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Preface

CiE 2013: The Nature of Computation

Computability in Europe 2013 (CiE 2013) followed the Turing Centenary Con-
ference CiE 2012 in celebrating the enormous influence of Turing’s work on the
specific focus of the CiE conference series: the development of a multi-disciplinary
and modern view of computation and computability. The interest for computa-
tion in nature (which was also the motivation for Turing’s work on biological
pattern formation) as reflected in the title of CiE 2013, The Nature of Com-
putation, connects biology and computer science and has given rise to modern
disciplines of research as well as new perspectives on computation.

In particular, CiE 2013 was focused on the unexpected changes that stud-
ies on nature have brought to several areas of mathematics, physics, and com-
puter science. Two complementary research perspectives pervade the Nature of
Computation theme. One is focused on the understanding of new computational
paradigms, inspired by processes occurring in the biological world and resulting
in a deeper and modern understanding of the theory of computation. The other
perspective is on our understanding of how computations really occur in nature,
on how we can interact with these computations, and their applications.

CiE 2013 was the ninth meeting in the conference series Computability in
Europe organized by the Association CiE. The association promotes the devel-
opment of computability-related science, ranging from mathematics, computer
science and applications in various natural and engineering sciences, such as
physics and biology, as well as the promotion of related fields, such as philoso-
phy and history of computing. In particular, the conference series successfully
brings together the mathematical, logical, and computer sciences communities
that are interested in developing computability-related topics. This year this
scope was strengthened by the co-location of CiE 2013 with UCNC 2013 (Un-
conventional Computation and Natural Computation), with Giancarlo Mauri as
Chair of the Programme Committee.
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The two conferences, CiE 2013 and UCNC 2013, were held at the University
of Milano-Bicocca in Milan, Italy. They shared one plenary invited talk, given
by Endre Szemerédi (Budapest and Piscataway NJ), winner of the Abel Prize in
2012, and two tutorials, one by Grzegorz Rozenberg (Leiden and Boulder CO)
and one by Gilles Brassard (Montréal QC). Moreover, some satellite events were
organized around the two conferences.

The eight previous CiE conferences were held in Amsterdam (The Nether-
lands) in 2005, Swansea (Wales) in 2006, Siena (Italy) in 2007, Athens (Greece)
in 2008, Heidelberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia
(Bulgaria) in 2011, and Cambridge (UK) in 2012. The proceedings of these meet-
ings were all published in the Springer series Lecture Notes in Computer Science.
The annual CiE conference has become a major event and is the largest inter-
national meeting focused on computability theoretic issues. The next meeting in
2014 will be held in Budapest (Hungary).

The series is coordinated by the CiE Conference Series Steering Commit-
tee consisting of Lúıs Antunes (Porto, Secretary), Arnold Beckmann (Swansea),
Laurent Bienvenu (Paris), Natasha Jonoska (Tampa FL), Viv Kendon (Leeds),
Benedikt Löwe (Amsterdam and Hamburg, Chair), Mariya Soskova (Sofia and
Berkeley CA), and Peter van Emde Boas (Amsterdam).

The Programme Committee of CiE 2013 was responsible for the selection of
the invited speakers, the special session organizers and for running the reviewing
process of all submitted regular contributions.

The Programme Committee invited six speakers to give plenary lectures: Ulle
Endriss (Amsterdam), Lance Fortnow (Atlanta GA), Anna Karlin (Seattle WA),
Bernard Moret (Lausanne), Mariya Soskova (Sofia and Berkeley CA), and Endre
Szemerédi (Budapest and Piscataway NJ; joint invitee of CiE 2013 and UCNC
2013).

These plenary speakers were invited to publish abstracts or papers in this
volume. Karlin’s lecture was the 2013 APAL Lecture funded by Elsevier, Fort-
now’s lecture was the 2013 EACSL Lecture funded by the European Association
for Computer Science Logic, and Szemerédi’s lecture was funded by the Depart-
ment of Mathematics and its Applications of the University of Milano-Bicocca.
In addition to the plenary lectures, the conference had two tutorials by Gilles
Brassard (Montréal QC) and Grzegorz Rozenberg (Leiden and Boulder CO).

Springer-Verlag generously funded two awards that were given during the CiE
2013 conference. Nicolas de Rugy-Altherre was awarded the Best Student Paper
Award for his paper “Determinant Versus Permanent: Salvation via Generaliza-
tion?” Shankara Narayanan Krishna, Marian Gheorghe, and Ciprian Dragomir
were awarded the Best Paper on Natural Computing Award for their paper “Some
Classes of Generalised Communicating P Systems and Simple Kernel P Sys-
tems.”

CiE 2013 had six special sessions: two sessions, Computational Molecular
Biology and Computation in Nature, were devoted to the special focus of CiE
2013. In addition to this, new challenges arising in computations in the real world
were faced in the session on Data Streams and Compression. The remaining
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three sessions were on Algorithmic Randomness, Computational Complexity in
the Continuous World, and History of Computation. Speakers in these special
sessions were selected by the special session organizers and could contribute a
paper to this volume.

We received 82 submissions which were reviewed by the Programme Com-
mittee and many expert referees. In the end, 31.7% of the submitted papers
were accepted for publication in this volume. Without the help of our expert
referees, the production of the volume would have been impossible. We would
like to thank all the subreviewers for their excellent work; their names are listed
in an appendix of this preface.

All authors who contributed to this conference were encouraged to submit
significantly extended versions of their papers with unpublished research content
to Computability—The Journal of the Association CiE.

The conference CiE 2013 was organized by Stefano Beretta (Milan), Paola
Bonizzoni (Milan), Gianluca Della Vedova (Milan), Alberto Dennunzio (Milan),
Riccardo Dondi (Bergamo), Giancarlo Mauri (Milan), Yuri Pirola (Milan), and
Raffaella Rizzi (Milan).

The Steering Committee of the conference series CiE is concerned about
the representation of female researchers in the field of computability. In order
to increase female participation, the series started the Women in Computability
(WiC) program in 2007, first funded by the Elsevier Foundation, then taken over
by the publisher Elsevier. We were proud to continue this program with its suc-
cessful annual WiC workshop and a grant program for junior female researchers
in 2013.

The organizers of CiE 2013 would like to acknowledge and thank the following
entities for their essential financial support (in alphabetic order): the Associa-
tion for Symbolic Logic (ASL), the Department of Mathematics and its Appli-
cations and the Department of Informatics, Systems and Communication, both
of the University of Milano-Bicocca, Elsevier B.V., the European Association
for Computer Science Logic (EACSL), the European Association for Theoreti-
cal Computer Science (EATCS), IOS Press, Springer-Verlag and the University
of Milano-Bicocca. We would also like to acknowledge the support of our non-
financial sponsors, the Association Computability in Europe (CiE).

May 2013 Paola Bonizzoni
Vasco Brattka

Benedikt Löwe
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Ivan Nikolaev Soskov

(23 September 1954 – 5 May 2013)

During the preparations for CiE 2013, the shocking news reached the Com-
putability in Europe community that our colleague Ivan Soskov had unexpect-
edly died. Ivan had been one of the important forces behind the CiE conference
series, from its very beginnings as an informal European network, and his death
will affect the conference series. We lost one of our staunch supporters, a very
dear colleague and a good friend.

Ivan Soskov was born on 23 September 1954 in the southern Bulgarian city of
Stara Zagora and went to the National High School of Mathematics and Sciences
“Академик Любомир Чакалов”, a school founded by the Faculty of Mathemat-
ics of Sofia University to offer an introduction to mathematics at the highest level
to talented pupils. After his graduation, he studied at Sofia University where he
graduated in 1979 with a degree in Mathematical Logic. He became a doctoral
student of Dimiter Skordev and defended his PhD thesis entitled Computability
in Partial Algebraic Systems in 1983.

Ivan spent his career at Sofia University, starting as a programmer in the
Computing Laboratory of Sofia University, then becoming an Assistant Profes-
sor in the Laboratory of Applied Logic, later at the Faculty for Mathematics
and Computer Science. In 1991, he was promoted to Associate Professor and
spent two years at the University of California at Los Angeles (1991–1993). Af-
ter he had obtained the higher doctorate (DSc) in 2001, he was promoted to Full
Professor in 2005. He was head of the Department for Mathematical Logic and
Applications from 2000 to 2007 and Dean of the Faculty of Mathematics and
Computer Science from 2007 until his death. For many years, he has played a
major role in the research administration of Sofia University, fulfilling many im-
portant tasks such as that of the chair of the Council of Deans of the University.

Ivan’s research field was classical computability theory, in particular de-
gree spectra and enumeration degrees. He has supervised 15 Master’s students
in subjects related to his research expertise and had three doctoral students,
Stela Nikolova (1992), Vessela Baleva (2002), and Hristo Ganchev (2009); three
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additional doctoral students were still working under Ivan’s supervision at the
time of his death. Ivan always encouraged his students to participate in CiE
conferences, and in the lists of authors of papers accepted at our conferences, we
repeatedly find the names of Ivan’s students.

Ivan’s involvement with CiE started with his role as the coordinator of the
Bulgarian node in the informal CiE network that was formed in 2004 and devel-
oped into the conference series and association. He served as a member of the
Programme Committee for the first five CiE conferences: Amsterdam in 2005,
Swansea in 2006, Siena in 2007, Athens in 2008, and Heidelberg in 2009. Together
with his colleagues in Sofia, he offered to host CiE 2011 in Sofia: Ivan served
as one of the co-chairs of the Programme Committee for this seventh edition of
CiE. His commitment to the conference series was not restricted to Programme
Committees work; for this year’s conference, CiE 2013, Ivan submitted a paper
which is printed in this volume. Sadly, we will not be able to hear him present
it in Milan. We shall miss him.

S. Barry Cooper (President Association CiE )
Benedikt Löwe (Chairman Steering Committee CiE-CS )

Stela Nikolova (Sofia University)
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Abstract. Promises are a standard way to formalize partial algorithms;
and advice quantifies nonuniformity. For decision problems, the latter is
captured in common complexity classes such as P/poly, that is, with
advice growing in size with that of the input. We advertise constant-size
advice and explore its theoretical impact on the complexity of classifi-
cation problems – a natural generalization of promise problems – and
on real functions and operators. Specifically we exhibit problems that,
without any advice, are decidable/computable but of high complexity
while, with (each increase in the permitted size of) advice, (gradually)
drop down to polynomial-time.

1 Motivation

The Boolean satisfiability problem SAT is NP–complete; but drops down to
P when restricting to terms in 2-conjunctive normal form (2SAT). More strik-
ingly, restricted to each ‘slice’ {0, 1}n the NP–complete Knapsack problem
can be decided by an algorithm An of running time polynomial in n; cf. [2,
Corollary 3.27]. In both above examples, a computable problem becomes easier
when promising inputs to belong to, and thus permitting algorithms tailored for,
a certain subset. Such promises occur frequently in the Theory of Computing
[10, 12] formalized as Items a) & f) of

Definition 1. Fix a subset X of {0, 1}∗ or of N.

a) A promise problem over X is a pair (A,B) of disjoint subsets of X. An
algorithm solves (A,B) within time t(n) if on inputs �x ∈ A it reports 0 and

1 on inputs �x ∈ B, both after at most O
�
t(|�x|)

�
steps, where |�x| denotes

the (binary) length of �x. Note that the algorithm may behave arbitrarily, and
even diverge, on inputs �x �∈ A ∪B.
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b) A classification problem over X is a (finite or countable) family C = (Cj)j∈J

of subsets of X. C is straight if the Cj are pairwise disjoint. C is total if X
coincides with

�
C :=

�
j∈J Cj.

c) An algorithm solves C if, upon input of �x ∈
�
C, it produces some j ∈ J with

�x ∈ Cj, that is, if it computes (some selection of) the (multivalued, unless
C is straight) generalized characteristic function 1C :

�
C ⇒ J . Again, the

behaviour on inputs �x �∈
�
C is unspecified and in particular not necessarily

divergent.
d) A multivalued mapping f : X ⇒ Y is a relation f ⊆ X × Y satisfying:

∀�x ∈ X ∃�y ∈ Y : (�x, �y) ∈ f . We identify such f with the set-valued function
f : X → 2Y \ {∅}.

e) Let C = (Cj)j∈J and B = (Bj)j∈J denote classification problems over X and

fix Y ⊆ X. Abbreviate C ∩ Y := (Cj ∩ Y )j∈J and C ⊕ B :=
�
(0 ◦ Cj) ∪ (1 ◦

Bj)
�

j∈J

. We write “B ⊆ C” if it holds Bj ⊆ Cj for every j ∈ J .

f) Let X̄ = (Xk)
k∈K

be a (finite or countable) partition of X. An algorithm
A computes a (possibly multivalued) mapping f : X ⇒ Y with advice X̄ if,
upon input of (�x, k) with �x ∈ Xk, it produces some �y ∈ f(�x). In this case we
say that A computes f with |K|–fold advice.

g) Fix a family L of subsets of X (such as P or RE , the recursively enumerable
languages) and call a classification problem C = (C1, . . . , CJ ) L–separable if
there exist pairwise disjoint C′

1, . . . , C
′
J ∈ L such that Cj ⊆ C′

j.

So promise problems are precisely the straight classification problems of cardi-
nality two [9]; and c) describes the computational problem of providing the kind
of advice employed in f). See also Manifesto 3 below. . .

1.1 Real Computation and Complexity

Computable Analysis is the theory of real computation by approximation up
to guaranteed prescribable absolute error. Initiated by Turing in the very same
publication that introduced ‘his’ machine, it formalizes validated numerics in
unbounded precision and more precisely interval computations of arbitrarily pre-
scribable absolute output error; cf., e.g., [7].

Formally, a real number x is considered computable if any (equivalently: all)
of the following conditions hold [38, §4.1 & Lemma 4.2.1]:

(a1) The (or any) binary expansion bn ∈ {0, 1} of x =
�

n≥−N bn2−n is recur-
sive.

(a2) A Turing machine can produce dyadic approximations to x up to prescrib-
able error 2−n, that is, compute an integer sequence a : N  n �→ an ∈ Z
(output encoded in binary) with |x− an/2n+1| ≤ 2−n.

(a3) A Turing machine can output rational sequences (cn) and (εn)
with |x− cn| ≤ εn → 0.

(a4) x admits a recursive signed digit expansion, that is a sequence
sn ∈ {0,−1,+1} with x =

�
n≥−N sn2−n.
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Moreover the above conditions are, similarly to Shoenfield’s Limit Lemma, one
Turing jump stronger than the following

(a5) A Turing machine can output rational sequences (c′n) with c′n → x.

Under the refined view of complexity, (a2) and (a4) remain uniformly polynomial-
time equivalent but not (a1) nor (a3). Let Dn := {a/2−n : a ∈ Z} and D :=�

n Dn denote the set of dyadic rationals (of precision n). Proceeding from single
reals to (possibly partial) functions f :⊆ [0; 1] → R, the following conditions are
known equivalent and thus a reasonable notion of computability [14], [35, §0.7],
[38, §6.1], [21, §2.3]:

(b1) A Turing machine can, upon input of every sequence an ∈ Z with |x −
an/2

n+1| ≤ 2−n for x ∈ dom(f), output a sequence bm ∈ Z with |f(x) −
bm/2

m+1| ≤ 2−m.
(b2) There exists an oracle Turing machine M? which, upon input of each n ∈ N

and for every (discrete function) oracle O = O(x), x ∈ dom(f), answering
queries “m ∈ N” with some a ∈ Dm+1 such that |x− a| ≤ 2−m, prints some
b ∈ Dn+1 with |f(x) − b| ≤ 2−n.

It follows that every (even relatively, i.e. oracle) computable f :⊆ [0; 1] → R is
necessarily continuous.

Concerning complexity, (b1) and (b2) have turned out as polynomial-time
equivalent; cf. [21, §8.1] and [38, Theorem 9.4.3]. Here the running time is mea-
sured in terms of the output precision parameter n in (b2); and for (b1) in terms
of the time until the n-th digit of the infinite binary output string appears: in
both cases uniformly in (i.e. w.r.t. the worst-case over all) x ∈ dom(f). (Effi-
cient) computability is tied to (quantitative) topological properties; specifically
we record from [21, Theorem 2.19]:

Fact 2. If f : [0; 1] → R is computable in time t(n), then μ(n) := t(n + 2)
constitutes a modulus of continuity for f in the sense that it holds

∀x, y ∈ [0; 1] : |x− y| ≤ 2−μ(n) ⇒ |f(x) − f(y)| ≤ 2−n .

For further details and prototype results see, e.g., [20, 29, 30, 33, 21, 31, 22,
6, 34, 17, 23], and [38, §7]. We also emphasize the close relation of the above
notions to actual implementations of exact real arithmetic [32].

Multivalued mappings (Definition 1d) arise in Computable Analysis both for
structural reasons [4, §1.4] and from practical applications. For instance the
Fundamental Theorem of Algebra yields to every monic degree-d polynomial p a
d-tuple of complex roots including multiplicities — up to permutation [36], that
is, a multivalued mapping

Cd  (a0, . . . ad−1) �⇒ (λ1, . . . λd) s.t. a0 +a1z+ · · ·ad−1z
d−1+zd =

d�
j=1

(z−λj).

Or when diagonalizing a given real symmetric matrix, one is interested in some
basis of eigenvectors, not a specific one. It is thus natural to consider computa-
tions which, given (some encoding of) x, intensionally choose and output some
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value y ∈ f(x). Indeed, a multifunction may well be computable yet admit no
computable single-valued selection; cf. e.g. [38, Exercise 5.1.13] or [26].

1.2 Advice in Computer Science, Analysis, and Logic

Theoretical computer science regularly employs advice to formalize nonunifor-
mity. Here an algorithm is presented not only with the input instance �x but also
with some additional integer k = k(�x). P/ poly for example consists precisely of
those languages L ⊆ {0, 1}∗ decidable in polynomial-time with advice k

• depending only on the binary length |�x| of �x
• and of ‘size’ log k polynomially bounded in |�x|;

equivalently: languages L decidable by polynomial-size circuit families, i.e., one
separate circuit for each input length n [13, §3.1]. These classes have received
recent attention for instance in connection with the Isomorphism Conjecture [1,
§2.7].

Manifesto 3. We are interested in the benefit of constant-size advice (that is,
with k ∈ K for a fixed finite K) but permit full dependence on �x (rather than on
|�x| only—which would not make sense for �x being real numbers, anyway), recall
Definition 1f) and see Section 2.2 below. In practice this means that the input �x is
accompanied with some integer k ∈ K known from the application that generated
�x but not necessarily computable from said �x alone. Put differently, |K| separate
algorithms (A1, . . . ,A|K|) may ‘jointly’ solve a problem in the sense that, on each
input �x, at least one of them (namely Ak(�x)) terminates and produces the correct
output. This is motivated by many problems, mostly over real numbers where
finite advice makes the difference between computability and incomputability; see
for instance Example 5 below.

Indeed, already in the discrete realm P/ const contains undecidable problems.
The class PR/ const in algebraic complexity theory [2, 28] means algorithms
having stored (a constant number of) real constants and is unrelated to advice
in our sense.

Remark 4. Another superficially similar, but logically independent, relaxation
of classical decision problems is semi-membership: Here an algorithm receives
as input two arguments (�x, �y), with the promise that at least one of them belongs
to L, and has to output �z ∈ {�x, �y} with �z ∈ L [15]. In the setting of Definition 1,
this corresponds to the classification problem (L×X,X × L).

Note that Definition 1f) applies also to the realm X = R = Y of Computable
Analysis — where, indeed, discrete advice occurs as a natural means against
weak ineffectivity: Many practical problems over real numbers are trivially in-
computable for continuity reasons in violation of the sometimes so-called Main
Theorem of Computable Analysis [38, Theorem 4.3.1]. (Seemingly few) others
are ineffective in the stronger sense of mapping computable arguments to in-
computable ones – such as the differentiation operator [38, Example 6.4.9]. In-
effectivity of the former kind can easily be mended by providing, in addition
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to the ‘continuous’ argument x ∈ X from the connected space X , some dis-
crete information k from a countable universe, say, N. Such additional data is
known in logic as enrichment [24, p.238/239]; cf. also [3]. Observe that, indeed,
non-constant functions k : X → N constitute ‘prototypes’ of nonuniformly com-
putable but uniformly incomputable mappings; cf. [5]. Now previous work [40]
has determined the precise amount of advice (i.e. the size of K) sufficient and
necessary in order to render classical tasks in real linear algebra (continuous
and) computable:

Example 5. a) In order to compute, given a singular d × d matrix A, some
non-zero solution �x to the homogeneous system A ·�x = 0 of linear equations,
knowing k := rank(A) ∈ {0, 1, . . . , d−1} =: K is sufficient [39, Theorem 11];
and |K| ≥ d also necessary [40, Theorem 46].

b) In order to compute, given a symmetric real d × d matrix A, some basis of
eigenvectors, knowing k := Cardσ(A) ∈ {1, . . . , d} =: K is sufficient [39,
Theorem 19]; and |K| ≥ d also necessary [40, Theorem 47].

c) In order to compute, given a symmetric real d × d matrix A, some single
eigenvector, �1 + log2 d�-fold advice is sufficient and necessary [40, Theo-
rem 49].

Note that these investigations on quantitative nonuniformity exhibit examples
which, with insufficient advice, are not even computable; see also [8]. [40, Exam-
ple 7] on the other hand has constructed a computable smooth h2 : [0; 1] → [0; 1]
which, with two-fold advice, can be evaluated within polynomial, but without
requires exponential, time in the sense of Section 1.1.

The present work extends this trade off between computational complexity
and (the amount of) additional discrete information. More precisely we construct
(Theorem 11) for each d ∈ N a smooth function hd : [0; 1] → [0; 1] computable
but with time complexity an exponential tower of height d; which, when provid-
ing k–fold advice, drops to height d− k for each k = 1, 2, . . . , d.

2 Discrete Classification Problems and Advice

Concerning trade-offs between advice and computational complexity, we have

Theorem 6. Let exp0(n) := n, exp1(n) := 2n, exp2(n) := 22
n

, and expj+1(n) :

= expj(2
n) = 2expj(n) denote the tower of iterated exponention also known

as tetration. For each J ≥ 2 there is a total straight classification problem of
size J

• solvable in time expJ−1(poly n) but not in time expJ−2(poly n)
• with 2–fold advice solvable in time expJ−2(poly n) but not in time

expJ−3(poly n)
• and more generally with j–fold advice solvable in time expJ−j(poly n) but

not in time expJ−j−1(poly n), 1 ≤ j ≤ J .
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2.1 On Hard Cores of Promise and Classification Problems

Nancy Lynch observed that any recursive decision problem L that cannot be
solved in polynomial time contains an infinite recursive subset L′ such that
any algorithm semi-deciding L makes superpolynomially many steps on L′ [27,
Lemma 1]; cf. [11].

Definition 7. Let C = (C1, . . . , CJ ) denote a classification problem over X.

a) C is hard if none of the promise problems (Ci, Cj), i < j, can be solved in
polynomial time.

b) C is a hard core if all Cj are infinite and if, for every choice of infinite
Bj ⊆ Cj, B := (B1, . . . , BJ) is hard.

c) C contains a hard core if there exists a B ⊆ C that is a hard core.

[9, Theorem 3.4] establishes that each promise (i.e. 2-fold classification) problem
unsolvable in polynomial time contains a superpolynomial-time hard core. We
demonstrate that this fails for 3-fold classification problems:

Example 8. Let A,B,C ⊆ {0, 1, 2}∗ denote classical decision problems – i.e.
total promise problems (A, Ā), (B, B̄), and (C, C̄), where Ā := {0, 1, 2}∗\A – de-
cidable in exponential but not in polynomial time. Now consider the classification
problem

�
(2 ◦ C̄) ∪ (0 ◦A), (0 ◦ Ā) ∪ (1 ◦B), (1 ◦ B̄) ∪ (2 ◦ C)

�
:

It clearly is hard but does not contain a hard core. ��

2.2 Advice versus Circuit Families: Incompressibility

This section clarifies the relation between advice in the sense of Definition 1f)
and the classical model of nonuniform computation. To this end recall that
FP/ const consists precisely of functions f : {0, 1}∗ → {0, 1}∗ such that

• there exists a polynomial-time Turing machine M
• and a sequence �an of strings from a fixed finite domain
• such that, for every �x ∈ {0, 1}n, M(�x,�an) outputs f(�x).

Similarly for other classes such as REC/ poly: all languages decidable with the
help of strings �an of polynomial length. . . Here all inputs �x of the same length n
share the same advice – a real restriction compared to Definition 1f) as we now
demonstrate using the Incompressibility Method [25]:

Proposition 9. Let σ̄ ∈ {0, 1}ω denote an infinite random sequence in the sense

of Martin-Löf and consider L :=
�
�x : σbin(1�x) = 1

�
⊆ {0, 1}∗, its encoding into

a binary language. Then L is trivially decidable (even in constant time) with
2-fold advice; but does not belong to REC/ poly.
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The integer Kolmogorov complexity function C : N → N is well-known uncom-
putable [25, Theorem 2.3.2] – yet its values can be encoded as suitable, though
unbounded, advice. In fact its tally version C′ : {0, 1}∗  �x �→ C(|�x|), belongs
to FP/ log ⊆ FP/ poly via bin(�a|�x|) := C′(�x) ≤ |�x|; whereas we have

Theorem 10. Neither C nor C′ is computable with finite advice.

Together with Proposition 9 this demonstrates that (e.g. polynomial-time) com-
putation with finite advice lies skewly to the standard nonuniform circuit com-
plexity classes. We wonder whether C ∈ FP/ poly holds.

3 Real Function Complexity with Advice

Example 5 has demonstrated how (and how much) finite advice can make a
difference between real computability and incomputability. Our main result pro-
vides analogous (although admittedly less natural) examples for the refined view
of complexity by connecting discrete classification problems to real functions:

Theorem 11. a) Fix a finite total straight classification problem C = (C1, . . . cJ)
over N. There exists a smooth (i.e. C∞: infinitely often differentiable) func-
tion h : [0; 2] → [0; J ] such that the following holds for each K ∈ N and super-
linear nondecreasing t : N → N: C is solvable with K–fold advice within time

O
�
t(poly n)

�
iff h is computable withK–fold advice within timeO

�
t(poly n)

�
.

b) For each J ∈ N there is a smooth f : [0; 1] → [0; 1] computable with j–fold
advice in time expJ−j(poly n) but not in time expJ−j−1(poly n), 1 ≤ j ≤ J .

This (corrects a mistake in, and) generalizes [40, Example 7].

3.1 Benefit of 2-Fold Advice to Function Maximization

The computable functions constructed in Theorem 11b) exhibit the positive
effects (in the sense of complexity-reducing) of discrete advice to real computa-
tion – but may arguably be considered artificial. For a more natural example,
we now consider the generic problem of continuous optimization: computing the
maximum of a given (say, non-expansive) f : [0; 1] → [0; 1]. This constitutes a

functional Max : Lip1 → [0; 1], f �→ max0≤x≤1 f(x) on Lip1 :=
�
f : [0; 1] →

[0; 1], |f(x)− f(y)| ≤ |x− y|
�

computable with respect to any reasonable encod-

ing of Lip1 into infinite binary strings [38, Corollary 6.2.5 & Lemma 6.1.7]. For

instance f ∈ Lip1 is uniquely determined via the real sequence
�
f(dm)

�
m

where

(dm)
m

:=
�
0, 1, 12 ,

1
4 ,

3
4 ,

1
8 ,

3
8 ,

5
8 ,

7
8 ,

1
16 ,

3
16 , . . .

�
⊆ D

is dense in dom(f). And, extending (b1) from Section 1.1, such a real sequence
(ym)m can be ‘represented’ (in a sense formalized in the Type-2 Theory of Ef-
fectivity, TTE) as an integer (double) sequence (a〈n,m〉)n,m

with |ym− a〈n,m〉| ≤
2−n, where 〈n,m〉 := n + (n + m) · (n + m + 1)/2 denotes an integer pairing
function.
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Remark 12. Note that f(2−k) occurs within (ym)
m
⊆ R (and its 2−1–approxi-

mation within (a〈n,m〉)n,m
⊆ Z) at a position exponential in k. In ‘classic’ TTE

with infinite binary strings as codes [38, §3], this requires ‘skipping’ over ex-
ponentially many bits in order to access f(2−k) up to error 1

2 ; which prevents
evaluation (f, x) �→ f(x) to be uniformly polynomial-time computable on Lip1.
In computational practice, on the other hand, such f is implemented as an (say,
a C++ function) that, given integers n and m, produces a 2−n approximation to
f(dm) directly, that is, without generating f(d1), . . . , f(dm−1) first. This has led
[18, 19] to extend TTE with second-order representations, that is, with encodings
that permit random (as opposed to sequential) access.

For our present purpose the precise technical definition of second-order repre-
sentations may be spared since we rely only on the following

Fact 13. There exists a (natural and canonical) second-order representation of
Lip1 allowing to recover, given n ∈ N and d ∈ Dn ∩ [0; 1], a 2−n–approximation
to f(d) of length O(n) within time polynomial in n.

We emphasize the similarity to Information-Based Complexity Theory [37, 16]
which, based on the complementary, unit-cost model (a.k.a. realRAM or Blum-
Shub-Smale Machine) of real computing, supposes exact black-box evaluation
x �→ f(x) to take constant time. And in fact, using a refinement of the standard
adversary argument to finite precision queries, we can prove

Example 14. For notational ease consider the class �Lip1 of non-expansive (a
similar effect holds for appropriate smooth) functions f : [−1; 1] → [−1; 1];

L :=
�
f ∈�Lip1

		 f(x) ≤ 0 for x ≤ 0, f(x) = 0 for x ≥ 0
�

K :=
�
f ∈�Lip1

		 Max(f) = −f(−1)
�

and observe that L∩K = {≡ 0}, Max(f) = 0 all f ∈ L, and Max(f) = −f(−1)
all f ∈ K. In particular both restrictions Max

		
L and Max

		
K are polynomial-time

computable – while, without such 2-fold advice, Max
		
L∪K is not. ��

4 Conclusion and Perspectives

Recursive Analysis had traditionally focused on the continuous aspects of real
number computation as opposed to classical computability theory. Still, discrete
advice has over the last years been revealed as essential an ingredient to uniform
computability for many natural problems over the reals. We have demonstrated
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that, even for problems that are computable without such advice, its presence
or absence can have a huge impact in terms of computational complexity.

While our Theorem 11 is entirely artificial, it seems that the underlying con-
cept may be relevant to practical computations. Indeed numerical science gen-
erally considers discrete-valued functions like floor or matrix rank efficiently
computable – while at the same time at least deprecating the use of tests for
equality: a seemingly inherent ambiguity in the foundational semantics. The
representation-based theory of real number computation (TTE and its 2nd-
order extension) on the other hand regularly extends continuous with discrete
information in order to assert the computability of a problem – and provides
the canonical interface declaration of an actual implementation in exact real
number packages [32].

Still the question remains as for natural examples of real problems where
discrete advice makes a difference in complexity but not in computability: in
Theorem 11 the function is artificial while its domain [0; 1] is easy, in Example 14
the functional is natural while its domain is artificial.
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Abstract. Nonlinear dynamical systems abound as models of natural
phenomena. They are often characterized by highly unpredictable be-
haviour which is hard to analyze as it occurs, for example, in chaotic
systems. A basic problem is to understand what kind of information we
can realistically expect to extract from those systems, especially informa-
tion concerning their long-term evolution. Here we review a few recent
results which look at this problem from a computational perspective.

1 Introduction

Scientists have always been fascinated by problems involving dynamical systems.
These appear in the context of many important applications, ranging from ce-
lestial mechanics to electronics. Efforts to understand those systems have led
to many important insights. A relatively complete theory was developed for the
case of linear systems. It was also shown that the general theory of linear systems
can often be applied even for non-linear systems: near (hyperbolic) equilibrium
points, a nonlinear system has the same qualitative structure as its linearization
through the Hartman-Grobman theorem [1].

Despite those early successes, over the last few decades scientists have come
to understand that even simple nonlinear dynamical systems can exhibit compli-
cated behaviour. This realization can perhaps be traced back to the work of the
French mathematician Henri Poincaré in the late XIXth century [2]. Poincaré
studied a problem from celestial mechanics known as the three-body problem.
The three-body problem is the problem of determining the motions of three
bodies (e.g., two stars in a binary system plus a planet), which interact in ac-
cordance with the laws of classical mechanics (Newton’s laws of motion and of
universal gravitation), given their initial positions, masses and velocities. Unlike
the two-body problem, which was completely solved and shown to have a very
predictable behaviour (in the case of a star and a planet it yields Kepler’s laws of
planetary motion), Poincaré showed that orbits for the three-body problem could
be very complex—in modern terms, he showed that these orbits had elements
of chaotic behaviour. Subsequent studies of nonlinear dynamical systems were
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done by mathematicians such as Hadamard [3], Birkhoff [4], Kolmogorov [5],
Cartwright and Littlewood [6], and S. Smale [7]. Although most of these studies
involved physically inspired systems, the resulting papers were often hard to read
for the non-specialist and remained within the pure mathematicians’ community
well into the middle of the XXth century. This situation changed with the ar-
rival of the digital computer. Numerical simulations done by cheap, fast and
widely available computers allowed the non-specialist scientist to get a grasp
on the complexity of their favourite models. Edward Lorenz was one of these
early scientists who stumbled upon chaos. He was a meteorologist interested in
long-term weather prediction. During the course of his weather simulations, and
to save time, he would sometimes start a simulation in the middle of its course,
using data obtained in previous simulations. His computer used 6 decimal digits
internally, but would only print 3 digits as a result. Since he only had access
to those 3 digits, he restarted the computation using this truncated data. He
soon realized, to his surprise, that the small error introduced by the truncation
could have a huge effect in the evolution of the system, and that this effect could
happen quite rapidly [8]. Nowadays this phenomenon is known as “sensitive de-
pendence on initial conditions” or, more poetically, as the “butterfly effect”—a
hurricane’s formation could be contingent on whether or not a distant butterfly
had flapped its wings several weeks before. However, this “butterfly effect” also
raises critical questions about the reliability of computer-generated simulations
of nonlinear systems. For example, the experiments suggested that the trajec-
tories of the system which Lorenz was studying would converge over time to a
butterfly shaped object, later known as the Lorenz attractor. But to rigorously
prove that the figure drawn by a computer was not an artefact of round-off error
accumulation was a much harder problem. It was the 14th problem on the list
of problems proposed by the Fields medallist Smale [9] for the XXIst century. It
was finally solved in 1998, following the work of Tucker [10].

The interplay between chaos (and other forms of nonlinear complex behaviour)
and computers poses interesting questions to the theoretical computer science
community; in particular, questions such as the following: Are chaotic and other
highly complex systems necessarily computationally intractable? How do they
compare to intractability in Turing Machines? Is it possible to relate the de-
gree of computational intractability with some degree of “chaos complexity”
(or other) of the system? On the other hand, since physical implementations
of computers are subjected to natural laws, can chaotic/nonlinear computers
be computationally more powerful than Turing machines (from a computability
and/or computational complexity perspective)? Many of these interesting ques-
tions have to do with the long-term behaviour of dynamical systems. In this
paper we review, from a computational perspective, a few selected results that
we have obtained recently in this area.

2 Dynamical Systems: Basics

A dynamical system is a way of describing how points in a state space evolve
(deterministically) over time. Formally it is a triple (S,T, φ), where S is an open
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set of the Euclidean space (the state space), T is a semigroup which denotes
the time (usually T = R—continuous-time systems—or T = N—discrete-time
systems) and φ : T×S → S is a map (the evolution rule). The map φ must also
have the following properties (we write φ(t, x) = φt(x), where φt : S → S): (i)
φ0 : S → S is the identity; (ii) φt ◦ φs = φt+s for each t, s ∈ T. It can be shown
[11] that the evolution of a discrete-time system can be obtained by iterating
a map (= φ1). Iterating the map t times will yield the state of the system at
time t. For C1 continuous-time systems, the evolution rule can be rewritten as
a differential equation x′ = f(x), where f(x) = ∂tφt(x)|t=0.

Dynamical systems theory deals with the long-term qualitative behaviour of
dynamical systems, since quantitative information is usually a too-ambitious
goal. Some typical questions studied in dynamical systems include: “Will the
system settle down to some steady state in the long term? If yes, which properties
characterize this steady state? Can one tell if there are several co-existing steady
states? Which types of steady states does a particular class of dynamical systems
admit?”

We remark that these questions correspond to problems in theoretical com-
puter science and related applications (e.g., control theory—cf., e.g., [12]) which
are interested in analyzing the long-term behaviour of some system. The steady
states mentioned above are usually known as attractors or, in a broader sense,
as invariant sets. The set of points which converge to a given attractor defines
its basin of attraction. Up to dimension two, dynamical systems are relatively
well-behaved. The Poincaré-Bendixson Theorem (cf. [13, § 8*.5] for more details)
rules out chaos in two-dimensional systems—it states that, except for singulari-
ties (like homoclinic solutions [14]), attractors in the plane can only be points or
closed (periodic) orbits. However, as soon as one enters three-dimensional space,
complex chaotic behaviour can appear, as demonstrated by the Lorenz system
(which is a three-dimensional system of ordinary differential equations defined
by quadratic functions). Thus, low-dimensional systems defined by simple rules
can have attractors and invariant sets with a much more complex structure than
fixed points or periodic orbits.

3 Computability

Before analyzing the computational complexity of problems related to dynami-
cal systems, it makes sense to first investigate whether these problems are com-
putable. Since problems in dynamical systems theory deal with the long-term
behaviour of systems one might stumble upon the Halting problem. Indeed, since
Turing machines, considered as discrete-time dynamical systems, can be embed-
ded into many classes of discrete-time or continuous-time dynamical systems,
these latter systems often inherent the rich structures of Turing machines and,
in particular, undecidability (cf., e.g., [15,16,17,18]). The embedding of a Turing
machine (which is a purely discrete model) into a continuous system is often
done by implicitly using discrete elements, like piecewise linear functions, or
more generally piecewise defined functions or dynamics.
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A more challenging task is to analyze problems which do not allow these dis-
crete elements. Classical physics is built upon polynomials, trigonometric func-
tion, logarithms, etc. (these functions, their inverses, and all of their possible
compositions are known in Analysis as elementary functions—not to be con-
fused with elementary functions in computability theory, cf., e.g., [19]—or as
closed-form functions) and elementary functions are analytic. Analyticity is a
very strong property; for an analytic function, its global property is determined
by its local behaviour. Thus, it is much harder to encode the Halting problem
(or the behaviour of a given Turing machine) into an analytic dynamical system
and it may not be evident whether these systems can present non-computable
behaviour. For these reasons, we have focused much of our work on analytic
systems, avoiding noncomputability results which could be obtained due only to
the inherently discrete dynamics of the system.

Although the long term behaviour of a system can be very complicated and of-
ten chaotic, many problems associated with the system are still (algorithmically)
decidable. For example, it is possible to decide whether or not some (rational)
initial point will converge to the fixed point of

x′ = Ax

at the origin, when A is an n×n hyperbolic (i.e., the real parts of the eigenvalues
of A are nonzero) matrix [20].

3.1 Computability of Trajectories over Unbounded Domains

A basic problem concerning the computability of solutions for ordinary differ-
ential equations (ODEs)is the following: given some ODE and some initial con-
dition, can we compute the respective solution for arbitrary t ≥ 0? Or equiva-
lently, are trajectories of a continuous-time dynamical system computable? This
problem is not as trivial as it first might seem. One might suggest using any
standard numerical method to solve it. The problem with numerical methods is
that virtually all numerical methods use a strong hypothesis: the existence of
a Lipschitz constant valid for the vector field over the entire domain where the
solution is defined. Of course, if the vector field is C1 and the time is restricted
to a closed interval [t0, t1], then this desired global Lipschitz constant is readily
obtainable (cf., e.g., [1, p. 71]). This global Lipschitz constant is also critical for
previous results concerning computability of ODEs; in fact, it is to be found in
virtually any such result previously obtained (cf., e.g., [21]). Although there are
several computability results established for ODEs without a global Lipschitz
constant—as long as the solution is assumed to be unique (cf., [21, § 7.1]), those
results however only hold for ODEs defined on a closed interval [t0, t1]. Another
related result can be found in [22], where the author proves computability of
solutions of ODEs in unbounded domains without requiring the use of Lipschitz
constants. However, Ruohonen requires a very restrictive bound on the growth
of f .
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Thus the previous results on computability of ODEs do not address the general
case where computability must be established over the time interval [0,+∞) for
functions which might grow (in absolute terms) quicker than a linear function
(in which case no global Lipschitz constant exists).

Classically, existence and uniqueness results for C1 ODEs over the maximal
interval where the solution is defined (cf., e.g., [1, § 2.4] for a precise definition of
the maximal interval) is shown recursively: first establish existence and unique-
ness over an interval [a, b]; then the interval where existence and uniqueness is
guaranteed is recursively extended, and shown to converge to a maximal inter-
val. Note that this convergence can be non-effective, as we have shown in [23]: a
computable ODE with computable initial conditions can yield a non-computable
maximal interval even if the ODE is analytic. The result is further refined in [24],
where it is shown that the set of all initial data generating solutions with lifes-
pans longer than k, k ∈ N, is in general not computable. Although the maximal
interval of existence may be non-computable, it is (lower) semi-computable and
therefore, if we want to compute the solution y of the ODE at time t, it suffices
to extend the interval [a, b] until it includes t and then we can use a standard
algorithm to compute y(t) (cf., e.g., [23]). In this process, how to extend the in-
terval [a, b] is a key step and, concerning the extension, there are two approaches.
The first approach (cf., e.g., [1, § 2.4] for the similar case of C1 functions) is to
use local Lipschitz constants to extend the solution recursively. This can be
done for C1 functions. In particular, we have shown in [23] that the solution of
y′ = f(y), y(t0) = y0 can be computed over its maximal interval of definition
from (f, f ′, t0, x0) for C1 functions.

This result was later generalized in [25], using the second classical approach
to extend the interval [a, b] (cf., e.g., [26, p. 12, Theorem 3.1]). In this approach
we split the state space into several compacts and provide an algorithm to gen-
erate partial solutions inside these compacts (via Peano’s Existence Theorem).
This approach is more general then the previous one in the sense that it does
not require Lipschitz constants (it is valid even for ODEs with non-unique so-
lutions). But, computationally, it requires to know how to “glue” the partial
solutions to get the whole solution over the maximal interval. In [25] we solve
this problem by using an enumeration approach. The idea is to generate all pos-
sible “tubes” which cover the solution, and then check if this cover is valid within
the desired accuracy. The proof is constructive, although terribly inefficient in
practice. Nonetheless this technique shows that if the solution to an initial-value
problem defined by an ODE is unique, then the solution must be computable
over its maximal interval of existence, under the (minimal) classical conditions
ensuring existence of a solution to an ODE initial-value problem (continuity).

Theorem 1 ([25]). Consider the initial value problem y′ = f(y), y(t0) = y0,
where f is continuous on Rn. Suppose that there is a unique solution y, defined
on the maximal interval (α, β). Then y(t) is computable from f, t0, x0, t, where
t ∈ (α, β).
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An interesting problem which we shall tackle in Section 4.1 is to determine the
computational complexity of computing the solution of a given ODE over its
maximal interval of existence.

3.2 Computability of Attractors and Invariant Sets

We have seen in Section 2 that a trajectory may converge over time to some
kind of attractor (steady state). It is an important problem both in theory and
in practice to characterize these attractors. For example, one is often interested
in verification problems. The purpose of verification theory is to prove (or dis-
prove) that a system behaves as intended. A system may have safe states (in-
variant sets), where the system should be, and unsafe states, where undesirable
behaviour may occur (e.g., turbulence over a wing, a nuclear reactor overheating,
etc.). Thus many verification problems often amount to understand which kind
of attractors/invariant sets a system has, and which are their respective basins
of attraction.

For verification problems involving complex systems, computers are, of course,
essential tools. Thus, it becomes useful to know which invariant sets are com-
putable and which are not; for computable invariant sets, which can be computed
efficiently. Many specialized results exist in the literature of control theory. Here
we shall focus on more general problems in dynamical systems. One of our ini-
tial projects was to investigate computability in the planar dynamical systems.
As we have mentioned, due to the Poincaré-Bendixson theorem, invariant sets
in the plane can only be fixed points or periodic orbits (with the exception of
singularities). Thus it is natural to study this class of systems first. In general,
fixed points can be computed since they are the zeros of the function f defining
the differential equation y′ = f(y) and isolated zeros of a computable function
are also computable—cf., e.g., [27]. On the other hand, many problems related
to the simple planar dynamics can be undecidable, as the following results [28]
show.

Theorem 2 ([28]). Given as input an analytic function f , the problem of de-
ciding the number of equilibrium points of y′ = f(y) is undecidable, even on
compact sets. However, the set formed by all equilibrium points is upper semi-
computable.

Theorem 3 ([28]). Given as input an analytic function f , the problem of decid-
ing the number of periodic orbits of y′ = f(y) is undecidable, even on compact
sets. However, the set formed by all hyperbolic periodic orbits is upper semi-
computable.

In short, a hyperbolic periodic orbit is an orbit to which nearby trajectories con-
verge exponentially fast (cf., e.g., [1] for more details). The hyperbolic property
entails stronger stability properties to small perturbations of the system. This is
important when computing an invariant set, since despite round-off errors, one
should still be able to effectively approximate the invariant set. In this sense,
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the notion of stability in dynamical systems theory seems to be intertwined with
computability.

The above results show that one cannot hope for general procedures to com-
pute invariant sets for relatively large families of dynamical systems such as
planar systems. Instead, algorithms should be devised for each particular case.

As we have seen before, invariant sets need not to be fixed points or periodic
orbits, but may take complex shapes such as Lorenz attractor. Are these complex
shapes computable? We have analyzed in [20] the case of Smale’s horseshoe (cf.,
e.g., [14]), which was the first example of an hyperbolic invariant set which is
neither an equilibrium point nor a periodic orbit. Contrarily to what one could
expect a priori, Smale’s horseshoe is computable.

Theorem 4 ([20]). The Smale Horseshoe is a computable (recursive) closed
set.

3.3 Computability of Basins of Attraction

Similar to the case of invariant sets, when a class of dynamical systems is con-
sidered, general algorithms for computing basins of attractor do not exist, even
for classes of well-behaved systems; in particular, when the class is large. For
instance, Zhong [29] showed that there exists a C∞ computable dynamical sys-
tem having a unique computable hyperbolic equilibrium point but the basin of
attraction of this hyperbolic equilibrium point is non-computable.

This result was generalized in a paper we just submitted:

Theorem 5. There exists a computable analytic dynamical system having a
computable hyperbolic equilibrium point such that its basin of attraction is re-
cursively enumerable, but is not computable.

Thus finding the basin of attraction of a given attractor is, in general, a non-
computable problem, although one can semi-compute this basin from the inside.

4 Computational Complexity

4.1 Computational Complexity of Trajectories over Unbounded
Domains

We have seen that the trajectories of a non-linear dynamical system are com-
putable over their maximal interval of definition. It thus becomes interesting to
understand the underlying computational complexity of finding these trajecto-
ries. However, the two results [23] and [25] are not very helpful in that respect
because they use an exhaustive approach—the underlying algorithm will always
stop when some condition is met (and we are sure that this condition must even-
tually be met)—but we do not have a priori any clue on how much time this
will take.



Computability and Computational Complexity 19

Recently we have been focusing on polynomial differential equations. This
particular subclass has some advantages: it is well-behaved, it corresponds to
a particular model of computation—Shannon’s General Purpose Analog Com-
puter [30] (thus understanding the computational complexity of polynomial dif-
ferential equations is equivalent to understand the computational complexity of
this computational model), and it captures more complex ODEs defined using
trigonometric functions, exponentials, etc. [31].

Unfortunately, computing solutions of ODEs efficiently over unbounded do-
mains is not easy. We can get a numerical estimate of the solution, but Lipschitz
constants play a crucial role for estimating in an efficient manner the error made
in the computation and are thus needed if we want to compute the solution of
a polynomial ODE in the sense of computable analysis [27]. But since no global
Lipschitz constant exist, in general, for polynomials in unbounded domains, we
have to compute local Lipschitz constants. But these local Lipschitz constants
depend on the compact set where the solution is. Thus, to be sure that the solu-
tion is in a given compact set, given only some numerical estimate of the solution,
we need to know the error of this estimate, i.e., we need to know beforehand the
Lipschitz constant we were trying to find in the first place.

In [32] we presented a solution to this problem: break the vicious circle using
the size of the solution as one of the parameters on which the computational
complexity of the solution is measured upon.

Theorem 6 ([32]). The solution, at time T , of an initial-value problem y′ =
p(y) with initial condition y(t0) = y0 ∈ Rd, where p is a vector of polynomials,
can be computed, in an uniform manner, with precision 2−n, in time polynomial
in T , n and Y = supt0≤t≤T ‖y(t)‖.

Methods usually used for numerical integrations (including the basic Euler’s
method, Runge Kutta’s methods, etc.) tend to fall in the general theory of n-
order methods for some fixed n ∈ N. They do compute the solution of an ODE
in polynomial time in a compact time interval [a, b], but are not guaranteed to
work in polynomial time over the maximal interval of definition of the solution.

In [32] we solve this problem by using variable order methods. This is done
with the help of a Taylor approximation, with the number of terms used on the
approximation depending on the input. The idea of using variable order methods
is not new. W. Smith mentioned it in [33], where he claimed that some classes of
ODEs can be solved in polynomial time over maximal intervals, however without
providing a full proof to this claim. Variable order methods have also been used
in [34], [35], [36], but for the case of bounded domains.

It is not only polynomial ODEs which can be solved in polynomial time over
their maximal interval of definition, many analytic ODEs can also be solved in
polynomial time, as long as the function defining the ODE and its solution do
not grow quicker than a very generous bound [37].

Theorem 7 ([37]). Let y(t) be the solution of the initial-value problem y′ =
f(y), y(t0) = y0, in Cd, where f is analytic in Cd and p-poly-bounded (in Cd),
f, t0, x0 are polynomial-time computable, and y(t) admits an analytic extension
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to Cd and is poly-bounded over Cd. Then the function which maps f, x0, t0, and
t to the value y(t) is polynomial-time computable.

(a function is p-poly-bounded if ‖f(x)‖ is bounded by 2p(log ‖x‖)). This result
uses previous results from Müller et al. [38], [34], [39] which say that, locally,
the solution of an analytic ODE can be computed in polynomial time. We then
extract (in polynomial-time) the coefficients of the Taylor series of the solution,
which allow us to compute, in polynomial time, the solution of the ODE in its
maximal interval of definition using the hypothesis of poly-boundedness. The
hypothesis that f is analytic on the complex space (and poly-bounded there)
and that the solution of the ODE admits an analytic extension to Cd are needed
because we use the Cauchy integral formula in the proof.
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Abstract. The genomic distance typically describes the minimum num-
ber of large-scale mutations that transform one genome into another.
Classical approaches to compute the genomic distance are usually limited
to genomes with the same content and take into consideration only re-
arrangements that change the organization of the genome (i.e., positions
and orientation of pieces of DNA, and number of chromosomes). In order
to handle genomes with distinct contents, also insertions and deletions
of pieces of DNA—named indels—must be allowed. Some extensions of
the classical approaches lead to models that allow rearrangements and
indels. In this work we introduce a new graph structure that gives a uni-
fied view of these approaches, present an overview of their results and
point out some open problems related to them.

1 Introduction

Genomes contain the genetic information of living organisms and are composed
of one or more DNA molecules, that are called chromosomes. A genome anal-
ysis may be done over a high-level view of genomes, in which only “relevant”
fragments of the DNA (e.g., those that code for proteins) are taken into con-
sideration. DNA molecules are organized in two antiparallel strands, and each
fragment lies in one of the strands. The orientation of the fragment indicates in
which of the two strands it is. The distance between two genomes is given as
the minimum number of steps to transform one genome into the other allowing
rearrangements that change the number of chromosomes, and the positions and
orientations of fragments. Often it is computed using only the common frag-
ments, that occur on both genomes.

In 1995, a pioneering work by Hannenhalli and Pevzner [10] showed how to
compute the inversion distance (that is the genomic distance in which only in-
versions of chromosomal segments are allowed) between two unichromosomal
genomes in polynomial time. An example is given in Fig. 1 (i). Later the same
authors showed how to generalize these results to the so-called HP model, allow-
ing, in addition to inversions, also translocations, fusions and fissions to compute
the distance between two multichromosomal genomes [9]. This approach, based
on a structure called breakpoint graph [1], can still be computed in polynomial
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time, but rely on the analysis of many particular cases and is full of technical
details.

In 2005, Yancopoulos, Attie and Friedberg [14] showed that all mentioned
rearrangements can be generically represented as a double-cut-and-join (DCJ)
operation. This new DCJ model can be analyzed with the help of the adjacency
graph [2], a structure that is very similar to the breakpoint graph. The DCJ
distance, which takes into consideration only DCJ operations, can be computed
in linear time, with an approach that is much simpler than the one used in the
HP model, but allows circular chromosomes to be created [14].

While transforming a genome into another in the general DCJ model, many
circular chromosomes can coexist in some intermediate genomes [2]. Due to this
fact, when the compared genomes are linear, it is desirable to consider the so-
called restricted DCJ model, in which we perform the reincorporation of a circular
chromosome immediately after its creation [11,14]. These two consecutive DCJs,
which create and reincorporate a circular chromosome, mimic a transposition or
a block-interchange. In other words, in the restricted DCJ model most of the
classical rearrangements (inversions, translocations, fusions and fissions) cost one
DCJ, while transpositions and block-interchanges cost two DCJs. The restricted
DCJ distance is the same as the general DCJ distance and thus can be computed
in linear time [2, 14]. Fig. 1 (ii and iii) shows an example of a general and a
restricted DCJ sequence transforming one genome into another.

If the genomes have unequal contents, in addition to rearrangements it is nec-
essary to consider insertions and deletions of DNA segments, that are jointly
called indels. Some extensions of the classical approaches lead to models that
allow rearrangements and indels. In 2001, El Mabrouk [8] extended the classical
sorting by inversions approach [10] and developed a method to compare unichro-
mosomal genomes with unequal contents, considering only inversions and indels,

(i) (ii) (iii)

� � � � � � �a b f e d c g

↓ inversion

� � � � � � �a b f e d c g

inversion ↓
� � �� � � �a b f c d e g

↓ inversion

� � �� � � �a b c f d e g

inversion ↓
� � � � �� �a b c d f e g

inversion ↓
� � � �� � �a b c d f e g

inversion ↓
� � � � � � �a b c d e f g

� � � � � � �a b f e d c g

↓ inversion

� � � � � � �a b f e d c g

excision ↓
� � � � � � �a b c g f e d

excision ↓
� � � � � � �a b c g f d e

reincorporation ↓
� � � � � � �a b c d f g e \

reincorporation ↓
� � � � � � �a b c d e f g

� � � � � � �a b f e d c g

↓ inversion

� � � � � � �a b f e d c g

excision ↓
� � � � � � �a b c g f e d

reincorporation ↓
� � � � � � �a b c e d f g

excision ↓
� � � � � � �a b c d f g e \

reincorporation ↓
� � � � � � �a b c d e f g

Fig. 1. Optimal sorting sequences in different models. (i) Inversion model (6 steps).
(ii) General DCJ model (5 steps)—several circular chromosomes can coexist in the
intermediate genomes. (ii) Restricted DCJ model (5 steps)—a circular chromosome
is immediately reincorporated after its excision. Observe that the first excision-
reincorporation mimics the interchange of blocks c and f . Analogously, the second
excision-reincorporation mimics the transposition of blocks d and e.
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both having the same cost. She provided an exact algorithm that deals with
insertions and deletions asymmetrically, and a heuristic that handles the opera-
tions symmetrically. Then, in 2009, a model to sort multichromosomal genomes
with unequal contents was introduced by Yancopoulos and Friedberg [15], using
both DCJ and indel operations. Later, Braga et al. [5] presented an exact formula
that can be computed in linear time handling indels symmetrically, allowing the
indel cost to be distinct from and upper bounded by the DCJ cost [7].

In 2011 a more powerful operation has been introduced: a substitution allows
a piece of DNA to be substituted by another piece of DNA [3]. It has been
shown that the DCJ-substitution distance can also be computed in linear time,
allowing the substitution cost to be distinct from and upper bounded by the
DCJ cost [7]. Indels and substitutions are applied to pieces of DNA of any size,
and a side effect of this fact is that the triangular inequality often does not hold
for distances that consider these operations [4,7,8,15]. However, in general it is
possible to do an a posteriori correction, using an approach described in [4, 7].

This paper is organized as follows. In Section 2 we give definitions used in
this work. In Section 3 we introduce a new graph representation that allows the
analysis of different genomic distances. In Section 4 we explain the triangular
inequality problem in these distances. Then, in Section 5 we present an overview
of the latest results, for different models that consider both rearrangements and
indels, and point out some open problems related to these models.

2 Definitions

Each marker in a genome is an oriented DNA fragment. We describe models
in which duplicated markers are not allowed. The representation of a marker g
in a genome A can be the symbol g, if it is read in direct orientation in A,
or the symbol g, if it is read in reverse orientation in A. Each one of the two
extremities of a linear chromosome is called a telomere. Each telomere receives
a unique number i and is then represented by the symbol i©. Each chromosome
in a genome can be represented by a string of markers that can be circular,
if the chromosome is circular, or linear and flanked by symbols i© and k©, if
the chromosome is linear. A genome is either circular (composed of circular
chromosomes) or linear (composed of linear chromosomes).

2.1 Rearrangements and DCJ Operations

Genome rearrangements, such as inversions, translocations, fusions and fissions,
allow us to change the number of chromosomes, the order and the orientation
of the markers in a genome. In general, a rearrangement cuts a genome in two
different positions, creating four open ends, and joins these open ends in a dif-
ferent way, and can be modeled by a double-cut and join or DCJ operation [14].
Consider, for example, a DCJ applied to genome A = { 1©rbacestfdugh 2©}, that
cuts before and after ug, creating the segments 1©r...d•, •ug• and •h 2© (the
symbol • represents the open ends). If we then join the first with the third and
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the second with the fourth open end, we obtain A′ = { 1©rbacestfdguh 2©}. This
DCJ corresponds to the inversion of contiguous markers ug.

DCJ operations can also correspond to other rearrangements, such as translo-
cations (if the genome is multichromosomal), circular excisions and reincor-
porations and, in particular cases, fusions and fissions [14]. Furthermore, as
previously mentioned, a circular excision followed by a reincorporation can mimic
a transposition or a block-interchange [11, 14].

2.2 Common and Unique Markers between Two Genomes

Given two genomes A and B, possibly with unequal contents, let G, A and B be
three disjoint sets, such that G is the set of markers that occur once in A and
once in B, A is the set of markers that occur only in A and B is the set of markers
that occur only in B. The markers in sets A and B are also called unique markers
between A and B. Let A = { 1©rbacestfdugh 2©} and B = { 3©avbcdwexfygzh 4©}
Then we have G = {a, b, c, d, e, f, g, h}, A = {r, s, t, u} and B = {v, w, x, y, z}.

2.3 Modifying the Content of a Genome

If the genomes have unequal contents, besides the rearrangements that change
the organization of the genomes, we need operations that change the content of
the genomes. These content-modifying operations, however, cannot be applied
to the markers of G (the set of common markers of A and B).

Indels. The most classical content-modifying operations are insertions and dele-
tions of blocks of contiguous markers [8, 15]. We refer to insertions and dele-
tions as indels. In the models we consider, an indel can either delete or insert
contiguous markers in a genome, with two restrictions: (i) markers of G can-
not be deleted; and (ii) an insertion cannot produce duplicated markers [5]. At
most one chromosome can be entirely deleted or inserted at once. We illustrate
an indel with the following example: the deletion of markers st from genome
A = { 1©rbacestfdugh 2©}, which results into A′ = { 1©rbacefdugh 2©}.

Substitutions. Substitutions are more powerful content-modifying operations,
that allow blocks of contiguous markers to be substituted by other blocks of
contiguous markers [3]. In other words, a deletion and a subsequent insertion
that occur at the same position of the genome can be modeled as a substitution,
counting together for one single step. Again, we have two restrictions: (i) markers
of G cannot be substituted; and (ii) a substitution cannot produce duplicated
markers [3]. An example is the substitution of markers st by x in genome A =
{ 1©rbacestfdugh 2©}, which results into genome A′ = { 1©rbacexfdugh 2©}. At
most one chromosome can be entirely substituted at once (but we do not allow
the substitution of a linear by a circular chromosome and vice-versa). Observe
that indels are special cases of substitutions. If a block of markers is substituted
by the empty string, we have a deletion. Analogously, if the empty string is
substituted by a block of markers, we have an insertion.
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2.4 Sorting One Genome into Another

It is possible to transform or sort a genome A into a genome B with rearrange-
ments and content-modifying operations: while sorting A into B, we delete the
markers in A, insert the markers in B (with indels and/or substitutions) and
with rearrangements we change the organization of A so that we obtain the
same markers with the same chromosome distribution, order and orientations
of B. Each rearrangement or content-modifying operation is one sorting step
and can be applied to a segment of contiguous markers of arbitrary size.

3 Modelling the Relation between Two Genomes

In order to find a parsimonious sequence of rearrangements (and indels) sorting
one genome into the other, it is usually necessary to use some structure to
represent the relation between the organization of two genomes. This task can
be accomplished with the help of the breakpoint graph, proposed in [1] to analyze
the inversion distance [10] and also used for the inversion-indel distance [8], or
with the adjacency graph, proposed in [2] to analyze the DCJ distance, and then
used for the general DCJ-indel and DCJ-substitution [7] and restricted DCJ-
indel [6] distances. There is actually a clear duality between the adjacency and
the breakpoint graphs, so that one is the line-graph of the other [13].

3.1 The Relational Graph

Given two genomes A and B, we introduce here the relational graph, denoted
by R(A,B), that is a generalization of both the breakpoint and the adjacency
graphs. First we denote the two extremities of each g ∈ G by gt (tail) and gh

(head). Then we create in R(A,B) one black and one gray vertex for gt, connected
by a dotted edge, and one black and one gray vertex for gh, also connected by a
dotted edge. Furthermore, for each telomere in A we have one additional black
vertex and for each telomere in B we have one additional gray vertex.

Let γ1 and γ2 be extremities (or telomeres) belonging to the same chromosome
in A and let � be the substring composed of the markers that are between γ1
and γ2. We have a black edge labeled by � connecting the black vertices repre-
senting γ1 and γ2 if, and only if, � contains no marker of G. In the same way,
let γ′1 and γ′2 be extremities (or telomeres) belonging to the same chromosome
in B and let �′ be the substring composed of the markers that are between γ′1
and γ′2. Again, we have a gray edge labeled by �′ connecting the gray vertices
representing γ′1 and γ′2 if, and only if, �′ contains no marker of G.

Each vertex is connected by either one black or one gray edge and at most one
dotted edge, thus the maximum degree of the vertices is two and the graph is a
collection of paths and cycles. Telomeres are the endpoints of paths, that can be
of three types: an AB-path (that has one endpoint in genome A and the other in
B), or an AA-path (that has both endpoints in genome A), or a BB-path (that
has both endpoints in B). Since the number of telomeres in each genome is even,
the number of AB-paths is always even.
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��� �� � �� � �� � ��� �� � �� � ��� �� �

A 1©r bt bh ah at ct ch et ehstfh ft
dt dhu gh gt

ht hh 2©

�� � �� � ��� ��� ��� �� � ��� �� � ���

B 3© at ahv bt bh ct ch dt dhw et ehx ft fhy gt gh
z ht hh 4©

Fig. 2. For genomes A = { 1©rbacestfdugh 2©} and B = { 3©avbcdwexfygzh 4©}, each
one composed of a single linear chromosome, R(A,B) has one cycle and two AB-paths

Unichromosomal linear diagram. If the two genomes are unichromosomal and
linear, it is possible to represent the graph as a diagram in which the vertices
of each genome are distributed in a horizontal line, and in the same order of
the corresponding chromosome. By walking through each one of the components
we assign a direction to the black and gray edges, that determine the direction
in which the labels are read (see Fig. 2). This representation, as we shall see
later, is especially useful for identifying sorting inversions, and can be extended
to circular chromosomes [12] and to multichromosomal genomes [9].

Breakpoint graph. The breakpoint graph [1, 8] (Fig. 3) can be obtained from
R(A,B) by collapsing dotted edges and merging into a new white vertex their
endpoints. Each new white vertex receives the same name of the corresponding
merged vertices.

v

w y

x z

� � � � � � � � �� � � � � � � � � � � � � � � � � � � �

3© 1©r bt bh ah at ct ch et ehstf
h ft

dt dhu gh gt
ht hh 2© 4©

Fig. 3. Breakpoint graph obtained by collapsing dotted edges of the graph from Fig. 2
(directions of gray edges are omitted)

Adjacency graph. The adjacency graph [2,5] (Fig. 4) can be obtained by collaps-
ing black and gray edges and merging their endpoints. Each new vertex receives
a new name, that corresponds to the string obtained by concatenating the name
of the endpoints, separated by the label of the original black (or gray) edge.

� � � � � � � � �

A 1©rbt ahbh ctat etch ehstfh dtft ghudh gtht
2©hh

� � � � � � � � �

B at
3© btvah bhct chdt dhwet ftxeh fhygt htzgh hh

4©

Fig. 4. Adjacency graph built collapsing gray and black edges of the graph from Fig. 2
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3.2 Effect of Rearrangements on the Graph

Let c be the number of cycles and b be the number of AB-paths in the graph of
A and B. It has been shown that c+ b

2 ≤ |G|. Moreover, if the common markers
of A and B have the same organization (i.e., if by ignoring unique markers we
obtain the same chromosome distribution, order and orientations for common
markers), we have c+ b

2 = |G|. Thus, in order to sort the common content of A
into the common content of B, we need to increase either c or b. By cutting and
rearranging two black edges of the graph, with a DCJ applied to genome A, we
change the number of cycles by +1 or −1, or we change the number of AB-paths
by +2 or −2, or the number of cycles and AB-paths remain unchanged [2]. It
has been shown that rearrangements applied to two black (or two gray) edges
belonging to the same cycle or path can increase the number of cycles or AB-
paths [2,10]. In the DCJ model the directions of the affected edges do not matter
and it is always possible to increase c or b at each step. Due to this fact, the
DCJ distance is given by dDCJ(A,B) = |G| −

(
c+ b

2

)
[2].

In the inversion model, the genomes are unichromosomal, the number of
telomeres in each genome is at most two, and, consequently, the number of paths
in the graph is at most two. Without loss of generality, it is possible to transform
the paths into one or two cycles [10], so that we only need to take care of cycles.
Then, for finding inversions that increase the number of cycles, we first need to
represent the graph as a diagram, in which an inversion can only increase c when
it is applied to two black (or two gray) edges that have opposite directions (see
Fig. 5). Many particular cases appear when the graph has bad cycles, that do
not have edges with opposite directions and may require some extra steps to be
sorted. Nevertheless, the inversion distance, that is lower bounded by the DCJ
distance, can still be efficiently computed [10]. Observe that the diagram view
also applies to the breakpoint graph, but in an asymmetric way, in which only
the inversions in one of the two genomes can be identified.

3.3 Minimizing Indels and Substitutions

It is possible to combine rearrangements and indels (or substitutions) so that
the overall number of operations is minimized. A rearrangement involving two

(i) (ii)

� �� � �... � � �

split
cycle→←
merge
cycles

� � �... � � �

γ1 |γ2 γ3 γ4 γ5|γ6 γ1|γ5 γ4 γ3 γ2 |γ6 � � � �� � �... � � �

↔
� � �... � � �

γ1 |γ2 γ3 γ4 γ5|γ6 γ1 |γ5 γ4 γ3 γ2|γ6

Fig. 5. Effects of an inversion in the diagram. (i) If the edges are in the same cycle
and with opposite directions, the inversion splits the cycle. Inversely, if the edges are
in different cycles, the inversion merges them (independently of the directions of the
original edges, that are omitted). (ii) If the edges are in the same cycle with the same
direction, the number of cycles remains unchanged.
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labeled edges can concatenate the labels into one single edge, decreasing the num-
ber of indels. For example, take the gray edges fhygt and htzgh from genome B
(Fig. 2). A DCJ applied to these two edges could result into htgt and fhyzgh,
in which the label yz results from the concatenation of the labels of the two
original edges. In particular, when we apply rearrangements in two edges (both
black or both gray) belonging to a single component of the graph R(A,B), we
can concatenate labels while we create a new component [5]. Thus, the cycles
and paths of our graph also establish a relation between indels and allow us to
efficiently concatenate labels while increasing the number of components. This is
a key idea for computing the genomic distances in the models we describe here.

4 The Triangular Inequality Problem

Since content-modifying operations can be applied to blocks of markers of ar-
bitrary size, the triangular inequality does not hold for genomic distances that
consider this type of operation. Given any three genomes A, B and C and a
distance measure d, consider without loss of generality that d(A,B) ≥ d(A,C)
and d(A,B) ≥ d(B,C). Then the triangular inequality is the property that
guarantees that d(A,B) ≤ d(A,C) + d(B,C). Although this property holds for
the classical models that consider only rearrangements, it does not hold for the
approaches that allow content-modifying operations. Consider for example the
genomes A = {◦abcde◦}, B = {◦acdbe◦} and C = {◦ae◦} [15]. While A and B
can be sorted into C with only one indel, the minimum number of inversions
required to sort A into B is three. In this case we have d(A,B) = 3, d(A,C) = 1,
d(B,C) = 1 and the triangular inequality is disrupted.

The triangular inequality must hold if one intends to use the distance to
compute the median of three or more genomes [13] and in phylogenetic recon-
structions. Fortunately, a correction can be applied a posteriori, as proposed
in [4, 5], and consists in summing to the distance a surcharge that depends
on the number of unique markers. It has been shown that, for each genomic
distance d that we describe in the next section, there is a positive constant
k such that, for any k′ ≥ k the triangular inequality holds for the function
m(A,B) = d(A,B) + k′(|A| + |B|).

5 Overview of Genomic Distances with Indels

We shall now present an overview of some known results in genomic distances
that allow indels, and some open problems related to these approaches. In general
we assign the cost of 1 to each rearrangement and a positive cost w to each
content-modifying operation. Then, given two genomes A and B, the distance
of A and B is the minimum cost of a sequence of rearrangements and content-
modifying operations that transforms A into B.

5.1 The DCJ-Indel Distance

In the DCJ-indel distance the genomes can be multichromosomal, the rearrange-
ments are all generic DCJ operations and the content-modifying operations are
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insertions and deletions. For any positive cost w ≤ 1 assigned to indels, there is
a formula to efficiently compute the distance [5,7]. Furthermore, for each w ≤ 1,
the constant to establish the triangular inequality is k = w+1

2 [7]. The whole
family of problems in which we have w > 1 remains open.

The restricted version. Although there is no method to exactly compute the
restricted DCJ-indel distance up to now, for any w ≤ 1, a good upper bound
was proposed in [6]. This upper bound allows the triangular inequality correction
for the general DCJ-indel distance to be extended to the restricted DCJ-indel
distance, that is, here we also have the constant k = w+1

2 . We conjecture that
the general and the restricted DCJ-indel distances are equal.

5.2 The DCJ-Substitution Distance

In the DCJ-substitution distance again the genomes can be multichromoso-
mal and the rearrangements are all generic DCJ operations, but the content-
modifying operations are substitutions. For any positive cost w ≤ 1 assigned to
substitutions, there is a formula to efficiently compute the distance [3, 7]. The
constant to establish the triangular inequality is k = w+2

4 for each w ≤ 1 [7].
Again, the whole family of problems in which we have w > 1 remains open.

The restricted version. The general and the restricted DCJ-substitution distances
are not the same, as we can see in the example given in Fig. 6. The restricted
version of the DCJ-substitution distance is a complete open problem.

5.3 The Inversion-Indel Distance

In the inversion-indel distance, that applies to unichromosomal genomes, the
rearrangements can be only inversions and the content-modifying operations are
indels. An exact algorithm was given for the case in which w = 1 (the same
cost is assigned to inversions and indels) and only one indel direction is allowed
(i. e. when we have only insertions or only deletions) [8]. For the general case,
in which indels are handled symmetrically, a heuristic was provided [8], but
obtaining an exact solution remains an open problem, as well as extending the
model to allow distinct inversion and indel costs. The triangular inequality is

(i) � � � � � �a w c x b d
excision ↓

� � � � � �a b d x w c\
substitution ↓

� � � � � �a b d z y c

reincorporation ↓
� � � � � �a b y c z d

(ii) � � � � � �a w c x b d
excision ↓

� � � � � �a b d x w c
reincorporation ↓

� � � � � �a b c x w d
substitution ↓

� � � � �a b c z d
↓ insertion

� � � � � �a b y c z d

Fig. 6. (i) An optimal sorting sequence in the general DCJ-substitution model (3
steps). (ii) An optimal sorting sequence in the restricted DCJ-substitution model (4
steps).
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disrupted in the inversion-indel distance and can be corrected as described in
Section 4, but computing the value of the constant k is another open problem.

The difficulty in handling indels symmetrically probably derived from the
complexity of integrating indels with the treatment of the many particular cases
of the inversion model, and from the asymmetry of the breakpoint graph used
in this analysis. The use of the symmetric relational graph may then bring some
insights to the solution of this problem.
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Computation plays a key role in predicting and analyzing natural phenomena.
There are two fundamental barriers to our ability to computationally under-
stand the long-term behavior of a dynamical system that describes a natural
process. The first one is unaccounted-for errors, which may make the system
unpredictable beyond a very limited time horizon. This is especially true for
chaotic systems, where a small change in the initial conditions may cause a dra-
matic shift in the trajectories. The second one is Turing-completeness. By the
undecidability of the Halting Problem, the long-term prospects of a system that
can simulate a Turing Machine cannot be determined computationally.

We shall discuss the interplay between these two forces – unaccounted-for
errors and Turing-completeness. We show that the introduction of even a small
amount of noise into a dynamical system is sufficient to “destroy” Turing-
completeness, and to make the system’s long-term behavior computationally
predictable. On a more technical level, we deal with long-term statistical prop-
erties of dynamical systems, as described by invariant measures. We show that
while there are simple dynamical systems for which the invariant measures are
non-computable, perturbing such systems makes the invariant measures effi-
ciently computable. Thus, noise that makes the short term behavior of the system
harder to predict, may make its long term statistical behavior computationally
tractable. We also obtain some insight into the computational complexity of
predicting systems affected by random noise.

A significant part of this talk is based on joint work with Alexander Grigo and
Christobal Rojas [1].
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Abstract. The Cluster Editing problem asks to transform a graph
into a disjoint union of cliques using a minimum number of edge mod-
ifications. Although the problem has been proven NP-complete several
times, it has nevertheless attracted much research both from the the-
oretical and the applied side. The problem has been the inspiration
for numerous algorithms in bioinformatics, aiming at clustering enti-
ties such as genes, proteins, phenotypes, or patients. In this paper, we
review exact and heuristic methods that have been proposed for the
Cluster Editing problem, and also applications of these algorithms for
biological problems.

1 Introduction

Given an undirected graph G, the Cluster Editing problem asks to transform
G into a vertex-disjoint union of cliques by a minimum number of edge modifica-
tions; see Fig. 1. In the corresponding Weighted Cluster Editing problem,
we are given modification costs for each edge or non-edge, and we ask for a set
of edge modifications with minimum total weight. To prove worst-case running
times, we sometimes assume that all modification costs are integers; in this case,
we additionally assume that all edges have non-zero modification cost. Cf. § 7
for Cluster Editing with zero-edges. Let n denote the number of vertices in
the input graph, and let m denote the number of edges.

In application, the above task corresponds to clustering objects, that is, par-
titioning a set of objects into homogeneous and well-separated subsets. Similar
objects are connected by an edge, and a cluster is a clique of the input graph. The

Fig. 1. Cluster Editing instance before and after editing; bogus edges in the input
graph are marked in red, missing edges additionally as dashed
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input graph is corrupted and we have to clean (edit) the graph to reconstruct
the clustering under the parsimony criterion. The Cluster Editing formu-
lation has been successfully applied in bioinformatics for clustering genes and
proteins, or to process transcription data, see § 6 for details. In addition, Clus-

ter Editing has served as the inspiration for heuristic clustering algorithms
such as CLICK [1], CAST [2], or HCS [3].

Early work on the Cluster Editing problem dates back to at least the
1960s, when Zahn [4] solved the problem for a particular type of input graphs.
Another early result is due to Moon [5], who showed that almost all graphs
are almost maximally far away from transitivity: Consider the set Gn of all
undirected graphs with n vertices. Any such graph can be transformed either into
the empty graph or the complete graph using at most

(
n
2

)
/2 edge modifications.

For fixed ε > 0 consider the set Gn,ε of “hard” instances, which require at
least (1 − ε) ·

(
n
2

)
/2 edge modifications. Then, |Gn,ε| / |Gn| → 1 as n → ∞. In

application, this result is much less disturbing than it may appear: It is only true
as n approaches infinity; and, real-world instances usually belong to the “rare”
instances where much less modifications are required.

During the last years, the Cluster Editing problem has received numerous
names,1 such as Transitive Approximation problem or Transitive Graph

Projection problem [6]. Also, certain problems such as Clique Partitioning
[7, 8] can be easily seen to be equivalent to Cluster Editing. Finally, the
problem is closely related to the Consensus Clustering problem.

2 Preliminaries

For brevity, we write uv as shorthand for an unordered pair {u, v} ∈
(
V
2

)
. We

can encode the input of a (weighted or unweighted) Cluster Editing instance
in a single weight function s :

(
V
2

)
→ R: For s(uv) > 0 a pair uv is an edge of the

graph and has deletion cost s(uv), while for s(uv) < 0, the pair uv is not an edge
(a non-edge) of the graph and has insertion cost −s(uv). If s(uv) = 0, we call uv a
zero-edge; the presence of such zero-edges makes the Cluster Editing problem
considerably harder, cf. § 7. An unweighted Cluster Editing instance can be
encoded as an integer-weighted instance by assigning weights s(uv) ∈ {+1,−1}.
To solve (weighted) Cluster Editing we first identify all connected compo-
nents of the input graph and calculate the best solutions for each component
separately, because an optimal solution never connects disconnected components.
Furthermore, if the graph is decomposed during the course of an algorithm, then
we can recurse and treat each connected component individually.

Vertices uvw form a conflict triple if uv and vw are edges but uw is a non-edge
(or a zero-edge, for the weighted case). An unweighted graph is transitive if it
is a disjoint union of cliques; this is the case if and only if it does not contain
any conflict triples. To this end, many algorithms mentioned below are based on
removing all conflict triples from the input.

1 In fact, one can argue that the name “Cluster Editing” is somewhat ill-chosen,
as we are not editing clusters but edges.
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We may sometimes set pairs uv to “forbidden” or “permanent”: This may
happen in a preprocessing step when we are sure that two vertices cannot or
have to end up in the same clique/cluster; or, in a search tree algorithm where
we draw this conclusion only for this particular part of the search tree, as all other
cases will be taken care of elsewhere. The advantage of the weighted Cluster

Editing variant is that we can immediately merge any permanent pair uv,
replacing the vertices u and v with a single vertex u′, and, for all vertices w ∈
V \{u, v}, replacing pairs uw, vw with a single pair u′w. The weight of the joined
pair is s(u′w) = s(uw) + s(vw). In case one of the pairs is an edge while the
other is a non-edge, this immediately “generates cost” and, for parameterized
algorithms, reduces the cost parameter.

We encode a forbidden pair uv in our weight function s by setting s(uv) =
−∞. By definition, every forbidden pair uv is a non-edge, since s(uv) < 0. A
forbidden pair uw can be part of a conflict triple uvw. We mention in passing
that this encoding works exactly as it should when we merge vertices incident
to forbidden edges.

3 Complexity of the Problem

The Cluster Editing problem is NP-hard, and several proofs of this fact have
been published independently [9–11]. To the best of our knowledge, the first
such proof is due to Křivánek and Morávek in 1986 [12], who call the problem
“SΔE” or “best approximation of a symmetric relation by an equivalence rela-
tion”. Later, stronger results were achieved: In particular, the Cluster Editing

problem remains NP-hard on graphs with maximum degree six, and if at most
four edge modifications incident to each vertex are allowed [13]. Under the ex-
ponential time hypothesis [14], no exact algorithm can exist with running time
subexponential in n [13].

Cluster Editing can be solved in polynomial time for particular graph
types: This is the case for unit interval graphs (1-dimensional vicinity graphs)
since clusters in an optimal solution are consecutive sets [15]. It is also well-
known that Cluster Editing can be solved in polynomial time for graphs
of maximum degree two, namely paths and circles, see for example [16]. It is
an open question whether Cluster Editing on graphs with maximum degree
three to five is NP-hard or polynomial-time solvable [13]. For certain graphs
that are “not too far” from a cluster graph, a greedy-type heuristic can find the
optimal solution in polynomial time [6]. The variant of the Cluster Editing

problem where we are only allowed to insert edges, is clearly polynomial-time
solvable (we simply insert all edges for each connected component) and is better
known as the transitive closure of the input graph.

A problem with input size n and parameter k is fixed-parameter tractable
(FPT) if it can be solved in O(f(k) · poly(n)) time where f is any computable
function and poly(·) is a polynomial. For a general introduction we refer to [17].
In the following, let n be the number of vertices, and k the number of edge modi-
fications. For this parameter, the Cluster Editing problem is fixed-parameter
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tractable, and both kernels and search tree algorithms exist, cf. § 5. The even
more interesting question is whether a parameterized algorithm with subexpo-
nential running time exists for Cluster Editing, as conjectured by Cao and
Chen [18]. Unfortunately, Komusiewicz and Uhlmann [13] and Fomin et al. [19]
independently showed that under the exponential time hypothesis, no such al-
gorithm can exist.

Concerning the approximability of the Cluster Editing problem, Charikar
et al. [20] showed that the problem is APX-hard (that is, is NP-hard to approx-
imate within some constant factor greater than 1). There exist several (random-
ized and deterministic) constant-factor approximations for the problem [20–22].
We omit further details, as such approximation algorithms are outside the focus
of this review: We are interested in computing solutions that are structurally
similar to the “true” solution, and this is hopefully the case for the optimal
solution. In contrast, constant-factor approximation solutions usually have no
structural similarity whatsoever to the optimal solution. Well-known examples
of this fact from bioinformatics include the center star 2-approximation for the
Multiple Sequence Alignment problem, or the spanning tree 2-approximation for
the Maximum Parsimony problem in phylogenetic tree reconstruction.

4 Integer Linear Programming

Solving Cluster Editing using Integer Linear Programming (ILP) and its Lin-
ear Programming (LP) relaxation has been in the focus of research groups in
the 1980s [23–27]. Particularly noteworthy is the paper by Grötschel and Wak-
abayashi [7] from 1989. The basic ILP for Cluster Editing can be directly
derived from the conflict triple characterization; a faster algorithm is obtained
by a mathematical analysis of the corresponding clique partitioning polytope.
Grötschel and Wakabayashi proposed several partition inequalities for this pur-
pose; it turns out that their simplest form, namely 2-partition inequalities, is
sufficient in practice [7, 28]. As there is an exponential number of 2-partition
inequalities, one follows a cutting plane approach where these inequalities are
added to the Linear Program only if they are violated by a current fractional
solution.

In 2005, Kochenberger et al. [8] claimed that the cutting plane approach of
Grötschel and Wakabayashi [7] cannot solve instances with more than 50 nodes
in reasonable time. But in 2008, Böcker et al. [29] showed that this formula-
tion can solve instances with 1000 nodes in about an hour. In part, this may
be attributed to the advances in ILP solvers. Another possible explanation for
the good performance in [29] is the particular structure of the used instances:
These were generated by disturbing an ideal cluster graph using random edge
insertions and deletions, then applying a data reduction that results in instances
of the reported size, see below. In particular, the “merge operation” used as
part of the data reduction, may result in uneven edge weight distributions that
are advantageous for the ILP. An implementation of the ILP from [28, 29],
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together with the corresponding benchmark datasets, can be downloaded from
http://bio.informatik.uni-jena.de/software/peace.

5 Parameterized Algorithms and Data Reduction

The parameterized complexity of Cluster Editing, using the number of edge
modifications as parameter k, is particularly well-studied. Parameterized algo-
rithms require a cost limit k to be given in advance: In case a solution with cost
≤ k exists, the algorithm finds this solution and answers “yes”; otherwise, “no
solution” is returned. If we want to find an optimal solution but do not know
k, we simply call the algorithm repeatedly for k = 0, 1, 2, . . . . As the running
time of the last iteration dominates that of all previous calls, we end up with
exactly the worst-case time complexities mentioned below. Finally, note that we
are interested in the solution itself, whereas the algorithmic presentation often
focuses on the decision variant of the Cluster Editing problem. In practice,
all of the algorithms can easily be modified to also compute the optimal solution.

The first results on the parameterized complexity of the Cluster Editing

problem were given by Gramm et al. [30] who present a simple algorithm with
running time O(3k+n3) and, using a refined branching strategy, to O(2.27k+n3).
Gramm et al. [31] later improved this to O(1.92k + n3) by an automated and
extensive case analysis; the resulting algorithm has more than 100 initial branch-
ing cases and, to the best of our knowledge, has never been implemented. By
transforming the unweighted Cluster Editing problem to the integer-weighted
variant, running time was advanced to O(1.82k +n3) by Böcker et al. [32]. Later,
Böcker and Damaschke used a characterization of graphs that do not contain
many conflicts, to derive an algorithm with running time O(1.76k +m+n) [33].
The currently fastest algorithm solves Cluster Editing in O(1.62k +m+ n)
time [16].

Notably, results in [16, 33] are based on a very simple branching algorithm
first proposed in [32], that works on integer-weighted instances of the Cluster

Editing problem: We first search for a conflict triple uvw, that is, edges uv and
vw plus a non-edge uw. We branch into two cases: Either we delete edge uv;
or, we merge it as described in § 2. Some bookkeeping is then required to deal
with zero-edges that may appear by merging an edge. It is somewhat surprising
that an algorithm this simple can, using an involved analysis and solving certain
special (simple) cases upfront, result in such a competitive running time. It will
also be interesting to see in the future whether even better running time bounds
can be proven for this simple branching algorithm by an improved analysis.

A kernelization is a polynomial-time algorithm that transforms a given in-
stance I with parameter k, into a new instance I ′ with parameter k′ ≤ k, such
that (i) the instance (I, k) has a solution if and only if the instance (I ′, k′) has a
solution, and (ii) the size of the instance I ′ is at most f(k) for some computable
function f . Kernelization is often achieved by applying a set of reduction rules
that cut away parts of the instance that are easy to handle. The kernel size is a
measure for the effectiveness of the kernel.

http://bio.informatik.uni-jena.de/software/peace
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Fig. 2. Data reduction results for the “Leukemia” gene expression dataset [39]. Three
different Leukemia subtypes (AML, ALL-B, ALL-T) shown as hexagons, circles, and
squares, respectively. Input graph (left) and graph after data reduction (right).

Gramm et al. [30] showed how to compute a kernel for the Cluster Editing

problem with O(k2) vertices in O(n3) time. A faster kernelization was given by
Protti et al. [34] who computed a kernel with 2k2 + k vertices in O(n + m)
time. At IWPEC 2006, Fellows [35] presented a polynomial-time kernel with
24k vertices, based on a Linear Programming formulation of the problem. In
2007, Fellows et al. [36] gave a combinatorial kernel with 6k vertices based on
crown-type reductions. Guo [37] presented a kernel with 4k vertices that can be
computed in O(n3) time [37], which is based on the notion of critical cliques.
This was later improved to 2k vertices by Chen and Cao [38]. Similarly, a kernel
for the integer-weighted variant with O(k2) vertices [32] was improved to 2k
vertices [18]. It is also worth noting that the “critical clique” idea of Guo [37]
allows us to directly transform an unweighted Cluster Editing instance, into
an integer-weighted instance with at most 4kopt vertices in O(m+n) time, where
kopt are the optimal costs of the unweighted instance [32].

Kernel methods can also be viewed as a data reduction; in fact, we know
many data reduction rules that do not result in improved kernel sizes but are
still useful in practice. Parameterized rules can sometimes be made “parameter-
independent” as described [28]; this allows us to apply the (polynomial-time)
data reduction upfront, and solve the remaining instance using any exact or
heuristic method. Data reduction can have a dramatic effect on the size of the
instance, see Fig. 2 for a real-world example for gene expression data. To find
exact solutions in practice, a combination of data reduction and Integer Linear
Programming proved to be particularly efficient [28]. An implementation of the
data reduction and parameterized algorithms from [28] can again be downloaded
from http://bio.informatik.uni-jena.de/software/peace.

6 Cluster Editing in Practice

Clustering data still represents a key step of numerous life science problems.
The weighted variant of the Cluster Editing problem has been frequently

http://bio.informatik.uni-jena.de/software/peace
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proposed for clustering biological entities such as proteins or genes, and serves
as the inspiration for numerous heuristic clustering algorithms [1–3].

The FORCE software [40] implements a heuristic for solving the weighted
Cluster Editing problem, which is based on simulating physical forces and
molecule movement coupled to simulated annealing. The more recent Transitivity
Clustering [41] software combines the strategy behind FORCE with a parameter-
ized algorithm to balance scalability and accuracy. This is decided by estimating
an upper bound for the costs by using a fast but inaccurate approximation algo-
rithm. If this bound is low, the exact fixed-parameter algorithm is applied, the
force-based heuristic otherwise. The tool is available as stand-alone tool, as Cy-
toscape [42] plugin, as web tool for online computation, and as part of the Clus-
terMaker framework [43]. The web site (http://transclust.mpi-inf.mpg.de)
provides corresponding information, installation instructions, workflows and test
data as well as real-world project data. In the following, we give some examples of
recent real-world applications of these tools to very briefly exemplify the impact
of Cluster Editing in current computational biology. For all clustering set-
tings we have given a symmetric similarity matrix, based on Euclidean distances,
statistical measures (correlation coefficient, for instance) or other functions (bi-
nary local alignment scores, for instance). A reference implementation as well as
evaluation data sets are available at the Transitivity Clustering web site. New
methods should be compared to those.

– Genetics and genomics: Preprocessing of bacterial de novo sequencing
data [44], evolution of transcription factors [45], and large-scale detection
of homologous genes [46]. Transitivity Clustering was also used to find rea-
soning regarding the robustness of Cluster Editing for varying similar-
ity thresholds and missing edge weights, at least for clustering bacterial
genes and analyzing their pathogenicity [47, 48]. Similarly, the genomes of
16 methanogenic genomes were partitioned to characterize the genetic reper-
toire of the mesophilic hydrogenotrophic Methanocella paludicola [49].

– Transcriptomics: Comparative transcriptomics of the LexA regulon in
corynebacteria [50], inter-species transfer and evolution of transcriptional
gene regulatory networks between different actinobacteria [51, 52] as well
as different pathogenic E. coli strains [53], and cancer sub-typing based on
clustering gene expression data [54].

– Metabolomics: Metabolic profiling in ion mobility spectrometry data of
human exhaled air, bacterial colonies and several more application cases [55].

– Proteomics: Identification of protein complexes in interactome networks
[56], and unraveling of molecular factors influencing polyglutamine (polyQ)
neurodegenerative diseases [57]. In another study bacterial exoproteomes
were partitioned with Transitivity Clustering into pathogenic and
non-pathogenic components [58].

– Network analysis: As part of DEFOG, functional analysis of gene sets by
hierarchically organizing the genes into functionally related modules [59].

http://transclust.mpi-inf.mpg.de
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This list is far from being complete but shall rather illustrate that Cluster

Editing is a nowadays very frequently utilized method for data partitioning in
the life sciences.

7 Problem Variants

Above, we have stated explicitly that for the integer-weighted variant of Clus-

ter Editing, we do not allow edges with modification costs zero in the in-
put graph. In fact, worst-case running times considerations for the parame-
terized algorithms from § 5 do not hold if there are zero-edges present in the
input, and much of the analysis in [16, 32] focuses on zero-edges that appear
in the course of the algorithm. Recently, two groups independently showed
that Cluster Editing with zero-edges (“don’t care edges”) is fixed-parameter
tractable, too [60, 61]; Marx and Razgon [60] also provide a running time bound

of O
(
2O(k3) · poly(n)

)
.

Damaschke [62] considered the enumeration of all optimal solutions of
Cluster Editing and related problems. Alternative parameterizations of the
Cluster Editing problem have been studied in [63]. Fomin et al. [19] stud-
ied Cluster Editing parameterized by two parameters (namely, modification
costs k and a lower bound on the number of cliques p) and gave a randomized

algorithm with subexponential running time O
(
2O(

√
pk) + poly(n)

)
.

The closest relative of Cluster Editing is presumably the Cluster Dele-

tion problem, where we are only allowed to remove edges in the input graph.
This problem is also NP-hard, and parameterized algorithms exist similar to
those mentioned above [30, 31, 64]. The currently fastest algorithm for this prob-
lem has worst-case running time O(1.415k + poly(n)) [33]. The directed variant
of the Cluster Editing problem is called Transitivity Editing, and pa-
rameterized algorithms and an ILP have been proposed for this variant [65, 66].
Other problem variants include Cluster Vertex Deletion where we delete
vertices instead of edges, or s-plex Editing where we do not demand the re-
sulting graph to contain “perfect cliques”. Such problems have also been studied
frequently in the literature but are beyond the scope of this review.

8 Conclusion

The Cluster Editing problem and its variants have, for many decades, stimu-
lated the creativity of numerous researchers. This rich and long-standing research
comes at the prize that the same problem is known under many different names,
which sometimes makes it hard to find all relevant related work. Despite its
computational complexity, the problem is also highly relevant in applications,
and swift algorithms (both exact and heuristic) have been developed to solve
real-world instances. We assume that this process will continue in the future,
and that the Cluster Editing problem “has come to stay.”

Acknowledgments. We thank Anke Truss for providing Fig. 2.
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Abstract. On page 9 of Rogers’ computability book he presents two
functions each based on eventual, currently unknown patterns in the
decimal expansion of π. One of them is easily (classically) seen to be
computable, but the proof is highly non-constructive and, conceptually
interestingly, there is no known example algorithm for it. For the other, it
is unknown as to whether it is computable. In the future, though, these
unknown patterns in the decimal expansion of π may be sufficiently
resolved, so that, for the one, we shall know a particular algorithm for
it, and/or, for the other whether it’s computable. The present paper
provides a “safer” real to replace π so that the associated one function
retains its trivial computability but has unprovability of the correctness
of any particular program for it. Re the other function, a real r to replace
π is given with each bit of this r uniformly linear time computable in the
length of its position and so that the Rogers’ other function associated
with r is provably uncomputable.

1 Introduction

Rogers [1, p. 9] defines functions f and, then, g—each based on eventual patterns
in the decimal expansion of π.1 We’ll discuss each of these in turn (in Sections 1.1
and 1.2), but opposite the order in which Rogers discusses them.2

1.1 Our f and Variants

As will be seen, the second of these Rogers’ functions, which we’re calling f , is
clearly computable but not constructively so—and there is currently apparently
no known way to compute it.

For each x ∈ N = {0, 1, 2, . . .}, let f(x)
def
= 1, if there are at least x consecutive

5’s in π’s decimal expansion; 0, otherwise.
Clearly, f is either constantly 1—in case (i) π’s decimal expansion has ar-

bitrary long, finite runs of consecutive 5’s—or f steps exactly once from 1 to

� We are grateful for anonymous referees’ helpful corrections and suggestions.
1 Brouwer first similarly employed patterns in π’s digits, e.g., [2].
2 To preserve alphabetical order in our discussion, we’ll call his g, f , and his f , g.
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0—(ii) otherwise. In each possibility f is trivially computable: in case (i), em-
ploying Church’s Lambda Notation [1], f = λx (1); in case (ii), if n is the
maximum length of any consecutive sequences of 5s in the decimal expansion of
π, f = λx (1 if x ≤ n; 0 otherwise). Hence, in any case, f is trivially computable.

It’s unknown which of cases (i) and (ii) just above holds, and, if (ii) became
known, it might still be unknown the exact size of a largest consecutive run of
5’s in π’s decimal expansion. Then we still wouldn’t know exactly where f steps
from 1 to 0—and we still wouldn’t know how to compute f .

This Rogers’ example very nicely illustrates the (classical) conceptual differ-
ence between, there is an algorithm for f and the human race knows an algorithm
for f : the former is true, but the latter is currently false. However, in the future,
the above unknowns about the decimal expansion of π may be suitably resolved,
so that, then, Rogers’ example will no longer illustrate this just above pleasant
conceptual difference.3

As will be seen, our Theorems 3 and 9 below provide “safer” replacements
for f—so as to preserve an interesting version of the nice (classical) conceptual
difference above.

Suppose T is any fixed, computably axiomatized extension of first order Peano
Arithmetic (PA) [3, 1]. E.g., T might be: PA itself, the also first order variant
with variables for both natural numbers and for sets thereof and with induction
expressed for sets (e.g., from [1]), or ZFC. We also need that (certain of) T’s
theorems which are expressible in PA are true (essentially those featured in the
proofs of Theorems 3 and 9 below). The theory T being computably axiomatized
makes its set of theorems computably enumerable, so T plays the role of an
algorithmic extractor of (relevant) true information.

Except for π, from now on, we’ll restrict our attention to reals r in the interval
[0, 1] represented as an infinite expansion in binary (not in base 10).

We say that such a real r = .r0r1r2 . . ., where the rjs are its successive binary
digits, is computable iff the function λj (rj) is computable.

For a real r, for each x ∈ N, we let

fr(x)
def
=

{
1, if there are at least x consecutive 1’s in r’s binary expansion;
0, otherwise.

(1)
Clearly, fr, just as is f , is trivially computable—even if r is not computable.
Again, even for computable r, it may, in some cases, be hard to know that some
particular program q is a program for fr.

We can and do consider the acceptable programming systems (synonym:
acceptable numberings) [4, 1, 5–8] as those programming systems for the 1-
argument partial computable functions: N → N which are intercompilable with
naturally occurring general purpose programming formalisms such as a full
Turing machine formalism or a LISP programming language. Typically, for

3 A future proof as to which function is f may still be non-constructive, but, impor-
tantly for the present paper, re the nice conceptual difference above, we would have
the less interesting (and more normal) situation that both there is an algorithm for
f and the human race knows an algorithm for f are true—of course, classically.
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theoretical work, one works with numerical names for the programs in these
systems—whence the term ‘numbering.’ Let ϕ be any fixed acceptable program-
ming system. By ϕp we denote the 1-argument partial computable function from
N to N computed by program (number) p in the ϕ-system.

If E is an expression such as ‘ϕp is total’, where p is a particular element of
N, we shall write � E � to denote a naturally corresponding, fixed standard
cwff (closed well-formed formula) of PA which (semantically) expresses E. We
assume that

if E′ is obtained from E by changing some numerical values, then � E′ �
can be algorithmically obtained from those changed numerical values and
� E �.

It is well known that cwffs extensionally equivalent may not be intensionally or
even provably equivalent [9]. In what follows, when we use the � E � notation,
it will always be for E that are easily and naturally (semantically) expressible in
PA as � E �.

‘�’ denotes the provability relation, and ‘��’ is its negation.

Definition 1. In the following, we say that s (∈ N) computes (say, a {0, 1}-
valued total function) h iff ϕs = h.

Our Theorems 3 and 9 below each imply that there are computable reals r such
that, for any p, q which compute r and fr, respectively,

T �� � q computes fϕp � . (2)

N.B. The word any just above is important, since, then, (2) is not the result of
only pathological choices of p, q for computing r and fr, respectively; (2) holds
for any such choices of p, q. Hence, for such computable r, there is an algorithm
for fr is trivially true, but T knows an algorithm for fr is false.4

Below ↓ means converges or is defined, and ↑ means diverges or is undefined.
In our proofs of Theorems 3 and 9, in view of Definition 1 above and the

nature of computable reals r and corresponding fr, we expand (2) above to:
T �� � (∀x)[ϕq(x) ↓≤ 1 ∧ [ϕq(x) = 1 → (∃y)(∀z | y ≤ z < y + x)[ϕp(z) ↓=
1]] ∧ [ϕq(x) = 0 → (∀y)(∃z | y ≤ z < y + x)[ϕp(z) ↓= 0]]] �.

More importantly, in the light of (2) above, the following is perhaps surpris-
ing. For Theorem 3, fr is made = λx (1). For Theorem 9, for each n > 0, a
corresponding fr is made = λx (1 if x ≤ n; 0 otherwise). The solution to the
apparent paradoxes, one for each theorem, is that T does not and cannot know
that theorem’s information about which function fr is!

1.2 Our g and Variants

The first of Rogers’ functions [1, Page 9], which we’re calling g, is defined thus.

For each x ∈ N, let g(x)
def
= 1, if there are exactly x consecutive 5’s in π’s decimal

expansion; 0, otherwise.

4 Here T knows something means T proves it.
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Rogers [1, Page 9] points out that it is unknown whether g just above is
computable. Of course in the future enough may become known about the dis-
tributions of runs of consecutive 5s in the decimal expansion of π for whether g
is computable to be resolved. Again we’ll consider only reals r (except for π), as
in Section 1.1 above, which are restricted to the interval [0, 1] and represented
as an infinite expansion in binary (not in base 10).

For a such a real r, for each x ∈ N, we let

gr(x)
def
=

{
1, if there are exactly x consecutive 1’s in r’s binary expansion;
0, otherwise.

(3)
For clarity as to what is meant by ‘exactly’ just above, we define a consecutive
run of exactly x 1s to be one that is bounded on both sides by a 0.

Trivially, there are many examples, such as r = .00000 . . ., so that gr is com-
putable. The first author has given the next theorem (Theorem 2) as a course
exercise with hints.

Theorem 2. There is a primitive recursive r such that gr is not computable.

We omit the hints for lack of space, and, anyhow, instead describe next a con-
siderable improvement.

In [10] there is a nice conjecture about reals r = λj (rj) computable in linear
time in j. Our last theorem below (Theorem 10) is about reals r = λj (rj) com-
putable in linear time in |j|, the length of j (and not requiring prior computing
of ri, for any i < j). This theorem says that, for each computably enumerable
set A, there is real r = λj (rj) computable in linear time in |j| such that gr is
the characteristic function of (A ∪ {0}). If we choose A = K, where K is the
diagonal halting problem set from [1], then gr is not computable.

2 Preliminaries

The material in this section (Section 2) is largely important for our machine-
dependent, natural-complexity theorem (Theorem 10) and its proof.
ϕTM is the specific fixed acceptable programming system from [11, Chapter 3]

for the partial computable functions: N → N; it is a system based on determin-
istic, multi-tape Turing machines (TMs). In this system the ϕTM-programs are
efficiently given numerical names or codes. This efficient numerical coding guar-
antees that many simple operations run in linear time in the length of input.

ΦTM denotes the natural TM step counting complexity measure (also in [11,

Chapter 3]) and associated with ϕTM. In the present paper, we employ a number

of complexity bound results from [11, Chapters 3 & 4] regarding (ϕTM, ΦTM).
These results will be clearly referenced as we use them.

Herein lintime computable means computable in linear time in the length of
inputs—of course as measured by ΦTM in the ϕTM system.

We let 〈·, ·〉 : N × N → N be the fixed, 1-1, onto, lintime computable pair-
ing function from [11, Section 2.3]. Its respective left and right inverses, π1 and
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π2, are also lintime computable [11, Section 2.3]. The function 〈·, ·〉 enables us
to restrict our attention to one-argument partial computable functions and still
handle, with iterated coding by 〈·, ·〉, multiple argument cases. The lintime com-
putable functions π1 and π2 are employed below in the proof of our last theorem
(Theorem 10).

We employ the convenient discrete log function from [11, Page 22]: for each

x ∈ N, log(x)
def
= (�log2(x)�, if x > 1; 1, if x ≤ 1).

We let ΦSlowedDownTM be the special, slowed down step-counting measure as-
sociated with the acceptable ϕTM-system from [11, Theorem 3.20]. In the proof
of [11, Theorem 3.20], for the case of (ϕTM, ΦTM), ΦSlowedDownTM is obtained
from the standard ΦTM measure associated with ϕTM—in part by a standard
log-factors slow down trick. The measure ΦSlowedDownTM has the nice property
(among others) that the predicate

T
def
= λp, x, t (1, if ΦSlowedDownTM

p (x) ≤ t; 0, otherwise) (4)

is lintime computable!
In the proof of Claim 11 below (part of the proof of our last theorem, The-

orem 10), we’ll make use of the following lemma from [11] concerning a very
efficiently implemented conditional (i.e., if-then-else) control structure for
(ϕTM, ΦTM). In particular we’ll employ the remark immediately following this
lemma (Remark 1).

Lemma 1 (Lemma 3.14, [11]). There is a k > 0 and a lintime computable
function cond such that, for all a, b, c, x ∈ N,

ϕTM
cond(〈a,b,c〉)(x) =

⎧⎨⎩ϕ
TM
b (x), if ϕTM

a (x) ↓> 0;
ϕTM
c (x), if ϕTM

a (x) ↓= 0;
↑, otherwise;

(5)

and

ΦTM
cond(〈a,b,c〉)(x) ≤ k ·

⎧⎨⎩ (ΦTM
a + ΦTM

b (x)) + 1, if ϕTM
a (x) ↓> 0;

(ΦTM
a + ΦTM

c (x)) + 1, if ϕTM
a (x) ↓= 0;

↑, otherwise.

(6)

Remark 1. Note that from (6) just above, that, if ϕTM-programs a, b, c each run
in time linear in input length, then so does ϕTM-program cond(〈a, b, c〉).

3 Results

The notations, basic assumptions, and some employed technical observations are
from the Introduction and Preliminaries (Sections 1 and 2) above. Recall from
there that, for any choice of real r, fr is always computable.

Theorem 3. There is a computable real r such that, for any p, q which compute
r and fr, respectively, T �� � q computes fϕp �. Furthermore, fr = λx (1).
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Proof. As above in Section 1, our expansion of T � � q computes fϕp � is:
T � � (∀x)[ϕq(x) ↓≤ 1 ∧ [ϕq(x) = 1 → (∃y)(∀z | y ≤ z < y + x)[ϕp(z) ↓=
1]] ∧ [ϕq(x) = 0 → (∀y)(∃z | y ≤ z < y + x)[ϕp(z) ↓= 0]]] �.

Define program list as follows: it runs a theorem prover for T and algorith-
mically lists, in some order, all the (p, q) such that T �� q computes fϕp �.

The global variable seq has value at any point a finite sequence of bits with
known canonical index, and its intial value is empty. We reconceptualize this
initial value equivalently as an infinite sequence of known-to-be-undefined values.

Define no-input subroutine longest run (with global variable seq) as follows,
and let longest run with no arguments stand for the value returned by a call to
this subroutine: longest run scans seq to find the longest subsequence of con-
tiguous 1s in seq and returns the length of that subsequence.

Define subroutine outputs ones (with global variable seq) as follows. On input
x, outputs ones scans seq for the first x contiguous known-undefined values in
seq and defines them all to be 1.

Define subroutine setup seq (with global variable seq) as follows.

On input (p, q), setup seq runs q on all values between 0 and longest run
inclusive. If ϕq returns 0 on any of these values, setup seq returns
and does nothing.

Otherwise, let x be longest run + 1, and setup seq runs q on x. If it
returns a 0, then setup seq calls outputs ones on x and returns.

If ϕq(x) returns a non-zero value, then setup seq dovetails an enumera-
tion of the values of ϕp, and compares them against the corresponding
entries of seq. If any entries are defined as something different from
ϕp’s values, it returns and does nothing. If it finds a value v such
that ϕp(v) ↓ and seq(v) is still known-undefined, it defines seq(v) to
be 1 .− ϕp(v) and returns.

If none of the previously-listed stopping conditions are met, or if setup seq
runs a program that goes undefined, it runs forever.

Define program define real (with global variable seq) as follows.

On input x, define real does the following:
Set i to 0.
For x+ 1 iterations, do:

Run another step of list, and if, by the end of that step, it outputs
some (p, q), pass (p, q) to setup seq.5

If seq(i) is known-undefined after that, define it equal to 0.
Increment i by 1.

Output the value of seq(x).

Claim 4. If setup seq is passed a (p, q) such that T � � q computes fϕp �,
then it will terminate.

5 list can output either nothing or exactly one ordered pair on a given step.
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Proof. Since T � � q computes fϕp �, and T does not prove false things (of this
sort), it follows that (∀x)[ϕq(x) ↓≤ 1]. Thus, running q on a finite set of values
must terminate. As only finitely many elements of seq can be defined during a
call to setup seq, all calls to outputs ones must terminate. The only remaining
case is that (∀x | x ≤ longest run + 1)[ϕq(x) = 1], from which it follows that
(∃y)(∀z | y ≤ z < y+ longest run + 1)[ϕp(z) ↓= 1], which provides a sequence of
consecutive 1s that is longer than the longest sequence of consecutive 1s in seq,
which means there is at least one value of ϕp which is defined equal to 1 whose
corresponding value of seq is not defined to be equal to 1, and thus setup seq
will terminate in this case as well.

Claim 5. For any p, q, if T � � q computes fϕp �, then passing (p, q) to
setup seq results in a seq such that the set of reals compatible with the defined
values of seq does not include ϕp.

Proof. Case one: for some x less than or equal to the value of longest run,
ϕq(x) = 0, in which case seq is already incompatible with ϕp as seq has a run of 1s
which are longer than the longest such run in ϕp. Case two: ϕq(longest run+1) =
0, in which case setup seq calls outputs ones and makes seq incompatible with ϕp

for the same reason as case one. Case three: (∀x | x ≤ longest run+1)[ϕq(x) = 1].
In this case, setup seq will search for a value of ϕp whose corresponding entry
in seq either doesn’t match or is known-undefined and will be set to not match.
By Claim 4, such a value will be found, after which seq will not be compatible
with ϕp.

Claim 6. The program define real does, in fact, define a real.

Proof. outputs ones clearly terminates, by Claim 4 and the definition of list, all
setup seq calls will terminate, and, on any input x to define real, list is only
run for a finite number of steps. Thus, define real will always output a value
from seq. The loop in define real includes a step that ensures that the element
of seq output by define real will be defined, and all times when elements of seq
are assigned values, they are assigned a value of either 0 or 1. So, define real
computes a total {0, 1}-valued function, a real.

Claim 7. For any p, q, if T � � q computes fϕp �, then ϕp �= ϕdefine real.

Proof. By Claim 6, ϕdefine real defines a real, and thus, if ϕp does not define a
real, they are not equal. By Claim 5 and the fact that define real’s output is
always compatible with seq, if ϕp does define a real, the real it defines is not
equal to ϕdefine real. Therefore, ϕp �= ϕdefine real.

Claim 8. fϕdefine real
= λx (1).

Proof. For all positive n, by provable in PA (hence, in T) padding for the ϕ-
system, there’s an infinite set of ps & qs such that q computes λx (1 if x ≤ n;
0 otherwise) and T � � q computes fϕp �, so outputs ones is called infinitely
often. For such calls, it provides a sequence of consecutive 1s longer than prior
such.
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By Claims 6, 7, and 8, the statement of the theorem follows with r =
ϕdefine real. � (Theorem 3)

In general, λx (1) is only one possibility for fr, so the question naturally arises:
does there exist computable real r such that (∀p, q)[ϕp = r → T �� � q computes
fϕp �, where fr �= λx (1)?

For all fr of the form λx (1 if x ≤ n; 0 otherwise), except for the case where
n = 0, the answer is, Yes. For fr = λx (1 if x = 0; 0 otherwise), there is precisely
one such real, λx (0), and there exists p, q such that ϕp = λx (0) ∧ PA � � q
computes fϕp � .

Theorem 9. For each n > 0, there exists a corresponding computable real r
such that, for any p, q which compute r and fr, respectively, T �� � q computes
fϕp �. Furthermore, fr = λx (1 if x ≤ n; 0 otherwise).

We omit Theorem 9’s proof for lack of space, but it partly proceeds like the
proof above of Theorem 3.

Next we present our strong, promised theorem regarding grs.

Theorem 10. For any computably enumerable (c.e.) set A containing 0, there
exists a lintime computable real r such that gr is the characteristic function of
A.6

Proof. Since set A is c.e., there exists a ϕTM-program a which half-decides A,
terminating after possibly arbitrarily much computation for inputs in A, and
going undefined for inputs not in A.

We informally define ϕTM-program r, which computes the corresponding, de-
sired real r, as follows. It is to be understood, that this r makes implicit use of
the efficient conditional control structure from Lemma 1 and Remark 1 above.
In (7) just below the T predicate is the one defined in (4) above. For each x ∈ N,
let

ϕTM
r (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if (x < 4 ∨

T (a, π1(log log(x)), π2(log log(x))) = 0 ∨
x = 2log(x) ∨
x > π1(log log(x)) + 2log(x));

1, otherwise.

(7)

Claim 11. ϕTM-program r runs in time linear in the length of its input.

Proof. Clearly, comparing x to a constant can be done in constant time. Com-
puting log(x) can be done in time linear in the length of x [11, Lemma 3.2(k)],
as can computing 2log(x).7 As noted in Section 2 above, calculation of each of

6 For technical reasons, it is difficult, in the proof just below, to produce a real that
does not contain two consecutive 0s. A real r with two consecutive 0s always satisfies
gr(0) = 1.

7 An algorithm for this latter, with I/O in binary number representation, is to scan x
(as usual left to right), and, on the output tape from right to left, writing a 0 onto
an output tape for each symbol in x, then replacing the last-written 0 with a 1 when
the end of x is reached. The ϕTM-system is based on dyadic I/O [11], but, by [11,
Lemma 3.2(b)] passing between binary and dyadic is lintime computable.
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π1 and π2 take time linear in the length of their input. Then, from (4) and
line following (4) (above), T (a, π1(log log(x)), π2(log log(x))) can be computed
in time linear in the length of log log(x). Adding two numbers can be done in
time linear in the length of the longer, and comparing the result to another
number can once again be done in time linear in the length of the longer number
[11, Lemma 3.2(f, g)]. By [11, Lemma 3.18], lintime computable predicates are
closed under Boolean operations. Thus, from r’s implicit employment of cond
from Lemma 1 above, and by Remark 1 above, r itself executes in time linear in
the length of its input x.

Claim 12. ϕTM-program r defines a real.

Proof. From Claim 11 it follows that r is total. Since r returns only values in
the range {0, 1}, it follows that it defines a real.

Claim 13. For all x such that ϕTM
r (x) = 1, it is the case that for all y such

that 2log(x) < y ≤ x, ϕTM
r (y) = 1.

Proof. Let x be any value such that ϕTM
r (x) = 1. Clearly, x is not a power

of 2, T (a, π1(log log(x)), π2(log log(x))) = 1, and x ≤ π1(log log(x)) + 2log(x).
If x − 1 is not a power of 2, then it follows that log(x) = log(x − 1). From
these facts, it follows that T (a, π1(log log(x − 1)), π2(log log(x − 1)) = 1 and
x− 1 ≤ π1(log log(x − 1)) + 2log(x−1), and thus it follows that ϕTM

r (x− 1) = 1,
if and only if x− 1 is not a power of 2. By downwards induction on x, the claim
follows.

Claim 14. For all x such that ϕTM
r (x) = 1, it is the case that for all y such

that x ≤ y ≤ π1(log log(x)) + 2log(x), ϕTM
r (y) = 1, and also that ϕTM

r (1 +
π1(log log(x)) + 2log(x)) = 0.

Proof. Let x be any value such that ϕTM
r (x) = 1. Clearly, x is not a power of 2,

T (a, π1(log log(x)), π2(log log(x))) = 1, and x ≤ π1(log log(x)) + 2log(x). If x+ 1
is a power of 2, then ϕTM

r (x + 1) = 0. If x + 1 is not a power of 2, then it
follows that log(x) = log(x + 1), from which it follows that T (a, π1(log log(x +
1)), π2(log log(x + 1))) = 1, and thus ϕTM

r (x+ 1) = 1 if and only if x+ 1 is not
a power of 2 and x + 1 ≤ π1(log log(x + 1)) + 2log(x+1). By induction on x and
the fact that 2log(x) + π1(log log(x)) < 2log(x)+1, the claim follows.

Claim 15. For all x such that ϕTM
r (x) = 1, there is a run of exactly

π1(log log(x)) 1s in the real r, and the position x is in one such run.

Proof. From Claims 13 and 14, as well as the fact that, for all x, ϕTM
r (2log(x)) =

0, it follows that, for all x such that ϕTM
r (x) = 1, there is a run of 1s from

2log(x) + 1 to π1(log log(x)) + 2log(x), bounded on both sides by 0s. The claim
follows immediately by use of basic algebra and arithmetic.

Claim 16. For all y > 0 and for all t, if ϕTM
a (y) terminates within t steps, then

ϕTM
r (22

<y,t>

+ 1) = 1.
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Proof. The claim follows directly from the definitions of a and r.

Claim 17. gr is the characteristic function of A.

Proof. By Claim 12 and the definition of gr, it follows gr is a well-defined total
{0, 1}-valued function. From Claims 15 and 16, as well as the fact that, for all
y, for all but finitely many t, for some xs, < y, t >= log log(x), it follows that,
for all y > 0 such that ϕTM

a (y) ↓, there is a run of exactly y 1s in the binary
representation of r, and thus gr(y) = 1. Assume by way of contradiction that
there is some y > 0 such that ϕTM

a (y) ↑ but gr(y) = 1. Then, there must be a
run of exactly y 1s in r. Let x be the least number such that position x is in
such a run. Then, by Claim 15, π1(log log(x)) = y. From the definition of r, it
follows that T (a, y, π2(log log(x))) = 1, a contradiction to the assumption that
ϕTM
a (y) ↑. The previous shows that the claim holds for all inputs > 0. It is clear

that ϕTM
r (0) = ϕTM

r (1) = 0, therefore gr(0) = 1, and thus, by the assumption
that 0 is in A, the claim is proven.

The theorem follows from Claims 11, 12, and 17. � (Theorem 10)
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Abstract. This paper studies a way of transforming discrete time and
discrete space cellular automata into systems described by partial differ-
ential equations with a similar behavior. The goal is to find new kinds
of chaotic behaviors for systems ruled by partial differential equations.

1 Introduction

Deterministic cellular automata (CA for short) are a simple dynamical system
defined on the Cantor space AZ for a finite set of states A. The model consists
in an infinite number of finite state automata placed on cells labeled by Z. The
time is discrete and at each step, each cell’s state is updated according to the
state of the cell and the states of its left and right neighboring cells. One of the
main interest of CA is that, despite their simplicity, they can have numerous
different behaviors, from very simple ones like the shift automaton where each
cell simply copies the value of its right neighbor, to more complex ones like, for
instance, the one which performs multiplication by 3 on numbers represented in
base 6 (cf. [1,2]).

However classical time-continuous and space-continuous models described by
partial differential equations (PDE for short) are quite often diffusion systems
which means that, asymptotically, for energy invariant systems all the positions
in the space ends at the same energy level. Other systems which are driven by
wave propagation are also quite simple and similar to a Cartesian product of
shifts of various speeds.

Our goal is to find simple systems which are natural in some sense but with
complex and unpredictable behavior. For instance, we would like to have a pos-
itively expansive system which means that any modification to the initial con-
dition is observable at any place at some time (cf. [2] for the formal definition).
This notion, defined for CA using the Cantor topology, can simply be extended
to continuous systems. For instance, in the simpler case where A = {0, 1}, let
us represent the Cantor topology by the distance d, defined, for x, y ∈ {0, 1}Z,
by d(x, y) =

∑
i∈Z(1 − δxi,yi)2

−|i| where δ is the usual Kronecker delta. The
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distance d is naturally extended to continuous system defining, for x, y ∈ [0, 1]R,
d(x, y) =

∫∞
−∞ |xi − yi|2−|i|di.

Wave propagation based models are not a good answer since if the change in
the initial condition only modifies, creates or deletes a wave which goes to the
left, nothing will be seen to the right.

To this purpose, we try to extend CA to a space-continuous, time-continuous
and state-continuous system. In [3,4], a state-continuous version of interacting
particle systems is studied. In this model, each cell has a probability distribution
over A which evolution is governed by an ordinary differential equation (ODE
for short) system which is derived from a local rule close to the local rules of
probabilistic CA (PCA for short). A radius 1 PCA rule associates a probability
distribution overA to the states of a cell and its neighbors: The value of P [st+1

i =
q|sti−1 = l ∧ sti = c ∧ sti+1 = r] for all possible states q, l, c and r. For instance,
a slower stochastic version of the shift could be that with probability p, the cell
copies the state from the right neighbor and with probability 1−p keeps its state
(cf. [5] for more about PCA). Interacting particle systems (IPS for short) are a
time-continuous version of PCA whose behavior is analogous. However, the local
rule is different since, instead of a probability of reaching a state given the states
in the neighborhood, the rule gives a hint about the average time after which the
change is made. The model described in [3,4] chooses a simplified deterministic
view: cell states are probability distributions over A. Though easier to be dealt
with, this view implies that the states of the cells are supposed independent.
This is not the case when dealing with PCA or IPS. We describe the impact of
this feature in Subsection 2.2 together with the formal definitions.

