
Chapter 5

Redundant Robots and Hybrid-Chain
Robotic Systems

5.1 The Generalized Inverse of a Matrix

According to linear algebra [1, 2], a linear multi-variable simultaneous equa-
tion can always be written in a matrix form below:

Ax = b, (5.1)

where the coefficient matrix A is m by n if there are n variables in x and m
known values in b, or x ∈ R

n and b ∈ R
m. If A is a square matrix, i.e., m = n,

and also non-singular, then equation (5.1) has a unique solution x = A−1b,
where A−1 is known as the inverse of the square matrix A.

However, in many cases, either A is square but singular, or A is non-
square, i.e., m �= n, can we still solve equation (5.1) for x? Let a matrix
be denoted by A− and be defined such that x = A−b is a solution to (5.1).
By substituting this nominal solution into the equation, we ask ourselves
whether AA−b = b? Since AA−b = AA−Ax = b = Ax, if the answer is yes,
then AA−A = A. Therefore, to solve equation (5.1) in a more general sense,
we need to introduce a so-called generalized inverse A− that is n by m for
an m by n matrix A such that

AA−A = A. (5.2)

With a further test, we find that such a generalized inverse is not unique
[3, 4]. For further improvement, we may test the solution in the reversed
direction. Namely, if x = A−b is a solution, then x = A−b = A−Ax =
A−AA−b. This implies that A−AA− = A−, which can be imposed as the
second condition to narrow down the non-unique solutions. To this end, let
us re-define a so called reflexive generalized inverse A# that is also n by
m for an m by n matrix A such that

AA#A = A and A#AA# = A#. (5.3)

E.Y.L. Gu, A Journey from Robot to Digital Human, 135

Modeling and Optimization in Science and Technologies 1,

DOI: 10.1007/978-3-642-39047-0_5, c© Springer-Verlag Berlin Heidelberg 2013



136 5 Redundant Robots and Hybrid-Chain Robotic Systems

This new definition of the generalized inverse under two conditions is, indeed,
getting closer to uniqueness, but is still not quite unique yet.

Finally, two mathematicians Moore and Penrose proposed a so-called
pseudo-inverse A+ that is also n by m for any m by n matrix A such
that all the following four conditions hold:

AA+A = A, A+AA+ = A+, (A+A)T = A+A, and (AA+)T = AA+. (5.4)

This pseudo-inverse A+, or called Moore-Penrose inverse, is proven to be
unique for any kind of matrix A, and it can always have a unique explicit
form in each of the following cases:

1. If A is square, n by n and non-singular, then A+ = A−1;
2. If A is m by n with m < n, called a “short” matrix, then A+ =
AT (AAT )−1;

3. If A is m by n with m > n, called a “tall” matrix, then A+ = (ATA)−1AT ;
4. If A is square and n by n but singular with rank(A) = k < n, first, let its

maximum-rank decomposition be A = BC, where B is n by k and C is k
by n with both rank(B) =rank(C) = k. The pseudo-inverse of A becomes
A+ = CT (CCT )−1(BTB)−1BT .

Note that if either AAT in case 2 or ATA in case 3 is singular, then it has
to apply the maximum-rank decomposition on it, like case 4, before finding
its pseudo-inverse. The reader can verify without difficulty that the pseudo-
inverse determined in each of the above cases for A satisfies all the four
conditions in (5.4). In MATLABTM , there is an internal function pinv(·) to
calculate the pseudo-inverse of (·) numerically, and this function will bring a
lot of convenience to our future programming.

Though the formation of the pseudo-inverse for a matrix is unique, based
on linear algebra, the solution of equation (5.1) itself is still not unique if
the m by n matrix A is “short”, i.e., m < n. Since n is the number of
unknown variables x and m is the number of equations, the obvious question
is how can one uniquely solve for more unknown variables by less equations?
Nevertheless, the general solution can be written in terms of the pseudo-
inverse A+ as follows:

x = A+b+ (I −A+A)z, (5.5)

where I is the n by n identity, z ∈ R
n is an arbitrary vector. Because of the

arbitrary choice of z, the number of distinct solutions can go to infinity. By
substituting (5.5) into (5.1) and noticing all the conditions in (5.4), we will
immediately see that it is a true solution, no matter what z is.

The geometrical meaning of the general solution (5.5) is quite significant.
First, the two terms in (5.5) are always orthogonal to each other, i.e.,

zT (I −A+A)TA+b ≡ 0
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for any z ∈ R
n. In fact, according to the conditions in (5.4), we have

(I −A+A)TA+ = (I −A+A)A+ = A+ −A+AA+ = O,

the n by n zero matrix. This means that the n-dimensional solution space can
be decomposed into two orthogonal subspaces: one is called a rank space
R(A), and the other one is called a null space N(A).

Let y be an n-dimensional arbitrary vector. Then, A+Ay ∈ R(A) and
(I − A+A)y ∈ N(A), which mean that both n by n matrices A+A and
I − A+A play a common role as a projector, and the former one projects
y onto the rank subspace R(A), while the latter one projects y onto the null
subspace N(A).

Moreover, any projector P must be idempotent, i.e., P 2 = P . In other
words, after projecting an arbitrary vector y onto a targeting subspace, it
becomes z = Py, and projecting z once again onto the same subspace will
result in the same vector z, i.e., Pz = P (Py) = P 2y = z = Py, because z has
already been inside the targeting subspace after the first projection. Using
the conditions in (5.4) once again, one can readily show that both A+A = Pr

and I − A+A = Pn are, indeed, the two projectors. Namely, P 2
r = Pr and

P 2
n = Pn.
Now, based on the general solution in (5.5), x = A+b + (I − A+A)z =

A+Ax + (I − A+A)z = xr + xn, which implies that the first term xr =
A+b = A+Ax is a projection of the general solution x onto the rank subspace
by the projector Pr = A+A, and the second term xn = (I − A+A)z is the
projection of an arbitrary vector z onto the null subspace by the projector
Pn = I − A+A. The two terms: the rank solution xr = A+b and the null
solution xn = (I − A+A)z are always orthogonal to each other, xr ⊥ xn.
Since xr + xn = x with xr to be an orthogonal projection of x onto the
rank subspace, ‖xr‖ ≤ ‖x‖. This shows that the rank solution xr = A+b is
always the minimum-norm solution over all general solutions x in (5.5)
for equation (5.1).

Furthermore, sinceAA+ = AAT (AAT )−1 = I but A+A = AT (AAT )−1A �=
I, we can directly see that Axr = AA+b = b and Axn = A(I − A+A)z =
(A−AA+A)z ≡ 0. Figure 5.1 depicts the geometric interpretation of such an
orthogonal decomposition for the general solution, which will be a very use-
ful mathematical foundation in the next modeling and analysis of redundant
robotic systems.

5.2 Redundant Robotic Manipulators

A redundant robot has a number of joints that exceeds its output degrees
of freedom (d.o.f), i.e., n > m. The excessive number n −m = r is referred
to as a degree of redundancy. For a robot with redundancy, its Jacobian
matrix J is no longer square. Instead, it is an m by n “short” matrix. The
solution to its Jacobian equation
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Fig. 5.1 Geometrical decomposition of the general solution

V =

(
v
ω

)
= Jq̇ (5.6)

is accordingly no longer unique. We now utilize the Moore-Penrose pseudo-
inverse of the Jacobian matrix to represent the general inverse-kinematics
(I-K) solution for a redundant robot:

q̇ = J+V + (I − J+J)z, (5.7)

where J+ = JT (JJT )−1 is the pseudo-inverse of J , I is the n by n identity
and z ∈ R

n is an arbitrary vector.
In this general solution, the first term, q̇r = J+V ∈ R(J) is, again, called a

rank solution that determines the robotic main task operation described by a
Cartesian velocity V . In contrast, the second term in (5.7), q̇n = (I−J+J)z ∈
N(J) is called a null solution that may carry a subtask operation described
by the vector z. Since the rank and null solutions are always orthogonal to
each other, i.e. q̇r ⊥ q̇n or (q̇r)

T q̇n ≡ 0, the subtask operation will never
interfere with the main task execution [4, 5, 6].

Based on the theory of the pseudo-inverse discussed in the last section,
q̇ = q̇r = J+V in the case z = 0 is the minimum-norm solution. The
minimum-norm I-K solution is simple in computation, but its correspond-
ing motion generated is not quite naturally looking, because the robot arm
will maneuver in such a way that its lower joints will move much further than
the upper joints in order to maintain ‖q̇‖ → min. The reason is intuitively
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clear that a smaller angle change of a lower joint (closer to the robot base)
will often contribute more linear motion of the robotic end-effector. Thus,
in general applications, it is necessary to explore a null solution for possi-
ble improvement of both the redundant robot kinematic motion and task
performance.

In fact, a major step for the inclusion of a null solution is to define an
appropriate vector z ∈ R

n that can represent a desired subtask for optimiza-
tion. Let a scalar potential function p = p(q) be defined to describe a desired
subtask to be either maximized or minimized for its time-rate ṗ. Since

ṗ =
∂p

∂q
q̇ = ηT q̇,

we can show that if z in (5.7) is set to be z = kη, where η = ∂p/∂q is
the gradient vector (column vector) of p = p(q), then p is monotonically
increasing if k > 0 and p is monotonically decreasing if k < 0 [4, 5].

In fact, the definition of p(q) is in effect only on the null solution, which is
now q̇n = k(I − J+J)η so that the time-derivative of the potential function
on the null solution side becomes

ṗn = ηT q̇n = kηT (I − J+J)η.

Note that the projector Pn = I − J+J is idempotent and also symmetric.
Hence, if k > 0,

ṗn = kηT (I − J+J)η = kηTP 2
nη = kηTPT

n Pnη ≥ 0,

because of the fact that the matrix PT
n Pn is always semi-positive-definite.

Clearly, if k < 0, ṗn ≤ 0. Therefore, in order to represent a subtask and its
optimization when the redundant robot is operating a given main task, the
key step is to define a potential function p(q).

In summary, the general kinematic solution for a redundant robot in dif-
ferential motion can be written as

q̇ = J+V + (I − J+J)kη, (5.8)

where η is the gradient column vector of a scalar potential function p(q),
and k is a gain constant that is positive if one wants the value of p(q) to be
monotonically increasing, or is negative if one wants the value of p(q) to be
monotonically decreasing.

For example, in order to avoid singularity, one often defines the robotic
“manipulability” as a potential function:

p =
√
det(JJT ),
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because, in general, we wish the robot would always be distant from the zero
determinant of the Jacobian matrix J , or the singular points [6]. However, this
definition, though meaningful in concept, causes an unmanageable symbolical
derivation in order to further find its gradient vector, and is unfeasible in
robotic applications.

On the other hand, if one emphasizes only the 6th joint position in the
wrist of a (6 + 1)-joint robot that is a 6-joint arm sitting on a linear track to
escape from its rotational singularity as fast as possible, we may simply define
p = sin2 θ6, instead of p = det(JJT ). Then, the symbolical derivation of its
gradient vector for such a simple but effective potential function becomes
much easier to handle. In this case,

η =
∂p

∂q
=

⎛
⎝

05×1

2 sin θ6 cos θ6
0

⎞
⎠ =

⎛
⎝

05×1

sin 2θ6
0

⎞
⎠ ,

and the coefficient k > 0, where 05×1 is the 5 by 1 zero column vector.
Another typical example of the subtask is to avoid being out-of-range for

each joint position during a motion. If we know the center of each robotic joint
position range, and let all such center values form an n-dimensional constant
vector qc, the following potential function can be used to best represent this
particular subtask for minimization:

p(q) =
1

2
‖q − qc‖2 =

1

2
(q − qc)T (q − qc). (5.9)

Then, its gradient vector can be immediately calculated as follows:

η =
∂p

∂q
= q − qc, (5.10)

and the coefficient here should be k < 0 so that with z = kη, the p value will
be monotonically decreasing to make each joint position approach as close to
its center as possible.

