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Abstract. The fermionant Fermk
n(x̄) =

∑
σ∈Sn

(−k)c(π) ∏n

i=1 xi,j can
be seen as a generalization of both the permanent (for k = −1) and the
determinant (for k = 1). We demonstrate that it is VNP-complete for
any rational k � 1. Furthermore it is #P -complete for the same values of
k. The immanant is also a generalization of the permanent (for a Young
diagram with a single line) and of the determinant (when the Young
diagram is a column). We demonstrate that the immanant of any family
of Young diagrams with bounded width and at least nε boxes at the right
of the first column is VNP-complete.

1 Introduction

In algebraic complexity (more specifically Valiant’s model[2]) one of the main
question is to know whether VP = VNP or not. Answering this is considered
to be a very good step towards the resolution of P = NP . This question is very
close to the question per vs. det, where we ask if the permanent can be computed
in polynomial time in the size of the matrix, as is the determinant.

The main idea of this paper is to find a generalization of both the permanent
and the determinant in order to study exactly where the difference between
them lies. A generalization is here understood as a parameter, let us say t, and
a function f(t, x̄) such that for example f(0, x̄) = det(x̄) and f(1, x̄) = per(x̄).
If we have a complete classification of the complexity of f(t, x̄) for any t (with
t fixed), we should be able to see where we step from VP to VNP and maybe
understand a little bit more why the permanent is hard and not the determinant.

Here we study two different generalizations. First the fermionant, secondly
the immanant. The fermionant was introduced by Chandrasekharan and Wiese
[3] in 2011 in a context of quantum physics. It is defined with a real parameter
k such that for k = 1 it is the determinant and for k = −1 it is the permanent.
Mertens and Moore [7] have demonstrated its hardness for k ≥ 3 (and with a
weaker hardness for k = 2), in the framework of counting complexity.

Likewise, but in a different framework and with a complete different proof,
we demonstrate the hardness of the fermionant seen as a polynomial for any
rational k � 1 (and of course for k � 0). This give a interesting point of view
on where the hardness of the permanent lies. We also get a bonus: we use a
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technique developed by Valiant to demonstrate the hardness of the fermionant
in the counting complexity framework for k � 1. We thus extend the results of
Mertens and Moore [7], in particular to the case k = 2, which is, from what I
understand, the most interesting case for physicists.

The second generalization is more classical and comes from the field of group
representation. It is the immanant, introduced by Littlewood [6] in 1940. Im-
manants are families of polynomials indexed by Young diagrams. If the Young
diagrams are a single column with n boxes, the immanant is the determinant. At
the opposite end, if it is a single line of n boxes, the immanant is the permanent.
The main question is: for which Young diagrams do we step from VP to VNP?

We know that if there are only a finite number of boxes on the right of the
first column, the immanant is still in VP (cf [2]). On the other hand, a few
hardness results have been found, fundamentally for Young diagrams in which
the permanent is hidden. For example, the hook (a line of n boxes and a column
of any number of boxes) and the rectangle (any number of lines each with n
boxes) are hard (cf [2]), or more generally if the maximal difference between the
size of two consecutive lines is as big as a power of n (cf [1]).

Here we shall demonstrate that for Young diagrams with only two columns,
each with n boxes, the immanant is hard, which was an open question (cf [2]
Problem 7.1). As each line of these Young diagrams has length no more than two,
the permanent is not hidden in there. More generally for any family of Young
diagrams with a bounded number of columns and with at least nε boxes at the
right of the first column, the immanant is hard. It has been conjecture that it is
still hard if we remove the bounded condition(cf [7] for example).

For a complete classification of the immanant in algebraic complexity, one
"just" has to determine the complexity of the ziggurat: the Young diagrams
where the first line has n boxes, the second n − 1, the third n − 2 etc. and the
last 1 box. This immanant is most probably also hard. The complexity of the
immanant with a logarithmic number of boxes to the right of the first column is
also unknown.

2 Definitions

We work within Valiant’s algebraic framework. Here is a brief introduction to
this complexity theory. For a more complete overview, see [2].

An arithmetic circuit over Q is a labeled directed acyclic connected graph
with vertices of indegree 0 or 2 and only one sink. The vertices with indegree 0
are called input gates and are labeled with variables or constants from Q. The
vertices with indegree 2 are called computation gates and are labeled with × or
+. The sink of the circuit is called the output gate.

