases. Advances in Case-Based
Reasoning, 104–119 (2008)

7. Delany, S.J.: The Good, the Bad and the Incorrectly Classified: Profiling Cases for Case-
Base Editing. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650,
pp. 135–149. Springer, Heidelberg (2009)

8. Dietterich, T.G.: Approximate Statistical Tests for Comparing Supervised Classification
Learning Algorithms. Neural Computation 10(7), 1895–1923 (1998)

9. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering
Clusters In Large Spatial Databases with Noise. In: Simoudis, E., Han, J., Fayyad, U.M.
(eds.) Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, pp. 226–231. AAAI Press, Menlo Alto (1996)

10. Gunawardena, S., Weber, R.O.: Blueprints for Success Guidelines for Building Multidis-
ciplinary Collaboration Teams. In: Filipe, J., Fred, A.L.N. (eds.) ICAART 2012 Proceed-
ings of the 4th Intl. Conference on Agents and Artificial Intelligence, pp. 387–399. SciTe-
Press (2012)

148 S. Gunawardena, R.O. Weber, and J. Stoyanovich

11. Gunawardena, S., Weber, R.O.: Reasoning with Organizational Case Bases in the Absence
Negative Exemplars. In: ICCBR 2012: 2nd Workshop on Process-Oriented Case-Based
Reasoning, pp. 35–44 (2012)

12. Gunawardena, S., Weber, R.O.: Applying CBR principles to Reason without Negative Ex-
emplars. In: FLAIRS 2013 (in press, 2013)

13. Gunawardena, S., Weber, R.O., Agosto, D.E.: Finding that Special Someone: Interdiscip-
linary Collaboration in an Academic Context. Journal of Education for Library and Infor-
mation Science 51(4), 210–221 (2010)

14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter 11(1), 10–18
(2009)

15. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering High-Dimensional Data: A Survey on
Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. ACM Transac-
tions on Knowledge Discovery from Data (TKDD) 3(1), 1–58 (2009)

16. Lamontagne, L.: Textual CBR Authoring Using Case Cohesion. In: Proceedings of the
2006 Workshop on Textual CBR, pp. 33–43 (2006)

17. Leake, D.B. (ed.): Case-Based Reasoning: Experiences, Lessons, and Future Directions.
AAAI Press/MIT Press, Menlo Park, CA (1996)

18. Liu, B., Lee, W.S., Yu, P., Li, X.: Partially Supervised Classification of Text Documents.
In: Proceedings of the Nineteenth International Conference on Machine Learning (2002)

19. Liu, B., Dai, Y., Li, X., Lee, W.S., Yu, P.S.: Building text classifiers using positive and
unlabeled examples. In: Third IEEE International Conference on Data Mining,
pp. 179–186. IEEE (2003)

20. Massie, S., Craw, S., Wiratunga, N.: When Similar Problems Don’t Have Similar Solu-
tions. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626,
pp. 92–106. Springer, Heidelberg (2007)

21. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From anomaly reports to cases.
In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626,
pp. 359–373. Springer, Heidelberg (2007)

22. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projec-
tions of high dimensional data. Proceedings of the VLDB Endowment 2(1), 1270–1281

23. Plaza, E.: Semantics and experience in the future web. Advances in Case-Based Reason-
ing, 44–58 (2008)

24. Quijano-Sánchez, L., Bridge, D., Díaz-Agudo, B., Recio-García, J.A.: A Case-Based Solu-
tion to the Cold-Start Problem in Group Recommenders. In: Agudo, B.D., Watson, I. (eds.)
ICCBR 2012. LNCS, vol. 7466, pp. 342–356. Springer, Heidelberg (2012)

25. Richter, M.M., Weber, R.O.: Case-based reasoning: a textbook. Springer, Berlin (in press,
2013)

26. Smyth, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann, R.,
Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 343–357. Springer, Hei-
delberg (1999)

27. Yu, H., Han, J., Chang, K.C.-C.: PEBL: Web Page Classification Without Negative Ex-
amples. IEEE Trans. Knowledge and Data Engineering 16(1), 70–81 (2004)

28. Zhou, X.F., Shi, Z.L., Zhao, H.C.: Reexamination of CBR hypothesis. In: Bichindaritz, I.,
Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 332–345. Springer, Heidelberg
(2010)

User Perceptions of Relevance and Its Effect

on Retrieval in a Smart Textile Archive

Ben Horsburgh1,2, Susan Craw1,2, Dorothy Williams3,
Simon Burnett3, Katie Morrison3, and Suzanne Martin4

1 School of Computing Science & Digital Media
2 IDEAS Research Institute
3 IMaGeS Research Institute

Robert Gordon University, Aberdeen, Scotland, UK
{b.horsburgh,s.craw,d.williams,k.morrison}@rgu.ac.uk

4 School of Textiles & Design
Heriot-Watt University, Galashiels, Scotland, UK

s.e.martin@hw.ac.uk

Abstract. The digitisation of physical textiles archives is an important
process for the Scottish textiles industry. This transformation creates an
easy access point to a wide breadth of knowledge, which can be used to
understand historical context and inspire future creativity. The creation
of such archives however presents interesting new challenges, such as how
to organise this wealth of information, and make it accessible in mean-
ingful ways. We present a Case Based Reasoning approach to creating a
digital archive and adapting the representation of items in this archive.
In doing so we are able to learn the important facets describing an item,
and therefore improve the quality of recommendations made to users
of the system. We evaluate this approach by constructing a user study,
which was completed by industry experts and students. We also compare
how users interact with both an offline physical case base, and the online
digital case base. Evaluation of our representation adaptation, and our
comparison of physical and digital archives, highlights key findings that
can inform and strengthen the process for creating new case bases.

Keywords: Learning Refined Representation, Digitisation of Physical
Archives, User Evaluation.

1 Introduction

The textiles industry is an important part of the local economy, history, and
future of Scotland. Many prominent companies, manufacturing textiles for well-
known designers, have existed for over 100 years. This heritage and experience
is important, providing companies with a competitive edge over international
rivals. However, while design processes and manufacturing technology have been
kept up to date, the archiving of knowledge has suffered.

Typical archives throughout the textiles community are kept physically in
storage rooms, similar to that in Figure 1. These physical archives can be difficult

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 149–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 B. Horsburgh et al.

Fig. 1. Typical Archive Room

to take full advantage of, unless someone knows exactly what they are looking
for, and where it is. Sharing the knowledge held in separate archives can also
be problematic, with many unaware of what may even be in an archive. There
is wide interest across the community in how this knowledge can be made more
accessible, and used as a source of inspiration for new textile designs.

In collaboration with Johnstons of Elgin, we have investigated how a physical
archive can be transformed into a digital one. The first stage of this transfor-
mation is to understand the nature of the collection they have, and identify the
important information available. Having obtained this information it is possible
to create digital versions of physical assets, using photographs and descriptions.
However, while this process makes information available, it does not organise it
in a meaningful way. An index that highlights the important features of each
digital asset, and facilitates the searching and browsing of assets, is required.

Case based reasoning (CBR) provides a structured way of modelling and learn-
ing from the past experience of users. Through capturing user behaviour and
interactions, there is an opportunity to capture implicit knowledge about the
content of the archive, that may improve the retrievals and recommendations.
This implicit knowledge may be used to modify the asset index, and thus high-
light the important features of each asset.

In this paper we discuss related work on the digitisation of physical archives,
and how CBR has been used in retrieval and recommender systems. Our ap-
proach to understanding and selecting content for digitisation is then discussed.
This approach includes two workshops with Johnstons of Elgin, a major tex-
tiles designer. We discuss our creation of the digital archive, and how cases can
be defined to describe the selected assets. We then develop an implicit learn-
ing method that is able to refine the case representations based on user inter-
actions. Next, we describe our user experiments, which evaluate our implicit
learning method, and draw comparisons between the stakeholder and end-user

User Perceptions of Relevance and Its Effect on Retrieval 151

understanding of and interaction with the assets. We present the results of these
user experiments, and finally draw some conclusions from this study.

2 Related Work

Although companies are only just realising the potential of digitally archiving
their assets, several studies have investigated how this may be achieved. Evans
[1] discusses the underlying requirements for the ‘perfect’ fashion archive, mov-
ing from physical to digital. A key finding of this work is that such archives do
not necessarily need to contain all assets, but the organisation and interaction
of key assets is important. Paterson [2] examines the success of digitising the
House of Fraser fashion and textile archive. In this project, assets were added
to a digital library, but catalog-book style indexes were relied upon to navigate
the collection. The author concludes that for such an archive to be successful,
more sophisticated indexing techniques and interactions are required. This view
is further supported by Brown [3], who notes that sophisticated searching func-
tionality is required for the successful creation of a digital archive.

CBR has previously been used successfully to provide searching functionality
for e-commerce systems [4,5]. Such systems are somewhat similar to a textiles
archive, however user motivation may differ. Case based reasoning has also been
used to construct recommender systems, helping users to navigate a digital col-
lection of items [6]. One main advantage of introducing CBR into a recommender
system is that each item is no longer static in the collection. As users interact
with the system, creating new problem queries and new solution recommenda-
tions, the system adapts to take advantage of this knowledge [7]. Such dynamic
behaviour is critical to the successful creation of our digital archive.

Milne et al. [8] introduce this dynamic behaviour in an image retrieval system,
by modifying the case representation weights after each successful query. Case
weights that are consistently not aligned with associated queries, are diminished,
thus removing noise from case representations and improving the overall system.
Ontañón and Plaza [9] define a similarity measure based on the anti-unification
of two structured cases being compared. This approach further highlights how
shared information, in this example between two cases, may be used to further
inform a CBR system.

3 Selection of Content for Archive

At the onset of this project no case base, or even digital versions of assets were
available. The initial phase therefore was to engage with the owners of the data,
explore, and formally define what each of the assets meant to them. To achieve
this two formal workshops were conducted with the stakeholders: the first work-
shop to understand what an asset is, and how it may be described; the second
workshop to understand how the stakeholders define relationships between as-
sets. The results of these two workshops allowed us to create our initial digital
case base.

152 B. Horsburgh et al.

3.1 Stakeholder Workshop 1: Asset Descriptions

The objective of the first user workshop was to identify what exactly assets are,
and how they can be described. Staff from the company creating the archive were
asked to contribute assets that they considered to be relevant to a digital archive.
These contributions were initially in the form of one or more photographs, and
a total of 150 items were contributed. From these 150 assets, justifications for
each to be included in the archive were presented, and the 30 most interesting
assets were selected to focus on by popular vote.

Example assets that were selected for inclusion in the archive range from
textiles related, such as looms, tartan, and bale hook, to company related, such as
history / heritage, and original skills and crafts. The images associated with each
asset were clipped into plant pots, as illustrated in Figure 2, allowing everyone
at the workshop to easily interact with and move around each of the items.

Fig. 2. Items Contributed by Stakeholders

The next step in this workshop was to gain an understanding of how each item
may be described. With the assets clearly laid out to encourage discussion, a di-
alog with the stakeholders began to identify some key themes and commonalities
amongst the assets. These themes were then translated into a set of labels, which
the stakeholders used to categorise the collection. The 4 labels that emerged were
future, luxury, heritage, and sentimental. The participants were then all given
plant labels and post-it notes. The plant labels were used to annotate the items
with key terms that small groups in the workshop discussed and defined, and the
post-it notes allowed people to provide more detailed free-text descriptions. The
outcome of this workshop formed the initial structure of our case representation
for an item, consisting of the image, labels and tags, and free text.

3.2 Stakeholder Workshop 2: Asset Relationships

Having selected meaningful assets and obtained suitable descriptions, the second
workshop aimed at understanding the structure of the collection as a whole. One
important goal towards creating a useful archive is that it is intuitive and easy to
navigate in a meaningful way. In CBR systems, this is most commonly achieved
by introducing a meaningful semantic similarity measure.

User Perceptions of Relevance and Its Effect on Retrieval 153

To understand how the assets relate to each other, and gain insight into what
similarity means, the items were again placed on the floor in their plant pots.
The participants were split into their 4 respective departments; Retail, HR & Fi-
nance, Production, and Design. Each department was then asked to use coloured
tape to form a map of how each item relates to another, illustrated in Figure
3. Each colour indicates how the stakeholders define relationships within three
separate interest groups: future, heritage, and tourist. These groups were con-
sidered because they were believed to be the three main interest areas that end
users could be classified into.

Fig. 3. Item map created by retail team (left) and transcription (right)

The construction of the maps was initiated by selecting start points from the
30 most popular assets. The edges were then added based on how the stake-
holders believed each of the interest groups would navigate the archive, moving
through related nodes. All of the assets were available for inclusion, but typically
only between 30 and 40 were mapped. There was a general consensus amongst
the 4 departments as to what assets were included. However, the way in which
they were included differed between each department. For example, the produc-
tion department produced a map which resembled a production line, while the
retail team designed a map which was much more exploratory, similar to how
someone may browse a shop. Although there were differing views across depart-
ments regarding which assets were relevant to each other, these maps provide
interesting data which may be compared with usage patterns of the end-users.

4 Creating an Initial Case Base

The outcome of the workshop exercises was a definitive set of assets that are
used to construct the initial case base. We represent this archive of assets as

154 B. Horsburgh et al.

a case base of cases. The final set of features that were used for each case are
illustrated in Table 1. There are three types of features in our case structure;
free text, tags, and images. Free-text features were processed by tokenising,
stemming, and removing stop words from the data. These processed tokens were
then used to construct a single term-frequency vector for each separate feature.
The vectors for each feature were weighted using TF-IDF, and finally normalised.

Table 1. Case Representation

Type Feature Description Vocabulary Size

Free Text Title The name of the item 144

Free Text Description Post-it note description 393

Free Text Justification Reason the item was chosen 344

Free Text Other Any other relevant descriptive information 72

Free Text Facts Interesting facts about the item 160

Tag Aspects Part of company the item relates to 14

Tag Labels Future, luxury, heritage, or sentimental 4

Tag Terms Key descriptive tags 59

Image Main Image SIFT Image features for main image 100

Tags were not tokenised or stemmed, and no stop words were removed. The
reason for this is that the vocabulary sizes are much smaller, and each instance of
the feature was typically only between one and three words long. Term-frequency
vectors were again created for tags, and TF-IDF weighting and vector normali-
sation applied.

Images were indexed using the Scale Invariant Feature Transform (SIFT)
algorithm [10], which detects and describes local features within an image. These
local features were then clustered using the k-means algorithm, and a cluster-
frequency vector created. The SIFT algorithm was chosen to describe images
because it is well proven across many domains, and after clustering provides a
representation structure which is similar to our textual representations.

The selection of assets from workshops, with free text, tags, and labels, to-
gether with the image provides the cases for the digital archive case base.

4.1 Content Similarity

We develop two methods for users to interact with the archive system: querying
the items directly, and through a recommender system. Users provide a search
query by typing search terms into a query box. These search terms must then be
structured so that they may be used to access our case index. To achieve this,
we construct a new temporary case from the query. In this case, each feature
dimension matching a tokenised search term is incremented by 1, and all other
dimensions are set to 0. For example, if the ith dimension of the label feature

User Perceptions of Relevance and Its Effect on Retrieval 155

describes the frequency of term ‘tartan rug’, and the user queries for ‘red tartan
rug’, then the term frequency is 2.

The recommender system uses a query-by-example approach, and thus the
case describing the asset a user is currently viewing is used as the search query.
To query our case base, using either a temporary or example case, we average
the cosine similarities between each pair of individual feature vectors, calculated
as:

similarity(Q,R) =

∑F
f=1

Qf ·Rf

|Qf |·|Rf |

F
(1)

whereQ is the query case,R is the potential retrieval, F is the number of features
in a case, and Qf and Rf are the f th feature-vector of the query and retrieval
cases.

5 Implicit Learning Method

With an archive case base constructed, features extracted, and similarity mea-
sure defined, the next stage is to refine methods used to navigate and interact
with the archive. Although the workshop map could possibly be used as an ini-
tial refinement for similarity, the map covers only 20% of the assets used. To
overcome this problem with missing edges, we propose a learning method which
takes advantage of the implicit feedback created as each user interacts with the
system.

5.1 Learning Feature Dimension Weights

The similarity measure proposed provides a good starting point to allow users to
interact with the system. However, the system is simply using all of the informa-
tion provided, whether it is relevant or not. The term frequencies of each feature
dimension are based on the views of a relatively small number of participants
at the workshops, and may be biased towards their opinions as employees. To
overcome this problem we develop a new refinement method, which is able to
learn implicitly which parts of a feature-vector are most important.

As each user interacts with the system, each query-retrieval pair they follow is
stored. As each new user clicks on a retrieval, the feature-vectors of the retrieved
case are refined. In the case of a recommendation, where the query is an existing
case, the query case is also refined. This refinement is based on the information
which is common to both query and recommendation, and how often the pair
appears within the stored user interactions.

Let p denote the number of times a query-retrieval pair has previously been
successful, and t denote the number of times a query has been successful. The
strength s of refinement is calculated as

s = 1 + log
(p
t
+ 1

)
(2)

156 B. Horsburgh et al.

which is in the range 1 to 1.69. Refinement is then applied to information which
is common to both the query and retrieval as

Qfi =

{
s ·Qfi if Qfi > 0 and Rfi > 0

Qfi otherwise
(3)

and

Rfi =

{
s · Rfi if Qfi > 0 and Rfi > 0

Rfi otherwise
(4)

where f is the feature-vector being refined, and i is the ith dimension of feature
vector f . The conditions ‘Qfi > 0 andRfi > 0’, and ‘Rfi > 0 andQfi > 0’ assure
that only feature dimensions which are shared are refined. After the weights are
modified, the vectors are re-normalised. This refinement process is illustrated for
a single feature-vector in Figure 4.

Fig. 4. Implicit Learning of Feature Dimension Weights

Normalising each feature-vector after increasing the weights on shared knowl-
edge, means that the weights of unshared knowledge will be decreased. The
amount of information in the feature-vector remains constant, but is moved
from one dimension to another. The effect of increasing the weights of shared di-
mensions in a feature vector will mean that the query-retrieval pair will become
more similar to each other. However, this modification may also have further
effects throughout the entire search space, pushing both query and retrieval to
be more similar to some unknown items, and less similar to other items. This be-
haviour is desirable, since it is a consequence of refining an item’s representation
to more accurately reflect how it relates to the collection.

6 User Experiments

To evaluate the methods discussed, an archive website was developed and made
available to selected users online. The goal of this website was to measure and
evaluate several objectives. Firstly, we wish to evaluate the implicit learning
method that has been developed. However, we are also interested in the user
engagement with the archive system. In this section the website is described,
and the evaluation method for our user trial is presented.

User Perceptions of Relevance and Its Effect on Retrieval 157

6.1 User Engagement with the Archive Website

The system that was developed allowed users to navigate the archive in several
different ways, shown in Figure 5. A search box was provided in the top right
corner to allow free-text searching of the archive. As a user views an item in the
archive they are also provided with a set of recommended items, below the item
they are currently viewing. In Figure 5, a user is viewing the ‘Dye Pot’ item, and
this item is used as a query for the recommendation list. These recommendations
were generated using the similarity measure defined in Equation (1), and as
users followed recommendations the implicit learning defined in Equation (4)
was applied.

A recent trend in many catalog-based websites is to allow users to bookmark,
or ‘favourite’ items that they want to return to. To gain a fuller insight into how
users decide to interact with our archive system therefore, we also implement
this feature. As users browse the collection, they can add any item to a favourites
bar which is accessible from every page.

Fig. 5. Smart Textiles Archive System

6.2 Recommendation Quality

To evaluate the effect of our implicit learning method we measure how effective
the recommender system is. Ideally, we would hope that as the items become
more refined, the most relevant recommendations will appear closer to the top
of the ranked recommendation list. To measure this we therefore calculate the
average recommendation rank of a single query item as

158 B. Horsburgh et al.

average recommendation rank =

∑J
j=1 rank(j)

J
(5)

where j is an instance of the query item being used, J is the number of times the
query has ever been used, and rank(j) is the position that the recommendation
a user clicked on was presented. We report the mean average recommendation
rank across all queries, obtained at varying levels of refinement.

7 Results: Effects of Implicit Learning

The archive was made available online for 1 month, and invitations were sent
to both industry experts and students from the textiles field. Over this trial
period, 8 industry experts from 5 separate companies, and 11 students from 2
universities participated in the study. Each user was asked to complete several
investigative tasks, for example, finding out about a certain type of material
using the archive.

Figure 6 shows the effect that our implicit learning method has on recommen-
dation rank. The vertical axis shows the average position of the recommendation
that was clicked on by a user. The horizontal axis shows the number of times
that the query item has been modified by the implicit learning method.

Fig. 6. Recommendation Rank After Implicit Learning

The solid black line in Figure 6 shows the average recommendation rank
achieved after each refinement using our implicit learning method. After a single
refinement to the query, the average recommendation rank is 3.3, meaning that
on average, a user will click on either the 3rd or 4th recommendation in our
ordered list. As the system is used more, and more refinements are made, implicit
learning has the effect of lowering this average rank. After 10 refinements the
average recommendation position the user clicks on is 2.6.

User Perceptions of Relevance and Its Effect on Retrieval 159

The dashed line in Figure 6 shows the ranking that recommendations would
have if the refined representation is not used. This line is not flat as expected,
because all clicks were logged for recommendations made using our refined rep-
resentation. The difference between the solid and dashed line does however illus-
trate the power of our implicit learning method. After 10 refinements the average
rank of a good recommendation is reduced by 1 position in the ranked list. This
makes the browsing experience for the user easier, and helps them to find the
items they are interested in more quickly.

Reducing the average rank of a recommendation is not only because the query
has been refined; we apply our implicit learning method to both the query and
recommendation. This is an important contributing factor to the results observed
in Figure 6. When a user is viewing an item, and follows a recommendation, the
recommended item is refined. This item then becomes the query for the rec-
ommendations provided on the page which is loaded, and the more meaningful
refined representation can be used. This illustrates the power of refining a rep-
resentation, compared to simply re-ordering results based on previous cases.

8 Results: User Engagement with Archive

Further to evaluating our implicit learning method, we are also interested in
how users engage with the digital archive. In our workshops to establish the
initial case base, the stakeholders categorised each item as primary, secondary,
and supplementary. The stakeholders also constructed a map of items, based on
the relationships that they considered to be relevant to someone browsing the
archive. These workshops provide a wealth of information that can be compared
to how the industry expert and students engaged with the digital archive.

8.1 Physical and Digital Relationship Maps

Using the user behaviour logged by our digital archive, we are able to con-
struct the recommendation map illustrated in Figure 7. Each node in the map
represents an item, and each edge represents a followed recommendation. The
direction of the arrows represents the direction query to recommendation, where
the arrow points to the recommended item. The position of each node in the
map is determined using multi-dimensional scaling, where each item constitutes
a new dimension, and the distance between items is inversely proportional to
the number of times the query-recommendation pair occurred.

In the recommendation map three distinct clusters can be observed, each
annotated in Figure 7. Perhaps unsurprisingly these clusters emerge as some of
the major themes discussed throughout the workshop phase. The company is a
textiles manufacturer, and the importance of history and heritage was agreed
upon by all stakeholders. The design / process cluster occurs as a result of the
distinct nature of the production and design teams’ contributions.

The brightness of each node in the map indicates how frequently the item
was viewed, where lightest is most frequent. This helps to identify hubs within

160 B. Horsburgh et al.

the items, which are used frequently as both a query and a recommendation.
This shading also helps to identify the items that may be considered primary,
secondary, and supplementary, in a similar manner to the offline workshops.

Fig. 7. Map of Followed Recommendations

Figure 8 illustrates the map created by the stakeholders during the workshop.
The position of each node in the map is frozen to match the positions defined in
Figure 7, facilitating comparison of the offline and online item relationships. One
thing that stands out instantly between the two maps is that the stakeholder
map contains many fewer edges. The reason for this was primarily due to time
constraints, and the stakeholders focussed on the primary assets.

The length of edges in the stakeholder map are in general very long. This
indicates that the relationships of items as perceived by the stakeholder does
not match the relationship engaged with by the online users. The history /
heritage cluster is well understood by the stakeholder, illustrated by the shorter
edges, but there is confusion between the design and textiles clusters. Within the
company, the realisation that product and design process should be considered
as separate areas of interest was not made. From a business perspective these two
areas are very closely connected, but to online users they are not. Finally, it can
be observed that some nodes have no edges in the online map. This illustrates a
further misunderstanding from the stakeholder perspective of how an end user
would want to traverse the digital archive.

These observations of differences between the stakeholder workshop and online
usage further illustrate the importance of our representation refinement method.
At the point of putting the system online, each item begins with an unrefined
representation, that has been constructed by the item owners. While this repre-
sentation correctly describes an item, it does not necessarily reflect a description

User Perceptions of Relevance and Its Effect on Retrieval 161

Fig. 8. Map Created by Stakeholders

that is meaningful to end users. The creation of knowledge can be influenced
by company processes and perceptions, which we have shown may not match
those of an end user. Implicit learning is an essential part of refining the initial
representations to produce high quality recommendations that are meaningful
to the end users.

8.2 Modes of Engagement

In our description of the system developed we mentioned that there were 3
differing modes of engagement with the archive: querying, recommendations, and
a favouriting system. The reason for these three modes was to learn more about
how users of archive systems choose to engage with such systems. At an industry
event, we interviewed some attendees from the textiles community about how
they envisage archive systems. The large majority of responses were that users
would have a specific thing they are looking for, and would therefore primarily
engage with the query system. When discussing how effective they believed a
recommender system would be, some of the participants were strongly dismissive
of such systems, and believed they would never be appropriate for such archives.

As each of the industry expert and student users interacted with the archive,
their mode of interaction was logged. Figure 9 shows the level of each mode of
engagement, as a percentage of total engagement with the system. Contrary to
what the interviewed users initially predicted, the primary mode of engagement
with the archive is through the recommender system, accounting for 73% of
all engagement with the archive. In comparison, only 10% of engagement was
through the query system, and 17% through the favouriting system.

These results highlight the importance that a recommender system plays in
many online applications, where users may not know exactly what they are

162 B. Horsburgh et al.

Fig. 9. Modes of User Engagement

looking for. Feedback collected from users indicated that they were using the
archive as a form of inspiration: starting with an item they recognise found
through the query system, and then exploring the similar items suggested by the
recommender system. This places the recommender system as a key component
of the archive, and as such implicit learning is essential to take advantage of the
end user interests to improve the system.

9 Conclusions

We have conducted a study of how a physical archive can be transformed into a
digital archive. This study includes how stakeholders of the archive understand
their knowledge, and how this knowledge may be transformed into a meaningful
digital system. Through the workshop phase of the project, important insights
and knowledge about the physical collection was learned, which facilitated the
construction of the archive.

However, results show that knowledge learned at the workshop phase is biased
towards the stakeholder perception of the items and their relationships. We have
developed a new implicit learning method that can refine the knowledge learned
from the workshop phase, and adapt the representations of an item to reflect end
user interests. Our method strengthens the shared knowledge between queries
and recommendations, thus strengthening the knowledge that is important to
their relationship. Over time this process refines the entire collection so that the
representations are weighted appropriately, and a more meaningful similarity
measure can be calculated. The result of this refinement process is that relevant
items appear closer to the top of ranked recommendation lists, thus enabling the
end user to find interesting relevant items more quickly.

Investigations of user engagement with our archive highlights the importance
of a recommender system to exploratory and inspirational systems. Quite often
the user will have a vague idea of what they are looking for, but do not know how

User Perceptions of Relevance and Its Effect on Retrieval 163

to describe it as a well defined query. This conflicted with the engagement pat-
terns predicted by stakeholders, who knew their data well enough that perhaps a
query system may have worked well internally. However, our study further high-
lights the need for a retrieval system to learn what is important to the end-user
base, managed successfully by our implicit learning method.

Acknowledgements. The authors wish to acknowledge AHRC for its support
through its Digital Transformations Research Development award for this project
(AH/J013218/1) and the industrial collaborator Johnstons of Elgin for their
contribution of data and stakeholder workshops.

References

1. Evans, C.K.: Developing the perfect fashion archive. In: 1st Global Conference:
Fashion Exploring Critical Issues (2009)

2. Paterson, C.: Selling fashion: realizing the research potential of the house of fraser
archive, university of glasgow archive services. Textile History 40(2), 170–184
(2009)

3. Brown, C.: Digitisation projects at the university of dundee archive services. Pro-
gram: Electronic Library and Information Systems 40(2), 168–177 (2006)

4. Nisanbayev, Y., Ko, I., Abdullaev, S., Na, H., Lim, D.: E-commerce applications
of the hybrid reasoning method. In: International Conference on New Trends in
Information and Service Science, NISS 2009, pp. 797–801. IEEE (2009)

5. Vollrath, I., Wilke, W., Bergmann, R.: Case-based reasoning support for online
catalog sales. IEEE Internet Computing 2(4), 47–54 (1998)

6. Bridge, D., Göker, M., McGinty, L., Smyth, B.: Case-based recommender systems.
The Knowledge Engineering Review 20(03), 315–320 (2005)

7. Lorenzi, F., Ricci, F.: Case-based recommender systems: A unifying view. In:
Mobasher, B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, pp. 89–113.
Springer, Heidelberg (2005)

8. Milne, P., Wiratunga, N., Lothian, R., Song, D.: Reuse of search experience for
resource transformation. In: Workshop Proceedings of the 8th International Con-
ference on Case-Based Reasoning, pp. 45–54 (2009)

9. Ontañón, S., Plaza, E.: On similarity measures based on a refinement lattice. In:
McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 240–255.
Springer, Heidelberg (2009)

10. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, vol.
2, pp. 1150–1157. IEEE (1999)

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 164–178, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Case-Based Goal-Driven Coordination
of Multiple Learning Agents

Ulit Jaidee1, Héctor Muñoz-Avila1, and David W. Aha2

1 Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA 18015
2 Navy Center for Applied Research in AI, Naval Research Laboratory (Code 5514),

Washington, DC 20375
{ulj208,munoz}@lehigh.edu, david.aha@nrl.navy.mil

Abstract. Although several recent studies have been published on goal
reasoning (i.e., the study of agents that can self-select their goals), none have
focused on the task of learning and acting on large state and action spaces. We
introduce GDA-C, a case-based goal reasoning algorithm that divides the state
and action space among cooperating learning agents. Cooperation between
agents emerges because (1) they share a common reward function and (2)
GDA-C formulates the goal that each agent needs to achieve. We claim that its
case-based approach for goal formulation is critical to the agents’ performance.
To test this claim we conducted an empirical study using the Wargus RTS
environment, where we found that GDA-C outperforms its non-GDA ablation.

Keywords: Goal-driven autonomy, case-based reasoning, multi-agent systems.

1 Introduction

Goal reasoning is the study of introspective agents that can reason about what goals
they should dynamically pursue (Klenk et al., in press). Goal-driven autonomy
(GDA) (Muñoz-Avila et al., 2010; Molineaux et al., 2010) is a model of goal
reasoning in which an agent revises its goals by reasoning about discrepancies it
encounters during plan execution monitoring (i.e., when its expectations are not met)
and their explanation.

GDA agents have not been designed to learn and act with large state and action
spaces. This can be a problem when applying them to real-time strategy (RTS) games,
which are characterized by large state and action spaces. In these games, agents
control multiple kinds of units and structures, each with the ability to perform certain
actions in certain states, while competing versus an opponent who is controlling his
own units and structures. To date, GDA agents that learn to play RTS games can be
applied to only limited scenarios (e.g., Jaidee et al., 2011) or control only a small set
of decision-making tasks within a larger hard-coded system that plays the full game
(e.g., (Weber et al., 2012)).

To address this limitation, we introduce GDA-C, a partial GDA agent (i.e., it
implements only two of GDA’s four steps) that divides the state and action space
among multiple reinforcement learning (RL) agents, each of which acts and learns in

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 165

the environment. Each RL agent performs decision making for all the units with a
common set of actions. For example, in an RTS game, it will assign one RL agent to
control all footmen, which is a melee combat unit, and another RL agent to control the
barracks, which is a building that produces units (e.g., footmen).

That is, each RL agent αk is responsible for learning and reasoning on a space of
size |Sk| |ࣛ௞ |, where Sk is agent αk’s set of states and ࣛ௞ is its set of actions. Thus,
GDA-C’s overall memory requirement, assuming n RL agents, is |S1||ࣛଵ| +…+
|Sn||ࣛ௡ |. This is a substantial reduction in memory requirements compared to a system
that must reason with a space of size |S||ࣛ|, where ܵ ൌ ڂ ௜ܵଵஸ௜ழ௡ and ࣛ ൌ ڂ ࣛ௜ଵஸ௜ழ௡
(i.e., all combinations of states and actions).

Cooperation among GDA-C’s agents emerges as a result of combining two factors:
(1) all its agents share a common reward function and (2) it uses case-based reasoning
(CBR) techniques to acquire/retain and reuse/apply its goal formulation knowledge.

We claim that agents which share the same reward function, augmented with
coordination provided by GDA-C, outperform agents that coordinate by sharing only
the reward function. To test this claim we conducted an empirical evaluation using the
Wargus RTS environment in which we compared the performance of GDA-C versus
CLASSQL (Jaidee et al., 2012), an ablation of GDA-C where the RL agents coordinate
by sharing only the same reward function. We first compared GDA-C and CLASSQL
indirectly by testing both against the built-in AI in Wargus, a proficient AI that comes
with the game and is designed to be competitive versus a mid-range player. We also
compared their performance in direct competitions. Our main findings are:

• Versus the Wargus built-in AI, GDA-C outperformed CLASSQL
• GDA-C also outperformed CLASSQL in most direct comparisons

Our paper continues as follows. In Section 2 we describe related work, and then
present a formalization of the problem we are studying in Section 3. Section 4
discusses the RL agents and Section 5 presents the GDA-C algorithm. Section 6
discusses the states and actions defined in Wargus, while Section 7 presents the
empirical evaluation. Finally, Section 8 concludes with future work suggestions.

2 Related Work

Weber et al. (2012) report on EISBot, a system that can play a complete RTS game.
EISBot plays complete games by using six managers (e.g., for building an economy,
combat), only one of which uses GDA (i.e., it selects which units to produce). The
GDA system GRL (Jaidee et al., 2012) plays RTS game scenarios were each side
starts with a fixed number of units. No buildings are allowed and hence no new units
can be produced, which drastically reduces the GRL’s state and action space. In
contrast to these and other GDA systems that play RTS games (e.g., Weber et al.,
2010), GDA-C controls most aspects of an RTS game by assigning units and
buildings of the same type to a specialized agent.

Many GDA systems manage expectations that are predicted outcomes from the
agent’s actions. Most work on GDA assumes deterministic expectations (i.e., the
same outcome occurs when actions are taken in the same state). These expectations
are computed in a number of ways. Cox (2007) generates instances of expectations by

166 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

using a given model of abstract explanation patterns. Molineaux et al. (2011) use
planning operators to define expectations. Borrowing ideas from Weber et al. (2012),
GDA-C uses vectors of numerical features to represent the states and expects that
actions will increase their values (e.g., sample features include total gold generated or
number of units, both of which a player would like to increase). When this does not
happen (i.e., when this constraint is violated), a discrepancy occurs.

When most GDA algorithms detect a discrepancy between an observed and an
expected state, they formulate new goals in response. Some systems use rule-based
reasoning to select a new goal (Cox, 2007), while others rank goals in a priority list
and use truth–maintenance techniques to connect discrepancies with new goals to
pursue (Molineaux et al., 2010). Interactive techniques have also been used to elicit
new goals from a user (Powell et al., 2011). GDA-C instead learns to rank goals by
using RL techniques based on the performance of the individual agents.

GDA-C has some characteristics in common with GRL (Jaidee et al., 2012), which
also uses RL for goal formulation. However, GRL is a single agent system and, unlike
GDA-C, cannot scale to play complete RTS games.1

3 Multi-agent Setting

The task we focus on is to control a set Γ of agents α1,…,αn, where each belongs to
one class ck in ܥ ൌ ሼܿଵ, ܿଶ, … , ܿ௡ሽ. Each class ck has its own set of class-specific states
Sk. The collection of all states is denoted by S (i.e., ܵ ൌ ڂ ܵ௞ଵஸ௞௡). Each agent αk can
execute actions in ࣛ௞for every class specific state.

A stochastic policy is a mapping ߨ௞: ܵ௞ ՜ ሼሺܽ, ܽ|ሻ݌ א ࣛ௞, ݌ א ሾ0,1ሿሽ. That is, for
every state ݏ א ܵ௞, ߨ௞ሺݏሻ defines a distribution ሼሺܽଵ, ,ଵሻ݌ … , ሺܽ௡, ௡ሻሽ, where ܽ௜ is an݌
action in ࣛ௞ and ݌௜ is the expected return from taking action ܽ௜ in state s and
following policy ߨ௞ thereafter. The return is a function of the rewards obtained. For
example, the return can be defined as the summation of the future rewards. Our goal
is to find an optimal policy ߨ௞כ : ܵ௞ ՜ ሼሺܽ, ܽ|ሻ݌ א ࣛ௞, ݌ א ሾ0,1ሿሽ such that ߨ௞כ
maximizes the expected return.

It is easy to prove that, given a collection of n independent policies π1,…,πn where
each πk maximizes the returns for class k, then π = (π1,…,πn) is an optimal policy. As
we will see in Section 4, GDA-C uses this fact by running n RL agents, one for each
class ck. If each converges to an optimal policy, their n-tuple policies will be an
optimal policy for the overall problem. This results in a substantial reduction of the
memory requirement compared to a conventional RL agent that is attempting to learn
a combined optimal policy π* = (π1,…,πn) where each πi must reason on all states and
actions. This conventional RL agent will require |S| × |ࣛ| space, where ܵ ൌ ڂ ௜ܵଵஸ௜ழ௡
and ࣛ ൌ ڂ ࣛ௜ଵஸ௜ழ௡ (i.e., counting all combinations of state n-tuples times all
combinations of n-tuple actions).

1 This means that the player starts with limited resources, units, and structures but can (1)

harvest additional resources, (2) build any structure, (3) train any unit, (4) research any
technology, and (5) control the units to defeat an opponent.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 167

In contrast the n agents α1,…,αn each attempt to learn an optimal policy π*k, which
requires |S1×ࣛଵ| + … + |Sn-1×ࣛ௡ | space (i.e., adding the memory requirements of
each individual agent αk). The following inequality holds:

|S × ࣛ| ≥ |S1×ࣛଵ| + … + |Sn-1×ࣛ௡|,

assuming that ∀i,j (i≠j) (ࣛ௜ ௝ࣛ = {} ∧ ௜ܵ ௝ܵ = {}). This is common in RTS games
where the actions that a unit of a certain type can take are disjoint from the actions of
units of a different type. Under these assumptions, and for n ≥ 2, the expression on the
right is substantially lower than the expression on the left. For example, assuming ∀k

|Sk|=t and |ࣛ௞ |=m, then the LHS is equal to (n×t×n×m) whereas the RHS is equal to

(n×t×m). That is, the space saved is (1 െ ଵ௡)×100%. The following table summarizes

some of the savings for these assumptions:

Table 1. Space saved by GDA-C compared to a conventional RL agent

n % of saved space n % of saved space n % of saved space
1 0 4 75 10 90
2 50 5 80 20 95

In our work, we use Q-learning (Sutton and Barto, 1998) to control each of the αk

agents. Thus, our baseline system consists of n Q-learning agents that are guaranteed,
after a number of iterations, to converge to an optimal policy. We refer to this
baseline system as CLASSQL because each Q-learning (QL) agent controls a class of
units in Wargus.

4 Case Bases and Information Flow in the GDA-C Agent

We now discuss how case-based reasoning techniques are used in GDA-C to manage
goals on top of CLASSQL. Figure 1 depicts a high-level view of the information flow
in GDA-C, which embeds the standard RL model (Sutton and Barto, 1998). GDA-C
has two threads that execute in parallel. First, the GDA thread selects a goal, which in
turn determines the policy that each RL agent will use and refine. Second, the
CLASSQL thread performs Q-learning to control each of the αk agents.

The two case bases, Policies and GFCB, are learned from previous instances (e.g.,
previously played Wargus games). Given a policy ࣊, a trajectory is a sequence of
states ൏ ࢙૙, … , ࢓࢙ ൐ visited when following ࣊ from the starting state ࢙૙. Any such
state in this trajectory is a goal that can be achieved by executing ࣊. The policy is
assigned the last state in a trajectory as its goal. The case base Policies is a collection
of pairs ሺg, ࣊gሻ, where ࣊g is a policy that should be used when pursuing goal g. GDA-
C stores such pairs as it encounters them.

168 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

The other case base assists
with goal formulation. When a
discrepancy d occurs between
the expected state X and the
actual state observed by the
Discrepancy Detector, this
discrepancy is passed to the
Goal Formulator, which uses
GFCB to formulate a new
goal. GFCB maintains, for
each (current) goal discrepancy
pair, (g,d), a collection
{(g1,v1),..,(gm,vm)}, where gi is
a goal to pursue next and vi is
the expected return of pursuing
it. It outputs the next goal g to
achieve.

The Goal-Specific Policy
Selector selects a policy π
based on the current goal g.
The Class-Specific Policy
Learner learns policies for
new goals and refines the
policies of existing goals. It
uses Q-learning to update the
Q-table entry Q(s,a), given
current state s and action
taken a, as well as next state
s' and next reward r (Sutton
and Barto, 1998).

In many environments, there is no optimal policy for all situations. For example, in
an adversarial game, a policy might be effective against one opponent’s strategy but
not versus others. By changing the goal when the system is underperforming, GDA-C
changes the policy that is being executed, thereby making it more likely to adjust to
different strategies.

We now provide formal definitions for the GDA process. Here we assume a state is
represented as a vector ݏ ൌ ሺݒଵ, … , ௡ሻ of numeric features, where vi is a value of aݒ
feature fi. Borrowing ideas from Weber et al. (2012), the agent uses optimistic
expectations. An expectation is optimistic iff ݒԢ௜ ث ௜ݒ , where expectation ݁ ൌሺݒଵᇱ , … , ௡ᇱݒ ሻ and previous state ݏ ൌ ሺݒଵ, … , ௡ሻ. We use optimistic expectationݒ
implicitly in our algorithm. That is, if the previous state is ݏ ൌ ሺݒଵ, … , ௡ሻ and, afterݒ
executing an action, we reach a current state ݏԢ ൌ ሺݒଵᇱ , … , ௡ᇱݒ ሻ such that, for some k,
v′k < vk holds, then a discrepancy occurs. We represent a discrepancy as a vector of
Boolean values d = (b1,…,bn), where bk is true iff v′k < vk holds. Basically, the agent
expects that actions will not decrease the features’ values. As we will see in Section 6,
our state model consists of numeric features (e.g., the numbers of our own units)
whose values the agent expects will remain the same or increase, but not decrease.

Fig. 1. Information flow in GDA-C

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 169

5 The GDA-C Algorithm

GDA-C coordinates the execution of a set of RL agents and how they learn. GDA-C
uses an online learning process to update the Policies and GFCB case bases. Each
GDA-C agent has its own individual Q-table. All q-values in Q-tables are initialized
to zero. In each iteration of the algorithm, only some units (i.e., class instances such
as peasants and archers) will be ready to execute a new action because others may be
busy. Every unit records the state when it starts executing its current action. This is
necessary for updating values in Q-tables. Below we present the pseudo-code of
GDA-C, followed by its description.

GDA-C (Δ, Π, GFCB, ࣝ, ࣛ, ε, g0) =

Ԣ ← GETSTATE(); ݀Ԣݏ :1 ՚ CALCULATEDISCREPANCY(ݏԢ, ߨ ;(Ԣݏ ՚ Πሺg଴ሻ; g ՚ g଴
2: //-------- GDA thread --------
3: while episode continues
 ()GETSTATE ← ݏ :4
5: WAIT(Δ)
– ሻݏ ܷሺ ݎ :6 ܷሺݏԢሻ // ݏԢ is the prior state
7: if ݎ ൏ 0 then
8: ݀ ՚ CALCULATEDISCREPANCY(ݏԢ, ݏ)
9: GFCB ← Q-LEARNINGUPDATE(GFCB, ݀Ԣ, g, ݀, ݎ)

10: g ← GET(GFCB, d, ε) // ε-greedy selection
ߨ :11 ՚ Πሺgሻ
ᇱݏ :12 ՚ ;ݏ ݀Ԣ ← ݀
13: //-------- CLASSQL thread --------
14: while episode continues
15: s ← GETSTATE()
16: parallel for each class ܿ א ࣝ // this loop controls agent αc
௖ݏ :17 ← GETCLASSSTATE(c, s)
18: ࣛ௖← GETCLASSACTIONS(ࣛ,c); A ← GETVALIDACTIONS(ࣛ௖, ݏ௖)
19: ௖ ← π(c)
20: for each instance u ∈ c // this loop controls each unit or instance of class c
21: if ݑ is a new instance then
௨ᇱݏ :22 ௖; ܽ௨ᇱݏ ← ← do-nothing
23: if instance u finished its action then
௨ᇱݏ)U – (௖ݏ)௨ ← Uݎ :24) // U(s) is the utility of state s
25: ௖ ← Q-LEARNINGUPDATE(௖, ݏ௨ᇱ , ܽ௨ᇱ ௖ݏ , (௨ݎ ,
26: ܽ ← GETACTION(௖, ε, ݏ௖ , A)
27: EXECUTEACTION(a)
௨ᇱݏ :28 ՚ ௖; ܽ௨ᇱݏ ՚ ܽ
29: return Π, GFCB

GDA-C has two threads that execute in parallel and begin simultaneously when a

game episode starts. The GDA thread (lines 3-12) selects a goal, which in turn

170 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

determines the policy π = (π1,…,πn) that each RL agent will use and refine. The
CLASSQL thread (Lines 14-28) performs Q-learning control on each of the αk agents.
When the GDA thread is deactivated (which is how our baseline system CLASSQL
works), the CLASSQL thread refines the same policy from the beginning of the
episode to the end. When the GDA thread is activated, the policy that CLASSQL
refines is the most recent one selected by the GDA thread.

GDA-C receives as input a constant number Δ (a delay before selecting the next
goal), a policy case base Π, a goal formulation case base (GFCB), a set of classes ࣝ, a
set of actions ࣛ, a constant value ε (for ε–greedy selection in Q-learning, whereby the
action with the highest value is chosen with a probability 1−ε and a random action is
chosen with a probability ε), and the initial goal g0.

The GDA Thread: The variable ݏԢ is initialized by observing the current state, ݀Ԣ is
initialized with a null discrepancy (e.g., CalculateDiscrepancy(ݏԢ, Ԣ)), and a policy πݏ
is retrieved from Π for the initial goal g଴ (all in Line 1). While the episode continues
(Line 3), the current state s is observed (Line 4). After waiting for Δ time (Line 5), the
reward r is obtained by comparing the utilities of current state s and previous state ݏԢ
(Line 6). Our utility function calculates, for a given state, the total “hit-points” of the
controlled team’s units and subtracts those of the opponent team. When a unit is “hit”
by other units, its hit-points will be decreased. A unit “dies” when its hit-points
decrease to zero. If the reward is negative (Line 7), a new goal (and hence a new
policy) will be selected as follows. First, the discrepancy d between ݏԢ and s is
computed (Line 8). GFCB is then updated via Q-learning, taking into account
previous discrepancy ݀Ԣ, current goal g, discrepancy d, and reward r (Line 9). Then ε-
greedy selection is used to select a new goal g from GFCB with discrepancy d (Line
10). Next, a new policy π is retrieved from Π for goal g (Line 11). Policy π will be
updated in the CLASSQL thread. Finally, previous state ݏԢ and discrepancy ݀Ԣ are
updated (Line 12).

The CLASSQL Thread: While the episode continues (Line 14), the current state s is
updated (Line 15). For each class c in the set of classes ࣝ (Line 16), the class-specific
state sc is acquired from s (Line 17). Agents from different classes have different sets
of actions that they can perform. Therefore, a set of valid actions A must be obtained
for each class sc (Line 18). πc is initialized with the policy for class c, which depends
on the overall policy π updated in the GDA thread (Line 19). For each instance (or
unit) u of class c (Line 20), if u is a new instance, initialize its state and action (Line
21-22). If u finished its action then calculate the reward ru and update the policy πc via
Q-learning (Line 23-25). A new action is selected based on policy πc using ε-greedy
action selection (Line 26). Finally, the action is executed and the previous state ݏ௨ᇱ and
previous action ܽ௨ᇱ are updated (Lines 27-28).

When the episode ends, GDA-C will return the policy case base Π and the goal
formulation case base GFCB (Line 29).

Although at any point each agent αk is following and updating a policy πk, this does
not mean that all units controlled by αk will execute the same action. This is due to a
combination of three factors. First, even when two units u and u' start executing the
same action at the same time, there is no guarantee that they will finish at the same
time. For example, if the action is to move u and u' to a specific location L, one of
them might be hindered (e.g., engaged in combat with an enemy unit). Hence, u and u'
might reach L at different times and therefore the subsequent actions they execute

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 171

might differ because the state may have changed between the times that they arrive at
L. Second, actions are stochastic (chosen with the ε-greedy method). Third, the
policies are changing over time as a result of Q-learning or even altogether as a result
of the GDA thread. Therefore, at different times, even if in the same state, units might
perform different actions.

6 States and Actions in Wargus

In this paper, we use Wargus in our experiments. Wargus is a widely used testbed for
adversarial environments (e.g., (Aha et al., 2005; Judah et al., 2010; Mehta et al.,
2009; Ontañón and Ram, 2011)). In Wargus decision making must be conducted in
real time. Wargus follows a rock-paper-scissors model for unit-versus-unit combat.
For example, archers are strong versus footmen but weak versus knights. For these
reasons, Mehta et al. (2009) argue that Wargus is a good research testbed for studying
agent-based control methods. Each type of unit defines a unique class c so that every
unit in that class can execute a set of actions ࣛ௖. For example, an Archer can shoot an
enemy from a distance while Gryphon Rider can fly across any barriers. Analogously,
we also model each type of building (e.g., a Blacksmith, which can improve a unit’s
defense and damage, and a Barracks, which produces units such as Archers and
Footmen for a specified amount of resources) as a class. In total, we modeled the
following 12 classes:

1. Town Hall
2. Blacksmith
3. Lumber Mill
4. Church
5. Barrack
6. Knight
7. Footman
8. Archer
9. Ballista
10. Gryphon Rider
11. Gryphon Aviary
12. Peasant Builder

Each unit type has a different state representation. To reduce the number of states, we
discretized features (italicized below) with many values (e.g., we used 18 bins for
gold, where bin 1 means 0 gold and bin 18 corresponds to more than 4000). We also
measure the distances from an enemy’s units to the controlled player’s camp using
Manhattan distance. The features of the state representations per class are:

• Town Hall: food, peasants
• Blacksmith, Lumber Mill and Church: gold, wood
• Barrack: gold, food, footmen, archer, ballista, knight
• Knight, Footman, Archer, Ballista and Gryphon Rider: our footmen, enemy

footmen, number of enemy town halls, enemy peasants, enemy attackable units

172 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

that are stronger than our footmen, enemy attackable units that are weaker
than our footmen

• Gryphon Aviary: gold, food, gryphon rider
• Peasant Builder: gold, wood, food, number of barracks, lumber mill built?,2

blacksmith built?, church built?, gryphon built?, path to a gold mine?, town
hall built?

CLASSQL (and, hence, GDA-C) reasons with composite actions such as “knight
attack enemy camp”, which are composed of several primitive actions such as
selecting a building in the enemy camp, navigating to that building, and attacking it.
Below is the list of all possible actions per class (by default every class can perform
the action do-nothing):

• Town Hall: train peasant, upgrade to keep/castle
• Blacksmith: upgrade sword level 1, same but 2, upgrade human shield level 1,

same but 2, upgrade ballista level 1, same but 2
• Lumber Mill: upgrade arrow level 1, same but 2, elven ranger training, ranger

scouting, research longbow, ranger marksmanship
• Church: upgrade knights, research healing, research exorcism
• Barrack: train a footman, train an elven archer/ranger,

train a knight/paladin, train a ballista
• Knight, Footman, Archer, Ballista, Gryphon Rider: wait for attack, attack the

enemy’s town hall/great hall, attack all enemy’s peasants, attack all enemy’s
units that are near to our camp, attack all enemy’s units that have their range of
attacking equal to one, same but more than one, attack all enemy’s land units,
attack all enemy’s air units, attack all enemy’s units that are weaker (the
enemy’s units that have hit-points less than those of us), and attack all enemy’s
units (no matter what kind)

• Gryphon Aviary: train a gryphon rider
• Peasant Builder: build farm, build barracks, build town hall, build lumber mill,

build black smith, build a stable, build a church, and build a gryphon aviary.

Our reward function is:

total-hit-points(controlled team) − total-hit-points(enemy team)

Each unit and building is assigned a number of hit points based on their type (e.g.,
Paladins have more than Peasants). Games are typically played until either the
controlled team or the enemy is reduced to 0 points, at which time it loses the game.

7 Empirical Study

We measured the performance of GDA-C versus its ablation CLASSQL in experiments
on small, medium, and large Wargus maps whose sizes are 32×32, 64×64, and 128×128
cells, respectively. In each map, we have two opponent teams (human and orc). Each
starts with only one Peasant/Peon (i.e., a unit used to harvest resources and construct
new buildings), one Town Hall/Great Hall, and a nearby gold mine. Each competitor

2 The question mark signals that this is a binary feature.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 173

also starts on one side of a forest that divides the map into two parts. We added this
forest and walls to provide opponents with sufficient time to build their armies.
Otherwise, our algorithms will learn an efficient early attack (called a “rush”), which
will end the game when the opponents have produced only a few units or buildings.

7.1 Experimental Setup

We conducted two experiments. In the first, we compared the performance of each
algorithm (i.e., GDA-C or CLASSQL) against Wargus’s built-in AI. The built-in AI in
Wargus is quite good; it provides a challenging game to an average human player. In
the second, we instead compared their performance in a direct competition. We use
five adversaries (defined below) and the Wargus’ built-in AI to train and test each
algorithm. These adversaries can construct any type of unit unless otherwise stated:

• Land Attack: This tries to balance offensive/defensive actions with research. It
builds only land units.

• Soldier’s Rush: This attempts to overwhelm the opponent with cheap military
units early in the game.

• Knight’s Rush: This attempts to quickly research advanced technologies, and
launch large attacks with the strongest units in the game (knights for humans and
ogres for orcs).

• Student Scripts: We included the top two competitors that were created by
students for a classroom tournament.

To ensure there is no bias because of the landscape, we swapped the sides of each
team in each round. Also, to prevent race inequities, in each round each team plays
once with each race (i.e., human or orc).

In Experiment 1, we trained GDA-C and CLASSQL by playing one game versus
each of the five adversaries. We then tested GDA-C and CLASSQL by playing one
game against the Wargus’s built-in AI. The performance metric is:

(wins(GDA-C) − wins(built-in AI)) − (wins(CLASSQL) − wins(built-in AI)),

where wins(A) is the number of wins for team A. For Experiment 2, we trained GDA-
C and CLASSQL with all five adversaries and then tested them in combat against each
other. We report results for the average of ten runs, where the performance metric is:

wins(GDA-C) – wins(CLASSQL)

In Experiment 1, the matches pitting the two algorithms versus the built-in AI took
place after training GDA-C and CLASSQL against each of the other five adversaries
for n games, where we varied n = 0,1,2,…,N. Similarly, in Experiment 2 the matches
pitting GDA-C versus CLASSQL took place after training them against each of the

Table 2. The average time of running a game for both experiments

Map size One game Experiment 1 Experiment 2
small 31 sec 25 hours 38 hours
medium 3 min 27 sec 115 hours 172 hours
large 11 min 28 sec 191 hours 286 hours

174 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

Fig. 2. The results of Experiment 1: The relative performance of GDA-C versus CLASSQL
playing against the built-in Wargus AI on the three maps

-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

GDA-C & ClassQL vs the built-in AI (small map)

Score Difference

Cumulative Score

Trendline

-20

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

GDA-C & ClassQL vs the built-in AI
(medium map)

Score Difference

Cumulative Score

Trendline

-10

0

10

20

30

40

50

0 10 20 30 40 50

GDA-C & ClassQL vs the built-in AI (large map)

Score Difference

Cumulative Score

Trendline

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 175

Fig. 3. The results of Experiment 2: GDA-C versus CLASSQL on the small, medium, and large
maps

-30

-20

-10

0

10

20

30

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

GDA-C vs ClassQL (small map)

Score Difference

Cumulative Score

Trendline

-20

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

GDA-C vs ClassQL (medium map)

Score Difference

Cumulative Score

Trendline

-60

-50

-40

-30

-20

-10

0

10

0 10 20 30 40 50 60 70 80

GDA-C vs ClassQL (large map)

Score Difference

Cumulative Score

Trendline

176 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

adversaries for n games, where again n = 0,1,2,…,N. The total number N of games
varied as indicated in the results. Table 2 shows the running times for the
experiments.

7.2 Results

Figures 2 and 3 display the results for Experiments 1 and 2, respectively. For both
experiments each data point is the average of 10 tests, and the graphs display the
results for the small, medium, and large maps. There are two curves: the score
difference for each data point and the cumulative score difference up to that data
point. The x-axis refers to the training iteration number.

Results for Experiment 1: For all three maps, both GDA-C and CLASSQL
outperform the built-in AI (not shown in the graphs) but GDA-C does so at a higher
rate than CLASSQL, as shown in Figure 2. These results illustrate the effectiveness of
changing policies as GDA-C does when underperforming compared to sticking to the
current policies and refining them by using reinforcement learning.

Results for Experiment 2: For the small map CLASSQL initially outperforms GDA-
C but its performance improves and it eventually outperforms CLASSQL. From x =
110 (i.e., after 110 training iterations), it begins to outperform CLASSQL and
surpasses it by x =117. For the medium map, the algorithms start evenly but then
GDA-C quickly outperforms CLASSQL. For the large map CLASSQL outperforms
GDA-C. We ran further iterations (not shown) and this trend continues. We believe
that for the large map, CLASSQL is learning a very good strategy, perhaps even
optimal for the map, and GDA-C will continue to retrieve policies that cannot
outperform the one executed by CLASSQL. This suggests that, at some point, GDA-C
should deactivate its GDA thread and continue only with the CLASSQL thread. How
we would identify such a point is a topic left for future research.

There is a lot of fluctuation in individual data points. For example, despite the
cumulative trends in the medium map for Experiment 2, which show that GDA-C
outperforms CLASSQL, the reverse occasionally occurs (e.g., at x = 70). The reason
for this fluctuation is that Wargus is a stochastic environment that introduces a lot of
randomness in the outcomes of individual actions and, hence, in the overall outcome
of individual games.

8 Conclusions and Future Work

We introduced GDA-C, an algorithm that divides the state and action spaces among
multiple, cooperating RL agents, where each agent uses Q-learning to learn a different
policy for controlling units of a single class. Because these agents share a common
reward function, they can coordinate. GDA-C augments this coordination by using a
partial goal-driven autonomy (GDA) agent to retrieve previously stored policies for
the RL agents to apply and further revise. Our experiments demonstrate that GDA-C
outperforms its ablation, CLASSQL, in most situations.

 Case-Based Goal-Driven Coordination of Multiple Learning Agents 177

For future work we want to explore two directions. First, we plan to make the state
representation more general so it does not depend on the expectation that the feature’s
values must increase. To do this, we will borrow ideas from our previous GDA
research (e.g., (Jaidee et al., 2011; 2012)), in which we used more general state
representations. Second, we will examine alternative GDA agents. GDA-C does not
include two steps that are common to the GDA model, namely discrepancy
explanation and goal management. We will assess the utility of generating
explanations of discrepancies for GDA-C. That is, recent research on GDA
(Molineaux et al., 2012) has demonstrated the value of using discrepancy
explanations to determine which goals to select, and this may also be true for our
studies. Alternative methods for goal management also exist. GDA-C simply replaces
one goal with another, without considering, for example, whether the initial goal
should simply be delayed. We will study more comprehensive strategies for goal
management in our future research.

Acknowledgements. This work was supported in part by NSF grant 1217888.

References

Aha, D.W., Molineaux, M., Ponsen, M.: Learning to win: Case-based plan selection in a real-
time strategy game. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI),
vol. 3620, pp. 5–20. Springer, Heidelberg (2005)

Cox, M.T.: Perpetual self-aware cognitive agents. AI Magazine 28(1), 23–45 (2007)
Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Integrated learning for goal-driven autonomy. In:

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.
AAAI Press, Barcelona (2011)

Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Learning and reusing goal-specific policies for goal-
driven autonomy. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466,
pp. 182–195. Springer, Heidelberg (2012)

Judah, K., Roy, S., Fern, A., Dietterich, T.G.: Reinforcement learning via practice and critique
advice. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.
AAAI Press, Atlanta (2010)

Klenk, M., Molineaux, M., Aha, D.W.: Goal-driven autonomy for responding to unexpected
events in strategy simulations. To Appear in Computational Intelligence (in press)

Mehta, M., Ontañón, S., Ram, A.: Using meta-reasoning to improve the performance of case-
based planning. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650,
pp. 210–224. Springer, Heidelberg (2009)

Molineaux, M., Klenk, M., Aha, D.W.: Goal-driven autonomy in a Navy strategy simulation.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI
Press, Atlanta (2010)

Molineaux, M., Kuter, U., Klenk, M.: What just happened? Explaining the past in planning and
execution. In: Roth-Berghofer, T., Tintarev, N., Leake, D.B. (eds.) Explanation-Aware
Computing: Papers from the IJCAI Workshop, Barcelona, Spain (2011)

Molineaux, M., Kuter, U., Klenk, M.: DiscoverHistory: Understanding the past in planning and
execution. In: Proceedings of the Eleventh International Conference on Autonomous Agents
and Multiagent Systems (pp, pp. 989–996. ACM Press, Valencia (2012)

178 U. Jaidee, H. Muñoz-Avila, and D.W. Aha

Muñoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., Molineaux, M.: Applying goal directed
autonomy to a team shooter game. In: Proceedings of the Twenty-Third Florida Artificial
Intelligence Research Society Conference, pp. 465–470. AAAI Press, Daytona Beach (2010)

Ontañón, S., Ram, A.: Case-based reasoning and user-generated AI for real-time strategy
games. In: González-Calero, P.A., Gómez-Martín, M.A. (eds.) Artificial Intelligence for
Computer Games, Springer, Berlin (2011)

Powell, J., Molineaux, M., Aha, D.W.: Active and interactive discovery of goal selection
knowledge. In: Proceedings of the Twenty-Fourth Conference of the Florida AI Research
Society, AAAI Press, West Palm Beach (2011)

Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge
(1998)

Weber, B., Mateas, M., Jhala, A.: Applying goal-driven autonomy to StarCraft. In: Proceedings
of the Sixth Conference on Artificial Intelligence and Interactive Digital Entertainment.
AAAI Press, Stanford (2010)

Weber, B., Mateas, M., Jhala, A.: Learning from demonstration for goal-driven autonomy. In:
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. AAAI Press,
Toronto (2012)

On Deriving Adaptation Rule Confidence
from the Rule Generation Process

Vahid Jalali and David Leake

School of Informatics and Computing, Indiana University
Bloomington IN 47408, USA

{vjalalib,leake}@cs.indiana.edu

Abstract. Previous case-based reasoning research makes a compelling case for
the importance of CBR systems determining the system’s confidence in its con-
clusions, and has developed useful analyses of how characteristics of individual
cases and the case base as a whole influence confidence. This paper argues that
in systems which perform case adaptation, an important additional indicator for
solution confidence is confidence in the adaptations performed. Assessing con-
fidence of adaptation rules may be particularly important when knowledge-light
methods are applied to generate adaptations automatically from the case base,
giving the opportunity to improve performance by astute rule selection. The pa-
per proposes a new method for calculating rule confidence for automatically-
generated adaptation rules for regression tasks, when the rules are generated by
the common “difference heuristic” method of comparing pairs of cases in a case
base, and a method for confidence-influenced selection of cases to adapt. The
method is evaluated in four domains, showing performance gains over baseline
methods and case based regression without using confidence knowledge.