The third example is collision avoidance. If a redundant robot arm is
situated in an environment with some obstacles nearby, we have to define a
potential function to represent a subtask of avoiding possible collisions with
the obstacles. Suppose that the robotic elbow is considered most likely to
collide with an obstacle. If the most dangerous corner point of the obstacle for
collision is determined and has a constant Cartesian position vector pob0 ∈ R

3

with respect to the world base, and the position vector of the robotic elbow
is pel0 that is a function of q, then, the potential function can be defined by

p(q) = ‖pel0 − pob0 ‖2 = (pel0 − pob0 )T (pel0 − pob0 ),

which may be a function of just the first two or three joint values, depending
on which joint the elbow locates at. Once we have an explicit form of pel0
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determined by the homogeneous transformations of the robot, it becomes
relatively straightforward to find the gradient vector η, and, of course, k > 0
in this collision avoidance case.

The potential function p(q) for collision avoidance can also be defined to
approach a virtual point that is a short distance away from the obstacle
as a safe position. If this virtual position is defined as pv0, then pob0 in the
above potential function form is replaced by pv0, and set k < 0 to allow
the elbow point to be as close to the virtual safe point as possible to avoid
hitting the obstacle. Such an alternative approach to collision avoidance will
be illustrated by a simulation study later in this section.

The fourth subtask optimization case is to automatically approach the best
posture for either a robot arm or a digital human. We are human, but often
overlook the question about the best posture. Although each of us well knows
what is the best posture in performing a specific task, such as to pick up
a heavy load or to lift and move a table, not everyone can tell why. To
mathematically describe and model the best posture, we have to seek an
explicit potential function p = p(q) to represent a measure of the posture
to be optimized. Since a Jacobian matrix for a robot or a digital human is
the most complete and also unique quantity to determine each instantaneous
posture, the desired potential function for posture optimization is closely
related to the Jacobian matrix J .

A further study shows that a certain posture is comfortable for a human
doing some task if every joint torque can be uniformly distributed over the
entire body, instead of having some joints suffering from a higher torque while
the others are exerting lower or no torque. An injury around some joint of
a human body is often cumulatively caused by such an uneven and spiking
torque distribution.

Before we further develop this notion, let us review a basic mathematical
inequality. For n positive real numbers: a1, · · · , an with each ai > 0, it is
well-known that their arithmetic mean value is always greater than or equal
to their geometric mean value, i.e.,

a1 + · · ·+ an
n

≥ n
√
a1 · · ·an,

and it becomes equal if and only if all the positive numbers ai’s are equal to
each other, i.e., a1 = · · · = an.

Now, let a weighted joint torque norm square for a robot or a human body
be defined as

τTWτ = w1τ
2
1 + · · ·+ wnτ

2
n,

where the joint torque vector is τ ∈ R
n and the weight W is an n by n

diagonal matrix with each diagonal element wi > 0. Therefore, it must obey
that

τTWτ

n
≥ n

√
w1τ21 · · ·wnτ2n,
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and likewise, they are equal if and only if the weighted joint torques are
uniformly distributed, i.e., w1τ

2
1 = · · · = wnτ

2
n.

On the other hand, based on the robotic statics, the joint torque vector
τ = JTF , where J is the Jacobian matrix of the robot or digital human, and
F ∈ R

m is a Cartesian force vector (wrench) representing the load imposed
on the robot or digital human at one or more end-effectors. Thus, we obtain
a weighted quadratic form in terms of the Jacobian matrix:

τTWτ = FTJWJTF.

Therefore, the weighted joint torque norm square for a robot depends on the
external Cartesian force (wrench), and this may bring a complication to the
focus on configuration (posture) optimization.

However, based on the Rayleigh Quotient Theorem from linear algebra
[1, 2],

λmin ≤ FTJWJTF

FTF
≤ λmax,

where λmin and λmax are the minimum and maximum eigenvalues of the
positive-definite matrix JWJT for any vector F . If we just use the normalized
load force vector FTF = 1 to test the joint torque distribution, then, the
above equation is reduced to

λmin ≤ FT JWJTF = τTWτ ≤ λmax.

This means that the weighted joint torque norm square is always upper-
bounded by λmax and lower-bounded by λmin of the m bym positive-definite
weighted Jacobian matrix JWJT , no matter what the unity external Carte-
sian force F is.

Since each eigenvalue λi of JWJT is a positive number as long as J is
full-ranked, they also satisfy

λ1 + · · ·+ λm
m

≥ m
√
λ1 · · ·λm.

Because λ1 + · · ·+ λm = tr(JWJT ) and λ1 · · ·λm = det(JWJT ), according
to linear algebra, the inequality can be rewritten by

tr(JWJT )

m
≥ m

√
det(JWJT ), (5.11)

and they are equal if and only if λmin = λmax, or all the eigenvalues are
squeezed to be uniformly distributed.

Since the right-hand side of equation (5.11) is related to the robotic ma-
nipulability, under a fixed manipulability, minimizing tr(JWJT ) will make
all the eigenvalues of JWJT equal. This is also the same method to make
the weighted joint torques approach being evenly distributed. Therefore, the
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potential function for the best posture in the sense of uniform joint torque
distribution can be defined as

p(q) = tr(JWJT ). (5.12)

If the weight W is the identity matrix, this means that each joint has equal
“opportunity”, then,

p(q) = tr(JJT ).
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Fig. 5.2 A 7-joint redundant robot arm

Figures 5.2, 5.3 and 5.4 show a 7-joint redundant robot that is created by
a regular 6-revolute-joint robot mounted on a linear track, and sometimes
it is called a (6 + 1)-joint robot. We will perform a detailed kinematic anal-
ysis later, and also make a digital mock-up and animation for this typical
redundant robot in next chapter. Here, we just introduce it to demonstrate
the correlation between the trace tr(JWJT ) and the weighted joint torque
distribution.

Within 400 sampling points of simulation, this robot is forced to have
both the position and orientation of its last frame #7 fixed without motion
while changing and adjusting its configuration (posture) by a null solution
q̇ = (I − J+J)kη to update its joint positions at each sampling point. The
potential function is p(q) = (d1−c)2, where d1 is the first prismatic joint value
that is the sliding displacement along the linear track, and c is a constant
destination position on the linear track for the regular 6-joint robot arm
sliding to. Thus, such a potential function has only one variable d1 so that
its gradient η can easily be determined, and the constant gain k should be
negative in this case to make p(q) as small as possible. We plan to let the
robot make a round-trip while keeping its end-effector stationary but acting
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Fig. 5.3 A 7-joint redundant robot arm
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Fig. 5.4 A 7-joint redundant robot arm

on a Cartesian force given by F = (−1 2 0 0 0 0)T with respect to the
robot base frame #0. The 7 by 7 weighting matrix W is defined as

W = diag(0.5 0.05 1 1 1 1 1)

along its diagonal.
As a result, Figure 5.2 shows the regular 6-joint robot on the linear track at

the starting position, Figure 5.3 shows it near the destination c, and Figure 5.4
displays the robot near the middle on the linear track as it is coming back to
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Fig. 5.5 A 7-joint redundant robot arm

the home position. The values of tr(JWJT ) and the maximum, the minimum,
and the average absolute values over the seven joint torques are plotted in
Figure 5.5. It can be clearly seen that if the maximum and minimum of
the joint torques at each sampling point are getting closer to each other,
tr(JWJT ) is approaching a smaller value. This evidently verifies that the
potential function (5.12) is valid and also effective. We will apply it for much
larger and more complex digital human models for their posture optimization
in Chapter 9.

Let us now look at a three-revolute-joint planar arm, as shown in Fig-
ure 5.6. If the tip point of the robot is required only to draw a curve in 2D
space without considering its orientation of the last frame, then the number
of d.o.f. m = 2 and the number of joints n = 3 > m so that this planar
arm is a robot with one degree of redundancy. Under the link frames assign-
ment given in Figure 5.6, its D-H table can immediately be determined as
follows:

θi di αi ai

θ1 0 0 a1

θ2 0 0 a2

θ3 0 0 a3
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Fig. 5.6 A three-joint RRR planar redundant robot arm

From the D-H table, the one-step homogeneous transformations are
determined by

A1
0 =

⎛
⎜⎝
c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1

⎞
⎟⎠ , A2

1 =

⎛
⎜⎝
c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

and A3
2 =

⎛
⎜⎝
c3 −s3 0 a3c3
s3 c3 0 a3s3
0 0 1 0
0 0 0 1

⎞
⎟⎠ .

Then, we can find A3
0 = A1

0A
2
1A

3
2 and its last column should be the tip position

vector p30 for the robot, but we take only the first two nonzero elements due
to m = 2, i.e.,

p30 =

(
a1c1 + a2c12 + a3c123
a1s1 + a2s12 + a3s123

)
.
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Hence, the Jacobian matrix that is projected onto the base becomes

J =
∂p30
∂q

=

(−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123
a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

)
,

which is a 2 by 3 “short” matrix.
After the above preparation, we program them into MatlabTM for a sim-

ulation study. Let a1 = a2 = a3 = 1 m. Suppose that the initial joint values
are θ1 = 1100, θ2 = −400 and θ3 = −300 such that the initial tip posi-
tion becomes p30(t = 0) = (0.7660 2.5222)T . Now, starting from this initial
Cartesian position, we want the robot tip point to follow a linear trajectory
specified by {

x(t) = 0.2t+ 0.7660
y(t) = −0.4t+ 2.5222.

Thus, the Cartesian velocity becomes v =

(
ẋ
ẏ

)
=

(
0.2
−0.4

)
in the unit of

m./sec. and referred to the base.
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3

Fig. 5.7 Simulation results - only the rank (minimum-Norm) solution
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Fig. 5.8 Simulation results - both the rank and null solutions

In the simulation study, we made the following two cases:

1. Using only the rank solution q̇ = J+v that is also the minimum-norm
solution to update the joint angles qnew = qcurrent + q̇dt as the first-order
approximation;

2. Adding a null solution (I − J+J)kη to the above rank solution, where the
potential function is defined by p = sin2 θ3 so that its gradient becomes
η = (0 0 sin 2θ3)

T with k > 0.

Note that the reason to define such a potential function in case 2 is to make
the third joint angle be always as close to ±900 as possible. Figures 5.7 and 5.8
show its common motion output as the main task, but different instantaneous
configurations between the two cases, as specified by the subtask. Clearly, the
result in case 2 with k = 1 is, indeed, making link 3 be as perpendicular to
link 2 as possible. In other words, θ3 → −900 as the tip point is tracking the
straight line for this three-revolute-joint redundant robot.

Another example with simulation study is to utilize the same 7-joint re-
dundant robot as in Figure 5.2, but adding a post next to the robot for
collision avoidance, as depicted in Figures 5.9 and 5.10.
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Fig. 5.9 The 7-joint robot arm is hitting a post when drawing a circle
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Fig. 5.10 The 7-joint robot is avoiding a collision by a potential function
optimization
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The D-H table for this 7-joint redundant robot arm is given as follows:

θi di αi ai

θ1 = 0 d1 900 a1

θ2 d2 900 0

θ3 0 0 a3

θ4 0 900 0

θ5 d5 −900 0

θ6 0 900 0

θ7 d7 0 0

The above D-H table is started from the robot base frame 0. There is a
world base frame b as a reference for ongoing path planning. The relation
between frame 0 and frame b is given by

A0
b =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 −1 0 7
0 0 0 1

⎞
⎟⎠ , (5.13)

where all the length units are in decimeters (dm.). Since for a robot with both
revolute and prismatic joints, its joint position vector as well as the Jacobian
matrix mix both angles in radians and displacements in length unit, they
should have very close numerical values to avoid unnecessary numerical error
when finding its I-K solution by inverting the Jacobian matrix. A length or
displacement in dm. and an angle in radians are close to each other in value,
and thus, we adopt dm. as the length unit here for every di and ai in the
above D-H table.

