
On Algorithmic Strong Sufficient Statistics

Nikolay Vereshchagin�

Department of Mathematical Logic and the Theory of Algorithms,
Faculty of Mechanics and Mathematics, Lomonosov Moscow State University,

Leninskie gory 1, Moscow 119991, Russia
ver@mccme.ru

Abstract. The notion of a strong sufficient statistic was introduced in
[8]. In this paper, we give a survey of nice properties of strong sufficient
statistics and show that there are strings for which complexity of every
strong sufficient statistic is much larger than complexity of its minimal
sufficient statistic.

1 Introduction

Sufficient Statistics. Let x be a binary string. A finite set A ⊂ {0, 1}∗ is called
an (algorithmic) sufficient statistic for x if x ∈ A and the sum of the Kolmogorov
complexity1 of A and the binary logarithm of the cardinality of A is close to the
Kolmogorov complexity of x:

C(A) + log |A| ≈ C(x).

More specifically, we call A an ε-sufficient statistic for x if the left hand side
exceeds the right hand side by at most ε. We do not require the inverse inequality,
as it holds with precision O(logC(x)) anyway.

For every x the singleton {x} is an O(1)-sufficient statistic for x. The com-
plexity of this statistic is about C(x). If x is a random string of length n (that
is, C(x) ≈ n) then there is a O(log n)-sufficient statistic for x of much lower
complexity: the set of all strings of length n, whose complexity is about logn, is
a O(log n)-statistic for x. We shall think further of ε as having the order O(log n)
and call such values negligible.

Sufficient Statistics and Useful Information. Sufficient statistics for x are
usually thought to capture all the “useful” information from x. The explanation
is the following. Let A be a sufficient statistic for x. One can show that in this
case both the randomness deficiency log |A| − C(x|A) of x in A and C(A|x)
are negligible.2 Let z be the binary notation of the ordinal number of x in A

� The work was in part supported by the RFBR grant 12-01-00864 and the ANR grant
ProjetANR-08-EMER-008.

1 Kolmogorov complexity of finite subsets of {0, 1}∗ is defined as follows. We fix any
computable bijection B �→ [B] from the family of all finite subsets of {0, 1}∗ to the
set of binary strings, called an encoding. Then we define C(A) as the complexity
C([A]) of the code [A] of A.

2 C(x|A) and C(A|x) are defined as C(x|[A]) and C([A]|x), respectively, where A �→
[A] is a fixed computable encoding of sets by strings (see the previous footnote).
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(with respect to the lexicographical order on A). As C(A|x) is negligible, both
conditional complexities C(x|A, z) and C(A, z|x) are also negligible.3 Speaking
informally, the two part code (A, z) of x has the same information as x itself,
and its second part z is a string of length log |A| that is random conditional to
its first part A. (Indeed, C(z|A) is up to an additive constant equal to C(x|A),
which is close to log |A|.) This encourages us to qualify z as an accidental in-
formation (noise) in the pair (A, z), and hence in x. In other words, all useful
information from x is captured by the set A.

Minimal Sufficient Statistics. If x has a sufficient statistic A of complexity i
and log-cardinality j (so that i+j ≈ C(x)) then for every k � j it has a sufficient
statistic B of complexity i + k and log-cardinality j − k (this statement is true
with logarithmic precision; the complexity of B is actually i+k+O(log j)). This
was observed in [3,2,5]: the set B is obtained by partitioning A into subsets of
size at most 2j−k and considering the part containing x. Thus the most valuable
sufficient statistic is the one that has smallest complexity and largest cardinality.
Such statistics are informally called minimal sufficient statistics, MSS, for x.
MSS for x are often considered as the models extracting all useful information
from x and having no noise.