However, in order to converge to a space-continuous system, the authors of
[3,4] have to add a supplementary behavior called fast stirring which mixes the
states of near cells linearly (quadratically in 2D) faster than the regular appli-
cation of the CA rule. This ensures that the states of near cells are identically
distributed at the limit and allows to compute a limit system ruled by a PDE.
This supplementary behavior make the resulting system a diffusion system which
does not suit our needs: The fast-stirring effect makes that only CA rules whose
transition function depends only on the multiset of states in the neighborhood
are to be considered. Though Turing complete (Conway’s game of life for in-
stance), these rules perturbed by fast stirring are unlikely to produce complex
dynamical system: The gadgets used to simulated a Turing machine are difficult
to be made stable by the action of fast-stirring. In this paper, we give a sufficient
and necessary condition to have a space-continuous limit system without the fast
stirring behavior.

The paper is organized as follows. Section 2 gives the definition of the models.
Section 3 and 4 are devoted to finding the limit systems of this model and
Section 5 gives conclusions and further work.
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2 Definitions and Systems

2.1 Deterministic Cellular Automata

Formally, a one-dimensional CA is a tuple 〈A, r, μ〉. The finite set A is the set
of states. Cells of the CA are indexed by Z and each has a state taken from
A. The radius of the CA, r, is the number of cells to the left and to the right
that are looked up for a cell update. This update is controlled by the local rule
μ : A2r+1 → A. At each time step, each cell changes its state synchronously
to μ(s←, s, s→) where s is the state of the cell, s← are the states of its r left
neighboring cells and s→ are the states of its r right neighboring cells.

This local rule induces a global behavior. The state of the whole CA, that is,
the states of all the cells is completely given by a configuration. A configuration is
a member c of AZ such that c(j) is the state of the jth cell. For better readability,
the state c(j) is noted cj , as it is for other types of configurations in the rest
of the paper. The global rule of the CA is the function f : AZ → AZ which,
given the current configuration, returns the next configuration. The function f
is defined by f(c)j = μ(cj−r , . . . , cj+r).

2.2 Interacting Stochastic Particle Systems

A one-dimensional interacting stochastic particle system (ISPS for short) is a
tuple 〈A, r, λ〉 where A and r play the same role as for CA. The local rule is
a function λ : A × A2r+1 → [0,∞) where the value of λ(s, n) is the rate at
which a cell whose neighborhood (including itself) is n changes its state to s.
The higher the rate, the faster the cell is performing the change: The speed of
the change is proportional to the rate.

For IPS (not ISPS), a configuration is a probability distribution over the con-
figurations of a CA. In the definition of ISPS, we made the assumption that the
distribution makes the probabilities of the values of each cells to be independent
one another. This makes the configurations members of (PA)Z where PA is the
set of probability distributions over the finite set A. This clearly is not true for
PCA and IPS.

Here are the reasons why we think this model is worth studying. First, the
model of ISPS is sound and well defined by itself as if the state of a cell was
not a member of A but a member of PA which we call stochastic particles (e.g.,
the proportions of predators and preys). Second, this model was successfully
used for modeling biological and physical behaviors (cf. [6] for many examples).
Third, the dependency radius increases of r each time a rule is applied in a
PCA. When looking at the limit system, we make the distance between two cells
tends to 0. However, the time is already continuous so we do not make the time
step tends to 0, only the space step. Hence the dependency radius is 0 in the
limit system. Finally, the goal of this study is to find good candidate PDE for
complex behavior trying to mimic CA behavior. We hope that the independency
hypothesis will not prevent us from finding interesting systems.

A configuration is a member of (PA)Z. If p is a member of PA we denote by
P [p = s] the probability that the cell is in state s. If c is a configuration of (PA)Z,
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we note P [cj = s] the probability that the cell j of configuration c is in state s.
The evolution of the ISPS is described by the ODE (infinitely many ones): For

j ∈ Z,
dP [cj=s]

dt = i − o where i is the rate for entering state s from any other
state and o is the rate for leaving state s. More precisely, one has

i =
∑

n∈A2r+1,n0 �=s

λ(s, n)
r∏

v=−r

P [cj+v = nv] (1)

and

o =
∑

g∈A�{s}

∑
n∈A2r+1,n0=s

λ(g, n)
r∏

v=−r

P [cj+v = nv], (2)

where n is indexed as n = (n−r, . . . , nr). The system is deterministic on config-
urations of (PA)Z. Remark that the values of λ(s, n) for s = n0 are not taken
into account.

Note that the system may diverge at some time, when one of the probabili-
ties leaves [0, 1]. However, the Cauchy-Lipschitz theorem on the Banach space
((R|A|)Z, ‖ · ‖∞) tells us that, given an initial condition c, there is some greatest
t such that the system is defined from time 0 to t. We call t the diverge time of
c for the ISPS. When we consider the evolution of an ISPS I, we only consider
the maximal solution of the ODE and initial condition problem: we denote this
solution by Ic : [0, t] → (PA)Z.

3 Limit Systems for ISPS

In this section, we are interested in computing a limit system for an ISPS when
we make the discrete grid Z tends to the continuous line R: We want that the
behavior of the ISPS tends to the behavior of the limit system for a suitable
convergence definition. The target models are PDE since these are the most
widely used for continuous space and time modeling and the model in which we
would like to find complex behaviors.

3.1 Differential Normal Form for Multivariate Polynomials

In this section, we elaborate a tool that allows us to see a possible limit system
for an ISPS.

We consider polynomial rings K[X] and K[∂X] over a ring K using vari-
ables from the ordered set X = X0, . . . , Xn and over the ordered set ∂X =
X(0), X(1), . . . , X(n) respectively. The link with multivariate polynomials can be
seen in the writing of i and o in Equation (1) and (2). If we fix j = 0 (as every
cell behaves the same way, we only need to study one cell), both i and o are
polynomials using variables P [cv = s] for v ∈ {−r, . . . , r} and s ∈ S.

We only consider two states ISPS, both for sake of simplicity and because we
expect to be able to find chaotic ISPS even with A = {0, 1}. Using the fact that
for all j ∈ Z, P [cj = s] +P [cj �= s] = 1, we only need one of these two variables.
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It only remains 2r+ 1 variables which is the reason why the variables of X have
one-dimensional index. The extension to other set of states is identical but leads
to more intricate formulas.

We introduce the following notation, defined recursively. For all integer j � n,

denote X
(0)
j = Xj . For all integers k < n and j < n − k, define X

(k+1)
j =

X
(k)
j+1 − X(k)

j . The idea behind this notation is that if Xj = u(jε), for a C∞

function u : R → R, ε−kX
(k)
j is the discrete approximation of step ε of the value

of the kth derivative of u at point (j + k
2 )ε as done using the finite difference

method (FDM for short) to numerically solve a PDE.

Proposition 1. Let K be a ring. For all polynomial P in K[X], one can compute
a polynomial ∂P of K[∂X] such that if, for all integer k � n, one replaces the

variable X(k) in ∂P by X
(k)
0 , one get P . We call ∂P the differential normal form

(DNF for short) of P .

Proof. The idea is simple. Let P be a polynomial in K[X]. Perform the following
replacement:

For i from n down to 1
For k from 0 to n− i

Replace X
(k)
i in P by X

(k)
i−1 +X

(k+1)
i−1

Finally, replace X
(k)
0 in P by X(k) for all k. ��

3.2 PDE Systems as a Limit of ISPS

Now we use the previous proposition in order to give a limit system for ISPS.
This idea is to do the reverse as in FDM. In FDM, when one wants to simulate a

PDE of the form ∂u
∂t = f

((
∂nu
∂xn

)
n∈N

)
, one starts from a discretized version of the

initial condition at t = 0 and computes the values of u at t = ε approximating
the space derivatives as previously and repeats the process for t = 2ε, etc. For
more information about FDM, cf., e.g., [7].

Here we are looking for ISPS rules which are performing a computation close
to the FDM simulation of a PDE. By close, we mean that the least negligible
terms in the ISPS computation are equal to the FDM simulation of the PDE.
What links this work to FDM field is that when one defines a FDM scheme, one
has to prove the this scheme tends to behave as the simulated system when ε
tends to 0. Unfortunately, no general result exists which can be applied for the
PDE we consider.

The sequel of the paper is devoted to determining which ISPS have such a
property and computing the associated PDE.

As stated in the previous section, we consider the case with two states {0, 1}
for sake of simplicity. However, the reasoning can be applied to the general case
which only leads to more complicated formulas.

We consider that n = 2r in the definition of X and ∂X and all their subsequent
definitions. We first introduce some new notions.
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Definition 1 (Rank, reduction and π). Consider the polynomial ring R[∂X].
We define the rank of the variable X(p) as p and the rank of a monomial of R[∂X]
as the sum of the ranks of its variables. Finally, the rank of a polynomial P of
R[X], denoted by RP , is the minimal rank of the monomials of its DNF.

The reduction of a polynomial P , denoted red(P ), is the sum of the monomials
of rank RP of its DNF.

Let P be a polynomial from R[∂X] and u be a functional symbol. We denote
πu(P ) the result of the replacement of all variable X(p) in red(P ) by ∂pu

∂xp , the

pth spatial derivative of u. We call ∂u
∂t = πu(P ) the equation associated to P .

For instance, if one considers the polynomial

P = 2X3
1 − 4X2

1X2 + 2X1X
2
2 +X2

0 −X0X1 − 2X2
1 +X0X2 +X1X2 .

Its DNF is:

∂P = 2XX(1)2 + 2X(1)3 + 4XX(1)X(2) + 4X(1)2X(2) + 2XX(2)2+

2X(1)X(2)2 + 2XX(2) +X(1)X(2) .

Its rank is 2, red(P ) = 2XX(1)2 + 2XX(2) and its associated equation is

∂u

∂t
= 2u

(
∂u

∂x

)2

+ 2u
∂2u

∂x2
.

The higher the rank of a monomial, the more negligible it is. The reduction of
a polynomial only retains the less negligible terms. This is due to the fact that
the discrete kth spatial derivative of step ε is ε−kX(k). When ε tends to 0, this
term is supposed to converge since we are dealing with a discretization of a C∞

function. Hence, X(k) is O(εk). As these terms are divided by ε	 where � is the
smallest rank, O(ε	+1) terms lead to null limit. Hence, we only have to keep the
monomials with rank �. This fact is formally described after Theorem 1.

Now we can find a limit system for an ISPS 〈{0, 1}, r, λ〉. For v ∈ {0, . . . , 2r},
denote Y v

1 = Xv+r and Y v
0 = 1 − Xv+r. The probability that cell v is in the

state s ∈ {0, 1} is represented by the expression Y v
s . This idea is classical and

has been exploited in the definition of fuzzy cellular automata [8].

Definition 2 (Rank and limit system of an ISPS). Let 〈{0, 1}, r, λ〉 be
an ISPS.

Step 1. Let P be the polynomial of R[X] defined by P = I − O where

I =
∑

n∈A2r+1,n0=0

λ(1, n)
r∏

v=−r

Y v
nv

and

O =
∑

n∈A2r+1,n0=1

λ(0, n)

r∏
v=−r

Y v
nv
.
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Step 2. Build ∂P the DNF of P .
Step 3. Let � = RP and consider the PDE E : ∂u

∂t = πu(P ).

We call � the rank of the ISPS and E its limit system.

The justification for this name is given by the following theorem. If λ is an ISPS
rule, denote ελ the ISPS rule λ whose all rates are multiplied by ε.

Theorem 1. Let I = 〈{0, 1}, r, λ〉 be an ISPS of rank � > 0. Let f be a C∞

function.
For a given positive real ε, let I(ε) = 〈{0, 1}, r, ε−	λ〉 and cε be the config-

uration of I(ε) such that P [cεj = 1] = f(jε). Let t(ε) be the diverge time of cε

for I(ε).
Finally, let u be the maximal solution of the limit system of the ISPS using f

as its initial condition for t = 0 and tu its diverge time.

Then, one has tu � lim infε→∞ t(ε) and I(ε)
cε pointwise converges to u when ε

tends to 0.

Note that the increase of the rates in I(ε) is not artificial. As f and its derivatives
are continuous, when ε gets smaller, the values tend to become closer. The rates
are modified to take this into account.

Also, note that if the rank is 0, the limit system of the ISPS has no spatial
derivative and is of little interest.

The key idea of the proof of the theorem is the following lemma.

Lemma 1. Let P be a polynomial and f be a C∞ function. Let � = RP . For
ε > 0, define cε ∈ RZ by cεj = f(εj). Finally, consider P as a function from RX

to R. Then,
lim
ε→0

ε−	P (cε0, . . . , c
ε
2r) = πf (P )(0) .

Proof. We consider P in its DNF. Note that from the linearity of the limit and
π, we only have to prove this lemma for a monomial of rank � and prove that
the limit is 0 for a monomial of greater rank. Let M = X(m0) · · ·X(ml) be a
monomial of rank h � �. Note that h =

∑l
a=0ma. By simple induction on

m, one can prove that limε→0 ε
−mX(m)(cε0, . . . , c

ε
2r) = f (m)(εm2 ) when f (m) is

the mth derivative of f . Multiplying these finite limits together, one gets that
limε→0 ε

−hM(cε0, . . . , c
ε
2r) = πf (M)(0) which proves the both cases h = � and

h > � since, for the latter, εh−	 tends to 0. ��

Proof (of Theorem 1). Using this lemma, one has that the right member of the
ODE ruling the ISPS I(ε) tends to the right member of the PDE ruling the
limit system when ε tends to 0, the left member being the time derivative for all
systems. The existence of u and tu comes from the Cauchy-Lipschitz theorem
on Banach space (RR, ‖ · ‖∗) (for a suitable ‖ · ‖∗) and u is defined on R× [0, tu).
The time tu can be much smaller than the t(ε) because the spatial derivatives
could diverge in the continuous model. The proof of Theorem 1 can be ended by
straightforward calculus. ��
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4 Limit System of Positive Rank

In this section, we design a method to compute the positively ranked local rules
and give a conjecture about their general forms.

First, note that a polynomial P has a positive rank if and only if the univariate
polynomial P̃ obtained replacing all variables of P by Z is 0. This can be easily
seen since, once put into DNF, if one replaces all variables by Z, all X(i) for
i > 0 become 0. It only remains the X(0) variable whose powers form the rank
0 monomials we want to avoid.

We consider i and o with j = 0 in Equations (1) and (2) as polynomial as
we did at the beginning of Subsection 3.1: As above, we consider i − o as a
polynomial in variables Xv = P [Cv = 1] for v ∈ {−r, . . . , r} since we replace
P [Cv = 0] by 1 − P [Cv = 1]. We also consider the Λs,n = λ(s, n) terms as
variables. Then i− o becomes a polynomial of Z[Λs,n][Xv]. We want that, when
we replace the Xv variables by the single variable Z, this polynomial becomes
0. Let P be the obtained polynomial of Z[Λs,n][Z]. A rule λ has positive rank if
and only if all the coefficients of P , which are polynomials over Z[Λs,n], are 0.

For a fixed r, the polynomial P can be easily computed1. Looking at the
results for small r, we make the following conjecture:

Conjecture 1. If n ∈ {0, 1}2r+1, denote |n| = |{i|ni = 1}|, the number of 1 in n.
The ISPS of radius r and positive rank have their local rule λ verify:⎧⎨⎩∀v ∈ {1, . . . , 2r},

∑
n∈{0,1}2r+1

n0=0,|n|=v

λ(1, n) =
∑

n∈{0,1}2r+1

n0=1,|n|=v

λ(0, n)

λ(1, 0 . . . 0) = λ(0, 1 . . . 1) = 0

To better understand the previous formulas, we study the special case where λ
mimics a CA rule μ: given the states n of the cell and its neighbors, the rate to
change the state of a cell is 0 for all state values but μ(n). More formally, if μ is
the local rule of a CA, we define λ as the ISPS local rule defined by

λ(s, n) =

{
1 if μ(n) = s

0 otherwise .

On alphabet {0, 1}, the polynomial P defined above is transformed replacing
Λ1,n by Mn (μ(n) = 1 if and only if λ(1, n) = 1) and Λ0,n by 1 −Mn (μ(n) = 0
if and only if λ(0, n) = 1).

For this case, the conjecture’s condition becomes:

∀v ∈ {0, 2r+ 1},
∑

n∈{0,1}2r+1,|n|=v

μ(n) =

(
v − 1

2r

)
with

(−1
2r

)
= 0 .

To improve our understanding, one can compute the rank and the limit system
for small well-known CA rules. For r = 1, one has 256 such CA. Nevertheless,

1 Computation done with Sage (http://www.sagemath.org).

http://www.sagemath.org


Constructing Continuous Systems from Discrete CA 63

one can only find 9 CA of positive rank: The identity CA, the two shift CA (to
the left and to the right), the two traffic CA (cars going to the left and to the
right) and four CA which are equivalent, up to swapping 0 and 1 and/or left and
right neighbors, to elementary rule 172. The shift has for limit system the PDE
∂u
∂t = ∂u

∂x which is as expected. For the traffic CA where cars go to the right, the

PDE is ∂u
∂t = (2u− 1)∂u∂x .

About r = 2, peeking at random a rule sampled Fig 1, one get the PDE:

∂u

∂t
= 18u

(
∂u

∂x

)2

− 5u2
∂2u

∂x2
− 9

(
∂u

∂x

)2

+ 5u
∂2u

∂x2
.

Fig. 1. Space-time diagram (stack of configurations at t = 0, 1, . . .) of the random
positively ranked rule. State 0 is in black. Time goes upward.

5 Conclusion

In this paper, we proposed a way to produce a space and time continuous limit
system for ISPS and consequently to associate such a system to some CA.

We gave the enumeration of these limit systems for elementary CA (radius 1
and two-letter alphabet) having a perfect match for the shift automaton and a
reasonable one for the traffic automaton. We also gave a conjecture about the
condition a rule must respect in order to converge to a PDE.

However, but proving the conjecture, this work leaves open many paths of
research described in the following sections.

5.1 CA Corresponding to an Equation

The reverse process could be interesting in order to find the cellular automaton
which best matches a given PDE. Finding an ISPS is easy simply applying the
FDM. To do such, one only has to pay attention to ranks. If the PDE contains

terms of different ranks (e.g., ∂u
∂x + u∂2u

∂x2 is the sum of a rank 1 and a rank 2
term), the ISPS does not exists. Yet, the ISPS model is too complicated to give
better insights than the equation itself.

However, if all the terms have the same rank, one can try to find if the ISPS
has a local rule derived from a CA. However, it could be of any radius so an
exhaustive search is only a semi-decision procedure. We also plan to study which
equations can be obtained from a CA rule.
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5.2 Links between Models

The construction of the limit continuous system requires to consider ISPS as
an intermediary step between CA and PDE. We have shown in Section 3 a link
between the ISPS and the limit system but there are still to see what dynamical
properties (expansivity, sensitivity, entropy, etc.) transfers from one another. The
fact that the limit system is the limit of the ISPS tends to make us think that
this is true. However we do not think that there is such a connection between
the CA and the limit system since discrete systems deals with many singularities
which are erased by continuous models. We are interested in looking under which
conditions the CA behaves the same as its parented PDE.

5.3 Removing the Independence Simplification

Finally, we plan to use the DNF notion about ISPS in which the independence
assumption is removed. We still have to consider polynomials but countably
many polynomials with countably many variables.
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and Ugo Vaccaro1

1 Department of Computer Science, University of Salerno, Italy
{cicalese,lg,uv}@dia.unisa.it

2 Department of Psychology, Second University of Naples, Italy
gennaro.cordasco@unina2.it

3 University of Primorska, UP IAM and UP FAMNIT, SI 6000 Koper, Slovenia
martin.milanic@upr.si

Abstract. We study variants of the Target Set Selection problem, first
proposed by Kempe et al. In our scenario one is given a graph G = (V,E),
integer values t(v) for each vertex v, and the objective is to determine
a small set of vertices (target set) that activates a given number (or a
given subset) of vertices of G within a prescribed number of rounds.
The activation process in G proceeds as follows: initially, at round 0, all
vertices in the target set are activated; subsequently at each round r ≥ 1
every vertex of G becomes activated if at least t(v) of its neighbors are
active by round r−1. It is known that the problem of finding a minimum
cardinality Target Set that eventually activates the whole graph G is

hard to approximate to a factor better than O(2log
1−ε |V |). In this paper

we give exact polynomial time algorithms to find minimum cardinality
Target Sets in graphs of bounded clique-width, and exact linear time
algorithms for trees.

1 Introduction

Let G = (V,E) be a graph, S ⊆ V , and let t : V −→ N = {1, 2, . . .} be a
function assigning integer thresholds to the vertices of G. An activation process
in G starting at S is a sequence Active[S, 0] ⊆ Active[S, 1] ⊆ . . . ⊆ Active[S, i] ⊆
. . . ⊆ V of vertex subsets, with Active[S, 0] = S, and such that for all i > 0,

Active[S, i] = Active[S, i− 1] ∪
{
u :

∣∣N(u) ∩ Active[S, i − 1]
∣∣ ≥ t(u)

}
where N(u) is the set of neighbors of u.

The central problem we introduce and study in this paper is defined as follows:

(λ, β, α)-Target Set Selection ((λ, β, α)-TSS).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound
λ ∈ N, a budget β ∈ N and an activation requirement α ∈ N.
Problem: Find S ⊆ V s.t. |S| ≤ β and |Active[S, λ]| ≥ α (or determine
that no such a set exists).

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 65–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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We will be also interested in the case in which a set of nodes that need to be
activated (within the given latency bound) is explicitly given as part of the
input.

(λ, β,A)-Target Set Selection ((λ, β,A)-TSS).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound
λ ∈ N, a budget β ∈ N and a set to be activated A ⊆ V .
Problem: Find a set S ⊆ V such that |S| ≤ β and A ⊆ Active[S, λ] (or
determine that such a set does not exist).

Eliminating any one of the parameters λ and β, one obtains two natural
minimization problems. For instance, eliminating β, one obtains the following
problem:

(λ,A)-Target Set Selection ((λ,A)-TSS).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound λ ∈ N
and a set A ⊆ V .
Problem: Find a set S ⊆ V of minimum size such that A ⊆ Active[S, λ].

The above algorithmic problems have roots in the general study of the spread
of influence in Social Networks [11]. For instance, in the area of viral marketing
[10] companies wanting to promote products or behaviors might try initially to
target and convince a few individuals which, by word-of-mouth effects, can trig-
ger a cascade of influence in the network, leading to an adoption of the products
by a much larger number of individuals. It is clear that the (λ, β, α)-TSS prob-
lem represents an abstraction of that scenario, once one makes the reasonable
assumption that an individual decides to adopt the products if a certain num-
ber of his/her friends have adopted said products. Analogously, the (λ, β, α)-TSS
problem can describe other diffusion problems arising in sociological, economical
and biological networks, again see [11]. Therefore, it comes as no surprise that
special cases of our problem (or variants thereof) have recently attracted much
attention by the algorithmic community. The first authors to study problems of
spread of influence in networks from an algorithmic point of view were Kempe
et al. [13,14]. However, they were mostly interested in networks with randomly
chosen thresholds. Chen [4] studied the following minimization problem: Given
a graph G and fixed thresholds t(v), find a target set of minimum size that
eventually activates all (or a fixed fraction of) vertices of G. He proved a strong
inapproximability result that makes unlikely the existence of an algorithm with
approximation factor better than O(2log

1−ε |V |). This motivated the work [1,2,5]
that isolated interesting cases in which the problems become efficiently tractable.

All the above mentioned papers did not consider the issue of the number of
rounds necessary for the activation of the required number of vertices. However,
this is a relevant question: In viral marketing, for instance, it is quite important
to spread information quickly.

For general graphs, Chen’s [4] inapproximability result still holds if one de-
mands that the activation process ends in a bounded number of rounds; this
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motivates our first result. We show that the general (λ, β, α)-TSS problem is
polynomially solvable in graph of bounded clique-width and constant latency
bound λ (see Theorem 1 in Section 2). Since graphs of bounded treewidth are
also of bounded clique-width [8], this result implies a polynomial solution of the
(λ, β, α)-TSS problem with constant λ also for graphs of bounded treewidth,
complementing the result of [2] showing that for bounded-treewidth graphs, the
TSS problem without the latency bound (equivalently, with λ = |V |−1) is poly-
nomially solvable. Moreover, the result settles the status of the computational
complexity of the Vector Domination problem for graphs of bounded tree-
or clique-width, which was posed as an open question in [6].

We also consider the instance when G is a tree. For this special case we give an
exact linear time algorithm for the (λ,A)-TSS problem, for any λ and A ⊆ V .
When λ = |V | − 1 and A = V our result is equivalent to the (optimal) linear
time algorithm for the classical TSS problem (i.e., without the latency bound)
on trees proposed in [4].

Because of space constraints, most proofs are omitted and presented in [7].

2 TSS Problems on Bounded Clique-Width Graphs

In this section, we give an algorithm for the (λ, β, α)-Target Set Selection

problem on graphs G of clique-width at most k given by an irredundant k-
expression σ. For the sake of self-containment we recall here some basic notions
about clique-width.

The Clique-Width of a Graph. A labeled graph is a graph in which every
vertex has a label from N. A labeled graph is a k-labeled graph if every label is
from [k] := {1, 2, . . . , k}. The clique-width of a graph G is the minimum number
of labels needed to construct G using the following four operations: (i) Creation
of a new vertex v with label a (denoted by a(v)); (ii) disjoint union of two labeled
graphs G and H (denoted by G⊕H); (iii) Joining by an edge each vertex with
label a to each vertex with label b (a �= b, denoted by ηa,b); (iv) renaming label
a to b (denoted by ρa→b). Every graph can be defined by an algebraic expression
using these four operations. For instance, a chordless path on five consecutive
vertices u, v, x, y, z can be defined as follows:
η3,2(3(z)⊕ρ3→2(ρ2→1(η3,2(3(y)⊕ρ3→2(ρ2→1(η3,2(3(x)⊕η2,1(2(v)⊕1(u))))))))).
Such an expression is called a k-expression if it uses at most k different labels.
The clique-width of G, denoted cw(G), is the minimum k for which there exists
a k-expression defining G. If a graph G has a clique-width at most k, then
a (2k+1 − 1)-expression for it can be computed in time O(|V (G)|3) using the
rank-width [12,15].

Every graph of clique-width at most k admits an irredundant k-expression,
that is, a k-expression such that before any operation of the form ηa,b is applied,
the graph contains no edges between vertices with label a and vertices with label
b [9]. In particular, this means that every operation ηa,b adds at least one edge
to the graph G. Each expression σ defines a rooted tree T (σ), that we also call
a clique-width tree.
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Our Result on Graphs with Bounded Clique-Width. We describe an
algorithm for the (λ, β, α)-TSS problem on graphs G of clique-width at most
k given by an irredundant k-expression σ. Denoting by n the number of ver-
tices of the input graph G, the running time of the algorithm is bounded by
O(λk|σ|(n + 1)(3λ+2)k), where |σ| denotes the encoding length of σ. For fixed k
and λ, this is polynomial in the size of the input. We will first solve the following
naturally associated decision problem:

(λ, β, α)-Target Set Decision ((λ, β, α)-TSD).
Instance: A graph G = (V,E), thresholds t : V −→ N, a latency bound
λ ∈ N, a budget β ∈ N and an activation requirement α ∈ N.
Problem: Determine whether there exists a set S ⊆ V such that |S| ≤ β
and |Active[S, λ]| ≥ α.

Consider an instance (G, t, λ, β, α) to the (λ, β, α)-Target Set Decision prob-
lem, where G = (V,E) is a graph of clique-width at most k given by an irredun-
dant k-expression σ. We will develop a dynamic programming algorithm that
will traverse the clique-width tree bottom up and simulate the activation pro-
cess for the corresponding induced subgraphs of G, keeping track only of the
minimal necessary information, that is, of how many vertices of each label be-
come active in each round. For a bounded number of rounds λ, it will be possible
to store and analyze the information in polynomial time. In order to compute
these values recursively with respect to all the operations in the definition of the
clique-width—including operations of the form ηa,b—we need to consider not
only the original thresholds, but also reduced ones. This is formalized in Defini-
tion 1 below. We view G as a k-labeled graph defined by σ. Given a k-labeled
graph H and a label � ∈ [k], we denote by V	(H) the set of vertices of H with
label �.

Definition 1. Given a k-labeled subgraph H of G and a pair of matrices with
non-negative integer entries (α, r) such that α ∈ (Z+)[0,λ]×[k] (where [0, λ] :=
{0, 1, . . . , λ}) and r ∈ (Z+)[λ]×[k], an (α, r)-activation process for H is a non-
decreasing sequence of vertex subsets S[0] ⊆ . . . ⊆ S[λ] ⊆ V (H) such that the
following conditions hold:

(1) For every round i ∈ [λ] and for every label � ∈ [k], the set of all vertices
with label � activated at round i is obtained with respect to the activation
process starting at S[0] with thresholds t(u) reduced by r[i, �] for all vertices
with label �. Formally, for all � ∈ [k] and all i ∈ [λ],

(S[i]\S[i−1])∩V	(H) =
{
u ∈ V	(H)\S[i−1] :

∣∣NH(u)∩S[i−1]
∣∣ ≥ t(u)−r[i, �]

}
.

(2) For every label � ∈ [k], there are exactly α[0, �] initially activated vertices
with label �: |S[0] ∩ V	(H)| = α[0, �] .

(3) For every label � ∈ [k] and for every round i ∈ [λ], there are exactly α[i, �]
vertices with label � activated at round i: |(S[i] \ S[i− 1]) ∩ V	(H)| = α[i, �] .
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Let A denote the set of all matrices of the form α = (α[i, �] : 0 ≤ i ≤ λ ,
1 ≤ � ≤ k) where α[i, �] ∈ [0, α] for all 0 ≤ i ≤ λ and all 1 ≤ � ≤ k. Notice that
|A| = (α + 1)(λ+1)k = O((n + 1)(λ+1)k). Similarly, let R denote the set of all
matrices of the form r = (r[i, �] : 1 ≤ i ≤ λ , 1 ≤ � ≤ k) , where r[i, �] ∈ [0, n] for
all 1 ≤ i ≤ λ and all 1 ≤ � ≤ k. Then |R| = (n+ 1)λk.

Every node of the clique-width tree T := T (σ) of the input graph G corre-
sponds to a k-labeled subgraph H of G. To every node of T (and the corre-
sponding k-labeled subgraph H of G), we associate a Boolean-valued function
γH : A×R −→ {0, 1} where γH(α, r) = 1 if and only if there exists an (α, r)-
activation process for H . Each matrix pair (α, r) ∈ A × R can be described
with O(λk) numbers. Hence, the function γH can be represented by storing the
set of all triples {(α, r, γH(α, r)) : (α, r) ∈ A × R} , requiring, in total, space
O(λk)·|A×R| = O(λk)·O((n + 1)(λ+1)k) ·O((n + 1)λk) = O(λk(n+ 1)(2λ+1)k).

Below we will describe how to compute all functions γH for all subgraphs H
corresponding to the nodes of the tree T . Assuming all these functions have been
computed, we can extract the solution to the (λ, β, α)-Target Set Decision

problem on G from the root of T as follows.

Proposition 1. There exists a set S ⊆ V (G) such that |Active[S, λ]| ≥ α and
|S| ≤ β if and only if there exists a matrix α ∈ A with γG(α,0) = 1 (where

0 ∈ R denotes the all zero matrix) such that
∑k

	=1 α[0, �] ≤ β and
∑λ

i=0

∑k
	=1

α[i, �] ≥ α.

Let us now describe how to compute the functions γH by traversing the tree T
bottom up. We consider four cases according to the type of a node v of T .

Case 1: v is a leaf. In this case, the labeled subgraph H of G associated to v
is of the form H = a(u) for some vertex u ∈ V (G) and some label a ∈ [k]. That
is, a new vertex u is introduced with label a. Let us denote by (A×R)∗ the set

(A×R)∗ =

{
(α, r) ∈ A×R : (∀� �= a)(α[i, �] = 0) ∧

( λ∑
i=0

α[i, a] ≤ 1

)

∧
[( λ∑

i=0

α[i, a] = 0

)
⇒
(

(∀i)
(
r[i, a] < t(u)

))]

∧
[(

(∃i∗)(α[i∗, a] = 1)
)
⇒
(
i∗ = 0 ∨ i∗ = min{i ≥ 1 : r[i, a] ≥ t(u)}

)]}
.

In this case for every (α, r) ∈ A×R, we set γH(α, r) =

{
1, if (α, r)∈(A×R)∗;
0, otherwise.

Case 2: v has exactly two children in T . In this case, the labeled subgraph
H of G associated to v is the disjoint union H = H1 ⊕H2, where H1 and H2

are the labeled subgraphs of G associated to the two children of v in T . In this
case, for every (α, r) ∈ A×R we set

γH(α, r) =

{
1, if (∃α1,α2 ∈ A)(α=α1+α2 and γH1(α1, r)=γH2(α2, r)=1);
0, otherwise.
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Case 3: v has exactly one child in T and the labeled subgraph H of G
associated to v is of the form H = ηa,b(H1). In this case, graphH is obtained
from H1 by adding all edges between vertices labeled a and vertices labeled b.
Since the k-expression is irredundant, in H1 there are no edges between vertices
labeled a and vertices labeled b.

For every (α, r) ∈ A×R we define the integer-valued matrix r1 by setting

r1[i, �] =

⎧⎨⎩
min{n, r[i, a] +

∑
j<i α[j, b]}, if � = a;

min{n, r[i, b] +
∑

j<i α[j, a]}, if � = b;

r[i, �], otherwise ,

for every i ∈ [0, λ] and for every label � ∈ [k]. Then, we set, γH(α, r) =
γH1(α, r1).

Case 4: v has exactly one child in T and the labeled subgraph H of
G associated to v is of the form H = ρa→b(H1). For every (α, r) ∈ A ×R
we set γH(α, r) = 1 if and only if there exists (α1, r1) ∈ A × R such that
γH1(α1, r1) = 1, where for every round i and for every label � ∈ [k], we have

r1[i, �] =

{
r[i, b], if � = a;
r[i, �], otherwise.

and α[i, �] =

⎧⎨⎩
0, if � = a;
α1[i, a] + α1[i, b], if � = b;
α1[i, �], otherwise.

This completes the description of the four cases and the description of the
algorithm.

Correctness and Time Complexity. Correctness of the algorithm follows
from the derivation of recursive formulas (see [7]). We now analyze the algo-
rithm’s time complexity. Given an irredundant k-expression σ of G, the clique-
width tree T can be computed from σ in linear time. The algorithm computes
the sets A and R in time |A| = O((n+ 1)(λ+1)k) and |R| = O((n + 1)λk) ,
respectively.

The algorithm then traverses the clique-width tree bottom-up. At each leaf
of T and for each (α, r) ∈ A × R, it can be verified in time O(λk) whether
(α, r) ∈ (A×R)∗. Hence, the function γH at each leaf can be computed in time
O(λk(n + 1)(2λ+1)k).

At an internal node corresponding to Case 2, the value of γH(α, r) for a given
(α, r) ∈ A×R can be computed in time O(|A|λk) by iterating over all α1 ∈ A,
verifying whether α2 := α − α1 ∈ A and looking up the values of γH1(α1, r)
and γH2(α2, r). Hence, the total time spent at an internal node corresponding
to Case 2 is O(|A|λk) · O((n+ 1)(2λ+1)k) = O(λk(n + 1)(3λ+2)k).

At an internal node corresponding to Case 3 or Case 4, the value of γH(α, r)
for a given (α, r) ∈ A × R can be computed in time O(λk). Hence, the total
time spent at any such node is O(λk(n + 1)(2λ+1)k).

The overall time complexity is O(λk|σ|(n + 1)(3λ+2)k). For fixed k and λ, this
is polynomial in the size of the input.

The above algorithm for the (λ, β, α)-Target Set Decision problem on
graphs of bounded clique-width can be easily modified so that it also finds a
solution to the (λ, β, α)-Target Set Selection problem. Hence, we have the
following theorem.
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Theorem 1. For every fixed k and λ, the (λ, β, α)-Target Set Selection

problem can be solved in polynomial time on graphs of clique-width at most k.

When λ = 1 and α = |V (G)|, the (λ, β, α)-Target Set Selection problem
coincides with the Vector Domination problem (see, e.g, [6]). Hence, Theo-
rem 1 answers a question from [6] regarding the complexity status of Vector

Domination for graphs of bounded treewidth or bounded clique-width.

The (λ, β,A)-TSS Problem on Graphs of Small Clique-Width. The ap-
proach to solve the (λ, β,A)-Target Set Selection problem on graphs of
bounded clique-width is similar to the one above. First, we consider the deci-
sion problem naturally associated with the (λ, β,A)-TSS problem, the (λ, β,A)-
Target Set Decision problem ((λ, β,A)-TDS for short). Consider an instance
(G, t, λ, β, A) to the (λ, β,A)-TSD problem, where G = (V,E) is a graph of
clique-width at most k given by an irredundant k-expression σ. First, we con-
struct a 2k-expression σ′ in such a way that every labeled vertex a(u) with u ∈ A
changes to (a+k)(u). Moreover, every operation of the form ηi,j is replaced with
a sequence of four composed operations ηi,j ◦ ηi,j+k ◦ ηi+k,j ◦ ηi+k,j+k , and ev-
ery operation of the form ρi→j is replaced with a sequence of two composed
operations ρi,j ◦ ρi+k,j+k. The so defined expression σ′ can be obtained from σ
in linear time, and defines a labeled graph isomorphic to G such that the set
A contains precisely the vertices with labels strictly greater than k. Using the
same notation as above (with respect to σ′), we obtain the following

Proposition 2. There exists a set S ⊆ V (G) such that A ⊆ |Active[S, λ]| and
|S| ≤ β if and only if there exists a matrix α ∈ A with γG(α,0) = 1 such that∑k

	=1 α[0, �] ≤ β and
∑λ

i=0

∑2k
	=k+1 α[i, �] = |A|.

Hence, the same approach as above can be used to solve first the (λ, β,A)-
Target Set Decision problem, and then the (λ, β,A)-Target Set Selec-

tion problem itself.

Theorem 2. For every fixed k and λ, the (λ, β,A)-Target Set Selection

problem can be solved in polynomial time on graphs of clique-width at most k.

3 (λ,A)-TSS on Trees

Since trees are graphs of clique-width at most 3, results of Section 2 imply
that the (λ, β, α)- and (λ, β,A)-TSS problems are solvable in polynomial time
on trees when λ is constant. In this section we improve on this latter result
by giving a linear time algorithm for the (λ,A)-TSS problem, for arbitrary
values of λ. Our result also extends the linear time solution for the classical
TSS problem (i.e., without the latency bound) on trees proposed in [4]. Like the
solution in [4], we will assume that the tree is rooted at some node r. Then, once
such rooting is fixed, for any node v we will denote by T (v) the subtree rooted
at v, by C(v) the set of children of v and, for v �= r, by p(v) the parent of v. In
the following we assume that ∀v ∈ V, 1 ≤ t(v) ≤ d(v).
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Next Algorithm (λ,A)-TSS on Trees considers each node for being included
in the target set S in a bottom-up fashion. Each node is considered after all its
children. Leaves are never added to S because there is always an optimal solution
in which the target set consists of internal nodes only. Indeed, since all leaves
have thresholds equal to 1, starting from any target set containing some leaves
we can get a solution of at most the same size by substituting each targeted leaf
by its parent.

Thereafter, for each non-leaf node v, the algorithm checks whether the partial
solution S constructed so far allows to activate all the nodes in T (v)∩A (where
A is the set of nodes which must be activated) within round λ: the algorithm
computes the round τ = λ−maxPath(v) by which v has to be activated (line 12
of the pseudocode), where maxPath(v) denotes the maximum length of a path
from v to one of its descendants which requires v’s influence to become active
by round λ. Notice that τ < λ when there exists a vertex in the subtree T (v)
which has to be activated by time λ, and this can happen only if v is activated
by time τ . Then the algorithm computes the set Act(v) consisting of those v’s
children which are activated at round τ − 1 (line 13). The algorithm is based on
the following three observations (a), (b), and (c) (assuming that v is in the set
of nodes which must be activated): (a) v must be included in S whenever the
nodes belonging to Act(v) ∪ {p(v)} do not suffice to activate v, i.e., the current
partial solution is such that at most t(v)− 2 children of v can be active at round
τ − 1; (b) v must be included in S if τ = 0 (i.e., λ = maxPath(v)). Indeed, in
this case, there exists a vertex in T (v), at distance λ from v, which requires v’s
influence to be activated, and this can only happen if v is activated at round 0
(line 19-21).

If neither (a) nor (b) is verified, then v is not activated. However, it might
be that the algorithm has to guarantee the activation of some other node in the
subtree T (v). To deal with such a case, when (c) the size of the set Act(v) is
t(v) − 1, then the algorithm puts p(v) in the set A of nodes to be activated;
moreover, the value of the parameter path(v) is updated coherently in such a
way to correctly compute the value of maxPath(p(v)) which assures that p(v)
gets active within round λ− maxPath(p(v)) (see lines 22-24).

In order to keep track of the above cases while traversing the tree bottom-up,
the algorithm uses the following parameters:

round(v) assumes value equal to the round (of the activation process with target
set S) in which v would be activated only thanks to its children and irre-
spectively of the status of its parent. Namely, round(v) = ∞ if v is a leaf,
round(v) = 0 if v ∈ S, and round(v) = 1 + mint(v){round(u) | u ∈ C(v)}
otherwise. Here mint(v) C denotes the t(v)-th smallest element in the set C.

path(v) assumes value equal to −1 in case v’s parent is not among the activators
of v; otherwise, assume value equal to the maximum length of a path from
v to one of its descendants which (during the activation process with target
set S) requires v’s influence in order to become active. It will be shown that
during the activation process with target set S, for each node v ∈ A we
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have v ∈ Active[S,min{λ−maxu∈C(v) path(u)− 1, round(v)}], for each node
v ∈ A.

Moreover, the algorithm maintains a set A′ ⊇ A of nodes to be activated. Initially
A′ = A, the set A′ can be enlarged when the algorithm decides not to include in
S the node v under consideration but to use p(v) for v’s activation, like in the
case (c) above. In the rest of the section, we prove the following Theorem 3.

Theorem 3. Algorithm (λ,A)-TSS on Tree computes, in time O(|V |), an
optimal solution for the (λ,A)-Target Set Selection problem on a tree.

Time Complexity. The initialization (line 1-10) requires time O(|V |). The
order in which nodes have to be considered is determined using a BFS which
requires time O(|V |) on a tree. The forall (line 11) considers all the internal
nodes: the algorithm analyzes each node v in time O(|C(v)|). We notice that
the computation in line 15 can be executed in O(|C(v)|) by using an algorithm
that solve the selection problem in linear time. Overall the complexity of the
algorithm is O(|V |) +

∑
v∈V O(|C(v)|) = O(|V |).

Lemma 1. Algorithm (λ,A)-TSS on Tree outputs a solution for the (λ,A)-
Target Set Selection problem on T = (V,E).

Let T (r) = (V,E) be a tree rooted at a r ∈ V , and let X ⊆ V be a target set
such that Active[X,λ] ⊇ A. Let T (v) be the subtree of T (r) rooted at a node v.
Henceforth let Active[X, i, T (v)] be the set of nodes that is active at round i by
targeting X ∩ T (v) in the subtree T (v). Notice that while X is a target set for
T (r) this not necessarily means that X ∩ T (v) is a target set for T (v).

roundX(v) =

⎧⎪⎨⎪⎩
i if v ∈ Active[X, i, T (v)] \ Active[X, i− 1, T (v)]

0 if v ∈ X
∞ otherwise

pathX(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if v ∈ A is a leaf AND v /∈ X
i if (maxPathX(v) = i < λ)

AND (|Active[X,λ− i− 1, T (v)] ∩ C(v)|= t(v)− 1)

AND (v ∈ A OR maxPathX(v) > 0) AND (v /∈ X)

maxPathX(v) =

{
1 + maxu∈C(v) pathX(u) if v is an internal node

0 if v is a leaf.

Let X be a target set solution (i.e., Active[X,λ] ⊇ A). For an edge (v, u) we say
that v activates u and write v → u if v ∈ Active[X, i − 1] and u ∈ Active[X, i] \
Active[X, i − 1], for some 1 ≤ i ≤ λ. An activation path v � u from v to u is
a path in T such that v = x0 → x1 → . . . → xk = u with xj ∈ Active[X, ij] \
Active[X, ij − 1] for 0 ≤ i1 < i2 < . . . < ik ≤ λ. In other words xi is activated
before xi+1, for i = 0, . . . , k − 1.

Lemma 2. Let X be a target set solutions (i.e., Active[X,λ] ⊇ A) and v ∈ V .
If maxPathX(v) = i then there is an activation path of length i in T (v) starting
at v and ending at a node u ∈ A.
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Algorithm 1. (λ,A)-TSS on Trees

Input: A tree T = (V,E), thresholds function t : V → N, a latency bound
λ ∈ N and a set to be activated A ⊆ V .

Output: S ⊆ V of minimum size such that A ⊆ Active[S, λ].

1 S = ∅;
2 A′ = A;
3 Fix a root r ∈ V // T (r) denotes the tree T rooted at r
4 forall v in the set of T (r) leaves do
5 round(v) = ∞
6 if v ∈ A′ then // v belongs to the set of nodes to be activated
7 A′ = A′ ∪ {p(v)} // p(v) denotes v’s parent
8 path(v) = 0

9 else
10 path(v) = −1

11 forall v in the set of T (r) internal nodes, listed in reverse order with respect
to the time they are visited by a breadth-first traversal from r do

12 maxPath(v) = 1 + maxu∈C(v) path(u) // C(v) is the set of v’children
13 Act(v) = {u ∈ C(v) | round(u) < λ−maxPath(v)}
14 path(v) = −1

15 round(v) = 1 + mint(v){round(u) | u ∈ C(v)}
16 if v ∈ A′ then // v has to be activated
17 if v �= r then
18 switch do
19 case (|Act(v)|≤t(v)−2) OR (maxPath(v) = λ)
20 S = S ∪ {v} // v has to be in the target set
21 round(v) = 0

22 case (|Act(v)| = t(v)−1) AND (maxPath(v) < λ)
23 A′ = A′ ∪ {p(v)} // v will be activated thanks to its parent

p(v)
24 path(v) = maxPath(v)

25 else // v is the root
26 if (|Act(v)| ≤ t(v)−1) then
27 S = S ∪ {v}
28 round(v) = 0

29 return (S)



Latency-Bounded Target Set Selection in Social Networks 75

Lemma 3. If X = S then for each node v ∈ V, round(v) = roundS(v),
path(v) = pathS(v) and Act(v) = Active[S, λ− maxPathS(v) − 1, T (v)] ∩ C(v).

Let X and Y be two target set solutions and v ∈ V . The following properties
hold:

Property 4. If roundX(v) > roundY (v) and v /∈ Y then there exists u ∈ C(v)
such that roundX(u) > roundY (u).

Property 5. If v /∈ X then |Active[X,λ − maxPathX(v) − 1, T (v)] ∩ C(v)| >
t(v) − 2 AND maxPathX(v) < λ .

Lemma 6. Algorithm (λ,A)-TSS on Tree outputs an optimal solution for the
(λ,A)-Target Set Selection problem on T = (V,E).

Proof. Let S and O be respectively the solutions found by the algorithm (λ,A)-
TSS on Tree and an optimal solution. For each v ∈ V let S(v) = S ∩ T (v)
(resp. O(v) = O ∩ T (v)) be the set of target nodes in S (resp. O) which belong
to T (v). Let s(u) = |S(u)| and o(u) = |O(u)| be the cardinality of such sets. We
will use the following claim whose proof is omitted due to space constraints.

Claim 7. If either pathS(v) > pathO(v) or roundS(v) > roundO(v) then
s(v) < o(v).

We show by induction on the height of the node that s(v) ≤ o(v), for each v ∈ V .
The inequality trivially holds when v is a leaf. Since our algorithm does not

target any leaf (i.e. v /∈ S), we have s(v) = 0. Since we have o(v) = 0 or o(v) = 1
according to whether v belongs to the optimal solution, the inequality is always
satisfied.

Now consider any internal node v. By induction, s(u) ≤ o(u) for each u ∈
C(v); hence ∑

u∈C(v)

s(u) ≤
∑

u∈C(v)

o(u). (1)

It is not hard to see that if v ∈ O by (1) we immediately have s(v) ≤ o(v). The
same result follows from (1) for the case where v is neither in O nor in S.

We are left with the case v ∈ S and v �∈ O In this case eq. (1) only gives
s(v) − 1 ≤ o(v). In order to obtain the desired result we need to find a child u
of v such that s(u) < o(u). We distinguish the following two cases:

Case (v /∈ A and maxPathO(v) = 0): Since v ∈ S we have v ∈ A′ (that is
v ∈ A or maxPathS(v) > 0). Since v ∈ A′ \ A then maxPathS(v) > 0 and
there is a children u of v such that pathS(u) ≥ 0 > −1 = pathO(u) = −1
and we have found the desired vertex because by the Claim above we have
s(u) < o(u).

Case (v ∈ A or maxPathO(v) > 0): Since v ∈ S we have that either |Act(v)| =
|Active[S, λ− i− 1, T (v)] ∩ C(v)| ≤ t(v) − 2 or where i = maxPathS(v). We
consider the two subcases separately:
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Subcase (maxPathS(v) = λ): Since v /∈ O, by Property 5, we have
maxPathO(v) < λ. Hence, there is a vertex u ∈ C(v) such that
pathS(u) = λ − 1 > pathO(u) and we have found the desired vertex
because, by the Claim we have o(u) > s(u).

Subcase (|Active[S, λ− maxPathS(v) − 1, T (v)] ∩ C(v)| ≤ t(v) − 2): Since
v /∈ O by Property 5 we have |Active[O, λ − j − 1, T (v)] ∩ C(v)| >
|Active[S, λ − i − 1, T (v)] ∩ C(v)| where i = maxPathS(v) and j =
maxPathO(v). If i > j (i.e., 1 + maxu∈C(v) pathS(u) > 1 + maxu∈C(v)

pathO(u)) then there is a child u of v such that pathS(u) > pathO(u)
and by the Claim we have o(u) > s(u). If i = j, then there exists a child
u ∈ C(v) such that, u ∈ Active[O, λ−j−1, T (u)]\Active[O, λ−j−2, T (u)]
and u /∈ Active[S, λ− i−1, T (u)]. Hence roundO(u) < roundS(u). By the
Claim we have o(u) > s(u).

In all cases we have that there is u ∈ C(v) with s(u) < o(u). Hence
s(v) ≤ o(v).
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Abstract. Prompted by the need to compute holistic properties of in-
creasingly large data sets, the notion of the “summary” data structure
has emerged in recent years as an important concept. Summary struc-
tures can be built over large, distributed data, and provide guaranteed
performance for a variety of data summarization tasks. Various types
of summaries are known: summaries based on random sampling; sum-
maries formed as linear sketches of the input data; and other summaries
designed for a specific problem at hand.

1 Introduction

It is widely acknowledged in the business and scientific communities that “big
data” holds both tremendous promise, and substantial challenges [10]. There
is much potential for extracting useful intelligence and actionable information
from the large quantities of data generated and captured by modern information
processing systems. A chief problem presented by this scenario is the scale in
terms of the so-called “three V’s”: volume, variety, and velocity. That is, big
data challenges involve not only the sheer volume of the data, but the fact that
it can represent a complex variety of entities and interactions between them, and
new observations arrive, often across multiple locations, at high velocity.

Such sources of big data are becoming increasingly common, while the re-
sources to deal with big data (chiefly, processor speed, fast memory and slower
disk) are growing at a slower pace. The consequence of this trend is that we need
more effort directed towards capturing and processing data in many critical ap-
plications. Careful planning and scalable architectures are needed to fulfill the
requirements of analysis and information extraction on big data.

Some examples of applications that generate big data include:

Physical Data. The growing development of sensors and sensor deployments
have led to settings where measurements of the physical world are available
at very high dimensionality and at a great rate. Scientific measurements are the
cutting edge of this trend. Astronomy data gathered from modern telescopes can
easily generate terabytes of data in a single night. Aggregating large quantities of
astronomical data provides a substantial big data challenge to support the study
and discovery of new phenomena. Big data from particle physics experiments
is also enormous: each experiment can generate many terabytes of readings,
which can dwarf what is economically feasible to store for later comparison and
investigation.
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Medical Data. It is increasingly feasible to sequence entire genomes. A single
human genome is not so large—it can be represented in under a gigabyte—
but considering the entire genetic data of a large population represents a big
data challenge. This may be accompanied by increasing growth in other forms
of medical data, based on monitoring multiple vital signs for many patients
at fine granularity. Collectively, this leads to the area of data-driven medicine,
seeking better understanding of disease, and leading to new treatments and
interventions, personalized for each individual patient.

Activity Data. Human activity data is increasingly being captured and stored.
Online social networks record not just friendship relations but interactions, mes-
sages, photos and interests. Location data is also more available, due to mobile
devices which can obtain GPS information. Other electronic activities, such as
patterns of website visits, email messages and phone calls can be collected and
analyzed. Collectively, this provides ever-larger collections of activity informa-
tion. Service providers who can collect this data seek to make sense of it in order
to identify patterns of behavior or signals of behavioral change, and opportuni-
ties for advertising and marketing.

Business Data. Businesses are increasingly able to capture more and complex
data about their customers. Online stores can track millions of customers as they
explore their site, and seek patterns in purchasing and interest, with the aim of
providing better service, and anticipating future needs. The detail level of data
is getting finer and finer. Previously, data would be limited to just the items
purchased, but now extends to more detailed shopping and comparison activity,
tracking the whole path to purchase.

Across all of these disparate settings, certain common themes emerge. The
data in question is large, and growing. The applications seek to extract patterns,
trends or descriptions of the data. Scalability and timeliness of response are vital
in many of these applications.

In response to these needs, new computational paradigms are being adopted
to deal with the challenge of big data. Large scale distributed computation is
a central piece: the scope of the computation can exceed what is feasible on a
single machine, and so clusters of machines work together in parallel. On top of
these architectures, parallel algorithms are designed that can take the complex
task and break it into independent pieces suitable for distribution over multiple
machines.

A central challenge within any such system is how to compute and represent
complex features of big data in a way that can be processed by many single
machines in parallel. One answer is to be able to build and manipulate a compact
summary of a large amount of data. This notion of a small summary is the subject
of study of this article. The idea of a summary is a natural and familiar one. It
should represent something large and complex in a compact fashion. Inevitably,
a summary must dispense with some of the detail and nuance of the object
which it is summarizing. However, it should also preserve some key features of
the object in an accurate fashion.
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There is no single summary which accurately captures all properties of a data
set, even approximately. Thus, at the heart of the study of small summaries
are the questions of what should be preserved? and how accurately can it be
preserved?. The answer to the first question determines which of many different
possible summary types may be appropriate, or indeed whether any compact
summary even exists. The answer to the second question can determine the size
and processing cost of working with the summary in question.

Another important question about summaries for big data is how they can
be constructed and maintained as new data arrives. Given that it is typically
not feasible to load all the data into memory on one machine, then we need
summaries which can be constructed incrementally. That is, we seek summaries
that can be built by observing each data item in turn, and updating the partial
summary. Or, more strongly, we seek summaries such that summaries of different
subsets of data built on different machines can be combined together to obtain
a single summary that accurately represents the full data set.

Note that the notion of summarization is distinct from traditional ideas of
compression. Lossless compression is concerned with identifying regularity and
redundancy in datasets to provide a more compact exact representation of the
data. This is done for the purpose of archiving, or reducing transmission time.
However, in general, there is no guarantee of significant size reduction from com-
pression. The compressed form is also typically difficult to utilize, and decom-
pression is required in order to work with the data. In contrast, summarization is
intended to provide a very significant reduction in the size of the data (sometimes
several orders of magnitude), but does not promise to reconstruct the original
data, only to capture certain key properties. Lossy compression methods fall in
between, as they can provide guaranteed size reductions. They also aim to allow
an approximate reconstruction of the original data with only small loss of fidelity
based on some measure of loss: typically, human perception of multimedia data,
such as audio or video. Summarization aims to provide only small loss of fidelity,
but on other dimensions; summaries do not necessarily provide a way to make
even an approximate reconstruction of the original input.

As a first example of summarization, consider a data set consisting of a large
collection of temperature readings over time. A suitable summary might be to
keep the sum of all the temperatures seen, and the count. From this summary, we
can extract the average temperature. This summary is easy to update incremen-
tally, and can also be combined with a corresponding summary by computing
the overall sum and count. A different summary retains only the maximum and
minimum temperature observed so far. From this, we can extract the range of
temperatures observed. This too is straightforward to maintain under updates,
and to merge across multiple subsets. However, neither summary is good at re-
trieving the median temperature, or some other properties of the statistical dis-
tribution of temperatures. Instead, more complex summaries and maintenance
procedures are required.
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2 Operations on Summaries

While different summaries capture different functions and properties of the data,
we abstract a set of four basic operations that summaries should support. These
basic operations are Initialize, Update, Merge and Query.

Initialize. The Initialize operation for a summary is to initialize a new in-
stance of the summary. Typically, this is quite simple, just creating empty data
structures for the summary to use. For summaries that use randomization, this
can also involve drawing the random values that will be used throughout the
operation of the summary.

Update. The Update operation takes a new data item, and updates the sum-
mary to reflect this. The time to do this Update should be quite fast, since we
want to process a large input. Ideally, this is faster than reading the whole sum-
mary. Since Update takes a single item at a time, the summary can process a
stream of items one at a time, and only retain the current state of the summary
at each step.

Merge. When faced with a large amount of data to summarize, we would like
to distribute the computation over multiple machines. Performing a sequence of
Update operations does not guarantee that we can parallelize the action of the
summary, so we also need the ability to Merge together a pair of summaries to
obtain a summary of the union of their inputs. This is possible in the majority
of cases, although a few summaries only provide an Update operation and not
a Merge. Merge is often a generalization of Update: applying Merge when
one of the input summaries consists of just a single item will reduce to the
Update operation. In general a Merge operation is slower than Update, since
it requires reading through both summaries in full.

Query. At various points we want to use the summary to learn something about
the data that is summarized. We abstract this as Query, with the understand-
ing that the meaning of Query depends on the summary: different summaries
capture different properties of the data. In some cases, Query takes parameters,
while for other summaries, there is a single Query operation. Some summaries
can be used to answer several different types of query. In this presentation, we
pick one primary query to answer with the Query operation.

3 Three Examples of Summaries

This section describes three examples of different constructions of summaries,
and some of their applications and uses. The aim of the presentation is to con-
vey the basic ideas; for further details the interested reader is directed to more
detailed surveys [8,18].
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3.1 Samples

The notion of random sampling is a familiar and convenient one. Given a large
number of data items, we randomly pick a subset, so that the probability of any
subset being picked as the sample is uniform. Then, we can estimate the answer
to a query by evaluating the query over the sample, and scaling appropriately.
For certain queries, strong error guarantees are known for this process.

Working with a sample of size k can fit neatly into the summary framework.
To Initialize a sample, we create an empty set. To Update a sample, we
determine (randomly) whether to include the new item in the sample, and to
Merge two samples, we shall determine which subset of items to maintain. One
natural way to accomplish these steps is to maintain the “weight” of each sample,
as the number of input items represented by the sample. To Merge two samples
of weight n1 and n2 respectively, we pick items from the first with probability
n1/(n1 + n2), and from the second with probability n2/(n1 + n2). An Update

operation is then a Merge where one of the input samples has size 1. Lastly,
to Query a sample to estimate the fraction of input items satisfying a property
P , we can report the fraction of items in the sample satisfying P .

Tools such as the Chernoff-Hoeffding inequality [16] can be brought to bear
to analyze the accuracy of answering a query from samples. First, we observe
that the result of a combination of Merge and Update operations generates
a uniform random sample of size k—the probability of any item being included
in the sample is uniform, and independent of the inclusion probabilities of other
items. Then we can consider the random variable corresponding to the fraction
of items in the sample that satisfy property P . Let Xi be the random variable
indicating if the ith sampled item satisfies P : we have Pr[Xi = 1] = p, where p is
the global proportion we are trying to estimate. Applying the Chernoff-Hoeffding
inequality, we have

Pr[|1
k

k∑
i=1

Xi − p| > ε] ≤ 2 exp(−2ε2k)

Consequently, setting the sample size k = O( 1
ε2 ln 1/δ) is sufficient to ensure that

the error is at most ε with probability at least 1 − δ.

Samples: pros and cons. Due to their flexibility and simplicity, samples have
been used in a variety of applications. For example, many routers in the internet
sample information about flows for network traffic monitoring [17]. It is often
convenient to work with samples, since we just have to apply the desired com-
putation on the sample instead of on the full data (in contrast, other summaries
require different, complex procedures to be performed on the summary data).
However, they have some limitations. Samples do not work well for problems not
based on raw counts—for example, samples are not helpful for estimating the
number of distinct items [5]. The accuracy bounds in terms of O(1/ε2) can be
high in some applications where ε is very small. In some cases, other summary
techniques achieve a smaller cost, proportional to O(1/ε), which can make a big
difference in practice.
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3.2 Sketches

The term ‘sketches’ refers generally to a class of summary that can be expressed
as a linear transformation of the input data. That is, if we can express the input
as a vector, then the sketch is the result of multiplying the vector by some
matrix S. We are most interested in cases where this matrix S has a compact,
implicit representation, so that we do not have to explicitly store it in full. A
simple example is the Count-Min sketch, which summarizes a large vector so
that individual entries of the vector can be estimated [9]. Entries of the vector
are mapped down to a smaller domain by a hash function, and the sum of entries
mapping to each location are maintained; this is repeated for a small number of
different hash functions with the same range.

Using the terminology of summaries, to Initialize a Count-Min sketch, we
first determine the parameters: d, the number of hash functions to apply, and
w, the range of the hash functions. We then create an array C of size d × w
to summarize the data, and pick d hash functions hj . To Update the sketch
with a positive increment of u to vector location i, we map i into C by the hash
functions, and compute C[j, hj(i)] ← C[j, hj(i)] + u for all 1 ≤ j ≤ d. This is a
linear update function. To Merge two sketches that share the same parameters
(d, w and hj), we sum the two arrays. Lastly, to Query the estimated value
of a location i, we find minj C[j, hj(i)], the smallest value in the array of the
locations where location i was mapped to: assuming positive weights for all item,
this indicates the estimate with the least error from colliding items.

From this description it is reasonably straightforward to see that the sketch is a
linear transform of its input vector x, so it is the same, irrespective of the ordering
of the Update and Merge operations. It is less immediate to see why the sketch
should be accurate, given that w is typically chosen to be much smaller than the
size of the vector being summarized. The intuition behind the sketch is that the
hash functions work to spread out the different items, so on average the error
in the estimates cannot be too high. Then the use of different hash functions
ensures that the chance of getting an estimate that is much more inaccurate
than average is quite small. In particular, in any given row, the estimate for i is
expected to have error proportional to ‖x‖1/w, where ‖x‖1 denotes the L1 norm
of the input vector x. Consequently, there is constant probability (12 ) that the
error is at most 2‖x‖1/w, by the Markov inequality. Taking the minimum of d
repetitions amplifies this to a probability of 2−d. Equivalently, to guarantee an
error of at most ε‖x‖1 with probability 1 − δ, we set the parameters to w = 2/ε
and d = log2 1/δ.

Sketches: pros and cons. Sketch techniques have been used widely for log data
analysis in large systems, such as Sawzall [19] and CMON [22]. Their linearity of-
fers extra flexibility: it means that we can obtain a sketch of the sums, differences
and scaled versions of inputs by applying the corresponding transformation to
the sketch data structure. This makes them useful for applying linear forecasting
models to large data [7]. They have also been used as the basis for building ma-
chine learning models over very large feature domains [23]. Sketch constructions
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are known for a variety of input types, including count distinct and set sizes [11],
set membership [4], vector operations such as dot-product [3] and matrix com-
putations [6]. However, they have their limitations: some sketch structures can
be large and very slow to update, limiting their practicality. Sketch ideas do
not naturally apply to settings with unbounded domains, such as sets of strings.
Lastly, they do not support arbitrary complex operations: one sketch addresses
only one or two defined problems, and its is hard to compose sketches to address
complex aggregates.

3.3 Special-Purpose Summaries

Other summaries take the form of various special-purpose structures, which
capture various aspects of the data. The properties of these vary instance by
instance, and require special analysis to accompany their implementation. How-
ever, they can offer very good performance in terms of their space and time
costs.

A simple example is the MG summary, named for the initials of its inventors.
This was originally proposed in the context of streams of data [15], and later
generalized to allow merging of summaries [1] for summarizing a collection of
weights. The MG summary stores a collection of pairs: items drawn from the
input x and associated weights wx. To Initialize an empty MG summary,
we create an empty set of tuples, with space for k pairs. The Merge of two
MG summaries takes two summaries constructed using the same parameter k.
We first merge the component tuples in the natural way. If x is stored in both
summaries, its merged weight is the sum of the weights in each input summary. If
x is stored in only one of the summaries, it is also placed in the merged summary
with the same weight. We then sort the tuples by weight, and find the k + 1st
largest weight, wk+1. This weight is subtracted from all tuples, and only those
with positive weight are retained. At most k tuples can now have weight above
zero: the tuple with k + 1st largest weight, and all tuples with smaller weight,
will now have weight 0 or below, and so can be discarded from the summary. The
Update procedure is the special case of Merge where one of the summaries
contains just a single item. To Query for the estimated weight of an item x, we
look up whether x is stored in the summary. If so, Query reports the associated
weight wx as the estimate, otherwise the weight is assumed to be 0.

Comparing the approximate answer given by Query, and the true weight of x
(the sum of all weights associated with x in the input), the approximate answer
is never more than the true answer. This is because the weight associated with
x in the summary is the sum of all weights for x in the input, less the various
decreases due to Merge and Update operations. The MG summary also ensures
that this estimated weight is not more than εW below the true answer, where
W is the sum of all input weights.

Special-purpose summaries: pros and cons. Summaries such as the MG summary
have been used for quite a wide variety of purposes, such as web clickstream min-
ing [14]. They tend to work very well for their target domain but, as indicated
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by their name, do not obviously generalize to other problems. Other special-
purpose summaries include summaries for order statistics of distributions, such
as the Greenwald-Khanna summary [12], and the q-digest [21]; ε-approximations
and ε-nets for geometric data [13]; and summaries for graph distances and
connectivity [2].

4 Summaries Summary

As noted in the preceding discussion, there are numerous, growing applications
for summary data structures, from scaling up machine learning and data mining,
to applications in privacy and security (e.g., [20]). For more information, see
various tutorials and surveys [8]. Many directions for further research are open.

Natural questions surround improving on the current summaries, either in
terms of their parameters (reducing the space and update time), or extending
their generality (allowing them to be applied in more general update models).
While summaries for computing over data that can be thought of in terms of
vectors are by now quite well-understood, the situation for other forms of data—
in particular, matrices and graphs—is less complete. New styles of summary
are required in the context of verification of computation: these are summaries
that allow a “verifier” to check the computation performed by a more powerful
“prover” on a stream of data. A list of specific open problems is maintained at
http://sublinear.info/.
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Abstract. The fermionant Fermk
n(x̄) =

∑
σ∈Sn

(−k)c(π) ∏n

i=1 xi,j can
be seen as a generalization of both the permanent (for k = −1) and the
determinant (for k = 1). We demonstrate that it is VNP-complete for
any rational k � 1. Furthermore it is #P -complete for the same values of
k. The immanant is also a generalization of the permanent (for a Young
diagram with a single line) and of the determinant (when the Young
diagram is a column). We demonstrate that the immanant of any family
of Young diagrams with bounded width and at least nε boxes at the right
of the first column is VNP-complete.

1 Introduction

In algebraic complexity (more specifically Valiant’s model[2]) one of the main
question is to know whether VP = VNP or not. Answering this is considered
to be a very good step towards the resolution of P = NP . This question is very
close to the question per vs. det, where we ask if the permanent can be computed
in polynomial time in the size of the matrix, as is the determinant.

The main idea of this paper is to find a generalization of both the permanent
and the determinant in order to study exactly where the difference between
them lies. A generalization is here understood as a parameter, let us say t, and
a function f(t, x̄) such that for example f(0, x̄) = det(x̄) and f(1, x̄) = per(x̄).
If we have a complete classification of the complexity of f(t, x̄) for any t (with
t fixed), we should be able to see where we step from VP to VNP and maybe
understand a little bit more why the permanent is hard and not the determinant.

Here we study two different generalizations. First the fermionant, secondly
the immanant. The fermionant was introduced by Chandrasekharan and Wiese
[3] in 2011 in a context of quantum physics. It is defined with a real parameter
k such that for k = 1 it is the determinant and for k = −1 it is the permanent.
Mertens and Moore [7] have demonstrated its hardness for k ≥ 3 (and with a
weaker hardness for k = 2), in the framework of counting complexity.

Likewise, but in a different framework and with a complete different proof,
we demonstrate the hardness of the fermionant seen as a polynomial for any
rational k � 1 (and of course for k � 0). This give a interesting point of view
on where the hardness of the permanent lies. We also get a bonus: we use a
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technique developed by Valiant to demonstrate the hardness of the fermionant
in the counting complexity framework for k � 1. We thus extend the results of
Mertens and Moore [7], in particular to the case k = 2, which is, from what I
understand, the most interesting case for physicists.

The second generalization is more classical and comes from the field of group
representation. It is the immanant, introduced by Littlewood [6] in 1940. Im-
manants are families of polynomials indexed by Young diagrams. If the Young
diagrams are a single column with n boxes, the immanant is the determinant. At
the opposite end, if it is a single line of n boxes, the immanant is the permanent.
The main question is: for which Young diagrams do we step from VP to VNP?

We know that if there are only a finite number of boxes on the right of the
first column, the immanant is still in VP (cf [2]). On the other hand, a few
hardness results have been found, fundamentally for Young diagrams in which
the permanent is hidden. For example, the hook (a line of n boxes and a column
of any number of boxes) and the rectangle (any number of lines each with n
boxes) are hard (cf [2]), or more generally if the maximal difference between the
size of two consecutive lines is as big as a power of n (cf [1]).

Here we shall demonstrate that for Young diagrams with only two columns,
each with n boxes, the immanant is hard, which was an open question (cf [2]
Problem 7.1). As each line of these Young diagrams has length no more than two,
the permanent is not hidden in there. More generally for any family of Young
diagrams with a bounded number of columns and with at least nε boxes at the
right of the first column, the immanant is hard. It has been conjecture that it is
still hard if we remove the bounded condition(cf [7] for example).

For a complete classification of the immanant in algebraic complexity, one
"just" has to determine the complexity of the ziggurat: the Young diagrams
where the first line has n boxes, the second n − 1, the third n − 2 etc. and the
last 1 box. This immanant is most probably also hard. The complexity of the
immanant with a logarithmic number of boxes to the right of the first column is
also unknown.

2 Definitions

We work within Valiant’s algebraic framework. Here is a brief introduction to
this complexity theory. For a more complete overview, see [2].

An arithmetic circuit over Q is a labeled directed acyclic connected graph
with vertices of indegree 0 or 2 and only one sink. The vertices with indegree 0
are called input gates and are labeled with variables or constants from Q. The
vertices with indegree 2 are called computation gates and are labeled with × or
+. The sink of the circuit is called the output gate.

The polynomial computed by a gate of an arithmetic circuit is defined by
induction: an input gate computes its label; a computation gate computes the
product or the sum of its children’s values. The polynomial computed by an
arithmetic circuit is the polynomial computed by the sink of the circuit.
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A p-family is a sequence (fn) of polynomials such that the number of variables
as well as the degree of fn is polynomially bounded in n. The complexity L(f)
of a polynomial f ∈ Q[x1, . . . , xn] is the minimal number of computational gates
of an arithmetic circuit computing f from variables x1, . . . , xn and constants
in Q.

Two of the main classes in this theory are: the analog of P, VP, which contains
of every p-family (fn) such that L(fn) is a function polynomially bounded in n;
and the analog of NP, VNP. A p-family (fn) is in VNP iff there exists a VP
family (gn) such that for all n,

fn(x1, . . . , xn) =
∑

ε̄∈{0,1}n

gn(x1, . . . , xn, ε1, . . . , εn)

As in most complexity theory we have a notion of reduction, the c-reduction:
the oracle complexity Lg(f) of a polynomial f with oracle access to g is the
minimum number of computation gates and evaluations of g over previously
computed values that are sufficient to compute f from the variables x1, . . . xn and
constants from Q. A p-family (fn) c-reduces to (gn) if there exists a polynomially
bounded function p such that Lgp(n)(fn) is a polynomially bounded function.

VNP is closed under c-reductions (See [8] for an idea of the proof). However
this reduction does not distinguish lower classes. For example, 0 is VP-complete
for c-reductions. In this paper we shall demonstrate hardness results, a smallest
notion of reduction (as projection) is thus not needed.

The determinant is in VP. The permanent is VNP-complete for c-reductions
([2]).

3 The Fermionant

Let A be an n × n matrix. The fermionant of A, with parameter k is defined as

FermkA = (−1)n
∑

π∈Sn

(−k)c(π)
n∏

i=1
Ai,π(i)

where Sn denotes the symmetric group of n objects and, for any permutation
π ∈ Sn, c(π) denotes the number of cycles of π. To study the complexity of
such a function, we work within the algebraic complexity framework. The al-
gebraic equivalent of the fermionant is the polynomial obtain where we com-
pute the fermionant on the matrix (xi,j)1≤i,j≤n. If we write Fermk the p-family
(Fermk

n)n∈N, we have a complete classification of the algebraic complexity of
those polynomials.

Theorem 1. Let k be a rational.

– Ferm0 = 0.
– Ferm1 is in VP
– for other values of k Fermk is VNP-complete for c-reductions.
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Similarly to the permanent we can see the fermionant as a computation on a
graph G with n vertices and the edge between the vertices i and j is labeled
with the variable xi,j . A permutation π ∈ Sn can be seen as a cycle cover on
this graph. A cycle cover of G is a subset of its edges that covers all vertices of
G and that form cycles. The weight of a cycle cover π is ω(π) =

∏
e∈π xe and

we write c(π) its number of cycles, then

Fermk(x̄) =
∑

π∈CC(G)

(−k)c(π)
∏

e∈π

xe

where CC(G) is the set of all cycle covers of G. We shall use a so call iff-gadget,
which is the labeled graph draw above. The idea of this gadget is when placed
between two edges e and e′ on G, any cycle cover containing exactly one of the
edges e and e′ will not contribute to the fermionant computed on the resulting
graph.

iff-gadget for the fermionant

u’ p1 v’

u p2 p3 v

e
′

ω(e
′)

c
′
+

e

ω(e)

c+

1
2

−

1
2

−

1
k

1
2k

1
k

−

1
k

Lemma 1. Let G be a graph with n vertices and (ei
1, ei

2)1≤i≤l be a set of pairs
of edges of G such that no two edges in this set are equal. Let G′ be the same
graph but where we place an iff-gadget between every pair (ei

1, ei
2). Let π be a

cycle cover of G, Π(π) be the set of cycle covers of G′ that match π on E(G).

– If there is a pair (ei
1, ei

2) of edges such that ei
1 ∈ π and ei

2 � π, or vice versa,
then ∑

π′∈Π(π)

(−k)c(π′)ω(π′) = 0

– Else, let d(π) be the number of pair (ei
1, ei

2) of edges such that ei
1 � π and

ei
2 � π. Then

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)d(π)

(−k)c(π)ω(π)
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The proof is not given here, it is in color in the full version of the paper. Now
here is the main tool of our demonstration, that allows us to interpolate the
fermionant and compute the permanent.

Lemma 2. Let G be a graph with n vertices. We make l copies of G and name
them G1, . . . , Gl. Let F̃ l be the disjoint union of those copies in which we label
the edges of G1 with the same weight as those of G and the edges of Gi for i ≥ 2
with 1. If e is an edge of G, we call ei the corresponding edge in Gi. We name
F l the graph F̃ l where for any edge e ∈ E(G) and any 1 ≤ i ≤ l, we have placed
an iff-gadget between ei and ei+1. Let π be a cycle cover of G and Π(π) be the
set of cycle covers of F l that match π on E(G1). Then

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)(|E(G)|−n)(l−1)

(−k)l×c(π) ω (π)

Proof. The idea is, with the help of the iff-gadget, to copy a cycle cover from G1
to every other copies of G, without changing the weight of this cycle cover, just
multiplying the number of cycles. The demonstration is by induction on l.

If l = 2, then we simultaneously add |E(G)| iff-gadgets, but only one on each
edge. By design, a cycle cover π on G1 is repeated on G2 (i.e., if e1 is in π then
e2 is also in π as there is a iff-gadget between e1 and e2. see Lemma 1). The
edges of G2 are labeled with 1 and therefore do not contribute to the weight
of the cycle cover. The number of cycles of π′ ∈ Π(π) is twice the number of
cycles of π. There is |E(G)| iff-gadgets in F 2. A cycle cover of G passes through
n edges and therefore activates exactly n iff-gadgets. The other iff-gadgets are
not activated and thus each contribute 1

2 (1 − k) to the sum.
Suppose the lemma true for l − 1 copies. Let F l−1 be the disjoint union of

l − 1 copies of G with iff-gadgets. We add a new copy Gl of G linked to F l−1

with iff-gadgets to obtain F l. Let π be a cycle cover of G, Π l(π) the set of every
cycle covers of F l that match π on E(G1) and Π l−1(π) the same but on F l−1.
By induction,

∑

π′∈Πl−1(π)

(−k)c(π′)ω(π′) =
(

1
2

(1 − k)
)(|E(g)|−n)(l−2)

(−k)(l−1)×c(π)ω(π)

Let F̂ l be the disjoint union of F l−1 and Gl. To obtain F l from this graph, one
has just to add a iff-gadget between every edge el−1 and el. We can apply then
Lemma 1 to this graph. If π′′ is a cycle cover of F̂ l that match π on G1, let
Λ(π′′) be the set of cycle covers of F l that match π′′ on E(F̂ l). Then, if we call
d(π′′) the number of pairs (el−1, el) that are not in π′′,

∑

λ∈Λ(π′′)

(−k)c(λ)ω(λ) =
(

1
2

(1 − k)
)d(π′′)

(−k)c(π′′)ω(π′′)
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Let us study a little bit more π′′. It is a cycle cover of two disjoint graphs, F l−1

and Gl. Therefore it is composed of two sub cycle covers: σ′ a cycle cover of
F l−1 which by induction is in a Π l−1(π) and a cycle cover λ of Gl. However, as
every edge of Gl is linked with an iff-gadget to its image in Gl−1 in F l, the cycle
cover π′′ will contribute to the last sum if and only if it contain both el−1 and
el, or neither el−1 and el. Thus, λ must be the copy of π in Gl, which we write
λπ and c(π′′) = c(σ) + c(λπ) = c(σ) + c(π).

There are n edges in the last image Gl that are passed through by π′′.
Therefore, there are (|E(G)| − n) iff-gadgets that are not activated by π′′ (i.e.,
d(π′′) = |E(G)| − n). Thus,

∑

π′∈Π(π)

(−k)c(π′)ω(π′) =
∑

π′′∈Πl(π)

∑

λ∈Λ(π′′)

(−k)c(λ)ω(λ)

=
∑

π′′∈Πl(π)

(
1
2

(1 − k)
)|E(G)|−n

(−k)c(π′′)ω(π′′)

=
(

1
2

(1 − k)
)|E(G)|−n

(−k)c(λπ)
∑

σ∈Πl−1(π)

(−k)c(σ)ω(σ)

=
(

1
2

(1 − k)
)(|E(G)−n)×(l−1)

(−k)l×c(π)ω(π)

Where Π(π) is the set of cycle covers of F l that match π on E(G); Π l(π) the
set of cycle covers of F̃ l that match π on E(G) and for π′′ ∈ Π l(π), Λ(π′′) the
set of cycle covers that match π′′ on E(F̃ l). We have Π(π) =

⋃
π′′∈Πl(π) Λ(π′′)

which completes our demonstration.
�

Proof of Theorem 1. The first case is trivial. For the second, it is a well known
result, as Ferm1

n(x̄) = detn(x̄). Now, let k be a rational different than 0 and 1.
Let us write (PlG) the graph obtained in the previous lemma, when we dupli-

cate l times G and add iff-gadgets to repeat every cycle cover l times. We have
seen that

Fermk
ln(PlG)(x̄) =

∑

π∈CC(G)

(−k)l×c(π)
∏

e∈π

ω(e)
(

1
2

(1 − k)
)(l−1)×(|E(G)|−n)

Let us write cm =
∑

π∈CC(G)|c(π)=m

∏
e∈π ω(e), α =

( 1
2 (1 − k)

)|E(G)|−n, fl =
Fermk

ln(Pl(G)) and ωl = (−k)l, then
⎛

⎜
⎜
⎜
⎝

f1
f2
...

fn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

α 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ω1 ω2
1 . . . ωn

1
ω2 ω2

2 . . . ωn
2

...
. . .

...
ωn ω2

n . . . ωn
n

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c1
c2
...

cn

⎞

⎟
⎟
⎟
⎠
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This system of equation is a Vandermonde system and therefore is invertible (if
k � 1 and k � −1, because in these cases, some ωi are equal and the matrix
is not invertible): there exists some rationals ω∗

l,m such that for any m, cm =
∑n

l=1 ω∗
l,mfl(x̄).

Therefore, for any m, we have a c-reduction from cm to the fermionant,
(cm) ≤c (Fermk). But, c1 :=

∑
π∈Sn|c(π)=1

∏n
i+1 xi,π(i) = Hamn(x̄), where Hamn

is the Hamiltonian, which is known to be VNP-complete ([2], Corollary 3.19). �

The fermionant can be expressed as a linear combination of polynomial size of
the Hamiltonian. From that we have concluded that the fermionant is VNP-
complete. However, the Hamiltonian is also #P -complete, when considered as a
counting problem. This gives us a Turing reduction from the Hamiltonian to the
fermionant and thus it is also #P -complete, but only when computed on rational
matrix; the Turing reductions requires rationals (1

2 , − 1
k , etc). We can adapt the

proof of Valiant for the #P -completeness of the permanent to replace those
rationals by some gadgets only using 0 and 1. And thus we have the following
non trivial corollary. The proof is in the full version of the paper.

Corollary 1. For every k � 1 and k � 0, Fermk is #P -complete for matrices
over {0, 1}.

4 Immanant with Constant Length

Immanants are defined with characters of representations of Sn. Such characters
can be indexed by Young diagrams of n boxes (i.e., collections of boxes arranged
in left-adjusted rows with a decreasing row length). As all the work of repre-
sentation theory has already be done (Lemma 3), I will not define more those
characters. We shall only work on Young diagrams.

The immanant associated with a Young diagram Y (and its associate character
χY ) is

imχ(x̄) =
∑

π∈Sn

χY (π)
n∏

i=1
xi,π(i)

For example, if the Young diagram is a single row of n boxes, then for any
σ ∈ Sn, χY (σ) = 1 and thus imY = per. At the opposite end, if Y is a single
column with n boxes, χY (σ) = sg(σ) and imY = det. For more details (and for
a nice demonstration of the Murnaghan-Nakayama rule, one of the main parts
of our demonstration), see [5].

A classical theorem states that the irreducible characters of the symmetric
group form a basis for the class functions on Sn. Class functions are real functions
defined on Sn and stabled under conjugation (i.e., ∀π, σ ∈ Sn, f(πσπ−1) = f(σ)).
The function π �−→ (−k)c(π) is such a class function and thus is a linear com-
bination of characters. Mertens and Moore [7] have computed those characters,
and applied to the immanant we get:
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Lemma 3. For any integers k and n, if we write Λn
k for the set of every Young

diagram with n boxes and at most k columns, then there exists some constants
dk

Y such that for any matrix A:

Fermk
n(A) =

∑

Y ∈Λn
k

dk
Y imY (A)

Intuitively this suggests that the family of every immanants of bounded width
is VNP-complete. In algebraic complexity this is not that interesting, as this
family is very large. But if we prove that with a certain family of immanant we
can compute every immanants of width less than a certain k, then this family will
be VNP-complete. It is exactly what we are going to do for the demonstration
of the following proposition.
Proposition 1. Let [n, n] be the square Young diagram with two columns, each
with n rows. Then (im[n,n])n∈� is VNP-complete for c-reductions.

Young diagrams
[4, 4] [4, 2]

Proof. More generally, let [l1, l2] be the two columns Young diagram with l1
boxes in the first column and l2 in the second. More specifically, the Young
diagrams of width a most 2 and of n boxes are ([l, n − l])l∈[n/2,n]. Each of them
can be obtained from the square diagram [l, l] by removing a skew hook of
size δ = (l − (n − l)) = 2l − n. A skew hook in a Young diagram is a connected
collection of boxes in the border of the diagram such that if you remove this hook
it is still a Young diagram (i.e., the row sizes are still decreasing). Furthermore,
if you remove a skew hook of size δ to [l, l], you can obtain only [l, n − l] and
[l − 1, n − l + 1]. The Murnaghan-Nakayama rule (c.f. [2] chap. 7.2 for more
details) states that:

im[l,l](x̄, l) = (−1)l−1im[l,n−l](x̄) + (−1)lim[l−1,n−l+1](x̄)

Where l is an encoding of a cycle of length l. We know that, from Lemma 3:

Ferm2
n(x̄) =

∑

Y ∈Λn
2

d2
Y imY (x̄) =

n∑

l=n/2

d2
[l,n−l]im[l,n−l](x̄)

From those two facts, we can compute the fermionant from the square immanant.
We just have to take new constants: let α[n−1,1] = d[n−1,1](−1)n and for any
2 ≤ l ≤ n

2 , α[n−l,l] = (−1)l(d[l,n−1] − α[l+1,n−l−1](−a)l+1). For simplicity, we
write αl = α[l,n−l]. If n is even
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n−1∑

l=n/2

αlim[l,l](x̄, 2l − n)

=
n−1∑

l=n/2

αl
(

(−1)l−1 im[l,n−l](x̄) + (−1)l im[l−1,n−l+1](x̄)
)

= d[n−1,1]im[n−1,1](x̄) +
n−2∑

l=n/2

dlim[l,n−l](x̄)

−
n−2∑

l=n/2

αl+1(−1)l+1im[l,n−l](x̄) +
n−1∑

l=n/2

αl(−1)lim[l−1,n−l+1](x̄)

=
n−1∑

l=n/2

dlim[l,n−l](x̄) −
n−1∑

l=n/2+1

αl(−1)lim[l−1,n−l+1](x̄)

+
n−1∑

l=n/2

αl(−1)lim[l−1,n−l+1](x̄)

=
n−1∑

l=n/2

dlim[l,n−l](x̄) + αn/2+1(−1)n/2im[n/2,n/2](x̄)

Furthermore, im[n,0](x̄) = detn(x̄) and then can be computed with only a poly-
nomial number of arithmetic operations. Thus,

n−1∑

l=n/2

αlim[l,l](x̄, 2l − n) + det
n

(x̄) + (−1)
n
2 α n

2 +1im[ n
2 , n

2 ](x̄)

=
n∑

l=n/2

d[l,n−l]im[l,n−l] = Ferm2
n(x̄)

We obtain an arithmetic circuit of polynomial size that compute Ferm2
n with n/2

oracles that can compute im[l,l] for l ∈ [n/2, n]. To obtain a c-reduction from the
fermionant to the immant, we just have to notice that im[l,l] ≤p im[l′,l′] as soon
as l′ ≥ l. Indeed, we just have to erase the first l′ − l-th rows, which can be done
by Corollary 3.2 of [1].

The demonstration for n odd works the same, the border cases must just be
studied a little bit more closer. �

We can generalize this result to almost every family of bounded width. The proof
is similar and is in the annex.

Theorem 2. Let (Yn) be a family of Young diagrams of length bounded by k ≥ 2
such that |Yn| = Ω(n). Then
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– if the number of boxes in the right of the first column if bounded by a constant
c, then (imYn) is in VP.

– otherwise, if there is an ε > 0 and at least nε boxes at the right of the first
column, (imYn) is VNP-complete for c-reductions.

5 Conclusion and Perspectives

The generalization via the fermionant tell us that the determinant is really spe-
cial: the coefficients 1 and −1 allows us, in a simplify way, to cancel some mono-
mials and not to have to compute everything. The k in the fermionant, even
thinly different than 1, separates these monomials and prevents the cancelations.

As for the immanant, the interpretation of the result is harder. Especially as
our theorem does not completely classify immanants of constant width, what
about the immanant of [n, log n]? Bürgisser’s algorithm gives a subexponentiel
upper bound, but does not put it in VP. Howerver, under the extended Valiant
hypothesis (end of chapter 2 in [2]), it can not be VNP-complete. Is it a good
candidate to be neither VP nor VNP-complete? Or even VP-complete? Or is it
as hard as the determinant? This is unknown.

Other generalizations also can be imagined. For example generating functions
of a graph property are polynomials that generalize the permanent and some of
them can be computed as fast as the determinant. This framework allows us to
use our knowledge on graph theory to understand where we step from VP to
VNP. There is no classification of these generation functions, but some results
have been found [2,4].

I thank to both of my doctoral advisors, A. Durand and G. Malod as well
to M. Casula and E. Boulat who try to explain to me the physic behind the
fermionant.
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Abstract. We investigate the complexity of two combinatorial prob-
lems related to pairwise genome alignment under the duplication-loss
model of evolution. Under this model, the unaligned parts of the genomes
(gaps) are interpreted as duplications and losses. The first, and most
general, combinatorial problem that we consider is the Duplication-

Loss Alignment problem, which is to find an alignment of minimum
duplication-loss cost. Defining the cost as the number of segmental du-
plications and individual losses, the problem has been recently shown
NP-hard. Here, we improve this result by showing that theDuplication-

Loss Alignment (DLA) problem is APX-hard even if the number of
occurrences of a gene inside a genome is bounded by 2. We then con-
sider a more constrained version, the Feasible Relabeling Alignment

problem, involved in a general methodology for solving DLA, that aims
to infer a feasible (in term of evolutionary history) most parsimonious
relabeling of an initial best candidate labeled alignment which is po-
tentially cyclic. We show that it is equivalent to Minimum Feedback

Vertex Set on Directed Graph, hence implying that the problem
is APX-hard, is fixed-parameter tractable and approximable within fac-
tor O(log |X | log log |X |), where X is the aligned genome considered by
Feasible Relabeling Alignment.

1 Introduction

The comparison of complete genomes requires considering two kinds of macro-
evolutionary mutations modifying their overall gene (or other building blocks)
content and organization: (1) rearrangements, such as inversions, transpositions
and translocations, affecting the order of genes and (2) content modifying oper-
ations, such as duplications, insertions and losses affecting the number and type
of genes. Preliminary to such global comparison of genomes is the identification
of homologs and the representation of genomes as strings of symbols over an
alphabet Σ of gene families. In the last decades, genome comparisons have been
largely based on rearrangement events [3, 4, 7, 9, 10, 13–16]. Contrariwise, we

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 97–107, 2013.
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introduced in [11] an evolutionary model restricted to content-modifying opera-
tions, namely duplications and losses. We showed that this model is effective in
studying the evolution of certain gene families, such as Transfer RNAs. From a
combinatorial point of view, when rearrangements are ignored gene orders are
preserved, hence allowing to reformulate the comparison of two genomes as a
Duplication-Loss Alignment problem: find a pairwise alignment minimiz-
ing a duplication and loss cost. As in [2, 5, 11], we consider here the cost of an
alignment to be the number of underlying segmental duplications (duplication
of a string of adjacent genes) and single losses (loss of a single gene). Under this
cost, Duplication-Loss Alignment has been recently shown to be NP-hard,
even when each gene has at most five occurrences in each genome [5]. In this pa-
per (Section 3), we improve this result by showing that the Duplication-Loss

Alignment problem is APX-hard, even if the number of occurrences of a gene
inside a genome is bounded by 2. As most of the genes in a genome are present
in a limited number of paralogous copies, understanding how the complexity of
the problem is influenced by the number of gene copies is important to orient
appropriate algorithmic developments.

Two integer linear-programming approaches have been developed in [5, 11]
for the Duplication-Loss Alignment problem. Although the algorithm in [5]
has a very reasonable running time in general, they are both exponential in the
worst case, preventing from being applicable to large genomic datasets. There-
fore, a time-efficient heuristic, exhibiting a high degree of accuracy on simulated
datasets, has been developed in [2]. It is based on two steps: (1) compute a best
candidate, possibly cyclic, labeled alignment using a dynamic-programming ap-
proach; (2) (Feasible Relabeling Alignment) find a most parsimonious
correction of the cycles, allowing to get a non-cyclic (feasible) labeled alignment,
which corresponds to a duplication-loss history. In [2], a more general problem
called Minimum Labeling Alignment, asking for a most parsimonious feasible
labeling of an unlabeled alignment, has been proved APX-hard. In this paper,
we prove (Section 4) that Feasible Relabeling Alignment is equivalent to
Minimum Feedback Vertex Set on Directed Graph, hence showing that
this problem is also APX-hard and that: (1) it is fixed-parameter tractable,
when the parameter is the cost of the relabeling, (2) it is approximable within
factor O(log |X | log log |X |), where X is the aligned genome considered by Fea-

sible Relabeling Alignment. Due to space limitation, some of the proofs
are omitted.

2 Evolutionary Model and Problem Statement

Strings: We consider single chromosomal (circular or linear) genomes. Hence,
given an alphabet Σ, each symbol representing a specific gene family, a genome
or string is a sequence of symbols from Σ, where each symbol may have many
occurrences (paralogs). For example, X in Figure 1 is a genome on the alphabet
Σ = {a, b, c, d, e, f}, with three copies from the gene family identified by a.
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Given a string Z, we denote by |Z| its length, by Z[i], 1 ≤ i ≤ |Z|, the i-th
symbol of Z, and by Z[i, j], 1 ≤ i ≤ j ≤ |Z|, the substring of Z that starts at
position i and ends at position j. Finally, we say that two substrings Z[i1, i2]
and Z[j1, j2], with 1 ≤ i2 ≤ j2 ≤ |Z|, overlap if j1 ≤ i2.

The Duplication-Loss Model of Evolution: We assume that present-day genomes
have evolved from an ancestral string through (segmental) duplications and (sin-
gle) losses, where, given a genome X : (i) A duplication D of size |D| = z is an op-
eration that copies a substring of size z ofX somewhere else in the genome. Given
two identical non overlapping substringsX [i, i+z−1] and X [j, j+z−1] of X , we
denote by D = (X [i, i+ z − 1], X [j, j + z − 1]) a duplication from X [i, i+ z− 1]
to X [j, j+ z− 1]; X [i, i+ z− 1] is the source, and X [j, j+ z− 1] is the target of
the duplication D; (ii) A loss is an operation L = (X [i]) that removes a symbol
X [i] from X . Notice that the model of evolution we consider assumes that events
represented in the evolution from an ancestral genome to a present-day genome
are not obscured by subsequent events (see [11] for a formal definition of “visible
history”).

The Duplication-Loss Alignment Problem: In the rest of the paper, we consider
two genomes X and Y on an alphabet Σ. We introduced in [11] the concept
of “Feasible” Labeled Alignment of two genomes X and Y . Definitions on
alignments are given below, and illustrated in Figure 1.

Denote by Σ− = Σ ∪ {−} the alphabet Σ augmented with a symbol ‘−’
(called a gap) not in Σ.

Definition 1. An alignment of X and Y , denoted by A(X ,Y), consists of a
pair (X ,Y) of strings on Σ−×Σ− obtained by filling X and Y respectively with
gaps, such that (1) the aligned genomes X and Y are equal length and (2) for
each position i, 1 ≤ i ≤ |X |, it holds that either X [i] = Y[i] �= − (i is called a
Match), or exactly one of X [i], Y[i] is equal to a gap (i is called a Mismatch).

To explain an alignment A(X ,Y) as a duplication-loss history leading to X and
Y from a common ancestor, we need to label the mismatched positions of the
aligned genomes X and Y in terms of duplications and losses.

Definition 2. A labeling L(X ) of an aligned genome X is a set of losses and
duplications, such that for each mismatched position j, 1 ≤ j ≤ |X |, L(X )
contains either a loss L = (X [j]), in which case we say that position j is labeled
as a loss, or exactly one duplication D = (X [i1, i2],X [j1, j2]) with 1 ≤ j1 ≤ j ≤
j2 ≤ |X |, in which case we say that position j is labeled as a duplication. A
Labeled alignment A(L(X ),L(Y)) is a labeling of the two aligned genomes X
and Y.

The cost of a labeling L(X ), denoted by c(L(X )), is the number of underlying
operations (duplications and losses). The cost of a labeled alignment
A(L(X ),L(Y)) is the sum of c(L(X )) and c(L(Y)).
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Fig. 1. Left: An alignment for the strings X = abcdebcdafcdab and Y = cdeafb with
one cyclic labeling (i) and two feasible labeling (ii) and (iii) for the aligned genome X .
Losses are denoted by “L” and duplications by arrows from source (indicated by lines)
to target (bold brackets). In (i), the set of duplications (1, 2, 3i) is a cycle. Right: A
cyclic labeling of an aligned genome Z. Symbols x, y and z refer to matches in the
alignment.

The above definition is not sufficient to unsure a correct interpretation of an
alignment in term of a duplication-loss history, as it may induce duplication
cycles (see Figure 1), rigorously defined as follows.

Definition 3. Consider a set of duplications D. D induces a duplication cycle if
there is a permutation D1 = (X [i1, r1],X [j1, s1]), D2 = (X [i2, r2],X [j2, s2]), . . . ,
Dh = (X [ih, rh],X [jh, sh]) of the duplications in D, such that (1) the substrings
X [jp, sp] and X [ip+1, rp+1] overlap, for each 1 ≤ p ≤ h−1, and (2) the substrings
X [jh, sh] and X [i1, r1] overlap.

A labeling L(X ) is called feasible if it contains no subset of duplications that
induces a duplication cycle (in Figure 1, (ii) and (iii) are feasible labeling). A
feasible labeled alignment A(L(X ),L(Y)) is a feasible labeling of an alignment of
X and Y where L(X ) and L(Y) are feasible labeling. As demonstrated in [11], a
feasible labeled alignment of two genomesX and Y leads to a unique duplication-
loss history from a unique ancestral genome A to X and Y .

We are now ready to give the main optimization problem introduced in [11].
Studying the complexity of this problem is the purpose of Section 3.

Problem 1 Duplication-Loss Alignment[DLA]
Input: Two genomes X and Y over alphabet Σ.
Output: A Feasible Labeled Alignment A(L(X ),L(Y)) of minimum cost.

Feasible Relabeling Alignment: A natural heuristic to DLA, suggested in [11]
and shown very accurate and time efficient in [2], proceeds in two steps. First,
based on a dynamic programming approach, compute a (possibly cyclic) labeled
alignment A(L(X ),L(Y)) of minimum cost. Such a labeled alignment is not
necessarily feasible as it may contain cycles. Then, in a second step, find a feasible
relabeling L′(X ) (respec. L′(Y)) of X (respec. Y) by correcting cycles of L(X )
(respec. L(Y)). Notice that once the genomes X and Y are aligned, each of L(X )
and L(Y) can be treated separately. As matched versus mismatched positions
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cannot be modified, correcting cycles of L(X ) (respec. L(Y)) can only be done by
interpreting some positions that are covered by the target of a duplication rather
as losses. For example, the labeling (ii) in Figure 1 is obtained by correcting the
cycle (1, 2, 3i): symbol a3, covered by the target of duplication (3i), is rather
interpreted as a loss. In this paper we show that, even an apparently simple
strategy that consists in replacing complete duplications by losses (all symbols
of a duplication target are interpreted as losses) is hard. A rigorous definition of
such “allowed” relabeling follows.

Definition 4. Given an aligned genome X and a labeling L(X ), a feasible re-
labeling L′(X ) of L(X ) is a labeling of X obtained by replacing a set D1, · · ·Dn

of duplications of L(X ) with losses, so that L′(X ) is a feasible labeling of X .
The labeling L′(X ) has cost c(L′(X )) = c(L(X ))+

∑
1≤i≤n(|Di|−1); hence we

define the relabeling cost of L′(X ) with respect to L(X ), denoted as cr(L′(X )),
as: cr(L′(X )) = c(L′(X )) − c(L(X )) =

∑
1≤i≤n(|Di| − 1).

With this, the Feasible Relabeling Alignment problem can be defined as
follows:

Problem 2 Feasible Relabeling Alignment[FRA]
Input: An aligned genome X over alphabet Σ and a labeling L(X ).
Output: A feasible relabeling L′(X ) of L(X ) of minimum relabeling cost.

In Figure 1, (iii) is a feasible relabeling of (i) obtained by removing duplication
(3i). For an intuition on the difficulty of the FRA problem, see the more involved
example of a labeling with interleaving cycles in Figure 1, right.

3 Complexity of Duplication-Loss Alignment

In this section we consider undirected graphs, and we recall that an undirected
graph is cubic when each of its vertex has degree 3. We investigate the complexity
of Duplication-Loss Alignment, and we show that the problem is APX-
hard even when each gene appears at most twice in the genome (we denote
this restriction as 2-DLA). We prove the APX-hardness of 2-DLA by giving
a reduction from Minimum Vertex Cover on Cubic Graphs (MVCC), which
is known to be APX-hard [1]. Given an undirected cubic graph G = (V,E),
MVCC asks for a subset V ′ ⊆ V of minimum cardinality, such that for each
edge {u, v} ∈ E, at least one of u, v is in V ′.

Let G = (V,E) be a cubic graph, in the following we define an instance (X,Y )
of DLA. Given a vertex vi and its incident edges {vi, vj}, {vi, vq}, {vi, vr}, with
j < q < r, we say that {vi, vj} ({vi, vq}, {vi, vr} respectively) is the first (second,
third respectively) edge incident in vi.

First, set t = 4|V | + |E| + 1. We define the alphabet Σ over which X and Y
range: Σ = {αi,j : vi ∈ V ∧1 ≤ j ≤ 6}∪Γ ∪{βi,j : vi ∈ V ∧1 ≤ j ≤ 4}∪Λ, where
Γ = {γi,j : vi ∈ V ∧ 1 ≤ j ≤ t}, Λ = {λi,j,h : {vi, vj} ∈ E ∧ 1 ≤ h ≤ t}. For each
vi ∈ V , define two substrings BX(vi), BY (vi) (substrings of X , Y respectively),
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as follows: BX(vi) = αi,1 . . . αi,6βi,1 . . . βi,4; BY (vi) = βi,1 . . . βi,4αi,1 . . . αi,6.
Now, consider the edge {vi, vj} ∈ E and assume that {vi, vj} is the h-th edges
incident in vi, 1 ≤ h ≤ 3, and the k-th edge incident in vj , 1 ≤ k ≤ 3. Define two
substringsBX(ei,j),BY (ei,j) ofX , Y respectively, associated with {vi, vj}, as fol-
lows: BX(ei,j) = αi,2h−1αi,2hαj,2k−1αj,2k; BY (ei,j) = αj,2k−1αj,2kαi,2h−1αi,2h.

Based on this, we are able to define the two genomes X , Y (where {v1, vw},
{vq, vr} are two edges of E):

X = γ1,1 . . . γ1,tBX(v1)γ2,1 . . . γ2,tBX(v2) . . . γn,1 . . . γn,tBX(vn)·
λ1,w,1 . . . λ1,w,tBX(e1,w) . . . λq,r,1 . . . λq,r,tBX(eq,r)

Y = γ1,1 . . . γ1,tBY (v1)γ2,1 . . . γ2,tBY (v2) . . . γn,1 . . . γn,tBY (vn)·
λ1,w,1 . . . λ1,w,tBY (e1,w) . . . λq,r,1 . . . λq,r,tBY (eq,r)

It is easy to see that (X,Y ) is an instance of 2-DLA, as each symbol of Σ has
at most two occurrences in each of X , Y .

In order to prove the main properties of the reduction we have to show some
intermediate results. First, in Proposition 1, we show that all the positions con-
taining symbols in Γ ∪ Λ are aligned.

Proposition 1. Given a labeled alignment A(L(X ),L(Y)) of cost less than 2t,
we can compute in polynomial time a labeled alignment A′(L′(X ),L′(Y)) that
(1) aligns each position of X and Y containing a symbol in Γ ∪ Λ and (2) has
a cost not greater than that of A(L(X ),L(Y)).

As a consequence of Proposition 1, we can assume that if two positions containing
symbols Σ \ (Γ ∪ Λ) of X , Y are aligned, then either they both belong to
substrings BX(vi), BY (vi), with vi ∈ V , or they both belong to substrings
BX(ei,j), BY (ei,j), with {vi, vj} ∈ E.

Now, we are ready to prove the main results of the reduction. The idea of the
reduction is that for each pair of substrings BX(vi), BY (vi) we have two possible
cases: (1) the substrings αi,1 . . . αi,6 are aligned, each position of value βi,x, 1 ≤
x ≤ 4, is labeled as a loss, and duplications from BX(vi) (BY (vi) respectively) to
some of BX(ei,j), BX(ei,q), BX(ei,r) (BY (ei,j), BY (ei,q), BY (ei,r) respectively)
are defined (this case corresponds to vertex vi in the vertex cover of G and has
cost 8); (2) the substrings βi,1 . . . βi,4 are aligned and duplications from each
of BX(ei,j), BX(ei,q), BX(ei,r) (BY (ei,j), BY (ei,q), BY (ei,r) respectively) to
BX(vi) (BY (vi) respectively) are defined (this case corresponds to vertex vi not
in the vertex cover of G and has cost 6).

Lemma 1. Let G = (V,E) be a cubic graph and let (X,Y ) be the corresponding
instance of 2-DLA. Then, given a vertex cover V ′ ⊆ V of G, we can compute in
polynomial time a feasible labeled alignment A(L(X ),L(Y)) of cost 8|V ′|+ 6|V \
V ′| + 2|E|.
Lemma 2. Let G = (V,E) be a cubic graph and let (X,Y ) be the corresponding
instance of 2-DLA. Then, given an alignment A(L(X ),L(Y)) of cost 8p+6(|V |−
p) + 2|E| we can compute in polynomial time a vertex cover of G of size at
most p.
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The APX-hardness of 2-DLA is a direct consequence of Lemmas 1, 2, and of the
APX-hardness of MVCC [1].

4 Complexity of Feasible Relabeling Alignment

In this section we show that FRA is equivalent to the Minimum Directed Feed-
back Vertex Set (DFVS) problem. Given a directed graph G = (V,A), DFVS
asks for a feedback vertex set V ′ ⊆ V of minimum cardinality. A feedback vertex
set (FVS) of G is a subset V ′ ⊆ V such that V ′ contains at least one vertex
from every directed cycle in G. First, in Section 4.1 we give an L-reduction from
DFVS to FRA. As a consequence, we prove that FRA is APX-hard. Then, in
Section 4.2, we give a reduction from DFVS to FRA.

4.1 Hardness of FRA

In this section we give an L-reduction from DFVS to FRA. Given a directed
graph G = (V,A), with V = {v1, . . . , vn}, in what follows we define the corre-
sponding genome X and labeling L(X ). Given a substring s of X , we denote
with sa the fact that s is aligned in X (hence it does not need any labeling). In
the definition of L(X ), first we define the aligned genome X , then we define the
labeling of X .

Before giving the details of the construction we give an overview of the con-
struction of X and L(X ). For each vertex vi ∈ V we define a substring F (vi)
obtained by concatenating four substrings si,IN, si,1, si,2, si,OUT. The reduction
defines two kinds of duplications: (1) duplications between substrings of F (vi)
(one duplication between si,IN, si,1, one duplication between si,1, si,2, one du-
plication between si,2, si,OUT); (2) duplications between substrings of different
F (vi), F (vj). The latter kind of duplications encodes arcs of the graph G. Fur-
thermore, notice that si,IN is used to encode arcs incoming in vi, while si,OUT is
used to encode arcs outgoing from vi.

Now, we define formally the instance of FRA. Define the alphabetΣ = {wi,j,t :
(vi, vj) ∈ A, 1 ≤ t ≤ n+2}∪{xi, yi : vi ∈ V }. Given an arc (vi, vj) ∈ A, define the
string ei,j := wi,j,1wi,j,2 . . . wi,j,n+2. We define the strings si,IN, si,1, si,2, si,OUT

(notice that we assume that the vertices with an arc (vh, vi) are {vh1 , . . . , vhz},
and that h1 < h2 · · · < hz):

si,IN = ei,h1 ei,h2 . . . ei,hz x
a
i ;

si,1 = ei,h1 ei,h2 . . . ei,hz xi y
a
i ;

si,2 = eai,h1
eai,h2

. . . eai,hz
xi yi;

si,OUT = ei,h1 ei,h2 . . . ei,hz xi.

Define F (vi) = si,IN ·si,1 ·si,2 ·si,OUT. The aligned genome X is defined as follows:
X = F (v1) · F (v2) · · · · · F (vn).
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Now, we define the labeling L(X ) of X . L(X ) consists of two kinds of dupli-
cations: duplications between two substrings of the same F (vi) and duplications
between substrings belonging to different F (vi), F (vj). We start by defining the
labeling of the strings in F (vi) (for the not aligned positions), which is used to
encode the vertex vi ∈ V :

1. a duplication from the substring ei,h1 ei,h2 . . . ei,hzx
a
i of si,IN to the substring

ei,h1 ei,h2 . . . ei,hzxi of si,1;
2. a duplication from the substring xi y

a
i of si,1 to the substring xi yi of si,2;

3. a duplication from the substring eai,h1
eai,h2

. . . eai,hz
xi of si,2 to the substring

ei,h1 ei,h2 . . . ei,hzxi of si,OUT .

Now, we define the duplications between substrings of X that belong to different
F (vi). Those duplications are used to encode the arcs in A. Given an arc (vi, vj) ∈
A, define a duplication from the substring ei,j of si,OUT to the substring ei,j of
sj,IN.

The duplication from the substring si,1 to the substring si,2, 1 ≤ i ≤ n,
both belonging to F (vi) (notice that the duplicated string is xiyi), is called a
candidate duplication, and it is denoted by Di. Each other duplication is called
a non candidate duplication. Informally, the reduction is based on the following
properties. Since each non candidate duplication has a relabeling cost of at least
n+ 1 (it includes the duplication of substring ei,j), it follows that: (1) a feasible
relabeling L′(X ) is computed by relabeling only candidate duplications; (2) a
vertex vi in a solution V ′ of DFVS corresponds to the relabeling of a candidate
duplication Di.

Now, we present the two main properties of the reduction.

Lemma 3. Let G = (V,A) be a directed graph, and let (X ,L(X )) be the cor-
responding instance of FRA. Then, given a feedback vertex set V ′ of G, we can
compute in polynomial time a feasible relabeling L′(X ) of (X ,L(X )) of relabeling
cost |V ′|.

Lemma 4. Let G = (V,A) be a graph, and let (X ,L(X )) be the corresponding
instance of FRA. Then, given a feasible relabeling L′(X ) of (X ,L(X )) of rela-
beling cost c, we can compute in polynomial time a feedback vertex set V ′ of G,
with |V ′| ≤ c.

The APX-hardness of FRA is a direct consequence of Lemmas 3, 4 and of the
APX-hardness of DFVS [12].

4.2 Tractability of FRA

In this section we give give a reduction from FRA to DFVS. The reduction
we present is both a parametrized and an approximation preserving reduction,
hence it follows that: (1) FRA is fixed-parameter tractable, when parametrized
by the relabeling cost of the solution; (2) FRA can be approximated within
factor O(log |X | log log |X |).
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Now, let X be a labeled genome associated with a labeling L(X ). In what
follows, we define the directed graph G = (V,A) (input of DFVS) associated
with (X ,L(X )). Consider the set D of duplications induced by L(X ). First,
notice that we assume that each duplication D ∈ D has size at least 2, otherwise
we can relabel such a duplication with relabeling cost 0.

We can now define G = (V,A) by letting V :=
⋃

D∈D V (D), where V (D)
is a set of vertices associated with duplication D ∈ D, defined by V (D) :=
{vD,i : 1 ≤ i ≤ |D| − 1}. The set of arcs A is defined as A := {(vDi,p, vDj ,q) :
Di = (X [i1, i2],X [i3, i4]), Dj = (X [j1, j2],X [j3, j4]),X [i3, i4],X [j1, j2] overlap,
1 ≤ p ≤ |Di| − 1, 1 ≤ j ≤ |Dj | − 1}.

Informally, given two duplications Di, Dj , such that the target of Di and the
source of Dj overlap, we have an arc from each vertex of V (Di) to each vertex
of V (Dj).

Next, we show how to relate a feedback vertex set V ′ of G and a solution
of FRA having size |V ′|. The idea is that a set V (Di) of nodes in the feedback
vertex set of G corresponds to a duplication Di relabeled as loss. Notice that
a feedback vertex set V ′ of G is minimal if there exists no vertex v ∈ V ′ such
that V ′ \ {v} is a feedback vertex set of G. Next, we prove some properties of a
minimal FVS of G.

Lemma 5. Let V ′ be a minimal feedback vertex set of the graph G = (V,E)
associated with (X ,L(X )). Then, given a duplication Di of D, either all the
vertices of V (Di) belong to V ′ or none of the vertices of V (Di) belongs to V ′.

Now, we are ready to prove the main properties of the reduction.

Lemma 6. Let (X ,L(X )) be an instance of FRA and let G be the correspond-
ing instance of DFVS. Then, given a feasible relabeling L′(X ) of (X , L(X )) of
relabeling cost c, we can compute in polynomial time a feedback vertex set of G
of size c.

Lemma 7. Let (X ,L(X )) be an instance of FRA and let G be the corresponding
instance of DFVS. Then, given a minimal feedback vertex set V ′ of G, we can
compute in polynomial time a feasible relabeling L′(X ) of (X ,L(X )) of relabeling
cost |V ′|.

Theorem 2 is a consequence of Lemma 6, Lemma 7, and of the fact that DFVS
admits a fixed-parameter algorithm of time complexity O(4kk!poly− time(|X |))
[6], and it is approximable within factor O(log |V | log log |V |) [8, 17].

Theorem 2 The FRA problem: (1) admits a fixed-parameter algorithm of time
complexity O(4kk!poly − time(|X |)), where k is the value of the relabeling cost;
(2) admits an approximation algorithm of factor O(log |X | log log |X |).
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5 Conclusion

Although ancestral genome inference is a classical problem, developed methods
stand on evolutionary models involving rearrangements. Surprisingly the case of
an evolution with only content-modifying operations has only been considered
very recently. From a combinatorial point of view, the benefit is the ability to
reformulate the problem of comparing two gene orders as an alignment problem,
which is a priori simpler to handle than rearrangements. However, the complex-
ity results given in this paper show that there is no direct and simple way for
inferring optimal alignments. Even the apparently simple FRA problem of cor-
recting a cyclic alignment by changing duplications into losses has been proved
APX-hard (although it is fixed-parameter tractable). Interesting future work in-
clude the investigation of approximation and parametrized complexity of DLA,
together with the more relaxed version of FRA allowing for individual symbols
(rather than complete duplications) to be interpreted as losses.
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Abstract. Space-time diagrams of signal machines on finite configu-
rations are composed of interconnected line segments in the Euclidean
plane. As the system runs, a network emerges. If segments extend only
in one or two directions, the dynamics is finite and simplistic. With four
directions, it is known that fractal generation, accumulation and any
Turing computation are possible.

This communication deals with the three directions/speeds case. If
there is no irrational ratio (between initial distances between signals or
between speeds) then the network follows a mesh preventing accumu-
lation and forcing a cyclic behavior. With an irrational ratio (here, the
Golden ratio) between initial distances, it becomes possible to provoke
an accumulation that generates infinitely many interacting signals in a
bounded portion of the Euclidean plane. This behavior is then controlled
and used in order to simulate a Turing machine and generate a 25-state
3-speed Turing-universal signal machine.

1 Introduction

Imagine yourself with some color pencils and a sheet of paper together with
ruler and compass. Some colored line segments are drawn and you are given
rules so as to extend the drawing. According to the rules and the initial draw-
ing/configuration you might stop soon, have to extend the paper indefinitely or
draw forever in a bounded part of the paper as on top of Fig. 1(a). Could such
a system compute?

This communication concentrates on the case where the dynamical system is
a signal machine. In this setting, one drawing direction is distinguished and used
as time axis. Line segments are enlarged synchronously until they intersect one
another and get replaced. This goes on until no more collision can happen.

The line segments are the traces of signals and their intersections are colli-
sions. Each signal corresponds to some meta-signal. During a collision, in-coming
signals are removed and new ones are emitted according to the meta-signals as-
sociated to the incoming signals. This is called a collision rule. Signals that
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(a) Most basic
accumulation

(b) One speed:no collision (c) Two speeds:
finitely many collisions

Fig. 1. Basic cases

correspond to the same meta-signal must travel at the same speed (or directions
on the drawing) thus the resulting traces are parallel. There are finitely many
meta-signals so there are finitely many collision rules.

The signals move on a one dimensional Euclidean space orthogonal to the
temporal axis. Considering the traces leads to two dimensional drawings called
space-time diagrams (as illustrated throughout the communication). Space and
time are continuous (� × �+). Signals as well as collisions are dimensionless
points. Computations are exact, there is no noise nor approximation.

Problematics. Signal machines are very powerful and colorful complex systems
capable of computing in the classical Turing understanding [6]. This communica-
tion is in the line of minimality thresholds in order to have Turing-computability
capability (like [19,20] for Turing machines and [3,18] for cellular automata; a
more general picture is presented in [14]). This communication extends [10] on
small Turing-universal signal machines (few meta-signals but 4+ speeds) and
[1] that addresses only accumulation (i.e. not computation) with 3-speed signal
machines.

Accumulations are easy to produce and are the cornerstone to hyper-compu-
tation in the model [9]. The present communication investigates the minimal
number of speeds so that accumulations or Turing computations are possible
(starting from a finite configuration). Four meta-signals of different speeds are
enough to make an accumulation as depicted in Fig. 1(a). Four speeds and 15
meta-signals are enough to compute [10].

In this communication, only the number of different speeds is considered and
in particular the case of three speeds. One speed does not allow any collision (see
Fig. 1(b)). With two speeds, the number of collisions is finite and signals have
to follow a regular grid which has no accumulation (see Fig. 1(c)). Three-speed
signal machines with rational speeds and rational initial positions always enter
a cyclic behavior with no accumulation and limited computing capability. But if
an irrational ratio between distances in the initial configuration is allowed, then
accumulations are possible as well as any Turing computation.
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State of the Art. Signal machines are one of the unconventional models of com-
putation dealing with Euclidean geometry together with Euclidean abstract ma-
chines [12,17], Piecewise Constant Derivatives systems [2] and colored universes
[13].

Signal machines were originally introduced as a continuous counterpart of
(discrete) cellular automata to provide a context for the underlying Euclidean
(continuous) reasoning often found in the literature as well as to propose an
abstract formalization of the concept of signal [15,16,8].

Accumulations provide a powerful tool to accelerate a computation, to do
hyper-computation and analog computation [9]. Fractals can be generated and
their construction modified so as to achieve massive parallelism and the capa-
bility to solve efficiently NSPACE-complete problems (Q-SAT in [4]).

In [1], the present author and colleagues already proved that irrational ra-
tio between speeds or between initial distances is needed in order to have an
accumulation with three speeds. They exhibit a geometrical implantation of
the Euclid algorithm inside the computation. If all ratios are rational then this
algorithm stops (generating a non-accumulating mesh) otherwise it goes on in-
definitely provoking the accumulation. They also cover the case of an irrational
ratio between speeds which is not addressed here.

Contribution. If all the ratios are rational, then some global regular mesh
emerges. The signals have to be on that mesh which does not have any ac-
cumulation point. Moreover, being on this mesh ensures that the collisions have
to be ultimately periodic so that the dynamics is ultimately cyclic and comput-
ing capability is limited. (The behavior is called cyclic and not periodic since at
the configuration level, there is no periodicity.)

Using the Golden ratio between distances makes it possible to draw a fractal
which accumulates. Because of self-similarity, ensuring one repetition step is
enough.

With three speeds, it is straightforward to simulate a Turing machine on a
bounded tape. But even though the tape remains finite, it cannot be bounded in
the general case. From the fractal construction, a scheme is extracted to extend
the tape on demand and get the full Turing computing power.

Outline. Section 2 provides all the definitions. Section 3 shows that in the rational
case the dynamics is trapped into a mesh that does not allow any accumulation
and restrain computing capability. Section 4 shows how to get an accumulation
with non-rational ratio between distances. Section 5 provides the simulation of
any Turing machine in such a case. Conclusion, remarks and perspectives are
gathered in Sect. 6.