1 Introduction

Previous research on CBR confidence, has focused largely on how case and case-base
characteristics can be used to estimate confidence (e.g., [1]). An interesting question is
how confidence can apply to other CBR knowledge containers to improve confidence
estimates for results or even to improve solution quality. For example, for any given
level of case confidence, selecting high confidence adaptation rules may improve ac-
curacy. This short paper explores assessing confidence of newly-generated rules, based
on the confidence of the data used to generate the rules, and exploiting rule and case
confidence information to improve performance.

The paper presents a case study for generating and selecting adaptation rules and
selecting cases to adapt for case-based regression tasks, i.e., tasks for which the goal is
to generate a numerical value. In the basic form of case-based regression, solutions are
generated by k-NN, with values computed by simple averaging approaches. To improve
performance, the CBR community has developed a number of knowledge-light meth-
ods for generating domain-specific adaptations automatically from the case base. For
example Hanney and Keane [2] propose an approach based on applying a difference
heuristic to pairs of cases, to generate rules which map similar problem differences to
similar solution differences. This paper considers whether it is possible to estimate the

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 179–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 V. Jalali and D. Leake

confidence of such rules as they are generated, and how such estimates can affect the
performance of case-based regression. It reports on an ablation study which assesses
the performance of learning and application with confidence considerations, compared
to rule learning and application without, and compared to a baseline of k-NN. It also
explores how confidence characteristics of domain cases affect performance of the ap-
proach. Experimental results show that using case confidences for selecting base cases
and using them in ranking adaptation rules can decrease estimation errors, and that the
amount of improvement in each domain varies based on the distribution of the confi-
dence level of the cases.

The paper is organized as follows. Section 2 reviews previous research on solution
and adaptation rule confidence estimation. Section 3 introduces our method for assess-
ing the adaptation rule confidence based on the rule generation process. Section 4 shows
results of evaluations comparing accuracy of case based regression with and without us-
ing confidence information. Section 5 presents conclusions and future work.

2 Previous Research

Solution Confidence Estimation: A number of previous projects have proposed meth-
ods for estimating confidence in a CBR system’s conclusions by considering character-
istics of cases and of the problem space as a whole. For example, Cheetham and Price
[3,4] explore the problem of assigning confidence to solutions in a CBR system by con-
sidering similarity scores of the retrieved cases, the deviation of retrieved solutions, etc.
[3]. Delany et al. [5] propose estimating classification confidence based on the similarity
between the target case and its k nearest neighbors. Reilly et al. [6] propose a feature-
based confidence model for assessing confidence of the proposed values for a feature by
recommender systems. Mulayim and Arcos [7] propose a method for identifying areas
of the problem space for which cases give uncertain solutions, identifying regions of the
case base in which those problems are located, to guide maintenance. Hullermeier’s [8]
Credible Case-based Inference (CCBI), for regression tasks, estimates solutions based
on “credible sets” of cases, i.e., sets of high confidence cases. Craw et al. [9] propose
using an auxiliary case based reasoning system to predict solution correctness and con-
fidence. Their confidence estimation method works by retrieving a set of adaptation
cases with their associated correctness predictions and combining the predictions.

Considering Adaptation Confidence: Distance Weighting: Distance-weighted k-NN
can be seen as using a simple proxy for adaptation confidence when solutions are calcu-
lated: If confidence in the contributions from different cases depends on their proximity
to a query, distance weighted k-NN takes that adaptation confidence into account by
weighting nearby cases more heavily.

Determining Confidence using Rule Frequency: Previous research on adaptation rule
generation has considered the space of resulting rules, noting that frequency in the pool
of generated adaptation rules may give an indication of the reliability of generated rules.
Hanney and Keane’s [2] seminal work proposes estimating confidence of rules by their
frequency. Wilke et al.’s [10] adaptation learning system takes a similar rule-generation
approach, estimating rule certainty based on the degree of generalization applied during
rule generation.

On Deriving Adaptation Rule Confidence from the Rule Generation Process 181

Provenance-based Confidence Estimation: Leake and Dial [11] propose a
provenance-based method for assessing the quality/confidence of adaptation rules by
using feedback propagation. Their method assigns blames to applied adaptation rules
based on the reported flaws in a solution via feedback. Minor et al. [12] assess the confi-
dence of adaptation results in workflow domains by using introspection for the modified
parts of the adapted solutions. For tracking the adaptation process they use provenance
information of each used workflow element.

3 Deriving Rule Confidence from the Rule Generation Process

The method introduced in this paper is an extension to the previous work of the authors
on an approach called Ensemble of Adaptations for Regression (EAR) [13]. EAR gen-
erates adaptation rules by comparing pairs of cases in a local neighborhood around the
input problem. Adaptation rules are built by comparing the problem and solution parts
of pair of cases and identifying their differences to generate rules that map the observed
differences in problems to the observed differences in solutions.

EAR is a lazy approach to adaptation generation. Given an input problem it selects
a set of base cases to adapt and also generates a set of adaptation rules as explained
above. For adapting the value of each base case it combines the values of the top r rules
that most resemble the differences between the base case and the input problem. The
final estimation is generated by combining the adapted values of all selected base cases.

EAR selects cases to adapt based on their distance to the input problem and ranks
adaptation rules according to the similarity of their problem parts to the corresponding
differences between the base cases and the input problem. However, we hypothesize
that using confidence knowledge in these two steps can improve the accuracy of the
estimations in domains with uncertainty in the values of the cases.

Our approach, which we call confidence-based case-based reasoning (ConfCBR)
estimates adaptation rule confidence based on the quality of inputs to the difference
heuristic—The confidence of the cases compared to generate the rule. In addition, it
uses confidence knowledge in selecting base cases both to adapt cases and for build-
ing adaptation rules. Algorithm 1 summarizes the overall process of ConfCBR. In the
algorithm, NeighborhoodSelection (Q,n,CB) and RankRules (NewRules, C,Q)
rank base cases and adaptation rules by using (1) and (2) respectively. The subprocesses
are described in more detail in the following discussion.

Selecting Cases from which to Generate New Solutions: We hypothesize that the best
solutions will be generated by balancing a tradeoff between case similarity and confi-
dence. (This tradeoff is mediated by the quality of case adaptation. If adaptation were
always perfect, we would expect the best results always to be obtained by adapting the
most confident case.)

Let P be the set of all possible problems, and CB the cases in the case base. Let
distance : P × P → R+ measure distance between problem descriptions (for con-
venience, we will sometimes use the case itself to designate its problem part). Let
conf : CB → [0, 1] compute case confidence. Then for a case C, ConfCBR calcu-
lates the ranking value of that case for base case selection by:

182 V. Jalali and D. Leake

Algorithm 1. ConfCBR’s method of estimating target values
Input:
Q: input query
n: number of base cases to be used
CB: case base
Output: Estimated solution value for Q

CasesToAdapt← NeighborhoodSelection(Q,n,CB)
NewRules← RuleGenerationStrategy(Q, CB)
for C in CasesToAdapt do

RankedRules← RankRules (NewRules, C,Q)
V alueEstimateC ← CombineAdaptations (RankedRules,C)

end for
return CombineVals(∪C∈CasesToAdaptV alEstimateC)

rank (C,Q) ≡ conf (C)α

distance (C,Q)
(1)

where α is a positive real number whose values tune the base case rankings for different
domains. If α is equal to zero, cases will be ranked merely based on their distance to
the input query. Increasing the value of α has the effect of assigning higher rankings
to more confident cases, with large values of α asymptotically approaching assigning
equal ranking values (i.e. zero) to cases that are not 100% confident.

Adaptation Rule Ranking: To rank candidate adaptation rules generated from the case
base by the difference heuristic, ConfCBR computes a ranking score based on two fac-
tors: (1) confidence of the cases from which the rules were generated, and (2) how close
the cases from which the rule was generated are to the case to adapt. More specifically,
let Ri,j be the adaptation rule built from Ci and Cj , and Δ (C,Q) be the difference vec-
tor of the features of the query Q. The ranking value of Ri,j for adapting the solution
of C is:

rank (Ri,j , C,Q) ≡ (conf (Ci)× conf (Cj))
β

distance (Qi,j , Δ (C,Q))
(2)

where β is a positive real number whose values tune the ranking of adaptation rules in
different domains.

4 Evaluation

Our experiments address the following questions about ConfCBR:

1. How does ConfCBR’s accuracy compare to its accuracy in the ablated conditions
(1) rule confidence considered, case confidence ignored, (2) case confidence con-
sidered, rule confidence ignored, (3) both confidence factors ignored.

On Deriving Adaptation Rule Confidence from the Rule Generation Process 183

2. How does ConfCBR’s accuracy (using confidence, and without) compare to the
baseline of distance-weighted k-NN?

3. How do varying case confidence distributions in the case base affect ConfCBR’s
accuracy?

4.1 Experimental Design

Experiments applied ConfCBR for case-based regression in four sample domains from
the UCI repository [14]: MPG, Auto, Hardware and Housing. A data cleaning process
removed cases with unknown values and discarded the symbolic features. For each
feature, values were standardized by subtracting that feature value’s mean from each
individual feature value and dividing the result by the standard deviation of that feature.
Leave-one-out testing is used for all domains and estimation errors are calculated in
terms of Root Mean Squared Error (RMSE). Hill climbing was used to determine the
values of α and β for each domain.

Adaptation rules are generated by comparing the top 5% nearest neighbors of the
input query, using Euclidean distance in (1) and (2). The top 5% cases are ranked
and selected by using (1). These cases are used both as base cases to adapt and the
source cases for generating adaptation rules. The case-based regression system then
ranks adaptation rules by using (2) and applies a set of rules for adapting the solution of
each base case. The number of adaptations applied per base case is also determined by
a hill climbing process in all domains. The final estimates are generated by combining
adapted solutions of the selected base cases.

The goal of our current study is not to generate case confidence values, but rather,
to assess how confidence information can be exploited, once it has been generated. To
evaluate our approach under controlled conditions for which the quality of confidence
estimations is known, we generated test data whose correctness was characterized by
varying known confidence values, as follows. First, we randomly assigned confidence
levels to the cases by a Gaussian distribution, with 0.8 and 0.2 used as the mean and
standard deviation of the confidence level distributions in all domains except explicitly
stated otherwise. The stored values of the cases were then adjusted randomly, according
to the assigned confidence values. For example, if 0.9 is assigned to a case as its confi-
dence value, its stored value is increased or decreased by 10% of its value. The original
value of the case is used as the ”correct” value for assessing performance.

4.2 Performance Comparison

The Effect of Using Confidence Knowledge. Fig. 1 depicts the RMSE for CBR re-
gression (without using confidence knowledge), using confidence knowledge in select-
ing the base cases only (ConfCBRC), using confidence knowledge only for ranking
adaptations only (ConfCBRR) and using confidence knowledge for both selecting base
cases and ranking adaptation rules (ConfCBR), for each test domain. As expected, in
all domains CBR without confidence considerations shows the worst performance. In
three of the four test domains (all except MPG) using confidence knowledge in rank-
ing adaptation rules is more successful in decreasing estimation error compared to using

184 V. Jalali and D. Leake

confidence knowledge for selecting the base cases to adapt. In almost all cases, us-
ing case confidence knowledge both for selecting base cases and ranking adaptation
rules (ConfCBR) provides the most accurate results. Exceptions occur only for one
configuration of the Auto domain (when solutions are generated from 5 base cases) and
when 5 or more base cases were used in the Hardware domain. In both those cases,
confidence-based rule ranking only outperformed the combination, but the combination
outperformed rule ranking only for smaller numbers of base cases.

2 4 6 8 10

3
4

5
6

7
8

MPG

a
number of used base cases

R
M

S
E

CBR ConfCBRC ConfCBRR ConfCBR

2 4 6 8 10

3.
5

4.
5

5.
5

Auto

b
number of used base cases

R
M

S
E

CBR ConfCBRC ConfCBRR ConfCBR

2 4 6 8 10

50
55

60
65

70

Hardware

c
number of used base cases

R
M

S
E

CBR ConfCBRC ConfCBRR ConfCBR

2 4 6 8 10

4
5

6
7

8
9

Housing

d
number of used base cases

R
M

S
E

CBR ConfCBRC ConfCBRR ConfCBR

Fig. 1. RMSE comparison for no use of confidence (CBR) only using confidence for ranking base
cases (ConfCBRC), only using confidence for ranking adaptation rules (ConfCBRR) and using
confidence for both (ConfCBR)

ConfCBR vs. k-NN. To compare the accuracy of ConfCBR with a baseline, we con-
ducted experiments in the test domains using conventional distance weighted k-NN,
and distance-weighted k-NN enhanced with case confidence knowledge (ConfkNN).
The confidence knowledge in ConfkNN is used for selecting the cases from which the
solution will be generated by using (1).

On Deriving Adaptation Rule Confidence from the Rule Generation Process 185

Fig. 2 shows the RMSE of k-NN, Confidence based k-NN (ConfkNN), CBR and
ConfCBR in the test domains. For three out of four domains (all except Hardware),
the worst performance belongs to the basic CBR approach, which reflects its inability
to adjust to varying confidence levels (either of base cases or the cases from which
adaptations are built). The largest performance gap between k-NN and ConfCBR is ob-
served for the Hardware domain (ConfCBR performs 33% better than ConfkNN) while
this gap is minimized in the MPG domain (ConfCBR only performs 3% better than
ConfkNN). In all domains ConfCBR performs better than the baseline methods, show-
ing that CBR enhanced with confidence knowledge is able to generate more accurate
estimations compared to the other tested alternative methods.

2 4 6 8 10

3
4

5
6

7
8

MPG

a
number of used base cases

R
M

S
E

CBR kNN ConfkNN ConfCBR

2 4 6 8 10

3.
5

4.
5

5.
5

Auto

b
number of used base cases

R
M

S
E

CBR kNN ConfkNN ConfCBR

2 4 6 8 10

50
55

60
65

70
75

Hardware

c
number of used base cases

R
M

S
E

CBR kNN ConfkNN ConfCBR

2 4 6 8 10

4
5

6
7

8
9

Housing

d
number of used base cases

R
M

S
E

CBR kNN ConfkNN ConfCBR

Fig. 2. RMSE of CBR, ConfCBR, k-NN, and k-NN enhanced with confidence knowledge (Con-
fkNN)

The Effect of Case Confidence Level Distribution on ConfCBR. To assess the ef-
fect of case confidence level distribution on ConfCBR we conducted experiments in
the Housing domain with different case confidence level distributions. Fig. 3 shows the
RMSE of CBR and ConfCBR in the housing domain for four different confidence dis-
tributions. As a reference, Part a of Fig. 3 repeats the results of Part a of Fig. 1. However,

186 V. Jalali and D. Leake

parts b, c and d show results for three new distributions. Based on comparison of parts
a, b and c of Fig. 3 we hypothesize that the difference between the relative performance
of CBR and ConfCBR depends more on the standard deviation of the case confidence
levels than on their mean value. Part d suggests that for relatively small standard devia-
tions, performance of CBR and ConfCBR is almost identical.

2 4 6 8 10

4
5

6
7

8
9

mean=0.8, sd=0.2

a
number of used base cases

R
M

S
E

CBR ConfCBR

2 4 6 8 10

5
6

7
8

9
10

mean=0.8, sd=0.1

b
number of used base cases

R
M

S
E

CBR ConfCBR

2 4 6 8 10

8
10

14
18

mean=0.4, sd=0.2

c
number of used base cases

R
M

S
E

CBR ConfCBR

2 4 6 8 10

4.
5

5.
5

6.
5

mean=0.8, sd=0.01

d
number of used base cases

R
M

S
E

CBR ConfCBR

Fig. 3. RMSE of CBR without using confidence knowledge (CBR) and CBR using case confi-
dence knowledge both for ranking base cases and adaptation rules (ConfCBR) in the Housing
domain for four sample normal distributions of case confidence levels

5 Conclusion and Future Work

This paper has explored how considerations of case confidence can help to assess the
confidence of adaptation rules generated by the difference heuristic, and how adapta-
tion rule and case confidence can be brought to bear not only to assess confidence of
solutions, but to generate better solutions. It has introduced a new method, confidence-
based case based regression (ConfCBR), which uses confidence knowledge both for se-
lecting base cases and ranking adaptations. Experimental results showed that ConfCBR

On Deriving Adaptation Rule Confidence from the Rule Generation Process 187

outperforms a corresponding case-based approach to regression without confidence
knowledge and k-NN baseline methods in four sample domains, often by substantial
margins. Results also showed that the benefit depends significantly on the distribution
of case confidence levels in a case base.

Our current investigation was based on sample data for which confidence levels were
artificially created. We are developing methods for estimating the case confidences of
new case bases by statistical methods such as outlier detection, and intend to exam-
ine ConfCBR performance when case confidence levels are estimated automatically.
Another future direction is studying other methods for estimating rule confidence.

References
1. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning systems. In:

Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118.
Springer, Heidelberg (2004)

2. Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 359–370.
Springer, Heidelberg (1997)

3. Cheetham, W.: Case-based reasoning with confidence. In: Blanzieri, E., Portinale, L. (eds.)
EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 15–25. Springer, Heidelberg (2000)

4. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning systems. In:
Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118.
Springer, Heidelberg (2004)

5. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates of classifi-
cation confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR
2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg (2005)

6. Reilly, J., Smyth, B., McGinty, L., McCarthy, K.: Critiquing with confidence. In: Muñoz-
Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 436–450. Springer,
Heidelberg (2005)

7. Mülâyim, O., Arcos, J.-L.: Understanding dubious future problems. In: Althoff, K.-D.,
Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239,
pp. 385–399. Springer, Heidelberg (2008)

8. Hullermeier, E.: Credible case-based inference using similarity profiles. IEEE Trans. on
Knowl. and Data Eng. 19(6), 847–858 (2007)

9. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation knowledge.
In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 131–145.
Springer, Heidelberg (2001)

10. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning adaptation
knowledge based on knowledge light approaches. In: Proceedings of the Fifth German Work-
shop on Case-Based Reasoning, pp. 235–242 (1997)

11. Leake, D.B., Dial, S.A.: Using case provenance to propagate feedback to cases and adapta-
tions. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS
(LNAI), vol. 5239, pp. 255–268. Springer, Heidelberg (2008)

12. Minor, M., Islam, M. S., Schumacher, P.: Confidence in workflow adaptation. In: Agudo, B.D.,
Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268. Springer, Heidelberg (2012)

13. Jalali, V., Leake, D.: Extending case adaptation with automatically-generated ensembles of
adaptation rules. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp.
188–202. Springer, Heidelberg (2013)

14. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

Extending Case Adaptation
with Automatically-Generated Ensembles

of Adaptation Rules

Vahid Jalali and David Leake

School of Informatics and Computing, Indiana University
Bloomington IN 47408, USA

{vjalalib,leake}@cs.indiana.edu

Abstract. Case-based regression often relies on simple case adaptation methods.
This paper investigates new approaches to enriching the adaptation capabilities of
case-based regression systems, based on the use of ensembles of adaptation rules
generated from the case base. The paper explores both local and global meth-
ods for generating adaptation rules from the case base, and presents methods for
ranking the generated rules and combining the resulting ensemble of adaptation
rules to generate new solutions. It tests these methods in five standard domains,
evaluating their performance compared to four baseline methods, standard k-NN,
linear regression, locally weighted linear regression, and an ensemble of k-NN
predictors with different feature subsets. The results demonstrate that the pro-
posed method generally outperforms the baselines and that the accuracy of adap-
tation based on locally-generated rules is highly competitive with that of global
rule-generation methods with much greater computational cost.

1 Introduction

Case-based reasoning (CBR) (e.g., Mantaras et al., 2005) solves new problems by re-
trieving stored prior cases solving similar problems, and adapting their solutions to
fit new circumstances, based on the differences between the new problem and prob-
lems addressed by the retrieved case(s). When CBR is applied to synthesis tasks in
knowledge-rich domains, an important component of its success is the use of sophisti-
cated case adaptation strategies. However, when CBR approach is applied to regression
tasks, reliance on simple case adaptation is common. For example, k-Nearest Neighbor
(k-NN) regression approaches often compute target values as a distance-weighted aver-
age of the values of the k cases closest to the input problem. Using simple adaptation
helps to alleviate the knowledge acquisition problem for case adaptation knowledge
for these tasks, and in practice can achieve good performance (e.g., [2]). However, the
contrast between extensive focus on case adaptation in other CBR areas and the lim-
ited attention to richer adaptation methods for case-based regression raises the question
of whether case-based regression performance could be improved by generating richer
combination/adaptation rules automatically.

This paper presents new approaches for automatically augmenting adaptation capa-
bilities for case-based regression, using only knowledge contained in the case base. Its

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 188–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Extending Case Adaptation with Ensembles of Rules 189

primary contributions are methods for generating adaptation rules from local or global
sets of cases, methods for applying ensembles of adaptation rules, and an experimental
comparison of alternative strategies for using local and global information in both adap-
tation rule learning and rule application, which illuminates the relative performance
benefits of local and global approaches.

The paper is organized as follows. Section 2 introduces the strategies we consider
for generating adaptation rules and selecting the base cases from which the estimations
are built. Section 3 introduces our approach, Ensemble of Adaptations for Regression
(EAR), a general technique for augmenting k-NN for regression tasks by automati-
cally generating adaptation rules, choosing which of many potentially applicable rules
to apply, and using the resulting ensemble of rules for generating new solutions. It
also describes the basic parameters of the approach, which adjust its use of local ver-
sus global information in selecting cases to adapt and generating adaptation rules from
existing cases. Section 4 presents results of an evaluation comparing alternative ver-
sions of EAR with k-NN, linear regression, and locally weighted linear regression for
estimating solutions in five sample domains. The study shows encouraging results for
accuracy and for the ability to rely on local information, compared to more computa-
tionally expensive use of extensive global information, which suggests the practicality
of lazy learning of adaptation rules based on local information. Section 5 compares
related work on using ensemble techniques in CBR and knowledge-light methods for
generating and applying adaptations for case-based regression tasks. Section 6 presents
conclusions and future work.

2 Learning and Applying Ensembles of Adaptation Rules

Our basic approach to adaptation rule generation builds on the case difference heuris-
tic approach proposed by Hanney and Keane [3] and further explored by others (e.g.,
[4,5]). The case difference approach builds new adaptation rules from pairs of cases
and compares their problem parts (respectively, solution parts), and identifies their dif-
ferences to generate a candidate rule mapping the observed difference in problems to the
observed difference in solutions. For example, for predicting apartment rental prices, if
two apartments differ in that one has an additional bedroom, and its price is higher,
an adaptation rule could be generated to increase estimated rent when adapting a prior
case to predict the price of an apartment with an additional bedroom. Applying the case
difference approach depends on addressing questions such as which pairs of cases will
be used to generate adaptation rules, how rules will be generated, and how the resulting
rule set will be applied to new problems. In the next section, we discuss EAR’s strate-
gies for addressing these, and in Section 5 we compare these approaches to previous
work.

EAR is a lazy approach to adaptation rule generation. Given an input problem, it gen-
erates ensembles of adaptations as needed, based on preselected criteria for (1) selecting
a neighborhood of cases in the case base from which to generate solutions by adapta-
tions, and (2) generating rules for adapting each of those cases, ranking the rules for
each case and combining the values of the top r rules, and finally, combining the values
generated for each of the cases to adapt. This process is summarized in Algorithm 1.

190 V. Jalali and D. Leake

Algorithm 1. EAR’s basic algorithm
Input:
Q: input query
n: number of base cases to adapt to solve query
r: number of rules to be applied per base case
CB: case base
Output: Estimated solution value for Q

CasesToAdapt← NeighborhoodSelection(Q,n,CB)
NewRules: ← RuleGenerationStrategy(Q,CasesToAdapt,CB)
for c in CasesToAdapt do

RankedRules ← RankRules(NewRules,c,Q)
V alEstimate(c)← CombineAdaptations(RankedRules, c, r)

end for
return CombineVals(∪c∈CasesToAdaptV alEstimate(c))

2.1 Selecting Source Cases to Adapt

We consider three general alternatives for selecting the cases to adapt, defined by
whether they use highly local, local, or global cases:

1. Nearest: Select only the single nearest neighbor to the query (1-NN)
2. Local: Select the k nearest neighbors to the query (k-NN, for a small value of k

greater than 1)
3. Global: Select all cases in the case base

As we discuss in Section 5, adaptation learning methods using nearest and local case
sets have been considered previously in CBR, but the global approach is seldom used.
Because the global approach may consider cases quite dissimilar from the input query,
its feasibility depends on the quality of the adaptation and combination strategies used.

2.2 Selecting Cases from which to Generate Adaptation Rules

For each case selected to be used as a source case for adaptation, we consider three
options for selecting pairs of cases to be used to generate adaptation rules, as listed
below. The strategies are described by their names, which have the form StartingCas-
esEndingCases, where StartingCases describes a set of cases for which rules will be
generated, and EndingCases describes the cases to which each of the StartingCases will
be compared. Each comparison results in a different rule, so a single starting case may
participate in the formation of many rules.

1. Local cases–Local neighbors: Generating adaptation rules by comparing each pair
of cases in the local neighborhood of the query.

2. Global cases–Local neighbors: Generating adaptation rules by comparing each case
in the case base with its k nearest neighbors

3. Global cases–Global neighbors: Generating adaptation rules by comparing all cases
in the case base

Extending Case Adaptation with Ensembles of Rules 191

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

local−local

a

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

global−local

b

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

global−global

c

Fig. 1. Illustration of (a) Local cases–Local neighbors, (b) Global cases–Local neighbors, and (c)
Global cases–Global neighbors

Figure 1 illustrates the three methods. In each figure, the input problem is at the center.
Circles enclosed by dotted lines show neighborhoods of cases from which adaptations
will be generated, and a sample point is connected to the cases with which it will be
compared to generate adaptation rules.

Potential Tradeoffs. Combining each of the three selection strategies with one of the
three adaptation generation strategies gives nine possible approaches. Each approach
has potential ramifications for efficiency and accuracy of adaptation.

Ramifications for efficiency: The different methods provide different levels of effi-
ciency. Using Global cases to generate adaptations from Local neighbors requires con-
sidering more rules than generating adaptations for local cases only. Using Global
cases–Global neighbors, determining each adaptation requires O(n2) processing for
a case base with n cases, which may be infeasible for large case bases.

A related ramification is the potential for lazy learning of adaptation rules as needed.
The Global cases–Global neighbors approach requires processing all potential adapta-
tions. If this is applied to the system’s initial cases, a rule set can be stored for future
use, avoiding re-calculation but potentially requiring considerable storage and—if kept
static—not reflecting new cases added to the case base. Local cases–Local neighbors
is amenable to a lazy approach with just-in-time generation of adaptation rules, which
could enable incremental adaptation rule generation, with adaptation rule generation
taking into account any new cases added to the case base in the region of the query.

Ramifications for accuracy: It is more difficult to anticipate the accuracy effects of the
strategies. For example, one might hypothesize that generating adaptation rules from
local cases would be beneficial because the adaptations are being generated from the
same area of the domain space as the input query, making them more likely to properly
address the differences between the input query and the base case(s). On the other hand,
limiting the scope of adaptations to the context of the input query might sacrifice the
benefit of considering distant cases corresponding to relevant adaptations. This raises
the interesting question of locality of adaptation knowledge. Even if case characteristics
for a particular case base are associated with particular regions of the case base, it is

192 V. Jalali and D. Leake

possible that the needed adaptation knowledge is still global: that the relationships be-
tween their feature changes and value changes may be similar regardless of region. This
stance has long been taken implicitly in CBR systems which have been designed with
a single set of adaptation rules applied in all parts of the case base. To our knowledge,
the question of locality of adaptation knowledge has not been studied previously, and
the following experiments shed some light on this question as well.

3 Using Ensembles of Adaptations

The methods described in the previous sections may result in the generation of many
adaptation rules, especially for global–global rule generation. EAR’s adaptation rule
ensembles are composed of a subset of the selected rules, to increase adaptation ef-
ficiency. To select rules, EAR ranks them by the similarity of the current adaptation
context and the context in which the rule was generated.

3.1 Defining Adaptation Context

After generating adaptation rules for an input query, EAR attempts to determine which
of the generated rules are most relevant. It does this by considering both the similarity
of the new query and the case for which the adaptation was generated, and the local
adaptation characteristics of the case base, which we call the adaptation context. When
selecting adaptations to apply to generate a solution for the query, EAR favors adap-
tations which have been generated for target problems in similar adaptation contexts.
When global knowledge is used for generating the adaptations, for example, the cases
used to generate an adaptation rule may be quite different from the query, but if the
adaptation addressed similar differences, it may still be relevant.

Given a case C in the case base, EAR calculates its adaptation context as a vector
based on comparingC to the N cases in a neighborhood containing its nearest neighbor
cases. For each case feature, the covariance between the feature and the case solution is
calculated over the set of cases in the neighborhood.

Let Cj
i and Sol(Ci) denote the value of the jth feature and the value of the ith

case respectively, CaseMeanV al denote the mean of the values of the cases in the
neighborhood, and FeatureMeanV alj represent the mean value of the jth feature of
the cases in the neighborhood. Then the jth element of the covariance vector for case
C is calculated as follows:

Covj(C) ≡ 1

N
×

N∑
i=1

(Cj
i − FeatureMeanV alj)(Sol(Ci)− CaseMeanV al) (1)

If f represents the number of features, for any case C, we define AdaptContext(C) to
be the vector (Cov1, Cov2, ...Covf).

3.2 Ranking Adaptation Rules

EAR’s adaptation rule ranking considers two factors. The first is the similarity of the
pair query - source case to adapt and the pair target case - source case from which the

Extending Case Adaptation with Ensembles of Rules 193

adaptation rule was generated. The second is the similarity of the adaptation context of
the query to the adaptation context of the target case from which the adaptation rule was
generated. However, if the adaptations are generated from local cases-local neighbors
the second factor is discarded. The first factor favors adaptations generated to adapt
similar pairs of cases. For each feature, EAR calculates the per-feature difference, based
on a domain similarity metric, and generates a difference vector of those values.

The second factor reflects similarity of the adaptation context (as defined above), and
compares the adaptation context vectors of the query and the target case. The rationale
is that the same feature difference between two cases may require different adaptations
in different parts of the case space, so favoring rules from similar adaptation contexts
may improve adaptation results.

EAR’s ranking method balances feature differences against adaptation context differ-
ences by taking the Hadamard (element-wise) product of the feature difference vector
and the adaptation context vector. The ranking score is computed as the Euclidean dis-
tance between: (1) the Hadamard product of the adaptation context vector of the case
to adapt and the difference vector for the case to adapt and the input query, and (2) the
Hadamard product of the context vector of the adaptation rule and the vector represent-
ing feature differences of the composing cases of that rule.

More formally, suppose query Q is to be solved by adapting the case Ci. let Δi

represent the difference vector of the features of the query Q and Ci, and let Rr be the
problem part of the rth adaptation rule. Let ◦ represent the Hadamard product of two
vectors. Then the second component of EAR’s rule scoring method is calculated as:

d(Δi, Rr) ≡ distance((AdaptContext(Ci) ◦Δi), (AdaptContext(Cr) ◦Rr)) (2)

If D(Δi, Rr) is the distance between Δi and Rr, then the final ranking of adaptation
rules is achieved by using a weighted average of D and d as:

RuleScore(Rr) ≡ a×D(Δi, Rr) + (1 − a)× d(Δi, Rr) (3)

where 0 ≤ a ≤ 1. The value of a is set to tune the ranking for different domains.

3.3 Estimating the Target Value from a Rule Ensemble

In its simplest form, k-NN estimates the value of a query by averaging the value of its
k nearest neighbors. If Q is the query and Est(Q) represents its estimated target value
(solution), and Sol(Ci) represents the known solution value of the ith nearest neighbor
of Q, then k-NN estimates the value of Q as:

Est(Q) ≡
∑k

i=1 Sol(Ci)

k
(4)

For each base case C to be adapted to provide a value for a query, EAR computes a
weighted average of the values proposed by each of the n highest-ranked adaptation
rules generated for that case by Eq. 3. If ri, 1 ≤ i ≤ n are the n top-ranked adaptation
rules in order of descending rank score,

SuggestedV al(C) =
∑
i=1,n

Solution(ri)

i
(5)

194 V. Jalali and D. Leake

The value for the query is then simply

Solution(Q) ≡
∑k

i=1 SuggestedV al(Ci)

k
(6)

4 Experimental Results

We conducted experiments to address the following questions about extending case
adaptation with ensembles of automatically-generated adaptation rules:

1. Can using the automatically-generated ensembles of adaptations improve accuracy
over using a single adaptation?

2. How does accuracy compare for adaptations generated from local vs. global knowl-
edge?

3. How does EAR’s accuracy compare to that of the baseline regression methods lo-
cally weighted linear regression and k-NN?

4. How does EAR’s accuracy compare to that of case-based regression using standard
feature subset ensemble methods?

5. How does EAR’s rule process ranking (based on adaptation context and case simi-
larity) affect its performance compared to the baselines of (1) random selection of
adaptation rules and (2) considering case similarity only?

4.1 Data Sets and Experimental Design

Our experiments use five data sets from the UCI repository [6]:Automobile (A), Auto
MPG (AM), Housing (H), Abalone (AB), Computer Hardware (CH). For all data sets,
records with unknown values were removed. To enable comparison with linear regres-
sion, only numerical features were used. (Note that if the use of adaptation context in
EAR is disabled, it could be used for symbolic features as well; including those poten-
tially would have increased accuracy for EAR when local cases-local neighbors strategy
is used for generating the adaptations). For each feature, values were standardized by
subtracting that feature’s mean value from each individual feature value and dividing
the result by the standard deviation of that feature. Table 1 summarizes the characteris-
tics of the test domains.

The experiments estimate the target value for an input query. For the Auto, MPG,
Housing, Abalone and Hardware, the respective values to estimate are price, mpg,

Table 1. Characteristics of the test domains

Domain name # features # cases Avg. cases/solution sol. sd
Auto 13 195 1.1 8.1
MPG 7 392 3.1 7.8

Housing 13 506 2.21 9.2
Abalone 7 1407 176 1.22

Hardware 6 209 1.8 160.83

Extending Case Adaptation with Ensembles of Rules 195

MEDV (median value of owner-occupied homes in $1000’s), rings (for the Abalone
data set we only selected cases with rings ranging 1-8), and PRP (published relative
performance) respectively. Linear regression and locally weighted linear regression
tests used Weka’s [7] simple linear regression and locally weighted learning classes
respectively. Accuracy is measured in terms of the Mean Absolute Error (MAE) and
leave-one-out testing is used for all domains unless explicitly mentioned otherwise.

Hill climbing was used to select the best neighborhood size for each domain based
on the training data for calculating adaptation context, for setting the weighting factor
a Eqn. 3, and for determining the number of adaptations to consider. The number of
adaptations used for different variants of EAR depending on the training data ranges
from one for EAR9 to at most 40 for EAR1, EAR2 and EAR3. In all experiments
Euclidean distance is used as the distance function in equation 2. Note that the use of
contextual information is disabled for versions of EAR that use the local-local strategy
to generate adaptations (i.e. EAR1, EAR4 and EAR7).

4.2 Performance Comparison

To address experimental questions 1–3, we conducted tests to compare the results
achieved by each of the 9 versions of EAR, k-NN, linear regression (LR) and locally
weighted linear regression (LWLR) in the sample domains. Table 2 summarizes the
results, which we discuss below. Best values are indicated in bold.

4.3 Discussion of Results

Accuracy from Ensembles vs. Single Adaptations: In the experiments, EAR4 (local,
local-local), EAR5 (local, global-local), EAR6 (local, global-global) and EAR9 (global,
global-global) usually yield the best results, suggesting the benefit of generating adap-
tations based on multiple cases and selecting adaptations from their results to combine.
For most methods, the tuning process on the training data determined that generating
the final value from an ensemble of the top-ranked adaptations gave the best results.

Table 2. MAE of EAR, k-NN, LWLR and LR for the sample domains

Method
Domains

Auto (A) MPG (AM) Housing (H) Abalone (AB) Hardware (CH)
EAR1: nearest, local-local 1.77 2.23 2.21 0.79 31.32
EAR2: nearest, global-local 1.66 2.22 2.2 0.82 31.04
EAR3: nearest, global-global 2.15 2.22 2.23 0.95 38.25
EAR4: local, local-local 1.38 1.90 2.04 0.60 28.74
EAR5: local, global-local 1.44 1.71 1.90 0.60 28.8
EAR6: local, global-global 1.36 1.74 2.04 0.60 28.76
EAR7: global, local-local 4.95 4.99 4.22 0.93 78.06
EAR8: global, global-local 4.30 3.73 4.46 0.91 63.98
EAR9: global, global-global 1.37 1.95 2.25 0.59 28.18
k-NN 1.61 2.00 2.74 0.61 29.12
Locally Weighted LR (LWLR) 1.61 2.02 2.54 0.68 30.82
Linear Regression (LR) 2.62 2.55 4.53 0.62 51.91

196 V. Jalali and D. Leake

For example, EAR4 (local, local-local) yields its best results (in all domains except
Abalone) when usually five to nine adaptations are combined. There were some ex-
ceptions to the general pattern in favor of using ensembles of adaptations. For EAR9
(global, global-global) in most cases using one adaptation per case in the Auto, MPG
and Housing domains yields best results (for the Hardware domain, often two cases are
used). For the Abalone domain the optimal number of adaptations based on the training
data is on the order of 20, but the difference between using one adaptation rule and
greater numbers is minimal (1%).

Effect of Domain Characteristics on EAR’s Performance: We observed that EAR
showed less benefit for the Abalone data set than for the other data sets, with perfor-
mance of EAR often comparable to k-NN. We hypothesize that the level of improve-
ment from EAR over k-NN could be related to the diversity of case solutions in the case
base.

If a relatively large number of cases share identical solutions in a domain, and the
standard deviation of solutions is low, using an appropriate similarity measure in a
retrieve-only system (e.g. k-NN) may be sufficient to generate good solutions with sim-
ple averaging combination, while with more diversity, more adaptation may be needed.
Table 1, shows the average number of cases sharing the same solution and the standard
deviation of the solutions in the sample domains, which shows that these characteristics
of the Abalone data set are substantially different from the other data sets. However,
more examination is needed.

Local vs. Global Knowledge for Generating Adaptations: Table 2 shows that in
most domains, the performance of EAR4 (local, local-local) is competitive with the
other versions of EAR, and is superior to the baseline methods, despite the fact that it
uses limited information. For example, comparing EAR4 to the most global method,
EAR9 (global, global-global), MAE’s are 1.38 vs. 1.37, 1.9 vs. 1.95, 2.04 vs. 2.25, 0.60
vs. 0.59, and 28.74 vs. 28.18. Because it uses limited information, it is computationally
much less expensive than the global methods. Thus the local method’s performance at
worst has a minimal accuracy penalty, and sometimes is substantially better. Also, it has
the benefit of reducing computational cost and permitting a lazy approach to adaptation
rule generation).

EAR7 (global, local-local) and EAR8 (global, global-local) usually yield the worst
results. In those two methods all cases are considered as base cases for estimating the
target value, so adaptation generated from neighbor cases may not be appropriate for
addressing the differences between the input problem and the base cases.

EAR vs. LWLR and k-NN. In all domains, the performance of EAR4 surpasses or
equals that of the baseline methods, sometimes substantially so. EAR4 has almost the
same performance as k-NN in Abalone and Hardware domains. In all domains, one of
the nine versions of EAR has the best performance.

In Auto, MPG and Housing domains that EAR4 shows higher accuracies compared
to the other baseline methods, one side paired t-test is used to assess the significance of
those results. The null hypothesis is always MAE of EAR4 being less than that of k-NN

Extending Case Adaptation with Ensembles of Rules 197

A AM H AB CH

Pe
rc

en
t o

f i
m

pr
ov

em
en

t o
ve

r k
−N

N
−1

0
0

10
20

30

Domains

14.09

0.39

4.77

−1.19

25.57

7.15

−0.01

−12.79

1.25

−5.89

EAR LWLR

Fig. 2. Percent of improvement in MAE by EAR and LWLR over k-NN

and LWLR. For the comparison of EAR4 to k-NN in the Auto domain, p<.007, in MPG,
p<.062 (so not significant), and in Housing, p<.001. Same values for comparing EAR4
versus LWLR are p<.051 (not significant), p<0.05 and p<.001 in the same order.

Figure 2 contrasts the relative improvement of EAR4 over k-NN (14%, 5%, 26%,
0% and 1%) with the relative improvement of LWLR over k-NN (0%, -1%, 7%, -13%
and -6%) in the the Auto, MPG, Housing, Abalone and Hardware domains respectively.

EAR vs. Feature Subset Ensemble. As another baseline, we also compared EAR4’s
performance to a previously used approach for applying ensembles to CBR, feature
subset ensembles (FSE). FSE uses a combination of k-NN predictors, each of which
predicts based on a different subsets of case features (all subsets are of fixed size) [8].
The feature subsets are selected randomly with replacement (each subset includes at
least two features), with each ensemble containing predictors based on 100 different
subset of features, with evaluation by ten-fold cross validation. Both EAR4 and the
feature subset ensemble methods were compared with their best parameter settings, as
determined by hill climbing and leave-one-out testing on the training data for each fold.
For feature subset ensembles, this determined the k value to use, and the number of
features to use. For EAR4, this determined the number of base cases and adaptation
rules to be used. For each domain, the local neighborhoods were set to contain the top
5% nearest neighbors of the input query. Learning was disabled for both methods. Table
3, shows Mean Absolute Error for k-NN, Feature Subset Ensemble (FSE) and EAR4
(local, local-local) on the test domains.

198 V. Jalali and D. Leake

Table 3. MAE of EAR4, k-NN and the Feature Subset Ensemble method for the sample domains

Method
Domains

Auto (A) MPG (AM) Housing (H) Abalone (AB) Hardware (CH)
k-NN 1.62 2.06 2.67 0.61 30.3
FSE 1.51 2.28 2.48 0.7 27.51
EAR4 1.42 1.84 2.01 0.63 25.79

Table 4. MAE of EAR, k-NN, LWLR and LR for the sample domains

Method
Domains

Auto (A) MPG (AM) Housing (H) Abalone (AB) Hardware (CH)
EAR4: local, local-local 1.38 1.90 2.04 0.60 28.74
EAR6: local, global-global 1.36 1.74 2.04 0.60 28.74
Random: local, local-local 2.54 2.11 3.04 0.61 38.95
Random: local, global-global 3.87 2.43 3.29 0.61 72.86
distance only: local, global-global 1.55 1.86 2.11 0.61 30.68

The results in Table 3 show that EAR outperforms FSE in all test domains. For the
Abalone domain, k-NN slightly outperforms both ensemble methods, which we hypoth-
esize to be due to lack of domain diversity. Figure 3, shows the percent of improvement
of EAR4 (local, local-local) and SFE over k-NN in the test domains.

4.4 Effect of Context-Based Rule Ranking

A final question is how much EAR’s context-based adaptation rule ranking approach
benefits performance. We tested this by an ablation study comparing EAR4 and EAR6’s
performance with three different ranking methods: (1) random ranking of adaptation
rules, (2) rule ranking by case distance only, and (3) EAR’s approach, balancing case
similarity and adaptation context similarity.

As Table 4 shows, random ranking has the worst performance among other methods,
with especially bad performance for the global-global methods, which generate more
rules. The comparative difference appears to increase for domains with higher standard
deviation (e.g. Hardware), and is lowest for Abalone, which has the largest average
number of cases per unique solution and the lowest solution standard deviation. There
the random method shows same performance as the distance only method.

Expanding the pool of adaptations with global methods decreases accuracy for
distance-only method in nearly all domains, while EAR is more robust. This provides
some support for the contextual information in EAR enabling it to select more appro-
priate adaptations from the global pool.

Extending Case Adaptation with Ensembles of Rules 199

A AM H AB CH

Pe
rc

en
t o

f i
m

pr
ov

em
en

t o
ve

r k
−N

N
−2

0
−1

0
0

10
20

30
40

Domains

12.04

6.64

10.81

−11.16

24.66

7.33

−4.22

−15.92

14.90

9.22

EAR FSE

Fig. 3. Percent of improvement in MAE by EAR4 and LWLR over k-NN

5 Comparison to Previous Work

The EAR approach relates both to research on ensemble methods in CBR and on auto-
matic adaptation rule generation for case-based regression.

5.1 Ensemble Methods in CBR

Ensemble methods aggregate results from a set of models. A number of general-purpose
approaches have been proposed, such as Bagging [9], boosting [10] and random forests
[11]. In CBR research, ensemble methods have been applied to improve accuracy by
combining solutions from multiple subsets of a case base or from multiple case bases.
For example, Cunningham and Zenobi [12] propose improving accuracy of nearest
neighbor classifiers by using an ensemble of classifiers, each based on different feature
subsets. Arshadi and Jurisica [13] present an ensemble method for combining predic-
tions of a set of classifiers built based on disjoint subsets of cases from the original case
base, for which the case features are selected locally by using logistic regression. Li and
Sun [14] propose using an ensemble of CBR systems, with randomly generated feature
subsets used for similarity assessment in each individual CBR system, and forming the
final solution by combining the results of those individual systems. However, to our
knowledge, previous CBR research has not considered the use of ensembles of case
adaptation rules.

200 V. Jalali and D. Leake

5.2 Learning Adaptations from the Case Base

Learning case adaptation knowledge is an active CBR research area, for which many
approaches have been pursued. For reasons of space, we limit our discussion to methods
which learn adaptations from cases in the case base for regression tasks, rather than
more knowledge-intensive approaches for other types of domains.

Case Difference Heuristics. Wilke et al. [15] provide a starting point for knowledge-
light approaches to learning adaptation knowledge by discussing different sources of
knowledge in a CBR system and general issues for designing a learning algorithm. They
use their framework for two different approaches of learning adaptation knowledge:
weighted majority voting and case difference heuristic proposed by Hanney and Keane
[3]. The latter approach investigated by Wilke et al. is similar to ours in that it generates
adaptations based on case comparison. Though, their method uses different strategies
for ranking rules (e.g. confidence rating for rules) and composing the final solutions
compared to ours.

McSherry’s [4] CREST (Case-based Reasoning for ESTimation) provides another
approach to generating adaptations from case differences. Given a case to adapt, Mc-
Sherry’s difference heuristic attempts to retrieve a case which differs from the input
query only in the value of a single feature, called the distinguishing attribute. Next, a
pair of cases with the same values for the distinguishing attributes as the query and (re-
spectively) the case to be adapted are retrieved, and the solution of the retrieved case
is adjusted based on their difference. Because more than one similar case may be re-
trieved for an input query, the final estimation of the target value can be calculated by
averaging different estimations, generated by the same method. McSherry’s method is
similar to EAR’s local approach, in generating adaptations based on neighbors to the
input query. However, CREST adjusts the solutions of each base case by applying a
single adaptation, while EAR uses an ensemble of adaptations.

McDonnell and Cunningham [5] refine the case difference heuristic to address two
problems. The first is that the effect of variations in feature values on the solution may
differ according to the feature considered. The second is that the effect of variations in
a feature value on the solution may depend upon the values of other case features. Their
method generates adaptations by comparing the input query to nearby cases, selecting
cases for which the gradient is similar to the target case (using local linear regres-
sion to approximate the gradients), and deriving adaptations from those cases. This ap-
proach is in the spirit of EAR’s context-based approach but not applied to ensembles of
adaptations.

Learning Adaptation Rules from Linear Regression. Patterson et al. [16] propose
a rule acquisition process based on k-NN and regression analysis. Given a new prob-
lem, the k nearest neighbors are retrieved and combined in a new generalized case in
which features are the distance-weighted average of the individual case features. The
k nearest neighbors are also used to train a linear regression model for predicting the
difference between case solutions, which is applied to the generalized case to predict
the target value for the input. Like EAR, this method uses a lazy approach for gener-
ating adaptations; it differs in that it relies on linear regression and single adaptations

Extending Case Adaptation with Ensembles of Rules 201

for generating and applying adaptations, instead of case differences and ensemble of
adaptations, respectively.

Other Adaptation Learning Models for Case-Based Regression. Adaptation learn-
ing for regression also includes methods not based on direct case comparisons. Policas-
tro et al. [17] propose a method for learning and applying adaptation knowledge from
a case base by using two components, estimators and combiner. As estimators they use
a multi-layer neural network, an M5 regression tree, and a support vector machine. As
combiners, they consider the same three techniques, applied to combine the estimators’
values.

Craw et al. [18], Jarmulak et al. [19], and Wiratunga et al. [20] propose automated
acquisition of adaptation knowledge by repeatedly partitioning the case base to form a
small set of probe cases, retrieving k similar cases for each probe case, and building
adaptation rules based on pairs of probe cases and their top k neighbors. For each set,
their method creates rule sets, each one containing adaptation cases that concentrate on
differences for a single feature. From those, their method selects rules whose decision
tree indexes have above-average predictive accuracy. An initial solution is generated by
averaging, with possible refinement by adaptation rules each addressing differences in
a single feature.

6 Conclusions and Future Research

This paper has introduced EAR, an approach for automatically generating sets of adap-
tation rules from a case base based on case differences and selecting ensembles of
adaptations to apply. An experimental evaluation of nine variants of the EAR approach
showed that EAR variants generally increased accuracy over baseline case-based
regression and linear regression approaches, and that rule generation based on local
information was sufficient to obtain accuracy competitive with the best performance
obtained. Likewise, an ablation study provided support for the benefit of EAR’s context-
based rule ranking approach.

Opportunities for future research include developing more sophisticated adaptation
selection and combination techniques, exploring other ensemble methods for the gener-
ation and combination of adaptations, and examining how EAR could apply to
knowledge-rich domains. Yet another direction for extending this work is considering
the confidence of cases to adapt and the adaptation rules in EAR. That is to some ex-
tent explored in [21]. Also the question of comparative benefit of using local vs. global
adaptations is an interesting one for future research.

References

1. Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher,
M., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision, and
retention in CBR. Knowledge Engineering Review 20(3) (2005)

2. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine Learning 6(1),
37–66 (1991)

202 V. Jalali and D. Leake

3. Hanney, K., Keane, M.: The adaptation knowledge bottleneck: How to ease it by learning
from cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 359–370.
Springer, Heidelberg (1997)

4. McSherry, D.: An adaptation heuristic for case-based estimation. In: Smyth, B., Cunning-
ham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 184–195. Springer, Heidelberg
(1998)

5. McDonnell, N., Cunningham, P.: A knowledge-light approach to regression using case-based
reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS
(LNAI), vol. 4106, pp. 91–105. Springer, Heidelberg (2006)

6. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

8. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets. In: Proc.
15th International Conf. on Machine Learning, pp. 37–45 (1998)

9. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
10. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
11. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
12. Cunningham, P., Zenobi, G.: Case representation issues for case-based reasoning from en-

semble research. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080,
pp. 146–157. Springer, Heidelberg (2001)

13. Arshadi, N., Jurisica, I.: An ensemble of case-based classifiers for high-dimensional biolog-
ical domains. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620,
pp. 21–34. Springer, Heidelberg (2005)

14. Li, H., Sun, J.: Case-based reasoning ensemble and business application: A computational
approach from multiple case representations driven by randomness. Expert Systems with
Applications 39(3), 3298–3310 (2012)

15. Wilke, W., Vollrath, I., Althoff, K.D., Bergmann, R.: A framework for learning adaptation
knowledge based on knowledge light approaches. In: Proceedings of the Fifth German Work-
shop on Case-Based Reasoning, pp. 235–242 (1997)

16. Patterson, D., Rooney, N., Galushka, M.: A regression based adaptation strategy for case-
based reasoning. In: Proceedings of the Eighteenth Annual National Conference on Artificial
Intelligence, pp. 87–92. AAAI Press (2002)

17. Policastro, C.A., Carvalho, A.C., Delbem, A.C.: A hybrid case adaptation approach for case-
based reasoning. Applied Intelligence 28(2), 101–119 (2008)

18. Craw, S., Jarmulak, J., Rowe, R.: Learning and applying case-based adaptation knowledge.
In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 131–145.
Springer, Heidelberg (2001)

19. Jarmulak, J., Craw, S., Rowe, R.: Using case-base data to learn adaptation knowledge for
design. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence,
IJCAI 2001, vol. 2, pp. 1011–1016. Morgan Kaufmann Publishers Inc. (2001)

20. Wiratunga, N., Craw, S., Rowe, R.: Learning to adapt for case-based design. In: Craw, S.,
Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 421–435. Springer, Heidel-
berg (2002)

21. Jalali, V., Leake, D.: On deriving adaptation rule confidence from the rule generation process.
In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 179–187. Springer,
Heidelberg (2013)

http://archive.ics.uci.edu/ml

iCaseViz: Learning Case Similarities through

Interaction with a Case Base Visualizer

Debarun Kar, Anand Kumar, Sutanu Chakraborti, and Balaraman Ravindran

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai- 600036, India

{debarunk,anandkr,sutanuc,ravi}@cse.iitm.ac.in

Abstract. Since the principal assumption in case-based reasoning
(CBR) is that “similar problems have similar solutions”, learning a suit-
able similarity measure is an important aspect in CBR. However, learning
case-case similarities is often a non-trivial task and involves significant
amount of domain expertise. Most techniques that arrive at a pertinent
similarity measure are often incomprehensible to the domain experts.
These techniques also rarely enable the user to provide expert feedback
which can then be utilized to develop better similarity measures. Our
work attempts to bridge this knowledge gap by developing an iterative
and interactive visualization framework called iCaseViz which learns the
domain experts’ notion of similarity by utilizing the user feedback. This
work is different from similar work in other communities in the sense that
it is tailored to cater to the needs of a system built primarily based on
the CBR hypothesis. The case base visualizer demonstrated in this pa-
per is also very efficient as it has insignificant delay during real-time user
interaction on large case bases. We provide preliminary results on the ef-
ficiency of the visualizer and the effectiveness of our similarity learning
algorithm on UCI datasets and a real world high dimensional case base.

1 Introduction

In the past decade the emergence of vast collections of data from various sources
has resulted in researchers exploring different avenues of data analysis. Most of
the datasets, like the astronomical, textual and social networks data, are high-
dimensional which makes interpretation and analysis difficult, even for the do-
main experts. Different research communities have thus focussed on developing
techniques to explore the huge amount of hidden information in the data. Sta-
tistical and machine learning techniques are often employed to gain meaningful
insights about the data. However, the knowledge possessed by domain experts
are mostly left unutilized in these kinds of information extraction processes. This
is because it is difficult for them to interpret the data while manipulating cer-
tain unknown parameters. Similar issues are encountered in case base reasoning
(CBR) when trying to mine meaningful information, like the identification of
important features, from large and noisy case bases, like textual case bases.

Case base visualization is therefore important to make sense of the underlying
representation of the data and to facilitate analysis. A domain expert can use

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 203–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

204 D. Kar et al.

the knowledge acquired from the visualization to reform his understanding of
the data and make informed decisions regarding certain aspects of the data, like
the identification of noisy cases and attributes in a case base. The importance of
case base visualization and several CBR visualization techniques has been the
topic of discussion in the past. However, most of these visualizers do not support
interaction with the user, in the sense that the user cannot manipulate elements
in the visualization to obtain a refined representation. This is mostly due the fact
that real-time interaction with a visualizer is either very slow or not supported
when dealing with data sets with large number of cases and attributes. This
prevents the user from further analysis and gaining deeper insights about the
data. Also, it is not always clear how to elicit user feedback. In this paper we
present an application that allows the user to visualize and iteratively interact
with it and then utilize the user feedback for effective and efficient multi-variate
data analysis.

CBR systems are primarily built on the hypothesis that “similar problems
have similar solutions”. However, identifying the most appropriate similarity
measure for a given case base is often a non-trivial task and requires significant
amount of domain knowledge. The failure to encode a suitable similarity mea-
sure results in incorrect retrieval of cases. This, in turn, leads to poor quality
solutions and the failure of a CBR system as a whole. Therefore, it is sometimes
important to involve the domain experts in the process of explicitly specifying
the similarity between two cases in a case base. However, reviewing the similarity
between all pairs of cases as computed by a pre-determined similarity measure
and modifying the incorrect similarities is an incredibly arduous, if not infeasi-
ble, task especially if the case base consists of a large number of cases. Also, the
notion of similarity between cases cannot always be explicitly stated. The qual-
itative notion of similarity can be captured by showing two cases to the users
and allowing them to manipulate a slider, specifying the extent of similarity on
a normalized scale, say 0 to 1. However, doing this for every pair in a large case
base is also laborious and time consuming. Moreover, the case base may contain
noisy samples due to erroneous recording of past experiences. It is therefore im-
portant to identify and eliminate such noisy cases so as to form a case base which
is representative of the problem solving domain under consideration. With the
help of our visualizer and the user feedback we will attempt to learn a suitable
similarity measure and also recognize noisy cases and eliminate them as part of
the case base maintenance procedure.

In this paper, in order to learn a new set of similarities between cases we will
learn an appropriate set of feature weights. We will see in the subsequent sections
how we perform feature weighting to obtain an estimate of the relative impact
of each feature on a particular target variable and also to compute the suitable
global similarity between cases. For large number of features, this automated
learning of feature weights not only spares the domain expert from manually
encoding the weight of each feature, but it is also applicable in situations where
the importance of every feature is unknown even to the experts.

iCaseViz: Learning Case Similarities 205

The main motivation for our work comes while trying to find an important
set of features and a suitable similarity measure for the soil nutrients’ prediction
task using a CBR system called InfoChrom [1]. In our previous work [2], we
attempted to solve the problem of feature weighting by using alignment as a
guiding measure. However, we were still unable to exploit the domain experts’
knowledge of similarity between the cases present in the case base of InfoChrom.
Due to the presence of a large number of cases (15167) in a high dimensional
(176) feature space, the problem of manually encoding the relative similarities
between cases became an uphill task. In this paper we attempt to address this
problem by focussing on two important issues. Firstly, we want to emphasize
the need for an interactive case base visualization tool which is efficient for large
case bases. Secondly, we want to present a way to utilize user feedback from the
visualizer to learn the domain experts’ notion of similarity by finding a suitable
set of feature weights. In Section 2, we discuss related work regarding visual-
ization and similarity learning. We present the algorithm used by iCaseViz to
revise the similarity measure in Section 3. In Section 4, we describe our appli-
cation framework, its various components and the process of interaction with
the visualizer. This is followed by preliminary experimental results and analysis
on UCI data sets and the case base of InfoChrom in Section 5. Finally, we con-
clude by discussing how our work is different from a similar existing work and
by describing a few possible extensions of our work in Section 6.

2 Related Work

Encoding a suitable similarity measure for a given data set has been an active
research topic in several AI communities, like machine learning, case-based rea-
soning and data mining. Some papers focus on learning similarity measures by
computing a set of relevant feature weights and combining the weighted feature
level similarities to arrive at a global similarity measure. Our approach to learn-
ing similarity is based on the above idea. Research on feature weight learning
primarily focusses on eliminating the “curse of dimensionality” problem for k-
nearest neighbor (k-NN) based approaches by finding features which are more
important than others for a particular prediction task [3–7]. An informative
survey of similarity mechanisms in case base reasoning can be found in [8].

Past work on information visualization focuses mainly on visualizing high di-
mensional data with the help of Parallel Coordinates (PC) andMulti-Dimensional
Scaling (MDS) plots. PC [9] draws features or coordinates as lines, parallelly and
equidistant to each other (Fig. 1). A point in the n-dimensional coordinate space
is drawn as a polyline in the PC plot, where the polyline connects all the parallel
axes. Therefore, this parallel coordinates representation in 2-d space enables us
to view and find complex patterns in multivariate datasets. However, the biggest
drawback of this technique is that the PC plot becomes cluttered as the number
of data points and the number of coordinates increase. This hinders the user from
gaining any insightful patterns about the data being viewed. PC has been used
in case base visualization in [10]. This work also addressed the problem of axes

206 D. Kar et al.

reordering by utilizing feature similarities. Falkman [11] presents a visualization
tool that projects cases onto a three dimensional PC plot.

Work involving lower dimensional projections in visual data analytics mostly
involves projection using MDS [12]. This includes several spring layout based vi-
sualizations for clustering problems as well as applications to manipulate certain
parameters to modify the visualization [13–18]. The task of feature selection and
distance function learning using 2-d projection has been most recently addressed
in [19]. Other past research on case base visualization which are closely aligned
with our work include [20, 21], which uses a force-directed graph drawing algo-
rithm for visualizing an evolving case base. Cbtv [22] allows the user to visualize
the effect of several similarity measures on a case base. Other related work on
the same topic include [23–25].

3 Our Approach to Learning Similarity

Learning similarity with the help of our visualizer is an iterative process and the
steps are explained in detail in Sections 3.1, 3.2, 3.3 and 3.4. Let us assume that
we are given a set of N cases C1, C2,..., CN , with the problem space P consisting
of the values of q features F1, F2, ..., Fq and the solution space S consisting of
the target variable T. Also, let the weight of feature Fi be wi (1 ≤ i ≤ q), where
0 ≤wi ≤ 1. Then we calculate the dissimilarity in the problem space between
two cases Ca and Cb as the weighted sum of their feature space dissimilarities:

DisSimP (Ca, Cb,w) =

q∑
i=1

wi ∗DisSimF (Cai, Cbi) (1)

where, DisSimF(Cai,Cbi) denotes the dissimilarity between the corresponding
values of feature Fi for the cases Caand Cb, and is computed as follows:

DisSimF (Cai, Cbi) =
DistF (Cai, Cbi)−Min(DistFi)

Max(DistFi)−Min(DistFi)
(2)

Here, DistF(Cai,Cbi) denotes the city-block distance between the values Cai and
Cbi. Max(DistFi) and Min(DistFi) are the maximum and minimum distances
between all pairs of values for feature Fi respectively. The target space dissimi-
larity between any two cases is calculated in the same way and is represented as
DisSimS(Ca,Cb). Please note that our formulation of feature space dissimilarity
is such that the feature space similarity between two cases Cai and Cbi for fea-
ture Fi will be (1-DisSimF(Cai,Cbi)). The overall similarity between two cases
can then be computed as the weighted sum of these feature space similarities. In
our application, we work with dissimilarities between cases so that we can use
in-built Matlab functions which takes a dissimilarity matrix as an argument, to
perform the projection in Section 3.1.