The polynomial computed by a gate of an arithmetic circuit is defined by
induction: an input gate computes its label; a computation gate computes the
product or the sum of its children’s values. The polynomial computed by an
arithmetic circuit is the polynomial computed by the sink of the circuit.
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A p-family is a sequence (fn) of polynomials such that the number of variables
as well as the degree of fn is polynomially bounded in n. The complexity L(f)
of a polynomial f ∈ Q[x1, . . . , xn] is the minimal number of computational gates
of an arithmetic circuit computing f from variables x1, . . . , xn and constants
in Q.

Two of the main classes in this theory are: the analog of P, VP, which contains
of every p-family (fn) such that L(fn) is a function polynomially bounded in n;
and the analog of NP, VNP. A p-family (fn) is in VNP iff there exists a VP
family (gn) such that for all n,

fn(x1, . . . , xn) =
∑

ε̄∈{0,1}n

gn(x1, . . . , xn, ε1, . . . , εn)

As in most complexity theory we have a notion of reduction, the c-reduction:
the oracle complexity Lg(f) of a polynomial f with oracle access to g is the
minimum number of computation gates and evaluations of g over previously
computed values that are sufficient to compute f from the variables x1, . . . xn and
constants from Q. A p-family (fn) c-reduces to (gn) if there exists a polynomially
bounded function p such that Lgp(n)(fn) is a polynomially bounded function.

VNP is closed under c-reductions (See [8] for an idea of the proof). However
this reduction does not distinguish lower classes. For example, 0 is VP-complete
for c-reductions. In this paper we shall demonstrate hardness results, a smallest
notion of reduction (as projection) is thus not needed.

The determinant is in VP. The permanent is VNP-complete for c-reductions
([2]).

3 The Fermionant

Let A be an n × n matrix. The fermionant of A, with parameter k is defined as

FermkA = (−1)n
∑

π∈Sn

(−k)c(π)
n∏

i=1
Ai,π(i)

where Sn denotes the symmetric group of n objects and, for any permutation
π ∈ Sn, c(π) denotes the number of cycles of π. To study the complexity of
such a function, we work within the algebraic complexity framework. The al-
gebraic equivalent of the fermionant is the polynomial obtain where we com-
pute the fermionant on the matrix (xi,j)1≤i,j≤n. If we write Fermk the p-family
(Fermk

n)n∈N, we have a complete classification of the algebraic complexity of
those polynomials.

Theorem 1. Let k be a rational.

– Ferm0 = 0.
– Ferm1 is in VP
– for other values of k Fermk is VNP-complete for c-reductions.



90 N. de Rugy-Altherre

Similarly to the permanent we can see the fermionant as a computation on a
graph G with n vertices and the edge between the vertices i and j is labeled
with the variable xi,j . A permutation π ∈ Sn can be seen as a cycle cover on
this graph. A cycle cover of G is a subset of its edges that covers all vertices of
G and that form cycles. The weight of a cycle cover π is ω(π) =

∏
e∈π xe and

we write c(π) its number of cycles, then

Fermk(x̄) =
∑

π∈CC(G)

(−k)c(π)
∏

e∈π

xe

where CC(G) is the set of all cycle covers of G. We shall use a so call iff-gadget,
which is the labeled graph draw above. The idea of this gadget is when placed
between two edges e and e′ on G, any cycle cover containing exactly one of the
edges e and e′ will not contribute to the fermionant computed on the resulting
graph.

iff-gadget for the fermionant

u’ p1 v’

u p2 p3 v

e
′

ω(e
′)

c
′
+

e

ω(e)

c+

1
2

−

1
2

−

1
k

1
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1
k

−

1
k

Lemma 1. Let G be a graph with n vertices and (ei
1, ei

2)1≤i≤l be a set of pairs
of edges of G such that no two edges in this set are equal. Let G′ be the same
graph but where we place an iff-gadget between every pair (ei

1, ei
2). Let π be a

cycle cover of G, Π(π) be the set of cycle covers of G′ that match π on E(G).

– If there is a pair (ei
1, ei

2) of edges such that ei
1 ∈ π and ei

2 � π, or vice versa,
then ∑

π′∈Π(π)

(−k)c(π′)ω(π′) = 0

– Else, let d(π) be the number of pair (ei
1, ei

2) of edges such that ei
1 � π and

ei
2 � π. Then

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)d(π)

(−k)c(π)ω(π)
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The proof is not given here, it is in color in the full version of the paper. Now
here is the main tool of our demonstration, that allows us to interpolate the
fermionant and compute the permanent.

