
Real Benefit of Promises and Advice�

Klaus Ambos-Spies1, Ulrike Brandt2, and Martin Ziegler3

1 Department of Mathematics and Computer Science,
Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

2 Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

3 Department of Mathematics, Technische Universität Darmstadt,
Darmstadt, Germany

Abstract. Promises are a standard way to formalize partial algorithms;
and advice quantifies nonuniformity. For decision problems, the latter is
captured in common complexity classes such as P/poly, that is, with
advice growing in size with that of the input. We advertise constant-size
advice and explore its theoretical impact on the complexity of classifi-
cation problems – a natural generalization of promise problems – and
on real functions and operators. Specifically we exhibit problems that,
without any advice, are decidable/computable but of high complexity
while, with (each increase in the permitted size of) advice, (gradually)
drop down to polynomial-time.

1 Motivation

The Boolean satisfiability problem SAT is NP–complete; but drops down to
P when restricting to terms in 2-conjunctive normal form (2SAT). More strik-
ingly, restricted to each ‘slice’ {0, 1}n the NP–complete Knapsack problem
can be decided by an algorithm An of running time polynomial in n; cf. [2,
Corollary 3.27]. In both above examples, a computable problem becomes easier
when promising inputs to belong to, and thus permitting algorithms tailored for,
a certain subset. Such promises occur frequently in the Theory of Computing
[10, 12] formalized as Items a) & f) of

Definition 1. Fix a subset X of {0, 1}∗ or of N.

a) A promise problem over X is a pair (A,B) of disjoint subsets of X. An
algorithm solves (A,B) within time t(n) if on inputs �x ∈ A it reports 0 and

1 on inputs �x ∈ B, both after at most O
�
t(|�x|)

�
steps, where |�x| denotes

the (binary) length of �x. Note that the algorithm may behave arbitrarily, and
even diverge, on inputs �x �∈ A ∪B.

� Supported in part by the Marie Curie International Research Staff Exchange Scheme
Fellowship 294962 within the 7th European Community Framework Programme and
by the German Research Foundation (DFG) with project Zi 1009/4-1. We acknowl-
edge seminal discussions with Vassilis Gregoriades, Thorsten Kräling, and Hermann
K.-G. Walter.

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 K. Ambos-Spies, U. Brandt, and M. Ziegler

b) A classification problem over X is a (finite or countable) family C = (Cj)j∈J

of subsets of X. C is straight if the Cj are pairwise disjoint. C is total if X
coincides with

� C :=
�

j∈J Cj.

c) An algorithm solves C if, upon input of �x ∈ � C, it produces some j ∈ J with
�x ∈ Cj, that is, if it computes (some selection of) the (multivalued, unless
C is straight) generalized characteristic function 1C :

� C ⇒ J . Again, the
behaviour on inputs �x �∈ � C is unspecified and in particular not necessarily
divergent.

d) A multivalued mapping f : X ⇒ Y is a relation f ⊆ X × Y satisfying:
∀�x ∈ X ∃�y ∈ Y : (�x, �y) ∈ f . We identify such f with the set-valued function
f : X → 2Y \ {∅}.

e) Let C = (Cj)j∈J and B = (Bj)j∈J denote classification problems over X and

fix Y ⊆ X. Abbreviate C ∩ Y := (Cj ∩ Y)j∈J and C ⊕ B :=
�
(0 ◦ Cj) ∪ (1 ◦

Bj)
�

j∈J

. We write “B ⊆ C” if it holds Bj ⊆ Cj for every j ∈ J .

f) Let X̄ = (Xk)k∈K
be a (finite or countable) partition of X. An algorithm

A computes a (possibly multivalued) mapping f : X ⇒ Y with advice X̄ if,
upon input of (�x, k) with �x ∈ Xk, it produces some �y ∈ f(�x). In this case we
say that A computes f with |K|–fold advice.

g) Fix a family L of subsets of X (such as P or RE , the recursively enumerable
languages) and call a classification problem C = (C1, . . . , CJ) L–separable if
there exist pairwise disjoint C′

1, . . . , C
′
J ∈ L such that Cj ⊆ C′

j.