Based on the D-H table, the first three one-step homogeneous transforma-
tion matrices can be found as follows:

A1
0 =

⎛
⎜⎝

1 0 0 a1
0 0 −1 0
0 1 0 d1
0 0 0 1

⎞
⎟⎠ , A2

1 =

⎛
⎜⎝
c2 0 s2 0
s2 0 −c2 0
0 1 0 d2
0 0 0 1

⎞
⎟⎠ ,

and

A3
2 =

⎛
⎜⎝
c3 −s3 0 a3c3
s3 c3 0 a3s3
0 0 1 0
0 0 0 1

⎞
⎟⎠ . (5.14)

Thus, the homogeneous transformation of frame 3 at the robot elbow with
respect to the robot base can be calculated by

A3
0 = A1

0A
2
1A

3
2 =

⎛
⎜⎝
c2c3 −c2s3 s2 a1 + a3c2c3
−s3 −c3 0 −d2 − a3s3
s2c3 −s2s3 −c2 d1 + a3s2c3
0 0 0 1

⎞
⎟⎠ .
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Therefore, the position vector of the robot elbow p30 is the 4th column of
this A3

0 referred to frame 0. Now, the vertical post with a radius = 0.3 dm.
is standing at xb = 7 and yb = 7.5 in decimeters with respect to the world
base, or x0 = 7 and z0 = 7.5 referred to the robot base frame 0. Let us define
a virtual safe point at a position: x0 = 10 and z0 = 20 dm. and control the
robot elbow to approach to it as closely as possible, as shown in Figure 5.11.
This will have the same effect as avoiding the collision to the post.

 

x0 

z0 

Post at  
x=7, z=7.5 

A Virtual Point 
at x=10, z=20 

Robot Elbow  

d1 

Drawing a Circle 

Fig. 5.11 A top view of the 7-joint redundant robot with a post and a virtual
point

With the virtual safe point defined, the potential function to be minimized
can be the distance between the robot elbow and the virtual point. Namely,
let μx = p30x − 10 = a1 + a3c2c3 − 10 and μz = p30z − 20 = d1 + a3s2c3 − 20.
Then,

p(q) =
1

2
(μ2

x + μ2
z).

Its 7 by 1 gradient vector becomes

η =
∂p

∂q
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μz

μza3c2c3 − μxa3s2c3
−μza2s2s3 − μxa3c2s3

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If Jb is the Jacobian matrix of the robot and Vb is the end-effector Cartesian
velocity vector for a circle drawing, both referred to the world base, and
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let k = −1 for minimization of the potential function p(q), then, based on
equation (5.7), the differential motion solution turns out to be

q̇ = J+
b Vb − (I − J+

b Jb)η.

More specifically, based on equation (4.14) in Chapter 4, the 6 by 7 Jaco-
bian matrix J(7) that is projected to the last frame 7 for the 7-joint redundant
robot is obtained by

J(7) =

(
r07 p17 × r17 · · · p67 × r67
0 r17 · · · r67

)
,

where each pi−1
7 and each ri−1

7 for i = 1, · · · , 7 are the 4th and 3rd columns of
the homogeneous transformation matrix Ai−1

7 ,respectively, which, as well as
the cross-product between each pair of pi−1

7 and ri−1
7 , can all be numerically

calculated in a MATLABTM program. After J(7) is prepared, according to
equation (4.15), the Jacobian matrix projected onto the base can further be
found by

Jb =

(
R7

b O3×3

O3×3 R7
b

)
J(7),

where the rotation matrix R7
b is the upper-left 3 by 3 block of the homoge-

neous transformation matrix A7
b .

To draw a circle of radius r on the yb − zb base coordinates plane without
any orientation change for frame 7, since the circle equation is given by

⎛
⎝
x
y
z

⎞
⎠ =

⎛
⎝

0
r cos(ωt) + yc
r sin(ωt) + zc

⎞
⎠ ,

where yc and zc are the coordinates of the circle center with respect to the
base and ω is the angular velocity of circle drawing, the Cartesian velocity
should be the time-derivative of the above circle equation, i.e.,

Vb =

(
vb
ωb

)
=

⎛
⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ż
ωx

ωy

ωz

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
−rω sin(ωt)
rω cos(ωt)

0
0
0

⎞
⎟⎟⎟⎟⎟⎠
.

As a result, Figure 5.9 shows that the elbow is hitting the post if q̇ just
takes the first term, i.e. the rank solution without any collision avoidance
consideration. Once q̇ also includes the second term, i.e. the null solution
with the above gradient vector η, we can evidently see the effect of collision
avoidance in Figure 5.10.
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The above two simulation-based examples demonstrate the effectiveness
of both main task execution and subtask optimization for a robot with only
one degree of redundancy. In many cases, a robot may have higher degrees
of redundancy, depending on how many joints it has and what the main task
d.o.f. is. In such cases, one may add more potential functions to optimize
them simultaneously.

Let an n-joint open serial-chain robot perform a main task that requiresm
d.o.f. with m < n. The degree of redundancy is r = n−m, and it should have
an r-dimensional null space N(J) to fill up to r independent subtasks for si-
multaneous optimization. Once each potential function pi(q) with i = 1, · · · , r
is defined, their gradient vectors η1, · · · , ηr will immediately be determined.
Thus, the general solution turns out to be

q̇ = q̇r + q̇n = J+V + (I − J+J)(k1η1 + · · ·+ krηr).

In this multi-subtask case, we may interpret that each ki is a weight on
subtask i and all the ki’s can be dynamically controlled to reach the best
overall subtask performance [7, 8]. Based on this notion, the above general
solution can be re-organized as follows:

q̇ = J+V + (I − J+J)(η1 · · · ηr)
⎛
⎝
k1
...
kr

⎞
⎠ = J+V + (I − J+J)Nk, (5.15)

with an n by r matrix N = (η1 · · · ηr) and an r by 1 column vector k =
(k1 · · · kr)T . Since all the terms on the right-hand side of equation (5.15)
are functions of q except the vector k, we may compare it with the standard
form of nonlinear state-space equation:

ẋ = f(x) +

r∑
i=1

gi(x)ui = f(x) +G(x)u.

It is now quite clear that the robotic joint position vector q can be defined as a
state vector x ∈ R

n, the rank solution J+V is considered as an n-dimensional
tangent field f(x), (I − J+J)N is the coefficient matrix G(x) of the input,
and vector k ∈ R

r is the control input u of the redundant robot kinematic
system. Therefore, the r-dimensional control input k is no longer a constant.
Instead, it should be determined and updated in a more dynamic fashion
towards an overall optimization for all the r subtasks.

Starting with the above control system model, let an output vector y ∈ R
r

be defined by

y =

⎛
⎜⎝
p1(q)
...

pr(q)

⎞
⎟⎠ = h(q)
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that augments all the potential functions pi(q) for i = 1, · · · , r, so that h(q)
is an r-dimensional output function of q. Since according to (5.15),

ẏ =
∂h

∂q
q̇ =

∂h

∂q
(J+V + (I − J+J)Nk),

and

∂h

∂q
=

⎛
⎜⎝
ηT1
...
ηTr

⎞
⎟⎠ = NT ,

we have
ẏ = NTJ+V +NT (I − J+J)Nk = NTJ+V +Dk.

If the above r by r square matrix D = NT (I − J+J)N is non-singular, then
the control input can be resolved by

k = D−1ẏ −D−1NTJ+V.

Furthermore, if we wish each potential function pi(q) and its time-derivative
ṗi would approach a desired value pdi and ṗdi , and by augmenting every pdi
and ṗdi to form a desired output vector yd and ẏd, respectively, then, we may
define

ẏ = ẏd +K(yd − y)
for a constant scalar or an r by r diagonal matrix K > 0 such that the control
law can be determined by

k = D−1[ẏd +K(yd − y)]−D−1NTJ+V.

This is conventionally called a nonlinear state-feedback control, and it can
be readily justified that the above control law for the gain vector k can make
each potential function pi(q) converge to its desired value pdi asymptotically.
Clearly, it becomes feasible if the square matrix D = NT (I−J+J)N , called a
decoupling matrix, is non-singular at each sampling point. This implies that if
r is the dimension of the null space N(J) of the Jacobian matrix J , then the
number of independent potential functions to be controlled must be less than
or equal to r. The concept and theory of such a nonlinear feedback control
will be formally developed and further discussed in Chapter 8.

In fact, a regular robot arm with m = n can be mounted on a wheeled
or walking mobile cart/vehicle to extend its motion flexibility and working
envelope. As shown in Figure 5.12, the degree of redundancy is usually equal
to the number of axes that the cart or vehicle can offer. For the Stanford-
Type robot arm sitting on a wheel-cart, since the wheel-cart can move in x
and y directions and spin about the z-axis with respect to the world base
frame b, the Stanford-Type arm is extended by three more joints. However,
because the waist joint θ1 of the robot arm shares the same axis with the
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Fig. 5.12 The Stanford-type robot arm is sitting on a wheel mobile cart

cart spin, the net number of the independent axes added is reduced to 2 so
that the degree of redundancy has to be r = 2.

If the robot arm could be mounted on the cart with an angle leaning away
from the vertical axis, then the degree of redundancy would recover to r = 3.
In either case, the entiremobile robot can be modeled as a highly redundant
robotic system. Moreover, it is a reality that the three independent axes of the
cart motion are just a theoretical model, and they are not directly controlled
by three joint actuators. In other words, unlike a regular open serial-chain
robot, the mobile cart/vehicle has no joint actuator at each axis of motion.
Instead, the cart or the vehicle motion is driven indirectly by the four wheels
with their steering system. Therefore, due to the indirect motion control fact,
the dynamics, control and even kinematics of a mobile robot are often more
complicated than a regular open serial-chain robot arm.

If the degree of redundancy is significantly high, it is often called a hyper-
redundant robotic system. A snake-type or elephant (nose) trunk-like
long serial-chain flexible robot can have up to 40 joints so that the degree of
redundancy will be at least r = 40− 6 = 34. In this special case, the subtask
operation is even more significant than the main task execution, because the
r-dimensional null space can provide a huge “room” to be filled with many
desirable subtasks or sub-operations [9, 10].
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The extensive research on redundant robotic systems kinematics, dynam-
ics, control and design has a three-decade long history. A large volume of
literature on this topic can be further referred to find the past, present and
future trends in both theoretical developments and wide-spectrum applica-
tions [11, 12]. This section is just providing a summary of the mathematical
principles, major concepts, algorithms and simulation studies in the kine-
matic modeling aspects of the robots with redundancy.

5.3 Hybrid-Chain Robotic Systems

An open-chain or a closed-chain multi-joint robot arm can be structured
either in series or in parallel, or in the form of serial-parallel hybrid-chain
mechanism. Figure 5.13 shows a serial-parallel hybrid-chain planar robot. The
well-known Stewart platform, as shown in Figure 5.14, is the most typical 6-
prismatic-joint parallel robot, which is serving in the U.S. Army Laboratories
for tank vibration routine tests. The most typical hybrid-chain robot is our
human body. If one wants to model a human body digitally, the four serial-
chain limbs: two legs and two arms that are all connected in parallel to the
human trunk can be integrated and grouped as a multi-joint hybrid-chain
robotic system. Even for a human hand with five fingers connected to the
common palm, it is also a typical hybrid-chain system.