2 Definitions

This communication deals only with finite configurations so all definitions are
restrained to this case.
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A signal machine collects the definitions of available meta-signals, their speeds
(positive for rightward signals and negative for leftward ones) and their collision
rules. For example, the machine to generate Fig. 1(a) is composed of the following
meta-signals (with speed): le (12 ), zig (4), zag (−4), and ri (- 12 ). There are only
two collision rules:{

le, zag
}
−→

{
le, zig

}
and

{
zig, ri

}
−→

{
zag, ri

}
.

It might happen that exactly three (or more) meta-signals meet. In such a case,
collision rules involving three (or more) meta-signals are used. There can be any
number of meta-signals in the range of a collision rule, as long as their speeds
differ (i.e. they are not parallel).

Definition 1 (Signal machine). A Signal machine, (M,S,R), is defined by:
M is a finite set of meta-signals, S is a function from meta-signals to real num-
bers, assigning speeds, and R is a deterministic set of collision rules. A collision
rule is written ρ = ρ− → ρ+ where ρ− and ρ+ are sets of meta-signals of different
speeds, and ρ− must have at least two meta-signals. The set of collision, rules,
R is deterministic: ρ �= ρ′ implies that ρ− �= ρ′−.

A configuration is a function from the real line (space) into the set of meta-
signals and collision rules plus one extra value % (nothing there). There should
be finitely many non-% locations.

Definition 2 (Configuration). A configuration, c, is a function from the real
line into meta-signals, rules, and the value % (let V = M ∪ R ∪ {%} so that
c : �→ V ) such that |c−1(M ∪R)| <∞.

If there is a signal of speed s at x, then, unless it enters a collision before,
after a duration Δt, its position is x + s·Δt. At a collision, all incoming signals
are immediately replaced by outgoing signals in the following configurations
according to collision rules.

Definition 3 (Sequence of collision times). Considering a configuration, c,
the time to the next collision, Δ(c), is equal to the minimum of the positive real
numbers d such that:

∃x1, x2 ∈ �, ∃μ1, μ2 ∈M

⎧⎨⎩
x1 + d·S(μ1) = x2 + d·S(μ2) ,
c(x1) = μ1 ∨ (c(x1) = ρ− → ρ+ ∧ μ1 ∈ ρ+) ,
c(x2) = μ2 ∨ (c(x2) = ρ− → ρ+ ∧ μ2 ∈ ρ+) .

It is +∞ if there is no such d. The sequence of collision times is defined by:
t0 = 0, tn+1 = tn +Δ(ctn).

This sequence is finite if there is an n such that Δ(ctn) = +∞. Otherwise, since
it is non-decreasing, it admits a limit. If the sequence is finite or its limit is
infinite, then the whole space-time diagram is defined. Otherwise, there is an
accumulation and the limit configuration is left undefined. Let ct denote the
configuration at time t.

Definition 4 (Dynamics between collisions). For t′ between t and t+Δ(ct),
the configuration at t′ is defined as follows. Signals are set: ct′(x

′) = μ iff ct(x) =
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μ∨(ct(x) = ρ− → ρ+∧μ ∈ ρ+) where x = x′+(t−t′)·S(μ). (There is no collision
to set.) It is % everywhere else.

Definition 5 (Dynamics at a collision time). For the configuration at t′ =
t +Δ(ct), collisions are set first: ct′(x

′) = ρ− → ρ+ iff for all μ ∈ ρ−, ct(xμ) =
μ∨(ct(xμ) = ρ− → ρ+∧μ ∈ ρ+) where xμ = x′+(t−t′)·S(μ). Then meta-signals
are set (where there is not already a collision). It is % everywhere else.

A space-time diagram is the collection of consecutive configurations which forms
a two dimensional picture. In the space-time diagram in Fig. 1(a) the sequence
of collision times is given by the collisions of zig on ri, then zag on le, then zig
on ri... This sequence accumulates on top of the space-time diagram.

Definition 6 (Rational signal machine). A signal machine is rational if all
speeds are rational numbers and any non-% position in any initial configuration
must also be a rational number.

Since the position of collisions are solutions of systems of rational linear equa-
tions, they are rational. (Coordinates of accumulation may be non-rational [11].)

Definition 7 (Rational-like). A signal machine is rational-like if its speeds
are rational up to a coefficient. (There is no restriction on possible initial con-
figuration.) A configuration is rational-like if all the ratios between distances
between signals are rational.

Linear Transformation. It is possible to linearly change the speed of the meta-
signals or the positions in the initial configuration. As long as the coefficient
is positive, the dynamics is not changed. This comes from the absence of any
absolute origin or scale. This is not formally proved (this was done, e.g., in [5,
Chap. 5]), but exemplified by the space-time diagrams in Fig. 2.

A linear transformation with a positive ratio of all the positions in the initial
configuration only corresponds to changing the spatial origin and the space scale
(Fig. 2(a)), time scale has to be changed accordingly.

A linear transformation with a positive ratio of all the speeds of the signal
machine results in a change in the scale of time (but not of space, Fig. 2(b)).
The term added corresponds to a drift, i.e., a slant in the time axis (Fig. 2(c)).

(a) Initial positions
divided by 2

(b) Speeds multiplied by 2 (c) Speeds multiplied by 2
plus 1

Fig. 2. Linear transformations on the space-time diagram of Fig. 1(a)
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Only locations are affected. The existence of a collision as well as the com-
puting capability does not depend on linear transformations with positive ratio.

Normalization. When considering a finite set of real numbers, there is always a
unique linear transformation with positive ratio that maps the two lowest values
in the set to 0 and 1. We call this a 0-1-normalization.

If all ratios between distances in a configuration are rational then its 0-1-
normalization has only signals at rational coordinates: with O and I the signals
with new coordinate 0 and 1, a signal at position M have coordinate OM/OI
which is rational since non-degenerated linear operators preserve ratio.

That ratios between distances are rational is both a sufficient and necessary
condition to rescale into �. Up to normalization, the dynamics of a rational-like
signal machine on a rational-like configuration is the one of a rational signal
machine.

3 Rational 3-Speed Signal Machines

If speeds are rational up to a coefficient, then their 0-1-normalization results in
rational speeds. The 0-1-normalized speeds are 0, 1, and (a rational value greater
than 1) 1+p/q (with p, q ∈ �, 1 ≤ p, q and relatively prime). They are linearly
transformed into −q, 0 and p.

The 0-1-normalized initial configuration is scaled so that all (signal) positions
are natural numbers. The extreme positions are 0 and n.

Definition 8 ((p, q, n)-mesh). The (p, q, n)-mesh corresponds to the union of
the following half-lines of �× �+:

– Vv: x = v/(p+q) where v ∈ {0, 1, 2, . . . , n(p+q)},
– Ll: x ≤ n, and x+ q.t = l/p where r ∈ {0, 1, 2, . . .} and
– Rr: 0 ≤ x and x− p.t = r/q where l ∈ {. . . ,−1, 0, 1, 2, . . . , (n.q)}.

Figure 3 shows the display of such a mesh. Half-lines Vv are vertical, Ll have a
negative slope and are dotted and Rr have a positive slope and are dashed.

A mesh has only Ll half-lines when x < 0 and only Rr half-lines when n < x.
When 0 ≤ x ≤ n, then all three kinds of lines are present and each every point

0 1 2 3

Fig. 3. (3, 2, 3)-mesh
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of intersection is incident upon a line of each type. Moreover, there is a line of
each kind starting at positions (x, 0) when x ∈ {0, 1, 2, ..., n}.

Lemma 1. During the computation of a rational machine with speeds −q, 0 and
p from an initial configuration with no signal outside of {0, 1, 2, ..., n}, there is
no signal outside the mesh (p, q, n).

This is true because: initially signals are on the mesh on a half-line with the
same speed/slope (all are issued from coordinates in {0, 1, 2, ..., n}); if a signal is
on such half-lines, it remains upon it until it participates in a collision; and new
signals appear only in collisions, collisions can only happen at line crossings and
all three kinds of lines go on from there.

If the computation would lead to an accumulation, then this accumulation
should also be on the mesh. But the mesh has no accumulation.

The mesh is time periodic in the region 0 ≤ x ≤ n and the computation
in this part does not receive anything from the outside. When considering the
configurations at time where lines intersect on x = 0, the mesh is exactly the
same. On 0 ≤ x ≤ n, these configurations can be described by a fixed length
string on meta-signals and collision rules. Since this alphabet is finite (and the
system is deterministic), this eventually enters a cycle.

Outside of the region 0 ≤ x ≤ n, the mesh is also ultimately time-periodic.
No collision happens there and the output signals also eventually enter a cycle.
Rational 3-speed signal machines always enter a cyclic behavior. Transient time
and cycle duration can be computed from the initial configuration and machine.
These bounds prevent Turing-universality.

Lemma 2. Rational 3-speed signal machines cannot produce accumulation and
are not Turing-universal.

This also holds for rational-like machines on rational-like initial configurations.

4 Accumulation with the Golden Ratio

Using the Golden ratio, it is possible to generate the accumulating fractal in
Fig. 4(a). The signal machine is directly read from the picture as depicted in
Fig. 4(b). The signal machine is rational-like but not rational since the initial
configuration is not.

The initial configuration is not part of the fractal cycle since we prefer to
have all signals but one parallel. The distance between cell and seed is taken to
be one. The exact position of right between cell and seed is not important. To
position border, ϕ has to be given a value so that the fractal is generated, i.e.,
the ratio of the distance of the three last signals is preserved.

As indicated in Fig. 4(b), the first ratio is ϕ
1 . To compute the next ratio, the

distance between the third cell and border has to be 1 because of the presence of
the parallelogram (with left and right sides) and the parallelism of the cell and
border signals. Thus the other distance has to be ϕ−1. The second ratio is 1

ϕ−1 .

By equaling these ratios, ϕ is 1+
√
5

2 , the Golden ratio.
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Collision rules

{right, seed}→{left,cell,right}
{cell,left}→{cell,right}

{right,border}→{left,border}
{right,left}→{left,cell,right}

(b) Fractal construction

Fig. 4. Accumulating with three speeds and an irrational position

The construction then repeats forever. The ratio is preserved and the fractal
is generated.

Lemma 3. A 3-speed signal machine started on an irrational configuration can
generate an accumulation, even when all speeds are rational.

In fact, this is for any non-rational ratio. Moreover, any non-rational ratio be-
tween speeds can also be “transferred” into distances so that an accumulation
can be produced [1].

5 Computing with the Golden Ratio

It is possible to start simulating a Turing machine with a rational 3-speed signal
machine. Null speed signals are used to encode the cells of the tape. Each one
encodes a symbol of the tape (# is the blank symbol). The head is encoded by
a sequence of signals that record the state and move left or right (with the two
other speeds). Each time it collides on a “symbol” signal, it updates the cell and
the state and then goes left or right. This is done according to the transition
table of the Turing machine. The meta-signals and collision rules are given on
Fig. 5. An example of this simulation is given on the lower half of Fig. 6.

The tape is finite but not bounded. Starting from a finite configuration, the
representation of the tape should be enlargeable. The fractal presented in pre-
vious section allows one to generate an unbounded sequence of sites (purposely
named cell) to simulate the tape of a Turing machine. It is not fully generated
to avoid an accumulation. A new cell is generated only when the tape needs
enlargement.

An enlargement can be seen on the upper half of Fig. 6(b). It is started when
a rightward state-encoding signal (q0 in the figure) reaches the border signal,
this means that the head is looking for a cell that does not exist yet. Signal
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# a b c
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→
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(d) Transition case δ(q0, a) = (q1, b,←)

Fig. 5. Basic encoding of a Turing machine
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Fig. 6. Computing with three speeds and an irrational position

border is replaced by a motionless signal encoding the state (q0 in the figure)
and preserving the position of border. Simultaneously, an enlarge signal is sent
on the left to create the new cell.
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This creation uses the same parallelogram construction as before (dotted sig-
nals left and right) and closed on top by q0. The lower right is used to restore
border and set q0 on movement. The latter, instead of colliding with a symbol
signal, collides with the upper right. The collision happens as if it were on the
blank symbol. The needed meta-signals and collision rules are given in Fig. 7.
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}
→
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}
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}
→
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q0, border

}
{
q0, border

}
→

{
enlarge, q0

}
(f) For each state q0

Fig. 7. Extra encoding to enlarge the simulation

6 Conclusion and Perspectives

With three speeds, it is possible to accumulate only if there is an irrational ratio
between initial positions or between speeds (see [1] for speeds).

The number of meta-signals for the Turing-machine simulation with the
Golden ratio is 1 for each symbol plus 3 for each state plus 4. With the small uni-
versal Turing machines listed in [20], a Turing-universal 25-meta-signal 3-speed
signal machine using a Golden ratio distance can be constructed.

With a Golden ratio location, undecidable problems arise. Directly from clas-
sical computability theory, to have only finitely many collisions (or to enter a
cyclic behavior) is not decidable. In the simulation of a Turing machine, if the
head goes on the right each time, then an accumulation is generated. For an ac-
cumulation to happen, the head would have to explore all the cells on the right
which is also not decidable. (In the general case, forecasting an accumulation is
Σ0

2 -complete [7].)
An irrational ratio is an important piece of information (it could encode the

halting problem). We conjecture that it is possible to use it as an oracle.
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In [9], accumulations are used in order to hyper-compute, with an irrational
ratio, computations and accumulations become possible, we conjecture that it is
possible to solve the halting problem and even to climb the finite levels of the
arithmetic hierarchy with three speeds and the Golden ratio.

Signal machines are know to be able to do analog computations [9] with real
numbers encoded in distances. Up to what extent is analog computation possible
with three speeds?
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Natural Computing (cf., e.g., [12,13]) is concerned with human-designed com-
puting inspired by nature as well as with computation taking place in nature,
i.e., it investigates models, computational techniques, and computational tech-
nologies inspired by nature as well as it investigates, in terms of information
processing, phenomena/processes taking place in nature.

Examples of the first strand are evolutionary, neural, molecular, and quan-
tum computation, while examples of the second strand are investigations into the
computational nature of self-assembly, the computational nature of developmen-
tal processes and the computational nature of biochemical reactions. Obviously,
the two research strands are not disjoint.

A computational understanding of the functioning of the living cell is one of
the research topics from the second strand. A motivation for this research is
nicely formulated by Richard Dawkins, a world leading expert in evolutionary
biology: “If you want to understand life, don’t think about vibrant throbbing
gels and oozes, think about information technology”, cf. [4].

We view this functioning in terms of formal processes resulting from interac-
tions between individual reactions, where these interactions are driven by two
mechanisms, facilitation and inhibition: reactions may (through their products)
facilitate or inhibit each other.

We present a formal framework for the investigation of processes resulting
from these interactions. We provide the motivation by explicitly stating a number
of assumptions that hold for these interactive processes, and we point out that
these assumptions are very different from assumptions underlying traditional
models of computation.

The central formal model of our framework, reaction systems (cf. [1,5,10]),
follows the philosophy of processes outlined above, and moreover:

(1) it takes into account the basic bioenergetics (flow of energy) of the living
cell,

(2) it abstracts from various technicalities of biochemical reactions to the extent
that it becomes a qualitative rather than a quantitative model, and
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(3) it takes into account the fact that the living cell is an open system and so its
behavior (expressed by formal processes) is influenced by its environment.

Our full formal framework (cf. [1,5]) contains also models that are extensions
of the basic model of reaction systems. The research themes investigated within
this framework are motivated either by biological considerations or by the need
to understand the underlying computations. Some examples of these themes are:

– the notion of time in reaction systems, cf. [11],
– formation of modules in biological systems, cf. [9,16],
– understanding decay and its influence on interactive processes, cf. [3],
– how to include in our framework quantitative aspects of processes in living

cells, cf. [1,5,9,11],
– static and dynamic causalities, cf. [2],
– the nature of state transitions in reaction systems, cf. [6,14,8,15].

We (hope to) demonstrate that the framework of reaction systems is:

(i) well motivated by and relevant for biological considerations, and
(ii) novel and attractive from the theory of computation point of view.
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Collective decision making is the process of mapping the individual views of
several individual agents into a joint decision. The need for collective decision
making mechanisms is abundant, not just in the realm of politics, but also for
a wide range of scientific and technological applications. These include, for in-
stance, logistics, grid computing, and recommender systems. The alternatives
to be decided upon often have a combinatorial structure: an alternative is char-
acterised by a tuple of variables, each ranging over a finite domain. Classical
approaches to collective decision making, developed in social choice theory, do
not take the computational limitations induced by the combinatorial nature of
the problem into account. For instance, if we are asked to elect a committee
consisting of k representatives, choosing from a pool of n candidates, then we
are in fact faced with a social choice problem with

(
n
k

)
alternatives. Asking each

voter for their full preferences over these
(
n
k

)
alternatives may not be feasible in

practice. Similarly, if we have to choose between accepting or rejecting each of
n different propositions, then we are dealing with a social choice problem with
2n possible outcomes.

In this talk I will report on a number of recent developments in the area of
collective decision making in combinatorial domains. This includes the study
of languages for the compact representation of preferences [2,4], the design of
voting rules for multi-issue elections [1], and the analysis of the computational
complexity of decision problems arising in judgment aggregation [3].
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Abstract. Dynamic program analysis encompasses the development of
techniques and tools for analyzing computer software by exploiting in-
formation gathered from a program at runtime. The impressive amounts
of data collected by dynamic analysis tools require efficient indexing and
compression schemes, as well as on-line algorithmic techniques for mining
relevant information on-the-fly in order to identify frequent events, hid-
den software patterns, or undesirable behaviors corresponding to bugs,
malware, or intrusions. The paper explores how recent results in algo-
rithmic theory for data-intensive scenarios can be applied to the design
and implementation of dynamic program analysis tools, focusing on two
important techniques: sampling and streaming.

1 Introduction

In our modern society, software has become ubiquitous in many branches of
human activities and has gained an unprecedented level of complexity. This
poses many challenges regarding reliability, performance, and scalability on con-
temporary computing platforms, thus calling for a much deeper understanding
of what happens inside a software program than the conventional visibility of-
fered by the program’s output. Dynamic program analysis, defined in [1] as “the
analysis of the properties of a running software system”, encompasses the devel-
opment of techniques and tools for analyzing computer software by exploiting
information gathered at runtime. It can be used for a variety of tasks [2], includ-
ing optimization (profiling, tracing, self-configuration), error detection (testing,
assertion checking, type checking, memory safety, leak detection), error correc-
tion (runtime data structure repair, protections against security attacks), and
program understanding (coverage, call graph construction, invariant detection,
software visualization).

Over the past few years, dynamic analysis has emerged as a focused subject
aimed at bridging the gap between the complexity-haunted field of formal veri-
fication and the ad-hoc field of testing. Being run-time information precise and
sensitive to the input data, dynamic analysis can complement and reinforce tra-
ditional static analysis techniques, which might be inaccurate in modern object-
oriented software systems: since software is often deployed as a collection of
dynamically linked libraries or as Java bytecode that is delivered dynamically
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and on demand, compilers and other programming tools know less and less of
the finally executing program. The use of static analysis in such programming
tools requires conservative assumptions, which yield analysis results that may
be too imprecise to be useful for either program optimization or program un-
derstanding tasks. In these contexts, dynamic analysis can enable new powerful
techniques that would be impossible to achieve otherwise.

The development of dynamic analysis tools that can successfully assist pro-
grammers and software engineers raises issues in a variety of areas, including
operating systems, algorithm design, software engineering, and programming
languages. In particular, optimizing the performance of dynamic analysis tools
is of crucial importance for their effective deployment and usability. For instance,
tools that analyze the patterns of memory accesses of a running program, such
as memory profilers, debuggers, or invariant checkers, must be able to deal with
huge streams of data generated on-the-fly by monitoring traffic on the address
bus and data bus at typical rates of several megabytes per second. Two main
problems arise in this context. Firstly, since dynamic program analysis routines
are inlined with program execution, they can substantially impact system perfor-
mance, greatly reducing their practical applicability: the cost of collecting run-
time information must be therefore appropriately lowered by means of available
hardware/software support. Secondly, the sheer size of data collected by a dy-
namic analysis tool requires on-line techniques for mining relevant information
on-the-fly, as well as efficient indexing and compression schemes for storing the
data for post-mortem examination.

While optimizing the costs of instrumentation and analysis can largely boost
the performance of dynamic analysis tools, it is a very difficult task: modern
computer systems must deal with billions of events per second, such as instruc-
tion executions, accesses to main memory and caches, or packet forward op-
erations. Hence, execution traces generated from real applications, even from
very short runs, can be overwhelmingly large and processing them is very time-
consuming. Exploiting advanced algorithmic techniques to cope with the sheer
size of data collected throughout execution is thus regarded as a key challenge
in this field [3, 4]. In the last few years the design of algorithms and data struc-
tures for handling massive data sets has sparked a lot interest in the algorithmic
community, but this wealth of novel algorithmic techniques has been explored
only to a very little extent in dynamic program analysis. In this paper we shall
discuss a few relevant examples where big-data algorithmics has provided valu-
able insights in the design and implementation of dynamic program analysis
tools, addressing two important techniques: sampling (Section 3) and streaming
(Section 4).

2 Execution Traces

Information collected by dynamic analysis tools is typically expressed in the
form of execution traces. Traces can be recorded via different instrumentation
techniques at the source code, binary code, or execution environment level [5, 6],
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Table 1. Data obtained from execution traces of routine invocations. The number of
nodes in the call tree is proportional to the trace length.

Application |Call graph| |Call sites| |Call tree|
amarok 13 754 113 362 991 112 563

ark 9 933 76 547 216 881 324
audacity 6 895 79 656 924 534 168

firefox 6 756 145 883 625 133 218
gedit 5 063 57 774 407 906 721
gimp 5 146 93 372 805 947 134

sudoku 5 340 49 885 325 944 813
inkscape 6 454 89 590 675 915 815

ooimpress 16 980 256 848 730 115 446
oowriter 17 012 253 713 563 763 684
pidgin 7 195 80 028 404 787 763
quanta 13 263 113 850 602 409 403

and can contain a variety of information related to, e.g., routine invocations,
executions of program statements or basic blocks, memory accesses, and thread
operations. The information recorded in a trace clearly depends on software
properties that need to be analyzed. With respect to static analysis, execution
traces are incomplete, since they capture only a small fraction of all possible
execution paths. However, they have the advantage of being extremely precise
and sensitive to the input data.

Even traces obtained from short runs of real applications can be extremely
large and complex, affecting not only performance and storage of dynamic anal-
ysis tools, but also the cognitive load humans can deal with. Consider, as an
example, traces of routine invocations, which are especially useful for perfor-
mance profiling. These traces can be naturally regarded as a stream of tuples
containing routine name, call site, event type (i.e., routine enter or exit), and
possibly timing information. Table 1 is excerpted from [7] and analyzes a vari-
ety of prominent Linux applications, for which traces were obtained from short
running sessions of just a few minutes. The table reports the number of distinct
routines in a trace (i.e., the number of nodes of the call graph), the number of
distinct call sites (i.e., the number of code lines which call a routine), and the
number of nodes in the call tree. The call graph and the call tree are fundamental
data structures that maintain information about interprocedural control flow: in
a call graph, nodes represent routines and arcs caller-callee relationships, while
each node of a call tree represents a different routine invocation. The number
of call tree nodes is thus proportional to the stream length. Table 1 shows that
the number of call tree nodes can be very large, even when compared with call
graph nodes and call sites: execution traces obtained from short runs of real
applications produce a few hundred millions of events, which result in a few Gi-
gaBytes of memory under the optimistic assumption that each stream tuple can
be stored using only ten bytes. To mitigate this size explosion issue, many trace
simplification and abstraction techniques have been proposed in the literature,
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aimed at extracting high-level views and relevant data from long raw traces:
execution traces can indeed contain several repetitions, either contiguous or not,
and a very large number of patterns. Each pattern, in turn, can have thousands
of occurrences, which makes data mining and pattern detection techniques quite
useful to understand the characteristics of program traces [4]. Redundancies can
be also reduced by compression techniques as proposed, e.g., in [8–10]. In the
rest of this paper we shall describe some relevant trace analysis techniques based
on sampling and data stream algorithmics.

3 Sampling

Sampling is used in statistics to estimate the characteristics of a large population
by analyzing only a small portion of its members. A sample typically represents a
subset of the population of manageable size, thus allowing faster data collection
and smaller analysis costs. Many previous works, such as [11–16], have explored
the use of sampling to reduce the size of execution traces and/or the runtime
overhead of dynamic analysis tools. Overall, sampling appears to be a valuable
tool in dynamic analysis, although sampled traces are not always representative
of the original ones, and the results often heavily depend on manual tuning
of a variety of parameters. Furthermore, it has been observed that the same
sampling parameters might work well for one trace, while being inappropriate
for a different trace [12].

Fixed Rate Sampling. A widespread approach consists of selecting sample points
at fixed intervals, e.g., one point out of n trace items or every t milliseconds.
This technique might be easily biased when the original trace exhibits regular
patterns. Consider, for instance, the following scenario: the execution trace stores
memory accesses, the sampling distance n is set to 10, and a memory location
� is accessed exactly every 10 memory operations. Then, depending on where
the sampling starts, the traced sample might never contain � or might contain
exclusively operations on �. Though this is a worst-case example, such regularities
in execution traces are far from being rare.

A Case Study in Performance Profiling. Fixed rate sampling can be naturally
implemented using periodic timer interrupts, ranging from process level inter-
rupts to processor hardware performance counters. Hence, it has become very
popular in the design of performance profilers. In accordance with the well-known
Pareto principle (also known as the 80−20 rule), more than 80% of running time
is indeed spent in only 20% of routines: “hot” routines must appear frequently
in the trace, and therefore are likely to be sampled. Unfortunately, even for such
skewed distributions, fixed rate sampling might not work properly if the sam-
pling parameter (n or t) is not appropriately tuned. As a concrete example, we
report the outcome of an experiment discussed in [17], aimed at comparing the
set of hot routines returned by a sampling-based profiler with the set of hot
routines obtained by full instrumentation (i.e., computed on the full execution
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Fig. 1. False positives and false negatives generated by fixed rate sampling. (a) A
routine is a false positive if it appears to be hot with respect to a sampled trace, but
is not hot with respect to the full trace; (b) a routine is a false negative if is not
reported as hot when using sampling, but is hot with respect to the full trace. Graphs
are excerpted from [17].

trace). Let τ be a trace of routine invocations and T (τ) be the total time re-
quired by all the routines appearing in τ . We define the set H(τ) of routines
that are hot with respect to trace τ as follows: all routines appearing in τ are
sorted by decreasing running time and are then progressively added to H(τ),
according to the precomputed order, until the total time required by routines in
H(τ) becomes larger than 0.9T (τ). Intuitively, H(τ) is the minimal set of the
most costly routines that account for at least 90% of the overall running time.
When τ is a sampled trace, some of the routines that are hot with respect to τ
could not be hot with respect to the full trace, yielding false positives. Symmet-
rically, it may happen that routines that are hot with respect to the full trace
are not hot with respect to the sampled trace τ , yielding false negatives. Fig-
ure 1 reports the percentage of false positives and false negatives as a function
of the sampling rate t (larger values of t imply less frequent sampling and thus
smaller sampled traces). The outcome of the experiment is exemplified on some
of the benchmarks listed in Table 1. Both quantities are considerably large: in
some applications, false positives account for up to 90% of the total number of
reported hot routines. The quantity of false negatives is smaller, but remains
non-negligible and is badly affected by larger sampling rates. Further details are
given in [17].

Random Sampling. Overall, the experiments reported in [17] confirm that fixed
rate sampling can yield unrealistic results, even when data distributions are very
skewed. A valuable tool to mitigate these issues is random sampling, which con-
sists of selecting sample points with a fixed probability. Mytkowicz et al. [18]
observe that collecting samples randomly is a fundamental requirement to ob-
tain accurate profiles, but is often violated by commonly-used Java profilers.
Unfortunately, random sampling might be difficult to implement on-line (i.e.,
during trace generation) and, if not done properly, might result in samples of
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unbounded size for long running applications. To overcome these issues, Coppa
et al. [17] advocate the use of reservoir sampling [19]: the experimental evalua-
tion of reservoir-based profiling shows that, while maintaining uniform sampling
probability, this technique yields much better and more stable profiling results
than fixed rate sampling, even when the stored sample is very small.

Adjusting Sampling Probabilities. A variety of works propose different strate-
gies for controlling sampling probabilities. For instance, Marino, Musuvathi, and
Narayanasamy apply sampling to the problem of detecting data races in con-
current applications [20]. Apparently, a sampling-based data-race detector may
seem unlikely to succeed, because most memory accesses do not participate in
data races and sampling approaches, in general, are not well suited at captur-
ing rare events. Hence, [20] proposes an adaptive approach, adjusting sampling
probabilities during the execution so that infrequently accessed regions of code
progressively become more likely to be sampled. Experimental results show that
this adaptive strategy achieves both a high detection rate and small slowdown
on the running time. In [15], Pirzadeh et al. use stratified sampling to create
samples representative of different characteristics of the entire execution. Strat-
ified sampling turns out to be useful on heterogeneous populations that can be
divided into homogeneous sub-populations, known as strata: this is often the
case in execution traces, where the sequence of trace events can be typically
partitioned into subsequences representing specific tasks performed by the soft-
ware system. In this scenario, strata correspond to execution phases, which can
be automatically identified using k-means clustering algorithms, and different
sampling parameters can be then used in each stratum.

4 Streaming

The data streaming model has gained increasing popularity in the last few years
as an effective paradigm for processing massive data sets. Streaming algorithms
are well suited in application domains where input data come at a very high
rate, cannot be stored entirely due to their huge (possibly unbounded) size, and
need to be continuously monitored in order to support exploratory analyses and
to detect correlations, frequent or rare events, fraud, intrusion, and anomalous
activities. Relevant examples include monitoring network traffic, online auctions,
transaction logs, telephone call records, automated bank machine operations,
atmospheric and astronomical events. For instance, in IP traffic analysis we
may want to monitor the packet log over a given link in order to estimate how
many distinct IP addresses used that link in a given period of time: since the
number of packets may be very large and stream items (source-destination IP
address pairs) are drawn from a large universe, a space-efficient data streaming
algorithm maintains a compact data structure supporting both dynamic updates
upon arrival of new packets and distinct items queries. Approximate answers
are allowed when it is impossible to obtain an exact solution using only one
sequential pass over the data and limited space.
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One-pass streaming algorithms are typically designed to optimize four main
performance measures: space required to store the data structure, update time
(i.e., per-item processing time), query time, and guaranteed solution quality.
Starting from early papers appeared in the late 1970s (cf., e.g., [21, 22]), a wide
range of results have been obtained in the last decade, mainly for statistics and
data sketching problems such as the computation of frequency moments [23],
histograms and quantiles [24], norm estimation [25], wavelet decomposition [24],
most frequent items [26], and clustering [27]. In this section we discuss two
applications of streaming algorithms to dynamic program analysis, focusing on
the problem of performance profiling.

Range Adaptive Profiling. In [28], Mysore et al. address a problem called pro-
filing with adaptive precision: they devise a profiling methodology capable of
hierarchically classifying items in an execution trace into increasingly precise
categories based on the frequency with which they occur. Differently from tradi-
tional profiles, which produce a flat list of items together with their performance
metrics, adaptive profiling outputs profile data into a hierarchical fashion, striv-
ing for higher precision on most frequent events. Assume, as an example, that
items of interest are lines of code: if 90% of the running time is spent on the
top half of the code, according to Amdahl’s law fine-grained profile data on the
bottom half would not be very useful. Hence, it makes sense to summarize the
behavior of the bottom half using a single performance counter, exploring in
more detail possible optimization targets in the top half: the top half could be
divided in turn into a top and a bottom quarter, refining data on the quarter
that consumes most of the time. In summary, in [28] profile data is grouped into
ranges: the most frequently occurring ranges are broken down into more precise
subranges, while the least frequently occurring events are kept as larger ranges.

Ranges can be naturally stored in a tree, together with their associated coun-
ters. The tree can be easily updated by incrementing the appropriate counter to
keep track of stream events. However, since relative range frequencies can dy-
namically change over time, the tree structure must be also adaptively changed
to resemble the hottest ranges. The solution proposed in [28] exploits a stream-
ing algorithm for adaptive spatial partitioning of multidimensional data streams
described in [29]. When a range becomes sufficiently hot, the corresponding tree
node is split into subranges. Symmetrically, ranges that get colder are merged
together, pruning the tree in order to maintain the least number of relevant
counters. Tree update, split, and merge operations can be performed on-line and
are designed so as to guarantee worst case bounds on precision and space usage.

Let [0, R] be the largest range to be considered (in the example above, R
might denote the number of code lines), let ε ∈ (0, 1) be a user defined constant,
and let n be the number of stream items at any time during the execution. The
streaming data structure of [29] splits nodes whenever their counter becomes
larger than the threshold ε · n/ log(R). It can be proved that this guarantees
O(logR/ε) size, independently of the length of the stream, and maximum error
upper bounded by ε · n. We notice that the error for any given range is relative
to the entire input stream, and not to the actual counter of that range.
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Fig. 2. Skewness of calling context distribution (graphs excerpted from [7])

In [28], the authors show that this streaming approach can be efficiently im-
plemented via specialized hardware. Experimental results indicate that, using
just a few kilobytes of memory, it is possible to maintain range profiles with
an average accuracy of 98%. We remark that range adaptive profiling is not a
fully general technique, but can be nevertheless applied to a variety of scenarios,
such as profiling segments of code, blocks of data and IP addresses, or ranges of
memory addresses in order to quantify cache locality issues.

Mining Hot Calling Contexts. In [7], D’Elia et al. show an efficient and accu-
rate solution for context sensitive profiling based on the computation of frequent
items in the data stream model. Calling contexts are typically stored in a data
structure called calling context tree, which is substantially smaller than standard
call trees, but may still be very large and difficult to analyze in real applications.
However, only the most frequent contexts are of interest, since they represent
the hot spots to which optimizations must be directed. Context frequency dis-
tribution satisfies the well-known Pareto principle: Figure 2, excerpted from [7],
shows on a variety of real applications that only a small fraction of contexts
are hot, and typically more than 90% of routine calls take place in only 10% of
calling contexts. This skewness suggests that space could be greatly reduced by
keeping information about hot contexts only, discarding on the fly contexts that
are likely to be cold. This is the approach taken in [7], where the problem of
identifying the most frequent contexts on the fly is cast into a data streaming
setting, exploiting fast and space-efficient algorithms for mining frequent items.

Given a frequency threshold φ ∈ [0, 1] and a stream of lenght N , the frequent
items problem is to find all items that appear in the stream at least �φN� times.
Since computing an exact solution requires Ω(N) bits, even using randomiza-
tion [30], research focused on solving an approximate version of the problem,
called (φ, ε)-heavy hitters: given two parameters φ, ε ∈ [0, 1], with ε < φ, return
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all items with frequency ≥ �φN� and no item with frequency ≤ �(φ − ε)N�.
In the approximate solution, false negatives cannot exist, i.e., all frequent items
must be returned. Instead, false positives are allowed, but their real frequency
must be guaranteed to be at most εN -far from the threshold �φN�. Different al-
gorithms for computing (φ, ε)-heavy hitters are known in the literature. Among
them, Space Saving [31] and Sticky Sampling [26] are counter-based algorithms
that track a subset of the input items, monitoring counts associated with them.
For each new arrival, they decide whether to store the item or not, and, if so,
what counts to associate with it. Sticky Sampling is probabilistic: it fails to pro-
duce the correct answer with a minuscule probability, say δ, and uses at most
2
ε log(φ−1δ−1) entries in its data structure [26]. Space Saving [31] is instead
deterministic and uses 1

ε entries.
Frequent items algorithms can be naturally adapted to context sensitive pro-

filing: during the computation the profiler maintains a subtree of the full calling
context tree, called Hot Calling Context Tree (HCCT), storing only hot contexts
and their ancestors. More formally, the HCCT is defined as the (unique) sub-
tree of the calling context tree obtained by pruning all cold nodes that are not
ancestors of a hot node: by definition all hot nodes are included in the HCCT,
whose leaves are necessarily hot (the converse, however, is not true). The fre-
quent items algorithms decide which hot nodes must be monitored, and the
profiler updates the HCCT accordingly so as to maintain also their ancestors.
The space used by the HCCT includes both monitored hot contexts, and their
(possibly cold) ancestors. The former quantity can be analyzed theoretically, as
in [26, 31], while the latter depends on properties of the execution trace and on
the structure of the calling context tree. In practice, experiments show that this
amount is negligible with respect to the number of hot nodes. Hence, the HCCT
represents the hot portions of the full calling context tree very well using only an
extremely small percentage of space: even when the peak memory usage of the
stream-based profiler of [7] is only 1% of standard context-sensitive profilers, all
the hottest calling contexts are always identified correctly (no false negatives),
the number of false positives (cold contexts that are considered as hot) is very
small, and frequency counters are very close to the true values.

5 Concluding Remarks

In this paper we have discussed how recent results in algorithmic theory for
data-intensive scenarios can be applied to the design and implementation of dy-
namic program analysis tools. We have focused on sampling and data stream
algorithmics. The examples illustrated in this work should be considered as a
non-exhaustive starting point: many other techniques (e.g., data mining or com-
pression) may prove to be valuable in dynamic program analysis. This is indeed
a fresh area, and we believe that it represents a novel fertile ground for fun-
damental algorithmic research: not only dynamic program analysis can inspire
many novel, interesting algorithmic questions (or genuinely new variants of well
understood problems), but the transfer of algorithmic knowledge in the imple-
mentation of program analysis tools can also have a significant practical impact.



Software Streams: Big Data Challenges in Dynamic Program Analysis 133

Furthermore, algorithm engineering techniques for developing fast, robust, and
scalable implementations can play a major role in this scenario, where architec-
tural aspects, such as the presence of memory hierarchies and of multiple cores,
can be successfully exploited in order to leverage the runtime impact of dynamic
analysis tools.
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Abstract. We are going to generalize classical λ-calculus to the ordinal
domain. Our reasoning is centered around a generalization of Church
numerals, i.e., terms that define the n-fold application of their first ar-
gument to the second, to numerals for transfinite ordinals. Once the new
class of ordinal λ-terms is established, we define a transfinite procedure
to assign to a given ordinal λ-term a normal form if one exists. This
normal form procedure is compatible with the classical case, i.e., will
find normal forms for classical terms whenever they exist. We go on to
prove a confluence property for our procedure. The calculus thus defined
is tied into the existing framework of ordinal computability: Using our
terms to define a class of functions on the ordinals, we show that this
class is identical with the class of Σ1(L) definable functions on Ord. This
paper takes the form of an ‘extended abstract’: The technical details of
the main definition, detailed examples, as well as proofs of the theorems
are omitted for brevity.

1 Introduction

Ordinal computability is the study of models of classical computability lifted
to the ordinal domain. Particular attention is paid to the elementary computa-
tional steps of thus defined transfinite computations and the subtle differences of
the different models and their liftings. In his Master’s thesis [1], the first author
compared ordinal Turing machines (OTMs) [2] and ordinal register machines
(ORMs) [3] to existing liftings of classical recursion schemes, namely Kripke’s
equation calculus and ordinal min-recursive functions [4]. He showed the equiv-
alence of all approaches on admissible ordinals. This lifting of the most common
approaches to classical, finite computability theory is clearly missing a λ-calculus
variant, which we shall define here. We prove its equivalence to the aforemen-
tioned models, further strengthening the idea of an ordinal Church-Turing thesis.

2 Notation from Classical λ-Calculus

As a reference on classical λ-calculus the authors used the monograph by Baren-
dregt [5]. Terms in classical λ-calculus are formed over the alphabet {λ, ., ), (} ∪
{vk | k ∈ ω} by the following rules (we allow lower case letters to stand in for
variables such as vk):

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 135–146, 2013.
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(1) Every variable x is a term.

(2) If M is a term and x is a variable, then λx.M is a term.

(3) If M and N are terms, then so is (M,N).

We abbreviate terms of the form λx.λy.M as λxy.M . The subterm relation
S ⊆ T is the transitive closure of the relationM ⊆M , M ⊆ λx.M , and M,N ⊆
(M,N). With respect to the expression λx., the notion of x as a bound or free
variable has its intended meaning.

We want to identify terms that arise from each other by renaming of bound
variables. By M N

x we denote the syntactic substitution of every occurrence of
the free variable x in M by the term N . If we want to replace a single instance S
of some subterm of T by some term R, we write the result as T

[
R
S

]
. Whenever we

write such a substitution or replacement, adequate renaming of bound variables
is implied to avoid variable conflicts.

The implied interpretation of λ-terms is the following. A term (λx.M,N) is
to be interpreted as ‘the application of the function M(x) to N ’. Accordingly,
a rule of conversion is defined. The above term may be transformed into M N

x .
More generally, for any term T , any subterm of T of the form (λx.M,N) may

be replaced by M N
x , i.e., we may transform T into T

[ M N
x

(λx.M,N)

]
. We call such a

transformation an application of β-conversion or of the β-rule on T . A subterm
of T of the form (λx.M,N) is called a redex (reducible expression) of T .

A term S is in normal form, if β-conversion cannot be applied to it. S is a
normal form of some term T , if S is in normal form and can be obtained from T
by possibly repeated applications of the β-rule. There are terms without normal
forms, e.g., (λx.(x, x), λx.(x, x)). The classical theory proves that the normal
form of a term is uniquely determined if it exists and can be found by a certain
pattern of applications of β-conversion. This was first proved in [6]. We denote
the normal form of a term T as T .

The calculus can be fitted with various semantics. From the perspective of
computability theory, maybe one of the most important ones is the λ-definability
of functions on the natural numbers. There are several ways of modeling natural
numbers as λ-terms; consider the following:

0 = λfx.x

1 = λfx.(f, x)

...

n = λfx. (f, (f, (. . . (f︸ ︷︷ ︸
n-times

, x) . . .)

...

The terms thus defined are referred to as Church numerals.
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A partial function f : N ⊃ dom f → N is called λ-definable if there is a λ-term
F such that for all n ∈ dom f :

(F, n) = f(n)

The class of λ-definable functions is identical to the class of Turing-computable
functions. By virtue of the Church-Turing thesis we also speak of the class of
computable functions.

3 λI-Calculus

The basis for our generalization of λ-calculus shall be given by the λI-calculus
as described in [5, Chapter 9]. The λI-terms form a subset of the λ-terms and
are formed by replacing formation rule (2) by the following:

(2) If M is a term and x is a variable that appears free in M , then λx.M is a
term.

With λI, trivial applications (‘forget the argument’) are impossible, as terms of
the form K = λxy.x are illegal. So, in general, case distinctions (returning one
of several arguments depending on the situation) or constant functions cannot
be defined in λI. For functions on numerals, however, this can be circumvented,
exploiting the syntactic structure of Church numerals.

Definition 1 ([5]). Set I = λy.y. This is a λI-term defining the unary identity
function.

As an example, the numeral 0 could be replaced by 0′ = λfx.(((f, I), I), x).

Let n′ = n for all n > 0. Note that, since ((n′, I), I) reduces to I for every

n′, the normal form of ((0′, n′),m′) is m′. So, on numerals, the meaning ‘0-fold

application of the first argument to the second’ is retained.
In contrast to λI-terms, the full set of λ-terms is sometimes referred to as λK-

terms. Omitting further details which can be found in [5], we state the following:

Fact 1 ([5]). The λI-definable functions on natural numbers coincide with the
λK-definable ones.

4 Ordinal λ-Terms

Our approach revolves around the idea of generalizing Church numerals from
‘the n-fold application of f to x’ to ‘the α-fold application of f to x’. The intent
behind that idea is that terms defining the successor function or arithmetic
should generalize to the successor function on ordinals or ordinal arithmetic.
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Note 1. In developing our theory, we briefly considered introducing terms of
transfinite length, but the asymmetry of ordinals—a limit ordinal has a right
neighbor (a least larger ordinal) but no left neighbor (largest smaller ordinal)—
limits the intuitive use of syntactical operations on such strings. Instead, we
introduce symbols for ordinals on term level and we propose the following gen-
eralization of λ-terms to ordinal λ-terms.

Definition 2. Over the alphabet ΣOrd = {λ, ., ), (}∪{vk | k ∈ ω}∪{α | α ∈ Ord}
define the set TermOrd of ordinal λ-terms by

(1) Every variable x is an ordinal λ-term.
(2) If M is an ordinal λ-term and x appears free in M , then λx.M is an ordinal

λ-term.
(3) If α is an ordinal and M and N are ordinal λ-terms, then so is α(M,N).

We often write (M,N) instead of 1(M,N).

Informally, we refer to ordinal λ-terms just as terms.
We introduce an equivalence relation 'v on terms, identifying all terms that

can be obtained from each other by renaming of bound variables. If V is a finite
set of variables with largest element vi, define for every equivalence its v-minimal
term over V as the one where all bound variables are named vi+1, vi+2, vi+3,
etc. from left to right. For a term T , we denote by T V

v its v-minimal term over
V . We simply write v-minimal and Tv if V = ∅.

Definition 3. The (ordinal) Church numerals take the form α = λfx.α(f, x)
for α ∈ Ord. More generally, we refer to all terms 'v-equivalent to some α as
Church numerals.

The intended meaning of terms like β(M, α(M,N)) and α+β(M,N) is the same.
So, we want to identify all the terms of the form

αk−1(M, αk−2(M, . . . α0(M,N) . . .))

with

α0+α1+...+αk−1(M,N).

Let T be a term. We call a replacement of all subterms of T that are of the former
form by their equivalent terms of the latter form a contraction of applications of
T . We define an equivalence relation 'a by identifying every term T with the
terms resulting from contractions of its applications and closing transitively. For
a given term T we define its a-minimal term Ta as the shortest term a-equivalent
to T .

In order to define an equivalent to the β-normal form, we define a transfinite
procedure that for every term either finds a term we shall call its normal form
or diverges, the latter which we shall interpret as the term not having a normal
form.
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5 Normal Form Derivation

The normal form derivation will be a transfinite procedure. We declare a kind
of limit convergence for our ordinal λ-terms.

Definition 4. Consider a term M as a finite sequence of symbols in ΣOrd,
i.e., M : n → ΣOrd for some natural number n ∈ ω. Let (ji | 0 ≤ i < k)
be the increasing sequence of those j < n with M(j) ∈ { α | α ∈ Ord}. Let
α = (α0, . . . , αk−1) be some sequence of ordinals. Define

(i) the flesh of M as fl(M) = (M(ji) | i < k)
(ii) the skeleton of M as sk(M) : n→ ran(M) with

sk(M)(j) :=

{
M(j), if j /∈ {ji | 0 ≤ i < k}
1, if j ∈ {ji | 0 ≤ i < k}.

(iii) the insertion of α in M as

M [α] =

{
M(j), if j /∈ {ji | 0 ≤ i < k}
αi , if j = ji for some i < k.

Note that sk(M)[fl(M)] =M .

Definition 5. Let α be a limit ordinal.

(i) Let s : α → Ordn be a sequence of n-tuples of ordinals for some n < ω.
Define the pointwise limes inferior by

lim inf
β→α

s(β) := (lim inf
β→α

s(β)0, . . . , lim inf
β→α

s(β)n−1).

(ii) Let s : α→ TermOrd be a sequence of terms. We say that the skeletons of
s converge, if there is an a-minimal and v-minimal skeleton S such that
there is a γ < α and for all γ < β < α we have sk(s(β))a 'v S. We shall
call S the limit skeleton for s. If V is a finite set of variables, S may be
chosen v-minimal over V ; we then speak of the limit skeleton over V .

(iii) Let s : α → Σ∗
Ord be a sequence of terms whose skeletons converge to its

limit skeleton S. Let γ be minimal such that sk(s(β)a) = S for γ < β < α.
Then the syntactical limes inferior of s exists and is defined by

lim inf
β→α

s(β) := sk(S)[ lim inf
β→α,β>γ

fl(s(β)a)]

If S is the limit skeleton over some finite set of variables V , we speak of
the syntactical limes inferior over V , written lim infVβ→α s(β)

Note 2. In the following we give a deterministic procedure to arrive at a given
ordinal λ-term’s normal form. Every step can be seen to correspond to one
application of the classical β-rule. In the classical λI-calculus, any pattern of
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iterated application of the β-rule eventually yields a normal form. The idea of α-
fold application of one term to another implies a transfinite length of applications
of a β-rule, and we want to make use of the limit notions for terms we just
defined. We chose to give up the nondeterministic freedom of the finite case to
produce stabilizing and natural behavior at limits. In turn, we get some of that
freedom back by proving a weak confluence property in Section 6. There, we also
conjecture a stronger property that would enable us to perform finitely many
arbitrary deviations from the algorithm.

In this extended abstract, we shall not give a rigorous technical definition of
the normal form derivation. Instead, we shall describe the main ideas behind
the process for arriving at a normal form that we have in mind. The algorithm
will maintain a stack. Each stack element is a term whose normal form is to
be determined. The bottom element of the stack is the original term T we wish
to reduce to its normal form by some generalizations of the β-rule. The next
element shall be the leftmost redex of T , i.e., a leftmost subterm S of the form
S = α(λx.M,N) where α > 0. A redex is called leftmost if its operating λ, i.e.,
the λ that is spelled out in the representation of S above, appears to the left of
all other operating λ’s of redexes of T . So, S is put on the second stack level.
Recursively, the algorithm will determine the normal form of S. In the mean
time, the stack will get built up and torn down again and as soon as S’s normal
form S is found, our stack will contain exactly two elements: T as the bottom
one with S on top. The next step will be to remove S from the stack, replace S
in T with S and start the procedure over for the resulting term. Eventually, the
bottom element will contain no more redexes and a normal form is found.

So how does the algorithm proceed to determine the normal form of some
redex S = α(λx.M,N)? We retain the intuition of ‘the α-fold application of M
to N ’ by the following procedure: Determine, by putting on the stack consecu-
tively, the normal forms of the approximations 1(λx.M,N), 2(λx.M,N), etc. At
limit times, syntactical inferior limits are taken (if they exist, otherwise the nor-
mal form procedure breaks down). More precisely, instead of γ+1(λx.M,N), we
evaluate the a-equivalent term (λx.M, γ(λx.M,N)), substituting the term N ′

we determined in the previous steps as the normal form of γ(λx.M,N), which
in the end gives us (λx.M,N ′) to evaluate. We can now rely on an application

of what is known as the β-rule in the finite case to end up with M N ′
x which is

what is being put on the stack instead of γ+1(λx.M,N).
Finally, we have to deal with our stack length becoming infinite. This might

happen via the use of terms that work like (λx.(x, x), λx.(x, x)) and may be
used as so-called fixed-point combinators in recursive definitions. For instance,
one usually implements unbounded search by a term describing the following
function Q(α): ‘if condition P holds on α then return α, else evaluate and return
Q(α + 1)’. A normal form procedure for Q(0) will build up a stack of height β
if β is the least ordinal such that P holds. If the stack length approaches a
limit ξ, we shall define the stack content at level ξ in the following way: First,
identify the first (from the bottom) term on the stack whose skeleton appears
cofinally often below ξ as skeleton of terms on the stack. Now, set as the term
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on level ξ the syntactical lim inf over all terms on the stack with this skeleton.
In the above example, we shall ‘try α’ (i.e., put Q(α) on the stack), then do
some steps to determine whether P holds for α and if not ‘try α + 1’. In the
next limit we want to ‘try the first limit after α’, i.e., put Q(α+ω) on the stack.
The term Q(0) representing ‘try 0’ obviously is the first whose skeleton appears
cofinally often. Theorem 3 will confirm this behavior. To avoid problems with
backtracking downwards in the ordinals, we shall keep track of the stack height
on which the first term that lends its skeleton to the limit appears. That way, as
soon as a normal form is found (in our example the least β such that P holds)
and has been handed down step by step until the stack is torn down to some
limit height, we can propagate this normal form directly downwards to whenever
Q(0) was put on the stack.

For a term T , we denote the normal form thus defined by T . If the normal
form procedure for T breaks down or diverges (i.e. has length Ord), we write
T ↑.

Note 3. Terms of the form 0(λx.M,N) are not treated as reducible; they are
unchanged by the algorithm save for internal modifications of M and N and
may vanish only through contractions of applications. One could argue that the
intended meaning behind such a term is simply N (the 0-fold application of
M to N) but such transformations would reintroduce terms of the form λxy.x,
violating the boundaries of λI-calculus.

For our purposes, there is an added benefit of not resolving 0-fold applica-
tions: The numeral 0 = λfx.0(f, x) is of the same syntactical form as the other
numerals, enabling 0 to be a possible value of a syntactical lim inf of numerals.
However, not setting 0 apart from the other numerals introduces a difficulty
with arithmetic: Several classical algorithms for arithmetic (predecessor of natu-
ral numbers, subtraction, etc.) rely heavily on a term that recognizes the numeral
for 0 among all the other numerals. We resolve this issue by expanding our cal-
culus by a term that defines equality on ordinals in Definition 7.

Definition 6. Let α = (α0, . . . , αn−1) be a finite sequence of ordinal numbers.
A function f : Ordk → Ord is ordinal λ-definable in parameters α if there
is an ordinal λ-term T in which all applications are of the form β(·, ·) where
β ∈ ω ∪ {α0, . . . , αn−1} such that for all (γ0, . . . , γk−1) ∈ Ordk we have

(. . . (T, γ0), γ
1
), . . .), γk−1) 'v f(γ0, . . . , γk−1).

If f is a partial function, we call f ordinal λ-definable in α if f � dom f is
ordinal λ-definable in α and (T, γ) ↑ on γ /∈ dom f . If α = ∅, we simply speak
of ordinal λ-definability.

As explained in Note 3, we would like to add the capability of defining equality
on ordinals to our calculus:

Definition 7. Let us add a constant symbol E to our alphabet and consider
the terms formed over ΣOrd ∪ {E} with the additional rule ‘E is a term’
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as the ordinal λ + E-terms. We extend our definition by a case for terms
of the form 1(1(E,α), β): The algorithm is to replace 1(1(E,α), β) with the
normal form TI = λxy.(((y, I), I), x) if α = β and with the normal form
FI = λx.(((x, I), I), I) else. In all other cases, E is to be treated like a vari-
able symbol. The resulting notion of definability for functions on the ordinals is
that of ordinal λ+ E-definable functions.

The terms TI and FI can be used to define case distinctions in the following
manner: Suppose ((P, I), I) 'v ((Q, I), I) 'v I which is the case, e.g., for P,Q
Church numerals. Then

((B,P ), Q) 'v

{
P , if B = TI

Q , if B = FI .

The term ((B,P ), Q) hence may be read as ifB then P elseQ.
Classical λI-terms are ordinal λ-terms. On the other hand, if we have an

ordinal λ-term where for all applications α(M,N) we have that α is finite, we
can convert it to a classical λI-term by a map φ given by:

– replacing any subterm of the form n(M,N) by (M, (M, (. . . (M︸ ︷︷ ︸
n-times

, N) . . .) if

n > 0,
– replacing any subterm of the form 0(M,N) by (((M, I), I), N). In particular,

this maps 0 to 0′ = λfx.(((f, I), I), x), the term [5] uses in the treatment of

λI-calculus.

Proposition 1. If M is a classical λI-term with classical normal form M ′ and
M ′′ is the output of our algorithm on input M , then φ(M ′′) 'v M

′
a.

Proof. In λI-calculus, every reduction strategy (pattern of applying the β-rule
to various subterms until no redex is left) is normalizing, i.e., eventually yields
normal forms. Our algorithm, although working with a-minimal terms, will sim-
ply run a finite number of applications of the β-rule before halting with a term
M ′′ without redexes. Converting this term to a classical λI-term does not intro-
duce any redexes, so the resulting term is also classically in normal form. Since
classically normal forms are unique up to renaming of variables, we have indeed
found a term 'v-equivalent to M ′.

6 A Confluence Property for Our Algorithm

The classical Church-Rosser result establishes that for any two terms Q and Q′

that are obtained from the same term P via β-reduction, there is a term R that
can be obtained from Q and Q′ by β-reduction. This is known as the Church-
Rosser property. It ensures that normal forms are unique. In the λK-calculus,
a term’s unique normal form is obtained by a certain pattern of applications of
the β-rule, whereas in λI, any pattern of applications of the β-rule leads to the
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term’s normal form, given that one exists. In our situation, where we restrict
ourselves from applying the β-rule freely for the sake of convergence at limits,
we propose the following as the correct lifting of the Church-Rosser theorem:

Conjecture 1. Let T be a term with normal form and let S ⊆ T be a subterm

with normal form. Then T 'v T
[
S
S

]
.

For the purposes of this thesis, the following result is sufficient, as it will establish
that the composition of two λ-definable functions is λ-definable (results for λ+E
follow analogously).

Theorem 1. Let T be a term with normal form and let S ⊆ T be a subterm that
has a normal form and is of the form S = α(M,N) such that all free variables

in S are not bound in T . Then T 'v T
[
S
S

]
.

The proof is a rather straightforward application of the technique of keeping
track of certain residuals as in the classical paper [6].

7 Ordinal λ-Definable Functions and Ordinal
Computability

We shall now explore which functions on the ordinals are ordinal λ-definable.
In his Diploma thesis [1], the first author showed how various existing notions
of ordinal computability coincide in strength. We tie in our proposed model of
ordinal λ-definability into this framework to state our main result at the end of
this section.

7.1 Primitive Recursive Set and Ordinal Functions

A generalization of primitive recursive functions on natural numbers, operating
on the universe of sets, has been used in the study of the constructible hierarchy
[4,7]. In [4], Jensen and Karp gave a definition for PrimO, the class of primitive
recursive functions mapping ordinals to ordinals, which is compatible with their
notion Prim of primitive recursiveness of functions mapping sets to sets defined
alongside in their paper. We use a slight modification of their definition that is
equivalent in strength:

Definition 8. Let α = (α0, . . . , αk−1) be a finite sequence of ordinals for 0 ≤
i < k. The symbol PrimO(α) ( primitive recursive ordinal functions in α) denotes
the collection of all functions of type (1) to (5) closed under the schemes for
substitution (a) and (b) and recursion (R).

(1) f(ξ) = αi for 0 ≤ i < k
(2) prn,i(ξ) = ξi, for all n ∈ ω, ξ = (ξ1, . . . , ξn) and 1 ≤ i < n.
(3) f(ξ) = 0
(4) f(ξ) = ξ + 1
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(5) e(ξ, ζ) =

{
1 if ξ = ζ

0 else

(a) f(ξ, ζ) = g(ξ, h(ξ), ζ)
(b) f(ξ, ζ) = g(h(ξ), ζ)

(R) If g and h are given, define f by

f(0, ζ) = g(ζ)

f(ξ + 1, ζ) = h(f(ξ), ξ, ζ)

f(ξ, ζ) = lim inf
η<ξ

f(η, ζ) if ξ is a limit ordinal

We write PrimO for PrimO(∅).

We can now show that the PrimO functions are λ+E-definable, the first major
step towards our main theorem.

Theorem 2. Every PrimO(α) function is ordinal λ+ E-definable in α.

The proof makes extensive use of the predicate E.

7.2 Minimization

An ordinal λ-definable predicate on the ordinals is given by a term P such that
(P, α) takes TI as normal form for α in some subset or subclass of the ordinals
and FI for α in the complement.

In this section, we shall see that for every ordinal λ-definable predicate, there is
a function defining its least witness. The proof is a generalization of [5, Chapter 9,
§2] and Barendregt credits Kleene for the construction. In [5], for any classically
λ-definable predicate P on ω, a cleverly constructed term HP is given that has
the least witness of the predicate P as normal form. It turns out that the same
term yields least witnesses for ordinal λ-definable predicates on Ord under our
algorithm.

We give the central result of this subsection, the second ingredient to our main
result:

Theorem 3. Let P be an ordinal λ-definable predicate. Then (HP , 0) 'v γ

where γ = minγ∈Ord((P, γ) 'v TI) if such a γ exists. Otherwise (HP , 0) ↑.

The proof is done by analyzing the normal form derivation step-by-step. Note
that the stack will reach height γ in the process, as mentioned before Note 3.

7.3 Main Result

By combining Theorems 2 and 3 we get:

Theorem 4. A partial function F : Ord ⇀ Ord on the ordinals is λ + E-
definable in finitely many ordinal parameters if and only if it is Σ1-definable
over L.
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We can restrict both the length of the normal form derivation and the stack
height in our definition to some admissible ordinal α: If either reaches α, we say
that the normal form derivation diverges. With the resulting notion of α-normal
form derivation we can define the α-λ + E-definable (partial) functions on α
(possibly in parameters < α).

Corollary 1. Let α be admissible. A function partial F : α ⇀ α is α-λ + E-
definable in a finite set of parameters < α if and only if it is Σ1-definable over
Lα.

8 Open Questions

8.1 A Stronger Confluence Property

We already stated Conjecture 1 and hope that this stronger confluence property
holds for our calculus.

8.2 λ + Z-Definability

Another open problem is whether we can prove our main result for calculi seem-
ingly weaker than λ + E. We added a predicate for equality of ordinals to our
calculus and defined the λ + E-definable functions for the sake of Theorem 2.
All other arguments from Section 7 go through also for λ-definable functions.
We conjecture that we can replace the predicate E by a predicate Z that tests
numerals for being zero, in the same fashion as E tests for equality.

Due to Note 3, it seems unlikely that we are able to go even weaker than λ+Z.
Since, syntactically, the numeral for 0 is indistinguishable from the numerals for
non-zero ordinals, it appears doubtful to obtain a test for zero by syntactical
tricks. Also, its arithmetical properties cannot be validated without a means to
talk about equality of ordinals.

8.3 Variations of the Model

As with the other models of ordinal computation, there are interesting variations
imaginable. While λ-calculus does not come with a canonical distinction between
time and space, our normal form algorithm can easily be restricted in both
runtime or stack height. Asymmetric models such as ITTMs or the restriction of
OTMs in [8] have interesting theories, so these two paths, i.e., restricting stack
height but not runtime and restricting input complexity but neither runtime
nor stack height, should be explored. In an early stage of the development, the
authors conjectured that the present calculus restricted to finite stacks would be
equivalent in strength to the PrimO functions. While plausible from interpreting
terms of the form α(M,N) as some kind of for-loops, it turned out that this is
false: Due to its un-typed nature, the thus defined generalization of λ-calculus
is capable of giving ‘primitive recursive’ definitions for functionals such as the
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Ackermann function, while the calculus of primitive recursive functions is limited
to defining only functions on ordinals in a primitive recursive manner.

Moving away from looking at the calculus solely as means of defining functions
on the ordinals, the work done to generalize λ-calculus may perhaps be used to
extend other calculi that are centered on the re-writing of terms to the transfinite.
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A Personal View of the P versus NP Problem
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I recently completed a general audience book on the P versus NP problem [1].
Writing the book has forced me to step back and take a fresh look at the question
from a non-technical point of view. There are really two different P versus NP
problems. One is the formal mathematical question, first formulated by Steve
Cook in 1971 [2] and listed as one of the six unresolved millennium problems
by the Clay Mathematics Institute1. The other P versus NP problem is the one
that interests physicists, biologists, economists and the mathematically-curious
general public. This talk will explore both faces of the P versus NP problem and
what it means for mathematics and computer science moving forward.

Most of this audience is familiar with P versus NP as a mathematical chal-
lenge. Let Σ∗ be the set of finite length sequences (“strings”) over an alphabet Σ.
Typically we take Σ = {0, 1}. Let M be a computational procedure that takes
as input a finite string and either “accepts” or “rejects” the string. Typically
we describe M by a Turing machine, a computational device developed by Alan
Turing in his classic paper [3]. A machine M computes a language L ⊆ Σ∗ if for
all x in L, M on input x accepts and for all x not in L, M on input x does not
accept. The machine M runs in polynomial time if there is a fixed polynomial
p such that for all inputs x, M on input x accepts in time at most p(|x|) where
|x| is the number of alphabet symbols in the string x.

By default M is deterministic, the next action of the machine is uniquely
defined by its current configuration. We can also consider nondeterministic
Turing machines M that have many possible legal future actions. We say a non-
deterministic machine M accepts if there exists a series of legal actions leading
to M starting on input x to an accept state.

The class P is the set of languages L that are computable in polynomial
time by some (deterministic) Turing machine. The class NP consists of those
languages accepted by nondeterministic Turing machines in polynomial time.
The P versus NP questions asks simply if P = NP.

The question immediately became central to theoretical computer science for
several reasons. First of all, the question is quite robust to the various models.
It doesn’t matter which model of Turing machine we use, or we can use any
other reasonable model of computation, the answer to the P versus NP ques-
tion will not change. More importantly Cook [2], Karp [4] and Levin [5] iden-
tified a number of logical and combinatorial problems that are NP-complete,

1 http://www.claymath.org/millennium
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computationally as hard as any problem in NP, and thus have polynomial-time
algorithms if and only if P = NP.

This talk will explore some of the approaches researchers have used to attack
the P versus NP problem, though we don’t hold out much hope for a quick
resolution.

We will also explore the other less mathematical side of P versus NP question.
Computational power has dramatically increased through the years since Cook
and Levin first formulated the P versus NP problem in 1971 allow us to solve
via clever algorithms and brute force search a number of moderate-sized NP-
complete problems. Paradoxically, these successes have only bolstered interest
in the P versus NP problem, as we now wish to tackle larger computational
problems where the exponential running times of our best algorithms for NP-
complete problems really kick in. The huge growth in data has also made the P
versus NP problem an issue for scientists in many fields such as biology, physics
and economics.

These scientists and the general public don’t care so much about the fine
technical details of the P versus NP problem but more about the spirit of what
we can or cannot solve on computers in a reasonable amount of time. In this
talk we look at a “beautiful world” (with hidden dangers) that arise if P = NP
(in a strong way).

While most computer scientists believe P �= NP, that can’t be the end of the
story as we need to tackle these difficult problems. The talk will give a high-
level survey of some approaches to dealing with NP-complete problems such as
heuristical and approximate algorithms.

The P versus NP problem is both an incredibly challenging mathematical
puzzle but simply understanding the P versus NP problem and it challenges
is now of critical importance for any scientist. Our challenge is to tackle the
mathematical challenge while keeping the practical issues at heart.
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Abstract. Motivated by a general interest to understand sequence
based signaling in the cell, and in particular how (even distal) genomic
strings communicate each other in the transcriptional process, we present
a bioinformatic investigation on genomic repeats which occur in multi-
ple genes. Unconventional graph based methods to abstractly represent
genomes, gene networks, and genomic languages are provided. In partic-
ular, the distribution of long repeats along genomic sequences from three
specific organisms (genome of N. equitans, of E. coli, and chromosome IV
of S. cerevisiae) is computed, and efficiently visualized along the entire
sequences, with the unexpected result to have most of them occurring
inside genes.

1 Introduction

The human genome is being almost entirely annotated in biochemical terms,
within the decade-long federal project ENCODE (Encyclopedia of DNA ele-
ments) started in 2003, which has recently given integrated evidence that 80% of
the human genome is covered by active regulatory (or functional) elements. New
insights into the mechanisms of gene regulation have been given even from an
informational viewpoint, along with new data about the correspondence among
promoter sequences, specific protein combination bindings, and encoding re-
gions [8]. However, there is a clear lack of a model which explains how major
informational processes work to keep the cell alive, whereas the genomic system
appears stunningly complex, with lots of redundancies. An interesting point to
clarify is how regions from the traditional “dark matter” (or junk DNA) com-
municate with the (close and far) genes they affect, given also the information
that promoters and distal elements are engaged in more than 1,000 long-range
looping interactions [17].

Several computational (mainly machine learning based) tools have supported
the ENCODE project, while numerous alignment-free methods of sequence anal-
ysis have been emerging in the literature, among which we would like to point
out computational and linguistic approaches based on genomic dictionaries (for
example, [3,5,15,9]). In this context, we focus our investigation on genomic re-
peats, which are recurrent motifs, occurring in several locations along the genome
and often inside multiple genes, targeted as possible signals in mechanisms of
genomic information exchange.

Every function in the cell is mediated by signals, from circulating hormones,
that affect the entire body, to intracellular signaling molecules. There are two

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 149–160, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



150 G. Franco and A. Milanese

types of signaling mechanisms: i) protein signals, where an amino acid sequence
assumes a certain configuration, which results in a protein activation signal (e.g.,
by creating a protein phosphorylation site), or in a position signal (where, for
example, a specific sequence indicates if the protein has to move in the nucleus or
in the mitochondria); and ii) nucleotide signals, where the signaling mechanism is
mediated by annealing of complementary sequences. The first type is a structural
(3D) signal that has been extensively studied, while the second one is related
to sequence recognition, and only recently is being object of attention, since the
discovery of miRNAs in nematodes in 1993.

The number of repetitions and the localization of specific repeated sequences
along the genome has recently attracted attention also because of their correla-
tion with number of mutations in many cancer-related genes (such as PTEN) [20],
particularly those with simple repeated sequences in their coding regions [2].
Tumors with microsatellite instability (MSI) are characterized by a massive
instability in simple repeated sequences [13], and display a strong microsatel-
lite mutator phenotype (MMP), which (for gastrointestinal cancer in particu-
lar) differs in genotype and phenotype from cancers with microsatellite stability
(MSS) [2].

There are examples of enormous importance where repeats located in genes
turn out to have a relevant role for survival and evolution. For example, the SRP
ribonucleotide implicated in the cellular transportation of proteins of any living
beings, has an sRNA encoded by the RNA7s gene, which is duplicated many
times in sequences called ALU. Some of these occurrences are not funcional, are
truncated or mutated, but most of them constitute, only in primates, a major
part of the short interspersed repeats (about 300bp, and covering about 10.7%
of the human genome). ALU elements (appeared in the evolution of primates
between 60 and 70 millions of years ago), once repetitively inserted in existent
genes, may alter the rate of protein production, a parameter considered funda-
mental for the development of various biological characteristics. They may in
fact become new exons, meaning new information carried by mRNA outside the
nucleus. ALU sequences are more abundant in human organisms than in others,
so that often they are helpful to distinguish human DNA from mouse DNA.
They are implicated in cancer and in several hereditarian diseases as well.

A final example we would like to report here, where repeat variation inside
genes is very important, is related to the fragile X syndrome (a genetic disorder
inducing mental retardation), associated to the expansion of the CGG trinu-
cleotide repeat affecting the (FMR1) gene on the X chromosome. Depending on
the length of the CGG repeat, an allele may be classified as normal (unaffected
by the syndrome), a premutation (at risk of fragile X associated disorders), or a
full mutation (usually affected by the syndrome).

Analyzing the presence of repeats in genes may therefore be important for
studies of population genetics of human beings and the evolution of primates.
Here we present a bioinformatic investigation on genomic repeats, along the
line of a recently introduced computational genomic approach based on dic-
tionary [5,4,14,9], where we look at multioccurring genetic motifs as elements
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in common among (e.g., paralog) genes, and as an abstract representation of
genomes, in order to highlight specific string properties. Both views are based
on graph representations. A brief and basic introduction to the genome structure
and functions is given in the next section, followed by a computational analysis
of genome repeats of three specific organisms, where the longest repeats appear
to occur in genes. A recent approach employing repeat based gene networks is
recalled in section 4, along with a few interesting preliminary results from work
in progress [6], while a discussion about these results and some open problems
concludes the paper.

2 Biological Background

The genome contains i) structural genes, transcribed into messenger RNA
(mRNA) and then translated into (possibly more than one) protein, ii) non-
structural genes, which are transcribed into RNA based regulatory elements, and
iii) other portions (for example, centromeres and telomeres located in the mid-
dle and at the ends of chromosomes) which are never transcribed. Centromeres,
in particular, are devoted to mechanical movements of chromosomes during cell
division (it is the location to bind, in order to carry the chromosome to the
border of eukaryotic cell): their sequence is not conserved (every organism has a
different one) but it is known to be composed by highly repetitive traits.

Structural genes in procaryotes are contiguous segments, whereas eukaryotic
genes are segmented in exons and introns (representing coding and noncoding
parts, respectively). The introns are cut off and (some of) the exons are reassem-
bled, in the nucleus, by means of the (alternative) splicing phase. In such a way,
a specific concatenation of exons (often called exome) is then translated into a
protein, while mRNA includes untranslated regions (UTR) (never translated into
protein). One of the main result achieved within the ENCODE project has been
the annotation of isoforms for human genes, i.e., the annotation of genes with
their (multiple) products due to alternative splicing (a key mechanism in tran-
scription). Main processes including transcription and translation are depicted
in Figure 1, where it is reported how genomic information is copied into different
types of coding and non-coding RNAs (by means of the transcription phase).
Some RNA molecules are called ncRNAs and have different functions, such as
serving aminoacids to the ribosomes (machineries which synthesize proteins), by
tRNA, or performing the splicing process (in Figure 1, these are called “other
RNA”). According to well known data1, most of the RNA retrieved in the cells is
rRNA (approximatively 80% of total RNAs, especially in rapidly growing mam-
malian cells, e.g., cultured HeLa cells), while the rest of types is present in small
proportions (15% tRNA, 3% mRNA, 2% regulatory or other RNAs) which vary
from cell to cell. However, the protein-coding mRNA in general constitutes only
a small portion of the total RNA.

Single strands of mRNA carry the genomic information outside the cell nu-
cleus, where it is transformed into pre-mRNAs, which is then processed in the

1 See for example http://www.ncbi.nlm.nih.gov/books/NBK21729/
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Fig. 1. A sketch to visualize how genomic information guides the assembly of proteins,
by means of different types of RNA molecules

cell nucleus to become (mature) mRNAs. This process consists of three phases: a
post-trascriptional capping where a modified G is attached to the 5′-end, a step-
by-step removal of introns present in the pre-mRNA and an (alternative) splic-
ing of the exons (performed by splicesomes), and a final (post-transcriptional)
polyadenylation (elongation by a polyA) at the 3′-end. Such a targeted informa-
tion is moved to the cytoplasm, where the translation into a protein is performed
by ribosomes, according to the genetic code, which associates three-letter words,
called codons, to single amino acids (basic protein constituents). Different codons
may code for the same amino acid. Transcription is activated by molecular signals
(such as hormones), which interact with the regions where promoters, switchers,
enhancers, and protein binding sites are located. Enhancers may be located up-
stream, downstream, or even within the gene they control, and increase the rate
of transcription.

Recent discoveries from ENCODE have changed our previous characteriza-
tion of genic and inter-genic regions. Indeed, 8,801 small RNAs (sRNAs) and
9,640 long non-coding RNAs (lncRNAs) were discovered in relation to human
genes, together with about 1,600 (22-nucleotide-long) microRNAs (miRNAs),
that function in the post-transcriptional regulation of gene expression by bind-
ing to target mRNAs, and regulate the translation via translational repression
or target degradation [1]. Despite miRNAs have been found only in eukaryotes,
we can observe the mechanism of antisense RNA regulation in phages, plasmids
and bacteria [22], confirming that this level of regulation is widespread and as
important as protein regulation. In particular, untranslated RNAs consisting of
50 to 400 bases have regulatory function in protein synthesis of bacteria, where
they regulate mRNA transcription via base-pairing interactions [11]. In mam-
malians, miRNAs may target about 60% of genes [10], while all sRNAs (and
miRNAs) are known to regulate multiple genes [19]. The above considerations
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bring our attention on studies focused on identification and quantification of
genomic repeats (longer than 20), along with their relative presence and multi-
occurrence in encoding regions, where common repeats seem to represent a form
of communication among genes [20].

3 Repeat Analysis

According to a first simplification, genomes may be linearized, and analyzed by
synthetic methods just as long sequences. Along with this natural approach,
recent alignment-free methods, where a systemic view replaces a sequence local
analysis, are based on empirical studies of frequencies of DNA k-mers in whole
genomes [7,23,18]. Infogenomics is a methodology [5] based on the analysis of
dictionaries of all k-mers occurring in a genome. Main ideas of this approach have
been proposed by V. Manca in [14]. Briefly, given an alphabet Γ = {a, t, c, g}
and a genome G (seen as a string over Γ ), we call k-genomic dictionary Dk(G)
the set of all its k-mers, which corresponds to the bipartition Hk(G) ∪ Rk(G),
where all k-mers occurring exactly once (called hapaxes) are collected in Hk(G)
and all the others (occurring at least twice, and called repeats) in Rk(G).

In abstract terms, any genomic string corresponds to such a bipartition. An
interesting open question is how many other strings have the same bipartition
of k-mers, as well as which are the string operations allowing to get them from
the original one. If we add some information to the hypothesis, and we start
from having the function (also called k-gram profile) associating k-mers to their
corresponding number of occurrences in the genome, then the question was posed
by Ukkonen in his seminal paper [21], and solved by Pevzner in [16]. The question
has been formulated by a graph problem, the solutions as Eulerian paths, and
the only two types of string operations keeping invariant the k-gram profile have
resulted in transpositions and rotations. On the other hand, the question which
starts from having the genomic bipartition (or a generalized h-bipartition, for
a given threshold h, which separates strings occurring less than h times from
strings occurring more than h times) is still open, and may be translated into a
graph problem as well. Some preliminary results may be found on the variant,
where, given a genome, we look for the characterization of other genomes having
the same set of k-hapaxes 2.

In purely biological terms, in the human genome, where coding sequences
cover less than 3%, repeats (of “significant length”) account for more than 50%.
In general, they are known to fall into five different classes [12]: i) transposon-
derived repeats, often referred to as interspersed repeats, which may be dis-
tinguished in SINEs (short interspersed elements, 100-300bp long) and LINEs
(6,000-8,000bp long interspersed elements), both of them are non-viral trans-
posons randomly distributed in the genome; ii) inactive (partially) retroposed
copies of cellular genes (including protein coding genes and small structural
RNAs), usually referred to as processed pseudogenes; iii) simple sequence re-
peats (SSR), consisting of direct repetitions of relatively short k-mers such

2 Manuscript in preparation, available on request to the first author.
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as poly(A), poly(CA) or poly(CGG); iv) segmental duplications, consisting of
blocks of around 10,000–300,000bp that have been copied from one region of the
genome into another region; and v) blocks of tandemly repeated sequences (such
as the case of centromeres, and telomeres, the short arms of acrocentric chro-
mosomes). All the repeats described above are present in different proportions
in every organism, and are (especially SSR) commonly assumed to be located in
non-coding regions, while genetic portions are considered comprised of unique
sequences.

The issue investigated in the following is related to the distribution (especially
inside genes) of significantly long repeats. The exact number of different repeats
of length up to about 20, for 12 organisms, together with a comparison with the
randomly permuted genomic sequences, has been carried out in [5], where non-
random (i.e., evolutionally selected) repeats turned out to be clearly present in
real genomes yet for lengths greater than 12. For the genomic sequences we have
investigated, having lengths from 490,885 to 247,000,000 bp, longest genomic
repeats reach lengths of thousand bases, while randomly permuted sequences do
not contain repeats longer than 22 [5,9]. Hence, we have observed that numerous
long repeated motifs occur in genomic sequences, whereas repeat dictionary sizes
have been compared among different genomes and repeat lengths [5]. In the

Fig. 2. Longest repeat variation in the chromosome IV of S. cerevisiae. For 12,000bp
long windows, shifted along the genome every 300bp, one may see both the length
variation of the longest repeat in each window as a red curve (top diagram), and the
portion of the window covered by encoding sequences as a blue curve (bottom diagram).
Green (vertical) line denotes the presence of a centromere, where we have no genes and
repeats long only 100-150 base pairs. The same lack of (genes and) long repeats may
be observed inside the telomeres, located at the extremal regions, while picks occur in
the genes, covering more than 70% of the chromosome, and having an average length
of 1,435bp
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following we report the distribution of long repeats along genomic sequences of
three specific organisms, and efficiently visualize the results for both the genomes
and the entire chromosome.

In Figure 2, the diagram shows longest repeat variation inside chromosome IV
of Saccaromyces cerevisiae (which is a yeast, an example of unicellular eukary-
ote, having 17 chromosomes, out of which chromosome IV is the longest one).
Windows of length 12,000bp have been shifted of 300bp along the whole genomic
sequence, to check the presence of longest repeats (top of Figure 2) in genomic
traits, of which it is reported (bottom of Figure 2) the percentage of encoding
parts. It has been a surprising result to find out that longest repeats are in most
cases located in genes, rather than in inter-genic regions (such as centromeres
and telomeres) in biology commonly considered as those with highly repetitive
traits. Similar investigations, and similar interesting results, may be observed for

Fig. 3. Longest repeat variation inside the (circular) genomes of N. equitans (top) and
E. coli (bottom). For 12,000bp long windows shifted along the genome each 300bp, one
may see both the length variation of the longest repeat in each genomic window as a red
curve, and the portion of the window covered by encoding sequences as a blue curve.
In both cases picks of longest repeats fall inside genes. Interestingly, for N. equitans,
the longest repeats occur in the region containing the origin of genome replication
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the (circular) genomes of Nanoarchaeum equitans (a symbiont, having one of the
shortest and more compact genomes, with the highest coding density) and Es-
cherichia coli (a bacterium model, a prokaryote having one single chromosome)
having no centromeres, and having extremal regions associated to the origin of
replication (conventionally considered the starting point, at length zero, of the
genome).

In Figure 3, we notice that significantly long repeats may be found mainly
inside the encoding regions. In the extremal parts instead, where it is known
there are no genes (which cover in both cases about 90% of the genome, and
have respectively an average length of 787bp and 1,005bp), we have found a
different and interesting behaviour. In N. equitans’s genome, the longest repeats
are located in the region containing the origin of replication. It is a particular
parasitic organism, with a minimal number of genes (and very few paralogs)
essential for survival and having very different functions (i.e., sequences): the
longest repeat in genes is in fact 53bp long. However, even in this case, most
repeats (of any length) have been found principally inside genes, as one may
observe in Figure 4.

Fig. 4. Repeat variations inside the (circular) genome of N. equitans, where 12,000bp
long windows have been shifted along the genome each 300bp. In the diagram, one may
see the portion of each window covered by encoding sequences as a blue curve (top),
and the length of repeats (bottom) respectively, contained inside genes (red rectangles)
and outside genes (green rectangles)

4 Gene Networks

Motivated by the results discussed in the previous section, we wonder which
genes contain (possibly common) long repeats. A network-based approach to in-
vestigate genetic repeats has been given by repeat sharing gene networks, defined
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in [5] by a collection of genes connected if containing in their own sequence at
least one k-repeat in common. More precisely, we define a family of networks Nk

(parameterized with a natural number k) which have their gene-nodes connected
by edges, labelled by the k-repeats shared between the two corresponding gene
sequences. For example, in Figure 5 a gene network is reported for N. equitans, for
repeat length k = 30, where the 30bp long repeats common to connected genes
are pointed out for a specific clique. A surprising feature of these networks is
that each of their complete clusters (or cliques) has at least one repeat occurring
on all its edges, with also the same reading frame in all the involved genes. In the
case pointed out in Figure 5, such a repeat is CCGGAGGTCCCGGGTTCGAATCCCGGCGGG.

Work in progress [6] is analyzing the structure of these networks (with stan-
dard methods of graph theory and gene ontology techniques) for our three spe-
cific organisms (N. equitans, E. coli, and S. cerevisiae), and interesting regularity
properties have been found, despite the diversity of the three organisms and of
their genome structure. For example, the relative (with respect to the number
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Fig. 5. Repeat sharing gene networks of N. equitans for repeat length k = 30
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of genes involved in the network) variation of the number of genes involved in
cliques, with respect to k, appears the same for the three organisms. Moreover,
it has been computed that relatively few genes are involved in cliques, and the
number of cliques in the network varies (with k) similarly for the three organisms.

As a further empirical result from the study currently developed on these
organisms [6], we have discovered that k > 30 is the condition to have networks
(and cliques) of paralogs and pseudogenes, while we have biologically significant
networks (where one may search for size of words of an hypothetic genomic or
genetic language) within the k-values range of 20 ≤ k ≤ 30. In particular, the
study has been carried out by means of an analysis of complete clusters (cliques
such as those in Figure 6), which cover all the genes of a network with k high
enough (over 30).

Fig. 6. Different cliques found in the family of repeat sharing gene networks of E. coli

5 Conclusions

Repeat motifs covering most part of regulative DNA have been discovered very
important to understand both the transcriptional process and the evolution
mechanisms. The comprehension of their formation and distribution could justify
crucial differences between species. In this paper a systematic analysis of more
significant (in terms of length) genomic repeats has been performed and applied
to three specific organisms. In all cases very long repeats have been found inside
the coding regions, despite the common believe that repetitive regions are mainly
inter-genic. Further computational experiments have to be carried out to con-
firm this result on more complex genomes. Ranges of interest for repeat lengths
k have been identified as well, by means of a characterization of repeat sharing
gene networks, a method of sequence analysis currently under investigation [6].

As a future work, we would like to apply the infogenomic methodology to bet-
ter understand the intricate links between promoters and corresponding genes.
A first extension of the above repeat analysis into genetic portions could com-
prehend also the flanking 5′-UTRs, non-coding parts which usually control the
stability of mRNA and the efficiency of its translation into a protein. A sys-
tematic analysis of transcripts is indeed essential to identify regulatory regions,
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where the transcript may be considered as the basic unit of heredity. The bi-
partition of a genomic dictionary in hapax and repeat words corresponds to
a representation of genomic information, and the repeat sharing gene networks
(where genes are linked if having common factors) may be of interest to recognize
similarities among genes, such as conserved miRNA binding sites.

These networks will be further investigated in their structure, for example by
methods from the Random Matrix Theory (which, given the incidence matrices
associated to networks, change the eigenvalue gap distribution from Gaussian
to a power law), and may be investigated in some of their variants, even hav-
ing biomedical applications, such as those defined over the exome rather than
over the whole genes. Finally, another research line will concern with the inter-
genomic character of hapaxes and repeats. The question is about which hapaxes
(resp. repeats) of a given genome occur in other genomes of a certain class by
keeping their status of hapax (resp. repeat) when compared to the new context
of words.

Let us finally point out that the ENCODE and the infogenomic projects
share a dictionary based view of genome analysis and an attempt to gather
global, holistic information contained in genomes, in order to understand how
genomes orchestrate coordinated processes to keep alive the cell. Recent ad-
vances of computational genomics in these contexts open up new perspectives of
genome analysis, focused on the understanding of a genomic code which explains
how promoters communicate with corresponding (proximal or distal) genes, with
the aim to generate a sequence based dynamical model for mechanisms of gene
activation and regulation [9]. We expect that systemic alignment-free methods
can be helpful in cases where alignment methods fail. For example, similarity of
sequences which code for proteins having very similar functions could be revealed
by a dictionary based score, even in those cases where the alignment score is very
low. Also, on the other hand, such methods could suggest suitable ranges of pa-
rameters to set, for BLAST or other alignment based algorithms, when looking
for similar sequences (for example, common words of length 30 seem enough to
find paralogs and pseudogenes, which are very similar in their sequence struc-
ture). Finally, combinatorial and algorithmical results from stringology field may
be exported to investigate, in terms of dictionaries, long (real) strings, in order
to identify some biologically significant characterization of genomes.
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Abstract. We examine the extent to which well orders satisfy the prop-
erties of local computability, which measure how effectively the finite
suborders of the ordinal can be presented. Known results prove that
all computable ordinals are perfectly locally computable, whereas ωCK

1

and larger countable ordinals are not. We show that perfect local com-
putability also fails for uncountable ordinals, and that ordinals α ≥ ωCK

1

are θ-extensionally locally computable for all θ < ωCK
1 , but not when

θ > ωCK
1 , nor when θ = ωCK

1 ≤ α < ωCK
1 · ω.

1 Introduction

Local computability represents an effort to give effective presentations of struc-
tures, such as the fields of real and complex numbers, which admit computation
on their elements by simple algebraic algorithms and therefore, despite their un-
countability, feel as though they ought to have computable presentations. Full
definitions and much more analysis are given in [3,4,5], and we offer some ba-
sic definitions below. Local computability applies to linear orders as well as to
fields and other structures, and the intention of this work is to investigate local
computability for ordinals, the most ubiquitous linear orders in mathematical
logic. We started with a particular eye on uncountable ordinals, but soon found
large (noncomputable) countable ordinals to be of similar interest. For example,
can we use the ideas and terminology of local computability to draw distinc-
tions between noncomputable countable ordinals and uncountable ordinals? Or
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between limit and successor ordinals? Or between cardinals and noncardinals?
In this paper, we give almost complete negative answers to these questions. All
noncomputable ordinals are α-extentionally locally computable (defined below)
for α < ωCK

1 and are not β-extensionally locally computable for β > ωCK
1 . If

ωCK
1 ≤ γ ≤ ωCK

1 · ω, then γ is not ωCK
1 -extentionally locally computable, but it

remains open whether there could be a larger ordinal which is ωCK
1 -extentionally

locally computable.
We now give the background definitions. In this context, one typically works

with a fixed class of structures which is closed under taking finitely generated
substructures. For example, one might consider the models of a ∀-axiomatizable
theory T or (as we do here) a nonaxiomatizable class of models such as the
ordinals.

Definition 1. A simple cover of a structure S is a countable collection A of mod-
els {Ai}i∈I of T , each generated by a finite tuple ai, such that every finitely gen-
erated substructure of S is isomorphic to some Ai and every Ai embeds into S.

A simple cover is computable if every Ai ∈ A is a computable structure with
domain an initial segment of ω.

A simple cover is uniformly computable if the sequence {(Ai,ai)}i∈I can be
given uniformly computably, including a strong index for each ai.

Definition 2. A cover of S consists of a simple cover A of S along with sets IAij
(for all Ai,Aj ∈ A) of injective homomorphisms f : Ai ↪→ Aj satisfying:

– For all finitely generated substructures B ⊆ C ⊆ S, there exists i, j ∈ ω,
f ∈ IAij , and β : Ai

∼= B and γ : Aj
∼= C with β = γ ◦ f .

– For all k and m and g ∈ IAk,m, there exist finitely generated substrutures
D ⊆ E ⊆ S and isomorphisms δ : Ak

∼= D and ε : Am
∼= E with δ = ε ◦ g.

– The Amalgamation Property: for every i, j, k and all maps f ∈ IAij and

g ∈ IAik, there exists m and maps h ∈ IAjm and p ∈ IAkm with p ◦ g = h ◦ f .

We often refer to the elements of A as the objects of the cover and the elements
of the IAij as the maps of the cover.

A cover is computable if A is a uniformly computable simple cover of S and
there exists a c.e. set W such that, for all i, j ∈ ω,

IAij = {ϕe �Ai : 〈i, j, e〉 ∈ W}.

The structure S is locally computable if it has a uniformly computable cover.

In past articles on local computability, the Amalgamation Property has not
always been included in the definition of a cover. Therefore, in the interest of
clarity, we shall occasionally remind the reader that we are working in the context
of this property.

Definition 3. Let A be a cover of a structure S. An Ai ∈ A matches a sub-
structure B ⊆ S extensionally if there is an isomorphism β : Ai

∼= B satisfying:
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– For every finitely generated C with B ⊆ C ⊆ S, there exists j ∈ ω, f ∈ IAij ,
and γ : Aj

∼= C with β = γ ◦ f .
– For every m ∈ ω and g ∈ IAi,m, there exists an E ⊆ S and ε : Am

∼= E with
B ⊆ E and β = ε ◦ g.

The map β is termed an extensional match between Ai and B.

Definition 4. Let A be a cover of a structure S. Every isomorphism β : Ai
∼= B,

where B ⊆ S is a finitely generated substructure, is 0-extensional.
For an ordinal θ > 0, an isomorphism β : Ai

∼= B is θ-extensional if:

– For every finitely generated C with B ⊆ C ⊆ S and every ordinal ζ < θ, there
exists j ∈ ω, f ∈ IAij , and a ζ-extensional γ : Aj

∼= C with β = γ ◦ f .

– For every m ∈ ω, g ∈ IAi,m, and ordinal ζ < θ, there exists E ⊆ S and
ζ-extensional ε : Am

∼= E with B ⊆ E and β = ε ◦ g.

A uniformly computable cover A of S is θ-extensional if for every Ai ∈ A there is
a θ-extensional isomorphism β : Ai

∼= B to some finitely generated substructure
B ⊆ S and for every finitely generated substructure E ⊆ S there is a θ-extensional
isomorphism ε : Aj

∼= E from some Aj ∈ A.
If such a uniformly computable cover exists, we say that S is θ-extensionally

locally computable or, more simply, θ-extensional.

Definition 5. Let A be a uniformly computable cover for a structure S. A setM
is a correspondence system for A and S if it satisfies:

– Each element of M is an embedding of an Ai into S.
– For every Ai ∈ A, there exists a β ∈M with domain Ai.
– For every finitely generated substructure B ⊆ S, there exists a β ∈ M with

range B.
– For every Ai ∈ A, every β ∈M with domain Ai, and every finitely generated

substructure C ⊆ S with β(Ai) ⊆ C, there exists Aj ∈ A, γ ∈ M with
domain Aj and image C, and f ∈ IAij with β = γ ◦ f .

– For every Ai ∈ A, every β ∈ M with domain Ai, and every Am ∈ A and
every g ∈ IAi,m, there exists ε ∈M with domain Am with β = ε ◦ g.

If S has a uniformly computable cover A with a correspondence system M , then
we say S is ∞-extensionally locally computable.

However, the definition applies perfectly well to countable structures, and Miller
proved the following connection between local computability and computable
presentability for countable structures (cf. [5,4]).

Theorem 1. Let S be a countable structure. S is isomorphic to a computable
structure if and only if S has an ∞-extensional computable cover (with the AP).

This equivalence helped to establish ∞-extensionality as the ultimate goal, when
one desires to prove that a particular structure of arbitrary cardinality is “nicely
presentable.” It also justifies our decision to consider only covers with the AP.
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2 Failures of Extensionality for Ordinals

We now show that having sufficiently high ordinal levels of extensionality is suffi-
cient for ∞-extensional local computability. We work in Lω1,ω allowing countable
conjunctions and disjunctions, and we use the standard notation Σα for α < ω1
to calibrate the complexity of our formulas. (See [1] for additional background
on this logic.)

Lemma 1. Let A be a cover of a structure S. Suppose Ai ∈ A and ψ : Ai → C
is a θ-extensional map onto a substructure C of S, and let h be an automorphism
of S. Then h ◦ ψ is also θ-extensional.

Proof. We induct on θ. For θ = 0, if ψ is 0-extensional, it is an injective homo-
morphism, and therefore so is h ◦ ψ. Thus h ◦ ψ is 0-extensional.

For θ > 0, if f ∈ IAij lifts to an inclusion C ⊆ D via ψ and a ζ-extensional
map ϕ (for any ζ < θ), then f also lifts to the inclusion h(C) ⊆ h(D) via h ◦ ψ
and the map h ◦ ϕ. By induction on θ, the map h ◦ ϕ is also ζ-extensional. It
follows that h ◦ ψ is θ-extensional.

Lemma 2. Suppose that A is a computable cover of a structure S, and that
a is an n-tuple from an object Ai ∈ A. If ϕ and ψ are both θ-extensional
maps from Ai into S, then the tuples ϕ(a) and ψ(a) satisfy exactly the same
Σθ-formulas in S.

We shall sometimes refer to the set of these Σθ formulas as the Σθ-theory of ai

in A, and will speak of ai satisfying various formulas in A. The lemma can
be seen as saying that this notion is well-defined: in the theory of the cover
A, ai satisfies exactly those Σθ formulas that its image, under an arbitrary θ-
extensional map, satisfies in S. (Alternatively, one can define the Σθ-theory of ai

in A by using ∃-quantifiers to refer to the existence of embeddings f ∈ IA from
Ai into other objects Aj of A, such that (Aj , f(ai)) satisfies the formula inside
the ∃-quantifier. This is natural, and is equivalent to the above definition.)

Proof. For θ = 0, this follows from ϕ and ψ both being 0-extensional, i.e., being
embeddings of Ai into S. For θ > 0, suppose

S |=
∨
k∈ω

(∃y) [Pk(ψ(a), y)]

where each Pk is a Πζk -formula with ζk < θ. Fix k ∈ ω and y ∈ S such that
S |= Pk(ψ(a), y). The inclusion range(ψ) ⊆ range(ψ)∪ {y} in S must be the lift
of some f in some IAij , via ψ and some ζk-extensional ψ′ : Aj → range(ψ) ∪ {y}.
But this f must also lift to an inclusion range(ϕ) ⊆ D in S via ϕ and some ζk-
extensional ϕ′. By induction, the Πζk formula Pk(x, y), being known to hold of
(ψ′(f(a), y) = (ψ(a), y), must also hold of (ϕ′(f(a)), z) = (ϕ(a), z), where z :=
ϕ′(ψ′−1(y)). Thus ϕ(a) also satisfies

∨
k(∃y) [Pk(x, y)]. Finally, by a symmetric

argument, if ϕ(a) satisfies this Σθ formula, then so does ψ(a).
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Several definitions of Scott rank exist in the literature (cf. [1]). For our pur-
poses, only the following property of the Scott rank (and not the exact definition)
matters: whenever S is a countable structure of Scott rank ζ and x and y are
n-tuples of elements from S (for any n) which satisfy exactly the same Πζ for-
mulas in n variables, there must exist an automorphism of S mapping each xi
to the corresponding yi.

Lemma 3. Fix ordinals θ and ζ with θ > ζ. Let A be a θ-extensional cover of
a countable structure S with Scott rank ζ. Suppose Ai ∈ A and ψ : Ai → S is a
ζ-extensional map. Then ψ is also θ-extensional.

Proof. Since A is a θ-extensional cover, we know that Ai is the domain of some
θ-extensional map ϕ : Ai → S. Let a be a finite tuple generating Ai. Then by
Lemma 2, the tuples ϕ(a) and ψ(a) satisfy exactly the same Πζ -formulas in S.
Since S has Scott rank ζ, there must be an automorphism h of S mapping ϕ(a)
onto ψ(a). But then h ◦ ϕ = ψ since a generates Ai, and so by Lemma 1, the
map ψ is also θ-extensional.

Proposition 1. For a countable structure S, the following are equivalent.

1. The structure S is computably presentable.
2. The structure S is perfectly locally computable (as defined in [5]).
3. The structure S has an ∞-extensional computable cover with the Amalga-

mation Property.
4. There is an ordinal θ strictly greater than the Scott rank of S, such that S

has a θ-extensional computable cover with the Amalgamation Property.

Proof. The equivalence of (1), (2), and (3) is shown in [4, Thm 6.3]; some of it
was originally proven by Miller and Mulcahey in [5]. Since (3) =⇒ (4) is trivial,
we need only show that (4) =⇒ (3). Fix a θ-extensional computable cover A
of S. We claim that the set M of all θ-extensional maps ψ of objects Ai into S
must be a correspondence system. Clearly every Ai is the domain of such a map
and every finitely generated D ⊆ S is the image of such a map. Moreover, for
any ψ ∈M , say with domain Ai, and every f ∈ IAij , we can lift f to an inclusion
via ψ and a ζ-extensional ϕ (since ζ < θ), and by Lemma 3, ϕ is also in M .
Likewise, every inclusion of range(ψ) is the lift of some f ∈ IAij , for some j, via
some ζ-extensional ϕ, and again, by Lemma 3, this ϕ actually lies in M .

Corollary 1. For every θ > ωCK
1 , the ordinal ωCK

1 is not θ-extensionally locally
computable.

Proof. The Scott rank of the ordinal ωCK
1 (as a linear order) is exactly ωCK

1 .
Hence, as a countable structure with no computable presentation, ωCK

1 cannot
be θ-extensionally locally computable for any θ > ωCK

1 , by Proposition 1.

In Proposition 2 and Theorem 3, we strengthen this corollary to cover some of
the case θ = ωCK

1 . The situation for θ < ωCK
1 will be handled in Theorem 4, and

the rest of the case θ > ωCK
1 in Theorem 2.
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Lemma 4 (Folklore; cf., e.g., [1]). For each finite sequence of ordinal α0 <
· · · < αk < ωCK

1 , there is a computable infinitary formula λ(x0, . . . , xk) (in the
language of linear orders) such that for every ordinal γ, γ |= λ(β0, . . . , βk) if and
only if βi = αi for each i ≤ k.

Proposition 2. There is no ωCK
1 -extensional computable cover (with AP) of

the ordinal ωCK
1 itself.

Proof. Suppose A were such a cover. By Theorem 1, if there were a correspon-
dence systemM for A and ωCK

1 , then there would be a computable copy of ωCK
1 ,

yielding a contradiction. Our goal is to define such a correspondence system M .
For any Ai ∈ A with Ai = a, let ψ and ψ′ be ωCK

1 -extensional maps from Ai

into ωCK
1 . The tuples ψ(a) and ψ′(a) satisfy the same ΠωCK

1
formulas in ωCK

1 .

By Lemma 4, this forces ψ and ψ′ to agree on a, and hence on Ai. Thus, every
Ai ∈ A is the domain of exactly one ωCK

1 -extensional map ψi into ωCK
1 . In fact,

for every Ai, there is a δi < ω
CK
1 such that ψi is the unique δi-extensional map

of Ai into ωCK
1 . (We assume δi is least with this property.)

Let M be the collection of all ωCK
1 -extensional maps ψi. We claim M is a

correspondence system. The first three properties of a correspondence system
follow immediately from the fact that A is an ωCK

1 -extensional computable cover.
To verify the fourth property, fix Ai ∈ A and β ∈ M with domain Ai. Since

β is ωCK
1 -extensional, β = ψi. Fix a finite C such that ψi(Ai) ⊆ C ⊆ ωCK

1 . By
Lemma 4, let θ < ωCK

1 be such that C is defined by a Σθ formula in ωCK
1 . Using

the fact that A is an ωCK
1 -extensional cover, fix Aj , f ∈ IAij and an θ-extensional

map γ such that β = ψi = γ ◦ f . Since C is defined by a Σθ formula, it follows
that δj ≤ θ and hence γ = ψj . Therefore, γ is ωCK

1 -extensional and hence γ ∈M
as required.

The fifth property follows by an similar argument which we leave to the reader.

Theorem 2. If α > ωCK
1 , then α has no (ωCK

1 + 1)-extensional computable
cover with the Amalgamation Property. Indeed, no computable cover of such an
α can have any object with an (ωCK

1 + 1)-extensional map into α whose image
contains ωCK

1 .

Proof. We show that from such a cover A, we could construct a computable
presentation S of ωCK

1 . Let Ai0 be the object with an (ωCK
1 +1)-extensional map

ϕ0 such that ϕ0(x0) = ωCK
1 for some x0 ∈ Ai0 (hereafter fixed). The argument

in a nutshell is that we can watch for embeddings g ∈ IA mapping Ai0 into
other objects Aj of A. When we find such a g, it must lift to an inclusion in α
via ϕ0 and some ωCK

1 -extensional ϕ1, and so every element y < g(x0) in Aj is
forced to map to some ordinal < ϕ1(g(x0)) = ωCK

1 in α. Since the map is ωCK
1 -

extensional, Lemma 2 shows that in the theory of A, y satisfies some identifying
formula from Lemma 4. We then use the AP to amalgamate Aj together with
the portion of S already built, and either we see that y maps to some element
already in S, or else we add a new element to S to correspond to this y. Since
every ordinal < ωCK

1 corresponds to some such y in some such Aj , the S built
this way is actually a copy of ωCK

1 .
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We start building S by setting B0 = {y ∈ Ai0 : y < x}, letting S0 be the
(possibly empty) linear order {0, 1, . . . , |B0| − 1} under <, and defining p0 :
S0 → B0 to be an order-isomorphism.

At stage s + 1, we begin with a finite order Ss and with some sequence of
objects and embeddings from A, given effectively:

Ai0 ↪→ Ai1 ↪→ · · · ↪→ Ais ,

where each embedding ft : Ait ↪→ Ait+1 lies in IAitit+1
. By induction, we know

an isomorphism ps from Ss onto a suborder Bs of Ais , with every element of
Bs below the element xs = fs−1(xs−1) in Ais , which is the image of x0 under
(fs−1 ◦ · · · ◦ f0).

We now search through IA for the first map g0,s such that:

– g0,s ∈ IAi0,j0,s for some j0,s; and

– Aj0,s contains exactly one y < g0,s(x) which is not in range(g0,s); and
– g0,s has not been considered at any previous stage.

Such a g0,s must exist, since there are infinitely many elements of α lying below
ωCK
1 satisfying distinct computable infinitary formulas in α. Once we find the

least one, we fix it and search for amalgamations: first j1,s ∈ ω and g1,s, h0,s ∈ IA,
then j2,s ∈ ω and g2,s, h1,s ∈ IA, etc., as shown here:

Aj0,s

�
g0,s

Ai0

h0,s Aj1,s

�

g1,s

Ai1f0
� Ai2f1 f2

h1,s h2,sAj2,s

g2,s

�

� � � �
� � �

· · · ·

· · · ·

fs−1

hs−1,s

�Ais

gs,s

Ajs,s

We define is+1 = js,s and fs = gs,s, thus adding Ajs,s to the sequence Ai0 ,Ai1 , . . .
previously built. If the image of Bs under fs already contains the element ys+1 =
(hs−1,s ◦hs−2,s ◦ · · ·◦h0,s)(g0,s((y)), then we set Ss+1 = Ss and ps+1 = fs ◦ps. If
not, then we extend Ss to a larger order Ss+1 by adding one new element zs+1

to Ss, with ps+1(zs+1) = ys+1 and ps+1 = fs ◦ ps on the rest of Ss+1. The order
on Ss+1 is defined so that ps+1 remains an order isomorphism from Ss+1 into
the suborder Bs+1 = Bs ∪ {ys+1} of Ais+1 ; clearly this is compatible with the
order on Ss, and it justifies the inductive hypothesis at the next stage.

This is the entire construction, building the computable linear order S = ∪sSs.
We now present the (non-effective) inductive argument that S ∼= ωCK

1 , which
proceeds through the same stages just described. At stage 0, of course we have
an (ωCK

1 + 1)-extensional map ϕ0 : Ai0 → α, and we define ψ0 = ϕ0 ◦ p0,
embedding S0 isomorphically into ωCK

1 within α (since ϕ0(x0) = ωCK
1 , and p0

maps all elements of S0 to elements below x0 in Ai0).
Now at stage s+ 1 we chose an embedding g0,s : Ai0 ↪→ Aj0,s from IA. Since

ϕ0 is (ωCK
1 + 1)-extensional, this g0,s lifts to an inclusion range(ϕ0) ⊆ C, for

some finite C ⊆ α, via ϕ0 and some ωCK
1 -extensional map ϕ1,s sending Aj0,s

onto C. By Lemma 4, then, the unique y < g0,s(x) in (Aj0,s−range(g0,s)) must
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satisfy (in the theory of the cover A) some computable infinitary formula which
uniquely identifies one computable ordinal. Fix some θs with θs−1 < θs < ω

CK
1

large enough that this formula is Σθs .
Now we proceed along the diagram above. Each object Ait is the domain of

some (θs)-extensional map into α, as is each object Ajt,s , such that these maps
are all compatible with ϕ0. To see this, take (θs + s)-extensional maps with
domains Ai1 and Aj0,s , using (ωCK

1 + 1)-extensionality of ϕ0; then (θs + s− 1)-
extensional maps with domains Ai2 and Aj1,s , etc. Notice that for an Ajt,s with
t > 0, we may have several different such maps, depending on the path one takes
through the diagram. However, every element y from any Bt within Ait satisfies
a Σθs formula from Lemma 4, and therefore has a unique possible image in α
under these θs-extensional maps: there is only one element in α satisfying that
formula. Moreover, for such a y ∈ Bt, the same holds of the element gt,s(y) of
Ajt,s under all θs-extensional maps from Ajt,s into α. So all of these maps agree
on all elements of Bs and on their images in Ajs,s . Indeed, this remains true
even when we allow s to vary: θs will be larger for larger s, and Ajt,s may be
distinct from Ajt,s+1 , but each element of any Bt within each Ait in the diagram
at stage s+ 1 is mapped to the same element of α by all these maps at this and
all subsequent stages. So, to define ψs(z) for z ∈ Ss, we just map z into Bs using
ps, and then send ps(z) to its image in α under any one of these θs-extensional
maps. This defines ψs unambiguously on Ss, and each ψs is compatible with
ψs+1, because ps+1 restricts to ps and because we noted above that the image
of an element of Bs below the image of x has only one possible image in α under
these (sufficiently extensional) maps. So it is clear that this ψ = ∪sψs is an
embedding of S into ωCK

1 within α. Finally, for each element γ /∈ range(ϕ0) of
the linear order ωCK

1 , there is some j0 and some map g0 : Ai0 → Aj0 which lifts
to the inclusion range(ϕ0) ⊆ range(ϕ0) ∪ {γ}, and at some stage s this j0 and
this g0 will be chosen as j0,s and g0,s. At that stage, γ will become the ψs-image
of some element of Ss, and so the embedding ψ actually maps S onto ωCK

1 . Thus
S is a computable presentation of ωCK

1 , which is impossible.

It remains to decide whether an α ≥ ωCK
1 could have an ωCK

1 -extensional com-
putable cover. In the initial cases, we can answer this.

Theorem 3. If ωCK
1 ≤ α < ωCK

1 ·ω, then α has no ωCK
1 -extensional computable

cover with AP.

Proof. We sketch the proof, which mixes the techniques used for Proposition 2
and Theorem 2. Now one fixes some i0 for which Ai0 is the domain of an ωCK

1 -
extensional map ϕ0 onto the finite set α∩ {ωCK

1 · (n+ 1) : n ∈ ω}. Consider any
j and any g ∈ IAi0j . Now for every θ < ωCK

1 , every g(x) maps to ϕ0(x) by some
θ-extensional map, and so each g(x) satisfies a Σθ-formula in A stating that in
the Cantor normal form of g(x), every ωζ with ζ < θ has coefficient 0. Since this
holds for all θ < ωCK

1 , each ωCK
1 -extensional map ψ with domain Aj must send

each of these g(x) to a nonzero multiple of ωCK
1 in α. If follows that each element

y ∈ Aj with y < min(range(g)) has ψ(y) < ωCK
1 in α. By Lemma 4, each such y

satisfies a Σθ formula in A which, in all ordinals, can only be satisfied by ψ(y).
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This allows us to run the same construction that we did in Theorem 2, going
systematically through maps g ∈ IA from Ai0 into any Aj in such a way that
min(range(g)) �= min(Aj) and amalgamating those maps into the construction
to get a computable presentation of ωCK

1 , which is impossible.

3 Extensionality for Ordinals Beyond ωCK
1

Theorem 4. For each computable ordinal θ, every ordinal α has a θ-extensional
computable cover.

The full proof is too long to present in this context, but we can provide a number
of details. We state the key lemmas (in terms of the fixed computable ordinal θ),
present the proof of Theorem 4 assuming these lemmas, and end with a sketch
of the proofs of the lemmas.

Lemma 5. If linear orders S0 and S1 each have θ-extensional computable cov-
ers, then so does their sum S0 + S1.

Lemma 6. Each ordinal multiple of ωθ of the form ωθ · β (with β ≥ ω) has a
θ-extensional computable cover.

To prove Theorem 4, notice that every computable ordinal has a θ-extensional
(even ∞-extensional) computable cover. Therefore, fix a noncomputable ordinal
α and write α = ωθ · β + ρ with ρ < ωθ. Since ρ < ωθ, ρ is computable and
hence has a θ-extensional cover. Since β > ω (because α is not computable),
ωθ · β has a θ-extensional cover by Lemma 6. Therefore, by Lemma 5, α has a
θ-extensional computable cover. So Lemmas 5 and 6 imply Theorem 4.

To prove Lemma 5, fix θ-extensional computable covers A0 and A1 of S0 and
S1 respectively. The objects in the θ-extensional computable cover of S0 + S1

have the form A0
i +A1

j where A0
i ∈ A0 and A1

j ∈ A1, with the caveat that one of

A0
i or A1

j is allowed to be empty. The injective maps from A0
i + A1

j to A0
k + A1

	

are defined in the obvious way, and one checks that this cover is θ-extensional.
The proof of Lemma 6 is notationally cumbersome, but the fundamental idea

is that θ-extensionality cannot distinguish between gaps in a linear order of
length ωθ · γ for varying nonzero values of γ. Each Ai in our θ-extensional cover
A of ωθ ·β, is a finite linear order of the form 1 < 2 < · · · < n, for some n, together
with an n-tuple 〈ξ0, ξ1, . . . , ξn−1〉, called its label, in which each ξi ∈ ωθ · 2. If
ξi < ω

θ, then ξ indicates that the gap between i and i + 1 (or the gap to the
left of 1 if i = 0) in Ai should have length ξi. If ξi = ωθ + ρ, then it indicates
that this gap has length ωθ · γ + ρ for some γ ≥ 1. (Note that the labels are
not formally part of Ai. They are merely a denotation to help us keep track of
which injective maps to include in IAij .)

For each n and each label 〈ξ0, . . . , ξn−1〉, we include an object Ai of length
n with this label in A. Let Ai have domain {1, . . . , n} with label 〈ξ0, . . . , ξn−1〉
and Aj have domain {1, . . . ,m} with label 〈η0, . . . , ηm−1〉. We include an order
preserving map f : {1, . . . , n} → {1, . . . ,m} in IAij if and only if the labels
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match in the sense that ξ0 = η0 + · · · + ηf(1)−1 and for all 0 < k < n, ξk =
ηf(k) + ηf(k)+1 + · · ·+ ηf(k+1)−1. It is straightforward to check that this process

defines a computable cover of ωθ · β. To check that this cover is θ-extensional
takes longer and will not be presented here. The key fact is the following lemma,
which can be established by induction on ζ. Essentially it says that ζ-extensional
maps cannot distinguish one nonzero multiple of ωζ from another, so that an
object with (say) two elements 1 < 2 and a gap labeled ωζ · μ+ ρ between them
(where ρ < ωζ) can be used to cover two elements of the ordinal ωθ ·β by a map
ψ, provided that ψ(1) + ωζ · μ+ ρ = ψ(2) for some μ which equals 0 iff μ = 0.

Lemma 7. Fix ζ ≤ θ and let ψ : Ai → ωθ · β be an increasing map. Assume
Ai has domain {1, . . . , n} and label 〈ξ0, . . . , ξn−1〉. Write each ξk = ωζ · μk + ρk
with ρk < ω

ζ . If there are ordinals μk, with μk = 0 if and only if μk = 0, such
that

ψ(k) = (ωζ · μ0 + ρ0) + (ωζ · μ1 + ρ1) + · · · + (ωζ · μk−1 + ρk−1),

then ψ is a ζ-extensional map from Ai into ωθ · β.

This completes the proof sketch for Theorem 4. The full proof is quite technical
and is omitted here. We believe that Theorem 4 ought to be a corollary to a
more general result connecting effectiveness properties of the θ back-and-forth
types of a structure with its being θ-extensionally locally computable. We invite
the interested reader to find the deeper connection that has thus far eluded us.

With Theorem 4, the general question of θ-extensionality of ordinals α is now
settled in almost all cases. When α < ωCK

1 or θ < ωCK
1 , the answer is positive, by

Proposition 1 and Theorem 4. When ωCK
1 ≤ α < ωCK

1 ·ω, the answer is negative
for every θ ≥ ωCK

1 by Proposition 2 and Theorem 3. When α ≥ ωCK
1 · ω, the

answer is negative for every θ > ωCK
1 by Theorem 2. The only case remaining

open is that in which θ = ωCK
1 and α ≥ ωCK

1 · ω.
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Abstract. In connection with uniform computability and intuitionistic
provability, the strength of the sequential version of Π1

2 theorems has been
investigated in reverse mathematics. In some examples, we illustrate that
it occasionally depends on the way of formalizing the Π1

2 statement, so
the investigation of sequential strength demands careful attention to the
formalization. Moreover our results suggest the optimality of Dorais’s
uniformization theorems.

1 Introduction

Definition 1 (Sequential version). The sequential version of a Π1
2 statement

having the form:

(♠) ∀X (ϕ(X) → ∃Y ψ(X,Y ))

is the statement

∀〈Xn〉n∈N (∀n ϕ(Xn) → ∃〈Yn〉n∈N∀n ψ(Xn, Yn)) ,

where X is possibly a tuple of set (or function) variables. Throughout this paper,
we denote the sequential version of a statement T having a form (♠) as Seq(T).

Many mathematical statements have the form (♠), and their sequential forms
have been investigated in order to reveal the lack of uniformity of their proof in
classical subsystems of second-order arithmetic (e.g., [2,3,6]). For instance, the
intermediate value theorem is provable in RCA0, but the sequential version of
it is equivalent to WKL (weak König’s lemma), and so, not provable in RCA0.
This is of course caused by the necessity of non-uniformity in the proof in RCA0.

� Makoto Fujiwara is supported by a grant from Shigakukai.
�� Keita Yokoyama is supported by a Japan Society for the Promotion of Science post-

doctoral fellowship for young scientists, and by a grant from the John Templeton
Foundation.
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However, the strength of the sequential version may increase for another reason.
In this paper, we concentrate our attention on Π1

2 statements having the following
syntactical form:

(!′) ∀X (∃Zθ(X,Z) → ∃Y ψ(X,Y )) ,

where θ(X,Z) is arithmetical. Despite the fact that (!′) is, even in intuitionistic
predicate logic, equivalent to the following statement:

(!) ∀X,Z (θ(X,Z) → ∃Y ψ(X,Y )) ,

the sequential version of (!′) is occasionally stronger than that of (!) even if
θ(X,Z) has a very weak complexity such as Π0

1. This is caused by the difficulty
of obtaining the sequence of Z in (!′). Using the finite marriage theorem and
the bounded König’s lemma, we illustrate this phenomenon. On the other hand,
the sequential version of a statement of the form (!′) is not always stronger than
that of (!) as we see in the case of the weak weak König’s lemma. The important
point is that the sequential form of (!′) captures the difficulty of obtaining a
solution Y from X alone while that of (!) captures the difficulty of obtaining
a solution Y using both X and Z. That is to say, whenever we consider the
sequential version of a Π1

2 statement, we must pay attention to the formalization
and what information can be used to obtain a solution.

In addition, it has been recently established in [7] and [1] that the intuitionistic
provability of Π1

2 statements of some syntactical form guarantees its classical
sequential provability. Such kind of results are called “uniformization theorems”.
Our results can be used to show that Dorais’s uniformization theorems in [1] are
the best possible for the syntactical classes involved.

Throughout this paper, we use the standard notation and terminology in
reverse mathematics (cf. [9]). In addition, x⊂finX denotes that x is a finite
subset of X , and Q+ denotes the set of positive rational numbers. We recall that
WKL0 = RCA0 + WKL and ACA0 = RCA0 + ACA (arithmetical comprehension).

2 The Finite Marriage Theorem

The so-called marriage theorem for finite graphs states that a finite binary graph
(B,G;R) satisfying the Hall condition:

∀x⊂finB∃y⊂finG (|x| ≤ |y| ∧ ∀g ∈ y∃b ∈ x ((b, g) ∈ R)) ,

has an injection M ⊆ R from B to G. It is well-known that there is a uniform
algorithm to construct an injection from a given finite bipartite graph satisfying
the Hall condition, which suggests that the sequential version of the finite mar-
riage theorem is provable in RCA0. However, it depends on the formalization.
We provide the following two formalizations of the finite marriage theorem.

FMT :

∀B,G,R, k

⎛⎝⎛⎝ (B,G;R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G

⎞⎠→ ∃M
(
M ⊆ R
is injective

)⎞⎠ ,
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F′MT :

∀B,G,R

⎛⎝∃k

⎛⎝ (B,G;R) is a bipartite graph
which satisfies the Hall condition

and k bounds B ∪G

⎞⎠→ ∃M
(
M ⊆ R
is injective

)⎞⎠ ,
where “k bounds B ∪ G” denotes that for all v ∈ B ∪ G, v < k. Note that the
premise of (. . .→ . . .) in FMT is purely universal. Throughout this paper, we
use a little odd notation (e.g., F′MT) to indicate which assumption of uniformity
is dropped by sequentializing.

Proposition 2

1. RCA0 � Seq(FMT).
2. RCA0 � Seq(F′MT) ↔ ACA.

Proof. (1) A slight recasting of the proof of the finite marriage theorem in RCA0

([4, Theorem 2.1]).
(2) ACA0 � Seq(F′MT) follows from the fact that the infinite marriage theo-

rem is provable in ACA0 ([5, Theorem 2.2]). For the reverse direction, it suffices
to find the range of an injection f : N → N ([9, Lemma III.1.3]). The basic idea is
to construct, simultaneously in RCA0, infinite numbers of finite bipartite graphs
such that the solution of the i-th graph indicates whether i is in Rng(f) or not.
By Σ0

0 comprehension, take 〈Bn〉n∈N and 〈Gn〉n∈N as

b ∈ Bn ⇔ b = 0 ∨ f
(
b− 2

2

)
= n,

g ∈ Gn ⇔ g = 1 ∨ f
(
g − 3

2

)
= n,

which means that in addition to the underlying sequence {0, 1}n∈N of vertices,
the odd numbers are divided into {Bn}n∈N and the even numbers are divided
into {Gn}n∈N according to f , and take 〈Rn〉n∈N as

(b, g) ∈ Rn ⇔ (b, g) = (0, 1)

∨
(
b = 0 ∧ f

(
g − 3

2

)
= n

)
∨
(
g = 1 ∧ f

(
b− 2

2

)
= n

)
.