3.1 Projecting the Case Base in Two Dimensions

We use classical multi-dimensional scaling (MDS) to project the high-dimensional
case base onto two dimensions and show the output to the user in the form of

iCaseViz: Learning Case Similarities 207

a scatter plot. The MDS algorithm is provided with a dissimilarity matrix con-
taining the dissimilarities between case pairs, computed in the original high di-
mensional space based on the current measure of dissimilarity. It then attempts
to find a projection in lower dimensions that best preserves the relative dissim-
ilarity between the cases. We use the MDS plot to help the user visualize the
relative dissimilarities between the cases in the original high dimensional space.
We also color the points in this MDS plot for effective visualization and analysis.
The coloring scheme for the cases is discussed in Section 4.1.

3.2 User Action

The application provides the user with the capability to select any case from
the scatter plot and move it, thus changing the relative similarities between the
selected case and other cases in the case base. The facility to select multiple cases
together and move them in the plot is also provided. This will affect the relative
dissimilarities between the selected set of cases and all other cases in the case
base, while the relative dissimilarities between the untouched cases remains the
same. More details about the features that are incorporated in the application
can be found in Section 4.1.

3.3 Capturing the Experts’ Notion of Similarity

Once the user has changed the relative dissimilarities between the cases, we
obtain the new locations of the cases in the 2-d scatter plot and compute the
Euclidean distance between every pair of cases in the case base. This gives us
an estimate of the domain experts’ notion of similarity between the cases.

3.4 Feature Weighting and Similarity Learning

Once the user has modified the relative dissimilarities between the cases, the
system solves an optimization problem to learn an appropriate feature weight
vector w. These relative importance values for each feature denoted as wi (1 ≤
i ≤ q) are then used to derive new dissimilarity values with the help of Eqn. 1.

In order to obtain the revised feature weight set wt at time t, we solve the
optimization problem as specified by Equation 3. For every pair of cases Ci

and Cj , we take the squared difference between the user specified dissimilarities
DisSimPuser(Ci, Cj) as obtained by the users’ modification of the scatter plot
and the dissimilarities DisSimP (Ci, Cj ,w) in the high dimensional space ob-
tained for a particular weight vector w. Alignment measures the extent to which
the similarity hypothesis holds good in a particular case base. Local alignment
measures this property of the case base in the neighbourhood of a particular case
while global alignment is measured across the entire case base. Now, consider
the scenario where the user moves all cases which are highly similar both in the
problem and solution spaces to a single point. This is clearly not desirable even
though this increases the local as well as the global alignment. Thus the need to

208 D. Kar et al.

preserve the structure in the original data in terms of inter-case similarities might
pose a threat to the goal of improving the alignment. We devise the objective
function to capture the tradeoff between these conflicting requirements. Now,
consider another situation where the user moves two cases, which are highly
similar both in the problem and solutions spaces, too far apart from each other.
This will decrease the alignment and is also undesirable. To discourage the user
movements as explained in the above two scenarios, we give weights to each of
the squared difference terms in Equation 3. This is an important design step
in our application. To do this, we first compute the complexity between two
cases Ci and Cj as the product of their problem and solution side dissimilarities
(Equation 6), normalize it (Equation 5) and replace the value thus obtained in
Equation 4. The hyperbolic tangent function is used in Equation 4 as a smooth-
ing function. The trade-off term will ensure that the squared difference term in
Equation 3 receives less importance if the value of complexity between two cases
is low and vice versa. Thus, if the user moves two cases, which are already highly
similar both in the problem and solutions spaces, too close or too far apart from
each other, the tradeoff term (Eqn. 4) will ensure that the movement receives less
weight. Therefore, by incorporating the tradeoff term, random movements in the
case space is prevented and the global structure of the case base is maintained
in accordance with the CBR hypothesis.

wt = argmin
w

(
∑

i≤j≤N

(tanh(Compnorm
ij)∗(DisSimPuser(Ci, Cj)−DisSimP (Ci, Cj ,w))2))

(3)
subject to wi ≥ 0, (1 ≤ i ≤ q)

tanh(Compnorm
ij) = (2/(1 + exp(−2 ∗ Compnorm

ij)))− 1 (4)

Compnorm
ij =

Compij −Min(Compij)

Max(Compij)−Min(Compij)
(5)

Compij = DisSimP (Ci, Cj) ∗DisSimS(Ci, Cj) (6)

4 The iCaseViz Application Framework and Its
Components

This section describes the different components of our application and the fea-
tures provided to the user. We also discuss the implementation details and how
we obtain fast responses while loading and interacting with the data as compared
to similar existing tools. It is divided into two sections: the visualizer (Sec. 4.1)
and the analyzer (Sec. 4.2).

4.1 The Visualizer

The visualizer portion of the application is written in C++ using the Qt open
source library. It has two main modules: the Parallel Coordinates (PC) visualizer

iCaseViz: Learning Case Similarities 209

Fig. 1. The Parallel Coordinates visualizer

Fig. 2. The MDS Scatter Plot visualizer

(Figure 1) and the Scatter Plot visualizer (Figure 2). The PC module allows one
to reposition axis, change the spacing between axes, zoom along the X and Y
axes independently and scroll horizontally and vertically. It is also capable of
displaying axis specific information like the axis name when one selects an axis.
The Scatter Plot module displays an interactive two dimensional plot. One can
move the cases around and save the resulting plot data to a file. The Scatter
Plot gives the user multiple options to select the cases:

210 D. Kar et al.

Fig. 3. A zoomed view of the MDS Scatter Plot visualizer. In the left view, two test
cases (green in the visualizer) are circled to show that these were misclassified (into
the class represented by the color green). The right view shows the MDS plot after
a few iterations. The same circled cases (represented in black color in the visualizer)
have now been correctly classified.

– Click on a case and it gets highlighted.
– Hold down the CTRL key and click on multiple cases to select.
– Select by dragging a selection box around a group of cases.
– Select all cases that are of the same colour.
– Select cases of only a given colour from currently selected set of cases.

Our 2-dimensional Scatter Plot has an additional feature in terms of the pro-
jection, which is missing from the earlier work on the same topic. In addition
to the cases in the case base, we also project the test cases onto this 2-d space.
The Scatter Plot visualizer represents cases in the case base as circles and the
test cases as squares. The cases in the case base are colored both in the PC
and Scatter Plot visualizer and their color is determined by the solution side
similarity between the cases. Test cases whose solutions are satisfactory to the
user are colored black while the other cases are colored according to the color
of the case whose solution is most similar to the proposed solution of that case.
For example, in the case of classification tasks, each class can be represented by
a particular color as shown in Figures 1 and 2, which displays the Iris dataset
from the UCI repository. The correctly classified test samples are colored black
while the incorrectly classified test cases has the same color as the class it has
been classified into. This enhances the visualization by providing additional in-
formation to the domain expert in the form of relative dissimilarities between
the cases in the case base and the test cases. He gets an idea about the quality
of the current similarity metric by not only viewing the relative positions of the
cases but also the quality of the solutions produced for the test cases as can
be seen by the color of a particular case. However, the test cases are only for
viewing purpose and cannot be moved around in the scatter plot. Note that
even if the expert is aware of the quality of solutions of the test cases, improving
it cannot be enforced by arbitrarily moving the cases around. This is because

iCaseViz: Learning Case Similarities 211

of the tradeoff term in Section 3.4. So the cases in the case base have to be
moved around so that some latent notion of similarity is captured. Hence this
is a valuable technique even though the test data is shown to the user. Two
zoomed views of the MDS Scatter Plot are given in Figure 3. The view on the
left highlights two misclassified test cases and the right view highlights the same
cases after a few iterations, when they have been correctly classified. Note that
one iteration corresponds to a single user interaction with the MDS plot. This
figure also displays the various components as tabs which the user can use during
the interaction. The two visualizer modules are linked to each other. So when
the user selects case(s) on the Scatter Plot, the corresponding polyline(s) on the
PC plot is highlighted. Our PC visualizer thus provides a consolidated view of
the entire case base and cases of interest across multiple dimensions and aids the
domain expert in his interaction with the MDS Scatter Plot. Discussion of the
implementation details of the two visualization components is provided below.

Parallel Coordinates Visualizer: The PC Visualizer reads data in CSV
format. The first row is expected to be the headings row, for example the names
of the features. Each subsequent row is expected to have an extra column that
gives the quality of the solution for the corresponding case, represented by a
particular colour. Figure 4 shows the sequence of activities that lead to the
image getting drawn on screen. Once the data is loaded, a layout is created. The
height of the layout is determined by the axis that has the largest range. The
inter-axis interval and the number of axis determine the length of the canvas.
This canvas is logically split into canonical rectangles the size of the viewing
area (dimensions of the viewing windows scaled according to zoom factors). This
means the visible rectangle on screen (determined by zoom setting and position
of the scroll bars) can be made of at most four adjacent canonical rectangles.
The canonical rectangles’ dimensions change when the view is zoomed in or out.
For large datasets, to make the application responsive, these canonical rectangles
are cached. This allows the application to save time spent on repetitive drawing.

MDS Plot Visualizer: The scatter plot is realized using the capabilities of
QGraphicsScene and QGraphicsView. The Qt Graphics View framework allows

Fig. 4. Sequence of activities for the Parallel Coordinates visualizer

212 D. Kar et al.

the developer to describe a scene in terms of its constituent items. The frame-
work allows for easy implementation of user interaction with object like selection
and moving objects through Qt’s event system.

In our implementation, the Scatter Plot modules load data from the files into
a QGraphicsScene. This scene is attached to a view that displays the contents
of the scene. The Scatter Plot is linked to the PC visualizer through the event
system. Whenever the user selects cases in the scatter plot, a signal is passed to
the PC module indicating the change in status. This in turn marks the appro-
priate polyline as selected, resulting in a change in its colour. The image cache
is purged and the view is redrawn to show the change.

4.2 The Analyzer

The analyzer module uses Matlab to perform the data analysis task. This in-
volves, among other things, computing the dissimilarity between pairs of cases
and finding the most similar cases to suggest a solution. We have used in-built
Matlab functions to perform MDS. To solve the optimization problem in Equa-
tion 3, we use the default solver (SDPT3) in CVX, a Matlab-based convex op-
timization tool for specifying and solving convex programs [26, 27]. We have
found that SDPT3 is slow when we are working with large case bases and we are
currently looking for fast solvers to enhance the performance of our application.

5 Evaluation

All our experiments have been conducted on an Intel Core i5 processor (M450
2.40 GHz) with 4GB RAM and 64-bit Windows 7 operating system. In our
experiments we use k-NN based retrieval strategy to propose a solution for a
test case. We calculate its dissimilarity with all the other cases in the case base
using Equation 1. Then we obtain the solution for the test sample by taking a
weighted average of the solutions of its k nearest neighbors, with the problem
side dissimilarities acting as weights. Please note that we have considered wi

= 1 (1 ≤ i ≤ q) when no feature weighting is employed while calculating the
dissimilarity between the cases.

5.1 Datasets

To demonstrate the efficiency of the visualizer and the effectiveness of our weight
learning algorithm, we experimented on classification data sets from the UCI
machine learning repository and a subset of the case base of InfoChrom. The
InfoChrom case base originally contains 15167 cases represented in terms of 176
features and we have to predict the values of 15 target variables. In this paper
we provide prediction results for one target variable with a subset of 250 cases
in the original 176 dimensional feature space. We averaged the performance
results over 5 random train-test splits with 70% of the original data used as
the case base and the rest form the test cases. All results are reported with
the value of k set to 3. For the data sets referred to in this paper, a brief

iCaseViz: Learning Case Similarities 213

Table 1. Characteristics of the UCI data sets used for evaluation purposes

Data set Kind of
Prediction Task

Number of
Features (all
continuous)

Number of Classes
(for Classification)

/ Range of the target
variable (for Regression)

Iris Classification 4 3
Glass

Identification
Classification 9 7

Waveform-21 Classification 21 3
InfoChrom Case Base Regression 176 26-246

description about the number and types of features and target variables are
shown in Table 1. We measured performance in terms of classification accuracy
and percentage error for classification and regression tasks respectively. Due to
the lack of domain knowledge for the UCI data sets, the user interacted with
the application based on the class information of each case, as indicated by the
colour. For the InfoChrom case base, the users utilized their domain expertise
to move the cases in the MDS plot.

5.2 Experimental Results and Observations

Figures 5 and 6 show the change in performance of iCaseViz on the Iris and
Glass Identification data and the InfoChrom case base over several iterations. It
is evident from the figures that as the domain expert interacts more with the
system and the notion of similarity as captured by the system evolves, there is
a noticeable improvement in performance of the system. For the case bases used
to demonstrate the effectiveness of our similarity learning algorithm, we show
the correlation between the dissimilarities in the original and MDS spaces in

0 1 2 3 4
93

94

95

96

97

98

99

100

Iterations

A
cc
u
ra
cy

(a) Iris

T1

T2

T3

T4

T5

0 1 2 3 4 5 6 7 8 9 10
45

50

55

60

65

70

75

Iterations

A
cc
u
ra
cy

(b) Glass Identification

T1

T2

T3

T4

T5

Fig. 5. Performance of iCaseViz on (a)Iris and (b)Glass Identification data sets. T1-T5
indicate 5 different random test sets. Note that in (a), the performance curve for T1 is
not clearly visible as portions of it have merged with those of T3 and T4.

214 D. Kar et al.

0 1 2 3 4 5 6
18

23

28

33

38

43

Iterations

P
er
ce
n
ta
g
e
E
rr
o
r

T1

T2

T3

T4

T5

Fig. 6. Performance of iCaseViz on a subset of the InfoChrom case base for predicting
the target variable ‘potassium’. T1-T5 indicate 5 different random test sets.

Table 2. Correlation between dissimilarities calculated in original and MDS spaces

Data Set Correlation

Iris 0.9905

Glass Identification 0.9188

InfoChrom Case Base 0.8563

Table 3. The time taken (in milliseconds) by various components of the visualizer. ε
indicates that the time taken is negligible (of the order of nanoseconds).

Data set
Parallel Coordinates Plot Scatter

Plot
Reading
from file

Layout
the data

Decide
what to
put on
display

Filter the
polylines

Draw onto
memory
image and
display on
screen

Reading
from file,
creating
object &
adding to
QGraphics

Scene

Iris ε ε ε ε 5 56

Glass Identification ε ε ε ε 11 4

Waveform-21 ε ε ε 6 202 126

InfoChrom Case Base ε ε ε ε 109 94

Table 2. These correlations show the extent to which the MDS algorithm main-
tains the relative dissimilarities of the original space, when projecting it to two
dimensions.

We also report the time taken, in milliseconds, by the various components of
the visualizers to display on a screen with a resolution of 1366 x 768, when the
display window is maximized. We can see from Table 3 that the time taken are
negligible and therefore the system is well-suited for real-time interaction, even

iCaseViz: Learning Case Similarities 215

on large case bases. Also, we noted that the response time of our system for user
movements on the PC as well as the MDS plot is of the order of nanoseconds.

6 Conclusions and Future Work

In this paper, we have introduced iCaseViz, an interactive visualization frame-
work that not only shows the relative positions of the cases in the original high
dimensional problem space by projecting them onto a lower dimensional space
but also lets the user explore this space by allowing them to change the rela-
tive similarities between the cases. Both the notions of problem side similarity
and solution side similarity are captured by this visualization technique. This
is coupled with a CBR centric optimization function that learns the domain
experts’ notion of similarity by arriving at an optimal set of feature weights.
This work attempts to bridge the gap between the experts’ knowledge about
the problem domain and the case-based reasoning methodology by providing
an iterative and interactive visualization application. The weighting term in the
optimization function ensures that even though the domain expert is given the
freedom to change the relative similarities between cases, attempts to modify the
similarities in a way which destroys the inherent structure of the case base to a
large extent, are strongly discouraged by the system. This contributes towards
making the system robust to any unwarranted changes. We also show that the
system is able to learn a suitable set of feature weights very fast over a small
number of iterations, not only for UCI datasets but also for high dimensional
real world data, as is evident from the performance graphs. The visualizer in
its current format can handle case bases with more than 20,000 cases and over
175 features very easily and with minimal delay in response during interactions.
This is a significant development over previous applications which became unre-
sponsive and most often even failed to load case bases with around 10,000 cases
represented in terms of around 15 features.

Our work is most similar to [19] as we have a common objective of interacting
with an MDS plot to learn a dissimilarity measure by finding an appropriate set
of feature weights. However, our work is different from [19] in a lot of aspects.
Firstly, our work is more CBR-specific in the sense that we discourage the users
from making any updates that can possibly lead to a configuration where the
CBR hypothesis is violated both locally and across the entire case base. We do
this by introducing a tradeoff term that prevents a potential decrease in the
alignment of the case base. Dis-Function [19], on the other hand, provides an
inertia against any updates made by the expert to the MDS plot. Secondly, in
[19], a user is only allowed to select two sets of points and change the relative
distances between them, while in our work we allow the expert to select any
number of cases and modify the relative dissimilarities between those and the
remaining cases in the case base. So, once the cases are moved, the user has
an idea about the relative positions of all the cases in the case base which he
is going to see in the next update. Since we also show the test cases, colored
according to the quality of their solutions, along with the cases in the case base,

216 D. Kar et al.

this gives the domain expert a global picture at any point of time and thus helps
him make informed decisions.

In the future we would like to perform more experiments on large case bases
with various fast optimization problem solvers. This is because the current solver
we are using is slowwhenworkingwith large datasets and therefore the application
takes time to compute the revised similarity values once the expert is done with the
modifications. Also, currently the expert can only use the PC visualizer for view-
ing the data at several zoom levels and can re-position the axes in any order and
with arbitrary gaps between them. We are looking to develop on this by providing
an innovative visualization scheme based on parallel coordinates that will enable
further interaction with the PC plot. Also, other modules are being developed and
integrated with the existing tool which will provide additional information about
the cases selected in the MDS plot. For example, a data viewer module will show
the cases in terms of the features and their corresponding values. Selected cases
will be highlighted in the data viewer. For the InfoChrom case base, where each
case is a chromatogram image, an additional module to show the chromatogram
for a selected case is being developed. We would also like to find out the utility of
the PC visualizer in terms of the extent to which it aids the user in making de-
cisions. This can be done by comparing the performance of the system when the
PC plot is shown to the user as compared to when it is not. An integrated visu-
alization and analysis application can then be built with further options to delete
noisy cases and attributes, with the changes reflecting instantaneously in the PC
and MDS visualizers. We are also interested in exploring various ways to learn a
suitable kernel for a case base by using the expert information obtained through
interaction with the scatter plot. We believe that encoding domain knowledge in
the kernel function will be the key towards developing more accurate similarity
measures for a particular prediction task.

References

1. Khemani, D., Joseph, M.M., Variganti, S.: Case based interpretation of soil chro-
matograms. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS (LNAI), vol. 5239, pp. 587–599. Springer, Heidelberg (2008)

2. Kar, D., Chakraborti, S., Ravindran, B.: Feature weighting and confidence based
prediction for case based reasoning systems. In: Agudo, B.D., Watson, I. (eds.)
ICCBR 2012. LNCS, vol. 7466, pp. 211–225. Springer, Heidelberg (2012)

3. Aha, D.W.: Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. Int. J. Man-Mach. Stud. 36(2), 267–287 (1992)

4. Wettschereck, D.: A study of distance-based machine learning algorithms. Ph.D.
dissertation, Department of Computer Science, Oregon State University (1994)

5. Wettschereck, D., Aha, D.W.: Weighting features. In: Aamodt, A., Veloso, M.M.
(eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995)

6. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of
feature weighting methods for a class of lazy learning algorithms. Artif. Intell.
Rev. 11(1-5), 273–314 (1997)

7. Stahl, A.: Learning feature weights from case order feedback. In: Aha, D.W., Wat-
son, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 502–516. Springer, Hei-
delberg (2001)

iCaseViz: Learning Case Similarities 217

8. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Transactions on Knowledge and Data Engineering 21(11), 1532–1543 (2009)

9. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-
dimensional geometry. In: Proceedings of the 1st Conference on Visualization 1990,
VIS 1990, pp. 361–378. IEEE Computer Society Press (1990)

10. Massie, S., Craw, S., Wiratunga, N.: Visualisation of case-based reasoning for ex-
planation. In: Proceedings of ECCBR Workshop, Madrid, pp. 135–144 (2004)

11. Falkman, G.: The use of a uniform declarative model in 3D visualisation for case-
based reasoning. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI),
vol. 2416, pp. 103–117. Springer, Heidelberg (2002)

12. Borg, I., Groenen, P.: Modern Multidimensional Scaling: theory and applications.
Springer (2005)

13. Broekens, J., Cocx, T., Kosters, W.A.: Object-centered interactive multi-
dimensional scaling: Ask the expert. In: Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligencem, BNAIC (2006)

14. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H.: Xgvis: Interactive
data visualization with multidimensional scaling. Technical report (2001)

15. desJardins, M., MacGlashan, J., Ferraioli, J.: Interactive visual clustering. In: Pro-
ceedings of the 12th International Conference on Intelligent User Interfaces, IUI
2007, pp. 361–364. ACM, New York (2007)

16. May, T., Bannach, A., Davey, J., Ruppert, T., Kohlhammer, J.: Guiding feature
subset selection with an interactive visualization. In: IEEE VAST, pp. 111–120
(2011)

17. Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-
level interaction with statistical models for visual analytics. In: IEEE VAST,
pp. 121–130 (2011)

18. Okabe, M., Yamada, S.: An interactive tool for human active learning in con-
strained clustering. Journal: Emerging Technologies in Web Intelligence 3(1) (2011)

19. Brown, E.T., Liu, J., Brodley, C.E., Chang, R.: Dis-function: Learning distance
functions interactively. In: IEEE VAST, pp. 83–92 (2012)

20. Smyth, B., Mullins, M., McKenna, E.: Picture perfect: Visualisation techniques for
case-based reasoning. In: ECAI, pp. 65–72 (2000)

21. McArdle, G., Wilson, D.: Visualising case-base usage. In: Workshop Proceedings
ICCBR, pp. 105–114 (2003)

22. Namee, B.M., Delany, S.J.: Cbtv: Visualising case bases for similarity measure
design and selection. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 213–227. Springer, Heidelberg (2010)

23. McKenna, E., Smyth, B.: An interactive visualisation tool for case-based reasoners.
Appl. Intell. 14(1), 95–114 (2001)

24. Chakraborti, S., Cerviño Beresi, U., Wiratunga, N., Massie, S., Lothian, R., Khe-
mani, D.: Visualizing and evaluating complexity of textual case bases. In: Althoff,
K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI),
vol. 5239, pp. 104–119. Springer, Heidelberg (2008)

25. Freyne, J., Smyth, B.: Creating visualizations: A case-based reasoning perspective.
In: Coyle, L., Freyne, J. (eds.) AICS 2009. LNCS, vol. 6206, pp. 82–91. Springer,
Heidelberg (2010)

26. CVX Research Inc.: CVX: Matlab software for disciplined convex programming,
version 2.0 beta (September 2012)

27. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In:
Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in Learning and
Control. LNCIS, vol. 371, pp. 95–110. Springer, Heidelberg (2008)

A Multi-Objective Evolutionary Algorithm

Fitness Function for Case-Base Maintenance

Eduardo Lupiani1, Susan Craw2, Stewart Massie2,
Jose M. Juarez1, and Jose T. Palma1

1 University of Murcia, Spain
{elupiani,jmjuarez,jtpalma}@um.es

2 The Robert Gordon University, Scotland, UK
{s.craw,s.massie}@rgu.ac.uk

Abstract. Case-Base Maintenance (CBM) has two important goals. On
the one hand, it aims to reduce the size of the case-base. On the other
hand, it has to improve the accuracy of the CBR system. CBM can be
represented as a multi-objective optimization problem to achieve both
goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been
recognised as appropriate techniques for multi-objective optimisation be-
cause they perform a search for multiple solutions in parallel. In the
present paper we introduce a fitness function based on the Complexity
Profiling model to perform CBM with MOEA, and we compare its results
against other known CBM approaches. From the experimental results,
CBM with MOEA shows regularly good results in many case-bases, de-
spite the amount of redundant and noisy cases, and with a significant
potential for improvement.

1 Introduction

Case-Base Maintenance (CBM) has as its main goals control of the number of
cases within the case-base and maintaining the accuracy of the CBR system
to resolve problems [14]. Redundant cases have a negative impact on the per-
formance of the system, and noisy cases adversely affect the accuracy of the
proposed solutions. Therefore, CBM algorithms usually try to remove both re-
dundant cases and noisy cases.

There is a wealth of approaches to perform CBM in the literature [1,7,16,18–
22]. The CNN algorithm only deletes redundant cases, focusing on retrieval effi-
ciency [8]. The RNN algorithm extends CNN to consider noise cases as well [7].
The ENN algorithm only removes noisy cases, and RENN consists of multiple
iterations of ENN, taking the output of one repetition as an input for the fol-
lowing iteration [21]. The family of algorithms DROP1, DROP2 and DROP3
were introduced to reduce redundancy and noisy cases [22]. The DROP family
introduces the concept of associate, in an attempt to classify cases as redundant
or noisy. COV-FP algorithms [20] and ICF [1] exploit the concepts coverage and
reachability in order to reduce both the redundancy and noise levels [19].

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 218–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A MOEA Fitness Function for CBM 219

The main disadvantage of the aforementioned algorithms, with the exception
of the COV-FP series, is their sensitivity to the order in which cases are exam-
ined. That is, given the same case-base, these CBM algorithms could provide
different outcomes depending on the order of the cases in the case-base. Ad-
ditionally, another commonplace feature of all these algorithms is their greedy
approach to CBM goals, and the use of a lazy learning approach, such as k-
nearest neighbour [3]. Furthermore, since each algorithm has a fixed deletion
policy, the suitability of the algorithm to perform CBM is directly related to
the redundancy and noise levels. For instance, those algorithms focused on case
reduction underperform in cases-bases with few representative cases.

Consequently, CBM may be understood as a multi-objective optimization
problem, minimising the case-base size and error rate at the same time. However,
other objectives must be taken into consideration. In particular, it would be
useful to estimate the optimum number of cases to resolve the entire problem
domain [13], and to select a set of cases from the original case-base that maintains
or improves accuracy.

In the last decades, Multi-Objective Evolutionary Algorithms (MOEAs) have
been applied successfully in multi-objective optimization problems [2]. Therefore,
CBM could be approached as a MOEA. To this end, considering that CBM
algorithms should generate a case-base without redundant cases or noisy cases,
and that is as small as possible to resolve the entire problem domain, three
objectives based on Complexity Profiling [15] can be considered. Hence, MOEAs
should get a good well-maintained case-base irrespective of the redundancy and
noise levels of the original case-base.

In this work we propose to represent CBM as a 3-objective optimization prob-
lem, and we present a CBM algorithm based on MOEA using a novel fitness
function.

The remainder of this work is as follows: in the next section we review the
background of Complexity Profiling and the basic principles of MOEA. In sec-
tion 3 we propose a fitness function for MOEA to perform CBM. In section 4,
we evaluate the MOEA with different case-bases, and other CBM algorithms.
Finally, in section 5 we present our conclusions and future work.

2 Background

2.1 Complexity Profiling

Massie et al. [16] introduced Complexity Profiling to estimate the proportion of
redundant and noisy cases, as well as the existing error rate in the case-base.
The foundation of this approach is a local complexity, which is an approximation
to find the proportion of cases with the same solution in the nearest neighbour
set of the case. Expression 1 describes the complexity function for a case:

complexity(c, k) = 1− 1

k

k∑
i=1

p(c, i), (1)

220 E. Lupiani et al.

where k is the number of nearest neighbours to consider and p(c, i) is the pro-
portion of cases within the case’s i-nearest neighbours that belong to the same
solution as c. The codomain for complexity function is [0, 1]. The more the
complexity of a case is, the more likely the case would be noisy.

Complexity Profiling is a global measure of the case-base, and it is composed
by three different indicators:

1. the error rate is the average of all the local complexities measures;
2. the noise is the proportion of all the complexity measures with values greater

than ε; and
3. the redundancy is the proportion of all the complexity measures with values

equal to ρ.

The error, noise and redundancy are defined formally as follow:

error(M,k) =
1

|M |
∑
c∈M

complexity(c, k). (2)

noise(M,k) =
|{c ∈M |complexity(c, k) ≥ ε}|

|M | . (3)

redundancy(M,k) =
|{c ∈M |complexity(c, k) = ρ}|

|M | , (4)

where M is a case-base, c ∈ M is a case within M, and k is the number of
neighbours of c. Experiments with ε = 0.5 and ρ = 0 confirm that Complexity
Profiling is a good predictor of accuracy and noise [16].

2.2 Multi-Objective Evolutionary Algorithms

Evolutionary Algorithms (EAs) are inspired in biological evolution [9], since they
simulate biological processes to search for a solution to an optimization problem.
EAs represent the problem with a string of binary values. The string is known as
an individual, and each of its binary values as genes. For each individual the EA
applies a function known as the fitness function, which indicates the suitability
of the individual to resolve the optimization problem. The search for the best
individual is an iterative process. Starting with a set of individuals known as the
population, an EA uses three operations on it to create the next generation of
individuals: reproduction, crossover and mutation. The reproduction operation
aims to select the better individuals according to their fitness values. Crossover is
applied only to selected individuals to create new individuals, usually exchanging
their genes. Mutation flips randomly the genes of the individual to increase the
diversity of individuals. At the end of the iteration process, the individuals within
the final population are potential solutions to the optimization problem. Hence,
a strategy is needed to choose the final solution as well.

Multi-Objective Evolutionary Algorithm (MOEA) is an EA that searches for
a solution to a problem according to two or more optimization objectives. Unlike

A MOEA Fitness Function for CBM 221

EA, MOEA fitness function returns a value per each objective [23]. Expression
5 defines formally the optimization problem to minimize n objectives:

minimize(Φ(x)) = minimize(φ1(x), φ2(x), . . . , φn(x)), (5)

where x is an individual, Φ is the fitness function, and each φn is the fitness
function associated to an objective. Given the fitness values of two individuals,
it is possible to define a relation of dominance between them [5]. This dominance
determines which individual is closer to the optimization objectives. Expression
6 defines formally the relation:

x ≺ y ⇐⇒ (6)

∀φi(x), φi(y) ∈ Φ(x) : φi(x) ≤ φi(y)∧
∃φj(x), φj(y) ∈ Φ(x) : φj(x) < φj(y),

where x and y are the individuals, x ≺ y expresses that x dominates y, and n
is the number of objectives. MOEA generates generations of individuals, where
non dominated individuals have higher odds of survival.

3 Multi-objective Optimization Fitness Function for
Case-Base Maintenance

So to perform CBM with a MOEA, we need to set up the representation of the
problem. On the one hand, we need to represent a case-base as an individual
of the population. On the other hand, we need to define a fitness function to
evaluate the suitability of the individual.

3.1 Case-Base Representation

The case-base is a string of binary values that creates an individual. The length
of the string is the cardinality of the case-base. That is, each gene (binary value)
of the individual (string) represents the presence of the case in the case-base.

Let M be the original case-base, denoted by M = {c1, c2, . . . , cn}, where ci
the i-th case of M (|M | = n). The space of all possible individuals of M is
denoted by X . An individual x ∈ X is formally defined as x = x1x2 . . . xn−1xn,
where xi is the i-th gene of the individual with values of xi ∈ {true, false}.

In order to map the cases from the original case-base (M) to the elements of
the individual, we introduce the following function:

M :X → ℘(M)

M(x) = x ={ci ∈M |xi = true}. (7)

For example, given the individual x with all elements set to true, M(x) = M ,
otherwise if all elements are set to false then M(x) = ∅. For the sake of clarity,
we use the notation x as the case-base equivalent to the individual x.

222 E. Lupiani et al.

3.2 Fitness Function to Perform CBM

We propose a fitness function based on Complexity Profiling to solve an opti-
mization problem with three objectives:

1. to minimize the difference between the current number of cases in the solu-
tion and the estimated number of non redundant cases;

2. to minimize the number of redundant cases; and
3. to minimize the error rate level.

The first objective aims to estimate the minimum number of cases, the second
is focused on avoiding case-bases with redundant cases, and the third leads
the search to find a case-base with the minimum error rate. According to these
objectives, the resulting case-base is expected to have smoother frontiers between
the clusters of cases of different solutions, and with few cases within the clusters.

The formal description of the fitness function is shown as follows:

Φ : X,N→ R3 (8)

Φ(x, k) =(fsize(x, k), redundancy(x, k), error(x, k)).

Note that the domain of the fitness function is an individual x, and a natural
number k that sets the number of neighbours to consider in all the functions.

Function fsize is defined as follows:

fsize :X,N→ R (9)

fsize(x, k) = ((|M | ∗ (1 − redundancy(x, k))− length(x))2 ,

where length(x) is the number of elements of x set to true and (|M | ∗ (1 −
redundancy(M,k)) − length(x) is the distance between the current number of
cases in the solution and the estimated number of non redundant cases that the
case-base should contain. This objective is squared to penalize those individuals
with a greater number of cases.

The values returned by functions redundancy(x, k) and error(x, k) in the
fitness function (expression 8) oppose each other since a lower error rate means
a higher redundancy and vice versa.

3.3 NSGA-II

In this work we consider the well-known NSGA-II [5], a non-dominated sorting
based MOEA. Given two individuals x and y representing two case-bases, and
the fitness function Φ(x, k), the dominance relation for NSGA-II is defined as:

(fsize(x) ≤ fsize(y)∧ redundancy(x)≤ redundancy(y)∧ error(x) ≤ error(y)) ∧
(fsize(x) < fsize(y) ∨ redundancy(x) < redundancy(y) ∨ error(x) < error(y)) .

(10)

A MOEA Fitness Function for CBM 223

For the sake of clarity we have omitted the parameter k of each function.
The main contributions of NSGA-II are a fast non-dominated sorting function

and two operators to sort the individuals: a density estimation of the individuals
in the population covering the same solution and a crowded comparison operator.

The fast-nondominated-sort algorithm details are shown in Alg.1. This func-
tion given a population P returns a list of the non-dominated fronts F , where
the individuals in front Fi dominates those individuals in front Fi+1. That is,
the first front contains the non-dominated individuals, the second front has those
individuals dominated only once, the third contains individuals dominated up to
twice, and so on. The individuals in the same front could have similar case-base
representations; to avoid this situation NSGA-II uses the crowded comparison
operator ≥n, because individuals with lower density are preferred. To define for-
mally the operator≥n, let x, y be two individuals, then x ≥n y if (xrank < yrank)
or ((irank = jrank)∧ (idensity > jdensity), where xrank represents the front where
the individual belongs. The crowding-distance-assignment procedure calculates
the density per each individual (Alg.2).

Parameters are set up at the beginning, such as the number of generations and
number of individuals N for population. Each generation t implies an iteration
of the algorithm, where two populations Pt and Qt of N individuals are used.
When NSGA-II starts, the initial population P0 is generated randomly. Further-
more, binary tournament selection, recombination, and mutation operators are
used with individuals from P0 to create a child population Q0. Once P0 and Q0

are initialized, NSGA-II runs its main loop, which we can see in Alg.3. In each
iteration, population Pt and Qt are joined to create the population Rt, whose
number of individuals is 2N . After that, the individuals in Rt are sorted accord-
ing to their dominance and crowding distances. The sorted individuals are added
to population Pt+1. At the end of each iteration Pt+1 is truncated to N individ-
uals, and Qt+1 is generated using binary tournament selection, recombination,
and mutation operators.

Once NSGA-II finishes, the final population Pt will contain as much individ-
uals as potential solutions, and the non-dominated individuals are mapped to
their corresponding case-bases. The case-base with the minimum error rate is
chosen as the solution of the CBM algorithm. If two or more case-bases have the
same error rate, then the algorithm chooses the first case-base found.

For further details of NSGA-II algorithms see [5].

3.4 Interpreting the MOEA Approach

A MOEA using our proposed fitness function tends to search for the minimum
error rate and to delete the maximum number of cases, without exceeding a
threshold of number of non-redundant cases that corresponds to |M | ∗ (1 −
redundancy(M,k)) (expression 8). Figure 2 depicts the target cases-bases of
the fitness function for Iris dataset. That is, case-bases with a lower number of
cases and with a similar error rate to the original case-base. To build the figure,
we have created 1000 case-bases selecting from 5 to 70 random cases from Iris.
Therefore, we have 1000 case-bases of 5 cases, 1000 cases-bases of 6 cases, and

224 E. Lupiani et al.

Alg.1 fast-nondominated-sort(P)

Require: A population P
Ensure: list of the non-dominated fronts

F
1: for p ∈ P do
2: for q ∈ P do
3: if p ≺ q then
4: Sp ← Sp

⋃{q}
5: else
6: if q ≺ p then
7: np ← np + 1
8: end if
9: end if
10: end for
11: if np = 0 then
12: F1 ← F1

⋃{p}
13: end if
14: end for
15: i = 1
16: while Fi
= ∅ do
17: H ← ∅
18: for p ∈ Fi do
19: for q ∈ Sp do
20: nq ← nq − 1
21: if nq = 0 then
22: H ← H⋃{q}
23: end if
24: end for
25: end for
26: i = i+ 1
27: Fi ← H
28: end while
29: return F

Alg.2 crowding-distance-assignment(I)
Require: A set of individuals I
Ensure: Each individual within I with a

density measure.
1: l ← |I|
2: for i ∈ [1, N] do
3: I[i] ← 0
4: end for
5: for each objective m do
6: I ← sort(I,m)
7: I[1]density ← ∞
8: I[l]density ← ∞
9: for i ∈ [2, (l − 1)] do
10: I[i]density ← I[i]density + (I[i +

1].m − I[i− 1].m)
11: end for
12: end for

Alg.3 NSGA-II main loop

Require: A fitness function Φ.
Ensure: a population Pt of potential solu-

tion
1: Rt ← Pt

⋃
Qt

2: t ← 0, i ← 1
3: F ← fast-nondominated-sort(P)
4: while |Pt+1| < N do
5: crowding-distance-assignment(Fi)
6: Pt+1 ← Pt+1

⋃Fi

7: i ← i+ 1
8: end while
9: sort(Pt+1,≥n)
10: Pt+1 ← Pt+1[0 : N]
11: Qt+1 ← make-new-pop(Pt+1)
12: t ← t+ 1

Fig. 1. NSGA-II algorithm and main functions [5]

A MOEA Fitness Function for CBM 225

so on. Finally, a Hold-Out evaluation is used to measure the error rate of each
case-base, using 60% of the cases as the training set and 40% as the test set. For
each set of 1000 cases-bases the error rate given by the Hold-Out evaluation is
averaged. The plot shows for each case-base size the average error rate, and the
maximum and minimum observed values for each case-base size.

Fig. 2. Evolution of the error rate for Iris dataset. A lower number of cases is corre-
lated with higher error rates. The fitness function goal is to find a case-base located
in between the redundancy threshold and the minimum observed value for this exper-
imentation.

4 Experimental Evaluation

4.1 Experiments and Results

We have considered two measurements to study the suitability of our fitness
functions to perform CBM: the Reduction Rate, and the Competence Improve-
ment [18]. The reason to use these two measures is because the suitability of
CBM algorithms is strongly related to the number of cases deleted by the CBM
process, and to the accuracy of the CBR system that will use the maintained
case-base. The measurements are defined as follows:

1. The Reduction Rate is the average number of cases removed, that is:

reduction(M ′,M) =
|M ′|
|M | . (11)

2. The Competence Improvement, which quantifies the proportional improve-
ment in accuracy of the CBR system. Note that this error is not related to
the Complexity Profiling error measure. This measure is formally defined as
follows:

226 E. Lupiani et al.

CI(M ′,M) =
eval error(M)

eval error(M ′)
, (12)

where M is the initial case-base and M ′ is the case-base after the maintenance,
with M ′ ⊆ M , and eval error(M) is the proportion of times that the CBR
system returns a wrong solution to the input problems using the Hold-Out ap-
proach described below. Values of CI(M ′,M) > 1 mean an improvement in
accuracy, values CI(M ′,M) < 1 mean an underperformance, and otherwise it
means no improvement at all. The CBR system is evaluated using a Hold-Out
approach executed 10 times, as other authors suggest [4,17,18,20]. In particular,
the Hold-Out is performed considering 30% of the cases as the training set. The
retrieval of similar cases is performed using a k-NN approach. The value k = 3
is set for both the k-NN and the calculation of Complexity Profiling.

Table 1. Error rate (exp. 2), redundancy (exp. 4) and noise level (exp. 3) given by
Complexity Profiling with k = 3. The values in bold represent the redundant and noise
datasets, respectively.

error rate redundancy noise

australian 0.277 0.636 0.284
contraceptive 0.716 0.133 0.764

diabetes 0.435 0.44 0.451
flags 0.6 0.289 0.655
glass 0.436 0.444 0.453

ionosphere 0.18 0.772 0.18
iris 0.064 0.913 0.06

liver-bupa 0.586 0.215 0.597
lymph 0.367 0.487 0.392
segment 0.056 0.917 0.058
sonar 0.218 0.716 0.245
vehicle 0.447 0.43 0.468
vowel 0.044 0.9 0.028
wine 0.069 0.899 0.056
zoo 0.083 0.881 0.089

In order to test the suitability of our proposal, we evaluate NSGA-II with
our fitness function for CBM, using different standard datasets, and we do a
comparative analysis considering some representative CBM algorithms from the
literature. The results of each evaluation are the Reduction Rate and Compe-
tence Improvement measurements. In particular, our experiments consider:

– 15 datasets from the UCI repository [6]: australian, contraceptive, diabetes,
flags, glass, ionosphere, iris, liver-bupa, lymph, segment, sonar, vehicle, vowel,
wine and zoo. Each dataset has no missing values, and the nominal or string
values in the datasets have been replaced by equivalent integer values. Fi-
nally, each record of the dataset is considered as a case, and the last attribute
makes up the solution. Table 1 shows the levels of error rate, redundancy
and noise given by Complexity Profiling using k = 3, ε = 0.5 and ρ = 0 for
expressions 2, 3 and 4. We consider a dataset as noisy where its noise level
is higher than 0.4 and redundant when its redundancy level is higher than
0.5. Thus, there are eight redundant datasets and seven noisy datasets.

A MOEA Fitness Function for CBM 227

– 7 CBM algorithms: CNN, RNN, RENN, DROP1, DROP2, DROP3 and ICF.
– NSGA-II as MOEA using our fitness function. The number of individuals is

100, the number of generations 250, the mutation probability is 0.05 and the
crossover probability is 0.9.

Figures 3, 4, 5 depict the result of Competence Improvement for each CBM
algorithm and case-base. Each column represents the result CNN, RNN, RENN,
DROP1, DROP2, DROP3 and ICF. NSGA-II returns a final population with
individuals representing case-bases. In this experimentation we only consider
three of them: the minimum as the solution case-base with the maximum error
rate, the maximum as the case-base with the minimum error rate, and the case
base with the minimum Complexity Profiling error, which is returned by NSGA-
II. The lines in figures 3, 4, 5 represent the results of the maximum, minimum
and the output case-bases obtained by NSGA-II using our fitness function.

Fig. 3. Results for Competence Improvement for australian, contraceptive, diabetes,
flags and glass case-bases for each CBM algorithm. Higher means better.

Table 2 shows the reduction rate results for each case-base and CBM algo-
rithm. The highest reduction is highlighted in bold. For the sake of clarity, table
2 only shows the reduction given by the output case-base in NSGA-II, because
maximum and minimum are very similar.

Concerning the duration of a CBM execution, we must take into consideration
the size of the case-base, the number of features to describe the problem and
solution, and the complexity to compute the similarity between cases. NSGA-
II has the longest runtime among all the algorithms because other factors are
implicated, such the crossover and mutation operator, the assigned probability
to apply, and especially the amount of individuals in the population and the
number of generations.

228 E. Lupiani et al.

Fig. 4. Results for Competence Improvement for ionosphere, iris, liver-bupa, lymph
and segment case-bases for each CBM algorithm. Higher means better.

Fig. 5. Results for Competence Improvement for sonar, vehicle, vowel, wine and zoo
case-bases for each CBM algorithm. Higher means better.

4.2 Discussion

According to the experiments, the case-base returned by the NSGA-II algorithm
achieves the best improvements in competence (australian, ionosphere, and seg-
ment), or reaches a solution very close to the best observed among the other
CBM algorithms. When the best case-bases of NSGA-II are considered, this
algorithm achieves the best results in many of the datasets (australian, contra-
ceptive, flags, ionosphere, iris, lymph, segment and vehicle). Additionally, the
case-base with the worst Competence Improvement with NSGA-II only returns

A MOEA Fitness Function for CBM 229

Table 2. Reduction rate for each dataset and CBM algorithm

Datasets CNN RENN RNN DROP1 DROP2 DROP3 ICF NSGAII
australian 0.595 0.162 0.598 0.5 0.5 0.581 0.415 0.616

contraceptive 0.246 0.552 0.266 0.5 0.5 0.778 0.686 0.47
diabetes 0.445 0.304 0.477 0.497 0.501 0.652 0.48 0.59
flags 0.259 0.533 0.37 0.496 0.504 0.77 0.637 0.705
glass 0.409 0.383 0.436 0.497 0.503 0.691 0.557 0.713

ionosphere 0.69 0.163 0.763 0.5 0.5 0.5834 0.425 0.698
iris 0.827 0.019 0.856 0.49 0.5 0.51 0.327 0.215

liver-bupa 0.271 0.408 0.383 0.5 0.5 0.704 0.588 0.642
lymph 0.534 0.223 0.612 0.495 0.505 0.612 0.466 0.766
segment 0.844 0.054 0.881 0.499 0.5 0.527 0.413 0.479
sonar 0.579 0.214 0.593 0.503 0.503 0.607 0.4 0.651
vehicle 0.413 0.325 0.455 0.499 0.501 0.663 0.498 0.588
vowel 0.471 0.108 0.704 0.499 0.5 0.555 0.327 0.372
wine 0.782 0.065 0.815 0.492 0.5 0.532 0.315 0.299
zoo 0.714 0.071 0.771 0.443 0.5 0.543 0.529 0.184

average 0.539 0.239 0.599 0.494 0.5012 0.621 0.471 0.533

the worst results in liver and sonar datasets among the CBM algorithm con-
sidered. In some datasets with high levels of redundancy, the best competence
improvement results of NSGA-II are beaten by algorithms specialized in remov-
ing redundant cases, such as CNN. Similarity, NSGA-II is beaten in some noisy
datasets by those algorithms specialized in deleting noisy cases, such as ICF in
diabetes. However, overall the average Competence Improvement achieved by
NSGA-II is consistent in all the experiments.

It is also worth mentioning that the worst case-base in the final population of
NSGA-II are often very close to the competence improvement of the rest of the
algorithms. However, our eager approach to choosing the final case-base seems
insufficient for picking the best maintained case-base, suggesting that it is not
enough to consider only the minimum error rate.

Figure 6 plots one point for each CBM algorithm, and each point corresponds
to the Reduction Rates and Competence Improvement resulting from the aver-
age of all the Reduction Rates and Competence Improvement from the experi-
ments. The figure depicts how difficult it is to achieve both great reductions and
accuracy improvement at the same time, because a larger reduction results in
worsening accuracy. The only exceptions to this tendency are CNN and the best
results given by NSGA-II.

Finally, to identify whether a CBM algorithm deletes noisy or redundant
cases, the Pearson product-moment correlation coefficient is computed between
the error, redundancy and noise measure, which are returned by Complexity
Profiling, and the accuracy and reduction rate given by the evaluation process.
This correlation ranges from −1 to +1. Values in the interval (−1, 0) indicates
a negative correlation, values in the interval (0, 1) note a positive correlation.
That is, values close to −1 means the CBM algorithm does not delete that kind
of cases, and values close to 1 point out that CBM deletes aggressively that type
of case. Table 3 shows the coefficient values for each pair of results.

The NSGA-II correlation coefficients (table 3) indicate that the number of
deleted cases is correlated with both noisy and redundancy levels. Thus, it seems

230 E. Lupiani et al.

Fig. 6. Distribution resulting of averaging the datasets results for each CBM algorithm
according to the reduction rate and competence improvement

that the fitness function aims the search of the maintained case-base deleting re-
dundant cases and smoothing the frontiers between clusters of cases. Noisy cases
are deleted more aggressively than the redundant cases though. In particular,
NSGA-II achieves lower reduction rates in datasets with many redundant cases
and few noise cases such as iris, vowel, wine and zoo. On the contrary, the reduc-
tion rate is greater in noisy datasets, such as contraceptive, diabetes, flags, glass,
liver-bupa, lymph and vehicle. The coefficients also show that RENN, DROP3
and ICF are focused on deleting noisy cases, albeit DROP3 and ICF remove re-
dundant cases as well. Moreover, CNN and RNN delete mainly redundant cases.
DROP1 and DROP2 are focused on deleting cases near the borders. The rest of
the CBM algorithms delete both types of cases equally.

Table 3. Correlation between Complexity Profiling error and accuracy, Complexity
Profiling redundant level and reduction rate, and Complexity Profiling noise level and
reduction rate

Pearson correlation CNN RENN RNN DROP1 DROP2 DROP3 ICF NSGAII
Error & accuracy -0,97 -0,91 -0,48 -0,86 -0,83 -0,64 -0,90 -0,85
Redundant & reduct. rate 0,91 -0,96 0,96 -0,33 -0,28 -0,95 -0,86 -0,60
Noise & reduction rate -0,89 0,97 -0,96 0,31 0,30 0,97 0,88 0,59

5 Conclusions and Future Work

In this work we propose a multi-objective evolutionary approach to solve some
tasks of Case-Base Maintenance. In particular, we present a novel fitness function
based on Complexity Profiling [15]. We test the suitability of the approach on
different datasets and compare the performance achieved to that of existing CBM
algorithms from the literature.

A MOEA Fitness Function for CBM 231

Previous works are mainly focused on reducing either the number of redundant
cases or noisy cases [1, 7, 8, 20–22], or aimed at selecting attributes [10, 12] or to
both enhance the accuracy and reduce the size of the case-base [11]. However,
the fitness function proposed in this work measures the redundancy of the case-
base, the number of noisy cases and the error rate of the system. Therefore,
this function aims to maintain the case-base following three objectives. The
experiments show that the fitness function aims the search of the maintained
case-base, to those case-bases with less redundant cases and smoother frontiers
between clusters of cases.

The results obtained in the experiments show that the evolutionary approach
outperforms general CBM approaches in many datasets, obtaining promising
results even in worst cases. However, in our opinion, the most remarkable result
of our proposal is the regularity of the behaviour with most datasets.

The runtime could be a limitation, in particular where CBM can not be per-
formed off-line and the CBR system is stopped until the CBM process finishes.
For this reason MOEA are not suitable in all scenarios. Nevertheless, using
MOEA could be suitable when the case-base is built for the first time from a
raw set of data, and where time is not the most important restriction. In this
scenario, selection of an individual case-base from the final population could be
done through an evaluation process using Cross-Validation or Hold-Out.

The use of genetic operators is limited in this work. Therefore, the next step
will focus on the definition of specific crossover and mutation operators based
on coverage and reachability.

Acknowledgements. This work was partially funded by the Seneca Research
Foundation of the Region of Murcia under project 15277/PI/10, and by the
Spanish Ministry of Science and Innovation+European FEDER+PlanE funds
under the project TIN2009-14372-C03-01.

References

1. Brighton, H., Mellish, C.: On the consistency of information filters for lazy learn-
ing algorithms. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI),
vol. 1704, pp. 283–288. Springer, Heidelberg (1999)

2. Coello, C.C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetic and Evolutionary Computation (2007)

3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13(1), 21–27 (1967)

4. Cummins, L., Bridge, D.: Maintenance by a committee of experts: The MACE
approach to case-base maintenance. In: McGinty, L., Wilson, D.C. (eds.) ICCBR
2009. LNCS, vol. 5650, pp. 120–134. Springer, Heidelberg (2009)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2)
(2002)

6. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml

232 E. Lupiani et al.

7. Gates, G.: Reduced nearest neighbor rule. IEEE Transactions on Information The-
ory 18(3), 431 (1972)

8. Hart, P.: Condensed nearest neighbor rule. IEEE Transactions on Information The-
ory 14(3), 515+ (1968)

9. Holland, J.H.: Adaptation in Natural And Artificial Systems. MIT Press (1975)
10. Ishibuchi, H., Nakashima, T., Nii, M.: Genetic-algorithm-based instance and fea-

ture selection. In: Frasson, C., McCalla, G.I., Gauthier, G. (eds.) ITS 1992. LNCS,
vol. 608, pp. 95–112. Springer, Heidelberg (1992)

11. Cano, J.R., Herrera, F., Lozano, M.: Evolutionary stratified training set selection
for extracting classification rules with trade off precision-interpretability. Data &
Knowledge Engineering 60(1), 90–108 (2007)

12. Kim, K., Han, I.: Maintaining case-based reasoning systems using a genetic algo-
rithms approach. Expert Systems with Applications 21(3), 139–145 (2001)

13. Leake, D., Wilson, M.: How many cases do you need? Assessing and predicting case-
base coverage. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880,
pp. 92–106. Springer, Heidelberg (2011)

14. Leake, D.B., Wilson, D.C.: Categorizing case-base maintenance: Dimensions and
directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 196–207. Springer, Heidelberg (1998)

15. Massie, S., Craw, S., Wiratunga, N.: Complexity-guided case discovery for case
based reasoning. In: 20th National Conference on Artificial Intelligence, AAAI
2005, vol. 1, pp. 216–221 (2005)

16. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base
editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)

17. McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In:
Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898,
pp. 186–197. Springer, Heidelberg (2000)

18. Pan, R., Yang, Q., Pan, S.: Mining competent case bases for case-based reasoning.
Artificial Intelligence 171(16-17), 1039–1068 (2007)

19. Smyth, B., Keane, M.: Remembering to forget - a competence-preserving case
deletion policy for case-based reasoning systems. In: International Joint Conference
on Artificial Intelligence, IJCAI 1995, pp. 377–382 (1995)

20. Smyth, B., McKenna, E.: Competence guided incremental footprint-based retrieval.
Knowledge-Based Systems 14(3-4), 155–161 (2001)

21. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems Man and Cybernetics SMC 2(3), 408 (1972)

22. Wilson, D., Martinez, T.: Reduction techniques for instance-based learning algo-
rithms. Machine Learning 38(3), 257–286 (2000)

23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE Transactions on Evolutionary Com-
putation 3(4), 257–271 (1999)

Mining and Retrieving Medical Processes

to Assess the Quality of Care

Stefania Montani1, Giorgio Leonardi1,2, Silvana Quaglini2,
Anna Cavallini3, and Giuseppe Micieli3

1 DISIT, Computer Science Institute, Università del Piemonte Orientale,
Alessandria, Italy

2 Dipartimento di Informatica e Sistemistica, Università di Pavia, Italy
3 IRCCS Fondazione “C. Mondino”, Pavia, Italy - on behalf of the Stroke Unit

Network (SUN) collaborating centers

Abstract. In a competitive healthcare market, hospitals have to focus
on ways to deliver high quality care while at the same time reducing costs.
To accomplish this goal, hospital managers need a thorough understand-
ing of the actual processes. Process mining can be used to extract process
related information (e.g., process models) from data. This process infor-
mation can be exploited to understand and redesign processes to become
efficient high quality processes. Process analysis and redesign can take
advantage of Case Based Reasoning techniques.

In this paper, we present a framework that applies process mining
and case retrieval techniques, relying on a novel distance measure, to
stroke management processes. Specifically, the goal of the framework is
the one of analyzing the quality of stroke management processes, in order
to verify: (i) whether different patient categories are differently treated
(as expected), and (ii) whether hospitals of different levels (defined by
the absence/presence of specific resources) actually implement different
processes (as they auto-declare). Some first experimental results are pre-
sented and discussed.

1 Introduction

Healthcare institutions are increasingly facing pressure to reduce costs, while
at the same time improving the quality of care. In order to reach such a goal,
healthcare administrators and expert physicians need to evaluate the services the
institution provides. Service evaluation requires to analyze medical processes,
which are often automated and logged by means of the workflow technology.

Process analysis (PA) covers functions of simulation and diagnosis of pro-
cesses. While simulation can support performance issues evaluation, diagno-
sis can highlight e.g., similarities, differences, and adaptation/redesign needs.
Indeed, the existence of different patients categories, or of local resource con-
straints, can make differences between process instances necessary, and
process adaptation compulsory (even when the medical process implements a
well-accepted clinical guideline). Proper PA techniques are strongly needed when

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 233–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 S. Montani et al.

a given process model does not exist, e.g., because a full clinical guideline has
not been provided, and only some recommendations are implemented. In this
case, process mining techniques [4] can be exploited, to extract process related
information (e.g., process models) from log data. It is worth noting, however,
that the mined process can also be compared to the existing guideline (if any),
e.g., to check conformance, or to understand the required level of adaptation
to local constraints. Thus, the mined process information can always be used
to understand, adapt and redesign processes to become efficient high quality
processes.

The agile workflow technology [15] is the technical solution which has been
invoked to deal with process adaptation/redesign. In order to provide an ef-
fective and quick adaptation support, many agile workflow systems share the
idea of recalling and reusing concrete examples of changes adopted in the past.
To this end, Case Based Reasoning (CBR) [1] has been proposed as a natural
methodological solution (see e.g, [10,11,7]). In particular, the case retrieval step
has been extensively studied in PA applications, since the nature of processes
can make distance calculation and retrieval optimization non-trivial [12,13,2,8].

In this paper, we propose a framework for medical process analysis and adap-
tation, which relies on process mining and case retrieval techniques.

Specifically, our goal is the one of analyzing the quality of stroke management
processes, in order to verify: (i) whether different patient categories are differ-
ently treated (as expected), and (ii) whether hospitals of different levels (defined
by the absence/presence of specific resources for stroke management) actually
implement different processes (as they auto-declare).

First, our system extracts process models from a database of real world process
logs. In particular, we learn different models for every patient category, and/or
for every hospital. Given one of the models as an input, we then retrieve and
order the most similar models we have learned. An examination of the distance
among the models, to be conducted by a medical expert, can provide information
about the quality of the processes, by verifying and quantifying issues (i) and (ii)
above. To this end, we have introduced a proper distance definition, that extends
previous literature contributions [5,3,2] by considering the available information,
learned through process mining.

Experimental results (related to issue (ii)) and future research directions are
discussed in the paper as well.

2 Methods

2.1 Process Mining and the ProM Tool

Process mining describes a family of a-posteriori analysis techniques exploiting
the information recorded in logs, to extract process related information (e.g.,
process models).

Traditionally, process mining has been focusing on discovery, i.e., deriving
process models and execution properties from enactment logs. It is important

Mining and Retrieving Medical Processes to Assess the Quality of Care 235

to mention that there is no a-priori model, but, based on process logs, some
model, e.g., a Petri net, is constructed. However, process mining is not limited
to process models (i.e., control flow), and recent process mining techniques are
more and more focusing on other perspectives, e.g., the organization perspective,
the performance perspective or the data perspective. Moreover, as well stated in
[6], process mining also supports conformance analysis and process enhancement.

To be able to understand whether the healthcare organizations under study
achieve their goals of providing timely and high quality medical services, we
conducted several experiments (see also [9]) using the process mining tool called
ProM, extensively described in [14]. ProM is a platform independent open source
framework which supports a wide variety of process mining and data mining
techniques, and can be extended by adding new functionalities in the form of
plug-ins.

In particular, we relied on ProM’s Heuristic miner [16] for mining the process
models, and on a performance analysis plug-in which projects information of the
mined process on places and transitions in a Petri net.

2.2 Distance Definition for Case Retrieval

In order to retrieve process models and order them on the basis of their distance
with respect to a given query model, we have introduced a distance definition
that extends previous literature contributions [5,3,2] by properly considering the
available information, learned through process mining.

In particular, since mined process models are represented in the form of graphs
(where nodes represent activities and edges provide information about the con-
trol flow), we define a distance based on the notion of graph edit distance [3].
Such a notion calculates the minimal cost of transforming one graph into an-
other by applying insertions/deletions and substitutions of nodes, and inser-
tions/deletions of edges.

As in [5], we provide a normalized version of the approach in [3], and as in
[5,2], we calculate a mapping between the two graphs to be compared, so that
edit operations only refer to mapped nodes (and to the edges connecting them).

Moreover, with respect to all the previous approaches, we introduce two novel
contributions:

1. we calculate the cost of node substitution fsubn (see Definition 2 below) by
applying taxonomic distance [13,12] (see Definition 1), and not string edit
distance on node names as in [5]. Indeed, we organize the various activities
executable in our domain in a taxonomy, where activities of the same type
(e.g., Computer Assisted Tomography (CAT) with or without contrast) are
connected as close relatives. The use of this definition allows us to explicitly
take into account this form of domain knowledge: the closer two activities
are in the taxonomy, the less penalty has to be introduced for substitution;

2. we add a cost contributions related to edge substitution (fsube in Defini-
tion 2 below), that incorporates information learned through process mining,
namely (i) the percentage of patients that have followed a given edge, and

236 S. Montani et al.

(ii) the reliability of a given edge, i.e., of the control flow relationship between
two activities. The percentage of patients that followed an edge is calculated
as the fraction over all the traces in the database in which the activities
connected by the edge at hand take place in sequence. The reliability of a
relationship (e.g., activity x follows activity y) is not only influenced by the
number of occurrences of this pattern in the logs, but is also (negatively)
determined by the number of occurrences of the opposite pattern (y follows
x). Both items (i) and (ii) are outputs of Heuristic miner [16].

Formally, the following definitions apply:

Definition 1: Taxonomic Distance
Let α and β be two activities in the taxonomy t, and let γ be the closest common
ancestor of α and β. The Taxonomic Distance dt(α, β) between α and β is defined
as:

dt(α, β) =
N1 +N2

N1 +N2 + 2 ∗N3

where N1 is the number of arcs in the path from α and γ in t, N2 is the number
of arcs in the path from β and γ, and N3 is the number of arcs in the path from
the taxonomy root and γ.

Definition 2: Extended Graph Edit Distance. Let G1 = (N1, E1) and
G2 = (N2, E2) be two graphs, where Ei and Ni represent the sets of edges
and nodes of graph Gi. Let M be a partial injective mapping [5] that maps
nodes in N1 to nodes in N2 and let subn, sube, skipn and skipe be the sets
of substituted nodes, substituted edges, inserted or deleted nodes and inserted
or deleted edges with respect to M . In particular, a substituted edge connects
a pair of substituted nodes in M . The fraction of inserted or deleted nodes,
denoted fskipn, the fraction of inserted or deleted edges, denoted fskipe, and
the average distance of substituted nodes, denoted fsubn, are defined as follows:

fskipn =
|skipn|

|N1|+ |N2|

fskipe =
|skipe|

|E1|+ |E2|

fsubn =

∑
n,m∈M dt(n,m)

|subn|

where n and m are two mapped nodes in M .