In fact, a robotic system having two serial-chain arms that are connected
in parallel with a common torso, like a human upper body without head, has
appeared in the market as a heavy-duty dexterous industrial manipulator,
called a dual-arm robot. In order to mimic a real human torso with two
arms, each arm must be very flexible and dexterous. Figure 5.15 shows a
single-arm 7-axis dexterous manipulator RRC K-1207 and a dual-arm 17-axis
dexterous robot RRC K-2017 designed and developed by Robotics Research
Corporation, Cincinnati, OH.

Before further exploring the kinematics for hybrid-chain robotic systems,
let us first introduce and study how to determine the mobility, or the net
degrees of freedom that a hybrid-chain mechanism can offer. In mechanics,
the well-knownGrübler’s formula can directly predict the numberm of net
degrees of freedom for almost every open or closed hybrid-chain mechanical
system [11, 13, 15].

Let l and n be the numbers of movable links and joints, respectively, for
a system of interest, i.e., the fixed base must be excluded from the number
of links l. Let fi be the total number of independent axes that joint i can
move, for i = 1, · · · , n. For instance, fi for a ball-joint without spin, or called
a spherical joint, is two, while it is equal to three if including the link spin,
called a universal joint. Then, the Grübler’s formula is given by

m = D(l − n) +
n∑

i=1

fi, (5.16)
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Fig. 5.13 A hybrid-chain planar robot

x0
y0 

z0
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xp 
yp

Fig. 5.14 Stewart platform - a typical 6-axis parallel-chain system

where D is the maximum d.o.f that the motion space of interest can offer. For
instance, D = 3 for the motion on a 2D plane, while D = 6 in 3D space. By
inspection, for the hybrid-chain planar robotic system in Figure 5.13, D = 3,
l = 7 that exclude the fixed base, n = 9 and each joint offers fi = 1 as a
single axis for each joint. Then, according to (5.16),
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Fig. 5.15 A 7-axis dexterous manipulator RRC K-1207 and a dual-arm 17-axis
dexterous manipulator RRC K-2017. Photo courtesy of Robotics Research Corpo-
ration, Cincinnati, OH.

m = 3(7− 9) +

9∑
i=1

1 = −3× 2 + 9 = 3.

This result shows that the top bar of the system can have 3 d.o.f. move-
ment: translations of x and y, and rotation about the axis perpendicular to
the plane. Therefore, based on the result, one can install three, and at most
three, motors at any three of the 9 joints to drive the planar robot for 3 d.o.f.
motion. Typically, the three motors may be installed on the three bottom
joints to control uniquely the top bar motion in a 2D plane.

Note that a universal joint offers three axes of rotation, as a member of
SO(3) group. Since a spin belongs to SO(2) group, based on topology, the
quotient space

SO(3)/SO(2) � S2

is topologically equivalent or homeomorphic to a 2-sphere. This means that
a universal (U-type) joint after eliminating its spin will be reduced to a
spherical (S-type) joint. A conventional ball joint is a typical spherical joint.

For a Stewart platform that is also called a hexapod [13, 18], as shown in
Figure 5.14, D = 6 in 3D motion space, and we can count its total number of
links to be l = 13, including the top disc but excluding the fixed bottom base
disc. The total number of joints is counted as n = 18. Among the 18 joints,
suppose that each prismatic (P-type) joint offers one sliding axis, and each
joint that connects each prismatic joint, or piston, to the top mobile disc is of
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spherical type that offers 2 axes each, while each joint connecting the piston
to the base, i.e. the bottom disc, is of universal type offering 3 axes. This
becomes a UPS-type structure for each of the six parallel legs. Thus, all the 6
prismatic joints provide 6 axes, and top 6 spherical joints provide 6× 2 = 12
axes, while the bottom 6 universal joints provide 6× 3 = 18 axes. The total
12 U/S-type joints provide 12 + 18 = 30 axes. Finally, the net degrees of
freedom for the Stewart platform turn out to be

m = 6(13− 18) + 6 + 30 = −30 + 36 = 6.

Therefore, the top mobile disc can be driven by 6 actuators on the 6 prismatic
joints to offer complete 6 d.o.f. motion.

It is also conceivable that the 6 d.o.f motion envelope for a serial-chain
robot is, in general, much bigger than that of a parallel-chain robot. In con-
trast, the payload is just the opposite, and this was the primary reason why
the U.S. Army laboratory uses the parallel-chain Stewart platform for their
extremely heavy tank vibration test.

If we denote the second term of the Grübler’s formula in (5.16) by F =∑n
i=1 fi to represent the net amount of axes that all the joints of a system
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Fig. 5.16 Kinematic model of the two-arm 17-joint hybrid-chain robot
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can offer, then, the Grübler’s formula becomes m = D(l−n)+F . We classify
most hybrid-chain mechanisms into two major categories:

1. If n = l, the number of joints is equal to the number of links, then m = F .
This implies that the total number of axes offered by all the joints can
be fully controlled to produce the same d.o.f. motion for such a system.
Typical systems in this category are most of the open serial-chain robots,
where each joint is actuated by a motor.

2. If n > l, the number of joints exceeds the number of links, then m < F .
This means that there are F − m excessive axes to be passive without
control. Most full or partial closed parallel-chain mechanisms belong to
this category.

It will be observed in the later development and analysis that the excessive
axes for those systems in the second category often cause additional difficulty
in solving their forward kinematics (F-K).

Let us now start investigating how to model a hybrid-chain robot kinemat-
ics by taking the dual-arm industrial robot, as shown in Figure 5.15, as a case
study. Figure 5.16 depicts a two-arm robot theoretical model that was inspired
by the industrial dual-armdexterous robot designed and developed byRobotics
Research Corporation along with all the link frames assignment by the D-H
convention. Based on all the zi and xi-axes definitions for link i, we can readily
find the D-H table for the two-arm hybrid-chain robot model in Table 5.1.

Table 5.1 The D-H table for the two-arm robot model

θi di αi ai Joint Name

θ1 d1 −900 0

θ2 0 900 0 Waist on Torso

θ3l, θ3r d3 0 a3l = a3r

θ4 d4 900 a4

θ5 0 900 a5 Left Shoulder

θ6 d6 −900 0

θ7 0 900 0 Left Elbow

θ8 d8 900 0

θ9 0 900 0 Left Wrist

θ10 d10 0 0

θ11 d11 900 a11

θ12 0 900 a12 Right Shoulder

θ13 d13 −900 0

θ14 0 900 0 Right Elbow

θ15 d15 900 0

θ16 0 900 0 Right Wrist

θ17 d17 0 0
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It can be seen that the common waist on the torso consists of three joint
angles that are shared by both the left and right arms. The first two joint
angles: θ1 and θ2 each has its individual joint value, while the value of the
third one θ3 has a constant difference between the left and right transitions
from the torso to the two arms. Since the x3 and x10 axes in Figure 5.16 are
separated with a constant angle β, the relationship between θ3l and θ3r is
clearly given by θ3r = θ3l + β. Due to the mechanical structure symmetry, it
is true that the link lengths a3l = a3r on the torso, and also a4 = a11 and
a5 = a12 on the two shoulders. Similarly, the joint offsets d4 = d11 on the two
shoulders, d6 = d13 on the two upper arms and d8 = d15 on the two forearms.
Although the two end-effector offsets d10 and d17 look equal, too, we have to
leave the two parameters determined by their specific applications. Since this
is a typical multiple end-effector case, each end-effector may carry a different
tool, each of d10 and d17 is finally determined by the total length, including
the tool length, along the zL axis and zR axis, respectively.

Once the D-H parameter table is completed, it is easy now to find all the
17 one-step homogeneous transformations. The first three on the common
torso are given as follows:

A1
0 =

⎛
⎜⎝
c1 0 −s1 0
s1 0 c1 0
0 −1 0 d1
0 0 0 1

⎞
⎟⎠ , A2

1 =

⎛
⎜⎝
c2 0 s2 0
s2 0 −c2 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ ,

and A3
2 =

⎛
⎜⎝
c3 −s3 0 a3c3
s3 c3 0 a3s3
0 0 1 d3
0 0 0 1

⎞
⎟⎠ .

Note that the angle θ3 in A3
2 is θ3l as transiting to the left arm, and it

is θ3r = θ3l + β as transiting to the right arm, but they both share the
same symbolical form of the homogeneous transformation A3

2. Due to the
constant difference β angle, it is quite significant that their joint velocities
θ̇3l = θ̇3r = θ̇3.

The remaining one-step homogeneous transformations for the joints/links
on the two arms are straightforward, especially each twist angle αi is either
±900 or 0 for this particular robot. Once we have all the 17 Ai+1

i ’s ready,
we need further to iteratively compute A10

8 = A9
8A

10
9 , A10

7 = A8
7A

10
8 , A10

6 =
A7

6A
10
7 , · · ·, until A10

0 for the left side of the robot. Likewise, continue to
iteratively compute A17

15 = A16
15A

17
16, · · ·, A17

3r = A11
3rA

17
11, A

17
2 = A3r

2 A
17
3r , · · ·,

until A17
0 for the right side of the robot. The index 3r just indicates the

computation along the right arm, and as mentioned above, A3r
2 uses θ3r but

in the same symbolical form of A3
2. After that, we have to invert each of the

homogeneous transformation matrices to determine A0
10, · · ·, A9

10 for the torso
plus left arm, as well as A0

17, · · ·, A16
17 for the torso plus right arm. Taking

the 3rd and 4th columns from each of the Ai
10’s and Aj

17’s, we are ready to
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find all the necessary Jacobian matrices for the two-arm hybrid-chain robot
model.

Based on equation (4.14) in Chapter 4, the Jacobian matrices of the torso
transiting to the left arm and to the right arm can be constructed respectively
as follows:

J torso
10 =

(
p010 × r010 p110 × r110 p210 × r210
r010 r110 r210

)
=

(
s010 s110 s210
r010 r110 r210

)
,

and

J torso
17 =

(
p017 × r017 p117 × r117 p217 × r217
r017 r117 r217

)
=

(
s017 s117 s217
r017 r117 r217

)
,

and each of them is 6 by 3. The second matrix in each equation is a dual-
number representation if you wish to derive the above Jacobian matrices using
the dual-number transformation in lieu of the homogeneous transformation.
Similarly, we can compute the two arms’ Jacobian matrices:

J larm
10 =

(
p310 × r310 p410 × r410 · · · p910 × r910
r310 r410 · · · r910

)
=

(
s310 s410 · · · s910
r310 r410 · · · r910

)
,

and

Jrarm
17 =

(
p3r17 × r3r17 p1117 × r1117 · · · p1617 × r1617
r3r17 r1117 · · · r1617

)
=

(
s3r17 s1117 · · · s1617
r3r17 r1117 · · · r1617

)
,

and each of them is 6 by 7. Since all the above computations are quite te-
dious in symbolical derivation, you may use computer programming, such
as MATLABTM , to do them numerically, especially for the dual-number
approach.

Let VL and VR be the 6 by 1 Cartesian velocities of the two end-effectors,
and each augments both the linear velocity v and angular velocity ω, as
defined in equation (4.13). Also, let q = (θ1 · · · θ10 θ11 · · · θ17)T be the 17-
dimensional joint position vector for the robot. Then, based on the Jacobian
equation (3.22) and the matrix multiplication rule, we obtain

(
VL
VR

)
= Jend q̇ =

(
J torso
10 J larm

10 O6×7

J torso
17 O6×7 Jrarm

17

)
q̇, (5.17)

where O6×7 is the 6 by 7 zero matrix. The 12 by 17 matrix Jend is called
the augmented Jacobian matrix for such a hybrid-chain robot, which
is now projected on the two respective end-effector frames. It can also be
projected onto the common base by adopting equation (4.15), and both the
two Cartesian velocities VL and VR for the two end-effectors can be planned
with respect to the common base. Namely,
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J0 =

⎛
⎜⎝
R10

0 O O O
O R10

0 O O
O O R17

0 O
O O O R17

0

⎞
⎟⎠ Jend,

where each O is the 3 by 3 zero matrix.
The 12 by 17 augmented Jacobian matrix J0 is obviously “short” and

possesses a 17− 12 = 5-dimensional null space. In other words, the two-arm
hybrid-chain robot model is a redundant robot with the degree of redundancy
r = 5. We may impose up to 5 subtasks for their simultaneous optimization
while the two end-effectors are operating a specified main task. In fact, the
two end-effectors (hands) can operate either two independent main tasks,
or a single but coordinated main task. In the case of coordination, the two
Cartesian velocities VL and VR will be related to each other, depending on
the specification of the coordinated task for two hands.