Then it is easy to see that (Bn, Gn;Rn) satisfies the Hall condition for each
n ∈ N. Moreover if n is in the range of f via j, Bn ∪ Gn is bounded by 2j + 4,
and otherwise, Bn ∪ Gn is bounded by 2. Thus, by Seq(F′MT), there exists a
sequence 〈Mn〉n∈N of injections. Put S := {n : Mn(0) �= 1}, then S is the range
of f by the above construction. ��

The previous proposition indicates that ACA is not needed to construct an
injection from a finite bipartite graph satisfying the Hall condition, and only
used to take a sequence of bounds. In fact, the next proposition follows from the
previous proposition immediately. (One can even prove it directly.)
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Proposition 3. The following assertion SeqB is equivalent to ACA over RCA0.

(SeqB) For any sequence of sets 〈Xn〉n∈N, if Xn is finite for all n, then there
exists a function g : N → N such that g(n) bounds Xn.

Proof. ACA0 � SeqB is straightforward. For the reverse direction, it suffices to
show Seq(F′MT) from SeqB over RCA0. Let 〈(Bn, Gn;Rn)〉n∈N be a sequence
of finite bipartite graphs satisfying the Hall condition. Using SeqB, we have a
function g : N → N such that g(n) bounds Bn ∪ Gn for all n ∈ N. Then the
existence of a sequence of injections follows from Seq(FMT). ��

3 The Bounded König’s Lemma

It is known that the bounded König’s lemma, which states that an infinite tree
having a bounding function has an infinite path, is equivalent to WKL [9, Lemma
IV.1.4]. As in the previous section, we provide the two formalizations of it.

BKL : ∀T, g
((
T ⊆ N<N is an infinite tree
and g : N → N bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

B′KL : ∀T
(
∃g
(
T ⊆ N<N is an infinite tree
and g : N → N bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

where “g bounds T ” denotes that for all σ ∈ T and i < lh(σ), σ(i) < g(i). In
addition, we now treat a weaker version of the bounded König’s lemma in which
a tree in question is bounded by a constant.

BcKL : ∀T, k
((
T ⊆ N<N is an infinite tree
and k bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

B′
cKL : ∀T

(
∃k
(
T ⊆ N<N is an infinite tree
and k bounds T

)
→ ∃P

(
P is an infinite
path of T

))
,

where “k bounds T ” denotes that for all σ ∈ T and i < lh(σ), σ(i) < k. Note
that the premise of (. . .→ . . .) in BcKL is purely universal.

Proposition 4

1. RCA0 � Seq(BKL) ↔ Seq(BcKL) ↔ WKL.
2. RCA0 � Seq(B′KL) ↔ Seq(B′

cKL) ↔ ACA.

Proof. We reason in RCA0.
(1) WKL implies Seq(WKL) ([6, Lemma 5]), and Seq(WKL) implies Seq(BKL)

by imitating the proof of BKL in WKL0 ([9, Lemma IV.1.4]). The implication
from Seq(BKL) to Seq(BcKL) is obvious. That from Seq(BcKL) to WKL follows
immediately from the fact that binary trees are bounded by 2.

(2) It is straightforward that ACA implies Seq(B′KL) by imitating the proof
of König’s lemma in ACA0 ([9, Lemma III.7.2]). Seq(B′KL) implies Seq(B′

cKL).
The implication from Seq(B′

cKL) to ACA follows from Lemma 11 below. ��
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In the reverse mathematics of analysis, the bounded König’s lemma corre-
sponds to the Heine/Borel compactness of effectively totally bounded complete
separable metric spaces. Thus, to consider the strength of a sequential version
of a mathematical statement which is related to Heine/Borel compactness, it is
important to check which version of bounded König’s lemma is needed. Here,
we shall consider the maximum principle of continuous functions as an example.
The following statement is equivalent to WKL over RCA0. (See [9, Section IV].)

(MP) For any f , if f is a continuous function from [−1, 1] to R, then there
exists a ∈ [−1, 1] such that

max{f(x) : x ∈ [−1, 1]} = f(a).

By an easy consideration, we can see that MP is equivalent to the following.

(MP+) For any f , if f is a continuous function from (−1, 1) to R such
that f(0) > 0 and limx→±1 f(x) = 0, then there exists a ∈ (−1, 1)
such that

max{f(x) : x ∈ (−1, 1)} = f(a).

For the sequential version of MP, the following is well-known, actually, it is an
easy consequence of RCA0 � WKL ↔ Seq(WKL) ([6, Lemma 5]).

Proposition 5. Seq(MP) is equivalent to WKL over RCA0.

However, the sequential version of MP+ is strictly stronger than that of MP. (In
general, ACA is required to extend a continuous function f : (−1, 1) → R with
limx→±1 f(x) = 0 into a continuous function from [−1, 1] to R.)

Proposition 6. The following are equivalent over RCA0.

1. ACA.
2. The sequential version of the following statement: for any f , if f is a bounded

support continuous function from R to R, then there exists a ∈ R such that
max{f(x) : x ∈ R} = f(a). (Here, f is said to have bounded support if there
exists k ∈ N such that the closure of {x ∈ R : f(x) �= 0} is a subset of
[−k, k].)

3. The sequential version of the following statement: for any f , if f is a con-
tinuous function from R to R such that f(0) > 0 and limx→±∞ f(x) = 0,
then there exists a ∈ R such that max{f(x) : x ∈ R} = f(a).

4. Seq(MP+).

Proof. By modifying the proof of MP ↔ WKL, we can easily see that 2 is
equivalent to the sequential version of the following statement: if T ⊆ NN is
an infinite tree such that T ⊆ 2k × 2<N for some k, then T has an infinite
path. Note that this is a weaker version of Seq(B′

cKL), and still is equivalent
to ACA as in the proof of Lemma 11 below. For a given continuous function
f from R to R such that f(0) > 0 and lim|x|→∞ f(x) = 0, define a continuous
function g as g(x) = max{0, f(x) − f(0)/2}. Then, g has bounded support and
max{g(x) : x ∈ R} + f(0)/2 = max{f(x) : x ∈ R}, hence we have 2 ↔ 3. By an
easy rescaling, we have 3 ↔ 4. Thus, they are all equivalent to ACA. ��
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4 The Weak Weak König’s Lemma

The weak weak König’s lemma, which states that a binary tree with positive
measure has an infinite path, has an intermediate strength between RCA0 and
WKL0 ([9, Remark X.1.8]). In this case, both of sequential versions are stronger
than the instancewise version and actually equivalent to WKL.

WWKL : ∀T,m
((
T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

)
→ ∃P

(
P is an infinite
path of T

))
,

W′WKL : ∀T
(
∃m
(
T ⊆ 2<N is a tree and
m ∈ Q+ satisfies (W2)

)
→ ∃P

(
P is an infinite
path of T

))
,

where (W2) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|
2n

≥ m.

Proposition 7

1. RCA0 � Seq(WWKL) ↔ WKL. ([2, Theorem 4.1.(2)])
2. RCA0 � Seq(W′WKL) ↔ WKL.

Proof (of 2). It is easy to show within RCA0 that for binary tree T , if there exists

m ∈ Q+ such that lim
n→∞

|{σ ∈ T : lh(σ) = n}|
2n

≥ m, then T is infinite. Therefore

WKL0 � Seq(W′WKL) immediately follows from WKL0 � Seq(WKL) ([6, Lemma
5]). For the reverse direction, Seq(W′WKL) obviously implies Seq(WWKL),
which is equivalent to WKL over RCA0 from (1). ��

Remark 8. Note that the previous proposition does not suggest that the se-
quential strength of a mathematical statement equivalent to WWKL is WKL
in general. Here, we shall consider Riemann integrability for bounded functions
as an example. The following statement is equivalent to WWKL over RCA0.
(See [8].)

(Int) For any f , if f is a continuous function from [0, 1] to [0, 1], then there
exists r ∈ R such that ∫ 1

0

f(x) dx = r.

However, Seq(Int) does not imply WKL. This is because Seq(Int) follows from
the following sequential contrapositive of W′WKL:

(") ∀T
(
∀n
(
Tn ⊆ 2<N is a tree
which has no path

)
→ ∀n lim

k→∞
|{σ ∈ Tn : lh(σ) = k}|

2k
= 0

)
.

The contrapositive of W′WKL does not have the form (♠) from Definition 1 any
more and (") is trivially equivalent to WWKL. Therefore Seq(Int) is actually
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equivalent to WWKL. In fact, for many sequential versions of mathematical
statements which are equivalent to WWKL, we do not need Seq(WWKL) or
Seq(W′WKL) but (").

Next, we shall investigate the effect of uniformity for positive measure more pre-
cisely. For this, we shall consider some more variants, namely, bounded König’s
lemmas with respect to measure.

– WBKL : ∀T,m, g

⎛⎝⎛⎝T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wg),
g : N → N bounds T

⎞⎠→ ∃P
(
P is an infinite
path of T

)⎞⎠,

where (Wg) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|∏
i<n g(i)

≥ m.

– WBcKL : ∀T,m, k

⎛⎝⎛⎝T ⊆ N<N is a tree,
m ∈ Q+ satisfies (Wk),
k bounds T

⎞⎠→ ∃P
(
P is an infinite
path of T

)⎞⎠,

where (Wk) denotes

lim
n→∞

|{σ ∈ T : lh(σ) = n}|
kn

≥ m.

Proposition 9. WBKL and WBcKL are equivalent to WWKL over RCA0.

Proof. We reason in RCA0. WBKL to WBcKL to WWKL is trivial. We shall
show WBKL from WWKL. Let T ⊆ N<N be a tree bounded by g : N → N such
that for some q ∈ Q+,

lim
n→∞

|{σ ∈ T : lh(σ) = n}|∏
i<n g(i)

≥ q.

For σ ∈ N<N, define lg(σ) and rg(σ) as follows:

lg(σ) =
∑

k<lh(σ)

σ(k)∏
i≤k g(i)

, rg(σ) = lg(σ) +
1∏

i<lh(σ) g(i)
.

Similarly, for σ ∈ 2<N, define l2(σ) and r2(σ) as follows:

l2(σ) =
∑

k<lh(σ)

σ(k)2−k−1, r2(σ) = l2(σ) + 2−lh(σ).

Note that
⋃

σ∈T,lh(σ)=m[lg(σ), rg(σ)] are disjoint intervals in [0, 1] whose lengths
sum to the measure of level m of T and these intervals can be approximated
arbitrarily well from within by intervals with dyadic rational endpoints. That is,
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for m ∈ N, there exists N ∈ N such that∣∣∣∣{σ ∈ 2<N :
lh(σ) = N ∧
∃τ ∈ T (lh(τ) = m ∧ lg(τ) ≤ l2(σ) ∧ r2(σ) ≤ rg(τ))

}∣∣∣∣
2N

>
|{σ ∈ T : lh(σ) = m}|∏

i<m g(i)
− q

2m+2
.

We define h(m) as the least such N .
Now we define T ∗ ⊆ 2N as

σ ∈ T ∗ ⇔

∀m < lh(σ)

(
h(m) ≤ lh(σ) → ∃τ ∈ T (lh(τ) = m ∧
lg(τ) ≤ l2(σ � h(m)) ∧ r2(σ � h(m)) ≤ rg(τ))

)
.

Then, T ∗ is a tree such that for all n ∈ N,

|{σ ∈ T ∗ : lh(σ) = n}|
2n

>
|{σ ∈ T : lh(σ) = n}|∏

i<n g(i)
−
∑
m<n

q

2m+2
≥ q

2
.

Thus, by WWKL, there exists a path P ∗ through T ∗. For any m ∈ N, there
exists a unique τm ∈ T such that lh(τm) = m and lg(τm) ≤ l2(P � h(m))∧r2(P �
h(m)) ≤ rg(τm). Then, P =

⋃
m∈N τm is a path through T . ��

Next we investigate the sequential strength of the statements in question. The
following proposition means that the uniformity for positive-measure does not
help to weaken the sequential strength of the bounded König’s lemma.

Proposition 10

1. Seq(W′BKL), Seq(WBKL), Seq(W′BcKL) and Seq(WBcKL) are equivalent
to WKL over RCA0.

2. Seq(W′B′KL), Seq(WB′KL), Seq(W′B′
cKL) and Seq(WB′

cKL) are equiva-
lent to ACA over RCA0.

Here WB′KL, W′BKL, W′B′KL, WB′
cKL, W′BcKL, and W′B′

cKL are defined
in the same manner as before, that is, W′ (resp. B′, B′

c) means that the universal
quantifier ∀m (resp. ∀g, ∀k) is moved into (. . .→ . . .) as the existential quantifier
∃m (resp. ∃g, ∃k).

To show the previous proposition, we first show the following lemma.

Lemma 11. RCA0 � Seq(WB′
cKL) → ACA, that is, the following statement

implies ACA over RCA0 :

∀〈Tn〉n∈N, 〈mn〉n∈N

(
∀n∃k

⎛⎝Tn ⊆ N<N is a tree,
mn ∈ Q+ satisfies (Wk) for Tn,
k bounds Tn

⎞⎠
−→ ∃〈Pn〉n∈N∀n (Pn is an infinite path of Tn)

)
.
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Proof. As in the proof of Proposition 2.(2), we shall find the range of an injection
f : N → N ([9, Lemma III.1.3]). By Σ0

0 comprehension, we take a sequence
〈Tn〉n∈N of trees from the given injection f as

σ ∈ Tn ⇔
∀i < lh(σ)

(
σ(0) = 0 ∧ σ(i + 1) ≤ 1 ∧ f(i) �= n

)
∨

∃j < σ(0)
(
∀i < lh(σ) (σ(i) ≤ 2j + 1) ∧ f(j) = n

)
.

Then, each Tn ⊆ N<N clearly forms a tree. Put mn :≡ 1/2. We need to find a
required bound k for each n. For given n, if there exists j such that f(j) = n,
then put k := 2j + 2, and otherwise, put k := 2. In either case, we can check
that k bounds Tn and mn(= 1/2) satisfies (Wk) for Tn. Thus, by Seq(WB′

cKL),
there exists a sequence 〈Pn〉n∈N of paths. Put S := {n : Pn(0) �= 0}. It is easy
to see that Pn(0) �= 0 ↔ ∃j (f(j) = n), namely, S is the range of f . ��

Proof (of Proposition 10). We reason in RCA0.
(1) Each of Seq(W′BKL), Seq(WBKL), Seq(W′BcKL), Seq(WBcKL) follows

from Seq(BKL), then also from WKL by Proposition 4.(1). On the other hand,
each of them implies Seq(WWKL) which is equivalent to WKL.

(2) Each of Seq(W′B′KL), Seq(WB′KL), Seq(W′B′
cKL), Seq(WB′

cKL) follows
from Seq(B′KL), then also from ACA by Proposition 4.(2). On the other hand,
each of Seq(W′B′KL), Seq(WB′KL), Seq(W′B′

cKL) implies Seq(WB′
cKL) and

Seq(WB′
cKL) implies ACA by Lemma 11. ��

5 The Best Possibility of Dorais’s Uniformization Results

The first uniformization theorems are established in [7], which can be applied
for Π1

2 statements of the form (♠) (from Definition 1) with purely universal ϕ.
Dorais has recently shown other uniformization theorems in second-order setting
with function-based language, which can be applied for more Π1

2 statements.

Proposition 12 (Dorais [1])

1. For any T : ∀f (ϕ(f) → ∃gψ(f, g)) such that ϕ(f) is in NK and ψ(f, g) is
in ΓK , if EL + GC + CN � T, then RCA � Seq(T).

2. For any T : ∀f (ϕ(f) → ∃gψ(f, g)) such that ϕ(f) is in NL and ψ(f, g) is in
ΓL, if EL + WKL + GCL + CNL � T, then RCA + WKL � Seq(T).

We refer the readers to see [1] for precise definitions of each of the symbols
in the previous proposition. In fact, the restriction of ψ to ΓK and ΓL is not
tight and the interest is only in the possibility of extending NK and NL. All
purely existential and purely universal formulas are included in NK . In addition,
all formulas of the form ∃x ≤ t∀zAqf are included in NL. Here we show that
NK and NL cannot be extended to the class including all formulas of the form
∃x∀zAqf in Proposition 12.

Suppose that in Proposition 12.(1), NK can be extended to such a class.
Since each purely universal formula in set-based language is translated as a
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purely universal formula in function-based language by identifying sets with
their characteristic functions, the premise of (. . .→ . . .) in function-based F′MT
(intuitionistically equivalent to function-based FMT) has the form ∃x∀zAqf .
Then Proposition 2.(2) derives that function-based F′MT is not provable in
EL + GC + CN. However, it is provable in EL0 by transforming the proof of the
finite marriage theorem in RCA0 ([4, Theorem 2.1]).

Next we suppose in Proposition 12.(2), NL can be extended to such a class. As
in the previous paragraph, Proposition 4.(2) derives that function-based B′

cKL
(intuitionistically equivalent to function-based BcKL) is not provable in EL +
WKL + GCL + CNL. However, it is provable in EL0 + WKL by transforming the
proof of the bounded König’s lemma in WKL0 ([9, Lemma IV.1.4]).

Acknowledgment. We are grateful to Ulrich Kohlenbach and anonymous ref-
erees for their helpful comments and suggestions on an earlier version of this
paper.
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Abstract. Conservative partial learning is a variant of partial learning
whereby the learner, on a text for a target language L, outputs one index
e with L = We infinitely often and every further hypothesis d is output
only finitely often and satisfies L �⊆ Wd. The present paper studies the
learning strength of this notion, comparing it with other learnability cri-
teria such as confident partial learning, explanatory learning, as well as
behaviourally correct learning. It is further established that for classes
comprising infinite sets, conservative partial learnability is in fact equiv-
alent to explanatory learnability relative to the halting problem.

1 Introduction

The present paper follows Gold’s framework of learning in the limit [10] which
aimed to understand language acquisition from a mathematical point of view.
Gold’s model has been studied extensively [1,3,11,15,19] and can be described
as follows: The learner processes step by step an infinite presentation of the
language to be learnt — such a presentation is called a text — and outputs in
parallel to reading the data a sequence of guesses. If the learner’s sequence of
guesses converges to a single correct description of the underlying concept, then
the inference is correct; on the other hand, if it does not converge or converges
to an incorrect description, then the inference is incorrect. This learning model
is called “explanatory learning” from “positive data” or “text”. A class of lan-
guages is learnable iff there is a recursive learner which learns every language in
the class. Gold [10, Theorem I.8] showed that on one hand the class of all finite
languages is learnable while on the other hand this class becomes unlearnable if
only one infinite language is added to it.

Various alternative models of learning by inference from positive data have
since been proposed [6,15]. In particular, behaviourally correct learning (see [2,3])
in which one requires that almost all the hypotheses of the learner are correct
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description of the input language (though these hypotheses may not be syntac-
tically the same). Osherson, Stob and Weinstein [15] generalised the notion of
explanatory learning to partial learning. Similar to the former setting, a recursive
learner receives piecewise information about the elements of an unknown recur-
sively enumerable language. At each stage, the learner is required to output a
conjecture based on a pre-assigned hypothesis space — usually taken to be a
fixed acceptable numbering of all recursively enumerable sets — and is judged
to have successfully inferred a target language if it outputs exactly one correct
index of the language infinitely often and outputs any other conjecture only
finitely often, though there might be infinitely many false conjectures in total.
This is in contrast to explanatory learning where the learner outputs one correct
conjecture almost always and only finitely often outputs a false conjecture. As
it stands, partial learning is even more general than behaviourally correct learn-
ing; in fact, a recursive learner can partially learn the class of all recursively
enumerable sets [15, Exercise 7.5A]. Osherson, Stob and Weinstein [15] called
an explanatory learner confident iff it converges on any text for any language to
a hypothesis; this concept was brought over to partial learning [8,9] by defining
that the learner must issue exactly one hypothesis infinitely often on any text
for any language. This new hybrid of the two learnability notions turns out to
be restrictive in the case of language learning [8]: the class of all cofinite sets is
not confidently partially learnable. Other learning constraints considered in the
inductive inference literature, but studied mainly in the context of explanatory
learning, include consistency [5,17], conservativeness [1] and prudence [15].

The present paper continues the study of conservativeness and transfers it
from explanatory learning to more general criteria like behaviourally correct
learning and partial learning. Angluin [1] noted that inference from positive data
is often stymied by the problem of overgeneralisation, by which is meant that the
learner conjectures a proper superset of the target language, so that it never wit-
nesses a counterexample to its hypothesis from a presentation of positive data.
She suggested that learners should be conservative, that is, avoid overgeneralisa-
tion, and gave sufficient conditions for an indexed family of nonempty recursive
languages to be inferable by a conservative learner [1, Theorem 5]. Further re-
search into the properties of conservatively learnable classes [13,18] brought new
insights for the case of uniformly r.e. classes and provided a criterion for the
case of indexed families. This paper adapts a slight variation of the original con-
servative learning to fit the partial learning model: a recursive learner is said to
conservatively partially learn a recursively enumerable language L from text if
it partially learns L and, on each text for L, it outputs exactly one correct index
for L and all other indices output are not for any proper superset of L.

For ease of notation, the languages in the present paper are taken as subsets
of the set of natural numbers, N. In the present work, it is shown that imposing
conservativeness yields a close connection between the explanatory, vacillatory
and behaviourally correct models of learning and partial learning. To exemplify
this point, Theorem 3 states that the set of all conservatively partially learnable
classes of r.e. languages strictly subsumes that of all conservatively behaviourally
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correctly learnable classes of r.e. languages. On one hand, the class containing
all finite sets and the set of natural numbers is not conservatively partially
learnable; this shows that this new learning notion constitutes a restriction on
ordinary partial learning. On the other hand, conservative partial learning may
still be a fairly general concept, as the class of graphs of all recursive functions is
learnable according to this criterion (Example 5). Theorem 4 frames a learning
criterion that appears to be more general than conservative partial learnabil-
ity; nevertheless, one can show that this apparent generalisation is equivalent
in terms of learning strength to the original definition of conservative partial
learning. The paper also revisits vacillatory learning, introduced by Case [4],
when it is combined with conservativeness. The principal result obtained here is
that conservative vacillatory learning is as powerful as conservative explanatory
learning. This result stands in contrast to that for the case when conservative-
ness is not stipulated: Case [4] provided an example of a vacillatorily learnable
class which is not explanatorily learnable.

As further evidence of the tie-in between conservative partial learning and
explanatory learning, several results draw comparisons between conservative
partial learning and explanatory learning relative to oracles; Theorem 13, for in-
stance, asserts that for any class of infinite r.e. languages, the learning strengths
of both notions coincide when the oracle used for the explanatory learner is
Turing equivalent to the diagonal halting problem. In addition, this work pro-
poses a characterisation of conservatively partially learnable classes of r.e.
languages as an analogue of Angluin’s tell-tale criterion [1, Theorem 1]. The
original theorem, formulated in the intuitively appealing notion of a family of
finite “tell-tale sets”, gave necessary and sufficient conditions for an indexed
family of recursive languages to be explanatorily learnable from positive data.
De Jongh and Kanazawa [13] later generalised Angluin’s tell-tale condition to
characterise indexed families of r.e. languages. Similarly, Zeugmann, Lange and
Kapur [18] proved a characterisation of conservative learnability for indexed
families of recursive languages; this was subsequently extended by de Jongh and
Kanazawa [13] to the case of indexed families of r.e. languages. In Theorem 16, a
characterisation similar to that of Angluin [1] and Zeugmann, Lange and Kapur
[18] is given for conservative partial learning.

2 Notation

The notation and terminology from recursion theory adopted in this paper fol-
lows in general the book of Rogers [16]. Background on inductive inference can be
found in [11]. The symbol N denotes the set of natural numbers, {0, 1, 2, . . .}. Let
ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable numbering [16] of all partial-recursive
functions over N. Given a set S, S∗ denotes the set of all finite sequences in S.
One defines the e-th r.e. set We as dom(ϕe) and the e-th canonical finite set
by choosing De such that

∑
x∈De

2x = e. Furthermore, 〈x, y〉 denotes Cantor’s

pairing function, given by 〈x, y〉 = 1
2 (x + y)(x + y + 1) + y. The notion η(x) ↓

means that η(x) is defined, and η(x)↑ means that η(x) is undefined.
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Turing reducibility is denoted by ≤T; A ≤T B holds if A can be computed
via a machine which uses B as an oracle; that is, it can give information on
whether or not x belongs to B. A ≡T B means that A ≤T B and B ≤T A
both hold, and {A : A ≡T B} is called the Turing degree of B. The class of all
recursive functions is denoted by REC; the class of all {0, 1}-valued recursive
functions is denoted by REC0,1. For any partial-recursive function g, we let
graph(g) = {〈x, y〉 : g(x) ↓= y}. The symbol K denotes the diagonal halting
problem {e : ϕe(e)↓}.

The jump of a set A is denoted by A′ and denotes the relativised halting
problem A′ = {e : ϕA

e (e) ↓}. For any two sets A and B, A ⊕ B = {2x : x ∈
A} ∪ {2y + 1 : y ∈ B}. Analogously, A ⊕ B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 : y ∈
B} ∪ {3z + 2 : z ∈ C}.

For any σ, τ ∈ (N ∪ {#})∗, σ - τ if and only if σ = τ or τ is an extension of
σ, σ ≺ τ if and only if σ is a proper prefix of τ , and σ(n) denotes the element
in the nth position of σ, starting from n = 0. The concatenation of two strings
σ and τ shall be denoted by σ ◦ τ ; for convenience, and whenever there is no
possibility of confusion, this is occasionally denoted by στ . Let σ[n] denote the
sequence σ(0) ◦ σ(1) ◦ . . . ◦ σ(n− 1). The length of σ is denoted by |σ|.

3 Learnability

Let C be a class of r.e. languages. Throughout this paper, the mode of data
presentation is that of a text, by which is meant an infinite sequence of natural
numbers and the # symbol. Formally, a text TL for some L in C is a map
TL : N → N ∪ {#} such that L = content(TL); here TL[n] denotes the sequence
TL(0) ◦ TL(1) ◦ . . . ◦ TL(n− 1) and the content of a text T , denoted content(T ),
is the set of numbers in the range of T . Analogously, for a finite sequence σ,
content(σ) is the set of numbers in the range of σ. The main learning criteria
studied in this paper are partial learning, explanatory learning and behaviourally
correct learning. In the following definitions, M is a recursive function mapping
(N ∪ {#})∗ into N ∪ {?}; the ? symbol permits M to abstain from conjecturing
at some stage.

Definition 1. (i) [15] M partially (Part) learns C if, for every L in C and
each text TL for L, there is exactly one index e such that M(TL[k]) = e for
infinitely many k; furthermore, if M outputs e infinitely often on TL, then
L = We.

(ii) [10] M explanatorily (Ex) learns C if, for every L in C and each text TL
for L, there is a number n for which L = WM(TL[n]) and, for any j ≥ n,
M(TL[j]) = M(TL[n]).

(iii) [3] M behaviourally correctly (BC) learns C if, for every L in C and each
text TL for L, there is a number n for which L = WM(TL[j]) whenever
j ≥ n.

In some cases, learners are equipped with oracles and then Ex[A] denotes the
criterion of explanatory learning with oracle A and so on. For a learning criterion
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I, such as Ex and BC above, one also writes I to denote the collection of all I-
learnable classes. Furthermore, in some cases, the learner does not use the default
hypothesis space W0,W1,W2, . . . but instead uses a uniformly r.e. hypothesis
space H0, H1, H2, . . . where in the corresponding definitions We is replaced by
He. Here a hypothesis space H0, H1, . . . is called uniformly r.e. hypothesis space,
iff {〈i, x〉 : x ∈ Hi} is recursively enumerable. The next series of definitions
impose additional constraints on the learner.

Definition 2. (i) [8] M is said to confidently partially (ConfPart) learn C if it
partially learns C from text and, on every infinite sequence, outputs exactly
one index infinitely often. Note that the requirement to output exactly one
index infinitely often applies even for infinite sequences which are not texts
for any language in C.

(ii) M is said to conservatively partially (ConsvPart) learn C if it partially
learns C from text and, on each text for every L in C, outputs exactly one
correct index for L, and all other indices output are not for any proper
superset of L.

(iii) [1]M conservatively explanatorily (ConsvEx) learns C if it Ex learns C and,
for any σ, τ ∈ (N∪{#})∗ with ? �= M(σ) �=M(σ ◦ τ) �=?, there is a number
x with x ∈ range(σ ◦ τ) −Wσ.

(iv) M is said to conservatively behaviourally correctly (ConsvBC) learn C if it
BC learns C and is semantically conservative. Here, a learner M is seman-
tically conservative iff, for any σ, τ ∈ (N ∪ {#})∗ with WM(σ) �= WM(σ◦τ),
there is a number x with x ∈ range(σ ◦ τ) −WM(σ).

(v) [15]M is prudent if it learns the class {WM(σ) : σ ∈ (N∪{#})∗,M(σ) �=?}.
In other words, M learns every set it conjectures.

(vi) [4] M vacillatorily (Vac) learns C if it BC learns C from text, and outputs
on each text for every L in C only finitely many different indices.

(vii) M is said to conservatively vacillatorily (ConsvVac) learn C if it ConsvBC
learns C from text, and outputs on each text for every L in C only finitely
many different indices.

(viii) [5] M is consistent (Cons) if for all σ ∈ (N ∪ {#})∗, content(σ) ⊆WM(σ).
(ix) [14] M is said to class-comprisingly (ClsCom) learn a class C if it learns

C from text with respect to a hypothesis space {H0, H1, H2, . . .}. As M
learns C, it is immediate that C ⊆ {H0, H1, H2, . . .}.

(x) [14]M is said to class-preservingly (ClsPresv) learn C if it learns C from text
with respect to a hypothesis space {H0, H1, H2, . . .} satisfying C = {H0,
H1, H2, . . .}

Note that the requirements (v), (ix), (x) of the above definition can be applied
to any learning criterion and are denoted by using Prud, ClsCom or ClsPresv as
a prefix of the criterion name. Note that the definition for conservative partial
learning given above is the most restrictive of some possible variants. It follows
the spirit of conservative explanatory learning where the learner never gives up
a correct index for another one. Theorem 4 below shows it to be equivalent to
more general possible definitions.
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A learner M is said to make a mind change on input T [n+ 1] (or M makes
a mind change from input T [n] to input T [n+ 1]), if ? �= M(T [n]) �= M(T [n+
1]). Furthermore, M makes a semantic mind change on input T [n + 1], if ? �=
M(T [n]) �= M(T [n+ 1]) and WM(T [n]) �=WM(T [n+1]).

4 Conservative Partial Learning

Conservativeness is a learnability constraint that has been studied fairly exten-
sively in the inductive inference literature, especially in the setting of indexed
families [1,18]. In this paper, we consider the notion of conservative partial lan-
guage learning; in brief, this is partial learning combined with the constraint that
if a learner outputs e infinitely often on a text for some target language L, then
none of its other conjectures on this text can contain L as a subset. Gold [10]
observed that the class {N}∪{F ⊆ N : F is finite} is not behaviourally correctly
learnable, even when granting access to any oracle. Nonetheless, Gold’s class is
partially learnable from text: it is only necessary to output a canonical index for
N as many times as a new datum (not previously seen) appears, and to conjec-
ture for every initial segment σ of the input text, a canonical index for the finite
set content(σ). By contrast, one can show that Gold’s class {N}∪ {F ⊆ N : F is
finite} cannot be conservatively partially learnt.

The main theorem of the present paper establishes a hierarchy of the major
learnability notions treated herein when conservativeness constraint is imposed
on the learners.

Theorem 3. ConsvEx = ConsvVac ⊂ ConsvBC ⊂ ConsvPart ⊂ ConsvEx[K].

Theorem 3 follows from Theorem 4, Example 5, Theorem 6, Example 7, Theo-
rem 8 and Remark 12 given below. The first of these results shows that the cri-
terion for conservative partial learning may in fact be slightly relaxed. It asserts
that for any class C of r.e. languages to be ConsvPart learnable, it is sufficient
that there is a recursive learner which, on every text for a target language L in
C, outputs at least one correct index and does not overgeneralise at any stage.

Theorem 4. Let C be a class of r.e. languages such that there is a recursive
learner which, on any text for some L ∈ C, outputs at least one correct index for
L and does not output an index for a proper superset of L. Then C is ConsvPart
learnable.

Proof. Suppose a recursive learner M satisfying the hypothesis of the theorem
is given. First a learner N is defined, which, on any text for some L ∈ C, outputs
exactly one index for L and does not output an index for a proper superset of L.
N on input text T (for some set L) is defined as follows. Let en = M(T [n]). If,
content(T [n]) = ∅, then N(T [n]) is a canonical grammar for ∅. If content(T ) �=
∅, then let r be minimal such that content(T [r]) �= ∅. Then, N(T [r + i]) = pi,
where p2m is a canonical index for content(T [r + m]) and p2m+1 = qkn, where
m = 〈n, k〉 and Wqkn

is defined as follows:
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Wqkn
=
⋃
{Wen,s : Wen,s ⊂Wen,s+1 and

(∀h < n)[content(T [r + k]) �⊆Weh,s] and
(∀k′ < k)(∃h < n, t < s)[content(T [r+k′]) ⊆Weh,t and Wen,t ⊂Wen,s]}.

For L = ∅, clearly N satisfies the requirements. For L ∈ C, as M never outputs
an index for a proper superset of L on any text for T , N also never outputs an
index for a proper superset of L on any text for T .

Suppose L ∈ C is a non-empty finite set. Then, N outputs a canonical index
for L, as it outputs a canonical index for content(T [r+k]), for all k. Furthermore,
no index en output by M while learning L is a proper superset of L; hence the
Wen,s used in the definitions of Wqkn

satisfy that either L �⊆ Wen or Wen,s ⊂
Wen,s+1 ⊆ L; hence L �⊆ Wqkn

. Thus, N outputs one unique index for L and all
other indices output are not for a proper superset of L.

Suppose L ∈ C is infinite, then there is a least n such that Wen = L. Let
k be least such that, for all m < n, content(T [r + k]) �⊆ Wem . Then there
are infinitely many s such that Wen,s ⊂ Wen,s+1, content(T [r + k]) ⊆ Wen,s

and for k′ < k, there exists m < n and t < s such that content(T [r + k′]) ⊆
Wem,t and Wen,t ⊂ Wen,s. Thus, Wqkn

= Wen = L. For all k′′ < k, the second
clause in the definition of Wqk′′

n
holds only for finitely many s, and thus, Wqk′′

n

is finite. For all k′′ > k, the third clause in definition of Wqk′′
n

does not hold, and

thus Wqk′′
n

is empty. For all m < n, for all k′′, clearly, Wqk′′
m

cannot be an index

for L nor an index for a superset of L. Furthermore, for all m > n, for all k′′,
as content(T [r + k′′]) ⊆Wen , Wqk′′

m
is finite. Thus, again N outputs one unique

index for L and all other indices output are not for a proper superset of L.
Now, one can build a new learner N ′ that, on any text T , considers the

conjectures c0, c1, c2, c3, . . . output by N on the given text T . For each conjecture
ci that N outputs, N ′ outputs ci at least n times iff there is a stage s > n such
that ∀x < n[x ∈Wci,s ⇔ x ∈ content(T [s])] holds. Consequently, N ′ outputs on
T the unique index of L issued by N infinitely often, and it outputs all other
conjectures of N only finitely often. N ′ is therefore a ConsvPart learner of C. �
Whilst conservative partial learnability may appear at first sight to be quite
a stringent learning criterion, one can furnish a relatively natural example of
a conservatively partially learnable class of r.e. languages which is neither be-
haviourally correctly nor confidently partially learnable.

Example 5. Let G = {graph(f) : f is recursive}. Then G is ConsvPart
learnable but neither confidently partially learnable nor behaviourally correctly
learnable.

As an immediate consequence of Theorem 4 and Example 5, one has that the
notion of conservative partial learning strictly subsumes that of conservative
behaviourally correct learning, as claimed in Theorem 3. The subsequent theorem
places the last inclusion relation of Theorem 3 in a broader setting, characterising
the oracles relative to which a conservatively partially learnable class is also
conservatively explanatorily learnable.
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Theorem 6. Given an oracle A, ConsvPart ⊆ ConsvEx[A] if and only if
K ≤T A.

To complement the preceding theorem, one can show that for every nonrecursive
oracle A, ConsvEx[A] learning is more powerful than ConsvPart learning.

Example 7. If A is not recursive, then there is a class which is ConsvEx[A]
learnable but not conservatively partially learnable.

Vacillatory learning, when imposed together with conservativeness, is a fairly
stringent criterion; the next theorem asserts that it implies conservative
explanatory learning in general.

Theorem 8. If a class of r.e. languages is ConsvVac learnable, then it is
ConsvEx learnable.

In the next example, it is shown that if one imposes the condition that the learner
must use a class-preserving hypothesis space, then semantic conservativeness
does not in general imply its syntactic analogue for explanatory learning.

Example 9. If A is a nonrecursive r.e. set, then the class C = {A ∪ {x} :
x /∈ A} is semantically conservatively and explanatorily learnable using a class-
preserving hypothesis space, as well as syntactically conservatively and prudently
explanatorily learnable using a class-comprising hypothesis space, but the class
C is not ConsvEx learnable using a class-preserving hypothesis space.

Fulk [7] proved that every explanatorily learnable class is also prudently ex-
planatorily learnable; Jain, Stephan and Ye [12] established the corresponding
result for behaviourally correct learning. In connection to these results, one may
ask whether the relation in Theorem 8 still holds when the learner is required to
be prudent. The following theorem answers this question affirmatively, showing
that every conservatively explanatorily learnable class of r.e. languages is also
conservatively explanatorily learnable by a prudent learner.

Theorem 10. If a class of r.e. languages is ConsvEx learnable, then it is
PrudConsvEx learnable.

The following example emphasises the distinction between prudence and the
use of a class-preserving hypothesis space; even when combined with conserva-
tiveness, prudence is not sufficient to guarantee that a uniformly r.e. class of
languages is conservatively partially learnable with respect to a class-preserving
hypothesis space.

Example 11. Let L = {L〈d,2s〉 : d, s ∈ N} ∪ {L〈d,2s+1〉 : d, s ∈ N}, where

L〈d,2s〉 =

{
{d} if Wd,s = Wd;
{d, t+ 1} if t is the first stage with Wd,s ⊂Wd,t,

L〈d,2s+1〉 = {d, d+ s+ 1}.

L is PrudConsvEx learnable but not ClsPresvConsvPart learnable.
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Remark 12. One also has that the conservatively vacillatorily learnable classes
of r.e. languages constitute a strict subset of the prudently conservatively be-
haviourally correctly learnable classes when a class-preserving hypothesis space is
enforced. For example, the class {K∪D : D is finite} is prudently conservatively
behaviourally correctly learnable using a class-preserving hypothesis space, but
it is not vacillatorily learnable (using any hypothesis space).

Coming to a more particular setting, the following result demonstrates the equiv-
alence of conservative partial learnability and Ex[K] learnability for classes com-
prising infinite sets. The hypothesis that all the languages in the class be infinite
cannot, however, be dropped, as may be seen from Example 7.

Theorem 13. Let C be a class of infinite r.e. sets. Then C is ConsvPart
learnable if and only if it is Ex[K] learnable.

The subsequent example gives an instance of a set A such that A �≤T K and the
relation Ex[A] ⊂ ConsvPart no longer holds, even when confined to classes of
infinite sets.

Example 14. The class of infinite sets

C = {{e} ⊕ (We ∪D) : D is finite and We is cofinite} ∪ {{e} ⊕ N : e ∈ N}

is Ex[K′] learnable but not conservatively partially learnable.

The following theorem sharpens Theorem 3, demonstrating that by imposing
the further learning constraint of prudence, prudent ConsvBC learnability does
not in general guarantee prudent ConsvPart learnability.

Theorem 15. There is a class of r.e. languages which is ConsvPart learnable
and prudently ConsvBC learnable, but not prudently ConsvPart learnable.

Angluin [1] introduced the concept of a tell-tale set of a language L to be learnt:
it is a finite subset EL of L such that there is no language L′ in the class of
languages to be learnt which satisfies EL ⊆ L′ ⊂ L. She characterised indexed
families of recursive languages which are explanatorily learnable from positive
data using this notion. The next two theorems give characterisation for conser-
vative partial learnability as well as conservative Ex[K] learnability in a similar
fashion.

Theorem 16. A class C is ConsvPart learnable iff there is a recursive sequence
of pairs (ie, je) such that

1. Die ⊆Wje for all e;
2. For all L ∈ C there is an e with L = Wje ;
3. For all d, e, if Die ⊆Wjd ⊂Wje then Wjd /∈ C.

Theorem 17. A class C is ConsvEx[K] learnable iff there is a recursive sequence
of pairs (ie, je) such that

1. Wie ⊆Wje for all e;
2. For all L ∈ C there is an e with Wie being finite and L =Wje ;
3. For all d, e, if Wie is finite and Wie ⊆Wjd ⊂Wje then Wjd /∈ C.
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Abstract. In this paper we study the topology of asymptotic cones of
groups constructed from S-machines running in polynomial time. In par-
ticular we directly construct an S-machine for an NP-complete problem.
Using a part of the machinery shaped by Sapir,Birget and Rips we con-
struct its associated group and we show that every asymptotic cone of
this group is not simply connected. The proof is rather geometric and
use an argument similar to the one developed by Sapir and Olshanskii.
This work aims to give a topological characterization of non-deterministic
time complexity class.

1 Introduction

Let (X, dX) a metric space s = (sn) a sequence of points in X , d = (dn) an
increasing sequences of numbers with lim dn = ∞ and let ω : P (N) → {0, 1}
be a non-principal ultrafilter. An asymptotic cone of Conω(X, s, d) of (X, dX)
is the subset of the cartesian product XN consisting of sequences (xi)i∈N with

limω
dX(si,xi)

di
<∞ where two sequences (xi) and (yi) are equivalent if and only if

limω
dx(xi,yi)

di
= 0. The distance between two elements (xi), (yi) in the asymptotic

cone Conω(X, s, d) is defined as limω
dX(xi,yi)

di
. Here limω is defined as follows. If

an is a bounded sequence of real numbers then limω(an) is the unique number
a such that for every ε > 0, ω( {n | |an − a| < ε} ) = 1. The asymptotic cones
of a finitely generated group G are asymptotic cones of the Cayley graph of G
and it well known that they do not depend on the choice of the sequence s. It
is then assumed that s = (1) where 1 is the identity. Given an ultrafilter ω and
an increasing sequence of numbers d the asymptotic cone of a finitely generated
group G is then noted Conω(X, d).

A function f : N → N is an isoperimetric function of a finite presentation
〈X,R〉 of a group G if every word w in X , that is equal to 1 in G, is freely
equal to a product of conjugates

∏m
i=1 x

−1
i rixi where ri or r−1

i is in R, xi is in
(X ∪ X−1)∗ and m ≤ f(|w|). Dehn’s function of a finite presentation 〈X,R〉 is
defined as the smallest isoperimetric function of the presentation.

In [1–3] the connections between Dehn’s functions, asymptotic geometry of
groups and computational complexity of the word problem are discussed. In [2]
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Gromov showed that if all asymptotic cones of a group G are simply connected
then G is finitely presented, has polynomial isoperimetric function and linear
isodiametric function. Papasoglu [4] proved that if a finitely presented group
has quadratic isoperimetric function then all its asymptotic cones are simply
connected. Sapir, Birget and Rips in [5] introduced the concept of S-machines
to show that the word problem of a finitely generated group is decidable in
polynomial time if and only if this group can be embedded into a group with
polynomial isoperimetric function. Olshanskii and Sapir in [6] constructed a
group with polynomial isoperimetric function, linear isodiametric function and
non-simply connected asymptotic cones, the group is roughly an S-machine in-
troduced in [5]. In [7] they also constructed a group with two non-homeomorphic
asymptotic cones using the concept of S-machine.

In this paper we construct a group from the well known NP-complete prob-
lem 3SAT. The construction does not use the full machinery of Sapir, Birget
and Rips. Indeed we construct directly an S-machine for 3SAT. Then we use a
tiny part of the construction of Sapir, Birget and Rips to construct the corre-
sponding group. We finally show, in the same fashion as the proof in [6] that
every asymptotic cones of this group is not simply connected. The topologi-
cal characterization of the asymptotic cones corresponding to non-deterministic
time computation is interesting in the following sense; one can take an NEXP-
complete problem and construct its associated group G using the machinery of
Sapir, Birget and Rips. Since NEXP �= NP the isoperimetric functions of G
are not polynomial and thus applying the result of Gromov [2] one can con-
clude that G has at least one asymptotic cone which is not simply connected.
Our work is then a first step in the construction of an answer to the question:
“Is the difference between NEXP and NP reflected in term of topology?”.
The partial answer we get is rather negative. Indeed, considering a group di-
rectly constructed from an S-machine the type of diagram that turns every
asymptotic cones not simply connected are not diagram representing accepting
computations.

2 Preliminaries

This section introduces briefly the machinery introduced by Sapir, Birget and
Rips in [5]. We need to explain, at least superficially, what is an S-machine, how
it works and especially how it leads to the construction of group.

2.1 S-Machines

This section is closely modeled on [5], we recall the notion of S-machine defined
in the work of Sapir, Birget and Rips in [5]. As we already mentioned, our
construction will not use the whole machinery, in particular our S-machine will
be simpler than the one describe in the following. Indeed the construction in [5] is
far more general and then one has to be careful when constructing an S-machine
simulating some Turing machine. Our work does not need such a care since it
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focuses on the construction of a group from an S-machine and does not need the
characterization of Dehn’s function.

[5] defined S-machines as rewriting systems. An S-machine then comes with a
hardware, a language of admissible words, and a set of rewriting rules. A hardware
of an S-machine is a pair (Y,Q) where Y is an n-vector of (not necessarily dis-
joint) sets Yi, Q is an (n+1)-vector of disjoints sets Qi with (

⋃
Yi)∩ (

⋃
Qi) = ∅.

The elements of
⋃
Yi are called tape letters ; the elements of

⋃
Qi are called state

letters. With every hardware S = (Y,Q) one can associate the language of admis-
sible words L(S) = Q1F (Y1)Q2 · · ·F (Yn)Qn+1 where F (Yi) is the language of all
reduced group words in the alphabet Yj ∪Y −1

j . This language completely deter-
mines the hardware. One can then describe the language of admissible words in-
stead of describing the hardware S. If 1 ≤ i < j ≤ n and W = q1u1q2 · · ·unqn+1

is an admissible word, qi ∈ Qi, ui ∈ (Yi ∪ Y −1
i )∗ then the subword qiui · · · qj of

W is called the (Qi, Qj)-subword of W (i < j). The rewriting rules (S-rules)
have the following form:

[U1 → V1, . . . , Um → Vm]

where the following conditions hold: Each Ui is a subword of an admissible word
starting with a Ql-letter and ending with Qr-letter. If i < j then r(i) < l(j),
where r(i) is the end of Ui and l(j) the start of Uj . Each Vi is a subword of
and admissible word whose Q-letters belong to Ql(i) ∪ · · · ∪ Qr(i). The machine
applies an S-rule to a wordW replacing simultaneously subwords Ui by subword
Vi, i = 1, . . . ,m.

As mentioned in [5] there exists a natural way to convert a Turing machine
M into an S-machine S; one can concatenate all tapes of the given machine
M together and replace every command aqω → q′ω by a−1q′ω. Unfortunately
the S-machine constructed following this natural way will not inherit most of
the properties of the original machine M . According to [5] the main problem is
that it is nontrivial to construct an S-machine which recognizes only positive
powers of a letter. Thus in order to construct an S-machine S(M) that will
inherit the desired properties of a Turing machine M , Sapir, Birget and Rips
in [5] constructed eleven S-machines and then used them to construct the final S-
machine S(M) simulating M . The construction is quite involved and nontrivial,
cf. [5] for details.

Taking any Turing machine M = 〈X,Y,Q,Θ, s1, s0〉 and modifying it in a
specific way, [5] constructs an S-machine S(M) simulating M . The S-machine
constructed in [5] is quite long to define, next we explain briefly the main part
of the construction, for proofs and deeper understanding of the whole machinery
please refer to [5]. The main idea of the construction is to simulate the initial
machine M using eleven S-machines S1, S2, . . . , S9, Sα, Sω. We will explain how
the machines S4, S9, Sα, Sω are used in the construction of S(M). The others S-
machines are used to construct S4 and S9 and are rather of technical importance.
First we need by describing what is an admissible word of the S-machine S(M).
For every q ∈ Q the word qω is denoted by Fq, in every command of M the
word qω is replaced by Fq. Left marker on tape i is denoted by Ei. This gives
a Turing Machine M ′ such that the configurations of each tape have the form
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EiuFq where u is a word in the alphabet of tape i and every command or its
inverse has one of the forms:

{Fq1 → Fq′1 , . . . , aFqi → Fq′i , . . . , Fqk → Fq′k} (1)

where a ∈ Y or

{Fq1 → Fq′1 , . . . , EiFqi → EiFq′i , . . . , Fqk → Fq′
k
}. (2)

An admissible word of the considered S(M) machine is a product of three
parts. The first part has the form

E(0)αn1x(0)αn2F (0).

The second part is a product of k words of the form

E(i)vix(i)wiF (i)E′(i)p(i)Δi,1q(i)Δi,2r(i)Δi,3s(i)Δi,4t(i)Δi,5u(i)Δi,6p(i)

Δi,7q(i)Δi,8r(i)Δi,9s(i)Δi,10t(i)Δi,11u(i)Δi,12F
′(i)

for i = 1, . . . , k. The third part has the form

E′(k + 1)ωn′
1x′(k + 1)ωn′

2F ′(k + 1).

Here vi, wi are group words in the alphabet Yi of tape i, and Δi,j is a power
of δ. The letters E(i), x(i), F (i), E′(i), p(i), q(i), r(i), s(i), t(i), u(i), p(i), q(i), r(i),
s(i), t(i), u(i), F ′(i) belong to disjoint sets of state letters.

The letters x(i), p(i), q(i), r(i), s(i), t(i), u(i), p(i), q(i), r(i), s(i), t(i), u(i) are
called standard and are included into the corresponding sets X(i),P(i),R(i),
S(i), T(i),U(i),P(i),Q(i) ,R(i),S(i),T(i),U(i), (i = 1, . . . , k). Let τ be a com-
mand in Θ of the form (1) (command of the form (1) are are called positive and
their inverse negative). For every γ ∈ {4, 9, α, ω} and for each component V (i) of
the vector of sets of state letters, the letter V (i, τ, γ) are included into V (i) where
V ∈ {P,Q,R, S, T, U, P,Q,R, S, T , U}. For each S-machine Sγ , γ ∈ {4, 9, α, ω}
a copy of Sγ is considered where every state letter z is replaced by z(j, τ, γ)
where j = i if γ = 4, 9, j = 0 if γ = α and j = k + 1 if γ = ω. These
state letters are included into the corresponding sets. The state letters we just
described are all the state letters of S(M). The rules of S(M) are the rules
of S4(τ),S9(τ),Sγ(τ),Sω(τ) for all τ ∈ Θ of the form (1) plus the connecting
rules. Basically the connecting rules allows to go from a machine to another
one, there are five such rules: R4(τ), R4,α(τ), Rα,ω(τ), Rω,9(τ), R9(τ). They can
be described informally as follows. R4(τ) turns on the machine S4(τ). R4,α(τ)
turns on the machine Sα(τ) when S4(τ) finishes its work, Rα,ω(τ), Rω,9(τ) do
the same with the corresponding S-machines. R9(τ) turns off S9(τ) and gets the
machine ready to simulate the next transition from Θ. This machinery contains
all the necessary steps to simulate a rule of the machine M .

Formally speaking, to every configuration c = (E1v1Fq1 , . . . , EkvkFqk ) of the
machine M is associated the following admissible word σ(c) of S(M):
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E(0)αnx(0)F (0)E(1)v1x(1)Fq1 (1)E′(1)p(1)δ||v1||q(1)r(1)s(1)t(1)u(1)p(1)

q(1)r(1)s(1)t(1)u(1)F ′
q1(1) . . . E(k)vkx(k)Fqk (k)

E′(k)p(k)δ||vk||q(k)r(k)s(k)t(k)u(k)p(k)q(k)

r(k)s(k)t(k)u(k)F ′
qk

(k)E′(k + 1)x′(k + 1)ωnF ′(k + 1),

where ||v|| is the algebraic sum of the degree of the letters in v.
Now we present how [5] converts an S-machine S(M) into a group presen-

tation, once again this part is strongly modeled on [5]. Let S(M) be the S-
machine as constructed. Let Y be the vector of sets of tape letters, and let Q
be the vector of state letters of S. One can remark that Q has 17k + 6 com-
ponents which [5] denotes by Q1, . . . , Q17k+6. [5] notices that Q1 = E(0), Q2 =
X(0), Q3 = F(0), Q17k+4 = E′(k + 1), Q17k+5 = X(k + 1), Q17k+6 = F′(k + 1).
Let Θ+ the set of positive rules of S(M) and N a positive integer. To construct
their group GN (S), Sapir, Birget and Rips take the following generating sets :

A =
17k+6⋃
i=1

Qi ∪ {α, ω, δ} ∪
k⋃

i=1

Yi ∪ {κj|j = 1, . . . , 2N} ∪Θ+. (3)

and the following set PN (S) of relations:

1. Transitions relations. These relations correspond to elements of Θ+. Let
τ ∈ Θ+, τ = [U1 → V1, . . . , Up → Vp]. Then relations τ−1U1τ = V1, . . . , τ

−1

Upτ = Vp are included into PN (S). If for some j from 1 to 17k+6 the letters
from Qj do not appear in any of the Ui then the relations τ−1qjτ = qj for
every qj ∈ Qj are also included.

2. Auxiliary relations. These are all possible relations of the form τx = xτ
where x ∈ {α, ω, δ} ∪

⋃k
i=1 Yi, τ ∈ Θ+.

3. The hub relation. For every word u let K(u) denote the following word:

K(u) ≡ (u−1κ1uκ2u
−1κ3uκ4 . . . u

−1κ2N−1uκ2N )×
(κ2Nu

−1κ2N−1u . . . κ2u
−1κ1u)−1.

Then the relation hub isK(W0) = 1, whereW0 is the accepting configuration
of the S-machine.

The objective of Sapir, Birget and Rips [5] in constructing such groups is to
prove the following theorem :

Theorem 1. [5] Let L ⊆ X+ be a language accepted by a Turing machine
M with a time function T (n) for which T (n)4 is superadditive. Then there ex-
ists a finitely presented group G(M) = 〈A〉 with Dehn’s function equivalent to
T (n)4, the smallest, isodiametric function equivalent to T 3(n), and there exists
an injective map K : X+ → (A ∪ A−1)+ such that

1. u ∈ L if and only if K(u) = 1 in G;
2. K(u) has length O(|u|)2 and is computable in time O(|u|).



196 A. Gasperin

3 Construction of GSAT

In this section we shall detail the construction of an S-machine for an NP-
complete problem, then following a part of [5] we construct a group from the
S-machine. As we shall see, when one consider only positive admissible word the
S-machine recognizes satisfiable 3SAT formula. The fact is that it is difficult to
design an S-machine that exactly simulate a Turing machine, indeed the addition
of inverse rules extends the accepted language of the machine. Sapir, Birget
and Rips in [5] shows how to overcome this difficulty in a general setting. The
drawback of the construction is that the time function of the original machine is
increased polynomially. Moreover the upper bound gave in their work for Dehn’s
function of the associated group take into account this polynomially jump. Thus
if one wishes to study the topology of asymptotic cones of group constructed
from S-machine one has to find a way to get round the simulation since it can
changes drastically the topology of the asymptotic cones.

Let us first define the set of tape and state letters of the first machine. The
state sets are Q0 = {α}, Q1 = {q0, qb, qb1 , qc, qd, qf , qr}, Q2 = {p0, p1, pe, pr, pf},
Q3 = {u0, u1, ue, ur, uf}, Q4 = {v0, v1, ve, vr, vf}, Q5 = {z0, z1, ze, zr, zf}, Q6 =
{t0, t1, t2, t3, tf}. The letter sets are Y0 = {0, 1, ξ, γ, %}, Y1 = {0, 1, ξ, γ, %}, Y2 =
{0, 1, ξ, γ, η, F, T, ζ}, Y3 = {0, 1, ξ, γ, η, F, T, ζ}, Y3 = {0, 1, ξ, γ, η, F, T, ζ}, Y4 =
{0, 1, ξ, γ, η, F, T, ζ}, Y5 = {T, F}. We need to encode every input (x1 ∨ x2 ∨
x3) ∧ · · · ∧ (xk ∨ xk+1 ∨ xk+2) of the problem 3SAT. We choose ”ξ” and ”%” to
represents respectively ”∨” and ”∧”. Every xi appearing in a clause is encoded
by the binary representation bin(i) of i. The symbol xi is represented by the
sequence γbin(i). Intuitively our machine works as follows; it reads an xi, checks
if a value has been already assigned to xi or xi, if not it assigns a value to it.
Next we detail the rules of the machine, let us call it S0.

We first define a set of rules that allows the copy of the symbol reads and that
assigns to it a value. The admissible word corresponding to the start configura-
tion of a computation on ω is ws = αq0ωp0u0v0z0t0.

I0 : [q0 → qc, p0u0v0z0t0 → p0u0v0z0t0],

I1 : [q0 → qdγ
−1, p0u0v0z0t0 → p0u0v0z0t0],

R0 : [qc → qcx
−1, v0yz0 → yv0xz0],

R1 : [qc → qcξ
−1, v0yz0 → yv0ηT z0, Xti → T ti+1],

R2 : [qc → qcξ
−1, v0yz0 → yv0ηFz0, Xti → Xti+1],

R3 : [qc → qb%
−1, v0yz0 → yv0ζz0, T t3 → T t1],

R4 : [qc → qp%
−1, v0yz0 → yvpζzp, F t3 → tp],

T0 : [qd → qdx
−1, v0yz0 → yv0xz0],

T1 : [qd → qdξ
−1, v0yz0 → yv0ηT z0, Xti → Xti+1],

T2 : [qd → qdξ
−1, v0yz0 → yv0ηFz0, Xti → T ti+1],

T3 : [qd → qb%
−1, v0yz0 → yv0ζz0, T t3 → T t1], and
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T4 : [qd → qp%
−1, v0yz0 → yvpζzp, F t3 → tp].

Here x ∈ {0, 1}, i ∈ {1, 2, 3}. Assuming the input is a positive admissible word
corresponding to a 3SAT instance, the rules just defined allow to copy the code
of a literal in a clause, moreover it assigns to it a value. One has to be careful
reading the rule Ti, Ri, even if they look the same they differ slightly. Indeed the
rule Ti are applied in the case where a γ has been detected, then when the value
of the binary representation is saved and set to value (T, F ) the current value
of the formula is update with the inverse value (rules T1, T2). Now let us define
the rules that check if a literal has been recorded and update the computation
with its value.

A1 : [qb → xqbx
−1, u1 → xu1x

−1],

A2 : [qb → ξqb1ξ
−1, u1 → ηu1η

−1],

A3 : [qb1 → qe, u1 → FueF
−1, Xti → Xti+1],

A4 : [qb1 → qe, u1 → TueT
−1, Xti → T ti+1],

B1 : [α→ αx−1, qe → qe, ue → y−1uey],

B2 : [αqe → αqe, ue → y−1uey],

B3 : [α→ αqbq
−1
e , p0ue → p0u0],

C1 : [qb → xqrx
−1, u1 → yury

−1], y �= x, x �= ξ, y �= η,
C2 : [qr → x−1qrx, ur → y−1ury],

C3 : [αqr → qc, ur → u0], and

F : [qb → qbpfp
−1
0 , u0 → uf , v0 → vf , z0 → zf , T t1 → tf ].

Rules C1, C2, C3 are applied when the string is not found, they bring the machine
in the state that will record the literal and set its value. Again, as we did for the
first set of rule we defined, the rule regarding the symbol xi must be defined.
Since they are essentially the same we omitted them. It is not difficult to see
that considering only application of positive rule and given a positive admissible
word corresponding to a start configuration of a word w representing a 3SAT
formula the machine goes in the final configuration if and only if the formula is
satisfiable. But since an S-machine has also the inverse rules, other words can
be accepted.

Now we are going to see how the group is constructed from the S-machine,
basically it follows the construction of Sapir, Birget and Rips, but it is far less
complicated since we do not need the machinery that allows the simulation. We
define the group GN (S0) constructed from the following generating set

A =

i=6⋃
i=1

Qi ∪
i=5⋃
i=1

Yi ∪ {κj|j = 1, . . . , 2N} ∪ θ+. (4)

where θ+ is the set of positive rules and κj the symbols added to define the hub
relation. N is a fixed integer such that N ≥ 6 for some small cancellation reason
(cf. [5] for more detailed explanations).
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The presentation is defined in the same way that the presentation introduces
in last section, but considering the generating set just defined. The group has
some properties similar to the one defined by Sapir, Birget and Rips. In particular
it is immediate to conclude that the same arguments, involving computational
sectors and computational discs, allow to conclude the following lemma of [5],
but restricted to the positive admissible word.

Lemma 1. For every positive admissible word W of the machine S, there exists
a computation of S connecting W and W0 if and only if K(W ) = 1 in the group
GSAT.

In our case W0 is the accepting configuration qfpfvfzfuf tf . For the rest of the
paper the group will be denoted GSAT.

3.1 Topology of Asymptotic Cones of GSAT

In this section we show that every asymptotic cones of GSAT is not simply
connected. For that we need to see exactly what happen when a rule is applied
in the formal construction. Remember that the symbol are encoded in binary.
Let us consider the rule R0. The rule R0 writes a 0 or a 1 between v0z0. We
shall focus on the case where a 1 is written between v0z0. One can remark that
the rule T0 works exactly as R0 for the word v0z0.

Thus in the group GSAT there exists τ1, τ2, such that τ1 is of the form
τ−1
1 v0yz0τ1 = yv01z0, τ2 is of the form τ−1

2 yv01z0τ2 = v0yz0 where y = ε or
y = 1. Moreover τ1τ2 �= 1. Now we can consider for each n ∈ N the van Kampen
diagram Δn defined as follows :

– the top side and bottom side of Δn are labeled by (v0z0)n

– the right and left side are labeled by τn1 τ
n
2

We shall show that this kind of diagram contradicts the following statement
noticed by Gromov [2]:

Suppose that an asymptotic cone Conω(G, d) is simply connected then for
every M > 1 there exists a number k such that for every constant C ≥ 1, every
loop l in the Cayley graph of G satisfying 1

C dm ≤ |l| ≤ Cdm for any sufficient
large m, bounds a disc that can be subdivided into k subdisc with perimeter

at most |l|
M . Now we shall show the result, the proof use the same argument as

the one in [6]. That is we show that no loop corresponding to Δn can bound a
disc decomposed into at most k ≤

√
n. First let us recall what is an x-band, for

every letter x. An x-edge in a van Kampen diagram is an edge labeled by x±1.
An x-cell is a cell whose boundary contains an x-edge. An x-band in a diagram
is a sequence of cells containing x-edges, such that every two consecutive cells
share an x-edge. The boundary of the union of cells from an x-band B has the
form s−1peq−1 where s, e are the only x-edges on the boundary representing
respectively the start and the end of the band. The paths p, q are called the
sides of B.

Theorem 2. Every asymptotic cone of GSAT is not simply connected.
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Proof. Let Conω(GSAT, (di)) be an asymptotic cone of GSAT. Fix n = dm for
a large m. Let M = 6 = C and k of the Gromov statement, assume that each
loop 1

C dm ≤ |l| ≤ Cdm can be divided into
√
n subdiagrams of perimeter n.

Let B be maximal Θ-band in Δn. Since Θ-bands in Δn do not intersect, B has
a side label by (1i−1v01z0)

i which is equivalent in G to τ−i
1 (v0z0)iτ i1. Since the

number of diagram k ≤
√
n there exists a diagram Δi with a perimeter of length

n containing the word w = (z0)1n−1(v01z0). One can choose Δi such that the
boundary is equal to b1b2, b1 contains all Θ-edges, |b1| ≤ n

2 and a subword b′1 of
b1 reduced to w. Focusing on the diagram Γ with boundary b′1w we can remark
that each v0-band and z0-band beginning on w end on b′1. But each letter ”1” is
obtained by the application of a rule τ1. There are at most n

2 application of the
rule τ1 in the diagram Γ . Moreover Γ has neither v0-cells nor z0-cells. Thus every
1-band beginning on b′1 must ends on w. But that is impossible since |b′1| < n.

The theorem shows that to consider the topology of asymptotic cones for groups
construct from S-machine as an interesting tool to study computation, one has
to be careful in the construction. The topology of the asymptotic cones appears
to be highly dependent of the interactions between the rules of the machine. In
future work we shall consider S-machines for NP-complete problem that avoid
the construction of diagrams of type Δn. As a main motivation we will try to
find a group construct from an NP-complete problem having a simply connected
asymptotic cone.
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Abstract. In this paper we obtain two results using amalgamation
classes and Fräıssé limits. First, we construct a decidable theory T whose
types are all decidable yet whose prime model is not decidable. Millar
[15] constructed such example but his example uses an infinite language
in an essential way. Our example uses one binary predicate symbol, that
is, the models we construct are graphs. Second, for any finite lattice F
we construct a theory T with countably many models such that the fun-
damental order determined by T is isomorphic to F . As a by-product of
this example, we propose the investigation of computable and decidable
models of T by connecting them to the fundamental order of T .

1. Introduction

Let T be a complete consistent first order theory of a countable language. Let
Mod(T ) be the class of all countable models of T . We are interested in those
models of Mod(T ) that can be described effectively. Effectiveness can be intro-
duced through considering diagrams of the models of T as follows.

For a model M ∈ Mod(T ), expand the language of M by adding constant
symbols cm for all elements m of M. Denote the expanded language by LM and
the expanded structure by (M, cm)m∈M . The atomic diagram of M is the set:

DA(M) � {ϕ | (M, cm)m∈M |= ϕ and ϕ is a quantifier free sentence of LM}

We say that M is a computable model of T if DA(M) is a decidable set. A
stronger notion of effectivity can be introduced by considering the elementary
diagram:

D(M) � {ϕ | (M, cm)m∈M |= ϕ and ϕ is a sentence of LM}

We say that M is a decidable model of T if D(M) is a decidable set. Clearly,
decidable models are computable. We slightly abuse our definition and refer to
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a model M as computable (decidable) if the isomorphism type of M contains a
computable (decidable) model. Thus, being computable or decidable is a prop-
erty of the isomorphism types of the models.

There are theories with computable but without decidable models. For in-
stance, the arithmetic (ω; +,×,�, 0, 1) is a computable model of the Peano
arithmetic PA, and PA has no decidable models [5].

The standard Henkin construction produces a model of T whose elementary
diagram is decidable with an oracle for T . Hence, the theory T is decidable if
and only if it has a decidable model [5]. Given a decidable theory T , one can
ask many natural questions about decidability of models of T : Is the prime
model of T decidable? Is the saturated model of T decidable? Is there a ho-
mogeneous decidable model of T ? Is there a decidable model of T that omits a
given (non-principal) type of T ? By the early 80s all these questions have been
answered in a series of papers. Goncharov and Nurtazin [6] and independently
Harrington [8] proved that the existence of a uniform procedure that lists all
principal types of T is a necessary and sufficient condition for T to possess a
decidable prime model. Similarly, Morley [17] proved that T has a saturated
decidable model if and only if the class of all types of T is uniformly decidable.
Peretyatkin [19] and independently Goncharov [4] gave criteria for a homoge-
neous model of T to be decidable. Millar [15,16] built decidable models of T
that omit certain collections of non-principal types of a given theory. Recently,
a series of papers have been published that investigate degree-theoretic aspects
of the results mentioned [2,7,13]. For instance, Hirschfeldt [9] proves that if all
types of T are decidable then the prime model of T has a copy decidable in any
given non-recursive degree.

In this paper we obtain two results using amalgamation classes and Fräıssé
limits. In the first part of this paper we construct a decidable theory T all of
whose types are decidable yet whose prime model is not decidable. We note
that Millar [15] constructed such an example but his example uses an infinite
language in an essential way. Our example uses just one binary predicate symbol,
that is, the models we construct will be graphs. Our construction uses Fräıssé
limits that code a family of sets of natural numbers. We note that such a theory
T must have the following properties: (1) T has a saturated model since T has
countably many types [21], (2) T has a prime model since T has a saturated
model [21], (3) T does not have a decidable saturated model as otherwise the
prime model would be decidable [5], (4) The family of all principal types of T
and the family of all types of T both are not uniformly computable as mentioned
above, (5) The prime model is decidable in any non-recursive degree.

In the second part of the paper, for any finite lattice F we construct a com-
plete theory T with countably many models such that the fundamental order
determined by T is isomorphic to F . In this case we say that T realises F . Now
we explain the fundamental order associated with T . By a type p of the theory
T we mean a maximal consistent with T set of formulas in at most n variables,
where n is fixed. We use the notation S(T ) for the collection of all types of T . For
a model A of T , the set of all types realised in A is called the type spectrum of T
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and is denoted by TySp(A) as in [16]. We say that type q is weaker than type p,
written q -T p, if any model of T realising p must also realise q. In this case we
also say that p is stronger than q. If p -T q and q -T p then we say that p and q
are equivalent and denote this by p ∼ q. We denote the equivalence class of type
p by [p]. It is easy to see that -T defines an order on the quotient set S(T )/ ∼.
We call this order, following Lascar–Poizat [14] and Baldwin–Berman [1], the
fundamental order of the theory. Clearly, the equivalence class of a principal
type is the least element in the fundamental order. Sudoplatov in [22] studies
fundamental orders of theories through syntactic conditions. In this sense, his
approach is somewhat orthogonal to ours as we employ algebraic tools such as
amalgamation classes and Fräıssé limits.

Baldwin and Berman [1] investigate the fundamental order on 1-types over
models rather then “pure” types (types over the empty set) as considered by
us in this paper. They show that lattices can be realised as fundamental orders.
In [20] Poizat proves that the fundamental order need not be a lattice and that
the fundamental order over models must be lower semimodular. It is not clear,
however, whether our results can be derived from the work of Baldwin, Berman,
and Poizat. In addition, our results are independent, self-contained and use quite
different machinery as opposed to the proofs used in [1] and [20].

If the theory T has countably many types, then we can recast the fundamental
order -T as follows. On the class of all countable models Mod(T ) of T consider
the elementary embedding relation -. This is a pre-partial order on Mod(T ).
Say that two models A and B of T are ≈-equivalent if A - B and B - A.
The ≈-equivalence class of model A is denoted by [A]. Thus, - determines a
partial order on the quotient set Mod(T )/ ≈. It turns out that the partial order
(Mod(T )/ ≈; -) is isomorphic to the fundamental order (S(T )/ ∼; -T ). The
isomorphism is explicitly defined as follows. Let p be a type of T . There exists a
model B such that TySp(B) = {q | q -T p}. In this case we say that B strictly
realises p. Set K(p) = {B | B strictly realises p}. The mapping [p] → K(p)
establishes the desired isomorphism from (S(T )/ ∼; -T ) to (Mod(T )/ ≈; -).

Having the fundamental order (S(T )/ ∼; -T ), one can now refine many
questions about computable and decidable models of the theory T . In particular,
one can ask if there is decidable or computable model in the class K(p) for a
given type p. As corollaries of the second result of this paper we obtained the
following: (1) For any finite lattice F and any p ∈ F , there exists a decidable
theory T such that T realises F , T has countably many models, and all decidable
models of T belong to the classes K(q), where q -T p. (2) For any finite lattice
F , there exists a theory T such that T realises F , T has countably many models,
and for all p ∈ F each class K(p) contains exactly one computable model.

2. A Theory Whose All Types Are Decidable but Which
Has No Decidable Prime Model

We construct a theory T whose all types are decidable which has no decidable
prime model. The language of the theory consists of one binary predicate symbol.
Our construction uses Fräıssé limits that code a family of sets of natural numbers.
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The preorder �S . Let S = {A0, A1, . . .} be a family of finite sets of natural
numbers. On the set 2<ω of finite sets, using S, we introduce the following
preorder �S . Say that a set X ∈ 2<ω is S-less than or equal to Y ∈ 2<ω, written
X �S Y , if there exists an n such that for all i � n we have Y ⊆ Ai implies
X ⊆ Ai. The set (D,�S) is a preordered set for all D ⊆ 2<ω. Note that �S
does not depend on the enumeration of S. There is an equivalence relation ∼S
associated with �S : X ∼S Y if and only if X �S Y and Y �S X . Denote the
equivalence class of X by [X ]. Note that for all X,Y ∈ 2<ω for which there are
at most finitely many A ∈ S containing X or Y , we have X ∼S Y . By 1 we
denote the ∼S-equivalence class of X ∈ 2<ω for which there are at most finitely
many A ∈ S containing X . Clearly, 1 is the greatest element in �S preorder if it
exists. Thus, interesting cases arise when we restrict ourselves to those X ∈ 2ω

that appear in infinitely many A ∈ S.
As an example, consider the infinite binary tree T . With this tree associate a

family S = {Bx | x ∈ T, Bx ⊂ 2<ω} with the following properties:

1. For every node x ∈ T , the set Bx is of the form Ax ∪ {nx} ∈ S.
2. The mapping x→ Ax is an injection.
3. The mapping x→ nx is an injection.
4. (∪xAx) ∩ {nx | x ∈ T } = ∅.
5. For all x, y ∈ T , x is a prefix of y if and only if Ax ⊆ Ay.

For all x, y ∈ T we have Ax ∪ {nx} ∼S Ay ∪ {ny}. Also, we have Ax �S Ay if
and only if x � y in the tree T . Moreover, if x �= y then Ax �∼S Ay.

The following proposition shows that �S is quite a general construction in
the sense that all countable preorders can be represented through appropriate
�S and D ⊆ 2<ω. We leave the proof of the proposition out as well as most of
other proofs due to the space limit.

Proposition 1. Let (A,�) be an at most countable preordered set. There exist
a family of finite sets S = {A0, A1, . . .} and D ⊆ 2<ω such that the preordered
set (A,�) is isomorphic to (D,�S).

A chain is an infinite sequence A0 �S A1 �S . . . of finite subsets of ω.

Definition 1. We say that a subset L ⊆ ω is an S-limit point if there exists
a chain A0 �S A1 �S . . . such that each [Ai] <S [1] and L is the union ∪iLi,
where each Li is the union of all sets in the ∼S-equivalence class [Ai].

In the example above each path η through the tree T defines the following limit
point Lη = ∪x∈ηAx. Note that if L is a limit point and X is a finite subset of L
then X appears in infinitely many A ∈ S. If S is clear from the context we use
the term limit point instead of S-limit point.

Let S be a family of finite sets. We shall be coding families S into prime
models of theories. In order to capture non-prime models of those theories, we
single out certain families extending S in the next definition.

Definition 2. A family S ′ is called a non-principal extension of S if S ⊂ S ′ and
every B ∈ S ′ \ S is an infinite S-limit point. If all infinite limit points of S are
in S ′ then we call S ′ a saturated non-principal extension of S.
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Proposition 2. There exists a family S of finite sets and its non-principal ex-
tension S ′ such that the following properties hold:

1. All limit points of S are infinite.

2. S ′ is a saturated non-principal extension of S.

3. S ′ is uniformly computable.

4. S is not uniformly computably enumerable.

The theory TS. Let S be a family of subsets of ω. Let B0, B1, . . . be a computably
enumerable enumeration of S. We define a complete theory TS based on the
family S. The theory will be defined through a Fräıssé limit type of construction.
The idea of the construction follows [11].

We briefly recall the construction of Fräıssé limits. Let K be an infinite class
of finite structures (over a finite relational language) closed under isomorphisms.
Assume that the class K has the following properties:

1. Hereditary property (HP): for all A ∈ K, if B is a substructure of A then
B ∈ K.

2. Joint embedding property (JEP): for all A,B ∈ K there exists a C ∈ K, such
that A and B can be embedded into C.

3. Amalgamation property (AP): for all A,B,C ∈ K, if f : A→ C and g : A→
B are embeddings then there exists a structure D ∈ K and embeddings
h : B → D and k : C → D such that kf = hg on A.

Recall that a structure is ultrahomogeneous if any finite partial isomorphism of
the structure into itself can be extended to an automorphism of the structure.
The age of a structureD is the class of all finite structures embeddable in D. The
following is a well known result in model theory connecting ultrahomogeneous
structures with classes that possess HP, JEP and AP (see, for instance, [10]):

Theorem. For any infinite class K that has HP, JEP and AP there exists a
unique at most countable ultrahomogeneous structure lim(K) whose age coincides
with K. Moreover, the structure lim(K) is ℵ0-categorical.

The structure lim(K) is called the Fräıssé limit of the class K. We shall use this
theorem in our construction below.

For our purpose we now define special classes of finite structures that have
properties HP, JEP, and AP. A cycle of length n � 3 is the graph Cn =
({1, . . . , n}, E) with E = {(1, 2), (2, 1), (2, 3), (3, 2), . . ., (n−1, n), (n, n−1),(n, 1),
(1, n)}. A graph G contains a cycle of length n if there is an embedding from
Cn into G.

For Y ⊂ ω, 0, 1, 2 �∈ Y , Y �= ∅, consider the following class of finite directed
graphs: K(Y )={(V,E) | If (V,E) contains a cycle of length n then n ∈ Y }. The
following is an easy lemma:

Lemma 1. The class K(Y ) possesses properties HP, JEP and AP.
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We construct the following a structure AS based on the uniformly computable
sequence B0, B1, . . . of the family S given above. For each Bx ∈ S consider the
limit structure limK(Bx). One can uniformly construct a sequence

limK(B0), limK(B1), limK(B2), . . .

of these structures such that (1) the graphs in this sequence are all pairwise
disjoint; (2) the union of domains of these graphs is ω; and (3) the sequence
is uniformly computable meaning that the set {(n,m) | m ∈ limK(Bn)} is
computable.

Here is now a description of the structure AS . The signature of AS has one
binary relation E. The domain of the structure is ω. The relation E is the
union of all edges of graphs that appear in the sequence above. Clearly, E is a
computable edge relation. Thus, the structure AS is a computable graph.

Define TS to be the first order theory of the structure AS built above. The
next lemma connects decidability of the theory TS with a uniformity condition
put on the family S:

Lemma 2. The structure AS is decidable if and only if the S∪{∪S} is uniformly
computable.

Using the lemmas above, we can prove the following theorem.

Theorem 1. There exists a decidable theory T in the language of one binary
predicate such that all types of T are all decidable but both prime and saturated
models of T are not.

3. Finite Lattices and Fundamental Orders

The main theorem of this section is to show that every finite lattice can be
realised as the fundamental order of a theory.

An amalgamation class. We consider a class K of finite structures of the signature
σ that has one binary predicate �, a ternary predicate R, and a finite set of
constants {f0, f1, . . . , fn}. The axioms for the class K are given below. For the
axioms we fix a finite lattice F .

1) The relation � orders the set of constants {f0, . . . , fn} such that the resulting
partially ordered set ({f0, . . . , fn},�) is isomorphic to F . We denote this set
of constants by F . We always assume that f0 is the least element and fn is
the greatest element with respect to �.

2) The relation � is false in any pair of elements x, y such that x, y �∈ F . By Tr,
we denote the set {x | x �� x}. We also declare that Tr �= ∅. It is clear that
Tr and F have no elements in common.
For the next set of axioms, we write x �f y instead of R(f, x, y).

3) For each f ∈ F we have the axiom: x �f y → (f ∈ F & x, y ∈ Tr).
4) For each f ∈ F , the relation �f orders Tr as a tree.
5) (Downwards monotonicity axiom): (x �f y & g � f) → x �g y.
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6) (Uplifting axiom): For all f, g, h ∈ F such that h is the least upper bound
of f and g we have the axiom: (x �f y & x �g y) → x �h y. This axiom
implies that the intersection of �f and �g equals �h.

There are trivial finite models that satisfy the axioms. For instance, on the set
Tr we can always let the tree order �f be the same for all f ∈ F . The next
proposition shows that there are non-trivial finite models satisfying the axioms.

Proposition 3. For any finite lattice F there exists a finite structure A of sig-
nature σ such that (1) A is a model of the axioms, and (2) the set {�f | f ∈ F}
under ⊇ is isomorphic to F .

For a structure A from K, let Tr(A) denote the tree part of its domain and F (A)
its constants part. So we have Tr(A) = A \ F (A) and A = Tr(A) ∪ F (A). Note
that if A is a model of the axioms, then for all x, y ∈ Tr either x and y are not
�g-comparable for each g ∈ F , or there exists a unique f ∈ F such that for all
g ∈ F we have x and y are �g-comparable if and only if g � f .

Lemma 3. The class K possesses properties HP, JEP and AP.

Let A′ be the Fräıssé limit of the class K. Since K is the class of relational
structures of finite signature, we have the following:

Proposition 4. The model A′ is ultrahomogeneous and ℵ0-categorical.

The model A. Consider the model A′ built above. Extend the structure A′ by
adding a new countable set S of elements to the domain of A′; so, A′ ∩ S = ∅.
We also add a new relation symbol p to the signature of A′. The interpretation
of p will be a partial function F × S → Tr(A′). We shall write pf(s) instead
of p(f, s). After introducing some notations, we shall give a precise definition of
pf (s) for f ∈ F and s ∈ S. This extended structure is denoted by A.

We now define a sequence Φ1, Φ2, . . . of non-principal filters in Tr(A′). Ini-
tially, we set Φ0 = Tr(A′). Each Φi+1 is chosen to be a non-principal �fn -filter
of Φi for all i ∈ ω. Recall that fn is the greatest element in the lattice F . Note
that all filters are pairwise isomorphic since A′ is ultrahomogeneous.

For all i ∈ ω, set Δi = Φi \ Φi+1. For each f ∈ F , we also define

Δ0,f = {x | (∃y, z ∈ Δ0) y <f x <f z},

Δi,f = {x | (∃y, z ∈ Δi) y <f x <f z} \
⋃
j<i

Δj,f (for all i > 0).

It is clear thatΔi = Δi,fn for each i, and for all f ∈ F the sequenceΔ0,f , Δ1,f , . . .
consists of pairwise disjoint subsets. One can choose the sequence Φ1, Φ2, . . . of
the filters so that for each f from F we have Tr(A′) = ∪i∈ωΔi,f .

Let {Sf}f∈F be a partition of S into infinite subsets. We now define the
function pf : Sf → Tr(A′) such that (1) the function pf : Sf → Tr(A′) is onto,
and (2) for each x ∈ Δi,f the set p−1

f (x) has cardinality i + 1. Denote the new
structure thus obtained by A. This is our desired structure.
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Let T be the elementary theory Th(A) of A. Our goal is to show that the
theory T is the desired one. We introduce a notation in order to simplify our
exposition. The intuition comes from the known example (Q,�, c0, c1, . . .) of
the order of rationals where the constants form a strictly increasing chain. The
theory of this structure has 3 models (See, for instance, [10]). For elements
f ∈ F , write ci �f x to indicate that |p−1

f (x)| � i + 1. Similarly, write ci ��f x

for |p−1
f (x)| < i+ 1; and write x �f ci for (∃y �f x) |p−1

f (y)| = i+ 1. Note each
ci neither is a constant nor an element of our structure.

Characterisations of models of T . Let B be a countable model of T . For
f ∈ F , set Bf = {x | ci �f x for all i}. Note that if Bf �= ∅, then Bf is a
�f -filter but not necessarily a non-principal filter. If Bf is a principal filter and
z is its least element, then we call such elements Bf -least.

Lemma 4. If a is a Bf -least and b is a Bg-least element, then a = b.

For the model B, and f ∈ F , define the ordinal αf as follows:

– If Bf is principal then αf = ω + ω.
– If Bf is non-principal, and there are a and g such that a is the Bg-least

element, ck �f a, and ck+1 ��f a, then αf = ω + k.
– If Bf is non-principal and there is no g such that Bg is principal, then
αf = ω.

– If Bf = ∅ and there are a and g such that a is the Bg-least element, ck �f a,
and ck+1 ��f a, then αf = k.

– If Bf = ∅ and there is no g such that Bg is principal, then αf = 0.

Definition 3. We call the function {(f, αf ) | f ∈ F} the characteristic of B
and denote it by ch(B).

The next lemma tells us what functions from F into ω + ω + 1 can be realised
as characteristics of models of T .

Lemma 5. A function α : F → ω + ω + 1 is the characteristic of a model of T
if and only if it satisfies the following conditions:

1. The function α is decreasing, that is, for all f, g ∈ F , f � g implies αg � αf .
2. For all f, g ∈ F , if f � g, αg = k, and αf = ω + l, then k � l.
3. If h = lub{f, g} then

αh =

{
min{k, l}, if {αf , αg} = {k, ω + l},
min{αf , αg}, otherwise.

4. If αf is a successor ordinal then there is g such that αg = ω + ω.

Lemma 6. Any two countable models of T are isomorphic if and only if the
models possess the same characteristic.

As an immediate consequence of Lemmas 5 and 6 we have the following:

Corollary 1. The theory T has countably many countable models.
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Let A and B be models of T . Define gA1 to be the least upper bound of the set
{f ∈ A | αf � ω} as in the proof of Lemma 5. Define similarly gB1 in the model
B. The following lemma is the description of the type spectra of models of T .

Lemma 7. Two models A and B of T , TySp(A) = TySp(B) iff gA1 = gB1 .

The next lemma is a direct corollary of Lemma 7.

Lemma 8. The lattice F is isomorphic to the fundamental order of T without
the least element.

The proof of the theorem below follows from the lemmas above.

Theorem 2. For each finite lattice F , there exists a complete theory T whose
fundamental order is isomorphic to F . Moreover, T has countably many
countable models and the language of T is finite.

We note that the theorem above can be generalised to finite upper semi-lattices
with the least element. However, the proofs are more involved and technically
cumbersome.

4. Applications

We present two computability theoretic applications of Theorem 2. For these
applications, recall the mapping [p] → K(p) from the fundamental order into the
class of subclasses of all models of T explained in the introduction.

Theorem 3. For every finite lattice F and every element p ∈ F , there exists a
decidable theory T of finite signature with countably many models such that:

1. The fundamental order (S(T )/ ∼; -T ) of T is isomorphic to F .

2. The class K(q) has a decidable model if and only if q -T p.

We note that this theorem provides a full description of all possible sub-lattices
of the given lattice F that can be realised by decidable models. Indeed, those
sub-lattices must be ideals in F .

Theorem 4. For every finite lattice F , there exists a theory T of finite signature
with countably many models such that:

1. The fundamental order (S(T )/ ∼; -T ) of T without the least element is
isomorphic to F .

2. For all p ∈ F each class K(p) contains infinitely many models of which
exactly one is computable.

The proof of this theorem uses methods developed in [3] and [12].
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Abstract. Pseudo-repetitions are a natural generalization of the
classical notion of repetitions in sequences: they are the repeated
concatenation of a word and its encoding under a certain morphism or
antimorphism. We approach the problem of deciding whether there ex-
ists an anti-/morphism for which a word is a pseudo-repetition. In other
words, we try to discover whether a word has a hidden repetitive struc-
ture. We show that some variants of this problem are efficiently solvable,
while some others are NP-complete.

1 Introduction

A word is a repetition if it equals a repeated concatenation of one of its prefixes.
A word w is a pseudo-repetition if it equals a repeated concatenation of one of its
prefixes t and its image f(t) under some morphism or antimorphism (for short
“anti-/morphism”) f , thus w ∈ t{t, f(t)}+.

These generalised repetitions (introduced in [1]) draw their motivations from
computational biology and natural computing, namely the facts that the Watson-
Crick complement can be formalised as an antimorphic involution and both a
single-stranded DNA and its complement (that is, its image under such an in-
volution) basically encode the same information. However, pseudo-repetitions
occur in some other real life situations. For instance, in music: repetitions of
some fragment, in its initial form but also slightly modified, are used to provide
unity to a musical piece. Moreover, the concept of ternary (song) form is also
used: three consecutive musical fragments such that the first and third ones are
identical, while the second one is constructed in order to provide a contrast to
the other two (which can be formalised sometimes by seeing it as the image of
the other parts under some anti-/morphism); this musical concept appears in
even more general forms, involving pseudo-repetitions of more than three fac-
tors. Besides the motivation coming from natural computing or musical theory,
pseudo-repetitions seem to be of intrinsic theoretical interest, as they generalise
a combinatorics on words concept that is central both in theory and applications.

The results obtained so far on pseudo-repetitions were both of combinatorial
[1–3] and of algorithmic [4] nature. We continue here the study of algorithmic
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problems related to pseudo-repetitions. More precisely, we study how efficiently
we can discover whether an input word has a hidden repetitive structure, i.e, find
an anti-/morphism f for which that word becomes an f -repetition. The problem
seems natural to us: basically, we look at a text and want to find an encoded
repetitive structures in it, without actually knowing the encoding scheme.

Based on both combinatorial and data-structure results, our approach is aimed
to provide a better understanding of the concept of pseudo-repetition itself as
well as to enrich a set of algorithmic tools that can be actually used in its
originating fields, computational biology and natural computing.

Some Basic Concepts. For more detailed definitions we refer to [5].
Let V be a finite alphabet. We denote by V ∗ the set of all words over V and

by V k the set of all words of length k. The length of a word w ∈ V ∗ is denoted
by |w|. The empty word is denoted by λ. Moreover, we denote by alph(w) the
alphabet of all letters that occur in w. In the problems discussed in this paper
we are given as input a word w of length n and we assume that the letters of w
are in fact integers from {1, . . . , n} and w is seen as a sequence of integers. This
is a common assumption in algorithmic on words (cf., e.g., [6]).

A word u is a factor of a word v if v = xuy, for some x, y; also, u is a prefix of
v if x = λ and a suffix of v if y = λ. We denote by w[i] the symbol at position i
in w and by w[i..j] the factor w[i]w[i+ 1] . . . w[j] of w starting at position i and
ending at position j. For simplicity, we assume that w[i..j] = λ if i > j. A word
u occurs in w at position i if u is a prefix of w[i..|w|]. The powers of a word w
are defined recursively by w0 = λ and wn = wwn−1 for n ≥ 1. If w cannot be
expressed as a power of another word, then w is primitive. If w = un with n ≥ 2
and u primitive, then u is called the primitive root of w. A period of a word w
over V is a positive integer p such that w[i] = w[j] for all i and j with i ≡ j
(mod p). By per(w) we denote the smallest period of w.

The following well-known result is useful in our investigation:

Theorem 1 (Fine and Wilf [7]). Let u and v be in V ∗, and d = gcd(|u|, |v|).
If two words α ∈ u{u, v}+ and β ∈ v{u, v}+ have a common prefix of length at
least |u| + |v| − d, then u and v are powers of a common word of length d.

A function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for all x, y ∈ V ∗;
f is an antimorphism if f(xy) = f(y)f(x) for all x, y ∈ V ∗. Note that to define
an anti-/morphism it is enough to give the definitions of f(a), for all a ∈ V .
We say that f is uniform if there exists a number k with f(a) ∈ V k, for all
a ∈ V ; if k = 1 then f is called literal. If f(a) = λ for some a ∈ V , then f is
called erasing, otherwise non-erasing. The vector Tf of |V | natural numbers with
Tf [a] = |f(a)| is called the length-type of the anti-/morphism f in the following.
If V = {a1, . . . , an}, T is a vector of n natural numbers T [a1], . . . , T [an], and
x = b1 · · · bk with bi ∈ V for all i, we denote by T (x) =

∑
i≤k T [bi], the length

of the image of x under any anti-/morphism of length type T defined on V .
We say that a word w is an f -repetition, or, alternatively, an f -power, if w is

in t{t, f(t)}+, for some prefix t of w; for simplicity, if w ∈ t{t, f(t)}+ then w is
called an f -power of root t. If w is not an f -power, then w is f -primitive.
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For example, the word abcaab is primitive from the classical point of view
(i.e., 1-primitive, where 1 is the identical morphism) as well as f -primitive, for
the morphism f defined by f(a) = b, f(b) = a and f(c) = c. However, when
considering the morphism f(a) = c, f(b) = a and f(c) = b, we get that abcaab
is the concatenation of ab, ca = f(ab), and ab, thus, being an f -repetition.

Finally, the computational model we use is the standard unit-cost RAM with
logarithmic word size. Also, all logarithms appearing here are in base 2.

2 The Problem

In [4], an efficient solution for the problem of deciding, given a word w and an
anti-/morphism f , whether w is an f -repetition was given. Here we approach a
more challenging problem. Namely, we are interested in deciding whether there
exists an anti-/morphism f for which a given word w is an f -repetition. Basically,
we check whether a given word has an intrinsic (yet hidden) repetitive structure.
Note that in the case approached in [4] the main difficulty was to find a prefix x
of w such that w ∈ x{x, f(x)}∗. The case we discuss here seems more involved:
not only we need to find two factors x and y such that w ∈ x{x, y}∗, i.e., a
suitable decompositions of w, but we also have to decide the existence of an
anti-/morphism f with f(x) = y. The problem is defined in the following.

Problem 1. Given w ∈ V +, decide whether there exists an anti-/morphism f :
V ∗ → V ∗ and a prefix t of w such that w ∈ t{t, f(t)}+.

The unrestricted version of the problem is, however, trivial. We can always give a
positive answer for input words of length greater than 2. It is enough to take the
(non-erasing) anti-/morphism f that maps the first letter of w, namely w[1], to
w[2..n], where n = |w|. Clearly, w = w[1]f(w[1]), so w is indeed an f -repetition.
When the input word has length 1 or 0, the answer is negative.

On the other hand, when we add a series of simple restrictions to the initial
statement, the problem becomes more interesting. The restrictions we define
are of two types: either we restrict the desired form of f , and try to find anti-
/morphisms of given length type, or we restrict the repetitive structure of w by
requiring that it consists in at least three repeating factors or that the root of
the pseudo-repetition has length at least 2.

In the first case, when the input consists both in the word w and the length
type of the anti-/morphism we are trying to find, we obtain a series of polynomial
time solutions for Problem 1. More precisely, in the most general case we can de-
cide whether there exists an anti-/morphism f such that w is an f -repetition in
O(n(log n)2) time. Note that deciding whether a word is an f -repetition when f
is known took only O(n logn) time [4]. When we search for an uniform morphism
we solve the problem in optimal linear time time. This matches the complex-
ity of deciding, for a given uniform anti-/morphism f , whether a given word
is an f -repetition, obtained in [4]. This result covers also the case of literal
anti-/morphism, extensively approached in the literature (cf., e.g., [1, 3]). Our
solutions are based both on combinatorial results regarding the structure of
pseudo-repetitions and on the usage of efficient data-structures.
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For the second kind of restrictions, the length type of f is no longer given. In
this case, we want to check, for instance, whether there exist a prefix t and an
anti-/morphism f such that w is an f -repetition that consists in the concatena-
tion of at least 3 factors t or f(t). The most general case as well as the case when
we add the supplementary restriction that f is non-erasing are NP-complete;
the case when f is uniform (but of unknown length type) is tractable. The prob-
lem of checking whether there exists a prefix t, with |t| ≥ 2, and a non-erasing
anti-/morphism f such that w ∈ t{t, f(t)}+ is also NP-complete; this problem
becomes tractable for erasing or uniform anti-/morphisms.

3 Basic Tools

The following classical combinatorial results are used in this paper; for proofs
and details, cf. the handbook [5, Chapter 9] and the references therein.

Lemma 1. Let w ∈ V n be a word, PSw = {u|u primitive , u2 prefix of w}, and
PRw = {u | u is primitive, u2 is a factor of w}.
(1) Let u1, u2, u3 ∈ PSw be words such that |u1| < |u2| < |u3|. Then 2|u1| < |u3|.
As a consequence, |PSw| ≤ 2 logn.
(2) We compute all the pairs (i, j) such that w[i..j] = u2 for some u ∈ PRw in
O(n logn) time. Moreover, |PRw| ∈ O(n).
(3) We compute the values per(w[1..i]) for all i ∈ {1, . . . , n} in linear time O(n).

The next lemma was given in [4].

Lemma 2. Let u, v ∈ V + and w ∈ {u, v}∗\{u}∗ be words such that |u| ≤ |v| and
u and v are not powers of the same word. Let M = max{p | up is a prefix of w}
and N = max{p | up is a prefix of v}. Then M ≥ N . Also, if M = N then
w ∈ v{u, v}∗, while if M > N then either it is the case that w ∈ uM−Nv{u, v}∗ \
uM−N−1vuV ∗, or we have that w ∈ uM−N−1v{u, v}+ \ uM−NvV ∗ and N > 0.

We also recall basic facts about the data structures we use. For a word u, with
|u| = n, over V ⊆ {1, . . . , n} we can build in linear time a suffix array structure
as well as data structures allowing us to retrieve in constant time the length of
the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCP(i, j). These structures are called LCP data structures in the following. For
details, cf., e.g., [6, 8]. The following results can be easily shown.

Remark 1. (1) A number p is a period of w if and only if LCP(1, p+1) = |w|−p.
(2) Given two words x, y ∈ V ∗, for which we have LCP-data structures, and an
array T of |V | integers, we can decide in O(per(x)) time the existence of an
anti-/morphism f of length type T such that f(x) = y.
(3) Let w be a word. First, for 1 ≤ i ≤ n, we construct the list of pairs (i, j)
such that w[i..j] = u2 with u primitive. By Lemma 1 this takes O(n logn) time.
Further, we put together all these lists and sort the resulting list according
to the lexicographical order of the words encoded by the pairs ((i, j) encodes
w[i..j] and we just choose some order on the alphabet of w). This can be done
in O(n(log n)2) time, using LCP queries to compare the words encoded by two
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pairs. Next, we construct in O(n log n) time the set PRw, which has O(n) ele-
ments by Lemma 1. Each element u of PRw is encoded by the pair (i, j) such
that w[i..j] is the first occurrence of u2 in w. Moreover, while computing PRw,
we store for each pair (i′, j′) such that w[i′..j′] = u2 for some u ∈ PRw the actual
pair (i, j) used to encode u in PRw. &

4 Efficient Solutions: Known Length Type

Recall that we are given a word w, and want to check whether there exists an
anti-/morphism f such that w is an f -repetition; assume that the length type T
of f is also given as input. We only present the case of morphisms, as the case
of antimorphisms is similar. The only difference is, in fact, the way the check in
Remark 1.(2) is implemented.

Finding suitable decompositions. We begin by noting that if w ∈ t{t, f(t)}+ for
a prefix t and a morphism f , then there exists a primitive prefix t′ of w such that
w ∈ t′{t′, f(t′)}. Therefore, we algorithmically construct the set S = {(x, y) |
w ∈ x{x, y}+ \{x}+, x primitive, |y| = T (x)}∪{(x,⊥) | x primitive, w ∈ {x}+}.
If this set contains the pair (x,⊥) then the input word w is a repetition, and we
can already give a positive answer to Problem 1, while if the pair (x, y) belongs
to S then w ∈ x{x, y}∗ and there may be a morphism f of length type T such
that f(x) = y; this morphism, however, remains to be found.

Basically, our algorithm works as follows. For each proper and primitive prefix
x = w[1..i] of the input word w we check whether w ∈ {x}+. If this is not the case,
we must find a factor y, whose length m equals T (x), such that w ∈ x{x, y}+;
clearly such a factor y occurs at position j′ in w such that w[1..j′−1] ∈ {x}+. To
find a factor y as above, we first compute the value j such that w[1..j−1] ∈ {x}+
and x does not occur at position j in w. If m < i = |x| then y may occur at any
of the positions j+1 or j−i+1 (otherwise, we get from Theorem 1, that x is not
primitive). Further, if m ≥ i and i | m (which is, in fact, equivalent to i | n) then
y may occur at any of the positions j− it+1 for 0 ≤ t ≤ m

i −1. Finally, if m > i
and i � | m then y may occur at any of the positions j − it + 1 for 0 ≤ t ≤ 3m

i 4
(again, otherwise, we get that x is a proper factor of xx, so it is not primitive,
a contradiction). In all cases, for the prefix x we identify at most 3m

i 4 + 1
possibilities to choose the factor y. For each of these possibilities we obtain a
pair (x, y) and we check whether w ∈ x{x, y}+. This is done using an approach
defined in [4] and essentially based on Lemma 2. More precisely, with every choice
of y we also identify a prefix w[1..s− 1] that is in {x}+y; we only have to check
whether the suffix w[s..n] ∈ {x, y}∗. This can be done using Lemma 2. More
precisely, for u being the shorter word of x and y and v being the longer one, we
compute M = max{p | up prefix of w[s..n]} and N = max{p | up prefix of v}.
Further, w[s..n] is either in {u}∗ and we set s = n + 1, or uM−Nv occurs at
position s, case in which we set s = s+ (M −N)|u|+ |v| and repeat the analysis
for the new suffix w[s..n] ∈ {x, y}∗, or, finally, M > N and uM−N−1vu occurs
at position s, case in which we set s = s + (M − N − 1)|u| + |v| and, again,
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repeat the argument for the new suffix w[s + 1..n]. The algorithm adds (x, y)
to S whenever s = n + 1, and it needs O( n

max{|x|,|y|}) steps to check whether

w ∈ {x, y}∗. The soundness of this approach follows from the explanations given
above, and one can show that its time complexity is O(n log n), provided that
we construct and use LCP-data structures for w.

Known length type: finding the function. We present a solution for Problem 1
in the general case. Assume that the input of our problem consists in a word w
and a list T of at most n numbers, giving the length of f(a) for all the letters
a ∈ alph(w), in the order of their appearance in w. A naive solution of the
problem runs, clearly, in O(n2 logn).

Intuitively, our more efficient approach is the following. We try to find in the
set S a pair (x, y) such that x can be mapped to y by a morphism of length type
T . However, trying each pair individually takes too much time. Therefore, S is
split into several sets whose elements share common combinatorial properties
and can be processed simultaneously. Each such set is then analysed separately
in an efficient manner. The technical details are described in the following.

Initially, the word w is processed as in Remark 1.(3). Then, for each pair
v ∈ PRw we construct an empty set B(v); we keep track of the minimal element
contained by each such set: when an element is inserted in it, the minimum
is updated. We also compute inductively (and store) the values T (w[1..i]) for
1 ≤ i ≤ |w| in linear time. Finally, for each j ≤ n there exists at most one
number ij such that w[1..j] = w[1..ij ]y, with |y| = T (w[1..ij ]). As i = ij if and
only if j = i+ T (w[1..i]), computing these numbers takes linear time.

Next, we compute the set S, as described above. While computing this set
we can already split it in two subsets S1 = {(x, y) | w ∈ x2{x, y}∗} and S2 =
{(x, y) | w ∈ xy{x, y}∗}; clearly, S1∪S2 = S, |S1| ∈ O(n logn), and |S2| ∈ O(n).
Moreover, for each (x, y) ∈ S2 we put i in the set B(v) if x = w[1..i] and v equals
the primitive root of y. Using the preprocessing phase described above, this last
step takes O(n) time in total. The rest of our solution consists in a separate
analysis of the sets S1 and S2, checking whether one of them contains a pair
(x, y) for which there exists a morphism f of length type T with f(x) = y.

We start with S1. By Remark 1.(2), we check each pair (x, y) from this set
in time O(per(x)). Thus, the time needed to verify all the pairs in S1 is up-
per bounded by O

(∑
x∈PSw

|x| (|f(x)|/|x| + 2)
)
∈ O(n log n). Indeed, |PSw| ≤

2 logn by Lemma 1 and for each x we have at most 3|f(x)|/|x|4+1 pairs (x, y) ∈ S
to check, and the previously announced upper bound follows.

We continue with the analysis of the set S2. This case is more involved. We
first split S2 in two subsets S3 and S4. In S3 we put all the pairs (x, y) with

per(x) > |x|
2 , while S4 = S2 \ S3. Then we analyse S3 and S4 separately.

The analysis of S3 can be implemented faster than checking its elements one
by one. We partition S3 into the sets Sk

3 = {(x, y) ∈ S3 | 2k ≤ |x| < 2k+1}, for
0 ≤ k ≤ 3logn4. As for each prefix x of w there is at most one pair (x, y) in
Sk
3 (and in S3), we can store these sets so that checking whether a pair (x, y) is

indeed in Sk
3 is done in O(1) time for every k.
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x

w[1..i1] w[1..i1] w[1..i1]r r r r r

yy j

2k 2k+1

Fig. 1. The analysis of the set Sk
3

Let us now fix one k, and let Sk
3 = {(w[1..i1], y1), . . . , (w[1..is], ys)}, where

i	 < i	+1 for 1 ≤ � ≤ s − 1. Clearly, x starts with w[1..i1], for all (x, y) ∈ Sk
3 .

Thus, in a decomposition of w in factors x and y, such that xy occurs as prefix of
w, all the factors x appear on positions where w[1..i1] occurs in w. Accordingly,
we identify the positions where w[1..i1] occurs in w using a linear time string
matching algorithm. There are at most n

2k−1 such positions, as w[1..i1] ≥ 2k and

per(w[1..i1]) > 2k−1; let j1, . . . , jp be these positions.
Since for each 1 ≤ � ≤ s the word w has a decomposition in factors w[1..i	]

and y	, there exists j′	 ∈ {j1, . . . , jp, n+ 1} such that w[1..j′	 − 1] ∈ w[1..i	]{y	}+
and w[j	..n] ∈ {w[1..i	], y	}∗. Hence, there exist (x, y) ∈ Sk

3 and a morphism f of
length type T such that f(x) = y if and only if there exist j ∈ {j1, . . . , jp, n+1},
(x, y) ∈ Sk

3 , and a morphism f of length type T such that w[1..j − 1] ∈ x{y}+
and f(x) = y. We check whether there exists j fulfilling these conditions.

For each j ∈ {j1, . . . , jp, n+1} we run the following processing. We first decide
in O(2k+1) time whether there exist two words x and y such that 2k ≤ |x| <
2k+1, w[1..j − 1] = xy, and |y| = T (x). If yes, by Remark 1.(2), we check in
O(2k+1) time whether there exists f of length type T with f(x) = y. Moreover,
if (x, y) ∈ S then we found a solution of Problem 1. If no solution is found in
this way, we further check whether there exist two words x and y such that
2k ≤ |x| < 2k+1, w[1..j − 1] ∈ xy{y}+, and |y| = T (x). Let us assume that such
a pair (x, y) exists. According to Lemma 1 there exists a set Sj = {r1, . . . , rt}
of primitive words, with t ≤ 2 logn, such that r2 is a suffix of w[1..j] for all
r ∈ Sj . As w[1..j] ends with y2, it follows that y = r	 for some r ∈ Sj and � ≥ 1.
Hence, for each r ∈ Sj , we proceed as follows. We go through the prefixes w[1..i]
of w[1..2k+1] and try to construct a morphism f of length type T that maps
w[1..i] into a prefix of a power of r. The image of these prefixes can be computed
inductively: f(w[1]) = rt1r′1, where r′1 is a prefix of r and t1|r| + |r′| = T [w[1]],
and, further, f(w[i + 1]) = r′′i r

ti+1r′i+1, where r′ir
′′
i = r, r′i+1 is a prefix of r,

and ti|r| + |r′i+1| + |r′′i | = T [w[i + 1]]. Clearly, the image of each letter w[i] can
be uniquely associated to the triple (|r′′i−1|, ti, |r′i|). It is not hard to see that
the process of computing these images fails whenever we associate to a letter
two different images. On the other hand, each time we find a prefix w[1..i] that
can be mapped to rq , for some q > 0, we check whether |r| is a period of
w[i + 1..j − 1] and whether q|r| divides |j − i − 1|. If all these hold, and, also,
(w[1..i], rq) ∈ Sk

3 , then Problem 1 can be answered positively. This concludes the
analysis of S3.
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The time needed to analyse S3 as above is O(n(log n)2).
If we did not find any solution in the set S3, we continue with the analysis of

S4. Again, since for each prefix x of w there is at most one pair (x, y) ∈ S4, we
can store S4 so that checking whether it contains such a pair takes O(1) time.

Note that if (x, y) ∈ S4 then per(x) = d with w[1..d] primitive and (w[1..d])2

prefix of x. Thus, one can split S4 into the sets Sd
4 = {(x, y) ∈ S4 | per(x) = d},

for all d such that w[1..d] is primitive and (w[1..d])2 is a prefix of w. There are
at most 2 logn such sets and they partition S4. We analyse each one separately.

We fix a value d such that w[1..d] is primitive and (w[1..d])2 is a prefix of w. It
is not hard to see that there exist two numbers ed and fd such that per(w[1..i]) =
d if and only if ed ≤ i ≤ fd. Moreover, if d′ < d, then fd′ < ed. As in the
analysis of Sk

3 , we run a linear time pattern matching algorithm to locate the
positions where w[1..d] occurs in w. Let j1, . . . , js be these positions; note that
s depends on d, but we omit writing this to keep the notation simpler. Since
w[1..d] is primitive, it occurs at most n

d times in w, so s ≤ n
d . Recall that for

each j ∈ {j1, . . . , js} there exists at most one value ij such that w[1..j − 1] =
w[1..ij ]y with y = T (w[1..i]); we already computed and stored these values and
we can retrieve each of them in O(1) time. Now, for each j, if the value ij
is defined and ed ≤ ij ≤ fd, we check in O(d) time whether there exists a
morphism f of length type T such that f(w[1..ij]) = w[ij + 1..j − 1]. If yes and
(w[1..ij ], w[ij + 1..j − 1]) ∈ S4 then the instance of Problem 1 defined by w and
T has a positive answer.

Now, for each j ∈ {j1, . . . , js} we check whether w[1..j−1] ∈ xy{y}+ for some
(x, y) ∈ Sd

4 such that there is a morphism f of length type T with f(x) = y.
Let Sj = {r1, . . . , rt} be the set of primitive words whose squares are suffixes of
w[1..j − 1]. As y2 is a suffix of w[1..j − 1] we get that y ∈ {r}+ for some r ∈ Sj .

We first discuss the case when y = rp with p > 1. Clearly, y has a prefix v2,
where |v| = T (w[1..d]); |v| is also a period of y. By Theorem 1, since y = rp with

r primitive, it follows that v = rs for s = T (w[1..d])
|r| . Hence, we check whether r4s

occurs as a suffix of w[1..j−1] (i.e., w[1..j−1] ends with a long enough power of r,
allowing us to find a suitable y) and whether there is a morphism f of length type
T with f(w[1..d]) = rs. This takes O(d) time, by Remark 1.(2). If there exists
such an f , as well as an i ∈ B(r) with ed ≤ i ≤ fd, Problem 1 can be answered
positively. Indeed, we have a pair (w[1..i], z) ∈ S where per(w[1..i]) = d and z
a power of r. Thus, w ∈ w[1..i]{w[1..i], z}+, T (w[1..i]) = |z|, and, as f exists,
w[1..d] can be mapped to the z[1..m] for m = T (w[1..d]). It follows that w[1..i]
can be mapped to z, and this proves our point. If no i as above exists, then we
must consider the case y = r as well as another choices for d, j, and r. However,
checking for each d, j, and r as above whether B(r) contains an element i in the
range [ed, fd] is not efficient. It is better to do all these checks after we finished
considering all cases and identified all the ranges we have to verify. Basically, for
each primitively rooted square r2 occurring in w we shall have O(log n) range
queries (at most one for each d), whose ranges do not overlap; checking all of
them at once takes O(|B(r)|) time, by considering the elements of B(r) one by
one. So the time needed for all r’s is O(n log n), as the total number of elements
of the sets B(r) is less than |S|.
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The case when y = r is, however, simpler. We just have to see if the minimum
i of B(r) fulfils ed ≤ i ≤ fd, and check in O(d) time whether w[1..i] can be
mapped to r. If yes, we answer Problem 1 positively.

This analysis of the set S4 takes, again, O(n(log n)2) time.
Now we can say whether there exists a pair (x, y) ∈ S and a morphism f of

length type T such that f(x) = y. Hence, we gave a solution for Problem 1, when
the length type of f is known. This solution’s time complexity is O(n(log n)2).

Final remarks. Problem 1 can be solved optimally, in O(n) time, when f is
uniform. The result is based on several data-structures developed in [4] and
a thorough analysis of the combinatorial properties of the elements of S. A
summary of the results obtained in this section is the following.

Theorem 2. Given a word w and a vector T of |V | numbers, we decide whether
there exists an anti-/morphism f of length type T such that w ∈ t{t, f(t)}+ in
O(n(log n)2) time. If T defines uniform anti-/morphisms we need O(n) time.

5 Unknown Length Type

As already mentioned, the most general form of Problem 1 is trivial. Besides
considering the cases when the length type of the function we search is given,
there are two other natural ways to restrict Problem 1 in order to make it non-
trivial for functions f of unknown length type. One variant is obtained by asking
that the root t has at least two letters, and another one by asking that w is an
f -repetition consisting of at least three factors. Some cases remain tractable.
First, we can decide in linear time the existence of a general anti-/morphism
f and of a prefix t of w such that w ∈ t{t, f(t)}+ and |t| ≥ 2. Second, both
restricted variants Problem 1 are solvable in O(n2) when f should be uniform
(of unknown length type). Other cases are computationally hard, as shown next.

Recall first the pattern-description problem:

Problem 2. Given x, y ∈ V ∗ decide the existence of a morphism g with g(x) = y.

This problem is NP-complete and it remains as hard for g non-erasing (cf. [9]).
We begin by considering the restriction requiring that the root of the pseudo-

repetition has at least 2 letters. The only case left open is when the function we
look for is non-erasing; otherwise the problem can be solved efficiently.

Problem 3. Given w ∈ V + decide the existence of a non-erasing anti-/morphism
f : V ∗ → V ∗ and a prefix t of w with |t| ≥ 2 such that w ∈ t{t, f(t)}+

This problem is clearly in NP, either if the searched function f is a morphism
or an anti-morphism. We show it is NP-complete by giving a polynomial-time
reduction from Problem 2, the case when the morphism g from that problem is
non-erasing. We only show here the NP-completeness of the variant where we
search for a morphism f , as the case of searching antimorphisms is similar.

Assume that we have an input instance of the pattern-description problem,
namely two words x and y, over an alphabet V , and want to decide whether
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there exists a non-erasing morphism g such that g(x) = y. Let w = anxbny,
where n = 2 max{|x|, |y|} and a, b /∈ V . We show there exists a non-erasing
morphism g such that g(x) = y if and only if there exist a non-erasing morphism
f : (V ∪ {a, b})∗ → (V ∪ {a, b})∗ and a prefix t of w with |t| ≥ 2 such that w ∈
t{t, f(t)}+. The left to right implication is immediate. For the other implication,
assuming first that t = ak we obtain that b must appear in f(t) as, otherwise,
w would not be in t{t, f(t)}∗. Further, since k ≥ 2 we obtain a contradiction, as
w should be a k-repetition, and it is not such a repetition. Therefore, t = anx′.
We obtain that f(t) = (f(a))nf(x′). But the only two factors of the form un of
w are an and bn, so (f(a))n = bn and f(a) = b. Now, it follows that x′ = x and
f(x) = y, so we can take g = f . This concludes the proof of this implication.

Hence, we exhibited a polynomial time reduction from Problem 2 to
Problem 3. Thus, this problem is NP-complete.

Let us now overview the case when w is an f -repetition of at least three factors.
In the most general variant, the problem asks to decide, for a given word w ∈ V ,
whether there exist an anti-/morphism f : V ∗ → V ∗ and a prefix t of w such
that w ∈ t{t, f(t)}{t, f(t)}+. This variant of the problem is NP-complete, just
as its restriction to the case when the function f is non-erasing.

We summarise the main results of this section in the following theorem:

Theorem 3. For a word w ∈ V +, deciding the existence of an anti-/morphism
f : V ∗ → V ∗ and a prefix t of w such that w ∈ t{t, f(t)}+ with |t| ≥ 2 (re-
spectively, w ∈ t{t, f(t)}{t, f(t)}+) is solvable in linear time (respectively, NP-
complete) in the general case, is NP-complete for f non-erasing, and is solvable
in O(n2) time for f uniform.
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Abstract. DNA code word design is an interesting and important area
of research in DNA computing and generating a large set of DNA strands
that satisfy a given set of constraints is a difficult and important problem.
On the other hand, forbidding and enforcing systems (fe-systems) are a
molecularly inspired model of computation that defines structures based
on constraints. This paper reinforces the connection between fe-systems
and DNA codes by using the single language model of fe-systems to
characterize a variety of DNA codes that avoid certain types of cross hy-
bridizations. Some known methods of generating good DNA code words
which have been tested experimentally are generalized by fe-systems. Fi-
nally, it is shown how the theoretical definitions by fe-systems can be
used as a computational tool and also to model laboratory experiments.

1 Introduction

The study of DNA codes emerged from the attempt to design DNA strands
for the purpose of using them to perform computation in such a way that mis-
matched pairings due to Watson-Crick complementarity are minimized. When a
set of DNA molecules is used to perform computation, a variety of undesirable
total or partial cross-hybridization between the molecules may occur during a
polymerase chain reaction, self-assembly, or in the extraction step. The problem
of unwanted hybridization has been studied extensively theoretically, algorith-
mically, and experimentally and numerous solutions have been proposed, e.g.,
[2,5,19]. Recently, the authors in [7] used DNA metric spaces to design a large
set of DNA code words and showed that this problem is NP-complete.

The theoretical study of DNA codeword design begun by Kari et al. [13] spans
a vast body of literature. In [15] the notion of θ-k-codes, capturing a variety of
unwanted partial bindings (Fig. 1), was introduced. For a suitable k, a θ-k-code
also avoids cross bindings disallowed by θ-comma-free, θ-strict, θ-intercode, θ-
infix, θ-prefix, and θ-suffix codes. Maximal bond-free languages were studied in
[17] and, most recently, a structural characterization of bond-free languages that
leads to a polynomial time algorithm was provided [18].

Inspired by the non-deterministic nature of molecular reactions, forbidding-
enforcing systems (fe-systems) were introduced by Rozenberg et al. in [3,4] as a
model of computation that defines classes of languages. This variant of fe-systems
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Fig. 1. Various cross hybridizations of molecules avoided by a θ-k-code: one molecule
contains subword of length k and the other its complement. In this figure k = 6.

uses one fe-system (two sets of constraints) to define a family of languages
(fe-family). Properties of fe-systems defining fe-families and their information
processing capabilities have been studied extensively, e.g., [3,4,10]. Using a topo-
logical approach, it was shown in [10] that these fe-families are different than
the Chomsky’s classes and thus, the tools to study them from formal language
theory do not readily apply. In [12], fe-families fe-systems were used to model
both theoretical results and laboratory experiments related to DNA codeword
design. It was shown that fe-family fe-systems can define entire classes of certain
DNA codes and, in general, the theory of fe-systems is very applicable to the
study of DNA codes.

Different variants of fe-systems models have been proposed, e.g., in mem-
brane computing [1], to model self-assembly of graphs [6], and to define classes
of graphs [11]. The single language model of fe-systems, which uses one fe-system
to define a single language (fe-language) as opposed to a class of languages (fe-
family) was introduced in [8] and some normal forms for this model were proved
in [9]. Two advantages of the fe-language model compared to the fe-family model
are that first, it can be studied with tools from formal language theory, because,
as it was shown in [8], fe-language fe-systems can define languages from the en-
tire spectrum of Chomsky’s hierarchy, alternatively to grammars and automata
(thus, we can study for example, the computational complexity of fe-language fe-
systems, which is an unsurmountable task for fe-family fe-systems) and second,
fe-language fe-systems are more applicable to laboratory experiments (since, for
example, they can better model the result of a wet computation, which is a set
of molecules, i.e., a set of words, as opposed to a set of languages).

The purpose of this paper is to show how the single language model of fe-
systems can be used to define large sets of DNA codewords and more impor-
tantly, to discuss the potential of these fe-systems for algorithmic and laboratory
implementation of theoretical results.
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Definitions of DNA involution codes, fe-systems, fe-languages, and some of
their properties are recalled in Section 2. Section 3 presents DNA codes charac-
terizations by fe-language fe-systems. Section 4 discusses how fe-systems can be
applied to (theoretically) define “good” codewords that have also been tested
experimentally and Section 5 shows how the theoretical definitions from Sec-
tion 4 can be used to design step-by-step computational procedures that can be
applied to experimental work.

2 Basic Concepts and Definitions

An alphabet is denoted by Σ, the length of a word w over Σ by |w| and the
empty word by λ. The free monoid Σ∗ contains all words over Σ and the free
semigroupΣ+ = Σ∗\{λ}. For k ≥ 1, Σk = {w ∈ Σ∗ | |w| = k} and Σ�k = {w ∈
Σ∗ | |w| ≤ k}. For w ∈ Σ∗, the set of subwords of w is Sub (w) = {u | ∃v1, v2 ∈
Σ∗, v1uv2 = w} and Sub k(w) = Sub (w)∩Σk. Define Sub (L) = ∪w∈L Sub (w).