Lemma 2. Let G be a graph with n vertices. We make l copies of G and name
them G1, . . . , Gl. Let F̃ l be the disjoint union of those copies in which we label
the edges of G1 with the same weight as those of G and the edges of Gi for i ≥ 2
with 1. If e is an edge of G, we call ei the corresponding edge in Gi. We name
F l the graph F̃ l where for any edge e ∈ E(G) and any 1 ≤ i ≤ l, we have placed
an iff-gadget between ei and ei+1. Let π be a cycle cover of G and Π(π) be the
set of cycle covers of F l that match π on E(G1). Then

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)(|E(G)|−n)(l−1)

(−k)l×c(π) ω (π)

Proof. The idea is, with the help of the iff-gadget, to copy a cycle cover from G1
to every other copies of G, without changing the weight of this cycle cover, just
multiplying the number of cycles. The demonstration is by induction on l.

If l = 2, then we simultaneously add |E(G)| iff-gadgets, but only one on each
edge. By design, a cycle cover π on G1 is repeated on G2 (i.e., if e1 is in π then
e2 is also in π as there is a iff-gadget between e1 and e2. see Lemma 1). The
edges of G2 are labeled with 1 and therefore do not contribute to the weight
of the cycle cover. The number of cycles of π′ ∈ Π(π) is twice the number of
cycles of π. There is |E(G)| iff-gadgets in F 2. A cycle cover of G passes through
n edges and therefore activates exactly n iff-gadgets. The other iff-gadgets are
not activated and thus each contribute 1

2 (1 − k) to the sum.
Suppose the lemma true for l − 1 copies. Let F l−1 be the disjoint union of

l − 1 copies of G with iff-gadgets. We add a new copy Gl of G linked to F l−1

with iff-gadgets to obtain F l. Let π be a cycle cover of G, Π l(π) the set of every
cycle covers of F l that match π on E(G1) and Π l−1(π) the same but on F l−1.
By induction,

∑

π′∈Πl−1(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)(|E(g)|−n)(l−2)

(−k)(l−1)×c(π)ω(π)

Let F̂ l be the disjoint union of F l−1 and Gl. To obtain F l from this graph, one
has just to add a iff-gadget between every edge el−1 and el. We can apply then
Lemma 1 to this graph. If π′′ is a cycle cover of F̂ l that match π on G1, let
Λ(π′′) be the set of cycle covers of F l that match π′′ on E(F̂ l). Then, if we call
d(π′′) the number of pairs (el−1, el) that are not in π′′,

∑

λ∈Λ(π′′)

(−k)c(λ)ω(λ) =
(

1
2

(1 − k)
)d(π′′)

(−k)c(π′′)ω(π′′)
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Let us study a little bit more π′′. It is a cycle cover of two disjoint graphs, F l−1

and Gl. Therefore it is composed of two sub cycle covers: σ′ a cycle cover of
F l−1 which by induction is in a Π l−1(π) and a cycle cover λ of Gl. However, as
every edge of Gl is linked with an iff-gadget to its image in Gl−1 in F l, the cycle
cover π′′ will contribute to the last sum if and only if it contain both el−1 and
el, or neither el−1 and el. Thus, λ must be the copy of π in Gl, which we write
λπ and c(π′′) = c(σ) + c(λπ) = c(σ) + c(π).

There are n edges in the last image Gl that are passed through by π′′.
Therefore, there are (|E(G)| − n) iff-gadgets that are not activated by π′′ (i.e.,
d(π′′) = |E(G)| − n). Thus,

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
∑

π′′∈Πl(π)

∑

λ∈Λ(π′′)

(−k)c(λ)ω(λ)

=
∑

π′′∈Πl(π)

(
1
2

(1 − k)
)|E(G)|−n

(−k)c(π′′)ω(π′′)

=
(

1
2

(1 − k)
)|E(G)|−n

(−k)c(λπ)
∑

σ∈Πl−1(π)

(−k)c(σ)ω(σ)

=
(

1
2

(1 − k)
)(|E(G)−n)×(l−1)

(−k)l×c(π)ω(π)

Where Π(π) is the set of cycle covers of F l that match π on E(G); Π l(π) the
set of cycle covers of F̃ l that match π on E(G) and for π′′ ∈ Π l(π), Λ(π′′) the
set of cycle covers that match π′′ on E(F̃ l). We have Π(π) =

⋃
π′′∈Πl(π) Λ(π′′)

which completes our demonstration.
�

Proof of Theorem 1. The first case is trivial. For the second, it is a well known
result, as Ferm1

n(x̄) = detn(x̄). Now, let k be a rational different than 0 and 1.
Let us write (PlG) the graph obtained in the previous lemma, when we dupli-

cate l times G and add iff-gadgets to repeat every cycle cover l times. We have
seen that

Fermk
ln(PlG)(x̄) =

∑

π∈CC(G)

(−k)l×c(π)
∏

e∈π

ω(e)
(

1
2

(1 − k)
)(l−1)×(|E(G)|−n)

Let us write cm =
∑

π∈CC(G)|c(π)=m

∏
e∈π ω(e), α =

( 1
2 (1 − k)

)|E(G)|−n, fl =
Fermk

ln(Pl(G)) and ωl = (−k)l, then
⎛

⎜
⎜
⎜
⎝

f1
f2
...

fn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

α 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ω1 ω2
1 . . . ωn

1
ω2 ω2

2 . . . ωn
2

...
. . .