When trying to define the notion of an MSS formally, we face the following
problem: for certain strings x a negligible increase in εmay cause a large decrease
of the minimal complexity of ε-sufficient statistics for x. For such x it is not clear
which value of ε to choose in the definition of ε-sufficient statistic and the notion
of MSS cannot be defined in a meaningful way. In this paper we shall focus on
strings for which this is not the case. To define more carefully what it means,
consider for a given string x its structure set Px. It consists of all pairs (i, j) of
natural numbers for which x has an (i, j)-description, where an (i, j)-description
is any set A � x with C(A) � i and log |A| � j. The boundary of Px is the graph
of the function hx(i) = min{j | (i, j) ∈ Px}, called the structure function of x.
For every x the boundary of Px lies above the sufficiency line (with logarithmic
precision), which by definition consists of all pairs (i, j) with i + j = C(x)
(the dash line on Fig. 1). Sufficient statistics correspond to those pairs (i, j)
from Px that are close to the sufficiency line. We shall say (quite informally)
that a string x has an MSS, if there is a natural i with hx(i) ≈ C(x) − i
and hx(i

′) � C(x) − i′ for all i′ which are “significantly less” than i. Notice
that by observation from [3,2,5] mentioned above, in this case we also have
hx(i

′) ≈ C(x)− i′ for all i � i′ � C(x) (with logarithmic precision).

Example 1. Let y be a string whose structure function hy leaves the sufficiency
line at the point (C(y), 0) (so that {y} is essentially the only sufficient statistic

3 C(x|A, z) is defined as C(x|[[A], z]), where (x, y) �→ [x, y] is a computable bijec-
tion between pairs of strings and strings; the notation C(A, z|x) is understood in a
similar way.
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Fig. 1. The structure function hx. The complexity and log-cardinality of minimal suf-
ficient statistics for x are i and j, respectively.
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Fig. 2. The sets Py and Px

for y), see Fig. 2(a).4 Let x = [y, z], where z is a string of length m that is
random conditional to y (that is, C(z|y) ≈ m). Intuitively, x is obtained from
y by adding m bits of noise and y captures all useful information from x. One
can show ([8]) that the set Px looks as drawn on Fig. 2(b).5 Consider the set
A = {[y, z′] | |z′| = m} as a model for x. This model is a (C(y) +O(logm),m)-
description of x and hence an MSS for x. The information in A is almost the

4 One can show ([7]) that for every decreasing function h : {0, 1, . . . , k} → N with
h(0) � n and h(k) = 0 there is a string y of length n for which the boundary of the
set Py is at the distance at most O(log n) from the graph of h.

5 More specifically, the set Px is O(ε+ log(C(x) +m+ j))-close to the set

{(i, j) | (j � m ⇒ i+ j � C(x)) ∧ (j � m ⇒ (i, j −m) ∈ Px)}.
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same as in y, which supports the viewpoint that an MSS for x captures all useful
information in x.

Universal Sufficient Statistics. However, as discovered in [2,7], for every
string x that has an MSS there is an MSS that can hardly be considered as a
denoised version of x. To find such an MSS, fix an algorithm A that for input
k enumerates (in some order) all strings of complexity at most k. Let Nk stand
for the number of such strings and let Nk = 2j1 + 2j2 + · · · + 2js be its binary
expansion, where j1 > j2 > · · · > js. Partition the list of strings enumerated by
A(k) into 2j1 first enumerated strings, 2j2 strings enumerated after them and so
on. Let Sk,j1 , Sk,j2 , . . . , Sk,js denote the obtained parts.

By definition |Sk,j | = 2j and it is not hard to show that C(Sk,j) � k − j +
O(log k). Let k = C(x). Consider the part where x goes, i.e., find j such that x be-
longs to Sk,j . In this case Sk,j is a sufficient statistic for x, as C(Sk,j)+log |Sk,j | �
(k − j + O log k)) + j ≈ C(x). One can show ([7]) that for every x which has
an MSS, for some k close to C(x) and for some j the set Sk,j is an MSS for x.
This fact is discouraging, because the family Sk,j has only two parameters k, j.
It implies that for all strings x from Example 1 there are k, j such that the set
Sk,j is also an MSS for x (where k ≈ C(x) ≈ C(y) +m and j ≈ m). Intuitively
Sk,j has no information about x, and on the other hand one can show that both
conditional complexities C(Sk,j |y) and C(y|Sk,j) are negligible. (See [7,8] for
more details.)