Mining and Retrieving Medical Processes to Assess the Quality of Care 237

The average distance of substituted edges fsube is defined as follows:

fsube =

∑
(n1,n2),(m1,m2)∈M(|rel(e1)− rel(e2)|+ |pat(e1)− pat(e2)|)

|2 ∗ sube|
where edge e1 (connecting node n1 to node m1) and edge e2 (connecting node
n2 to node m2) are two substituted edges in M , rel(ei) is the reliability ∈ [0, 1]
of edge ei as extracted by Heuristic miner [16], and pat(ei) is the percentage of
patients that crossed edge ei.

The extended graph edit distance induced by the mapping M is:

extedit =
wskipn ∗ fskipn+ wskipe ∗ fskipe+ wsubn ∗ fsubn+ wsube ∗ fsube

wskipn+ wskipe+ wsubn+ wsube

where wsubn, wsube, wskipn and wskipe are proper weights ∈ [0, 1].
The extended graph edit distance of two graphs is the minimal possible dis-

tance induced by a mapping between these graphs. To find the mapping that
leads to the minimal distance we resort to the greedy algorithm described in [5].

3 Experimental Results

In clinical practice, no support is available to physicians/administrators to verify
whether hospitals of different levels actually implement different processes when
caring a specific pathology (see issue (ii) described in the Introduction). In a
previous version of this work [9], process mining was relied upon to provide
physicians with a graphical view of the mined processes. A visual inspection
of those figures was a first help towards the fulfillment of the tasks related to
issue (ii). However, mined processes can be huge and very complex, so that
an automated comparison among them, like the one we are providing in this
framework, can truly be an added value for quality evaluation.

In the rest of this section, we discuss our experimental results, related to
issue (ii). In particular, we wished to test whether the level of 37 hospitals
located in the Lombardia Region (Northern Italy) could be verified (or corrected)
through our framework, when referring to stroke care. Hospital levels (i.e., 1, 2,
3) have to be defined in Lombardia Region according to the available human and
instrumental resources. Every hospital auto-declares its own level. Specifically,
we mined the stroke management processes implemented in all 37 hospitals.
We then chose one level-2 hospital as a query, and we retrieved and ordered the
mined processes of the 36 others (21 of which were declared as level-2 hospitals as
well). We performed retrieval and ordering both resorting to the distance defined
in [5], and to the novel one introduced in section 2.2. Results are reported in
figure 1.

First, we can observe that our distance is able to discriminate among every
single mined processes, while the one in [5] only identifies some macro-classes,
composed by several processes, whose distance from the query does not change

238 S. Montani et al.

Fig. 1. Retrieval and ordering of 36 mined processes, implemented in 36 different hospi-
tals in the Lombardia region, with respect to the selected query process (on the x-axis:
process number; on the y-axis: distance value from the query). Results are shown in
two different framework settings: when relying on the metric in [5] (Dijkman distance),
and when relying on the metric defined in section 2.2

(see horizontal segments in figure 1). We believe that the finer distinction we
could obtain is due to the use of taxonomic distance, and of edge information,
which are disregarded by [5]. This additional information can be very significant
from a medical viewpoint. For instance, hospitals 2 and 20 are not distinguishable
according to [5], but in hospital 20 more than 70% of the patients undergo ECG
immediately after CAT, while in hospital 2 this occurs for only 10% of the
patients. Almost all patients undergo these tests in the two hospitals indeed,
but within different control flow patterns. In hospital 20 there seems to be a
behavioral rule pushing for the pattern CAT immediately followed by ECG,
while in the other hospital this direct sequential pattern does not exist. This is
an edge-related information extracted by Heuristic miner, and properly used by
our metric for providing its finer ordering.

As for the declared hospital levels, we considered the 22 closest processes (i.e.,
hospitals) with respect to the query. This number was chosen because it is the
sum of the number of processes in the two closest macro-classes when resorting
to [5] (16 processes belong to the first macro-class, 6 to the second), and with
[5] it is not possible to further refine the ordering among these examples. If the
auto-declared level of these examples was correct (and confirmed by the mined
processes), we should find 21 level-2 hospitals in this set. However, this did
not happen. When resorting to [5], we found only 13 level-2 hospitals in these
nearest neighbors. Of them, only 9 were listed in the closest 16 (i.e., the first

Mining and Retrieving Medical Processes to Assess the Quality of Care 239

macro-class). When exploiting our distance, we still found 13 level-2 hospitals in
the first 22, but 11 of them were in the first 16. Our results were thus closer to
the expected ones.

We analyzed the situation of the remaining 8 level-2 hospitals, that were not
found in the nearest neighbors. Very interestingly, 7 of these missing examples
are the very same when resorting to the two different metrics. Indeed, the visual
examination of the graphs highlight important differences with respect to the
query hospital. For example, one of them does not perform the thrombolisys
treatment, even if typical of level 2 stroke units. We have to say that some
local conditions (e.g., specific resources availability) may have recently changed,
altering the real level of some hospitals with respect to the originally declared
one. This conclusion thus supports the quality of the implemented metrics, and
of our novel contribution in particular.

As a final consideration, we can quickly comment on 4 cases, that were dif-
ferently ordered by the two metrics. According to the auto-declared levels, our
ordering is closer to reality in 3 of them (no. 9, 22 and 24), while in the fourth
case (no. 26) our metric overestimates the distance between the hospital and
the query. Despite the overall positive outcome, this motivates further improve-
ments, like the ones we will discuss in section 4.

4 Discussion, Conclusions and Future Work

This work showed that process mining and case retrieval techniques can be
applied successfully to clinical data to gain a better understanding of different
medical processes adopted by different hospitals (and for different groups of
patients). It is interesting to analyze the differences, to establish whether they
concern only the scheduling of the various tasks or also the tasks themselves. In
this way, not only different practices may be discovered that are used to treat
similar patients, but also unexpected behavior may be highlighted.

In this paper we have shown some first experimental results. More tests are
obviously needed, including leave-one-out style experiments and comparisons
with other metrics, and are planned for the next months.

In the future we also wish to extend our contribution, by including the treat-
ment of time in fsube (see Definition 2 in section 2.2). Indeed, by projecting
the mined process on a Petri Net (see section 2.1), we can obtain information
about delays between activities, possible overlaps and synchronizations . We
would like to explicitly compare this information between mapped processes.
We believe that, since in emergency medicine the role of time is clearly central,
this enhancement could represent a relevant added value in our framework, and
make it even more reliable and useful in practice.

Acknowledgments. This research is partially supported by the GINSENG
Project, Compagnia di San Paolo.

240 S. Montani et al.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological
variations and systems approaches. AI Communications 7, 39–59 (1994)

2. Bergmann, R., Gil, Y.: Retrieval of semantic workflows with knowledge inten-
sive similarity measures. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS,
vol. 6880, pp. 17–31. Springer, Heidelberg (2011)

3. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8), 689–694 (1997)

4. Van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: a survey of issues and approaches. Data and Knowledge
Engineering 47, 237–267 (2003)

5. Dijkman, R., Dumas, M., Garca-Banuelos, R.: Graph matching algorithms for busi-
ness process model similarity search. In: Proc. International Conference on Business
Process Management, pp. 48–63 (2009)

6. IEEE Taskforce on Process Mining: Process Mining Manifesto,
http://www.win.tue.nl/ieeetfpm

7. Kapetanakis, S., Petridis, M., Knight, B., Ma, J., Bacon, L.: A case based reasoning
approach for the monitoring of business workflows. In: Bichindaritz, I., Montani,
S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 390–405. Springer, Heidelberg (2010)

8. Kendall-Morwick, J., Leake, D.: On tuning two-phase retrieval for structured cases.
In: Lamontagne, L., Recio-Garćıa, J.A. (eds.) Proc. ICCBR 2012 Workshops,
pp. 25–334 (2012)

9. Mans, R., Schonenberg, H., Leonardi, G., Panzarasa, S., Cavallini, A., Quaglini,
S., Van der Aalst, W.: Aprocess mining techniques: an application to stroke care.
In: Proc. Medical Informatics Europe (MIE), pp. 573–578 (2008)

10. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile workflow technol-
ogy and case-based change reuse for long-term processes. International Journal of
Intelligent Information Technologies 4(1), 80–98 (2008)

11. Montani, S.: Prototype-based management of business process exception cases.
Applied Intelligence 33, 278–290 (2010)

12. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process
adjustment and analysis. Information Systems, doi:
http://dx.doi.org/10.1016/j.is.2012.11.006

13. Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring:
results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS,
vol. 7466, pp. 269–283. Springer, Heidelberg (2012)

14. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W(E.), Weijters,
A.J.M.M.T., van der Aalst, W.M.P.: The proM framework: a new era in process
mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS,
vol. 3536, pp. 444–454. Springer, Heidelberg (2005)

15. Weber, B., Wild, W.: Towards the agile management of business processes. In:
Althoff, K.-D., Dengel, A.R., Bergmann, R., Nick, M., Roth-Berghofer, T.R. (eds.)
WM 2005. LNCS (LNAI), vol. 3782, pp. 409–419. Springer, Heidelberg (2005)

16. Weijters, A., Van der Aalst, W., Alves de Medeiros, A.: Process Mining with the
Heuristic Miner Algorithm, BETA Working Paper Series, WP 166. Eindhoven Uni-
versity of Technology, Eindhoven (2006)

http://www.win.tue.nl/ieeetfpm
http://dx.doi.org/10.1016/j.is.2012.11.006

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 241–254, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Leveraging Historical Experience to Evaluate
and Adapt Courses of Action

Alice M. Mulvehill, Brett Benyo, and Fusun Yaman

Raytheon/BBN Technologies
Cambridge, MA 02138, USA

{amm,bbenyo,fusun}@bbn.com

Abstract. In many planning domains there may be multiple potential solutions
to a given problem. Each solution may require different resources, involve
more or less risk, and result in desirable or undesirable effects. Reuse of his-
torical plans is a strategy that can be employed to solve planning problems.
While the retrieval of similar historical plans can be facilitated with sophisti-
cated annotation and search engines, evaluating the usefulness of historical
plans tends to be subjective, is context sensitive, and difficult when no single
historical plan can be used to develop a new plan. Course of action (COA)
evaluation is a method that can be used to compare a set of alternative solutions.
An agent-based tool called MICCA (Mixed-Initiative Course of Action Critic
Advisors) can aid human operators or software agents in evaluating and adapt-
ing historical plans for use in achieving one or more objectives in some current
or future hypothetical world state. In this paper we introduce MICCA and de-
scribe how case base reasoning (CBR) and generative planning techniques are
utilized to support COA evaluation and adaptation.

Keywords: course of action planning, case base reasoning, plan adaptation,
agent based systems, blackboard technology.

1 Introduction

Reuse of historical plans is a strategy that can be employed to solve planning prob-
lems when access to past experience is available, time is limited, there is uncertainty
about the current and/or future state of the world, and/or the decision maker lacks
sufficient domain expertise to solve the current problem. While the retrieval of simi-
lar historical plans can be facilitated with sophisticated annotation and search engines,
evaluating the usefulness of historical plans tends to be subjective, is context sensi-
tive, and difficult when no single historical plan can be used to develop a new plan.
The process is further complicated when the historical plan is very old, was created
for a different problem domain and/or by a different user or software application.

In many planning domains there may be multiple potential solutions to a given
problem. Each solution may require different resources, involve more or less risk,
and result in desirable or undesirable effects. Course of action (COA) evaluation is a
method that can be used to compare a set of alternative solutions.

242 A.M. Mulvehill, B. Benyo, and F. Yaman

MICCA (Mixed-Initiative Course of Action Critic Advisors) is an agent-based
mixed-initiative tool that has been developed to aid human operators or software
agents in evaluating and adapting historical plans for use in achieving one or more
objectives in some current or future hypothetical world state. MICCA has been de-
signed as a generalized approach that, in theory, can be utilized in any planning do-
main that leverages historical experience. The system utilizes two cycles: evaluation
and adaptation. During evaluation, potentially useful historical plans are critiqued by
both general and domain specific evaluation agents that evaluate the risk, adaptability
and cost of each plan. During adaptation, selected candidate plans are refined to
operate in a current problem environment. The revised candidates are then re-
evaluated along similar or other (user-defined) dimensions.

To date MICCA has been applied in two domains: the Rovers domain which was a
benchmark domain in the Third International Planning Competition [1] and the Joint
Air/Ground Operations Unified Adaptive Replanning (JAGUAR) domain [2] which
was the focus of research for the Defense Advanced Research Projects Agency
(DARPA) sponsored JAGUAR program. In the Rovers domain one or more land
Rovers are tasked to collect rock samples or images from a planet surface. In the
JAGUAR air mission planning domain specialized aircraft and weapon combinations
are tasked to satisfy a military air mission objective, e.g., strike a certain target, take
photos of a particular geographic region, provide command and control, etc.

In this paper we introduce MICCA and describe how case base reasoning (CBR)
and generative planning techniques are utilized to support COA evaluation and adap-
tation. The paper includes a description of how the case base technology is used, a
discussion of case base experimentation and some performance results.

2 Overview

At a very general level a course of action (COA) describes how a problem can be
solved or a goal can be achieved. Representationally, a COA is similar to a plan in
that it is generally comprised of a set of activities that can be performed in some order
to achieve a particular goal. Each activity may include a recommendation for re-
source capabilities and possibly time sequencing. In certain domains such as military
air mission planning, multiple COAs are traditionally evaluated to determine how to
best achieve a goal or objective [3]. During the evaluation process the COAs are
compared with each other to determine the benefits, risks and effects (both positive
and negative) that are associated with each approach.

MICCA has been specifically developed to support the COA evaluation process.
The MICCA system consists of a set of agents, a blackboard (BB), and a suite of spe-
cialized user interfaces (UI) that display COA options, evaluation and adaptation
information, and provide detailed justification and rationale to the user [4]. Commu-
nication between MICCA agents with external databases, historical case base reposi-
tories, domain specific models, knowledge bases, and with the human operator is
supported by the blackboard [5]. Figure 1 displays an overview of the MICCA eval-
uation and adaptation agent framework. In the next section an overview of the
MICCA process is provided.

 Leveraging Historic

Fig. 1. E

2.1 The MICCA Proce

Although MICCA is not a C
cycle: retrieve, reuse, revis
ceipt of one or more objec
and some temporal requirem
COA development system
provided to MICCA for ev
the research reported in th
case base repository. The
veloped to store executed a
support MICCA experimen
used. In order to support e
created with JSHOP, a Hie
two domains, the JAGUA
format.

Historical plans are store
five pieces of information:
tures, the world state that t
was created to satisfy. Th
serve as descriptive meta
matching. A Case Base Re
objectives as the basis for
MICCA they are processed

cal Experience to Evaluate and Adapt Courses of Action

valuation and Adaptation Agent Framework

ss

CBR system, the MICCA process emulates the basic C
e, and retain [6]. The MICCA process starts with the
tives. The objectives may have preferences for resour
ments. Candidate COAs/plans, obtained from an exter
or as the result of a query from a historical repository,

valuation and alignment with the current world state.
his paper, COA candidates are retrieved from a histor

case base technology used in MICCA was originally
air mission data for the JAGUAR domain [7]. In orde
ntation, a small subset of the JAGUAR mission data w
experimentation with the Rovers domain, Rover plans w
erarchical Task Network (HTN) planner [8]. To align
AR mission data was also converted into an HTN p

ed in the case base in an XML data format that consists
a unique string plan ID, the HTN plan, a set of case f

the plan was created for, and the set of objectives the p
he case features are a set of feature names and values t
data about each case and facilitate search and simila
etrieval Agent was created in MICCA to use the publis
case base queries. Once retrieved plans are provided

d by a set of Evaluation agents. The Evaluation agents

243

CBR
 re-
rces
rnal
are
For

rical
de-

er to
was

were
the

plan

s of
fea-
plan
that

arity
hed
d to
can

244 A.M. Mulvehill, B. Benyo, and F. Yaman

utilize information about the world state and relevant domain information to evaluate
the retrieved plans. For example, one Evaluation agent might check for the
availability of the actor that was used in the historical plan in the current world state.
Each Evaluation agent will generate a scored plan object for each retrieved plan. The
scored plan information from all Evaluation agents is written to the blackboard for
each of the plans. In MICCA, the adaptability score is the evaluation metric which
most influences the ranking score of the retrieved candidate plans. The score is the
sum of two ratios: 1) Objective Alignment: the ratio of the case objectives that are
relevant for new objectives, and 2) State Alignment: the ratio of the conditions
necessary to carry out the relevant case objectives that are satisfied in the new state.

Retrieved plans are ranked based by one or more Evaluation agent scores along
different dimensions using lexicographic preference models (LPMs). A LPM defines
an order of importance on the evaluation criteria and uses this order to make prefe-
rence decisions and influence the final ranking of the candidate plans. These
evaluation criteria can be domain dependent. Historically, LPMs have been used on
numeric, Boolean, or discrete valued attributes. In our research we have utilized an
extended version of LPMs [9] to handle attributes within a monotonic continuous
domain (such as the scores generated by Evaluation agents).

Figure 2 displays the list of ranked plans that have been retrieved from the case
base for a problem in the JAGUAR domain. The UI displays some high level infor-
mation about each of the retrieved plans such how many of the objectives each
retrieved plan can satisfy in the “objectives” column. Scores from each of the Evalua-
tion agents are also presented (the last four columns display this data in Figure 2). The
user can use the “choose columns” option to display additional data. The data pre-
sented is derived from the case features obtained from the case base. The human
operator can select one or more plans to publish to the blackboard for continued adap-
tation and re-evaluation. Although the highest ranked retrieved plan in Figure 2 satis-
fies all three of the objectives in this example, the operator can select several retrieved
plans in order to generate multiple COAs/plans. In addition, if few or no retrieved
plans satisfy all of the objectives, the user can request that certain retrieved plans be
merged to create a plan that can satisfy all of the objectives.

Fig. 2. Ranking Agent UI

 Leveraging Historic

3 Case Revision –

Because the past and the p
vised in order for it to be us
sion can vary, MICCA pro
The first step is associated w
world state and is viewed a
Adaptation agents. This pr
tutional adaptation” and inv
to task time values so that th

If no single historical re
the current problem, the re
merged to form a single coh
two specialized Instantiatio
a case base planner, these a
existing constraints and res
ments from multiple histori
as many of the current obje

cal Experience to Evaluate and Adapt Courses of Action

Preprocessing

present are rarely equivalent, a retrieved case must be
sed in a different context. Because the complexity of re
ovides a variety of revision capabilities in multiple ste
with the instantiation of a historical plan within the curr
as a preprocessing step for the more sophisticated MIC
rocess is similar to what Mitra and Basak [10] call “sub
volves the substitution of resource instances and revisi
hey are aligned with the current time.

etrieved plan can be used to satisfy all of the objectives
evision will require that parts of several retrieved cases
herent solution. In MICCA this first step is performed

on agents: an Editing agent and a Merge agent. Simila
agents (1) edit the historical plan so that it conforms to
source availabilities in the current state, and (2) merge e
ical plans together to produce a candidate plan that cov
ctives as possible.

Fig. 3. Instantiation Agent Activity

245

re-
evi-
eps.
rent

CCA
bsti-
ions

s of
s be
d by
ar to

the
ele-
vers

246 A.M. Mulvehill, B. Benyo, and F. Yaman

Figure 3 is an example showing how these agents are used to create a candidate
plan. In the example provided, the case base has been queried by the agents through
the case base web interface for missions of type “AI” and a target of type “Bunker”.
16 cases have been retrieved. The agents evaluate each retrieved case and select the
most similar case for revision, where similarity is based on a set of additional case
features including the Takeoff airbase and the specific target location. Plan modifi-
cations on this case are then made by the Editing agents. The Merge agent is used to
combine edited plans to satisfy as many of the objectives in the new problem as
possible.

3.1 The Editing Agent

This agent maps the current objectives to the goals of each retrieved historical plan.
It assumes that each retrieved historical plan (which can consist of multiple tasks) can
be mapped to one or more of the current objectives. This mapping can be automatical-
ly computed by objective similarity matching, or manually defined by a user through
the Ranking Agent UI. If a single task in a retrieved historical plan can be mapped to
multiple current objectives, the Editing agent will create multiple copies of the plan
(called candidate plans), one for each potential objective mapping. Once the objec-
tive mapping has been established, the retrieved historical plans are translated into
current candidate plans through the use of the following three transformations:

1. Prune Unneeded Goals: Any tasks in the historical plan that satisfy objectives that
are not present in the current objective set are pruned. Since the plan is
represented as an HTN, the pruning is simple; the entire node corresponding to the
task to be pruned is removed from the tree. This transformation is domain-
independent.

2. Update Resources: Resources such as actors (aircraft for example), sensors, muni-
tions, and airbases may be identified explicitly in the objectives and defined expli-
citly in the plan. This transformation searches the current world state for the re-
sources used in the historical plan. If an exact match is not found, a similarity me-
tric is used to find a replacement that is available in the current world state. This
transformation has domain specific components. The set of resources to be up-
dated and the similarity metric is determined through domain specific code. In
addition, the search algorithm to locate a replacement resource can be overridden
by domain specific code to provide a directed search tailored to address specific
domain details. Since there can be multiple potential resources in the current
world state that could be used to update a historical plan, this transformation can
produce multiple potential candidate plans, each of which can be evaluated and
adapted independently by the other agents.

3. Update Goal: Often there is a specific task in a plan that is associated directly
with the achievement of the objective or goal. In the JAGUAR air mission plan-
ning domain the task that directly satisfies an objective of type “strike” is the strike
activity for a “strike target” objective. Certain parameters of this goal, such as its
location, can be modified from historical values to match the requirements of the

 Leveraging Historical Experience to Evaluate and Adapt Courses of Action 247

current world state. Details about which properties of the goal can be edited are
defined in domain specific code. In the JAGUAR domain, for example, we allow
the Editing agent to modify the location of the goal in the historical candidate plan,
thus allowing MICCA to use a historical plan that has a goal of the same type as
the current objective, but at a different location. The Adaptation agents will later
modify the plan to route the actor to the new location.

The output of the Editing agent is a candidate plan (or a set of candidate plans).
These candidate plans may not be executable yet, and may violate constraints such as
temporal or spatial constraints. For example if the current objective is “Travel from
A to C” and the historical objective was “Travel from A to B”, the Editing agent will
replace B’s in the plan with C’s, provided that the domain specific Update Goal pro-
cedure allows this modification. Note that not every instance of B has to be replaced
by C. Hierarchical plan structure, namely the decomposition tree, is used to identify
the sub-tree related to the historical goal “Travel from A to B” and to replace all in-
stances of B in the sub-tree with C. Details about how to get from A to C are not
handled by the Editing agent; it simply substitutes C for B. An Adaptation agent will
re-compute the route from A to C.

3.2 The Merger Agent

When no single retrieved plan achieves all of the current objectives, but a collection
of retrieved plans can satisfy a subset of objectives, the Merger agent is used to com-
bine several retrieved plans in order to produce a full candidate plan that achieves
more of the desired objectives. Merging plans in an effective way generally requires
a complex reasoner, such as a case based planner. MICCA approximates this CBR
process by using a mixed initiative approach. We assume that MICCA may revise
candidate plans that can achieve only a subset of the current objectives. The user can
choose multiple retrieved plans to serve as the basis for a single objective, which
would give the Merger agent multiple options for merging, and thus a decision to
make. If no choice is made by the user, the Merger agent will consider all possible
retrieved plans for a specific objective. The Merger agent will produce multiple
merged candidate plans, up to a threshold number, if there are multiple options to
cover a specific objective. In order to produce candidate plans that are as different as
possible, the merge algorithm used by the Merger agent will examine how often each
chosen retrieved plan has been used to cover an objective in the set of output merged
candidate plans, and choose the retrieved plan that has been used the least.

Although the plans that are being merged are revised to work in the current (not
historic) state, the combined plan might require further revisions to ensure coherence
of the pieces. For example, the temporal order on the objectives may need to be
revised. Thus, after merging the plans, which in this case means concatenating them
in the correct order, removing duplications and combining the objectives, another
revision cycle will be triggered. In the case when an objective is still uncovered
because none of the historical plans satisfy this objective, a message is sent to the user
that there remains an unsatisfied objective.

248 A.M. Mulvehill, B. B

4 MICCA Plan Ad

Once the retrieved plans a
Adaptation agents begin to
problem solving situation.
keeps track of Adaptation
and their needs. The parti
are defined in a policy. O
repair the causal and tempo
these agents will remove pa
state or objective. When
published candidate plans,
missing plan elements. Ad
presented to the user. The
results or if the user wants t

5 Experimentation

Two different planning dom
sign, architecture, agent ty
experimentation results pre
techniques were used by the

The MICCA system wa
plans for the Rovers doma
more Rovers to navigate a
cate them back to a lander.

Fig. 4. Example Hierarchical
Actions and the Yellow Nodes

The JSHOP planning so
sociated initial world state
type and objective and to
created to store the Rover

Benyo, and F. Yaman

daptation

are revised with current world state elements, speciali
o repair the plans to satisfy the objectives of the curr
 These agents are managed by a Coordination agent t
agents and their capabilities, and keeps track of doma
icular Adaptation agents used and their process seque

One of the prime functions of the Adaptation agents is
oral problems in the edited candidate plans. In some ca
arts of the historical plans that are irrelevant to the curr
a current objective still cannot be satisfied by any of
the JSHOP plan generator will be used to generate

dapted plans are re-evaluated by the Evaluation agents
process can be repeated if the user is not satisfied with

to experiment with hypothetical future situations.

n Process

mains were used to test the generality of the MICCA
ypes, and the evaluation and adaptation strategies. T
esented in this paper describe how CBR and generat
e MICCA agents.
as first used to evaluate and adapt previously genera
in. The general problem in this domain is to find one
planet surface, find samples, take pictures, and commu
 An example of a Rover plan is provided in Figure 4.

Rover Plan where the Blue Nodes are Methods for Compo
s are Simple Actions

ftware was used to generate 14 Rover plans, each with
es. Case features were created to support search by g
support plan evaluation. Two case base repositories w
plans, one to store the tasks and objectives and a seco

ized
rent
that
ains
ence
s to
ses,
rent
the
the
and
the

de-
The
tive

ated
e or
uni-

osite

 as-
goal
were
ond

 Leveraging Historical Experience to Evaluate and Adapt Courses of Action 249

case repository to store the actual plan data. To start the process, a human operator
uses information about a current goal/objective to query the Rover Task case base.
The query returns a list of Rovers (with PlanIDs) who are capable of satisfying the
objective. The user then selects a PlanID and queries for the HTN/Plan from the
Rover Plan case base with the index PlanID. The retrieved plan(s) are published onto
the blackboard – triggering the MICCA evaluation and adaptation cycles.

The second domain used was the JAGUAR air mission planning domain. Like the
Rovers domain, there is an actor, in this case an aircraft with particular functional
capabilities to perform certain activities. The aircraft is located at some origin and has
to travel to another location in order to accomplish an objective – either strike a target
with a weapon or take a photograph of the target location. The JAGUAR domain
also contains detailed specifications of tasks and causal models. Unlike the Rovers
domain, each JAGUAR air mission tends to satisfy one objective. Multiple objec-
tives as well as supporting tasks are enumerated as a set of missions in a larger plan
structure called the Air Tasking Order (ATO). A specialized plan object was created
in order to support the evaluation and adaptation of multiple objectives for this
domain.

To utilize JAGUAR data in MICCA we developed JAGUAR HTN models and mod-
ified the existing JAGUAR executed plan case base to include the HTN plan data. This
involved domain engineering, plan extraction and finally case base creation. To scope
our effort, we initially focused on one of the ATO strike mission types – Air Interdiction
(AI), which is a strike mission that can be employed to destroy, neutralize or delay the
enemy’s military capability and two other mission types, reconnaissance (REC) and
JSTARS. An experimental case base was created that contained 2 JSTARS and 3 REC
missions and 20 strike missions. In this case base each case includes HTN formatted
plans, world states and generated objectives. The structures of HTN Methods and op-
erators were extracted from the JAGUAR models. This included 24 Methods and 14
Operators. We manually selected the predicates that appear in the modeled process
constraints and represented most of these constraints as the preconditions and effects of
the methods and operators. 19 axioms were manually defined to support the complex
evaluation of certain conditions; such as what does it mean to be in battle space. We
verified the validity of the domain with the JSHOP planner, which produced plans for
simple problems. The JAGUAR domain also supports very complex routes and routing
procedures, which were beyond the scope and the interests our research, so we
simplified the routing in the JAGUAR HTNs.

6 Test Cases and Experimentation Results

Case base historical data, test scenarios and problem sets were established for both
domains to support testing. Our objective was to determine if basic functions of
MICCA could be used to evaluate and adapt plans in different problem domains with
increased problem complexity. To support experimentation in the Rovers domain 16
random problems were generated with JSHOP. A typical problem was composed of
one or more objectives where the objective is of the form: do-rock, do-soil, or
do-image at a particular location (waypoint) in a current world state.

250 A.M. Mulvehill, B. Benyo, and F. Yaman

MICCA was tested on two levels of complexity during the Rover experiments.
The first level of complexity involved a simple test for MICCA to leverage a histori-
cal plan to support a single new objective, e.g., (do-rock at waypoint12). The second
level of complexity presented a situation with more complex objectives: two objec-
tives and two goal types and/or three objectives and three goal types and a case base
where no single historical plan could support a set of objectives.

Experimentation results demonstrate that the MICCA agents were able to success-
fully produce improved plans for single objectives and for the composite objectives
that were causally sound (i.e., Rovers continuously move in the space and do not
jump from one location to another without any proper navigation action) and com-
plete (i.e., achieving all goals).

For the air mission planning domain, the goal of experimentation was again to
measure MICCA performance given varying levels of complexity. We were also
interested in two other characteristics: (1) the amount of time required by MICCA to
generate one or more useful COAs, and (2) the influence that a human operator has on
the generation of revised COAs. Several tests were conducted to measure MICCA
performance on single objective plans that included 3 mission types: AI, REC and
JSTARS. MICCA was able to successfully and quickly generate one or more COAs
in all tests with a single objective.

Tests were then conducted to measure MICCA performance on building COAs to
satisfy an increasingly complex set of multiple objectives. The following multiple
objective problem situations were tested:

• 3m simple – 3 objectives, no temporal conflicts
• 3m – 3 objectives, 3 mission types
• 4m – 5 objectives, 3 mission types
• 9m – 9 objectives, 3 mission types
• 50m – 50 objectives, 3 mission types

Table 1 contains the MICCA performance results for the multiple objective test cases.
All of these tests were run on a single laptop (Windows 7, i7 2.2 GHz processor, 3
GB RAM available to MICCA). Note that while MICCA agents can be run on dif-
ferent machines and parts of the problem can be worked on in parallel we did not
perform any multi machine scalability experiments in this research effort. The 50m
scenario was designed as a stress test to see if the system could operate with a larger
and more complex problem.

For each multiple objective test case, MICCA was run once in the mixed-initiative
(MI) mode and once in the auto-mode (auto). In the MI mode the user decides which
plans to adapt and merge to form the final COA(s). In the auto mode the Merger
agent automatically picks candidates to form the final COAs. The number of “Can-
didate Plans” listed in Table 1 is the number of plans that were retrieved initially from
the case base. For all of the tests, the case base consisted of 25 cases. The results
also indicate that when there is a difference in the “number of COAs generated”, the
difference is due to the interaction by the user. The results demonstrate that fewer
COAs are generated when the Mode is MI even when the Auto mode is bound by a
configuration parameter to control the number of COAs produced.

 Leveraging Historical Experience to Evaluate and Adapt Courses of Action 251

Table 1. Air Mission Planning Performance Results

On average, the agents completed the evaluation and adaptation cycles in no more
than 10 minutes. The increase in processing time for some of the scenario tests is
directly related to the time required to perform temporal reasoning during plan adap-
tation. This is most apparent in the 50m stress test scenario where MICCA took 97
minutes to run. The system did complete all processing cycles for the stress test
scenario and was able to satisfy most of the strike (AI) objectives. The system was
not able to generate missions for some of the REC and JSTARS objectives. This is
due to the low number of REC and JSTARS aircraft available in the current world
state.

7 Discussion

For both domains, the case base was used to provide historical plans to MICCA for
use as the basis for candidate plans to satisfy current objectives, and to find alternative
actor types for use by the Editing agent if the historical actors were not available in
the current world state. In the Rovers domain, the Instantiation agents demonstrated
CBR-like revision behavior. The Editing agent mapped the current objective to the
goals of the historical plan and pruned unrelated ones; provided simple resource map-
ping; updated the Rovers used in the historical case with appropriate Rovers that ex-
isted in the current world state; and replaced other Rover components (camera) as
necessary to support the current objective. In cases where no historical plan was able
to cover all of the objectives in the problem set, the Merger agent merged multiple
retrieved plans (N) that handled a subset of the current objectives (M) into a single

252 A.M. Mulvehill, B. B

plan to cover more objectiv
* M. In general, the Merg
set by a human administrat
each individual retrieved p
Ranking agent. In the Rov
relationships in the plan, e.g
the Adaptation agents to re
used the JSHOP HTN plann

For the air mission plann
the editing operations. The
determine appropriate resou
proved to be a useful strate
resource dependencies exis
resource options that are s
aircraft Type/weapon comb
ing with domain specific ru
tion, the Editing agents que
nations. When none of the
pairs matched the availabi
produce a candidate plan.
rameter Edits” value highli
for each RCOA (Revised C

Fig.

Because the revised plan
sions, the merge capability
When two candidate plans

Benyo, and F. Yaman

ves. The maximum possible number of merged plans i
ge agent produced up to R merge candidates; where R w
tor. Partial candidates were generated with the data fr
plan. Ties were resolved by sorting by order from
vers domain, the Adaptation agents were used to fix cau
g., action B depends on A. The case base was not used
epair broken dependencies; instead the Adaptation age
ner to support repair.
ning domain, the case base was regularly referenced dur
e historical plan case base data used by the Editing agen
urce substitutions also constrained resource choices. T
egy for operating in the JAGUAR domain where spec
st and where a typical world state can contain multit
suitable for a specific task and objective. For examp
binations cannot be easily determined. Instead of reas
ules to determine a specific aircraft Type/weapon combi
eried the historical plans for historically used legal com
e aircraft Type/weapon combinations from the histor
ility in the current world state, the Editing agent did
Figure 5 contains some revision statistics. Here, the “

ights how many changes were made by the Editing ag
COAs) produced during the MICCA session.

5. COA Comparison and Revision Data

ns in the JAGUAR domain are aggregates of multiple m
y was augmented to produce "aggregated case feature
s are merged into one, the case features are also merg

is N
was
rom
the

usal
d by
ents

ring
nt to
This
cific
tude
ple,
son-
ina-

mbi-
rical

not
“Pa-
gent

mis-
es".
ged.

 Leveraging Historic

Some merged features are a
are a sum (2+2=4 anomali
e.g., AircraftType and Targ
and adapted) plans/RCOAs

Fi

8 Conclusion

Our work with the Rovers
showcases how the MICCA
revise, and retain. Our ex
be facilitated with the re-u
function of the domain co
provements that were mad
Rovers domain so that they
task dependencies in the JA
pabilities of these agents,
closely with the Instantiatio
target, a specialized Adapta

Historical candidates we
support case revision in all
be used to satisfy objective
then edited to support the p
an objective, the JSHOP ge

Our results indicate that
improved the revision sco
JAGUAR domain where th
of many interdependent el
craft/weapon pair loading
retrieved plans, leveraging i

Acknowledgements. Thi
Research Laboratory (AFRL

cal Experience to Evaluate and Adapt Courses of Action

a set (this plan uses F16CG and E8C), while other featu
es). Figure 6 contains some example feature aggrega

getType that were generated for the revised (edited, mer
 that were produced.

ig. 6. Revised Plans in Ranked Order

s domain and the JAGUAR air mission planning dom
A process emulates the basic CBR cycle: retrieve, reu

xperimentation indicates that while COA development
use of past experience, the complexity of adaptation i
omplexity. In our research this is evidenced by the
de to the Adaptation and Instantiation agents used in
y could more efficiently handle the revision of resource
AGUAR domain. In addition to improvements to the
the Adaptation agents were also modified to work m
on agents. For example, if the Editing agent changes
ation agent will modify the path.
ere provided by a case base and the case base was used
of the experiments. When no single historical plan co

es, parts of several relevant historical plans were mer
problem. When no historical plans could be used to sati
enerative planner was used to generate a solution.

enabling the agents to access the case base during revis
ope and accuracy. This was particularly evident in
he Instantiation agents were able to support the replacem
lements of the JAGUAR plans, including: the actor,
g, formation, target, and starting airbase of candid
information from case base queries.

is work is based upon work funded by the Air Fo
L), Contract No. FA8750-10-C-0184.

253

ures
ates,
rged

main
use,
can
is a
im-
the
and
ca-

more
the

d to
ould
rged
isfy

sion
the

ment
air-

date

orce

254 A.M. Mulvehill, B. Benyo, and F. Yaman

References

1. Long, D., Fox, M.: The 3rd International Planning Competition: Results and Analysis. Ar-
tificial Intelligence Journal (AIJ) 20, 1–59 (2003)

2. Mulvehill, A.M., Benyo, B., Cox, M., Bostwick, R.: Expectation Failure as a Basis for
Agent-Based Model Diagnosis and Mixed Initiative Model Adaptation during Anomalous
Plan Execution. In: Twentieth International Joint Conference on Artificial Intelligence,
Hyderabad, India (2007)

3. Wagenhals, L.W., Levis, A.H.: Course of Action Development and Evaluation, Defense
Technical Information Center (January 2000)

4. Veloso, M., Mulvehill, A.M., Cox, M.: Rationale-Supported Mixed-Initiative Case-Based
Planning. In: IAAI Conference Proceedings (1997)

5. Ford, A., Carozzoni, J.: Creating and Capturing Expertise in Mixed-Initiative Planning. In:
12th International Command and Control Research and Technology Symposium (12th
ICCRTS), Newport, RI, June 19-21 (2007)

6. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Com – Artificial Intelligence Communications 7(1), 39–
59 (1994)

7. Mulvehill, A.M., Krisler, B., Bostwick, R.: Deriving Reliable Model Revisions from Ex-
ecuted Plan Data Analysis. In: 14th International Command and Control Research and
Technology Symposium, Washington, D.C. (2009)

8. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J.W., Wu, D.,
Yaman, F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20(2), 34–41
(2005)

9. Yaman, F., des Jardins, M.: More-or-Less CP-Networks. In: Uncertainty in Artificial Intel-
ligence, Vancouver, Canada, July 20-22 (2007)

10. Mitra, R., Basak, J.: Methods of Case Adaptation: A Survey. International Journal of Intel-
ligent Systems 20, 627–645 (2005)

The COLIBRI Open Platform

for the Reproducibility of CBR Applications�

Juan A. Recio-Garćıa, Belén Dı́az-Agudo, and Pedro Antonio González-Calero

Department of Software Engineering and Artificial Intelligence
Universidad Complutense de Madrid, Spain

jareciog@fdi.ucm.es, {belend,pedro}@sip.ucm.es

Abstract. There is an increasing requirement in the scientific software
development area of promoting the interchange of resources to ensure
the reproducibility and validation of the results. This paper presents the
COLIBRI Studio environment that supports researchers in the genera-
tion of Case-based Reasoning (CBR) systems by means of workflow-like
representations with different degrees of abstraction. These workflows –
called templates– can be shared with the community to promote their
future reference and reproducibility.

1 Introduction

COLIBRI is a platform for developing Case-Based Reasoning (CBR) software.
Its main goal is to provide the infrastructure required to develop new CBR sys-
tems and its associated software components. COLIBRI is designed to offer a
collaborative environment where users could share their efforts in implementing
CBR applications. It is an open platform where users can contribute with differ-
ent designs or components that will be reused by other users. In general terms,
this process -named the COLIBRI development process- proposes and promotes
the collaboration among independent entities (research groups, educational insti-
tutions, companies) involved in the CBR field. To enable this collaboration, the
development process defines several activities to interchange, publish, retrieve,
instantiate and deploy workflows that conceptualize CBR systems.

The first advantage of our approach is the reduction of the development cost
through the reuse of existing templates and components. This is one of the
aspirations of the software industry: that software development advances, at
least in part, through a process of reusing components. In this scenario, the
problem consists of composing several software components to obtain a system
with a certain behaviour. To perform this composition it is possible to take
advantage of previously developed systems. This process has obvious parallels
with the CBR cycle consisting of the steps retrieve, reuse, revise and retain. The
expected benefits are improvements in programmer productivity and in software
quality.

� Supported by Spanish Ministry of Science and Education (TIN2009-13692-C03-03).

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 255–269, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

256 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

Our COLIBRI development process [1] has an additional advantage that is
analysed in this paper: the collaboration among users promotes the repeatabil-
ity of the results achieved by other researchers. In science the reliability of the
experimental results must be backed up by the reproducibility of the experi-
ments. We propose a development process that promotes the reproducibility of
experiments for the Case-based Reasoning realm.

The paper runs as follows: Section 2 introduces reproducibility and why it is
relevant in the CBR field. Section 3 presents the COLIBRI platform and its
associated development process based on templates. Section 4 presents the tools
that support reproducibility in COLIBRI and some issues associated to this
process. Finally, Section 5 presents an experimental evaluation and Section 6
concludes the paper.

2 Reproducibility for the Case-Based Reasoning Field

Reproducibility is a key element in the scientific method and enables researchers
to evaluate the validity of each other’s results. In general terms, scientific ex-
periments are often done manually and are prone to error, slowing the pace
of discoveries. The work by Gil et al. [2,3] analyse this problem and propose
workflow technology as a suitable solution to aid researchers in the publication,
discovery and reuse of existing computational processes. Workflows capture pro-
cesses in a declarative manner so that they can be reproduced by other groups
or replicated on other datasets.

Reproducibility is a requirement for any scientific research domain, and CBR
is not alien to it. Advances in CBR are performed by several research groups
that are continuously proposing novel techniques. These techniques must be
compared to the existing ones to validate their correctness. However, the devel-
opment of CBR systems is not an obvious task and requires a significant knowl-
edge engineering effort and different skills on software development. This is a
limitation that slows down the development of the CBR field. Our working hy-
pothesis is that Case-based Reasoning requires tools and procedures to support
the scientific method like any other domain does. CBR methodologies and imple-
mentations should be appropriately indexed and made available for referencing
and reuse. Benefits are manifold: automation of system generation, systematic
exploration of the CBR design space, validation support, optimization and cor-
rect reproducibility are the most significant. Additionally, such capabilities have
enormous advantages for educational purposes.

These goals have been achieved by existing computational workflow systems
for generic computation [2]. Taverna is a workflow approach for the integration of
components in the bioinformatics field [4]. It hides the complexity of the access
to the processing services. Pegasus is another widely used workflow system that
enables the composition of distributed resources [5]. However, to assist scien-
tists in the composition, management and execution of these workflows, authors
provide a complementary environment named Wings [6]. This tool starts with
a high-level user description and uses knowledge about components, data and

The COLIBRI Open Platform for the Reproducibility of CBR Applications 257

workflows to automatically generate the workflows for Pegasus [7]. The Wings
system points out the central role of a knowledge rich representation of workflows
and their components, that is provided by means of ontologies. These ontologies
are formalized in the OWL language [8], and the associated Description Logics
reasoners [9,10] provide the reasoning capabilities to ensure the correctness of
the workflow and compatibility with the data being processed. Moreover, Wings
defines different layers of abstraction in the specification of workflows. These
different specifications must be taken into account in order to provide the ap-
propriate tools for the users. The highest layers of abstractions define the overall
behaviour of the system whereas the lower layers include computational and
execution details.

These contrasted ideas for the automatic reuse of workflows in generic scien-
tific domains have being applied to the CBR field in the COLIBRI platform.
COLIBRI defines an architecture, development process and tools that provide
the benefits of the workflows technologies previously described: reproducibility,
automatic generation, and evaluation. We present this platform next.

3 The COLIBRI Platform

Addressing the task of developing a CBR system raises many design questions:
how are cases represented? Where is the case base stored and how are the cases
loaded? How should algorithms access the information inside cases? How is the
background knowledge included? and so on. A successful approach to solve these
issues is to turn to the expertise obtained from previous developments. Therefore,
COLIBRI proposes an architecture that states how to design CBR systems and
their composing elements. The definition of this architecture is the key element
of the platform as it enables the compatibility and reuse of components and
workflows created by independent sources.

The main items of the COLIBRI architecture are:

– Persistence: defines how to organize the storing and loading of cases from
different media like data bases, textual files, etc. It proposes the use of spe-
cialized connectors that perform this task.

– Knowledge models: define a clear and common structure for the basic knowl-
edge models found in a CBR application: cases, queries, connectors, similar-
ity metrics, case-base organizations, etc.

– CBR system organization: COLIBRI organizes CBR systems into: precy-
cle, where the required knowledge models (mostly cases) are initialized; cy-
cle, which performs the four traditional CBR tasks; and postcycle, where
resources are released.

– Methods: They are software components that implement the different algo-
rithms involved in the retrieval/reuse/revise/retain cycle. The platform also
includes methods for maintenance and evaluation.

Any architecture will not be useful without a reference implementation that
enables users to create tangible applications. The main features of this imple-
mentation should be reusability and extensibility to let users adapt it to the

258 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

target system. In the COLIBRI platform this building block is provided by the
jCOLIBRI framework. jCOLIBRI is a mature software framework for develop-
ing CBR systems in Java that has evolved over time, building on several years
of experience1 [11].

After jCOLIBRI was sufficiently mature we continued with the next step
in our platform: creating graphical development tools to aid users in the devel-
opment of CBR systems through the reuse of existing designs. These tools are
enclosed in the COLIBRI Studio IDE2 and are described in detail in the next
section.

The incorporation of such tools into the platform has required the definition
of a software development process that identifies the task required to implement
CBR systems and the different user roles involved in this process. The following
section describes this software development process, its activities, the associated
user roles and the tools that support it.

Summarizing, the COLIBRI platform comprises: (i) an architecture that
states how to design CBR systems, (ii) an implementation of such architecture
in the jCOLIBRI framework, and (iii) a development process that identifies
the tasks required to implement CBR systems according to the architecture and
reusing the software components provided by jCOLIBRI.

3.1 The COLIBRI Development Process

The main feature of the development process proposed in COLIBRI is reuse
(somehow inherent to CBR). We propose the reuse of both system designs and
their components. Reusable designs are called templates and comprise CBR sys-
tem workflows which specify the behaviour of a set of CBR systems. In general
terms, the platform provides a catalogue of templates and lets users select the
most suitable one and adapt it to the concrete requirements of the target appli-
cation. It is a kind of CBR process for developing CBR systems [12].

The tools provided by our platform COLIBRI are targeted to different user
roles. We have identified several roles that address the development of CBR sys-
tems from different points of view: senior researchers design the behaviour of
the application and define the algorithms that will be implemented to create
software components that are composed in order to assemble the final system.
On the other hand, developers will implement these systems/components. Fur-
thermore, during the last few years there has been an increasing interest in using
jCOLIBRI as a teaching tool, and consequently, our platform also supports this
task.

User roles are associated to activities that comprise the COLIBRI develop-
ment process. Next, we describe these activities and the user roles that perform
them:

1 Download, reference and academic publications can be found at the web site:
www.jcolibri.net

2 Available at: www.colibricbrstudio.net

www.jcolibri.net
www.colibricbrstudio.net

The COLIBRI Open Platform for the Reproducibility of CBR Applications 259

Fig. 1. Screenshot of the template generation tool

Template generation. A template is a workflow-based representation of a
CBR system where several tasks are linked together to define the desired
behaviour. They should be generated by ‘expert’ users although other users
may create them. Here reputation will play a significant role as we will dis-
cuss in Section 4.1. This is the first activity in our software development
process. Figure 1 shows a basic template in our specialized tool to design
templates.

Template publishing. Templates can be shared with the community. There-
fore there is a second tool that lets users publish a template in the COLIBRI
central repository.

Template retrieval and adaptation. Although the publication of templates is
a key element in the platform, the main use case consists of retrieving and
adapting the template to generate a new CBR system. Here the actors are not
onlyCBRexperts: developers, teachers, students, or inexperienced researchers
will perform these activities. Due to their importance, these activities are re-
ferred to as Template-Based Design (TBD). TBD begins with the retrieval of
the template to be adapted from the central repository. This retrieval is per-
formed by means of a recommender system proposes the most suitable tem-
plate depending on the features of the targetCBR system. It follows a “naviga-
tion by proposing” approach where templates are suggested to the user. Next,
the adaptation of the template retrieved consists of assigning components that
solve each task (see Figure 2). These components are the ones provided by the
jCOLIBRI framework. For a detailed description of the TBD we point read-
ers to [12] although we include a discussion about the implications of these
activities from the reproducibility point of view in Section 4.1.

260 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

Fig. 2. Screenshot of the template adaptation tool

Component development. The design of components is closely related to
the advance in CBR research as they implement the different algorithms
being developed by the community. Therefore, this is the second main task
of expert researchers. However, we do not expect that expert researchers
will implement the components. This task will be delegated to users in a
‘developer’ role. We also contemplate the role of ‘junior researcher’ that
could design and even implement his own experimental components. Again,
these components could be shared with the community by means of the
publication tool that uploads it to the COLIBRI repository.

System Evaluation. As we have mentioned, one of the most relevant benefits
of COLIBRI is that it provides an easy to use experimental environment to
test new templates and components. Consequently another activity in the
development process is the evaluation of the generated systems. It enables
the comparison of the performance of different CBR system implementations.

Up to now, we have referred to templates as a general term. Next we will provide
more details about their formalization and conceptualization.

3.2 Template Categorization

Researchers may have different points of view regarding the data to be pub-
lished and shared with the community. Some researchers may be keen on shar-
ing all the details of the experiment, whereas others may desire to publish only
an abstract description. This fact must be taken into account in a collaborative

The COLIBRI Open Platform for the Reproducibility of CBR Applications 261

environment like COLIBRI Studio. The level of abstraction has an impact in
the reproducibility of the CBR system because abstract templates do not provide
enough details to generate the original system. However, the tools in COLIBRI
Studio support the instantiation of these abstract representations to end up
with executable systems.

Consequently, the COLIBRI development process defines the following cate-
gorization of templates according to their level of abstraction:

Abstract templates. Abstract templates are a high level representation of
CBR systems. This kind of templates comprises CBR system designs which
specify behaviour by means of tasks but they do not explicitly define func-
tional details. A task defines, in an independent way, a piece of functionality
that must be provided by the system. Tasks form a workflow that states
the execution (control flow) of the application. Figure 1 shows an abstract
template in the template editor tool in COLIBRI Studio.

Instantiated templates. The functionality specified by tasks can be provided
by different software components. This way each task in a template can be
solved by a component that implements the expected behaviour. When every
task in a template has a component assigned –usually from the jCOLIBRI
framework–, that template is considered instantiated with a concrete configu-
ration of reasoning algorithms that implement a particular CBR application.
The instantiation activity is supported by the adaptation tool of COLIBRI
Studio. This activity implies the connection between components’ inputs
and outputs to define the dataflow of the system. Figure 2 shows an instan-
tiated template generated from an abstract template through the template
adaptation tool.

Executable Systems. An instantiated template encapsulates the algorithmic
steps that perform the reasoning cycle of a CBR application. However, a
fully functional CBR system requires additional knowledge models such as
the case base or the retrieval (similarity) and reuse knowledge. These models
can be defined by means of the tools in COLIBRI Studio. When an in-
stantiated template is configured with these knowledge models, we obtain an
executable system.COLIBRI Studio is able to generate executable systems
automatically because the control flow of the application is defined by the
initial abstract template, and the concrete algorithmic details are specified
during the data flow configuration of the instantiation process.

Once we have identified the abstraction levels in the representation of templates,
we can describe how to exploit these representations to support reproducibility
of CBR applications.

4 Reproducibility in COLIBRI Studio

COLIBRI Studio supports the publishing of templates, components and data
in a central repository that can later be explored by the user to retrieve and
reuse these existing resources (i.e. the Template-based Design). TBD enables

262 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

the reproduction of existing systems and their further extension or evaluation.
However, the nature of the element being published has an impact in the repro-
ducibility of the system. Next we analyse these dependencies.

Abstract templates. At the lowest reproducibility level we find abstract tem-
plates. Users reusing abstract templates have the support of COLIBRI Stu-
dio to instantiate them with the components from jCOLIBRI. However the
executable system obtained may not be identical to the original one as the
algorithms chosen to solve each task may be different. Furthermore, the
knowledge containers (case base, similarity, etc.) are not provided and must
be supplied by the user reusing the template.

Instantiated templates. Provide a higher reproducibility level than abstract
ones. They specify the components used to solve each task but do not include
the knowledge containers. Note that those components could be custom im-
plementations created by the developers of the original system/template.
If an instantiated template includes such components, they should also be
published to ensure reproducibility.

Executable systems. They are systems completely reproducible by other
users. They include all the required elements.

Components. System developers can also publish components that provide
the behaviour defined by a task. These components may be just just new
algorithms made available to the community to solve common tasks, or key
components for the instantiation of custom templates published in the repos-
itory by the same authors.

Knowledge models. This is the last element of a CBR system that can be
shared both as part of an executable system, or independently. COLIBRI
Studio supports the publishing of four types of knowledge containers:
– Case Structure. Defines the typed attributes that form a case. They are

created through one of the tools in COLIBRI Studio.
– Case Base. A case base is stored in a persistence media (data base, text

file, ontology, . . .) and loaded through a connector into the working mem-
ory of cases. Connectors are components provided by the jCOLIBRI
framework or created ad-hoc by developers. They are configured with
xml files that define how cases are mapped from the persistence me-
dia into a concrete case structure. These elements form the case base
knowledge model: persistence, connector and configuration. They can be
packaged together and shared with the community.

– In-memory organization. Once cases are loaded from persistence (through
a connector) the are indexed for use by the components that instantiate
a template. There are several in-memory case base organizations such
as linear lists or k-d trees. Developers can also implement their own
organizations.

– Similarity knowledge. Similarity is defined in COLIBRI by means of
global and local similarity functions assigned to each attribute that forms
the case structure. A tool in COLIBRI Studio allows users to define
the configuration of the similarity metrics. It is the last knowledge model
of a CBR system that our approach can share with the community.

The COLIBRI Open Platform for the Reproducibility of CBR Applications 263

Evaluation protocol. COLIBRI includes a complete framework for the eval-
uation of CBR systems. It includes cross-validation techniques and different
performance metrics. Although it is an optional requirement, the evalua-
tion configuration can be also published to support the reproducibility of an
empirical study.

4.1 Reputation and Provenance

Once we have presented the elements to be published and retrieved, several ques-
tions arise: Who should publish these elements? What impact does the publisher
have in the retrieval of templates? As we mentioned in Section 3.1, templates
should be generated by expert users. And this expertise should be taken into
account during the retrieval process. It implies that the authorship reputation
within the community should have an impact in the recommendation process
that aids users in the retrieval of templates. Reputation can be hard-coded into
the system, listing well-known researchers as trustable authors, or may appear,
as described below, through collaborative recommendation. As users evaluate
the contributions from other users, reputation will grow for those authors con-
tributing templates that others like. Templates are not the only element that
is influenced by this provenance knowledge; the retrieval of components, case
bases, similarity knowledge, etc. should be also weighted according to the repu-
tation of the authors. Provenance is a raising topic associated to reproducibility
[13,14]. This factor must be also considered during the publication process and,
consequently, provide the mechanisms to support the inclusion of the prove-
nance knowledge. Although we have not included provenance mechanisms in our
platform yet, we plan to implement collaborative approaches.

The current implementation of the recommender system for the retrieval of
templates follows a content-based approach. It means that the requisites of the
user are compared to the description of the templates to find the most suitable
ones. However, instead of using the details of the template to perform the recom-
mendation, it could be possible to follow a collaborative approach. Collaborative
recommenders consider the opinions or ratings of the users to select the most
suitable items. This is an alternative approach that could be implemented in
the repository of templates to allow users to rate or comment templates, compo-
nents, etc. This way, ratings and comments become a measure for the reputation
of the author. Elements with higher valuation will be proposed first to users, and
these users may later rate their experience. This rating process can be consid-
ered as the revision step of our CBR approach. Template-based design consists
in retrieving and adapting templates. We plan to include this further stage where
users provide revisions in a collaborative way.

The descriptions of templates and the other elements in the platform use a
semantic representation that enhances the capabilities of the tools in COLIBRI
Studio. This representation includes functional descriptions and must also be
capable to integrate the provenance knowledge that we have described. Next we
present the details of this semantic representation.

264 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

4.2 Semantic Representation

As we have described previously, the COLIBRI development process involves
several elements that must be integrated to obtain the target CBR system.
Templates, components and knowledge models are combined by the user or the
automatic tools provided by COLIBRI Studio. However, a major issue arises:
how does COLIBRI Studio control the semantic coherence of the system being
generated? Methods are only able to solve certain tasks; tasks are thought to be
performed over concrete case structures; and depending on the case structure de-
velopers need specific persistence connectors and similarity metrics. Additionally,
reputation and provenance knowledge should also integrated in the development
process. Therefore, there is a semantic interdependency between the elements
involved in the development of a CBR system that must be controlled by COL-
IBRI Studio to support not only the local development of systems but also the
publishing and reuse from the central repository.

The answer to these questions in the COLIBRI platform is the CBROnto
ontology [15]. This ontology guides the description of components, the design
of templates and their associated retrieval and adaptation activities. There are
many formalisms for representing the templates such as UML. However we have
decided to use a representation based on ontologies to enhance the whole develop-
ment process. The most significant benefit of this representation is the reasoning
capabilities. Several ontologies have been proposed for modelling systems. Most
of them come from the field of Semantic Web Services (SWS). This community
explores -among other things- the methodologies for automatically composing
web services to create executable software systems. Each service is described by
means of ontologies that define its semantic behaviour. Therefore, in the SWS
community there are different standards to represent the behaviour of software
components and their composition. The most significant examples are OWL-S
[16] and WSMO [17].

Therefore, we have created our CBROnto ontology using the OWL language
and integrated the vocabulary needed to represent templates (in their differ-
ent categories), components and knowledge models. This ontology is used to
describe each element in the COLIBRI platform and ensures their correct inte-
gration into executable systems. Conceptualizations in CBROnto include seman-
tic restrictions that define the interdependencies between each element. These
restrictions are represented using the Description Logics capabilities of the OWL
language. Semantic restrictions can be used during the retrieval and adaptation
of templates to guide the users. It requires the application of knowledge inten-
sive similarity and adaptation techniques that take advantage of the semantic
descriptions. For example, the recommender system that supports the retrieval
of templates exploits this knowledge to find the most suitable template according
to the user requirements. The similarity metric that compares templates to the
requirements of the user exploits the semantic knowledge in CBROnto that con-
ceptualizes the structure of the template, its associated components and several
other high level descriptions provided by the author of the template.

The COLIBRI Open Platform for the Reproducibility of CBR Applications 265

Furthermore, the instantiation process that adapts templates (Figure 2) is
guided by the ontological knowledge. CBROnto dictates the possible assign-
ments of components to tasks, because it represents the functional requisites of
tasks and the capabilities of the components. For example, in the Java signature
of a component we can state that it requires a list of cases. However, without
an additional mechanism such as CBROnto we could not define the number or
nature of the cases contained (structured, textual, etc.). The reasoning capabili-
ties of OWL enables the definition of such restrictions for tasks and components.
Consequently, our system is able to find the proper components that satisfy the
semantic requirements of a task.

An example of template representation using CBROnto is provided in Figure
3. It corresponds to the template being instantiated in Figure 2 that is composed
of the FormFilling, Scoring, Selection and Display tasks plus a condi-
tional task to ask the user. CBROnto defines the concepts required to define such
a workflow of tasks: Task, Sequence, If-Then-Else, ConditionalTask, etc.
On the other hand, components able to solve a task in a template –called meth-
ods in the ontology– are described by their pre/post conditions. To illustrate
such representation Figure 4 presents a graphical visualization of the semantic
signature in CBROnto of the Nearest Neighbor Scoring method. As we can ob-
serve, pre/post conditions are defined by means of concepts in the ontology that
enable the reasoning about its composition. Additionally, the solves property
indicates the task(s) solved by the method. In this case, the NNScoring method
can solve the Scoring task. Therefore, it can be assigned to that task in the
template adaptation tool as shown in Figure 2 (see second task). We can also
observe how its inputs (case base, query, similarity configuration) and outputs
(retrieval collection) are layered out on the left and right sides of the task being
solved to enable the definition of the dataflow of the template.

CBROnto shares many conceptual ideas with the Wings system described
in Section 2. It includes an ontology that describes the elements in a workflow
system that is exploited to validate the system being generated. Our approach
differs in the way this ontology is exploited. In COLIBRI the knowledge rich
representation of templates and components is used in a case-based fashion.
Templates are retrieved and adapted following the typical CBR approach. This
adaptation step is not supported in Wings. Therefore, we can define COLIBRI
Studio as a knowledge-intensive CBR application where cases are knowledge-
rich workflows: the templates [12].

The role of CBROnto in the COLIBRI development process is a large topic
that cannot be detailed in this paper due to space restrictions. We point users
to [18] as it provides a deeper description of the Template-based Design activity,
leaving aside the reproducibility features of the COLIBRI platform. CBROnto
still does not include the reputation and provenance knowledge required to im-
plement a proper repository of templates. This is our on-going work.

266 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

<CBRApplicationTemplate rd f : abou t=” cbronto:Template1”>
<hasPreCycle r d f : r e s o u r c e=” cbronto:Template1 PreCycle ”/>
<hasCycle>
<Cycle rd f : abou t=” cbronto :Template1 Cyc le”>
<hasFlow>
<Sequence rd f : abou t=” cbronto :Template1 Cyc le Sequence”>
<Components>
<Task r d f : r e s o u r c e=” cbronto :Beg in”/>
<Task r d f : r e s o u r c e=” cb ron to :Fo rmFi l l in g”/>
<Task r d f : r e s o u r c e=” cb ron to :S co r i ng”/>
<Task r d f : r e s o u r c e=” cb r on to : S e l e c t i o n ”/>
<Task r d f : r e s o u r c e=” cb ron to :D i sp lay”/>

</Components>
</Sequence>
<I f−Then−Else rd f : abou t=” cb ron to :Temp la t e1 Cyc l e I f 1 ”>
<i fCond i t i on>
<Condit ionalTask r d f : r e s o u r c e=” cbronto :Cont inue”/>

</ i fCond i t i on>
<then r d f : r e s ou r c e=” cbronto :Template1 Cyc le I f 1 Then ”/>
<e l s e r d f : r e s ou r c e=” cb ron to :Temp la t e 1 Cyc l e I f 1 E l s e ”/>

</ I f−Then−Else>
</hasFlow>

</Cycle>
</hasCycle>
<hasPostCycle r d f : r e s ou r c e=” cbronto :Template1 PostCyc l e”/>
</CBRApplicationTemplate>

Fig. 3. Semantic representation of a template using the CBROnto ontology (simplified)

5 Experimental Evaluation

To evaluate the benefits of the COLIBRI development process we ran an experi-
mental evaluation with 50 students from an Artificial Intelligence and Knowledge
Based Systems course. Students had intermediate programming skills and no pre-
vious experience in this field. Several lessons introduced recommender systems
and they were proposed to freely design and implement a recommender given
several domains: movies, videogames, music, etc.