So promise problems are precisely the straight classification problems of cardi-
nality two [9]; and c) describes the computational problem of providing the kind
of advice employed in f). See also Manifesto 3 below. . .

1.1 Real Computation and Complexity

Computable Analysis is the theory of real computation by approximation up
to guaranteed prescribable absolute error. Initiated by Turing in the very same
publication that introduced ‘his’ machine, it formalizes validated numerics in
unbounded precision and more precisely interval computations of arbitrarily pre-
scribable absolute output error; cf., e.g., [7].

Formally, a real number x is considered computable if any (equivalently: all)
of the following conditions hold [38, §4.1 & Lemma 4.2.1]:

(a1) The (or any) binary expansion bn ∈ {0, 1} of x =
�

n≥−N bn2
−n is recur-

sive.
(a2) A Turing machine can produce dyadic approximations to x up to prescrib-

able error 2−n, that is, compute an integer sequence a : N n �→ an ∈ Z

(output encoded in binary) with |x− an/2
n+1| ≤ 2−n.

(a3) A Turing machine can output rational sequences (cn) and (εn)
with |x− cn| ≤ εn → 0.

(a4) x admits a recursive signed digit expansion, that is a sequence
sn ∈ {0,−1,+1} with x =

�
n≥−N sn2

−n.

Real Benefit of Promises and Advice 3

Moreover the above conditions are, similarly to Shoenfield’s Limit Lemma, one
Turing jump stronger than the following

(a5) A Turing machine can output rational sequences (c′n) with c′n → x.

Under the refined view of complexity, (a2) and (a4) remain uniformly polynomial-
time equivalent but not (a1) nor (a3). Let Dn := {a/2−n : a ∈ Z} and D :=�

n Dn denote the set of dyadic rationals (of precision n). Proceeding from single
reals to (possibly partial) functions f :⊆ [0; 1] → R, the following conditions are
known equivalent and thus a reasonable notion of computability [14], [35, §0.7],
[38, §6.1], [21, §2.3]:
(b1) A Turing machine can, upon input of every sequence an ∈ Z with |x −

an/2
n+1| ≤ 2−n for x ∈ dom(f), output a sequence bm ∈ Z with |f(x) −

bm/2m+1| ≤ 2−m.
(b2) There exists an oracle Turing machineM? which, upon input of each n ∈ N

and for every (discrete function) oracle O = O(x), x ∈ dom(f), answering
queries “m ∈ N” with some a ∈ Dm+1 such that |x− a| ≤ 2−m, prints some
b ∈ Dn+1 with |f(x)− b| ≤ 2−n.

It follows that every (even relatively, i.e. oracle) computable f :⊆ [0; 1] → R is
necessarily continuous.

Concerning complexity, (b1) and (b2) have turned out as polynomial-time
equivalent; cf. [21, §8.1] and [38, Theorem 9.4.3]. Here the running time is mea-
sured in terms of the output precision parameter n in (b2); and for (b1) in terms
of the time until the n-th digit of the infinite binary output string appears: in
both cases uniformly in (i.e. w.r.t. the worst-case over all) x ∈ dom(f). (Effi-
cient) computability is tied to (quantitative) topological properties; specifically
we record from [21, Theorem 2.19]:

Fact 2. If f : [0; 1] → R is computable in time t(n), then μ(n) := t(n + 2)
constitutes a modulus of continuity for f in the sense that it holds

∀x, y ∈ [0; 1] : |x− y| ≤ 2−μ(n) ⇒ |f(x)− f(y)| ≤ 2−n .

For further details and prototype results see, e.g., [20, 29, 30, 33, 21, 31, 22,
6, 34, 17, 23], and [38, §7]. We also emphasize the close relation of the above
notions to actual implementations of exact real arithmetic [32].

Multivalued mappings (Definition 1d) arise in Computable Analysis both for
structural reasons [4, §1.4] and from practical applications. For instance the
Fundamental Theorem of Algebra yields to every monic degree-d polynomial p a
d-tuple of complex roots including multiplicities — up to permutation [36], that
is, a multivalued mapping

C
d (a0, . . . ad−1) �⇒ (λ1, . . . λd) s.t. a0+a1z+ · · ·ad−1z

d−1+zd =
d�

j=1

(z−λj).