...
ωn ω2

n . . . ωn
n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...

cn

⎞

⎟
⎟
⎟
⎠
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This system of equation is a Vandermonde system and therefore is invertible (if
k � 1 and k � −1, because in these cases, some ωi are equal and the matrix
is not invertible): there exists some rationals ω∗

l,m such that for any m, cm =
∑n

l=1 ω∗
l,mfl(x̄).

Therefore, for any m, we have a c-reduction from cm to the fermionant,
(cm) ≤c (Fermk). But, c1 :=

∑
π∈Sn|c(π)=1

∏n
i+1 xi,π(i) = Hamn(x̄), where Hamn

is the Hamiltonian, which is known to be VNP-complete ([2], Corollary 3.19). �

The fermionant can be expressed as a linear combination of polynomial size of
the Hamiltonian. From that we have concluded that the fermionant is VNP-
complete. However, the Hamiltonian is also #P -complete, when considered as a
counting problem. This gives us a Turing reduction from the Hamiltonian to the
fermionant and thus it is also #P -complete, but only when computed on rational
matrix; the Turing reductions requires rationals (1

2 , − 1
k , etc). We can adapt the

proof of Valiant for the #P -completeness of the permanent to replace those
rationals by some gadgets only using 0 and 1. And thus we have the following
non trivial corollary. The proof is in the full version of the paper.

Corollary 1. For every k � 1 and k � 0, Fermk is #P -complete for matrices
over {0, 1}.

4 Immanant with Constant Length

Immanants are defined with characters of representations of Sn. Such characters
can be indexed by Young diagrams of n boxes (i.e., collections of boxes arranged
in left-adjusted rows with a decreasing row length). As all the work of repre-
sentation theory has already be done (Lemma 3), I will not define more those
characters. We shall only work on Young diagrams.

The immanant associated with a Young diagram Y (and its associate character
χY ) is

imχ(x̄) =
∑

π∈Sn

χY (π)
n∏

i=1
xi,π(i)

For example, if the Young diagram is a single row of n boxes, then for any
σ ∈ Sn, χY (σ) = 1 and thus imY = per. At the opposite end, if Y is a single
column with n boxes, χY (σ) = sg(σ) and imY = det. For more details (and for
a nice demonstration of the Murnaghan-Nakayama rule, one of the main parts
of our demonstration), see [5].

A classical theorem states that the irreducible characters of the symmetric
group form a basis for the class functions on Sn. Class functions are real functions
defined on Sn and stabled under conjugation (i.e., ∀π, σ ∈ Sn, f(πσπ−1) = f(σ)).
The function π �−→ (−k)c(π) is such a class function and thus is a linear com-
bination of characters. Mertens and Moore [7] have computed those characters,
and applied to the immanant we get:
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Lemma 3. For any integers k and n, if we write Λn
k for the set of every Young

diagram with n boxes and at most k columns, then there exists some constants
dk

Y such that for any matrix A:

Fermk
n(A) =

∑

Y ∈Λn
k

dk
Y imY (A)

Intuitively this suggests that the family of every immanants of bounded width
is VNP-complete. In algebraic complexity this is not that interesting, as this
family is very large. But if we prove that with a certain family of immanant we
can compute every immanants of width less than a certain k, then this family will
be VNP-complete. It is exactly what we are going to do for the demonstration
of the following proposition.
Proposition 1. Let [n, n] be the square Young diagram with two columns, each
with n rows. Then (im[n,n])n∈� is VNP-complete for c-reductions.