Initially, students specified the design of their recommender systems and af-
terwards COLIBRI Studio was introduced. COLIBRI Studio was provided
with a repository of 16 templates for building a wide range of recommender sys-
tems. Again, they could decide the implementation process: using the template-
based approach or build the systems from scratch. By using several surveys we
measured the suitability of our development process.

First, we were interested in the coverage of the repository of templates. Cov-
erage is a key element in our platform as the COLIBRI development process is
based on the idea of finding and reusing existing designs that are similar enough
to the target system to reproduce. Therefore, students were asked to rank each
template in the repository according to its similarity to the recommender de-
signed previously. Figure 5(a) shows the maximum scoring assigned to templates,
with an average similarity value of 8.25 in a scale from 0 to 10. From this data
we can confirm that the coverage of the repository was good enough to perform
the activities of retrieval and adaptation of templates.

The COLIBRI Open Platform for the Reproducibility of CBR Applications 267

Fig. 4. Simplified visualization of the semantic representation of the Nearest Neighbor
Scoring method using the CBROnto ontology

(a) Maximum scoring of templates (b) Usefulness of templates

Fig. 5. Evaluation of the COLIBRI development process

Next, students implemented their previous designs and were asked about the
usefulness of the template-based development process. Results are shown in Fig-
ure 5(b). 7% of the students decided not to use templates at all, and 26% used
templates although they found the selected template much less useful than ex-
pected. This group of students retrieved a template supposed to be relevant
to implement their design, but during its adaptation realized that it was not.
On the other hand, 35% of the students found the template-based development
process very useful to implement their designs and the remaining 31% could
implement their recommenders almost directly from the template (with a very
low adaptation effort).

Finally, we measured the global opinion of our users with COLIBRI Stu-
dio and its associated development process. The results obtained regarding the

268 J.A. Recio-Garćıa, B. Dı́az-Agudo, and P.A. González-Calero

(a) General Satisfaction, documentation and
tools quality

(b) Estimated future choice

Fig. 6. Global opinion

general satisfaction, documentation provided and tools quality are shown in
Figure 6(a). When asked if they would use again the template-based design
to implement future recommenders, the 59% of the students were keen on us-
ing it again, whereas the 41% expressed their intention to use only jCOLIBRI
without templates.

6 Conclusions

In this paper we have presented our COLIBRI platform and its associated
development process from the point of view of reproducibility. We propose the
reuse of templates that can be shared with the community to promote their
future reference and reproducibility. COLIBRI is a popular platform in the
community. Its framework jCOLIBRI includes dozens of components for the
implementation of CBR systems, many of them contributed by other research
groups in the community. It has hit, as of this writing, the 15.000 downloads
mark with users in 150 different countries. On the other hand, the configuration
tools that supports the Template-based design have been recently published. It
includes, by now, all the components from jCOLIBRI and up to 16 templates
for the generation of recommender systems. We are working on the inclusion
of templates for other CBR families such as textual CBR, web CBR or group
recommendations. In case COLIBRI Studio would reach the same popularity
than jCOLIBRI, reproducibility in CBR would be closer to become a reality.

References

1. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Template based de-
sign in colibri studio. In: Proceedings of the Process-oriented Case-Based Reasning
Workshop at ICCBR 2011, pp. 101–110 (2011)

2. Gil, Y.: From data to knowledge to discoveries: Artificial intelligence and scientific
workflows. Scientific Programming 17, 231–246 (2009)

The COLIBRI Open Platform for the Reproducibility of CBR Applications 269

3. Gil, Y., Deelman, E., Ellisman, M.H., Fahringer, T., Fox, G., Gannon, D., Goble,
C.A., Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientic
workows. IEEE Computer 40, 24–32 (2007)

4. Oinn, T., Greenwood, M., Addis, M., Alpdemir, N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens,
R., Wipat, A., Wroe, C.: Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience 18,
1067–1100 (2006)

5. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A.C., Jacob, J.C., Katz, D.S.: Pegasus:
A framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming 13, 219–237 (2005)

6. Gil, Y., Ratnakar, V., Kim, J., González-Calero, P.A., Groth, P.T., Moody, J., Deel-
man, E.: Wings: Intelligent workflow-based design of computational experiments.
IEEE Intelligent Systems 26, 62–72 (2011)

7. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for pegasus: Cre-
ating large-scale scientific applications using semantic representations of computa-
tional workflows. In: AAAI, pp. 1767–1774. AAAI Press (2007)

8. W3C: Owl web ontology language overview, World Wide Web Consortium (2004),
http://www.w3.org/TR/owl-features/

9. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

10. Sirin, E., Parsia, B.: Pellet: An OWL DL Reasoner. In: Haarslev, V., Möller, R.
(eds.) Description Logics. CEUR Workshop Proceedings, vol. 104, CEUR-WS.org
(2004)

11. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J.A., Sánchez, A.: Building
CBR systems with jCOLIBRI. Special Issue on Experimental Software and Toolkits
of the Journal Science of Computer Programming 69, 68–75 (2007)

12. Recio-Garćıa, J.A., Bridge, D.G., Dı́az-Agudo, B., González-Calero, P.A.: CBR
for CBR: A Case-Based Template Recommender System for Building Case-Based
Systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR
2008. LNCS (LNAI), vol. 5239, pp. 459–473. Springer, Heidelberg (2008)

13. Gil, Y., Szekely, P., Villamizar, S., Harmon, T.C., Ratnakar, V., Gupta, S., Muslea,
M., Silva, F., Knoblock, C.A.: Mind your metadata: Exploiting semantics for con-
figuration, adaptation, and provenance in scientific workflows. In: Aroyo, L., Welty,
C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.)
ISWC 2011, Part II. LNCS, vol. 7032, pp. 65–80. Springer, Heidelberg (2011)

14. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P.T., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E.G., den
Bussche, J.V.: The open provenance model core specification (v1.1). Future Gen-
eration Comp. Syst. 27, 743–756 (2011)

15. Dı́az-Agudo, B., González-Calero, P.A.: CBROnto: a task/method ontology for
CBR. In: Haller, S., Simmons, G. (eds.) Procs. of the 15th International FLAIRS
2002 Conference, pp. 101–105. AAAI Press (2002)

16. The OWL Services Coalition: OWL-S: Semantic Markup for Web Services,
http://www.daml.org/services/owl-s/1.1/overview/ (2004)

17. Cristina Feier, J.D.: Wsmo primer (2005), http://www.wsmo.org/
18. Recio-Garćıa, J.A., González-Calero, P.A., Dı́az-Agudo, B.: Template-based design

in colibri studio. Journal on Information Systems (to appear)

http://www.w3.org/TR/owl-features/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.wsmo.org/

Refinement-Based Similarity Measure

over DL Conjunctive Queries�

Antonio A. Sánchez-Ruiz1, Santiago Ontañón2,
Pedro Antonio González-Calero1, and Enric Plaza3

1 Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid, Spain
antsanch@fdi.ucm.es, pedro@sip.ucm.es

2 Computer Science Department
Drexel University

Philadelphia, PA, USA 19104
santi@cs.drexel.edu

3 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain)
enric@iiia.csic.es

Abstract. Similarity assessment is a key operation in case-based reason-
ing and other areas of artificial intelligence. This paper focuses on mea-
suring similarity in the context of Description Logics (DL), and specif-
ically on similarity between individuals. The main contribution of this
paper is a novel approach based on measuring similarity in the space of
Conjunctive Queries, rather than in the space of concepts. The advan-
tage of this approach is two fold. On the one hand it is independent of the
underlying DL, and thus, there is no need to design similarity measures
for different DL, and on the other hand, the approach is computationally
more efficient than searching in the space of concepts.

1 Introduction

Description Logics (DL) are one of the most widespread standards for knowledge
representation in many application areas [3]. Gaining momentum through the
Semantic Web initiative, DL popularity is also related to a number of tools
for knowledge acquisition and representation, as well as inference engines, that
have been made publicly available. For these reasons, DL has also become the
technology of choice for representing knowledge in knowledge-intensive case-
based reasoning systems [19,7,10].

In this paper, we focus on the problem of similarity assessment in DL, in
order to enable general purpose case-based reasoning systems that use this for-
malism to represent domain knowledge. Specifically, we focus in the problem of
measuring similarity between individuals. The similarity measure presented in

� Partially supported by Spanish Ministry of Economy and Competitiveness under
grants TIN2009-13692-C03-01 and TIN2009-13692-C03-03 and by the Generalitat
de Catalunya under the grant 2009-SGR-1434.

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 270–284, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Refinement-Based Similarity Measure over DL Conjunctive Queries 271

this paper, SQ, works as follows: 1) given two individuals, we convert them into
DL Conjunctive Queries, 2) the similarity between the two queries is measured
using a refinement-operator-based similarity measure [17,20]. The approach pre-
sented in this paper differs from previous work [8,20] in that the SQ similarity
is defined over the space of DL Conjunctive Queries, rather than in the space of
DL concepts.

There are three main advantages in the SQ similarity approach: 1) the conver-
sion process from individuals to queries does not lose information (the conversion
to concepts usually causes some loss of information), 2) the language used to rep-
resent conjunctive queries is independent of the particular DL being used (and
thus our approach can be applied to any DL), and 3) assessing similarity in the
space of queries is computationally more efficient than assessing similarity in the
space of concepts, as we will show in the experimental evaluation section.

The rest of this paper is organized as follows. Section 2 introduces the neces-
sary concepts of Description Logics, Conjunctive Queries and Refinement Oper-
ators respectively. Then, in Section 3, we introduce a new refinement operator
for Conjunctive Queries. Section 4 presents the SQ similarity measure between
individuals, which is illustrated with an example in §4.3. Section 5 presents an
experimental evaluation of our approach. The paper closes with related work,
conclusions and directions for future research.

2 Background

Description Logics [3] are a family of knowledge representation formalisms, which
can be used to represent the conceptual knowledge of an application domain in
a structured and formally well-understood way.

Description Logics (DL) represent knowledge using three types of basic en-
tities: concepts, roles and individuals. Concepts provide the domain vocabulary
required to describe sets of individuals with common features, roles allow to
describe relationships between individuals, and individuals represent concrete
domain entities. DL expressions are built inductively starting from finite and dis-
joint sets of atomic concepts (NC), atomic roles (NR) and individual names (NI).

The expressivity and the reasoning complexity of a particular DL depends on
the available concept constructors in the language. Although the proposed simi-
larity measure is independent of the description logic being used (the only effect
being computation time), in this paper we will use the EL logic, a light-weight
DL with good computational properties that serves as a basis for the OWL 2
EL profile1. EL is expressive enough to describe large biomedical ontologies, like
SNOMED CT [6] or the Gene Ontology [2],while maintaining important proper-
ties such as concept subsumption being polynomial. The EL concept constructs
are the top concept, intersection and existential restrictions (see Table 1).

A DL knowledge base (KB), K = (T ,A), consists of two different types of
information: T , the TBox or terminological component, which contains concept
and role axioms and describes the domain vocabulary; and A, the ABox or

1 http://www.w3.org/TR/owl2-profiles/

http://www.w3.org/TR/owl2-profiles/

272 A.A. Sánchez-Ruiz et al.

Table 1. EL concepts and semantics

Concept Syntax Semantics

Top concept � ΔI

Atomic concept A AI

Conjunction C �D CI ∩DI

Existential restriction ∃R.C {x ∈ ΔI | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

Table 2. TBox axioms

Axiom Syntax Semantics

Concept inclusion C � D CI ⊆ DI

Disjointness C �D ≡ ⊥ CI ∩DI = ∅
Role domain domain(R) = A (x, y) ∈ RI → x ∈ AI

Role range range(R) = A (x, y) ∈ RI → y ∈ AI

assertional component, which uses the domain vocabulary to assert facts about
individuals. For the purposes of this paper, a TBox is a finite set of concept and
role axioms of the type given in Table 2, and an ABox is a finite set of axioms
about individuals of the type shown in Table 3.

Regarding semantics, an interpretation is a pair I = (ΔI , ·I), where ΔI is
a non-empty set called the interpretation domain, and ·I is the interpretation
function. The interpretation function relates each atomic concept A ∈ NC with
a subset of ΔI , each atomic role R ∈ NR with a subset of ΔI × ΔI and each
individual a ∈ NI with a single element of ΔI . The interpretation function can
be extended to complex concepts as shown in Table 1.

An interpretation I is a model of a knowledge base K iff the conditions de-
scribed in Tables 2 and 3 are fulfilled for every axiom in K. A concept C is
satisfiable w.r.t. a knowledge base K iff there is a model I of K such that CI �= ∅.

The basic reasoning operation in DL is subsumption, that induces a subcon-
cept-superconcept hierarchy. We say that the concept C is subsumed by the
concept D (C is more specific than D) if all the instances of C are also instances
of D. Formally, C is subsumed by D w.r.t. the knowledge base K (C !K D) iff
CI ⊆ DI for every model I of K. When the knowledge base K is known we can
simplify the notation and write C ! D. Finally, an equivalence axiom C ≡ D
is just an abbreviation for when both C ! D and D ! C hold, and a strict
subsumption axiom C � D simply means that C ! D and C �≡ D.

Table 3. ABox axioms

Axiom Syntax Semantics

Concept instance C(a) aI ∈ CI

Role assertion R(a, b) (aI , bI) ∈ RI

Same individual a = b aI = bI

Different individual a
= b aI
= bI

Refinement-Based Similarity Measure over DL Conjunctive Queries 273

TBox

Topping � �
Cheese � Topping

Mozzarella � Cheese

. . .

P izza � �
CheesyP izza ≡ Pizza � ∃hasTopping.Cheese

MeatyP izza ≡ Pizza � ∃hasTopping.Meat

Margherita � Pizza � ∃hasTopping.T omato�
∃hasTopping.Mozzarella

range(hasTopping) � Topping

ABox

Margherita(p1), P izza(p2), hasTopping(p2, t1), Chicken(t1), hasTopping(p2, t2),
V egetable(t2)

Fig. 1. Example of knowledge base

Figure 1 shows an example knowledge base that we will use in the rest of the
paper. The TBox contains axioms to define some vocabulary about pizzas and
ingredients: Mozzarella is a type of Cheese; Margherita is a type of Pizza
with Tomato and Mozzarella; a CheesyP izza is any Pizza with Cheese, etc.
The ABox, in turn, contains axioms to describe two individuals: a margherita
pizza and a pizza with chicken and vegetable toppings.

2.1 DL Conjunctive Queries

DL knowledge bases can be queried in order to retrieve individuals that meet
certain conditions –in a way similar to that queries are used to retrieve data
in databases. In order to define queries, along with the set of atomic concepts
(NC), atomic roles (NR) and individual names (NI) from knowledge bases, we
need as well a disjoint set of variable names (NV).

Definition 1. (Conjunctive Query)
A DL conjunctive query Q(x,y) is a logic formula ∃y.ψ(x,y) where ψ is con-
junction of terms of the form A(x), R(x, y), x = y and x �= y, in which A ∈ NC

is an atomic concept, R ∈ NR is an atomic role, and x and y are either individual
names from NI or variable names taken from the sets x,y ⊂ NV .

The sets x and y contain, respectively, all the answer variables and quantified
variables of the query. A boolean conjunctive query Q(∅,y), or just Q(y), is a
query in which all the variables are quantified.

274 A.A. Sánchez-Ruiz et al.

To define the semantics of general DL queries, let us begin considering only
boolean queries. Let V I(Q) be the set of variables and individuals in the queryQ.
An interpretation I is a model of a boolean query Q(y), noted as I |= ∃y : Q(y)
or shortly as I |= Q, if there is a variable substitution θ : V I(Q) → ΔI such
that θ(a) = aI for each individual a ∈ V I(Q), and I |= αθ for each term α in
the query. The notation αθ denotes the query atom α where the variables of α
are substituted according to θ. A knowledge base K entails a boolean query Q,
noted as K |= Q, if every model of K satisfies Q.

Now let us consider queries with answer variables.

Definition 2. (Query Answer)
An answer to a query Q(x,y) w.r.t. a knowledge base K is a variable substitution
θ that maps the answer variables in x to individuals in K such that the boolean
query Q(xθ,y) is entailed by K as defined above.

The notation Q(xθ,y) represents the query where all the distinguished variables
have been replaced according to θ. Note that, for interpreting boolean queries,
we use a substitution that maps variables to arbitrary elements of the domain
ΔI whereas for a query answer we require the answer variables to be mapped
to named individuals in the ABox.

Definition 3. (Query Answer Set)
The answer set of a query Q(x,y) w.r.t. K, noted as Q(K), is the set containing
all the answers to the query Q(x,y) w.r.t. K.

For example, given the knowledge base in Figure 1, let us consider the queries:

Q1({x1}, {}) = Pizza(x1)

Q2({x1}, {y1}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Tomato(y1)

Now, the query Q1 below will retrieve all the existing pizzas (Q1(K) = {{p1/x1},
{p2/x1}}), while the queryQ2 will retrieve only those pizzas with tomato (Q2(K)
= {{p1/x1}}). Notice that the reasoner infers that p1 has tomato because it is
a marguerita pizza although there is no individual of type tomato explicitly
asserted in the ABox.

2.2 Query Subsumption

We can define a subsumption relation between queries similar to the subsumption
relation between concepts. In this way, queries can be organized into a hierarchy
where the most general queries are above the most specific ones.

Definition 4. (Query Subsumption)
A query Q(x,y) is subsumed by another query Q′(x,y′) w.r.t. K = (T ,A) (noted
as K |= Q ! Q′) if, for every possible ABox A′ and the knowledge base K′ =
(T ,A′) it holds that Q(K′) ⊆ Q′(K′) (i.e. that the answer set of Q is contained
in the answer set of Q′).

Refinement-Based Similarity Measure over DL Conjunctive Queries 275

Query containment is very closely related to query answering. The standard
technique of query freezing [21] can be used to reduce query containment to
query answering in DL [16]. To decide query subsumption, we build a canonical
ABox AQ from the query Q(x,y) by replacing each of the variables in x and y
with fresh individual names not appearing in the KB. Let θ be the substitution
denoting the mapping of variables x to the fresh individuals. Then, for K =
(T ,A), K |= Q ! Q′ iff θ is in the answer set of Q′ w.r.t. to KQ = (T ,AQ).

Note that Definition 4 assumes that both Q and Q′ share the same set of
answering variables, which is enough for the purposes of this paper. For example,
considering the pizza knowledge base, query Q3 below subsumes Q4 because any
margherita pizza is also a pizza with tomato and thus any answer to Q4 is also
an answer to Q3.

Q3({x1}, {y1}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Tomato(y1)

Q4({x1}) = Margherita(x1)

2.3 Refinement Operators

This section briefly summarizes the notion of refinement operator and the con-
cepts relevant for this paper (see [13] for a more in-depth analysis of refinement
operators). Refinement operators are defined over quasi-ordered sets. A quasi-
ordered set is a pair (S,≤), where S is a set, and ≤ is a binary relation among
elements of S that is reflexive and transitive. If a ≤ b and b ≤ a, we say that
a ≈ b, or that they are equivalent. Refinement operators are defined as follows:

Definition 5. (Refinement Operator)
A refinement operator ρ over a quasi-ordered set (S,≤) is a function such that
∀a ∈ S : ρ(a) ⊆ {b ∈ S|b ≤ a}.
In other words, refinement operators (sometimes called downward refinement
operators) generate elements of S which are “smaller” (which in this paper means
“more specific”). The complementary notion of an upward refinement operator,
that generates elements that are “bigger”, also exists, but is irrelevant for this
paper. Typically, the following properties of operators are considered desirable:

– A refinement operator ρ is locally finite if ∀a ∈ S : ρ(a) is finite.
– A downward refinement operator ρ is complete if ∀a, b ∈ S|a ≤ b : a ∈ ρ∗(b).
– A refinement operator ρ is proper if ∀a, b ∈ S, b ∈ ρ(a)⇒ a �≈ b.

where ρ∗ means the transitive closure of a refinement operator. Intuitively, locally
finitenessmeans that the refinement operator is computable, completenessmeans
we can generate, by refinement of a, any element of S related to a given element
a by the order relation ≤ (except maybe those which are equivalent to a), and
properness means that a refinement operator does not generate elements which
are equivalent to a given element a.

Regarding DL queries, the set of DL conjunctive queries and the subsumption
relation between queries (Definition 4) form a quasi-ordered set. In this way, we
only need to define a refinement operator for DL conjunctive queries to specialize
or generalize them.

276 A.A. Sánchez-Ruiz et al.

3 A Refinement Operator for DL Conjunctive Queries

The following rewriting rules define an downward refinement operator for DL
Conjunctive Queries. A rewriting rule is composed of three parts: the applicabil-
ity conditions of the rewriting rule (shown between square brackets), the original
DL query (above the line), and the refined DL query (below the line).

(R1) Concept Specialization

[A2(x1) �∈ Q ∧A2 � A1∧ � ∃A′ : A2 � A′ � A1]

Q(x,y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

Q′(x,y) = A1(x1) ∧A2(x1) ∧ α1 ∧ . . . ∧ αn

(R2) Concept Introduction

[x1 ∈ V (Q) ∧ A1 ∈ max{A ∈ NA | ∀A′(x1) ∈ Q : A �! A′ ∧A′ �! A}]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = A1(x1) ∧ α1 ∧ . . . ∧ αn

(R3) Role Introduction

[x1, x2 ∈ V (Q) ∧R1 ∈ max{R ∈ NR | ∀R′(x1, x2) ∈ Q : R �! R′ ∧R′ �! R}]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = R1(x1, x2) ∧ α1 ∧ . . . ∧ αn

(R4) Variable Introduction

[x1 ∈ V I(Q), x2 ∈ NV \ V (Q)]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y ∪ {x2}) = α1 ∧ . . . ∧ αn ∧ "(x2)

(R5) Variable Instantiation
[θ : V (Q)→ NI]

Q(x,y) = α1 ∧ . . . ∧ αn

Q′(x,y) = α1θ ∧ . . . ∧ αnθ

Rules R1 and R2 refine a query either specializing an existing type or introducing
a new type that is neither more general nor more specific than the existing ones
(for example a sibling in the concept hierarchy). Rule R3 works analogously to
R2 but introducing roles instead of concepts. Note that we do not provide a rule
to specialize role assertions since the EL logic does not allow role hierarchies.
Rule R4 introduces a new quantified variable in the query, and R5 binds an
existing variable to a concrete individual in the knowledge base.

For the sake of space we do not provide proofs, but it is easy to verify that
the previous refinement operator is locally finite and not proper. The refinement
operator is also complete if we only consider the space of DL conjunctive queries

Refinement-Based Similarity Measure over DL Conjunctive Queries 277

with a fixed set of answer variables (none of the above rules adds new answer
variables) in which all the variables represent distinct individuals.

Although the assumption that all the variables are different restricts the set of
queries that can be represented, it also simplifies to a large degree the similarity
assessment process that we introduce in the following section, since it prevents
refinement chains of infinite length in which all the queries are equivalent:

A(x1)→ A(x1) ∧ "(y1)→ A(x1) ∧ "(y1) ∧ "(y2)→ . . .

Dealing with these infinite chains using other approaches and exploring different
refinement operators that offer a different trade-off of completeness and efficiency
is part of our future work.

4 Similarity Based on Query Refinements

The similarity SQ proposed in this paper consists of two main steps (described
in the following two subsections). First, given individuals a and b, we transform
them into conjunctive DL queries, Qa and Qb. Second, using the refinement
operator presented above, we measure the similarity between Qa and Qb.

4.1 From Individuals to Queries

Given an individual a and an ABox, A, we can define the individual graph of a
as follows.

Definition 6. (Individual graph)
An individual graph Ga ⊆ A is a set of ABox axioms with one distinguished
individual a ∈ NI such that:

– ∀C ∈ NC, if C(a) ∈ A then C(a) ∈ Ga

– ∀C ∈ NC, if C(b) ∈ Ga then ∀R ∈ NR, if R(b, c) ∈ A then R(b, c) ∈ Ga

– ∀R ∈ NR, C ∈ NC , if C(b) ∈ Ga and R(b, c) ∈ A then ∀D ∈ NC if D(c) ∈ A
then D(c) ∈ Ga

In other words, if we represent the ABox as a graph, where each individual
is a node, and each role axiom is a directed edge, the individual graph of an
individual a would be the connected graph resulting from all the nodes and
edges reachable from a.

We can transform an individual graph to an equivalent conjunctive query ap-
plying a substitution that replaces the distinguished individual by a new answer
variable, and the remaining individuals by new quantified variables. Note that
the conversion is straightforward since ABox axioms and DL query terms are
alike and, what is more important, no information is lost in the translation.

For example, next we show an individual graph and its equivalent DL query:

Gp1 = Pizza(p1) ∧ hasTopping(p1, t1)∧Chicken(t1) ∧
hasTopping(p1, t2)∧ V egetable(t2)

Qp1({x1}, {y1, y2}) = Pizza(x1) ∧ hasTopping(x1, y1) ∧ Chicken(y1) ∧
hasTopping(x1, y2) ∧ V egetable(y2)

278 A.A. Sánchez-Ruiz et al.

Fig. 2. Query distance based on refinements

4.2 Similarity over in the CQ Space

Our proposed similarity measure for conjunctive DL queries is based on the
following intuitions (see Figure 2):

First, given two queries Q1 and Q2 such that Q2 ! Q1, it is possible to reach
Q2 from Q1 by applying a complete downward refinement operator ρ to Q1 a
finite number of times, i.e. Q2 ∈ ρ∗(Q1).

Second, the number of times a refinement operator needs to be applied to
reach Q2 from Q1 is an indication of how much more specific Q2 is than Q1.
Note, however, that since our refinement operator is not proper, some of the
refinements in the refinement chain do not add new information to the previous
query, and they should not be taken into account. The length of the chain of
useful refinements (those that produce proper specializations) to reach Q2 from

Q1, which will be noted as λ(Q1
ρ−→ Q2), is an indicator of how much information

Q2 contains that was not contained in Q1. In our experiments, we used a greedy
search algorithm to compute this length, which does not ensure obtaining the
shortest chain, but that is computationally efficient.

Third, given any two queries, their least common subsumer (LCS) is the most
specific query which subsumes both. The LCS of two queries contains all that is
shared between two queries, and the more they share the more similar they are.

λ(Q�
ρ−→ LCS) measures the distance from the most general query, Q�, to the

LCS, which is a measure of the amount of information shared by Q1 and Q2.
Finally, the similarity between two queries Q1 and Q2 can be measured as

the ratio between the amount of information contain in their LCS and the total
amount of information contained in Q1 and Q2. These ideas are collected in the
following formula:

Sρ(Q1, Q2) =
λ1

λ1 + λ2 + λ3

Refinement-Based Similarity Measure over DL Conjunctive Queries 279

where:

λ1 = λ(Q�
ρ−→ LCS(Q1, Q2))

λ2 = λ(LCS(Q1, Q2)
ρ−→ Q1)

λ3 = λ(LCS(Q1, Q2)
ρ−→ Q2)

Thus, the similarity between two individuals a and b, is defined as:

SQ(a, b) = Sρ(Qa, Qb)

where Qa and Qb are the queries corresponding to the individual graphs of a
and b, respectively.

4.3 Example

In this section we show an example of the SQ similarity works. Suppose we want
to compute the similarity between a pizza margherita p1 and a pizza p2 with
some vegetable and chicken. Figure 3 shows the queries representing both pizzas
and the chain of refinements used to compute their similarity. Note that the
refinements marked with an asterisk do not add new information and therefore
they are not taken into account while computing the length of the refinement
paths (steps 5 and 9 do not add new information because the role hasTopping
has range Topping and thus we can infer that type for y3 and y4). Their LCS
describes the common part of the pizzas: both have at least two ingredients and
one of them is a vegetable. Their similarity is determined as follows:

SQ(p1, p2) = Sρ(Qp1, Qp2) =
6

6 + 3 + 5
= 0.43

5 Experiments

In order to evaluate the SQ similarity measure, we used the trains data set
shown in Figure 4 as presented by Michalski [14]. Like in our previous work on
similarity assessment [20], we selected this dataset since it is available in many
representation formalisms (Horn clauses, feature terms and description logic),
and therefore, we can compare our similarity measure with existing similarity
measures in the literature. The dataset consists of 10 trains, 5 of them labelled
as “West”, and 5 of them labelled as “East.”

We compared our similarity measure against 7 others: SDLρ [20], a similarity
measure for the EL description logic; González et al. [10], a similarity measure for
acyclic concepts in description logic; RIBL [9], which is a Horn clause similarity
measure; SHAUD [1], which is a similarity measure for feature terms; and Sλ,
Sπ, and Swπ [18], which are similarity measures for feature terms but also based
on the idea of refinement operators. For RIBL, we used the original version of the
trains dataset, for SHAUD, Sλ, Sπ, and Swπ, we used the feature term version

280 A.A. Sánchez-Ruiz et al.

Queries for Gp1 and Gp2

Qp1({x1}, {}) = Margherita(x1)
Qp2({x2}, {y1, y2}) = Pizza(x2) ∧ hasTopping(x2, y1) ∧ Chicken(y1)∧

hasTopping(x2, y2) ∧ V egetable(y2)

Path from QT to LCS(Qp1, Qp2)
1 : �(x3)
2 : Pizza(x3)
3 : Pizza(x3) ∧ �(y3)
4 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ �(y3)
5∗ : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Topping(y3)
6 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3)
7 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ �(y4)
8 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ �(y4)
9∗ : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ Topping(y4)

Path from LCS(Qp1, Qp2) to Qp1

10 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Tomato(y3) ∧ hasTopping(x3, y4) ∧ Topping(y4)
11 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ Tomato(y3) ∧ hasTopping(x3, y4) ∧Mozzarella(y4)
12 : Pizza(p1) ∧ hasTopping(p1, y3) ∧ Tomato(y3) ∧ hasTopping(p1, y4) ∧Mozzarella(y4)

Path from LCS(Qp1, Qp2) to Qp2

13 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧Meat(y4)
14 : Pizza(x3) ∧ hasTopping(x3, y3) ∧ V egetable(y3) ∧ hasTopping(x3, y4) ∧ Chicken(y4)
15 : Pizza(p2) ∧ hasTopping(p2, y3) ∧ V egetable(y3) ∧ hasTopping(p2, y4) ∧ Chicken(y4)
16 : Pizza(p2) ∧ hasTopping(p2, t1) ∧ V egetable(t1)∧ hasTopping(p2, y4) ∧ Chicken(y4)
17 : Pizza(p2) ∧ hasTopping(p2, t1) ∧ V egetable(t1)∧ hasTopping(p2, t2) ∧ Chicken(t2)

Fig. 3. Refinement paths to compute Sρ(Qp1, Qp2)

of the dataset used in [17], which is a direct conversion from the original Horn
clause dataset without loss, and for the DL similarity measures, we used the
version created by Lehmann and Hitzler [15].

We compared the similarity measures in five different ways:

– Classification accuracy of a nearest-neighbor algorithm.
– Average best rank of the first correct example: if we take one of the trains,

and sort the rest of the trains according to their similarity with the selected
train, which is the position in this list (rank) of the first train with the same
solution as the selected train (West or East).

– Jaro-Winkler distance: the Jaro-Winkler measure [22] can be used to com-
pare two orderings. We measure the similarity of the rankings generated by
our similarity measure with the rankings generated with the others.

– Mean-Square Difference (MSD): the mean square difference with respect to
our similarity measure, SQ.

– Average time take to compute similarity between two individuals.

Table 4 shows the results we obtained by using a leave-one-out evaluation.
Concerning classification accuracy, we can see that our similarity measure SQ

Refinement-Based Similarity Measure over DL Conjunctive Queries 281

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 4. Trains data set as introduced by Michalski [14]

Table 4. Comparison of several similarity metrics in the trains dataset (* These times
do not take into account data preprocessing, required for these two techniques). Note
that the Jaro-Winkler and MSD values are computed with respect to SQ.

SQ SDLρ González et al. RIBL SHAUD Sλ Sπ Swπ

Accuracy 1-NN 70% 70% 50% 60% 50% 40% 50% 80%

Best Rank 1.4 1.4 1.5 2.0 2.0 2.3 2.1 1.7

Jaro-Winkler - 0.75 0.68 0.79 0.73 0.76 0.76 0.77

MSD - 0.03 0.21 0.07 0.06 0.07 0.11 0.16

Avg. Time 0.55s 175.74s 0.01s 0.01s 0.07s 0.04s 0.00s* 0.00s*

achieves a high classification accuracy, higher than most other similarity mea-
sures, except Swπ. We would like to emphasize that the trains data-set is only
apparently simple, since the classification criteria is a complex pattern which in-
volves several elements from different cars in a train. The only similarity measure
that came close is Swπ, which achieved an 80% accuracy (it misclassified trains
west 1 and west 3). Concerning the average best rank, our measure obtains the
best score (tied with our previous measure SDLρ). Concerning the Jaro-Winkler
and MSD results, we can see that in the trains data set SQ produces similarities
similar to SDLρ, RIBL, and Sλ.

Where our new similarity measure stands out is in terms of time. We can
see that, compared to our previous SDLρ similarity measure, the SQ similarity
is very fast. This is because the space of queries is narrower than the space of
concepts since queries can only contain atomic concepts and roles while general
DL concepts can combine any of the constructors in the language. However,
this limitation does not necessarily affect the quality of the similarity, since
atomic concepts represent the vocabulary chosen by domain experts to describe
domain entities, and therefore atomic concepts represent the most important
conceptualizations in the domain. Also, many practical optimizations can be
performed, such as sorting the query term in such a way that the most restrictive
axioms ones are evaluated first.

282 A.A. Sánchez-Ruiz et al.

The other similarity measure for DL (González et al.’s) is much faster, but it
is specialized to individual graphs that can be represented as trees, and would
not work for individual graphs that contain cycles.

In summary, SQ is a new practical approach to assess similarity for expres-
sive DL, with a similar classification accuracy or better than existing similarity
measures, but more general than González et al.’s, and more efficient than our
previous measure SDLρ.

6 Related Work

The work presented in this paper extends our previous work on similarity on
Description Logics [20], where we studied how to assess similarity between indi-
viduals by transforming them to concepts, and then assessing the similarity of
these concepts. The approach presented in this paper is more general (since the
language DL queries is common to all DL), more efficient, and more accurate
(since we might lose information when converting individuals to concepts).

D’Amato et al. [8] propose to measure concept similarity as a function of the
intersection of their interpretations, which is, in fact, an approximation to the
semantic similarity of concepts. The approximation is better or worse depending
on how good is the sample of individuals used for assessing similarity. Thus, a
good sample of individuals is required.

Other approaches have been proposed in order to assess similarity between
individuals or concepts without requiring the use of a good sample of individuals.
González et al. [10] present a similarity measure for description logic designed
for case-based reasoning systems. This similarity measure is based on the idea
of hierarchical aggregation, in which the similarity between two instances is
computed as an aggregation of the similarity of the values in their roles.

In addition to similarity in Description Logics, there has been a significant
amount of work in the more general topic of similarity assessment for other
forms of complex data representation formalisms. Hutchinson [12] presented a
distance based on the anti-unification of two terms. The Hutchinson distance is
the addition of the sizes of the variable substitutions required to move from the
anti-unification of two terms to each of these terms. This measure is related to
the refinement-based approaches in [20] and [18], but is more coarse grained.

RIBL (Relational Instance-Based Learning) is an approach to apply lazy
learning techniques while using Horn clauses as the representation formalism [9].
An earlier similarity measure related to RIBL was that of Bisson [5]. Horváth
et al [11] presented an extension of RIBL that is able to deal with lists and
terms. The downside of the RIBL approach is that specialized measures have to
be defined for different types of data, while other approaches, such as the ones
based on refinement operators, do not have this downside.

Bergmann and Stahl [4] present a similarity metric specific for object ori-
ented representations based on the concepts of intra-class similarity (measuring
similarity among all the common features of two objects) and inter-class simi-
larity (providing a maximum similarity given to object classes). This similarity is

Refinement-Based Similarity Measure over DL Conjunctive Queries 283

defined in a recursive way, thus following the same “hierarchical decomposition”
idea as RIBL, and limiting the approach to tree representations.

SHAUD, presented by Armengol and Plaza [1], is another similarity measure
following the “hierarchical decomposition” approach but designed for feature
terms. SHAUD also assumes that the terms do not have cycles, and in the same
way as RIBL and Bergmann and Stalh’s it can handle numerical values by using
specialized similarity measures for different data types.

7 Conclusions and Future Work

This paper has presented a new approach to assess similarity between individuals
in Description Logics. Our approach is based on first converting the individuals
to conjunctive queries, and then assessing the similarity between the queries.
Converting individuals to queries has several advantages with respect to con-
verting individuals to concepts, and then assessing the similarity between the
concepts: first, the conjunctive query language is shared among different DLs,
and thus, our similarity measure is more generic (although in this paper we fo-
cused on the EL logic). Second, search in the space of queries is more efficient
than search in the space of concepts, thus gaining a computational advantage.
Our empirical results show that the resulting measure obtains similar results as
previous comparable measures, but at a much lower computational cost.

As part of our future work, in addition to evaluation with larger and more
complex datasets, we would like to fully explore the applicability of our similarity
measure for more expressive description logics. Specifically, we would like to
investigate the tradeoffs between relaxing the requirement of having a complete
refinement operator (reducing the search space, and thus the computational
complexity), and the performance of the resulting similarity measure.

References

1. Armengol, E., Plaza, E.: Relational case-based reasoning for carcinogenic activity
prediction. Artif. Intell. Rev. 20(1-2), 121–141 (2003)

2. Ashburner, M.: Gene ontology: Tool for the unification of biology. Nature Genet-
ics 25, 25–29 (2000)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, New York (2003)

4. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case represen-
tations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 25–36. Springer, Heidelberg (1998)

5. Bisson, G.: Learing in FOL with a similarity measure. In: Proceedings of AAAI
1992, pp. 82–87 (1992)

6. Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption
in SNOMED CT: An exploration into large description logic-based biomedical
terminologies. Artif. Intell. Med. 39, 183–195 (2007),
http://portal.acm.org/citation.cfm?id=1240342.1240604

http://portal.acm.org/citation.cfm?id=1240342.1240604

284 A.A. Sánchez-Ruiz et al.

7. Cojan, J., Lieber, J.: An algorithm for adapting cases represented in an expres-
sive description logic. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS,
vol. 6176, pp. 51–65. Springer, Heidelberg (2010)

8. d’Amato, C., Staab, S., Fanizzi, N.: On the influence of description logics ontologies
on conceptual similarity. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS
(LNAI), vol. 5268, pp. 48–63. Springer, Heidelberg (2008)

9. Emde, W., Wettschereck, D.: Relational instance based learning. In: Saitta, L.
(ed.) Machine Learning - Proceedings 13th International Conference on Machine
Learning, pp. 122–130. Morgan Kaufmann Publishers (1996)

10. González-Calero, P.A., Dı́az-Agudo, B., Gómez-Albarrán, M.: Applying DLs for
retrieval in case-based reasoning. In: Proceedings of the 1999 Description Logics
Workshop (DL 1999) (1999)

11. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with
lists and terms. Machine Learning 43(1-2), 53–80 (2001)

12. Hutchinson, A.: Metrics on terms and clauses. In: van Someren, M., Widmer, G.
(eds.) ECML 1997. LNCS, vol. 1224, pp. 138–145. Springer, Heidelberg (1997)

13. van der Laag, P.R.J., Nienhuys-Cheng, S.H.: Completeness and properness of re-
finement operators in inductive logic programming. Journal of Logic Program-
ming 34(3), 201–225 (1998)

14. Larson, J., Michalski, R.S.: Inductive inference of VL decision rules. SIGART
Bull. 63(63), 38–44 (1977)

15. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the
LC description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

16. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany (Jan-
uary 2006)

17. Ontanón, S., Plaza, E.: Similarity Measures over Refinement Graphs. Machine
Learning 87, 57–92 (2012)

18. Ontañón, S., Plaza, E.: On similarity measures based on a refinement lattice. In:
McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 240–255.
Springer, Heidelberg (2009)

19. Sánchez-Ruiz, A.A., González-Calero, P.A., Dı́az-Agudo, B.: Abstraction in
knowledge-rich models for case-based planning. In: McGinty, L., Wilson, D.C.
(eds.) ICCBR 2009. LNCS, vol. 5650, pp. 313–327. Springer, Heidelberg (2009)

20. Sánchez-Ruiz, A.A., Ontañón, S., González-Calero, P.A., Plaza, E.: Measuring sim-
ilarity in description logics using refinement operators. In: Ram, A., Wiratunga,
N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 289–303. Springer, Heidelberg (2011)

21. Ullman, J.D.: Information integration using logical views. Theor. Comput.
Sci. 239(2), 189–210 (2000)

22. Winkler, W.E., Thibaudeau, Y.: An application of the Fellegi-Sunter model of
record linkage to the 1990 U.S. decennial census. In: U.S. Decennial Census. Tech-
nical report, US Bureau of the Census (1987)

Should Term-Relatedness Be Used in Text

Representation?

Sadiq Sani, Nirmalie Wiratunga, Stewart Massie, and Robert Lothian

School of Computing,
Robert Gordon University,

Aberdeen AB25 1HG, Scotland, UK
{s.a.sani,n.wiratunga,s.massie,r.m.lothian}@rgu.ac.uk

Abstract. The variation in natural language vocabulary remains a chal-
lenge for text representation as the same idea can be expressed in many
different ways. Thus document representations often rely on generalisa-
tion to map low-level lexical expressions to higher level concepts in order
to capture the inherent semantics of the documents. Term-relatedness
measures are often used to generalise document representations by cap-
turing semantic relationships between terms. In this work we conduct a
comparative study of common term-relatedness metrics on 43 datasets
and discover that generalisation is not always beneficial. Hence, the abil-
ity to predict whether or not to generalise the indexing vocabulary of a
dataset is important given the computation overhead of generalisation.
Accordingly, we present a case-based approach that predicts, given a text
dataset, whether or not using generalisation will improve text retrieval
performance. The evaluation shows that our approach is able to correctly
predict datasets that are likely to benefit from generalisation with over
90% accuracy.

1 Introduction

Large amounts of useful experience and knowledge are captured by organisations
in the form of natural language text documents e.g. incident reports, frequently
asked questions and error logs. When faced with a new problem (i.e. incident,
question or error), the solutions of previous similar problems can be recalled
to aid in solving the new problem. Key to the success of this problem solving
methodology is the ability to effectively search through and retrieve relevant
documents from the organisation’s collections. This process involves making
use of a query document which captures the description of the new problem,
and retrieving relevant documents from the collection using document similar-
ity. The bag-of-words (BOW) model is typically used for representation where
documents are represented as un-ordered collections of their constituent terms.
However, the BOW model is not able to cope with variation in natural lan-
guage vocabulary (e.g. synonymy and polysemy) which often requires semantic
indexing approaches [13].

The general idea of semantic indexing is to discover terms that are semanti-
cally related and use this knowledge to identify conceptual similarity even in the

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 285–298, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

286 S. Sani et al.

presence of vocabulary variation. The result is the generalisation of document
representations away from low-level expressions to high-level semantic concepts.
Different approaches have been proposed for obtaining term relatedness knowl-
edge. These range from using knowledge rich (extrospective) sources (e.g. lexical
databases, Wikipedia and the World Wide Web) [8] to knowledge light (intro-
spective) techniques that use statistics of term co-occurrences in a corpus [7].
Despite their simplicity, statistical techniques have so far provided the best per-
formance in text retrieval evaluations [2]. One reason for this is that corpus
co-occurrence is particularly helpful for estimating domain specific relationships
between terms [3]. Also, statistical approaches are able to capture relationship
types other than similarity e.g. the association between ‘bank’ and ‘money’.

Although generalisation has proven quite useful, it remains to be determined
whether it always improves text retrieval performance. Thus, the aim of this
work is to address two important questions:

1. Does generalisation always improve text retrieval?
2. If no, can we predict when it is likely to work?

We address the first question by investigating the performance of co-occurrence
based generalisation on a number of text classification datasets. Text classifica-
tion using the kNN algorithm is often used to measure text retrieval performance.
Given a query document with unknown class, the kNN algorithm uses the class
labels of the top k documents in the ranked retrieval set to determine the class of
the query document. Thus, higher text classification accuracy signifies a better
ranking of the retrieval set with more relevant documents placed closer to the
top which indicates better retrieval performance.

To address the second question, we investigate several attributes of text
datasets that are predictive of the performance of generalisation. Our aim is
to be able to predict when to apply generalisation in both supervised and unsu-
pervised retrieval tasks. Thus, the attributes we consider are completely unsuper-
vised and not dependent on the class labels of datasets. We use these attributes
in a case-based system to predict, given any text dataset, whether or not to apply
generalisation. Being able to accurately predict when generalisation is not likely
to improve performance means that we can conveniently avoid the overhead of
having to extract semantic relatedness knowledge in the first place.

The rest of this paper is structured as follows, in Section 2 we describe pop-
ular statistical approaches for extracting term relatedness. Section 3 describes
the datasets we used in this research. In Section 4 we evaluate the performance
of common term relatedness metrics. In Section 5 we present our CBR approach
for predicting when to apply generalisation and we evaluate our approach in Sec-
tion 6. We present related work in Section 7 followed by conclusions in Section 8.

2 Term Relatedness from Corpus Co-occurrence

The general idea of introspective approaches is that co-occurrence patterns of
terms in a corpus can be used to infer semantic relatedness such that the more

Should Term-Relatedness Be Used in Text Representation? 287

two terms occur together in a specified context, the more related they are. In
the following sections, we describe three different approaches for estimating term
relatedness from corpus co-occurrence.

2.1 Document Co-occurrence

Documents are considered similar in the vector space model (VSM) if they con-
tain a similar set of terms. In the same way, terms can also be considered similar
if they appear in a similar set of documents. Given a standard term-document
matrix D where column vectors represent documents and the row vectors rep-
resent terms, the similarity between two terms can be determined by finding
the distance between their vector representations. The relatedness between two
terms, t1 and t2 using the cosine similarity metric is given in equation 1.

SimDocCooc(t1, t2) =

∑n
i=0 t1,it2,i
|t1||t2|

(1)

2.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a technique that uses singular-value decom-
position (SVD) to exploit co-occurrence patterns of terms and documents to
create a semantic concept space which reflects the major associative patterns
in the corpus [7]. In this way, LSI brings out the underlying latent semantic
structure in texts.

Given a term-document matrix D, SVD is used to decompose D into three
matrices: U, a term by dimension matrix; S a diagonal matrix of singular values;
and V, a document by dimension matrix. This decomposition is shown in equa-
tion 2. The number of dimensions n is the rank of the original term-document
matrix D.

D = U × S × V (2)

The U , S, V matrices are truncated to k dimensions which represent the k most
important concepts in the term-document space. A new term-document repre-
sentation generalised to this concept space can then be obtained by multiplying
the rank-reduced U , S, V matrices using equation 2. Term similarities can be
obtained from the new term-document space by multiplying term vectors using
equation 1. Unlike document co-occurrence however, LSI is able to learn transi-
tive (higher order) relation between terms that do not co-occur within the same
document.

2.3 Normalised Positive Pointwise Mutual Information

The use of mutual information to model term associations is demonstrated in [4].
Given two terms t1 and t2, mutual information compares the probability of ob-
serving t1 and t2 together with the probability of observing them independently

288 S. Sani et al.

as shown in equation 3. Thus, unlike document co-occurrence and LSI, PMI is
able to disregard co-occurrence that could be attributed to chance.

PMI(t1, t2) = log2
P (t1, t2)

P (t1)P (t2)
(3)

If a significant association exists between t1 and t2, then the joint probability
P (t1, t2) will be much larger than the independent probabilities P (t1) and P (t2)
and thus, PMI(t1, t2) be greater than 0. Positive PMI is obtained by setting
all negative PMI values to 0. The probability of a term t in any context can be
estimated by the frequency of occurrence of t in that context normalised by the
frequency of all words in all contexts.

P (t) =
f(t)∑N

j=1

∑N
i=1 f(ti, tj)

(4)

PMI values do not lie within the range 0 to 1. Thus we need to introduce a
normalisation operation. We normalise PMI as shown in equation 5.

SimNpmi(t1, t2) =
PPMI(t1, t2)

−log2P (t1, t2)
(5)

3 Datasets

For evaluation, we obtain a collection of incident reports by crawling the Web.
A problem usually encountered when obtaining datasets for evaluating retrieval
performance is the absence of user relevance judgements. To address this, we
treat our evaluation as a classification task where documents that belong to the
same class as the query document are judged to be relevant. A second problem is
having access to large amounts of experiential datasets. Because we have decided
to conduct our evaluation using text classification, we supplemented our limited
incident reports data with standard text classification corpora i.e. Reuters V1,
20 Newsgroups, Ohsumed and Movie Reviews. These corpora are described in
detail in the following paragraphs.

Incident Reports corpus was created using incident reports crawled from the
Government of Western Australia’s Department of Mines and Petroleum web-
site 1. The corpus contains documents classified according to the types of inci-
dents they report e.g. the class Fire for fire related incidents and Collision for
vehicle collisions. Documents in each incident category are further classified into
Injury and NoInjury categories depending on whether or not injuries were sus-
tained in the incidents they describe.

Reuters Volume 1 corpus is an archive of 806,791 news stories provided by
the global news provider, Reuters. The collection comprises all news stories pro-
duced by Reuters journalists within a one year period starting from August,

1 http://dmp.wa.gov.au

Should Term-Relatedness Be Used in Text Representation? 289

1996. Documents within the collection are tagged with descriptive metadata
specifying codes for topic, region and industry sector. Topic codes represent the
subject area of each news story. Industry codes are used to indicate the type
of business or industry referred to by the news story. Region codes indicate the
geographical region referred to in the news story. Only topic codes and industry
codes where used when creating datasets for our evaluation.

20 Newsgroups corpus is a collection of 20,000 documents collected from News-
net newsgroups messages. The collection is partitioned almost equally into 20
classes of 1,000 documents each, according to newsgroup topics. For example,
the class sci.space contains messages relating to space.

Ohsumed is a subset of MEDLINE, an online database of medical literature,
and comprises a collection of 348,566 medical references from medical journals
covering a period from 1987 to 1991. The Ohsumed collection is unequally di-
vided into 23 classes according to different disease types e.g. Virus Diseases.

Movie Reviews is a sentiment classification corpus containing 1400 reviews of
movies from the Internet Movie Database (IMDB). About half of these reviews
are classified as expressing positive sentiment while the other half is classified as
negative. Accordingly, the classification task for this dataset is to determine the
sentiment orientation of any given review.

4 Performance of Generalisation

Generalisation uses semantic relation between terms to map low-level indexing
vocabulary to higher-level semantic concepts. Given a term-document matrix
D, a term-relatedness matrix T can be populated using the term-relatedness
techniques introduced in Section 2. A new generalised term document matrix
D’ can then be obtained using equation 6. Further details of this approach are
presented in [12].

D′ = D × T (6)

In this section, we determine if generalisation consistently improves text retrieval
performance.

4.1 Experiment Setup

Standard preprocessing operations i.e. lemmatisation and stopwords removal are
applied to our datasets. Feature selection is used to limit our term-document
space to the top 300 most informative terms for each dataset.

We compare the following algorithms:BASE, baseline bag-of-words approach
without term relatedness; DocCooc, term relatedness estimated from

290 S. Sani et al.

document co-occurrence (see Section 2.1); NPMI, term relatedness calculated
using Normalised Positive Pointwise Mutual Information (see Section 2.3); LSI,
term relatedness estimated from latent semantic analysis (see Section 2.2).

We report classification accuracy using a similarity weighted kNN approach
(with k=3) and using the cosine similarity metric to identify the neighbourhood.

4.2 Results

Classification results are shown in Table 1. Values with the + sign represent a
significant improvement in text classification accuracy compared to the base-
line and − represent a significant decline in classification accuracy. The average
difference between DocCooc and Base is 0.96%, between Npmi and Base is
0.84%, and between Lsi and Base is 0.80%.

Although generalisation has resulted in statistically significant improvement
in many datasets (42% of the datasets using DocCooc, 37% using Lsi and 47%
using Npmi), it has remained neutral on many other datasets and even led to a
decline in accuracy in others. Considering the additional cost of acquiring term-
relatedness, it is important to empirically determine when it is beneficial to use
term relatedness in text retrieval. In the next section, we present a case-based
approach for predicting, given any dataset, whether or not apply generalisation.

5 Predicting When to Generalise

We have already established the need to be able to predict when and when
not to use generalisation. In this section, we introduce our case-based approach

Fig. 1. Case-based approach using dataset meta-data to predict when to generalise

Should Term-Relatedness Be Used in Text Representation? 291

Table 1. Classification accuracy of generalisation techniques

Dataset Base DocCooc Npmi Lsi

Hardw 89.8 90.9+ 91.2+ 90.3+

MedSp 95.9 93.8− 95.8 93.6−

CryptE 95.9 90.3− 91.8− 90.6−

ChrisM 88.9 90.5+ 89.9+ 90.5+

MeastM 95.1 95.3 94.9 95.3

GunsM 93.4 94.0 94.0 94.0

AutoC 94.4 95.1 96.2+ 95.0

BaseH 95.9 95.6 96.6+ 95.7

StratM 88.8 89.4 83.7− 89.6

EntTour 94.7 95.7+ 95.3 95.6+

EqtyB 95.7 95.5 94.8− 95.6

FundA 90.3 92.0+ 89.9 92.1+

InRelD 92.6 94.1+ 91.7 94.3+

NProdRes 85.9 86.9 80.4− 86.7

ProdNP 87.4 89.3+ 88.4 88.9+

MarketA 89.8 89.1 89.4 89.2

MoneyC 94.8 94.5 93.2− 94.5

OilGas 87.8 86.3− 85.7− 86.2−

ElectG 88.7 84.6− 84.0− 84.5−

FinI 86.5 87.0 84.6− 87.0

MovieRev 71.3 78.6+ 81.8+ 79.3+

Dataset Base DocCooc Npmi Lsi

NervI 91.4 91.0 92.9+ 90.5

BactV 85.1 88.6+ 90.0+ 87.5+

CardR 90.0 92.2+ 93.8+ 90.7

MouthJ 89.9 92.2+ 92.9+ 92.0+

NeopE 91.6 93.8+ 94.2+ 94.0+

DigNut 87.8 91.3+ 93.2+ 91.5+

MuscS 83.1 87.0+ 91.1+ 86.5+

EndoH 91.4 95.8+ 96.5+ 95.4+

MaleF 92.3 94.9+ 95.6+ 95.1+

PregN 89.7 90.4 90.9+ 90.4

ImmunoV 78.7 82.5+ 84.8+ 82.7+

NervM 84.5 88.1+ 91.0+ 87.8+

RespENT 87.2 88.1 91.0+ 88.3

SkinN 87.1 88.1 91.2+ 87.6

EndoNut 75.2 81.7+ 82.7+ 81.6+

Fire 84.4 87.0 85.8 86.9

Collision 82.2 80.9 76.8− 81.3

Rollover 79.8 79.1 77.7 78.2

CollRoll 86.5 83.6 80.5− 84.3

MiscInc 84.0 84.1 82.0 84.1

CraneFP 87.5 88.3 82.4− 87.9

ShovFP 88.3 86.6 88.3− 83.8

for doing so. Figure 1 shows both the training and test phases of our case-based
system. Given a collection of training datasets, the meta-case constructor creates
a meta-case representation for each dataset. The case description of each meta-
case comprises a set of nine attributes a1 to an (discussed in Section 5.1) that
capture the properties of the dataset. The training datasets are also fed to the
Generalisation Evaluator which produces the solutions for the meta-cases. The
case solution is a binary judgement of whether or not to apply generalisation to
the dataset. A meta-case is labelled with the solution to use generalisation (Gen)
if the improvement from generalisation is statistically significant. Otherwise, we
label the case with the decision not to use generalisation (¬Gen). For example for
the DocCooc technique, generalisation produced a significant improvement on
the Hardware dataset of 90.9% compared to Base (89.9%) (see table 1) and the
decision to use generalisation is selected as the case solution for Hardware. On the
other hand on the MedSpace dataset, DocCooc produced a decline of 2.1 % in
accuracy and thus the solution for this case is not to use generalisation. Similarity
between cases is determined using Manhattan distance given in equation 7.

292 S. Sani et al.

Dist(a, b) =

N∑
i=1

(|ai − bi|) (7)

In the next section, we discuss the set of features used for case representation.

5.1 Dataset Attributes

Generalisation sometimes fails because of its potential to establish relationships
that are too general and hence not very discriminatory. For example the BactVi-
ral dataset from Table 1 comprises the classes Bacterial, which contains doc-
uments on bacteria-related diseases, and Viral which contains documents on
virus-related diseases. In this particular dataset, the words ”biopsy” and ”treat”
co-occur 10 times which indicates a strong relationship. However, the two words
co-occur almost equally across class boundaries which means that the relation-
ship between them is a weak indicator of class membership. In contrast, the words
”endoscopy” and ”helicobacter” co-occur 5 times, all within the Bacterial class
which makes this relationship a stronger indicator of class membership. Because
of the higher co-occurrence frequency between ”biopsy” and ”treat”, generalisa-
tion is likely to treat them as being more related than ”endoscopy” and ”heli-
cobacter”. This indicates that the distribution of terms in the term space is an
indicator of the potential performance of generalisation. Accordingly, we utilise
attributes that characterise the term-document space of our datasets in order to
create our meta-cases.

5.2 Average Terms Per Document

The average term count for the entire dataset is calculated by taking the average
term count for all documents in the dataset.

5.3 Document Frequency

The document frequency of a term ti is a count of the number of documents
in which ti occurs. Document frequency is often used as a feature selection
technique under the premise that very rare terms are not informative and thus do
not contribute much to document retrieval. At the same time, terms that appear
in almost all documents are also not very discriminatory and can be considered
noisy in the term document space. Such high frequency terms are also likely to
co-occur with almost every other term thus polluting the generalisation process.
Hence we utilise three metrics to measure the effect of document frequency:
Maximum DF which is the maximum document frequency over all terms and
Ave. DF which is the average document frequency of over all terms.

Should Term-Relatedness Be Used in Text Representation? 293

5.4 Inverse Document Frequency

Inverse Document Frequency (IDF) is a function designed to give a weighting
inversely proportional to the document frequency of terms. IDF captures the
premise that terms with very high document frequency are less informative than
terms that occur less often. The formula for IDF is given in equation 8 where N
is the total number of documents and df(t) is the document frequency of t.

IDF (t) = log2
N

df(t)
(8)

We use the Maximum IDF and the Average IDF to obtain a measure of rare
terms in our datasets.

5.5 Complexity Profile

This measure was originally proposed for measuring the complexity of a case base
by looking at the classes of the nearest neighbours of each case [10]. Because we
are interested in unsupervised attributes, we instead measure complexity of a
dataset using the distance between each document and the other documents in
its neighbourhood as shown in Figure 2. Complexity profile of a document dj
is calculated by iteratively retrieving successively larger neighbourhoods k of dj
up to the neighbourhood size K (we use K = 10) and computing the proportion
Pk(dj) of documents in that neighbourhood that belong to the same class as dj
as shown in equation 9.

Complexity(dj) =

∑K
k=1 Pk(dj)

K
(9)

Fig. 2. Complexity calculated using the distance of document dj to its k nearest neigh-
bours

294 S. Sani et al.

To convert equation 9 into an unsupervised metric, we ignore the class labels
of documents and replace the proportion Pk(dj) with the similarity between dj
and all documents in its neighbourhood. This is shown in equation 10.

Pk(dj) =

∑k
i=1 Sim(dj , di)

k
(10)

Where Sim(dj, di) is the cosine similarity between document dj and di. The final
complexity measure for the entire dataset is computed as the average complexity
of all documents dj .

5.6 Neighbourhood Similarity

While Complexity Profile measures the distance between a target document and
its nearest neighbours, this metric calculates the average pair-wise similarity
between all k nearest neighbours of the target document dj as shown in Figure 3.
We use a neighbourhood size of k = 10. We then calculate the average, minimum
and maximum nearest neighbour similarity over all documents to obtain the
Average NN Similarity, Minimum NN Similarity and Maximum NN
Similarity respectively for that dataset.

The average similarity between the nearest neighbours of a document gives
tells us how tightly clustered the neighbourhood of that document is. In turn, the
aggregation over all documents provides us with information about how tightly
clustered documents are in the entire term document space.

Fig. 3. Neighbourhood similarity of document dj measures using the distance between
k nearest neighbours of dj

Should Term-Relatedness Be Used in Text Representation? 295

6 Evaluation

The aim of this evaluation is to determine how well our case-based approach
(Cbr) predicts when and when not to use generalisation for text representation.
We compare this with a baseline approach (Baseline) that always applies gen-
eralisation. Our hypothesis is that our case-based approach should be able to
identify datasets that are not likely to benefit from generalisation. This allows
for applying generalisation to datasets in a systematic fashion. Accordingly, we
treat this as a classification task where accuracy is measured as the percentage
of test cases that are labelled with the correct decision (to generalise or not). We
report the classification accuracy over a leave-one-out validation using a 3-NN
approach.

Table 2. Classification accuracy of generalisation prediction

Gen DocCooc Npmi LSI

Baseline 55.81 41.86 46.51 37.21

CBR 79.07 81.4 88.37 72.09

CBR+ 86.05 86.05 93.02 79.07

From the results shown in Table 2, it is clear that our case-based predicts when
to generalise with high accuracy. The results in the Gen column represent the
accuracy of our prediction across all generalisation techniques. That is, deciding
to generalise always, we match all datasets that are labelled with the decision
to generalise (55.81%) but we also generalise many other datasets (44.19%) that
should not be generalised. However, using our case-based apraoch, we correctly
match datasets that should/should not be generalised 79.07% of the time. The
other columns (DocCooc, Npmi and Lsi) provide a break-down of our perfor-
mance for each individual generalisation technique respetively. The CBR+ row
shows results of the Case-Based approach with optimal weights learnt used for
our meta-case attributes using a Genetic Algorithm where the set of weights
used range from 0 to 10. A comprehensive review of applying weighting to kNN
retrieval is provided in [14]. From these results we can see that our set of at-
tributes are predictive of the effectiveness of applying generalisation for text
classification.