Total Conditional Complexity. Thus we have to explain why it happens that
the good model A from Example 1 has the same information as the bad model
Sk,j . Also we would like to identify a property of MSS allowing to distinguish
between good and bad models, such as the model A from Example 1 and the
model Sk,j .

The first question is easy to answer: our definition of “having the same infor-
mation” is too broad, we implicitly assumed that u and v have the same infor-
mation, if both C(u|v) and C(v|u) are negligible. Under this assumption every
string x has the same information as its shortest description x∗. In the context
of separating the information into a useful one and an accidental one, such an
assumption is certainly misleading. Indeed, the entire information in x∗ (which
is a random string) is noise, while x may have useful information. In algorithmic
statistics, it is more helpful to think that u and v have the same information
only if total conditional complexities CT(u|v) and CT(v|u) are negligible. The
total conditional complexity CT(u|v) is defined as the minimal length of a total
program p for u conditional to v: CT(u|v) = min{|p| | U(p, v) = u and U(p, z)
halts for all z} (here U is the universal Turing machine). The total conditional
complexity can be much greater than the ordinary one [6].6 If both CT(u|v) are
6 In particular, in the full version of the paper we shall show that for all n there is
string x of length n with CT(x|p) � n/3 − O(1) for every shortest description p
of x. Moreover, this inequality holds for every description p of x of length at most
C(x) + n/3. On the other hand, by a result of [1], for every x of length n there is a
description p of x with CT(p|x) = O(log n) and |p| � C(x) +O(1).
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CT(v|u) are negligible, then their structure sets Pu and Pv are close to each
other and u, v have similar algorithmic-statistical properties. We shall call such
strings equivalent in the sequel.

Strong Sufficient Statistics and Their Nice Properties. To distinguish
between good and bad models, the paper [8] introduced a notion of a strong
sufficient statistic. We call A � x a strong statistic (or model) for x if CT(A|x) is
negligible. (We do not assume that A is a sufficient statistic.) As we mentioned,
the sufficiency requirement implies only that ordinary (not total) conditional
complexity C(A|x) is negligible. That is, not all sufficient statistics are strong
(later we shall prove that). More specifically, we call A an ε-strong model for x if
CT(A|x) � ε and we call A an ε-good model for x if A is ε-strong and ε-sufficient
for x. We call (quite informally) a set A a strong MSS for x if A is an MSS for
x and A is a strong model for x.

It easy to see that A is a strong model for x iff both total complexities
CT(x|A, z), CT(A, z|x) are negligible, where z is the ordinal number of x in
A. Indeed, given the pair (A, z) we can find x by means of a short total program
(even if A is not strong). Conversely, if A is a strong statistic for x, then from
x we can compute A by means of a short total program and then compute the
ordinal number of x in A.

Strong sufficient statistics have the following nice properties.
(a) The model A from Example 1 is a strong MSS for x Indeed, given x

we can find A by a constant length total program that maps [y, z] to the set
{[y, z′] | |z′| = |z|}. That is, x has a strong MSS if and only if x is equivalent to
a string of the form specified in Example 1.

(b) Strong MSS are unique in the following sense: if both A,B are strong MSS
for x, then CT(A|B) ≈ CT(B|A) ≈ 0 [8, Theorem 6]. We state here the result
in a highly informal way, for the precise statement see [8].

(c) Good statistics satisfy the observation from [3,2,5]: If x has a good statistic
A of complexity i and log-cardinality j, then for every k � j it has a good statis-
tic B of complexity i+ k and log-cardinality j − k (with logarithmic precision):
again, the set B is obtained by partitioning A into subsets of size at most 2j−k

and considering the part containing x.