Young diagrams
[4, 4] [4, 2]

Proof. More generally, let [l1, l2] be the two columns Young diagram with l1
boxes in the first column and l2 in the second. More specifically, the Young
diagrams of width a most 2 and of n boxes are ([l, n − l])l∈[n/2,n]. Each of them
can be obtained from the square diagram [l, l] by removing a skew hook of
size δ = (l − (n − l)) = 2l − n. A skew hook in a Young diagram is a connected
collection of boxes in the border of the diagram such that if you remove this hook
it is still a Young diagram (i.e., the row sizes are still decreasing). Furthermore,
if you remove a skew hook of size δ to [l, l], you can obtain only [l, n − l] and
[l − 1, n − l + 1]. The Murnaghan-Nakayama rule (c.f. [2] chap. 7.2 for more
details) states that:

im[l,l](x̄, l) = (−1)l−1im[l,n−l](x̄) + (−1)lim[l−1,n−l+1](x̄)

Where l is an encoding of a cycle of length l. We know that, from Lemma 3:

Ferm2
n(x̄) =

∑

Y ∈Λn
2

d2
Y imY (x̄) =

n∑

l=n/2

d2
[l,n−l]im[l,n−l](x̄)

From those two facts, we can compute the fermionant from the square immanant.
We just have to take new constants: let α[n−1,1] = d[n−1,1](−1)n and for any
2 ≤ l ≤ n

2 , α[n−l,l] = (−1)l(d[l,n−1] − α[l+1,n−l−1](−a)l+1). For simplicity, we
write αl = α[l,n−l]. If n is even
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n−1∑

l=n/2

αlim[l,l](x̄, 2l − n)

=
n−1∑

l=n/2

αl
(

(−1)l−1 im[l,n−l](x̄) + (−1)l im[l−1,n−l+1](x̄)
)

= d[n−1,1]im[n−1,1](x̄) +
n−2∑

l=n/2

dlim[l,n−l](x̄)

−
n−2∑

l=n/2

αl+1(−1)l+1im[l,n−l](x̄) +
n−1∑

l=n/2

αl(−1)lim[l−1,n−l+1](x̄)

=
n−1∑

l=n/2

dlim[l,n−l](x̄) −
n−1∑

l=n/2+1

αl(−1)lim[l−1,n−l+1](x̄)

+
n−1∑

l=n/2

αl(−1)lim[l−1,n−l+1](x̄)

=
n−1∑

l=n/2

dlim[l,n−l](x̄) + αn/2+1(−1)n/2im[n/2,n/2](x̄)

Furthermore, im[n,0](x̄) = detn(x̄) and then can be computed with only a poly-
nomial number of arithmetic operations. Thus,

n−1∑

l=n/2

αlim[l,l](x̄, 2l − n) + det
n

(x̄) + (−1)
n
2 α n

2 +1im[ n
2 , n

2 ](x̄)

=
n∑

l=n/2

d[l,n−l]im[l,n−l] = Ferm2
n(x̄)

We obtain an arithmetic circuit of polynomial size that compute Ferm2
n with n/2

oracles that can compute im[l,l] for l ∈ [n/2, n]. To obtain a c-reduction from the
fermionant to the immant, we just have to notice that im[l,l] ≤p im[l′,l′] as soon
as l′ ≥ l. Indeed, we just have to erase the first l′ − l-th rows, which can be done
by Corollary 3.2 of [1].

The demonstration for n odd works the same, the border cases must just be
studied a little bit more closer. �

We can generalize this result to almost every family of bounded width. The proof
is similar and is in the annex.

Theorem 2. Let (Yn) be a family of Young diagrams of length bounded by k ≥ 2
such that |Yn| = Ω(n). Then
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– if the number of boxes in the right of the first column if bounded by a constant
c, then (imYn) is in VP.

– otherwise, if there is an ε > 0 and at least nε boxes at the right of the first
column, (imYn) is VNP-complete for c-reductions.

5 Conclusion and Perspectives

The generalization via the fermionant tell us that the determinant is really spe-
cial: the coefficients 1 and −1 allows us, in a simplify way, to cancel some mono-
mials and not to have to compute everything. The k in the fermionant, even
thinly different than 1, separates these monomials and prevents the cancelations.

As for the immanant, the interpretation of the result is harder. Especially as
our theorem does not completely classify immanants of constant width, what
about the immanant of [n, log n]? Bürgisser’s algorithm gives a subexponentiel
upper bound, but does not put it in VP. Howerver, under the extended Valiant
hypothesis (end of chapter 2 in [2]), it can not be VNP-complete. Is it a good
candidate to be neither VP nor VNP-complete? Or even VP-complete? Or is it
as hard as the determinant? This is unknown.

Other generalizations also can be imagined. For example generating functions
of a graph property are polynomials that generalize the permanent and some of
them can be computed as fast as the determinant. This framework allows us to
use our knowledge on graph theory to understand where we step from VP to
VNP. There is no classification of these generation functions, but some results
have been found [2,4].

I thank to both of my doctoral advisors, A. Durand and G. Malod as well
to M. Casula and E. Boulat who try to explain to me the physic behind the
fermionant.
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