The weights learnt for our attributes by the genetic algorithm can be divided
into high, Complexity Profile; medium, Maximum IDF, Ave. Tokens Per
Doc., Maximum DF and Max. NN Sim; and low, Ave. DF, Ave. IDF,
Max. NN Sim and Min. NN Sim. The high weight assigned to Complexity
Profile indicates the importance of the average similarity of cases to their nearest
neighbours in determining the performance of generalisation. Note that higher
values of Complexity Profile indicate a loosely clustered term document space.
Closer investigation reveals datasets with low complexity profile are more likely
to benefit from generalisation.

296 S. Sani et al.

7 Related Work

Much work has been done in the area of meta-learning. For example the approach
presented in [1] uses a meta learner to assign classifiers to datasets. Of particular
relevance to our work are meta case-based approaches e.g. [6] where a meta
case-based technique is used for selecting case-base maintenance algorithms. In
this approach, an individual meta-case models a entire case-base where the case
solution is the maintenance algorithm that provides the best performance on
that case-base and the case description comprises a set of attributes that are
derived using complexity measures. While the set of attributes used in [6] are
supervised, the attributes used in our approach are completely unsupervised
making our approach applicable to both supervised and unsupervised tasks.
Also, our approach is concerned with predicting when to generalise while the
approach in [6] is concerned with selecting the best algorithm to use for case-
base maintenance.

Another case-based approach for selecting the best sentiment lexicon given a
sentiment classification dataset is presented in [11]. Here also, a dataset is repre-
sented as a single case where the case solution is the best performing sentiment
lexicon for the dataset. The case description is modelled as an n-dimensional fea-
ture vector derived from document, sentence and term-level statistics of as well
counts of part-of-speech information and punctuations. The attributes chosen for
case representation are designed to capture the subjectivity of the corresponding
dataset. On the other hand, our approach is concerned with trying to predict,
given any generic text classification dataset, when to apply generalisation for
text representation. Consequently, we use a totally different set of attributes
from [11].

The system presented in [9] uses a CBR approach to select the best classi-
fication algorithm for a dataset. The datasets considered in this paper are not
limited to textual datasets and the attributes used for case representation are
designed to capture characteristics of datasets that contain both numeric and
symbolic attributes. As such, these features are different from the ones used in
our approach and are perhaps not as suited for textual datasets.

A meta case-based approach for obtaining adaptation knowledge for a CBR
system is presented in [5]. A meta-case m is made up of a description which
encapsulates an adaptation situation and a solution which provides the adapta-
tion action applied. An adaptation situation arises when we have a query case
cq, the best matching case ci from the casebase, and the adaptation operation
(e.g. increment by 10) applied to the solution of ci to fit cq. Thus, a meta-case
description representing this adaptation situation comprises the description of
the query case cq, the differences between the descriptions of cq and ci, and the
solution of ci. Note that this approach uses features from the original casebase
for meta-case representation. This contrasts with our approach where a com-
pletely different set of features are extracted for meta-case representation. An
adaptation action can be a binary judgement of whether or not adaptation is
required, or a an update operation (e.g. decrease by 5%) that is applied to the
proposed solution.

Should Term-Relatedness Be Used in Text Representation? 297

8 Conclusion

In this paper we investigated whether generalisation is always beneficial for text
retrieval. The performance of 3 different co-occurrence based term relatedness
techniques on 43 datasets shows that generalisation does not always improve text
classification performance and may sometimes even be harmful. Considering that
generalisation is an expensive process, we set out to determine when and when
not to apply generalisation. Accordingly we presented a case-based approach for
predicting when to generalise. Results show that our case-based approach is able
to correctly predict the performance of generalisation on a range of datasets with
over 90% accuracy.

An important consideration when building a case-based system is the choice
of attributes for case representation. The set of attributes we use was obtained
from several statistical metrics that capture various important characteristics of
text datasets. These range from statistics of document frequencies of terms to
measures of clustering of document neighbourhood. The high accuracy achieved
in predicting when to generalise indicates that the attributes used for meta-case
representation capture characteristics of text datasets that are predictive of the
performance of generalisation. We further use a genetic algorithm to learn the
relative importance of our attributes. The high weight assigned to the Com-
plexity Profile attribute indicates the importance of the average similarity of
cases to their nearest neighbours in determining the performance of generalisa-
tion where datasets with low complexity profile are more likely to benefit from
generalisation.

References

1. Bensusan, H., Giraud-Carrier, C., Kennedy, C.: A higher-order approach to meta-
learning. In: Proceedings of the ECML 2000 Workshop on Meta-Learning: Building
Automatic Advice Strategies for Model Selection and Method Combination, pp.
109–117 (2000)

2. Brants, T., Inc, G.: Natural language processing in information retrieval. In: Pro-
ceedings of the 14th Meeting of Computational Linguistics in the Netherlands, pp.
1–13 (2004)

3. Chakraborti, S., Wiratunga, N., Lothian, R., Watt, S.: Acquiring word similarities
with higher order association mining. In: Weber, R.O., Richter, M.M. (eds.) ICCBR
2007. LNCS (LNAI), vol. 4626, pp. 61–76. Springer, Heidelberg (2007)

4. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexi-
cography. Computational Linguistics 16(1), 22–29 (1990)

5. Craw, S., Wiratunga, N., Rowe, R.C.: Learning adaptation knowledge to improve
case-based reasoning. Artificial Intelligence 170(16-17), 1175–1192 (2006)

6. Cummins, L., Bridge, D.: On dataset complexity for case base maintenance. In:
Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 47–61. Springer,
Heidelberg (2011)

7. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. Journal of the American Society of Informa-
tion Science 41(6), 391–407 (1990)

298 S. Sani et al.

8. Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for nat-
ural language processing. Journal of Artificial Intelligence Research 34, 443–498
(2009)

9. Lindner, G., Studer, R.: Ast: Support for algorithm selection with a cbr approach.
In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp.
418–423. Springer, Heidelberg (1999)

10. Massie, S., Craw, S., Wiratunga, N.: Complexity profiling for informed case-base
editing. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006.
LNCS (LNAI), vol. 4106, pp. 325–339. Springer, Heidelberg (2006)

11. Ohana, B., Delany, S., Tierney, B.: A case-based approach to cross domain sen-
timent classification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS,
vol. 7466, pp. 284–296. Springer, Heidelberg (2012)

12. Sani, S., Wiratunga, N., Massie, S., Lothian, R.: Term similarity and weighting
framework for text representation. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011.
LNCS, vol. 6880, pp. 304–318. Springer, Heidelberg (2011)

13. Tsatsaronis, G., Panagiotopoulou, V.: A generalized vector space model for text
retrieval based on semantic relatedness. In: Proceedings of the Student Research
Workshop at EACL 2009, pp. 70–78 (2009)

14. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of fea-
ture weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11(1-5), 273–314 (1997)

Recommending Audio Mixing Workflows

Christian Sauer, Thomas Roth-Berghofer, Nino Auricchio, and Sam Proctor

School of Computing and Technology, University of West London,
St Mary’s Road, London W5 5RF, United Kingdom

{first.lastname}@uwl.ac.uk

Abstract. This paper describes our work on Audio Advisor, a work-
flow recommender for audio mixing. We examine the process of eliciting,
formalising and modelling the domain knowledge and expert’s experi-
ence. We are also describing the effects and problems associated with
the knowledge formalisation processes. We decided to employ structured
case-based reasoning using the myCBR 3 to capture the vagueness en-
countered in the audio domain. We detail on how we used extensive sim-
ilarity measure modelling to counter the vagueness associated with the
attempt to formalise knowledge about and descriptors of emotions. To
improve usability we added GATE to process natural language queries
within Audio Advisor. We demonstrate the use of the Audio Advisor
software prototype and provide a first evaluation of the performance and
quality of recommendations of Audio Advisor.

Keywords: CBR, myCBR, audio, mixing, audio engineering, similarity
measures, workflow recommendation, knowledge formalisation.

1 Introduction

With automatic composition and improvisation of music expressing the individ-
ual style of a human composer as well as the automatic expressive performance
of music, the two main steps of music creation are quite well researched [15,16].
There are a variety of approaches to automated composition of expressive mu-
sic and the expressive performance of music, see e.g., [15,4]. They all need to
deal with the problem of formalising emotions in order to relate to the intended
emotional effect of a composition and/or performance. The formalisation of af-
fective, emotional statements or descriptive adjectives of an emotion is still a
problem [11,6], often encountered by applications dealing with art and deeply
linked to emotions and perception of such.

Next to composition and performance, a third important task in professional
music production is the mixing of a sound recording. Mixing is the process of
applying a set of spectral modifications to sounds in order to achieve a change
in timbre or more specifically the emotional effect of the sound on a listener [14].
This process is goal-oriented, with the goal being a desired change in the emo-
tional effect of a sound. The vocabulary describing this effect-change consists of
terms that describe the emotion desired to be triggered or altered, i.e., increas-
ing or decreasing an emotional effect. We find queries like ‘make it sound more

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 299–313, 2013.
© Springer-Verlag Berlin Heidelberg 2013

300 C. Sauer et al.

warm’ or ‘make it sound less harsh’ and onomatopoeia in the language of audio
engineers.

The experience of audio engineers is in the linkage between queries containing
timbre descriptors such as ’warm’ or ’bright’ as well as amount descriptors and
constrains, and in the choice and application of spectral modifications used to
achieve the desired timbre change of the sound. Additionally the effect of such a
query is also linked to the context in which it occurs. The modelling and (re-)use
of such context embedded queries to recommend the adequate workflows was the
main goal of our Audio Advisor prototype workflow recommender.

This paper introduces our work on Audio Advisor, a workflow recommender
system that allows its users to formulate natural language queries for the auto-
matic case-based retrieval of workflows that, when applied to the audio product
changes its timbre and/or applies an effect to it. The workflow itself is provided
as a sequence of so called presets, where a preset can be described as a selection
of frequency descriptors with definite decibel change values for said frequencies.
A preset can further contain information on defined effects such as reverb or
delay and the decibel values to be applied to these effects. An example is to
define a preset to reduce high frequencies and emphasise lower frequencies while
adding a slight echo effect to the sound.

The rest of the paper is structured as follows: We interlink our approach with
the current state-of-the-art in the field of artificial music composition and perfor-
mance in Section 2. Based upon the goals and aims of Audio Advisor (Section 3)
we examine the domain of audio mixing and its specific knowledge as well as our
approaches to elicit and formalise the knowledge in Section 4. In Section 5 we
show how we use GATE1 to develop the natural language processing component
that enables Audio Advisor to ’understand’ natural language queries posted to
the system. We then demonstrate how we use myCBR 3 2 for Audio Advisor
and examine the overall structure and workflow of the Audio Advisor applica-
tion. Section 6 details on the performed experiments regarding the quality of the
workflow recommendations and evaluate the performance of Audio Advisor. A
summary and outlook on future work then concludes the paper.

2 Related Work

A variety of approaches to formalise emotional annotations and/or descrip-
tive terms that either describe the mood of the music or the way it is to be
played [16,9] already exists. Such approaches deal with either playing music in
a certain defined way to convey an emotion [7] or to select songs or sounds that
are associated with a mood or emotional state [21]. For automated composing,
the question of integrating a formal description of the mood the composed music
should match is already well researched [16,4].

Emotions or, in our context, the timbre of a sound and its perception are not
easy to be a) defined and b) quantised/formalised [13,8,11]. Another problem

1 http://gate.ac.uk/
2 http://www.mycbr-project.net

Recommending Audio Mixing Workflows 301

we were facing during the domain knowledge formalisation was that we tried
to quantify and cluster descriptive adjectives based on very vague data given
by the individual descriptions of the emotional effect a sound has on a person
describing this effect. The difficulties of capturing a sounds timbre are [10]: “It
is timbre’s ‘strangeness’ and, even more, its ‘multiplicity’ that make it impos-
sible to measure timbre along a single continuum, in contrast to pitch (low to
high), duration (short to long), or loudness (soft to loud). The vocabulary used
to describe the timbres of musical instrument sounds indicates the multidimen-
sional aspect of timbre. For example, ‘attack quality, ‘brightness,’ and ‘clarity’
are terms frequently used to describe musical sounds.” The vagueness of the data
is based on said variation in the individuals perceptions when they either should
describe an emotional effect or perceive something that is annotated with a par-
ticular emotion but have a complete different idea of the actual emotion this
percept triggers [17,10,12].

The problems caused by the described vagueness of timbre descriptors, which
we initially examined in [20], were one of the most prominent ones during the
knowledge formalisation process employed for the Audio Advisor application’s
knowledge model. We were able to counter said vagueness by employing complex
similarity measures, following the knowledge modelling procedures described for
example in [1]. Additionally we also investigated how to extract the meaning,
thus the semantics of a natural language query posted to our Audio Advisor. We
did so mainly by following an approach we developed for a previous Information
Extraction (IE) application, KEWo, that extracts taxonomies of terms to be
used as similarity measures in CBR systems from natural language texts [19].

3 Aims and Opportunities of Our Work

A way to circumvent the lack of quantifiable measures and vagueness is to allow
for vagueness and a certain amount of ambiguity within the techniques used for
formalising and retrieving problem descriptions based on descriptive adjectives.
The vagueness accompanying the formalisation of these descriptive adjectives,
mainly the timbre descriptors, can be handled by the use of similarity knowl-
edge in Case-Based Reasoning (CBR) systems [2,22]. The ability of CBR to
handle said vagueness has already been used to guide the emotional component
of automatic composition as well as performance of music, see e.g., [7,3,18,16].

The aim of Audio Advisor is to make audio mixing experience available to its
users and to allow them to use and learn the special vocabulary employed by
experienced audio engineers. By making the audio engineers experience available
through our Audio Advisor we thus are able to fulfil the following goals:

– Using Audio Advisor in a teaching approach for audio engineering students
– Allowing lay persons to practise / improve mixing skills
– Re-use the knowledge of experienced audio engineers
– Speed up the mixing process and, thus, reduce expensive studio time
– Improve usability to audio mixing software by integrated workflow recom-

mendations

302 C. Sauer et al.

4 The Audio Mixing Domain

The most common mixing task is to change an input sound and consequently
an input timbre to a desired target timbre by a specified amount. This basic
problem description can be extended by a number of sub timbres to be changed
simultaneously and constraints on the desired changes such as ’Make the flute
sound more airy but not so breathy.’. Following this basic assumptions about
the audio mixing domain, we present in this section our approach to elicit the
domain knowledge from experienced audio engineers as well as the knowledge
artefacts we were able to elicit. We then consider the problems we faced during
the knowledge formalisation process and their influence on our choice of the
formalisation techniques that we employed. We then review our resulting initial
knowledge model that we modelled using myCBR 3 and which is currently used
as the reasoning component of the Audio Advisor.

4.1 Domain Knowledge

The knowledge representing the experience of audio engineers has a high grade
of abstraction and is highly encoded. For example the knowledge how to apply
a set of frequency changes in a specific order to change a sound in a specific
context with a desired effect is simply encoded in a sentence like: ’Make the
trumpet a lot fatter and a bit more toppy, like in Jazz music’. This sentence
is implicitly associated by the experienced audio engineer with a workflow like:
Increase the 6 kHz frequency in the high shelf segment by 3 dB, then increase the
150 Hz segment by 9 dB with a wide bandwidth and finally reduce the 2.7 kHz
segment by 2 dB with a narrow bandwidth.

Due to this high level of abstraction and encoding we faced the problem of
choosing the best suited techniques for the necessary knowledge elicitation. We
opted for employing a variety of techniques to minimise the danger of knowledge
loss and to maintain a high level of accuracy. To get insight into the audio
mixing domain we arranged for several studio sessions where the audio engineers
provided actual hands on experience on how to mix an audio product in a studio.
Second to these sessions we arranged for a couple of interview sessions with two
audio engineers. During these interviews we questioned the experts so they could
provide their experience in increasing grades of formalisation.

The knowledge elicitation process also yielded some unexpected artefacts.
For example, the audio engineers came up with Venn diagrams classifying the
timbre descriptors. Such artefacts were very helpful while building the taxonomic
similarity measures for the timbre descriptors.

4.2 Initial Knowledge Modelling

After the elicitation of the described knowledge artefacts that describe a mixing
task the next step was to design an initial knowledge model of the audio mixing
domain. As we already stated in section 1 one of the most complicated chal-
lenges while trying to formalise descriptors for timbres, is the vagueness of said

Recommending Audio Mixing Workflows 303

descriptors. We decided to counter this challenge by employing structured CBR
as we expected to counter the vagueness of the timbre descriptors and amount
descriptors by modelling complex similarity knowledge that describes their re-
lationships. We quickly identified the main domain relationship, presets being
applied to timbres, as a perfect candidate to divide the domain into a problem
and solution part

The most foreseeable challenge we encountered was the challenge of finding
an optimal grade of abstraction. This was of importance as we were, like in any
knowledge formalisation task, facing the trade-off between an over engineered
too specific knowledge model and the danger of knowledge loss by employing
too much abstraction e.g. choosing the abstraction levels too high. Together
with the domain experts we chose two additional abstraction levels of frequency
segments for the timbre descriptors. We further chose to use a taxonomic order
for the timbre descriptors and the amount descriptors, as well as the instruments
to be used as structures to model the respective abstraction layers of these
knowledge artefacts. Thus we designed taxonomies describing timbres, amounts
and instruments from a most abstract root node down to the most specific leafs,
see our initial work on this approach [20] for details.

The next modelling step consisted of determining the best value ranges for the
numerical attributes we wanted to integrate into our initial knowledge model.
Again after discussing this with the domain experts we agreed to use two way to
represents amounts in our domain. We provide a percentage approach, ranging
from 0 to 100% as well as a symbolic approach. The symbolic approach was
chosen because the domain experts mentioned that from their experience the
use of descriptors for amounts, such as ’a slight bit’ or ’a touch’ were by far
more common in audio mixing sessions then a request like ’make it 17% more
airy’. So we integrated, next to the simple and precise numerical approach, a
taxonomy of amount descriptors into our initial knowledge model. The taxonomy
was ordered based on the amount the symbol described, starting from the root,
describing the highest amount down to the leaf symbols describing synonyms
of smallest amounts. Additionally to modelling the amounts we also needed to
represent the workflow steps, so the application of presets. For this we elicited
that the application of spectral modification’s is always specified in decibels
(dB) and that these settings always follow a certain rasterization, due to the
knobs and dials on a mixing board clicking into place with certain amounts of
dB being tuned in on this dials. We thus provided the amounts in the workflow
descriptions in decibel.

Regarding myCBR 3 we had to choose between a taxonomic and a compar-
ative table approach. Considering the versatile use of taxonomies in structural
CBR [5] we initially opted for the use of taxonomies. Yet regarding the complex
similarity relationships between the elicited timbre descriptors we also wanted
to investigate whether a comparative table approach for modelling the similar-
ities of the timbre descriptors might yield a more accurate knowledge model,
ultimately resulting in better workflow recommendations. So we formalised the
similarities of the timbre descriptors also using the comparative table approach.

304 C. Sauer et al.

5 Prototype Implementation

In this section we will detail on how we implemented the Audio Advisor appli-
cation prototype using the GATE framework and myCBR 3.

5.1 Using GATE for Natural Language Query Processing

Audio Advisor allows a user to enter a natural language queries such as ’Make
the trumpet a bit brighter but not too airy.’ Such a query requires the Audio
Advisor to be able to parse the natural language into settings for the attribute
values of the mixing task’s problem description. Figure 1 shows the automatically
set attribute values based on a real sample query.

Fig. 1. Problem description section of the Audio Advisor application GUI

To extract the correct attribute values and their context from the natural
language query we employ the GATE Architecture, i.e., a modified version of
the ANNIE application3. To, for example, distinguish between a query with and
without a constraint, we analysed the structure of a number of example queries
with the use of the GATE Developer 7.0 GUI application, see Figure 2 for details.
After designing the necessary specially built language processing resources, i.e.,
Gazetteers and Jape grammar rules, we modified the ANNIE Application to
allow for the Annotation of the following term categories: amount, constraint,
direction, effect, instrument, timbre and timbre-shift. By using these annotations
we were able to analyse the query structure as the following figure demonstrates:

The structural analysis of the queries enabled us to build a classification tree
that represents typical semantics formulated in a certain type of query. In this
way we can map the queries to reoccurring kinds of problem descriptions and set
the values specified within the query to the correct attributes describing specific
mixing tasks. Figure 3 shows a section of the classification tree.

The customised ANNIE is embedded in the Audio Advisor. The annotations
generated by the customised ANNIE application are stored in an XML file that
is then parsed to make the annotations available for the query assembly.

3 http://gate.ac.uk/sale/tao/splitch6.html

Recommending Audio Mixing Workflows 305

Fig. 2. Query Annotation in GATE

Fig. 3. Classification tree derived from query analysis (excerpt)

5.2 CBR Engine Modelling

myCBR 3 4 provides the knowledge engineer with a variety of graphical user
interfaces that allow for rapid prototyping of CBR knowledge models. We used
myCBR 3 Workbench to swiftly transfer our initial knowledge model into a
structured CBR knowledge model. Figure 4 provide an insight in the modelling
of the local similarity measure for timbre descriptors. The first figure shows the
taxonomic modelling on the left and a section from the same similarity measure
being modelled in a comparative symbolic table on the right.

The problem description consists of two attributes, MainInputtimbre and Sub-
Inputtimbre1 describing the current sound. Additionally the problem descrip-
tion contains the two Attributes MainTargettimbre and SubTargettimbre1 that

4 http://www.mycbr-project.net

306 C. Sauer et al.

Fig. 4. Timbre descriptor taxonomy

are used to specify the timbres into witch the sound should be changed. The
attributes TimbreAmountEffectDescriptor, AmountDirectionDescriptor and op-
tionally TimbreAmountPercentage are available for the Main as well as the Sub
timbre. They are used to describe the amount of change that is intended to
take place and its direction e.g. if the timbre should be increased or decreased.
The last two attributes of our case structure are a String, WorkflowDescription,
which holds a String that is describing the workflow necessary to achieve the
desired timbre change described in the Problem description part. Additionally
the Case holds the original natural language query on which it was modelled as
a reference. Regarding our initial case base we were able to elicit 30 commonly
encountered audio mixing tasks from our domain experts. Based on these 30
initial cases we conducted a series of retrieval tests together with our domain
experts.

5.3 Audio Advisor at Work

In the following we will give a brief overview over the process of recommending a
mixing workflow by Audio Advisor (cf. Figure 5). Upon starting the application
it initialises a new instance of the Gate framework using the GATE embedded
functionalities. Into this instance the customised ANNIE Application is loaded
and initialised Audio Advisor then uses the myCBR 3 API to initialise a new
mycbr3 project. Loading the case base into the CBR project finishes the initial-
isation sequence of the Audio Advisor and the program is ready to be used.

Input to the Audio Advisor application can be provided by either manually
selecting values from the drop down menus available in the problem descrip-
tion section of the Audio Advisor GUI, or by entering a natural language query
into the ’Query Assemble’ text field (see Figure 1). If a user decides to enter
a natural language query the text is copied into the corpus of the ANNIE ap-
plication and processed. The ANNIE application returns annotations of timbre

Recommending Audio Mixing Workflows 307

Fig. 5. Recommendation process diagram

descriptors, amount descriptors, timbreshifts, amount directions and constraints
in an XML file, which is then read and unmarshalled by an instance of the
QueryExtractor class. Within this class the annotations are analysed regarding
the frequency of certain types of annotations, e.g. how many timbres are an-
notated or if there are annotations present annotating a constraint. Based on
this analysis the classifier tree is searched for a query structure best matching
the query characteristics (annotation frequencies: Number of timbres, number
of amount descriptors, presence of constraint annotations) to identify the most
likely structure of the natural language input query. Based on the best identified
query structure the drop down menus of identified attributes are populated with
the extracted values. The user can always adjust the values manually and/or
add additional values. By clicking the ’Recommend workflow’ button the user
triggers the recommendation process.

The GUI of the Audio Advisor is quite straight forward (Figure 6). The upper
part of the GUI provides all the elements necessary for a user to specify the audio
mixing problem at hand. Additionally the user can select which amalgamation
function should be used for retrieval. This allows retrieval of mixing tasks in the
context of different genres. The query is then analysed and a workflow is recom-
mended by a similarity based retrieval within the CBR Engine. The resulting
order of best matching audio mixing workflows is then presented to the user in
the lower section of the GUI.

6 Experiments and Evaluation

In this section we explain the aims and setup of the experiments we performed
with Audio Advisor.

308 C. Sauer et al.

Fig. 6. Audio Advisor reading a natural language query containing a constraint

Our knowledge elicitation effort led us to the following knowledge artefacts:

o A set of 39 timbre descriptors with varying grades of abstraction
o A set of 21 amount descriptors
o A set of 15 Direction descriptors
o A set of 20 Effect descriptors with varying grades of abstraction
o Similarity of timbre descriptors in taxonomic and comparative table form
o Similarity of amount descriptors in taxonomic and comparative table form
o Similarity of amount descriptors as Integer function (distance function)
o Similarity of Context of Genre in taxonomic form
o Similarity of Context of Instrument in taxonomic form
o Similarity of the Effect descriptors in taxonomic form
o Global Similarities of the problem description of the mixing task depending
on the selected Genre and Instrument context

o 30 Screenshots of application settings of the used mixing software
o 30 initial cases describing 30 common mixing tasks

On these artefacts and the knowledge model consequently modelled from them,
we performed experiments to establish the quality of the knowledge model. The
main goal of the experiments was to gain an insight into how good our approach
to formalise experience, from anecdotal into fully formal, worked with regard to
avoiding knowledge formalisation problems. We further aimed to evaluate the

Recommending Audio Mixing Workflows 309

performance/quality of our Software prototype working with our initial knowl-
edge model. Our third goal was to establish the usability and applicability of our
overall approach of workflow recommendation in day to day audio mixing work
and teaching scenarios. Our fourth goal is it to establish if the use of taxonomies
or the use of comparative symbolic tables yields more accurate similarity mea-
sures and thus better recommendations.

6.1 Setup of the Experiments

We performed two series of experiments. The first series aims at establishing
the usability, quality of recommendation and performance of the Audio Advisor
application in the day to day use of the software by experienced audio engineers.
The second series of experiments aims at establishing the usability of the Audio
Advisor application for teaching audio engineering students and gather feedback
on the quality of the application’s recommendations.

At the current time we have conducted experiments from the first series and
are currently preparing experiments for the second series. The setup for the first
experiment was the following: Two experienced audio engineers were asked to use
the Audio Advisor software to enter natural language queries into it describing
common audio mixing tasks. The engineers were to provide feedback on the us-
ability of the recommended workflows. They were also asked to provide feedback
on the correctness of the similarity ordering or sequence of the 5 best matching
cases that were retrieved. The data gathering for this experiment was accom-
plished by logging the natural language queries the audio engineers entered into
Audio Advisor as well as by providing the audio engineers with questionnaires to
provide us with their feedback on Audio Advisor ’s workflow recommendations.
The questionnaire asked for the description of problems encountered with the
retrieved workflow, for example, not being applicable for a certain instrument.
Further the questionnaire asked for a rating of the quality, applicability of the
recommended workflow ranging from 1 (worst) to 5 (best). The third informa-
tion we gathered was the comparison of the case sequence retrieved to the case
sequence deemed optimal by the audio engineers.

The second series of experiments will also use questionnaires to gather feed-
back from audio engineering students. Students will bring in their own work,
consisting of sound samples and songs which they still need to optimise and use
the Audio Advisor application to get recommendation on how to do so. They will
then employ these recommendations on their work (sounds) and rate the actual
outcome with regard of the extent the sound has changed as it was intended
by the student. Additionally the students are asked for feedback on how fast,
in terms of iterations of: Entering query, retrieve workflow, apply workflow in
studio, they deem a learning effect to set in. This estimated learning effect will
be verified by audio engineering lecturers in the form of a small practical test.

Both series are planned to be repeated with an improved knowledge model
that will use symmetric symbol tables as similarity measures rather than the
taxonomies used in the first place. This repeated series of experiments aims at

310 C. Sauer et al.

providing us with data to compare the performance and accuracy of the two
knowledge formalisation approaches we employed.

6.2 Evaluation

Here are first results from our first series of experiments. Each audio engineer
was asked to enter 10 queries and provide us with feedback on the applicability
of the recommended workflow and the sequence of the first 5 most similar cases
retrieved by the Audio Advisor. To provide an idea of what kind of natural
languages queries were entered by the engineers here is a short excerpt from the
actual Audio Advisor log file: ’Can you make the drums more toppy?, ’Make the
drums more toppy.’, ’Change the bass to be more bassy but not toppy.’, ’Make
the flute more airy but not breathy.’, ’The drums need to be way more heavy
but not to boomy for a pop song.’

As stated before, the questionnaire we used, asked for the description of prob-
lems encountered with the retrieved workflow, for example, not being applicable
for a certain instrument. Further the questionnaire asked for a rating of the
quality, applicability of the recommended workflow ranging from 1 (worst) to
5 (best). As an informal kind of feedback both engineers reported that if the
recommendation was above their rating of 2 it usually was quite useful and per-
fectly applicable. The third information we gathered was the comparison of the
case sequence retrieved to the case sequence deemed optimal by the audio en-
gineers. Table 1 lists the aggregated feedback from both audio engineers with
regard to the similarity of the best retrieved case to their query in per cent and
the applicability of the recommended workflow:

Table 1. Ratings of results

Rating by Audio Engineer 1 Best Worst Average

Match of query case to best retrieved case 95% 69% 79%

Applicability of workflow [1:worst to 5:best] 4 1 2.7

Rating by Audio Engineer 2 Best Worst Average

Match of query case to best retrieved case 98% 57% 77%

Applicability of workflow [1:worst to 5:best] 4.5 1 2.13

The second kind of data we gathered from our first set of experiments was
the sequence of the five best cases, sorted in a descending order based on their
similarity to the query posted. Additionally to his retrieved sequence of cases
we asked the audio engineers to provide us with their ordering of the cases and
respective mixing workflows with regard of their applicability to the query the
engineer entered into the system. We did so to get an insight into the quality of
the similarity measures with regard to their effect of ”prioritising’ the sequence of
workflows to recommend in an accurate order. Accurate order meaning the first

Recommending Audio Mixing Workflows 311

recommendation (case) being the most applicable and then have the ”next best
solution” and the ’next best’ and so on in a sequence of decreasing applicability.
Out of the 20 queries tested 5 were retrieving optimal sequences, the remaining
15 sequences are shown in the following table 2 displays the case sequences
with the retrieved sequence in the top row and the engineers suggested optimal
sequence in the lower row and starting with the best cases being on the left side
of the table:

Table 2. Case retrieval sequence comparisons

Engineer 1 Engineer 2

Retrieved sequence 11 3 1 4 7 1 4 2 7 24

Optimal sequence 1 4 11 3 7 24 7 2 4 1

Retrieved sequence 2 7 27 3 1 0 17 12 15 21

Optimal sequence 7 2 27 3 1 17 0 12 21 15

Retrieved sequence 2 1 7 27 4 3 2 1 7 4

Optimal sequence 2 7 27 1 4 4 7 3 2 1

Retrieved sequence 11 26 6 25 13 3 2 1 7 4

Optimal sequence 26 13 11 25 6 2 3 7 1 4

Retrieved sequence 11 3 1 7 2 13 20 26 6 23

Optimal sequence 3 1 11 7 2 20 26 6 13 23

Retrieved sequence 2 1 7 4 11 12 15 17 0 21

Optimal sequence 2 7 1 4 11 17 15 12 0 21

Retrieved sequence 3 11 2 1 7 3 11 4 2 1

Optimal sequence 2 7 3 11 1 4 2 11 3 1

Retrieved sequence / / / / / 9 23 13 26 14

Optimal sequence / / / / / 9 13 23 26 14

Overall, next to the 25 % of optimal retrieved sequences, the remaining 75%
retrieved sequence’s orderings were labelled as of sufficient quality by the audio
engineers and as a good basis for suggesting alternative workflows. The engineers
reported still some flaws in detecting certain amount descriptors. Additionally
sometimes the separation of Maintimbre and Subtimbre was not correctly ex-
tracted from the natural language query. Both engineers reported that the case
structure and interface might still be reduced more to only Input timbre Target
timbre an amount descriptor and a constraint on timbre. Overall extraction of
the queries from the natural language input was rated as usable, except for the
explicitly reported shortcomings which are due to our not yet refined Gazetteers
and Jape rules we employ in our ANNIE IE application. The overall feedback
from the engineers was quite enthusiastic as they reported to us that once we re-
fine the knowledge model slightly further and made minor changes to the query
extraction the Audio Advisor actually would be quite powerful in supporting
audio mixing and the teaching of audio mixing.

312 C. Sauer et al.

7 Summary and Outlook

In this paper we presented our development of a case-based workflow recommen-
dation system for audio engineering support. We detailed on the entire process of
developing the Audio Advisor software. We described our approach to formalise
the special vocabulary, consisting of vague descriptors for timbres, amounts and
directions. We introduced CBR as a methodology to amend the problem of for-
malising emotions and/or adjectives describing timbres, i.e., the problem of the
vagueness of terms and the variance of emotions invoked by the same sound in
different humans. We further detailed on our approach to design a Case-based
reasoning knowledge model based on the elicited knowledge artefacts. We then
described how we designed and implemented the Audio Advisor application.
While doing so we inspected the GATEbased natural language processing abil-
ity that we integrated into Audio Advisor to enable it to process queries posted
to it in natural language. We further detailed on the use of myCBR 3 to rapidly
prototype and refine the CBR knowledge model that poses the reasoning com-
ponent of the Audio Advisor. We finished this paper with an overview of our
experiments with the Audio Advisorand an introduction to a first evaluation of
the performance of the Audio Advisor and the quality of its recommendations
which overall are very promising in both possible roles of the Audio Advisor as
a support tool for professionals as well as a teaching aid to students.

For the imminent future we plan to refine our knowledge model further based
on the evaluated data from the first series of experiments. The next step is the
conduction of the teaching related experiments and the further refinement of the
knowledge model as well as the GUI employed by Audio Advisor.

As a medium future aim we want to investigate the possibility and usefulness
of using ‘negative similarity values’ of the timbre descriptors provided by the
domain experts during the knowledge elicitation phase. We therefore want to
integrate a negative similarity measure into our knowledge model and perform
experiments to establish as this might be useful to be employed as adaptation
knowledge as we already suggested in our initial study of the formalisation of
knowledge from the audio mixing domain.

References

1. Aamodt, A.: Modeling the knowledge contents of cbr systems. In: Proceedings
of the Workshop Program at the Fourth International Conference on Case-Based
Reasoning. Citeseer (2001)

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AI Communications 1(7) (March
2007), ftp://ftp.ifi.ntnu.no/pub/Publikasjoner/vitenskaplige-artikler/

aicom-94.pdf (letzte Verifikation Juni 11, 2007)

3. Arcos, J., Grachten, M., de Mántaras, R.: Extracting performers behaviors to an-
notate cases in a cbr system for musical tempo transformations. Case-Based Rea-
soning Research and Development, 1066–1066 (2003)

ftp://ftp.ifi.ntnu.no/pub/Publikasjoner/vitenskaplige-artikler/aicom-94.pdf
ftp://ftp.ifi.ntnu.no/pub/Publikasjoner/vitenskaplige-artikler/aicom-94.pdf

Recommending Audio Mixing Workflows 313

4. Arcos, J., De Mantaras, R., Serra, X.: Saxex: A case-based reasoning system
for generating expressive musical performances*. Journal of New Music Re-
search 27(3), 194–210 (1998)

5. Bergmann, R., et al.: On the use of taxonomies for representing case features and
local similarity measures. In: Proceedings of the 6th German Workshop on Case-
Based Reasoning, pp. 23–32 (1998)

6. Broekens, J., DeGroot, D.: Emotional agents need formal models of emotion. In:
Proc. of the 16th Belgian-Dutch Conference on Artificial Intelligence, pp. 195–202
(2004)

7. Canamero, D., Arcos, J., de Mántaras, R.: Imitating human performances to au-
tomatically generate expressive jazz ballads. In: Proceedings of the AISB 1999
Symposium on Imitation in Animals and Artifacts, pp. 115–120. Citeseer (1999)

8. Darke, G.: Assessment of timbre using verbal attributes. In: Conference on Inter-
disciplinary Musicology, Montreal, Quebec (2005)

9. De Mantaras, R.: Towards artificial creativity: Examples of some applications of
ai to music performance. 50 Anos de la Inteligencia Artificial, p. 43 (2007)

10. Donnadieu, S.: Mental representation of the timbre of complex sounds. In: Analysis,
Synthesis, and Perception of Musical Sounds, pp. 272–319 (2007)

11. Fellous, J.: From human emotions to robot emotions. Architectures for Model-
ing Emotion: Cross-Disciplinary Foundations. American Association for Artificial
Intelligence, 39–46 (2004)

12. Halpern, A., Zatorre, R., Bouffard, M., Johnson, J.: Behavioral and neural corre-
lates of perceived and imagined musical timbre. Neuropsychologia 42(9), 1281–1292
(2004)

13. Hudlicka, E.: What are we modeling when we model emotion. In: Proceedings of
the AAAI Spring Symposium–Emotion, Personality, and Social Behavior (2008)

14. Katz, B., Katz, R.: Mastering audio: the art and the science. Focal Press (2007)
15. de Mantaras, R.: Making music with ai: Some examples. In: Proceeding of the 2006

Conference on Rob Milne: A Tribute to a Pioneering AI Scientist, Entrepreneur
and Mountaineer, pp. 90–100 (2006)

16. de Mantaras, R., Arcos, J.: Ai and music: From composition to expressive perfor-
mance. AI Magazine 23(3), 43 (2002)

17. Pitt, M.: Evidence for a central representation of instrument timbre. Attention,
Perception, & Psychophysics 57(1), 43–55 (1995)

18. Plaza, E., Arcos, J.-L.: Constructive adaptation. In: Craw, S., Preece, A.D. (eds.)
ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 306–320. Springer, Heidelberg (2002)

19. Sauer, C., Roth-Berghofer, T.: Web community knowledge extraction for mycbr 3.
In: Research and Development in Intelligent Systems XXVIII: Incorporating Ap-
plications and Innovations in Intelligent Systems XIX Proceedings of AI-2011, the
Thirty-first SGAI International Conference on Innovative Techniques and Appli-
cations of Artificial Intelligence, p. 239. Springer (2011)

20. Sauer, C., Roth-Berghofer, T., Auricchio, N., Proctor, S.: Similarity knowledge
formalisation for audio engineering. In: Petridis, M. (ed.) Proceedings of the 17th
UK Workshop pn Case-Based Reasoning, pp. 3–14. University of Brighton (2012)

21. Typke, R., Wiering, F., Veltkamp, R.: A survey of music information retrieval
systems (2005)

22. Watson, I.: Case-based reasoning is a methodology not a technology. Knowledge-
Based Systems 12(5), 303–308 (1999)

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 314–328, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Agent Based Framework for Multiple, Heterogeneous
Case Based Reasoning

Elena Irena Teodorescu1 and Miltos Petridis2

1 School of Computing and Mathematical Sciences, University of Greenwich, London, UK
e.i.teodorescu@greenwich.ac.uk

2 School of Computing, Engineering and Mathematics, University of Brighton, Brighton, UK
m.petridis@brighton.ac.uk

Abstract. This paper investigates the application of Multiple, Heterogeneous
Case Based Reasoning (MHCBR) using agents operating on different struc-
tures/views of the problem domain in a transparent and autonomous way to re-
trieve solutions for a new problem from more than one case-base. An MHCBR
framework is proposed. This framework includes sub-processes for subscribing
of provider case-bases through agents, creating a dynamic structure, and retriev-
ing solutions by using agents and employing a Blackboard communication
architecture.

A mechanism based on the competence of a provider case base is introduced
to improve MHCBR performance. A negotiation system to support the retrieval
process from each source case base of the MHCBR is proposed. ProMHCBR, a
MHCBR system employing agents is discussed and an experimental evaluation
of this system is presented.

Keywords: Heterogeneous Case Bases, Multiple Case based Reasoning, dy-
namic CBR structure, Multiple CBR framework, Blackboard Systems,
Intelligent agents.

1 Introduction

One of the main problems in modern organisations is that often their data are encap-
sulated by cases contained in multiple case bases. This reflects the fragmented way in
which organisations capture and organise knowledge.

Methods for managing sharing of standardized case bases have been studied in re-
search on distributed CBR (e.g. [4]), as have methods for facilitating large-scale case
distribution [1]. Leake and Sooriamuthhi propose a new strategy for MCBR - an
agent selectively supplements its own case-base as needed, by dispatching problems
to external case-bases with the same representation and using cross-case-base adapta-
tion to adjust their solutions for inter-case-base differences [2], [3], [4]. Ontanon and
Plaza [6] looked at a way to “improve the overall performance of the multiple case
systems and of the individual CBR agents without compromising the agent’s autono-
my”. They present a framework for collaboration among agents that use CBR and
strategies for case bartering [6] - case trading by CBR agents. Nevertheless, they do
not consider the possibility of cases having different structures and what impact this
will have on applying CBR to heterogeneous case bases.

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 315

However, the above approaches bring with them the following challenges:

1. Moving cases into a central case base potentially separates the knowledge from its
context and makes maintenance more difficult.

2. Various case bases can use different semantics. There is therefore a need to main-
tain various ontologies and mappings across the case bases.

3. The knowledge content “value” of individual cases can be related to its origination,
or “provenance”. This can be lost when merging into a central case base.

Keeping the cases distributed in the form of a Multiple, Heterogeneous Case Based
Reasoning system (MHCBR) may have a number of advantages such as increased
maintainability and competence and the contextualisation of the cases. Leake states
that “an important issue beyond the scope of [their research] is how to establish cor-
respondences between case representations, if the representations used by different
case-bases differ.” [3]. Sooriamurthi states that if local and external case-bases have
different structures and use dissimilar representations, “conversion from one to
another [structure] may significantly increase the burden for MCBR” [9].

Given several case bases as the search domain, it is very likely that they have dif-
ferent structures and vocabulary. Ideally, accessing multiple case bases can improve
performance by improving competence and coverage. Even if they hold knowledge
about the same problem domain, it is very likely that different case bases would hold
more varied solutions and also some specialisation would occur. Case bases kept in
their initial different structures allow preserving the natural distribution of knowledge
present in modern day systems. Autonomy, security and privacy issues are more
likely to be solved if systems can provide useful knowledge without changing the
provider’s structure or accesing more knowledge than needed.

This paper investigates the idea of Multiple, Heterogeneous Case Based Reasoning
(MHCBR) and identifies issues that can arise when a CBR system interoperate across
multiple case bases with different vocabularies and structures. It presents a MHCBR
framework with its sub-processes of subscribing a provider case-bases through agents,
creating a dynamic structure, and retrieving solutions by using agents and a black-
board communication architecture.

Furthermore, it introduces a mechanism for improving the MHCBR approach by
using a measure for the competence of a provider case base. The competence is to be
determined based on the local confidence of a source case base and the trust of the
MHCBR system in it. The retrieval process from each source case base of the
MHCBR is supported by a negotiation system between a dynamic case-based system
retrieval engine and agents associated to heterogeneous provider case bases.

ProMHCBR, a MHCBR system employing agents is proposed and an experimental
assessment of this system is presented. The system is developed to automate the
MHCBR process which includes: the subscription of a knowledge provider by an
agent, maintenance of the Dynamic Structure, the agents’ retrieval engine, creation of
the Dynamic Case Base and its management by the blackboard component.

The results of the experiments are based on a comparison of the performance of
MHCBR against classical CBR systems and a centralised CBR system. These results
show that, by changing the number of retrieved cases required from each agent

316 E.I. Teodorescu and M. Petridis

according to their competence, the ProMHCBR system performance improves in time
and is comparable to the performance of the centralised CBR system. The experi-
ments have also proven that the ProMHCBR system is capable to learn if case bases
are specialised in a particular value of a case attribute. Further experiments show the
ProMCHBR system’s capability to predict the value of a missing attribute for a target
case by looking at sources’ knowledge and the results demonstrated the importance of
taking the provenance of cases into consideration.

Section 2 discusses the MHCBR framework, architecture and process and the simi-
larity measures used, Section 3 presents the evaluation and experiments conducted as
part of this research and section 4 provides conclusions and illustrates areas for
further work.

2 Multiple, Heterogeneous Case Based Reasoning Framework

2.1 MHCBR Employing Intelligent Agents and Blackboard Communication
Architecture

Blackboards have been used effectively in the past for the construction of hybrid and
agent based AI systems [8]. In this research it is proposed that the MHCBR frame-
work employs Intelligent Agents and a Blackboard Communication Architecture.

The MHCBR framework allows the adaptive MHCBR process to take place. This
process can be categorised into three main sub-processes: (a) the process of subscrib-
ing and managing the heterogeneous structure of a provider knowledge base; (b) the
process of retrieval of cases which includes case selection at local provider level and
case merging at system level; (c) system level revision of retrieved cases.

The MHCBR framework comprises a Dynamic Case Base System and Intelligent
Agents used to register external, heterogeneous case bases to the system (Figure 1).

The MHCBR Dynamic CB System
The Dynamic CB system includes a dynamic case-base structure publisher component
and a system level retrieval engine (dynamic smart search engine).

The dynamic case-base structure publisher is in charge of updating and managing
the dynamic data structure and makes it available to external agents (for example
through Web Services). The dynamic structure makes the self-adaptive multi case
base reasoning system possible. By adding a new case base to the existing ones, new
attributes are added to a global dynamic structure and new relations linked to these
attributes are established by the agents. The dynamic structure is managed by the
dynamic CB system which would maintain a data dictionary required to keep all the
metadata for the dynamic structure, storing the type and any default value for every
single attribute as well as relationships between the Dynamic Case Base Structure
attributes themselves. These relationships can be mathematical relationships or
look-up tables.

The dynamic “smart” search engine performs solution merging and decides on the
final set of solutions in terms of the percentage of selected cases proposed by each

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 317

local retrieval component. It is based on a blackboard architecture and it contains a
blackboard manager component which is in charge of calculating the agents’ compe-
tence. The blackboard contains the target and retrieved cases from various agents
together with similarity calculations and rankings, and also a log of the solution
process and the reconciliation strategy followed, thus representing the state of the
overall CBR solution process at any point in this process.

Fig. 1. A general architecture of the MHCBR System employing intelligent agents

Given a new target case, the blackboard manager decides on a strategy for finding
similar cases from the CB providers. Based on the agents’ confidence and the trust the
dynamic CB system has in every agent, the blackboard manager decides the number
of cases to retrieve from each provider, as well as other requirements, such as the
requirement for diversity, etc. The system then initialises the agents and assigns
them a mission. It is their responsibility to translate the problem into the provider’s
structure and retrieve the best matches. On return, the results (cases) are mapped by
the agent to the dynamic data dictionary and sent to the blackboard.

A “global” CBR process is used to decide on the retrieved cases. The system then
selects and presents the shortlisted cases after the reconciliation process and provides
these to the user, together with links to their original forms for the user to explore and
elicit further contextual and explanation knowledge. Finally, the system “reflects” on
the process by updating the query history and trust weights for each provider.

 Agent CB3Agent CB2

Dynamic CB System

Dynamic CB
 Manager

Data Dictionary
Manager

Dynamic
Structure
 Publisher

Dynamic Smart
Search Engine

Blackboard Manager

Blackboard

Agent CB1

 Provider 3 CBProvider 2 CBProvider 1 CB

Dynamic
Structure

Dynamic
Data

Dictionary

Query History

Agent Trust
calculator

318 E.I. Teodorescu and M. Petridis

HMCBR Intelligent Agents
An Intelligent Agent (Figure 2) has two main components, one in charge with the
subscription of a provider CB, and one in charge with the retrieval of cases.

Fig. 2. Agent architecture

The external case base subscriber component deals with the automatic extraction of
a provider external case-base structure and metadata, as well as with its registration
and creation of case-base data dictionary which holds mapping data between the pro-
vider’s structure and the dynamic one. If necessary, the agent proposes new attributes
to be added to the dynamic CB structure.

The local case retrieval component is used to retrieve a required number of cases
from the provider. The retrieval engine converts the structure of the problem (target
case) into that of the provider’s CB, dispatches the problem to the local case base and
retrieves a required number of similar cases from the provider.

2.2 Similarity Measures Used in MHCBR

The MHCBR systems apply similarity measures at provider case base level, as well as
at system level. The agent calculates the similarity at the provider level and the
K-nearest neighbour retrieval method is applied. Having agents calculating local simi-
larity splits the overall similarity computation in an efficient way; further efficiency
could be achieved by applying maintenance methods on each provider case base. For
numerical values the agent calculates the distance between the values of a target case
attribute and the one of a source case. For some non-numerical values the agents use
look-up tables. These look-up tables are part of the metadata of the dynamic structure
which is managed by the blackboard manager.

A provider CB structure is always a subset of the dynamic structure and when a
query is dispatched to the agents, some of the attributes of the answers will return
“null”. The absence of a value can also be seen to have meaning. As an illustration, if
an attribute of a case is Boolean (“true” means similarity of 1 and “false” means simi-
larity of 0), the absence of a value for this attribute value can itself provide a
similarity (an example is provided by Table 1).

Table 1. lookup table to calculate similarity for attributes with Boolean values

 False True Null
Garden (of type Boolean) 0 1 0.5

Intelligent Agent
Retrieval engine

Query
convertor

 Subscription
 engine

Similarity
calculatorProvider 1

Data Dictionary

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 319

Other ways of mapping values is to use external data, for example using exchange
rates from web providers to convert the price of a property into the same currency.

The agent is in charge with the calculation of the similarity at the provider level.
To allow for defining locally optimised similarity metrics for different providers, the
following similarity measure has been defined:

,்ܥ஼஻௬ሺߪ ௦ሻܥ ൌ ଵ∑ ఠ಴ಳ೤ሺ௫ሻ ೣ ∑ ߱஼஻௬ሺݔሻ כ ,்ܥ஼஻௬ሺߪ ,௦ܥ ሻ ௫ݔ (1)

CT : The target case, CS : The source case σCB୷ሺCT, Cୱሻ: The similarity measure for provider CBy. ωCB୷ሺxሻ : The weighting from case base provider CBy for attribute x σCB୷ሺCT, Cୱ, xሻ : The local similarity measure for provider CBy for attribute x.

The attributes’ similarities are normalised for the calculation of a case similarity.

Using the same similarity metrics for all agents allows for a better aggregation of
retrieved knowledge.

2.3 MHCBR Agents Confidence and Trust

As MHCBR is using more than one heterogeneous source, the question of source
competence arises: which source is better than another? To answer this question, the
idea of agent competence was considered.

Recent research by Manzano et al. explores the idea of agent trust and it proposes a
model for the reuse of cases from a base which is divided into two stages: individual
reuse and multiagent reuse. If at an individual level the agents produce internally full
solution, the multiagent reuse would involve a deliberation process between agents
[5] so an agreed final solution, referred to by the term “amalgam” [7], is produced.
This paper proposes to preserve the local case similarity at provider level, but the
agent is instructed to provide to the blackboard a number of solutions proportional to
the trust that the Dynamic CB system has in that particular agent. Two distinct metrics
are applied to calculate competence, one for the agent’s confidence and one for the
system’s trust in the agent.

Calculating trust in agents is a long process, as CBR Systems are lazy learner sys-
tems and the disadvantage is that trust takes time to build. When a new agent sub-
scribes a provider case base to the MHCBR system, the agent is given an initial de-
fault trust value.

In order to obtain the desired cases from the agents, the blackboard manager per-
forms a two-phase retrieval process, which includes a negotiation stage between the
dynamic CBR system and the agent.

Given a new problem, the MHCBR system can ask the agents how confident they
are in providing good solutions, rather than looking only at the history of agent per-
formance. The agent itself can calculate its confidence for a solving a particular
problem and supplies the blackboard with it. The system starts by asking the agent for
its confidence in its best required number of cases. Then the system calculates its
trust in each agent and decides how many cases it will require for the Dynamic CB
from each.

320 E.I. Teodorescu and M. Petridis

Regarding similarity values, an agent knows only the similarities to the cases from
its own provider case base, so it can calculate the confidence based only on its own
knowledge: it was decided to use the mean of the highest similarities of the required
number of cases (top mean) and the mean of similarities for all cases in the case base
(overall mean). The agent confidence is calculated by subtracting the overall mean
from the top mean. Equation 2 shows the calculation of an agent’s confidence:

݊݋ܥ ஺݂௜ ൌ 100 െ ൮1݇ ൭෍ ,்ܥሺߪ ௌ௜ሻ௞ܥ
௜ୀଵ ൱ െ 1݊ ቌ෍ ,்ܥ൫ߪ ௌ௝൯௡ܥ

௝ୀଵ ቍ൲ ሺ2ሻ

Where:

Conf Ai : The confidence of agent Ai in k best matches from its provider

n: the number of cases in the case-base σሺCT, Cୱሻ : Overall similarity between CT and CS

k: required number of cases most similar to the target This is a variable number and it is calculated

based on the previous trust.

The number of results k from an agent Ai necessary to calculate confidence is calcu-
lated by the blackboard and provided to the agent: ݇஺௜ ൌ ஺௜ݐݏݑݎݐ כ ݊∑ ஺௜௡௜ୀଵݐݏݑݎݐ ሺ3ሻ

Where:

n : The total number of cases required from all agents ݐݏݑݎݐ஺௜: The system’s trust in an agent which was calculated in the previous search

Once an agent provided the confidence, the blackboard manager asks for a particular
number of results that an agent will send to the system.

Equation 4 illustrates how the confidence provided by the agent is applied to calcu-
late the new number of solutions an agent is asked to put forward to the blackboard: ݊ݖܴ݁ݎ஺௜ ൌ ݊ כ ݊݋ܿ ஺݂௜ כ ݇∑ ሺܿ݊݋ ஺݂௜ כ ݇ሻ௡௜ୀଵ ሺ4ሻ

Where: ݊ݖܴ݁ݎ஺௜ : the number of results that an agent will send to the Dynamic CB System.

conf Ai : The confidence of agent Ai in k best matches from its provider

n: the number of cases in the case-base ; k: required number of cases most similar to the target

The formula includes the normalisation of the number of results retrieved by an agent,
as all agents should send a total of n source cases to the Dynamic CB.

Alternative confidence measures could be introduced to maximize the local agent
confidence. Because an agent has only visibly of the local data the confidence can be
less accurate. This issue is the cause of introducing the idea of the trust of the dynamic
CB system in each agent. The agent trust is calculated by the blackboard manager be-
longing to the dynamic CB system and it takes into consideration the history of agent

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 321

performance. Each time when a new query is submitted to the system, the blackboard
manager calculates the distance between the overall average of similarity for all agents
and the average similarity of the cases returned by each agent. To calculate the new trust
for a particular agent the blackboard adds this distance to the old trust.

஺௜ᇱݐݏݑݎܶ ൌ ஺௜ݐݏݑݎܶ ൅ ቆߪ஺௜ െ 1݊ ሺ∑ ஺௜௡௜ୀଵߪ ሻቇ∑ ஺௜௡௜ୀଵߪ כ ܿ ሺ5ሻ

Where : ܶݐݏݑݎ஺௜ᇱ : The trust in agent Ai for the new target case

n: number of agents

c: a scaling coefficient used to scale trust values. σ஺௜ : the average similarity of the k nearest neighbour source cases for a particular agent Ai and is

calculated as :

஺௜ߪ ൌ 1݇ ൭෍ ,்ܥሺߪ ,ௌ௜ܥ ሻ௞݅ܣ
௜ୀଵ ൱ ሺ6ሻ

,்ܥሺߪ ,ௌ௜ܥ ሻ : average similarity for a particular case of agent Ai݅ܣ

A set of extensive experiments was run for each approach to see how confidence and
trust influences in time the overall similarity.

3 Experiments and Evaluation

The case study used for this research is one of searching for a property from many
estate agencies without amalgamating their case base structures. Three heterogeneous
estate agencies with different case base structures and semantics are used as provider
case bases. A detailed representation and of the providers case base structures can be
found in the PhD thesis Multiple, Heterogeneous Case base reasoning

3.1 The ProMHCBR System

The purpose of the ProMHCBR system is to allow users to define their target proper-
ties and the system is to provide the most similar cases from all provider case bases.
A second purpose of the system is to predict a property’s price based on the
knowledge from the multiple case bases.

The sample data for the case bases was provided by three online estate agents sell-
ing holiday properties in Europe. The provider case bases contain 786, 635 and 300
sample cases respectively. Each case base contains cases that describe properties in
terms of various attributes. The experiments used repeated random sub-sampling
validation.

For comparison reasons, a second CBR system was created, as well, based on a
centralised case base that contains all 1721 cases. The centralised CB has the structure
of the dynamic CB.

322 E.I. Teodorescu and M. Petridis

Tests were run on both systems, the centralised CBR one and the MHCBR one.
Each run of the MHCBR system provides a set of data, according to the run set-

ting. This data is kept in the search history by the blackboard. The following is a list
of data that can be returned by a run:

• The dynamic case base (cases sent by all three agents);
• The average similarity: the average similarity given by the dynamic case base;
• The agent id: kept to identify the provenance of source cases;
• The agent similarity: the average similarity for all the cases sent by an agent;
• Agent confidence: the confidence of an agent for a required number of cases.
• Agent trust: the trust of an agent for a required number of cases for a particular run.

The blackboard keeps two values, the initial trust and trust after a run;
• Number of results: the number of source cases required from an agent;
• The search type (if required): for testing purposes two search types were used,

searching for “house” type properties or for “apartment” type ones. It was consi-
dered that any property from the source case bases falls into a category or another
(according to the similarity values of the attribute). When the search type is set to
“house”, for example, rules were implemented so the set of targets automatically
keeps only properties of this type or very similar to check which agents provides
better matches for this category and therefore specialises in this type of properties;

• Predicted price (if required): for testing purposes the initial price of the target case
which is removed from each run is also stored.

3.2 First MHCBR Approach: Treating All Agents the Same

This experiment was designed to test the basic form of MHCBR architecture and to
assess how it performs when each of the agents requests a fixed number of cases from
their providers and returns them to the dynamic case base. The agents calculate the
local similarities to the target case at the provider CB level using weights. The basic
MHCBR system uses all three agents, but no confidence or trust is applied. Each
agent provides its 10 most similar cases.

Fig. 3. The difference between the average similarities given by the centralised CBR system
and the average similarities given by the MHCBR system for all target cases

0

5

10

15

20

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

di
ff

er
en

ce
 o

f s
im

ila
ri

ty
 %

target case number

Centralised CBR Sys.Similarity - Basic MHCBR Sys. Similarity

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 323

The overall average of the differences between the two similarities given by the
centralised CBR and the basic MHCBR was only 6.9%. This means that overall the
basic MHCBR system performance of 66.01% in finding similar cases to a target is
9.45 % lower than the centralised CBR system of 72.91%.

3.3 Introducing Agent Confidence

Further experiments were conducted to study the effect of introducing agent confi-
dence for solving a problem. Initially the agents are asked to retrieve 10 cases each,
but in time, the number of retrieved cases changes according to the confidence. For
this test, the system doesn’t compare the performance between agents nor does it take
into consideration previous agent performance. Instead, the system trusts the agent’s
confidence for each run.

Fig. 4. The difference between the average similarities calculated by the system when applies
agent confidence and when it doesn’t

Overall, the average similarities improve by 0.16 %, which suggests that applying
just confidence brings very little improvement to the values of similarities.

3.4 Applying Agent Trust

In this experiment, the system evaluates the performance of an agent against that of
the others.

The system’s trust in an agent is calculated based on previous agent performance in
comparison to the overall system performance. The following chart shows how the
trust in Agent 1 and Agent 2 increases in time in comparison to the starting value,
with the performance of Agent 1 being most trustful overall.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

di
ffe

re
nc

e
of

 si
m

ila
rit

y
%

target case number

MHCBR Average Similarity with Confidence - Basic MHCBR Average Similarity

324 E.I. Teodorescu and M. Petridis

Fig. 5. (1) The values of trust in each agent as they change in time (2) Number of results
required from each agent calculated based on the system’s trust in agents

Changing the number of results required from each agent according to their compe-
tence improves the ProMHCBR system performance over time. For the first part of
the test runs, the improvement was very small and had a similar behaviour to the sys-
tem when it applies only confidence. However, in the second half of the graph, the
values of the average similarities increase, probably because the system needs time to
build trust. The overall average of the increase of the similarities is 0.42 % and the
increase for the last 30 runs has an average of 1.6%.

The number of results required from each provider is calculated based on the trust
in agents.

Fig. 6. The difference between the average similarities calculated by ProMHCBR when applies
trusts in agents vs when it doesn’t

3.5 Finding Out If Agents Are Specialised

For this experiment two different specialised searches were set up, one searching for a
property of type house, the other searching for an apartment. The experiment was
designed to test if the ProMHCBR system has the capability to train the blackboard
manager to decide which agents are specialised in a type of property.

0

20

40

60

80

100

120

140

160
1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

tr
us

t v
al

ue

target case no. Agent 1 trust
Agent 2 trust
Agent 3 trust

0

2

4

6

8

10

12

14

16

18

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

no
. o

f r
es

ul
ts

 re
qu

ire
d

target case no.

-1

0

1

2

3

4

5

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6di

ffe
re

nc
e

of
 si

m
ila

rit
y

%

target case number

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 325

Fig. 7. Evolution of agents trusts when the test set contains only properties of type: (1) apart-
ment and (2) House

Although Agent 3 performs poorly in both types of searches in comparison with
the other agents, the results show that it has better matches for apartments than hous-
es. Overall the findings of this experiments show that Agent 2 is specialised in apart-
ments and Agent 1 has a better performance when the system searches only for
properties of type “house”.

3.6 Predicting a Property Price

For this experiment the attribute “price” was removed, so the case similarity is calcu-
lated based on all the other attributes but price. The similarity was therefore used to
predict the missing attribute of price. Three methods to calculate the estimated prices
were used:(1) use default attribute weights and calculate the final estimated price as
the average of the agents’ estimated prices; (2) increase the weights of the locality
attributes of a property and calculate the final estimated price in a similar way as in
Method 1; (3) investigate provenance of cases and decide whether to use the predicted
price of only one agent.

In method (1), for each test target case the predicted price was compared against
the real price which was removed before running the ProMHCBR process. The differ-
ence between the real price and the predicted price was calculated and normalised in a
percentage form. The following table shows the spread of the results:

Table 2. Spread of predicted prices according to their distance from the real ones

 0 -20% 20- 30% 30-50% 50- 100% >100%

Number of cases 32 20 23 35 61

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

tr
us

t v
al

ue

apartment target case no.
Agent 1 trust

Agent 2 trust

Agent 3trust

0

20

40

60

80

100

120

140

160

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

tr
us

t v
al

ue

house target case no.
Agent 1 trust
Agent 2 trust
Agent 3 trust

326 E.I. Teodorescu and M. Petridis

Out of 171 price predictions, only 75 prices were within a 50% distance from the
real price and only 30% of the prices were in the desired range (up to 30% higher or
lower than the real price). This is explained by the fact that two very similar proper-
ties can have very different prices.