Or when diagonalizing a given real symmetric matrix, one is interested in some
basis of eigenvectors, not a specific one. It is thus natural to consider computa-
tions which, given (some encoding of) x, intensionally choose and output some

4 K. Ambos-Spies, U. Brandt, and M. Ziegler

value y ∈ f(x). Indeed, a multifunction may well be computable yet admit no
computable single-valued selection; cf. e.g. [38, Exercise 5.1.13] or [26].

1.2 Advice in Computer Science, Analysis, and Logic

Theoretical computer science regularly employs advice to formalize nonunifor-
mity. Here an algorithm is presented not only with the input instance �x but also
with some additional integer k = k(�x). P/ poly for example consists precisely of
those languages L ⊆ {0, 1}∗ decidable in polynomial-time with advice k

• depending only on the binary length |�x| of �x
• and of ‘size’ log k polynomially bounded in |�x|;

equivalently: languages L decidable by polynomial-size circuit families, i.e., one
separate circuit for each input length n [13, §3.1]. These classes have received
recent attention for instance in connection with the Isomorphism Conjecture [1,
§2.7].
Manifesto 3. We are interested in the benefit of constant-size advice (that is,
with k ∈ K for a fixed finite K) but permit full dependence on �x (rather than on
|�x| only—which would not make sense for �x being real numbers, anyway), recall
Definition 1f) and see Section 2.2 below. In practice this means that the input �x is
accompanied with some integer k ∈ K known from the application that generated
�x but not necessarily computable from said �x alone. Put differently, |K| separate
algorithms (A1, . . . ,A|K|) may ‘jointly’ solve a problem in the sense that, on each
input �x, at least one of them (namely Ak(�x)) terminates and produces the correct
output. This is motivated by many problems, mostly over real numbers where
finite advice makes the difference between computability and incomputability; see
for instance Example 5 below.

Indeed, already in the discrete realm P/ const contains undecidable problems.
The class PR/ const in algebraic complexity theory [2, 28] means algorithms
having stored (a constant number of) real constants and is unrelated to advice
in our sense.

Remark 4. Another superficially similar, but logically independent, relaxation
of classical decision problems is semi-membership: Here an algorithm receives
as input two arguments (�x, �y), with the promise that at least one of them belongs
to L, and has to output �z ∈ {�x, �y} with �z ∈ L [15]. In the setting of Definition 1,
this corresponds to the classification problem (L×X,X × L).

Note that Definition 1f) applies also to the realm X = R = Y of Computable
Analysis — where, indeed, discrete advice occurs as a natural means against
weak ineffectivity: Many practical problems over real numbers are trivially in-
computable for continuity reasons in violation of the sometimes so-called Main
Theorem of Computable Analysis [38, Theorem 4.3.1]. (Seemingly few) others
are ineffective in the stronger sense of mapping computable arguments to in-
computable ones – such as the differentiation operator [38, Example 6.4.9]. In-
effectivity of the former kind can easily be mended by providing, in addition

Real Benefit of Promises and Advice 5

to the ‘continuous’ argument x ∈ X from the connected space X , some dis-
crete information k from a countable universe, say, N. Such additional data is
known in logic as enrichment [24, p.238/239]; cf. also [3]. Observe that, indeed,
non-constant functions k : X → N constitute ‘prototypes’ of nonuniformly com-
putable but uniformly incomputable mappings; cf. [5]. Now previous work [40]
has determined the precise amount of advice (i.e. the size of K) sufficient and
necessary in order to render classical tasks in real linear algebra (continuous
and) computable:

Example 5. a) In order to compute, given a singular d × d matrix A, some
non-zero solution �x to the homogeneous system A ·�x = 0 of linear equations,
knowing k := rank(A) ∈ {0, 1, . . . , d−1} =: K is sufficient [39, Theorem 11];
and |K| ≥ d also necessary [40, Theorem 46].

b) In order to compute, given a symmetric real d × d matrix A, some basis of
eigenvectors, knowing k := Cardσ(A) ∈ {1, . . . , d} =: K is sufficient [39,
Theorem 19]; and |K| ≥ d also necessary [40, Theorem 47].

c) In order to compute, given a symmetric real d × d matrix A, some single
eigenvector, �1 + log2 d�-fold advice is sufficient and necessary [40, Theo-
rem 49].