2.1 DNA Involution Codes

Using the definitions from [13,14,15,16], an involution θ : Σ → Σ of a set Σ is
a mapping such that θ2 equals the identity mapping, i.e., θ(θ(x)) = x, for all
x ∈ Σ. For words u, v ∈ Σ∗ and morphic θ we have that θ(uv) = θ(u)θ(v) and
for an antimorphic θ, θ(uv) = θ(v)θ(u).

Definition 1. Given an alphabet Σ, let θ : Σ∗ → Σ∗ be a morphic or an
antimorphic involution and X ⊆ Σ+. Then the set (language) X is called a:

1. θ-subword-k-m-code for some positive integers k and m if for all u ∈ Σk we
have Σ∗uΣiθ(u)Σ∗ ∩X = ∅ for all 1 ≤ i ≤ m.

2. θ-subword-k-code for some positive integer k if for all u ∈ Σk we have
Σ∗uΣiθ(u)Σ∗ ∩X = ∅ for all i ≥ 1.

3. θ-strict-code if X ∩ θ(X) = ∅.
4. θ-prefix-code if X ∩ θ(X)Σ+ = ∅.
5. θ-suffix-code if X ∩Σ+θ(X) = ∅.
6. θ-bifix-code if X is both a θ-prefix-code and a θ-suffix-code.
7. θ-intercode of index m for some integer m ≥ 1 if Xm+1∩Σ+θ(Xm)Σ+ = ∅.
8. θ-infix-code if Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅.
9. θ-comma-free-code if X2 ∩Σ+θ(X)Σ+ = ∅.

10. θ-k-code for some integer k > 0 if Subk(X) ∩ Subk(θ(X)) = ∅.

A set X ⊆ Σ+ is said to be a θ-strict-P -code if X is both a θ-P -code and
a θ-strict-code, where P ∈ {prefix, suffix, infix, bifix, comma-free, intercode,
k-(code)}.

Example 2. (From [12]) Let X = {aa, baa} be a language over the alphabet
Σ = {a, b} and θ be a morphic involution on Σ with θ(a) = b and θ(b) = a. Then
θ(X) = {bb, abb}. Note that X is a θ-infix-code since none of the subwords of X
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are in θ(X) and X is a θ-comma-free-code since X2 = {a4, a2ba2, ba4, ba2ba2}
and none of the words in θ(X) appears as a subword of any word in X2. Also,
note that Sub 3(X) ∩ Sub 3(θ(X)) = ∅. Hence, X is a θ-3-code. The word
baa = baθ(b) and hence X is not a θ-subword-1-code but there is no word of
the type uxvθ(x)w in X with u,w ∈ Σ∗, v ∈ Σ+ and |x| = 2. Thus, X is a
θ-subword-2-code.

2.2 Forbidding-Enforcing Systems Defining fe-Languages

The definitions and notation for fe-family fe-systems are from [4]. The single
language (fe-language) fe-systems model used to characterize DNA codes in this
paper was introduced in [8] and related definitions and examples are recalled.

Definition 3. A forbidding set F over Σ is a family of non-empty finite subsets
F of Σ+ called forbidders. A word w is consistent with a forbidder F , denoted
by w conF , iff F �⊆ Sub (w). A word w is consistent with a forbidding set F

denoted by w conF, iff w conF for all F ∈ F. If w is not consistent with F, the
notation is w nconF. The language L(F) = {w | w conF} (called a forbidding
or f-language for short) is said to be defined by the forbidding set F.

Example 4. For Σ = {a, b} and for the forbidding set F = {{ab, ba}, {aa, bb}}
from [4] and others, L(F) = { an, bn, abn, anb, ban, bna | n ≥ 0}.

Remark 5. Observe that L(F) in the above example is precisely the union of
the (maximal and thus all) languages in L(F) (defined in [4]). It was proved in
Theorem 1 in [8] and Theorem 3 in [9] that this is always the case, i.e given a
forbidding set F, L(F) = ∪L∈L(F)L.

Note that if nothing is forbidden, then everything is allowed, i.e., L(F) = Σ∗ if
and only if F = ∅.

The second constraint in any fe-systems model is an enforcing set. Note that
the definition for enforcing set for fe-families (see [4]) is different than that for
an enforcing set for fe-languages (see [8]). It should be clear from the context
which definition is intended.

Definition 6. An enforcing set E overΣ is a family of ordered pairs (x, Y ) called
enforcers, such that x ∈ Σ∗ and Y = {y1, . . . , yn} where yi ∈ Σ+ for i = 1, . . . , n,
x ∈ Sub (yi) and x �= yi for every yi ∈ Y . A word w satisfies an enforcer (x, Y )
denoted (w sat (x, Y )) iff w = uxv for some u, v ∈ Σ∗ implies that there exists
yi ∈ Y and u1, u2, v1, v2 ∈ Σ∗ such that yi = u2xv2 and w = u1u2xv2v1. A word
w satisfies an enforcing set E, denoted w satE, iff w satisfies every enforcer in
that set. Otherwise, w does not satisfy E, written w nsatE. The enforcing set E

is said to define the language L(E) = {w | w satE} (called an e-language).

If x �∈ Sub (w), w satisfies the enforcer trivially. If x = λ, a word from Y has to
be a subword of w in order for w to satisfy that enforcer.

Observe that if nothing is enforced everything is allowed, i.e., L(E) = Σ∗ if
and only if E = ∅.
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Example 7. Let Σ = {a} and L = {a2n | n ≥ 0}. Then, the enforcing set

E = {(λ, {a, aa})} ∪ {(a2
i+1, {a2i+1}) | i ≥ 1} defines L, i.e., L = L(E).

Preserving the idea of a forbidding-enforcing system from [4], [8] defines a
forbidding-enforcing language (fe-language) analogously.

Definition 8. A forbidding-enforcing system over an alphabet Σ is an ordered
pair (F,E), such that F is a forbidding set and E is an enforcing set. The language
L(F,E) defined by this system (called an fe-language) consists of all words in Σ∗

that are consistent with F and satisfy E, i.e., L(F,E) = L(F) ∩ L(E).

Example 9. 1. Let F = {{ba}} and E1 = {(λ, {a})}∪{(ai, {ai+1, aibi}) | i ≥ 1}.
Then, L1 = L(F,E1) = {anbm | n ≤ m and n,m ≥ 1}.

2. Let F = {{ba}} and E2 = {(λ, {b})} ∪ {(bi, {bi+1, aibi}) | i ≥ 1}. Then,
L2 = L(F,E2) = {anbm | n ≥ m and n,m ≥ 1}.

It follows from Example 9 and from the property for fe-systems L(F∪F′,E∪E′) =
L(F,E) ∩ L(F′,E′) that L = L1 ∩ L2 = {anbn | n ≥ 1} = L(F,E1 ∪ E2).

3 Characterizing Involution Codes by fe-Language
fe-Systems

In this section, the single language model of fe-systems is used to characterize
some involution codes. The notation for fe-systems from Subsection 2.2 is ob-
served, i.e., an fe-system (F,E) is understood to define the fe-language L(F,E).
Observe that L(F,∅) = L(F) for every forbidding set F and L(∅,E) = L(E)
for every enforcing set E. In this sense, all f-languages and all e-languages are
fe-languages.

3.1 Characterizations by f-Languages

Since forbidding sets are defined in the same way for both fe-systems models,
some results for f-languages can be proved using similar techniques as the ones
used for f-families. However, they do not follow readily from Remark 5, since
there are languages L ⊆ L(F ) such that L �∈ L(F). Some results from Section 3.1
in [12], which also hold for f-languages are presented here. Others can be adjusted
for f-languages with similar proofs as in [12], as well, to obtain characterizations
for θ-subword-k-m, θ-strict-infix, θ-intercode of index m, θ-comma-free-code,
etc. Assume λ �∈ L for L ⊆ L(F), Σ is given, and θ is a morphic or antimorphic
involution on Σ∗.

Proposition 10. Let k ≥ 1 be an integer. Consider F = {{u, θ(u)} | u ∈ Σk}.
Then for every L ⊆ L(F), L is a θ-subword-k-code.

Proposition 11. Let X ⊂ Σ+ be given and let Fu = {{ua} | a ∈ Σ} ∪ {{au} |
a ∈ Σ} and let F = ∪u∈θ(X)Fu. Then X is θ-infix if and only if X ⊆ L(F).
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Proposition 12. Given a finite alphabet Σ and a fixed k ≥ 1 let Σk = P ∪Q∪R
such that θ(P ) = Q, θ(x) = x for all x ∈ R where P,Q, and R are pairwise
disjoint. Let H = Q ∪ R and let F = {{u} | u ∈ H}. Then, for all L ⊆ L(F), L
is a θ-k-code.

3.2 Characterizations by e-Languages

Let Σ be an alphabet, X ⊂ Σ+ be given and θ be a morphic or antimorphic
involution on Σ∗. The first result characterizes θ-prefix-codes by enforcing sets.

Proposition 13. For every u ∈ θ(X) construct Eu = {(u, {au, ub | a, b ∈ Σ})}
∪ {(ub, {aub, ub2 | a ∈ Σ}) | b ∈ Σ} ∪ {(ub2, {aub2, ub3 | a ∈ Σ}) | b ∈ Σ} ∪ . . .
∪ {(ubn, {aubn, ubn+1 | a ∈ Σ}) | b ∈ Σ} ∪ . . . and let E = ∪u∈θ(X)Eu. Then, X
is a θ-prefix-code if and only if X ⊆ L(E).

Proof. Assume X is a θ-prefix-code. Then, X ∩ θ(X)Σ+ = ∅. If for every u ∈
θ(X), u �∈ sub (X), the enforcers are satisfied trivially. Otherwise, for some u ∈
θ(X), u ∈ Sub (X). Then there is x ∈ X such that u ∈ Sub (x) and u is not a
prefix of x. Thus, u must be enclosed in au in x for some a ∈ Σ, i.e., x = saut
for some s, t ∈ Σ∗. Hence, x satisfies the first enforcer of Eu. If ubi ∈ Sub (x) for
some b ∈ Σ and some i ≥ 1, then ubi is enclosed in aubi in x and x satisfies this
enforcer as well. Hence, for all x ∈ X such that u ∈ Sub (x), x satisfies every
enforcer in Eu, i.e., X ⊆ L(Eu). Similarly, X ⊆ L(Ev) for any v ∈ θ(X), v �= u.
Therefore, X ⊆ L(E).

Conversely, assume that X is not a θ-prefix-code. Then, X ∩ θ(X)Σ+ �= ∅.
This implies that there exists x ∈ X such that x = ut for some u ∈ θ(X) and
some t ∈ Σ+. Then, there exists b ∈ Σ such that ub ∈ Pref (x) and there exists
i ≥ 1 such that ubi ∈ Pref (x) and ubi+1 �∈ Pref (x). Since ubi cannot be enclosed
in either aubi or ubi+1, it follows that xnsat (ubi, {aubi, ubi+1 | a ∈ Σ}). Since
x does not satisfy this enforcer, xnsatE. Thus, X �⊆ L(E). ��

By symmetry of the above argument, one can obtain the following characteriza-
tion of θ-sufix-codes.

Proposition 14. For every u ∈ θ(X) construct Eu = {(u, {au, ub | a, b ∈ Σ})}
∪ {(au, {aub, a2u | b ∈ Σ}) | a ∈ Σ} ∪ {(a2u, {a2ub, a3u | b ∈ Σ}) | a ∈ Σ}
∪ . . . ∪ {(anu, {anub, an+1u | b ∈ Σ}) | a ∈ Σ} ∪ . . . and let E = ∪u∈θ(X)Eu.
Then, X is a θ-suffix-code if and only if X ⊆ L(E).

Let E1 be the enforcing set from Proposition 13 and E2 be the enforcing set
from Proposition 14. Then X is a θ-bifix-code if and only if X is both θ-prefix
and θ-suffix (a fact confirmed here by properties of fe-systems, as well), i.e.,
if and only if X ⊆ L(E1) and X ⊆ L(E2) if and only if X ⊆ L(E1 ∪ E2),
where the last equivalence follows from properties of enforcing sets. Thus, from
the enforcing property L(E1 ∪ E2) = L(E1) ∩ L(E2) (which holds for any two
enforcing sets), from E1 and E2, and Propositions 13 and 14, we obtain the
following characterization of θ-bifix-codes.
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Proposition 15. For every u ∈ θ(X) construct E′
u = {(u, {au, ub | a, b ∈ Σ})}

∪ {(ub, {aub, ub2 | a ∈ Σ}) | b ∈ Σ} ∪ {(ub2, {aub2, ub3 | a ∈ Σ}) | b ∈
Σ} ∪ . . . ∪ {(ubn, {aubn, ubn+1 | a ∈ Σ}) | b ∈ Σ} ∪ . . . and let E1 =
∪u∈θ(X)E

′
u. Also, for every u ∈ θ(X) construct E′′

u = {(u, {au, ub | a, b ∈ Σ})}
∪ {(au, {aub, a2u | b ∈ Σ}) | a ∈ Σ} ∪ {(a2u, {a2ub, a3u | b ∈ Σ}) | a ∈ Σ}
∪ . . . ∪ {(anu, {anub, an+1u | b ∈ Σ}) | a ∈ Σ} ∪ . . . and let E2 = ∪u∈θ(X)E

′′
u.

Finally, let E = E1 ∪ E2. Then, X is a θ-bifix-code if and only if X ⊆ L(E).

4 Defining Good DNA Codes by Language fe-Systems

Unlike the previous section, where the goal was to show how each of the con-
straints can work independently to characterize DNA codes, the fe-systems dis-
cussed in this and the following section show how fe-systems with both nonempty
forbidding sets and non-empty enforcing sets can be used and how the two con-
straints can “act together” to define or generate structures. Section 4 in [12]
provides an illustration of how fe-family fe-systems can be used to generalize
theoretical results and describe applications, as in Proposition 4.9 and the re-
lated experiment from [15]. Proposition 31, Example 32, and Corollary 33 from
[12] can be adjusted for f-languages and proved in a similar manner as in [12].
However, the enforcing sets are differently defined for the fe-language and the
fe-family models, and hence, the second part of results from Section 4 in [12]
differ for each model. This difference accounts for the better applicability of
the fe-language model to experimental work. The next result is analogous to
Proposition 34 in [12] for fe-languages.

Proposition 16. Let Σ be an alphabet and θ a morphic or an antimorphic
involution such that θ(a) �= a for each symbol a ∈ Σ. Let b, c ∈ Σ such that θ(b) =
c and k ≥ 2. Consider the forbidding set F = {{c}} ∪ {{u} | u ∈ (Σ \ {b, c})k}
and the enforcing set E = {(λ, {ub | u ∈ (Σ \ {c})k−1})} ∪ {(awb, {ubvb | u, v ∈
(Σ \ {c})k−1}) | w ∈ (Σ \ {c})k−1 and a ∈ (Σ \ {c})} ∪{(wba, {ubvb | u, v ∈
(Σ \ {c})k−1}) | w ∈ (Σ \ {c})k−1 and a ∈ (Σ \ {c})}. If L ⊆ L(F,E) then L is
a θ-k-code. Furthermore, if L ⊆ L(F,E) then L+ ⊆ L(F,E).

Proof. If L is not a θ-k-code, then by Proposition 31 in [12] adjusted for fe-
languages, L �⊆ L(F) and hence L �⊆ L(F,E). Assume that L ⊆ L(F,E) and
let u and v be any two words in L. Their concatenation uv is also in L(F,E),
and hence, L2 ⊆ L(F,E). By induction, Ln ⊆ L(F,E) for all n ≥ 1 and thus
L+ ⊆ L(F,E). ��

The above proof shows that L does not need to equal L+. This shows that one
can take any subset of L(F,E) for a starting point, which is more general than
[15, Proposition 4.9] where X = X+. While Proposition 16 uses fe-systems as
a defining tool or alternatively as a one-step-computation, i.e., accepting the
desired structures out of all possible structures in one step, the next corollary
uses fe-systems as a generative tool, i.e., to generate larger words starting from
smaller ones, as explained in the next section.
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Let Δ = {A,C, T,G} and θ be a morphic or an antimorphic involution. To
model closer the experiment in [15], let θ be the Watson-Crick complementarity
such that θ(A) = T , θ(T ) = A, θ(C) = G, and θ(G) = C, where θ is antimorphic
and consider the following consequence of Proposition 16.

Corollary 17. Let the alphabet be Δ and integers k, n ≥ 2 be given. Let F =
{{G}}∪{{u} | u ∈ {A, T }k}∪{{z} | |z| = nk+1 and z ∈ Δ∗}, and E = E0∪n−1

i=1

Ei where E0 = {(λ, {uC | u ∈ {A, T,C}k−1})} and Ei = {(w1Cw2C . . . wiC,
{u1Cu2C . . . ui+1C | uj ∈ {A, T,C}k−1}) | wl ∈ {A, T,C}k−1}. Then, L ⊆
L(F,E) implies L is a θ-k-code. Furthermore, if L ⊆ L(F,E) then L+ ⊆ L(F,E).

5 Generating Good DNA Codes by Language fe-Systems

This section provides intuition on how language fe-systems can be used to per-
form computation on one hand and to bridge theoretical results about DNA
involution codes with their application on another. The concept of computing
with fe-systems was introduced in [4] for the families of languages model of
fe-systems. The Γ -tree presented in [4] captures the idea of such computation:
one can start with smaller sets of strands and “build” larger sets by applying
enforcers to produce larger sets that are also consistent with the forbidding con-
ditions. This general concept for the family of languages model of fe-systems also
applies to the single language model of fe-systems, i.e., one can start with small
words and apply enforcers in such a way, step-by-step, such that larger words
are generated which comply with the forbidding conditions. The general notion
of computing by fe-systems, using their different variants is a vast topic by itself.

The following example illustrates how a fe-language fe-system may be applied
to translate a theoretical result into a lab experiment. Consider Proposition 4.9
and the related lab experiment in [15] where 10 θ-5-codes were constructed using
the methods in Proposition 4.9 and tested experimentally. Their DNA sequences
are presented as K1−K10 in Table 1 in [15]. We use the fe-system from Corollary
17 in the previous section to describe the steps in the following algorithm.

Algorithm: Fix an integer k ≥ 1 (for θ-k-codes). Fix an integer n ≥ 1 for the
number of desired annealing steps.

1. Input: Construct strands of type ({A,C, T }k−1C) and put them in the test
tube S (applies the enforcer in E0 and all forbidders except type {z})

2. For 1 ≤ i ≤ n− 1 let strands anneal i times (apply enforcers Ei)
3. Discard strands longer than m = nk (apply forbidders {{z}||z| = m+ 1})
4. Output: Detect (S) (the remaining strands w ∈ S are such that w ∈ L(F,E))

In our example, the initial test tube S contains words (strands) like AATAC,
ATCAC,ATTTC, TACCC used to construct K1. Then, applying the enforcers
E1 will produce 2k or 10-letter words such asAATACATCAC,ATCACATTTC,
ATTTCTACCC which are 10-letter subwords of K1, as well as, all possible con-
catenations of words in S. The enforcers E2 will produce all 3k or 15-letter words
from S3 and so on. The sequences K1 −K10 will result after applying enforcers
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E3 to produce all possible 20-mers in S4 including the sequences K1 −K10, e.g.,
K1 = AATACATCACATTTCTACCC. If desired, the process may start with
K1 − K10, as in the experiment, and continue by annealing the strands from
there. The enforcers applied at each step will only be the ones applicable to the
system and the forbidders {z} model discarding sequences of higher than desired
length and terminating the process when desired length m is reached.

6 Concluding Remarks

Since forbidding-enforcing systems impose restrictions on the subwords of a word
or a language, they can be used to model the restrictions imposed by unwanted
hybridizations and thus, provide a natural framework to study DNA codes. This
paper shows how fe-language fe-systems can be used as a defining tool by proving
a series of characterizations of DNA involution codes by fe-language fe-systems.
It also presents motivation for applying fe-systems to the study of DNA codes by
discussing the computational nature of fe-systems, their applicability to experi-
mental work and their generative capacity to model the evolution of a molecular
system.

Future work in fe-systems points to many directions: investigating the compu-
tational complexity of fe-language fe-systems and developing their applications
as a bridge between theoretical results and practical implementation, such as ap-
plying the results in [17,18] to experimental work; investigating the relationship
between different variants of fe-systems, such as graph fe-systems (introduced
in [11]) and single language fe-systems (introduced in [8]) to study their sim-
ilarities as computational tools and to contribute to characterizing structures
of automata recognizing given languages, for example; investigating each of the
models theoretically in the search of new properties of the underlying struc-
tures and similarities of different types of structures via fe-systems, e.g., between
graphs and languages.

Acknowledgement. This work has been partially supported by a UNF Faculty
Development Scholarship Grant.
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Abstract. We introduce a model of infinitary computation which en-
hances the infinite time Turing machine model slightly but in a natural
way by giving the machines the capability of detecting cardinal stages
of computation. The computational strength with respect to ITTMs is
determined to be precisely that of the strong halting problem and the
nature of the new characteristic ordinals (clockable, writable, etc.) is
explored.

Various notions of infinitary computability have now been studied for several
decades. The concept that we can somehow utilize infinity to accommodate our
computations is at the same time both appealing and dangerous; appealing,
since we are often in a position where we could answer some question if only we
could look at the output of some algorithm after an infinite amount of steps, and
dangerous, since this sort of greediness must inevitably lead to disappointment
when we suddenly reach the limits of our model. At that point we must decide
whether to push on and strengthen our model in some way or to abandon it
in favour of some (apparently) alternative model. But if we do not wish to
abandon our original idea, how to strengthen it in such a way that it remains
both interesting and intuitive?

The behaviour of infinite time Turing machines (ITTMs), first introduced in
[1], has by now been extensively explored and various characteristics have been
determined. While we are far from reaching full understanding of the model, we
nevertheless already feel the urge to generalize further. Perhaps the most direct
generalization are the ordinal Turing machines of [2], where both the machine
tape and running time are allowed to range into the transfinite. But perhaps
this modification seems too strong; with it all constructible sets of ordinals are
computable. We would be satisfied with the minimal nontrivial expansion of
the ITTM model, i.e., something which computes the appropriate halting prob-
lem but no more. Of course, we can easily achieve this goal within the ITTM
framework by considering oracle computations, but this somehow doesn’t seem
satisfactory. We intend to give what we feel is a more natural solution to this
problem but which falls short of the ‘omnipotence’ of ordinal Turing machines.

We assume some familiarity with the concepts and notation related to ITTMs
and computability theory in general. In particular, we fix at the outset some
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uniform way of coding programs, whole machine configurations and countable
ordinals as reals (i.e., infinite binary sequences). Given a code p for a program,
ϕp(x) denotes the computation of p with x as input, while ϕp(x) ↓ means that
this computation halts. By the output of a computation stabilizing, we mean
that from some time onward the contents of the output tape do not change
during that computation (but the computation itself need not halt or even be
aware of the stabilization). An ordinal is clockable if it is the halting time of some
ITTM computation with empty input; the supremum of the clockable ordinals is
denoted γ. A real is writable if it is the output of some halting ITTM computation
with empty input, eventually writable if it is the output of a stabilized ITTM
computation with empty input, and accidentally writable if it appears on any
tape at any time during an ITTM computation with empty input. An ordinal is
(eventually/accidentally) writable if the real coding it is such. The suprema of
the writable/eventually writable/accidentally writable ordinals are denoted λ, ζ
and Σ, respectively.

1 The Model and Its Computational Power

We build on the standard ITTM framework in which the machines have three
tapes and cell values at limit stages are calculated according to the lim sup rule.
Our proposed model has the same hardware and behaviour, with one exception:
there is a special state, called the cardinal state, which is used instead of the limit
state at cardinal stages of the computation. To be precise, if κ is an uncountable1

cardinal, the configuration of our machine at stage κ is as follows: the head is
on the first cell of the tape, the machine is in the cardinal state and the cell
values are the lim sup of the previous values. The machine handles non-cardinal
limit ordinal stages like an ordinary ITTM. We call these machines cardinal-
recognizing infinite time Turing machines (CRITTMs). We also define CRITTM-
computable functions on Cantor space 2ω and CRITTM-(semi)decidable subsets
of 2ω analogously to the ITTM case.

Our first task should be to verify that our proposed machines actually possess
the computing power we desired of them. Recall the characteristic undecidable
problems of ITTM computation:

– the weak halting problem 0� = {p;ϕp(0) ↓},
– the strong halting problem 0� = {(p, x);ϕp(x) ↓},
– the stabilization problem S = {(p, x); the output of ϕp(x) stabilizes}.

Proposition 1. The sets 0�, 0� and S are CRITTM-decidable.

Proof. The decidability of 0� is clearly reducible to the decidability of 0�. Simi-
larly, the decidability of 0� is reducible to the decidability of S: given a program
p and an input x, construct a new program p′ which acts like p but also flashes a

1 We restrict to uncountable cardinals mainly to ensure that verbatim copies of ITTM
programs work as expected. There is no difference in power between this convention
and using the cardinal state at all cardinal stages of computation.
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designated cell (called a flag) after completing each instruction of p; the program
p halts on x iff p′ stabilizes on x.

It therefore remains to show that S is CRITTM-decidable. Consider the fol-
lowing algorithm: given a pair (p, x), simulate ϕp(x) and flash a flag each time
the simulated output changes. When a cardinal state is attained, output ‘no’
if the flag is showing 1 and ‘yes’ if it is showing 0. This algorithm decides S.
Indeed, recall that every ITTM computation either halts or begins repeating at
some countable time and so the question of stabilization is completely settled
by (or before) time ω1 when the cardinal state is first reached. ��

In the above proof we made use of the fact that every ITTM computation halts or
begins repeating before time ω1. An analogous property also holds for CRITTM
computations. To state this correctly we must, as in the ITTM case, clarify what
we mean by an infinite computation repeating. In the ITTM model this is the
case when the machine configuration is the same at two limit ordinal stages
α < β and no cell that is showing 0 at stage α ever shows a 1 between these
two stages. This configuration will then repeat (at least) ω many times and the
last clause ensures that the configuration at the limit of these repeats will again
be the same. The machine then has no alternative but to continue its sisyphean
task.

With the appropriate modifications the same description of repeating also
works in the case of CRITTMs. Specifically, we say that a CRITTM computation
repeats if the machine configuration is the same at two cardinal stages κ < λ
and no cell that is showing 0 at stage κ ever shows a 1 between these two stages.
Note that we do not require the stages κ and λ to be limit cardinals. This is
not needed since the same argument as before shows that the machine cannot
escape this strong repeating pattern: the once repeated configuration will repeat
again ω many times2 and the limit configuration will be the same.

Proposition 2. Every CRITTM computation halts or begins repeating before
time ℵω1 .

Proof. The proof is very similar to the one in the ITTM case. Assume that the
machine hasn’t halted by time ℵω1 . By a cofinality argument there is a countable
ordinal α0 such that all of the cells that will have stabilized before time ℵω1 have
already done so by time ℵα0 . Similarly, there is a countable ordinal α1 > α0
such that each of the nonstabilized cells will have flipped its value at least once
between ℵα0 and ℵα1 . Construct the increasing sequence of ordinals (αn)n<ω in
this way and let αω = supn αn < ω1. Consider the configuration of the machine
at time ℵαω . The stabilized cells are showing their values and the nonstabilizing
cells have flipped unboundedly many times below ℵαω and are thus showing 1.
This is the same configuration as at time ℵω1 . If we now repeat the construction
starting with some α′0 above αω, we find the same configuration at some time
ℵα′

ω
. Then, by construction, the computation between ℵαω and ℵα′

ω
repeats. ��

2 Note that the length of time between repeats gets progressively longer. It will follow
from later results that this additional time cannot be used in any meaningful way.
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We conclude this section by determining the precise computational power of
CRITTMs. Recall that we introduced them as an attempt to define a minimal
natural strengthening of the ITTM model which could decide the strong ITTM
halting problem without explicitly adding a halting oracle. It turns out that we
hit our mark perfectly as the following theorem shows.

Theorem 3. CRITTMs compute the same functions as ITTMs with a 0� ora-
cle. In this sense the two models are computationally equivalent.3

Proof. We have already seen in Proposition 1 that 0� is decidable by a CRITTM,
so any computation of an ITTM with a 0� oracle can be simulated on a CRITTM.
We must now show that the converse holds.

Consider a CRITTM computation ϕp(x). By Proposition 2 this computation
halts or begins repeating in the CRITTM sense by time ℵω1 . However, in each
time interval [ℵα,ℵα+1) the computation is in effect an ITTM computation and
thus begins repeating in the ITTM sense by time ℵα+βα for some countable βα.
We see that the machine performs no useful computations for longer and longer
periods of time. It is this behaviour that allows us to compress the CRITTM
computation. Given a CRITTM program p, we let p̃ be the program p with all
mention of the cardinal state omitted (transforming it into an ITTM program).
We then define p∗ as the following ITTM program: given an input z, decode it
into the contents of the three machine tapes, the machine state and the head
position and run p̃ on this decoded configuration. By setting aside space to store
information on which cells have changed value since the start of the simulation
and at each step comparing the current simulated configuration to the one coded
by z, the program p∗ can halt if the simulation of p̃ repeats the configuration
coded by z in the ITTM sense.

Consider the following program for an ITTM with a 0� oracle which simu-
lates the CRITTM computation ϕp(x). First, construct the program p∗. At each
subsequent step, code the simulated configuration into a real z and query the
oracle whether ϕp∗(z) halts. If not, simulate a step of p. Otherwise, ϕp(x) has
reached its ITTM repeating configuration between cardinal stages, which must
also be the configuration at the next cardinal time. We can therefore jump ahead
in our simulation, setting its state to cardinal and moving the head back to the
beginning of the tape, after which we continue with our procedure. Clearly, if
ϕp(x) halts, this simulation will halt with the same output. ��

2 Clockable and Writable Ordinals

In this section we wish to examine the various classes of ordinals connected with
CRITTM computation. In particular, we are interested in CRITTM-clockable
and (eventually/accidentally) CRITTM-writable ordinals, where these concepts

3 This theorem gives an alternative proof (and was originally conceived by observing)
that the sets 0� and S are infinite time Turing equivalent; the strong halting oracle
allows us to foresee repeating patterns.
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are defined analogously to the ITTM case. In the sequel, when we write clock-
able/writable, we always mean ITTM-clockable/writable.

Let us first present some examples regarding CRITTM-clockable ordinals.

– The countable CRITTM-clockable ordinals are precisely the clockable ordi-
nals. Clearly all clockable ordinals are CRITTM-clockable. In fact, since we
stipulated that the cardinal state is only used at uncountable stages, the
very same program that clocks α on an ITTM can be used to clock it on a
CRITTM. Furthermore, no new clockable ordinals appear since at countable
stages CRITTMs behave no differently to ITTMs.

– If ℵα and ℵβ are CRITTM-clockable then so are ℵα+β and ℵα·β. We only give
a sketch of the algorithm for the first part, leaving the second to the reader.
If ℵα and ℵβ are CRITTM-clockable, we can modify the algorithms clocking
them to only use the even- and odd-numbered cells on the tape, respectively,
without changing the running time. We then design an algorithm which uses
these modified programs to first clock ℵα and then run the program for
clocking ℵβ , keeping track of which part of the computation we are executing
by means of a master flag. This clocks ℵα+β .

There is a very important observation to be made regarding the last bullet
point above. The observant reader will have noticed the awkward wording in the
algorithm given; we are referring to the phrase “run the program for clocking
ℵβ”. Why not simply say “clock ℵβ”? We feel that the issue is most easily seen
through an example: knowing the algorithm for clocking ω1, can we devise an
algorithm for clocking ω1+ω1? Surely we can. Just run two copies of the program
clocking ω1 one after another. But does this actually clock ω1 +ω1? Let us take
a closer look and fix the program clocking ω1 to be the program which waits
for the first cardinal state that appears and then immediately halts. Consider
what happens when we run two copies of this program in succession. The first
copy waits for the cardinal state, which appears at time ω1, and passes control
to the second copy. The second copy then waits for the cardinal state. However,
this state doesn’t occur at time ω1 + ω1, but only at ω2. We remark that this
phenomenon doesn’t occur in ITTM computation due to a certain homogeneity
the class of cardinals lacks; the next limit ordinal above an ordinal α is always
α+ ω, but the next cardinal above α has no such uniform description. It could,
perhaps, be argued that this issue makes the notion of the length of a CRITTM
computation meaningless, as this quantity changes based on the time at which
we run the computation.

The discussion in the previous paragraph leads us to formulate the follow-
ing theorem, which places strong restrictions on decompositions of CRITTM-
clockable ordinals.

Theorem 4. Let α and β be ordinals with |α| ≥ |β|. If α + β is
CRITTM-clockable then β is countable.

Proof. The assumption |α| ≥ |β| may be restated as |α + β| = |α|. Therefore
the last cardinal stage passed in a CRITTM computation of length α+ β is |α|.
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In particular, the cardinal state doesn’t appear during the last β steps of
computation.

Let p be the program clocking α+β and let xα be (a real coding) the content
of the machine tapes after α many steps of computation. Since no cardinal states
appear during the last β many steps of the computation, we are, in effect, per-
forming an ITTM computation with input xα which halts after β many steps.
As we know the halting times of ITTM computations to be countable, β must
be countable. ��

Corollary 5. CRITTM-clockable ordinals are not closed under ordinal
arithmetic.

Proof. Consider, as before, ω1 + ω1. Theorem 4 implies that this ordinal is not
CRITTM-clockable. ��

Theorem 4 raises some interesting questions. For example, given α, which count-
able ‘tails’ β give CRITTM-clockable ordinals? If α is CRITTM-clockable we
might be inclined to say that precisely the clockable β arise, but this is incor-
rect. Keep in mind that the first part of the computation might have produced
some useful output for us to utilize during the last β steps. In particular, as-
suming α is uncountable, any writable real may be produced to serve as input
to the subsequent computation. The following proposition illustrates this fact.

Proposition 6. The ordinal ω1 +Σ + ω is CRITTM-clockable.4

Proof. In [3] it is shown that the configuration of the universal ITTM5 at time
ζ is its repeating configuration and that it repeats for the first time at time
Σ. This configuration also appears at time ω1. Let our CRITTM simulate the
universal ITTM until time ω1 at which point it stores the simulated configuration
and starts a new simulation of the universal ITTM. The machine also checks at
limit steps whether the current simulated configuration is the same as the stored
configuration and whether this has happened for the second time. This will occur
at time ω1 +Σ, our machine will detect this and halt at time ω1 +Σ + ω. ��

Another question we might ask is how CRITTM-clockability propagates. It is
easily shown that α+, the cardinal successor of α, is CRITTM-clockable if α is.
Does it also inherit to cardinals in reverse? That is to say, if α is CRITTM-
clockable, must |α| be as well? The following theorem shows that this fails in the
most spectacular way possible.

Theorem 7. There is a CRITTM-nonclockable cardinal κ such that the ordinal
κ+ ω is CRITTM-clockable.

4 This example is due to Joel David Hamkins.
5 The universal ITTM is the machine that dovetails the simulation of all ITTM
programs on empty input. It can be used to produce a stream consisting of all
accidentally writable reals.
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Proof. Let κ be the first CRITTM-nonclockable cardinal. To show that κ+ω is
CRITTM-clockable, dovetail the simulations of all CRITTM programs on input
0. We can perform this in such a way that after λmany steps, for λ a cardinal, we
have simulated exactly λmany steps of each computation. When a cardinal state
is reached we use the next ω many steps to check whether any of the simulated
computations halt at the next step. If a computation halts we continue with the
simulation. Otherwise, we’ve happened upon the first CRITTM-nonclockable
cardinal κ and we halt, having clocked κ+ ω. ��
The theorem shows that the fact that κ+ is CRITTM-clockable doesn’t imply
that κ itself is CRITTM-clockable. The proof is merely the trivial observation
that we have shown that κ + ω is CRITTM-clockable, where κ is the least
CRITTM-nonclockable cardinal, hence κ+ is CRITTM-clockable. This is in stark
contrast to the speed-up theorem of [1], which states that if α + n is clockable
for some finite n then α is clockable as well.

We now consider CRITTM-writable reals and ordinals and their more tran-
sient relatives. The same proofs as in the ITTM case show that the class of
accidentally CRITTM-writable reals properly contains the class of eventually
CRITTM-writable reals which properly contains the class of CRITTM-writable
reals and that the corresponding classes of ordinals are downward closed. Also,
no additional effort need go into proving that the classes of eventually CRITTM-
writable and CRITTM-writable ordinals are closed under ordinal arithmetic.

In keeping with the notation from the ITTM model, we introduce the following
ordinals

λC = sup{α;α is CRITTM-writable}
ζC = sup{α;α is eventually CRITTM-writable}
ΣC = sup{α;α is accidentally CRITTM-writable}

The same proof that shows λ < ζ < Σ in the ITTM model can be used here to
show that λC < ζC < ΣC. We also have the following proposition.

Proposition 8. ΣC is a countable ordinal.

Proof. Accidentally CRITTM-writable ordinals are countable by definition. We
now prove that there are only countably many accidentally CRITTM-writable
reals, whence the proposition follows immediately.

Consider a CRITTM program p. We have shown that p either halts or has
repeated by time ℵα for some countable α. Recall that the computation of p
on input x either halts or repeats (in the ITTM sense) at least once by some
countable time δx. Let β < α. Within the time interval [ℵβ ,ℵβ+1) the program
p behaves just like an ITTM program and must therefore halt or repeat by time
ℵβ + δxβ

, where xβ codes the contents of the tapes at time ℵβ . This means
that the program p in fact produces only countably many reals in the time
interval [ℵβ ,ℵβ+1). Repeating this argument for all β < α, we see that only
countably many reals appear during the computation of p and since there are
only countably many programs, there can only be countably many accidentally
CRITTM-writable reals. ��
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But what is the relation between the ordinals λC, ζC, ΣC and their ITTM
counterparts? Clearly the supremum of a given CRITTM class of ordinals is at
least as big as the supremum of the corresponding ITTM class, i.e., every (even-
tually/accidentally) writable ordinal is also (eventually/accidentally) CRITTM-
writable, but can we say more? It is in fact easy to see that every eventually
writable real is CRITTM-writable: if a real x is eventually written by a program
p, we may use a CRITTM to simulate p for ω1 many steps, at which point we
halt, having written x. Therefore λC ≥ ζ and we can go even further.

Proposition 9. ζ is CRITTM-writable.

Proof. We begin by dividing the output tape into ω many ω-blocks. We now
proceed to enumerate all ITTM programs. When a program p is enumerated,
first determine whether ϕp(0) stabilizes and, if it does and if its stabilized output
codes an ordinal6, copy its output to the next empty ω block on the output tape.
Having done this, resume enumerating programs. To deal with each particular
program we need to pass only a single cardinal stage. Therefore we shall have
copied all eventually writable ordinals onto the output tape by time ℵω, which
we can recognize. At this point we use ω many steps to combine the codes on
the output tape into a code for the sum of all eventually writable ordinals and
then halt.

This CRITTM algorithm writes an ordinal which is at least as big as ζ,
therefore ζ is CRITTM-writable. ��

We have now seen that many new ordinals become writable and eventually
writable when passing from the ITTM model to the CRITTM model. But what
about accidentally writable ordinals?

Question 10. Is Σ = ΣC?

While we currently do not have an answer to this question, let us present a brief
heuristic justification for why we believe the proposed equality to be true. We
have seen that λ < λC and ζ < ζC, but these inequalities are not particularly
surprising given that the concepts of (eventual) writability are intimately con-
nected with the computational power of the particular model under observation.
Accidental writability, however, seems to be a much more robust notion. It is not
at all clear how any real could appear during a CRITTM computation and not
during an ITTM computation since, as we have seen, CRITTM computations
are more or less just ITTM computations with some irrelevant padding inserted.

We now turn to the CRITTM counterpart of γ, the supremum of the clockable
ordinals:

γC = sup{α;α is CRITTM-clockable}

Welch shows in [3] that γ = λ. We intend to prove a somewhat similar statement
in the context of CRITTMs.

6 Checking whether a real codes an ordinal can be done using the count-through
algorithm of [1].
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Lemma 11. If α is clockable then ℵα is CRITTM-clockable.

In the proof we shall introduce an algorithm, based on an argument of [1], which
we call the cardinal step count-through algorithm and which will be very useful
in what follows.

Proof. Since α is clockable, we can write a real coding it in a countable number
of steps. We now perform the count-through algorithm7 of [1] on this code, but
with a small modification: after each step of the algorithm our machine records
the current head position and state in some way and waits for the next cardinal
state, at which point it decodes the previous configuration and continues the
algorithm. Of course, this modification requires keeping track of limit cardinal
stages, when all previous information should be discarded, but this can be dealt
with using the same bookkeeping devices that are used to keep track of limit-of-
limits stages in ITTM computations. This CRITTM algorithm clocks ℵα. ��

Based on this lemma we can state that γC ≥ ℵγ . While the possibility of hav-
ing γC = ℵγ is certainly alluring, this equality does not hold. We can easily
use the cardinal step count-through algorithm to show that for each CRITTM-
writable ordinal α there exists a CRITTM-clockable ordinal at least as large as
ℵα. Therefore we must have γC ≥ ℵλC > ℵγ .

Since there is a CRITTM-clockable cardinal above any CRITTM-clockable
ordinal (the cardinal successor works), γC must be a cardinal. We now proceed
to determine exactly which cardinal it is.

Lemma 12. Every CRITTM computation with input 0 repeats its ℵζC

configuration at ℵΣC.

In the interest of brevity we omit the slightly technical proof. Let us just remark
that the proof is a straightforward generalization of the arguments in [3] to the
present context.

Theorem 13. γC = ℵλC

Proof. We have already seen that γC ≥ ℵλC . Lemma 12 implies that every
halting CRITTM computation with input 0 must halt before time ℵζC . We
therefore have γC ≤ ℵζC . Consider a halting CRITTM program p. Begin enu-
merating accidentally CRITTM-writable ordinals α. For each α use the cardinal
step count-through algorithm to simulate the computation of ϕp(0) up to ℵα,
while simultaneously keeping track of the deleted initial segment β of α. Even-
tually an α will be enumerated which is large enough that the simulation halts
before time ℵα. When this happens, we halt with output β + 1. Therefore the
program p halts by time ℵβ′ for some writable β′, which means that γC ≤ ℵλC .
Putting this together, we have shown that γC = ℵλC . ��
7 That is, we use the improved version of the algorithm, which counts through a code
for α in α many steps.
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Upon reflection, the properties of CRITTMs explored in this paper require very
little of the structure of the class of cardinals. One could equally well have consid-
ered A-recognizing ITTMs for some club class of limit ordinals A. For example,
we could have considered ITTMs with a state recognizing ordinal multiples of Σ.
Some of our results would generalize, but note that we have often used the result
that any ITTM computation halts or repeats before ℵ1 and this property holds
with Σ only for ITTM computations with empty input, so we cannot expect to
get an equivalent model.

The generalization to arbitrary A leads to some familiar results (e.g., any com-
putation in this model either halts or begins repeating before the ω1-st element
of A), but it also has serious issues. Since the class A may lack the uniformity
of the classes of limit ordinals or cardinals, even the existence of a universal ma-
chine is not clear (if there is a change in the frequency of the A-stages and the
machine cannot anticipate this, a running simulation may not produce correct
results).

Question 14. What properties should the club class A have to get a meaningful
notion of A-recognizing ITTMs?

Instead of studying them in isolation, we can also compare the A-recognizing
ITTM models for various A. This leads to the concept of reductions between
them. For example, any A-recognizing ITTM can simulate a limit ordinal rec-
ognizing ITTM (which is just an ordinary ITTM). This endows the collection
of club classes of ordinals with a reducibility degree structure, similar to but
distinct from the usual Turing degrees.

Question 15. What are the degrees thus obtained?
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Abstract. Historians agree that the stored program concept was formu-
lated in 1945 and that its adoption was the most important single step
in the development of modern computing. But the “concept” has never
been properly defined, and its complex history has left it overloaded
with different meanings. The paper surveys its use and development and
attempts to separate it into three distinct aspects, each with its own
history and each amenable to more precise definition.

1 Introduction

It is a truth universally agreed that implementation of the “stored program con-
cept” in the late-1940s was the most important dividing line in computer history,
separating modern computers from their less evolved predecessors. Historians
also agree that the concept was first stated in the “First Draft of a Report on
the EDVAC,” (hereafter “First Draft”) circulated under the name of John von
Neumann in 1945 [14]. While the true balance of credit for the ideas contained
in this document is widely and heatedly debated, its fundamental influence on
the development of modern computing is not.

Yet when historian Doron Swade delivered an address [13] to celebrate the
sixtieth anniversary of the 1949 EDSAC computer, generally considered the first
useful stored program machine, he began with the startling observation we do not
really agree on why the concept is so important. For years Swade had “assumed
that the significance of the stored program must be self-evident” and attributed
his own confusion to personal inadequacy. Eventually he “became bold and began
asking” computer historians and pioneers to explain it. Their answers were “all
different,” with the question of whether “the primary benefit was one of principle
or practice frustratingly blurred.” Swade concluded that

There was one feature of all the responses about which there was com-
plete agreement: no one challenged the status of the stored program as

� This paper draws extensively on ideas and analysis developed during my ongoing col-
laboration with Mark Priestley and Crispin Rope on a project exploring the ENIAC’s
1948 conversion to a new programming method and its use for the first computer-
ized Monte Carlo calculations. In particular the definitions given of the “modern
programming paradigm” were formulated during discussion with Priestley.
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the defining feature of the modern digital electronic computer.... While
the reasons given for this were different, none discounted its seminal
significance. But it seems that we struggle when required to articulate
its significance in simple terms and the apparent mix of principle and
practice frustrates clarity. The problem, I think, is that we have never
actually agreed that the “stored program concept” is. The concept is
sometimes treated as an approach to programming, sometimes as a new
kind of architecture. Some authors conflate it with the idea of a uni-
versal machine and associate it with Turing’s ideas on computability.
Sometimes the idea is defined very narrowly, with attention to the in-
terchangeable storage of programs and data, and sometimes as a grand
cluster of ideas accumulated over time. Self-modifying code may or may
not loom large in the discussion. Some authors use “stored program con-
cept” and “von Neumann architecture” interchangeably, while others
attempt to separate them.

As a historian, my instinct is to explain this proliferation of meanings and as-
sociations historically, going back to the conventional origin point of the stored
program concept in 1945 and sketching its subsequent development in the hands
of different groups of people with different intellectual agendas.

My own attention was drawn to the concept of “stored program” as we inves-
tigated modifications made to ENIAC in early 1948 by a team working closely
with John von Neumann. These changes incorporated key elements of the stored-
program approach several months before Manchester University’s “Baby” com-
puter executed what is usually called the world’s first stored program in the
summer of the same year. Confusion of the kind noted by Swade makes it impos-
sible to clarify the status of the converted ENIAC, and several other important
early machines, as “stored program” or “not stored program.”

The final part of the paper attempts to begin the work of separating the
cluster of ideas treated as part of the stored program concept by identifying
three distinct paradigms stated in von Neumann’s seminal 1945 report that
were incorporated as standard features by most machines of the 1950s.

2 History of the Stored Program Concept

2.1 The 1945 EDVAC Report

The “First Draft of a Report on the EDVAC” does not, despite the role it
has been assigned in later historical work, function very well as a standards
document to rigorously define the concept of “stored program.” Most notably
the word “program” never appears. Von Neumann consistently preferred “code”
to “program” and wrote of “memory” rather than “storage.”

Our current attachment to the term “stored program” as a description for
computers built along lines proposed for EDVAC thus needs some historical
explanation. Read literally the term conveys very little. Any program that can
be executed by a computer must be stored in some medium. The First Draft
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itself observed that “instructions must be given in some form which the device
can sense: Punched into a system of punchcards or on teletype tape, magnetically
impressed on steel tape or wire, photographically impressed on motion picture
film, wired into one or more fixed or exchangeable plugboards—this list being
by no means necessarily complete.” [14].

The First Draft argued for the collocation of code and data, though only ten-
tatively: “While it appeared that various parts of this memory have to perform
functions which differ somewhat in their purpose, it is nevertheless tempting
to treat the entire memory as one organ, and to have its parts as interchange-
able as possible...” [14]. Von Neumann believed that the data requirements of
the problems he was interested in were large enough to require a memory of
unprecedented size, and that the program code would, in comparison, be quite
small. Using one set of mechanisms to manipulate both would simplify EDVAC.

2.2 Initial Reception

The First Draft circulated quickly between those interested in building comput-
ers, and almost immediately established the model for the next generation of
computer project. However, early discussion of the EDVAC approach addressed
a range of innovative features, with no consensus that the particular method of
program storage was the most important one. Several early introductory com-
puting books focused primarily on the method of programming, documenting
the instruction set of von Neumann’s planned computer at the Institute for
Advanced Studies.

To many of the computer builders of the 1940s, including ENIAC creators J.
Persper Eckert and John Mauchley whose contribution to the new design was
profound, the advantage of what is sometimes called the “EDVAC-type” ap-
proach was seen primarily as a way of building a powerful and flexible computer
with a relatively small number of expensive and unreliable vacuum tubes. Cre-
ation of a large high-speed memory was the key engineering challenge posed by
this approach. Ease of programming and speed of changeover from one problem
to another were acknowledged as benefits of this approach, and were related to
the storage of code and data in the same electronic memory.

2.3 The Phrase “Stored Program”

We could not find the phrase “stored program in any of the early computing
conference proceedings and primers published in the 1940s. Its earliest known
usage occurred in 1949 by a small team at IBM’s Poughkeepsie facility produc-
ing the “Test Assembly,” IBM’s first EDVAC-type computer. This experimental
system was built around firm’s first electronic calculator, its 604 Electronic Cal-
culating Punch, which became the arithmetic unit of the lashed-up computer.
They added a new control unit, cathode ray tube memory, and magnetic drum.

An internal proposal written by Nathaniel Rochester in 1949 [11] noted that
the plug-board approach was not viable with large programs, which could be
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solved by reading “the calculating program into the machine on a deck of tab-
ulating cards and to retain it, along with the numerical data, in the storage
section of the calculator.” To distinguish between the program held on the 604’s
standard plug board and the new-style programs stored either in the 250 word
electronic memory or on the drum the team began to call the latter the “stored
program.” Rochester’s document was titled “A Calculator Using Electrostatic
Storage and a Stored Program.” (Thanks go to Peggy Kidwell of the Smithsonian
for alerting me to this document).

Within IBM the meaning of “stored program” quickly evolved from a lit-
eral description of a particular kind of programming mechanism into a general
description of EDVAC-type machines. During the 1950s the phrase pops up oc-
casionally in conference papers, particularly those delivered by IBM employees,
but as all powerful digital computers by then followed this model people gener-
ally just referred to “large-scale digital computer.”

2.4 Historians Adopt “Stored Program”

In the late 1970s and 1980s the history of computing emerges as an academic
subfield. Early work focused on the machines of the 1940s. Following the lead of
pioneer turned historian Herman Goldstine the idea of the “stored program com-
puter” was borrowed from technical discourse, developing from a fairly obscure
term into a central concept in heated debates over what should be considered
the first true computer and why.

Put simply, the community resolved this intractable and distracting wrangle
by agreeing on a string of words that clarified what each of the key early machines
had accomplished. ENIAC, for example, became the first “large-scale general-
purpose digital electronic computer to be fully operational.” The Cambridge
EDSAC and Manchester Baby were recognized as the first operational stored
program computers, patterned after the EDVAC design, but there was little need
or interest in defining the “concept” more rigorously to identify its necessary and
sufficient characteristics.

More recently, historians of computing largely turned their attention away
from the 1940s, having reached a consensus on the honors to be granted to each
early machine and formulated a consensus narrative on the events of the decade.
As Swade noted, the stored program concept is still enshrined in popular and
scholarly histories as a key transition but receives little new analysis.

2.5 The Stored Program Concept Meets Universality

From the late 1950s onward, with the rise of theoretical computer science and
a new enthusiasm for work on abstract models of computation, the digital com-
puter was increasingly reinterpreted as an embodiment of the universal Turing
machine. Its key benefit was therefore the ability of the computer to treat instruc-
tions as data and modify them programmatically. The confusion encountered by
Swade seems to reflect differences in opinion held by those influenced by the
pragmatism of the 1940s and those favoring the theoretical concerns developed
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later. The resurgence of the stored program concept, now as a concept for his-
torical discussion, went along with its increasing identification with foundational
ideas from the new discipline of computer science.

In recent decades the manipulation of programs and data interchangeably in
the same memory units has increasingly been taken as the key defining charac-
teristic of the stored program computer, and thus of modern computers. In turn,
the concepts of stored program and general purpose computer have sometimes
conflated with the more formal concept a computer being Turing complete or
“universal” if equipped with a memory of infinite size. To cite just three of many
recent examples of this conventional wisdom: the Wikipedia page on “stored pro-
gram computer” currently defines it as “one which stores program instructions
in electronic memory. Often the definition is extended with the requirement that
the treatment of programs and data in memory be interchangeable... the stored
program computer idea can be traced back to the 1936 theoretical concept of a
universal Turing machine.” In his recent Computing: A Concise History [5], Paul
Ceruzzi defined stored program computers as storing “both their instructions—
the programs—and the data on which those instructions operate in the same
physical memory device...” and suggested that this “extended Turing’s ideas
into the design of practical machinery.” Even Swade himself retreated from the
endearingly bold confession of confusion quoted earlier to the rather conven-
tional conclusion that “the internal stored program... is the practical realization
of Turing universality” and thus conferred “plasticity of function, which in large
part accounts for the remarkable proliferation of computers and computer-like
artifacts.” [13]

Arguing about the influence Turing might or might not have exerted over
von Neumann has become an enjoyable parlor game for historians of computing.
That question aside, one will find very few references to Turing’s theoretical work
among the discussions of those building computers in the 1940s [10,8]. Atsushi
Akera [1] has suggested that the retroactive embrace of Turing as a foundation
for this practical work is tied to the emphasis within computer science, as it
emerged as a distinct discipline during the late-1950s and 1960s, on abstract
models of computation. In later discussion the advantages of stored program
machines were often justified according to the theoretical concerns of later years
rather than the pragmatic issues of primary importance to their designers.

In this sense, the search for the logical foundations of computing and the
search for is historical foundations may pull us in opposing directions. It was
its very purity and abstraction from the messy details of actual hardware that
earned the Turing Machine its iconic place within computer science. The ideas
of Turing completeness and of the Universal Turing Machine served to decouple
theoretical computer science from the material world of computing platforms
and architectures. For example, once a virtual computer built within Conway’s
Game of Life was shown to be computationally equivalent to a Universal Turing
Machine that single fact told us that, with sufficient time and a large enough
cellular matrix, this computer could execute the same algorithms as any machine
build from conventional components. The intellectual utility of this approach is



246 T. Haigh

clear, as is its strategic benefit to the early computer science community at a
time in which it was struggling to separate itself intellectually from mathematics,
electronic engineering, and scientific service work to other disciplines.

The late Michael Mahoney struggled for many years to encapsulate the history
of theoretical computer science [9]. His great theme was the need of scientific
communities to construct their own historical narratives. Mahoney saw theoreti-
cal computer science as an assemblage of mathematical tools originally developed
in quite separate contexts, from group theory and Lambda calculus through to
Chomsky’s hierarchy of grammars. On a still larger scale, work on mathematical
logic and on the engineering of calculating machines both had long but largely
distinct histories. Yet from within the discipline and from the present-day view-
point the connections between these things came to seem obvious and history
is often written as if work over the centuries had been directed towards the de-
velopment of the computer or as if the computing pioneers of the 1940s were
inspired primarily by the work of Turing.

As Mahoney wrote, the interest of practitioners in “finding a history... has
its real dangers” because while scholarly historians and practitioners “both seek
a history” it is “not for the same purpose and not from the same standpoint.”
[9] Abstraction is the soul of computer science, but as historians we lose some-
thing vital if we abstract away from the historical grubbiness of early computer
projects, their focus on engineering challenges, their specific goals and roots in
the thinking of the 1940s. The abstraction from real computers and real com-
puting practice provide by a focus on Turing completeness is good for theory but
bad for history. For example, the effort by Raul Rojas to claim Konrad Zuse’s
1943 Z3 computer as universal [12] is an impressive party trick, but diverges
entirely from the way in which the machine was designed, how it was actually
used, or indeed from anything that would have made sense in the 1940s. The
programming method described construction of an impossibly long paper tape,
and a massive loss of computational performance. Calculation would have been
quicker by hand. To me the real lesson is that the Z3 could have been Turing
complete with only minor design changes, but wasn’t because the concept and
its benefits were not yet widely understood. Indeed, Zuse later claimed to have
considered and rejected treating program instructions as data while working on
its design. The past really is a foreign country. Yet Rojas was able to raise the
status of the machine, and German pride, with this appeal to the world of theory.

In this context, it is worth noting that von Neumann’s 1945 report specifically
forbade unrestricted code modification, a notable conceptual divergence from
what is now understood as the Turing machine model of the universal computer.
The EDVAC described therein did rely on code modification for many common
operations, including loop termination, other kinds of conditional branching, and
altering the address data is fetched from (for example to obtain a value from
a different cell within an array each time a block of code is looped through).
This reflected a broader design philosophy of radically simplifying computer
architecture by replacing the special purpose mechanisms common in earlier
designs with a small number of general purpose mechanisms.
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However, von Neumann’s instruction set for EDVAC explicitly prevented
instructions from being fully overwritten [10,6]. Only address fields could be
changed. One of the 32 bits in each word of memory flagged it as holding either
program or data. A transfer operation applied to an instruction word would
overwrite only the address field.

3 Beyond “Stored Program”

Like the Goto statement, discussion of the “stored program concept” has out-
lived the purpose for which it was created and provides a shortcut to confusion.
The time has come to replace it, as an analytical category, with a set of more
specific alternatives amenable to clear and precise definition. Below I discuss one
proposed partial replacement in some detail and sketch two more.

3.1 The Modern Code Paradigm

The first of these is the “modern code paradigm.” This new term describes
the program-related elements of the 1945 “First Draft...” design that become
standard features of 1950s computer design. Some items specified in the report
were ignored or changed by actual computer designers (such as the lack of a
dedicated conditional branch instruction), while some common code capabilities
of 1950s computers (such as index registers) came from other sources.

Looking for novel code-related features from the 1945 First Draft that had
become taken-for-granted features of computers a decade later illuminates the
process by which a sprawling, idiosyncratic and brilliant document became a
dominant paradigm for the builders of computers.

As one reviewer of this paper noted, this analysis parallels the work of comput-
ing theorists to build abstract models of computation based around the stored
program approach rather than Turing machines. These include the Random Ac-
cess Machine (RAM) and Random Access Stored Program machine (RASM).
Space does not permit further comment, except to point out that the objectives
of the historian and the theorist remain distinct. Whereas the theorist looks
for the minimal necessary capabilities for universality, my objective here is to
define the maximal set of features present in the 1945 draft that actually made
it into the standard designs of the 1950s.

1. The program is executed completely automatically. To quote the
First Draft, “Once these instructions are given to the device, it must be able
to carry them out completely and without any need for further intelligent
human intervention.” This was essential for electronic machines, whereas
manual intervention at branch points had been workable with slower devices
such as the Harvard Mark I.

2. The program is written as a single sequence of instructions, known
as “orders” in the First Draft, which are stored in numbered mem-
ory locations along with data. These instructions control all aspects of
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the machine’s operations. The same mechanisms are used to read code and
data. As discussed earlier, the First Draft did specify the explicit demar-
cation of memory locations holding code from those holding data. It also
pointed toward the idea of a program as a readable text: “it is usually con-
venient that the minor cycles expressing the successive steps in a sequence
of logical instructions should follow each other automatically.”

3. Each instruction within the program specifies one of a set of atomic
operations made available to the programmer. This was usually done
by beginning the instruction with one of a small number of operation codes.
Some operation codes are followed by argument fields specifying a memory
location with which to work or other parameters. EDVAC orders would have
required between 9 and 22 bits to express. Actual machines usually followed
this pattern. The main exception comes with Alan Turing’s Ace design and
its derivatives, which stuck close to the underlying hardware by coding all
instructions as data transfers between sources and destinations.

4. The program’s instructions are usually executed in a predeter-
mined sequence. According to the First Draft, the machine “should be
instructed, after each order, where to find the next order that it is to carry
out.” In the EDVAC this was to be represented implicitly by the sequence
in which they were stored, as in “normal routine” it “should obey the orders
in the temporal sequence in which they naturally appear.”

5. However, a program can instruct the computer to depart from this
ordinary sequence and jump to a different point in the program.
“There must, however, be orders available which may be used at the excep-
tional occasions referred to, to instruct CC to transfer its connection [i.e.,
fetch the next instruction from] any other desired point” in memory.” This
provided capabilities such as jumps and subroutine returns.

6. The address on which an instruction acts can change during the
course of the program’s execution. That applies to the source or des-
tination of data for calculations or the destination of a jump. This address
modification capability was expressed rather cryptically in the First Draft,
the final sentence of which noted that when a number was transferred to a
memory location holding an instruction only the final thirteen digits, rep-
resenting the address μ', should be overwritten. Actual computers achieved
functionally equivalent capability through some combination of unrestricted
code modification, indirect addressing mechanisms, and conditional branch
instructions.

A consequence of the above was that the logical complexity of the program was
limited only by memory space available to hold instructions and working data.
This contrasted with the dependence of machines such as the original ENIAC
or SSEC on a variety of resources such as program lines, plug board capacity, or
tape readers as potential limitations on logical program complexity.
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3.2 The von Neumann Architecture

The modern code paradigm is not intended a new name for the “stored program
concept” or as an idea encompassing the full scope of meanings associated with
the latter. Indeed, the more specific scope of the former is a large part of its
appeal. There were clearly several other aspects of the First Draft and subsequent
publications by members of von Neumann’s group in Princeton that had a major
influence on later computer builders. To adapt an existing term, one of these
facets might be called the “von Neumann architectural paradigm.” This includes
the basic structure of “organs” found in the report, including the separation of
memory from control and arithmetic. Associated with this are the serialization
of computation, so that only one operation takes place at a time, and the routing
of all memory transfers through the central arithmetic unit. Also the system of
special purpose registers to serve as source and destination for arithmetic and
logic instructions, and to provide a program counter and instruction register for
control purposes. The von Neumann architecture has general been more clearly
defined within the technical literature than has the stored program concept.
One might, as several have, dispute the extent to which it is fair to attach only
von Neumann’s name to these concepts. “EDVAC architecture paradigm” could
serve as an alternative.

3.3 The EDVAC Hardware Paradigm

The third major facet might be termed the “EDVAC hardware paradigm.” The
EDVAC approach appealed to early computer builders in large part as a way of
building powerful, flexible machines using a relatively small number of compo-
nents. Influential hardware ideas in the “First Draft” report include use of delay
line or storage tube memory, building logic entirely from electronic components,
representing all quantities in binary, and keeping special purpose or duplicate
hardware mechanisms to a minimum (von Neumann considered that a multiplier
would justify itself, but that duplicating adders or providing hardware for more
specialized functions would provide little benefit). With the possible exception
of the memory technologies discussed these hardware features were not unique,
but collectively represented a bold commitment to new technologies at a time
when computing group within Harvard, Bell Labs, and IBM were still drawing
up plans for new high-end machines based on relay storage and paper tape con-
trol. Thus we believe that the hardware choices specified for EDVAC in the First
Draft function as a paradigm, in Thomas Kuhn’s core sense of a powerful and
tangible exemplar [7].

3.4 Separate Trajectories

These three paradigms have intertwined early histories, but were always at least
partially separable and ultimately diverged. Many machines of the 1940s imple-
mented some aspects of the EDVAC paradigms but not others. Alan Booth’s
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ARC followed both the modern code paradigm and the von Neumann archi-
tecture but implemented them using relay hardware. Martin Campbell-Kelly
observed that Booth’s claimed operation date of 12th May 1948 would make
this “the first operational EDVAC-type stored program computer (although it
was not of course electronic).” [3] Alan Turing’s design for the ACE adopted von
Neumann’s architecture and followed EDVAC’s hardware paradigm but relied
on a different kind of instruction format with no conventional operation codes.
As Campbell-Kelly noted, “Most computers are sufficiently alike that a knowl-
edgeable programmer can get a fairly good appreciation of a machine from its
instruction format and a table of operation codes. The Pilot ACE is an excep-
tion because its architecture was quite unlike that of any modern computer....”
[4] ENIAC after its 1948 conversion followed the modern code paradigm with
surprising faithfulness. The feel and structure of its program code bears an un-
mistakable kinship with those produced for other early machines.

The machines of the mid-1950s tended to implement all three paradigmatic
aspects of the First Draft’s design for EDVAC. The paradigmatic influences of
these three were diverging again by the end of the decade. Its relevance as a hard-
ware paradigm faded first, as transistors and core memories made vacuum tubes
and delay lines obsolete. The von Neumann architectural paradigm enjoyed a
longer life, though its primacy was gradually chipped away as innovations such
as parallel processing, message passing interfaces, instruction pipelining, direct
memory access by peripherals, stacks, and addressable registers gradually erased
its radical minimalism. In contrast the modern code paradigm has remained
largely intact as a description of the machine language executed by processors
(though not of the languages used by humans to write programs). It was ex-
tended and made more specific in many ways, not least by von Neumann’s own
1946 description of the planned structure of his Institute for Advanced Studies
machine [2]. It was not, however, overturned.
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Abstract. We study the problem of solving discounted, two player, turn
based, stochastic games (2TBSGs). Jurdziński and Savani showed that in
the case of deterministic games the problem can be reduced to solving P -
matrix linear complementarity problems (LCPs). We show that the same
reduction also works for general 2TBSGs. This implies that a number of
interior point methods can be used to solve 2TBSGs. We consider two
such algorithms: the unified interior point method of Kojima, Megiddo,
Noma, and Yoshise, and the interior point potential reduction algorithm
of Kojima, Megiddo, and Ye. The algorithms run in time O((1+κ)n3.5L)
and O(−δ

θ
n4 log ε−1), respectively, when applied to an LCP defined by an

n×nmatrixM that can be described with L bits, and where the potential
reduction algorithm returns an ε-optimal solution. The parameters κ,
δ, and θ depend on the matrix M . We show that for 2TBSGs with n
states and discount factor γ we get κ = Θ( n
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), −δ = Θ(
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) in the worst case. The lower bounds for κ, −δ, and 1/θ

are all obtained using the same family of deterministic games.

1 Introduction

Two-Player Turn-Based Stochastic Games (2TBSGs). A two-player turn-
based stochastic game (2TBSG) is a game played by two players (Player 1 and
Player 2) on a finite state graph for an infinite number of rounds. The graph is
partitioned into two sets of states S1 (belonging to Player 1) and S2 (belonging to
Player 2). Whenever the current state i is from Sk, Player k chooses an action
a emanating from state i, and the next state is then given by a probability
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distribution, depending on a. In each round there is a probability of 1 − γ > 0
of ending the game, where γ is the discount factor of the game. Every action
has an associated cost. The objective of Player 1 is to minimize the expected
sum of costs, and the objective of Player 2 is to maximize the expected sum of
costs, i.e., the game is a zero-sum game. Our results will be for the case when
all states have 2 actions.

The class of (turn-based) stochastic games was introduced by Shapley [20] in
1953, and it has received much attention over the following decades. For books
on the subject, cf., e.g., Neyman and Sorin [17] and Filar and Vrieze [5]. Shapley
showed that states in such games have a value that can be enforced by both
players (determinacy). We shall in this paper consider the problem of solving
such games, that is, for each state i finding the value of that state.

Classical Algorithms for Solving 2TBSGs. 2TBSGs form an intriguing
class of games whose status in many ways resembles that of linear programming
40 years ago. They can be solved efficiently with strategy iteration algorithms,
resembling the simplex method for linear programming, but no polynomial time
algorithm is known. Strategy iteration algorithms were first described by Rao et
al. [18]. Hansen, Miltersen, and Zwick [9] recently showed that the standard strat-
egy iteration algorithm solves 2TBSGs with a fixed discount, γ, in strongly poly-
nomial time. Prior to this result a polynomial bound by Littman [16] was known
for the case when γ is fixed. Littman showed that Shapley’s [20] value iteration
algorithm can be used to solve discounted 2TBSGs in time O(nmL

1−γ log 1
1−γ ),

where n is the number of states, m is the number of actions, and L is the num-
ber of bits needed to represent the game. For a more thorough introduction to
the background of the problem we refer to Hansen et al. [9] and the references
therein.

Interior Point Methods. One may hope that a polynomial time algorithm
for solving 2TBSGs in the general case, when the discount factor γ is not fixed
(i.e., when it is given as part of the input), can be obtained through the use of
interior point methods. This was also suggested by Jurdziński and Savani [11]
and Hansen et al. [9]. The first interior point method was introduced by Kar-
markar [12] in 1984 to solve linear programs in polynomial time. Since then the
technique has been studied extensively and applied in other contexts. Cf., e.g.,
Ye [21]. In particular, interior point methods can be used to solve P -matrix lin-
ear complementarity problems, which, in turn, can be used to solve 2TBSGs.
This will be the focus of the present paper.

P -Matrix Linear Complementarity Problems (LCPs). A linear comple-
mentarity problem (LCP) is defined as follows: Given an (n×n)-matrixM and a
vector q ∈ Rn, find two vectors w, z ∈ Rn, such that w = q+Mz and wTz = 0
and w, z ≥ 0. LCPs have also received much attention. For books on the subject
cf., e.g., Cottle et al. [4] and Ye [21].

Jurdziński and Savani [11] showed that solving a deterministic 2TBSG G,
i.e., every action leads to a single state with probability 1, can be reduced to
solving an LCP (M,q). Gärtner and Rüst [6] gave a similar reduction from simple
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stochastic games; a class of games that is polynomially equivalent to 2TBSGs
(cf. [1]). Moreover, Jurdziński and Savani [11], and Gärtner and Rüst [6], showed
that the resulting matrixM is a P -matrix (i.e., all principal sub-matrices have a
positive determinant). We show that the reduction of Jurdziński and Savani also
works for general 2TBSGs, and that the resulting matrixM is again a P -matrix.

Krishnamurthy et al. [15] recently gave a survey on various stochastic games
and LCP formulations of those.

The Unified Interior Point Method. There exist various interior point meth-
ods for solving P -matrix LCPs. The algorithm that we consider in this extended
abstract is the unified interior point method of Kojima, Megiddo, Noma, and
Yoshise [13]. The unified interior point method solves an LCP whose matrix
M ∈ Rn×n is a P∗(κ)-matrix in time O((1 + κ)n3.5L), where L is the number of
bits needed to describe M . A matrix M is a P∗(κ)-matrix, for κ ≥ 0, if and only
if for all vectors x ∈ Rn, we have that xT(Mx) + 4κ

∑
i∈δ+(M) xi(Mx)i ≥ 0,

where δ+(M) = {i ∈ [n] | xi(Mx)i > 0}. If M is a P -matrix then it is also a
P∗(κ)-matrix for some κ ≥ 0. Hence, the algorithm can be used to solve 2TBSGs.

Following the work of Kojima et al. [13], many algorithms with complex-
ity polynomial in κ, L, and n have been introduced. For recent examples, cf.,
e.g., [3,2,10].

An Interior Point Potential Reduction Algorithm. In the full version of
the paper [8] we also consider a second interior point method: the potential
reduction algorithm of Kojima, Megiddo, and Ye [14]. See also Ye [21]. The
potential reduction algorithm is an interior point method that takes as input a P -
matrix LCP and a parameter ε > 0, and produces an approximate solution w, z,
such that wTz < ε, w = q+Mz, and w, z ≥ 0. The running time of the algorithm

is O(−δ
θ n

4 log ε−1), where δ is the least eigenvalue of M+MT

2 , and θ is the positive
P -matrix number of M , that is, θ = min‖x‖2=1 maxi∈{1,...,n} xi(Mx)i. We refer

to −δ
θ as the condition number ofM . The analysis involving the condition number

appears in Ye [21].
In his ph.d. thesis, Rüst [19] shows that there exists a simple stochastic game

for which the P -matrix LCPs resulting from the reduction of Gärtner and Rüst
[6] has a large condition number. The example of Rüst contains a parameter that
can essentially be viewed as the discount factor γ for 2TBSGs, and he shows that
the condition number can depend linearly on 1

1−γ . To be more precise, Rüst [19]

shows that the matrix M resulting from the reduction of Gärtner and Rüst [6]
has positive P -matrix number smaller than 1, and that the smallest eigenvalue

of the matrix M+MT

2 is −Ω
(

1
1−γ

)
. This bound can be viewed as a precursor for

some of our results.

1.1 Our Contributions

Our contributions are as follows. We show that the reduction by Jurdziński
and Savani [11] from deterministic 2TBSGs to P -matrix LCPs generalizes to
2TBSGs without modification. Although the reduction is the same we provide
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an alternative proof that the resulting matrix is a P -matrix. Furthermore, let
G be any 2TBSG with n states and let MG be the matrix obtained from the
reduction of Jurdziński and Savani [11].

(i) We show that MG is a P∗(κ)-matrix for κ = n
(1−γ)2 . This implies that the

running time of the unified interior point method of Kojima et al. [13] for

2TBSGs is at most O( n4.5L
(1−γ)2 ). We also show that there exists a family of

2TBSGs, Gn, such that the corresponding matrices, MGn , are not P∗(κ)-
matrices for κ = Ω

(
n

(1−γ)2

)
.

(ii) We show that the matrix
MG+MT

G

2 has smallest eigenvalue at least −O
( √

n
1−γ

)
.

We also show that there exists a family of 2TBSGs, Gn, such that the corre-

sponding matrices
MGn+MT

Gn

2 have smallest eigenvalue less than −Ω
( √

n
1−γ

)
.

(iii) We show that the positive P -matrix number θ(MG) is at least Ω
( (1−γ)2

n

)
.

We also show that there exists a familiy of 2TBSGs, Gn, such that the
corresponding matrices MGn have positive P -matrix number, θ(MGn), at

most O
( (1−γ)2

n

)
.

The results in (ii) and (iii) have been deferred to the full version of the paper
[8]. They together imply that the running time of the potential reduction algo-

rithm of Kojima et al. [14] for 2TBSGs is at most O(n
5.5 log ε−1

(1−γ)3 ). The familiy

of 2TBSGs Gn mentioned in (i), (ii), and (iii) is, in fact, the same. Hence,
we get matching upper and lower bounds for the parameters of both the uni-
fied interior point method and the potential reduction algorithm. Also, the
games Gn are deterministic, so the same lower bounds hold for deterministic
2TBSGs.

It should be noted that although our results for existing interior point methods
for solving 2TBSGs are negative, it is still possible that other (possibly new)
interior point methods can solve 2TBSGs efficiently. In fact, we believe that this
remains an important question for future research.

1.2 Overview

In Section 2 we formally introduce the various classes of problems under consid-
eration. More precisely, in Subsection 2.1 we define LCPs, and in Subsection 2.2
we define 2TBSG and give the reduction from 2TBSGs to P -matrix LCPs. In
Section 3 we estimate the κ for which the matrices of 2TBSGs are P∗(κ)-matrices,
thus, giving a bound on the running time of Kojima et al.’s unified interior point
method [13]. The studies of smallest eigenvalues and positive P -matrix numbers
have been deferred to the full version of the paper [8]. Thus, we do not present
the bound on the running time of the potential reduction algorithm of Kojima
et al. [14] in this extended abstract.
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2 Preliminaries

2.1 Linear Complementarity Problems

Definition 1 (Linear complementarity problems). A linear complemen-
tarity problem (LCP) is a pair (M,q), where M is an (n× n)-matrix and q is
an n-vector. A solution to the LCP (M,q) is a pair of vectors (w, z) ∈ Rn such
that w = q +Mz and wTz = 0 and w, z ≥ 0.

We shall now define various types of matrices for which interior point methods
are known to solve the corresponding LCPs.

Definition 2 (P -matrix). A matrix M ∈ Rn×n is a P -matrix if and only if
all principal sub-matrices have a positive determinant.

The following lemma gives an alternative definition of P -matrices (cf., e.g., [4,
Theorem 3.3.4]).

Lemma 1. A matrix M ∈ Rn×n is a P -matrix if and only if for all n-vectors
x �= 0 there is an i ∈ [n] such that xi(Mx)i > 0.

Definition 3 (Positive P -matrix number). For a matrix M ∈ Rn×n, the
positive P -matrix number is θ(M) = min‖x‖2=1 maxi∈[n] xi(Mx)i.

According to Lemma 1, θ(M) > 0 if and only if M is a P -matrix.

Definition 4 (P∗(κ)-matrix). A matrix M ∈ Rn×n is a P∗(κ)-matrix, for
κ ≥ 0, if and only if for all vectors x ∈ Rn, we have that∑

i∈δ−

xi(Mx)i + (1 + 4κ)
∑
i∈δ+

xi(Mx)i ≥ 0 ,

where δ− = {i ∈ [n] | xi(Mx)i < 0} and δ+ = {i ∈ [n] | xi(Mx)i > 0}. We say
that M is a P∗-matrix if and only if it is a P∗(κ)-matrix for some κ ≥ 0.

Kojima et al. [13] showed that every P -matrix is also a P∗-matrix. By definition,
a matrix M is a P∗(0)-matrix if and only if it is positive semi-definite. The set
of symmetric P -matrices is exactly the set of positive semi-definite matrices.

2.2 Two-Player Turn-Based Stochastic Games

Definition 5 (Two-player turn-based stochastic games). A two-player
turn-based stochastic game (2TBSG) is a tuple, G = (S1, S2, (Ai)i∈S1∪S2 , p, c, γ),
where

– Sk, for k ∈ {1, 2}, is the set of states belonging to Player k. We let S =
S1 ∪ S2 be the set of all states, and we assume that S1 and S2 are disjoint.

– Ai, for i ∈ S, is the set of actions applicable from state i. We let A =
⋃

i∈S Ai

be the set of all actions. We assume that Ai and Aj are disjoint for i �= j,
and that Ai �= ∅ for all i ∈ S.
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– p : A→ Δ(S) is a map from actions to probability distributions over states.
– c : A→ R is a function that assigns a cost to every action.
– γ < 1 is a (positive) discount factor.

We let n = |S| and m = |A|. Furthermore, we let Ak =
⋃

i∈Sk Ai, for k ∈ {1, 2}.
We say that an action a is deterministic if it moves to a single state with

probability 1, i.e., if p(a)j = 1 for some j ∈ S. If all the actions of a 2TBSG G
are deterministic we say that G is deterministic.

Plays and Outcomes. A 2TBSG is played as follows. At the beginning of a
play a pebble is placed on some state i0 ∈ S. Whenever the pebble is moved to
a state i ∈ Sk, Player k chooses an action a ∈ Ai and the pebble is moved at
random according to the probability distribution p(a) to a new state j. Let at

be the t’th chosen action for every t ≥ 0. Then the outcome of the play, paid by
Player 1 to Player 2 is

∑
t≥0 γ

t · c(at).
We shall now give a way to explicitly represent a 2TBSG using vectors and

matrices. It will later simplify the notation in our constructions and proofs.

Definition 6 (Matrix representation). Let G = (S1, S2, (Ai)i∈S1∪S2 , p, c, γ)
be a 2TBSG. Assume WLOG that S = [n] = {1, . . . , n} and A = [m] =
{1, . . . ,m}.

– We define the probability matrix P ∈ Rm×n by Pa,i = (p(a))i, for all a ∈ A
and i ∈ S.

– We define the cost vector c ∈ Rm by ca = c(a), for all a ∈ A.
– We define the source matrix J ∈ {0, 1}m×n by Ja,i = 1 if and only if a ∈ Ai,

for all a ∈ A and i ∈ S.
– We define the ownership matrix I ∈ {−1, 0, 1}n×n by Ii,j = 0 if i �= j,

Ii,i = −1 if i ∈ S1, and Ii,i = 1 if i ∈ S2.

The entry Pa,i is the probability of moving to state i when using action a. For a
matrix P ∈ Rm×n and a subset of indices B ⊆ [m], we let PB be the submatrix
of P consisting of rows with indices in B. Also, for any i ∈ [m], we let Pi ∈ R1×n

be the i-th row of P . We use similar notation for vectors.

Definition 7 (Strategies and strategy profiles). A strategy σk : Sk → Ak

for Player k ∈ {1, 2} maps every state i ∈ Sk to an action σk(i) ∈ Ai applicable
from state i. A strategy profile σ = (σ1, σ2) is a pair of strategies, one for each
player. We let Σk be the set of strategies for Player k, and Σ = Σ1 ×Σ2 be the
set of strategy profiles.

We view a strategy profile σ = (σ1, σ2) as a map σ : S → A from states to
actions, such that σ(i) = σk(i) for all i ∈ Sk and k ∈ {1, 2}.

A strategy σk ∈ Σk can be viewed as a subset σk ⊆ Ak of actions such that
σk ∩ Ai = {σk(i)} for all i ∈ Sk. A strategy profile σ = (σ1, σ2) ∈ Σ can be
viewed similarly as a subset of actions σ = σ1∪σ2 ⊆ A. Note that Pσ is an n×n
matrix for every σ ∈ Σ. We assume WLOG that actions are ordered such that
Jσ = I, where I is the identity matrix, for all σ ∈ Σ.
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The matrix Pσ defines a Markov chain. In particular, the probability of being
in the j-th state after t steps when starting in state i is (P t

σ)i,j . We say that
the players play according to σ if whenever the pebble is on state i ∈ Sk, Player
k uses action σ(i). Let i ∈ S be some state and t some number. The expected
cost of the t-th action used is (P t

σ)icσ . In particular, the expected outcome
is
∑∞

t=0 γ
t(P t

σ)icσ. The following lemma shows that this infinite series always
converges.

Lemma 2. For every strategy profile σ ∈ Σ the matrix (I−γPσ) is non-singular,
and (I − γPσ)−1 =

∑∞
t=0 γ

tP t
σ.

The simple proof of Lemma 2 has been omitted. For details, cf., e.g., [7].

Definition 8 (Value vectors). For every strategy profile σ ∈ Σ we define the
value vector vσ ∈ Rn by vσ = (I − γPσ)−1cσ .

The i-th component of the value vector vσ, for a given strategy profile σ,
is the expected outcome over plays starting in i ∈ S, when the players play
according to σ.

It follows from Lemma 2 and Definition 8 that vσ is the unique solution to:

vσ = cσ + γPσv
σ . (1)

We say that a vector v∗ ∈ Rn is an optimal value vector if and only if:

∀i ∈ S : v∗
i = min

σ1∈Σ1
max
σ2∈Σ2

v
(σ1,σ2)
i = max

σ2∈Σ2
min

σ1∈Σ1
v
(σ1,σ2)
i .

Shapley [20] showed that there always exists a unique optimal value vector. By
solving a 2TBSG G we mean finding the optimal value vector. The following
theorem was proved by Jurdziński and Savani [11] for deterministic 2TBSGs. In
the full version of the paper [8] we show that the reduction of Jurdziński and
Savani [11] generalizes to general 2TBSGs without modification, giving us:

Theorem 1. Let G = (S1, S2, (Ai)i∈S , p, c, γ) be a 2TBSG with matrix repre-
sentation (P, c, J, I, γ). Assume that the set of actions A can be partitioned into
two disjoint strategy profiles σ and τ . Define:

MG,σ,τ = I(I − γPσ)(I − γPτ )−1I
qG,σ,τ = I(I − γPσ)(I − γPτ )−1cτ − Icσ .

Then from a solution (w, z) to the LCP (MG,σ,τ ,qG,σ,τ ) we can derive a solution
to the 2TBSG G as the optimal value vector is v∗ = (I−γPτ )−1(cτ +Iz). Also,
MG,σ,τ is a P -matrix.

To prove that the matrixMG,σ,τ is a P -matrix, we use the following lemma. The
lemma is also used in the later parts of the paper. To understand the use of v
in the lemma observe that xT(I − γPσ)(I − γPτ )−1x = xT(I − γPσ)v.
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Lemma 3. Let x be a non-zero vector, v = (I−γPτ )−1x, and j ∈ argmax i |vi|.
Then we have that:

|xj | ≥ (1 − γ) |vj | . (2)

∀i : |xi| ≤ (1 + γ) |vj | . (3)

xj((I − γPσ)(I − γPτ )−1x)j ≥ (1 − γ) |xjvj | > 0 . (4)

Proof. Observe first that v is the unique solution to v = x + γPτv. In fact, we
can interpret v as the value vector for τ when the costs cτ have been replaced
by x. If v = 0 then this implies that 0 = x + 0 �= 0 which is a contradiction.
Thus, v �= 0 and in particular vj �= 0. Since, for every i, the entries of (Pτ )i
are non-negative and sum to one we have that |γ(Pτ )iv| ≤ γ |vj |. The equations
vi = xi + γ(Pτ )iv, for all i, then imply that:

|xj | = |vj − γ(Pτ )jv| ≥ |vj | − |γ(Pτ )jv| ≥ |vj | − |γvj | = (1 − γ) |vj |
∀i : |xi| = |vi − γ(Pτ )iv| ≤ |vi| + |γ(Pτ )iv| ≤ |vj | + |γvj | = (1 + γ) |vj |

This proves (2) and (3).
We next observe that vj and xj have the same sign. This again follows from

|γ(Pτ )jv| ≤ γ |vj | and vj = xj +γ(Pτ )jv . Using that sgn(vj) = sgn(xj) we can
now see that:

xj((I − γPσ)(I − γPτ )−1x)j = xj((I − γPσ)v)j = xjvj − γxj(Pσ)jv

≥ xjvj − γxjvj = (1 − γ)xjvj > 0 .

This proves (4). ��

We know from Lemma 1 that the matrix MG,σ,τ is a P -matrix if and only
if for every x �= 0 there exists a j ∈ [n] such that xj(MG,σ,τx)j > 0. Since
Ix �= 0, inequality (4) in Lemma 3 shows that xj(MG,σ,τx)j > 0 for j ∈
argmax i

∣∣((I − γPτ )−1Ix)i
∣∣. Hence, MG,σ,τ is a P -matrix.

Recall that Kojima et al. [13] showed that every P -matrix is a P∗-matrix.
Hence, we have shown that MG,σ,τ is a P∗-matrix.

3 The P∗(κ) Property for 2TBSGs

Let G be a 2TBSG with matrix representation (P, c, J, I, γ), and let σ and τ
be two disjoint strategy profiles that form a partition of the set of actions of G.
Recall that G can be solved by solving the LCP (MG,σ,τ ,qG,σ,τ ). In this section
we provide essentially tight upper and lower bounds on the smallest number κ
for which the matrix MG,σ,τ is guaranteed to be a P∗(κ)-matrix. More precisely,
we first show that for κ = n

(1−γ)2 , the matrix MG,σ,τ is always a P∗(κ)-matrix.

We then also show that for every n > 2 and γ < 1 there exists a game Gn, and
two strategy profiles σn and τn, such that MGn,σn,τn is not a P∗(κ)-matrix for

any κ < γ2(n−2)
8(1−γ)2 − 1

4 . It follows that the unified interior point method of Kojima
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et al. [13] solves the 2TBSG G in time O( n4.5L
(1−γ)2 ), where L is the number of bits

required to describe G, and that this bound can not be improved further only
by bounding κ.

Recall that MG,σ,τ = I(I − γPσ)(I − γPτ )−1I, and define M := IMG,σ,τI =
(I − γPσ)(I − γPτ )−1. It is easy to see that MG,σ,τ is a P∗(κ)-matrix for some
κ ≥ 0 if and only if M is. Indeed, the inequality of Definition 4 must hold for
all x ∈ Rn, and we can therefore substitute x by Ix. Hence, it suffices to bound
the κ for which M is a P∗(κ)-matrix.

The proof of the following theorem can be found in the full version of the
paper [8].

Theorem 2. Let n and 0 < γ < 1 be given. For any γ-discounted 2TBSG G
with n states, the matrix MG,σ,τ , where σ and τ partition the actions of G, is a
P∗(κ)-matrix for κ = n

(1−γ)2 .

We next present a lower bound that essentially matches the upper bound given
in Theorem 2. The gap between the upper and lower bounds is close to a factor
of 8 for γ going to 1. We are mostly interested in the case when γ is very close to
1, since it is known that the problem can be solved in strongly polynomial time
when γ is a fixed constant [9]. We establish the lower bound using the family of
games {Gn | n > 2} shown in Figure 1. Figure 1 also shows two strategies σn
and τn shown as solid and dashed arrows, respectively. Formally, the games are
defined as follows.

1 2 . . . n− 3 n− 2

n− 1 n

Fig. 1. An example game Gn and two strategy profiles σn (solid) and τn (dashed),
where MGn,σn,τn essentially matches the upper bound given in Theorem 2.

The Game Gn. For a given n, let Gn be the following game containing n states,
all belonging to Player 2. For i ≤ n− 2, state i has two actions: one leading to
state n − 1 and one leading to state n. State n − 1 and n have two self-loops
each. I.e., the game is deterministic. The cost vector c can be arbitrary, and the
discount factor γ will be specified by the analysis. We also define two disjoint
strategy profiles σn and τn that partition the set of actions. The strategy profile
σn contains for all states i ≤ n − 2 the action leading to state n − 1, and the
strategy profile τn contains for all states i ≤ n− 2 the action leading to state n.
Furthermore, at states n− 1 and n, each strategy profile contains a self-loop.
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Straightforward calculations give the following theorem (cf. [8]).

Theorem 3. Let n > 2 and 0 < γ < 1 be given. For the 2TBSG Gn, the matrix

MGn,σn,τn is not a P∗(κ)-matrix, for κ < γ2(n−2)
8(1−γ)2 − 1

4 = Ω
(

γ2n
(1−γ)2

)
.
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The Computation of Nature, Or: Does

the Computer Drive Science and Technology?

Ulf Hashagen

Deutsches Museum, The Research Institute for the History of Science and
Technology, 80306 München, Germany

It has often been claimed that the computer has not only revolutionized every-
day life but has also affected the sciences in a fundamental manner. Even in
national systems of innovation which had initially reacted with a fair amount of
reserve to the computer as a new scientific instrument (such as Germany and
France; cf., e.g., [33,18]), it is today a commonplace to speak about the “com-
puter revolution” in the sciences [27]. In his path breaking book Revolution in
Science, Cohen diagnoses that a general revolutionary change in the sciences had
followed from the invention of the computer. While he asserts that the scientific
revolution in astronomy in the 17th century was not based on the newly invented
telescope but on the intellect of Galileo Galilei, he maintains in contrast that
the “case is different for the computer, which [. . . ] has affected the thinking of
scientists and the formulation of theories in a fundamental way, as in the case
of the new computer models for world meteorology” [10, pp. 9-10 & 20-22].

The modern electronic digital computer had originally been invented as an
extremely fast and programmable calculator to solve mathematical problems in
the sciences and in technology in the 1940s. Although the use of the computer as
a new form of a scientific instrument became more and more widespread in the
sciences from the 1960s onwards, historians of science and technology did not pay
much attention to this important development. Although history of computing
has been established as a sub-discipline of the history of technology during the
last decades and contributed to a better understanding of the development of
hardware and software as well as of the advent of the information age,1 there
are still large gaps in our knowledge on the history of “scientific computing”.
There are only a few studies that have contributed to our understanding of
the use of computers in the many fields of science and/or research institutions.
Research to date has largely focused on the development of supercomputing at
the large national research laboratories in the United States [30,38], the use of
the computer in high-energy physics [39] and in Roentgen crystallography [12],
as well as to the efforts to computerize bio-medical research in the 1950s and
1960s [34].

A second related problem is that we know only a little about the different
new computer based methods which became established in the various national
innovation systems in the second half of the 20th century. The, admittedly, very

1 For an overview on the history of computing, cf. [8,9,17].
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small number of historians and philosophers researching on these subjects have
for the most part concentrated on just one phenomenon: computer simulation
(cf., e.g., [37,24]). Computer simulation, such is the basic assumption, has opened
a third way of doing science besides experiment and theory. And this is said to
have caused the revolutionary change by computers (cf., e.g., [21,28,44]) There
are a number of issues in this field on which a detailed historical analysis would
be useful, and it is doubtful whether “simulation” was really invented with the
digital computer—instead it should be accepted that there are several classes of
“simulations” with different epistemological qualities.

In general, the question of whether the computer changed scientific practice
and the setting of the agenda in various scientific disciplines has not found much
attention in the history of science. In his pioneering study on John von Neumann
and the Origins of Modern Computing, William Aspray has shown how a noted
mathematician “invented” the computer as a mathematical machine and how
the computer decisively transformed numerical mathematics as a field of study
[3,2]. Secondly, the introduction of numerical methods to weather forecasting
and the change of meteorological practice by using computers has been analyzed
in a few studies on the development of “scientific computing” in meteorology
(cf., e.g., [11,29,16]). Finally, the British historian of computing, Jon Agar, has
made an attempt to analyze the changes in various disciplines triggered by the
advent of the computer. According to Agar, “computerization” of a discipline
in the 1950s only occurred if “material practices of computation” had already
existed beforehand [1]. In support of this assessment, historical studies show that
(social) networks between the objects of research (or artifacts), the computing
machines, the computer-staff, and the scientists and engineers, as well as the
formation of formalized working structures and working routines, did have great
importance for the “computerization” of a field or discipline.

In view of contemporary science journals and books, it becomes clear that the
“picture” of a uniform, omnipotent and omnipresent computer revolution in all
disciplines and in every nation does not correspond to the facts. There was rather
a plurality of processes of computerization with different repercussions on the
different disciplines. Examples are: Firstly, it is quite clear that the development
of high-performance computation was of enormous importance in many fields of
science and technology. This holds for all fields in which ordinary and/or partial
differential equations and integral equations are used in mathematical modeling
of natural phenomena, as for instance in fluid dynamics, reactor design, chemical
reactions, astrophysics, crystallography, DNA-sequencing, and geophysics (cf.,
e.g., [13,36]). These fields are, secondly, closely connected to the phenomenon
of computer simulation being used for pure research in the sciences as well as
for the design of technical artifacts. Thirdly, the practice of computer based
instrumentation and computer based experiments became all-important in many
fields of the sciences and medicine, as the computer was more and more needed to
control the ever more complicated experiments. Fourthly, in some fields methods
of information retrieval were of utmost significance (cf., e.g., [6]). The upshot of
all this is that in almost all cases it was one thing that was fundamentally changed



The Computation of Nature 265

by the computer: the time-economy of science. (Today, scientists and engineers
take it for granted that the electronic computer and appropriate software systems
that deliver rapid and reliable data for most of their scientific problems, but this
has been only the case since the late 20th century. The case of the British Nautical
Almanac and Astronomical Ephemeris—an annual publication describing the
positions of the moon and other celestial bodies for the purpose navigation at
sea which has been published by HM Nautical Almanac Office since 1767—serves
to illustrate how time-consuming, laborious and tedious the work of the human
computers for rather easy scientific problems has been until the first half of the
20th century [43].

The above-cited metaphor of the computer as a revolutionary artifact implies—
as the recently deceased American historian of science Michael S. Mahoney aptly
remarked some years ago—the image of a revolutionary technology changing all
parts overnight and splitting all societal groups in two separate parties: either one
jumps on the continuously accelerating bandwagon or one comes to a standstill
as a “dinosaur” at the platform [32]. It seems quite easy to identify candidates
for the “jumping-on-the-bandwagon”. Dorothy Crowfoot Hodgkin’s discovery of
the structure of the vitamin B12, for which she was awarded the Nobel Prize,
was essentially based on the use of one of the first available electronic comput-
ers in Britain [1]. Or: the design of the hydrogen bomb was essentially based
on the use of novel mathematical models and methods computed with the then
new electronic computers [14]. Or, to put it another way, one could examine an
important question of the history of technology in an new way: Does technology
drive science? (Cf. [40].)

At the same time the computer-based “knowledge-revolution” in the sciences
seems strongly connected with a “qualitative decline” in the falsification of sci-
entific theories or models. It would appear, therefore, that a digital “Pandora’s
Box” had been opened and that the scientists are no longer masters of the situa-
tion, since the verification or validation of computer-based models does not seem
to be justified from a philosophical point of view. Naomi Oreskes, in her article
about Verification, Validation, and Confirmation of Numerical Models in the
Earth Sciences (published together with philosopher Kristin Shrader-Frechette
and geologist Kenneth Belitz) in Science, raised fundamental doubts about the
common practice of numerical modeling in the sciences. The authors stated that
“verification and validation of numerical models of natural systems is impos-
sible”, since “natural systems are never closed and because model results are
always non-unique”. They eventually came to the conclusion that the “primary
value of models is heuristic” 2.

To better understand the development that led to this situation, as described
in [35], we shall briefly analyze the development of computational fluid dynamics
as it was one of the most important origins for the development of computational

2 Cf. [35]. This article met with very positive responses in the sciences as well as in
the history of science and in science studies. It became the starting point for a series
of articles on the use of computer simulations in geoscience and in climate science.
Cf., e.g., [20].
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physics in general. Today, this field is “by far the largest user of high performance
computing in engineering” [7] and at the same time is of enormous significance
in pure research in physics (cf., e.g., [5]).

In the 17th century, scientist had begun to describe natural phenomena in
the exact sciences (astronomy, physics, . . . ) by physical models which in turn
were described in mathematical structures. As a result—to portray it in sim-
plified terms—the “Galilei Principle” (physical phenomena can be described by
mathematical models) and the “Newton Principle” (physical phenomena can be
described mathematically by differential equations) became crucial for the fur-
ther development of the exact sciences. This made the theoretical physicist and
Nobel laureate, Eugene Wigner, wonder about the miracle of the Unreasonable
Effectiveness of Mathematics in the Natural Sciences [42]. Since the existence
and uniqueness of a solution of an ordinary differential equation (initial value
problem) can be proven under certain (quite general) conditions, the Newton
principle served as a basis for a deterministic conception of the world of the
exact sciences until the end of the 19th century. On the other hand it became
apparent to scientists during the 19th century that it was by no means possi-
ble to predict and/or to compute all physical phenomena. The history of the
three-body problem in celestial mechanics is the most striking example yet of a
quite simple physical problem which proved to be extremely difficult to handle.
After more than two hundred years of research by outstanding mathematicians
and astronomers concentrating all energies on finding an analytical solution of
the nonlinear differential equation problem in the 18th and 19th century, it was
proven that the three-body problem has no analytical solution in terms of al-
gebraic integrals (cf., e.g., [4]). Even if it is known since the early 20th century
that the three-body problem could be solved in quite general cases through
a convergent power series which unfortunately converges extremely slowly and
is therefore futile for all practical purposes. As the solution of the three body
problem was not only of theoretical interest but had also important applications
in practical astronomy such as navigation, since the 18th century astronomers
“simulated” the solution of the three body problem by developing complicated
numerical approximation methods and by using teams of human computers for
the tedious work of calculation (cf., e.g., [19]).

Another case of a non-linear problem, Navier-Stokes equations (non-linear
partial differential equations) in hydrodynamics, became the starting point of
modern computer-based methods of “scientific computing” and sounded the bell
for a new round in the relation between theory, experiment and computation in
the exact sciences. At the outset of this “science as software”3 were the ideas of
the Hungarian mathematician John von Neumann, who was confronted with the
problem to solve hydrodynamic problems for the Manhattan Project in the sec-
ond world war. Von Neumann failed miserably in his attempts to solve non-linear
partial differential equations of hydrodynamics with the traditional methods of
analysis. This led him to the conclusion that these difficult problems could only

3 Cf. [31]. My argumentation in this paragraph partly follows the same line as in
Mahoney’s article.
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be addressed if one would divorce the close marriage of physics and the classical
methods of analysis: “Our present analytical methods seem unsuitable for the
solution of the important problems arising in connection with non-linear partial
differential equations and, in fact, with virtually all types of non-linear problems
in pure mathematics [15]”. Since, in the case of the non-linear partial differential
equations of hydrodynamics, the strategy of using teams of human computers for
the tedious work of calculation was also a hopeless undertaking, von Neumann
in 1946 suggested to use numerical methods and new nonexistent “Large Scale
Computing Machines” instead. From there, von Neumann ultimately arrived at
a fundamentally new philosophical position on the relationship between natu-
ral phenomena, physical models, and mathematical models; and he proposed
to discard the “Galilei Principle”. Instead of describing natural phenomena in
the exact sciences by physical models which in turn were described in mathe-
matical structures, von Neumann suggested to describe natural phenomena only
with a mathematical model, which was characterized by him as a “mathemati-
cal construct which, with the addition of certain verbal interpretations, describes
observed phenomena [41]”.

This method had instantaneous consequences for the scientific understanding
of physical processes, as the solution was no longer a scientific theory “explain-
ing” nature, but only a numerical result. Numerical solutions did obviously not
provide for similar insights into physical processes as analytical solutions had
done. Moreover, it became much more difficult to “explain” the discrepancies
(“errors”) between the numerical solutions and the results of experiments. Also,
from a philosophical point of view, it became difficult to compare Theory-1 with
Theory-2 with regard to experimental results when the model of constructive fal-
sifiability (Lakatos) was applied [25]. This, of course, leads to the logical conclu-
sion that the door was opened to a variety of potential new mistakes, ignorance
and contingency. Furthermore, it became soon apparent that the “generation” of
numerical solutions in computational fluid dynamics led mathematicians, physi-
cists, and engineers to fundamentally new mathematical problems. Apart from
the general problem of rounding errors in the field of numerical mathematics
being newly defined by digital computers, it turned out that the numerical so-
lution of partial differential equations was a tricky mathematical problem, since
the vividness (Anschaulichkeit) of mathematical approaches to numerical solu-
tions could easily result in false mathematical models. Moreover, over the last
few decades the rise of computational science and the widespread use of large
software tools in various fields of science and engineering has made the repro-
ducibility of results principally more and more uncertain, if the source code of
the used software is inaccessible [22].

The development set in motion by von Neumann had far-reaching conse-
quences for the evolution of science and technology in the late 20th century.
On the one hand the new field of computational fluid dynamics developed into
a design tool for engineers, and on the other hand computational fluid dynam-
ics made novel “mathematical experiments” in hydrodynamics possible. This, in
turn, made it something like the model for the development of the methods of
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computational science in other fields [26]. At the end of the 20th century, com-
putational fluid dynamics seems to have developed into what Terry Shinn has
called research technology being characterized by its “pragmatic universality”
and by its “robustness” in dealing with mistakes, ignorance, contingency and er-
rors [23]. This process can be further analyzed by asking: How did physicists and
engineers succeed in handling problems of errors, ignorance and contingency in
computational fluid dynamics despite the fundamental philosophical problems of
computer-based models in the sciences and in engineering? In the end a careful
historical analysis of this questions will hopefully help historians of science and
technology as well as scientists and engineers in their understanding of Cohen’s
assertion: By what means and to what extent does the computer change science
and technology?
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Tile-based self-assembly is a model of “algorithmic crystal growth” in which
square “tiles” represent molecules that bind to each other via highly-specific
bonds on their four sides, driven by random mixing in solution but constrained
by the local binding rules of the tile bonds. Winfree defined a model of tile-based
self-assembly known as the abstract Tile Assembly Model (aTAM), [4]. The
fundamental components of this model are un-rotatable, but translatable square
“tile types” whose sides are labeled with “glues” representing binding sites. Two
tiles that are placed next to each other are attracted with strength determined
by the glues where they abut, and, in the aTAM, a tile binds to an assembly
if it is attracted on all matching sides with total strength at least a certain
threshold value τ . Assembly begins from a “seed” tile and progresses in a stepwise
fashion until no more tiles may attach. In his aTAM model Winfree postulated
negative (i.e., repulsive) interactions between tiles to be physically plausible
and, subsequently, Reif, Sahu, and Yin, [3], studied negative interactions in the
context of reversible attachment operations.

Herein I explore the power of negative interactions with irreversible attach-
ments, and describe two main results, [2]. The first one is an impossibility the-
orem: After t steps of assembly, Ω(t) tiles will be forever bound to an assembly,
unable to detach. Thus negative glue strengths do not afford unlimited power to
reuse tiles. The second result is a positive one: We construct a set of tiles that
can simulate an s-space-bounded, t-time-bounded Turing machine, while ensur-
ing that no intermediate assembly grows larger than O(s), rather than O(s · t)
as required by the standard Turing machine simulation with tiles. In addition to
the space-bounded Turing machine simulation, we show another example appli-
cation of negative glues: reducing the number of tile types required to assemble
“thin” o(n× (logn/loglogn)) rectangles.

I also address the role of nondeterminism in the Tile Assembly Model, in par-
ticular how its use in tile systems affects the resource requirements, [1]. We show
that for infinitely many c ∈ N , there is a finite shape S that is self-assembled
by a tile system (meaning that all of the various terminal assemblies produced
by the tile system have shape S) with c tile types, but every deterministic tile
system that self-assembles S (i.e., has only one terminal assembly, whose shape
is S) needs more than c tile types. We extend the technique to prove that the
problem of finding the minimum number of tile types that self-assemble a given
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finite shape is ΣP
2 -complete. We then show an analogous “computability the-

oretic” result: There exists an infinite shape S that is self-assembled by a tile
system but not by any deterministic tile system.
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Abstract. Bruyère and Carton lifted the notion of finite automata read-
ing infinite words to finite automata reading words with shape an arbi-
trary linear order L. Automata on finite words can be used to represent
infinite structures, the so-called word-automatic structures. Analogously,
for a linear order L there is the class of L-automatic structures. In this
paper we prove the following limitations on the class of L-automatic
structures for a fixed L of finite condensation rank 1 + α.

Firstly, no scattered linear order with finite condensation rank above
ωα+1 is L-automatic. In particular, every L-automatic ordinal is below

ωωα+1

. Secondly, we provide bounds on the (ordinal) height of well-
founded order trees that are L-automatic. If α is finite or L is an ordinal,
the height of such a tree is bounded by ωα+1. Finally, we separate the
class of tree-automatic structures from that of L-automatic structures
for any ordinal L: the countable atomless boolean algebra is known to
be tree-automatic, but we show that it is not L-automatic.

1 Introduction

Finite automata play a crucial role in many areas of computer science. In par-
ticular, finite automata have been used to represent certain classes of possibly
infinite structures. The basic notion of this branch of research is the class of au-
tomatic structures (cf. [10]): a structure is automatic if its domain as well as its
relations are recognised by (synchronous multi-tape) finite automata processing
finite words. This class has the remarkable property that the first-order theory of
any automatic structure is decidable. One goal in the theory of automatic struc-
tures is a classification of those structures that are automatic (cf. [4,12,11,9,13]).
Besides finite automata reading finite or infinite words there are also finite au-
tomata reading finite or infinite trees. Using such automata as representation
of structures leads to the notion of tree-automatic structures [2]. The classifi-
cation of tree-automatic structures is less advanced but some results have been

� Omitted proofs can be found in the arXiv-Version [8]
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obtained in the last years (cf. [4,6,7]). Bruyère and Carton [3] adapted the no-
tion of finite automata such that they can process words that have the shape of
some fixed linear order. If the linear order is countable and scattered, the cor-
responding class of languages possesses the good closure properties of the class
of languages of finite automata for finite words (i.e., closure under intersection,
union, complement, and projection) and emptiness of a given language is de-
cidable. Thus, these automata are also well-suited for representing structures.
Given a fixed scattered linear order L this leads to the notion of L-automatic
structures. In case that L is an ordinal Schlicht and Stephan [16] as well as Finkel
and Todorcevic [5] studied the classes of L-automatic ordinals and L-automatic
linear orders. Here we study L-automatic linear orders for any scattered linear
order L and we study L-automatic well-founded order forests, i.e., forests (seen
as partial orders) without infinite branches.

1. If a linear order is L-automatic and L has finite condensation rank at most
1 + α, then it is a finite sum of linear orders of condensation rank below
ωα+1. As already shown in [16], this bound is optimal.

2. If a well-founded order forest is L-automatic for some ordinal L, then its
ordinal height is bounded by L · ω.
If a well-founded order forest is L-automatic for L some linear order of
condensation rank n ∈ N, then its ordinal height is bounded by ωn+1.
These two bounds are optimal.

3. A well-founded L-automatic order forest has ordinal height bounded by
ωω·(α+1) where α is the finite condensation rank of L.

In order to prove Claims 1 and 3 we observe that the notion of finite-type prod-
ucts from [16] and the notion of sum-augmentations of tamely colourable box-
augmentations from [7,6], even though defined in completely different terms,
have a common underlying idea. We introduce a new notion of tamely colourable
sum-of-box augmentations that refines both notions and allows to prove a vari-
ant of Delhommé’s decomposition method (cf. [4]) for the case of L-automatic
structures. The main results then follow as corollaries using results from [6] and
[7]. For the other two results, we provide an L-automatic scattered linear order-
ing of all L-shaped words if L has finite condensation rank n ∈ N or if L is an
ordinal. Extending work from [13], we provide a connection between the height
of a tree and the finite condensation rank of its Kleene-Brouwer ordering (with
respect to this L-automatic ordering) that allows to derive the better bounds
stated in Claim 2.

As a very sketchy summary of these results, one could say that we adapt
techniques previously used on trees to use them on linear orders. This raises the
question whether there is a deeper connection between L-automatic structures
and tree-automatic structures. It is known that all ωn-automatic structures are
tree-automatic (cf. [5]). Moreover, from [16] and [4] it follows that ωωω

is ωω-
automatic but not tree-automatic. It is open so far whether every tree-automatic
structure is L-automatic for some linear order L. We make a first step towards a
negative answer by showing that the countable atomless boolean algebra is not
L-automatic for any ordinal L (while it is tree-automatic [1]).
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2 Preliminaries

2.1 Scattered Linear Orders

In this section, we recall basic notions concerning scattered linear orders. For a
detailed introduction, we refer the reader to [15]. A linear order (L,≤) is scattered
if there is no embedding of the rational numbers into (L,≤).

Given a scattered linear order L = (L,≤), an equivalence relation ∼ is called a
condensation if each ∼ class is an interval of L. We then write L/∼ := (L/∼,≤′)
for the linear order of the ∼ classes induced by ≤ (i.e., for ∼-classes x, y, x ≤′ y
iff there are k ∈ x, l ∈ y such that k ≤ l). As usual, for L a scattered linear
order and l, l′ elements of L, we write [l, l′] for the closed interval between l and
l′. For each ordinal α we define the α-th condensation ∼α by x ∼0 y iff x = y,
x ∼α+1 y if the closed interval [x, y] in L/∼α is finite and for a limit ordinal
β, x ∼β y if there is an α < β such that x ∼α y. The finite condensation rank
FC(L) is the minimal ordinal α such that L/∼α is a one-element order. We also
let FC∗(L) be the minimal ordinal α such that L/∼α is a finite order. There is
such an ordinal α if and only if L is scattered. It is obvious from these definitions
that FC∗(L) ≤ FC(L) ≤ FC∗(L) + 1.

As usual, for a linear order L = (L,≤) and a sequence of linear orders (Li)i∈L

we denote by
∑

i∈L Li the L-sum of the (Li)i∈L.
We conclude this section by recalling the notion of Dedekind cuts of a linear

order. Let L = (L,≤) be a linear order. A cut of L is a pair c = (C,D) where
C is a downward closed subset C ⊆ L and D = L \C. We write Cuts(L) for the
set of all cuts of L. For cuts c, d, we say that c and d are the consecutive cuts
around some l ∈ L if c = (C,D) and d = (C′, D′) such that C = {x ∈ L | x < l}
and C′ = {x ∈ L | x ≤ l}. Cuts(L) can be naturally equipped with an order (also
denoted by ≤) via c = (C,D) ≤ d = (C′, D′) if C ⊆ C′. We say a cut c = (C,D)
has no direct predecessor (or direct successor), if it has no direct predecessor
(or direct successor, respectively) with respect to ≤. Let us finally introduce a
notation for values appearing arbitrarily close to some cut (from below or from
above, respectively).

Definition 1. Let L = (L,≤) be a linear order, and w : Cuts(L) → A. For c =
(C,D) ∈ Cuts(L), set limc− w := {a ∈ A | ∀l ∈ C∃l′ ∈ C l ≤ l′ and w(l′) = a}
and limc+ w := {a ∈ A | ∀l ∈ D∃l′ ∈ D l′ ≤ l and w(l′) = a}.

2.2 Automata for Scattered Words and Scattered-Automatic
Structures

For this section, we fix an arbitrary linear order L = (L,≤).

Definition 2. Let Σ� be some finite alphabet with 5 ∈ Σ�. An L-word (over Σ)
is a map L → Σ�. An L-word w is finite if the support supp(w) := {l ∈ L |
w(l) �= 5} of w is finite. W (L) denotes the set of L-words.

The usual notion of a convolution of finite words used in automata theory can
be easily lifted to the case of L-words.
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Definition 3. Let w1, w2 be L-words over alphabets Σ1 and Σ2, respectively.
The convolution w1 ⊗ w2 is the L-word over Σ1 × Σ2 given by [w ⊗ v](l) :=
(w(l), v(l)).

We recall Bruyère and Carton’s definition of automata for L-words [3]. Then
we introduce the notion of (finite word) L-automatic structures generalising the
notion of ordinal-automatic structures from [16].

Definition 4. An L-automaton is a tuple A = (Q,Σ, I, F,Δ) where Q is a fi-
nite set of states, Σ a finite alphabet, I ⊆ Q the initial and F ⊆ Q the final states
and Δ is a subset of (Q×Σ ×Q) ∪

(
2Q ×Q

)
∪
(
Q× 2Q

)
called the transition

relation.

Transitions in Q×Σ ×Q are called successor transitions, transitions in 2Q ×Q
are called right limit transitions, and transitions in Q × 2Q are called left limit
transitions.

Definition 5. A run of A on the L-word w is a map r : Cuts(L) → Q such that

– (r(c), w(l), r(d)) ∈ Δ for all l ∈ L and all consecutive cuts c, d around l,
– (limc− r, r(c)) ∈ Δ for all cuts c ∈ Cuts(L) \ {(∅, L)} without direct predeces-

sor,
– (r(c), limc+ r) ∈ Δ for all cuts c ∈ Cuts(L)\{(L, ∅)} without direct successor.

The run r is accepting if r((∅, L)) ∈ I and r((L, ∅)) ∈ F . The language of A
consists of all L-words w such that there is an accepting run of A on w. For
some L-word w and states q, q′ of A we write q

w−→
A
q′ if there is a run r of A

on w such that r((∅, L)) = q and r((L, ∅)) = q′.

Example 6. The following L-automaton accepts the set of finite L-words over the
alphabet Σ. Let A = (Q,Σ, I, F,Δ) with Q = {el, er, n, p}, I = {n}, F = {n, p},
and

Δ = {(n, 5, n), (p, 5, n)} ∪ {(n, σ, p), (p, σ, p) | σ ∈ Σ \ {5}}
∪ {({n}, n), (n, {n}), (p, {n}), ({p}, el), (er, {p}), ({n, p}, el), (er, {n, p})}.

For eachw ∈W (L), r((C,D)) =

{
p if max(C) exists and max(C) ∈ supp(w)

n otherwise,

defines an accepting run if w is a finite L-word. On an L-word w with infinite
support, the successor transitions require infinitely many occurrences of state
p. But then some limit position is marked with an error state el or er (where l
means ’from left’ and r ’from right’) and the run cannot be continued.

Automata on words (or infinite words or trees or infinite trees) have been
applied fruitfully for representing structures. This can be lifted to the setting of
L-words and leads to the notion of (oracle)-L-automatic structures.

Definition 7. Fix an L-word o (called an oracle). A structure A = (A,R1, R2,
. . . , Rm) is L-o-automatic if there are L-automata A,A1, . . . ,Am such that
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– A represents the domain of A in the sense that A = {w | w ⊗ o ∈ L(A)},
and

– for each i ≤ m, Ai represents Ri in the sense that Ri = {(w1, w2 . . . , wri) |
w1 ⊗ w2 ⊗ · · · ⊗ wri ⊗ o ∈ L(Ai)}, where ri is the arity of relation Ri.

We say that an L-o-automatic structure is finite word L-o-automatic if its do-
main consists only of finite L-words. Let FL denote the class of all finite word
L-oracle-automatic graphs.

For the constantly 5-valued oracle o (∀x ∈ L o(x) = 5), we call an L-o-automatic
structure L-automatic. We call some structure A scattered-automatic (scattered-
oracle-automatic, respectively) if there is some scattered linear order L′ (and
some oracle o) such that A is finite word L′-automatic (L′-o-automatic,
respectively).

Rispal and Carton [14] showed that L-oracle-automata are closed under
complementation if L is countable and scattered which implies the following
Proposition.

Proposition 8. If L is a countable scattered linear order, the set of finite word
L-o-automatic structures is closed under first-order definable relations.

2.3 Order Forests

Definition 9. An (order) forest is a partial order A = (A,≤) such that for each
a ∈ A, the set {a′ ∈ A | a ≤ a′} is a finite linear order.

Later we study the rank (also called ordinal height) of L-automatic well-founded
forests. For this purpose we recall the definition of rank. Let A = (A,≤) be a well-
founded partial order. Setting sup(∅) = 0 we define the rank of A by rank(a,A) =
sup{rank(a′,A) + 1 | a′ < a ∈ A} and rank(A) = sup{rank(a,A) + 1 | a ∈ A}.

3 Sum- and Box-Augmentation Technique

Delhommé [4] characterised the set of ordinals that can be represented by finite
tree-automata. His results relies on a decomposition of definable substructures
into sum- and box-augmentations. Huschenbett [6] and Kartzow et al. [7] in-
troduced a refined notion of tamely colourable box-augmentations in order to
bound the ranks of tree-automatic linear orders and well-founded order trees,
respectively. We first recall the definitions and then show that the decomposition
technique also applies to finite word scattered-oracle-automatic structures.

Before we go into details, let us sketch the ideas underlying the sum- and
box-augmentation technique. Given an L-o-automatic structure A with domain
A and some automaton A (called parameter automaton) that recognises a subset
of A×W (L), let us denote by Ap the substructure of A induced by A and p, i.e.,
with domain {a ∈ A | a⊗ p ∈ L(A)}. The main proposition of this section says
that there is a certain class C of structures (independent of p) such that each Ap
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is a tamely colourable sum-of-box augmentation of structures from C. C consists
of finitely many L-oracle-automatic structures and scattered-oracle-automatic
structures where the underlying scattered linear order has finite condensation
rank strictly below that of L. This allows to compute bounds on structural pa-
rameters (like finite condensation rank of linear orders or ordinal height of well-
founded partial orders) by induction on the rank of L. We say a structural param-
eter ϕ is compatible with sum-of-box augmentations if for A a sum-of-box aug-
mentation of A1, . . . ,An, there is a bound on ϕ(A) in terms of ϕ(A1), . . . , ϕ(An).
The decomposition result tells us that some L-automatic structure A is (mainly)
a sum of boxes of scattered-automatic structures where the underlying orders
have lower ranks. Thus, by induction hypothesis ϕ is bounded on these build-
ing blocks of A. Thus, ϕ(A) is also bounded if ϕ is compatible with sum- and
box-augmentations.

3.1 Sums and Boxes

The next definition recalls the notion of sum- and box-augmentations. We restrict
the presentation to structures with one binary relation (but the general case is
analogous).

Definition 10. – A structure A is a sum-augmentation of structures A1, . . . ,
An if the domain of A can be partitioned into n pairwise disjoint sets such
that the substructure induced by the i-th set is isomorphic to Ai.

– A structure A = (A,≤A) is a box-augmentation of structures B1 =
(B1,≤B1), . . . ,Bn = (Bn,≤Bn) if there is a bijection η :

∏n
i=1 Bi → A such

that for all 1 ≤ j ≤ n and all b̄ = (b1, . . . , bn) ∈ B1 × · · · ×Bn

Bj ' A�η({b1}×···×{bj−1}×Bj×{bj+1}×···×{bn}).

– Let C1, . . . , Cn be classes of structures. A structure A is a sum-of-box
augmentation of (C1, . . . , Cn) if A is a sum-augmentation of structures B1,
. . . ,Bk such that each Bj is a box-augmentation of structures Cj,1, . . . ,Cj,n

with Cj,i ∈ Ci.

Definition 11. Let A = (A,≤) be a sum-of-box augmentation of structures

Bi,j = (Bi,j ,≤i,j) via the map η :
⊔n

i=1

∏k
j=1 Bi,j → A. This sum-of-box aug-

mentation is called tamely colourable if for each 1 ≤ j ≤ k there is a function
ϕj : (

⊔n
i=1 Bi,j)

2 → Cj with a finite range Cj such that the (ϕj)1≤j≤k deter-

mine the edges of A in the sense that there is a set M ⊆
∏k

j=1 Cj such that
η(b1, . . . , bk) ≤ η(b′1, . . . , b′k) iff (ϕ1(b1, b

′
1), . . . , ϕk(bk, b

′
k)) ∈M .