In method (2) it was decided to set the locality weights for the attributes such
“country”, “region” and “city” to 100%. All the other weights for the local attributes
were kept as before. The results (see Table 3) demonstrate an improvement in com-
parison to the initial run. By increasing the locality attribute weight, the number of
predicted prices within 30% of the real price distance increased by 8.8%.

Table 3. The spread of the predicted prices according to their distance from the real ones when
the locality attributes have highest weight

0 -20% 20- 30% 30-50% 50- 100% >100%

Number of cases 32 25 22 37 55

Although the second method of the experiment has given better results than the

first one, overall only 33% of the predicted prices are in the desired range, which is up
to 30% higher or lower than the real price.

By studying the provider case bases data, it was discovered that the average of the
real property prices can vary greatly from country to country. For example, 17% of
the properties of the Provider 3 case base are located in United Arab Emirates and the
average price is 1,501,287 € . By comparison, the Provider 1 country with the highest
number of properties is Italy (16.3 %), for which the average price is 352,886 €.

When a CBR system deals with external source cases and information of how a
case base was captured, provenance can provide important knowledge regarding a
case’s applicability[10]. The ProMHCBR system has the capability to find out which
agent supplied a particular solution, and therefore its provider. Method (3) test set of
target cases was formed by taking 10 % of the cases out of each provider’s case base,
so it contained three subsets of cases, one from each provider. For each target case,
every agent was supplying a predicted price to the blackboard manager. Those prices
were placed on the blackboard for further calculation and stored in the query history.
As a new testing method for the estimated prices, it was decided to “believe” the price
prediction of the agent in charge of the provider’s case base where the target case
originally came from.

The new results (Table 4) demonstrate the importance of taking into consideration
the provenance of cases and deciding to believe the price estimate of a particular
agent in charge of a case base more relevant to a target case.

Table 4. The spread of the predicted prices according to their distance from the real ones when
the system takes in consideration provenance

 0 -20% 20- 30% 30-50% 50- 100% >100%

Number of cases 55 34 21 37 24

 An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning 327

The number of predicted prices within 30% of the real price distance increased to
89, which is 52 % of all target cases and 18.7% more than calculating the estimated
price based on all agents.

4 Conclusions and Future Work

This paper presents an approach based on agents operating on different struc-
tures/views of the problem domain in a transparent and autonomous way. Agents
were dynamically added to the system, one agent per case base, thus increasing the
search domain and potentially the competence and vocabulary of the system.

The proposed architecture for a self-adaptive MHCBR system involves the use of a
dynamic CB system based on a blackboard architecture. This architecture contains the
dynamic CB system and intelligent agents that communicate with the blackboard
manager. The retrieval process includes a negotiation phase between the dynamic CB
system and agents.

The ProMHCBR system was successfully implemented based on the presented
architecture.

A centralised CBR system was built for comparison purposes. The structure of its
centralised case base was identical to the dynamic structure after the three case bases
had been added to the MHCBR system. Because the centralised CB contains all
possible cases and it has the structure identical to the dynamic CB, it retrieves the
overall best possible matches for a target case. Therefore this system’s performance
was expected to be better than that of the ProMHCBR. The difference of performance
was only 6.9% in comparison to the basic ProMHCBR (competence not taken in con-
sideration). The difference decreased to 5.3 % (over 140 runs) when ProMHCBR
continuously adjusted the number of retrieved cases from each case base according to
the trust in each agent. When merging case bases there is generally a loss of individu-
al case content value. For example the provenance of a case might be lost, as well as
some of the attributes that characterise a particular case base but not necessarily other
case bases.

The results showed that agents can specialize in different types of properties
(houses or apartments). The conclusion was drawn by observing the trust of the
system change according to the type of search.

ProMHCBR was used to predict the value of a property price according to the pric-
es of similar properties form the provider case bases. Initial results were somewhat
disappointing with only 30% of the prices being in the desired range. The importance
of the attributes that show the locality of a property were increased and it was decided
to believe the price prediction of the agent in charge of the provider’s case base where
the target case originated from. The new results demonstrated the importance of tak-
ing into consideration the provenance of cases, with the number of predicted prices in
the desired range increasing to 52%.

In the proposed approach, the trust at agent level is determined by the quality of the
knowledge from the provider case base it deals with. The research in this area could
be taken further by looking into the capability of an agent to search for and discover

328 E.I. Teodorescu and M. Petridis

knowledge elsewhere. It would be interesting to see how an MHCBR system would
behave if it was to employ agents with different capabilities. In this situation the cal-
culation of the agent trust should take into account whether an agent is more “hard
working” than another.

Another area which could be further investigated is price estimation. In the per-
formed experiments it was decided to believe the price prediction of the agent in
charge with the provider’s case base where the target case originated from. When
the provenance of a target case is not clear, the following question arises: which
agent price estimation is best? Further research could identify a way to train the
system to believe the estimated price of the agent based on which agent has most
properties in the same locality as the target property or a locality in the same price
band. Ways of finding price bands and relationships between property location and
price could be found by forming clusters of properties according to their prices.

References

1. Hayes, C., Doyle, M., Cunningham, P.: Distributed CBR Using XML. In: Proceedings of
the Fourth European Conference on Case-Based (ECCBR), Dublin, Ireland (June 1998)

2. Leake, D.B., Sooriamurthi, R.: When Two Case Bases are Better Than One: Exploiting
Multiple Case Bases. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI),
vol. 2080, pp. 321–335. Springer, Heidelberg (2001)

3. Leake, D., Sooriamurthi, R.: Managing Multiple Case Bases: Dimensions and Issues. In:
Proceedings of the Fifteenth Florida Artificial Intelligence Research Society (FLAIRS)
Conference, Pensacola, Florida (May 2002)

4. Leake, D., Sooriamurthi, R.: Case Dispatching versus Case-Base Merging: When MCBR
matters: International Journal on Artificial Intelligence Tools: Architectures, Languages
and Algorithms (IJAIT). Special Issue on Recent Advances in Techniques for Intelligent
Systems 13(1) (2004)

5. Manzano, S., Ontañón, S., Plaza, E.: Amalgam-Based reuse for multiagent case-based rea-
soning. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 122–136.
Springer, Heidelberg (2011)

6. Ontañón, S., Plaza, E.: A bartering approach to improve multiagent learning. In: AAMAS
2002 (2002)

7. Ontañón, S., Plaza, E.: A formal approach for combining multiple case solutions. In: Bi-
chindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 257–271. Springer,
Heidelberg (2010)

8. Petridis, M., Knight, B.: A blackboard architecture for a hybrid CBR system for scientific
software. In: Proceedings of the Workshop Program at the 4th International Conference in
Case-based Reasoning, ICCBR 2001, Vancouver (2001)

9. Sooriamurthi, R.: Multi-case-base reasoning. PHD thesis, Department of Computer
Science of Indiana University (2007)

10. Leake, D.: Provenance and Case-Based Reasoning. In: Proceedings of the Twenty-First In-
ternational FLAIRS Conference American Association for Artificial Intelligence 2008
(2008)

11. Teodorescu, E.I.: Multiple, Heterogeneous Case Based Reasoning. PhD Thesis, Depart-
ment of Computing and Information Systems, University of Greenwich (2012)

Learning-Based Adaptation

for Personalized Mobility Assistance

Cristina Urdiales, Jose Manuel Peula, Manuel Fernández-Carmona,
and Francisco Sandoval

ISIS group, ETSI Telecommunications, University of Malaga, 29071 Malaga, Spain
acurdiales@uma.es

Abstract. Mobility assistance is of key importance for people with dis-
abilities to remain autonomous in their preferred environments. In severe
cases, assistance can be provided by robotized wheelchairs that can per-
form complex maneuvers and/or correct the user’s commands. User’s ac-
ceptance is of key importance, as some users do not like their commands
to be modified. This work presents a solution to improve acceptance.
It consists of making the robot learn how the user drives so corrections
will not be so noticeable to the user. Case Based Reasoning (CBR) is
used to acquire a user’s driving model reactive level. Experiments with
volunteers at Fondazione Santa Lucia (FSL) have proven that, indeed,
this customized approach at assistance increases acceptance by the user.

1 Introduction

Mobility is of key importance for persons to carry their Activities of Daily Living
(ADL). People affected by a disability may require mobility assistance to remain
autonomous. Lack of human resources has led to research in mobility assistive
devices, like a robotic power wheelchair. These wheelchairs are not a traditional
robot in the sense that it is controlled, at least partially, by its user. This ap-
proach is known as shared control. Furthermore, doctors and caregivers have
reported that excessive assistance may lead to loss of residual skills, whereas an
active profile is reported to improve rehabilitation. Hence, in these cases it is
desirable to give the user as much control as possible.

There are different approaches to shared control. In safeguarded navigation,
for example, robots are always under human control, except when a poten-
tially dangerous situation is detected. In these cases, the robot takes over [1][2]
and a reactive algorithm is used to avoid such a danger. Other shared control
approaches[5][6] rely on a basic set of primitives like AvoidObstacle, FollowWall
and PassDoorway to assist the user in difficult maneuvers, either by manual
selection or automatic triggering. In extreme, the user just points a destination
and the robot does the rest [3]. In order to avoid sharp control switches from
human to robot and to prevent loss of residual skills by not letting the user
participate at all in complex tasks a third approach to shared control is collabo-
rative control [7][8], where user and robot commands are mixed in a continuous
way so that people may contribute their best to any situation.

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 329–342, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 C. Urdiales et al.

The authors proposed a collaborative control method in [7] consisting on
weighting robot’s and user’s commands by their respective driving efficiencies at
each situation and adding them at reactive level. Thus, the most efficient agent
was awarded with more control, yet the least efficient one always contributed to
emergent motion. This approach was tested at Fondazione Santa Lucia (FSL),
Rome, by a large number of volunteers presenting different degrees of functional
disability. Surprisingly, we found out that people with a better functional dis-
ability profile actually performed worse than people with worse diagnosis in a
significant number of cases. Further analysis proved that this group actually
rejected assistance, i.e. tried to counteract robot commands, as soon as they
acknowledged that the wheelchair was not doing exactly what they commanded.

To solve this problem, we propose to use a CBR based approach to let the
robot learn how the user drives. Rather than choosing the most efficient com-
mand, the robot will try to provide the most similar one to what the person
would do at each situation within established safety constraints. Since the robot’s
commands become much more similar to the user’s, acceptance is improved and
global efficiency grows, as proven by further experiments with volunteers at FSL.
To achieve this, the wheelchair learns how a given user drives using CBR.

2 Collaborative Navigation System

Our basic approach to collaborative navigation – fully explained in [7] – is based
on reactive navigation. Reactive schemes implicitly deal with several sensors and
goals at a time, so we can simply handle user and robot commands as two differ-
ent goals. Let −→vU and −→vR be the user and robot command vectors respectively.
−→vU is extracted from a joystick and −→vR is calculated via the simplest pure Po-
tential Fields Approach (PFA) [9], where goals and obstacles are modelled as
attractors and repulsors, respectively. We can combine −→vU and −→vR linearly into
a collaborative command −→vC . However, we do not want user and robot to have
the same weight in the emerging decision. Instead, we want assistance to adapt
to the user’s needs. Hence, we weight −→vU and −→vR by the local efficiency of user
and robot, respectively: the more efficient a user is at solving a given situation,
the less assistance he/she receives.

−→v C = ηR · −→v R + ηU · −→v U (1)

Motion efficiency η needs to be calculated locally, because in a purely reactive
(i.e. memoryless) approach, global factors like trajectory length or completion
time cannot be used. We have identified three local factors, ranging from 0
to 1, with an impact on η: smoothness (ηsm in Eq. 2), directness (ηdir in Eq.
3) and safety (ηsf in Eq. 4), corresponding respectively to how smooth the
wheelchair is driven, how efficient it is to reach a target and how close it moves
to obstacles. Global efficiency η is the average of these three efficiencies, that
roughly correspond to the properties of a navigation function:

Learning-Based Adaptation for Personalized Mobility Assistance 331

ηsm = e−Csm·|αsm| (2)

ηdir = e−Cdir·|αdir| (3)

ηsf = 1− e−Csf ·|αsf | (4)

αsm being the angle between the heading direction and command direction; αdir

being the angle between goal direction and command direction; αsf being the
angle between obstacle direction and command direction; and Csm, Cdir and
Csf constants to decide how much impact have each angle on its respective local
efficiency. As most of situations require uniform efficiency factor changes, these
constants are set to 1 by default.

The main advantages of our approach [7] are that: i) it tends to preserve
curvature and safety, as most PFA-based algorithms do; ii) users contribute to
control chair all the time because ηU is never equal to 0; and iii) humans provide
(when possible) a deliberation level to the system to avoid local traps.

The main problem with the proposed approach was that η̄C (collaborative
command efficiency) turned out to be lower for people with better functional
profiles than for people with severe disabilities in a significant number of cases
[7]. We observed that a number of these users seemed to be fighting robot control,
so we developed a new metric that we called Disagreement. Disagreement is
equal to the angle between the user’s command −→vU and the emergent one −→vC
and it represents how similar emergent motion is to what the user expects.
Disagreement in our tests for people with good functional profile and low driving
efficiency was very high: around 40-45%. Even though there is always a baseline
Disagreement when a person drives a vehicle depending on its dynamics and
kinematics -we measured it to be around 15% in our wheelchair-, it becomes
obvious that it is not comfortable for a person to drive like this.

To solve this problem, we propose to replace commands provided by PFA by
commands learnt from previous experience on how the user drives, as described
in next section. Thus, the differences between commands proposed by the user
and by the robot should be quite lower and acceptance improves.

3 Robot Adaptation to User

3.1 CBR-Based Collaborative Control

CBR has been used in navigation before, typically for global path planning in
static environments [10][11] rather than for reactive navigation. There are also
approaches for global planning in dynamic environments [12]. However, in [12]
new opportunities cannot be discovered when the environment changes unless
the topological map, which is based on, is regularly reorganized. Kruusmaa [13]
proposed a grid-based CBR global path planning method to overcome the afore-
mentioned problem. However, she concluded that CBR-based global navigation is
beneficial only when obstacles are large and dense and only a few solutions exist.
Otherwise, the solution space may become too large. Some CBR-based methods

332 C. Urdiales et al.

focus on reactive navigation [14][15], but they all rely on accumulating experi-
ence over a time window while navigating in a given environment to obtain an
emergent global goal seeking-behavior. Hence, they are environment-dependent.
The authors already proposed a purely reactive navigation layer based on CBR
in [7] for autonomous robots. Its original purpose was to create ad-hoc reactive
navigation strategies via supervised learning and adapt them to different robot
structures via learning by experience. Hence, we could avoid kinematics and dy-
namics calculations. In the present work, a similar strategy is used to make the
robot learn how the user drives to improve acceptance.

Learning a reactive navigation behavior basically consists of associating what-
ever the driver is doing to the situation at hand. The user is already taking into
account the vehicle kinematics and dynamics, as well as the relative position of
obstacles and goal and any local consideration, like floor condition, mechanics,
etc, that he/she intuitively adapts to through practice. This knowledge is im-
plicitly added to the case base. After a while, all this information is encoded into
a set of cases, that can be evaluated with our local metrics: ηsm, ηdir and ηsf .
Eventually, the case base stabilizes to the best average solutions the user gives
to any input situation. This happens after acquired cases are clustered to obtain
valid prototypes, so that duplicates and least efficient cases are removed from
the case base as explained below. This case base is not environment-dependent
because there are not so many situations one can face from a local point of view
[16]: the only relevant information at reactive level is how far we are from close
obstacles, where we are heading and where we would like to go.

Obviously, if our system cloned exactly what the user does, it would provide
no assistance except to correct punctual errors. However, if we combine a CBR
reactive navigation module with the proposed collaborative control approach,
advantages are more obvious: we use learnt cases when possible and receive
assistance when needed. Each time the robot retrieves a case from the case base,
its efficiency (ηCBR) is checked. If ηCBR is over a given threshold Uη (in our
case, 0.7), the retrieved case solution becomes −→v R. Otherwise, −→v R is obtained
from PFA, even if ηCBR is bigger than ηPFA. Then

−→v R and −→v U are weighted
by their respective efficiencies as usual to calculate −→v C , which is stored in the
case base for future reference.

3.2 CBR Implementation

The number of different situations that a robot can locally find is not too large
[16], so the number of cases to acquire a given motion strategy is not large either
(150-200 cases in our previous tests [7]). Hence, we can use a flat structures and
the usual feature-value vector representation. Our cases are compared using a
nearest-neighbour (NN) algorithm. After several tests, we chose to work with
the Tanimoto distance Ts. For cases C1 and C2:

Ts(C1, C2) =
C1 · C2

|C1|2 + |C2|2 − C1 · C2
(5)

Learning-Based Adaptation for Personalized Mobility Assistance 333

We found that similar environment arrangements result in a lower Tanimoto
distance, whereas other metrics, e.g. Euclidean distance, reward higher partial
similarities in nearby obstacles than the environment as a whole [7]. Our input
instance includes all commented reactive factors: goal position, laser readings
(nearby environment) and wheelchair heading. Our output includes the user
motion command (−→v CBR) and our evaluation measure is its global efficiency
(ηCBR). Fig. 1 shows our case structure. Since minor differences between sensors
readings usually correspond to slight robot shiftings rather than to different
situations, we have discretized the space sampled by the robot into 8 equal sized
arc regions and also discretize laser readings into 5 non equal intervals that have
proven to be valid for a typical indoor environment [7]: i) critical (0-20 cm);
ii) near (20-50 cm); iii) medium (50-100 cm); iv) far (100-150 cm); and v) no
influence (more than 150 cm).

Fig. 1. CBR case structure and example

Our system uses both learning by observation and learning by own experience.
If there is any recorded trace of a given user driving the wheelchair without
assistance, it is used to initialize the case base. As soon as the user starts driving,
his/her commands are combined with the robot’s and learnt by the system. If
the user is unable to provide an efficient way of solving a problem, the solution
will be mostly based on PFA. However, the robot’s commands tend to be more
and more similar to the user’s as a whole. It needs to be noted that we include
no case adaptation stage in our CBR cycle to preserve user’s commands as much
as possible. Instead, adaptation is implicitly provided by collaborative control.

Finally, a MaxMin clustering algorithm is applied to the case base on a regular
basis to group similar cases into a single cluster prototype (CP). The resulting
CP is equal to the average of all cases in the cluster weighted by their own
efficiencies. Thus, a given CP is not the most frequent response to a situation,
but the most efficient response the user may produce on a regular basis. Also,
low efficiency cases weight too little in CP calculation, so in practice they are
removed unless there is no learnt alternative to cope with the related situations.

334 C. Urdiales et al.

Our final case base is composed only of CPs and we only compare new instances
with those Cps, but we preserve all learnt cases for future rearranging. This
whole process is performed offline each time the number of newly acquired cases
exceeds a threshold. Typically, it needs to be performed at least twice, once for
the learning by observation stage and another for the first run while learning by
own experience. Later on, the number of acquired cases decreases significantly
and it is no longer necessary to cluster cases after each experiment. This process
has, mainly, four targets: i) to remove duplicated cases, ii) to bind the number
of cases in the database, iii)to avoid oscillations between similar cases, and iv)
to clean spurious solutions from the database.

4 Experiments and Results

The proposed CBR system was built on CARMEN (Collaborative Autonomous
Robot for Mobility ENhancement), a modified a Runner Meyra wheelchair (Fig.
2.a),donated by Sauer Medica S.L. and equipped with an industrial PC running
Linux OS and a frontal Hokuyo laser URG04-RX for localization and obsta-
cle detection. Moving backwards was not allowed due to lack of rear sensors and
mirrors in the wheelchair. All experiments took place -after approval by FSL Eth-
ical Committee- in Casa Agevole, a 60 m2 fully furnitured, standard-compliant
test house built in the FSL complex in Rome1. All tests were performed by 18
volunteering inpatients presenting different degrees of disability (Left or Right
Hemiparesis, Ischemic Stroke, Spinal cord injury, Cerebral Hemorrhage). Their
cognitive and physical skills ranged from good to low, according to the mini-
mental state examination (MMSE)[17] (1-30), the Barthel Index [18] (0-100)
and the Instrumental ADL (IADL) [19] (0-5/8). In our volunteers, these scales
were MMSE: 3-29, Barthel: 8-100, IADL: 0-8. Volunteers were divided into 3
groups depending on their diagnosed profile: 1) minor; 2) mild; and 3) severe
physical/cognitive disabilities .Fig. 2.b shows the approximate path that volun-
teers were asked to perform. It can be observed that it involves door crossing,
narrow areas and significant turns. This path was suggested by our medical staff
because it includes most situations faced in ADL.

Each volunteer performed at least three runs (autonomous mode, shared con-
trol using PFA, and shared control using CBR). First of all, they drove the
wheelchair without assistance (for benchmarking). In this mode, only a safe-
guard layer is active to prevent collisions. Many volunteers did not manage to
complete the path in this mode. Our second mandatory run was PFA-based
collaborative control navigation. Most users managed to do the run in assisted
mode at first attempt, but one group of inpatients – group 3 – had notable ex-
ceptions. During this run, CBR was active and cases were acquired for the next
run. Finally, all volunteers tried at least a CBR-based collaborative control runs,
using their own case bases to assist navigation. During these runs, the case base
kept acquiring new cases on a need basis.

1 http://www.progettarepertutti.org/progettazione/

casa-agevole-fondazione/index.html

http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html
http://www.progettarepertutti.org/progettazione/casa-agevole-fondazione/index.html

Learning-Based Adaptation for Personalized Mobility Assistance 335

Fig. 2. a) Robot wheelchair (CARMEN) b) Proposed path at Casa Agevole

Table 1. Average results for all inpatients in collaborative control tests

PFA Tests CBR Tests
Mean Dev. Mean Dev.

Global efficiency (%) 65.23 20.10 71.42 18.74

Smoothness (%) 64.18 27.80 69.05 25.54

Directness (%) 39.31 28.93 53.60 26.73

Safety (%) 92.25 17.60 91.73 16.06

Intervention Level (%) 79.17 - 75.59 -

Disagreement (%) 41.83 27.75 26.11 21.87

Joystick variation (%) 1.62 4.69 1.64 4.47

Inconsistency (%) 9.53 10.93 6.59 9.28

Completion time (sec) 48.45 - 43.46 -

Table 1 shows the average results of our experiments. Standalone results are
omitted, as they are possibly biased by the users’ learning curve. Our task met-
rics include all efficiency factors η, ηsm, ηsf and ηdir and total time. Our psych
metrics include: Intervention Level, defined as the portion of time that the user
moves a joystick [20] and showing if the user presents an active profile; ii) Dis-
agreement, as previously commented, related to effort and frustration; it needs
to be noted that due to mechanical issues like inertia, response time, joystick
sensitivity, etc., our lowest wheelchair disagreement seemed to settle around 20%
in standalone mode for our wheelchair; iii) Inconsistency, defined as the variation
of the user’s commands when facing similar situations; and iv) Joystick varia-
tion, which measures changes over 10% in the position of the stick and has been
used as an indirect measure of workload [21][22].

It can be observed that efficiency in CBR-based collaborative mode is higher –
specially in terms of directness – and its deviation is lower. The most important
issue, however, is that disagreement decreases from 41.83% (PFA-based mode)
to 26.11% (CBR-based mode), meaning that users are more comfortable with

336 C. Urdiales et al.

the wheelchair. This was, in fact, the main target of the proposed approach.
Consistency is also better.

Table 2 shows the global results of the experiments separated into our 3
groups. It can be observed that the CBR approach improves and homogenizes
performance significantly. However, disagreement does not decrease equally for
all groups. People in group 3 do not benefit from this method, probably because
their consistency is low and learnt commands are not too efficient.

Table 2. Anova Test of global efficiency and disagreement for groups: 1) Good cognitive
and physical 2) Good cognitive and low physical 3) low cognitive and physical

Group 1 Group 2 Group 3

PFA Global efficiency (%) 66.77 70.75 68.86

CBR Global efficiency (%) 74.50 76.20 76.33

ANOVA (pvalue) 0.000 0.018 0.000

PFA Disagreement (%) 32.87 31.85 25.66

CBR Disagreement (%) 25.10 19.40 31.8

ANOVA (pvalue) 0.000 0.004 0.000

Patients in group 3 3 12

4.1 A Case in Detail

The problem our CBR approach meant to solve is clearly represented by vol-
unteer 1, a 56 years old female affected by multiple sclerosis with good physi-
cal and cognitive skills (MMSE=26, Barthel=100, IADL=8). This person could
move with the help of a walker, but had no previous experience with power
wheelchairs. Table 3 briefs her performance in her five tries: standalone, PFA-
based (x3) and CBR-based collaborative control. This person repeated the PFA
test three times and her third try was the worst of all. In fact, she failed to
finish her last two PFA-based paths and reported that ”the wheelchair was not
working” while trying to move it into a wall.

In her first standalone run, only the safeguard layer was active – to prevent
imminent collisions –, hence the minor differences between human and collabo-
rative performance in this mode (table 3). Her standalone global efficiency was
equal to 67.56%, and her worst feature was directness, probably due to lack of
practice with power wheelchairs. Intervention Level (table 3) was very high be-
cause the wheelchair did not move unless there was some human input (99.73%).
Besides, her Joystick variation was very low (0.09 %). Her standalone trajectory
was quite smooth and efficient, even at door crossing, except at the second turn,
when she got too close to the walls and had to steer right sharply. In brief, her
standalone run was quite good and she reached her goal in just 30.67 seconds. In
order to observe what this volunteer actually lacked, we clustered her commands
according to the relative position of wheelchair, goal and obstacles and realized
that she had trouble adjusting turns.

Learning-Based Adaptation for Personalized Mobility Assistance 337

Table 3. Results for inpatient 1 trials in all modes. In the CBR column, data without
parenthesis represents the PFA value and data with them the CBR value.

Control type User PFA PFA PFA CBR

ηglobal (%)
Robot — 63.12 65.73 58.97 68.61(69.23)
User 67.51 65.17 60.7 57.05 70.6
Shared 67.56 68.4 67.88 64.0 74.5

ηsm (%)
Robot — 56.45 57.37 36.81 52.2(78.73)
User 66.4 65.91 56.4 61.26 66.62
Shared 66.33 65.1 63.17 61.96 74.6

ηdir (%)
Robot — 43.85 51.6 48.75 61.98(34.13)
User 44.28 37.46 38.42 22.0 48.61
Shared 44.39 45.75 44.85 37.0 52.73

ηsf (%)
Robot — 88.9 88.24 91.39 91.81(94.92)
User 91.95 92.34 87.41 87.94 96.55
Shared 92.03 94.45 95.59 92.96 96.22

Intervention Level% 99.73 70.73 77.85 97.95 82.83(82.56)

Disagreement
% 25.18 21.37 29.87 47.31 20.89(25.11)
dev 25.18 14.96 18.02 27.7 18.72(26.63)

Joystick variation
% 0.09 0.2 0.07 0.06 2.38
dev 1.12 2.37 1.08 0.99 3.65

Inconsistency
% 6.73 7.7 8.58 4.91 6.69
dev 6.73 7.7 8.58 4.91 6.69

Total Length m 6.7 6.68 4.98 4.8 6.4
Completion time sec 30.67 38.2 31.61 32.22 30.63

Her next 3 runs were performed with PFA-based collaborative control: not
only did ηC not increase but even decreased in the last run whereas the volunteer
tried to collide into a wall to check if the wheelchair obeyed her. Obviously, the
wheelchair tried to correct her and they struggled for a couple of seconds. Her
directness dropped to 22% and ηC decreased sharply. In this particular run,
disagreement became as high as 47.31% – meaning that half the time, user and
emergent commands were in conflict –.

Fig. 3 shows ηH , ηR and ηC for the third PFA-based run. We have chosen to
represent ηsm, and ηdir and ηsf as the red, green and blue channels of the RGB
colorspace, respectively, for visibility in our efficiency plot. Hence, pink efficiency
means loss of directness (steering areas) and purple-blue means loss of directness
and smoothness (sharp direction changes). Fig. 4.b shows how disagreement was
highly correlated with ηR, i.e. it grew when the robot had more impact on
emerging commands. Fig. 4.a shows how disagreement grew after crossing the
door – when ηR began to increase and the user became aware of the robot
intervention– . After that, the rest of the trajectory was a fight for control.
Although the robot tried to compensate the user’s motion commands (cyan ηR
area), emergent ones were affected and, as a result, she failed to reach the goal.
The inpatient’s inconsistency in this run shows that she was driving far from
her usual skills: from the 43 different commands clusters that she typically used

338 C. Urdiales et al.

Fig. 3. Inpatient 1 results for PFA-based collaborative mode: a) human efficiency; b)
robot efficiency; c) collaborative efficiency

Fig. 4. Inpatient 1 results for PFA-based collaborative mode: a) disagreement for PFA-
based collaborative control; b) cross correlation disagreement/ηR

to solve the proposed trajectory in standalone mode, 25 – corresponding mostly
to steering decisions – had a very large standard deviation in this run. This
basically means that her decisions were statistically erratic during the struggle.

Fig. 5 shows two clusters corresponding to locations involving steer correction
and strong disagreement. The robot -in the center of the plot- is heading in
the 0 degrees direction, obstacles are represented with circles and the goal is
marker with an x. On the right of each plot, we can see the joystick shadow
for human and robot. Cluster 16 corresponds to the beginning of the trajectory,
when the first steering decision needed to be taken. As usual, inpatient 1 delayed
her steering command, so the robot initiated it, and provoked a noticeable turn
to the right to avoid getting too close to the wall. The emerging command, no
longer equal to the user’s, was practically a 900 right turn, only much slower
than the user’s command (shorter vector). At this point, the user became fully
aware of the robot’s influence and tried to fight it, but, eventually, the struggle
became so intense that we got clusters like cluster 34, with a goal on the right
side of the wheelchair, obstacles on the left and yet, the user pushing the joystick
hard into the obstacles. Since her efficiency was very low at the point, the robot
was dominant and the combination was a slow forward motion. This eventually
got the wheelchair so close to an obstacle that further safe maneouvre was not
possible and inpatient 1 failed to finish the trajectory.

Learning-Based Adaptation for Personalized Mobility Assistance 339

Fig. 5. Clusters representation of two situations with a strong disagreement between
inpatient 1 and robot in PFA-based collaborative control

Fig. 6.a shows the path in CBR-based collaborative control. As commented,
the case base was filled with user’s data coming from all the previous runs,
but in this case mostly included data from the standalone and first PFA runs,
because efficiency grew worse later. During execution, if a situation is not similar
enough to the output case or ηCBR is too low, we use a PFA command instead
in collaborative control at that specific location (areas marked in Fig. 6.b with a
dot). We can observe that disagreement was specially high when PFA was used
instead of CBR. Nevertheless, disagreement was no longer correlated with ηR
because most learnt cases were efficient enough to be extensively used through
the trajectory. In this case, inconsistency was similar in average to standalone
mode and there were less, more homogeneous command groups than in PFA
mode.

Results of this test are briefed in the last column of table 3. As commented,
we calculate what PFA would do all the time, but PFA commands are not used
unless ηCBR goes under a safety threshold or the retrieved case instance is too
far from the current situation. Table 3 shows how ηC in the CBR-based mode
case increased to 74.5%, higher than in any of the previous runs, including stan-
dalone mode, and higher than each of the components separately: PFA (68.61%),

Fig. 6. Inpatient 1 results for CBR-based collaborative mode: a) path; b) disagreement
(PFA and CBR); c) correlation between disagreement and system efficiency

340 C. Urdiales et al.

CBR (69.23%) and user (70.6%). More specifically, smoothness was boosted up
to 74.6%, even though CBR was in this case, by definition, worse than PFA
(78.73% to 52.2%). This happened because: i) the case base was still not com-
plete enough; and ii) PFA are designed to preserve smoothness, whereas CBR
produces mildly sharp direction changes at case switching. Inpatient 1 had prac-
tically the same smoothness than in standalone mode, i.e. she was not fighting
the machine anymore. Directness, though, was quite low for CBR with respect
to PFA, but the user compensated this and, at locations where ηC was too low,
PFA took control of the situation, so that combined directness raised to 52.73%.
Safety, as commented, was preserved by all combinations of control in the ex-
periment, but it was a bit higher here. We have experimentally checked that
this happens when users are comfortable with control and drive smoothly, as, in
these cases, they tend not to get too close to obstacles.

To illustrate how CBR decisions are closer to human commands, Fig. 7 shows
two clusters corresponding to approximately the same situations regarding the
relative position of obstacles and goal. Fig. 7.a corresponds to PFA-based col-
laborative mode, whereas Fig. 7.b is obtained in CBR-based collaborative mode.
It can be observed that PFA-based collaborative mode corrected directness and
reduced variability, but CBR-based collaborative mode reduced disagreement as
well.

Fig. 7. Inpatient 1 cluster comparative for the same location for PFA-based (a) and
CBR-based (b) collaborative mode

5 Conclusions and Future Work

This paper has presented a CBR-based collaborative control technique to reduce
user’s stress and assistance rejection by adapting help to the user via learning.
Collaborative control is based on reactively combining the contribution of both
human and robot, weighting them by their respective local efficiencies, to obtain
an emergent collaborative navigation behavior. The robot learns how the user
drives via CBR and contributes to control with more familiar commands. Thus,
differences between user and emergent commands are less perceivable by the

Learning-Based Adaptation for Personalized Mobility Assistance 341

user. However, if CBR commands are not efficient enough, and due to safety
reasons, PFA is used instead of CBR.

The system was tested by 18 inpatients at FSL in a home-like environment.
Average efficiency was higher in CBR-based collaborative mode than in PFA-
based one or standalone mode. Besides, all users managed to finish a mildly
complex trajectory in CBR-based collaborative mode. As expected, CBR-based
navigation mimicked the user’s way of driving and, in most cases – good or mild
cognitive skills –, reduced disagreement between user and machine. Persons with
very low cognitive skills did not provide enough efficient patterns to build a valid
user model, so in those cases the system typically behaved like a PFA-based
collaborative one.

The main drawback of the proposed system is that most users agreed that
the wheelchair moved a bit brusque. This is provoked by case swapping, since
the case base has a limited number of cases, and also by swaps from CBR to
PFA-based collaborative control. This problem can be solved by adding some
temporal inertia and future work will focus on this.

Future work will focus too on checking if the contents of a given user’s case
base can be correlated with the person’s condition and, if so, on predicting the
amount of help required by a specific user at a given situation instead of just
providing it in a completely reactive fashion. This would allow us to include
temporal inertia and reduce the commented problems related to case switching.

Acknowledgement. This work has been partially supported by the Spanish
Ministerio de Educacion y Ciencia (MEC), Project TEC2011-29106-C02-01. The
authors would like to thank Santa Lucia Hospedale and all volunteers for their
kind cooperation and Sauer Medica for providing the power wheelchair.

References

1. Parikh, S.P., Grassi, V., Kumar, V., Okamoto, J.: Usability study of a control
framework for an intelligent wheelchair. In: Proc. of the 2005 IEEE International
Conference on Robotics and Automation, Barcelona, Spain, pp. 4745–4750 (April
2005)

2. McLachlan, S., Arblaster, J., Liu, D.K., Valls, J., Chenoweth, L.: A multi-stage
shared control method for an intelligent mobility assistant. In: Proc. of the 2005
IEEE 9th International Conference on Rehabilitation Robotics, Chicago, USA, pp.
426–429 (July 2005)

3. Frese, U., Larsson, P., Duckett, T.: A multigrid algorithm for simultaneous local-
ization and mapping. IEEE Transactions on Robotics 21(2), 1–12 (2005)

4. Mandel, C., Huebner, K., Vierhuff, T.: Towards an autonomous wheelchair: Cogni-
tive aspects in service robotics. In: Proceedings of Towards Autonomous Robotic
Systems (TAROS 2005), pp. 165–172 (2005)

5. Bruemmer, D.J., Few, D.A., Boring, R.L., Marble, J.L., Walton, M.C., Nielsen,
C.W.: Shared understanding for collaborative control. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part A: Systems and Humans 25(4), 494–504 (2005)

6. Horiguchi, Y., Sawaragi, T.: Effects of probing to adapt machine autonomy in
shared control systems. In: Proc. International Conference on Systems, Man and
Cybernetics, Hawaii, USA, vol. 1, pp. 317–323 (October 2005)

342 C. Urdiales et al.

7. Urdiales, C., Fernandez-Carmona, M., Peula, J., Annicchiaricco, R., Sandoval, F.,
Caltagirone, C.: Efficiency based modulation for wheelchair driving collaborative
control. In: Proc. of 2009 IEEE Conf. on Robotics for Rehabilitation (ICRA 2010),
Anchorage, USA (2010)

8. Carlson, T., Demiris, Y.: Human-wheelchair collaboration through prediction of
intention and adaptive assistance. In: IEEE International Conference on Robotics
and Automation, ICRA 2008, pp. 3926–3931 (May 2008)

9. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In-
ternational Journal of Robotics Research 5(1), 90–98 (1986)

10. Branting, L.K., Aha, D.W.: Stratified case-based reasoning: reusing hierarchical
problem solving episodes. In: IJCAI 1995: Proceedings of the 14th International
Joint Conference on Artificial Intelligence, Montreal, pp. 384–390. Morgan Kauf-
mann, San Mateo (1995)

11. Fabrizi, E., Oriolo, G., Panzieri, S., Ulivi, G.: Mobile robot localization via fusion
of ultrasonic and inertial sensor data. In: Proc. of the Sixth Midwest Artificial
Intelligence and Cognitive Science Conference, Carbondale, USA, pp. 32–36 (1995)

12. Haigh, K.Z., Veloso, M.: Route planning by analogy. In: Aamodt, A., Veloso, M.M.
(eds.) ICCBR 1995. LNCS, vol. 1010, pp. 169–180. Springer, Heidelberg (1995)

13. Kruusmaa, M.: Global navigation in dynamic environments using Case-Based Rea-
soning. Autonomous Robots 14, 71–91 (2003)

14. Likhachev, M., Arkini, R.C.: Spatio-temporal case-based reasoning for behavioral
selection. In: Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 1627–1634 (2001)

15. Santamaria, J., Ram, A.: A multistrategy case-based and reinforcement learning
approach to self-improving reactive control systems for autonomous robotic navi-
gation. Tech. Rep. (1993)

16. Minguez, J., Osuna, J., Montanor, L.: A divide and conquer strategy based on
situations to achieve reactive collision avoidance in troublesome scenarios. IEEE
Trans. on Robotics (2009)

17. Crum, R., Anthony, J., Bassett, S., Folstein, M.: Population-based norms for the
mini-mental state examination by age and educational level. Journal of the Amer-
ican Medical Association 269(18), 2386–2391 (1993)

18. Mahoney, F., Barthel, D.: Functional evaluation: the barthel index. Maryland State
Medical Journal (14), 56–61 (1965)

19. Lawton, M., Brody, E.: Assessment of older people: self-maintaining and instru-
mental activities of daily living. Gerontologist (9), 179–185 (1969)

20. Cooperstock, J., Pineau, J., Precup, D., Atrash, A., Jaulmes, R., Kaplow, R., Lin,
N., Prahacs, C., Villemure, J., Yamani, H.: Smartwheeler: A robotic wheelchair
test-bed for investigating new models of human-robot interaction. In: Proc. of the
IEEE Conference on Intell. Robots and Systems (IROS), San Diego, USA (2007)

21. Clarke, D., Yen, S., Kondraske, G.V., Khoury, G.J., Maxwelle, K.J.: Telerobotic
network workstation for system performance and operator workload monitoring.
NASA JSC, Houston, TX. Tech. Rep. 91-013R (1991)

22. Khoury, G.J., Kondraske, G.V.: Measurement and continuous monitoring of hu-
manworkload associatedwith manual control devices. NASA JSC, Houston, TX.
Tech. Rep. 91-011R (1991)

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 343–357, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Biological Solutions for Engineering Problems: A Study
in Cross-Domain Textual Case-Based Reasoning

Swaroop S. Vattam and Ashok K. Goel

Design & Intelligence Lab, School of Interactive Computing,
Georgia Institute of Technology Atlanta, GA 30332, USA

{svattam,ashok.goel}@cc.gatech.edu

Abstract. Textual Case-based Reasoning (TCBR) is a powerful paradigm with-
in CBR. Biologically inspired design – the invention of technological systems
by analogy to biological systems - presents an opportunity for exploring cross-
domain TCBR. Our in situ studies of the retrieval task in biologically inspired
design identified findability and recognizability of biology articles on the Web
relevant to a design problem as major challenges. To address these challenges,
we have developed a technique for semantic tagging of biology articles based
on Structure-Behavior-Function models of the biological systems described in
the article. We have also implemented the technique in an interactive system
called Biologue. Controlled experiments with Biologue indicate improvements
in both findability and recognizability of useful biology articles. Our work sug-
gests that task-specific but domain-general model-based tagging might be use-
ful for TCBR in support of complex reasoning tasks engaging cross-domain
analogies.

1 Introduction

Textual case-based reasoning (TCBR) entails the use of unstructured cases in the
form of textual documents (Weber, Ashley & Bruninghaus 2006). TCBR has become
especially important with the advent of the Web that provides access to a large num-
ber of textual documents containing potential cases. A major question then becomes
how do we access the right cases from the Web for a given query or problem? Thus,
research into TCBR is closely intertwined with research on information retrieval (IR)
and text mining (TM) (Rissland & Daniels 1996). According to Weber, Ashley &
Bruninghaus (2006), the major differences between TCBR and IR/TM are that the
former (1) is more explicitly interested in supporting complex reasoning, and (2) thus
uses task-specific and domain-specific knowledge to access the right case for support-
ing the reasoning. For example, Burke et al. (1997) describe a technique that uses
task-specific and domain-specific knowledge to answer FAQ questions in a specific
domain; Bruninghaus & Ashley (2001) describe a different technique that too uses
task-specific and domain-specific knowledge to access textual cases in the legal do-
main. Lenz (1998) describes knowledge layers for supporting TCBR; Raghunandan et
al. (2008) propose evaluation measures for TCBR systems.

344 S.S. Vattam and A.K. Goel

In this work, we are interested in a related but slightly different question: how
might TCBR work if the target problem and the textual cases are from different do-
mains? That is, we are interested in cross-domain TCBR. We have encountered this
problem in the context of biologically inspired design (BID) – the invention of new
technological products, processes and systems by analogy to biological systems. The
needed biological knowledge typically is found in the form of unstructured textual
documents, typically on the Web. Due to its growing importance, we posit that BID
presents a great opportunity for exploiting and exploring cross-domain TCBR.

In general, BID entails all the major tasks of CBR such as retrieval, adaptation,
evaluation and storage (Kolodner 1993). In this paper, we focus on the retrieval task.
Given a target design problem, one of the first tasks in the BID process involves find-
ing the right biological system to emulate in order to generate a design solution. De-
signers, including expert designers, typically are novices in biology and thus are
aware of only a small fraction of the vast space of biological systems. Thus, designers
typically rely on external information environments such as the Web for finding bio-
logical cases relevant to their design problems. Most biological cases on the Web are
available only in unstructured forms such as textual documents. Thus, the retrieval
task in BID takes a query in a design domain, such as engineering, as input, and has
the goal of returning as output textual documents in the domain of biology that are
relevant to the query. The retrieval task is challenging not only because of the un-
structured nature of the cases, but also because the retrieval process cannot rely on
domain-specific knowledge and conventional techniques for retrieving textual
documents lead to poor precision and recall.

Our in situ studies of the retrieval task in BID identified findability and recogniza-
bility of biology articles relevant to a design problem as major challenges (Vattam &
Goel 2011); we define findability and recognizability below. To address these chal-
lenges, we have developed a technique for semantic tagging of biology articles based
on Structure-Behavior-Function (SBF) models of the biological systems described in
the article. We have also implemented the technique in an interactive system called
Biologue. Controlled experiments with Biologue indicate improvements in both fin-
dability and recognizability of useful biology articles. In this paper, we describe the
design and evaluation of Biologue.

2 Background

The growing movement of biologically inspired design (BID) or biomimicry views
nature as a large library of sustainable designs that could be a powerful source of
technological innovation (e.g., Benyus 1997). Recent examples of BID include the
design of wind turbines inspired by the tubercles on the pectoral fins of humpback
whales, and fog harvesting devices inspired by the arrangement of hydrophilic and
hydrophobic surfaces found on the back of Namibian beetles, etc.

2.1 Related Research

Research on computational methods and tools for supporting BID can be categorized
into three broad approaches. The first approach uses digital libraries of functional

 Biological Solutions for Engineering Problems 345

models of biological systems (Chakrabarti et al. 2005). For example, the DANE system
provides access to a functionally indexed digital library of SBF models of biological
systems (http://dilab.cc.gatech.edu/dane/; Goel et al. 2012). The difficulty with this
approach is scalability: it takes expertise, time and effort to build such a library.

The second approach uses text mining techniques (Shu 2010), including syntax-
level heuristics customized to BID (Chiu & Shu 2007), and enhanced by engineering-
to-biology thesaurus (Nagle, Stone & McAdams 2010). Although more scalable than
the first approach, this technique could be subject to the usual limitations of keyword-
based search; the efficacy of this approach is still being explored.

The third approach uses semantic indexing for accessing biological information.
For example, Biomimicry 3.8 Institute’s AskNature (Biomimicry 2008) is a popular
Web portal that provides access to a functionally indexed digital library of biology
articles. Our work on TCBR in BID presented here takes a similar approach. We posit
that our approach is more human-centered, emphasizing (1) first gaining a deep un-
derstanding of TCBR in BID as it naturally occurs in the real world, (2) grounding
our system design in that understanding, and (3) rigorously evaluating our claims
using controlled experiments.

This work both builds on and differs from our previous work on case-based design.
In earlier work, we grounded the process of case-based design in SBF models of
physical systems (Goel, Bhatta, Stroulia 1997), exploited TCBR for understanding
design problems stated in natural language (Peterson, Mahesh & Goel 1994), and
explored TCBR for acquiring SBF models of everyday devices from textual docu-
ments. In more recent work, we have formalized SBF models (Goel, Rugaber & Vat-
tam 2009), conducted in situ studies of BID (Vattam, Helms & Goel 2008; Vattam &
Goel 2011), and developed digital libraries of SBF models of biological systems in
support of BID (Goel et al. 2012). In this paper we describe the design and evaluation
of Biologue, our interactive system for addressing the findability and recognizability
challenges of cross-domain TCBR in the retrieval task of BID.

3 Human-Centered TCBR in the Context of BID

We conducted our in situ studies of BID in the context of ME/ISyE/MSE/PTFe/BIOL
4740, a senior-level, interdisciplinary, project-based course at Georgia Tech. Yen et
al. (2011) describe this course in detail. The two studies described below were con-
ducted in Fall 2006 and Fall 2008 sections of the class, respectively. In these studies
we observed a total of ten interdisciplinary teams of designers engaged in open-ended,
semester-long BID projects that led to novel conceptual designs of technological sys-
tems such as the design of a new levee for New Orleans inspired in part by Iron Snail.
While details of the studies can be found in other sources (Vattam 2012), here we
summarize our findings related to TCBR in BID.

3.1 Characteristics

CBR in BID can be characterized as follows:
• Cross-domain analogies: The design problem originates in a design domain such as
engineering but the cases for addressing the problem are in the domain of biology.

346 S.S. Vattam and A.K. Goel

• Compound analogies: A single design solution may often require multiple biological
source cases (Vattam, Helms & Goel 2008).
• Textual cases: Cases that are retrieved and used by the human designers mostly are
found in the form of textual biological articles.
• Cases distributed across multiple online environments: Designers use a range of
online information environments to seek biological cases, including (1) digital libra-
ries like Web of Science, Google Scholar, ScienceDirect, etc., (2) online encyclopedia
like Wikipedia, (3) popular life sciences blog sites like Biology Blog, (4) biomimicry
portals like AskNature, and (5) general web search engines like Google.
• Human-in-the-loop retrieval process: In our observations, the designers used search
results from a design query to formulate new queries for online search in an iterative
process of formulating queries, searching online, finding biology articles, reading the
articles, formulating new queries and so on. We call this process interactive analogi-
cal retrieval (Vattam 2012).

3.2 Challenges

We found that designers faced three major challenges in accessing biology articles on
the Web relevant to their design problems (Vattam & Goel 2011): findability, recog-
nizability and understandability. These difficulties were encountered irrespective of
the specific type of information environment used and made the retrieval process
quite inefficient.

Findability: designers often went for long periods without finding a single relevant
biological case in a retrieval process that typically extended over several weeks and
often was tedious and frustrating for the designers. Thus, the relative frequency of
encountering relevant articles containing biological cases was very low, suggesting
that the match between the retrieval task and the information environment was not
very good. A rough calculation suggests that designers spent approximately three
person-hours of search time on the Web in order to find a single relevant article.

Recognizability: designers were prone to making errors of judgment about the true
utility of articles that they encountered in the search process. In almost all online envi-
ronments, search queries brought back a ranked list of search results (a set of articles).
One important aspect of the search process was assessing and selecting promising
articles from this list for further consumption. But, this decision had to be made based
on proximal cues – hyperlink titles and snippets of text that are intended to represent
the distal documents. In many instances, designers picked up on low-utility articles,
only to realize later that it was not actually very useful (false positives). False posi-
tives lead to wasted time and effort (resource cost). Conversely, consider situations
where designers might dismiss an article they encounter during the search as having
low utility even though it might have contained a potential biological source (false
negatives). False negatives represent lost opportunities.

Understandability: Since designers typically are novices in biology, they often have
difficulty understanding the biological systems described in the textual documents they
retrieve from the Web. While this challenge is covered in detail in other sources
(Vattam 2012), here we focus on addressing the findability and recognizability
challenges.

 Biological Solutions for Engineering Problems 347

4 Addressing the Challenges of TCBR

Let us consider the issue of findability. According to the ACME theory of analogy
(Holyoak & Thagard 1989), in order to retrieve source cases analogous to a target
problem, the retrieval mechanism should simultaneously satisfy three constraints:
semantic similarity (the overlap in terms of the number of similar concepts between
the target and potential sources), structural similarity (the overlap in terms of the
higher-order relationships between the target and potential sources), and pragmatic
similarity (the overlap in terms of the pragmatic constraints or goals surrounding the
target and potential sources). It is these three constraints acting simultaneously that
distinguish analogical retrieval from other kinds of information retrieval mechanisms.

However, keyword-based search mechanisms found in common current online in-
formation environments support access to cases based on literal similarity (word-for-
word matching), or at most semantic similarity to a limited degree, while ignoring
structural and pragmatic similarity. As a result, each attempt at access can contain a
large number of spurious articles that contain systems that are superficially similar to
the target design as opposed to analogically similar. This results in low precision and
recall.

Alternate methods of indexing and accessing biological articles in online environ-
ments may help address this challenge. Literature on case-based reasoning suggests
guidelines for the alternate method (Kolodner 1993). (1) Indexing at storage time
should anticipate the vocabulary the reasoner might use at retrieval time. (2) Indexing
should use concepts and relations described at a level of abstraction that is justified
from the perspective of the reasoning task.

In our in situ studies we found that designers’ vocabulary used concepts and rela-
tions like functions, structures, physical principles, and operating environments. This
vocabulary significantly overlaps with the vocabulary of Structure-Behavior-Function
(SBF) models (Goel, Rugaber & Vattam 2009). Briefly, SBF models are a family of
conceptual functional models. In SBF models, Structure pertains to components of a
system; Behaviors describe causal processes or mechanisms in the system; and Func-
tions specify outcomes of the system. In past work, SBF models have proved to be
useful for design (Goel et al. 2012), understanding (Helms, Vattam & Goel 2010;
Vattam, et al. 2011) as well as TCBR (Goel et al. 1996; Peterson, Mahesh & Goel
1994). Therefore, we posit that semantically indexing and accessing biology articles
using concepts and relations derived form SBF ontology may better address the issue
of findability in BID.

Now consider the second issue of recognizability. Information foraging theory
(Pirolli 2007), which explains human information-seeking behavior in online informa-
tion environments, claims that navigation towards useful information is guided by
perception of information scent based on the proximal cues available in these envi-
ronments. The issue of recognition errors in BID is attributable to the affordances - or
lack thereof - of the proximal cues for accurately perceiving the information scent of
the biology articles in the information environments.

One way to address this problem is by enhancing the proximal cues with additional
information to help designers perceive the analogical similarity between the target

348 S.S. Vattam and A.K. Goel

design problem and the contents of the biological cases in the textual documents. We
posit that enhancing the proximal cues of the distal articles by including visual over-
views derived from the SBF models of the biological cases described in the articles
may lower the rate of recognition errors.

5 Biologue

Biologue is an interactive information system that embodies the two main claims
discussed in the previous section for addressing the challenges of the retrieval task in
BID. Biologue represents a social approach to establishing an online corpus of biolo-
gy articles annotated by their corresponding SBF models. It is based on the principle
of social bookmarking (Sen et al. 2006) and is aimed to promote the sharing of
biology articles in the BID community.

As one posts a reference to an article in Biologue, one can also manually add tags
for annotating and organizing that reference. However, instead of keyword-based
tags, the semantic tags in Biologue are linked to the ontology and schema of SBF
models. As more and more people tag a particular reference, partially-structured SBF
models of biological systems emerge in a socially-distributed fashion and get asso-
ciated with that article. As Figure 1 illustrates, Biologue leverages these models to:
(1) index an article and provided access to it based on the SBF schema and ontology,
(2) offer visual overviews of the SBF models of biological cases described in the
article.

As a use-case scenario, consider a situation where a designer, in the course of her
day-to-day work, comes across a relevant online article on rat intestine and how that
organ passively transports water across an osmotic gradient. The designer uses Biolo-
gue to: (1) bookmark this article in her personal library, (2) enter the article’s biblio-
graphic information, (3) tag the article with Function:Transport(Water), where
Transport Is-A Function in SBF ontology, and (4) share this tagged article with a
teammate. The teammate reads the article and understands that the intestine achieves
this function using the three-chamber mechanism, which uses a combination of for-
ward- and reverse-osmosis principles. The teammate then adds a new tag to this ar-
ticle, Behavior:Three-Chamber-Method, and links it to the Func-

tion:Transport(Water) tag, where Behavior Is-A-Part-Of Function in SBF
ontology. The teammate further adds two mores tags Principle:Osmosis and
Principle:Reverse-Osmosis and links them to the Behavior:Three-

Chamber-Method tag, where Principle Is-A-Part-Of Behavior in SBF ontology.
Assuming that this article is read, tagged and retagged by many people, a conceptual
model of how the rat intestine works emerges through negotiation and gets associated
with this article.

Biologue implements an auto-complete feature to encourage tag reuse and minim-
ize proliferation of user-generated tags, and a simple drag-and-drop interface for
linking one tag to another and for linking tags to parts of the document.

Now, consider a use-ca
lated to the first set who ta
efficient, seawater desalina
to search the collection of a
gue currently allows users
ontology, including Functio

Fig. 1. Search results in Biolo
tagging the article

Let us assume that this d
“remove salt from water” a
match across Principle, Bio
rat intestine article tagged b
article in the result set, sh
would expect, but also the
Figure 1. Studying this mo
signer’s perspective, which
the target desalination tech
whether it is worth pursuing
tual schema that she can ref
ing of the article. Upon read
in detail, she may choose t
develops a novel desalin
combination of forward- an

Biological Solutions for Engineering Problems

se scenario where some other designer, completely un
gged the article, is trying to design a bio-inspired, ener

ation technique. This user logs into Biologue and proce
articles in Biologue for a relevant biological source. Bio
to search for articles based on features derived from S

on, Principle, Structure, and Operating environment.

gue; a selected article, and the visual overview of the SBF mo

designer chooses to search the collection based on Funct
and the Principle “reverse osmosis”. Because of the par
ologue returns a non-ranked set of articles that includes
by the first set of users. When this designer clicks on

he can not only view the traditional information that
e SBF model associated with the article as illustrated
del gives her a gist of how the rat ileum works from a
h also helps her make the analogical connection betw
hnology and the rat ileum system and allows her to dec
g the article. The model also gives her a high-level conc
fer back and forth to guide her development of understa
ding the article and understanding how the rat ileum wo
to use this biological system as a source of inspiration
nation technique that removes salt from water by
nd reverse-osmosis.

349

nre-
rgy-
eeds
olo-
SBF

odel

tion
rtial
the
this
one

d in
de-

ween
cide
cep-
and-
orks
and
y a

350 S.S. Vattam and A.K. Goel

6 Findability Study

Hypothesis: In the context of BID, indexing and accessing biological articles using
concepts and relations derived from their corresponding SBF models will lead to
higher rate of findability when compared to keyword-based indexing and retrieval.

Procedure: This was a between-subject study conducted in Spring 2011. Sixteen
subjects were recruited to participate in this study. A preselected BID challenge was
presented to all subjects. The goal was to use Biologue to find as many articles rele-
vant to the challenge as possible (and provide a rationale for their choice) within a
stipulated amount of time. Eight subjects comprising the control group were given a
version of Biologue where the articles were indexed and accessed using the conven-
tional keyword-based approach. The other eight subjects in the experimental condi-
tion were given a version of Biologue where the articles were indexed and accessed
using features derived from SBF representation. The performance of the participants
on the search task was compared across the two groups.

Materials: The BID challenge involved a technology for solar thermal collectors, and
included the design of (1) a bio-inspired reflective panel that could be fitted onto an
existing absorber and was capable of dynamically changing its reflectivity, and (2) a
bio-inspired feedback control system that regulates the temperature of glycol by regu-
lating the reflexivity of the panel. This design challenge was an authentic problem
attempted by a design team in one of the previous offerings of the BID course at
Georgia Tech (Yen et al. 2011).

Two versions of Biologue were created for this study. In one version, the articles in
Biologue’s repository were indexed by keywords. Consequently, the articles were
accessible only through keyword search. The search panel consisted of a single text
box similar to Google and a search and a clear button. In the second version, the ar-
ticles in Biologue’s repository were indexed by concepts and relationships that were
part of the SBF models associated with those articles. Biologue’s repository had more
than 200 articles in it. Fourteen designated articles that were known to be relevant to
the target design challenge were included in the repository. If a participant’s informa-
tion seeking was efficient and accurate, then nearly all these 14 articles would be
found and reported by the participant.

Data: Three kinds of data were collected for this study. First, the video of each partic-
ipant’s entire search process was captured using screen-capture software. This pro-
vided the bulk of the data to understand and analyze the retrieval process of the partic-
ipants. Second, every article found by the participant in the course of their search was
collected, along with his or her stated rationale for selecting that article. Third, partic-
ipant demographic data was also collected.

Analysis: First, the participants in the two groups were compared to establish the
equivalency of the two treatment groups. There was no statistically significant differ-
ence between the two groups with respect to participants’ gender, their biology

 Biological Solutions for Engineering Problems 351

background, extent of design experience, extent of interdisciplinary research expe-
rience, or extent of use of scholarly articles in their work practices.

Second, the found-article data was analyzed to determine: (1) the total number of
articles found by a participant, (2) the number of designated articles within that total
number. The rationale provided by the participant for selecting an article was also
analyzed to ensure that participants were meaningfully undertaking the task.

Third, the video data obtained for each participant was coded using a coding
scheme. The origin of the coding scheme lies in information foraging studies con-
ducted by researchers in the human-information interaction community (Pirolli,
2007). Their coding scheme coded and visualized the behavior of a person engaged in
online information activity in the form of web behavior graphs. From these web-
behavior graphs, collecting interesting statistics about the information seeking beha-
vior in our experiments becomes possible. Two coders independently coded the
videos (inter-coder reliability was 87.93%; in those cases where there was no consen-
sus, the coding of the experienced researcher was included).

From the coded video data we were able to derive four retrieval performance cha-
racteristics for each participant: (1) find period (minutes per article found), (2) mean
between-patch foraging time (minutes spent searching and navigating), (3) mean
number of regions foraged (number of hops from one search page to another), and (4)
mean information yield per region (ratio of actually relevant articles in an information
region to all the articles encountered in that region). These four dependent variables,
related to the findability issue, indicate the efficiency with which participants were
able to search and retrieve the articles that they found.

Results: In the experimental condition, we expected that find period would be lower,
that between-patch foraging time would be lower, that number of regions foraged
would be smaller, and that information yield would be larger. Table 1 shows the
actual results that confirm our predictions.

Table 1. Participant performance on the findability task

Treatment Find period
(avg)

Between-patch
foraging
(avg-mean)

Num. of re-
gions foraged
(avg-mean)

Yield per region
(avg-mean)

Control 11.48 mins 11.68 mins 4.3 0.07
Experimental 5.85 mins 2.96 mins 2.45 0.212

The data collected in this study was submitted to a statistical significance test. An a

priori power analysis suggested a sample size of 27 (power=0.7, d=0.5, α=0.05) for
utilizing the t-test. Since our sample size of 16 was less than the recommended num-
ber, the data could not be subjected to the t-test. Therefore a non-parametric version
of the t-test, known as Mann-Whitney U test was used.

There was no statistically significant difference between the two groups with re-
spect to the number of articles found. The median total articles found in the control
and experimental groups were 9 and 7.5 respectively; the distributions in the two
groups did not differ significantly (Mann-Whitney U = 23.5, n1 = n2 = 8, P = 0.369
two tailed). Similarly, the median total designated articles found in the control and

352 S.S. Vattam and A.K. Goel

experimental groups were 3 and 3.5 respectively; the distributions in the two groups
did not differ significantly (Mann-Whitney U = 27, n1 = n2 = 8, P = 0.595 two tailed).

Although the number of articles found by the two groups was comparable, there
was a statistically significant difference between the two groups with respect to the
cost incurred to find those articles.

In experimental condition, the average find period was 52% less as compared to
the control condition and the difference was statistically significant (median1 = 92.5,
median2 = 39, Mann-Whitney U = 1.5, n1 = n2 = 8, P = 0.001 two tailed). In the ex-
perimental condition, the average mean between-patch foraging time was 74.63% less
compared to the control condition and the difference was statistically significant (me-
dian= 587, median2 = 157, Mann-Whitney U = 2, n1 = n2 = 8, P = 0.002 two tailed).
In the experimental condition, the average mean number of information regions fo-
raged was 43% less compared to the control group and the difference was statistically
significant (median1 = 3.1, median2 = 1.8, Mann-Whitney U = 16, n1 = n2 = 8, P =
0.093 two tailed). Finally, in the experimental condition, the average mean informa-
tion yield per region was 67% more compared to the control group and the difference
was statistically significant (median1 = 0.063, median2 = 0.221, Mann-Whitney U =
5, n1 = n2 = 8, P = 0.005 two tailed).

Discussion: The above results suggest that both the treatment groups were similar
with respect to the quantity and quality of articles that they found during this task.
But, the experimental group took significantly less time and effort compared to the
control group. In other words, for a similar output, the cost of retrieval in the experi-
mental group was significantly lower. The differences between the two groups with
respect to the four measurements taken together indicate that participants in the expe-
rimental condition more frequently encountered relevant biology articles when com-
pared to the control condition. This implies that SBF-based indexing and access to
biology articles has greater affordance for dealing with the findability issues, thus
validating our proposed hypothesis.