Note that these investigations on quantitative nonuniformity exhibit examples
which, with insufficient advice, are not even computable; see also [8]. [40, Exam-
ple 7] on the other hand has constructed a computable smooth h2 : [0; 1] → [0; 1]
which, with two-fold advice, can be evaluated within polynomial, but without
requires exponential, time in the sense of Section 1.1.

The present work extends this trade off between computational complexity
and (the amount of) additional discrete information. More precisely we construct
(Theorem 11) for each d ∈ N a smooth function hd : [0; 1] → [0; 1] computable
but with time complexity an exponential tower of height d; which, when provid-
ing k–fold advice, drops to height d− k for each k = 1, 2, . . . , d.

2 Discrete Classification Problems and Advice

Concerning trade-offs between advice and computational complexity, we have

Theorem 6. Let exp0(n) := n, exp1(n) := 2n, exp2(n) := 22
n

, and expj+1(n) :

= expj(2
n) = 2expj(n) denote the tower of iterated exponention also known

as tetration. For each J ≥ 2 there is a total straight classification problem of
size J

• solvable in time expJ−1(poly n) but not in time expJ−2(poly n)
• with 2–fold advice solvable in time expJ−2(poly n) but not in time
expJ−3(poly n)

• and more generally with j–fold advice solvable in time expJ−j(poly n) but
not in time expJ−j−1(poly n), 1 ≤ j ≤ J .

6 K. Ambos-Spies, U. Brandt, and M. Ziegler

2.1 On Hard Cores of Promise and Classification Problems

Nancy Lynch observed that any recursive decision problem L that cannot be
solved in polynomial time contains an infinite recursive subset L′ such that
any algorithm semi-deciding L makes superpolynomially many steps on L′ [27,
Lemma 1]; cf. [11].

Definition 7. Let C = (C1, . . . , CJ) denote a classification problem over X.

a) C is hard if none of the promise problems (Ci, Cj), i < j, can be solved in
polynomial time.

b) C is a hard core if all Cj are infinite and if, for every choice of infinite
Bj ⊆ Cj, B := (B1, . . . , BJ) is hard.

c) C contains a hard core if there exists a B ⊆ C that is a hard core.

[9, Theorem 3.4] establishes that each promise (i.e. 2-fold classification) problem
unsolvable in polynomial time contains a superpolynomial-time hard core. We
demonstrate that this fails for 3-fold classification problems:

Example 8. Let A,B,C ⊆ {0, 1, 2}∗ denote classical decision problems – i.e.
total promise problems (A, Ā), (B, B̄), and (C, C̄), where Ā := {0, 1, 2}∗\A – de-
cidable in exponential but not in polynomial time. Now consider the classification
problem

�
(2 ◦ C̄) ∪ (0 ◦A), (0 ◦ Ā) ∪ (1 ◦B), (1 ◦ B̄) ∪ (2 ◦ C)

�
:

It clearly is hard but does not contain a hard core. ��

2.2 Advice versus Circuit Families: Incompressibility

This section clarifies the relation between advice in the sense of Definition 1f)
and the classical model of nonuniform computation. To this end recall that
FP/ const consists precisely of functions f : {0, 1}∗ → {0, 1}∗ such that

• there exists a polynomial-time Turing machine M
• and a sequence �an of strings from a fixed finite domain
• such that, for every �x ∈ {0, 1}n, M(�x,�an) outputs f(�x).

Similarly for other classes such as REC/ poly: all languages decidable with the
help of strings �an of polynomial length. . . Here all inputs �x of the same length n
share the same advice – a real restriction compared to Definition 1f) as we now
demonstrate using the Incompressibility Method [25]:

Proposition 9. Let σ̄ ∈ {0, 1}ω denote an infinite random sequence in the sense

of Martin-Löf and consider L :=
�
�x : σbin(1�x) = 1

�
⊆ {0, 1}∗, its encoding into

a binary language. Then L is trivially decidable (even in constant time) with
2-fold advice; but does not belong to REC/ poly.