This two-arm robot model will be digitally mocked up in MATLABTM . By
further developing a differential motion based path/task planning procedure
using the augmented Jacobian equation in (5.17), it will also be animated in
the computer in Chapter 6.

 

Fig. 5.17 A two-robot coordinated system

In addition to a hybrid-chain multiple end-effector robotic system, many
research laboratories developed programs to allow multiple regular robot
arms to work cooperatively [11]. Those multi-robot coordination applications
often have no common torso or common waist. In this case, the augmented
Jacobian matrix becomes decoupled, i.e.,

J =

(
J1 O
O J2

)
,
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if it is a two-robot coordinated system, where each Ji is the Jacobian matrix
for robot i. However, the augmented Jacobian matrix J can be 12 by 12 and
is clearly not a redundant case, unless a number of coordination constraints
are imposed on the two Cartesian velocities to gain some redundancy. Often
in such a decoupled coordinated system, two or more end-effectors operate a
common task under certain coordination. Thus, the Cartesian velocities V1
and V2 are closely related by a requirement of the coordination. Figure 5.17
shows a typical two-robot coordinated system in working on a common task.
More modeling, theories and applications in the areas of multi-robot coordi-
nation can be found in the literature [11].

 

Fig. 5.18 A Nao-H25 humanoid robotic system. Photo courtesy of Aldebaran
Robotics, Paris, France.

Furthermore, a robotic hand with five fingers and a complete humanoid
robot in Figure 5.18 are two most typical hybrid-chain multiple end-effector
robotic systems. A humanoid robot can have four independent end-effectors:
two hands and two feet. Both the above two cases are the redundant robotic
systems after all of their Jacobian matrices are augmented. The reader is now
able to try modeling each of them by using the procedures and kinematic
algorithms that we have just discussed previously in this section.
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5.4 Kinematic Modeling for Parallel-Chain
Mechanisms

5.4.1 Stewart Platform

A general 6-axis parallel-chain hexapod is shown in Figure 5.19. Since both
the bottom base plate and top mobile disc have six separated joints on each
to connect the six pistons, it is often called a 6-6 parallel-chain hexapod, or
Stewart platform [13]. If each pair of two adjacent pistons is geometrically
merged to a single joint center underneath the top disc, then the top disc has
only three joint points, but each of which is still a spherical type and offers
two axes independently for each of the two adjacent pistons. If the base still
has six independent universal joints without merging, then, it is called a 6-3
parallel Stewart platform. However, if the six universal joints on the base are
also merged to three, then it is referred to as a 3-3 Stewart platform. Merging
the spherical or universal joints is not an easy job for practical design, but it
may ease the process of kinematic modeling and analysis. Therefore, let us
first study a 3-3 Stewart platform model, and then extend it to 6-3 and 6-6
versions of parallel-chain mechanism.

 

Fig. 5.19 A 6-axis 6-6 parallel-chain hexapod system
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To model a 3-3 Stewart platform, as a typical parallel-chain robotic system
with six prismatic joints (pistons), let us define the base frame #0 on the
base plate with the origin at the geometric center point of the three universal
joints, as shown in Figure 5.20. Suppose that each pair of the adjacent pistons
shares a single joint center that offers two-axis rotation for each end of the
two pistons on the top and three-axis rotation on the base. The top three S-
type joint points form three vertices A6, B6 and C6 of an equilateral triangle
underneath the top mobile disc. Likewise, the bottom three U-type joint
points sit at the three vertices A0, B0 and C0 of another equilateral triangle
on the base plate.

Let frame #6 be originated at the center of the top disc with respect to
A6, B6 and C6. Then, the vector p60 ∈ R

3 that connects from the base origin
to the origin of frame #6 becomes a position vector of the top mobile plate
with respect to the base, while the rotation matrix R6

0 ∈ SO(3) determines
the orientation of frame #6 with respect to the base. If each of the six P-
type pistons is represented by a position vector li0 ∈ R

3 for i = 1, · · · , 6, then
both the length and direction of each piston is completely determined by the
corresponding position vector li0. Furthermore, the vectors pa0 , p

b
0 and pc0 that

are all tailed at the base origin and arrow-pointing to the U-type joints A0,
B0 and C0, respectively, should be the three constant vectors referred to the
base. Similarly, the vectors pa6 , p

b
6 and pc6 that are all tailed at the origin of

frame #6 and arrow-pointing to A6, B6 and C6, respectively, are also the
three constant vectors if they are referred to frame #6, see Figure 5.20 in
detail. Then, we can immediately see that

l10 = R6
0p

a
6 + p60 − pa0 .

Likewise,
l20 = R6

0p
a
6 + p60 − pb0, l30 = R6

0p
b
6 + p60 − pb0,

l40 = R6
0p

b
6 + p60 − pc0, l50 = R6

0p
c
6 + p60 − pc0,

and
l60 = R6

0p
c
6 + p60 − pa0 . (5.18)

Therefore, to determine the inverse kinematics (I-K) for this 3-3 Stewart
platform, if p60 and R6

0 are given as a desired pair of position and orientation
for the top disc with respect to the base, the above six equations in (5.18)
can uniquely find each piston position vector li0 that includes both its length
and direction. We will use the six inverse kinematics (I-K) equations to draw
and animate a 3-3 Stewart platform in MATLABTM in the next chapter.

However, in terms of the complexity, such a straightforward I-K solution
in (5.18) will make a huge contrast to its forward kinematics (F-K). An F-K
problem for a Stewart platform is to find both p60 and R6

0 if the length li
for each of its six pistons is given. In other words, only the six prismatic
joint values in q = (l1 · · · l6)T are given without their directions. Intuitively,
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Fig. 5.20 Kinematic model of a 3-3 Stewart platform

giving six joint values to solve 6 d.o.f. Cartesian output is supposed to be
sufficiently and uniquely solvable. However, as we classified earlier, most such
parallel-chain or partial parallel-chain robotic systems belong to the second
category that often contains many excessive axes.

Based on the Grübler’s formula, the net d.o.f. of mobility for a mechanism
m = D(l − n) + F with F =

∑n
i=1 fi as the total number of axes that the

system can offer. In most open serial-chain robots, the first term is often equal
to zero due to l = n so that the number of axes F can directly determine its
net d.o.f. of mobility. In other words, there is no excessive (passive) joint in
most open serial-chain robots in nature. This is the major reason why almost
every open serial-chain robot can have a systematic kinematic model, such
as the D-H convention to solve both the I-K and F-K problems.

In contrast, in most robotic systems with a parallel-chain mechanism, the
number of joints is often greater than the number of links, n > l, so that
the first term D(l−n) < 0. This causes the second term F to be greater than
the net d.o.f. m of the system so that more excessive joints have to remain
passive in such a parallel-chain or partial parallel-chain robotic system. For
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instance, as we predicted by using the Grübler formula for the Stewart plat-
form earlier, the net d.o.f. was only m = 6, but the total number of axes was
counted as F =

∑n
i=1 fi = 36. Therefore, because of the F −m = 36−6 = 30

excessive joints, even if all the six prismatic joint lengths in q = (l1 · · · l6)T
are given, it will be extremely difficult to find a closed form to solve its m = 6
net d.o.f. output, i.e., both p60 and R6

0. As a matter of fact, the six I-K equa-
tions in (5.18) cannot be reversed to directly resolve p60 and R6

0 in terms of
only the six known piston lengths li = ‖li0‖ for i = 1, · · · , 6 without knowing
their directions.

Nevertheless, we can at least seek a set of equations for a 3-3 Stewart
platform to represent its forward kinematics (F-K). As we can see from Fig-
ure 5.21, because all the lengths li’s are known, the shapes of the three
triangles: �A0B0A6, �B0C0B6 and �C0A0C6 can be well determined, but
the orientation of each triangle is still an unknown variable. Let the height
h1 from A6 be perpendicular to the base line A0B0 for �A0B0A6, let the
height h2 from B6 be perpendicular to B0C0 for�B0C0B6, and let the height
h3 from C6 be perpendicular to C0A0 for �C0A0C6. Then, the angle θ1 be-
tween h1 and the base disc can be a variable to represent the orientation of
�A0B0A6. Likewise, the angles θ2 and θ3 can be variables to represent the
orientations of �B0C0B6 and �C0A0C6, respectively, as depicted in Fig-
ure 5.21. The three intersection points Q1, Q2 and Q3 between the heights
hi’s and their corresponding base lines can be determined in terms of the
segments b1, b2 and b3, respectively, through the Law of Cosine on each tri-
angle, and they will be illustrated in a later numerical example. Once b1, b2
and b3 are found, each height hi can exactly be determined accordingly.

Furthermore, the top vertices of the three triangles: A6, B6 and C6 are
varying and tracking along three circles, each of which is centered at the foot
point Qi of each height hi’s and has a radius equal to hi for i = 1, 2, 3. We
may find three equations to describe the three circles with respect to the
base frame #0 in such a way that we can write a 3D parametric equation
for Circle 2, because its base line B0C0 is parallel to the y0-axis of the base.
Namely,

pb60 =

⎛
⎝
x2
y2
z2

⎞
⎠ =

⎛
⎝
xq2 + h2 cos θ2

yq2
h2 sin θ2

⎞
⎠ , (5.19)

where xq2 and yq2 are two constant x and y-coordinates of the center point
Q2 of Circle 2 with respect to the base.

Next, in order to find the equation for Circle 3, let us imagine that the
entire �C0A0C6 was originally sitting at the same position as �B0C0B6 to
find the coordinates xq3 and yq3 for the center point Q3 of Circle 3 with
respect to the base, similar to what we did for the determination of Circle 2.
Then, rotate this imaginary �C0A0C6 to its actual position by +1200 about
the z0-axis. Namely,
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pc60 =

⎛
⎝
x3
y3
z3

⎞
⎠ =

⎛
⎝

cos(1200) − sin(1200) 0
sin(1200) cos(1200) 0

0 0 1

⎞
⎠
⎛
⎝
xq3 + h3 cos θ3

yq3
h3 sin θ3

⎞
⎠ . (5.20)

For Circle 1, by applying the same imagination on �A0B0A6, but rotating it
about the z0-axis by −1200, instead of +1200, we reach the following equation
for Circle 1:

pa60 =

⎛
⎝
x1
y1
z1

⎞
⎠ =

⎛
⎝

cos(1200) sin(1200) 0
− sin(1200) cos(1200) 0

0 0 1

⎞
⎠
⎛
⎝
xq1 + h1 cos θ1

yq1
h1 sin θ1

⎞
⎠ . (5.21)

In fact, xq1, xq2 and xq3 should be the same constant due to B0C0 always
being parallel to the y0-axis with a constant distance behind the y0-axis, as
depicted in Figure 5.21.
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Fig. 5.21 Solution to the forward kinematics of the Stewart platform

Clearly, each of the three circular parametric equations contains only one
single variable θi for i = 1, 2, 3 if all the six piston lengths li’s are given. With
such a detailed geometric interpretation, the F-K problem for the 3-3 Stewart
platform can now be rephrased to determine three points: A6 on Circle 1, B6

on Circle 2 and C6 on Circle 3 such that the distances between each pair of
them are all equal to a common fixed length A6B6 = B6C6 = C6A6 = L6

that is the distance between two of the three spherical joints underneath the
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top mobile disc of the platform. In other words, if we make a hard paper
equilateral triangle with each side equal to L6 and drop it on the top of the
three circles, where will the three vertices of the equilateral triangle touch the
three circles with one on each? In mathematical language, under the above
three parametric equations of the three circles with respect to the base as
three conditions, we wish to solve the following three simultaneous equations:

⎧⎨
⎩

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = L2
6

(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2 = L2
6

(x3 − x1)2 + (y3 − y1)2 + (z3 − z1)2 = L2
6.