3.2 Decomposition of Scattered-Automatic-Structures

In this section, we prove that the sum- and box-augmentation technique applies
to finite word scattered-oracle-automatic structures. Fix an arbitrary scattered
order L with FC(L) = α ≥ 1. Assume that L =

∑
z∈Z Lz where each Lz is a (pos-

sibly empty) suborder with FC(Lz) < α. We first introduce notation concerning
definable subgraphs.
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Definition 12. Let o ∈W (L) be some oracle. Let G = (V,E) be a finite word L-
o-automatic graph. For each parameter automaton A and parameter p ∈W (L),
we write GA

p for the induced subgraph of G with domain V A
p := {w ∈ V |

w ⊗ p ∈ L(A)}.

We write Gp and Vp for GA
p and V A

p if A is clear from the context.

Definition 13. Let c0 = (C0, D0) and c1 = (C1, D1) be cuts of L. For a finite
L-word w we say w is a (c0, c1)-parameter if supp(w) ⊆ D0∩C1, i.e., the support
of w is completely between c0 and c1.

For the rest of this section, we fix two numbers z0 < z1 ∈ Z and define the cuts
c0 := (

∑
z<z0

Lz ,
∑

z≥z0
Lz) and c1 := (

∑
z≤z1

Lz ,
∑

z>z1
Lz). We also define

the scattered orders LL :=
∑

z<z0
Lz and LR :=

∑
z>z1

Lz. The main result of
this section is a uniform sum-of-box decomposition of all substructures defined
by a given parameter automaton.

Theorem 14. Let G be some finite word L-oracle-automatic graph (V,E) where
E is recognised by some automaton AE with state set QE and let A be a param-
eter automaton with state set Q. There are

– a set CL of exp(|Q|2 + 2|QE |2) many LL-oracle-automatic graphs, and
– a set CR of exp(|Q|2 + 2|QE|2) many LR-oracle-automatic graphs,

such that for each (c0, c1)-parameter p the subgraph GA
p is a tamely-colourable

sum-of-box-augmentation of (CL,FLz0
,FLz0+1 , . . . ,FLz1

, CR).1

Proof. Let o be the oracle such that G is finite word L-o-automatic. By def-
inition, we can write L as the sum LL + Lz0 + Lz0+1 + · · · + Lz1 + LR. In-
duced by this decomposition there is a decomposition of any L-word w as
w = wLwz0wz0+1 . . . wz1wR such that wj is an Lj-word. In particular, our pa-
rameter and oracle decompose as

p = pLpz0pz0+1 . . . pz1pR and o = oLoz0oz0+1 . . . oz1oR.

Independently of the choice of the (c0, c1)-parameter p, pL and pR are constant
functions (with value 5).

In order to construct a sum-of-box decomposition of Gp, we first define the
building blocks of this decomposition. For this purpose, we define equivalence
relations ∼i

p⊗o for each i ∈ {L,R, z0, z0 + 1, . . . , z1} on Li-words as follows. For

Li-words w,w′ set w ∼i
p⊗o w

′ if and only if

1. for all q, q′ ∈ Q q
w⊗pi⊗oi−→

A
q′ ⇐⇒ q

w′⊗pi⊗oi−→
A

q′ and

2. for all q, q′ ∈ QE q
w⊗w⊗oi−→

AE

q′ ⇐⇒ q
w′⊗w′⊗oi−→

AE

q′.

1 Recall that FL is the class of all finite word L-oracle-automatic graphs, see
Definition 7.
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Note that for fixed i, p, o there are at most exp(|Q ×Q| + |QE ×QE |) many
∼i

p⊗o equivalence classes. As domains of the αi-oracle-automatic building blocks

of our decomposition we use the sets K(i, w, p, o) := {x | x ∼i
p⊗o w} for each

Li-word w. We augment this notation by writing K(i, v, p, o) := K(i, w, p, o) for
L-words v, where w is the restriction of v to Li. Now for each M ⊆ QE × QE

we define a structure KM (i, w, p, o) = (K(i, w, p, o), EM ) where (w1, w2) ∈ EM

if w1, w2 ∈ K(i, w, p, o) and there is a (q, q′) ∈M such that q
w1⊗w2⊗o−→

AE

q′. Recall

that pL and pR are independent of the concrete choice of the (c0, c1)-parameter
p whence (for fixed o) the sets

CL :=
{
KM (L, w, p, o) |M ⊆ QE ×QE, p a (c0, c1)-parameter

}
CR :=

{
KM (R, w, p, o) |M ⊆ QE ×QE, p a (c0, c1)-parameter

}
have each at most exp(|Q|2 + 2|QE|2) many elements (up to isomorphisms).

Our next goal is the definition of the function η that witnesses the decompo-
sition claimed in this theorem. For this purpose, let ∼p⊗o denote the equivalence

on L-words that is the product of the ∼i
p⊗o.

2 Let

η :
⊔

[w]∈Vp/∼p⊗o

K(L, w, p, o) ×
(

z1∏
i=z0

K(i, w, p, o)

)
×K(R, w, p, o) −→ Vp

(xL, xz0 , xz0+1, . . . , xz1 , xR) �→ x := xLxz0xz0+1 . . . xz1xR.

It follows from the definitions that η is a well-defined bijection (using the fact
that some L-word x belongs to Vp iff there is a run

qI
xL⊗pL⊗oL−→

A
qz0

xz0⊗pz0⊗oz0−→
A

qz0+1 . . . qz1
xR⊗pR⊗oR−→

A
qF

for some initial state qI and a final state qF ).
In order to finish the proof, we show that Gp is a tamely-colourable sum-

of-box-augmentation of (CL,FLz0
,FLz0+1 , . . . ,FLz1

, CR) via η. For any w ∈ Vp,

let Fw be the restriction of Gp to η
(
K(L, w, p, o) ×

(∏z1
i=z0

K(i, w, p, o)
)
× K

(R, w, p, o)
)
. It is clear that Gp is a sum augmentation of (Fw1 ,Fw2 , . . . ,Fwk

)
for wi representatives of the ∼p⊗o-classes. From now on let IE(FE) denote the
initial (final) states of AE .

1. Fix w = wLwz0wz0+1 . . . wz1wR ∈ Vp. We show that Fw is a box-augmen-
tation of (CL,FLz0

,FLz0+1 , . . . ,FLz1
, CR). For this purpose, fix i ∈ {L,R, z0,

z0 + 1, . . . , z1} and let
←
w := wL . . . wi−1,

←
o := oL . . . oi−1,

→
w := wi+1 . . . wR,

and
→
o := oi+1 . . . oR. Let Mi be the set defined by

(q1, q2) ∈Mi ⇐⇒ ∃qI ∈ IE , qF ∈ FE qI
←
w⊗←

w⊗←
o−→

AE

q1 and q2
→
w⊗→

w⊗→
o−→

AE

qF .

(1)

2 Thus, for w = wLwz0wz0+1 . . . wz1wR and v = vLvz0vz0+1 . . . vz1vR we have w ∼p⊗o

v iff wi ∼i
p⊗o vi for all i ∈ {L,R, z0, z0 + 1, . . . , z1}.
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The function

ηwi : K(i, w, p, o) → Vp, xi �→ wLwz0wz0+1 . . . wi−1xiwi+1 . . . wz1wR

embeds KMi(i, w, p, o) into Gp because

∀xi, yi ∈ K(i, w, p, o) (xi, yi) ∈ EMi

⇔∃(q1, q2) ∈Mi q1
xi⊗yi⊗oi−→

AE

q2

(1)⇔∃qI ∈ IE , qF ∈ FE qI
←
w⊗←

w⊗←
o−→

AE

q1
xi⊗yi⊗oi−→

AE

q2
→
w⊗→

w⊗→
o−→

AE

qF

⇔ (ηwi (xi), η
w
i (yi)) ∈ E.

2. We show that the decomposition is tamely colourable. For all j ∈ {L,R, z0,
z0 + 1, . . . , z1}, let cj : (

⊔
[w]∈Vp/∼p⊗o

K(j, w, p, o))2 → Q2
E be the colour-

ing function satisfying cj(xj , yj) := {(q, q′) ∈ AE | q xj⊗yj⊗oj−→
AE

q′}. The colour

functions (cj)j∈{L,R,z0,z0+1,...,z1) determine E because for w = wLwz0wz0+1

. . . wz1wR and v = vLvz0vz0+1 . . . vz1vR,

(wLwz0wz0+1 . . . wz1wR, vLvz0vz0+1 . . . vz1vR) ∈ E

⇐⇒∃q0, . . . , qk ∈ QE

⎛⎝ q0 ∈ IE , qk ∈ FE , and

q0
wL⊗vL⊗oL−→

AE

q1
wz0⊗vz0⊗oz0−→

AE

q2 . . . qk−1
wR⊗vR⊗oR−→

AE

qk

⎞⎠

⇐⇒∃q0, . . . , qk ∈ QE

⎛⎜⎜⎜⎜⎝
q0 ∈ IE , qk ∈ FE , and

(qi−1, qi) ∈ cj(wj , vj) with j =

⎧⎪⎨⎪⎩
L if i = 1,

R if i = k,

z0 +m if i = m

⎞⎟⎟⎟⎟⎠.

4 Bounds on Scattered-Oracle-Automatic Structures

4.1 FC-Ranks of Linear-Orders

In this section, we first study the question which scattered linear orders are L-
oracle-automatic for a fixed order L. We provide a sharp bound on the FC-rank.
For the upper bound we lift Schlicht and Stephan’s result [16] using our new
sum- and box-decomposition from the case where L is an ordinal:

Theorem 15. Let L be a scattered order of FC∗ rank 1 +α (0, respectively) for
some ordinal α. Then every finite word L-oracle-automatic scattered linear order
A satisfies FC∗(A) < ωα+1 (FC∗(A) < ω0 = 1, respectively).

If L is an ordinal of the form ω1+α, Schlicht and Stephan [16] showed that the

supremum of the L-automatic ordinals is exactly ωωα+1

whence Theorem 15 is
optimal. From our theorem we can also derive the following characterisation of
finite FC-rank presentable ordinals.



282 A. Kartzow and P. Schlicht

Corollary 16. Let L be a scattered linear order with FC(L) < ω. The finite

word L-oracle-automatic ordinals are exactly those below ωωFC(L)+1

.

Here, the oracle is crucial: 0 and 1 are the only finite word Zn-automatic ordinals
if n ≥ 1 (any Zn-automatic linear order with 2 elements contains a copy of Z).

4.2 Ranks of Well-Founded Automatic Order Forests

We next study scattered-oracle-automatic well-founded order forests. Kartzow
et al. [7] proved compatibility of the ordinal height with sum- and box-
augmentations. Together with our decomposition theorem this yields a bound
on the height of an L-oracle-automatic well-founded order forest in terms of
FC(L). Unfortunately, in important cases these bounds are not optimal. For
scattered orders L where the set of finite L-words allow an L-oracle-automatic
order which is scattered, we can obtain better bounds. If L is an ordinal or has
finite FC-rank, the set of L-words allows such a scattered ordering. If the finite
L-words admit an L-automatic scattered order ≤, the Kleene-Brouwer ordering
of an L-oracle-automatic well-founded order forest with respect to ≤ is L-oracle-
automatic again. Thus, its FC-rank is bounded by our previous result. Adapting
a result of Kuske et al.[13] relating the FC-rank of the Kleene-Brouwer ordering
with the height of the forest, we derive a bound on the height. Our main result
on forests is as follows.

Theorem 17. – Let L be an ordinal or a scattered linear order with FC(L) <
ω. Each L-oracle-automatic forest F = (F,≤) has rank strictly below
ωFC(L)+1.

– Let L be some scattered linear order. Each L-oracle-automatic forest F =
(F,≤) has rank strictly below ωω·(FC(L)+1).

Remark 18. The bounds in the first part are optimal: for each ordinal L and
each c ∈ N, we can construct an L-automatic tree of height ωFC(L) · c.

5 Separation of Tree- and Ordinal-Automatic Structures

Theorem 19. The countable atomless Boolean algebra is not finite word L-
automatic for any ordinal L.

This theorem is proved by first showing that, if the atomless Boolean algebra
is finite word L-automatic for some ordinal L, then it already is ωn-automatic
for some n ∈ N. This follows because any finite word L-automatic structure
for L an ordinal above ωω has a sufficiently elementary substructure that has a
ωn-automatic presentation for some n ∈ N. In the case of the countable atom-
less Boolean algebra any Σ3-elementary substructure is isomorphic to the whole
algebra. Extending Khoussainov et al.’s monoid growth rate argument for auto-
matic structures (cf. [11]) to the ωn-setting, we can reject this assumption. This
answers a question of Frank Stephan.
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Abstract. In this paper we consider four restricted cases of the gener-
alised communicating P systems and study their computational power.
In all these cases better results are produced, with respect to the number
of cells involved, than those provided so far in the literature. Only one
of these results is fully presented, whereas the others are shortly and
informally described. Connections between the variants considered and
recently introduced kernel P systems are investigated.

1 Introduction

Membrane computing represents a branch of natural computing that brings from
cellular biology to computer science a set of concepts, principles and computing
mechanisms, with the aim of producing a family of coherent, powerful and effi-
cient computational models, called membrane systems or (P systems), that are
inspired by the behaviour of some cellular processes. The model includes non-
deterministic, parallel and distributed processes that abstractly mimic, through
a set of evolution rules applied in different compartments, the behaviour of var-
ious bio-chemical transformations occurring in living cells. The main model of
a cell-like P system contains a hierarchical structure of membranes (tree struc-
ture) delimiting compartments (or regions); each compartment has a multiset of
objects that react according to some local rules (specific to each compartment).
The rules of the most basic cell-like P systems are of the form u→ v, where u and
v are multisets of objects. The multiset v of such a rule belonging to a compart-
ment consists of objects that remain in this compartment and others that will go
into the compartment that contains the current one (the parent compartment)
or to compartments contained in it (child compartments). Such a rule replaces
the multiset u by v. Many other types of rules and links between compartments
have been considered [6, Chapters 4-5, 7-11, & 13-14]. Some of these models
replace the hierarchical structure of membranes with a graph structure and the
model is called tissue-like. Most of these systems, both cellular or tissue models,
are computationally complete and when membranes can be multiplied they are
able to provide efficient solutions to complex problems [6, Chapters 12 & 21].

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 284–293, 2013.
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Membrane computing has introduced a plethora of variants of P systems and
the above mentioned classification of such systems is only one of many possible
ones.

A special type of P systems emphasises the communicating aspects of these
models by using different rules to transport objects across membranes [6, Chap-
ter 5]. One of these models uses the biological metaphor of exchanging pairs of
bio-chemical elements between compartments, symport/antiport phenomenon.
A special case of such systems, called generalised communicating P systems,
has been introduced in [7] where only communication rules are used in a very
general way, by moving simultaneously symbols from two membranes into other
two. This model is inspired by both the symport/antiport paradigm and the way
transitions of the Petri nets fire tokens coming from various input places and
then sent them to other output places. Some particular cases of such systems,
defined in [7], have been investigated in [2].

A different trend of research is presented in [3] where a new class of sys-
tems, called kernel P systems, has been introduced in order to generalise various
features, like the structure of the model, the type of rules and the execution
strategy, of previously introduced P systems and to obtain a more versatile and
sometimes more expressive model. This class of P systems is also supported
by tools providing a rigorous way to formally check various properties of the
associated models.

In this paper we further study the computational power of the P systems
introduced in [2] and provide better results with respect to the number of mem-
branes. One of these systems is fully investigated, whereas the others are only
informally described. Details about the proofs of these results are provided in [4]
We also study the relationships between these classes of P systems and kernel
P systems [3], showing that all these classes of generalised communicating P
systems can be simulated by kernel P systems. This is important as it provides a
generic algorithm for translating the former models into the later ones. Finally,
an example of a model defined initially by using generalised P systems is trans-
formed into a kernel P system which is then formally verified using Spin [1]. The
Promela code for this application is available from [4].

2 Definitions

In this section we introduce the definitions of the main models utilised in this
paper, generalised communicating P systems, kernel P systems and register
machine.

A Generalised Communicating P System of degree n (a GCPS of degree n)
is a P system consisting of n compartments, called cells, linked in a tissue-like
manner. These links are implicitly specified by the rules. Formally, a GCPS
of degree n is a construct, Π = (O,E,w1, . . . , wn, RΠ , i0), where O is a finite
alphabet ; E ⊆ O is the set of environment symbols ; wi ∈ O∗, 1 ≤ i ≤ n, is the
initial multiset associated with cell i; RΠ is a finite set of interaction rules of
the form r : (a, i → k; b, j → l) (also written as r : (a, i)(b, j) → (a, k)(b, l)),
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with a, b ∈ O and 0 ≤ i, j, k, l ≤ n (0 denotes the environment), and such that if
i = 0 or j = 0 then a /∈ E or b /∈ E; i0 ∈ {1, . . . , n} is the output cell.

The P system Π consists of n cells, labelled 1, . . . , n, containing multisets
of objects over O. The environment contains an unbounded number of copies
of symbols from E. The cells, and the environment, are supposed to interact
through rules from RΠ . A rule r : (a, i)(b, j) → (a, k)(b, l), moves a from cell i
to k and b from cell j to l. The rules are applied in each step of the computation
in the usual non-deterministic and maximally parallel manner. According to
maximal parallelism principle, after associating objects to rules, no rule can
be applied to any of the remaining objects, if any (see [6]). A computation is
a sequence of steps where rules are applied as mentioned above. Only halting
computations are considered. The result of any computation is obtained in cell i0
and is given by the number of symbols from this cell at the end of a computation.

The functionality described by each rule r : (a, i → k; b, j → l), is similar
to that of transition in a Petri net model where tokens a and b from the input
places are then moved to output places. In such a model the objects are simply
moved between compartments. In order to increase or decrease the number of
objects in the system, rules involving the environment are used.

A set of restricted variants of GCPS models has been defined in [7] and studied
in [2]. These variants utilise a set of particular rules and their computational
power has been established in [2]. The specific rules considered in this paper are:
(a) join rules (k = l, i �= k, j �= k, i �= j); (b) split rules (i = j, i �= k, i �= l, k �= l);
(c) presence move rules (i = k, i �= l, i �= j, j �= l); and (d) parallel shift rules
(i �= k, i �= l, i �= j, j �= l). We call these classes of systems, GCPS with minimal
interaction.

The GCPS class with join rules, that will be fully investigated in this paper,
describes systems with rules that send always the input symbols, a from i and b
from j into the same output cell.

The set of non-negative integer numbers computed by the GCPS Π , as the
number of symbols obtained in the output cell i0, is denoted by N(Π). The
family of sets of numbers generated by GCPS with at most n cells is denoted by
NGCPSn.

If only rules of type (a), (b), (c) or (d) are used then the corresponding family
is denoted by NGCPS(t)n, t ∈ {join, split, presence move, parallel shift}.

A simple kernel P (skP) system of degree n is a tissue-like P system consisting
of a tuple, skΠ = (O,E,C1, . . . , Cn, μ, i0), where O is a finite alphabet ; E ⊆ O is
the set of environment symbols ; C1, . . . , Cn are compartments ; μ = (V,N) is an
undirected graph, where V ⊆ {1, . . . , n} are vertices and N the edges, defining
the structure of skΠ , i.e., the links between compartments, and i0 ∈ {1, . . . , n}
is the output compartment.

An skP system, skΠ , as above, can be viewed as a set of n compartments,
C1, . . . , Cn, interconnected by edges from N , of an undirected graph μ. Each
compartment, Ci, 1 ≤ i ≤ n, consists of an initial multiset, wi, a set of rewrit-
ing and communication rules with guards, Ri, and an execution strategy, σi,
Ci = (wi, Ri, σi). A rewriting and communication rule with guard has the form
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r : x → y {γ}, where x ∈ O+, y is a string, y = (a1, t1) · · · (ah, th), h ≥ 0, with
aj ∈ O and tj ∈ {0, 1, . . . , n}, 1 ≤ j ≤ h, (0 stands for environment) and γ is a
guard. The guard and the way it is used when the rule r is applied is described
below. If r is a rule with guard γ in a compartment C, then γ is considered true
wrt the current multiset z of C, if and only if the following happens:

(i) if γ = θ1a
n1
1 . . . θka

nk

k , where aj ∈ O, θj ∈ Rel, and Rel = {<,�,=, �=,�, >},
then for every j, 1 ≤ j ≤ k, |z|ajθj nj holds (|z|a means the number of
occurrences of a in z);

(ii) if γ is a finite nonempty disjunction of multisets over O with relational
operators from Rel, γ = w1 | · · · | wp, then there exists j, 1 ≤ j ≤ p, such
that wj is true, according to (i).

If γ is not present, then the rule is applied when its left hand side is contained
in the current multiset z.

A rule r : x→ y {γ} is applicable to a multiset z if and only if γ is true wrt
z and x is a submultiset of z. When r is applied to z, then x will be removed
from it and ai is sent to Cti , 1 ≤ ti ≤ h. In each computation step the rules of a
compartment Ci are applied in accordance with the execution strategy, σi. This
might be a non-deterministic and maximally parallel way, as usual in membrane
computing, or any of the other studied strategies [6], a combination of them or a
totally new one. The set of non-negative integer numbers computed by the skP
system skΠ as the number of symbols obtained in the output membrane i0 is
denoted by N(skΠ). The family of sets of numbers computed by an skP system
with at most n compartments is denoted by NskPn. More details about these
systems are available in [3].

A register machine with k registers is a 5-tuple, M = (Q,R, q0, qf , P ), where
Q is a finite non-empty set of states, R = {A1, . . . , Ak}, k ≥ 1, is a set of
registers, q0 ∈ Q is the initial state, qf ∈ Q is the final state, P is the set of
instructions of the following forms: (a) (p,A+

i , q, s) where p, q, s ∈ Q, p �= qf ,
Ai ∈ R (an increment instruction, which increments Ai by 1 and moves non-
deterministically to either q or s); (b) (p,A−

i , q, s) where p, q, s ∈ Q, p �= qf ,
Ai ∈ R (a decrement instruction, which decrements Ai by 1 and moves to q, if
strictly positive, otherwise left it unchanged and jumps to state s).

For every p ∈ Q, (p �= qf ), there is exactly one instruction of the form either
(p,A+

i , q, s) or (p,A−
i , q, s). A configuration of a register machine M , defined

above, is given by a (k+1)-tuple (q,m1, . . . ,mk), where q ∈ Q andm1, . . . ,mk are
non-negative integers; q corresponds to the current state of M and m1, . . . ,mk

are the current numbers stored in the registers A1, . . . , Ak, respectively. We say
that a register machine M with k registers, given as above, generates a non-
negative integer u if starting from the initial configuration (q0, 0, 0, . . . , 0) it
enters the final configuration (qf , u, 0, . . . , 0). The set of non-negative integers
generated by M is denoted by N(M). It is known that register machines are
able to generate all recursively enumerable sets of non-negative integers [5]; the
family of these sets of numbers is denoted by NRE.
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3 Main Results

In [2] it is proved that GCPS models with minimal interaction achieve univer-
sality for systems using: (a) 7 cells and join rules ; (b) 9 cells and split rules ;
(c) 19 cells and parallel shift rules ; and (d) 36 cells and presence move rules.
In Section 3.1 we improve all these results, by showing that universality can be
achieved for these systems when 4, 5, 5 and 6 cells are, respectively, used. The
formal proof of these results is only provided for the join rules case, the others
are informally described; the proofs of these results are provided in [4]. In Sec-
tion 3.2 the relationship between GCPS and skP systems is established and an
example of a problem solved using these two formalisms is discussed.

3.1 GCPS with Minimal Interaction

The proof below uses for an arbitrary set in NRE a register machine which will
be simulated by a GCPS with at most 4 cells.

Theorem 1. NGCPS(join)4 = NRE.

Proof. Consider a register machineM = (Q,R, q0, qf , P ) with R = {A1, . . . , Ak},
k ≥ 1, as given in Section 2. To prove the theorem, we construct a GCPS with
minimal interaction, Π = (O,E,w1, w2, w3, w4, RΠ , 2), using only join rules,
such that N(M) = N(Π). We shall show that for any successful generation of
a non-negative number, u, in M , there is a successful computation in Π that
leads to u symbols in the output cell, and conversely. Define first Q+ = {p+ | p
to be the state corresponding to an increment instruction and Q− = {p− | p to
be the state corresponding to a decrement instruction. Thiswill help in making
the proof clearer.

Given M , the GCPS with minimal interaction, Π , is constructed as

(i) O = Q+∪Q−∪{q | q ∈ Q}∪{qf , c1, . . . , ck}∪{f, g, a, b, e, Y1, Y2, Y3, †, χ}; the
number of symbols ci, 1 ≤ i ≤ k, in Π represents the content of register Ai

at any given point of time, the symbols f, a, b, e, Y1, Y2, Y3, †, χ are auxiliary
and help in computation.

(ii) E = Q+ ∪ Q− ∪ {q | q ∈ Q} ∪ {†, g, qf} ∪ {ci | 1 ≤ i ≤ k} is the set of
symbols present in the environment in infinitely many copies.

(iii) w1 = fabχ,w2 = λ,w3 = Y2Y3, w4 = eY1 are the initial multisets of Π ;
the initial configuration is described by [ fabχ]1[ ]2[Y2Y3]3[ eY1]4E where
E denotes the environment content.

(iv) Cell 2 is the output cell.

The rules in RΠ are as follows:

I. Initialisation.

1. (a, 1)(Y2, 3) → (a, 0)(Y2, 0), (b, 1)(Y3, 3) → (b, 0)(Y3, 0) and (q+0 , 0)(e, 4)
→ (q+0 , 1)(e, 1).
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Rules I.1 are used first. The objects Y2, Y3 from cell 3 and a, b from cell 1 go to
the environment, while the state of the initial instruction, q+0 , from the envi-
ronment and e from cell 4 come to membrane 1. Formally, the new configura-
tion of Π is [ efq+0 χ]1[ ]2[ ]3[Y1]4E ∪ {abY2Y3}. Symbols Y1, Y2, Y3, e, f, a, b
are present only in one copy in Π . This configuration appears before any
of the instructions of the register machine is simulated. In the sequel, sym-
bols a and b from the environment will be ignored as these will not be used
anymore.

II. Simulation of an increment instruction (p,A+
i , q, s). Let r ∈ {q, s}, and let

r′ stand for r+ or r−, depending on whether r is an increment instruction
or a decrement instruction.
1. (p+, 1)(ci, 0)→ (p+, 2)(ci, 2), 1≤ i≤k, and (Y1, 4)(Y2, 0) → (Y1, 2)(Y2, 2);
2. (p+, 2)(r, 0) → (p+, 3)(r, 3) and (Y1, 2)(Y3, 0) → (Y1, 4)(Y3, 4);
3. (p+, 3)(Y2, 2) → (p+, 0)(Y2, 0) and (r, 3)(r′, 0) → (r, 1)(r′, 1);
4. (r, 1)(Y3, 4) → (r, 0)(Y3, 0).
Before we begin the simulation of an increment instruction (p,A+

i , q, s), let us
observe that the current configuration contains: (i) p+ in cell 1, (ii) the sym-
bols ci in cell 2 (in zero or more copies), (iii) the symbols Y2, Y3 in the envi-
ronment and (iv) Y1 in cell 4. If p = q0, then, we formally describe the config-
uration as [ efp+χ]1[ ]2[ ]3[Y1]4E∪{x}, where x consists of Y2Y3. If p �= q0,
then we have the configuration [ efpp+χ]1[w]2[ ]3[Y3Y1]4E ∪ {Y2} where

w = cl11 . . . c
lk
k , li ≥ 0, 1 ≤ i ≤ k. In the sequel we show the sequence of steps

in Π while simulating (p,A+
i , q, s). Without loss of generality, assume that

the next state selected is q, corresponding to (q, A+
j , l, y). The configuration

[ efpp+χ]1[w] 2[ ]3[Y3Y1]4E ∪{Y2} evolves into [ efχ]1[p+ciwY1Y2]2[ ]3[ ]4
E ∪ {Y3}, which leads to [ efχ]1[ ciwY2]2[ p+q]3[Y1Y3]4E, and this one in
turn, evolves into [ efqq+χ]1[ ciw]2[ ]3[Y1Y3]4E ∪ {Y2}. This one is further
transformed into [ efχ]1[ q+cjciwY1Y2]2[ ]3[ ]4E ∪ {Y3}.

III. Simulation of a decrement instruction (p,A−
i , q, s).

1. (p−, 1)(ci, 2)→ (p−, 4)(ci, 4), 1≤ i≤ k, and (Y1, 4)(Y2, 0)→ (Y1, 2)(Y2, 2);
2. (p−, 4)(q, 0) → (p−, 3)(q, 3) and (Y1, 2)(Y3, 0) → (Y1, 4)(Y3, 4);
3. (p−, 3)(Y2, 2) → (p−, 0)(Y2, 0) and (q, 3)(q′, 0) → (q, 1)(q′, 1);
4. (q, 1)(Y3, 4) → (q, 0)(Y3, 0);
5. (p−, 1)(Y2, 2) → (p−, 3)(Y2, 3);
6. (p−, 3)(f, 1) → (p−, 2)(f, 2);
7. (p−, 2)(s, 0) → (p−, 3)(s, 3) and (f, 2)(Y2, 3) → (f, 4)(Y2, 4);
8. (p−, 3)(Y2, 4) → (p−, 0)(Y2, 0), (s, 3)(s′, 0) → (s, 1)(s′, 1) and (g, 0)(f, 4)

→ (g, 1)(f, 1);
9. (Y3, 4)(s, 1) → (Y3, 0)(s, 0);

10. (f, 2)(†, 0) → (f, 3)(†, 3), (χ, 1)(†, 3) → (χ, 2)(†, 2), (χ, 2)(†, 0) → (χ, 3)
(†, 3) and (χ, 3)(†, 0) → (χ, 2)(†, 2).

Rules III.1 to III.4 are used when the contents of register Ai is greater than
0, while rules III.5 to III.9 are used when register Ai is 0; rules III.10 handle
exceptions.

Before we begin the simulation of a decrement instruction (p,A−
i , q, s), the

configuration we have is: (i) p, p−, χ, f are present in cell 1; (ii) the symbols
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ci are present in cell 2 (in zero or more copies); (iii) the symbol Y2 is in the
environment; while (iv) Y1, Y3 are in cell 4.

Case 1. Content of register Ai is non-zero. In this case, we start with rule
III.1. Using this, p− removes a copy of ci from cell 2; both p− and ci move
to cell 4; in parallel, Y2 comes to cell 2 along with Y1. This is followed by
p− getting the symbol q from the environment into cell 3; in parallel, the
symbols Y1, Y3 enter cell 4. Next, the symbols p−, Y2 return to the environ-
ment using rule III.3 : (p−, 3)(Y2, 2) → (p−, 0)(Y2, 0), while q gets q′ from the
environment into membrane 1; finally, q and Y3 return to the environment.

Case 2. Content of register Ai is zero. In this case, when p− is in cell 1, the
rule (p−, 1)(ci, 2) → (p−, 4)(ci, 4) in III.1 cannot be used. However, symbols
Y1, Y2 move to cell 2 using the other rule in III.1. In this case, we have the
symbol p− in cell 1, and Y2 in cell 2. Then we use rule III.5, moving both
p−, Y2 to cell 3; in parallel, symbols Y1, Y3 move to cell 4 by III.2. This is
followed by p− moving to cell 2 along with f using rule III.6. p− in cell 2 gets
s from the environment, both symbols move to cell 3. In parallel, symbols
f, Y2 move to cell 4. Next, p−, Y2 return to the environment from cells 3
and 4, respectively, while s obtains the symbol s′ from the environment;
the symbol f goes back to cell 1 using the symbol g from the environment.
Finally, s and Y3 return to the environment.

Exception Handling. Note that in Case 1, instead of using III.3: (p−, 3)(Y2, 2)
→ (p−, 0)(Y2, 0), one could use the rule III.6 : (p−, 3)(f, 1) → (p−, 2)(f, 2).
If this is done, we have f in cell 2, and Y2 also in cell 2. Hence, the rule III.7
: (f, 2)(Y2, 3) → (f, 4)(Y2, 4) is not applicable in the next step; and, rule
III.10 is used, giving a non-halting computation with no output. Assume
we are at [ efpp−χ]1[ ciw]2[ ]3[Y3Y1]4E ∪ {Y2}. Using III.1, this evolves
into [ efχ]1[wY1Y2]2[ ]3[ p−ci]4E ∪ {Y3}, followed by use of III.2 obtaining
[ efχ]1[wY2]2[p−q]3[ ciY1Y3]4E. To this, if we use the second rule of III.3
and III.6, we obtain [ eχqq′]1[wY2p

−f ]2[ ]3[ ciY1Y3]4E. Since there is no Y2 in
cell 3, we use III.10, III.4, obtaining [ eχq′]1[wY2]2[p−sf † ]3[ ciY1]4E∪{Y3}.
Irrespective of any other rule, we now obtain χ, † in cell 2, then χ, † in
cell 3 and so on.

IV. Halting (qf , 1)(Y1, 4) → (qf , 0)(Y1, 0). Once we obtain qf in cell 1, the sym-
bol Y1 is removed from the system to the environment. This way, the chain
of actions (Y1, 4)(Y2, 0) → (Y1, 2)(Y2, 2), (Y1, 2)(Y3, 0) → (Y1, 4)(Y3, 4) can
be stopped. The number of symbols ci, 1 ≤ i ≤ k, in cell 2 is the output.

It is also clear that every set of numbers generated by a register machine can be
simulated by system Π , belonging to NGCPS(join)4. Hence, the statement of
the theorem follows. ��

Similar techniques can be applied for the other types of GCPS model with
minimal interaction in order to achieve Turing completeness.
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The following results are proved in [4]:

(a) NGCPS(split)5 = NRE,
(b) NGCPS(parallel shift)5 = NRE, and
(c) NGCPS(presence move)6 = NRE.

3.2 GCPS with Minimal Interaction and skP Systems

In this section we show how a GCPS with n cells is simulated by an skP system
with two compartments. The proof employs a standard procedure of mapping
communication rules of a P system with a fixed number of compartments into one
compartment P system using multiset rewriting rules. Three additional multiset
rewriting rules with guards are considered for controlling the end of the com-
putation and an additional compartment is introduced in order to collect the
result.

Theorem 2. For any GCPS with n cells, Π, there is an skP system, skΠ, with
two compartments such that N(Π) = N(skΠ).

Proof. Given a GCPS of degree n Π = (O,E,w1, . . . , wn, R, i0), where R con-
tains rules of the form r : (a, i)(b, j) → (a, k)(b, l), with a, b ∈ O and 0 ≤
i, j, k, l ≤ n, and such that if i = 0 or j = 0, then a /∈ E or b /∈ E, then the fol-
lowing skP system with two compartments is built, skΠ = (O′, E′, C1, C2, μ, 2),
where O′ = O∪{[a, i] | a ∈ O, 1 ≤ i ≤ n}∪{[a, 0] | a ∈ O\E}∪{α, α′, α′′}, where
α, α′, α′′ are new symbols; E′ = ∅—there is no need for environment symbols;
C1 = (w′

1, R1), will contain all the necessary multisets and rules to simulate
the behaviour of the GCPS Π and C2 = (w′

2, R2) is used only to collect the
result—the initial multisets and the rules will be defined later; μ = (V,N) is
the graph, V = {1, 2}, N = {{1, 2}}, showing one single link between the above
compartments.

For each rule r : (a, i)(b, j) → (a, k)(b, l), 1 ≤ i, j, k, l ≤ n, a rule r′ :
[a, i][b, j] → [a, k][b, l] is constructed. If i = 0, i.e., a is brought from the en-
vironment, then (j �= 0) r′ : [b, j] → [a, k][b, l], for a ∈ E, or r′ : [a, 0][b, j] →
[a, k][b, l], for if a ∈ O \ E (similarly when j = 0 and i �= 0). When k = 0
then r′ : [a, i][b, j] → [b, l] (similarly for l = 0); in these cases one of i or j
can be 0 as well. When both k and l are 0 then the right hand side of r′ is
λ. For each rule r′ : x → y defined above, a rule r′′ : x → y {= α} is con-
structed. If x1, . . . , xp are all the distinct left hand side parts of the rules r′′, and

if xh = ak1
1 . . . a

kih

ih
, then the guard notation ≥ xh (�= xh) stands for the guard

≥ ak1
1 · · · ≥ akih

ih
(�= ak1

1 · · · �= a
kih

ih
). The rules rα′ : α′ → α {≥ x1 | · · · |≥ xp},

rα′′ : α′ → α′′ {�= x1 · · · �= xp}, ra : [a, i0] → (a, 2) {= α′′}, a ∈ O, and
rα : α→ α′ are also considered.

The compartment C1 consists of the initial multiset
w′

1 = [a1,1, 1] . . . [a1,p1 , 1] . . . [an,1, n] . . . [an,pn , n]α, given that wi = ai,1 . . . ai,pi

is the initial multiset of the cell i, 1 ≤ i ≤ n, and the rule set
R1 = {r′′ | r ∈ R} ∪ {rα, rα′ , rα′′} ∪ {ra | a ∈ O}.
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The second compartment is C2 = (λ, ∅).
The skP system skΠ simulates the GCPS Π as follows: each computation

step using rules r1, . . . , rt from R in Π is performed in two stages in skΠ : in the
first one the rules r′′1 , . . . , r

′′
t corresponding to r1, . . . , rt, respectively, and rα are

used, and in the second stage either rα′ or rα′′ is used; rα′ is used when another
computation step will be executed and rα′′ is used when the computation stops.
In this final situation the rules ra, a ∈ O, are used to transfer all the objects
corresponding to the output cell, i0, into compartment 2. ��

For the GCPS with minimal interaction we can get the following result:

Corollary 1. For any GCPS with minimal interaction having n cells, Π, there
is an skP system, skΠ, with two compartments such that N(Π) = N(skΠ).

The above result provides a general algorithm to transform a GCPS (with min-
imal interaction) into an skP system computing the same set of numbers as the
GCPS. As it can be observed from Theorem 2 the number of rules of skΠ is
equal to the number of rules plus the size of the alphabet of Π plus 3 and each
computation step in Π is simulated by two steps in skΠ . In many examples this
generic procedure may be replaced by a more efficient way of solving them.

In the sequel it will be presented an example where the skP system provided
is much more efficient than the GCPS.

Example. We show how to compute n2, n ≥ 1, by using an skP system. Let us
first recall that a solution to this problem has been provided in [7] where a GCPS
model, Π , is used. Although the solution based on a GCPS model is elegant and
modular, it uses 5 modules of 2 types and another simple rule. One of these
modules is implemented with 2 GCPS rules (and is used 3 times) and the other
one has 6 (and appears twice)—see [7]. Unless we can make some optimisations
in the final GCPSl obtained from these modules, the current solution uses 19
(3 × 2 + 2 × 6+1) rules. Using the procedure described in Theorem 2 we obtain
an skP system with 22+s rules, where s is the size of the alphabet of Π . A more
efficient solution using an skP system having only 3 rules is provided below.

According to [7], n2 is computed by using the two recursive definitions:

ci = ci−1 + bi−1 (i), and bi = bi−1 + 2 (ii),

with 1 ≤ i ≤ n and initial values b0 = 1 and c0 = 0, we obtain cn = n2.
The skP system for this problem is skΠ = (O,E,C1, C2, μ, 2), where O =

{a, b, c}; E = ∅; C1 = (w1, R1, σ1), where w1 = anb, R1 = {r1 : a → bb;
r2 : b→ b(c, 2) {≥ a}} and the execution strategy, σ1, requires that in each step,
r2 is executed in a maximally parallel manner and then r1; C2 = (λ, ∅, σ2)—is
used only to collect the result, with no initial multiset, no rules and execution
strategy; μ = (V,N) is the graph, V = {1, 2}, N = {{1, 2}}, showing one single
link between the above membranes. It is clear that for obtaining n2, n ≥ 1, it is
sufficient to get cn

2

in C2. This is computed as follows: the initial multiset, w1

of C1 contains an, similarly to the input value n inserted into the GCPS in [7]
for computing finally n2; b stands for b0 = 1 and w2 = λ corresponds to c0 = 0;
in each step j, 1 ≤ j ≤ n, the rule r2 is applied in a maximally parallel manner,
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i.e., 2j − 1 times, followed by one application of r1; in step n, r1 rewrites the
last symbol a and stops the computation. It is clear that the rule r1 implements
the recursion (ii) and r2 works to get (i). These observations help to show that
b’s in C1 and c’s in C2 in any two consecutive steps verify (i) and (ii). This has
been checked for our Spin implementation by using LTL queries. Some other
properties of this system can be checked, like relationships between occurrences
of a’s in consecutive steps or between a’s and b’s in the same step. Details about
the codification of the problem and the verification of its invariants in Spin are
provided in [4].

4 Conclusions

In this paper we have further improved the completeness results for GCPS mod-
els with minimal interaction, which was formulated as an open problem in [7],
and have established a way to simulate them with skP systems. Finally an ex-
ample has shown that in some cases much better solutions can be provided by
codifying a problem directly into the skP formalism. For the example chosen,
a formal verification procedure, in terms of model checking using Spin, is also
applied.
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Stéphane Le Roux1 and Arno Pauly2

1 Department of Mathematics, Technische Universität Darmstadt, Germany
leroux@mathematik.tu-darmstadt.de

2 Clare College, University of Cambridge, United Kingdom
Arno.Pauly@cl.cam.ac.uk

Abstract. We investigate choice principles in the Weihrauch lattice for
finite sets on the one hand, and convex sets on the other hand. Increas-
ing cardinality and increasing dimension both correspond to increasing
Weihrauch degrees. Moreover, we demonstrate that the dimension of con-
vex sets can be characterized by the cardinality of finite sets encodable
into them. Precisely, choice from an n+1 point set is reducible to choice
from a convex set of dimension n, but not reducible to choice from a
convex set of dimension n− 1.

1 Introduction

In the investigation of the computational content of mathematical theorems in
the Weihrauch lattice, variations of closed choice principles have emerged as
useful canonic characterizations [1,3,6]. Closed choice principles are multivalued
functions taking as input a non-empty closed subset of some fixed space, and
have to provide some element of the closed set as output. In [1,3] the influence of
the space on the computational difficulty of (full) closed choice was investigated,
whereas in [6] it turned out that the restriction of choice to connected closed
subsets of the unit hypercube is equivalent to Brouwer’s Fixed Point theorem
for the same space.

Here the restrictions of closed choice to convex subsets (of the unit hyper-
cube of dimension n), and to finite subsets (of a compact metric space) are
the foci of our investigations. Via the connection between closed choice and
non-deterministic computation [1, 7, 20, 25], in particular the latter problem is
prototypic for those problems having only finitely many correct solutions where
wrong solutions are identifiable. As such, some parts may be reminiscent of some
ideas from [8, 15].

One of our main results shows that choice for finite sets of cardinality n + 1
can be reduced to choice for convex sets of dimension n, but not to convex choice
of dimension n− 1. This demonstrates a computational aspect in which convex
sets get more complicated with increasing dimension. As such, our work also
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continues the study of the structural complexity of various classes of subsets of
the unit hypercubes done in [12, 14].

Some of the techniques used to establish our main results are promising with
regards to further applicability to other classes of choice principles, or to even
more general Weihrauch degrees. These techniques are presented in Section 2.

Due to lack of space, some of the proofs had to be omitted. A version including
proofs and additional results is as available as [13].

1.1 Weihrauch Reducibility

We briefly recall some basic results and definitions regarding the Weihrauch
lattice. The original definition of Weihrauch reducibility is due to Weihrauch and
has been studied for many years (see [10, 16, 17, 21–23]). Rather recently it has
been noticed that a certain variant of this reducibility yields a lattice that is very
suitable for the classification of mathematical theorems (see [1,3–5,9,11,18,19]).
A basic reference for notions from computable analysis is [24]. The Weihrauch
lattice is a lattice of multi-valued functions on represented spaces. A represented
space is a pair (X, δX) where δX :⊆ NN → X is a partial surjection, called
representation. In general we use the symbol “⊆” in order to indicate that a
function is potentially partial. Using represented spaces we can define the concept
of a realizer. We denote the composition of two (multi-valued) functions f and
g either by f ◦ g or by fg.

Definition 1 (Realizer). Let f :⊆ (X, δX) ⇒ (Y, δY ) be a multi-valued func-
tion on represented spaces. A function F :⊆ NN → NN is called a realizer of f ,
in symbols F � f , if δY F (p) ∈ fδX(p) for all p ∈ dom(fδX).

Realizers allow us to transfer the notions of computability and continuity and
other notions available for Baire space to any represented space; a function
between represented spaces will be called computable, if it has a computable
realizer, etc. Now we can define Weihrauch reducibility.

Definition 2 (Weihrauch reducibility). Let f, g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ NN → NN such that
K〈id, GH〉 � f for all G � g. Moreover, f is said to be strongly Weihrauch
reducible to g, in symbols f ≤sW g, if there are computable functions K,H such
that KGH � f for all G � g.

Here 〈, 〉 denotes some standard pairing on Baire space.
There are two operations defined on Weihrauch degrees that are used in the

present paper, product × and composition ". The former operation was originally
introduced in [4], the latter in [5]. Informally, the product allows using both
involved operations independently, whereas for the composition the call to the
first operation may depend on the answer received from the second.

Definition 3. Given f :⊆ X ⇒ Y, g :⊆ U ⇒ V, define f × g :⊆ (X ×U) ⇒
(Y ×V) via (y, v) ∈ (f × g)(x, u) iff y ∈ f(x) and v ∈ g(u).
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Definition 4. Given f :⊆ X ⇒ Y, g :⊆ U ⇒ V, let

f " g := sup
≤W

{f ′ ◦ g′ | f ′ ≤W f ∧ g′ ≤W g}

where f ′, g′ are understood to range over all those multivalued functions where
the composition is defined.

Both × and " are associative, but only × is commutative. We point out that
while it is not obvious that the supremum in the definition of " always exists,
this is indeed the case, hence " is actually a total operation.

1.2 Closed Choice and Variations Thereof

The space of continuous functions from a represented space X to Y has a natural
representation itself, as a consequence of the UTM-theorem. This represented
space is denoted by C(X,Y). A special represented space of utmost importance
is Sierpiński space S containing two elements {8,⊥} represented by δS : NN → S
where δS(0

N) = ⊥ and δS(p) = 8, iff p �= 0N. The space A(X) of closed subsets
of X is obtained from C(X, S) by identifying a set A ⊆ X with the characteristic
function χX\A : X → S of its complement.

For a computable metric space X, an equivalent representation ψ− : NN →
A(X), can be defined by ψ−(p) := X \

⋃∞
i=0Bp(i), where Bn is some standard

enumeration of the open balls of X with center in the dense subset and rational
radius (possibly 0). The computable points in A(X) are called co-c.e. closed
sets. We are primarily interested in closed choice on computable metric spaces;
additionally, most of our considerations pertain to compact spaces.

Definition 5 (Closed Choice, [3]). Let X be a represented space. Then the
closed choice operation of this space is defined by CX :⊆ A(X) ⇒ X, A �→ A
with dom(CX) := {A ∈ A(X) : A �= ∅}.

Intuitively, CX takes as input a non-empty closed set and it produces an arbitrary
point of this set as output. Hence, A �→ A means that the multi-valued map CX

maps the input set A ∈ A(X) to the points in A ⊆ X as possible outputs.

Definition 6. For a represented space X and 1 ≤ n ∈ N,
let CX,�=n := CX|{A∈A(X)||A|=n} and CX,�≤n := CX|{A∈A(X)|1≤|A|≤n}.

More generally, for any choice principle the subscript % = n denotes the restric-
tion to sets of cardinality n, and the subscript % ≤ n to sets of cardinality less
or equal than n. In the same spirit, the subscript λ > ε denotes the restriction
to sets of outer diameter greater than ε, and μ > ε the restriction to those sets
where some value μ is greater than ε.

Definition 7. Let XCn := C[0,1]n |{A∈A([0,1]n)|A is convex }.

The proof of the following proposition has been inspired by the proof of [15,
Theorem 3.1] by Longpré et al. , which the proposition generalizes in some
sort. In fact, the study of C[0,1],�=m is quite closely related to the theme of [15].



Closed Choice for Finite and for Convex Sets 297

Proposition 1. Let X be a computably compact computable metric space. Then
CX,�=n ≤sW C{0,1}N,�=n and CX,�≤n ≤sW C{0,1}N,�≤n.

Proof. We associate a labeled finitely-branching infinite tree (with given bounds)
with the space X, where each vertex is labeled by an open subset of X. The
root is labeled by X. Then we find a finite open cover of X by open balls
B(x1, 2

−1), . . . , B(xn, 2
−1) using the computable dense sequence and the com-

putable compactness provided by X. The B(xi, 2
−1) form the second layer of the

tree. For the third layer, each B(xi, 2
−1) (whose closure is computably compact)

is covered by finitely manyB(xi,j , 2
−2) , and we then use B(xi, 2

−1)∩B(xi,j , 2
−2)

as labels. This process is iterated indefinitely, yielding finer and finer coverings
of the space at each layer.

Any closed subset of a computably compact space is compact (in a uniform
way), so we can assume the input to CX,�=n (CX,�≤n) to be a compact set A
of cardinality n (less-or-equal n). On any layer of the tree, there are n vertices
such that the union of their labels covers A. It is recognizable when an open set
includes a compact set, so we shall find suitable n vertices eventually. Also, we
can require that the vertices chosen on one level are actually below those chosen
on the previous level.

Any finitely-branching tree with at most n nodes per layer can be encoded in
a binary tree with at most n nodes per layer, and this just represents a closed
subset of Cantor space with cardinality less-or-equal n. If the initial set A has
exactly n elements, at some finite stage in the process any of the n open sets used
to cover it will actually contain a point of A. Hence, from that stage onwards no
path through the finitely-branching tree dies out, which translates to no path
through the binary tree dying out. But then, the closed subset of Cantor space
has cardinality exactly n.

Any point from the subset of Cantor space is an infinite path through the
two trees constructed, hence, gives us a sequence of rational balls with diameter
shrinking to 0 and non-empty intersection. This provides us with a name of a
point in the original set, completing the reduction.

It is rather obvious that if X is a co-c.e. closed subspace of Y, then CX,�=n ≤sW

CY,�=n and CX,�≤n ≤sW CY,�≤n (compare [1, Section 4]). We recall that a
computable metric space X is called rich, if it has Cantor space as computably
isomorphic to a subspace (then this subspace automatically is co-c.e. closed). [2,
Proposition 6.2] states that any non-empty computable metric space without
isolated points is rich.

Corollary 1. Let X be a rich computably compact computable metric space.
Then CX,�=n ≡sW C{0,1}N,�=n and CX,�≤n ≡sW C{0,1}N,�≤n.

By inspection of the proof of Proposition 1, we notice that the names produced
there as inputs to C{0,1}N,�=n or C{0,1}N,�≤n have a specific form: If we consider
the closed subsets of Cantor space to be represented as the sets of paths of
infinite binary trees, the trees involved will have exactly n vertices on all layers
admitting at least n vertices in a complete binary tree. The names used for
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C{0,1}N,�=n moreover have the property that from some finite depths onwards,
all vertices have exactly one child. The restrictions of C{0,1}N,�=n and C{0,1}N,�≤n

to inputs of the described type shall be denoted by C�=n and C�≤n. We directly
conclude C�=n ≡sW C{0,1}N,�=n ≡sW C[0,1],�=n and C�≤n ≡sW C{0,1}N,�≤n ≡sW

C[0,1]k,�≤n.

2 Relative Separation Techniques

The relative separation techniques to be developed in this section do not en-
able us to prove separation results just on their own; instead they constitute
statements that some reduction f ≤W g implies some reduction f ′ ≤W g′, so
by contraposition f ′ �W g′ (which may be easier to prove) implies f �W g. A
particular form of these implications are absorption theorems. These show that
for special degrees h, whenever f has a certain property, then f ≤W g " h (or
f ≤W h " g) implies f ≤W g. A known result of this form is the following:

Theorem 1 (Brattka, de Brecht & Pauly [1, Theorem 5.1]1). Let f :
X → Y be single-valued and Y admissible. Then f ≤W C{0,1}N " g implies
f ≤W g.

We call a Weihrauch-degree a fractal, if each of its parts is again the whole.
The concept was introduced by Brattka, de Brecht and Pauly in [1] as
a criterion for a degree to be join-irreducible (all fractals are join-irreducible,
cf. Lemma 1). The formalization uses the operation f �→ fA introduced next.

For some represented space X = (X, δX) and A ⊆ NN, we use the notation
XA for the represented space (δX [A], (δX)|A). This is a proper generalization
of the notion of a subspace. Given f :⊆ X ⇒ Y and A ⊆ NN, then fA is the
induced map fA :⊆ XA ⇒ Y.

Definition 8. We call f a fractal iff there is some g : U ⇒ V, U �= ∅ such that
for any clopen A ⊆ NN, either gA ≡W f or gA ≡W 0. If we can choose U to be
represented by a total representation δU : NN → U, we call f a closed fractal.

We shall prove two absorption theorems, one for fractals and one for closed
fractals. These essentially state that certain Weihrauch degrees are useless in
solving a (closed) fractal.

Theorem 2 (Fractal absorption). For fractal f , f ≤W g " C{1,...,n} implies
f ≤W g.

2.1 Baire Category Theorem as Separation Technique

The absorption theorem for closed fractals is a consequence of the Baire Category
Theorem, and was first employed as a special case in [3, Proposition 4.9] by
Brattka and Gherardi.

1 The precise statement of [1, Theorem 5.1] is weaker than the one given here, but a
small modification of the proof suffices to obtain the present form.
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Theorem 3 (Closed fractal absorption). For a closed fractal f , f ≤W g"CN

implies f ≤W g.

Proof. The closed sets An = {p | n ∈ ψN
−(p)} cover dom(CN ◦ψN

−) ⊆ NN, and the
corresponding restrictions (CN)An is computable for each n ∈ N. Let δ be the
representation used on the domain of g "CN, and Bn ⊆ dom ((g " CN) ◦ δ) ⊆ NN

be the closed set of those names of inputs to g " CN such that the call to CN

involved is an element of An. The sets (Bn)n∈N cover dom ((g " CN) ◦ δ), and we
find (g " CN)Bn ≤W g.

W.l.o.g. assume that f witnesses its own fractality. Now let f ≤W g " CN be
witnessed by computable K,H , and let ρ be the representation on the domain
of f . Then the closed sets H−1(Bn) cover dom(f ◦ ρ) = NN. We can apply the
Baire Category Theorem, and find that there exists some n0 such that H−1(Bn0)
contains some non-empty clopen ball. As f is a fractal, we know:

f ≤W fH−1(Bn0 )
≤W (g " CN)Bn0

≤W g

The preceding result occasionally is more useful in a variant adapted directly
to choice principles in the rôle of g. For this, we recall the represented space
R>, in which decreasing sequences of rational numbers are used to represent
their limits as real numbers. Note that id : R → R> is computable but lacks
a computable inverse. A generalized measure on some space X is a continuous
function μ : A(X) → R> taking only non-negative values. The two variants are
connected by the following result:

Proposition 2. Define Lb : {x ∈ R> | x > 0} → N via Lb(x) = min{n ∈ N |
n−1 ≤ x}. Then Lb ≡sW CN.

The preceding result indirectly shows how a closed choice principle for some class
A ⊆ A(X) of closed sets with positive generalized measure μ can be decomposed
into the slices with fixed lower bounds μ > n−1. For this, we recall the infinitary
coproduct (i.e., disjoint union)

∐
n∈N defined both for represented spaces and

multivalued functions between them via
(∐

n∈N fn
)

(i, x) = (i, fi(x)).

Corollary 2. CX|A,μ>0 ≤W

(∐
n∈N CX|A,μ>n−1

)
" CN

Lemma 1 (σ-join irreducibility of fractals [1, Lemma 5.5]). Let f be
a fractal and satisfy f ≤W

∐
n∈N gn. Then there is some n0 ∈ N such that

f ≤W gn0 .

Theorem 4. Let f be a closed fractal such that f ≤W CX|A,μ>0. Then there is
some n ∈ N such that f ≤W CX|A,μ>n−1 .

Proof. By Corollary 2 we find f ≤W

(∐
n∈N CX|A,μ>n−1

)
" CN. Then Theorem

3 implies f ≤W

(∐
n∈N CX|A,μ>n−1

)
. By Lemma 1 there has to be some n0 with

f ≤W CX|A,μ>n−1
0

.
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2.2 Large Diameter Technique

Whereas Theorem 4 allows us to bound any positive generalized measure on
the closed sets used to compute a function f away from 0, provided f is a
closed fractal, the separation technique to be developed next bounds away only
a specific generalized measure—the outer diameter—yet needs neither positivity
nor the closed fractal property.

For ε > 0 and some class A ⊆ A(X), we introduce:

Xε(A) = ψ−1
− ({A ∈ A | ∀x ∈ X∃B ∈ A B ⊆ A \B(x, ε)}) ⊆ NN

This means that the names in Xε(A) are for sets large enough such that arbi-
trarily late an arbitrary ball of radius ε can be removed from them, and still a
closed set in the class A remains as a subset.

We proceed to show that a reduction between choice principles has to map
sets large in this sense to sets with large outer diameter (denoted by λ).

Lemma 2 (Large Diameter Principle). Let H and K witness a reduction
CX|A ≤W CY|B, where Y is compact and A ⊆ A(X), B ⊆ A(Y). Then

∀p ∈ dom(CX|Aψ) ∀ε > 0 ∃n ∈ N ∃δ > 0, q ∈ Xε(A)∩B(p, 2−n) ⇒ λψK(q) > δ

Proof. Assume the claim were false, and let p ∈ dom(CX|Aψ) and ε > 0 be wit-
ness for the negation. There has to be a sequence (pn)n∈N such that pn ∈ Xε(A),
d(p, pn) < 2−n and λψH(pn) < 2−n. As the pn converge to p and H is contin-
uous, we find that limn→∞H(pn) = H(p). For the closed sets represented by

these sequences, this implies
(⋂

n∈N

⋃
i≥n ψH(pi)

)
⊆ ψH(p). As Y is compact,

the left hand side contains some point x.
As x ∈ ψH(p), for any q ∈ δ−1

Y ({x}) we find 〈p, q〉 ∈ dom(K). We fix such a
q and y = δX(K(〈p, q〉)). By continuity, there is some N ∈ N such that for any
〈p′, q′〉 ∈ (B(p, 2−N ) ×B(q, 2−N)) ∩ dom(δXK) we find δXK(〈p′, q′〉) ∈ B(y, ε).

By choice of x, for any i ∈ N there is some ki ≥ i such that d(x, ψH(pki )) <
2−i. By choice of the pn, this in turn implies ψH(pki) ⊆ B(x, 2−i + 2−ki).
Let I ∈ N be large enough, such that for any x′ ∈ B(x, 2−I + 2−kI ) we find
δ−1
Y (x′)∩B(q, 2−N ) �= ∅. The inclusion ψH(pkI ) ⊆ B(x, 2−I +2−kI ) of a compact

set in an open set implies that there is some L > kI such that for all p′ ∈
B(pkI , 2

−L) ∩ dom(CX|Aψ) we find ψHp′ ⊆ B(x, 2−I + 2−kI ).
The choice of pkI , L and the point y ∈ X ensures that our reduction may

answer any valid input to CX|A sharing a prefix of length L with pkI with
a name of some point y′ ∈ B(y, ε). However, as we have pkI ∈ Xε(A), we can
extend any long prefix of pkI to a name of a set not intersecting the ball B(y, ε)—
this means, our reduction would answer wrong, and we have found the desired
contradiction.

Corollary 3 (Large Diameter Principle for fractals). Let CX|A be a frac-
tal, Y be compact and CX|A ≤W CY|B. Then for any ε > 0 there is a δ > 0
such that

(CX)Xε(A) ≤W CY|B,λ>δ
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3 Separation Results for Finite and Convex Choice

We now have the tools available to completely characterize the valid reductions
between C{0,...,n}, XCm, C�≤i and C�=j . Figure 1 provides an overview—the
absence of an arrow (up to transitivity) indicates a proof of irreducibility. Besides
an application of the general techniques of the preceding section, more specialized
proof methods are employed, some with a rather combinatorial character, others
based on the properties of simplices. We also exhibit a technique suitable to
transfer results from the compact case to the locally compact case.

Observation 5. C�=n is a fractal. XCn and C�≤n are even closed fractals.

Corollary 4. C�=n �W C{0,...,m} for all n > 1,m ∈ N.

Proof. Assume the reduction would hold for some n,m ∈ N. Observation 5 allows
us to use Theorem 2 to conclude C�=n to be computable—a contradiction for
n > 1.

Proposition 3. C�=n ≤W CN

Corollary 5. C�≤2 �W C�=n

Proof. Assume C�≤2 ≤W C�=n for some n ∈ N. By Proposition 3, this implies
C�≤2 ≤W CN. Observation 5 together with Theorem 3 would show C�≤2 to be
computable, contradiction.

3.1 Combinatorial Arguments

Proposition 4. C{0,...,n} <sW C�=n+1.

Proposition 5 (Pigeonhole principle). C{0,...,n} �W C�≤n

XC1 XC2 XCn C[0,1]

C
≤2 C
≤3 C
≤n+1

C
=2 C
=3 C
=n+1 CN

1 ≡W C{0} C{0,1} C{0,1,2} C{0,...,n} XC1

Fig. 1. The reducibilities
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Proposition 6. C�=n+1 ≤W Cn
�=2 and C�≤n+1 ≤W Cn

�≤2

Proof (Sketch). When trying to find a path through an infinite tree with exactly
n+ 1 vertices per level, there are at any moment n vertices where both the left
and the right successor could potentially lead to an infinite path. The difficulty
solely lies in picking a suitable successor at each of these vertices in each stage. It
is possible to disentangle these decisions, yielding n trees with just two vertices
per level such that any problematic vertex in the original tree is mapped to a
problematic vertex in one of the new trees in a way that preserves correct choices
of successors.

As a consequence from the independent choice theorem in [1] together with
Proposition 1 we obtain the following, showing ultimately that picking an ele-
ment from a finite number of 2-element sets in parallel is just as hard as picking
finitely many times from finite sets, with the later questions depending on the
answers given so far:

Observation 6. C�=n × C�=m ≤W C�=n " C�=m ≤W C�=(nm) and C�≤n ×
C�≤m ≤W C�≤n " C�≤m ≤W C�≤(nm)

Corollary 6. C∗
�=2 ≡W

(∐
n∈N C�=n

)
≡W

(∐
n,k∈N C

(k)
�=n

)
Corollary 7. C∗

�≤2 ≡W

(∐
n∈N C�≤n

)
≡W

(∐
n,k∈N C

(k)
�≤n

)
Whether this property (that sequential uses of some closed choice principle are
equivalent to parallel uses) also applies to convex choice XC1 remains open at

this stage. As we do have XCk
1 ≤W XCk ≤W XC

(k)
1 , a positive answer would also

imply that increasing the dimension for convex choice means climbing the same
hierarchy, again. We point out that the question is related to the open question
in [6] whether connected choice in two dimensions is equivalent to connected
choice in three dimensions.

Question 1. Is there some k ∈ N such that XC1 "XC1 ≤W XCk
1?

3.2 Simplex Choice

Proposition 7. Given a closed set A ⊆ [0, 1] with |A| ≤ n, we can compute a

closed set B ⊆ [0, 1]n−1 with |A| = |B|, π1(B) = A, and such that the points in
B are affinely independent.

Proposition 8. Given a closed set A ⊆ [0, 1]n with |A| = n + 1 such that the
points in A are affinely independent, we can compute a set A ∪ {c}, where c is
a point in the interior of the convex hull of A.

Proposition 9. Given a finite closed set A ⊆ [0, 1]
n

, such that the points in A
are affinely independent, as well as a point x in the convex hull of A, we can
compute a point in A.
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Proof (Sketch). We can obtain positive information about A by noticing that
removing some area from A makes x fall out of the convex hull of the remaining
set. But then this area must actually contain a point. Iteratively refining this
information yields some point in A.

Corollary 8. C�≤n ≤W XCn−1

Theorem 7. C�=n <W C�=n+1

Proof. By Corollary 1, we can freely change the space we are working in among
any rich computably compact computable metric space. We start with an n-
point subset of [0, 1] and apply Proposition 7 to obtain n affinely independent
points. Then we use Proposition 8 to obtain a set of cardinality n+ 1 containing
the n previous points and some additional point in the interior of their convex
hull. This is a valid input to C�=n+1 (using Corollary 1 again), and we obtain one
of the points, which certainly is contained in the convex hull. Hence, Proposition
9 allows us to find one of the vertices, which by Proposition 7 is sufficient to
compute one of the points in the original set.

That the reduction is strict follows from Propositions 4 and 5.

Note that while C�≤n ≤W C�≤n+1 is trivially true, the positive part of the
preceding result is not obvious.

3.3 Application of the Large Diameter Technique

The usefulness of the large diameter technique for disproving reducibility to
convex choice lies in the observation that convex sets with large outer diameter
are simpler, as we can then cut by a hyperplane and obtain another convex set
of smaller dimension:

Proposition 10 (Cutting). XCn,λ>m−1 ≤W XCn−1 " C{1,...,(m−1)n}

Proof (Sketch). Because the input set has a large outer diameter, we can find
(m − 1)n hyperplanes such that at least one of them intersects the input set.
Picking a suitable hyperplane is done with C{1,...,(m−1)n}, and the intersection
then is a convex set of lower dimension, hence a valid input for XCn−1.

Corollary 9. Let CX|A and (CX)Xε(A) be fractals and CX|A ≤W XCn+1. Then
we find (CX)Xε(A) ≤W XCn.

Proof. Corollary 3 gives us (CX)Xε(A) ≤W XCn+1,λ>m−1 for some m ∈ N, then
Proposition 10 implies (CX)Xε(A) ≤W XCn "C{1,...,(m−1)(n+1)} and finally The-
orem 2 fills the gap to (CX)Xε(A) ≤W XCn.

For n ≥ k ≥ 1 let C�=n�k := C[0,1]|{A∈A([0,1])||A|=n∧|{i<n|[ 2i
2n , 2i+1

2n ]∩A �=∅}|≥k}. So

C�=n�k is choice for n element sets, where we know that our set intersects at
least k of a collection of fixed distinct regions. We shall need three properties of
these choice principles:
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Proposition 11. 1. C�=n�(k+1) ≤W (C[0,1])X(5n)−1 (dom(C�=n�k)).

2. C�=n+1�n is not computable.
3. Any C�=n�k is a fractal.

Corollary 10. C�=n�k ≤W XCm+1 implies C�=n�(k+1) ≤W XCm.

Theorem 8. C�n+2 �W XCn.

Proof. Assume C�=n+2 = C�=(n+2)�1 ≤W XCn. Iterated use of Corollary 10 al-
lows us to conclude that C�=(n+2)�(n+1) is computable, which contradicts Propo-
sition 11 (2).
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Abstract. We develop a realizability model in which the realizers are
the reals not just Turing computable in a fixed real but rather the reals in
a countable ideal of Turing degrees. This is then applied to prove several
separation results involving variants of the Fan Theorem.

1 Introduction

Certain constructions in computability theory lend themselves well to realiz-
ability, the latter being based on an abstract notion of computation. A coarse
example of this is the notion of a Turing computable function itself, as the col-
lection of Turing machines makes an applicative structure and so provides an
example of realizability. This model is closely tied to Turing computation, nat-
urally enough, and so provides finer examples. Consider Weak König’s Lemma,
WKL, which is among constructivists more commonly studied in its contrapos-
itive form, the Fan Theorem FAN. (For background on realizability, the Fan
Theorem, and constructive mathematics in general, there are any of a num-
ber of standard texts, such as [3,23,25].) Kleene’s well-known eponymous tree
is a computable, infinite tree of binary sequences with no computable path.
In the context of reverse mathematics, this shows that RCA0 does not prove
WKL. Within the realizability model, the same example shows IZF does not
prove FAN.

Perhaps a word should be said on the choice of the ground theory. For the
classical theory, it’s RCA0, while for the constructive, it’s IZF. The former is
notably weak, the latter strong. Why is that? And why those theories in partic-
ular? This is not the place to discuss the particular choice of RCA0. As for IZF,
its use is of secondary importance. The point is that much of reverse classical
mathematics is to show the equivalence of various principles, for which a weaker
base theory provides a stronger theorem. Even for independence results, which
on the surface would be better over a stronger base, are often of the form that
a weaker theory does not imply a stronger one, where the latter easily implies

� The first author would like to thank Wouter Stekelenburg, Thomas Streicher, and
Jaap van Oosten for useful discussion during the development of this work.
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the former; clearly here, the base theory is the weaker of the two. Also for those
cases where the independence result desired is an incomparability, the principles
in question are all weak set existence principles, weak in the sense that they use a
tiny fragment of ZF, and hence a weak base theory is needed, to keep the theories
in question from being outright provable. In contrast, reverse constructive math-
ematics studies not set existence principles, but rather logical principles. Instead
of fragments of ZF, the subject is fragments of Excluded Middle. Especially when
discussing independence, when a stronger base theory gives a stronger theorem,
in order to highlight that it really is the logic that is up for grabs, and not set
existence, strong principles of set theory are taken as the base theory. IZF is
used here, since it is the simplest and most common constructive correlate to
ZF, the classical standard. Even for equivalence theorems, there would still be a
tendency to work over IZF, since the degree to which a result depended on the
IZF axioms is the degree to which the result is ultimately classical. In practice,
if any theorem needs less than full IZF, what is actually used could be read off
from the proof anyway.

Returning to realizability, the picture is not quite so rosy when it comes
to other constructions. A case in point is the distinction between WKL and
WWKL, Weak Weak König’s Lemma. WWKL states that for every binary tree
(of finite, 0-1 sequences) with no path there is a natural number n such that at
least half the sequences of length n are not in the tree. This principle has been
studied in reverse mathematics, both classical [22] and constructive [20]. Yu and
Simpson [26] showed that WWKL does not imply WKL (over RCA0). That’s
not so simple as merely taking the computable sets; while that would falsify
WKL, as discussed above, it invalidates WWKL too. What they do is to extend
the computable sets by a carefully selected real R0 (implicitly closing under
Turing reducibility) which provides a path through all the “bad” trees while not
destroying the Kleene tree counter-example. That’s not enough, though, because
the construction of a counter-example to WWKL relativizes. So while R0 kills
off the bad computable trees, it introduces new bad trees of its own. Hence
the construction must be iterated: R1, R2, ... In the end, the union of the (reals
computable in the) Rn’s suffices.

The statement of WWKL carries over just fine to a constructive setting, where
we shall call it the Weak Fan Theorem W-FAN, as well as the question of whether
W-FAN implies FAN. For better or worse, the construction though doesn’t. One
might first think to use the Yu-Simpson set of reals as the set of realizers. An
immediate problem is that we need an applicative structure: the realizers need
to act on themselves. It is immediate and routine to view these reals as functions
from the naturals to the naturals—that’s a trivial identification these days. It
doesn’t help though. If the realizers are those functions, well, those functions
act on naturals, not on functions. What we would need would be integer codes
for those functions. The realizers from this point of view would be that set
of naturals, which as need be could be taken to be functions. But here’s the
problem: what code do you give a function which showed up in some increasing
tower? If you were looking at those functions computable in some fixed oracle,
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you could consider all the naturals as each coding such a machine. If instead
your oracle is continually changing, it’s not clear what to do and still maintain
an applicative structure. The fixes we tried did not work, as we were warned.

The same issue comes up with another distinction around FAN, namely the
distinction between FAN and WKL. In order to show their inequivalence, one
might want to come up with a model of FAN falsifying WKL. This has already
been done using K2 realizability, Kleene’s notion of functional realizability. It
is another matter to prove this theorem via K1 realizability. The problem is as
above: every Turing degree has an infinite binary tree with no path of the same
or lesser degree (the Kleene tree relativized to that degree). One could take a
set of degrees, any of the trees of which have a path in some other degree. The
problem here is how to turn that into a realizability structure.

The goal of this paper is a realizability model in which the realizers code
functions from the natural numbers to themselves with no highest Turing degree
among them. As corollaries to this method we get the two results just cited.

2 The Main Construction

The main idea here is to build a Kripke model, and then within that a realiz-
ability model, which has sometimes been called relative realizability [25]. This
kind of construction was apparently first suggested by de Jongh [10]. Variants
have been used by several people: having the Kripke partial order consist of only
two points and the realizers be at ⊥ certain computable objects which are then
injected into a full set of realizers [1,2], or using instead of Kripke semantics
either double-negation [14] or a kind of Beth [24] semantics. For more detail on
all of this, see the last two sections of [25].

To help keep things simple, we assume ZFC in the meta-theory. For most of
this work, neither classical logic nor the Axiom of Choice is necessary, but we
shall not be careful about this.

Let the underlying Kripke partial order be ω<ω. Let M be the full Kripke
model built on that p.o. Intuitively, that means throw in all possible sets. More
formally, a set in the model is a function f from ω<ω to the sets of the model
(inductively) which is non-decreasing (i.e., if σ ⊆ τ then f(σ) ⊆ f(τ)). Equality
and membership are defined by a mutual induction. On general principles,M |=
IZF. Moreover, the ground model V has a canonical image in M : given x ∈ V ,
let x̌ be such that x̌(σ) = {y̌ | y ∈ x}. We often identify x with x̌, the context
hopefully making clear whether we’re in V or in M . For slightly more detail on
the full model, defined over any partial order, see for instance [17].

Within M , we shall identify a special set R of natural numbers, based on a
prior sequence Rn of reals (n ∈ ω). We assume the Rn are of strictly increasing
Turing degree. At node ⊥ = 〈〉, R looks empty: ⊥ �|= s ∈ R; equivalently,
R(〈〉) = ∅. Suppose inductively R(σ) is defined, where σ has length n. Let Ri

n

list all the reals that differ from Rn in finitely many places. Let R(σ�i) be
R(σ) ∪ {〈n, s〉 | s ∈ Ri

n}. In words, at level n+ 1, beneath each node on level n,
put into the nth slice of R all of the finite variations of Rn, spread out among
all the successors. So R is a kind of join of the Rn’s, just not all at once.
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Because R is (in M) a real, it makes sense to use R as an oracle for Turing
computation. At ⊥, if a computation makes any query s ∈ R of R, there are some
nodes at which s is in R and others where it is not, so the oracle cannot answer
and the computation cannot continue. This follows from the formal model of
oracle computability: a run of an oracle machine is a tuple of natural numbers
coding a correct computation; the rule for extending a tuple when the last entry
is an oracle call is that the next entry must contain the right answer; if there
is, at a node, no right answer, then there can be no extending tuple. Hence the
only convergent computations are those that make no oracle calls, and the only
R-computable functions are the computable ones. More generally, at node σ of
length n, any query of the form 〈k, s〉 ∈ R with k ≥ n will be true at some future
nodes and false at others, hence unanswerable at σ. The computable functions
at σ are those computable in Rn−1.

In M , let App be the applicative structure of the indices of functions com-
putable in R (using, of course, the standard way of turning such indices into an
applicative structure). In M , let M [App] be the induced realizability model. On
general principles,M [App] |= IZF. The natural numbers ofM [App] can be iden-
tified with those ofM , so any set of such inM [App] can be identified with one in
M . Furthermore, at any node, a decidable real in one structure corresponds to a
decidable real in the other, and that can be identified with a real in the ambient
classical universe. Henceforth these various reals will not even be distinguished
notationally. For instance, if σ |= “M [App] |= “T ⊆ ω is decidable” ” then we
might refer to the real T in V .

For notational convenience, we shall abbreviate σ |= “M [App] |= φ” as
σ |=App φ.

Lemma 1. For σ of length n and R a real, σ |=App “X is decidable” iff X is
Turing computable in Rn−1.

Proof. The statement “X is decidable” is ∀m ∈ ω m ∈ X ∨m �∈ X. A realizer r
of the latter would be a function that, on input m, decides whether m is in or
out of X . If in the course of its computation r asked the oracle any question of
the form 〈k, s〉 with k ≥ n then the computation would not terminate at σ. So r
can access only Rn−1, making X computable in Rn. The converse is immediate.

Lemma 2. If σ |=App “X is an infinite branch through the binary tree” then
σ |=App “X is decidable.”

Proof. To be an infinite branch means for every natural number m there is a
unique node of lengthm. The realizer that X is an infinite branch has to produce
that node given m.

Often people are concerned about the use of various choice principles. The in-
dependence results presented here are that much stronger because Dependent
Choice holds in our models.

Proposition 1. 〈〉 |=App DC

Proof. The same proof that DC holds in standard Kleene K1 realizability works
here.
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3 D-FAN and W-D-FAN

When adapting the classical results to the current setting, we need an additional
stipulation. All of the trees, and hence principles, we consider will be decidable:
for all binary sequences b and trees T , either b ∈ T or b �∈ T . So, for instance,
instead of the full Fan Theorem FAN, we shall be considering the Decidable Fan
Theorem: if a decidable tree in {0,1}N has no infinite path, then the tree is finite.
Also, Weak FAN, also known as WWKL, when applied to decidable trees, would
read: if a decidable tree in {0,1}N has no infinite path, then there is an n such
that at least half of {0,1}n is not in the tree.

This brings us to an annoying point about notation. Decidable FAN has been
referred to in various places as D-FAN, FAND, Δ-FAN, and FANΔ. So notation
for Weak Decidable FAN could be any of those, with a “W” stuck in somewhere.
To make matters worse, even though the statement of Weak FAN is a weakening
of FAN and not of WKL, the name WWKL for it is already established in the
classical literature, and so one could make a case to stick with it, and insert
decidability (“D” or “Δ”) somewhere in there. These same considerations apply
to other variants of FAN, whether already identified (c-FAN, Π0

1 -FAN) or not.
Whatever we do here will likely not settle the matter. Still, we have to choose
something. It strikes us as confusing to distinguish between FAN and WKL, and
then call a variant of FAN by a variant of WKL. Also, what if somebody someday
wants to study the contrapositive of “WWKL”? Hence we stick with the name
W-FAN. As for how to get in the decidability part, we choose the option that’s
the easiest to type: W-D-FAN.

Returning to the matter at hand, Yu-Simpson [26] construct a sequence Xn

of reals of increasing Turing degree such that:
i) if T is a tree computable in Xn the branches through which form a set of

positive measure, then a path through T is computable in Xn+1, and
ii) no path through the Kleene tree is computable in any Xn.
We apply the construction from the previous section, with Rn set to Xn. From

this, the following lemmas are pretty much immediate.

Lemma 3. 〈〉 |=App W-D-FAN

Proof. At any node, a decidable tree T is computable in some Xn. If in V the
measure of the branches through T were positive, then there would be a branch
computable through Xn+1. So no node could force that there are no branches
through T . To compute a level at which half the nodes are not in T , just go
through T level by level until this is found.

Lemma 4. 〈〉 |=App ¬D-FAN

Proof. The Kleene tree provides a counter-example.

While we expect that even full W-FAN does not imply D-FAN, this model does
not satisfy W-FAN. To see that, recall that any path through the binary tree is
decidable, hence computable in some Xn. There are only countably many such
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paths. It is easy in V to construct a tree avoiding those countably many paths
with measure (of the paths) being as close to 1 as you’d like. The internalization
of such a tree in M [App] will not be decidable, but will be internally a tree with
no paths.

4 FAN and WKL

The distinction between FAN and WKL is a strange case. Their relation is that
WKL implies FAN, but not the converse. With some exaggeration, it seems as
though everyone knows that but no one has proven it.1 At the very introduction
of non-classical logic, Brouwer himself must have realized this distinction, as he
made a conscious choice which variant of this class of principles he accepted.
Moreover, while he accepted FAN (having proven it from Bar Induction), it is
easy to see that WKL implies LLPO, which Brouwer rejected. So while Brouwer
did not provide what we would today consider a model of FAN + ¬WKL, we
would like to honor him in the style of the Pythagoreans by attributing this
result to him, whatever may actually have been going through his mind.

Such models have since been provided, for instance by Kleene, using his func-
tional realizability K2 [16,21]. However, in neither of those sources is it men-
tioned that WKL fails. In [5], both FAN and WKL are analyzed into constituent
principles, it is shown that WKL’s components imply the corresponding FAN
components, and it is nowhere stated that the converse does not hold. In [7],
equivalents are given for what is there called FAN and WKL, although their
FAN is actually D-FAN, and it is at least asked how much stronger WKL is
than FAN. The one proof we have been able to find of some fan theorem not
implying WKL is in [19], where once again the fan principle used is D-FAN. For
what it’s worth, that argument, like ours, uses relative realizability [8], albeit
with K2 realizability.

Below we give a full proof that FAN does not imply WKL. We would be
interested in hearing of other extant proofs of such, and would find it amusing
if there were none. What might be new here, if anything, is not the result it-
self, but rather the methodological point that this model is based on K1. That
is, while K1 is usually used to falsify even D-FAN, its variant below validates
full FAN.

Theorem 1. (Brouwer) FAN does not imply WKL.

Proof. Take a countable ω-standard model of WKL0 [22, Chapter VIII]. There
is a sequence Xn of reals of increasing Turing degree such that the reals in this
model are exactly those computable in some Xn. This induces a model M [App]
as in section 2 above (with Rn being set to Xn).

To see that WKL fails, suppose to the contrary σ |=App “n 	r WKL”. So if
σ |=App “e 	r T is an infinite binary tree” then, at σ, {n}(e) must compute a

1 Thanks are due here to Hannes Diener for first pointing this out to us and Thomas
Streicher for useful discussion.
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path through T . But a path through a tree is not computable in the tree, as is
standard, by considering the Kleene tree. This shows moreover that WKL for
decidable trees fails.

To show FAN, suppose at some node σ in the Kripke partial order r realizes
that B is a bar. We must show how to compute a uniform bound on B. To do this,
we shall build a decidable subset C of B. Inductively at stage n, suppose we have
decided C on all binary sequences of length less than n. Consider each binary
sequence b̄ of length n (except if b̄ extends something in C of shorter length, in
which case what happens with b̄ just doesn’t matter anymore). Consider the path
Pb̄ which passes through b̄ and is always 0 after that. Applying r to Pb̄ produces
a sequence b+ in B on Pb̄. If b+ has length at most n, include in C all extensions
of b+ of length n, else just include b+ in C. After doing this for all b̄ of length n,
anything of length n not put into C is out of C. This procedure terminates only
when we have a uniform bound on C, hence on B. If this never terminates, we
have a decidable, infinite set of binary sequences not in C computable from r.
Hence at any child τ of σ there will be an infinite path P avoiding C. Applying
r to P produces an initial segment of P in B, say b. This computation itself
used only an initial segment of P , say c. Letting n be the maximum length of b
and c, at stage n no initial segment of either has been put into C, by the choice
of P . So the procedure would consider the path through b and c which is all 0s
afterwards. This would then put the longer of b and c into C, contradicting the
choice of P . So this procedure must terminate, producing a bound for B.

5 Questions

5.1

The second construction was developed for an entirely different purpose.
One way of stating FAN is that every bar is uniform. Weaker versions of

FAN can be developed by restricting the bars to which the assertion applies. For
instance, Decidable FAN, D-FAN, states that for every decidable set B (i.e., for
all b either b ∈ B or b �∈ B), if B is a bar then B is uniform. Constructively,
decidability is a very strong property; in fact, it is the strongest hypothesis on
a bar yet to be identified. D-FAN is trivially implied by FAN; it has long been
known that D-FAN is not provable in IZF (via the Kleene tree, described in any
standard reference, such as [3,23]; see [18] for a different proof). A somewhat
milder restriction on a bar B is that it be the intersection of countably many
decidable sets; that is, B is Π0

1 definable. Between decidable and Π0
1 bars are

c-bars: if there is a decidable set B′ such that b ∈ B iff for every c extending
b c ∈ B′, then B is called a c-set, and if it’s a bar to boot then it’s called a c-
bar. Often this definition seems at first unnatural and rather technical. All that
matters at the moment is that this is a weaker condition than decidability: every
decidable bar is a c-bar. c-FAN is the assertion that every c-bar is uniform. Such
principles occur naturally in reverse constructive mathematics [15,4,12], and are
all inequivalent [18].
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The first proof that D-FAN does not imply c-FAN, by Josef Berger [6], went
as follows. Classically, for X any collection of bars, X-FAN and X-WKL are
equivalent (as contrapositives). Furthermore, the Turing jump of a real R can
be coded into a tree computable in R, so that c-WKL implies that jumps always
exist. Hence over RCA0 c-WKL implies ACA. D-FAN and WKL (which, in the
setting of limited comprehension, is just D-WKL) are equivalent. So if D-FAN
implied c-FAN, constructively or classically, then WKL would imply ACA, which
is known not to be the case [22].

A limitation of this argument is that it works over a very weak base theory. It
leaves open the question of whether D-FAN implies c-FAN over IZF. While this
has been settled [18], a question of method still remains open. Could Berger’s
argument be re-cast to provide an independence results over IZF? The obvious
place to look seemed to be a model of WKL + ¬ACA, using the functions there,
which necessarily have no largest Turing degree, as realizers. Our analysis of
such a model did not achieve that goal. Is there another way of turning such a
model into a separation of D- and c-FAN?

More generally, could there be any realizability model separating D- and c-
FAN? All of the realizability models we know about either falsify D-FAN or
satisfy full FAN. Perhaps that’s because of the difficulty of realizing that some-
thing is a bar. That is, to falsify any version of the FAN, one might well want
to provide a counter-example, which would be a non-uniform bar. If a bar is
not uniform, realizing the non-uniformity would typically be trivial, as nothing
could realize that it is uniform, which suffices. Realizing that a set is a bar is
different: given a binary path, you’d have to compute a place on that path and
realize that that location is in the alleged bar. If this set is decidable, that’s easy:
continue along the path, checking each node on the way, until you’re in it. If the
set cannot be assumed decidable, it is unclear to us how to realize that it’s a
bar. This is something we would like to see: a way of realizing a non-decidable
set being a bar.

5.2

The differences among D-FAN, c-FAN, Π0
1 -FAN, and FAN have to do with the

hypothesis; they apply to different kinds of bars. In contrast, the difference be-
tween FAN and W-FAN has to do with the conclusion, with whether the bar is
uniform or half-uniform, to coin a phrase. So these variants can be mixed and
matched. There are D-FAN, c-FAN, Π0

1 -FAN, FAN, and also W-D-FAN, W-c-
FAN, W-Π0

1 -FAN, and W-FAN. Clearly any version of FAN implies its weak
cousin. Other than that, we conjecture there is complete independence between
the variants of FAN and the variants of Weak FAN. This is, we conjecture W-
FAN does not imply D-FAN, and conjoined with D-FAN does not imply c-FAN,
and so on. Furthermore, we expect that D-FAN, while of course implying W-D-
FAN, does not imply W-c-FAN, and c-FAN does not imply W-FAN, and so on
for other variants that might appear.
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Towards a Theory of Homomorphic Compression
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Abstract. In this talk we survey recent progress on designing homo-
morphic fingerprints. Fingerprinting is a classic randomized technique
for efficiently verifying whether two files are equal. We shall discuss two
extensions of this basic functionality: a) verifying whether two text files
are cyclic shifts of one another and b) when the files correspond to “ad-
dress books”, verifying whether the resulting social network is connected.
Underlying both results is the idea of homomorphic lossy compression,
i.e., lossy data compression that supports a range of operations on the
compressed data that correspond directly to operations on the original
data.

1 Introduction

Fingerprinting is a classic technique for verifying whether two large data sets
are equal. Examples include the “rolling” fingerprint of Karp and Rabin [6] and
cryptographic hash functions such as MD5 [7]. More generally, linear sketching is
a form of lossy compression that also enables the “dissimilarity” of non-identical
data sets to be estimated. If we represent the data as a vector x ∈ Rn, then a
linear sketch is just a random projection Ax ∈ Rk where k � n and we choose
the random matrix A ∈ Rk×n in such a way that the dissimilarity between files
x and y can be estimated from Ax −Ay = A(x − y).

Linear sketches are trivially homomorphic with respect to linear operations
in the sense that given sketches Ax, Ay, and Az we can also estimate the dis-
similarity between x and w = αy + βz for some arbitrary α, β ∈ R since
Ax − αAy − βAz = A(x − w). In this talk, we shall survey recent work [1–3]
on designing fingerprints and sketches that are also homomorphic with respect
to other operations. These results have applications in data stream computation
and communication complexity.

2 Homomorphic Fingerprints

2.1 Text Misalignment

Many sketches have been proposed for dissimilarity measures that decompose
coordinate-wise such as the Hamming distance between alphanumeric strings,
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dog. The quick 
brown… lazy

CYCLIC ROTATION

LINEAR FINGERPRINT LINEAR FINGERPRINT

FINGERPRINT OPERATION

Fig. 1. Fingerprinting is an extreme form of compression that allows the Hamming
distance between two files to be estimated given only the compressed form (the “finger-
print”) of each file. However, traditional fingerprinting techniques perform poorly when
edits result in misaligned characters. However, recent work shows that nO(1/ log log n) bit
fingerprints exist that are homomorphic with respect to both linear and rotation oper-
ations, i.e., given only the fingerprint of a file (and not the file itself), we can construct
the fingerprint of any cyclic rotation of the file (i.e., the above diagram commutes). Such
fingerprints enable us to test whether two files are within a small Hamming distance
of being cyclic shifts of one another.

or the Euclidean distance between vectors. However, when editing textual data,
the appropriate notions of dissimilarity do not decompose coordinate-wise. For
example, adding a single character to the start of a file and deleting a character
from the end of the file will result in a new file whose Hamming distance to
the original file may be proportional to the length of the file. Hence we need
fingerprints that are robust to misalignments.

In recent work [3], we designed a linear sketch L : Zn
m → {0, 1}s that randomly

projected length-n files into s = D(n) · polylogn dimensions where D(n) is the
number of divisors of n. The sketch has the following properties:

1. Soundness: Given L(a) and L(b) we can determine whether the file b is a
cyclic shift of a (or more generally within a constant Hamming distance of
a file that is a cyclic shift of a) with probability at least 2/3.

2. Shift homomorphism: Given L(a) and cyclic shift σ we can compute
L(σ(a));

3. Linear homomorphism: Given L(a) and L(b) we can compute L(a+ b).

Furthermore, we showed that the dependence onD(n) was optimal. This is some-
what surprising in the sense that we wouldn’t expect a problem that is ostensibly
about lossy compression to be so sensitive to a number-theoretic quantity that
isn’t even monotonic with the size of the data being compressed. The algorithm
is based on a modification of the Karp-Rabin fingerprinting technique [6] and
analyzed by appealing to properties of cyclotomic polynomials.
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Is the friendship 
graph connected?

Fig. 2. Each person in a group of n people has an address book that lists their friends in
the group. Without any inter-group communication, each person sends a “fingerprint”
of their address book to a third party. How many bits must each fingerprint contain
for the third party to determine whether the underlying friendship graph is connected
with high probability? A trivial upper-bound is n bits and may appear tight. However,
recent work shows that even for an arbitrary graph, it suffices for each fingerprint to
contain O(polylog n) bits and we extend the result to approximating the size of all cuts
in the graph. An example application is the first sub-linear space data structures for
processing dynamic graphs.

2.2 Graph Connectivity

Massive graphs arise in any application where there is data about both
basic entities and the relationships between these entities, e.g., web-pages and
hyperlinks; neurons and synapses; papers and citations; IP addresses and net-
work flows; people and their friendships. Graphs have become the de facto stan-
dard for representing many types of highly-structured data. Relevant properties
of these graphs could include dense subgraphs corresponding to tight-knit com-
munities; shortest paths for network routing; hubs and authorities; sparse cuts
and natural decompositions of the graph. However, the sheer size of some of
these graphs can render classical algorithms useless when it comes to analyzing
such graphs. For example, both the web graph and models of the human brain
would use around 1010 nodes while IPv6 supports 2128 possible addresses. For
such massive graphs we need efficient streaming and parallel algorithms.

In recent work [1,2], we designed a fingerprinting algorithm such that, given a
O(ε−2 ·polylogn) bit fingerprint of each of the n rows of the adjacency matrix of
a graph, we can approximate the size of every cut within a factor of (1 + ε) with
high probability. See Figure 2. Since these fingerprints are linear, this result im-
mediately implies a O(ε−2 ·n ·polylogn)-space stream algorithm for the dynamic
graph connectivity problem (i.e., checking that the graph defined by a sequence
of edge insertions and deletions is connected). Subsequently, similar ideas have
also yielded data structures for dynamic connectivity with fast update and query
time [5]. Underlying these results was the fact that the fingerprints developed
were homomorphic to the operation of edge-contraction. The algorithm combines
�0-sampling [4] with an encoding from matroid theory.
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Abstract. We adjust methods of computable model theory to effective
analysis. We use index sets and infinitary logic to obtain classification-
type results for compact computable metric spaces. We show that ev-
ery compact computable metric space can be uniquely described, up to
isometry, by a computable Π3 formula, and that orbits of elements are
uniformly given by computable Π2 formulas. We show that deciding if
two compact computable metric spaces are isometric is a Π0

2 complete
problem within the class of compact computable spaces, which in itself is
Π0

3 . On the other hand, if there is an isometry, then ∅′′ can compute one.
In fact, there is a set low relative to ∅′ which can compute an isometry.
We show that the result can not be improved to ∅′. We also give further
results for special classes of compact spaces, and for other related classes
of Polish spaces.

1 Introduction

An equivalence relation on a standard Borel space is called smooth if it is Borel
reducible to the equality relation on R. By a result of Gromov (cf. [7, proof of
14.2.1]), the isometry relation on compact metric spaces is smooth. Thus, every
compact metric space can be uniquely described, up to isometry, by a single real.
In invariant descriptive set theory, a smooth equivalence relation E is considered
trivial: by Silver’s theorem, either E is Borel equivalent to equality on R, or E
has only countably many classes.

Recall that every compact metric space is separable and complete. Separa-
ble complete metric spaces occurring in mathematical practice are usually com-
putable. For instance, [0, 1]n, the Hilbert cube, �2, C[0, 1], and the Urysohn space
are computable with any of the standard metrics [11,10]. In this paper, we adapt
methods of computable model theory [2,6] to computable analysis [11,3,15] in
order to study the classification problem for compact computable metric spaces.
Although our paper is mostly restricted to the study of compact computable
metric spaces up to isometry, we hope that our ideas and methods will find
further applications to other topics of modern computable analysis, such as the
study of computable Banach spaces and computable topological spaces.

In contrast to computable analysis, the main objects of computable algebra
are countable algebraic structures. These are structures with domain N and in
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which the basic operations can be represented by computable functions on N.
In computable model theory and effective algebra there are several approaches
to classification problems (cf., e.g., [8,9,4,5]). We focus on two approaches which
use index sets and infinitary computable logic, respectively.

Index sets and isomorphism problems. The first approach uses the fact that
all partially computable functions can be effectively listed. As a consequence,
there exists an effective listing of all partial computable algebraic structures
(Ae)e∈N which includes all infinite computable algebras. For a class K of com-
putable algebras, the difficulty of the classification problems is reflected in the
following sets:

1. the index set IK = {e : Ae ∈ K} of K, and
2. the isomorphism problem EK = {(e, j) ∈ I2K : Ae

∼= Aj} for K.

The complexity of the index sets is measured using the arithmetical, hyperarith-
metical, and analytical hierarchies [2]. Recall that the arithmetical hierarchy is
defined via iterating quantifiers over computable predicates, and the hyprarith-
metical hierarchy extends the arithmetical hierarchy to computable ordinals.
Deciding if two algebras from K are isomorphic might be simpler than detecting
whether an algebra belongs to this class. In this case one usually considers the
complexity of EK within IK. For example, EK is Π0

2 within a Π0
3 set IK if there

exists a Π0
2 set S ⊂ N2 such that EK = S ∩ (IK × IK).

A collection of computable models K is called classifiable if both IK andEK are
hyperarithmetical. (Usually K will be closed under isomorphism on computable
models.) See [8,9,4,5] for further background and results in this direction.
Infinitary computable logic. Ash [1] introduced computable infinitary formulas
in the context of computable algebras. An infinitary computable language ex-
tends a first-order language by allowing infinite conjunctions and disjunctions
over computably enumerable families of formulas. The definition [1,2] uses a re-
cursion scheme. Computable formulas have proved to be of a great importance in
computable algebra; cf. the book of Ash and Knight [2]. We say that a class K of
computable structures closed under isomorphism admits a syntactic description,
if there exists a computable infinitary sentence Φ such that, for any computable
M , we have M |= Φ if and only if M ∈ K. Note that this condition implies
that the index set is hyperarithmetical [8]. The converse is known without the
restriction to indices for computable structures. Vanden Boom [14] has shown
that every hyperarithmetical invariant class can be described by a computable
sentence.

There is also a syntactic counterpart of requiring that EK is hyperarithmetical.

Definition 1. We say that a class K of computable structures admits a syntactic
classification if there is a hyperarithmetical bound on the complexity of infinitary
formulas which describe the orbits of tuples of elements in M ∈ K under the
action of the automorphism group of M .

To adjust the effective classification methods to computable analysis, we
need some basic definitions. Following the tradition rooted in the works of
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Turing [12,13], we say that a real x is computable if for each k we can
compute a rational within 2−k of x.

Definition 2 ([3,11]). Let (M,d) be a complete separable metric space, and
let (qi)i∈N be a dense sequence of points in M . The triple

M = (M,d, (qi)i∈N)

is a computable metric space if d(qi, qk) is a computable real uniformly in i, k.
We say that (qi)i∈N is a computable structure on M, and that the qi are the
special points of M. A Cauchy name for x is a sequence (rp)p∈N of special
points converging rapidly to x in the sense that d(rp, rp+1) < 2−p.

We introduce computable infinitary formulas in the context of computable metric
spaces (cf. preliminaries). In Theorem 6 we prove that every computable compact
metric space is uniquely described by a computable Π3 infinitary sentence. Fur-
ther, the orbits of special elements in a compact computable Polish space (under
the action of its automorphism group) are given uniformly by computable infini-
tary Π2 formulas. As a consequence, computable compact metric spaces admit
a syntactic characterization. In Theorem 10 we shall apply Theorem 6 to show
that the index set of compact computable metric spaces is Π0

3 -complete, and
the isomorphism problem for compact computable metric spaces is Π0

2 -complete
within this index set. Thus, the collection of compact computable metric spaces
is classifiable in the sense given above.

2 Preliminaries

We view a metric space (X, d) as a structure in the signature S = {R<q, R>q :
q ∈ Q+}, where R<q and R>q are binary relation symbols. The intended meaning
of R<q(x, y) is that d(x, y) < q. The intended meaning of R>q(x, y) is that
d(x, y) > q. We denote the first-order language of S by L.

For a tuple x ∈ Xn consider the n×n distance matrix Dn(x) = d(xi, xj)i,j<n.

We often view this matrix as a tuple in Rn2

with the max norm ||.||max. Sometimes

we suppress the subscript n. Note that for any matrix A ∈ Qn2

and any positive
rational p, there is a quantifier free positive first-order formula φA,n,p(x) in the
signature above expressing that ||Dn(x) −A||max < p.

In this paper, the main objects are computable metric spaces. Notice that,
in the notations of Definition 2, a separable space is computable if and only if
R<r(qi, qk) and R>r(qi, qk) are uniformly Σ0

1 .

Definition 3. Since all partial functions can be effectively listed, we obtain a
uniformly computable sequence of partial computable structures (Me)e∈N so that
some of these Me are computable structures on metric spaces: we view Me as a
partial computable function ψ such that rp = ψ(i, j, p)p∈N converges rapidly (in
the sense above) to d(i, j). It is a Π0

2 property of ψ to be total and describe a
metric space. We denote the completion of Me, after modding out by equivalent
points, by cp(Me).
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Fact 4. For (M,d, (pi)i∈N) a computable metric space, andW a c.e. set, (pi)i∈W

is a computable structure on the space cp((pi)i∈W ), d).

Proof. If W is infinite, we use a computable bijection f : ω → W to define a
computable structure (ri)i∈N on cp((pi)i∈W ), d) by the rule ri = pf(i).

Infinitary Computable Formulas. The language Lc
ω1ω is a countable frag-

ment of Lω1ω. The atomic formulas are (syntactically) open finitary formulas in
the language of metric spaces introduced above, with ¬ but without =. We allow
computably enumerable conjunctions, computably enumerable disjunctions, and
quantification over a variable.

In contrast to computable model theory, a computable structure on a space
is not the whole space but a dense subset of it. Thus, for a computable metric
structure Me and φ a computable infinitary formula, cp(Me) |= φ and Me |= φ
have different interpretations.

The hierarchy of such formulas is defined similarly to the countable case; cf.
the book of Ash and Knight [2]. In our specific case, the important modification is
that D<q(x, y), for a rational q and special points x and y, should be understood
as a Σ1 formula, and similarly for D>q(x, y).

Informally, in the calculation of the complexity of a formula we also count
alternations of infinitary conjunctions and disjunctions. When we count these
alternations, we do not distinguish the infinitary conjunction from ∀, and dis-
junction from ∃. So, for example, a prefix of the form ∃

∧
∀
∨
∃ will have only 3

alternations. More formally, the complexity of
∨

i ψi is determined using inf{β :
ψi ∈ Σβ}, and similarly for conjunctions. See [2] for formal definitions. We shall
omit the adjective “infinitary” when it is clear from the context.

Fact 5. Let ψ be a computable formula of complexity Σn, where n ∈ ω. Then
the set {e : Me |= ψ} is Σ0

n. (Similarly for Πn.)

Proof. By induction on the complexity of ψ we can show that, ifMe is a (partial)
computable metric structure and Me |= ψ, then ∅(n−1) will eventually recognize
it.

3 Existential Theories and Infinitary Formulas

Theorem 6

(i) Within the class of computable Polish spaces, each compact member is
uniquely described up to isometry by a computable Π3 axiom.

(ii) The orbits of special elements in a compact computable metric space (under
the action of its self-isometry group) are given uniformly by computable Π2

formulas.

Proof. We shall need a result due to Friedman, Fokina, Körwien and Nies (2012)
which itself is based on Gromov’s work (cf. [7, proof of 14.2.1]).
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Proposition 7. Let X,Y be compact metric spaces. Suppose that tuples ã ∈
Xk, b̃ ∈ Y k satisfy the same existential positive finitary formulas. Then there is
an isometry from X to Y mapping ã to b̃.

Proof. It is well-known that any isometric self-embedding of a compact metric
space is onto (cf. [7, proof of 14.2.1]). Thus, by symmetry, it suffices to find an

isometric embedding of X into Y mapping ã to b̃. The following lemma from [7,
Exercise 14.2.3] slightly extends the above-mentioned result of Gromov.

Lemma 8. Suppose that for every ε > 0, for any n and tuple x ∈ Xn there

is a tuple y ∈ Y n such that
∣∣∣∣∣∣D(ã, x) −D(̃b, y)

∣∣∣∣∣∣
max

< ε. Then there is an an

isometric embedding of X to Y mapping ã to b̃.

It now suffices to show that if ã ∈ Xn, b̃ ∈ Y n satisfy the same existential positive
formulas, the hypothesis of the lemma is satisfied. For every n×n rational matrix
A, there is a formula φA,n,ε(x) saying that ||Dn(x) −A||max < ε/2. Given x ∈ Xn

choose a rational (k + n) × (k + n) matrix A such that

||D(ã, x) −A||max < ε/2.

Thus ∃xφA,n+k,ε/2(ã, x) holds in X . Hence there is y ∈ Y n such that φA,n+k,ε/2

(̃b, y) holds in Y . This implies
∣∣∣∣∣∣D(ã, x) −D(̃b, y)

∣∣∣∣∣∣
max

< ε as required.

We prove (i) of the theorem. Note that a complete metric space is compact iff it
is totally bounded, namely, satisfies the computable sentence∧

q∈Q+

∨
n∈N

∃x0 . . . xn−1∀y
∨
i<n

d(xi, y) < q. (1)

We can replace each quantifier by a quantifier restricted to special points, and
also replace d(xi, y) < q by ¬(d(xi, y) > q) with the meaning d(xi, y) ≤ q. Let θ
be the resulting computable sentence. The quantifier

∨
i<n is finitary and does

not contribute any extra complexity to the formula. Thus, θ is computable Π3.
Clearly, Me |= θ if and only if cp(Me) |= θ.

We take Me a computable structure on a Polish space. For the tuple ã = ∅
of special points we let ψ be a conjunction of all formulas ∃xφB,k,ε(x) (with
quantification over special points, B a rational k×k matrix, ε a positive rational)
which are true on Me. Note that cp(Me) |= ∃x φB,k,ε(x) if and only if the
corresponding restricted formula holds on Me. Thus, the conjunction is in fact
c.e. since we can enumerate all such sentences which are true on Me. Therefore,
ψ is computable Π2. The desired computable axiom is F = θ ∧ ψ which is of
complexity Π3.

We prove (ii). The orbit of a tuple ã of special points in a compact computable
Polish space is definable by the conjunction of ∃xφA,n+k,ε/2(ã, x) which hold
on Me. Given ã we can effectively list all formulas φA,n+k,ε/2(ã, x) such that
Me |= ∃x φA,n+k,ε/2(ã, x). Thus, the conjunction of all such formulas, with ã
replaced by a tuple of variables ỹ, is effective. Similarly to the proof of (1)
above, we have Me |= ∃xφA,n+k,ε/2(ã, x) ⇔ cp(Me) |= ∃xφA,n+k,ε/2(ã, x), for
every ã ∈Me and every parameters A, n, k and ε.
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4 Descriptive Complexity of Index Sets

Recall from Definition 3 that cp(Me)e∈ω is an effective listing which includes all
computable metric spaces. Recall also that a metric space X is connected iff for
each nonempty open sets U, V , we have C = X − (U ∪ V ) = ∅ ⇒ U ∩ V �= ∅.

Proposition 9. (i) The set {e : cp(Me) is locally compact} is Π1
1–complete.

(ii) The set {e : cp(Me) is connected} is Π1
1–hard.

Proof. A complete metric space X is locally compact iff for each x ∈ X , there is
rational ε > 0 such that the closed ball K = Kε(x) is compact. If X = cp(Me),
then from a Cauchy name f for x we can compute a presentation of K as a
computable metric space relative to f , where the special points are the special
points p of Me with d(x, p) < ε. Then by (1) and the discussion thereafter,
compactness of K is arithmetical in f . (On the other hand notice that being
connected is merely Π1

2 .)
We now prove the Π1

1–hardness. As usual let [T ] denote the set of infinite
branches of a tree T ⊆ ω<ω, and note that [T ], unless empty, is a metric space
via d(f, g) = 2−k, where k is minimal such that f(k) �= g(k). Also, [T ] is locally
compact iff for each f ∈ [T ] there is n such that T with the dead ends removed
is finitely branching above f �n.

We encode the problem whether a computable tree T has no infinite branch,
which is well known to be Π1

1–complete. Let

F (T ) = {〈σ, τ〉 : σ ∈ T ∧ τ ∈ ω<ω ∧ |σ| = |τ |}.

Via the Cantor pairing function we can view F (T ) as a subtree of ω<ω, and
hence as a computable metric space. If [F (T )] is nonempty, it is neither locally
compact, nor connected. Now let MT be the computable metric space obtained
by adjoining an isolated point at distance 2 to [F (T )]. Then [T ] = ∅ ⇔ MT is
locally compact ⇔MT is connected.

Theorem 10. (i) The index set CSp of compact computable metric spaces is Π0
3 -

complete. (ii) The isomorphism problem for compact computable metric spaces
is Π0

2 -complete within Π0
3 .

Next we study the complexity of whether a computable metric space is a
continuum.

Proposition 11. The index set CCSp of compact and connected computable
metric spaces is Π0

3 -complete.

Proof. Suppose now we are given a compact computable metric space X =
cp(Me). For connectedness, we need to check if for each non-empty open U and
V , we have C = X − (U ∪ V ) = ∅ ⇒ U ∩ V �= ∅. We may restrict U and V to
finite unions of basic open sets of the form Bε(p) where ε ∈ Q+ and p is a special
point. We may effectively in e obtain a ∅′-computable map g from 2ω onto X .
Thus C = ∅ is equivalent to g−1(C) = ∅. Since the latter is a Π0

1 (∅′) class, this
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condition is Σ0
2 . The condition U ∩ V �= ∅ is Σ0

1 since this set contains a special
point unless empty. Thus being connected is in fact Π0

2 within the Π0
3 set CSp.

Let S be any Π0
3–complete set, and choose a uniformly c.e. double sequence

(Vi,n) of initial segments of ω such that i ∈ S ↔ ∀nVi,n �= ω. Let ak = 1 − 2−k.
Given i, we can compute an index e for the computable metric space the Cartesian
product

∏
n∈ω[0, a|Vi,n|] with the canonical computable structure obtained from

the enumerations of the Vi,n, and the metric inherited from the standard metric
on the Hilbert cube [0, 1]ω. ClearlyMe is connected, andMe is compact iff i ∈ S.

5 Δ0
3 Categoricity

Definition 12. Let S ⊆ ω be an oracle. An isometry Φ from a computable
metric space (X, d, (qi)i∈N) to a computable metric space
(Y, d, (pi)i∈N) is computable in S if there is a Turing machine with oracle S which,
on inputs i, k, outputs the k-th term of a Cauchy name for Φ(qi).

We say that a computable metric space is Δ0
n–categorical if between each of its

computable presentations, there is an isometry computable relative to ∅(n−1).

Theorem 13. Each compact computable metric space is Δ0
3 categorical.

Proof. Let X = (X, d, (pi)i∈N) and Y = (Y, d, (qj)j∈N) be compact computable
metric spaces. Suppose that X can be isometrically embedded into Y. We show
that then there is a Δ0

3 embedding; this is sufficient by symmetry.
Recall distance matrices Dn from Section 2. Let εn = 2−n. There is a com-

putable triangular array of Y -special points 〈yni 〉i<n such that, where yn =
〈yn0 , . . . , ynn−1〉, we have

||Dn(〈p0, . . . , pn−1〉) −Dn(yn)||max < εn.

We define a ∅′′ computable triangular array of Y -special points 〈wn
i 〉i≤n,0<n

such that for each n, where wn = 〈wn
0 , . . . , w

n
n−1〉, we have

|{k > n : d(yk �n, wn) < εn}| = ∞. (2)

We use compactness of Y and its finite powers Y n throughout. Let w1
0 ∈ Y be a

special point such that A1 = {k : d(yk0 , w
1
0) < ε1} is infinite. Then (2) holds for

n = 1.

(a) Increasing the dimension. Let w1
1 be a special point in Y such that C1 =

{k ∈ A1 : d(yk1 , w
1
1) < ε1} is infinite.

(b) Refining the sequence. Letw2 ∈ Y 2 be a special point in the ballBε1(〈w1
0 , w

1
1〉)

such that A2 = {k ∈ C1 : d(yk �2, w2) < ε2} is infinite.
We continue this process. Suppose wn (and hence An) has been defined

(a) Let wn
n be a special point in Y such that

Cn = {k ∈ An : k > n ∧ d(ykn, wn
n) < εn}

is infinite.
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(b) Let wn+1 ∈ Y n+1 be a special point in Bεn((wn)̂ wn
n) such that

An+1 = {k ∈ Cn : d(yk �n+1, w
n+1) < εn+1}

is infinite. Then (2) holds for n+ 1.
Note that the sequence 〈wn

i 〉i≤n,0<n is indeed ∅′′-computable because we
uniformly in the previously defined special points obtain indices for the potential
c.e. sets Cn, An+1. It takes ∅′′ as an oracle to pick the next special points in
such a way that the relevant set is infinite. Also note that d(wn

r , w
n+1
r ) < εn for

each n > r. Thus, the sequence of points in Y zr = limn>r w
n
r is computable in

∅′′. It now suffices to show that the map xi �→ zi preserves distances. Let i < j.
Given n, by (2) pick k > n such that d(yk �n, wn) < εn. Then, by the definitions,

|d(zi, zj) − d(wn
i , w

n
j )| ≤ 2εn

|d(wn
i , w

n
j ) − d(yki , ykj )| ≤ εn

|d(yki , ykj ) − d(xi, xj)| ≤ εn.

Therefore, |d(zi, zj) − d(xi, xj)| ≤ 4εn.

The bound on the complexity of an isomorphism we obtained in Theorem 13 is
not optimal. We can prove the following strengthening saying that some isomor-
phism is low relative to ∅′.

Theorem 14. Let X = (X, d, (pi)i∈N) and Y = (Y, d, (qj)j∈N) be isometric com-
pact computable metric spaces. Then there is a set S with S′ ≤T ∅′′ which
computes an isometry.

The proof is an extension of the previous argument in that we build a nonempty
Π0

1 (∅′) class of isometries. Since the space is compact, the level size of the
corresponding tree is bounded by a ∅′–computable function. Then, by the low
basis theorem relative to ∅′, we obtain an isometry as required. We have also
shown that the bound in Theorem 13 can not be improved to Δ0

2, by building
a metric space with two computable presentations and no Δ0

2 isometry between
them. Proofs of these results will appear in a journal paper.
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Correlated substitution patterns between residues of a protein family have been
exploited to reveal information on the structures of proteins. However, such
studies require a large number (e.g., the order of one thousand) of homologous
yet variable protein sequences. So far, most studies have been limited to a few
exemplary proteins for which a large number of such sequences happen to be
available. Rapid advances in genome sequencing will soon be able to generate
this many sequences for the majority of common bacterial proteins. Sequencing a
large number of simple eukaryote such as yeast can in principle generate similar
number of common eukaryotic protein sequences, beyond a collection of highly
amplified protein domains which already reach the necessary numbers.

The heart of our approach is a novel, statistical-physics inspired analysis of
residue co-evolution, which has recently been shown (i) to accurately predict
inter- and intra-protein amino-acid spatial dependencies, (ii) to achieve struc-
tural predictions with experimental accuracy when integrated with molecular
simulations.

A systematic evaluation of the information contained in correlated substitu-
tion patterns for predicting residue contacts will be given, as a first step towards a
purely sequence-based approach to protein structure, and protein-protein
interaction prediction.
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Abstract. Reaction systems are an abstract model of interactions
among biochemical reactions, developed around two opposite mecha-
nisms: facilitation and inhibition. The evolution of a Reaction System
is driven by the external objects which are sent into the system by the
environment at each step. In this paper, we propose the Reaction Algebra,
a calculus resembling reaction systems extended with a restriction oper-
ator. Restriction increases the expressiveness of the calculus by allowing
the modeling of hidden entities, such as those contained in membranes.

We define a compositional semantics and a behavioral equivalence
for the Reaction Algebra, in order to enable the modular description of
biological systems.

1 Introduction

Reaction systems [1, 2] have been introduced by Ehrenfeucht and Rozenberg
as a novel model for the description of biochemical processes driven by the
interaction among reactions in living cells. Reaction systems are based on two
opposite mechanisms, namely facilitation and inhibition. Facilitation means that
a reaction can occur only if all its reactants are present, while inhibition means
that the reaction cannot occur if any of its inhibitors is present. Reactants play
a role analogous to that of promoters in the setting of Membrane Computing [3].

The state of a reaction system is modeled as a finite set of entities, and evolves
by means of the application of a set of reactions. The presence of an element in
the state expresses the fact that the corresponding biological entity, in the real
system being modeled, is present in a number of copies as high as needed.

The overall behavior of a reaction system model is driven by the (set of)
contextual elements which are received from the external environment at each
step. Moreover, reaction systems assume the non permanency of the elements,
namely unused elements are never carried over to the next state. In particular,
the next state consists only of the products of the reactions applied in the current
step to a set composed of both the contextual elements and the current state.
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In this paper, we define the Reaction Algebra, a calculus resembling reaction
systems which also includes a restriction operator à la CCS. The purpose of the
restriction operator is to increase the modeling expressiveness of the calculus, by
allowing elements to be hidden. This, for example, would enable a direct model-
ing of membranes, by hiding internal elements and their interactions. Together
with the behavioral equivalence that we also define, restriction allows comparing
two systems only with respect to the “visible” elements. Restriction is analogous
to compartmentalization operators provided by many bio-inspired calculi.

Due to the presence of the external environment, Reaction Algebra models are
ultimately interactive systems. For this reason, we define a compositional seman-
tics of Reaction Algebra by means of Labeled Transition Systems (LTS), where
each transition captures the behavior with respect to the contextual elements
received from the environment. Note that, in this setting, there is no distinction
between the “external environment”, as defined by reaction systems, and “the
rest of the system”, since both of them can actually be seen as supplying con-
textual elements to the system. We show that the compositional semantics is
equivalent to that of reaction systems, for terms without restriction.

We propose bisimulation as a proper behavioral equivalence for Reaction Al-
gebra terms, and show that it is a congruence, thus providing a formal ground
to the modular composition of Reaction Algebra systems. Finally, we show that
the behavioral equivalence of Reaction Algebra terms subsumes the functional
equivalence between reaction systems proposed in [1].

Related work. Reaction systems have been used to model various features which
are useful for the modeling of biological systems. For example, binary counters [1]
form the basis for the inclusion of a notion of time [4]. In [5] an extension with
duration of reaction systems is presented. Theoretical aspects of reaction systems
have been studied in [6–9]. Compositional semantics and behavioral equivalences
of variants of P systems have been proposed in [10–12]. An axiomatization of
the behavioral equivalence from [10] is presented in [13].

The paper is structured as follows. In Section 2 we recall the definition of
Reaction systems, and their related concepts. Section 3 contains the formal def-
inition of the Reaction Algebra with restriction, the compositional semantics,
and the behavioral equivalence. Finally, in Section 4 we draw the conclusions of
our work, and discuss possible ideas for future work.

2 Background on Reaction Systems

In this section we recall the basic definition of reaction systems [1, 2]. Let S be
a finite set of objects used in a reaction system. A reaction is formally a triple
(R, I, P ) with R, I, P ⊆ S, composed of reactants R, inhibitors I, and products
P . We assume reactants and inhibitors to be disjoint (R ∩ I �= ∅), otherwise the
reaction would never be applicable. The set of all possible reactions over a set
S is denoted by rac(S). Finally, a reaction system is a pair A = (S,A), with S
being the finite background set, and A ⊆ rac(S) being its set of reactions.
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The state of a reaction system is described by a set of objects. Let a =
(Ra, Ia, Pa) be a reaction and T a set of objects. The result resa(T ) of the ap-
plication of a to T is either Pa, if T separates Ra from Ia (i.e., Ra ⊆ T and
Ia ∩ T = ∅), or the empty set ∅ otherwise. Because of the threshold supply as-
sumption, the application of multiple reactions at the same time occurs without
any competition for the used reactants. Therefore, each reaction which is not
inhibited can be applied, and the result of application of multiple reactions is
cumulative. Formally, given a reaction system A = (S,A), the results of appli-
cation of A to a set T ⊆ S is defined as resA(T ) = resA(T ) =

⋃
a∈A resa(T ).

The dynamics of a reaction system is driven by the contextual objects, namely
the objects which are supplied to the system by the external environment at
each step. Formally, the dynamics of A = (S,A) is defined as an interactive
process π = (γ, δ), with γ and δ being finite sequences of sets of objects called
the context sequence and the result sequence, respectively. The sequences are
of the form γ = C0, C1, . . . , Cn and δ = D0, D1, . . . , Dn for some n ≥ 1, with
Ci, Di ⊆ S, and D0 = ∅. Each set Di, for i ≥ 1, in the result sequence is
obtained from the application of reactions A to a state composed of both the
results of the previous step Di−1 and the objects Ci−1 from the context; formally
Di = resA(Ci−1 ∪ Di−1) for all 1 ≤ i ≤ n. Note that, according to the non-
permanency assumption, unused objects from Di−1 are not carried over to Di.
Finally, the state sequence of π is defined as the sequenceW0,W1, . . . ,Wn, where
Wi = Ci ∪Di for all 1 ≤ i ≤ n.

We conclude this section by recalling from [1] the definition of functional
equivalence between reaction systems. Given two reactions a, b ∈ rac(S) for
some background set S, a and b are functionally equivalent (denoted a∼S b) iff
∀T ⊆ S, resa(T ) = resb(T ) (this implies that all reactions of the form (R, I, ∅) are
functionally equivalent). This equivalence relation is extended to sets of reactions
in the natural way: givenA,B ∈ rac(S), then A and B are functionally equivalent
(A ∼S B) iff ∀T ⊆ S, resA(T ) = resB(T ). Finally, two reaction systems A,B
defined over the same background set S are functionally equivalent (A∼S B) iff
their sets of reactions are functionally equivalent. The problem of deciding the
functional equivalence between two sets of reactions is co-NP-complete [1].

3 Reaction Algebra

In order to define a compositional semantics of reaction systems, we propose in
this section the Reaction Algebra, a calculus resembling reaction systems. A term

of the reaction algebra is formed by a parallel composition of reactions R
I�−→ P

and single elements c ∈ S. The elements appearing in a term represent the ele-
ments occurring in the state in the current step which, according to the behavior
of reactions systems, have been produced by the reactions at the previous step.
With respect to the dynamics of reaction systems, at a generic step i ≥ 0, the
elements in the term correspond to the set Di from the result sequence δ.

A major difference from reaction systems is the inclusion in the Reaction
Algebra of a restriction operator ·\ ·, which allows a greater expressiveness of
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the calculus. Conceptually, such an operator is akin to the restriction operator of
process algebras, and allows a primitive, but powerful, way of modeling a hidden
internal state for reaction systems.