Real Benefit of Promises and Advice 7

The integer Kolmogorov complexity function C : N → N is well-known uncom-
putable [25, Theorem 2.3.2] – yet its values can be encoded as suitable, though
unbounded, advice. In fact its tally version C′ : {0, 1}∗ �x �→ C(|�x|), belongs
to FP/ log ⊆ FP/ poly via bin(�a|�x|) := C′(�x) ≤ |�x|; whereas we have

Theorem 10. Neither C nor C′ is computable with finite advice.

Together with Proposition 9 this demonstrates that (e.g. polynomial-time) com-
putation with finite advice lies skewly to the standard nonuniform circuit com-
plexity classes. We wonder whether C ∈ FP/ poly holds.

3 Real Function Complexity with Advice

Example 5 has demonstrated how (and how much) finite advice can make a
difference between real computability and incomputability. Our main result pro-
vides analogous (although admittedly less natural) examples for the refined view
of complexity by connecting discrete classification problems to real functions:

Theorem 11. a) Fix a finite total straight classification problem C = (C1, . . . cJ)
over N. There exists a smooth (i.e. C∞: infinitely often differentiable) func-
tion h : [0; 2] → [0; J] such that the following holds for each K ∈ N and super-
linear nondecreasing t : N → N: C is solvable with K–fold advice within time

O
�
t(poly n)

�
iff h is computable withK–fold advice within timeO

�
t(poly n)

�
.

b) For each J ∈ N there is a smooth f : [0; 1] → [0; 1] computable with j–fold
advice in time expJ−j(poly n) but not in time expJ−j−1(poly n), 1 ≤ j ≤ J .

This (corrects a mistake in, and) generalizes [40, Example 7].

3.1 Benefit of 2-Fold Advice to Function Maximization

The computable functions constructed in Theorem 11b) exhibit the positive
effects (in the sense of complexity-reducing) of discrete advice to real computa-
tion – but may arguably be considered artificial. For a more natural example,
we now consider the generic problem of continuous optimization: computing the
maximum of a given (say, non-expansive) f : [0; 1] → [0; 1]. This constitutes a

functional Max : Lip1 → [0; 1], f �→ max0≤x≤1 f(x) on Lip1 :=
�
f : [0; 1] →

[0; 1], |f(x)− f(y)| ≤ |x− y|
�
computable with respect to any reasonable encod-

ing of Lip1 into infinite binary strings [38, Corollary 6.2.5 & Lemma 6.1.7]. For

instance f ∈ Lip1 is uniquely determined via the real sequence
�
f(dm)

�
m

where

(dm)
m

:=
�
0, 1, 12 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
16 ,

3
16 , . . .

�
⊆ D

is dense in dom(f). And, extending (b1) from Section 1.1, such a real sequence
(ym)m can be ‘represented’ (in a sense formalized in the Type-2 Theory of Ef-
fectivity, TTE) as an integer (double) sequence (a〈n,m〉)n,m

with |ym− a〈n,m〉| ≤
2−n, where 〈n,m〉 := n + (n + m) · (n + m + 1)/2 denotes an integer pairing
function.

8 K. Ambos-Spies, U. Brandt, and M. Ziegler

Remark 12. Note that f(2−k) occurs within (ym)
m
⊆ R (and its 2−1–approxi-

mation within (a〈n,m〉)n,m
⊆ Z) at a position exponential in k. In ‘classic’ TTE

with infinite binary strings as codes [38, §3], this requires ‘skipping’ over ex-
ponentially many bits in order to access f(2−k) up to error 1

2 ; which prevents
evaluation (f, x) �→ f(x) to be uniformly polynomial-time computable on Lip1.
In computational practice, on the other hand, such f is implemented as an (say,
a C++ function) that, given integers n and m, produces a 2−n approximation to
f(dm) directly, that is, without generating f(d1), . . . , f(dm−1) first. This has led
[18, 19] to extend TTE with second-order representations, that is, with encodings
that permit random (as opposed to sequential) access.

For our present purpose the precise technical definition of second-order repre-
sentations may be spared since we rely only on the following

Fact 13. There exists a (natural and canonical) second-order representation of
Lip1 allowing to recover, given n ∈ N and d ∈ Dn ∩ [0; 1], a 2−n–approximation
to f(d) of length O(n) within time polynomial in n.