(5.22)

Intuitively, there are only three variables θ1, θ2 and θ3 to be solved from the
three simultaneous equations in (5.22) under the three conditions of (5.19),
(5.20) and (5.21). It seems to be solvable. Actually, it is not so easy, because
the three equations in (5.22) are all quadratic, and every variable in the three
conditions is involved in either sine or cosine functions. Therefore, there is
no closed form for the solution, and one may have to prepare a recursive
subroutine and call it in a computer to resolve the F-K problem at each
sampling point for the 3-3 Stewart platform of such a typical fully parallel-
chain system.

Once the three angles θ1, θ2 and θ3 could be resolved at each sampling
point by whatever algorithm or program in a computer, the final solution
for p60 and R6

0 would not be far away. In fact, after substituting each θi into
equations (5.19), (5.20) and (5.21), the radial vectors pb60 , pc60 and pa60 that
are pointing to B6, C6 and A6, respectively, and tailed at the common base
origin are well determined. Then, by applying the well-known method of
finding the center of gravity for a rigid body to the top equilateral triangle
disc, the position vector should be

p60 =
1

3

⎡
⎣
⎛
⎝
x1
y1
z1

⎞
⎠+

⎛
⎝
x2
y2
z2

⎞
⎠+

⎛
⎝
x3
y3
z3

⎞
⎠
⎤
⎦ =

1

3
(pa60 + pb60 + pc60 ). (5.23)

After the position vector p60 is found, by inspecting Figure 5.20 more closely,
the I-K equations in (5.18) can be reduced to

R6
0p

a
6 + p60 = pa60 , R6

0p
b
6 + p60 = pb60 ,

and
R6

0p
c
6 + p60 = pc60 .

Augmenting the above three equations together, we obtain

R6
0(p

a
6 pb6 pc6) = (pa60 − p60 pb60 − p60 pc60 − p60).

Unfortunately, since pa6 , p
b
6 and pc6 are all referred to frame #6 and laying

on the same top disc plane so that the last element of each vector must
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be zero, R6
0 cannot be solved by taking the inverse of this singular matrix

(pa6 pb6 pc6). We have to replace any one of the three columns in the matrix
by a cross-product between the other two. For instance, let pb6 be replaced by
the cross-product pa6 × pc6. Thus, the new equation becomes

R6
0(p

a
6 pc6 pa6 × pc6) = (pa60 − p60 pc60 − p60 (pa60 − p60)× (pc60 − p60)),

where a property of cross-product transformation given in (3.14) was applied.
Since the new 3 by 3 matrix P6 = (pa6 pc6 pa6×pc6) next toR6

0 on the left-hand
side of the above new equation is now nonsingular, we can finally resolve the
orientation of the top mobile disc, R6

0, for the 3-3 Stewart platform. Namely,
if we denote

(pa60 − p60 pc60 − p60 (pa60 − p60)× (pc60 − p60)) = P0,

then,
R6

0 = P0P
−1
6 . (5.24)

Let us give an example and try to call a recursive algorithm programmed
in MATLABTM to numerically solve such a difficult Stewart platform F-K
problem, even though it is just a 3-3 type hexapod. Suppose that for a 3-3
Stewart platform, as shown in Figure 5.21, the base disc equilateral triangle
has each side L0 = 1.2 and the top disc equilateral triangle has each side
L6 = 1 in meters. If the six prismatic joint lengths are given by l1 = 1,
l2 = 0.8, l3 = 1.2, l4 = 1.1, l5 = 0.9 and l6 = 1, all in meters, then, we
can apply the Law of Cosine on each triangle to find all the three angles
∠A6A0B0 = A0, ∠B6B0C0 = B0 and ∠C6C0A0 = C0 in the following cosine
form:

cos(A0) =
l21 + L2

0 − l22
2l1L0

, cos(B0) =
l23 + L2

0 − l24
2l3L0

,

and

cos(C0) =
l25 + L2

0 − l26
2l5L0

.

Their sine values can be determined directly by sin(A0) =
√
1− cos2(A0)

because the range of each angle is in (0, 1800) so that the sine value of each
angle is always positive. Hence,

b1 = l1 cos(A0) and h1 = l1 sin(A0),

b2 = l3 cos(B0) and h2 = l3 sin(B0),

and
b3 = l5 cos(C0) and h3 = l5 sin(C0).

Since xq2, as an x-coordinate of the point Q2, is a distance behind the y0-
axis, it should be negative 1

3 of the height of the base disc equilateral triangle,

i.e., xq2 = −
√
3
6 L0. Based on the rotation idea, the other two: xq3 and xq1
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are all the same as xq2 in equations (5.19), (5.20) and (5.21). Whereas the
y-coordinates of Qi are different, and each can be determined by yqi =

L0

2 −bi
for i = 1, 2, 3.

After the above preparation, we can now write a MATLABTM program
to find solutions for p60 and R6

0. Because of no closed form of solutions for θ1,
θ2 and θ3 in equations (5.19), (5.20) and (5.21) along with (5.22), we have to
use a three-while-loop based recursive algorithm to search and determine all
the angles so that the radial vectors pa60 , pb60 and pc60 can all be resolved. Each
angle θi in the algorithm is starting from 100 and making N = 200 sampling
points with each step size Δθ = 0.80 up to the maximum 1700. When the
search process finds a solution, it will automatically stop and print out both
p60 and R6

0 through equations (5.23) and (5.24). The MATLABTM code is
given as follows:

L6=1; L0=1.2;
l1=1; l2=0.8; l3=1.2; l4=1.1; l5=0.9; l6=1; % Input Data

x6=sqrt(3)/3*L6;
p6c=[x6; 0; 0]; p6a=[-x6*sin(pi/6); x6*cos(pi/6); 0];

xq=-sqrt(3)*L0/6;

ca=(l1ˆ2+L0ˆ2-l2ˆ2)/(2*l1*L0);
cb=(l3ˆ2+L0ˆ2-l4ˆ2)/(2*l3*L0);
cc=(l5ˆ2+L0ˆ2-l6ˆ2)/(2*l5*L0); % The Law of Cosine

sa=sqrt(1-caˆ2); sb=sqrt(1-cbˆ2); sc=sqrt(1-ccˆ2);

h1=l1*sa; h2=l3*sb; h3=l5*sc;
b1=l1*ca; b2=l3*cb; b3=l5*cc;

yq1=L0/2-b1; yq2=L0/2-b2; yq3=L0/2-b3;

th0=pi/36; % Search Starting Angle
a=2*pi/3; % +120 and -120 Degrees Rotations

i=0; j=0; k=0;

while i<=200
th1=th0+i*0.8*pi/180;
pa6=[cos(a) sin(a) 0; -sin(a) cos(a) 0; 0 0 1]* ...

[xq+h1*cos(th1); yq1; h1*sin(th1)];
while j<=200

th2=th0+j*0.8*pi/180;
pb6=[xq+h2*cos(th2); yq2; h2*sin(th2)];
if abs(norm(pb6-pa6)-L6) < 0.01

while k<=200
th3=th0+k*0.8*pi/180;
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pc6=[cos(a) -sin(a) 0
sin(a) cos(a) 0
0 0 1]*...

[xq+h3*cos(th3); yq3; h3*sin(th3)];
if abs(norm(pc6-pa6)-L6) < 0.01 && ...

abs(norm(pc6-pb6)-L6) < 0.01
i=201; k=201; j=201;

end
k=k+1;

end
end
j=j+1; k=0;

end
i=i+1; j=0; k=0;

end

theta=[th1 th2 th3]*180/pi
% Print all the resulting thetas in degree

p06=(pa6+pb6+pc6)/3

R06=[pa6-p06 pc6-p06 cross(pa6-p06, pc6-p06)]/ ...
[p6a p6c cross(p6a, p6c)] % The F-K Solutions

The final results are printed out below:

theta =

99.4000 109.8000 106.6000

p06 =

-0.1236
-0.0495
0.7586

R06 =

0.5769 0.7749 0.2724
-0.8170 0.5644 0.0801
-0.0956 -0.2673 0.9587

If the input of this F-K problem is changed to l1 = 0.8, l2 = 0.6, l3 = 1,
l4 = 1.2, l5 = 0.7 and l6 = 0.9, then the output will immediately pop out in
the MATLABTM working window as follows:
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theta =

121.0000 104.2000 101.0000

p06 =

-0.0994
0.0825
0.5661

R06 =

0.3584 0.7331 0.5657
-0.9272 0.3336 0.1382
-0.0934 -0.5765 0.7993

One can test and verify the above two results by substituting each pair of
p60 and R6

0 into the I-K equation in (5.18), and the norm of each vector li0 will
agree exactly with the input of the above F-K program.

We have discussed thus far both the I-K and F-K for a 3-3 Stewart plat-
form. It can be easily extended to 6-3 and even 6-6 Stewart platforms for the
I-K formulation given in (5.18). Since each of the top and bottom discs has
now six geometric joint points for a 6-6 Stewart platform, we may split each
pa0 into pa10 and pa20 to respond the two different joint points at A01 and A02.
Applying the same splitting procedure to A6 as well as to the rest of the joint
points B0, C0, B6 and C6, we can have a more general I-K solution for a 6-6
Stewart platform:

l10 = R6
0p

a1
6 + p60 − pa20 , l20 = R6

0p
a2
6 + p60 − pb10 ,

l30 = R6
0p

b1
6 + p60 − pb20 , l40 = R6

0p
b2
6 + p60 − pc10 ,

and
l50 = R6

0p
c1
6 + p60 − pc20 , l60 = R6

0p
c2
6 + p60 − pa10 . (5.25)

In fact, all the six joint points on either the base or the top disc may not
necessarily be forming a symmetric shape. Instead, they can be arbitrary and
only some constant parameters, such as pai0 or pai6 , need to be re-measured,
the I-F formulation will remain the same.

The F-K algorithm for the 3-3 Stewart platform can also be extended to
a 6-3 type one, because splitting each of A0, B0 and C0 on the base does not
destroy each triangle formed by two adjacent pistons along with the base line
L0, provided that the top A6, B6 and C6 are kept without splitting. There are
only a few parameters, such as xqi and yqi for each i = 1, 2, 3, needed to be
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redefined, the search algorithm and program will remain the same. However,
if the system is of 6-6 type, i.e., the top three joint points are also split to six
different geometric points, then the above F-K algorithm will no longer be
valid. In this general case, each triangle becomes a polygon with four vertices,
and they may not always stay on a common plane.

5.4.2 Jacobian Equation and the Principle of Duality

Let us now turn our attention to investigating the kinematic behavior in
tangent space for a general 6-6 Stewart platform. According to the I-K so-
lution in (5.25), let the superscript i of each pi6 or pi0 be a1 = 1, a2 = 2,
b1 = 3, b2 = 4, c1 = 5 and c2 = 6 for the sake of short notation. Taking
time-derivatives for both sides of the i-th equation yields

l̇i0 = Ṙ6
0p

i
6 + ṗ60,

because pi0 and p
i
6 are all the constant vectors. Recalling equation (3.10) from

Chapter 3, Ω6
0 = ω6

0× = Ṙ6
0R

0
6, the skew-symmetric matrix of the angular

velocity ω6
0 of the top disc, and noticing that ṗ60 = v60 , the linear velocity of

the top disc, we further have

l̇i0 = Ω6
0R

6
0p

i
6 + v60 .