Definition 1 (Syntax). Let S be a finite and totally ordered set of symbols,
with total order relation ≤. The syntax of Reaction Algebra terms is defined by
the following grammar:

A ::= 0
∣∣ R

I�−→ P
∣∣ c

∣∣ A\c
∣∣ A | A

where R, I, P ⊆ S, c ∈ S, R ∩ I = ∅.

Symbols from the set S denote entities of the biological system, which can be
used in the reactions. Without loss of generality, we assume that S is a totally
ordered set; this assumption is exploited in the definition of the compositional
semantics. In the following, we use the symbol r (possibly with a subscript) to

denote a generic reaction R
I�−→ P . Moreover, we denote the set of all terms over

the set S as ΘS .
The operator · | · denotes the parallel composition of two terms. In order to

avoid inserting too many parentheses, we assume the parallel operator to be left-
associative. The restriction operator A\c indicates that all free occurrences of
symbol c in A are considered private, thus introducing a form of bound symbols
into the calculus. We define the set of free objects of a term as follows:

fo(0) = ∅ fo(R
I�−→ P ) = ∅ fo(c) = {c}

fo(A\c) = fo(A) \ {c} fo(A1 | A2) = fo(A1) ∪ fo(A2)

The motivation for including the restriction operator is to increase the modeling
expressiveness of the calculus. Recall, from Section 2, the definition of func-
tional equivalence · ∼ · between reaction systems: given two sets of reactions
A,B ∈ rac(S), then A ∼S B iff ∀T ⊆ S, resA(T ) = resB(T ). Therefore, func-
tional equivalence captures the natural way of defining a behavioral equivalence
between reaction systems, since two systems are considered equivalent if they
behave in the same way over any possible set of elements T ⊆ S. In other words,
two equivalent reaction systems (S,A1) ∼ (S,A2) may only differ in the sets of
reactions A1, A2, while they need to produce the same elements at each step,
given any possible context sequence γ. This is a very strong requirement, which
rules out the possibility of modeling “private” elements, such as those occurring
inside membranes. A standard reaction system does not allow the hiding of the
internal elements appearing inside the membrane, which are never sent outside.
Therefore it is not possible to compare two reaction systems only on the basis
of the externally observable behavior, since any purportedly “internal” element
is always observable.

Finally, recall that the initial state of a reaction system is always empty. In
fact, the role of such an initial set of elements is played by the first set D0 of the
result sequence δ, which is assumed to be empty. In the reaction algebra, where
the initial state conceptually corresponds to the elements appearing in the initial
term, we do not have such a restriction.
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3.1 Compositional Semantics

In this section we define a compositional semantics for the Reaction Algebra,
formalized by means of a Labeled Transition System, where states are terms of
the Reaction Algebra, and each transition represents a step of the evolution of
the system. Informally, transition labels describe both the contextual elements
that are required for the transition to occur, and those elements which prevent
it. Precisely, from a state, there is a different transition for each possible set of
contextual elements which are present/absent. Since reaction systems assume
the background set to be finite, this ensures that the LTS is finitely branching.

Note that, in a compositional semantics for the Reaction Algebra, from the
point of view of a term A there is no distinction between elements received from
the external environment (as per reaction systems), and those available in the
rest of the system, i.e., those elements which form a parallel composition with A.
In fact, according to the semantics of reaction systems, both of them contribute
to the set of elements available to the reactions.

The semantics is described by an LTS with transitions of the form A x,y,z−−−−→ A′,
with x, y, z ⊆ S being a partition of S. Label x denotes the elements visible at
top-level, and it corresponds to the free elements of A, i.e., x = fo(A). On the
other hand, labels y and z describe the applicability of the transition with respect
to the contextual elements; precisely, y denotes which elements must be present,
while z denotes those which must be absent.

Definition 2. The compositional semantics of Reaction Algebra is defined as
the LTS (ΘS , (2

S)3,−→), where −→ is the least transition relation statisfying
the inference rules of Figure 1.

Rules (1) and (2) define the semantics of single reactions. In particular, the first
one describes the application of the reaction, for which the products p1, . . . , pk
are added to the resulting term. The condition on the ordering of the products
with respect to the total order relation assumed for the elements in S ensures
the uniqueness of the transition for a given label. The rule allows deriving a
transition labeled by the triplet (∅, y, z), for each partition y, z of S such that
R ⊆ y and I ⊆ z. Conversely, a reaction cannot be applied in two cases: either
at least one of its reactants is absent, or at least one of its inhibitors is present.
Therefore, for each reactant c ∈ R, rule (2) allows deriving transitions labeled
(∅, y, z) with y, z being a partition of S such that c ∈ z. Similarly, each inhibitor
c′ ∈ I yields transitions with y, z being a partition of S such that c′ ∈ y.

Rule (3) defines the semantics of a single element. In agreement with the non-
permanency assumption, the resulting term is the nil term 0. This rule allows
deriving transitions labeled ({c}, y, z), where the first item correctly captures the
available elements in the source term. In this case, the transition is independent
of contextual elements; therefore the transition can be derived for any partition
y, z of S \ {c} .

Rule (4), which defines the semantics of the nil term, is similar to the previous
case, except that no elements are available, therefore label x is empty, and the
transition is permitted by any partition y, z of S.
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Z1 ∪ Z2 = S \ (R ∪ I) Z1 ∩ Z2 = ∅ P = {p1, . . . , pk} p1 < · · · < pk

R
I�−→ P

∅, R∪Z1, I∪Z2−−−−−−−−−−→ R
I�−→ P | p1 | · · · | pk

(1)

I ′ ⊆ I R′ ⊆ R |I ′ ∪R′| = 1 Z1 ∪ Z2 = S \ (I ′ ∪R′) Z1 ∩ Z2 = ∅
R

I�−→ P
∅, I′∪Z1, R

′∪Z2−−−−−−−−−−−→ R
I�−→ P

(2)

Z1 ∪ Z2 = S \ {c} Z1 ∩ Z2 = ∅
c

{c},Z1,Z2−−−−−−−→ 0
(3)

Z1 ∪ Z2 = S Z1 ∩ Z2 = ∅
0

∅,Z1,Z2−−−−−→ 0
(4)

A1
x1,y1,z−−−−−→ A′

1 A2
x2,y2,z−−−−−→ A′

2 y′ = y1 \ x2

A1 | A2
x1∪x2, y

′, z−−−−−−−−→ A′
1 | A′

2

(5)

A x,y,z−−−−→ A′ c /∈ y Z1 ∪ Z2 = {c} Z1 �= Z2

A\c x\{c}, y∪Z1, z\{c}∪Z2−−−−−−−−−−−−−−−−→ A′\c
(6)

Fig. 1. Inference rules of the compositional semantics

As regards the parallel operator, rule (5) defines the transitions derivable
from a term of the form A1 | A2. The premises of the rule consider transitions
of the subterms A1,A2 having the same set of inhibitors z. This ensures that
the two transitions are “compatible”, i.e., they can be applied at the same time.
In fact, since both (x1, y1, z) and (x2, y2, z) are partitions of S, this implies
that the inhibitors of a transition are distinct from both the available elements
and reactants of the other transition, and vice versa; that is z ∩ (x1 ∪ y1) =
z ∩ (x2 ∪ y2) = ∅. The set of inhibitors of the resulting transition is the same
z as for the subterms, while the elements available are obtained by the union
of those available in both A1 and A2. Finally, the reactants y′ of the resulting
transition correspond to the reactants required by the subterms which are not
already available in one of the two. Note that, since (x1, y1, z) and (x2, y2, z) are
partitions, then y′ = y1 \ x2 = y2 \ x1.

Lastly, rule (6) deals with the restriction operator, providing the semantics
of terms of the form A\c. As regards the available elements in the resulting
transition, they are obtained by removing c from x, because c is considered
private to the restriction operator and thus it is not visible outside. On the other
hand, given a transition for A labeled x, y, z with c /∈ y, rule (6) allows deriving
two different transitions in which c appears once in y, thus being present, and
once in z, thus being absent. The idea is that any contextual element c denotes
a different element than the one appearing within the scope of the restriction
operator. The condition c /∈ y ensures that no transitions still requiring c to be
present are considered, since such an element can never be provided from the
outside.
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c 0

c, ∅, ab
c, a, b
c, b, a
c, ab, ∅

∅, ∅, abc∅, a, bc∅, b, ac∅, c, ab∅, ab, c∅, ac, b∅, bc, a∅, abc, ∅

Fig. 2. LTS of term c

r1 r1 | c

∅, a, bc∅, ac, b

∅, ∅, abc∅, b, ac∅, c, ab∅, ab, c∅, bc, a∅, abc, ∅

c, a, b

c, ∅, ab
c, b, a
c, ab, ∅

Fig. 3. LTS of term r1 = a
b�−→ c

Example Let us consider a single element c. Its semantics corresponds to the
finite LTS shown in Figure 2, where different transitions having the same source
and target are collapsed into a single arrow with multiple labels. Recall that the
first label x of each transition corresponds to the free elements of the term. In
each state, for each set y of contextual elements from S \ x there is a transition
describing the behavior when y is present, and z = S\(x∪y) is absent. From state
c all transitions lead to 0, since there are no reactions. Similarly, all transitions
from 0 yield to 0 itself.

As regards the semantics of reactions, let us consider term r1 = a
b�−→ c. Since

the term has no free objects, its behavior depends upon contextual elements. In
particular, we expect c to be produced iff a is provided from the context and b

is not; namely there is a transition r1
∅,y,z−−−→ r1 | c for each partition y, z of S

such that a ∈ y and b ∈ z.
Since c is neither a reactant nor an inhibitor of r1, we expect the behavior

of state r1 | c to be analogous to r1, i.e., c is produced whenever a ∈ y and

b ∈ z. In such a case, there is the transition r1 | c
{c},y,z−−−−−→ r1 | c | 0. On the other

hand, whenever a /∈ y or b /∈ z, there is a transition r1 | c
{c},y,z−−−−−→ r1 | 0. Note

that we cannot get rid of redundant occurrences of 0, therefore the length of
the term increases at each step, giving rise to an infinite LTS. As we are going
to show in the following of the paper, the semantics is invariant with respect
to commutativity and associativity of the parallel operator, and 0 is an identity
element for it. By assuming such properties, the LTS reduces to the finite LTS
shown in Figure 3.

Finally, let us consider term (r1)\a, obtained by enclosing r1 in a restriction
over a. Since a is a reactant of r1, the reaction is never applicable, thus we expect
the semantics of (r1)\a to be the same as 0. It is easy to see that rule 6 allows

deriving transitions (r1)\a ∅,Z1,Z2−−−−−→ (r1)\a for all partitions Z1, Z2 of S.

Proposition 1. The semantics satisfies the following properties:

1. (determinism) whenever A x,y,z−−−−→ A′ and A x,y,z−−−−→ A′′, A′ = A′′;
2. for all transitions A x,y,z−−−−→ A′, x = fo(A), and sets x, y, z form a partition

of the background set S;
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3. for all terms A, and sets {y, z} being a partition of S \ fo(A), there exists a

transition A x,y,z−−−−→ A′ with x = fo(A) for some A′.

A consequence of the above proposition is that either one of labels y and z of the
semantics is actually redundant and could be omitted. Nevertheless, we believe
the definition using both labels y and z enjoys greater clarity.

We have already anticipated that the semantics satisfies some intuitive invari-
ant properties. We now define a congruence which provides an account of them,
then we show that the semantics is invariant with respect to it.

Definition 3. Let ≡ ⊆ ΘS ×ΘS denote the least congruence relation satisfying
the following axioms:

1. A1 | A2 ≡ A2 | A1; 2. (A1 | A2) | A3 ≡ A1 | (A2 | A3);

3. A | 0 ≡ A; 4. A | A ≡ A;

5. A\c\d ≡ A\d\c; 6. A\c | d ≡ (A | d)\c if c �= d.

Axioms 1 and 2 state the commutativity and associativity of the parallel compo-
sition operator, respectively. Axiom 3 states that 0 is an identity element of the
parallel operator. Axiom 4 states that having more occurrences of the same term
does not change the semantics. Intuitively, axioms 1–4 mean that a term can be
seen as a set composed of reactions, single elements, and restricted subterms. In
line with the definition of reaction systems, there is no counting involved.

Axiom 5 states that the order of multiple consecutive restrictions is not mean-
ingful. Axiom 6 states a peculiar property of the semantics, as regards the pos-
sibility for an element to move between the inner subterm of a restriction and
the external scope. Precisely, an element d can be moved inside the scope of a
restriction operator only as long as it does not become bound. Conversely, if the
element d appears within the scope of the restriction operator then it can be
moved outside only if it is not actually a private symbol.

Lemma 1. Semantics −→ is closed under ≡, namely ∀A1,A′
1,A2, x, y, z. A1 ≡

A′
1 ∧ A1

x,y,z−−−−→ A2 implies ∃A′
2 ≡ A2. A′

1
x,y,z−−−−→ A′

2.

The following theorem shows that a reaction system modeled as a Reaction
Algebra term behave in the same way as the original system. In other words, we
prove the correctness of compositional semantics of the Reaction Algebra w.r.t.
the semantics of reaction systems. Note that the comparison deals only with the
restriction-free fragment of the Reaction Algebra, since any reaction system can
be directly encoded in a term without restriction operators.

Given a reaction system (S,A), we denote as η(S,A) the Reaction alge-
bra term associated with it; formally: η(S, {a1, . . . , an}) = η(a1) | · · · | η(an),

η(R, I, P ) = R
I�−→ P . Moreover, let traces(A) = {〈(x0, y0, z0), . . . , (xn, yn, zn)〉 |

∃A0, . . . ,An. A0 = A, ∀i < n. Ai
xi,yi,zi−−−−−→ Ai+1}.

Theorem 1. Let (S,A) be a reaction system, γ = C0, C1, . . . , Cn be a context
sequence for some n ≥ 1. Then δ = D0, D1, . . . , Dn is the result sequence corre-
sponding to γ, as defined by the semantics of reaction systems, iff 〈(x0, y0, z0),
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(x1, y1, z1), . . . , (xn, yn, zn)〉 ∈ traces(η(S,A)), with ∀i. xi = Di, yi = Ci \ Di,
and zi = S \ (Ci ∪Di).

3.2 Behavioral Equivalence

The greater expressiveness of the Reaction Algebra stems from both the restric-
tion operator, and the ability to consider an initial non-empty set of elements.
We argue that bisimulation, the finest behavioral equivalence one may impose
over LTSs, identifies all the terms that intuitively have the same behavior. In
this setting, as we are going to show, bisimulation is also a congruence, thus
enabling the modular composition of Reaction Algebra terms.

For example, let us consider the term r1 | r2, with r1 = a
b�−→ c, r2 = ab �→

c. It is easy to see that such a term is able to produce c whenever a occurs,
independently of the fact that b is present or absent. Therefore, if we consider
reaction r3 = a �→ c, we expects r3 to be behaviorally equivalent to r1 | r2.

Formally, given the LTS (ΘS , (2
S)3,−→), a binary relation R ⊆ ΘS ×ΘS is a

bisimulation if, whenever (A1,A2) ∈ R, then ∀x, y, z ⊆ S:

– A1
x,y,z−−−−→ A′

1 =⇒ ∃A′
2. A2

x,y,z−−−−→ A′
2 ∧ (A′

1,A′
2) ∈ R;

– A2
x,y,z−−−−→ A′

2 =⇒ ∃A′
1. A1

x,y,z−−−−→ A′
1 ∧ (A′

1,A′
2) ∈ R.

Two terms A1,A2 are bisimilar, denoted A1 �A2, if there exists a bisimulation
R such that (A1,A2) ∈ R.

Albeit bisimulation being the finest behavioral equivalence, the Reaction Al-
gebra is actually not expressive enough to fully exploit it. In fact, since the
semantics is deterministic (Proposition 1), all the usual behavioral equivalences
coincide [14]; in particular, bisimulation is also the same as trace equivalence.

Theorem 2. Bisimulation over Reaction Algebra terms is a congruence.

The following theorem shows that the behavioral equivalence � defined for Re-
action Algebra terms, when considering only restriction-free terms without free
objects, coincides with the functional equivalence ∼ of reaction systems.

Theorem 3. ∀A1, A2 ∈ rac(S) : (S,A1) ∼S (S,A2) ⇐⇒ η(S,A1) � η(S,A2).

Example. Let us consider a system which keeps producing c until signal off
is received from the environment. Given a background set S ⊇ {a, b, c, off}, it

is easy to see that the following terms are behaviorally equivalent: (a | a off�−−→
ac)\a� (a | a off�−−→ bc | b off�−−→ ac)\a\b.

4 Conclusions

We have proposed the Reaction Algebra with restriction, a calculus resembling
reaction systems, equipped with a compositional semantics formalized as a LTS.
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Such a semantics has been shown to conform to the semantics of reaction sys-
tems. In order to enable the modular construction of Reaction Algebra systems,
we have proposed a behavioral equivalence which is a congruence, and shown
that it subsumes the functional equivalence of reaction systems.

As future work, we plan to revise the compositional semantics by exploiting
the idea that transitions can be omitted if they fall within the scope of application
of other transitions, and study behavioral equivalences which are suitable in such
setting. Finally, as regards its modeling expressiveness, the Reaction Algebra
could be extended to include nondeterministic behaviors (similarly to [15]).
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Using Random Graphs in Population Genomics
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I shall discuss the application of algorithmic and combinatorial tools in the area
of population genomics, which has not been the traditional stomping ground for
algorithmicists.

The modeling of the evolutionary dynamics of evolving populations as ran-
dom graphs offers a new methodology for analysis. This exploration begins as
a quest for understanding the reconstructability of common evolutionary his-
tory of populations. It provides new insights including a purely topological (or
graph theoretic definition) of traditional population genomic entity like the GM-
RCA (Grand Most Common Ancestor) of individuals under mutations as well
as recombinations. Apart from giving interesting characterizations of another
important structure called the ARG (Ancestral Recombinations Graph), it pro-
vides the basis for identifying a mathematical minimal nonredundant structure
in the ARG and for adapting very naturally the coalescence theory (a well-
studied notion in population genetics) in designing ARG sampling algorithms.
This connection also opens the door for many interesting questions ranging from
human migration paths, to genetic diversity study in plant (cacao) cultivars.
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Abstract. We study the class Ss.c of all strongly constructivizable
countable saturated models of a finite rich signature σ. We prove
that the Tarski-Lindenbaum algebra L(Ss.c) considered together with
a Gödel numbering γ of the sentences is a Boolean Σ1

1-algebra whose
computable ultrafilters form a dense set in the set of all ultrafilters;
moreover, the Boolean algebra L(Ss.c) is universal relative to the class of
all Boolean Σ1

1 -algebras. This gives an important characterization of the
Tarski-Lindenbaum algebra L(Ss.c).

Keywords: finitely axiomatizable theory, Tarski-Lindenbaum algebra,
c.e. Boolean algebra, countable saturated model, computable family of
types, Turing computability, hierarchy, m-complete set.

1 Introduction

The main result presented in Theorem 1 characterizes the Tarski-Lindenbaum
algebra of the class Ss.c of all strongly constructivizable (i.e., decidable) count-
able saturated models of a finite rich signature. Analogous result concerning class
Ps.c of all decidable prime models was obtained in [7]. Mention that, formulation
of [7, Theorem 1] should be modified. Its statement must include Parts (a)–(d)
similar to those available in Theorem 1 below.

Preliminaries
Theories in first-order predicate logic with equality are considered. General con-
cepts of model theory, algorithm theory, Boolean algebras, and constructive
models can be found in Hodges [3], Rogers [8], Goncharov and Ershov [2], and
Goncharov [1].

A finite signature is called rich if it contains at least one n-ary predicate
or function symbol for n > 1, or two unary function symbols. By L(T ), we
denote the Tarski-Lindenbaum algebra of theory T over formulas without free
variables, while L(T ) is the Tarski-Lindenbaum algebra L(T ) considered together
with a Gödel numbering γ; thereby, the concept of a computable isomorphism

P. Bonizzoni, V. Brattka, and B. Löwe (Eds.): CiE 2013, LNCS 7921, pp. 342–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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is applicable to such objects. The set of all finite tuples α of the form α =
〈α0, α1, . . ., αn〉, αi ∈ {0, 1}, is denoted by 2<ω. The empty tuple is denoted by ∅.
A set D ⊆ 2<ω is said to be a tuple tree if ∅ ∈ D and α ∈ D ⇔ α0 ∈ D∨α1 ∈ D
for all α ∈ 2<ω. The canonical (Gödel) index of a tuple ε = 〈ε0, ε1, . . . , εn−1〉,
εi ∈ {0, 1}, is the number Nom(ε) = 2n + ε02n−1 + ε12n−2 + . . .+ εn−1 − 1. We
write shortly 〈ε〉 instead of Nom(ε). If B is a Boolean algebra and a ∈ B, B[a]
stands for the restriction of B on the set of all subelements of a counting that
1 = a and −x is defined as a�x in B[a]. If b is an element of a Boolean algebra
and α ∈ {0, 1}, bα means b for α = 1 and −b for α = 0. Similarly, if Φ is a formula
and α ∈ {0, 1}, Φα means Φ for α = 1 and 
Φ for α = 0. Definition of the concept
of a compact binary tree is found in [6, § 2.1] as well as in Preliminaries of [7]. If
D is a compact binary tree, we denote by Π(D) the set of all its maximal chains.
We also use the following technical notations: Pn, is the table condition with
the Gödel number n, n ∈ N; A |= Pi, means that the table condition is satisfied
in the set A, A ⊆ N; Ω(m) = {A ⊆ N | (∀i ∈Wm)A |= Pi}, is parametric Stone
space with index m; DX

n = the closure of WX
n up to a compact binary tree,

where Wn is nth computably enumerable set, while WX
n denotes computably

enumerable set with c.e. index n relative an oracle X ⊆ N, cf. [8].

2 Main Claim

Hereafter, we fix a finite rich signature σ. We denote by Ss.c(σ) the class of all
strongly constructivizable countable saturated models of signature σ.

Theorem 1. The following assertions hold:

(a) L(Ss.c(σ)) is a Boolean Σ1
1 -algebra,

(b) computable ultrafilters of L(Ss.c(σ)) represent a dense set among arbitrary
ultrafilters in the algebra,

(c) for an arbitrary numerated Boolean Σ1
1 -algebra (B, ν) with a dense set of

computable ultrafilters among arbitrary ultrafilters there is a sentence Φ of
signature σ, such that (B, ν) ∼= (L

(
Th(Mod(Φ) ∩ Ss.c(σ))

)
, γ), where γ is a

Gödel numbering of the sentences of signature σ,
(d) for an arbitrary Boolean Σ1

1 -algebra B there is a sentence Φ of signature σ,
such that B ∼= L

(
Th(Mod(Φ) ∩ Ss.c(σ))

)
.

Proof. By criterion of Morley [5], also independently obtained by Millar in [4],
a countable saturated model M of a complete decidable theory T is strongly
constructivizable if and only if the family of types realized in M is computable.
From this we obtain that a sentence Ψ has a strongly constructivizable countable
saturated model if and only if there is a complete decidable theory T with a
computable set T of its types such that each type of T belongs to T; moreover,
Ψ ∈ T . An immediate calculation gives prefix ∀1. Finally, sentences Φ and Ψ
are equivalent on the class Ss.c(σ) of all strongly constructivizable countable
saturated models if and only if (Φ& 
Ψ) ∨ (Ψ & 
Φ) does not have a model in
this class. This gives prefix ∃1 for (a).
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Let T be an arbitrary complete theory extending Th(Ss.c(σ)), and Ψ ∈ T .
Obviously, Ψ has a model M ∈ Ss.c(σ). From this we have that complete decid-
able theory T ′ = Th(M) presenting a computable ultrafilter in St(Th(Ss.c(σ))),
is found in the neighborhood Ψ of the given arbitrary ultrafilter T of this Stone
space. This gives the required density property posed in (b). As for Part (d), it
is a simple consequence of Part (c) and Lemma 6 with Ξ = Σ1

1 .
The proof of Part (c) is given in Section 4.

3 A Property Concerning Numerated Boolean Algebras

The following assertion is intended to be used in proof of Part (c) of Theorem
1. Given a set X ⊆ N that is considered as an oracle.

Lemma 1. For an arbitrary numerated Boolean ΣX
1 -algebra (B, ν), there is a

numeration υ of B such that (B, υ) is a Boolean ΣX
1 -algebra whose computable

ultrafilters form a dense set in the set of all ultrafilters of the algebra (B, υ).

Proof. Given a numerated Boolean ΣX
1 -algebra (B, ν) defined by relativized

computability with an oracle X ⊆ N. We assume, that B is a nontrivial al-
gebra. By definition, signature operations ∪, ∩, and − in B are presentable by
computable functions on ν-numbers, while the equality is a ΣX

1 -relation in nu-
meration ν. This means that there is a computably enumerable inX set B ⊆ 2<ω

such that the following relation holds for any α in 2<ω, α = 〈α0, ..., αk〉:

ν(0)α0 ∩ ... ∩ ν(k)αk = 0 ⇔ (∃β ∈ B)(β � α). (3.1)

It is easily seen that the right-hand side expression in (3.1) represents a ΣX
1 -

form. Equivalently, the latter relation can be transformed into a ΠX
1 -form as

follows for all α in 2<ω:

ν(0)α0 ∩ ... ∩ ν(k)αk �= 0 ⇔ (∀β ∈ B)(β �� α). (3.2)

The case is trivial when B is finite in (3.1) and (3.2). Therefore, we assume that
B is infinite. Let Bt be a finite part of B, which is enumerated for � t steps in
the computation with oracle X . We can assume that B0 = ∅ and

|Bt+1�Bt| = 1, for all t ∈ N. (3.3)

Denote

(a) Dt = {α ∈ 2<ω | (∀β ∈ Bt)(β �� α)},
(b) D =

⋂
t∈N Dt = {α ∈ 2<ω | (∀β ∈ B)(β �� α)}.

(3.4)

Since the set D represents nonzero expressions in the left-hand side part of (3.2),
we obtain that D is a tuple tree; particularly, we have

∅ ∈ Dt for all t ∈ N. (3.5)
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We can assume that the enumeration of B in the computation with oracle X is
organized in such a manner that the following condition is valid for all t ∈ N:

α ∈ Dt ⇔ α0 ∈ Dt ∨ α1 ∈ Dt, for all α ∈ 2<ω, (3.6)

i.e., each set Dt itself is a tuple tree.
Now, we are going to describe a step-by-step process of computation with

oracle X whose result will be a new numeration υ of the same algebra B. The
following objects and relations are involved in the construction:

(a) qt : Dt → 2<ω, is a mapping satisfying :

(b) qt(∅) = ∅,

(c) α � β ⇔ qt(α) � qt(β),

(d) Qt =
{
α ∈ 2<ω : |qt(αu)| > |α| + 1 for some u ∈ {0, 1}

}
is finite,

(e) (∀α ∈ 2<ω)(∀u ∈ {0, 1})
[
α ∈ Dt�Qt ⇒ qt(αu) = qt(α)u

]
.

(3.7)

Notice that, having a pair of Gödel numbers for Bt and Qt together with the
values of qt(α) for α in Qt, we can uniquely determine all other parts involved in
the listing (3.7) obtaining an effective calculation of all relations and inclusions
needed in the construction.

Fig. 1. General scheme of step t > 0 of the construction

Construction. Step t = 0. We put q0(x) to be the identical mapping id : 2<ω →
2<ω; furthermore, we put Q0 = ∅.

Step t > 0. Consider the unique tuple α∗ ∈ Bt�Bt−1. In the case when α∗

has the form α1 for some α satisfying α0 ∈ Dt−1, we find the least n > 0 such
that there are no elements of Bt above the element

α̂ = qt−1(α) 11...1︸ ︷︷ ︸
n times

.

After that, we put for all δ in 2<ω:

qt(δ) =

{
qt−1(δ), if δ �9 α, δ ∈ Dt−1,

α̂β, if δ = α0β, β ∈ 2<ω, and α0β ∈ Dt−1.
(3.8)
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Notice that, we do not need to define values of qt(x) in the region {δ | α∗ � δ}
since it disappears from the tree Dt at step t, cf. Fig. 1.

In the other case when either α∗ has the form α0 for some α, or α∗ is α1
with α0 �∈ Dt−1, we do nothing putting qt(x) = qt−1(x) for all x ∈ Dt, where,
by definition, Dt = Dt−1�{δ | α∗ � δ}.

Notice that, in any case, we have Dt = Dt−1 ∩ {β | α∗ �� β}, since, by
construction, the tuple α∗ is a new ”restricting” element from B occurred at
step t. This finishes the construction.

Let us introduce the following notation:

Dt =dfn q
t(Dt) ∪ (related elements marked as ”n units”), (3.9)

D =
⋂
t∈N

Dt. (3.10)

The following simple properties hold:

(a) (∀α ∈ D)(∃t0)(∀t � t0)
[
qt(α) = qt0(α)

]
,

(b) (∀α ∈ 2<ω)
[
α ∈ Dt ⇒ α1 ∈ Dt

]
,

(c) (∀α ∈ 2<ω)
[
α ∈ D ⇒ α1 ∈ D

]
.

(3.11)

Indeed, because of (3.3), for a fixed α in D, for some t0, the length of the element
α∗ fromBt�Bt−1 becomes greater |α| for all t � t0. Considering our construction,
cf. Fig. 1, we can see that (3.11)(a) is satisfied. Furthermore, by construction, we
have B0 = ∅ and Q0 = ∅ obtaining (3.11)(b) at step t = 0. Now, suppose that
(3.11)(b) holds at step t−1. Analyzing the action performed by the construction
at step t, we can easily check that (3.11)(b) is still to be valid at the step t. As
for Part (c) of (3.11), it is a consequence of (3.11)(b) together with (3.10).

Thereby, all parts of (3.11) are checked. Based on (3.11)(a), we define the
following limit function on tuples α in D:

q(α) = β ⇔ (∃t0)(∀t � t0)
[
qt(α) = β

]
. (3.12)

By construction, we have

Dom(q) = D, and Val(q) ⊆ D; (3.13)

moreover, the mapping q : D → D satisfies the following property for all α, β ∈
D:

α � β ⇔ q(α) � q(β); (3.14)

in addition, the following technical property is provided by the construction:

α ∈ D�Val(q) ⇔ α is located at a non-brabching chain of ”n units”,
cf. Fig. 1, excepting the top element of the chain.

(3.15)

Now, we turn to the main properties of the construction.
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Claim 2. For each t > 0, there exists a finite set Ct ⊆ 2<ω such that we have

Dt = Dt−1 ∩ {α ∈ 2<ω | (∀β ∈ Ct)(β �� α)};

moreover, a Gödel number of the set Ct is found effectively from the complex of
information available at step t of the construction (an exact form of the state-
ment: the finite set Ct is found effectively in a Gödel number of the chain of
finite sets ∅ = B0 ⊆ B1 ⊆ ... ⊆ Bt).

Proof. First, we consider the case when the action is performed, as shown in
Fig. 1. Consider the following sets of tuples (see position of α′ in Fig. 1):

Ct = Ct
0 ∪ Ct

1 ∪ Ct
2, where

Ct
0 = {α′0}, α′ = qt−1(α),

Ct
1 = {α′10 , α′110 , . . . , α′ 11..1︸︷︷︸

n−1 times

0},

Ct
2 = {qt(β) | α0 � β and β ∈ Bt}.

The set C0
t restricts the region {β | α′0 � β} in D, the set Ct

1 restricts outside
parts along the line of ”n units”, while Ct

2 represents the qt-image of restricting
elements available in the region D of tree D at moment t− 1, thus, mapped to
the region qt(D) of tree D at moment t, see Fig. 1. In the other case when either
α∗ has the form α0 for some α, or α∗ is α1 with α0 �∈ Dt−1, we simply put
Ct = {qt−1(α∗)} for the unique tuple α∗ ∈ Bt�Bt−1.

It is easily checked that, in both cases, Claim 2 holds.

Claim 3. Tree D is a ΠX
1 -set.

Proof. Consider the set C =
⋃

t∈NC
t, where finite sets Ct are defined in Claim

2. By virtue of Claim 2, the set C must be a ΣX
1 -set. Furthermore, we have

α �∈ D ⇔ (∃β ∈ C)
[
β � α

]
for all α in 2<ω obtaining that the complement

of D is a ΣX
1 -set; thus, D itself is a ΠX

1 -set.

Introduce the following notation for an arbitrary chain π in Π(D):

q(π) =
{
q(α) | α ∈ π

}
∪ (related elements marked as ”n units”). (3.16)

Claim 4. The mapping q defined by rule (3.16) determines a bijection q :
Π(D) → Π(D) between the families of chains in these trees.

Proof. According to the construction, at each step, we cut corresponding chains
out of the trees D and D sometimes relocating some chains of D in another place.
In the case of the action presented in Fig. 1, the set of chains passing through
α′0 in D is moved to another place; namely, it becomes passing through α̂ in D.
Moreover, the interval of ”n units” appeared at the step adds none extra chains.
Based on the fact that stabilization (3.11)(a) takes place, we obtain that the
limited function q(x) indeed bijectively maps Π(D) onto Π(D).
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Now, we are in a position to construct a new numeration υ of B. Consider two
formal systems of generating elements bα and dα, α ∈ 2<ω, for Boolean algebras.
Introduce the following formal dependence relations for these sets:

(a) (b)

b∅ �= 0, d∅ �= 0,

bα = bα0 ∪ bα1, dα = dα0 ∪ dα1,
bα0 ∩ bα1 = 0, dα0 ∩ dα1 = 0,

bα �= 0, for α ∈ D, dα �= 0, for α ∈ D,

bα = 0, for α ∈ 2<ω�D; dα = 0, for α ∈ 2<ω�D.

(3.17)

In view of (3.1) and (3.4)(b), system (3.17)(a) represents the algebra (B, ν) in
accordance with the following interpretation

bα = ν(0)α0 ∩ ... ∩ ν(k)αk , α = 〈α0, ..., αk〉.

Claim 5. System (3.17)(b) represents a countable Boolean algebra B′ which is
isomorphic to B.

Proof. For the formal dependence relations (3.17)(a) and (3.17)(b), there is a
branch-preserving embedding q of D into D satisfying the properties (3.13),
(3.14), and (3.15). Moreover, by Claim 4, we have a bijective correspondence
between the sets of infinite chains of these tuple trees. This is sufficient for
existence of an isomorphism between the algebras B and B′.

Now, we turn immediately to the proof of Lemma 1.
Let B′ be the Boolean algebra uniquely determined by the system of generat-

ing relations (3.17)(b). Define a mapping τ : N → |B′| by the following rule for
all k ∈ N:

τ(k) = dα ∪ dβ ∪ ... ∪ dδ, where

k = Nom 〈j1, j2, ..., jt〉,
j1 = Nom(α), j2 = Nom(β), ... , jt = Nom(δ).

(3.18)

It can be easily checked that each element a in B′ is presentable in the form
(3.18); thus, τ is a numeration of the algebra B′. Since the operations in B′

are performed via some formal manipulations over the terms of the form (3.18),
there are general computable functions presenting all Boolean operations relative
to the numeration τ . Finally, by (3.17)(b) together with Claim 3, the condition
dα = 0 is ΣX

1 showing that (B′, τ) is a numerated Boolean ΣX
1 -algebra.

Now, we check the condition of density of the set of all computable ultrafil-
ters in (B′, τ). Let a be a nonempty element in B′. From (3.18), we can find
a nonzero element dβ ⊆ a for some β in D, β = 〈β0...βk〉. Consider an infi-
nite sequence of the form β∗ = 〈β0 , ..., βk, 1, 1, ..., 1, ...〉. By virtue of (3.11)(c),
for an arbitrary initial finite segment δ of the tuple β∗, δ = 〈δ0...δt〉, we have
τ(0)δ0 ∩ ...∩ τ(t)δt �= 0. Therefore, the infinite tuple β∗ determines an ultrafilter
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in the given neighborhood a of B′. By construction, we obtain that this ultrafil-
ter is computable. Thereby, the set of all computable ultrafilters is indeed dense
in the set of all ultrafilters of the numerated Boolean algebra (B′, τ).

Let λ : B′ → B be the isomorphism provided by Claim 5. We define a new
numeration υ of the algebra B required to Lemma 1 by the following rule υ(n) =
λ(τ(n)), for all n ∈ N. We obtain a numerated Boolean algebra (B, υ) that
satisfies all the demands posed in the formulation of Lemma 1.

Lemma 1 is proven.

Lemma 6. Given a class of hierarchy Ξ ∈ {Σ0
n, Σ

1
n, Π

1
n, Δ

1
n} with 0< n< ω.

For an arbitrary numerated Boolean Ξ-algebra (B, ν), there is a numeration υ
of B such that (B, υ) is a Boolean Ξ-algebra whose computable ultrafilters form
a dense set in the set of all ultrafilters of the algebra (B, υ).

Proof. The case Ξ = Σ0
n is a consequence of Lemma 1 with X = ∅(n−1). The

other cases are provided by simple properties of the hierarchy together with the
fact that the set C in the proof of Claim 3 is ΔX

1 whenever B in (3.1) is ΔX
1 .

4 Proof to Part (c) of Theorem 1

Given a numerated Boolean Σ1
1 -algebra (B, ν) whose computable ultrafilters

represent a dense set in the set of all ultrafilters. We assume, that B is a nontrivial
algebra. By definition, signature operations ∪, ∩ and − in B are presentable by
computable functions on ν-numbers, and the equality relation is a Σ1

1 -relation
in numeration ν. Therefore, there exists a unary relation H∗ such that for any
finite tuple of zeros and ones α=〈α0, α1, . . . , αn〉, we have

ν(0)α0∩ ν(1)α1∩ . . . ∩ ν(n)αn=0 ⇔ 〈α0,α1, . . .,αn〉 ∈ H∗, H∗ ∈ Σ1
1 .

We shall use the following m-complete in class Π1
1 set, [8, Ch.16,Cor.XX(b)]:

W = {n | ϕ(2)
n represents a well-ordering on a set of natural numbers}.

where ϕ
(2)
n is nth partially computable function with two arguments in Kleene’s

numbering, [8]. Since H∗ is Σ1
1 , and thus, H∗ �m N�W , there is a computable

function f(x) satisfying the following properties for all α ∈ 2<ω, α=〈α0, . . . , αn〉:

ν(0)α0∩ ν(1)α1∩ . . . ∩ ν(n)αn �=0 ⇔ f
(
〈α0,α1, . . .,αn〉

)
∈W. (4.1)

Using the method of [6, Sec.2.3, p.44], we construct an effective sequence of con-
structive linear orders (Ls, νs), s ∈ N, so that the following relation is satisfied:

s ∈ W ⇔ Ls is a well ordering. (4.2)

Now, our goal is to choose some pair (m, s) of integer parameters.
Choice of m. We choose m such that Ω(m) = P(N) (cf. Preliminaries). For

this purpose, it is enough to take m such that Wm = ∅.



350 M.G. Peretyat’kin

Choice of s. For this purpose, we describe a computable functional Ψ from
P(N) to P(N). Given a setA ⊆ N. Let α = 〈α0, α1, ..., αk, ...〉 be the characteristic
sequence for A, i.e., the following is satisfied:

αk =

{
1, if k ∈ A,
0, if k �∈ A. (4.3)

Taking A as an input parameter, we construct the following set

Ψ(A) = D◦ = Tree(L◦), L◦ = Lf(∅) + Lf(〈α0〉) + Lf(〈α0,α1〉) + ..., (4.4)

where L �→ Tree(L) is an effective procedure performing the transformation from
a constructive linear order to a c.e. binary tree, as it is described in [6, Sec.2.2].
It can easily be checked that the described transformation A �→ Ψ(A) is realized
by an algorithm using the set A ⊆ N as its input parameter. Thereby, the
transformation A �→ Ψ(A) can be considered as a computation by an algorithm
M with an oracle A. Let s be a Gödel number of the algorithm M. In accordance
with the basic definitions of the theory of algorithms, we obtain the following
form of the operator Ψ defined by an index s ∈ N (see Preliminaries):

Ψ(A) = DA
s . (4.5)

On this, choice of the pair of parameters (m, s) is finished.

Lemma 7. Let A ⊆ N be a computable set. The tree D◦ = Tree(L◦) is super-
atomic and the family of chains Π(D◦) is computable if and only if the linear
order L◦ in (4.4) is a well ordering.

Proof. Immediate; based on properties of the operation L �→ Tree(L) formulated
in [6, Lemma 2.2.1].

Now we immediately pass to the proof of Part (c) of Theorem 1.
First of all, we have to point out a sentence Φ of the given finite rich signa-

ture σ, as it is stated in Part (c) of Theorem 1. For this, we use the canonical
construction, cf. [6, Theorem 3.1.1]. Apply this construction to the pair (m, s)
specifying also signature σ. As a result, we obtain a finitely axiomatizable the-
ory F = FC(m, s, σ) of signature σ. As Φ, we get a conjunction of axioms of the
theory F . After that, our principal aim is to show that the sentence Φ satisfies
all the requirements listed in Theorem 1 (c).

By main statement of the canonical construction, there is an effective sequence
of sentences θn, n ∈ N, of signature σ such that the family of all complete
extensions of F is presented in the form

F [A] = F ∪ {θi|i ∈ A} ∪ {
θj |j ∈ N�A}, A ∈ Ω(m), (4.6)

moreover, the following relations are held for any A ∈ Ω(m):

F [A] has a countable saturated model ⇔ DA
s is superatomic, (4.7)

a countable saturated model of F [A], if it exists, is strongly (4.8)
constructivizable ⇔ A is computable and Π(DA

s ) is computable.
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Consider an arbitrary finite tuple of zeros and ones α = 〈α0, ..., αk〉. Construct
an elementary intersection of elements in B by the rule

bα = ν(0)α0 ∩ ν(1)α1 ∩ ... ∩ ν(k)αk , (4.9)

as well as an elementary conjunction of corresponding sentences by the rule

βα = θα0
0 & θα1

1 & ...& θαk

k . (4.10)

The main idea behind the construction is to provide the following relation:

Lemma 8. For any tuple α ∈ 2<ω, bα �= 0 if and only if Φ& βα has a strongly
constructivizable countable saturated model.

Proof. Assume that bα �= 0. Since computable ultrafilters form a dense set among
arbitrary ultrafilters in the Boolean algebra (B, ν), there is an infinite sequence
α∗ = 〈αi | i < ω〉 extending α such that the set A related to α∗ by (4.3) is
computable, and

ν(0)α0 ∩ ... ∩ ν(i)αi �= 0, for all i ∈ N. (4.11)

By (4.1), we obtain that f(〈α0, ..., αs〉) ∈ W for all i ∈ N; thus, by (4.2), the
sequence of orders in (4.4) consists of only well orderings. By Lemma 7, the tree
Ψ(A) = DA

s is superatomic and the family of chains Π(DA
s ) is computable. By

main statement of the canonical construction providing (4.7) and (4.8), theory
F [A] is consistent, complete, and has a countable saturated model M, which is
strongly constructivizable. This ensures that the formula Φ& βα is satisfied in
the strongly constructivizable model M since it is provable from F [A].

Now, we assume that the sentence Φ& βα has a strongly constructivizable
countable saturated model M. Consider the set

A = {θi | M |= θi}, (4.12)

which is obviously computable. Build an infinite sequence α∗ = 〈αi | i < ω〉
related to A by (4.3). Since A ∈ Ω(m), theory F [A] is consistent and complete.
Moreover, this theory is decidable by Janiczak theorem since it is computably ax-
iomatizable. By (4.12), all axioms of F [A] are satisfied in the model M. Thereby,
we have that A is computable and F [A] has a strongly constructivizable count-
able saturated model. By (4.7) and (4.8), we conclude that the tree DA

s is su-
peratomic and the family Π(DA

s ) is computable. By Lemma 7, linear order L◦

in (4.4) is well ordering; in view of (4.2), we obtain that f(〈α0, ..., αs〉) ∈W for
all s ∈ N. Applying (4.1), we finally obtain bα �= 0.

Lemma 8 is proven.

Let us map elements ν(i), i ∈ N, of B to sentences θi, i ∈ N, by the rule:

λ∗(ν(k)) = θk, k ∈ N. (4.13)
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Now, we shall extend the partial mapping (4.13) up to a computable isomorphism
of the algebras under consideration. Define a mapping

λ : B → L
(
Th
(
Mod(Φ) ∩ Ss.c(σ)

))
(4.14)

by the following rule: for an arbitrary finite sequence of finite binary tuples
α0, α1, . . . αn ∈ 2<ω, we put

λ(bα0 ∪ bα1 ∪ ... ∪ bαn) = βα0 ∪ βα1 ∪ ... ∪ βαn . (4.15)

The mapping λ is defined on all elements of B and is surjective since the set
of expressions involved in (4.15) includes all elements of these algebras. Taking
into consideration the property stated in Lemma 8 together with the fact that
Boolean operations above unions of elements bα of the form (4.9) and disjunc-
tions of elements βα of the form (4.10) are produced by same rules, we obtain
finally a computable isomorphism: λ : (B, ν) →

(
L
(
Th(Mod(Φ) ∩ Ss.c(σ))

)
, γ
)
.

Thereby, Part (c) of Theorem 1 is completely proven.
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Abstract. The Burrows-Wheeler Transform (BWT) is a tool of funda-
mental importance in Data Compression and, recently, has found many
applications well beyond its original purpose. The main goal of this paper
is to highlight the mathematical and combinatorial properties on which
the outstanding versatility of the BWT is based, i.e., its reversibility
and the clustering effect on the output. Such properties have aroused
curiosity and fervent interest in the scientific world both for theoretical
aspects and for practical effects. In particular, in this paper we are inter-
ested both to survey the theoretical research issues which, by taking their
cue from Data Compression, have been developed in the context of Com-
binatorics on Words, and to focus on those combinatorial results useful
to explore the applicative potential of the Burrows-Wheeler Transform.

1 Introduction

Michael Burrows and David Wheeler introduced in 1994 a transformation, called
BWT, that permutes the letters of a text in according to the sorting of its cyclic
rotations, making the text more compressible (cf. [4]). In the last two decades,
the BWT has become a tool of fundamental importance in Data Compression
and, recently, has found many applications well beyond its original purpose (cf.
[16,17,32,42,7,1]). Several implementations in external memory (cf. [14,2]) make
the BWT also applicable to massive datasets.

The main goal of this paper is to highlight the mathematical and combinato-
rial properties that make the BWT a so versatile tool, i.e., its reversibility and
the clustering effect on the produced output. Reversibility is guaranteed by the
sorting of the cyclic rotations of the text performed by the BWT and it is a
key feature for lossless compression. The clustering effect is due to the fact that
the BWT tends to group together characters that occur in similar contexts in
the input text, making the output more compressible even by simple compres-
sors. Theoretical evaluations of the performance of the BWT-based compressors
can be found in [35,12,5]. The mathematical and combinatorial properties of the
BWT have aroused curiosity and fervent interest in the scientific world both
for theoretical aspects and for practical effects. Several issues have been de-
veloped in the context of Combinatorics on Words. In particular, some studies
have been carried on determining the words that are the output of the BWT
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(cf. [28]) and, more widely, many researches have been pursued on characterizing
the words that become the most compressible after the application of the BWT
(cf. [33,40,39,41,38,13]). Actually, the practical importance of the clustering ef-
fect led to two different research themes. From one hand, to consider the question
of defining a combinatorial measure on words able to provide a quantitative esti-
mate of the “degree of clustering” that the BWT could produce (cf. [40]). On the
other hand, to investigate the problem of the optimal partitioning of the BWT
output so that compressing individually its parts via a base-compressor gets a
compressed output that is more compact than applying the compressor over the
entire text at once (cf. [15,19]). The use of these results allows the definition of
particularly efficient BWT-based compressors.

The combinatorial properties of BWT are also maintained when the transfor-
mation is extended to a multiset of words (cf. [31]). Such an extension has been
used to define measures for comparing sequences (cf. [32,45,7]) and as preprocess-
ing step of compressors that work on large collections of sequences (cf. [6]).

2 The Burrows-Wheeler Transform

Let Σ be a finite ordered alphabet. We denote by Σ∗ the set of words over Σ.
Given a finite word w = w1w2 · · ·wn ∈ Σ∗ with each wi ∈ Σ, the length of w,
denoted |w|, is equal to n.

We say that two words x, y ∈ Σ∗ are conjugate, if x = uv and y = vu, where
u, v ∈ Σ∗. Conjugacy between words is an equivalence relation over Σ∗. The
conjugacy class [w] of w ∈ Σn is the set of all words wiwi+1 · · ·wnw1 · · ·wi−1,
for 1 ≤ i ≤ n. A conjugacy class can also be represented as a circular word.
Hence in what follows we shall use “circular word” and “conjugacy class” as
synonyms.

The Burrows-Wheeler Transform (BWT) [4] is described as follows: given a
word w ∈ Σ∗, the output of BWT is the pair (bwt(w), I) obtained by lexico-
graphically sorting the list of the conjugates of w. In particular, bwt(w) is the
word obtained by concatenating the last symbol of each conjugate in the sorted
list and I is the position of w in such a list.

For instance, if w = mathematics then bwt(w) = mmihttsecaa and I =
7. The matrix obtained by lexicographically sorting all the conjugates of w is
depicted in Figure 1. We denote by F the first column of the matrix, i.e., F is
the word obtained by lexicographically sorting the characters of w. The column
L contains the word bwt(w).

One of the most important characteristic of BWT is that it tends to group
together characters that occur in similar contexts in the input text (occurrences
of a given symbol tend to occur in clusters) by producing an output that turns out
to be highly compressible. Several authors refer to such property as the clustering
effect of BWT. For instance, in Figure 1 one can see that equal characters are
consecutive in the column L.

Another important property of the BWT is its reversibility. In fact, given the
pair (bwt(w), I) it is possible to recover the original word w. This fact can be
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F L
↓ ↓

1 a t h e m a t i c s m
2 a t i c s m a t h e m
3 c s m a t h e m a t i
4 e m a t i c s m a t h
5 h e m a t i c s m a t
6 i c s m a t h e m a t

I → 7 m a t h e m a t i c s
8 m a t i c s m a t h e
9 s m a t h e m a t i c
10 t h e m a t i c s m a
11 t i c s m a t h e m a

Fig. 1. The matrix of the lexicographically sorted conjugates of the word mathematics

deduced by the following properties proved in [4] and that can be easily verified
on the matrix of the figure.

1. For all i = 1, . . . , n and i �= I, the character F [i] follows L[i] in the original
word;

2. for each character z, the ith occurrence of z in L corresponds to the ith
occurrence of z in F .

According to Property 2, we can define a permutation τ : {1, . . . , n} �→ {1, . . . , n}
giving the correspondence between the positions of characters of L and F . The
function τ represents also the order in which we have to rearrange the elements
of L to reconstruct the original word w. Hence, starting from the position I, the
word w can be recovered as follows:

wn−i = L[τ i(I)], where τ0(x) = x, and τ i(x) = τ(τ i−1(x)).

The permutation τ correspondent to the example described in Figure 1 is the
following.

τ =

(
1 2 3 4 5 6 7 8 9 10 11
7 8 6 5 10 11 9 4 3 1 2

)
Given the permutation τ , the set {i, τ(i), τ2(i), . . .} (for i ∈ {1, . . . , n}) is called
orbit of τ . The orbits of τ form a partition of the set {1, . . . , n}. For instance the
unique orbit of the function τ obtained by the L to F mapping correspondent
to the word mathematics is {1, 7, 9, 3, 6, 11, 2, 8, 4, 5, 10}.

From the definition of BWT, it is possible to deduce the following character-
ization of conjugate words.

Proposition 1. Two words x and y are conjugate if and only if bwt(x) =
bwt(y).

From the previous proposition one can easily see that the index I allows to
univocally individuate w in its conjugacy class. If we do not care about the
index I, the Burrows-Wheeler Transform defines a function bwt from the set
of all conjugacy classes or circular words over the alphabet Σ to the language
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Σ∗ that maps each circular word [w] into bwt(w). Note that such a function is
injective but is not surjective. In fact, one can verify that the word abraca is not
image by bwt of any circular word over the alphabet {a, b, c, r}.

A nonempty word w ∈ Σ∗ is primitive if w = uh implies w = u and h = 1.
Recall that every nonempty word u ∈ Σ∗ can be written in a unique way as a
power of a primitive word, i.e., there exists a unique primitive word w, called
the root of u, and a unique integer k such that u = wk.

The following proposition shows that the study of bwt can be reduced to that
of bwt of primitive words (cf. [33]) and that the bwt of a non-primitive word can
be deduced by the bwt of the root of the word itself.

Proposition 2. For u, v ∈ Σ∗ one has:

1. If u = vd and bwt(v) = α1α2 · · ·αn then bwt(u) = αd1α
d
2 · · ·αdn.

2. If bwt(v) = α1α2 · · ·αn and bwt(u) = αd1α
d
2 · · ·αdn then there exists a conju-

gate u′ of u such that u′ = vd.

3 Combinatorial Issues on the BWT

As shown in previous section the Burrows-Wheeler Transform has two properties
which are two key aspects for its application in Text Compression. In fact, it
is reversible, i.e., the original string can be reconstructed from the output of
BWT, and it produces a clustering effect or high local similarity. In general, the
output contains many runs of equal symbols and therefore is more suitable for
compression.

Very recently, several natural issues have been addressed in the field of Combi-
natorics on Words on the above mentioned properties of BWT. The first question
consists in characterizing all the words in Σ∗ that are images by bwt of some
word in Σ∗. Another important question is to give a qualitative characterization
of all the words of Σ∗ that are the most compressible, i.e., the words such that
the bwt produces a perfect clustering of the characters. The following subsec-
tions are devoted to the presentation of the main results obtained about these
topics.

3.1 Characterization of bwt Images

The problem of characterizing bwt images has been faced in [28], where the
authors prove two necessary and sufficient conditions. The first one describes the
words that are bwt images, while the second one explains which words can be
converted to bwt images using a natural “pumping” procedure. Both conditions
can be checked in linear time. In particular, the following theorem is proved.

Theorem 1. Given a word u ∈ Σ∗, u = bwt(w) for some w ∈ Σ∗ if and only
if the number of orbits of the permutation τ equals the greatest common divisor
of the lengths of runs of equal characters in u.
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By using the theorem one can deduce that the word u = bccaaab is not a bwt

image because the orbits of τ are 2 (i.e., {1, 4} and {2, 6, 3, 7, 5}), but the lengths
1, 2, 3, 1 of the runs of equal symbols in u are coprime.

In the paper [28] the authors also characterize the words v = c1 · · · ch that
can be transformed to bwt images by a sort of pumping: each letter ci can be
replaced by cpi

i for an arbitrary positive number pi. In particular, they prove the
following theorem that uses the notion of global ascent1 of a word.

Theorem 2. Let v = c1 · · · ch be an arbitrary word with at least two different
letters. A bwt image of the form cp1

1 c
p2

2 · · · cph

h , where pi > 0 for all i, exists if
and only if v has no global ascents.

By using the algorithm provided in their paper, starting from the word v = dacba
one can construct the word w = daccbaa that is the bwt image of aacbcad. An
interesting open question is to construct the shortest possible bwt image with
given order of letters.

3.2 Perfectly Clustering Words

An interesting issue, inspired by Data Compression, consists in characterizing
the perfectly clustering words by bwt, that are the words that after the bwt are
transformed into expressions in which all the occurrences of the same characters
are consecutive, such as cibjah or dibjchak. Notice that, if we consider primitive
words, we can suppose that the exponents are coprime. In the field of Data
Compression perfectly clustering words represent the most compressible words
via a BWT-based compressor.

In the case of words over binary alphabet {a, b}, the problem is to characterize
the words u such that bwt(u) = bpaq, for some p, q > 0, because one can not have
a word bwt(u) starting with the smallest symbol. Such a problem has been solved
in [33,37]. In fact, the authors prove the following theorem that also represents a
characterization of a well known family of finite words, called standard sturmian
words (cf. [29]). These words have several characterizations as, for instance, a
special decomposition into palindrome words and an extremal property on the
periods of the word that is closely related to Fine and Wilf’s theorem (cf. [10,9]).
Moreover they also appear as extremal case in the pattern matching algorithm
of Knuth-Morris-Pratt (see [26]).

Theorem 3. Given a word u over the alphabet {a, b}, bwt(u) = bpaq (with
gcd(p, q) = 1) if and only if u is a conjugate of a standard sturmian word.

Very recently, the problem has been also faced for alphabet of size greater than
2. In this case, a special attention has been given to the words with “simple”
bwt. We say that a word w over an ordered alphabet Σ = {a1, a2, . . . , ak} with
a1 < a2 < . . . < ak, has a simple bwt, if bwt(w) is of the form ank

k a
nk−1

k−1 · · ·an1
1 ,

for some positive integers n1, n2, . . . , nk.

1 A word v has a global ascent if v = xy, where x, y are nonempty and the maximal
letter of x is less than or equal to the minimal letter of y.
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We observe that the set of simple bwt words is a proper subset of the perfectly
clustering words. In the case of binary alphabets, such set coincides with the set
of perfectly clustering words.

In the case of three letters alphabet, the following result has been proved in
[41] (the necessary condition has been independently given in [38]). Note that
the following result that involves the vector of the occurrences of the characters
cannot be naturally extended for greater alphabets and the question is still open.

Theorem 4. The word u is a primitive word having a simple bwt on the alphabet
Σ = {a1, a2, a3}, i.e., bwt(u) = an3

3 a
n2
2 a

n1
1 , if and only if (n1, n2, n3) is a triple of

integers satisfying both the conditions gcd(n1, n2, n3) = 1 and gcd(n1 + n2, n2 +
n3) = 1.

Moreover, the words having simple bwt are related with the notion of palindromic
word2. In [39] the authors prove the following result that holds for words over a
generic alphabet Σ.

Theorem 5. If the word w ∈ Σ∗ of length n has a simple bwt then ww has
2n+ 1 distinct palindromic factors.

Note that 2n + 1 is the maximum number of distinct palindromic factors that
ww can contain (cf. [11]). Remark also that the condition stated in the previous
theorem is not a characterization. In fact, there exist words having the maximal
number of distinct palindromic factors but that have not a simple bwt. For in-
stance, if w = ccaaccb then ww has the maximal number of distinct palindromic
factors but bwt(w) = cacccba, hence w is not a perfectly clustering word.

Finally, in [13] it is proved that perfectly clustering words are intrinsically
related to k-discrete interval exchange transformations. Such transformations
can be intuitively defined by partitioning the interval {1, . . . , n} into k distinct
sub-intervals. If each position of the interval is labeled by a character of the
alphabet Σ, the transformation produces a trajectory starting from a given
position and is the infinite sequences of characters obtained by following the
transformation. Formal definitions can be found in [13]. The authors prove that
some discrete interval exchange transformations generate perfectly clustering
words, as stated in the following theorem.

Theorem 6. Perfectly clustering words are exactly those words w ∈ Σ∗ such
that ww occurs in a trajectory of a k-discrete interval exchange transformation,
where k is the size of Σ.

4 Practical Effects of the Combinatorial Properties

BWT-based compression algorithms take advantage of the fact that BWT typi-
cally produces an output word with a high local similarity, i.e., the occurrences
of the same symbol tend to occur in clusters.

2 The word w is palindrome if w = w̃, where w̃ denotes the reversal of w.
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Actually, the practical importance of the clustering effect led to two different
research lines. From one hand, to consider the question of defining functions
on words to measure those combinatorial regularities of a text that are able to
produce high local similarities via the BWT. On the other hand, to investigate
the problem of the optimal partitioning of the BWT output word so that com-
pressing individually its parts via a base-compressor gets a compressed output
that is more compact than applying the compressor over the entire text at once.

This section is devoted to describe the results related to these two research
issues.

4.1 Balancing and Compressibility of a Text

The problem of finding which kind of combinatorial regularities determine high
compressibility in the texts via BWT-based compressors, has been posed in [25].
Note that identifying such regularities and eventually quantifying them could
allow to prefer a compression strategy over another one.

As already shown in previous section the perfect clustering words represent
the optimal case even for simple BWT-based compressors. It is interesting to
note that, in the case of binary alphabets, perfectly clustering words are exactly
the binary circularly balanced words. In fact, they are precisely the finite cir-
cular sturmian words. Intuitively, a word is circularly balanced if the frequency
of each character of the alphabet, in different blocks3 of the same length, is
almost the same. Although this exact correspondence between highly compress-
ible words and balanced words is not extensible even to larger alphabets, it has
been experimentally verified that the notion of balancing of a word seems to
play an important role in the compression of texts. In fact, although it has not
been theoretically demonstrated, experimental results in [40] support the idea
that the more balanced the input word is, the more clustered the BWT output
word is, and, as a consequence, the better the compression is. In the paper the
authors introduced two functions to measure both the degree of balancing of a
word w and the clustering effect (or local similarity) of the word bwt(w). Both
the measures are defined by using the notion of local entropy4 of a text that is
a statistic, studied in [24], that captures the compressibility of a text.

The authors prove that the local entropy reaches its maximum on constant gap
words, i.e., particular balanced words in which the distance between any two con-
secutive occurrences of a given symbol is constant throughout the word. The min-
imum value is obtained for clustered words. In [40], the behavior of a BWT-based
compressor and a dictionary-based compressor (in particular, a compressor based
on “LZ” method) has been tested on real texts. The experiments have showed that
when the input text has a high degree of balancing then the BWT produces a text

3 Note that a block is considered as a circular factor of the text.
4 The local entropy is based on the notion of distance coding (DC) that encodes each
symbol of a word as the number of characters between the symbol itself and its
circular previous occurrence. Given a word w = w1w2 . . . wn of length n, the local
entropy on DC is defined as LE(w) = 1

n

∑n
i=1 log(DC(wi) + 1), where DC(wi)

denotes the encoding of the ith symbol of w.
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that has a high degree of clustering, and the BWT-based compressor achieves a
better compression ratio. However, the theoretical analysis of the intermediate
cases and the precise relationship between the local entropy of a word w and of
the respective bwt(w) remains still open. Answering to these questions would pro-
vide a useful tool to determine a priori the efficacy of a BWT-based compressor.

4.2 Optimal Partitioning of the Output of BWT

Several authors have analyzed the performances of the BWT-based compression
algorithms (cf. [35,12,5,24]). It was proved that the BWT improves the per-
formance of the base compressor from 0th order empirical entropy5 bounds to
kth order empirical entropy6 bounds, simultaneously over all k ≥ 0 (cf. [35]).
Thus, the BWT can be viewed as a key component of a “compression booster”
(cf. [18]), since it makes possible for relatively simple compression algorithms to
perform better on most input texts.

A recent and important paradigm in Data Compression consists in reorganiz-
ing data in order to improve the performance of a given compressor C. Such a
paradigm is called PPC. The basic idea consists in permuting the input text
w to produce a new text w′ that is partitioned into factors z1z2 · · · zt that are
individually compressed by the compressor C. Although such a paradigm has
been introduced in the context of table compression, it assumes a central role
when BWT-based text compressors are considered. In fact, the Burrows-Wheeler
Transform is used as preprocessing and the transformed text is finally compressed
via proper 0th order-entropy compressors (like Move to Front and Run Length
Encoding combined with Huffman and Arithmetic coding [44]).

In terms of the PPC paradigm, the BWT seems to be a valid support for
the permuting step because produces a highly compressible permutation which
is fast to be computed and achieves effective compression bounds. An important
and still open problem of Data Compression is finding the efficient computation
of an optimal partitioning of the output produced by BWT for compression
boosting. This is close to find an optimal partition of bwt into factors that are
“almost” clustered words, or with high degree of clustering. In [19] the authors
give the first efficient approximation algorithm for the problem of finding an
optimal partition of an input text w in blocks such that compress size achieved
by compressing them individually with a base compressor C is better than that
of the whole w. As shown in [21] the optimal partition can be computed by a
dynamic-programming approach. Unfortunately, this solution applied to input
of size n requires to run the compressor C over Θ(n2) factors having average
length Θ(n), for an overall Θ(n3) time cost in the worst case. It is clearly not
usable in practice even for texts longer than few Mbs.

5 The 0th order empirical entropy of w of length n is defined as H0(w) =∑k
i=1

ni
n
log n

ni
, where ni is the number of occurrences of ai ∈ Σ in w. It is as-

sumed that all logarithms are taken to the base 2 and 0 log 0 = 0.
6 For any word w ∈ Σk, let ws denote the string consisting of the characters preceding
all occurrences of w in a string s. The value Hk(s) =

1
n

∑
w∈Σk |ws|H0(ws) is called

the kth order empirical entropy of the string s.
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In [19] the authors prove the following theorem.

Theorem 7. Given a text w of length n drawn from an alphabet of size |Σ| =
poly(n), both with respect to a 0th order compressor and to a kth order compres-
sor, an (1 + ε)-optimal partition of w can be found in O(n log1+ε n) time and
O(n) space, where ε is any positive constant.

The authors also propose a solution to the optimal partitioning problem for
BWT-based compressors that introduces a Θ(|Σ| log n) slowdown in the time
complexity, but with the advantage of computing the (1 + ε)-optimal solution
with respect to the real compressed size, thus without any estimation by entropy-
cost functions. If |Σ| is small, this slowdown results negligible.

5 An Extension of BWT to a Multiset of Words

In [8] the authors pointed out the very interesting fact that the bwt coincides
with a particular case of a bijection defined in [20] by Gessel and Reutenauer.
This remark suggested the definition (cf. [30]) and the analysis (cf. [31]) of an
extension of the BWT (called EBWT) to a multiset of primitive words, that is
somehow an algorithmic presentation of the bijection introduced in [20].

The EBWT of a multiset S is a word (denoted by ebwt(S)) obtained by
letter permutation of the words in S together a set of indexes used to recover
the original multiset. In particular, ebwt(S) is obtained by concatenating the
last symbol of each element in the sorted list of the conjugates of S. The sorting
exploits an order relation defined by using lexicographic order between infinite
words. It is interesting to note that the ebwt inherits both the mathematical
and combinatorial properties of the bwt but, differently from bwt, the ebwt is
surjective. Indeed, it can be also seen as a bijection from multisets of circular
words over the alphabet Σ and the language Σ∗. A study of the combinatorial
aspects connecting the BWT and the EBWT can be found in [3].

In the field of the Data Compression, the EBWT has been used in [30] where
the authors have experimentally verified that when the single text is split into
small blocks of equal length and the multiset of the blocks are simultaneously
compressed by using EBWT as preprocessing, the compression ratio is better
than compressing each block separately, and then concatenating them. A similar
approach has been employed in [22,27] where a different factorization is used.
Very recently, the EBWT has been used for the compression of large collections of
DNA sequences (cf. [6]) by an external memory implementation of the algorithm
(cf. [2]). The authors showed that, while bzip27 performs comparably to gzip8

on DNA sequence reads, the compression achieved by EBWT-based methods
improves by more than threefold if the EBWT of the entire read multiset is
built, since this captures redundancy between reads that were widely spaced in
the original file. It was shown that compression can be further boosted by pre-
sorting the sequences or applying an implicit sorting strategy while the EBWT is
being built, enabling compression of better than 0.5 bits-per-base to be achieved.

7 bzip2 is a BWT-based compressor (www.bzip.org)
8 gzip is a LZ-based compressor (www.gzip.org)
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The EBWT is also used in other applicative context as the circular pattern
matching (cf. [23]) and the alignment-free methods for comparing sequences (cf.
[43,34]). In particular, in [32,45,36] different distance measures have been defined
and successfully used in several biological datasets, as for instance mitochondrial
DNA genomes, expressed sequence tags and proteins.

The methods based on the EBWT rely on the following idea: when EBWT
is applied to S = {u, v}, if the same factor z occurs both in u and v, then the
conjugates of u and v starting by z are likely to be close in the sorted list of
conjugates. This implies that the greater the number of factors shared by u and
v is, the greater the mixing of the conjugates of u and v in the sorted list is.
The comparison method based on the EBWT measures how similar u and v are,
by taking into account how much their conjugates are mixed. This intuition has
different possible formalizations that are closely related to the different partitions
of the word ebwt(S). In particular, a different color can be assigned to each
element of S. The word ebwt(S) contains a sequence of colors that depends on
how the conjugates of u and v are mixed in the sorted list. See Figure 2 for an
example. It is possible to define a distance measure by computing the number
of the alternations in the sequence of colors (cf. [31]). A more general class of
distance measures can be defined by using different partitioning of the colored
output of the ebwt(S) and by finally counting the difference of frequencies of
colors into each block of the partition.

Conjugates ebwt Colors
ababccb b R
ababccc c B
abccbab b R
abcccab b B
bababcc c R
babccba a R
babccca a B
bccbaba a R
bcccaba a B
cababcc c B
cbababc c R
ccababc c B
ccbabab b R
cccabab b B

Fig. 2. Given the set S = {u = ababcccb, v = ccccabab} we associate the color Red
to u and the color Blue to v. The columns of the matrix are the sorted list of the
conjugates, the word ebwt(S) and the sequences of colors, respectively.
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(eds.) CPM 2003. LNCS, vol. 2676, pp. 129–143. Springer, Heidelberg (2003)

22. Gil, J.Y., Scott, D.A.: A bijective string sorting transform. CoRR (2012);
abs/1201.3077

23. Hon, W.-K., Ku, T.-H., Lu, C.-H., Shah, R., Thankachan, S.V.: Efficient Algorithm
for Circular Burrows-Wheeler Transform. In: Kärkkäinen, J., Stoye, J. (eds.) CPM
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Abstract. In this note we provide a negative solution to the ω-jump
inversion problem for degree spectra of structures.

1 Introduction

Let A be a countable structure. The spectrum of A is the set of Turing degrees
defined by:

Sp(A) := {a| a computes an isomorphic copy of A}

For α < ωCK
1 the α-th jump spectrum of A is the set Spα(A) = {a(α)|a ∈ Sp(A)}.

The jump inversion problem for degree spectra of structures can be stated as
follows: Let α < ωCK

1 and A be a countable structure such that all elements
of Sp(A) are above 0(α). Does there exist a structure M such that Spα(M) =
Sp(A)?

A positive solution to the problem for successor ordinals can be found in [1].
Though the problem is not explicitly stated there, the solution is a byproduct of
the construction for all successor ordinals α < ωCK

1 of α-categorical structures
which are not relatively α-categorical. Another solution for finite ordinals based
on Marker’s extensions is given in [2].

In this note we shall show that in the general case the ω-jump inversion
problem for degree spectra has a negative solution. The proof can be easily
adapted for all recursive limit ordinals.

In what follows we shall define a structure A such that Sp(A) ⊆ {a|0(ω) ≤ a}
and for all countable structures M, Spω(M) �= Sp(A). The definition of A is
based on a special property of the ω co-spectra which can be expressed in terms
of enumeration reducibility. Namely we shall show that if M is a countable
structure then every enumeration degree in the ω co-spectrum of M is bounded
by a total enumeration degree which also belongs to the ω co-spectrum of M.

The basic facts about enumeration reducibility and co-spectra of structures
needed for the presentation are summarized below.
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2 Preliminaries

2.1 Enumeration Reducibility

Definition 1. Given two sets of natural numbers X and Y , say that X is enu-
meration reducible to Y (X ≤e Y ) if for some e, X = We(Y ), i.e.,

(∀x)(x ∈ X ⇐⇒ (∃v)(〈x, v〉 ∈ We ∧Dv ⊆ Y )).

Let X ≡e Y if X ≤e Y and Y ≤e X . The enumeration degree de(X) of the set
X consists of all sets Y which are enumeration equivalent to X . By De we shall
denote the set of all enumeration degrees.

Given a set X ⊆ N, by X+ we shall denote X ⊕ (N \ X). We have for all
X,Y ⊆ N that X ≤c.e. Y ⇐⇒ X ≤e Y

+ and X ≤T Y ⇐⇒ X+ ≤e Y
+.

Definition 2. A set X of natural numbers is called total if X ≡e X
+.

The enumeration jump was defined by Cooper in [3]:

Definition 3. Let X ⊆ N. Set Je(X) = {〈e, x〉|x ∈ We(X)}. The enumeration
jump X ′ of X is the set Je(X)+.

Clearly for all X ⊆ N, X ′ is a total set. The enumeration jump of X is somewhat
weaker than the Turing jump JT (X) ofX . Namely (∀X ⊆ N)(JT (X)+ ≡e (X+)′)
hence X ′ ≤T (X+)′ ≤T JT (X). Of course for total sets X , X ′ ≡T JT (X).

We shall use the following property of the enumeration jump:

Proposition 4. There exists a computable function j such that for all e ∈ N
and X ⊆ N, We(X)′ =Wj(e)(X

′).

Proof. Consider a computable function λ such that for every a and e and for all
X , Wa(We(X)) = Wλ(a,e)(X). Then

2〈a, x〉 ∈ We(X)′ ⇐⇒ 2〈λ(a, e), x〉 ∈ X ′ and
2〈a, x〉 + 1 ∈ We(X)′ ⇐⇒ 2〈λ(a, e), x〉 + 1 ∈ X ′.

Let j be the computable function yielding for every e an index of the c.e. set

{〈2〈a, x〉, {2〈λ(a, e), x〉}〉 : a, x ∈ N}∪{〈2〈a, x〉+1, {2〈λ(a, e), x〉+1}〉 : a, x ∈ N}.

Then for all e, We(X)′ =Wj(e)(X
′).

2.2 Enumeration Reducibility of Sequences of Sets

Definition 5. Let X = {Xn}n<ω and Y = {Yn}n<ω be sequences of sets of
natural numbers. Then X is enumeration reducible to Y (X ≤e Y) if for all n,
Xn ≤e Yn uniformly in n. In other words, if there exists a computable function
μ such that for all n, Xn =Wμ(n)(Yn).
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Definition 6. Let X = {Xn} be a sequence of sets of natural numbers. The
jump sequence P(X ) = {Pn(X )} of X is defined by induction:

(i) P0(X ) = X0;
(ii) Pn+1(X ) = Pn(X )′ ⊕Xn+1.

By Pω(X ) we shall denote the set
⊕

n Pn(X ). Clearly X ≤e P(X ) and hence⊕
nXn ≤e Pω(X ).

Proposition 7. For all sequences X of sets of natural numbers the set Pω(X )
is total.

Proof. Fix z0 so that for all sets X , Wz0(X) = X . Then

〈n, x〉 �∈ Pω(X ) ⇐⇒ x �∈ Pn(X ) ⇐⇒ x �∈Wz0(Pn(X )) ⇐⇒
2 〈z0, x〉 + 1 ∈ P ′

n(X ) ⇐⇒ 2 (2 〈z0, x〉 + 1) ∈ Pn+1(X ) = P ′
n ⊕Xn+1 ⇐⇒

〈n+ 1, 2 (2 〈z0, x〉 + 1)〉 ∈ Pω(X ).

So, N \ Pω(X ) ≤e Pω(X ).

Proposition 8. Let X = {Xn} be a sequence of sets of natural numbers, M ⊆ N
and X ≤e {M (n)}n<ω. Then P(X ) ≤e {M (n)}n<ω.

Proof. Let λ(a, b) be a computable function such that for all Y ⊆ N, Wa(Y ) ⊕
Wb(Y ) = Wλ(a,b)(Y ) and j be the recursive function defined in proposition 4.

Suppose that for all n, Xn = Wμ(n)(M
(n)).

Now P0(X ) = X0 = Wμ(0)(M
(0)). Suppose that Pn(X ) = Wa(M (n)). Then

Pn+1(X ) = Pn(X )′ ⊕Xn+1 = Wj(a)(M
(n+1)) ⊕Wμ(n+1)(M

(n+1)) =

Wλ(j(a),μ(n+1))(M
(n+1)).

2.3 Co-spectra of Structures

We shall identify the Turing degrees and the total enumeration degrees, i.e., the
enumeration degrees containing a total set. This assumption is safe because of the
standard embedding ι of the Turing degrees into the enumeration degrees defined
by ι(dT (A)) = de(A

+) which is known to preserve also the jump operation.

Definition 9. Let M be a countable structure and α < ωCK
1 . The α-th

co-spectrum of M is the set

CoSpα(M) = {a|a ∈ De ∧ (∀b ∈ Spα(M))(a ≤e b)}.

Definition 10. Let α < ωCK
1 . A subset R of N is Σc

α definable in M if there
exist a computable function γ taking as values codes of computable Σα infinitary
formulas Fγ(x) and finitely many parameters t1, . . . , tm of |M| such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

For the definition of the computable Σα formulae the reader may consult [4].
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Theorem 11. ([5]). Let α < ωCK
1 . Then

1. If α < ω then a ∈ CoSpα(M) if and only if all elements of a are Σc
α+1

definable in M.
2. If ω ≤ α then a ∈ CoSpα(M) if and only if all elements of a are Σc

α definable
in M.

3 A Property of the ω Co-spectra

Theorem 12. Let M be a countable structure and a ∈ CoSpω(M). Then there
exists a total enumeration degree b such that a ≤e b and b ∈ CoSpω(M),

Proof. Fix an element R of a. The set R is Σc
ω definable in M and hence there

exists a computable function γ and parameters t1, . . . , tm of |M| such that

x ∈ R ⇐⇒ M |= Fγ(x)(t1, . . . , tm).

Since each Fγ(x) is a computableΣω formula, i.e., a c.e. disjunction of computable
Σn+1 formulae, n < ω, we may assume that there exists a computable function
δ(n, x) such that for all n and x, δ(n, x) yields a code of some computable Σn+1

formula Fδ(n,x) and

x ∈ R ⇐⇒ (∃n)(M |= Fδ(n,x)(t1, . . . , tm)).

Let Rn = {x|x ∈ N ∧ M |= Fδ(n,x)(t1, . . . , tn)}. It is easy to see that if B is
the diagram of some isomorphic copy B of M on the natural numbers then
{Rn} ≤e {B(n)}. Indeed, let κ be an isomorphism from M to B and x1 =
κ(t1), . . . , xm = κ(tm). Then

x ∈ Rn ⇐⇒ B |= Fδ(n,x)(x1, . . . , xm).

Clearly the set of all computable Σn+1 formulae Fδ(n,x) with fixed parameters
x1, . . . , xm which are satisfied in B is uniformly in n enumeration reducible
to B(n).

By proposition 8 we have also that P({Rn}) ≤e {B(n)}. Hence Pω

({Rn}) ≤e B
(ω).

Set b = de(Pω({Rn})). As shown above b ∈ CoSpω(M). Notice that b is a
total degree. It remains to see that a ≤e b. Indeed, since x ∈ R ⇐⇒ (∃n)(x ∈
Rn), R ≤e

⊕
nRn. On the other hand

⊕
nRn ≤e Pω({Rn}). Therefore R ≤e

Pω({Rn})

Now we are ready to define the structure A promised in the introduction. Let
Y be a set which is quasi-minimal above ∅(ω). This means that ∅(ω) <e Y and
if X is a total set and X ≤e Y then X ≤e ∅(ω). The existence of such sets is
well known in the theory of the enumeration degrees. For example, one can take
Y = ∅(ω) ⊕ G, where G is one-generic relatively ∅(ω), see [6]. Notice that the
enumeration degree of Y does not contain any total set.
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Suppose that A is a countable structure with CoSp(A) = {a|a ≤e de(Y )}.
Clearly Sp(A) ⊆ {b|0(ω) ≤T b}. Assume that there exists a countable structure
M such that Spω(M) = Sp(A). Then CoSpω(M) = CoSp(A) and hence there
exists a total degree b in CoSp(A) such that de(Y ) ≤ b. Since de(Y ) is the
greatest element of CoSp(A), b = de(Y ). A contradiction.

It remains to see that there exists a countable structure A with co-spectrum
equal to the set {a|a ≤e de(Y )}. This follows from the fact that every principal
ideal of enumeration degrees can be represented as co-spectrum of some subgroup
of the additive groupQ of the rational numbers, see [7]. To make the presentation
self-contained we shall present this short argument here.

Let us fix a non-trivial group G ⊆ Q. Let a �= 0 be an element of G. For every
prime number p set

hp(a) =

{
k if k is the greatest number such that pk|a in G,
∞ if pk|a in G for all k.

Let p0, p1, . . . be the standard enumeration of the prime numbers and set

Sa(G) = {〈i, j〉 : j ≤ hpi(a)}.

It can be easily seen that if a and b are non-zero elements of G, then Sa(G) ≡e

Sb(G). Let dG = de(Sa(G)), where a is some non-zero element of G. The follow-
ing proposition follows from results of Coles, Downey and Slaman [8]:

Proposition 13. Sp(G) = {b|b is total ∧ dG ≤e b}.

Corollary 14. CoSp(G) = {a|a ≤e dG}.

Proof. Clearly a ∈ CoSp(G) if and only if for all total b, dG ≤e b ⇒ a ≤e b.
According Selman’s Theorem [9] the last is equivalent to a ≤e dG.

Now, let Y ⊆ N. Consider the set S = {〈i, j〉 : (j = 0) ∨ (j = 1 & i ∈ Y )}.
Clearly S ≡e Y . Let G be the least subgroup of Q containing the set {1/pji :

〈i, j〉 ∈ S}. Then 1 ∈ G and S1(G) = S. So, dG = de(Y ).
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The Turing Universe in the Context

of Enumeration Reducibility
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A fundamental goal of computability theory is to understand the way that ob-
jects relate to each other in terms of their information content. We wish to
understand the relative information content between sets of natural numbers,
how one subset of the natural numbers Y can be used to specify another one X.
This specification can be computational, or arithmetic, or even by the applica-
tion of a countable sequence of Borel operations. Each notion in the spectrum
gives rise to a different model of relative computability. Which of these models
best reflects the real world computation is under question.

The most widely used and studied model is the one based on computation:
a set of natural numbers A is Turing reducible to set of natural numbers B if
there is an effective procedure, by which given a natural number n and using the
answers to finitely many membership questions to the oracle B we can correctly
decide whether or not n is a member of A. By identifying sets that can be reduced
to each other we obtain the partial order of the Turing degrees. Computable sets
have least information content and form the least Turing degree 0T. There is a
natural way to combine the information content of two sets of natural numbers,A
and B are combined into A⊕B = {2n | n ∈ A}∪{2n+ 1 | n ∈ B}, so that every
pair of Turing degrees has a least upper bound. Finally, using a relativization
of the halting problem, for every Turing degree dT(A) we can find a degree
which is strictly more complex, namely dT(KA), where KA is the halting set,
relativized to A, which we call the jump of the Turing degree dT(A), and denote
by dT(A)′. Thus the structure of the Turing degrees is an upper semi-lattice
with least element and jump operation: DT = (DT,≤T,0T,∨,′ ).

In this article we shall examine the structure of the Turing degrees in the
context, provided by a slightly weaker form of reducibility, based on the notion
of enumeration rather than computation. This reducibility was introduced by
Friedberg and Rogers [6] in 1959. A set of natural numbers A is enumeration
reducible to a set of natural numbers B, if we can effectively transform any
enumeration of the set B into an enumeration of the set A. There is a very
close relationship between Turing reducibility and enumeration reducibility. To
see this recall that an equivalent way of saying that A ≤T B is to say that
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both A and the complement of A can be enumerated using oracle B, or in other
words A ⊕ A is computably enumerable in B. Going deeper into the definition
of c.e. in, we can say that there is a c.e. set W , whose members are pairs 〈n, u〉
of a natural number and a code for a finite set Du, so that A ⊕ A can be
represented as the set

{
n | ∃u(〈n, u〉 ∈W & Du ⊆ B ⊕B)

}
. In this definition

the oracle set B ⊕ B and the reduced set A⊕ A have a very specific structure:
they both contain all of the positive information about a set in their even part
and all the negative information about the same set in their odd part. If we
drop this requirement on the structure of the reduced set, we obtain a definition
of the relation c.e. in. If we consider a more general form of this definition, by
dropping the structural requirements on both the oracle and reduced set, we
obtain a definition of enumeration reducibility.

Definition 1. Let A and B be sets of natural numbers. Then A ≤e B if and only
if there is a c.e. set W , such that A = W (B) = {x | ∃u(〈x, u〉 ∈W ∧Du ⊆ B)}.
The set W will be called an enumeration operator.

From this analysis we immediately obtain the following relationship:

Proposition 1. Let A and B be sets of natural numbers.

1. A is c.e. in B if and only if A ≤e B ⊕B.
2. A ≤T B if and only if A⊕A ≤e B ⊕B.

Enumeration reducibility carries its own structure. By identifying sets that are
enumeration reducible to each other, i.e., enumeration equivalent, we obtain the
set of enumeration degrees De. This is a partial order, where de(A) ≤e de(B) if
and only if A ≤e B. The least element 0e consists of all computably enumerable
sets. The way in which we obtained a least upper bound for Turing degrees, gives
a least upper bound in the enumeration degrees, de(A ⊕ B) = de(A) ∨ de(B).
Thus De = (De,≤e,0e,∨) is as well an upper semi-lattice.

Proposition 1 yields a standard embedding ι : DT → De of the Turing de-
grees into the enumeration degrees, which preserves the order and the least
upper bound. This embedding is defined by ι(dT(A)) = de(A ⊕ A). The image
of the Turing degrees under this embedding is the set T OT of total enumera-
tion degrees. The substructure T OT of the total enumeration degrees plays a
central role in the study of the enumeration degrees. Selman [21] showed that
enumeration reducibility can be characterized by the following:

Theorem 1. Let A,B ⊆ ω. Then A ≤e B if and only if

{X | B is c.e. in X} ⊆ {X | A is c.e. in X} .

Translated in terms of enumeration reducibility using the first part of Proposition
1, this means that every enumeration degree is entirely characterized by the set
of total degrees above it. In particular the set of total enumeration degrees is an
automorphism base for the structure of the enumeration degrees.
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We are still missing one ingredient for a complete analogy between the two
structures: a jump operation, that agrees with the Turing jump under the stan-
dard embedding. The candidate for an analog of the halting set, which first
comes to mind is Ke

A = {〈n, e〉 | n ∈We(A)}. A closer look at this set shows
that this first choice is not satisfactory, as Ke

A is of the same enumeration degree
as A. This is not too surprising, in the Turing case the reason that the halting
set is not computable comes from the fact that the complement of the halting set
diagonalizes against all possible computations. In contrast to the Turing degrees,
the enumeration degrees are not closed under complement. This is why, to get a
jump operation, which actually jumps up, we need to use the complement ofKe

A.
Thus we define A′ = Ke

A⊕Ke
A. We shall call sets A, such that A ≡e A⊕A, total

sets. Total sets are always members of total degrees. Examples of total sets are
graphs of total functions, from where the term total originates, and as we just
saw - jumps of sets, by definition. In the reverse direction we have the following
jump inversion theorem by Soskov [28].

Theorem 2. For every enumeration degree x there exists a total enumeration
degree a, such that x ≤e a and x′ = a′.

It is not hard to see that this definition of the enumeration jump meets our
requirements - it agrees with the Turing jump under the standard embedding
ι. Thus the structure of the enumeration degrees provides a richer context in
which we can study the structure of the Turing degrees. In this article we shall
argue that there are cases in which this approach is useful, shedding light on
phenomena that can be observed, but not well explained by viewing the structure
of the Turing degrees alone.

1 Computable Model Theory

Our first example comes from a theorem by Coles, Downey and Slaman [3]. For
every set of natural numbers A, consider the set C(A) = {X | A is c.e. in X}. It
follows from a result by Richter [19] that sets of this form do not always have
a member of least Turing degree. Coles, Downey and Slaman show that if you
instead look at C(A)′ = {X ′ | A is c.e. in X}, then this set always has a member
of least Turing degree.

Theorem 3. For every sets A the set: C(A)′ = {X ′ | A is c.e. in X} has a
member of least degree.

They call this degree the least jump enumeration of A. The proof constructs this
least jump enumeration using forcing with finite conditions.

The motivation for this result comes from computable model theory, and
the notion of degree spectrum, used to characterize different structures. Fix a
countable relational structure A = (N, R1 . . . Rk). The degree spectrum of A,
denoted by DST(A), is the set of Turing degrees of the diagrams of structures
B ∼= A. If DST(A) has a least member, it is the (Turing) degree of A. Sometimes
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the spectrum of a structure does not behave nicely, and it is useful and more
informative to consider the jump spectrum of a structure. The jump spectrum
of A is DS′

T(A) = {d′ | d ∈ DST(A)}. If DS′
T(A) has a least member, it is the

(Turing) jump degree of A.
Now we shall consider one particular instance of this characterization problem.

A torsion free abelian group G of rank 1 is (up to isomorphism) a subgroup of
the additive group of the rational numbers (Q,+,=). Fix such a group G. For
every prime number p and element a ∈ G we introduce the notion the p-height
of a in G as follows:

hp(a) =

{
the largest k, such that pk|a in G;
∞, if ∀k(pk|a in G) .

Here pk|a in G if there exists b ∈ G such that pk.b = a.
Example: If G = Q then for all nonzero a and all p, hp(a) = ∞, because for

all k, pk. apk = a. If G = Z then for all nonzero a and all but finitely many p,

hp(a) = 0.
In fact it is not difficult to see that in any torsion free abelian group G of

rank 1 we have that for nonzero elements a, b and for all but finitely many prime
numbers p, hp(a) = hp(b). We can therefore assign to every element a ∈ G an
infinite sequence of numbers: χ(a) = (hp0(a), hp1(a), . . . hpn(a), . . . ), which we
shall call the characteristic of a. So different elements of G have characteristics,
which differ at only finitely many places, i.e., they are equivalent with respect
to the equivalence relation in ωω which places sequences that differ in finitely
many positions in the same equivalence class. The type of G, denoted χ(G) is
the equivalence class of χ(a) for any a �= 0 in G. Baer showed that first of
all there are torsion free abelian groups of rank 1 of every possible type. But
more importantly he proved that two torsion-free abelian groups of rank 1 are
isomorphic if and only if they have the same type. Thus a torsion free abelian
group of rank one is completely characterized by its type. And it turns out that
this type can also be used to characterize the degree spectrum of every such
group.

Let S(G) = {〈i, j〉 | j ≤ the ith element of χ(G)}. Here we are actually tak-
ing any nonzero element of G and using its characteristic to represent G. Note
that S(G) does not depend on the choice of this element, up to many-one equiv-
alence. Downey and Jockusch (see [3]) had shown that the degree spectrum of G
is precisely {dT(Y ) | S(G) is c.e. in Y }. Thus the result by Coles , Downey and
Slaman can be restated as follows: Every torsion-free abelian group G of rank
1 has a jump degree. So we know this fact, but just from the world of Turing
degrees it is not easy to explain the reason for this fact to be true. We now turn
to the wider context of the enumeration degrees and view the same problem
there.

Let us fix a countable relational structure A = (N, R1 . . . Rk). Soskov [29]
introduced the notion of enumeration degree spectrum. The enumeration degree
spectrum of A, denoted by DSe(A), is the set of e-degrees of the positive diagrams
of structures B ∼= A. If DSe(A) has a least member, it is the (enumeration) degree
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of A. The enumeration jump degree spectrum of A, denoted by DS′
e(A), is the

set of enumeration jumps of elements in DSe(A). If DS′
e(A) has a least member,

it is the (enumeration) jump degree of A.
We immediately observe that just like Turing degrees embed into the enumer-

ation degree via the standard embedding ι, we have a connection between the
Turing degree spectrum and the enumeration degree spectrum of structures. Let
A be any structure. Consider the structure A+ = (N, R1, R1 . . . Rk, Rk). Firstly
note that DSe(A+) consists entirely of total enumeration degrees. Secondly note
that the positive diagram of A+ is enumeration equivalent to the diagram of A.
Thus:

DSe(A+) = {ι(a) | a ∈ DST(A)} = ι(DST(A)).

A has Turing degree a if and only if A+ has enumeration degree ι(a). Similarly
DS′

e(A+) = {ι(a)′ | a ∈ DST(A)} = {ι(a′) | a ∈ DST(A)} = ι(DS′
T(A)) and A

has Turing jump degree a if and only if A+ has enumeration jump degree ι(a).
Soskov [29] considers the co-spectrum of a structure, the of enumeration de-

grees which are lower bounds to the enumeration degree spectrum of a structure.
He shows that every countable ideal of enumeration degrees can be realized as
the co-spectrum of a structure. The easier case of this theorem is when the ideal
is a principal ideal. Soskov shows that every principal ideal (a) is the co-spectrum
of a torsion free abelian group of rank one, G. The top element of this ideal a
is precisely the enumeration degree of the type of the group S(G). He further
makes the following observation.

Let G be a torsion-free abelian group of rank 1. The only relation in the
language (apart from equality) is the graph of the total function + which can
also enumerate its negative instances thus DSe(G) = {ι(a) | a ∈ DST(G)} ={
de(Y ⊕ Y ) | S(G) is c.e. in Y

}
. We can apply the first part of Proposition

1 to simplify the description of the enumeration degree spectrum of G. De-
note de(S(G)) by sG—the type degree of G. The enumeration degree spectrum
of G is:

DSe(G) = {a | a ∈ T OT & sG ≤e a} .
Now it is clear when a group has a degree and when not. The group G has
an enumeration degree (and hence G has a Turing degree) if and only if the
enumeration degree sG is total. This follows from Selman’s Theorem 1, as every
enumeration degree is completely characterized by the set of total degrees above
it. Furthermore, if G has an enumeration degree then it is precisely sG.

Consider the enumeration jump spectrum of G defined by

DS′
e(G) = {a′ | a ∈ T OT & sG ≤e a} .

By the monotonicity of the enumeration jump all members of DS′
e are greater

than or equal to s′G. By Soskov’s Jump Inversion Theorem 2 there is a total
degree a ≥ sG such that a′ = s′G. Thus the enumeration jump spectrum of G al-
ways has a least element and it is s′G. This gives an alternative, more informative
proof of the result by Coles, Downey and Slaman.

In recent work Soskov has shown a different application of properties of enu-
meration degrees to computable model theory. In this case the theme is jump
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inversion of spectra of structures. It had been previously shown [12] that for
every successor ordinal α if the Turing degree spectrum of a structure A lies in
the cone above 0α then there is a structure B, whose αth jump spectrum is the
spectrum of A. The case for limit ordinals was not known. In [27] Soskov shows
that ω-jump inversion is not always possible. The reason for this negative result
is seen when one considers the co-set, the set of lower bounds, of the image of the
ωth jump spectrum of a structure: it is shown that every member of this co-set
is bounded by a total enumeration degree in the same co-set. Thus an example
of a structure for which ω-jump inversion fails is given by a torsion free abelian
group G of rank one, such that de(S(G)) is not total and above 0ω

e .

2 Definability of the Jump Operator

A major theme in degree theory has been the definability theme. Among the
most notable definability results in the Turing degrees is Shore and Slaman’s
[23] proof of the first order definability of the Turing jump operator. The proof
of this theorem relies on two main ingredients—the definability of the double
jump and a proof of the following structural property: for every Turing degree a
which is not Δ0

2 there is a Turing degree g such that a∨g = g′′. Since any Δ0
2 de-

gree a ≤ 0′
T obviously does not satisfy this property (a∨g ≤ 0′

T∨g ≤ g′ < g′′),
this gives a first order definition of 0′

T. Relativizing, one gets the definition of
the jump operation for every Turing degree degree modulo the definability of the
double jump. The first ingredient is proved with a forcing construction, known
as Kumabe-Slaman forcing. The definability of the double jump relies on Slaman
and Woodin’s [26] analysis of the automorphism group of the Turing degrees.
Slaman and Woodin show that every countable relation on the Turing degrees
can be coded by finitely many parameters, the Coding Theorem. This shows in
particular that one can interpret the theory of second order arithmetic in the
Turing degrees, an earlier result due to Simpson [24]. Then using methods from
set theory, Slaman and Woodin show that every automorphism of the Turing
degrees has an arithmetic presentation, that it is completely determined by its
action on one element and that it fixes the cone above 0′′

T. Further they show
that the biinterpretability conjecture is true modulo finitely many parameters
and from this obtain that every relation in the Turing degrees which is induced
by a degree invariant relation on 2ω, which is definable in second order arith-
metic, is definable in DT using parameters. If the relation is in addition invariant
under automorphisms, then it is definable without parameters. This gives the
definability of the double jump. As is stated in [23], this makes the definition of
the double jump, and hence the jump operation, in the Turing degrees very far
from natural. It cannot be stated in terms of a structural property, similar to
the one used for the definition of 0′

T from the double jump. In the enumeration
degrees this is not the case. And the reason for this is the existence of pairs of
enumeration degrees with very special properties.

Recall Jockusch’s [15] definition of a semi-recursive set. A set of natural num-
bers A is semi-recursive if there is a total computable selector function sA, such
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that sA(x, y) ∈ {x, y} and if {x, y}∩A �= ∅ then sA(x, y) ∈ A. For example for ev-
ery set A the set of finite binary strings, which are to the left of the characteristic
function of A in the usual lexicographical ordering, LA = {σ ∈ 2<ω | σ ≤L χA},
is semi-recursive. Given two finite binary strings the selector function always
picks the one which is smaller with respect to ≤L. Jockusch [15] showed that in
fact for every non-computable set B there is a semi-recursive set A ≡T B such
that both A and A are not c.e.

Arslanov, Cooper and Kalimullin [2] noticed that the enumeration degrees of
semi-recursive sets have very interesting structural properties. If A is a semi-
recursive set then de(A) and de(A) form a minimal pair in a very strong sense:

(∀x ∈ De)((de(A) ∨ x) ∧ (de(A) ∨ x) = x).

It is then natural to wonder if this statement can be transformed into an if and
only if statement. Kalimullin showed that it can, but first we need to introduce
a generalization of semi-recursive sets.

Definition 2. A pair of sets A,B is called a K-pair if there is a c.e. set W ,
such that A×B ⊆W and A×B ⊆W .

A trivial example of a K-pair is {A,U}, where A is arbitrary and U is c.e. The
c.e. set witnessing this is N × U . If A is a semi-recursive set, then {A,A} is a
K-pair, witnessed by the set W = {〈x, y〉 | sA(x, y) = x} .

Kalimullin [16] showed that the notion of K-pairs captures precisely the strong
minimal pair property that semi-recursive sets have.

Theorem 4. A pair of sets A,B are a K-pair if and only if their enumeration
degrees a and b satisfy: K(a,b) � (∀x ∈ De)((a ∨ x) ∧ (b ∨ x) = x).

K-pairs are unique to the structure of the enumeration degrees. They are al-
ways quasi-minimal, i.e., the only total degree below either of them is 0e. A
consequence of the existence of nontrivial K-pairs in De, which are not below
0′
e, is that the Slaman-Shore property used to define the Turing jump fails in

the enumeration degrees: there is a degree a �e 0
′
e, such that for every degree g,

a∨ g <e g
′′. This shows that there are no K-pairs in the structure of the Turing

degrees. And furthermore there is no hope that the enumeration jump can be
defined using a similar technique to the one used for the definition of the Turing
jump.

Nevertheless Kalimullin [16] showed that the enumeration jump is first order
definable by a very natural structural property. He showed that 0′

e is the largest
degree which can be represented as the least upper bound of a triple a,b, c, such
that K(a,b), K(b, c) and K(c, a). Using a relativized version of K-pairs, he then
obtained the definability of the jump operator in De. An alternative definition,
which does not even use relativization is given by Ganchev and Soskova [7].

Theorem 5. For every nonzero enumeration degree u ∈ De, u′ is the largest
among all least upper bounds a∨b of nontrivial K-pairs {a,b}, such that a ≤e u.

As a consequence of this result we obtain that the set of total degrees a above
0′
e is also first order definable in De: a degree above 0′

e is total if and only if it
is the jump of some enumeration degree.
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3 The Local Structures

Two important substructures of the Turing degrees are the local structure of
the Turing degrees DT(≤ 0′

T), consisting of all Δ0
2 Turing degrees and its sub-

structure R, consisting of the of the computably enumerable degrees, i.e., Turing
degrees which contain c.e. sets. The local structure of the enumeration degrees
De(≤ 0′

e), consists of all Σ0
2 enumeration degrees. Recall that ι : DT → De pre-

serves the jump, hence DT(≤ 0′) embeds in De(≤ 0′
e). It is not difficult to show

that ι(R) is precisely the substructure of the Π0
1 enumeration degrees. Thus the

two local substructures of the Turing degrees live inside the local structure of
the enumeration degrees. The three structures are different both in terms of the
proper inclusions between their domains and in terms of their theories. Cooper
[4] showed that De(≤ 0′

e) is dense, hence not elementary equivalent to DT(≤ 0′
T).

Ahmad [1] showed that the diamond can be embedded in De(≤ 0′
e), hence the

theory of the local structure of the enumeration degrees differs also from the
theory of the c.e. Turing degrees.

One possible advantage of the embeddability of the Turing structures into
De(≤ 0′

e) is that algebraic results proved about the larger structure reveal more
information about the smaller structures. We next describe an instance of this
idea. A pair of degrees a,b form a splitting of c if a < c, b < c and a ∨ b = c.
The existence of various splittings and non-splittings in a structure is important
if one wishes to understand its two quantifier theory, i.e., the set two quantifier
sentences true in the structure. The history of splitting results for the c.e. degree
goes hand in hand with the evolution of the methods used to prove them, in
particular the priority method. Harrington [13], generalizing a result by Lachlan
[17], showed that there exists a c.e. Turing degree a < 0′

T, i.e., an incomplete
c.e. degree, such that no pair of c.e. degrees above a are a splitting of 0′

T. This
came to be known as Harrington’s non-splitting theorem and the method used
in its proof as the monster priority method. Later on a similar method was
used by Harrington and Shelah [14] to show the undecidability of the theory of
the c.e. degree. Cooper and Soskova [5] pushed this result further to its limit, by
considering this structural property within the local structure of the enumeration
degrees. By Sack’s splitting theorem, relativized to any Δ0

2 Turing degree it
follows that there is a Δ0

2 splitting of 0′
T above any incomplete Turing degree.

So the only question, which remained unanswered was if one can find a splitting
consisting of one c.e. member and one Δ0

2 member above any incomplete c.e.
degree. Cooper and Soskova [5] showed that this is not true:

Theorem 6. There exists a Π0
1 enumeration degree a <e 0

′
e, such that no pair

of a Π0
1 and Σ0

2 e-degrees above a are a splitting of 0′
e.

So transferring back, via the inverse of the standard embedding ι, there is a c.e.
Turing degree a <T 0′

T, such that no pair of a c.e. degree and a Δ0
2 degree above

a are a splitting of 0′
T. This method was then extended in [31] to show that the

full analog of Harrington’s non-splitting theorem holds in the local structure of
the enumeration degrees.
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Theorem 7. There is an incomplete Σ0
2 enumeration degree above which 0′

e

cannot be split.

The definability theme for the local structures has also been widely explored.
Here one cannot talk about definability of the jump operator, but one can look at
a hierarchy of classes of degrees defined in terms of the strength of their jumps.

Definition 3. Let n ≥ 1

1. The class of lown degrees is Ln = {a ≤ 0′ | an = 0n}.
2. The class of highn degrees is Hn =

{
a ≤ 0′ | an = 0n+1

}
The definability of the classes Ln+1 and Hn for all n ≥ 1 in R was shown
by Nies, Shore and Slaman [18] and in DT(≤ 0′) by Shore[22]. The proofs of
these theorems have the same flavor as the proof of the definability of the jump
operation. First it is shown that the theory of first order arithmetic can be
interpreted in R and DT(≤ 0′). This is then used to show that there is a definable
way of mapping a degree a to a set A in every coded model of arithmetic so that
A′′ ∈ a′′. Thus every relation which is invariant under double jump and definable
in first order arithmetic is definable in the corresponding degree structure. An
additional argument, building on top if the first one is then devised to show
that H1 is also first order definable. These methods are however not sufficiently
powerful to capture the definability of the low degrees, L1, in either structure.
The definability of L1 in DT(≤ 0′

T) or in R remains open.
Now lets turn to the local structure of the enumeration degrees De(≤ 0′

e). The
first quite important question to settle concerns the complexity of the theory of
the local structure, more precisely the question of whether or not one can inter-
pret the theory of true arithmetic in De(≤ 0′

e). Slaman and Woodin [25] prove
a coding theorem for the global structure, showing that Th(De) is computably
isomorphic to second order arithmetic and a limited effective version of the cod-
ing theorem, that is enough to show that the local theory is undecidable, but
not sufficient to characterize its complexity fully.

Theorem 8. Every uniformly low antichain can be coded by parameters in the
local structure De(≤ 0′

e).

Ganchev and Soskova [9] notice that K-pairs can be used to obtain precisely
this kind of antichains. In fact every half of a nontrivial K-pair is a uniform low
bound to an antichain {ai}i∈ω of e-degrees such that if i �= j then {ai, aj} is a
K-pair. Thus if the property “a and b form a K-pair” is first order definable in
the local structure, then one could use Theorem 8 to show that the theory of
first order arithmetic can be interpreted in De(≤ 0′

e).
Unfortunately Kalimullin’s global definition of K-pairs given in Theorem 4

starts with a universal quantifier. It is not clear and still open if this formula,
interpreted in the local structure, is still a first order definition of the true
K-pairs. However, using an additional structural property of the members in
De(≤ 0′

e), which is reminiscent of Theorem 7 and proved by a similar technique
as the one used there, Ganchev and Soskova [8] prove that K-pairs in the local
structure of the enumeration degrees form a definable class.
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Theorem 9. There is a first order formula LK(x, y), which defines the K-pairs
in De(≤ 0′

e).

This enables Ganchev and Soskova [10] to complete the original idea for inter-
preting arithmetic in the local structure.

Theorem 10. The first order theory of De(≤ 0′
e) is computably isomorphic to

first order theory of true arithmetic.

The definability of K-pairs in the local structure, turned out to be a key unlocking
the definability of many other classes, including the downwards properly Σ0

2

enumeration degrees, the upwards properly Σ0
2 enumeration degrees. Extending

a result of Giorgi, Sorbi and Yang [11], Ganchev and Soskova [7] show that in
addition the class L1 is first order definable, by a very natural property.

Theorem 11. An enumeration degree a is low1 if and only if every degree b ≤e

a bounds a K-pair.

So in contrast to the Turing structures DT(≤ 0′
T) and R, where only L1 cannot

be shown to be definable, here in the local structure of the enumeration degrees
we can show that this class is definable by a very natural property and it is not
known whether or not the other jump classes are definable. The next result tips
the scale in favor of De(≤e 0

′
e) at least in terms of richness of definable classes.

Recall that a semi-recursive set A and its complement A form a special exam-
ple of K-pair. In terms of structure this K-pair has one additional property—it
is maximal. A K-pair {a,b} is maximal if there does not exists a K-pair {c,d},
with a < c or b < d. Ganchev and Soskova [7] show that in the local structure
of the enumeration degrees maximality is precisely the structural notion which
captures K-pairs of a semi-recursive set and its complement. By Jockusch’s theo-
rem there is a non c.e. and non co-c.e. semi-recursive set in every Turing degree.
In e-degree terms this means that a nonzero enumeration degree is total if and
only if it can be represented as the least upper bound of a maximal K-pair.

Theorem 12. The class of total enumeration degrees is first order definable in
De(≤ 0′

e).

4 An Open Question

From what we have said so far, it follows that the set of total degrees that are
comparable with 0′

e is first order definable in De. The open question of interest
to us, first set by Rogers [20], concerns the definability of the class of all total
enumeration degrees.

As noted above it follows from Selman’s Theorem 1 that the class of total
enumeration degrees is an automorphism base for the De. Thus the definability
of the total enumeration degrees would link the two major open problems: the
existence of nontrivial automorphism for the Turing degrees and the existence
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of a nontrivial automorphism of the enumeration degrees. A positive answer to
the second question would yield a positive answer to the first question.

One possible solution to the definability of the total degrees would be to
extend the characterization that proves the definability of the total degrees in
the local structure. Jockusch’s result for the existence of semi-recursive sets is
valid for every Turing degree, hence one direction is already known to be true:
every nonzero total set is enumeration equivalent to the join of the components
of a maximal K-pair. The first order definability of the total enumeration degrees
would then follow, if it were true that maximality is the additional structural
property needed to capture K-pairs of the form {A,A}.

This definition would then relate in a nice way to the definition of the enumer-
ation jump given in Theorem 5. Consider the relation c.e. in between Turing
degrees defined by: x is c.e. in u if there are sets X ∈ x and U ∈ u, such that X
is c.e. in U . Ganchev and Soskova [7] show that if x and u are Turing degrees
such that u is nonzero then x is c.e. in u if and only if there is a K-pair {A,A}
such that de(A) ≤e ι(u) and ι(x) = de(A) ∨ de(A). Thus if every maximal K-
pair is of the form {A,A} for some A then the total degrees would be definable
and the relation c.e. in between nonzero total degrees would be definable. The
definition of the enumeration jump given in Theorem 5 restricted to the total
degrees can then be read as u′ is the largest total enumeration degree which is
c.e. in u. The natural definition of the total enumeration degrees proposed above
remains currently out of reach.

In recent work Soskova [30] has investigated how much of the techniques for
the analysis of the automorphism group of the Turing degrees by Slaman and
Woodin [26] can be applied to study the automorphism group of the enumeration
degrees. The obtained results bring the definition of the class of total enumer-
ation degrees one step closer—namely a parameter away. The obtained results
mirror the originals, it is shown that the automorphism group of the enumera-
tion degrees is at most countable, every member has an arithmetic presentation
and that there is an automorphism basis consisting of a single element. It is fur-
ther shown that every relation in the enumeration degrees which is induced by a
degree invariant relation on 2ω, definable in second order arithmetic, is definable
in De using parameters. As a consequence we obtain that:

Theorem 13. The class of total enumeration degrees is definable with parame-
ters in the structure of the enumeration degrees.
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Abstract. We revisit the problem of constructing strategies for simple
position games. We derive a general, executable formalism for describing
game rules and desired strategy properties. We present the outcomes for
several variants of the familiar game of tic-tac-toe.

1 Introduction

Games of strategy, in particular simple board games, have often been used
to demonstrate the capabilities of new computing devices. A famous example
was Donald Michie’s tic-tac-toe (noughts and crosses) with matchboxes [1]. To
show off the versatility of solution-phase biochemical computation using deoxyri-
bozyme logic gates beyond demonstrations of binary arithmetic [2, 3], we built
two versions of automata that played tic-tac-toe [4, 5]. Each played the game
perfectly following its rules, and implemented a strategy that never made mis-
takes, i.e., it won whenever possible. The strategy was chosen by us and specified
as a mapping from the opponent’s moves to the automaton’s responses. It was
then translated by hand into a set of Boolean formulae, and each formula was
implemented by a set of deoxyribozyme logic gates. Each such set of gates be-
came a circuit that operated in one of nine test wells, accepting the opponent’s
moves coded as DNA strands, and signalling the automaton’s responses via
fluorescence.

As the power of molecular computing increases, larger circuits become prac-
tical. For instance, we showed three-input gates with arbitrary assignment of
polarity [3]. We have also made progress on cascading gates, allowing greater ef-
fective fan-in. Groups working on DNA computing using other basic chemistry,
such as strand-displacement reactions, have also built circuits capable of inter-
rogating a large number of inputs [6]. This prompted us to revisit the problem
of designing games and games strategies that can be rendered in biochemistry.
The desiderata for a demonstration of a biochemical game-playing automaton
could be:

– the game is non-trivial, perhaps even interesting, but is simple to describe
(has compact rules);
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– (mandatory) the game possesses a favorable strategy for one of the players,
say, a strategy that never loses, and the logic design faithfully implements it;1

– (mandatory) the logic design is consistent with an implementation using
biochemical logic gates;

– the complexity of (some of) the logic gates used is higher than before, to
serve as a showcase for new capabilities, but not excessively high;

– the number of the gates needed is manageable, to contain cost;
– the amount of laboratory work to exhaustively test the automaton is man-

ageable (which means the strategy covers a reasonably small number of game
plays).

Of the above, using biochemical logic gates is the most serious constraint, for
we consider gates that cannot be turned off once activated, as we shall explain
shortly. Intuition suggests that this makes querying sequences of inputs difficult,
and when, through trial and error, we had found a working strategy for tic-tac-
toe [4] we were rather surprised. Here we tackle the two mandatory criteria above
by developing a systematic, constructive procedure to determine whether, given
a game, there exists a favorable strategy computable in biochemical logic. We
consider only position games—games played on a board with a finite number
of fields, in which the two players alternate claiming the fields, these claims
are permanent, and the winner is decided depending on whether certain board
configurations are reached.

In the following, we carefully define the notion of a game of strategy, its trans-
lation to logic, and the idiosyncratic realization of the logic in the wet lab
(Section 2); first steps in this direction were taken by Andrews [7]. We now elabo-
rate these definitions (Section 2), and then derive a computational procedure for
generating strategies (Section 3). Finally we present the results of the procedure
for several games in the tic-tac-toe family (Section 4). Perhaps surprisingly, the
difficulty of a game, measured by the size or other complexity metrics applied
to the results found, is not easy to predict from its apparent properties. Further-
more, the procedure may alternatively prove that no suitable strategy exists, and
we exhibit such examples. The very existence of a solution also appears to be a
subtle property and hard to predict. Our approach to computing strategies is ef-
fective on small examples; however, it does not assume or exploit any structure
in the games and therefore does not scale to games with many fields.

2 Games and Their Biochemical Representation

Deoxyribozyme Logic. We are interested in circuits made out of deoxyri-
bozyme logic gates. Deoxyribozymes are catalytically active single-stranded
DNA; the catalytic function we exploit is that of cleaving other single-stranded
DNA [8]. By adding a stem-loop control module to a basic deoxyribozyme, we

1 Whether particular games possess a favorable strategy, and for which player, is a
matter of keen study by combinatorial game theorists, and many familiar games,
such as Connect Four, have only been solved in the last two decades.
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are able to switch the complex from an inactive state to the catalytically active
state by providing a control input, itself a single-stranded DNA [9]. We have built
gates containing two such control modules, as well as a control module with the
opposite sense. Interpreting the function of the complex as a digital logic gate,
we were able to implement the Boolean functions id, ¬, ∧, λxy.x ∧ ¬y, and
λxyz.x ∧ y ∧ ¬z, i.e., some elementary conjunctions.

The rest of this paper can be understood without reference to biochemistry,
except for the following points. A catalytic gate in its active state continuously
cleaves substrate molecules into product molecules. It is the buildup of the prod-
uct that we are able to observe, usually by fluorescence techniques. Thus, viewed
as a dynamic system, an active gate is an integrator. In laboratory experiments,
gates are run sufficiently long so that enough product builds up for reliable
detection, thus the dynamic aspects need not concern us. However, once a prod-
uct molecules has been created, it never goes away; therefore, even if the gate
molecule itself is made inactive again (possible but nontrivial), the fluorescence
of the products remains. In effect, the gate once on cannot be switched off, and
this means the gate is usable for one-shot computation only. While this may be
a disadvantage in some contexts, it is a good match to position games in which
moves are permanent.

It is very easy to make a circuit with multiple conjunctions in a disjunction,
simply by arranging several gates in the same solution to bind the same substrate
and thus yield the same product—the activation of any gate suffices to build up
detectable fluorescence. By the same token, subsequent activation of another gate
has no visible effect, and this we can exploit to hide moves.

From Strategy to Boolean Formulae. We restrict attention to determinis-
tic games of perfect information in which two players alternate, in each move
claiming a field of a finite-size board, and these claims are permanent. Many
widely played games fall into this category, including tic-tac-toe, Hex, and Con-
nect Four. A strategy for one of the players (first or second) is a self-consistent
map from board configurations to that player’s moves. The map is only defined
for board configurations in which it is that player’s turn to move; furthermore
by “self-consistent” we mean that the map needs to be defined exactly for those
board configurations that are reachable by following the strategy itself.

A Boolean implementation of a strategy is a set of formulae, one for each field,
to turn on or off the automaton’s response in that field, as a function of the
current board configuration. We now place further restrictions on the Boolean
implementation in light of its subsequent realization in biochemical logic. Each
field is represented as a separate well (test tube) which implements one formula
in disjunctive normal form as a circuit consisting of several logic gates working
in parallel. Opponent’s moves are the inputs to the formulae and are presented
as molecules keyed to each field but added to all the wells; this is the only means
by which information is shared between the wells. Thus, the circuit in one well
can query all the opponent’s inputs, but not the outputs of the circuits in the
remaining wells: the Boolean implementation of a strategy must be a function
of the opponent’s inputs alone, not the complete board configuration. We can
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now explain the idea of move hiding: we can tolerate the spurious activation of
a gate upon the setting of an input (i.e., addition of a molecule), so long as, on
that game path, another gate in the same well has already been activated by a
previously set input (at an earlier move of the opponent).

A further distinction is possible depending on how we associate opponent’s
moves with Boolean inputs. A rich encoding [5] maps each 〈field, turn number〉
pair to a distinct input, so the formulae can query the order of the opponent’s
moves. In a compact encoding, each field is keyed to just one input [4], so the
formulae can only query the current set of the opponent’s moves but not their
order. In the following we assume a compact encoding.

The Notion of Isomorphism. In our first tic-tac-toe automaton, we restricted
our opponent’s first move; the automaton went first and claimed the center field

, upon which the two allowed moves for the opponent were the top left corner

or the left side . We justified this restriction by an appeal to symmetry—all
corners are alike, and all sides are alike. But we could have gone further. Indeed,
in treating a game on a square board it is natural to consider board configurations
as distinct only up to rotations and perhaps reflections. In general, this notion
of board isomorphism is arbitrary, and represents a chosen interpretation of the
game. For the 3×3 tic-tac-toe board, the equivalence classes under the natural
isomorphism (rotation and reflection) contain at most 8 board configurations
each (some, sparsely occupied, have just 4, 2, or 1).

To play a game under a notion of isomorphism, only one representative of
each equivalence class under isomorphism is used. Given a board configuration,
the appropriate player chooses an unoccupied field and claims it. The resulting
board’s equivalence class is looked up, and the representative of that class be-
comes the next board configuration. The new board configuration is a reshuffled
version of the old one, which humans can grasp easily for geometrically moti-
vated isomorphisms, but find confusing for arbitrary ones. However, it is not
clear how to effect reshuffling in our laboratory protocol. Rotating a well plate
is possible but it would be an external non-molecular computation; making a
mirror image of a plate would be rather tricky. Reshuffling using molecular com-
putation would require wells to turn off after they were on, and we must avoid
that. But what if, somehow, reshuffling didn’t actually have to reshuffle at all?

That is the approach we take: if the representative of each equivalence class is
chosen deliberately, it may be possible to arrange for the new board configuration
always to agree with the old one—for all possible moves from all possible board
configuration, as prescribed by a strategy. Whether this “deliberate choice” of
representatives actually exists for a given game turns out to be a complex prob-
lem in its own right. If it does, then it will appear to the human opponent as
if the game was played naturally, without reshuffling—the only difference being
that from a given board configuration, when it is the human’s turn, not all the
usual fields are permitted, but rather only at most one for each equivalence class
under isomorphism. It is as if the human were supplied with a rule book that
listed all board configurations and how one may move among them. This rule
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book is fair, as it simply projects the adopted notion of isomorphism onto the
automaton’s strategy; it is a generalization of our old restriction “on 1st move,
go only to top left or left side”.

3 From Games to Strategies: Problem Graph
and Constraints

To analyze a game we first construct a problem graph that captures all possible
game plays; its vertices are board configurations (up to isomorphism), and its
edges are moves. We then choose a subgraph that represents a feasible strategy;
to find one, we translate the problem graph into a constraint satisfaction problem
and solve with an external tool.

We formalize the rules of a game parametrically, using here the names of these
parameters in our Haskell implementation: A numFields value gives the board
size. An initialBoard, commonly empty, gives the root for the problem graph. A
mkSucc function maps a board to the set of legal successors, claiming one of the
unoccupied fields. A hasMotif function computes if the board is final (commonly
because one player’s claimed fields form a motif, such as a three-in-a-row). A vic-
toryMode value distinguishes normal game play (achieving a motif) from misère
play (avoiding a motif). A fieldPerms list enumerates all permutations of the
sequence 1· · · numFields that are to underlie the notion of board isomorphism.

Further parameters describe the strategy sought. A playerMode value selects
whether the strategy is for the first or the second player. An outcomeMode
governs which final outcomes the strategy must guarantee, commonly a win, or
either a win or a draw.

To construct the problem graph, we compute all board configurations reach-
able from initialBoard using mkSucc, collapsing isomorphic ones. Obviously, the
need to construct the graph explicitly limits our approach to fairly small games.
After labelling final configurations as win, draw, or loss, we can solve the game,
i.e., determine whether either player has a winning strategy, by a simple bottom
up propagation.