We emphasize the similarity to Information-Based Complexity Theory [37, 16]
which, based on the complementary, unit-cost model (a.k.a. realRAM or Blum-
Shub-Smale Machine) of real computing, supposes exact black-box evaluation
x �→ f(x) to take constant time. And in fact, using a refinement of the standard
adversary argument to finite precision queries, we can prove

Example 14. For notational ease consider the class �Lip1 of non-expansive (a
similar effect holds for appropriate smooth) functions f : [−1; 1] → [−1; 1];

L :=
�
f ∈�Lip1 		 f(x) ≤ 0 for x ≤ 0, f(x) = 0 for x ≥ 0

�

K :=
�
f ∈�Lip1 		 Max(f) = −f(−1)

�

and observe that L∩K = {≡ 0}, Max(f) = 0 all f ∈ L, and Max(f) = −f(−1)
all f ∈ K. In particular both restrictions Max

		
L and Max

		
K are polynomial-time

computable – while, without such 2-fold advice, Max
		
L∪K is not. ��

4 Conclusion and Perspectives

Recursive Analysis had traditionally focused on the continuous aspects of real
number computation as opposed to classical computability theory. Still, discrete
advice has over the last years been revealed as essential an ingredient to uniform
computability for many natural problems over the reals. We have demonstrated

Real Benefit of Promises and Advice 9

that, even for problems that are computable without such advice, its presence
or absence can have a huge impact in terms of computational complexity.

While our Theorem 11 is entirely artificial, it seems that the underlying con-
cept may be relevant to practical computations. Indeed numerical science gen-
erally considers discrete-valued functions like floor or matrix rank efficiently
computable – while at the same time at least deprecating the use of tests for
equality: a seemingly inherent ambiguity in the foundational semantics. The
representation-based theory of real number computation (TTE and its 2nd-
order extension) on the other hand regularly extends continuous with discrete
information in order to assert the computability of a problem – and provides
the canonical interface declaration of an actual implementation in exact real
number packages [32].

Still the question remains as for natural examples of real problems where
discrete advice makes a difference in complexity but not in computability: in
Theorem 11 the function is artificial while its domain [0; 1] is easy, in Example 14
the functional is natural while its domain is artificial.

References

1. Agrawal, M.: The Isomorphism Conjecture for NP . In: Cooper, S.B., Sorbi, A.
(eds.) Computability in Context, pp. 19–48. World Scientific (2009)

2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Springer (1997)

3. Beyersdorff, O., Köbler, J., Müller, S.: Proof Systems that Take Advice. Proof
Systems that Take Advice 209(3), 320–332 (2011)

4. Brattka, V.: Recursive Characterization of Computable Real-Valued Functions and
Relations. Theoretical Computer Science 162, 45–77 (1996)

5. Brattka, V.: Computable Invariance. Theoretical Computer Science 210, 3–20
(1999)

6. Braverman, M.: On the Complexity of Real Functions. In: Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science, pp. 155–164

7. Braverman, M., Cook, S.A.: Computing over the Reals: Foundations for Scientific
Computing. Notices of the Americal Mathematical Society 53(3), 318–329 (2006)

8. Brattka, V., Pauly, A.M.: Computation with Advice. In: Electronic Proceedings in
Theoretical Computer Science, vol. 24 (June 2010)

9. Brandt, U., Walter, H.K.-G.: Cohesiveness in Promise Problems. Presented at the
64th GI Workshop on Algorithms and Complexity (2012)

10. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with
Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)

11. Even, S., Selman, A.L., Yacobi, Y.: Hard-Core Theorems for Complexity Classes.
Journal of the ACM 32(1), 205–217 (1985)

12. Goldreich, O.: On Promise Problems: A Survey. In: Goldreich, O., Rosenberg,
A.L., Selman, A.L. (eds.) Shimon Even Festschrift. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006)

13. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge
University Press (2008)

10 K. Ambos-Spies, U. Brandt, and M. Ziegler

14. Grzegorczyk, A.: On the Definitions of Computable Real Continuous Functions.
Fundamenta Mathematicae 44, 61–77 (1957)

15. Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer
Monographs in Theoretical Computer Science (2003)

16. Hertling, P.: Topological Complexity of Zero Finding with Algebraic Operations.
Journal of Complexity 18(4), 912–942 (2002)

17. Kawamura, A.: Lipschitz Continuous Ordinary Differential Equations are
Polynomial-Space Complete. Computational Complexity 19(2), 305–332 (2010)

18. Kawamura, A., Cook, S.A.: Complexity Theory for Operators in Analysis. In:
Proc. 42nd Ann. ACM Symp. on Theory of Computing (STOC 2010), pp. 495–502
(2010)

19. Kawamura, A., Cook, S.A.: Complexity Theory for Operators in Analysis. ACM
Transactions in Computation Theory 4(2), article 5 (2012)

20. Ko, K.-I., Friedman, H.: Computational Complexity of Real Functions. Theoretical
Computer Science 20, 323–352 (1982)

21. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser (1991)

22. Ko, K.-I.: Polynomial-Time Computability in Analysis. In: Ershov, Y.L., et al.
(eds.) Handbook of Recursive Mathematics, vol. 2, pp. 1271–1317 (1998)

23. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational Complexity of
Smooth Differential Equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 578–589. Springer, Heidelberg (2012)

24. Kreisel, G., Macintyre, A.: Constructive Logic versus Algebraization I. In:
Troelstra, A.S., van Dalen, D. (eds.) Proc. L.E.J. Brouwer Centenary Symposium,
pp. 217–260. North-Holland (1982)

25. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer (1997)

26. Luckhardt, H.: A Fundamental Effect in Computations on Real Numbers. Theo-
retical Computer Science 5, 321–324 (1977)

27. Lynch, N.: On Reducibility to Complex or Sparse Sets. Journal of the ACM 22(3),
341–345 (1975)

28. Michaux, C.: P �= NP over the Nonstandard Reals Implies P �= NP over R.
Theoretical Computer Science 133, 95–104 (1994)

29. Müller, N.T.: Subpolynomial Complexity Classes of Real Functions and Real
Numbers. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 284–293. Springer,
Heidelberg (1986)

30. Müller, N.T.: Uniform Computational Complexity of Taylor Series. In: Ottmann,
T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)

31. Müller, N.T.: Constructive Aspects of Analytic Functions. In: Proc. Workshop on
Computability and Complexity in Analysis (CCA), InformatikBerichte FernUni-
versität Hagen, vol. 190, pp. 105–114 (1995)

32. Müller, N.T.: The iRRAM: Exact Arithmetic in C++. In: Blank, J., Brattka, V.,
Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg
(2001)

33. Müller, N.T., Moiske, B.: Solving Initial Value Problems in Polynomial Time. In:
Proc. 22nd JAIIO-PANEL, pp. 283–293 (1993)

34. Müller, N.T., Zhao, X.: Complexity of Operators on Compact Sets. Electronic
Notes Theoretical Computer Science 202, 101–119 (2008)

35. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer
(1989)

Real Benefit of Promises and Advice 11

36. Specker, E.: The Fundamental Theorem of Algebra in Recursive Analysis. In:
Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of
Algebra, pp. 321–329. Wiley-Interscience (1969)

37. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity.
Academic Press (1988)

38. Weihrauch, K.: Computable Analysis. Springer (2000)
39. Ziegler, M., Brattka, V.: Computability in Linear Algebra. Theoretical Computer

Science 326, 187–211 (2004)
40. Ziegler, M.: Real Computation with Least Discrete Advice: A Complexity Theory

of Nonuniform Computability. Annals of Pure and Applied Logic 163(8), 1108–1113
(2012)

	Real Benefit of Promises and Advice
	1 Motivation
	1.1 Real Computation and Complexity
	1.2 Advice in Computer Science, Analysis, and Logic

	2 Discrete Classification Problems and Advice
	2.1 On Hard Cores of Promise and Classification Problems
	2.2 Advice versus Circuit Families: Incompressibility

	3 Real Function Complexity with Advice
	3.1 Benefit of 2-Fold Advice to Function Maximization

	4 Conclusion and Perspectives
	References