7 Recognizability Study

Hypothesis: In the context of BID, enhancing proximal cues to include visual over-
views derived from corresponding SBF models will lead to lower rate of recognition
errors when compared to traditional proximal cues that do not include such
overviews.

Procedure: This too was a between-subject study conducted in Spring 2011. The
same sixteen subjects from Study 1 also participated in this study, but a sufficient
time gap was provided between the two studies. A second preselected BID challenge
was presented to all subjects. Biologue was used to then present a set of eight biology
articles’ proximal cues to the participants. The goal was to judge the relevancy of
each of the eight biology articles for the given design challenge. The relevancy was
reported on a five-point scale; the subjects were also asked to provide a rationale for
their ratings. The articles were chosen such that four of them were relevant to the
given design challenge and the other four were not relevant.

 Biological Solutions for Engineering Problems 353

It is important to note that rather than entire articles, Biologue presented them with
just proximal cues associated with articles. Eight subjects in the control group were
given a version of Biologue that presented conventional proximal cues (containing
information like the title, publication information, and an abstract of the article). The
other eights subjects in the experimental condition were given a version of Biologue
that presented them proximal cues which were additionally enriched with visual over-
views derived from the articles’ associated SBF models. All subjects were given a
stipulated amount of time to complete the task. Because the researchers knew before-
hand which four articles were relevant and which four were not relevant, we were
able to calculate the extent of correct and incorrect classifications for each participant.
We compared the classification accuracy of the participants across the two groups.

Materials: The BID challenge given to the participants in this study involved the
design of a bio-inspired desalination technique such that: (1) the salinity of output
fresh water should be fit for human consumption (specifically drinking), and (2) the
energy footprint of the new technique must be less than the existing industry-standard
techniques. This design challenge was subject to the following simplifying assump-
tions: (1) the feed water is already filtered and pre-treated to remove all other un-
wanted contents, leaving designers to deal with only pure saline water, and (2) the
design will not actively control for other parameters like pH and alkalinity, free resi-
dual chlorine, boron, etc. The subjects were also given information about two existing
industry-standard techniques for doing desalination, namely flash distillation method
and reverse osmosis method. Some of the energy-related problems associated with the
industry-standard techniques were also presented. To sum up, the subjects were given
enough information so that a novice could be brought up to speed on the problem and
had a rich enough mental model of the problem to be able to read an article and make
a determination about its relevancy. They were also tested on their knowledge about
this problem before they proceeded to perform the rating task. Again, this was an
authentic problem addressed by one of the design teams (Team FORO) in the BID
course at Georgia Tech in Fall 2008.

A total of eight biology articles were chosen for this task. These articles were se-
lected from a pool of articles that Team FORO had researched in Fall 2008. Four of
those articles were noted by the team as being relevant to solving the problem, and
four as being irrelevant and leading to dead ends.

Biologue’s repository for the purposes of this study consisted of only those eight
articles. Biolgue for this study was instrumented such that as soon as a participant
launched it, she would be instantly presented with a list of these eight articles (prox-
imal cues only). This was meant to simulate a snapshot in the information seeking
process where the seeker has just entered an information region and then needs to
prioritize the order in which these articles would be visited based on the perceived
relevance of each article to the target problem.

Two versions of Biologue were created for this study. In the control condition ver-
sion, participants saw the traditional version of proximal cues, consisting of articles’
title, abstract, and publication information. In the second experimental condition

354 S.S. Vattam and A.K. Goel

version, participants saw the SBF-augmented version of the proximal cues consisting
of visual model overviews in addition to the other elements.

To minimize research bias, the primary researchers recruited another researcher to
build the SBF models of biological systems discussed in the eight articles. This model
builder had not encountered the desalination problem and was not aware of the pur-
pose to which the SBF models would be put to use. Therefore, he could not introduce
bias by tailoring the SBF models to match the desalination problem. These SBF mod-
els were then entered into Biolgoue and made available as part of the cues in one of
the treatment groups.

All participants were required to rate the eight articles on a scale of 1 to 5. This
was achieved by asking the participants to take an online survey when they were
ready to rate the articles. The survey contained eight questions, one for each article
they were required to rate. The rating was couched as a recommendation question:
what would be their recommendation for the article to a team doing the desalination
project on a scale of 1 to 5, where 1 represented “completely irrelevant (skip reading
the article altogether)” and 5 represented “absolutely relevant (mimic the biological
system in the paper and you will have solved the problem).” The middle value 3
represented “may be relevant, may not be relevant, can’t say which.”

Data: Participant demographic data was one of the data points used for this study. But
the primary data for this study came from the online survey, which contained
participants’ article classification data, including the rationale for their classification.

Analysis: Although the participants were the same in the two studies, their distribu-
tion across the treatment groups was different. Therefore, a group equivalency test
had to be performed in this study as well. We found no statistically significant differ-
ence between the two groups with respect to participants’ gender, biology back-
ground, design experience, interdisciplinary research experience, and the use of
scholarly articles in their everyday work practices.

Participant classification data, which was on a 5-point scale, was converted into a
3-point scale. A value of 1 or 2 was classified as “irrelevant,” a value of 4 or 5 was
classified as “relevant,” and a value of 3 was classified as “unclassified.” For each
participant and for each article, the participant classification was compared against the
actual classification of the article. Based on this comparison, a determination was
made as to whether it the classification was correct, false positive, false negative, or
null (no classification).

Table 2. Participant performance data on the recognizability task

Treatment Correct classification False
+ve

False
-ve

Undecided

Control avg 3.75 1.88 0.88 1.50

stdev 1.04 0.83 0.64 0.93
Experimental avg 5.50 0.38 0.88 1.25

stdev 1.31 0.52 0.64 1.16

 Biological Solutions for Engineering Problems 355

Results: Table 2 summarizes the data from this study. Again, the data collected in
this study was submitted to Mann-Whitney U test. This data shows that in the experi-
mental condition, the average recognition error was 41.18% less compared to the
control condition and the difference was statistically significant (median1 = 4,
median2 = 2.5, Mann-Whitney U = 9, n1 = n2 = 8, P = 0.015 two tailed).

In the experimental condition, the average false positives was 79% fewer when
compared to the control condition and the difference was statistically significant (me-
dian1 = 2, median2 = 0, Mann-Whitney U = 4.5, n1 = n2 = 8, P = 0.003 two tailed).
But, in the experimental condition, there was 0% difference in false negatives. Final-
ly, in the experimental condition, there was 16.67% fewer undecided classifications,
but the differences was not statistically significant median1 = 1.5, median2 = 1.5,
Mann-Whitney U = 28, n1 = n2 = 8, P = 0.66 two tailed).

Discussion: The above results shows that in the context of this study, the group that
worked with redesigned proximal cues containing SBF information did significantly
better in terms of number of false positives. This difference in false positives heavily
contributed towards the difference observed in the total error rate between the two
groups. It is not clear why there was no change in the number of false negatives or
undecided classifications. More fine-grained studies are required to determine the
affordance of proximal cues vis-à-vis the different kinds of recognition errors.

8 Conclusions

We know from past work that TCBR is a powerful paradigm within CBR especially
with the advent of the Web (e.g., Bruninghaus & Ashley 2001; Burke et al., 1997;
Lenz 1998; Rissland & Daniels 1996; Raghunandan et al. 2008; Weber, Ashley &
Bruninghaus 2006). However, on one hand complex reasoning tasks such as BID
require access to cross-domain analogies, and, on the other, conventional search en-
gines on the Web do not support easy access of cross-domain analogies. This gap
between the demand and lack of supply for cases creates both a challenge and an op-
portunity for TCBR: how to accomplish cross-domain TCBR?

Our in situ studies of the retrieval task in BID identified findability and recogniza-
bility as two of the main challenges for cross-domain TCBR. There are potentially
several approaches that one can use to mitigate the identified challenges, including
engineering a structured case-base of biological and engineering systems using a do-
main-general knowledge representation language, semantically tagging documents in
a socially-distributed fashion, using natural language processing to automatically
extract the semantic tags from textual documents, using machine learning to learn
semantic tags for the biology articles. While in this work we have chosen to use the
social semantic approach, in other threads we exploring alternative approaches.

We have developed a technique for model-based semantic tagging of biology ar-
ticles based on SBF ontology of systems because SBF models have proved to be use-
ful for design, understanding as well as TCBR. We have also implemented, fielded
and evaluated the technique in an interactive system called Biologue. From the point
of view of TCBR, this is a new approach not only because of the cross-domain nature
of the cases, but also because of the social dimension of semantic tagging of the cases
that is part of the solution. From the point of view of BID, Biologue represents a new

356 S.S. Vattam and A.K. Goel

class of technological aids; earlier technologies relied on fully structured knowledge-
bases that typically entailed a high cost of knowledge engineering, or employed most-
ly-syntactic bottom-up natural language processing techniques that often are prone to
poor precision and recall.

Our controlled experiments with Biologue indicate that when users do indeed
adopt the social semantic approach, the improvements in retrieving cross-domain
textual cases are significant. In particular, improvements were noticed with respect to
both findability and recognizability issues. In our other work (Helms, Vattam & Goel
2010), we have found that SBF annotations also help design teams better understand
biological systems.

Technological aids such as Biologue however raise the issue of reducing the
chances of serendipitous encounter with fringe information that can sometimes lead to
creative design solutions. The additional focus brought in by semantic search can
inadvertently have the result that designers do not spend as much time browsing
through articles and accidentally finding information that might be useful. Therefore,
in practice, a more directed search feature in such a tool should be accompanied by
other features that allow users to browse articles using a different set of criteria so that
serendipity too is supported.

We know from past work that TCBR uses task-specific and domain dependent
knowledge to retrieve and reuse textual cases for complex reasoning tasks (Weber,
Ashley & Bruninghaus 2006). Our work indicates that task-specific but domain-
general knowledge might be useful for TCBR in support of complex reasoning tasks
engaging cross-domain analogies.

Acknowledgements. We are grateful to our research partners Michael Helms and
Bryan Wiltgen for many discussions about biologically inspired design. We thank
Professor Jeannette Yen, the coordinator of the ME/ISyE/MSE/PTFe/BIOL 4740
class that acts as a teaching and research laboratory for us. We are grateful to the US
National Science Foundation that has generously supported this research through an
NSF CreativeIT Grant (#0855916) entitled “Computational Tools for Enhancing
Creativity in Biologically Inspired Engineering Design.”

References

1. Benyus, J.: Biomimicry: Innovation Inspired by Nature. William Morrow (1997)
2. Biomimicry Institute (2008), Ask Nature – The Biomimicry Design Portal,

http://www.asknature.org/
3. Burke, R., Hammond, K., Kulyukin, V., Lytinen, S., Tomuro, N., Schoenberg, S.: Ques-

tion answering from frequently-asked questions files: experiences with the FAQ Finder
system. AI Magazine 18(1), 57–66 (1997)

4. Brüninghaus, S., Ashley, K.: The role of information extraction for textual CBR. In: Aha,
D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 74–89. Springer, Hei-
delberg (2001)

5. Chakrabarti, A., Sarkar, P., Leelavathamma, B., Nataraju, B.: A functional representation
for aiding biomimetic and artificial inspiration of new ideas. AIEDAM 19, 113–132
(2005)

 Biological Solutions for Engineering Problems 357

6. Chiu, I., Shu, L.: Biomimetic design through natural language analysis to facilitate cross-
domain analysis. AIEDAM 21, 45–59 (2007)

7. Goel, A., Bhatta, S., Stroulia, E.: Kritik: An Early Case-Based Design System. In: Maher,
Pu (eds.) Issues and Applications of Case-Based Reasoning in Design, pp. 87–132 (1997)

8. Goel, A., Mahesh, K., Peterson, J., Eiselt, K.: Unification of Language Understanding,
Device Comprehension and Knowledge Acquisition. In: Proc. Cognitive Science Meeting
1996 (1996)

9. Goel, A., Rugaber, S., Vattam, S.: Structure, Behavior & Function of Complex Systems:
The SBF Modeling Language. AIEDAM 23, 23–35 (2009)

10. Goel, A., Vattam, S., Wiltgen, B., Helms, M.: Cognitive, collaborative, conceptual and
creative - Four characteristics of the next generation of knowledge-based CAD systems: A
study in biologically inspired design. Computer-Aided Design 44(10), 879–900 (2012)

11. Helms, M., Vattam, S., Goel, A.: The Effects of Functional Modeling on Understanding
Complex Biological Systems. In: Proc. 2010 ASME IDETC/CIE, Montreal, Canada (2010)

12. Holyoak, K., Thagard, P.: Analogical Retrieval by Constraint Satisfaction. Cognitive
Science 13(3), 295–355 (1989)

13. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers, San Mateo (1993)
14. Lenz, M.: Defining knowledge layers for textual case-based reasoning. In: Smyth, B.,

Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 298–309. Springer,
Heidelberg (1998)

15. Nagel, J., Stone, R., McAdams, D.: An engineering-to-biology thesaurus for engineering
design. In: Proc. ASME 2010 IDETC/CIE, Montreal, Canada (2010)

16. Peterson, J., Mahesh, K., Goel, A.: Situating Natural Language Understanding in Expe-
rience-Based Design. IJHCS 41, 881–913 (1994)

17. Pirolli, P.: Information foraging theory: Adaptive interaction with information. Oxford
University Press, Oxford (2007)

18. Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.: Evaluation
Measures for TCBR Systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A.
(eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 444–458. Springer, Heidelberg (2008)

19. Rissland, E., Daniels, J.: Using CBR to Drive IR. In: Procs. International Joint Conference
on Artificial Intelligence, vol. 14, pp. 400–407 (1995)

20. Sen, S., Lam, S., Rashid, A., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F., Riedl,
J.: Tagging, communities, vocabulary, evolution. In: Procs. CSCW 2006, Banff, Canada,
pp. 181–190 (2006)

21. Shu, L.H.: A natural-language approach to biomimetic design. AIEDAM 24(4), 483–505
(2010)

22. Vattam, S.: Interactive Analogical Retrieval: Practice, Theory and Technology, Doctoral
Dissertation, Georgia Institute of Technology (2012)

23. Vattam, S., Goel, A.: Foraging for inspiration: Understanding and supporting the informa-
tion seeking practices of biologically inspired designers. In: Proc. ASME DETC Confe-
rence on Design Theory and Methods, Washington, DC (August 2011)

24. Vattam, S., Helms, M., Goel, A.: Compound Analogical Design: Interaction Between
Problem Decomposition and Analogical Transfer in Biologically Inspired Design. In: Proc.
DCC 2008, Atlanta, pp. 377–396. Springer (June 2008)

25. Weber, R., Ashley, K., Bruninghaus, S.: Textual Case-Based Reasoning. Knowledge En-
gineering Review 20(3), 255–260 (2006)

26. Yen, J., Weissburg, M., Helms, M., Goel, A.: Biologically Inspired Design: ATool for In-
terdisciplinary Education. In: Bar-Cohen, Y. (ed.) Biomimetics: Nature-Based Innovation.
Taylor & Francis (2011)

Similarity Measures to Compare Episodes

in Modeled Traces

Raafat Zarka1,2, Amélie Cordier1,3, Elöd Egyed-Zsigmond1,2,
Luc Lamontagne4, and Alain Mille1,3

1 Université de Lyon, CNRS
2 INSA-Lyon, LIRIS, UMR5205, F-69621, France

3 Université Lyon 1, LIRIS, UMR5205, F-69622, France
4 Department of Computer Science and Software Engineering,

Université Laval, Québec, Canada, G1K 7P4
{raafat.zarka,amelie.cordier,elod.egyed-zsigmond,

alain.mille}@liris.cnrs.fr, luc.lamontagne@ift.ulaval.ca

Abstract. This paper reports on a similarity measure to compare
episodes in modeled traces. A modeled trace is a structured record of
observations captured from users’ interactions with a computer system.
An episode is a sub-part of the modeled trace, describing a particular
task performed by the user. Our method relies on the definition of a
similarity measure for comparing elements of episodes, combined with
the implementation of the Smith-Waterman Algorithm for comparison
of episodes. This algorithm is both accurate in terms of temporal se-
quencing and tolerant to noise generally found in the traces that we deal
with. Our evaluations show that our approach offers quite satisfactory
comparison quality and response time. We illustrate its use in the context
of an application for video sequences recommendation.

Keywords: Similarity Measures, Modeled Traces, Recommendations,
Edit Distance, Human Computer Interaction.

1 Introduction

Recently, there has been a growing interest in the analysis of user activity on the
web. Indeed, from the observation of human activity, one can learn a lot about
behaviors of users and use these findings for improving the quality of services.

As part of a collaboration with the company Webcastor 1, we are working on a
web application called Wanaclip2. This application allows users to compose video
clips from different audio-visual sources.Wanaclip has a built-in recommendation
system that guides users in both the selection of videos, and the actions to
perform in order to make a nice clip. The recommendation engine is fed by
interaction traces left by previous users of the application.

1 www.webcastor.fr
2 www.wanaclip.eu

S.J. Delany and S. Ontañón (Eds.): ICCBR 2013, LNAI 7969, pp. 358–372, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Similarity Measures to Compare Episodes in Modeled Traces 359

To build recommendations, we use a classic Case-Based Reasoning cycle. First,
the system identifies the current situation of the user (the target problem). Then,
it searches for similar situations in memory (source cases). Once the source cases
are retrieved, the system adapts them to fit the current situation, e.g. to make
recommendations relevant and appropriate to the current context of the user.
The whole process is itself traced. As a consequence, the experience base of the
system is incrementally enriched as the system is used. We are aware that the
size of the trace base will rise scalability problems. We plan to implement trace
”forgetting” methods, but these are out of scope for this paper.

In the following, we call the source cases episodes. An episode is a sub-
sequence of modeled traces which structure is often complicated. A modeled
trace is a structured record of observed elements, denoted obsels, captured
from users’ interactions with a computer system. Therefore, when computing
similarity between episodes, we have to face new challenges that are not ad-
dressed by well-known CBR similarity measures. We have to take into account
the fact that episodes are sequences of elements, but more importantly, we have
to compare obsels which are complex objects. A formalization of the modeled
traces will be fully explained in Section 3.

In this paper, we focus on the problem of assessing the similarity between
two episodes identified in a modeled trace. For this, we defined a new similarity
measure that is based on two main components: a similarity measure used to
compare obsels having rich structures, and an algorithm combines the obsel
similarity to compare episodes. The algorithm we propose is an adaptation of
the Smith-Waterman Algorithm [1]. We implemented our proposal as a web
service of T Store, a Trace-Based Management System that handles the storage,
processing and exploitation of traces [2]. We applied the proposal to Wanaclip
in order to provide users with contextual recommendations.

The rest of the paper is organized as follows. Section 2 describes related work
in the field of similarity measures for sequential data. Section 3 recalls definitions
of M-Traces and the M-Trace Model. Similarity Measures between obsels are
presented in Section 4. In Section 5, we describe the similarity algorithm between
the episodes ofM-Traces. We report our experiments and performance study in
Section 6, and conclude our work in Section 7.

2 Similarity Measures for Sequential Data

There exist several approaches for comparing strings and defining similarity mea-
sures over sequential data. A detailed comparison between three major classes of
such similarity measures (i.e. edit distance, bag-of-word models and string ker-
nals) has been studied in [3]. In this section, we present some similarity measures
methods and their usages in different domains.

2.1 Methods for Defining Similarity Measures

String distances of Hamming [4] and Levenshtein [5] are among the first ap-
proaches. They are originated from the domain of telecommunication for

360 R. Zarka et al.

detection of erroneous data transmissions. These approaches enable calculating
the minimum edit distance between two strings which is the minimum number
of editing operations (insertion, deletion and substitution) needed to transform
one sequence into another. Needleman-Wunsch [6] is a global alignment method
which attempts to align every residue in every sequence. Smith-Waterman Algo-
rithm [1] is a local alignment method which is more useful for dissimilar sequences
that are suspected to contain regions of similarity within their larger sequence
context.

A different approach to sequence comparison is the vector space (or bag-
of-words) model which originates from information retrieval and implements
comparison of strings by embedding sequential data in a vector space [7]. This
concept was extended to n-grams for approximate matching [8]. An n-gram is a
contiguous sequence of n items from a given sequence of text. The vector space
approach has been widely used for analysis of textual documents.

Kernel-based learning is a recent class of similarity measures derived from
generative probability models. Various kernels have been developed for sequential
data, starting from the original ideas of [9] and extending to domain-specific
variants, such as string kernels designed for natural language processing [10] and
bio-informatics [11].

2.2 Similarity Measures in the Case-Based Reasoning Field

Similarity measures applying on complex sequences are also developed in the
CBR field. The Episode-Based Reasoning framework [12] provides mechanisms
to represent, retrieve and learn temporal episodes. In the CR2N system [13],
the similarity assumption is used to determine reusable textual constructs. A
confidence measure for a workflow adaptation based on introspection of the case
base has been introduced in [14]. The CeBeTA system [15] combines a sentence
similarity metric based on edit distance with a reuse approach based on text-
transformation routines, in order to generate solutions for the text modification
problem. A proper case structure and a new distance measure have been pro-
posed in [16], that are exploited to retrieve traces similar to the current one.
They use a graph edit distance definition by focusing on traces of executions.
For them, it was guaranteed that the actions in the traces always matched re-
ality. However, our approach is based on similarity measures between obsels by
comparing their contents, i.e. their time-stamps, users, types, and values.

Most of these approaches enable comparison of homogeneous elements (such
as characters or symbols). In this paper, we focus on modeled traces, which
are sequential records of complex elements. As the elements are complex, they
cannot be directly compared. Therefore, we propose an approach inspired by
the Smith-Waterman Algorithm [1], but it takes into account the richness of
the compared elements. We chose this algorithm because, by combining it with
our similarity measures between obsels, it has all the properties expected for
the comparison of episodes, namely: processing of sequential data, tolerance to
variations in representation, noise resistance, high degree of customization and
satisfactory response time.

Similarity Measures to Compare Episodes in Modeled Traces 361

3 M-Traces Definitions and Formal Representation

An interaction trace is a rich record of the actions performed by a user on a
system. Therefore, traces enable capturing users’ experiences.M-Traces (short
for Modeled Trace) differ from logs in the sense that they come with a model
and their observed elements (called obsels) are highly connected. An M-Trace
includes both the sequence of temporally situated obsels and the model of the
trace which gives the semantics of obsels and the relations between them. The
notations and definitions of M-Trace and its model are defined in detail in [17].
In the following, we provide a simplified formalization fitting our needs.

3.1 Trace Model Definition (MT)

Definition 1. A Trace model is defined as a tuple MT = (T,C,R,A, p)

– T : temporal domain representing the period during which the M-Traces of
this model occurred. Usually, it contains two time-stamps: start and end.

– C: finite set of obsel types.
– R: finite set of relation types between the obsel types in C, including (but not

limited to) inheritance relation.
– A: hierarchical set of attributes for each obsel type in C. A(c) is the set of

attributes for a c obsel type.
– p: parent trace model that represents the hierarchy between the trace models.

3.2 M-Trace Definition

Definition 2. An M-Trace is a tuple M− Trace = (MT , O,≤O, u, st, et, v,
λR, λC)

– MT : trace model MT = (T,C,R,A, p).
– O: sequence of obsels of this trace, where |O| is the number of obsels in the

trace.
– ≤O: partial order defined on the obsels, it represents their chronological order.
– u: identification of the user executing the actions associated with this trace.
– st and et: starting and ending timestamps of the trace.
– v: visibility of the trace. It can be: public, private or custom. It is used for

defining security properties of a trace.
– λR: function describing relation between two obsels λR : O×O → R., where

R is the set of relations type defined in MT .
– λC : total function that associates each obsel with its type. λC : O → C.

3.3 Obsel Definition

Definition 3. We define an obsel as o = {M-Trace , c, Ao, u, st, et} where:

– M-Trace: trace containing this obsel.
– c: type of the obsel. Each obsel type has a predefined set of attributes.

362 R. Zarka et al.

– Ao: set of attributes of the obsel o and their values. Ao = {(ai, vi)}i=1,|Ac|.
Note that ai is an obsel attribute type, vi is an obsel attribute value, and Ac

is the set of attributes of an obsel type c.
– u: user executing the action associated with the obsel. It is obtained from the
M-Trace of this obsel.

– st and et: starting and ending timestamps of the obsel.

Note that obsel attributes are hierarchical so only the leafs can have values.
These values are not mandatory.

3.4 What Is an Episode?

An episode is a temporal pattern composed of an ordered set of events corre-
sponding to a specific task defined by a task signature. The concept of task
signature has been introduced in [18] as a set of event declarations, entity dec-
larations, relations, and temporal constraints.

Definition 4. Given an M-Trace, O is the sequence of its obsels. We define an
episode Ek = Onk

as a sub-sequence of O where (n1 < n2 < . . .) is a temporally
coherent sequence of obsels of O.

An episode E can be derived from O by deleting some obsels without changing
the order of the remaining obsels.

4 Similarity Measures between Obsels

In order to define the similarity between the obsels, we need to define several
local similarity measures for the obsel types, users, attributes and timestamps,
which are the significant components of an obsel.

Definition 5. We define simobs(o1, o2) as a similarity measure between the ob-
sels o1 = {c1, Ao1 , u1, st1, et1} and o2 = {c2, Ao2 , u2, st2, et2} as:

simobs(o1, o2) = α× simobstype(c1, c2) + β × simobsattr(Ao1 , Ao2)

+ γ × simobsuser(u1, u2) + δ × simobstime(st1, et1, st2, et2) (1)

where:

– simobstype(c1, c2): is the obsel type similarity,
– simobsattr(Ao1 , Ao2): is the obsel attribute similarity,
– simobsuser(u1, u2): is the obsel user similarity,
– simobstime(st1, et1, st2, et2): is the obsel time-stamp similarity,
– α, β, γ, δ: are weights, with (α+β+γ+δ) = 1 to keep this measure normalized.

The similarity measure between obsels simobs(o1, o2) is a normalized value ∈
[0, 1] since all its sub measures (simobstype, simobsattr, simobsuser , simobstime)
produce normalized values and the sum of the weights (α + β + γ + δ) = 1.
It is application experts who define these values.

Similarity Measures to Compare Episodes in Modeled Traces 363

4.1 Obsel Type Similarity simobstype(c1, c2)

Basically, obsel types are similar if they are identical. Thus, we propose to define
a substitution matrix over obsel types Sobstype(|C| × |C|). In bio-informatics
and evolutionary biology, a substitution matrix describes the rate at which one
character in a sequence changes to other character states over time. We consider
that the substitution matrix has normalized values between 0 and 1. The simplest
possible substitution matrix would be one in which each obsel type in (c ∈ C) is
considered maximally similar to itself, but not similar to any other obsel type.
This matrix would look like:

Sobstype =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎦

Definition 6. For two obsel types c1, c2 ∈ C, we define their similarity as:

simobstype(c1, c2) = Sobstype(c1, c2) ∈ [0, 1] (2)

Where:

– C is the set of all obsel types
– S is a substitution matrix |C| × |C|
– Both of the rows and columns of S are obsel types. Each cell in this matrix

has a normalized value representing the distance between a pair of obsel types.

The substitution matrix depends on the obsels defined on the application. By
default, it is filled manually by an expert.

4.2 Attribute Similarity simobsattr(Ao1 , Ao2)

When two obsels are of the same type, it is easy to compare them. However,
when two obsels are of different types, a more complex comparison method has
to be defined. For example in Wanaclip, we have the obsel types ”playVideo”
and ”infoVideo”. Both of them contain the meta-data of the video. To compare
their attributes we need to know the common attributes between these obsel
types.

Definition 7. We define cA(Ao1 , Ao2) = {(ca1,i, ca2,i)}i=1,|cA(Ao1 ,Ao2)|
the set

of common type attribute couples of the attribute sets Ao1 and Ao2 where o1, o2
are two obsels that can have different obsel types. An obsel can not have two
attributes of the same type unless they are not in the same hierarchy level.

Definition 8. For two obsels o1 ∈ O and o2 ∈ O, we define the similarity
between the two sets of attributes of o1 and o2 as:

simobsattr(Ao1 , Ao2) =

|cA(Ao1 ,Ao2)|∑
i=1

wimportance(i)× simattr(ca1,i, ca2,i) (3)

where:

364 R. Zarka et al.

– simattr(ca1,i, ca2,i) ∈ [0, 1]. For each attribute type, there has to be at least
one similarity function provided to compare their values.

– sum
|cA(Ao1 ,Ao2)|
i=1 wimportance(i) = 1. The different weights are defined sepa-

rately and possibly modified by the user or the system. It ensures that the
similarity measure between two sets of attributes is normalized.

4.3 Obsel User Similarity simobsuser(u1, u2)

When comparing M-Traces, we prefer to give more importance to the traces
which belong to the same user or to users members of the same group. Social
media give a lot of importance to this measure. Indeed users having similar
profiles and interests are more likely to do similar activities, and therefore, to
produce similar M-Traces [19].

Definition 9. The similarity measure between two users u1, u2 is defined as:

simobsuser(u1, u2) =

{
1 u1 = u2

λ× simprofile(u1, u2) + μ× simgroups(u1, u2) u1
= u2

(4)

where:

– simprofile(u1, u2) is the similarity between the profiles of the users according
to their interests and activities. We will consider that this value is between
0 and 1.

– simgroups(u1, u2) is the Jaccard similarity coefficient [20] between user groups.
By considering G1 as the groups that the user u1 belongs to, G2 for the user
u2, then we define the similarity measure between these groups as:

simgroups(u1, u2) =
|G1 ∩G2|
|G1 ∪G2|

(5)

– λ, μ: are weights, where λ+ μ = 1.

This measure is to be considered in a future work. For the moment in Wanaclip,
we only consider similar, identic users.

4.4 Obsel Timestamp Similarity simobstime(o1, o2)

According to the M-Trace model, each obsel has two timestamps (begin and
end). At the moment, similarity is only defined with regard to the duration of
the obsel. However, this measure could easily be extended (for example, by using
Allen’s interval relations [21]).

Definition 10. For two obsels o1, o2 having time-stamps (st1, et1) for o1 and
(st2, et2) for o2, we define the obsel timestamps similarity measure as:

simobstime(o1, o2) =

{
1 |(et1 − st1)− (et2 − st2)| = 0
min(et1−st1,et2−st2)
max(et1−st1,et2−st2)

|(et1 − st1)− (et2 − st2)| �= 0
(6)

Similarity Measures to Compare Episodes in Modeled Traces 365

where (et1−st1) is the duration of o1. We calculate the fraction between the min-
imum and maximum duration of o1, o2 to get a normalized value. For example,
if t1(2, 9), t2(4, 14) then simobstime(o1, o2) = 0.7

5 Similarity between Episodes

In the previous section, we defined a similarity measure for comparing two ob-
sels. In this section we present an approach for comparing episodes based on
the minimum edit distance. This approach makes use of the similarity measure
introduced earlier. This approach relies on a dynamic programming algorithm
that solves the smaller problems optimally and uses the sub-problem solutions
to construct an optimal solution for the original problem. We use the Smith-
Waterman Algorithm [1] to compare the episode. We extend the algorithm by
introducing similarity measures between obsels.

5.1 The M-Trace Smith-Waterman Algorithm

The Smith–Waterman algorithm is a well-known algorithm for performing lo-
cal sequence alignment. Instead of looking at each sequence in its entirety, it
compares segments of all possible lengths and optimizes the similarity measure.
We adapted the algorithm using the similarity measure described in the pre-
vious section to make it more accurate in terms of temporal sequencing and
tolerant to noise generally found in the traces that we deal with. For that, we
build a substitution matrix using the similarity measures between obsels and a
gap function to determine the reduced score according to the number of indels
(insertions/deletions) between obsels. It represents the cost of replacing an ob-
sel by another one. This method not only evaluates the similarity between two
episodes but also the transformations needed to go from one episode to the other
(alignment), which is particularly useful for issuing the recommendations.

Definition 11. Gap penalty function determines the reduced score according to
the number of indels (insertions/deletions) in the sequence alignment. It deter-
mines the lost value when replacing an obsel by a gap. For the moment, for any
obsel o, we consider that gap(o) = −1.

Definition 12. For two episodes A,B, ∀a ∈ A∪{′−′}, b ∈ B ∪{′−′}, we define
the substitution matrix of obsels as:

S(a, b) =

⎧⎨
⎩

gap(a) b =′ −′

gap(b) a =′ −′

(simobs(a, b)− 0.5)× 2 a ∈ A ∧ b ∈ B
(7)

where:

– gap(a) ∈ [−1, 0] is the gap penalty function for an obsel a ∈ A
– ′−′ is the gap-scoring scheme
– simobs(a, b) ∈ [0, 1] is the obsel similarity measure between a, b
– (simobs(a, b)− 0.5)× 2 means converting the values from [0, 1] to [−1,+1]

366 R. Zarka et al.

Algorithm 1. The M-Trace Smith-Waterman Algorithm

Data: A,B are episodes to compare
Result: The similarity measure simepisode(A,B) and the local alignments L1, L2

1:
HScore(i, 0) ← 0 ∀ 0 ≤ i ≤ |A|
HScore(0, j) ← 0 ∀ 0 ≤ j ≤ |B|

}

 Initialization of the similarity-score matrix

2:
S(Ai,−) ← gap(Ai) ∀ 1 ≤ i ≤ |A|
S(−, Bj) ← gap(Bj) ∀ 1 ≤ j ≤ |B|

}

 Compute gap penalties of obsels

3:
4: for i = 1 → |A| do
5: for j = 1 → |B| do
6: S(Ai, Bj) ← (simobs(Ai, Bj)− 0.5) × 2
 Fill the substitution matrix

7: H(i, j) ← max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Score Pointer
0 None
H(i− 1, j − 1) + S(Ai, Bj) Substitution
H(i− 1, j) + S(Ai,−) Deletion
H(i, j − 1) + S(−, Bj) Insertion

8: end for
9: end for
10:
11: L1, L2 ← []
12: i, j = max(Hi,j(i, j))
13: while (i > 0) ∧ (j > 0) ∧ (Hpointer(i, j)
= ”None”) do
 Trace-back
14: if (Hpointer(i, j) = ”Substitution”) then
15: push(L1, Ai)
16: push(L2, Bj)
17: i ← i− 1
18: j ← j − 1
19: else if (Hpointer(i, j) = ”Insertion”) then
20: push(L1,−)
21: push(L2, Bj)
22: j ← j − 1
23: else if (Hpointer(i, j) = ”Deletion”) then
24: push(L1, Ai)
25: push(L2,−)
26: i ← i− 1
27: end if
28: end while
29:
30: simepisode(A,B) ← max(Hscore(i, j)
31: return L1, L2, simepisode(A,B)

Similarity Measures to Compare Episodes in Modeled Traces 367

The M-Trace Smith-Waterman Algorithm 1 compares two episodes A,B. It
computes the episode similarity measure simepisode(A,B) and the local align-
ments L1, L2 ofA,B. The similarity-scorematrix (H) between a suffix ofA[1 · · · i]
and a suffix of B[1 · · · j] with a size of (|A|+1×|B|+1), is built during the algo-
rithm. Firstly, the first row and the first column are initialized to zero. During
the algorithm, a gap penalty is computed for each obsel in (A ∪ B). As shown
in Figure 1, the algorithm iterates for each cell in H from the top-left cell to
the bottom-right cell (see lines 4 to 8). At each time, it computes the similarity
measure between the two obsels Ai, Bj according to Definition 5. The score of
the current cell H(i, j) is the highest score of three other scores in the similarity-
score matrix (see line 7): the up-left neighbor cell H(i − 1, j − 1) added to the
similarity of obsels Ai, Bj , the left neighbor cell added to the gap penalty and the
up neighbor cell added to the gap penalty. We keep pointers to the highest cells
to keep directions of movement used to construct the matrix. This will be used
in the trace-back step to obtain the best alignment. If we want the best local
alignment, we find Hopt = maxi,jH(i, j) and we trace-back. The cell of highest
score can be anywhere in the array. Otherwise, if we want all local alignments,
we find H(i, j) > threshold for all i, j and we trace-back. To obtain the optimum
local alignment, we start with the highest value in the matrix H(i, j) (see line
12). Then, we go backwards to one of the positions H(i− 1, j), H(i, j − 1), and
H(i − 1, j − 1) depending on the direction of the movement used to construct
the matrix. (see lines 13 to 28) We keep the process until we reach a matrix
cell with zero value, or the cell H(0, 0). Once we have finished, we reconstruct
the alignment as follows: Starting with the last value, we reach H(i, j) using the
previously calculated path. A diagonal jump implies a replacement. A top-down
jump implies a deletion. A left-right jump implies an insertion. The trace-back
step stops when the score is 0 or when we reach the first row or column. The
algorithm returns the maximum similarity score Hopt and the alignments L1, L2

found. Sometimes, we have different possible alignments especially when we have
more than one maximum cell.

Fig. 1. The iterations of the Smith-Waterman Algorithm

368 R. Zarka et al.

5.2 Example

The following example comes from the web application Wanaclip. Let us consider
that we have an episode E1 = (S8P1A1A2X1A3G7). It represents a user searching
for videos about ”Lyon” (S8: S is the obsel type, and 8 is the value). Then, he
starts playing (P1) and adding videos (A1 and A2) to his selection. After that, he
adds the text X1 to the first selected video and adds another video A3. Finally,
he generates the clip G7. This episode is collected and stored in T Store. Later,
two users are using Wanaclip. The first one selects the tag ”Lyon”, plays and
adds a video, then adds text to it. This episode is noted E2 = (T8P1A1X1). The
second user is searching for a different keyword ”Paris”. He plays and adds other
videos. His episode is noted E3 = (S9P3A3A5). Using the stored M-Traces, an
assistant recommends the next actions to do. For that, the assistant compares
the current episodes with the stored ones and recommends the most similar ones.
Figure 2 shows how to compare the stored episode E1 with the current episodes E2
and E3 using Smith-Waterman Algorithm without using the similarity measures
between obsels (The default values: gap=-1, matching = 1, mismatch=-1).

Fig. 2. An example of the M-Trace Smith-Waterman Algorithm to compute
simepisode(E1, E2), simepisode(E1, E3)

The results show that E3 is more similar to E1 than E2 (simepisode(E1, E2) =
2 < simepisode(E1, E3) = 4) (Remember that the similarity measure between
episodes is not normalized). However, in our context, E2 is more likely to be
similar to E1 since both of them represent users trying to add similar videos
to generate a clip about Lyon. For that, we build a substitution matrix defined
using the similarity measures between obsels, as the following: we ignore the sim-
ilarity between users and time-stamps and we only give weights to obsel types
and attributes simobs(o1, o2) = 0.5×simobstype(c1, c2)+0.5×simobsattr(A1, A2).
We also consider that the similarity between the obsel types (search and select-
Tag) is simobstype(S, T) = 0.5. According to that, the substitution matrices for

Similarity Measures to Compare Episodes in Modeled Traces 369

E1, E2 and E1, E3 are computed as shown in Figure 3. For example, to compute
the substitution value for the obsels S8, T8 we compute the similarity measure
between them simobs(S8, T8) = 0.5× 0.5 + 0.5× 1 = 0.75. Then we convert the
value to be in the range [−1,+1] as S(S8, T8) = (simobs(S8, T8)− 0.5)× 2 = 0.5.

Fig. 3. The substitution matrices for E1, E2 and E1, E3

Figure 4 shows the M-Trace Smith-Waterman Algorithm after applying the
substitution matrix based on the similarity measures between obsels. We see that
E2 is more similar to E1 than E3 (simepisode(E1, E2) = 2.5 > simepisode(E1, E3) =
1) which is more reasonable and accurate than the past results. Using the align-
ments of the episodes, we can recommend the next actions. The detailed de-
scription of the recommendation mechanism is out of the scope of this paper.

Fig. 4. An example of the M-Trace Smith-Waterman Algorithm to compute
simepisode(E1, E2), simepisode(E1, E3) after applying obsels similarity measures

370 R. Zarka et al.

6 Implementation and Evaluation

We have implemented our local similarity measures and the M-Trace Smith-
Waterman Algorithm as a PHP web service, within the T Store framework. Any
client connected to T Store can execute the service to compare obsels, episodes
ofM-Traces or other types of sequences. These implementations allow us to cus-
tomize the similarity measures by specifying all the weights used in the similarity
measures between obsels defined in Definition 5. In addition, we can customize
the M-Trace Smith-Waterman Algorithm by changing the substitution matrix.
We also customize the gap penalty function and change the range of values of
the similarity scores between obsels. We can extend it to be in [−∞,+∞]. For
example, decreasing the score of similar obsels will make the episodes more likely
to be similar by giving more score to the matched obsels. The same thing applies
for mismatching obsels. If we give a negative value for the substitution between
two obsels, it means that a mismatch between them will decrease the probability
of matching the episodes.

The M-Trace Smith–Waterman algorithm is fairly demanding in time: to
compare two episodes E1, E2, O(|E1||E2|) time is required. In addition, improve-
ments can easily be made. Indeed, through observation of the similarity matrix
calculation process in Figure 1, we found that we can optimize the calculation
time of the similarity scores. For each iteration, every element on an anti-diagonal
line marked with the same number could be calculated simultaneously, taking
into consideration the elements that could be calculated at the same time. For
example, in the first cycle, only one element marked as (1) could be calculated.
In the second cycle, two elements marked as (2) could be calculated. In the third
cycle, three elements marked as (3) could be calculated, etc.

We have implemented a collection process in Wanaclip. TheM-Trace handler
captures users’ actions, and stores them as obsels in T Store. In order to illustrate
the efficiency of the proposed algorithm, we conducted run-time experiments on
episodes regenerated randomly. Both of T Store and Wanaclip are running on the
same computer. We performed several experiments changing the weights used
in the similarity measures between obsels and the similarity values in the sub-
stitution matrix. We compared the run-time of the M-Trace Smith–Waterman
algorithm over 100 episodes of different lengths from 2 to 20 obsels. We used
about 50 obsel types (10 between them were the most frequently). Each obsel
has in average 3 attributes. The procedure was repeated 10 times for various
weights, and the run-time was averaged over all runs. As shown in Figure 5, the
run-time of the algorithm shown logarithmic growth. It is composed of the time
required for the iterations of comparison and the time of the alignment part. We
are not obliged to compute the alignments but it is important for the recommen-
dations. In the right chart, we see that about the half of the similarity scores
of the comparison test we performed were between 0 and 5. Where 25% were
totally mismatched which helps to eliminates many episodes while retrieving the
similar ones for the recommendation.

The most important thing was the obsel types, the length of the compared
episodes (the number of obsels in each episode) and the number of common

Similarity Measures to Compare Episodes in Modeled Traces 371

Fig. 5. Evaluation of the M-Trace Smith-Waterman Algorithm

attributes between compared obsels. We have noticed also that the alignments
of episodes is sometimes better when expanding the range of the substitution
matrix. However, the run-time for the [−1,+1] range is better than the expanded
range because there are more (0) values which decrease the number of pointers
in the score matrix and that leads to less paths to find the alignments.

7 Conclusion

In this paper, we introduced a similarity measure for comparing episodes belong-
ing to M-Trace. Comparing such episodes is a difficult task, not only because
they are sequences, but also because they are composed of obsels (observed el-
ements) which are complex objects therefore difficult to compare. Our method
is based on two major components: a similarity measure for comparing obsels,
and an adaptation of the Smith-Waterman Algorithm, using the similarity mea-
sure described above, to determine the similarity between two episodes. This
method not only evaluates the similarity between two episodes but also the
transformations needed to go from one episode to the other (alignment), which
is particularly useful given the recommendations.

Evaluations of the method showed that the algorithm is not time-consuming
and that it has all the properties that we expected: ability to compare complex
objects, calculate the similarity score, many customization options, etc. We im-
plemented this measure in the platform T Store [2]. We have experimented with
the measure within the context of the Wanaclip application (www.wanaclip.eu)
in order to provide Wanaclip users with contextualized recommendations bases
on traces of previous users. In future work, we will perform a thorough evalua-
tion of the quality of the recommendations in order to better tune the similarity
measure. We will work also in the optimization of theM-Trace Smith-Waterman
Algorithm and its application to different domains. In addition, we will use users’
feedback for the computation of the similarity measures.

References

1. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147(1), 195–197 (1981)

372 R. Zarka et al.

2. Zarka, R., Champin, P.A., Cordier, A., Egyed-Zsigmond, E., Lamontagne, L., Mille,
A.: TStore: A Trace-Base Management System using Finite-State Transducer Ap-
proach for Trace Transformation. In: MODELSWARD 2013. SciTePress (2013)

3. Rieck, K.: Similarity measures for sequential data. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 1(4), 296–304 (2011)

4. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Journal 29(2), 147–160 (1950)

5. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

6. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

8. Damashek, M.: Gauging Similarity with n-Grams: Language-Independent Catego-
rization of Text. Science 267(5199), 843–848 (1995)

9. Watkins, C.: Dynamic Alignment Kernels. Advances in Large Margin Classifiers,
39–50 (January 1999)

10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text Clas-
sification using String Kernels. Journal of Machine Learning Research 2(3) (2002)

11. Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A Kernel for Time Series Based on
Global Alignments. In: 2007 IEEE International Conference on Acoustics Speech
and Signal Processing, ICASSP 2007, vol. 2(i), pp. II-413–II-416 (2006)

12. Sánchez-Marré, M., Cortés, U., Mart́ınez, M., Comas, J., Rodŕıguez-Roda, I.:
An Approach for Temporal Case-Based Reasoning: Episode-Based Reasoning. In:
Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 465–
476. Springer, Heidelberg (2005)

13. Adeyanju, I., Wiratunga, N., Lothian, R., Sripada, S., Lamontagne, L.: Case
Retrieval Reuse Net (CR2N): An Architecture for Reuse of Textual Solutions.
In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 14–28.
Springer, Heidelberg (2009)

14. Minor, M., Islam, M. S., Schumacher, P.: Confidence in Workflow Adaptation.
In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 255–268.
Springer, Heidelberg (2012)

15. Valls, J., Ontañón, S.: Natural Language Generation through Case-Based Text
Modification. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466,
pp. 443–457. Springer, Heidelberg (2012)

16. Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process
adjustment and analysis. Information Systems (December 2012)

17. Settouti, L.S.: M-Trace-Based Systems - Models and languages for exploiting in-
teraction traces. PhD thesis, University Lyon1 (2011)

18. Champin, P.A., Prié, Y., Mille, A.: MUSETTE: a framework for Knowledge from
Experience. In: EGC 2004, RNTI-E-2, Cepadues Edition, pp. 129–134 (2004)

19. Kietzmann, J.H.: Social media? Get Serious! Understanding the Functional Build-
ing Blocks of Social Media 54 (2011)

20. Lipkus, A.H.: A proof of the triangle inequality for the Tanimoto distance 26 (1999)
21. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of

the ACM 26(11), 832–843 (1983)

Author Index

Abdel-Aziz, Amira 1
Aha, David W. 164
Auricchio, Nino 299

Beaver, Ian 15
Benyo, Brett 241
Burnett, Simon 149

Cavallini, Anna 233
Chakraborti, Sutanu 203
Cheng, Weiwei 1
Cordier, Amélie 358
Craw, Susan 149, 218

Dannenhauer, Dustin 29
Dı́az-Agudo, Belén 255
Dong, Ruihai 44, 59
Dumoulin, Joe 15

Egyed-Zsigmond, Elöd 358
Epstein, Susan L. 74

Fernández-Carmona, Manuel 329
Finestrali, Giulio 89

Gaillard, Emmanuelle 104
Gerevini, Alfonso Emilio 119
Goel, Ashok K. 343
González-Calero, Pedro Antonio 255,
270
Gunawardena, Sidath 134

Horsburgh, Ben 149
Hüllermeier, Eyke 1

Jaidee, Ulit 164
Jalali, Vahid 179, 188
Juarez, Jose M. 218

Kar, Debarun 203
Kumar, Anand 203

Lamontagne, Luc 358
Leake, David 179, 188
Leonardi, Giorgio 233

Lieber, Jean 104
Lothian, Robert 285
Lupiani, Eduardo 218

Martin, Suzanne 149
Massie, Stewart 218, 285
McCarthy, Kevin 44, 59
Micieli, Giuseppe 233
Mille, Alain 358
Montani, Stefania 233
Morrison, Katie 149
Mulvehill, Alice M. 241
Muñoz-Avila, Héctor 29, 89, 164

Naudet, Yannick 104
Nauer, Emmanuel 104

O’Mahony, Michael P. 44, 59
Ontañón, Santiago 270

Palma, Jose T. 218
Petridis, Miltos 314
Peula, Jose Manuel 329
Plaza, Enric 270
Proctor, Sam 299

Quaglini, Silvana 233

Ravindran, Balaraman 203
Recio-Garćıa, Juan A. 255
Roth-Berghofer, Thomas 299
Roub́ıčková, Anna 119

Saetti, Alessandro 119
Sánchez-Ruiz, Antonio A. 270
Sandoval, Francisco 329
Sani, Sadiq 285
Sauer, Christian 299
Schaal, Markus 44, 59
Serina, Ivan 119
Smyth, Barry 44, 59
Stoyanovich, Julia 134
Strickert, Marc 1

Teodorescu, Elena Irena 314

Urdiales, Cristina 329

374 Author Index

Vattam, Swaroop S. 343

Weber, Rosina O. 134

Williams, Dorothy 149

Wiratunga, Nirmalie 285

Xie, Lei 74

Yaman, Fusun 241
Yun, Xi 74

Zarka, Raafat 358

	Preface
	Organization
	Table of Contents
	Preference-Based CBR:A Search-Based Problem Solving Framework
	1 Introduction
	2 Preference-Based CBR
	2.1 Conventional CBR
	2.2 Preference-Based Knowledge Representation
	2.3 Formal Setting and Notation

	3 Case-Based Inference
	3.1 Case-Based Inference as Probability Estimation
	3.2 A Discrete Choice Model
	3.3 Maximum Likelihood Estimation

	4 CBR as Preference-Guided Search
	5 Case Studies
	5.1 Drug Discovery
	5.2 The Set Completion Problem

	6 Conclusion
	References

	Apply
ing MapReduceto Learning User Preferences in Near Real-Time
	1 Introduction
	1.1 User-Directed and Machine-Directed Conversations
	1.2 Machine-Directed Conversations and Personal Preferences

	2 Implementation Goals and Architecture
	3 Application of Case-Based Reasoning
	3.1 Case Structure
	3.2 Case Storage
	3.3 Case Retrieval
	3.4 Case Reuse
	3.5 Case Revision
	3.6 Case Retainment: Learning Preferences from Case Memory

	4 Testing and Performance
	4.1 System Evaluation
	4.2 System Performance
	4.3 Test Dataset Creation
	4.4 Testing Environment
	4.5 Performance Results

	5 Conclusion
	References

	Case-Based Goal Selection Inspired
by IBM’s Watson
	1 Introduction
	2 IBM’s Watson’s Evidence Scoring Algorithms
	3 Goal Selection Using Case-Based Reasoning
	3.1 Case Representation
	3.2 Information Flow

	4 A CBR System for Goal Scoring
	4.1 Evidence Scoring System
	4.2 Case-Based Goal Selection Component Example

	5 Experiments
	5.1 Results

	6 Related Work
	7 Conclusions and Future Work
	References

	Opinionated Product Recommendation
	1 Introduction
	2 Related Work
	3 Recommending Experiential Product Cases
	3.1 Extracting Review Features
	3.2 Evaluating Feature Sentiment
	3.3 Generating Experiential Cases
	3.4 From Case Retrieval to Sentiment-Enhanced Recommendation

	4 Evaluation
	4.1 Data Sets and Setup
	4.2 Feature Sparsity and Case
	4.3 Recommendation Quality as Sentiment Improvement
	4.4 Recommendation Quality as Relative Ratings Differences
	4.5 Query Case Similarity

	5 Discussion
	6 Conclusions
	References

	Mining Features and Sentiment
from Review Experiences
	1 Introduction
	2 Mining Product Review Experiences
	2.1 Extracting Review Features
	2.2 Evaluating Feature Sentiment
	2.3 Reusing Review Cases for Feature Recommendation
	2.4 Discussion

	3 Evaluation
	3.1 Setup
	3.2 Depth, Breadth and Redundancy
	3.3 Sentiment Density
	3.4 Review Quality
	3.5 System Usability and Influence
	3.6 Discussion

	4 Conclusions
	References

	Multi-Agent, Multi-Case-Based Reasoning
	1 Introduction
	2 Parallel Portfolio Construction for Constraint Satisfaction
	2.1 The Task for MAMC
	2.2 Cases, Similarity, and Combination
	2.3 Experimental Design and Results

	3 Protein-Ligand Docking
	3.1 The Task for MAMC
	3.2 Cases, Similarity, and Combination
	3.3 Experimental Design and Results

	4 Discussion
	5 Conclusion
	References

	Case-Based Learning of Applicability Conditions for Stochastic Explanations
	1 Introduction
	2 Related Work
	3 Stochastic Explanation
	3.1 Definitions
	3.2 Motivating Example

	4 Case-Based Learning of Applicability Conditions for Explanations
	5 Empirical Study
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions and Future Work
	References

	Case-Based Reasoning
on E-Community Knowledge
	1 Introduction
	2 Motivation
	3 State of the Arts
	3.1 Meta-knowledge About Reliability
	3.2 Meta-knowledge in CBR Systems

	4 Meta-knowledge Management for a CBR System
	5 Plugging the Meta-model into a CBR System
	5.1 Filtering
	5.2 Ranking
	5.3 Prerequisites

	6 Use Case: Adapting Cooking Recipes
	7 Conclusion
	References

	On the Plan-Library Maintenance Problem
in a Case-Based Planner
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Case Base Maintenance
	4.1 The Maintenance Problem
	4.2 Maintenance Policies

	5 Experimental Results
	6 Conclusion
	References

	Learning Feature Weights from Positive Cases
	1 Introduction
	2 Motivating Problem
	2.1 Recommending Characteristics of Academic Collaborators
	2.2 Quality of Solutions

	3 Learning Feature Weights from Positive Instances
	4 Identifying Aligned Cases
	5 The Selection of Clustering Methods
	5.1 Density Clustering and Subspace Clustering
	5.2 Comparing Clustering Methods

	6 Quality and Generalization of the Approach
	7 Quality of the Approach with Negative Instances
	8 Comparison to Alternative Method for Reasoning with Positive Instances
	8.1 Single Class Learning
	8.2 Recommending Characteristics of Collaborators with SCL

	9 Conclusions and Future Work
	References

	User Perceptions of Relevance and Its Effecton Retrieval in a Smart Textile Archive
	1 Introduction
	2 Related Work
	3 Selection of Content for Archive
	3.1 Stakeholder Workshop 1: Asset Descriptions
	3.2 Stakeholder Workshop 2: Asset Relationships

	4 Creating an Initial Case Base
	4.1 Content Similarity

	5 Implicit Learning Method
	5.1 Learning Feature Dimension Weights

	6 User Experiments
	6.1 User Engagement with the Archive Website
	6.2 Recommendation Quality

	7 Results: Effects of Implicit Learning
	8 Results: User Engagement with Archive
	8.1 Physical and Digital Relationship Maps
	8.2 Modes of Engagement

	9 Conclusions
	References

	Case-Based Goal-Driven Coordination of Multiple Learning Agents
	1 Introduction
	2 Related Work
	3 Multi-agent Setting
	4 Case Bases and Information Flow in the GDA-C Agent
	5 The GDA-C Algorithm
	6 States and Actions in Wargus
	7 Empirical Study
	7.1 Experimental Setup
	7.2 Results

	8 Conclusions and Future Work
	References

	On Deriving Adaptation Rule Confidence
from the Rule Generation Process
	1 Introduction
	2 Previous Research
	3 Deriving Rule Confidence from the Rule Generation Process
	4 Evaluation
	4.1 Experimental Design
	4.2 Performance Comparison

	5 Conclusion and Future Work
	References

	Extending Case Adaptation
with Automatically-Generated Ensemblesof Adaptation Rules
	1 Introduction
	2 Learning and Applying Ensembles of Adaptation Rules
	2.1 Selecting Source Cases to Adapt
	2.2 Selecting Cases from which to Generate Adaptation Rules

	3 Using Ensembles of Adaptations
	3.1 Defining Adaptation Context
	3.2 Ranking Adaptation Rules
	3.3 Estimating the Target Value from a Rule Ensemble

	4 Experimental Results
	4.1 Data Sets and Experimental Design
	4.2 Performance Comparison
	4.3 Discussion of Results
	4.4 Effect of Context-Based Rule Ranking

	5 Comparison to PreviousWork
	5.1 Ensemble Methods in CBR
	5.2 Learning Adaptations from the Case Base

	6 Conclusions and Future Research
	References

	iCaseViz: Learning Case Similarities through
Interaction with a Case Base Visualizer
	1 Introduction
	2 Related Work
	3 Our Approach to Learning Similarity
	3.1 Projecting the Case Base in Two Dimensions
	3.2 User Action
	3.3 Capturing the Experts’ Notion of Similarity
	3.4 Feature Weighting and Similarity Learning

	4 The iCaseViz Application Framework and Its Components
	4.1 The Visualizer
	4.2 The Analyzer

	5 Evaluation
	5.1 Datasets
	5.2 Experimental Results and Observations

	6 Conclusions and Future Work
	References

	A Multi-Objective Evolutionary Algorithm
Fitness Function for Case-Base Maintenance
	1 Introduction
	2 Background
	2.1 Complexity Profiling
	2.2 Multi-Objective Evolutionary Algorithms

	3 Multi-objective Optimization Fitness Function for Case-Base Maintenance
	3.1 Case-Base Representation
	3.2 Fitness Function to Perform CBM
	3.3 NSGA-II
	3.4 Interpreting the MOEA Approach

	4 Experimental Evaluation
	4.1 Experiments and Results
	4.2 Discussion

	5 Conclusions and Future Work
	References

	Mining and Retrieving Medical Processesto Assess the Quality of Care
	1 Introduction
	2 Methods
	2.1 Process Mining and the ProM Tool
	2.2 Distance Definition for Case Retrieval

	3 Experimental Results
	4 Discussion, Conclusions and Future Work
	References

	Leveraging Historical Experience to Evaluate and Adapt Courses of Action
	1 Introduction
	2 Overview
	2.1 The MICCA Proce ss

	3 Case Revision – Preprocessing
	3.1 The Editing Agent
	3.2 The Merger Agent

	4 MICCA Plan Ad daptation
	5 n Experimentation Process
	6 Test Cases and Experimentation Results
	7 Discussion
	8 Conclusion
	Acknowledgements.

	References

	The COLIBRI Open Platform
for the Reproducibility of CBR Applications
	1 Introduction
	2 Reproducibility for the Case-Based Reasoning Field
	3 TheCOLIBRI Platform
	3.1 The COLIBRI Development Process
	3.2 Template Categorization

	4 Reproducibility in
	4.1 Reputation and Provenance
	4.2 Semantic Representation

	5 Experimental Evaluation
	6 Conclusions
	References

	Refinement-Based Similarity Measure
over DL Conjunctive Queries
	1 Introduction
	2 Background
	2.1 DL Conjunctive Queries
	2.2 Query Subsumption
	2.3 Refinement Operators

	3 A Refinement Operator for DL Conjunctive Queries
	4 Similarity Based on Query Refinements
	4.1 From Individuals to Queries
	4.2 Similarity over in the CQ Space
	4.3 Example

	5 Experiments
	6 Related Work
	7 Conclusions and Future Work
	References

	Should Term-Relatedness Be Used in Text
Representation?
	1 Introduction
	2 Term Relatedness from Corpus Co-occurrence
	2.1 Document Co-occurrence
	2.2 Latent Semantic Indexing
	2.3 Normalised Positive Pointwise Mutual Information

	3 Datasets
	4 Performance of Generalisation
	4.1 Experiment Setup
	4.2 Results

	5 Predicting When to Generalise
	5.1 Dataset Attributes
	5.2 Average Terms Per Document
	5.3 Document Frequency
	5.4 Inverse Document Frequency
	5.5 Complexity Profile
	5.6 Neighbourhood Similarity

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Recommending Audio Mixing Workflows
	1 Introduction
	2 Related Work
	3 Aims and Opportunities of Our Work
	4 The Audio Mixing Domain
	4.1 Domain Knowledge
	4.2 Initial Knowledge Modelling

	5 Prototype Implementation
	5.1 Using GATE for Natural Language Query Processing
	5.2 CBR Engine Modelling
	5.3 Audio Advisor at Work

	6 Experiments and Evaluation
	6.1 Setup of the Experiments
	6.2 Evaluation

	7 Summary and Outlook
	References

	An Agent Based Framework for Multiple, Heterogeneous Case Based Reasoning
	1 Introduction
	2 Multiple, Heterogeneous Case Based Reasoning Framework
	2.1 MHCBR Employing Intelligent Agents and Blackboard Communication Architecture
	2.2 Similarity Measures Used in MHCBR
	2.3 MHCBR Agents Confidence and Trust

	3 Experiments and Evaluation
	3.1 The ProMHCBR System
	3.2 First MHCBR Approach: Treating All Agents the Same
	3.3 Introducing Agent Confidence
	3.4 Applying Agent Trust
	3.5 Finding Out If Agents Are Specialised
	3.6 Predicting a Property Price

	4 Conclusions and Future Work
	References

	Learning-Based Adaptation
for Personalized Mobility Assistance
	1 Introduction
	2 Collaborative Navigation System
	3 Robot Adaptation to User
	3.1 CBR-Based Collaborative Control
	3.2 CBR Implementation

	4 Experiments and Results
	4.1 A Case in Detail

	5 Conclusions and Future Work
	References

	Biological Solutions for Engineering Problems: A Study in Cross-Domain Textual Case-Based Reasoning
	1 Introduction
	2 Background
	2.1 Related Research

	3 Human-Centered TCBR in the Context of BID
	3.1 Characteristics
	3.2 Challenges

	4 Addressing the Challenges of TCBR
	5 Biologue
	6 Findability Study
	7 Recognizability Study
	8 Conclusions
	References

	Similarity Measures to Compare Episodes in Modeled Traces
	1 Introduction
	2 Similarity Measures for Sequential Data
	2.1 Methods for Defining Similarity Measures
	2.2 Similarity Measures in the Case-Based Reasoning Field

	3 M
-Traces Definitions and Formal Representation
	3.1 Trace Model Definition $(M_
T)$
	3.2 M
-Trace Definition
	3.3 Obsel Definition
	3.4 What Is an Episode?

	4 Similarity Measures between Obsels
	4.1 Obsel Type Similarity simobstype$
(c_1, c_2)$
	4.2 Attribute Similarity simobsattr $(Ao_1,Ao_
2)$
	4.3 Obsel User Similarity simobsuser$(u_1, u_
2)$
	4.4 Obsel Timestamp Similarity

	5 Similarity between Episodes
	5.1 The M
-Trace Smith-Waterman Algorithm
	5.2 Example
	5.2 Example

	6 Implementation and Evaluation
	7 Conclusion
	References

	Author Index