Our Result. Recall that one of the goals of introducing the notion of a strong
MSS is to separate MSS from Example 1 from MSS of the form Sk,j . We con-
jecture that this is true: there are strings x that have ε-strong MSS but have
no ε-strong MSS of the form Sk,j for some ε = Ω(|x|). In this paper we answer
another question left open in [8]: is it true that every string that has an MSS
has also a strong MSS? We show that this is not the case: there are strings that
have MSS but all their strong sufficient statistics have much larger complexity
than that of their MSS.

2 Results

Our results establish the existence of strings x that have an MSS but all their
strong sufficient statistics have much larger complexity than that of their MSS.
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Recall that Px denotes the set of all pairs (i, j) such that x has an (i, j)-
description, that is, x belongs to a set A with C(A) � i and log |A| � j. Define
a similar set P l

x for l-strong models. By definition P l
x consists of all pairs (i, j)

such that x has an l-strong i, j-description:

P l
x = {(i, j) | (∃A � x) C(A) � i, log |A| � j, CT(A|x) � l}.

Our main result, Theorem 1, gives an example of a string x when the set of all
explanations and good explanations differ in a maximal possible way: the sets Px

and P l
x are shown on Fig. 3. The complexity of every l-strong sufficient statistic

for x (for some non-negligible l) is at least (about) j bits more than that of its
MSS, which is about i. This is the best separation possible, as the singleton {x}
is an O(1)-strong sufficient statistic of complexity about C(x) for every x, and
in our case C(x) is about j bits more than i.

Theorem 1. Assume that integer numbers i, j satisfy the inequality i+j � n−4.
Then there is a string x of length n and complexity i+ j+O(log n) such that (a)
(i+O(log n), j) ∈ Px, (b) (i, n− i− 4) /∈ Px and (c) (i+ j, n− i− j − 4) /∈ P i

x.

Item (a) of Theorem 1 is responsible for the right slanted segment of the bound-
ary of Px and item (b) is responsible for the left slanted segment of the boundary
of Px. Item (c) is responsible for the graph of P l

x for any O(log n) � l � i.
Let (say) in Theorem 1 i = j = n/3. Then the string x existing by the theorem

has an MSS of complexity n/3 while all n/3-strong n/3-sufficient statistics for
x have complexity at least 2n/3.

Theorem 1 does not say anything about how rare are such strings x. Such
strings are rare, as for majority of strings x of length n the set {0, 1}n is a
strong MSS for x. A more meaningful question is whether such strings might
appear with high probability in a statistical experiment. More specifically, as-
sume that we sample a string x in a given set A ⊂ {0, 1}n, where all elements
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are equiprobable. Might it happen that with high probability (say with proba-
bility 99%) x has an MSS but has no strong MSS? An affirmative answer to this
question is given in the following

Theorem 2. Assume that integer i, j, k satisfy the inequalities

i+ j � n− 4, k � j.

Then there is set A ⊂ {0, 1}n of cardinality 2j and complexity at most i+O(k+
logn) such that all but 2j−k its elements x have complexity i+ j +O(k + logn)
and have neither i, (n− i − 4)-descriptions nor i-strong (i + j), (n − i − j − 4)-
descriptions.

If k = logn, say, then the set A is an MSS for a majority of its elements. Indeed,
the structure set of all but |A|/n elements from A has the shape shown on
Fig. 3(a). On the other hand, for those elements the set P l

x (for any O(log n) �
l � i) has the shape shown on Fig. 3(b).

Remark 1. Theorem 2 brings up the following questions. Imagine that somebody
suggests a set A as a “statistical explanation” for the data x (that belongs to
A). What properties of A are required to make this explanation reasonable? For
example, do we want that A is a sufficient statistics for most of its elements? Do
we want A to be simple (in the sense of normal conditional complexity or the
total one) conditional to every its element? We think that defining the notion of
a “reasonable explanation” one should be most restrictive, as far as every model
as in Example 1 satisfies the restrictions. More specifically, we would call an
MSS A a “reasonable explanation” for x if there is a short total program p that
maps every x′ ∈ A to [A]. That is, the total conditional complexity of [A] given
any element of A is low in a uniform way. (This implies that A is a sufficient
statistics for most of its elements.) This requirement is not that strong as one
could think. Indeed, assume that A is a strong MSS for x and p a short total
program with U(p, x) = [A]. Then the model A′ = {x′ ∈ A | U(p, x′) = [A]} is
an MSS for x that is a “reasonable explanation” in this sense. Indeed, here is a
total program of length about |p| that transforms any x′ ∈ A′ to [A′]: given x′

apply p to x′ to find A and return the code of the set consisting of all x′′ ∈ A
with U(p, x′′) = [A].