We have not been able to express feasibility of strategies by any such simple
computation, so we resort to a constraint-based approach. By inspection of the
problem graph, we calculate all the constraints that must be met. Here we present
one key example, clauses that express the feasibility of a strategy (deferring to
a longer report the full description of all types of clauses used). This constraint
captures the idea of avoiding conflicts in the strategy while exploiting move
hiding, as first suggested in Ref. [4] and further elucidated in Andrews’ thesis [7]:

Consider vertices at a level of the graph where the automaton moves,
i.e., where a choice needs to be made which single outgoing edge to keep
for the strategy. For all pairs of these vertices, we compute the potential
opponent move sets they have in common. Then for each such opponent
move set, we formulate a clause stating that if both vertices are kept, and
if at both vertices the equivalence class representative under isomorphism
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is chosen such as to agree with the opponent move set, then either the
outgoing moves from both vertices are labelled with the same field, or the
outgoing edges from both fields are directed to the same vertex.

In our current implementation, we express constraints directly in the Boolean
domain and invoke an external SAT solver, Minisat [10]. If there is a solution, we
interpret the satisfying assignment to recover the chosen vertices and edges to
be kept, and the chosen equivalence class representatives. This forms the chosen
strategy. We then read out the automaton response formulae and subject them
to a step of Boolean minimization. For games with a notion of isomorphism we
also read out the rule book for the opponent. We have written an independent
validation procedure that follows all paths in the strategy and checks that the
formulae evaluate correctly; the generated trace also represents the high-level
protocol to be followed by the laboratory technician validating a biochemical
realization of the strategy.

4 Results

The procedure described is effective and fast (completes in less than a minute of
CPU time) at analyzing games on modest-size boards, such as tic-tac-toe. Table 1
is a summary of our initial findings. We examined eight game variants based on
tic-tac-toe. All use the standard 3×3 board and three-in-a-row victory motif,
and strategies aim for a win or a draw (since in each case, in game-theoretic
terms, the game is a draw). As shown in the leftmost pane of the table, we
vary the victory criterion (either achieving or avoiding the motif), the player for
whom the strategy is sought (1st or 2nd), and the notion of board isomorphism
(we consider only two options, the natural eight-way symmetry (rotations and
reflection), or no isomorphism). The next pane gives the size of the problem
graph from which the constraints are constructed. The third pane gives the size
of the SAT instance generated; we include the ratio of the number of clauses to
the number of variables as a tentative indicator of instance hardness. If there is
no solution, the remaining columns have a dash. Otherwise, there is a solution
for the strategy, and the fourth pane describes the circuit we obtained for it, after
Boolean minimization, with the number of logic gates used and the maximum
fan-in (number of input literals) needed. Finally, the rightmost column gives the
number of play paths the chosen strategy entails.

Of the eight variants, five have solutions. In Figures 1 and 2 we focus on the
first two rows of the table, first player normal play, and we show the problem
graphs, derived solution strategies, and the Boolean formulae that implement
them. The graphs are scaled down, and too small to be read in print, so we intend
them primarily to convey a gestalt impression. However, they can be zoomed
into to consult the vertex numbers, which match between the problem and the
solution. The edges are labelled with the field being played into. The Boolean
formulae map inputs i0–i8 to outputs o0–o8; the fields are numbered according to

the schema
0 1 2
3 4 5
6 7 8. As expected, without isomorphism (Figure 2) the problem graph
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Table 1. Analysis for eight problem variants based on tic-tac-toe

victory player isomorphism vertices edges variables clauses ratio gates fan-in paths

normal 1st natural 539 1212 45878 279798 6.1 23 3 18
normal 1st none 3878 9331 338345 1623395 4.8 65 4 155
normal 2nd natural 290 530 18642 119045 6.4 — — —
normal 2nd none 2094 4085 126773 625558 4.9 — — —
misère 1st natural 45 60 1749 11875 6.8 — — —
misère 1st none 294 433 13951 65139 4.7 9 1 216
misère 2nd natural 546 1395 43239 283159 6.6 39 5 121
misère 2nd none 3950 10849 305599 1629398 5.3 120 8 503

is nearly eight times bigger; the chosen strategy requires three times as many
gates and nine times as many paths for validation. This comparison shows the
utility of a notion of isomorphism as a disciplined way of reducing the materials
and labor cost of the implementation.

On the other hand, it is instructive to compare the two variants for first player
misère play (fifth and sixth row of Table 1). Both have small problem graphs, and
the variant with no isomorphism has an exceptionally simple solution (which,
after some thought, should be anticipated: one constant 1 in the center, and nine
yes-gates surrounding it). Yet, the version with isomorphism has no solution.
In this case, the additional constraints that result from merging distinct board
configurations into single equivalence class representatives are responsible for the
lack of a solution.

5 Discussion

The space of strategies for position games can be enormous. As shown by An-
drews [7], for tic-tac-toe (normal play, first player, no isomorphism) it contains
1.24 ·10124 strategies, of which 2.6 ·10103 are favorable. This is in contrast to just
a quarter million possible plays. In a custom Monte Carlo approach, Andrews
constructed strategies for this game that were feasible and favorable by intelli-
gent design (effectively, by enumerating the local constraint space on the fly as
the strategy was constructed level by level) and checked them for implementabil-
ity within particular technologies (available elementary and gates). Sampling 50
million strategies, he quickly found five-literal implementations, but could not
find a four-literal one; our speculation at the time was that gates with five inputs
of arbitrary polarity were needed. We were surprised that the very first strategy
generated by our new method was implementable with just up to four-input
gates. A possible topic for future work is using an all-solutions constraint solver
to systematically sample the solution space.

Our new method improves on the previous approach—it is general and appli-
cable to arbitrary games; it is modular, separating play rules from victory modes
from strategy requirements; and it is purely declarative, the constraint-solving
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(b) Selected strategy (red leaves: win; blue leaves: draw)

o0 = (i3 ∧ i6) ∨ (i6 ∧ i7) ∨ (i2 ∧ i3) ∨ (i5 ∧ i6 ∧ i8)
o1 = (i6 ∧ ¬i8) ∨ (i2 ∧ i7)
o2 = i5 ∨ (i0 ∧ i3) ∨ (i1 ∧ i3) ∨ (¬i2 ∧ i3 ∧ i7)
o3 = (¬i5 ∧ i6) ∨ (i2 ∧ ¬i3) ∨ (¬i3 ∧ i7 ∧ i8) ∨ (i0 ∧ ¬i3 ∧ i8) ∨ (i1 ∧ ¬i3 ∧ i8)
o4 = 1
o5 = (¬i5 ∧ i8)
o6 = (i3 ∧ ¬i6) ∨ (i1 ∧ ¬i8) ∨ (i5 ∧ ¬i6 ∧ i8) ∨ (¬i6 ∧ i7 ∧ ¬i8) ∨ (i0 ∧ ¬i6 ∧ ¬i8)
o7 = (i0 ∧ i6)
o8 = 0

(c) Boolean formulae implementing the strategy

Fig. 1. Tic-tac-toe: Normal play, first player, isomorphism is rotation and reflection
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(b) Selected strategy (red leaves: win; blue leaves: draw)

o0 = i6 ∨ (¬i0 ∧ i1) ∨ (¬i0 ∧ i4) ∨ (¬i0 ∧ i3) ∨ (¬i0 ∧ i5) ∨ (¬i0 ∧ i8) ∨ (¬i0 ∧ i7)
o1 = (¬i1 ∧ i4 ∧ i8) ∨ (¬i1 ∧ i3 ∧ i5) ∨ (¬i1 ∧ i3 ∧ i8) ∨ (¬i1 ∧ i5 ∧ i8) ∨ (¬i1 ∧ i3 ∧ i6)

∨(¬i1 ∧ i5 ∧ i6) ∨ (¬i1 ∧ i6 ∧ i8) ∨ (¬i1 ∧ i3 ∧ i7) ∨ (¬i1 ∧ i5 ∧ i7) ∨ (¬i1 ∧ i7 ∧ i8)
∨(¬i1 ∧ i6 ∧ i7) ∨ (¬i0 ∧ i4 ∧ i7) ∨ (¬i0 ∧ ¬i1 ∧ i3 ∧ i4) ∨ (¬i0 ∧ ¬i1 ∧ i4 ∧ i5)

o2 = 1
o3 = (i1 ∧ i4 ∧ i5) ∨ (i4 ∧ i6 ∧ i8) ∨ (i1 ∧ i5 ∧ i7) ∨ (i1 ∧ ¬i3 ∧ i5 ∧ i8) ∨ (i1 ∧ ¬i3 ∧ i5 ∧ i6)
o4 = (i1 ∧ i7) ∨ (i0 ∧ i8) ∨ (i1 ∧ i3 ∧ i5) ∨ (i3 ∧ i6 ∧ i8) ∨ (i5 ∧ i6 ∧ i8) ∨ (i0 ∧ i1 ∧ ¬i4)

∨(i0 ∧ i3 ∧ ¬i4) ∨ (i0 ∧ ¬i4 ∧ i5) ∨ (i0 ∧ ¬i4 ∧ i7)
o5 = (i1 ∧ i3 ∧ i4) ∨ (i0 ∧ i1 ∧ i4) ∨ (i0 ∧ i3 ∧ i4) ∨ (i0 ∧ i4 ∧ i7) ∨ (i1 ∧ i4 ∧ ¬i5 ∧ i8)

∨(i1 ∧ i4 ∧ ¬i5 ∧ i6) ∨ (i1 ∧ i3 ∧ ¬i5 ∧ i8) ∨ (i1 ∧ i3 ∧ ¬i5 ∧ i6) ∨ (i1 ∧ ¬i5 ∧ i6 ∧ i8)
o6 = i0 ∨ (i3 ∧ i4 ∧ i8) ∨ (i4 ∧ i5 ∧ i8) ∨ (i3 ∧ i5 ∧ i8) ∨ (i1 ∧ i3 ∧ i7) ∨ (i1 ∧ i7 ∧ i8)
o7 = (i0 ∧ i4 ∧ i5) ∨ (i1 ∧ i3 ∧ ¬i7) ∨ (i1 ∧ i5 ∧ ¬i7) ∨ (i1 ∧ ¬i7 ∧ i8) ∨ (¬i0 ∧ i1 ∧ i4 ∧¬i6)

∨(i1 ∧ ¬i4 ∧ i6 ∧ ¬i7)
o8 = (i0 ∧ i4) ∨ (i3 ∧ i4 ∧ i6) ∨ (i4 ∧ i5 ∧ i6) ∨ (i3 ∧ i5 ∧ i6) ∨ (i1 ∧ i6 ∧ i7)∨ (¬i1 ∧ i4 ∧ i6)

(c) Boolean formulae implementing the strategy

Fig. 2. Tic-tac-toe: Normal play, first player, no isomorphism
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procedural details having been offloaded to an external solver. The principal
conceptual advance, however, is the principled and integrated treatment of game
symmetries via the notion of board isomorphism.

We are currently investigating how well our approach will scale to larger
games. The problem graphs grow quickly with the number of fields, and thus also
the SAT instances we generate, surpassing the capacity of off-the-shelf solvers at
about 15 fields in the board. It is not clear whether these instances also become
intrinsically harder, and this seems to be subtly dependent on the game rules.

Related Work. The literature on combinatorial games is vast and scattered,
though the periodical Games of No Chance (Mathematical Sciences Research
Institute) is a focal point. We have not been able to find prior work on the ques-
tion of computability of a strategy in (limited) logic. There is a growing body
of work in molecular computing; our game analysis approach can be applied to
various logic-gate implementations, adapting the constraints to match the par-
ticulars of those implementations. Most demonstrations in molecular computing
so far have been small to medium-scale. We hope that the development of design
tools will facilitate the construction of convincing large circuits.

Acknowledgments. We are grateful to Ben Andrews for many inspirational con-
versations. We sincerely thank the conference reviewers for their incisive comments,
which helped us to clarify the presentation, we hope. This material is based upon
work supported by the National Science Foundation under grant 1028238.
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Abstract. We consider an approach to computability in admissible sets
based on a general notion of computable process, with Σ-predicates and
Σ-operators as special cases, inspired by ideas from the Ershov-Scott
theory of approximation spaces. We present some results from different
topics in generalized computability, including reducibilities on admissible
sets and structures, general notion of a jump, and computable analysis
(more exactly, computability over the reals), obtained with the help of
this approach, and state some open questions.

1 Introduction

The present paper is a continuation of [15,16,18,19] and especially [17]. It is
motivated by three questions in generalized computability which turned out to
be closely connected:

1. For a given admissible set A, what is computability on A?
2. What is a jump of a given computability or structure?
3. How to define a measure (degree) of complexity of a given structure or ad-

missible set?

First, a usual understanding of computability theory on admissible sets as the
study of Σ-definable objects (predicates, relations, subsets, etc.) is too stringent
when various formalizations of computable processes are considered, like in the
case of mass problems with reducibilities on them via computable operators in
the style of Medvedev, Muchnik and Dyment [15]. Degrees of presentability,
being a special case of mass problems on admissible sets in general, provide
natural tools for measuring the constructive complexity of structures, so the task
of extending this approach is quite actual. Concerning this problem, we present
a framework which allows to study both Σ-predicates and Σ-operators from a
common viewpoint based on a notion of (constructive) process on a domain of
computation. Computability on admissible sets is generated from this point of
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view by classes Σ-processes on Σ-admissible families (in the paper such pairs
are called computability components). It turns out that these notions in case of
HF-computabilities are naturally connected with another motivating problem—
the study of jumps of computabilities and jumps of structures. We apply the
methods constructed in the first part to formulate a general notion of jump of
computability, extending the notions of Turing jump and hyperjump of a set of
natural numbers, and the notion of Σ-jump of a structure, considered recently
by different authors [7,9,12,18].

The results obtained in the paper explain how new notions and insights can
be helpful in quite different areas. We propose, formalize and study the following
approaches to the questions stated above:

1. Computability on A is a family of its components, with each component
defined as a pair: a family of objects—subsets of A, and a class of Σ-
processes acting on them, with the property that every finite fragment of
an output can be obtained using some finite fragments of the arguments and
resources.

2. The jump of a component of computability on A is a structure with the do-
main consisting of its objects and the diagram is obtained by the termination
of its processes.

3. The measure of (relative) complexity of a structure is given by its degrees in
semilattices of Σ-degrees and degrees of presentability.

There are three main classes of objects considered in this paper: admissible sets,
computabilities, generated by admissible sets, and structures, obtained as jumps
of computabilities. Note that a structure, in turn, generate admissible sets like
HF- or HYP-superstructures, so we can speak about, say, HF-computability over
that structure.

The new results in this paper are as follows. First, concerning computabilities
on admissible sets in general, we obtain a strengthening of the result of Morozov
[8] which states that a certain reducibility between admissible sets implies an
embedding of computable objects (i.e., Σ-predicates) on them. Namely, we prove
that this reducibility implies much more general fact: there exists an embedding
of computabilities on these admissible sets. We show how the theory of admissible
sets and , in particular, the notion of Σ-admissible family is connected with the
Ershov–Scott theory of approximation spaces.

Second, we present results connecting 0�, the jump of the maximal component
of HF-computability over 0, with the reals in both algebraical and topological
settings. We show that these structures are constructible from, respectively, (0�)′

and 0�. These results can be considered as a first step in the study of jump in-
versions in general, established for the minimal component of HF-computability
over arbitrary structure in the strongest possible form [18,19].

The proofs of new results are just outlined, to present the main ideas. In the
text, we use definitions and notations from [6,2]. In particular, for an admissible
set A, UA denotes the set of urelements from A, and A∗ denotes the set of
elements of A which are sets (i.e., not urelements).
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2 Processes and Approximation Spaces

We shall use very basic definitions and facts from the Ershov–Scott theory of
approximation spaces.

Definition 1. By a p-domain we mean a triple X = 〈X,F,�〉, where X is a
topological T0 space which is a ϕ-space [3,5], F ⊆ X is the basic subset of finite
elements, and � is the specialization order on X .

Every ϕ-space is an A-space [5]. In particular, we shall use the property of p-
domains established in [3] for A-spaces in general: every element x ∈ X is a limit
of its F -approximations:

x = sup{a ∈ F | a � x}.

The set F can be viewed as the set of finite approximations for elements from X ,
and the specialization order � is usually induced on X by a T0 topology defined
in some natural way. Typical examples we shall consider in this paper are built
from an admissible set A, with F = A, � = ⊆X\UA ∪ =UA , and X ⊆ A ∪ P (A)
(see Example 1 below). To explain the role of set X we should define the notions
of process, constructive process, and computability.

Informally, processes are functions on p-domains which generate an output
as the limit of its approximations, using ‘finite’ fragments of arguments and
resources (like space or time). Each process is defined by its specification or
presentation, and constructive processes are defined by specifications which can
be ‘effectively checked’.

Definition 2. Let m,n ∈ ω. By a (m,n)-ary specification on X we mean a
total function α0 : Fm+n+2 → {0, 1} which is monotone with respect to the
last 2 arguments in the following sense: for any ā ∈ Fm, any b̄ ∈ Fn, and any
c, c′, d, d′ ∈ F ,

if c � c′ then α0(ā, b̄, c, d) � α0(ā, b̄, c′, d);

if d � d′ then α0(ā, b̄, c, d′) � α0(ā, b̄, c, d).

Informally, ā are finite arguments, b̄ are finite fragments of (possibly infinite)
arguments, c and c′ are finite fragments of the resources we can use, while d and
d′ are finite fragments of the result of the process defined by this specification.

Definition 3. Let X = 〈X,F,�, 〉 be a p-domain. For m,n ∈ ω, (m,n)-ary
process on X is a partial mapping α from (a subset of) Fm×Xn to X such that
there exists a specification α0 : Fm+n+1 → {0, 1} which defines α in the following
sense: for any ā ∈ Fm, x̄ ∈ Xn such that (ā, x̄) ∈ dom(α), and any d ∈ F ,
d � α(ā, x̄) iff there exist b0, . . . , bn−1, c ∈ F such that b0 � x0, . . . , bn−1 � xn−1,
and α0(ā, b̄, c, d) = 1.

Let n ∈ ω. We use the following terminology to denote the fact that a given
process is either defined only on ‘finite’ arguments, or on arbitrary arguments
approached only via approximations. Namely, for n ∈ ω
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– n-ary functional is a (n, 0)-process from (a subset of) Fn to X ;
– n-ary operator is a (0, n)-process from (a subset of) Xn to X .

We denote classes of n-ary functionals and operators on X by Fn(X ) and On(X ),
correspondingly, and the class of all processes on X is denoted by P(X ).

Definition 4. 1) Termination of a (partial) functional α : Fn → X is a total
function αt : Fn+1 → {0, 1} defined as follows: for any ā ∈ Fn, b ∈ F ,

αt(ā, b) = 1 iff b � α(ā).

2) Termination of a (partial) operator β : Xn → X is a total function βt :
Xn+1 → {0, 1} defined as follows: for any ā ∈ Xn, b ∈ X ,

βt(ā, b) = 1 iff b = β(ā).

3) Termination of a (partial) process γ : Fm × Xn → X , n > 0, is a total
function βt : Fm × Xn+1 → {0, 1} defined as follows: for any ā ∈ Fm,
b̄ ∈ Xn, c ∈ X ,

γt(ā, b̄, c) = 1 iff c = γ(ā, b̄).

3 Computabilities and Reducibilities on Admissible Sets

Example 1. Let A be an admissible set. A p-domain X on A can be constructed
in the following way. Let X0 ⊆ P (A) be an arbitrary Σ-admissible family in
sense of [6], X = A ∪ X0, F = A, and � = ⊆X\UA ∪ =UA . So, the topology

on X ∩ P (A) is a strong topology from [6], and the topology on UA is trivial.
A class of processes can be taken as a suitable subclass of P(X )—the set of
operators on A which are strongly continuous [6]. The set of all Σ-predicates
and Σ-operators on A is, in fact, a subset of P(X ) (and form a subclass of
‘computable processes’), by the axiom of Δ0-Collection and the definition of Σ-
admissible family, respectively. Note that in case when A = HF(M) it is possible
to take X0 = P (HF(M)) [6].

On the other hand, we can first fix a subclass of computable processes C ⊆ P(X )
and then take X0 ⊆ P (A) to be a Σ-admissible family relative to C. We shall
use the following technical modifications of some basic notions from [2,6]. Let A
be an admissible set.

1) Mapping α : An → P (A) is called Σ-predicate on A if there is a Σ-formula
ϕα(x1, . . . , xn, y) of signature σA (with no parameters from A) such that, for
all a1, . . . , an, b ∈ A, b ∈ α(a1, . . . , an) iff A |= ϕα(a1, . . . , an, b) (ϕα is called
Σ-specification, or Σ-presentation, of α).

2) Mapping β : P (A)n → P (A) is calledΣ-operator on A if there is a Σ-formula
ϕβ(x1, . . . , xn, y) of signature σA (with no parameters from A) such that, for
all S1, . . . , Sn ∈ P (A), b ∈ A

b ∈ β(S1, . . . , Sn) iff ∃a1 ⊆ S1, . . . , ∃an ⊆ Sn s.t. A |= ϕβ(a1, . . . , an, b)

(here it is assumed that a1, . . . , an ∈ A∗). Again, ϕβ is called Σ-specification,
or Σ-presentation, of β.



On Processes and Structures 397

We assume that if A is fixed, � denotes ⊆A∗ ∪ =UA .

Definition 5. Let A be an admissible set, and let m,n ∈ ω. Mapping γ from
Am × (A ∪ P (A))n to P (A) is called a Σ-process on A if there is a Σ-formula
ϕγ(x1, . . . , xm, y1, . . . , yn, z) of signature σA (with no parameters from A) such
that, for all a1, . . . , am ∈ A, x1, . . . , xm ∈ A ∪ P (A), c ∈ A,

c ∈ γ(ā, x̄) iff ∃b1 � x1, . . . , ∃bn � xn s.t. A |= ϕγ(ā, b̄, c).

Formula ϕγ is called Σ-specification, or Σ-presentation, of γ. The set of all Σ-
presentations of a given process γ is denoted by PresΣ(γ).

Any Σ-presentation ϕγ(x̄, ȳ, c) of a process γ can be transformed into the
Δ0-formula θγ(x̄, ȳ, c, d) which is a specification of γ in the sense of Definitions
2, 3: take

θγ(x̄, ȳ, c, d) � (∀c′ ∈ c)ϕγ(x̄, ȳ, c′)(d),

where ϕγ(x̄, ȳ, c′)(d) is the relativization of ϕγ to d [2].
We denote by FΣ(A) the class of all Σ-predicates on A, by OΣ(A) the class

of all Σ-operators on A, and by PΣ(A) the class of all Σ-processes on A (hence,
PΣ(A) ⊇ FΣ(A) ∪ OΣ(A)).

Definition 6. Let A be an admissible set and let C ⊆ PΣ(A) be a class of
Σ-processes on A. A family S ⊆ A ∪P (A) is called Σ-admissible relative to C if

1) S is closed relative to processes from C:

∀αk ∈ C∀x1, . . . , xk ∈ S α(x1, . . . , xk) ∈ S;

2) processes from C are strongly continuous on elements from S: for any (m,n)-
process α ∈ S,

∀a1, . . . , am ∈ A∀x1, . . . , xn ∈ S∀c ∈ A(c � α(ā, x̄) →

→ ∃b1 ∈ A . . . ∃bn ∈ A(b1 � x1 ∧ . . . ∧ bn � xn ∧ c � α(ā, b̄))).

Definition 7. Let A be an admissible set. By a computability component on A
we mean a pair (S, C), where

1) A ⊆ S ⊆ P (A) is a Σ-admissible family relative to C, and
2) FΣ(A) ⊆ C ⊆ PΣ(A) is a class of Σ-processes on A which is closed under

superposition.

For an admissible set A, by computability on A we mean the family Com(A) of
all computability components on A:

Com(A) = {(S, C) | (S, C) is a computability component on A}.

To demonstrate the usefulness of these new notions, we prove a strengthening of
the result of Morozov [8] which states that a certain reducibility on admissible
sets implies an embedding of computable objects (i.e., Σ-predicates) on them.
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The reducibility on admissible sets was defined by Morozov [8] as a modifica-
tion of the notion of Σ-definability of a structure in an admissible set, introduced
by Ershov [4,6]. (A structure Σ-definable in A is called A-constructivizable.) In
analogous way, the relation of Σ-reducibility �Σ on (types of isomorphism of)
structures was also defined using this notion. Namely, for structures M and N,
we denote by M �Σ N the fact that M is Σ-definable in HF(N). This relation is
reflexive and transitive, and the corresponding notion of Σ-degree gives a natural
measure of complexity for structures of arbitrary cardinalities, see [16,17,18,19].

We shall also need a ‘positive’ version of Σ-definability: for a structure M and
an admissible set A, M is Σ+-definable in A if there exist a computable sequence
of Σ-formulas Φ(x0, y), Φ0(x0, . . . , xn0−1, y), Φ1(x0, . . . , xn1−1, y), . . . such that,
for some parameter a ∈ A and an onto mapping ν : ΦA(x0, a) � M , for every
i ∈ ω and every a0, . . . , ani−1 ∈ ΦA(x0, a),

A |= Φi(a0, . . . , ani−1, a) ⇐⇒ M |= Pi(ν(a0), . . . , ν(ani−1)).

Again, for structures M and N, we denote by M �+
Σ N the fact that M is Σ+-

definable in HF(N). It should be noted, however, that �+
Σ is transitive only in

case when all structures are treated ‘positively’ in the sense that their atomic
diagrams are not necessarily closed under negations.

For a structure with an infinite computable signature, we assume that some
Gödel numbering of formulas of this signature is fixed. We assume that the signa-
ture of HF(B) contains a predicate symbol Sat2 interpreted by the satisfiability
relation for atomic formulas in B, with respect to a fixed Gödel numbering. In
the case of structures with a finite signature this assumption is not essential.

The next definition is a technical modification of the original one (it was used
in this form in [9]).

Definition 8 (Morozov [8]). Let A and B be admissible sets. A is Σ-reducible
to B ( denoted A :Σ B) if there is an onto mapping ν : B � A such that

1) ν is a B-constructivization of A as a structure in sense of [4,6];
2) there is a binary Σ-predicate E on B s.t. pr1(E) = B and, for all b, c ∈ B,

〈b, c〉 ∈ E implies ν(b) = {ν(z)|z ∈ c}.

Definition 9. If, for admissible sets A,B, there exist mappings ν : B � A and
μ : PresΣ(PΣ(A)) → PresΣ(PΣ(B)) such that μ is computable and, for every
(S, C) ∈ Com(A), there exists (S ′, C′) ∈ Com(B) such that

(ν−1(S), μ(Pres(C))) is isomorphic to (S ′, C′),

we say that Com(A) is Σ-embeddable into Com(B).

Theorem 10. Let A,B be admissible sets. If A :Σ B then Com(A) is Σ-em-
beddable into Com(B).

Proof. We prove that if A is Σ-reducible to B then Σ-processes on A are rep-
resented, in an effective and uniform way, by Σ-processes on B working with
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the names of elements from A. So, the result is somethat similar to one on
relationship between Σ-degrees and degrees of presentability of structures.

We present a uniform effective procedure which transform any Σ-specification
of a Σ-process on A into some Σ-specification of Σ-process on B representing
the first one. In a standard way, we define an effective uniform transformation
Φ(x̄, ā) �→ Φ∗(x̄, b̄) of Σ-formulas of signature σA with parameters ā from A, to
Σ-formulas of signature σB with parameters b̄ from B, by induction on the com-
plexity. Now, any Σ-specification Φα of (m,n)-ary Σ-process α on A is mapped
to a Σ-formula (Φα)∗ which is a Σ-specification of (m,n)-ary Σ-process α∗ on B
such that, if 〈S0, . . . , Sn−1〉 ∈ δc(α) (δc denotes the domain of strong continuity),
then 〈ν−1(S0), . . . , ν−1(Sn−1)〉 ∈ δc(α∗) and

ν−1(α(S0, . . . , Sn−1)) = α∗(ν−1(S0), . . . , ν−1(Sn−1)).

Hence, defining mapping μ on Σ-processes as μ(p) = (p)∗, the pair (ν−1, μ)
establish the desired isomorphism.

4 Jumps of Computabilities: Σ-Jump of a Structure
as the Jump of the Minimal Component of
HF-Computability

Definition 11. Let A be an admissible set, and let (S, C) be a computability
component on A. Jump of (S, C) is a structure JA(S, C) with domain S and
atomic diagram consisting of a unary predicate distinguishing the set A of finite
objects and the termination t(C) of processes from C.

This extends in a natural way all existing definitions of jump operations defined
on subsets of natural numbers or on structures. Indeed, in the last case, we
use the fact that every structure generates the least admissible set containing
it—HF-superstructure. If we take the least computability component on that
HF-superstructure and terminate all its processes (i.e., all Σ-predicates), we get
the structure which is called Σ-jump of the original one. The formal definition
is as follows:

Definition 12. Let A be a structure. By Σ-jump, or minimal Σ-jump, of A, we
mean the structure

A′ = (X ;F, T ),

with the domain X = HF (A), and relations F = HF (A) (domain consists of
finite objects only, so the unary relation F is trivial in this case and usually
skipped), and T = t(FΣ(HF(A))) as the termination of all Σ-predicates on
HF(A) (denoted here, as in [18,19], by Σ-SatHF(A)).

In a similar way the jump operation was introduced in [1] for the semilattice of
s-degrees of countable structures. Also, in the same way a notion of the jump of
an admissible set with respect to various effective reducibilities was introduced
in [8,9].
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The operation of Σ-jump agrees with the jump operations for Turing and
enumeration degrees w.r.t. the natural embeddings i and j: if a structure A has
a (e-)degree a, then the structure A′ has (e-)degree a′. In fact, it is true that
the mappings i : D → SΣ and j : De → SΣ are embeddings preserving 0, ∨ and
the jump operation (see [16,19] for details). Hence, the operation of Σ-jump is a
natural extension of Turing and enumeration jumps. One of the important facts
about the minimal HF-computability is that the jump inversion theorem from
classical computability theory is still true in this general setting.

Theorem 13 ([18,19]). Let A be a structure such that 0′ �Σ A. Then there
exists a structure B such that

B′ ≡Σ A.

5 Jumps of Maximal Components of HF-Computabilities:
PΣ-Jump of 0 and the Reals

Definition 14. Let A be a structure. By PΣ-jump, or maximal Σ-jump, of A,
we mean the structure

A� = (X ;F, T ),

with the domain X = HF (A) ∪ P (HF (A)), and the atomic diagram consisting
of relations F = HF (A) distinguishing finite objects, and T as the termination
of all Σ-processes on HF(A).

It follows from the definition that relations ∈ and ⊆ between elements of the
sets F and X are obtained as terminations of Σ-processes which act on X and
depend on a in an effective and uniform way. Also, it is easy to note that PΣ-
jump is indeed a jump with respect to �Σ, because immediately from cardinality
reasons we get that, for any structure A,

A <Σ A�.

A natural question is an analogue of Jump Inversion Theorem for PΣ-jump. We
start from investigating the Σ-degree of 0�.

Definition 15. Let R denote the set of real numbers. We consider the following
structures:

1) algebraical field of reals R = (R,+,×, 0, 1,=);
2) topological field of reals

Ro = (R, ΓA
+ , Γ

B
+ , Γ

A
× , Γ

B
× , 0, 1, <),

where ΓA
+ = {〈x, y, z〉 ∈ R3|x+ y < z}, ΓB

+ = {〈x, y, z〉 ∈ R3|z < x+ y} (similar
definitions for ΓA× , ΓB× ).

Theorem 16. R �Σ (0�)′.
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Proof. We define a Σ-presentation of R in (0�)′ = (HF(0�), Σ-SatHF(0�)) as
follows. Take as the domain the set

R = {〈k,m, α〉|k ∈ {−1, 0, 1},m ∈ ω, α ∈ Fun(ω, 2)},

where Fun(ω, 2) is the set of total functions from ω to 2 = {0, 1}, and each triple
x = 〈k,m, α〉 represents the real number

rx = k(m+
∑
n∈ω

α(n)

2n+1
).

Lemma 17. R is Σ-definable in (HF(0�), Σ-SatHF(0�)).

Proof. For arbitrary S ∈ HF (0�), S ∈ Fun(ω, 2) if and only if ∃X(S = F (X))∧
Φ(S), where Σ-operator F on HF(∅) is defined as follows: for any X ⊆ HF (∅),

F (X) = {y|∃a ⊆ X∃n∃k[(a = {y}) ∧ (y = 〈n, k〉) ∧ Nat(n) ∧ (k ∈ 2)]},

and

Φ(S) = ∀n(Nat(n) → (((〈n, 0〉 ∈ S)∧(〈n, 1〉 /∈ S))∨((〈n, 1〉 ∈ S)∧(〈n, 0〉 /∈ S))).

Since Fn(S) is aΠ-formula in HF(0�), R is Σ-definable in (HF(0�), Σ-SatHF(0�)).

Theorem 18. Ro �+
Σ 0�.

Proof. We take the set

Ro = {〈k,m, S〉|k ∈ {−1, 0, 1},m ∈ ω, S ⊆ HF(∅)},

as the domain of the presentation. It is easy to note that the cardinality of the
presentation of R0 is the same as the cardinality of R0, which is not necessary
for structures with no equality. The proof follows from the following lemmas.

Lemma 19. For any set S ⊆ HF(∅), the following sets could be obtained as
the results of some Σ-operators acting on S:

1) S ∩ ω;
2) S ∩ n (= S ∩ {0, . . . , n− 1}).

In particular, in case 2 the corresponding Σ-operator depends on n in uniform
and effective way.

Lemma 20. The strict order relation {〈x1, x2〉 ∈ R2
o | rx1 < rx2} is Σ-definable

in HF(0�).

In the same way, it can be proved that relations ΓA
+ , Γ

B
+ , Γ

A
× , Γ

B
× are all Σ-

definable in HF(0�).
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6 Open Questions

1. What is an analogue of Jump Inversion for a given computability component
of HF-computability over 0 or any given structure?

2. What is an analogue of Jump Inversion for a given computability compo-
nent of A-computability? This question is especially interesting for the least
computability component of HYP(M)-computability.

3. Is 0� �+
Σ R0? This would mean that in the maximal component of HF-

computability over 0 holds an analogue of the Matijasevich Theorem. Also,
is it natural to ask, whether or not (0�)′ �Σ R.
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Abstract. Computing as a discipline has a short but vivid history. Com-
puting started to develop a disciplinary identity only after the birth of
the stored-program paradigm in the 1940s, and its academic image has
seen dramatic changes in the past six decades. This article presents three
debates that are central in understanding how computing as a discipline
developed to what it is now: the formal verification debate, the software
engineering debate, and the experimental computer science debate.

1 Introduction

The history of computing reveals a rich combination of technical and theoretical
breakthroughs, and often it is hard to draw a line between the two. Many forefa-
thers of automatic computing, take Pascal and Babbage, for example, were math-
ematicians versed in theory and practice of building the machines. In the 1930s
and 1940s advances on multiple fronts started a new era of automatic comput-
ing. The Newton–Maxwell gap from electromechanical devices to fully electronic
devices was crossed, and the central ideas of the stored-program paradigm were
articulated. That decade was also a time of constant exchange between technol-
ogy and theory. The fathers of the first digital electronic computer, Atanasoff and
Berry, were electrical engineers. The designers of the first Turing-complete, fully
electronic, digital computer eniac, were electrical engineers, mathematicians,
and scientists. Turing was enthusiastic with actual machinery, not only with the
abstractions for which he is best known [28]. All in all, modern computing was
born at a conjunction of new technical and theoretical insights.

After the birth of the stored-program paradigm, the emerging discipline of
computing started to develop a unique research agenda [32]. The first serious
debates about computing as an academic discipline were concerned with the
field’s independence from other disciplines, especially mathematics. Disciplinary
identity was necessary for a large number of reasons, and considerable effort was
invested in separating computing from mathematics. But while mathematics
was something that computing pioneers wanted to distinguish the field from,
science is a different story. Starting from the late 1960s there was a strong
movement to liken the discipline of computing with empirical sciences. Finally,
although engineering was central to the birth of modern computing—also in the
academic world—for decades engineering, with its practical aims, was seriously
undervalued in academic computing. It took nearly four decades to establish
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an understanding of computing as an inseparable combination of theoretical,
technical, and scientific elements.

This article presents three debates about the soul of computing as a disci-
pline. The first debate is the formal verification debate, which has roots in the
identity-forming years of the field, and which characterized the 1970s and 1980s
discussions about computing as a discipline. The second debate is the engineer-
ing debate, which intensified in the end of the 1960s when software engineering
promised to fix the problems that crippled software industry, and which lasted
until very recently. The third debate is the experimental computer science de-
bate, which started in the 1980s and which is still very much alive. The role
of those debates in discipline-building efforts is not well studied. Perhaps those
debates shaped computing; perhaps they reflected already ongoing changes in
computing. This article is not a historical study—great references in the history
of computing can be found in, e.g., [25]—but it presents a number of debates
that were considered to be so significant that practically all prominent computer
scientists had something to say about at least some of them.

2 The Formal Verification Debate

After computing began to form up as a discipline, its ties to mathematics started
to weaken. On the other hand, theoretical computer science advanced on several
fronts. On the other hand, numerical analysis lost its central place in the field,
computing started to gain an identity separate from mathematics, and the ranks
of mathematicians in computing departments were gradually replaced by newly
graduated computer scientists [39]. Many abstractly oriented mathematicians
lacked respect for the pragmatic orientation of computing, too [39].

The separation of computing and mathematics was not just a process of grow-
ing apart, but computer scientists were actively divorcing from mathematics. A
large number of articles were written about the differences between computer
science and mathematics. A distinct disciplinary identity was important for var-
ious reasons. It gave computing departments research fellow and student quotas,
leverage in university politics, representation in policy-making committees and
boards, professional identity, access to directed grants and funding, and increased
societal influence [22,23]. Finally, in 1974 the National Science Foundation of the
U.S. granted computer science a category distinct from other science and engi-
neering disciplines [23].

While there was a movement to establish computing as a discipline distinct
from mathematics, at the same time many members of that movement defended
the mathematical nature of computing [10,40]. The role of mathematical proof
was extended from theoretical computer science to program construction, and
the advocates of formal verification of software were vocal and resolute. A sort
of an extreme position—call it, for instance, ‘strong formal verificationism’ or
‘mathematical reductionism’—was articulated by Hoare [26], who argued that
all of computing can be reduced to mathematics: Computers are mathematical
machines, computer programs are mathematical expressions, programming lan-
guages are mathematical theories, and programming is a mathematical activity.
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Although the formal verification movement was, from its start in the early
1960s, light years away from the reality of actual programming practice, many
believed in its intellectual superiority. For two decades the critics of formal ver-
ificationism had no credible counterargument, but by the end of the 1980s the
formal verification movement was seriously running out of steam. Software en-
gineering had been established already in the end of the 1960s, and by the late
1980s it had developed into a serious program of investigation and practice.
Meanwhile, the scientific–modeling–empirical branches of computing were inter-
twining with other disciplines, creating new and exciting fields as they moved
on—take biocomputing, cognitive science, and quantum computing, for example.

The coup de grâce to strong formal verificationism was finally delivered around
the 1980s by three arguments. Firstly, it was noted that the nature of proofs of
program correctness are very different from proofs in mathematics [7]. Secondly,
it was noted that there are fundamental gaps between programs, specifications,
and the physical world where computers work [44]. Third, it was noted that un-
like theoretical constructions, the physical world is uncertain [20]. Although one
may be able to prove—in some cases and on the abstract level—correspondence
between the inputs and outputs of a program text, executable programs do not
evade the physical world: computers are physical machines and programs are
swarms of electrons. Gradually the formal verification movement abandoned its
extreme position and moved towards the mainstream by acknowledging the lim-
its of verification and by consolidating formal methods with software engineering
methods [13,27].

The formal verification debate characterized the 1970s and 1980s disciplinary
debates in computing. It had great impact on the discipline at many levels—
theoretical as well as practical. However, its implications should not be
exaggerated. The arguments that debunked the most extreme versions of for-
mal verification were not even meant to threaten the foundational status and
importance of theoretical computer science. The issue at stake was rather the
acceptance of empirical and engineering methods in the discipline. Today formal
methods are used more than ever, and their power is broadly acknowledged.

3 Fall and Rise of Engineering

Although engineering and engineers were central to the birth of modern com-
puting, the technical and engineering aspects of computing were downplayed
right from the start [16]. Although work on the technical aspects of computing
quickly developed the structures of a profession, that professional status was low
[9,16]. There seemed to be no room for technology in the academic discipline of
computing.

Early university programs in computing were explicitly distanced from any
technical aspects and actual equipment [17]. Ignoring technology in computing
was made to look like a virtue. That spirit lingered in academic computing for
decades to come—perhaps best expressed by oft-quoted phrases like “computer
science is not about machines, in the same way that astronomy is not about
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telescopes” [19] and “the computing scientist could not care less about the spe-
cific technology that might be used to realize machines, be it electronics, optics,
pneumatics, or magic” [11].

In fields other than computing, systems engineering emerged in the early 1900s
when the complexity of new tools and machines grew to a point where single
individuals could no longer design them. Similar, as software systems grew in
size and complexity, increasingly large teams were needed for designing, imple-
menting, and maintaining them. By the 1960s computer and software systems
had grown in size to the point where they were unmanageable without new ap-
proaches [5,9]. The resulting problems manifested as delayed, over-budget, and
low-quality software products, and the situation was dubbed ‘software crisis’.
Blame was thrown around: some accused academic education for failing to meet
the needs of industry [15,46] while others blamed the industry for its shoddy
standards, poor methods, and inadequate tools [9].

A specific term software engineering was officially introduced in 1968 at a
conference held to discuss the software crisis [35]. But starting in the middle of
the acute software crisis, software engineering got a lousy start. A large number
of ‘silver bullet’ solutions were proposed [4], yet they were unable to prevent the
situation from developing into ‘software’s chronic crisis’ [24] (see also [14]). By
the 1980s, as computing was largely recognized as a mature discipline [40], also
the legitimization pressures increasingly piled on new branches of computing,
such as software engineering.

The struggle of software engineering for recognition was met with fiery re-
sistance. One author called software engineering “the doomed discipline” [12],
another argued that it is based on anecdotal evidence and human authority
[29], and third reported that in their study, one third of software engineering
articles failed to validate their results experimentally [51]. Mainstream software
engineering adopted a practical, opportunistic, and business-oriented mode of
working and took some distance from academic research (e.g., [45, pp.2–3]). One
of the early textbooks stated that the software engineer “cannot afford to exper-
iment with each and every new technique put forward by research scientists” [45,
p.3]. That being the case, the rejection of software engineering in many academic
computing circles seems unsurprising. The practical bent of computing had ear-
lier undermined the field’s struggle for academic status [1], and acknowledging
an inherently practical, hands-on endeavor as an integral part of the discipline
might risk whatever status computing had achieved.

The formal verification debates and software engineering debates had a very
different end. A theoretical claim can be struck down by a forceful counterargu-
ment, but practical arguments demonstrate their value over the course of time.
Similar to the formal verification debate, the critique of the engineering tradi-
tion was quite narrowly focused. The critics rarely, if ever, argued that technical
implementations would be unnecessary. The computer had already shown its
ability to revolutionize science and society. The production of useful and reliable
computer systems was agreed to be an important aim. Instead of criticizing en-
gineering aims and its value to society, critics of software engineering attacked
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the lack of rigor and the academic status of software engineering. However, as
software engineering has gradually evolved into a legitimate branch of computing
that develops at a rapid pace, many objections have lost their edge.

4 Good Science, Bad Science, No Science

The third central bone of contention in the disciplinary history of computing
was concerned with science. There were various debates that centered around
the scientific aspects of computing. Firstly, especially in the early days of the
discipline, many debates about the name of the field centered about whether the
discipline should be called a ‘science’. The “What’s in a name?” question was
repeated in a large number of opinion pieces over the decades—but its usefulness
was also questioned from time to time [22,31].

Secondly, another string of debates was centered around the subject mat-
ter of computing: Different from natural sciences, which study naturally occur-
ring things, the subject matter of computing is artificial, human-made. It was
asked whether sciences of the artificial can be sciences in the strict sense [36,43].
Thirdly, many recent debates are concerned with methodological rigor in com-
puting, and those discussions also revolve around science terminology. Debates
about ‘experimental computer science’ reveal great concern about the quality of
work in computing, but those debates also reveal a great lack of common un-
derstanding between the discussants. This section outlines those three threads
of debates, starting from the oldest.

The first engineering society for computing professionals was founded in
1946—the same year the first fully electronic, digital, Turing-complete computer
eniac was unveiled [50]. That was followed by founding of the predecessor to As-
sociation for Computing Machinery (ACM) in 1947. From the beginning, ACM
was focused on theoretical computer science and its applications [49]. Although
the early professional societies were clearly focused on computing, it is difficult to
say if the members of those societies considered themselves primarily as comput-
ing professionals or perhaps electrical engineers or mathematicians who focus on
computing. In the midst of the engineering and theoretical associations, a view
of computing as a science started to develop. The term ‘computer science’ was
introduced already before discussions about the scientific merits of the discipline
emerged. It is difficult to pinpoint the exact origins: One pioneer of computing
dated his first thought of using the umbrella term ‘computer sciences’ to 1956,
while he first used the term in a printed report in 1957 and it first appeared to
the broad public in 1959 [17,33].

The 1960s clearly saw the emergence of computing as a distinct academic dis-
cipline. In 1962 Purdue University established a department that bore the name
‘computer sciences’ [42]. Doctoral degrees in computer science were awarded as
early as 1965 [41, p.59]. The ACM released its first draft of computer science
curriculum in 1965 [6]. In 1967 one of the landmark texts in the disciplinary his-
tory of computing described ‘computer science’ in the magazine Science as “the
study of the phenomena surrounding computers” [36]. But although the term
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‘science’ was frequently tossed around in debates that concerned naming of the
field, there was relatively little discussion about what exactly in the disciplinary
nature of computing makes it scientific.

Already in the 1960s the ‘theory and practice’ division [21,22] started to evolve
into a tripartite description of computing where the theoretical, technical, and
empirical aspects of computing each got due credit (e.g., [2]). In the 1970s, as the
discipline matured further, the scientific aspects got more attention in analyses of
computing as a discipline. Computing was divided into ‘scientific, mathematical,
and technological’ aspects, of which the scientific parts were “concerned with the
empirical study of a class of phenomena” [48]. In the late 1980s one of the most
famous accounts of computing as a discipline named the theoretical, scientific,
and engineering aspects ‘theory, abstraction (modeling), and design’ [8], and
that division has been frequently quoted ever since.

Many famous defenses of the scientific nature of computing focused on the
subject matter of computing (e.g., [36]). But one could argue that science is not
defined by its subject matter but by its method of inquiry. That line of defense of
the science in computing was popularized in public discussions by the emergence
of discussions on experimental computer science. Experimental computer science
was brought to limelight by a strong campaign for ‘rejuvenating experimental
computer science’ at the turn of the 1980s [18].

However, it was never clear what exactly was meant by ‘experimental com-
puter science’. In one sense of the word, ‘experimental’ can refer to exploratory
work on novel and untested ideas or techniques. In another sense of the word, ‘ex-
perimental’ can refer to the use of controlled experiments for testing hypotheses.
The ‘rejuvenating’ report [18] teetered between the two meanings of the word but
never made it clear what exactly was meant by ‘experimental’ computer science.
What followed was several decades of polemics where discussants talked past
each other, referring to experimental computer science, but meaning different
things.

The terms ‘experiment’ and ‘experimental’ take various meanings in comput-
ing literature. The first meaning refers to exploratory work on novel and untested
ideas or techniques; in that type of work a demonstration of experimental tech-
nology shows that something indeed can be done—“more an existence proof
than experiment” [3]. The second meaning refers to testing how well a system
meets its technical specifications [34]. The third meaning refers to evaluating
how well a system works in its intended context of use; in information systems
that work is often called “field experiment” [37]. The fourth meaning refers to a
comparison of two designs or implementations in order to “provide evidence of
the superiority of your algorithmic ideas” [30]. The fifth meaning refers to the
traditional experiment-based research, using “controlled experiments to generate
measurable, empirical data” [38].

The experimental computer science debates are well alive today. However, dis-
cussions about the scientific merits of computing as a discipline are often fruitless
because the discussants do not share a common vocabulary on the topic [47].
Firstly, discussants tend to make overarching statements about all of computing,
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based on their personal ideas or their own favorite branch of computing [13].
Secondly, discussants hold very different views of what science, strictly speaking,
is—yet they still may talk as if there were a monolithic Science, against which
other things can be measured [47]. Terms ‘computing’ and ‘science’ hold very
different meanings for different people. With two such grab bags of concepts—
computing and science—it is no wonder that discussants are unable to find a
common ground.

5 Conclusions

Computing as a discipline was born from a seamless combination of theoreti-
cal and practical aspects. The forefathers of modern computing had no issues
working with technical and theoretical issues at the same time. There again,
none of the early pioneers would have considered themselves computer scien-
tists. Although the field of computing has roots in things like office machinery
and mathematical logic, automatic computing was neither a profession nor an
academic discipline before the second half of the twentieth century. Only after
computers started to become common, did the discipline start to form up.

The first wave of debates about the disciplinary nature of computing were
aimed at establishing the discipline’s independence from the fields that gave
birth to it. As computing was often seen as a branch of numerical mathematics,
it was important to articulate the differences between computing and mathe-
matics. A large number of pioneers of computer science wrote analyses on what
makes computing unique—although usually those analyses also pointed out the
similarities of the two fields. Debates on the relationship between mathematics
and computing culminated in the formal verification debate led by a number
of hard-line verificationists. After those debates reached a culmination point in
the late 1980s, the focus moved to more modest discussions about how to utilize
formal methods in computing practice.

The second wave of debates were concerned with reinstating engineering in
the core of computing as a discipline. When computing started to form up as an
academic discipline, the theoretical branches of computing took a prominent role
in defining the field. As the academic image of computing had earlier suffered
from the discipline’s practical orientation, technical subjects were often excluded
from academic programs. The introduction of software engineering as a solution
to the software crisis was met with furious resistance, but through decades of
painful development it gradually became a core part of computing as a discipline.

The third wave of debates were concerned with the discipline’s place among
the empirical sciences. At the beginning those debates were concerned with the
field’s self-selected title ‘computer science’, and countless arguments were made
about the (mis)naming of computing as a science. In the anglophone countries
the name stuck, and the debates moved on to the subject matter of computing.
The subject matter of computing is very different from the subject matters in
natural sciences, which led to discussions about what kind of a science computing
is—natural, ‘unnatural’, artificial, or something else. From the subject matter,
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the science debates soon shifted focus to methodology. The ‘experimental com-
puter science’ debate has been a defining feature of computing’s disciplinary
self-image since the 1980s, and that debate shows no signs of petering out.

The three debates presented in this article paint a picture of the discipline’s
growth pains. The process starts from the field’s necessary detachment from its
roots in mathematics and electrical engineering, yet those strings showed to be
painful to cut. When computers became commonplace in universities, offices,
and finally in homes, the need for massive numbers of new applications required
completely new management and development approaches, which, when new
and immature, were first met with considerable resistance. When the markets
(in business and intellectual terms) were becoming satisfied, discussions about
quality re-emerged both in the academia and in the industry. It was no longer
enough to just get it done, but scientific rigor was increasingly often required.
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Abstract. In this paper we investigate the question of existence of a
jump inversion structure for a given structure A in the context of their
respective degree spectra and the sets definable in them by computable
infinitary formulae. More specifically, for a countable structure A and a
computable successor ordinal α, we show that we can apply the construc-
tion from [4] to build a structure Nα such that the sets definable in A
by Σ

c,Δ0
α

1 formulae are exactly the sets definable in Nα by Σc
α formulae.

1 Introduction

We shall work with abstract structures of the form A = (A;R0, . . . , Rs−1), where
A is countable and infinite, Ri ⊆ Ani . We use the letters A, B to denote struc-
tures and the letters A, B to denote their respective universes.

We call f an enumeration of the set A if f is a partial one-to-one mapping
of N onto A. We say that f is an enumeration of the structure A if f is an
enumeration of its universe A.

If f is an enumeration of A and R ⊆ An, we denote f−1(R) = {〈x1, . . . , xn〉 |
x1, . . . , xn ∈ Dom(f) & (f(x1), . . . , f(xn)) ∈ R}. For A = (A;R0, . . . , Rs−1) we
define the total function f−1(A) in the following way:

– if u = 〈k, v〉 and k < s, then f−1(A)(u) = i iff f−1(Rk)(v) = i, for i ∈ {0, 1};
– if u = 〈k, v〉 and k ≥ s, then f−1(A)(u) = 0.

We call f−1(A) a copy of A.
Richter [5] initiates the study of the notion of the degree spectrum of a count-

able structure.

Definition 1. The degree spectrum of the structure A is the set of Turing
degrees

DS(A) = {a | a computes a copy of A}.
For a computable ordinal α, we define the α-th jump degree spectrum of A to be

DSα(A) = {a(α) | a ∈ DS(A)}.
� The research leading to these results has received funding from the [European Com-
munity’s] Seventh Framework Programme [FP7/2007-2013] under grant agreement
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The notion of degree spectra gives us one way to compare structures. That is,
for structures A and B and computable ordinals α, β, we ask whether DSα(A) =
DSβ(B).

Now we give an informal definition of the set of infinitary Σα formulae in
the language of A, denoted by Σα. The Σ0 and Π0 formulae are the finitary
quantifier free formulae. For a computable ordinal α > 0, a Σα formula ϕ(x) is
an infinitary disjunction of a set of formulae of the form ∃yψ, where ψ is a Πβ

formula, for β < α, and y includes the variables of ψ which are not in x. The Πα

formulae are the negations of the Σα formulae. The computably infinitary Σα

formulae, denoted Σc
α, are those Σα formulae whose infinitary disjunctions are

over c.e. sets. By Σc,X
α we mean the computable relative to the set X infinitary

formulae. We refer the reader to [1, chap. 7] for more background information.
A set X ⊆ A is Σc

α definable in the structure A if there is a Σc
α formula ψ(x, y)

and a finite number of parameters a in A such that b ∈ X ↔ A |= ψ(b, a). We
denote by Σc

α(A) the family of all sets Σc
α definable in A.

The notion of definability gives us another way to compare structures. That
is, for structures A, B such that A ⊆ B and computable ordinals α, β, we ask
whether (∀X ⊆ A)[X ∈ Σc

α(A) ↔ X ∈ Σc
β(B)].

For simplicity, in most of the constructions that follow we shall consider only
structures of the form A = (A;R). In the end it should be clear that these
constructions can be generalised to structures in any finite or effectively listed
relational language. The next definition gives us the scheme that we follow to
define our jump inversion structures.

Definition 2 ([4]). Given a structure A = (A;R), R ⊆ An, and a pair of struc-
tures B0, B1 for the same relational language, let N = (A ∪U ;A,U,Q, . . . ), where

1) A ∩ U = ∅;
2) Q is an (n+ 1)-ary relation which assigns to each n-tuple ā in A an infinite

set Uā, where x ∈ Uā iff N |= Q(ā, x). We also want ā �= b̄↔ Uā ∩ Ub̄ = ∅;
3) The sets Uā form a partition of U ;
4) Each of the other relations of N (in . . . ) corresponds to some symbol in the

language of B0, B1, and is the union of its restrictions to the sets Uā;
5) For each n-tuple ā in A, if Uā = (Uā, . . . ), then

Uā
∼=
{
B1, if A |= R(ā)
B0, if A |= ¬R(ā)

For a set of natural numbers X and a computable ordinal α, we denote by X(α)

the α-th Turing jump of X . Moreover, we define

Δ0
α+1(X) = X(α), if α < ω,

Δ0
α+1(X) = X(α+1), if α ≥ ω,

Δ0
α(X) =

⋃
p

{〈y, p〉 | y ∈ Δ0
α(p)(X)}, if α = limα(p).

We write Δ0
a for Δ0

a(∅).



416 S. Vatev

Although not explicitly stated as a theorem by Goncharov, Harizanov, Knight,
McCoy, Miller and Solomon [4], the following result is a form of a jump inversion
theorem for structures in the context of their respective degree spectra.

Theorem 1 ([4]). Let A = (A;R) be a structure and for α > 1 a computable
successor ordinal, let B0,B1 be structures that satisfy the properties:

a) B0 and B1 are computable structures whose universes are the natural numbers
and defined in the same relational language L ,

b) {B0,B1} is α-friendly,
c) B0,B1 satisfy the same Σβ sentences (of Lω1ω, i.e., not only computable) for

all β < α,
d) each Bi satisfies some Σc

α sentence that is not true in the other.

Let N be the structure built as in Definition 2 for A, B0 and B1. Then for any
X ⊆ N, A has a Δ0

α(X)-computable copy iff N has an X-computable copy. It
follows that

DS(A) ⊆ {a | 0(β) ≤ a} implies DS(A) = DSβ(N ),

where β = α− 1, if α < ω and β = α, if α ≥ ω.

The proof of Theorem 1 relies on Ash’s α-systems, which is a framework for
priority constructions. The requirement that {B0,B1} is α-friendly is essential
for their proof.

For a set X ⊆ N, let us denote the structure AX = (N;X,GS), where GS

is the graph of the successor function on N. For a set X ⊆ N and a structure
A = (A;R0, . . . , Rs−1) with A∩N = ∅, let us denote by A⊕X the cardinal sum
of the structures A and AX , i.e., A⊕X = (A ∪N;A,N, R0, . . . , Rs−1, X,GS).

Our goal in this paper is to prove the following theorem, which is similar to
Theorem 1, but without the requirement that {B0,B1} is α-friendly.

Theorem 2. Let A = (A;R) be a structure. Moreover, for α > 1 a computable
successor ordinal, let B0,B1 be structures that satisfy the following:

a) B0 and B1 are computable L -structures whose universes are the natural num-
bers, where L is a relational language, which includes equality,

b) B0,B1 satisfy the same Σc
β sentences, for all β < α,

c) each Bi satisfies some Σc
α sentence that is not true in the other.

Then for N , built as in Definition 2 for A, B0 and B1, we have the following:

1) DSβ(N ) = DS(A⊕Δ0
α), where β = α− 1, if α < ω and β = α, if α ≥ ω, and

2) (∀X ⊆ A)[X ∈ Σc
α(N ) ↔ X ∈ Σc

1(A⊕Δ0
α) ↔ X ∈ Σc,Δ0

α
1 (A)],

It is important to remark that the proof of Theorem 2 will not imply that if A
has a Δ0

α(X)-computable copy, then N has an X-computable copy. Our proof
is based on the notion of forcing and building a generic copy of the structure N .

For finite ordinals, our result can be obtained by applying a different con-
struction, the so-called Marker’s extension. It is used by A. Soskova, I. Soskov
[6] and by Stukachev [7] to prove a jump inversion theorem in the context of
Turing degree spectra and in the context of Σ-reducibility, respectively.
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2 The Notion of Forcing

We define the finite parts into the set B as those finite mappings from N into
B, which are also one-to-one. Given a finite part τ and a relation R ⊆ Bn, we
define the finite function τ−1(R) as follows:

τ−1(R)(u) ↓= 1 ↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) ∈ R],

τ−1(R)(u) ↓= 0 ↔ (∃x1, . . . , xn ∈ Dom(τ))[u = 〈x1, . . . , xn〉 &

(τ(x1), . . . , τ(xn)) �∈ R].

For a structure A = (A;R0, . . . , Rs−1), we define the finite function τ−1(A) in
the following way:

1) if u = 〈k, v〉 and k < s, then τ−1(A)(u) ↓= i iff τ−1(Rk)(v) ↓= i, for
i ∈ {0, 1}.

2) if u = 〈k, v〉, k ≥ s, but u < max{x | x ∈ Dom(τ)}, then τ−1(A)(u) ↓= 0.

We remark that we need condition 2) so that we have the equality

f−1(A) =
⋃
τ⊆f

τ−1(A).

Partial Conditions

Let us fix two structures B0 and B1 with the same universe B and in the same
language L . Partial conditions are finite sequences of the form

C = (τC
0 , τ

C
1 , . . . , τ

C
k−1),

where every τC
i is a finite part. We denote the partial conditions by the letters

C , D and E . Let us denote the length of C by |C |. For n < |C |, we denote

C �n = (τC
0 , . . . , τ

C
n−1).

We say that D extends C , denoted C ⊆ D , if

|C | ≤ |D | & (∀i)[i < |C | → τC
i ⊆ τD

i ].

We say that D partially extends C , denoted C ⊆p D , if

|C | ≤ |D | & (∀i)[i < |C | → τC
i = τD

i ].

For a sequence of sets of natural numbers {Bi}i<κ, with κ ≤ ω, we denote⊕
i<κBi = {〈i, x〉 | i < κ & x ∈ Bi}. We define the diagram of the partial

condition C with respect to X ∈ 2ω as

DX(C ) =
⊕
j<|C |

(τC
j )−1(BX(j)).
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The Forcing Relation

If ϕ is a partial function and e ∈ ω, then by Wϕ
e we denote the set of all x such

that the computation {e}ϕ(x) halts successfully. We assume that if during a
computation the oracle ϕ is called with an argument outside of its domain, then
the computation halts unsuccessfully. Let Fin2 be the set of all finite functions
from the natural numbers taking values into {0, 1}.

The definition of the forcing relation will follow the definition of the α-th
Turing jump. For all natural numbers e, x, computable ordinal α ≥ 1 and partial
condition C , we define the forcing relations 	X

α in the following way:

(i) C 	X
1 Fe(x) ↔ x ∈ WDX (C )

e .
(ii) Let α = β + 1. Then

C 	X
β+1 Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & C 	X
β Fz(z)) ∨

(δ(z) = 0 & C 	X
β ¬Fz(z))]].

(iii) Let α = limα(p). Then

C 	X
α Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[z = 〈xz , pz〉 &

((δ(z) = 1 & C 	X
α(pz)

Fxz (xz)) ∨
(δ(z) = 0 & C 	X

α(pz)
¬Fxz (xz)))]].

(iv) C 	X
α ¬Fe(x) ↔ (∀D)[C ⊆ D → D �	X

α Fe(x)].

Lemma 1. For computable ordinals α ≥ 1 we have the following:

1) If C 	X
α Fe(x) and C ⊆ D , then D 	X

α Fe(x).
2) If C 	X

α ¬Fe(x) and C ⊆ D , then D 	X
α ¬Fe(x).

Let δ be a finite part and Dom(δ) = {d0 < d1 < · · · < dk}. We write δ̄ for the
tuple (δ(d0), δ(d1), . . . , δ(dk)). Furthermore, let us denote

C ≈l D ↔
∧
i�=l

(τC
i = τD

i ),

i.e., the partial conditions C and D are allowed to differ only in their l-th coor-
dinates.

Note that when we say that X ∈ 2ω is finite, we mean that there is i0 such
that X(i) = 0 for all i > i0. Also, for a condition C , we let XC ∈ 2ω be such
that XC (i) = X(i) for i < |C | and XC (i) = 0 for i ≥ |C |.

Lemma 2. Let B0 and B1 be computable structures in the language L =
{P0, . . . , Pk−1}, which includes equality. Let X be finite, C be a partial con-
dition, l be a number such that l < |C |, and let D = {x0 < · · · < xd}.
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Then for all natural numbers e, x, and a computable ordinal α ≥ 1, there is
a Σc

α formula Φα
C ,D,e,x in L with free variables X0, . . . , Xd such that for every

finite part ρ with Dom(ρ) = D, we have

D ≈l C & τD
l = ρ & D 	X

α Fe(x) ↔ BX(l) |= Φα
C ,D,e,x(ρ̄).

We remark that if X is not computable, then Φα
C ,D,e,x will be a Σc,X

α formula.

Corollary 1. Under the conditions of Lemma 2, for a computable ordinal α ≥ 1,
there is a Σc

α sentence Φα
C ,e,x in the language L such that

(∃D)[D ≈l C & D 	X
α Fe(x)] ↔ BX(l) |= Φα

C ,e,x.

Lemma 3. Let us fix a computable ordinal α ≥ 1. Let B0 and B1 be computable
structures in the same language L with equality and both structures satisfy the
same Σc

α sentences in L . Moreover, let us fix a condition C and finite X,Y
such that XC = YC , X �= Y and they differ only at points < m. Then we have
the equivalence:

(∃D ⊇p C )[D 	X
α Fe(x) & |D | = m] ↔ (∃D ⊇p C )[D 	Y

α Fe(x) & |D | = m].

Proof. For (→), let us fix D ⊇p C such that D 	X
α Fe(x), |D | = m and let

l = |C |. For i = l, l+ 1, . . . ,m, let the finite Xi ∈ 2ω be such that Xi(j) = X(j)
for j �∈ [l, i) and Xi(j) = Y (j) for j ∈ [l, i). We remark that Xl = X and
Xm = Y . We shall define by induction on i the partial conditions Di such that
Di ⊇p C , |Di| = m and Di 	Xi

α Fe(x). For i = l, let Di = D , which satisfies
our requirements. Now suppose we have defined Di. Then Di 	Xi

α Fe(x) trivially
implies (∃D ′)[D ′ ≈i Di & D ′ 	Xi

α Fe(x)]. By Corollary 1, there is a Σc
α sentence

Φα
Di,e,x

such that (∃D ′)[D ′ ≈i Di & D ′ 	Xi
α Fe(x)] ↔ BXi(i) |= Φα

Di,e,x
. We

have that B0 and B1 satisfy the same Σc
α sentences. Thus, BXi(i) |= Φα

Di,e,x

iff BY (i) |= Φα
Di,e,x

. Since Xi+1(i) = Y (i) and Xi(j) = Xi+1(j) for j �= i,

by Corollary 1, (∃D ′)[D ′ ≈i Di & D ′ 	Xi+1
α Fe(x)] ↔ BY (i) |= Φα

Di,e,x
. By

combining the above equivalences, we obtain

(∃D ′)[D ′ ≈i Di & D ′ 	Xi
α Fe(x)] ↔ (∃D ′)[D ′ ≈i Di & D ′ 	Xi+1

α Fe(x)].

We set Di+1 to be this D ′ ≈i Di such that D ′ 	Xi+1
α Fe(x). Since i ≥ |C | = l and

Di ⊇p C , we have Di+1 ⊇p C . Eventually, we obtain Dm such that |Dm| = m,
Dm ⊇p C and Dm 	Y

α Fe(x). The direction (←) is symmetric. ��

Lemma 4. Let us fix a computable ordinal α ≥ 1. Let B0 and B1 be computable
structures in the language L with equality and both structures satisfy the same
Σc

α sentences in L . Then for every partial condition C , X ∈ 2ω and natural
numbers e, x:

1) C 	X
α Fe(x) ↔ C 	XC

α Fe(x),
2) C 	X

α ¬Fe(x) ↔ C 	XC
α ¬Fe(x).
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Proof. We prove 1) and 2) simultaneously by transfinite induction on α.
Let α = 1. For 1), it is clear, by the definition of 	X

1 , that for every e and x,

C 	X
1 Fe(x) ↔ C 	XC

1 Fe(x).

For 2), we have two cases to consider.

i) Let C 	X
1 ¬Fe(x) and assume C �	XC

1 ¬Fe(x). Fix D0 ⊇ C such that
D0 	XC

1 Fe(x) and let m = |D0|, D ′ = D0�|C |. Since XC = XD′, we

have (∃D ⊇p D ′)[D 	XD′
1 Fe(x) & |D | = m]. Since the finite XD0 , XD′

differ only at positions < m and (XD0)D′ = XD′ , by Lemma 3, (∃D ⊇p

D ′)[D 	XD0
1 Fe(x) & |D | = m]. We conclude that there is D ⊇p D ′ ⊇ C

such that D 	XD
1 Fe(x) and by 1), D 	X

1 Fe(x). We reach a contradiction
with C 	X

1 ¬Fe(x).
ii) Let C 	XC

1 ¬Fe(x) and assume C �	X
1 ¬Fe(x). In a similar way as in i)

we show that we can apply Lemma 3 to reach a contradiction with C 	XC
1

¬Fe(x).

For α > 1, case 1) follows easily by the definition of the forcing relation 	X
α and

the induction hypothesis for cases 1) and 2). Since we can apply Lemma 3 for
every β ≤ α, the proof of 2) for α > 1 is essentially the same as for α = 1. ��

Total Conditions

Let us again fix structures B0 and B1 with the same universe B. The total
conditions are infinite sequences C = (f0, f1, f2, . . . , fi, . . . ), where for all i, fi
is an enumeration of the set B. We denote the total conditions by the letters C
and G. We define the diagram of C with respect to X ∈ 2ω to be

DX(C) =
⊕
j<ω

f−1
j (BX(j)).

For total conditions, we define the modelling relation |=X
α for every computable

ordinal α ≥ 1 in a way that mirrors the definition of the forcing relation:

(i) C |=X
1 Fe(x) ↔ x ∈WDX (C)

e

(ii) Let α = β + 1. Then

C |=X
β+1 Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[

(δ(z) = 1 & C |=X
β Fz(z)) ∨

(δ(z) = 0 & C |=X
β ¬Fz(z))]].

(iii) Let α = limα(p). Then

C |=X
α Fe(x) ↔ (∃δ ∈ Fin2)[x ∈W δ

e & (∀z ∈ Dom(δ))[z = 〈xz , pz〉 &

((δ(z) = 1 & C |=X
α(pz)

Fxz(xz)) ∨
(δ(z) = 0 & C |=X

α(pz)
¬Fxz (xz)))]].
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(iv) C |=X
α ¬Fe(x) ↔ C �|=X

α Fe(x).

Lemma 5. Let C be a total condition and α ≥ 1 be a computable ordinal. Then

x ∈WΔ0
α(DX(C))

e ↔ C |=X
α Fe(x).

For a computable ordinal α ≥ 1, we say that C is α-generic with respect to X
if for every e, x and 1 ≤ β < α, (∃C ⊂ C)[C 	X

β Fe(x) ∨ C 	X
β ¬Fe(x)].

Lemma 6. For every computable ordinal α ≥ 1 we have the following:

1) Let C be α-generic with respect to X. Then

C |=X
α Fe(x) ↔ (∃C ⊂ C)[C 	X

α Fe(x)].

2) Let C be (α+ 1)-generic with respect to X. Then

C |=X
α ¬Fe(x) ↔ (∃C ⊂ C)[C 	X

α ¬Fe(x)].

3 Construction of a Generic Copy of N

For two functions f and h, let us denote E(f, h) = {〈x, y〉 | f(x) = h(y)}.

Proposition 1. Let A = (A;R), R ⊆ An, and N be defined as in Definition 2.
For every total condition C = (q0, q1, . . . ) and total enumeration f of A, there
is an enumeration hC of N such that h−1

C (N ) ≤T Df−1(R)(C) and E(hC, f) is
computable.

Proposition 2. For every enumeration f of A⊕X, there is a total enumeration
h of A such that

1) E(f, h) ≤T f
−1(A⊕X), and

2) h−1(A) ⊕X ≤T f
−1(A⊕X).

Lemma 7. Let A = (A;R), α be a computable successor ordinal, and B0 and
B1 be computable structures such that:

a) B0,B1 are defined in the same language L , which includes equality,

b) B0,B1 satisfy the same Σc
β sentences in L for all β < α.

Then for every enumeration f of A⊕Δ0
α, there is an enumeration g of N such

that

1) E(f, g) ≤T f
−1(A⊕Δ0

α),

2) Δ0
α(g−1(N )) ≤T f

−1(A⊕Δ0
α).
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Proof. Let α = β + 1. By Proposition 2, let us fix, for the given enumeration f
of A⊕Δ0

α, a total enumeration h of A such that h−1(A) ⊕Δ0
α ≤ f−1(A⊕Δ0

α)
and E(f, h) is computable. Our goal is to build a total α-generic condition G
in stages, such that G =

⋃
Ck. The desired enumeration g will be hG, defined

as in Proposition 1. At each stage k, we define a partial condition Ck+1 and a
finite Xk+1 ∈ 2ω such that Xk+1 = h−1(R)�|Ck+1|. Let C0 = ∅ and X0 = ∅. At
step k = 〈e, x〉 + 1, we ask whether (∃D ⊇ Ck)[D 	Xk

β Fe(x)]. Since Xk is finite
and B0,B1 are computable, this question can be expressed by a Σc

β sentence and

thus we can decide whether such D exists effectively relative to Δ0
α.

If such D does not exists, then, by definition, Ck 	Xk

β ¬Fe(x). We set Ck+1 =
Ck, Xk+1 = Xk and go to the next step.

If such D exists, let E = D�|Ck| and X ′ = h−1(R)�|D |. Since Xk = h−1(R)
�|Ck|, we have (X ′)E = Xk. Then according to Lemma 3, (∃D ′ ⊇p E )[D ′ 	X′

α

Fe(x) & |D ′| = |D |]. We can find the pair (D ′, X ′) such that D ′ 	X′
α Fe(x)

effectively relative to h−1(A)⊕Δ0
α. Then, if necessary, we enlarge D ′ so that for

every i < |Ck|, τD′
i is defined on an initial segment of N and τD′

i � τCk

i . By the
monotonicity property of the forcing relation, that is Lemma 1, we know that
we can do this safely. We set Ck+1 to be this enlarged D ′ and set Xk+1 = X ′.
Then we go to the next step.

In the end, we set G =
⋃

i Ci, where gk =
⋃

i τ
Ci

k and G = (g0, g1, . . . ). By
Proposition 1, for G we define the enumeration hG of N . Then

x ∈ Δ0
α(h−1

G (N )) ↔ G |=h−1(R)
β Fμ(x,β)(x)

↔ (∃k)[Ck ⊆ G & Ck 	h−1(R)
β Fμ(x,β)(x)]

↔ (∃k)[Ck ⊆ G & Ck 	Xk

β Fμ(x,β)(x)].

By the construction above, we know that at step k = 〈μ(x, β), x〉 + 1 we have
answered the question whether Ck 	Xk

β Fμ(x,β)(x) or Ck 	Xk

β ¬Fμ(x,β)(x). Since

the sequence {〈Ck, Xk〉}k∈ω is computable in h−1(A) ⊕ Δ0
α, we conclude that

Δ0
α(h−1

G (N )) ≤T h−1(A) ⊕ Δ0
α ≤T f−1(A ⊕ Δ0

α). Moreover, by Proposition
1, E(hG, h) is computable and since E(h, f) ≤T f

−1(A ⊕ Δ0
α) it follows that

E(hG, f) ≤T f
−1(A⊕Δ0

α). ��

Corollary 2. Under the conditions of Lemma 7, we have the following:

1) DS(A⊕Δ0
α) ⊆ DSβ(N ), where β = α− 1, if α < ω and β = α, if α ≥ ω;

2) (∀X ⊆ A)[X ∈ Σc
α(N ) → X ∈ Σc

1(A⊕Δ0
α)].

Proof. We proved in Lemma 7 that for every enumeration f of the structure
A⊕Δ0

α, there is an enumeration h of N such thatΔ0
α(h−1(N )) ≤T f

−1(A⊕Δ0
α).

Then Property 1) follows from the fact that the degree spectra of A ⊕Δ0
α and

N are closed upwards.
Property 2) follows easily from the theorem by Ash-Knight-Manasse-Slaman

[2] and Chisholm [3] that the relatively intrinsically Σ0
α relations in a structure

A are exactly the Σc
α definable relations in A. ��
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Lemma 8. Let A = (A;R), α be a computable successor ordinal and B0,B1 be
computable structures such that:

a) B0,B1 are defined in the same language L , which includes equality,
b) each Bi satisfies some Σc

α sentence in L that is not true in the other.

Then for every enumeration f of N , there is an enumeration h of A⊕Δ0
α such

that:

1) E(f, h) ≤T f
−1(N ), and

2) h−1(A⊕Δ0
α) ≤T Δ

0
α(f−1(N )).

Proof. Let f be the given enumeration of N . We define h, an enumeration of
A ∪ N, as h(2n) = f(n) for all n ∈ f−1(A) and h(2n+ 1) = n, for all n ∈ N. It
is clear that E(f, h) is computable in f−1(N ).

For any x1, . . . , xn, let i = 〈x1, . . . , xn〉 and āi = (f(x1), . . . , f(xn)). To check
if 2i ∈ h−1(R), we need to determine k in Uāi

∼= Bk. Since we have Σc
α sentences

Φ and Ψ such that B0 |= (Φ & ¬Ψ) and B1 |= (¬Φ & Ψ), we can do that
effectively relative to Δ0

α(f−1(N )). Thus, h−1(R) ≤T Δ
0
α(f−1(N )).

The sets h−1(GS) and h−1(N) are computable and since h−1(Δ0
α) ≡T Δ

0
α, we

conclude that h−1(A⊕Δ0
α) ≤T Δ

0
α(f−1(N )). ��

We conclude by stating the following corollary, which is symmetric to
Corollary 2.

Corollary 3. Under the conditions of Lemma 8, we have the following:

1) DSβ(N ) ⊆ DS(A⊕Δ0
α), where β = α− 1, if α < ω and β = α, if α ≥ ω;

2) (∀X ⊆ A)[X ∈ Σc
1(A⊕Δ0

α) → X ∈ Σc
α(N )].

Now Corollary 2 and Corollary 3 give us exactly Theorem 2.
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Abstract. The notion of a strong sufficient statistic was introduced in
[8]. In this paper, we give a survey of nice properties of strong sufficient
statistics and show that there are strings for which complexity of every
strong sufficient statistic is much larger than complexity of its minimal
sufficient statistic.

1 Introduction

Sufficient Statistics. Let x be a binary string. A finite set A ⊂ {0, 1}∗ is called
an (algorithmic) sufficient statistic for x if x ∈ A and the sum of the Kolmogorov
complexity1 of A and the binary logarithm of the cardinality of A is close to the
Kolmogorov complexity of x:

C(A) + log |A| ≈ C(x).

More specifically, we call A an ε-sufficient statistic for x if the left hand side
exceeds the right hand side by at most ε. We do not require the inverse inequality,
as it holds with precision O(logC(x)) anyway.

For every x the singleton {x} is an O(1)-sufficient statistic for x. The com-
plexity of this statistic is about C(x). If x is a random string of length n (that
is, C(x) ≈ n) then there is a O(log n)-sufficient statistic for x of much lower
complexity: the set of all strings of length n, whose complexity is about logn, is
a O(log n)-statistic for x. We shall think further of ε as having the order O(log n)
and call such values negligible.

Sufficient Statistics and Useful Information. Sufficient statistics for x are
usually thought to capture all the “useful” information from x. The explanation
is the following. Let A be a sufficient statistic for x. One can show that in this
case both the randomness deficiency log |A| − C(x|A) of x in A and C(A|x)
are negligible.2 Let z be the binary notation of the ordinal number of x in A

� The work was in part supported by the RFBR grant 12-01-00864 and the ANR grant
ProjetANR-08-EMER-008.

1 Kolmogorov complexity of finite subsets of {0, 1}∗ is defined as follows. We fix any
computable bijection B �→ [B] from the family of all finite subsets of {0, 1}∗ to the
set of binary strings, called an encoding. Then we define C(A) as the complexity
C([A]) of the code [A] of A.

2 C(x|A) and C(A|x) are defined as C(x|[A]) and C([A]|x), respectively, where A �→
[A] is a fixed computable encoding of sets by strings (see the previous footnote).
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(with respect to the lexicographical order on A). As C(A|x) is negligible, both
conditional complexities C(x|A, z) and C(A, z|x) are also negligible.3 Speaking
informally, the two part code (A, z) of x has the same information as x itself,
and its second part z is a string of length log |A| that is random conditional to
its first part A. (Indeed, C(z|A) is up to an additive constant equal to C(x|A),
which is close to log |A|.) This encourages us to qualify z as an accidental in-
formation (noise) in the pair (A, z), and hence in x. In other words, all useful
information from x is captured by the set A.

Minimal Sufficient Statistics. If x has a sufficient statistic A of complexity i
and log-cardinality j (so that i+j ≈ C(x)) then for every k � j it has a sufficient
statistic B of complexity i + k and log-cardinality j − k (this statement is true
with logarithmic precision; the complexity of B is actually i+k+O(log j)). This
was observed in [3,2,5]: the set B is obtained by partitioning A into subsets of
size at most 2j−k and considering the part containing x. Thus the most valuable
sufficient statistic is the one that has smallest complexity and largest cardinality.
Such statistics are informally called minimal sufficient statistics, MSS, for x.
MSS for x are often considered as the models extracting all useful information
from x and having no noise.

When trying to define the notion of an MSS formally, we face the following
problem: for certain strings x a negligible increase in εmay cause a large decrease
of the minimal complexity of ε-sufficient statistics for x. For such x it is not clear
which value of ε to choose in the definition of ε-sufficient statistic and the notion
of MSS cannot be defined in a meaningful way. In this paper we shall focus on
strings for which this is not the case. To define more carefully what it means,
consider for a given string x its structure set Px. It consists of all pairs (i, j) of
natural numbers for which x has an (i, j)-description, where an (i, j)-description
is any set A  x with C(A) � i and log |A| � j. The boundary of Px is the graph
of the function hx(i) = min{j | (i, j) ∈ Px}, called the structure function of x.
For every x the boundary of Px lies above the sufficiency line (with logarithmic
precision), which by definition consists of all pairs (i, j) with i + j = C(x)
(the dash line on Fig. 1). Sufficient statistics correspond to those pairs (i, j)
from Px that are close to the sufficiency line. We shall say (quite informally)
that a string x has an MSS, if there is a natural i with hx(i) ≈ C(x) − i
and hx(i′) � C(x) − i′ for all i′ which are “significantly less” than i. Notice
that by observation from [3,2,5] mentioned above, in this case we also have
hx(i′) ≈ C(x) − i′ for all i � i′ � C(x) (with logarithmic precision).

Example 1. Let y be a string whose structure function hy leaves the sufficiency
line at the point (C(y), 0) (so that {y} is essentially the only sufficient statistic

3 C(x|A, z) is defined as C(x|[[A], z]), where (x, y) �→ [x, y] is a computable bijec-
tion between pairs of strings and strings; the notation C(A, z|x) is understood in a
similar way.
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for y), see Fig. 2(a).4 Let x = [y, z], where z is a string of length m that is
random conditional to y (that is, C(z|y) ≈ m). Intuitively, x is obtained from
y by adding m bits of noise and y captures all useful information from x. One
can show ([8]) that the set Px looks as drawn on Fig. 2(b).5 Consider the set
A = {[y, z′] | |z′| = m} as a model for x. This model is a (C(y) +O(logm),m)-
description of x and hence an MSS for x. The information in A is almost the

4 One can show ([7]) that for every decreasing function h : {0, 1, . . . , k} → N with
h(0) � n and h(k) = 0 there is a string y of length n for which the boundary of the
set Py is at the distance at most O(log n) from the graph of h.

5 More specifically, the set Px is O(ε+ log(C(x) +m+ j))-close to the set

{(i, j) | (j � m ⇒ i+ j � C(x)) ∧ (j � m ⇒ (i, j −m) ∈ Px)}.
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same as in y, which supports the viewpoint that an MSS for x captures all useful
information in x.

Universal Sufficient Statistics. However, as discovered in [2,7], for every
string x that has an MSS there is an MSS that can hardly be considered as a
denoised version of x. To find such an MSS, fix an algorithm A that for input
k enumerates (in some order) all strings of complexity at most k. Let Nk stand
for the number of such strings and let Nk = 2j1 + 2j2 + · · · + 2js be its binary
expansion, where j1 > j2 > · · · > js. Partition the list of strings enumerated by
A(k) into 2j1 first enumerated strings, 2j2 strings enumerated after them and so
on. Let Sk,j1 , Sk,j2 , . . . , Sk,js denote the obtained parts.

By definition |Sk,j | = 2j and it is not hard to show that C(Sk,j) � k − j +
O(log k). Let k = C(x). Consider the part where x goes, i.e., find j such that x be-
longs to Sk,j . In this case Sk,j is a sufficient statistic for x, as C(Sk,j)+log |Sk,j | �
(k − j + O log k)) + j ≈ C(x). One can show ([7]) that for every x which has
an MSS, for some k close to C(x) and for some j the set Sk,j is an MSS for x.
This fact is discouraging, because the family Sk,j has only two parameters k, j.
It implies that for all strings x from Example 1 there are k, j such that the set
Sk,j is also an MSS for x (where k ≈ C(x) ≈ C(y) +m and j ≈ m). Intuitively
Sk,j has no information about x, and on the other hand one can show that both
conditional complexities C(Sk,j |y) and C(y|Sk,j) are negligible. (See [7,8] for
more details.)

Total Conditional Complexity. Thus we have to explain why it happens that
the good model A from Example 1 has the same information as the bad model
Sk,j . Also we would like to identify a property of MSS allowing to distinguish
between good and bad models, such as the model A from Example 1 and the
model Sk,j .

The first question is easy to answer: our definition of “having the same infor-
mation” is too broad, we implicitly assumed that u and v have the same infor-
mation, if both C(u|v) and C(v|u) are negligible. Under this assumption every
string x has the same information as its shortest description x∗. In the context
of separating the information into a useful one and an accidental one, such an
assumption is certainly misleading. Indeed, the entire information in x∗ (which
is a random string) is noise, while x may have useful information. In algorithmic
statistics, it is more helpful to think that u and v have the same information
only if total conditional complexities CT(u|v) and CT(v|u) are negligible. The
total conditional complexity CT(u|v) is defined as the minimal length of a total
program p for u conditional to v: CT(u|v) = min{|p| | U(p, v) = u and U(p, z)
halts for all z} (here U is the universal Turing machine). The total conditional
complexity can be much greater than the ordinary one [6].6 If both CT(u|v) are

6 In particular, in the full version of the paper we shall show that for all n there is
string x of length n with CT(x|p) � n/3 − O(1) for every shortest description p
of x. Moreover, this inequality holds for every description p of x of length at most
C(x) + n/3. On the other hand, by a result of [1], for every x of length n there is a
description p of x with CT(p|x) = O(log n) and |p| � C(x) +O(1).
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CT(v|u) are negligible, then their structure sets Pu and Pv are close to each
other and u, v have similar algorithmic-statistical properties. We shall call such
strings equivalent in the sequel.

Strong Sufficient Statistics and Their Nice Properties. To distinguish
between good and bad models, the paper [8] introduced a notion of a strong
sufficient statistic. We call A  x a strong statistic (or model) for x if CT(A|x) is
negligible. (We do not assume that A is a sufficient statistic.) As we mentioned,
the sufficiency requirement implies only that ordinary (not total) conditional
complexity C(A|x) is negligible. That is, not all sufficient statistics are strong
(later we shall prove that). More specifically, we call A an ε-strong model for x if
CT(A|x) � ε and we call A an ε-good model for x if A is ε-strong and ε-sufficient
for x. We call (quite informally) a set A a strong MSS for x if A is an MSS for
x and A is a strong model for x.

It easy to see that A is a strong model for x iff both total complexities
CT(x|A, z), CT(A, z|x) are negligible, where z is the ordinal number of x in
A. Indeed, given the pair (A, z) we can find x by means of a short total program
(even if A is not strong). Conversely, if A is a strong statistic for x, then from
x we can compute A by means of a short total program and then compute the
ordinal number of x in A.

Strong sufficient statistics have the following nice properties.
(a) The model A from Example 1 is a strong MSS for x Indeed, given x

we can find A by a constant length total program that maps [y, z] to the set
{[y, z′] | |z′| = |z|}. That is, x has a strong MSS if and only if x is equivalent to
a string of the form specified in Example 1.

(b) Strong MSS are unique in the following sense: if both A,B are strong MSS
for x, then CT(A|B) ≈ CT(B|A) ≈ 0 [8, Theorem 6]. We state here the result
in a highly informal way, for the precise statement see [8].

(c) Good statistics satisfy the observation from [3,2,5]: If x has a good statistic
A of complexity i and log-cardinality j, then for every k � j it has a good statis-
tic B of complexity i+ k and log-cardinality j − k (with logarithmic precision):
again, the set B is obtained by partitioning A into subsets of size at most 2j−k

and considering the part containing x.

Our Result. Recall that one of the goals of introducing the notion of a strong
MSS is to separate MSS from Example 1 from MSS of the form Sk,j . We con-
jecture that this is true: there are strings x that have ε-strong MSS but have
no ε-strong MSS of the form Sk,j for some ε = Ω(|x|). In this paper we answer
another question left open in [8]: is it true that every string that has an MSS
has also a strong MSS? We show that this is not the case: there are strings that
have MSS but all their strong sufficient statistics have much larger complexity
than that of their MSS.

2 Results

Our results establish the existence of strings x that have an MSS but all their
strong sufficient statistics have much larger complexity than that of their MSS.
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Recall that Px denotes the set of all pairs (i, j) such that x has an (i, j)-
description, that is, x belongs to a set A with C(A) � i and log |A| � j. Define
a similar set P l

x for l-strong models. By definition P l
x consists of all pairs (i, j)

such that x has an l-strong i, j-description:

P l
x = {(i, j) | (∃A  x) C(A) � i, log |A| � j, CT(A|x) � l}.

Our main result, Theorem 1, gives an example of a string x when the set of all
explanations and good explanations differ in a maximal possible way: the sets Px
and P l

x are shown on Fig. 3. The complexity of every l-strong sufficient statistic
for x (for some non-negligible l) is at least (about) j bits more than that of its
MSS, which is about i. This is the best separation possible, as the singleton {x}
is an O(1)-strong sufficient statistic of complexity about C(x) for every x, and
in our case C(x) is about j bits more than i.

Theorem 1. Assume that integer numbers i, j satisfy the inequality i+j � n−4.
Then there is a string x of length n and complexity i+ j+O(log n) such that (a)
(i+O(log n), j) ∈ Px, (b) (i, n− i− 4) /∈ Px and (c) (i+ j, n− i− j − 4) /∈ P i

x.

Item (a) of Theorem 1 is responsible for the right slanted segment of the bound-
ary of Px and item (b) is responsible for the left slanted segment of the boundary
of Px. Item (c) is responsible for the graph of P l

x for any O(log n) � l � i.
Let (say) in Theorem 1 i = j = n/3. Then the string x existing by the theorem

has an MSS of complexity n/3 while all n/3-strong n/3-sufficient statistics for
x have complexity at least 2n/3.

Theorem 1 does not say anything about how rare are such strings x. Such
strings are rare, as for majority of strings x of length n the set {0, 1}n is a
strong MSS for x. A more meaningful question is whether such strings might
appear with high probability in a statistical experiment. More specifically, as-
sume that we sample a string x in a given set A ⊂ {0, 1}n, where all elements
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are equiprobable. Might it happen that with high probability (say with proba-
bility 99%) x has an MSS but has no strong MSS? An affirmative answer to this
question is given in the following

Theorem 2. Assume that integer i, j, k satisfy the inequalities

i+ j � n− 4, k � j.

Then there is set A ⊂ {0, 1}n of cardinality 2j and complexity at most i+O(k+
logn) such that all but 2j−k its elements x have complexity i+ j +O(k + logn)
and have neither i, (n− i − 4)-descriptions nor i-strong (i + j), (n − i − j − 4)-
descriptions.

If k = logn, say, then the set A is an MSS for a majority of its elements. Indeed,
the structure set of all but |A|/n elements from A has the shape shown on
Fig. 3(a). On the other hand, for those elements the set P l

x (for any O(log n) �
l � i) has the shape shown on Fig. 3(b).

Remark 1. Theorem 2 brings up the following questions. Imagine that somebody
suggests a set A as a “statistical explanation” for the data x (that belongs to
A). What properties of A are required to make this explanation reasonable? For
example, do we want that A is a sufficient statistics for most of its elements? Do
we want A to be simple (in the sense of normal conditional complexity or the
total one) conditional to every its element? We think that defining the notion of
a “reasonable explanation” one should be most restrictive, as far as every model
as in Example 1 satisfies the restrictions. More specifically, we would call an
MSS A a “reasonable explanation” for x if there is a short total program p that
maps every x′ ∈ A to [A]. That is, the total conditional complexity of [A] given
any element of A is low in a uniform way. (This implies that A is a sufficient
statistics for most of its elements.) This requirement is not that strong as one
could think. Indeed, assume that A is a strong MSS for x and p a short total
program with U(p, x) = [A]. Then the model A′ = {x′ ∈ A | U(p, x′) = [A]} is
an MSS for x that is a “reasonable explanation” in this sense. Indeed, here is a
total program of length about |p| that transforms any x′ ∈ A′ to [A′]: given x′

apply p to x′ to find A and return the code of the set consisting of all x′′ ∈ A
with U(p, x′′) = [A].

Proofs of Theorems 1 and 2. We start with the following observation.

Lemma 1. Assume that A is an i-strong statistic for a string x of length n. Let
y = [A] be the code of A. Then y has an (i+O(log n), n)-description.

Proof. Let p be a string of length at most i such that U(p, x) is defined for all
strings x of length n. Consider the set {U(p, x) | x ∈ {0, 1}n}. Its cardinality
is at most 2n and complexity at most i + O(log n). If CT(y|x) � i for some
x ∈ {0, 1}n then there is p such that y belongs to such a set and hence y has a
(i+O(log n), n)-description.
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By Lemma 1, to prove Theorem 1 it suffices to find a set A ⊂ {0, 1}n with
(a) C(A) � i+ O(log n), log |A| � j
which is not covered by sets from the following three families:
(b) the family B consisting of all sets B ⊂ {0, 1}∗ with with C(B) � i, log |B| �
n− i− 4,
(c) the family C consisting of all setsM with C(M) � i+j, log |M | � n−i−j−4
whose code [M ] has a (i+O(log n), n)-description, and
(d) the family D consisting of all singletons sets {x} where C(x) < i+ j.
As x we can take any non-covered string in A. Notice that item (a) implies that
the complexity of x is at most i + j + O(log n), and item (d) implies that it is
at least i+ j.

A direct counting reveals that the family B ∪ C ∪ D covers at most

2i+12n−i−4 + 2i+j+12n−i−j−4 + 2i+j � 2n−3 + 2n−3 + 2n−4 < 2n−1

strings and hence at least half of all n-bitstrings are non-covered. However we
cannot let A be any 2j-element non-covered set of n-bitstrings, as in that case
C(A) could be large.

We first show how to find A, as in (a), that is not covered by B ∪D (but may
be covered by C). This is done using the method of [7]. To construct A notice
that both the families B and D can be enumerated given i, j, n by running the
universal machine U in parallel on all inputs. We start such an enumeration and
construct A “in several attempts”. During the construction we maintain the list
of all strings covered by sets from B∪D enumerated so far. Such strings are called
marked. Initially, no strings are marked and A contains the lexicographic first 2j

strings of length n. Each time a new set B ∈ B appears, all its elements receive a
b-mark and we replace A by any set consisting of 2j yet non-marked n-bitstrings.
Each time a new set {x} in D appears, the string x receives a d-mark, but we
do not immediately replace A. We do that only when all strings in A receive
a d-mark, replacing it by any set consisting of 2j yet non-marked n-bitstrings.
The above counting shows that such replacements are always possible.

The last version of A (i.e., the version obtained after the last set in B ∪ D
have appeared) is the sought set. Indeed, by construction |A| = 2j and A is
not covered by sets in B ∪ D. It remains to verify that C(A) � i + O(log n).
This follows from the fact that A is replaced at most O(2i) times, and hence
can be identified by the number of its replacements and i, j, n (we run the above
construction of A and wait until the given number of replacements are made).

Why is A replaced at most O(2i) times? The number of replacements caused
by appearance of a new set B ∈ B is at most 2i+1. The number of strings with a
d-mark is at most 2i+j and hence A can be replaced at most 2i+j/2j = 2i times
due to receiving d-marks.

Now we have to take into account strings covered by sets from the family C.
We cannot modify the above arguments just by putting a c-mark on all strings
from each set C enumerated into C. Indeed, up to 2n−4 strings may receive a
c-mark, and hence A might be replaced up to 2n−j−4 times due to c-marks.

We change the construction of A as follows. First we represent C as an inter-
section of two families, C′ and C′′. The first family C′ consists of all sets M with
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C(M) � i+ j and the second family C′′ of all sets C with log |C| � n− i− j − 4
whose code [C] has a (i+O(log n), n)-description. The first family is small (less
than 2i+j+1 sets) and the second family has only small sets (at most 2n−i−j−4-
element sets) and is not very large (|C′′| = 2O(n)). Both families can be enu-
merated given i, j, n and, moreover, the sets from C′′ appear in the enumeration
in at most 2i+O(logn) portions. Due to this property of C′′ we can update A
each time a new portion of sets in C′′ appears—this will increase the number of
replacements of A by 2i+O(log n), which is OK.

The crucial change in construction is the following: each time A is replaced,
its new version is not just any set of 2j non-marked n-bitstrings but a carefully
chosen such set: we choose any such set that has at most O(n) common strings
with every set from the part of C′′ enumerated so far. (We shall show later that
such a set always exists.)

Why does this solve the problem? There are two types of replacements of A:
those after enumerating a new set in B or a new bunch of sets in C′′ and those
after all elements in A have received c- or d-marks. The number of replacement
of the first type is at most 2i+O(logn). Replacements of the second type are
caused by enumerating new singleton sets in D and enumerating new sets C in
C′ which were enumerated into C′′ on earlier steps. Due to the careful choice of
A, when each such set C appears in the enumeration of C′ it can mark only O(n)
strings in the current version of A. The total number of sets in C′ is at most
2i+j+1. Therefore the total number of events “a string in the current version of
A receives a c-mark” is at most O(n2i+j). The total number of d-marks is at
most 2i+j . Hence the number of replacements of the second type is at most

(O(n2i+j) + 2i+j)/2j = O(n2i).

Thus it remains to show that we indeed can always choose A, as described above.
This will follow from a lemma that says that in a large universe one can always
choose a large set that has a small intersection with every set from a given small
family of small sets.

Lemma 2. Assume that a finite family C of subsets of a finite universe U is
given and each set in C has at most s elements. If

|C|
(
N

t+ 1

)(
s

|U | − t

)t+1

< 1

then there is an N -element set A ⊂ U that has at most t common elements with
each set in C.

Proof. To prove the lemma we use probabilistic method. The first element a1
of A is chosen at random among all elements in U with uniform distribution,
the second element a2 is chosen with uniform distribution among the remaining
elements and so forth.

We have to show that the statement of the theorem holds with positive prob-
ability. To this end note that for every fixed C in C and for every fixed set of
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indexes {i1, . . . , it+1} ⊂ {1, 2, . . . , N} the probability that all ai1 , . . . , ait+1 fall

in C is at most
(

s
|U|−t

)t+1

. The number of sets of indexes as above is
(

N
t+1

)
. By

union bound the probability that a random set A does not satisfy the lemma is
upper bounded by the left hand side of the displayed inequality.

We apply the lemma for U consisting of all non-marked n-bitstrings, N = 2j

and C consisting of all sets in C′′ appeared so far. Thus we need to show that for
some t = O(n) it holds

2O(n)

(
2j

t+ 1

)(
2n−i−j−4

2n−1 − t

)t+1

< 1,

which easily follows from the inequality
(

2j

t+1

)
� 2j(t+1). Theorem 1 is proved.

Theorem 2 is proved similarly to Theorem 1. The only difference that we
change A each time when at least 2j−k strings in A receive c- or d-marks. As
the result, the number of changes of A will increase 2k times and the complexity
of A will increase by k.
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Abstract. A challenge to current theories of computing in the continua
is the proper treatment of the zero test. Such tests are critical for ex-
tracting geometric information. Zero tests are expensive and may be
uncomputable. So we seek geometric algorithms based on a weak form
of such tests, called soft zero tests. Typically, algorithms with such
tests can only determine the geometry for “nice” (e.g., non-degenerate,
non-singular, smooth, Morse, etc) inputs. Algorithms that avoid such
niceness assumptions are said to be complete. Can we design complete
algorithms with soft zero tests? We address the basic problem of deter-
mining the geometry of the roots of a complex analytic function f . We
assume effective box functions for f and its higher derivatives are pro-
vided. The problem is formalized as the root clustering problem, and
we provide a complete (δ, ε)-exact algorithm based on soft zero tests.

1 Introduction: Soft Zero Tests

Almost a century ago, mathematicians and logicians began to develop a theory
of computation. It led to the highly successful theory of recursive functions and
its higher analogues [16]. Subsequently, in the hands of computer scientists, the
lower analogues (at the subrecursive levels) were developed. This is Complexity
Theory as we know it today [9]. The lower analogues turn out to have a richer
and harder theory: thus, the P versus NP is easily resolved at the higher level.
The main line of this development, especially in computer science, is largely
about computing over a discrete universe like strings or natural numbers. The
issues of computing in the continua, or its surrogate, the real line (R) is side-
stepped by this development. One approach to the continua is to use abstract
computational models that have operations on continua data, given as primitives.
Examples include Theoretical Computer Science under the Real RAM Model,
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the Algebraic School [2], and also Information-Based Complexity (IBC) [19].
But a more foundational approach is to consider computational models which
(at least in principle) truly operate at the bit level, like Turing machines. The
analytic school of real computation [20,11] is the main representative.

Computing over a discrete universe is vastly different than computing over
the continua; e.g.,, “brute force search” is not an option in the continua. From
the perspective of Exact Geometric Computation (EGC), the touchstone is the
Zero Problem: deciding if a real constant is zero. According to current models
of continua computing either (A) the problem is undecidable, or (B) the problem
is trivial by fiat (zero test is a primitive in the model). Our approach in [23] allows
the zero problems to have a range of complexity, consistent with what is observed
in practice.

The EGC viewpoint is motivated by practical and correct implementation
of continua algorithms. It is the most successful approach in computational ge-
ometry, and implemented in libraries such as LEDA, CGAL, Core Library (see
references in [23]). Nevertheless, there are barriers when we address non-linear
and/or non-algebraic problems. We are therefore motivated to study weaker no-
tions of exactness in geometric computation. In particular, we explore models
of real computation in which only the non-zero sign of real constants can be
decided: given a numerical constant x (represented implicitly in some way) we
can only ask whether x > 0 or x < 0, but not x = 0. See [3], and [22, Section
VI]. In terms of programming constructs, we allow guarded statements of the
form “if x > 0 then do ...” (but there is no immediate else-clause because the
failure of “x > 0” does not allow us to conclude that x ≤ 0). The test x > 0 is
implemented by iterative approximation of x, a paradigm which is nicely cap-
tured in the subdivision framework (e.g., [22]). We call these soft zero tests
(see Sect. 5), and they embody the well-known dictum in numerical compu-
tation: never compare a quantity to zero. A realistic theoretical model for such
computation is the numerical pointer machine [23] based on Schönhage’s pointer
machines.

What kind of geometric information can we compute using “soft algorithms”,
i.e., with soft zero tests? Clearly, in practice most computational scientists use
such algorithms. But we are interested in exact algorithms that guarantee the
correct geometry. A striking example is Plantinga and Vegter’s soft algorithm
[14] for computing isotopic approximations of curves and surfaces. We recently
[22] gave a soft algorithm for the Voronoi diagram of polygonal objects. Both
these examples had to assume “nice” inputs: the curves and surfaces must be
non-singular [14], the Voronoi diagram must be non-degenerate [22]. Algorithms
that avoid niceness assumptions on inputs are said to be complete. So the
main challenge of this paper is to design soft algorithms that are also complete.
One way to obtain soft-and-complete algorithms is to exploit algebraic zero
bounds. For analytic problems, such bounds are not readily available and we
must weaken the exact geometry criteria using the backwards error idea from
numerical analysis. Informally, we propose to compute “an ε-correct output for
some δ-perturbation of the input”. The precise usage of these δ, ε parameters
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will depend on the problem, but generally they lead to the concept of (δ, ε)-
exactness. In summary, our specific goal is to construct (δ, ε)-exact algorithms
that uses only soft zero tests, and are complete.

In this paper, we achieve this goal for one of the simplest geometric problems
in the continua: determining the geometry of zeros of a complex analytic function
f [12]. One formulation of this classical problem is called root isolation, defined
as follows: given an input function f and a region of interest B0 ⊆ C, to compute
a maximal set D = {Di : i = 1, . . . , n} of pairwise disjoint disks, each containing
exactly one distinct root of f in B0. For algebraic polynomials, various techniques
are available [6]. With soft zero tests, our analytic techniques cannot distinguish
between a root of multiplicity k and a cluster of k roots. Hence it is usually
assumed that f is “nice”, namely, it has simple roots only. With our completeness
goal, however, we must allow multiple roots. So we now associate a multiplicity
μi ≥ 1 with each output diskDi, meaning thatDi contains a “cluster” of μi roots
(counted with multiplicity). Thus the exact root isolation problem is transformed
into the root clustering problem. Ours appear to be the first exact algorithm
for analytic root clusters.

Related Work

A classic reference for the geometry of roots is Marden [12]; a comprehensive
modern account is given in [15]. There is a large literature on exact root isola-
tion for polynomials and its complexity (see [6]). For analytic functions, Giusti
et al. [7] noted that “in contrast to polynomials, few algorithms are known for
locating and approximating clusters of zeros of analytic functions”. Their pa-
per [7] contains a review of what is known, and contains an analysis of Newton
iteration (generalized to multiple roots with Schröder’s iteration) using a gener-
alization of Smale’s α-theory. Like Rump [17], many papers (e.g., [13]) focus on
predicates for confirming analytic root clusters; they do not necessarily synthe-
size these predicates into a global method for locating root clusters. Yakoubsohn
[21] uses only exclusion methods (but without root confirmation) and ε cut-offs
for analytic zeros; he further provided complexity analysis. Another approach to
analytic zeros is to use subdivision combined with the argument principle [10,4].
But they are suboptimal because of unnecessary exact root determination in
each subdivision box.

2 Conditions for Root Clustering

We address two basic questions. First, when does the set of roots in a disk D
form a meaningful cluster? Second, what computational properties of the input
function f allow us to construct effective and exact root clustering algorithms?

2.1 What Is a Root Cluster?

For a disk D ⊆ C, let r(D) and m(D) denote its radius and center, and for
α > 0, let αD denote the disk centered at m(D) with radius αr(D). Suppose
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f : C → C is an analytic function. Define τ(μ) := min{1 + μ, 3}. A disk D ⊆ C
is isolating for f(z) if there is a μ ≥ 0 such that both D and τ(μ)D contain
exactly μ roots of f (counted with multiplicity). If μ = 0, then D is called an
exclusion disk. If μ ≥ 1, the non-empty set of roots in D is called a (root)
cluster. The following shows that our clusters are natural, and are determined
only by the “geometry of the roots”.

Lemma 1. Let C0 be a root cluster of f . Then there is a unique unordered tree
T (C0) rooted at C0 whose set of nodes are the root clusters contained in C0.
Parent child relation in T (C0) is defined using the relation: C ⊆ C′ ⊆ C0 iff C
is a descendent of C′.

A collection D = {D1, . . . , Dn} of pairwise disjoint isolating disks is called an
isolating system for f in B0 if (1) each Di has at least one root and m(Di) ∈
B0, and (2) each root of f in B0 is in some Di. Call D an ε-isolating system
in case each Di ∈ D has radius at most ε. Note that roots outside B0 but within
distance ε from the boundary of B0 are allowed to appear in D.

We now formalize the root clustering problem: given an analytic function
f : C → C, a closed square box B0 ⊆ C and ε > 0, to compute an ε-isolating
system for f in B0. We may omit the ε parameter if ε = ∞.

2.2 On Box Functions and (δ, ε)-Approximations

Unlike algebraic polynomials, it is a non-trivial issue to specify an input analytic
function f . In practice, functions are parametrized by numerical parameters.
E.g., polynomials are parametrized by coefficients, and hypergeometric functions
by their hypergeometric parameters. Such functions may be composed using
standard operations. These parameters may be arbitrarily approximated (e.g.,
the coefficients are algebraic numbers). Based on these parameters, we assume
that f and all its higher derivatives are effectively approximated by box functions,
as explained next.

Let f : Rd → R be a function. Write |x| for the ∞-norm of x ∈ Rd. Following
[23], real numbers are approximated by elements of the set F = {m2n : m,n ∈ Z}
of dyadic numbers; also, let F denote the set of closed intervals with endpoints
in F. A box function for f , usually denoted f , is f : Fd → F such that, for
any sequence of boxes Bi ⊆ Fd (i = 1, 2, . . .) that strictly converges to a point
α ∈ Rd as i → ∞, then f(Bi) → f(α). Box functions are easy to construct
using interval arithmetic. We also need the following: A (δ, ε)-approximation
of f is

f̂ : Fd+1 → F2 (1)

such that,1 for all x ∈ Fd and p ∈ F, if x′ = x± 2−f̂0(x;p), then

f(x′) = f̂1(x; p) ± 2−p.

1 We write “a = b ± ε” to mean that |b − a| ≤ ε, and write “[a ± ε]” for the interval
[a− ε, a+ ε].
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Here, f̂(x; p) is written as the pair (f̂0(x; p), f̂1(x; p)) ∈ F2. We can view

δ := 2−f̂0(x;p) and ε := 2−p as the input and output perturbation bounds. The
function f is clearly continuous if it has a (δ, ε)-approximation, corresponding to
the standard definition of continuity: for all ε > 0, there exists δ > 0, such that
if x′ = x± δ then f(x′) = f(x) ± ε. Note that given f , we can construct f̂ ; the
converse is less clear.

These definitions extend to a complex function f : C → C provided we view
it as the function f = (fx, fy) : R2 → R2. Then a (δ, ε)-approximation of f

is just a pair (f̂x, f̂y) where each f̂i (i = x, y) is a (δ, ε)-approximation of fi.
But we can combine the δ and ε parameters of the individual fi’s and obtain
f̂ = (f̂x, f̂y) : F3 → F3.

An example of parametrized family of functions are hypergeometric functions.
For this class, (δ, ε)-algorithms are known ([5]); moreover, the derivatives of a
hypergeometric function is effectively derived from its parameters.

3 Predicates for Root Clusters

To provide a complete method for localizing roots, we need a predicate Ck(D) to
confirm that a given disk D ⊆ C contains k roots of f , counted with multiplicity.
Rump [17] reviewed this problem, giving 10 different predicates. We shall be
focusing on one of these predicates, from Pellet [12,15].

Fix an analytic function f : C → C. For integer k ≥ 0 and reals r,K ≥ 1,
define the predicate

Ck(m, r,K) : |fk(m)|rk > K
∑
i�=k

|fi(m)| ri (2)

where fi(m) := f(i)(m)
i! (coefficients of zi in the Taylor expansion of f(z) at m).

The constant K will be important later when discussing soft versions of these
tests. When K = 1, just write “Ck(m, r)” for Ck(m, r,K). Note that C0(m, r)
(i.e., k = 0) is exclusion predicate of [18].

Lemma 2. If Ck(m, r) holds then the complex disk Dm(r) ⊆ C contains exactly
k roots of f .

When f is a polynomial, we obtain Pellet’s theorem [12].

Theorem 1 (Pellet (1881)). If Q(z) =
∑n

i=0 qiz
i with qnq0 �= 0 and |qk|zk −∑

i�=k |qi|zi has two real positive roots r < R, then Q has exactly k roots in D0(r)
and there are no roots in the annulus D0(R) \D0(r).

Rump observed that Pellet’s method is among the best of his 10 methods; the
main limitation is that the size of its coefficients tend to overflow machine pre-
cision (his experimental setup is limited to machine precision).
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Effective Analytic Version Ck Test

For an analytic function f , the Ck test is not effective. For this, we need the
complex form of Taylor’s Theorem with Remainder. This seems to be a little
known result2 due to Darboux (1876). A more general statement with proof is
conveniently provided by Batra [1, Appendix].

Theorem 2 (Darboux). Let f : D0 → C, analytic in an open disk D0 be
given, and let a, b ∈ D0. Then there exists 0 ≤ Θ ≤ 1 and ω ∈ C, |ω| ≤ 1 such
that for h := b− a and ξ := a+Θ(b − a) it holds true that

f(b) =

k∑
ν=0

fν(a)hν + ωhk+1fk+1(ξ).

Now we introduce the interval version of the Ck test of (2) above:

Ck(m, r,K) : |fk(m)|rk > K
(

k−1∑
i=0

|fi(m)| ri + | fk+1(Dm(r))| rk+1

)
. (3)

Again, “ Ck(m, r)” refers to Ck(m, r, 1). Here, fk+1(D) is some box function
for fk+1(z). Note: we use the absolute value | fk+1(· · ·)| of the output box. The
analogue of Lemma 2 can be shown using Darboux’s theorem:

Lemma 3. If Ck(m, r) holds, then Dm(r) contains exactly k roots counted
with multiplicities.

4 Exact Algorithm for Root Clustering

We give a simple version of our root clustering algorithm, assuming the exact
evaluation of the predicates Ck and Ck and ignoring fine tuning that may be
important in practice. Our algorithm uses the classic subdivision paradigm (e.g.,
[22]). This may be viewed as the repeated subdivision of an initial box B0 ⊆ C,
each box being subdivided (“split”) into four congruent subboxes, until all the
boxes satisfy some predicate. If X is a box or disk with center mX and radius
rX , then we write “Ck(X)” instead of Ck(mX , rX).

Define the function firstC(B,N) to return the smallest k = 0, . . . , N such
that D(2k ·B) is isolating and contains k roots; otherwise, firstC(B,N) returns
−1. To verify that D(2k ·B) is isolating, we can check the predicates Ck(2k ·B)
and Ck(τ(k)2k ·B). Alternatively, in case f is a polynomial, we can check that
Ck(2k · B) and Ck(τ(k)2k ·B) holds.

Our algorithm’s input has the form (f,B0, N) where f is analytic and B0 is
a closed square box such that D(B0) has at most N roots. For instance, if f is
a polynomial, we can choose N to be its degree. For general analytic functions,
this N may be first estimated by numerical integration. Our algorithm has three

2 Thanks to Prashant Batra for bringing this to our attention.
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queues Q0, Q1 and D. Queue Q0 contains boxes in arbitrary order, Q1 is a
max-priority queue containing box-integer pairs (B, k), with k as the priority.
Queue D is the output, and contains (B, k) pairs in arbitrary order. Each (B, k)
represents an isolating disk 2k · D(B) containing k roots. A pair (B, k) and
(B′, k′) is said to be in conflict if their isolating disks intersect.

Exact Root Clustering Algorithm

Input: f : C → C, B0 ⊆ C, N ≥ 1, as described.
Output: An isolating system D for f in B0.

Q0 ← {B0}, Q1 ← ∅, D ← ∅ & Initialize Queues
0. while (Q0 is non-empty)

B ← Q0.pop()
k ← firstC(B,N)

1. If k < 0, split B and push its 4 children into Q0.
2. elif 1 ≤ k ≤ N , Q1.push(B, k)
3. while (Q1 is non-empty)

(B, k) ← Q1.pop()
4. If (B, k) does not conflict with any pair in D,
5. D.push(B, k)

Return D

Theorem 3. The Exact Root Clustering Algorithm halts, and produces an iso-
lating system for the roots of f in B0.

We easily modify this algorithm to compute an ε-isolating systems: Let the preci-
sion p ∈ F is given as input, p := lg(1/ε). Replace firstC(B,N) by firstC(B,N, p)
which returns −1 if r(B) > 2−p = ε. Otherwise, it returns firstC(B,N) as before.
For ε small enough, we isolate only the roots in B0.

5 Applications of Soft Zero Tests

The preceding algorithm is exact but not effective as it assumes the exact eval-
uation of Ck or Ck in firstC. Such algorithms are often deemed sufficient (cf.
the papers in the section on related work). It is assumed that a numerical imple-
mentation of the algorithm can invoke error analysis to tell us the circumstances
under which the output is correct. Unfortunately, this falls short of the usual
standard for algorithms in theoretical computer science. The solution we shall
now provide is to replace the above predicates by their soft versions, denoted C̃k

and C̃k, respectively.

5.1 Soft Zero Test

First consider the following soft zero test: given two numerical expressions
A and B, both non-negative and at least one positive, determine either the
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non-zero sign of A − B, or that A,B are relatively equal in the sense that
1
2A < B < 2A. Observe that if A,B are relative equal but A �= B, then the
output is non-deterministic: both the (correct) non-zero sign of A−B or relative
equality are possible outputs. Write (A)p to mean any p-bit approximation of A,
i.e., (A)p = A± 2−p. We are allowed to compute any p-bit approximation of A
and B for this problem. Here is our Soft Zero Test procedure: start with p = 1.
We halt if one of the following two conditions hold:

(I) |(A)p − (B)p| > 21−p.

(II) |(A)p − (B)p| ≤ 21−p and max{(A)p, (B)p} ≥ 7 · 2−p.

If (I) holds, output the sign of (A)p−(B)p, and if (II) holds, output “RELATIVE
EQUALITY”. Otherwise, we double p and repeat.

Theorem 4. The Soft Zero Test procedure halts and is correct.

We apply the soft zero test to implement soft predicate C̃k(m, r) (the case of

C̃k(m, r) is similar when we consider polynomials). Recall that we know (δ, ε)-

approximations f̂i : F3 → F3 of each Taylor coefficient function fi(z), i ≥ 0,

(see (1)). To decide C̃k(m, r), let us write the predicate (3) as the inequality

A > B where A := |fk(m)|rk, and B = E + F , with E :=
∑k−1

i=0 |fi(m)|ri and
F := | fk+1(Dm(r))| rk+1. It is easy to compute (A)p, (E)p+1 and (F )p+1 using
the fi’s. Note that F is an interval, say [a, b], and our approximation amounts
to widening the output interval by at most 2−p, (F )1+p ⊆ [a−2−1−p, b+2−1−p].
So (B)p = (E)p+1 + (F )p+1. Therefore, we could apply our soft zero test to
determine the non-zero sign A−B, or determine the “RELATIVE EQUALITY”
of A,B. If A−B is positive, we output success for our soft predicate C̃k(m, r),
and otherwise failure.

Lemma 4
(a) If the soft C̃k(m, r) succeeds, then exact Ck(m, r) succeeds.

(b) If exact Ck(m, r, 2) succeeds, then soft C̃k(m, r) succeeds.

We now describe our Soft Root Clustering Algorithm. Basically, we use the
soft C̃k instead of the exact Ck in the Exact Root Clustering Algorithm. These
predicates are used within the function firstC(B,N). But there is an important
twist: we must now test if the disks D(4k · B), not D(2k · B), are isolating for
k = 0, 1, . . . , N . With this modification, Thm. 6 (below) and Lemma 4(b)

implies halting. Finally, by exploiting our (δ, ε)-approximations f̂i : F3 → F3

of the Taylor coefficients, we can turn this into a (δ, ε)-algorithm in the sense
that we also compute a δ∗ > 0 such that for all δ∗-perturbations of the input,
our ε-output remains correct. Recall that the ε input parameter is not explicitly
described, but it is easy to take this into account. This yields:

Theorem 5. The Soft Root Clustering Algorithm is a complete (δ, ε)-algorithm
for the root clustering problem that is based on soft zero tests.



442 C. Yap, M. Sagraloff, and V. Sharma

6 Analysis of Ck Test

Suppose the analytic function f(z) has a root α of multiplicity k ≥ 0. So
f (k)(α) �= 0 and f (j)(α) = 0 for j = 0, . . . , k − 1. Then

f(z) =
∑
i≥0

fi(α)(z − α)i =
∑
i≥k

fi(α)(z − α)i.

Notation: Let m denote a point near α, and r := |m−α| (the “radius”). If E,F
are numerical expressions that depend on r, we shall write “E ' F” to mean
that, as r → 0, we have E = F (1± o(1)). Also “E  F” means E < F as r → 0.
Likewise, “E = O(F )” means there is a constant K > 0 such that E ≤ K ·F for
all r small enough. These notations are illustrated in the next lemma.

Lemma 5. For j ≥ 0:

|fj(m)|rj
{
' |fk(α)|rk

(
k
j

)
if j ≤ k

= O(rj) if j > k

In our application, instead of using radius r = |m − α|, we need to consider cr
for some constant c > 0:

Lemma 6
k∑

j=0

∣∣∣∣ fj(m)(cr)j

fk(m)(cr)k

∣∣∣∣ ' (1 +
1

c

)k

.

This follows from the previous lemma by summation. By separating out the fk
term in the previous lemma, we get:

Lemma 7. If c ≥ k, then

k−1∑
j=0

|fj(m)| (cr)j  |fk(m)|rk
(
kck−1(e− 1)

)
.

Theorem 6. Let Di = Dmi(ri) (i ≥ 0) be a sequence of disks, Di+1 ⊆ Di, that
converges to a point α. Let α have multiplicity k ≥ 0, and c be any constant
greater than (e− 1)kK.
(1) The test Ck(mi, cri,K) succeeds for i large enough.
(2) If f is a polynomial, the test Ck(mi, cri,K) succeeds for i large enough.

7 Conclusion

There is increasing interest in numerical, evaluation-based approaches to exact
geometric algorithms: from root isolation to topology of curve and surfaces.
Such algorithms are realistic, practical, and have adaptive complexity. It is part
of the trend towards symbolic-numeric computation. Until now, the evaluation
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algorithms for isolating the roots of a function f have two limitations: (1) they
require f to have simple roots, and (2) they assume that f is a polynomial.
In this paper, we have produced an evaluation-based algorithm for the general
problem of root clustering. Our algorithm (1’) allows f to have multiple roots and
(2’) applies to analytic functions. In the future, we plan to produce complexity
analysis as well as implementation of our algorithms. A general challenge is to
produce similar soft-but-complete algorithms for other geometric problems.
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