Since the vector li0 for the i-th prismatic leg can be rewritten as li0 = qir
i
0,

where ri0 = li0/‖li0‖ is the unit vector of li0 so that qi = li is the length of the
i-th piston leg, its time-derivative becomes

l̇i0 = q̇ir
i
0 + qiṙ

i
0. (5.26)

Let R6
0p

i
6 = pi6(0) and its skew-symmetric matrix P i

6(0) = pi6(0)×. Then,

Ω6
0R

6
0p

i
6 = ω6

0 × pi6(0) = −P i
6(0)ω

6
0.

Moreover, since riT0 ri0 ≡ 1,

ṙiT0 ri0 + riT0 ṙi0 = 0.

On the other hand, the transpose of a scalar is equal to the scalar itself, i.e.,

ṙiT0 ri0 = (ṙiT0 ri0)
T = riT0 ṙi0.

Hence, riT0 ṙi0 ≡ 0. Namely, a unit vector is always perpendicular to its time-
derivative.

Premultiplying riT0 to both sides of (5.26) and then substituting the above
two identities riT0 ri0 ≡ 1 and riT0 ṙi0 ≡ 0 into it, we obtain
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q̇i = −riT0 P i
6(0)ω

6
0 + riT0 v60 =

(
riT0 − riT0 P i

6(0)

)(
v60
ω6
0

)
.

Now, by augmenting all the 6 prismatic joint velocities q̇1, · · · , q̇6 together,
we achieve a new transformation in tangent space:

q̇ =

⎛
⎜⎝
q̇1
...
q̇6

⎞
⎟⎠ =

⎛
⎜⎝
r1T0 −r1T0 P 1

6(0)

...
...

r6T0 −r6T0 P 6
6(0)

⎞
⎟⎠
(
v60
ω6
0

)
. (5.27)

Let a Jacobian matrix of the 6-6 Stewart platform be defined by

J0 =

(
r10 · · · r60

p16(0) × r10 · · · p66(0) × r60

)
, (5.28)

and let a 6 by 1 Cartesian velocity of the top disc of the Stewart platform be

V0 =

(
v60
ω6
0

)
.

Then, equation (5.27) is actually a Jacobian equation for the closed parallel-
chain Stewart platform, i.e.,

q̇ = JT
0 V0. (5.29)

Comparing the definition of the 6 by 6 Jacobian matrix J0 in (5.28) with
the following definition for a 6-revolute-joint serial-chain robot:

J(0) =

(
p06(0) × r00 · · · p56(0) × r50

r00 · · · r50

)
,

according to equations (4.14) and (4.15) in Chapter 4, we can immediately
see that they both have a common format, but just flip over between the top
and bottom three rows, or just premultiply either one of the two by a linear
transformation: (

O I
I O

)
,

where O and I are the 3 by 3 zero matrix and identity, respectively.
The geometrical meanings for the vectors inside the two Jacobian matrices

are also similar. For instance, p16(0) in (5.28) is a radial vector tailed at the
origin of frame 6 that is fixed on the top disc of the Stewart platform, and is
arrow-pointing at the spherical joint center A61 underneath the top mobile
disc. Whereas r10 in (5.28) is the unit vector along the piston leg 1. In the
serial-chain robotic Jacobian matrix J(0), p

j
6(0) is also a radial vector tailed

at the origin of frame 6 and arrow-pointing to the origin of frame j, while
rj0 is the unit vector of the zj-axis of frame j for j = 0, · · · , 5. Both the two
Jacobian matrices are projected onto the base, i.e., frame 0.
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However, the Jacobian equation (5.29) is different in form from the Jaco-
bian equation V(0) = J(0)q̇ for the serial-chain robot. Not only is J0 trans-
posed in (5.29), but also the joint velocity q̇ and the Cartesian velocity V0
are swapped.

Furthermore, let us borrow the 6 by 1 Cartesian force (wrench) vector
definition from the serial-chain robotic statics, i.e.,

F0 =

(
f0
m0

)
,

where f0 is a 3 by 1 force vector and m0 is a 3 by 1 moment (torque) vector,
and both act on the top mobile disc of the Stewart platform and are projected
on the base. Then, FT

0 V0 = P , the mechanical power of the top mobile disc.
On the other hand, the power at the joint level should be P = τT q̇, where

τ = (f1 · · · f6)T is a joint force/torque vector that lists all the joint forces
along every piston leg. Based on the principle of energy conservation, τT q̇ =
P = FT

0 V0. Substituting (5.29) into the power equation yields τT JT
0 V0 =

FT
0 V0, and this is valid for any V0. Therefore, we reach a statics equation for

the closed parallel-chain robotic systems:

F0 = J0 τ. (5.30)

In comparison with the statics of serial-chain robots τ = JT
(0)F(0), not

only the Jacobian is non-transposed in (5.30), but also the joint torque and
Cartesian force/moment (wrench) vectors are swapped, too. Actually, the
parallel-chain robotic statics in (5.30) looks like the serial-chain robotic kine-
matic Jacobian equation V(0) = J(0)q̇, while the parallel-chain robotic kine-
matic Jacobian equation in (5.29) looks like the serial-chain robotic statics
τ = JT

(0)F(0). This phenomenon is known as a Principle of Duality between

the open serial and closed parallel-chain mechanisms [13, 17, 19].
It can further be observed that the Jacobian equation in (5.27) or (5.29)

for a 6-6 Stewart platform can be used to solve an I-K problem in tangent
space without need to invert the Jacobian matrix J0. Namely, it can directly
find each prismatic joint speed q̇i if a position p60, an orientation R6

0 and their
velocities V0 at the top disc are given. However, since the Jacobian matrix
J0 in (5.28) is a function of both the position and orientation of the top
mobile disc, to solve the Cartesian velocity V0 of the top disc in terms of
each prismatic joint length qi as an F-K problem in tangent space may still
remain difficult, but offer a relief in numerical solution.

Let us look at a numerical example to illustrate how to determine a Ja-
cobian matrix J0 for a 6-6 Stewart platform and how to solve a differential
motion-based F-K problem. If we specify the position and orientation of the
top mobile disc at a time instant to be
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p60 =

⎛
⎝

0
−0.2
1

⎞
⎠ , and R6

0 =

⎛
⎝

0.6428 −0.6943 0.3237
0.7660 0.5826 −0.2717

0 0.4226 0.9063

⎞
⎠ ,

which is generated by two successive rotations of the base about z0-axis by
500 and then about the new x-axis by 250.

Although the constant vectors pi0 and pi6 can be arbitrary for a general
6-6 Stewart platform, here we define each pi6 and pi0 around an equilateral
triangle on the top and bottom discs, respectively, as shown in Figure 5.22.
Once all the constant vectors as well as p60 and R6

0 are specified, each piston
leg vector li0 can be determined by the I-K equations in (5.25) with each
prismatic joint length qi = ‖li0‖ and each unit vector ri0 = li0/‖li0‖.

x6 

y6 z6 

p6
a1

p6
a2

p6
b1

p6
b2

p6
c1 

p6
c2

1200

1200

A61 

A62 

B61 

B62 
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C62 

Fig. 5.22 The definitions of pi6’s on the top mobile disc. They are also applicable
to pi0’s on the base disc of the 6-6 Stewart platform.

Due to each pi6(0) = R6
0p

i
6, we can readily find each si0 = pi6(0) × ri0 so

that the Jacobian matrix J0 will be formed by (5.28). By further specifying
a Cartesian velocity vector:

V0 =

(
v60
ω6
0

)
= (0.1 0.2 0 − 0.4 0 − 0.5)T ,

where v60 is in meter/sec. and ω6
0 is in rad./sec., the joint velocity q̇ can be

found by (5.29). A MATLABTM program is given as follows:
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p06=[0; -0.2; 1];
al=50*pi/180; be=25*pi/180;
R06=[cos(al) -sin(al) 0; sin(al) cos(al) 0; 0 0 1]* ...

[1 0 0; 0 cos(be) -sin(be); 0 sin(be) cos(be)];
% Cartesian Position/Orientation Inputs

bet=15*pi/180; gam=120*pi/180;
p0=[1.2; 0; 0]; p6=[0.8; 0; 0];

% To Define All the Constant Vectors
% On Both Top and Bottom Discs

alp=-bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0a1=AR*p0; p6a1=AR*p6;

alp=bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0a2=AR*p0; p6a2=AR*p6;

alp=gam-bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0b1=AR*p0; p6b1=AR*p6;

alp=gam+bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0b2=AR*p0; p6b2=AR*p6;

alp=-gam-bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0c1=AR*p0; p6c1=AR*p6;

alp=-gam+bet;
AR=[cos(alp) -sin(alp) 0; sin(alp) cos(alp) 0; 0 0 1];
p0c2=AR*p0; p6c2=AR*p6;

l1=R06*p6a1+p06-p0a2; l2=R06*p6a2+p06-p0b1;
l3=R06*p6b1+p06-p0b2; l4=R06*p6b2+p06-p0c1;
l5=R06*p6c1+p06-p0c2; l6=R06*p6c2+p06-p0a1;

q=[norm(l1);norm(l2);norm(l3);norm(l4);norm(l5);norm(l6)];
% The Joint Position Vector

r1=l1/norm(l1); r2=l2/norm(l2);
r3=l3/norm(l3); r4=l4/norm(l4);
r5=l5/norm(l5); r6=l6/norm(l6);

s1=cross(R06*p6a1, r1); s2=cross(R06*p6a2, r2);
s3=cross(R06*p6b1, r3); s4=cross(R06*p6b2, r4);
s5=cross(R06*p6c1, r5); s6=cross(R06*p6c2, r6);

J0=[r1 r2 r3 r4 r5 r6; s1 s2 s3 s4 s5 s6];
% The Jacobian Matrix of the Stewart Platform
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% The I-K Differential Motion Algorithm %

dt=0.01; % The Sampling Interval 10 Milliseconds

V0=[0.1; 0.2; 0; -0.4; 0; -0.5];
% Given a Cartesian Velocity

dq=J0’*V0; % The Jacobian Equation

qnew = q+dq*dt; % Update the Joint Values

% The F-K Differential Motion Algorithm %

dq=[0.4; -0.5; -0.2; 0.6; -0.4; 0.5]; % Given a Joint Velocity

V0 = J0’\dq; % Inverse Jacobian Equation to Find V0

p06new = p06+V0(1:3)*dt; % Update the Position Vector

dphi=norm(V0(4:6)); k=V0(4:6)/dphi;
K=[0 -k(3) k(2); k(3) 0 -k(1); -k(2) k(1) 0];

R6d=eye(3)+sin(dphi*dt)*K+(1-cos(dphi*dt))*Kˆ2;

R06new = R06*R6d; % Update the Orientation of the Top Disc

To update the joint positions in the differential motion-based I-K algo-
rithm, the first-order approximation is adopted,

q(j + 1) = q(j) + q̇dt = q(j) + JT
0 V0dt,

where the sampling interval is set to be dt = 0.01 in seconds, i.e., 10 millisec-
onds.

In contrast, for the differential motion-based F-K algorithm, by arbitrarily
specifying a new joint velocity

q̇ = (0.4 − 0.5 − 0.2 0.6 − 0.4 0.5)T ,

the Cartesian velocity V0 can be solved by the inverse Jacobian equation of
(5.29), i.e.,

V0 = J−T
0 q̇.