Proofs of Theorems 1 and 2. We start with the following observation.

Lemma 1. Assume that A is an i-strong statistic for a string x of length n. Let
y = [A] be the code of A. Then y has an (i+O(log n), n)-description.

Proof. Let p be a string of length at most i such that U(p, x) is defined for all
strings x of length n. Consider the set {U(p, x) | x ∈ {0, 1}n}. Its cardinality
is at most 2n and complexity at most i + O(log n). If CT(y|x) � i for some
x ∈ {0, 1}n then there is p such that y belongs to such a set and hence y has a
(i+O(log n), n)-description.
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By Lemma 1, to prove Theorem 1 it suffices to find a set A ⊂ {0, 1}n with
(a) C(A) � i+ O(log n), log |A| � j
which is not covered by sets from the following three families:
(b) the family B consisting of all sets B ⊂ {0, 1}∗ with with C(B) � i, log |B| �
n− i− 4,
(c) the family C consisting of all sets M with C(M) � i+j, log |M | � n−i−j−4
whose code [M ] has a (i+O(log n), n)-description, and
(d) the family D consisting of all singletons sets {x} where C(x) < i+ j.
As x we can take any non-covered string in A. Notice that item (a) implies that
the complexity of x is at most i + j + O(log n), and item (d) implies that it is
at least i+ j.

A direct counting reveals that the family B ∪ C ∪ D covers at most

2i+12n−i−4 + 2i+j+12n−i−j−4 + 2i+j � 2n−3 + 2n−3 + 2n−4 < 2n−1

strings and hence at least half of all n-bitstrings are non-covered. However we
cannot let A be any 2j-element non-covered set of n-bitstrings, as in that case
C(A) could be large.

We first show how to find A, as in (a), that is not covered by B ∪D (but may
be covered by C). This is done using the method of [7]. To construct A notice
that both the families B and D can be enumerated given i, j, n by running the
universal machine U in parallel on all inputs. We start such an enumeration and
construct A “in several attempts”. During the construction we maintain the list
of all strings covered by sets from B∪D enumerated so far. Such strings are called
marked. Initially, no strings are marked and A contains the lexicographic first 2j

strings of length n. Each time a new set B ∈ B appears, all its elements receive a
b-mark and we replace A by any set consisting of 2j yet non-marked n-bitstrings.
Each time a new set {x} in D appears, the string x receives a d-mark, but we
do not immediately replace A. We do that only when all strings in A receive
a d-mark, replacing it by any set consisting of 2j yet non-marked n-bitstrings.
The above counting shows that such replacements are always possible.

The last version of A (i.e., the version obtained after the last set in B ∪ D
have appeared) is the sought set. Indeed, by construction |A| = 2j and A is
not covered by sets in B ∪ D. It remains to verify that C(A) � i + O(log n).
This follows from the fact that A is replaced at most O(2i) times, and hence
can be identified by the number of its replacements and i, j, n (we run the above
construction of A and wait until the given number of replacements are made).

Why is A replaced at most O(2i) times? The number of replacements caused
by appearance of a new set B ∈ B is at most 2i+1. The number of strings with a
d-mark is at most 2i+j and hence A can be replaced at most 2i+j/2j = 2i times
due to receiving d-marks.

Now we have to take into account strings covered by sets from the family C.
We cannot modify the above arguments just by putting a c-mark on all strings
from each set C enumerated into C. Indeed, up to 2n−4 strings may receive a
c-mark, and hence A might be replaced up to 2n−j−4 times due to c-marks.

We change the construction of A as follows. First we represent C as an inter-
section of two families, C′ and C′′. The first family C′ consists of all sets M with
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C(M) � i+ j and the second family C′′ of all sets C with log |C| � n− i− j − 4
whose code [C] has a (i+O(log n), n)-description. The first family is small (less
than 2i+j+1 sets) and the second family has only small sets (at most 2n−i−j−4-
element sets) and is not very large (|C′′| = 2O(n)). Both families can be enu-
merated given i, j, n and, moreover, the sets from C′′ appear in the enumeration
in at most 2i+O(logn) portions. Due to this property of C′′ we can update A
each time a new portion of sets in C′′ appears—this will increase the number of
replacements of A by 2i+O(log n), which is OK.

The crucial change in construction is the following: each time A is replaced,
its new version is not just any set of 2j non-marked n-bitstrings but a carefully
chosen such set: we choose any such set that has at most O(n) common strings
with every set from the part of C′′ enumerated so far. (We shall show later that
such a set always exists.)

Why does this solve the problem? There are two types of replacements of A:
those after enumerating a new set in B or a new bunch of sets in C′′ and those
after all elements in A have received c- or d-marks. The number of replacement
of the first type is at most 2i+O(logn). Replacements of the second type are
caused by enumerating new singleton sets in D and enumerating new sets C in
C′ which were enumerated into C′′ on earlier steps. Due to the careful choice of
A, when each such set C appears in the enumeration of C′ it can mark only O(n)
strings in the current version of A. The total number of sets in C′ is at most
2i+j+1. Therefore the total number of events “a string in the current version of
A receives a c-mark” is at most O(n2i+j). The total number of d-marks is at
most 2i+j . Hence the number of replacements of the second type is at most

(O(n2i+j) + 2i+j)/2j = O(n2i).

Thus it remains to show that we indeed can always choose A, as described above.
This will follow from a lemma that says that in a large universe one can always
choose a large set that has a small intersection with every set from a given small
family of small sets.

Lemma 2. Assume that a finite family C of subsets of a finite universe U is
given and each set in C has at most s elements. If

|C|
(

N

t+ 1

)(
s

|U | − t

)t+1

< 1

then there is an N -element set A ⊂ U that has at most t common elements with
each set in C.
Proof. To prove the lemma we use probabilistic method. The first element a1
of A is chosen at random among all elements in U with uniform distribution,
the second element a2 is chosen with uniform distribution among the remaining
elements and so forth.

We have to show that the statement of the theorem holds with positive prob-
ability. To this end note that for every fixed C in C and for every fixed set of



On Algorithmic Strong Sufficient Statistics 433

indexes {i1, . . . , it+1} ⊂ {1, 2, . . . , N} the probability that all ai1 , . . . , ait+1 fall

in C is at most
(

s
|U|−t

)t+1

. The number of sets of indexes as above is
(

N
t+1

)
. By

union bound the probability that a random set A does not satisfy the lemma is
upper bounded by the left hand side of the displayed inequality.

We apply the lemma for U consisting of all non-marked n-bitstrings, N = 2j

and C consisting of all sets in C′′ appeared so far. Thus we need to show that for
some t = O(n) it holds

2O(n)

(
2j

t+ 1

)(
2n−i−j−4

2n−1 − t

)t+1

< 1,

which easily follows from the inequality
(

2j

t+1

)
� 2j(t+1). Theorem 1 is proved.

Theorem 2 is proved similarly to Theorem 1. The only difference that we
change A each time when at least 2j−k strings in A receive c- or d-marks. As
the result, the number of changes of A will increase 2k times and the complexity
of A will increase by k.

Acknowledgments. The author is sincerely grateful to anonymous referees for
helpful comments, especially for the questions discussed in Remark 1.

References

1. Bauwens, B., Makhlin, A., Vereshchagin, N., Zimand, M.: Short lists with short
programs in short time. ECCC report TR13-007,
http://eccc.hpi-web.de/report/2013/007/
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