To update the position of the top mobile disc, the first-order approximation
is also adopted with the same dt,

p60(j + 1) = p60(j) + v60dt.

However, to update the orientation R6
0 of the top disc, we cannot directly

use Ṙ6
0, because taking the time-derivative of a rotation matrix will destroy

its membership of the SO(3) group. Instead, since based on equation (3.8)
from Chapter 3,
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ω6
0 = φ̇k,

with a unit vector k, we can immediately calculate

φ̇ = ‖ω6
0‖ and also k =

ω6
0

‖ω6
0‖
.

Under the first-order approximation, Δφ ≈ dφ = φ̇dt. Then, according to
equation (2.8) in Chapter 2, the orientation “increment” can be determined
by

Rδ
6 = I + sinΔφK + (1− cosΔφ)K2,

where K = S(k) = k× is the skew-symmetric matrix of the unit vector k.
Therefore, the new orientation of the top mobile disc turns out to be

R6
0(j + 1) = R6

0(j)R
δ
6.

The above MATLABTM program has also implemented this updating algo-
rithm in Cartesian space as an F-K solution, and the final outputs are printed
below:

J0 = % The Jacobian Matrix

-0.4938 0.4645 0.1164 0.0679 0.3968 -0.6698
-0.0374 -0.4526 -0.4922 0.4015 0.2292 -0.4416
0.8688 0.7612 0.8626 0.9133 0.8888 0.5969
0.4062 0.5820 0.4123 -0.1908 -0.6233 -0.5076
-0.5132 -0.2280 0.6156 0.7070 -0.1207 -0.0220
0.2088 -0.4907 0.2957 -0.2966 0.3094 -0.5859

% The I-K Differential Motion Algorithm Result

q =

1.0503 1.4286 1.5378 1.3567 0.8561 1.1282

qnew = % The Updated Joint Positions

1.0471 1.4283 1.5338 1.3598 0.8579 1.1316

% The F-K Differential Motion Algorithm Result

p06 =

0 -0.2000 1.0000

p06new = % The Updated Position Vector



182 5 Redundant Robots and Hybrid-Chain Robotic Systems

-0.0099 -0.1929 1.0010

R06 =

0.6428 -0.6943 0.3237
0.7660 0.5826 -0.2717

0 0.4226 0.9063

R06new = % The Updated Orientation

0.6441 -0.6915 0.3271
0.7650 0.5846 -0.2704

-0.0043 0.4244 0.9055

J0new = % The Updated Jacobian Matrix

-0.5018 0.4613 0.1113 0.0609 0.3830 -0.6771
-0.0317 -0.4505 -0.4872 0.4060 0.2372 -0.4341
0.8644 0.7644 0.8662 0.9119 0.8928 0.5942
0.4035 0.5824 0.4143 -0.1915 -0.6252 -0.5045
-0.5082 -0.2320 0.6149 0.7037 -0.1150 -0.0168
0.2156 -0.4882 0.2927 -0.3005 0.2988 -0.5872

Because the Jacobian matrix J0 for a general 6-6 Stewart platform is a
function of the position p60 and orientation R6

0 of the top mobile disc, once
both p60 and R6

0 are updated at sampling point j, the Jacobian matrix value
J0(j) will be updated to J0(j + 1) accordingly, as illustrated in the above
MATLABTM program and results. Then, a new round of updating begins.
This is a typical differential motion-based F-K algorithm for a general 6-6
Stewart platform starting with a given initial p60(0), an initial R6

0(0), and a
desired joint trajectory q(t) with its time-derivative q̇(t).

It is also interesting that the statics equation in (5.30) can be utilized to
find a joint force distribution over the six piston legs if a 6 by 1 Cartesian
force is acting on the top disc statically [16, 17]. However, unlike the open
serial-chain robots, based on (5.30), the Jacobian inverse is required, i.e.,

τ =

⎛
⎜⎝
f1
...
f6

⎞
⎟⎠ = J−1

0 F0 = J−1
0

(
f0
m0

)
,

where both f0 and m0 are 3 by 1 and referred to the base.
For example, suppose that a small vehicle of the massM = 250 Kilograms

is loaded on the top disc of the Stewart platform and also a twisting moment
of mz = 500 in Newton-meter is applied about the z6-axis of frame 6. Then,
the force and moment vectors become
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f0 =

⎛
⎝

0
0
−Mg

⎞
⎠ and m0 = R6

0m6 = R6
0

⎛
⎝

0
0
mz

⎞
⎠ ,

and both must be projected onto the common base before being augmented
to form the 6 by 1 Cartesian force vector F0. With the same J0 as the previous
numerical example, the joint force distributions under the load f0 and with
and without the twisting moment m0 are calculated by the statics equation
(5.30) in MATLABTM and printed as follows:

M = 250; g = 9.81; mz = 500;

f0 = [0; 0; -M*g]; % The Load Force
m0 = R06*[0; 0; mz]; % The Twisting Moment

tau1 = J0\[f0; m0]
% Joint Forces with Both the Load and Twist

-550.8253 -549.3252 -42.1803 -842.5501 -571.0821 -405.9182

tau2 = J0\[f0; zeros(3,1)]
% Joint Forces with the Load But Without the Twist

-795.0905 -358.6778 -256.8914 -593.4673 -695.3522 -179.3081

If we add all the six joint forces together in the second case of only the
vehicle loaded without the twisting moment applied, then,

∑
fi = −2878.8

Newtons. Comparing it with the loaded vehicle weight −Mg = −250×9.81 =
−2452.5 Newtons, the absolute value of the former is a little bigger than the
latter, because the six legs are not all perpendicular to the base.

In summary, the Stewart platform, as a fully parallel-chain robotic system,
has been widely used in many applications, especially in military sectors
for warfighter compartment tests and military vehicle vibration tests. The
advantage is that it offers an overwhelmingly high payload over any open
serial-chain robot. However, in terms of the motion dynamic range and work
envelope, it is very small in comparison with the open serial-chain robots.
In order to acquire the advantages from both types of robots, we may make
a compromise and create a hybrid robotic system, the first three links of
which are parallel and the last two or three are serial. In industry, this kind
of robots has already been developed and commercialized. One of the typical
3+2 hybrid industrial robot manipulators, called Exechon, was developed by
Optikos, Inc.
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5.4.3 Modeling and Analysis of 3+3 Hybrid Robot
Arms

A 3 d.o.f. mechanical system, called Delta, was the first model for a parallel
mechanism with three joints [11, 14]. As shown in Figure 5.23, there are two
different types of such a three-axis parallel platforms. The left one is using
three prismatic joints (pistons) to drive the top mobile disc and control its
position. While the right one is the original Delta model, where the three
axes on the legs are all revolute. Based on the Grübler’s formula, since the
left one has total number of links l = 7 that excludes the fixed base plate,
and the number of joints n = 9, the first term of the Grübler’s formula
becomes D(l − n) = 6(7 − 9) = −12. Thus, among the n = 9 joints, there
must be six joints of spherical type or S-type that can offer two axes each
in order to have a net d.o.f. m = 3. Therefore, each of the base and top
plates may install three S-type joints to connect the three pistons and form
an SPS (Spherical-Prismatic-Spherical) type structure for each leg. Or, the
three joints on the base may utilize the universal type or U-type that can
offer three axes of rotation for each, so that each of the three joints on the top
mobile disc may be just a one-axis revolute (R-type) joint, to form a UPR
(Universal-Prismatic-Revolute) type structure. On the right-side picture of
the Delta parallel platform in Figure 5.23, the most common structure of
each leg is URR (Universal-Revolute-Revolute) with the central axis of the
upper arm perpendicular to the axis of the revolute joint on the top disc.

Fig. 5.23 Two types of the 3-parallel mechanism

To model and develop a kinematic motion algorithm for a 3+3 hybrid robot
arm: the bottom three parallel links form a platform and the top three links
constitute a 3-joint serial-chain robot sitting on the platform. Intuitively, the
parallel-chain platform is primarily to produce a required position while the
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top serial-chain arm is to meet the specified orientation. Let us start our
study on such a 3-parallel-joint platform with a UPR structure. Of course,
the inverse kinematics (I-K) problem of the entire 3+3 hybrid robot is to
find three prismatic joint lengths of the platform and three revolute (for an
RRR-type in most cases) joint values of the top serial-chain arm such that
the last frame #6 of the entire robot can meet a desired position vector p60
and a desired orientation R6

0. For a better analysis, let us decompose the
entire I-K problem into two steps:

1. find the orientation R3
0 of the platform if the entire robot can meet the

specified position p60, and
2. determine how much more rotation must be made up by the top serial-

chain arm to meet the final orientation requirement R6
0.

At the beginning, consider that pt0 ∈ R
3 is a required position vector for

the Top point that is vertically located above the mobile disc with respect
to the base frame #0, as shown in Figure 5.24. We try to answer what is
the “passive” orientation R3

0 of frame #3 on the mobile disc if the top point
can meet a required pt0 ? Since the platform is just a 3-active-joint parallel-
chain robot, if the 3 d.o.f. position given by the required pt0 is achieved by
controlling the three active joints, the orientation R3

0 of the platform has to
be passive, i.e, uncontrollable. One will soon realize that it is still not so easy
to find such a passive orientation for this 3 d.o.f. parallel-chain platform even
if the target is reduced just to meet pt0, instead of p60. At this point, solving
the I-K problem for such a 3-leg platform may be even more difficult than
that of a 6-6 Stewart platform.

Let ηα0 be a 3 by 1 vector tailed at the universal joint point A0 on the
base and with its arrow pointing to the Top point, as shown in Figure 5.24.
Similarly, let ηβ0 and ηγ0 be other two 3 by 1 vectors from points B0 and
C0 to the Top point, respectively. Since we assumed that the revolute joint
axis R3

0p
α
3 with respect to the base frame #0 around the joint point A3 is

always perpendicular to the piston central axis la0 , we can prove that ηα0 is
perpendicular to R3

0p
α
3 , too. In fact, pα3 , as a unit vector of the revolute joint

axis, is clearly perpendicular to both vectors pa3 and d4z3 with respect to
frame #3, where z3 = (0 0 1)T is the unit vector of the z3-axis of frame
#3 and d4 is a height from the origin of frame #3 to the Top point. Thus,
paT3 pα3 = 0, zT3 p

α
3 = 0 and laT0 R3

0p
α
3 = 0. Because ηα0 = la0 + R3

0p
a
3 + d4R

3
0z3,

see Figure 5.24, we reach to

ηαT0 R3
0p

α
3 = 0,

and in the same token,

ηβT0 R3
0p

β
3 = 0 and ηγT0 R3

0p
γ
3 = 0. (5.31)
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Fig. 5.24 Kinematic analysis of a 3-leg UPS platform

Furthermore, since all three revolute joint axis unit vectors pα3 , p
β
3 and pγ3

lay on the x3 − y3 coordinate plane, they can be expressed in the following
linear combination form with respect to frame #3:

pα3 = a11x3 + a12y3, pβ3 = a21x3 + a22y3 and pγ3 = a31x3 + a32y3,

where each aij is a constant coordinate of the corresponding revolute joint
axis unit vector projected onto frame #3 axis x3 = (1 0 0)T or y3 = (0 1 0)T

for i = 1, 2, 3 and j = 1, 2. For instance, if pα3 ‖ x3 in the same direction, then
a11 = 1 and a12 = 0.

Substituting the above linear combination form into the orthogonal equa-
tions in (5.31) and augmenting them together, we can write it in the following
compact matrix form:

AR3
0x3 +BR3

0y3 = AR3
0

⎛
⎝

1
0
0

⎞
⎠+BR3

0

⎛
⎝

0
1
0

⎞
⎠ = Ax30 +By30 = 0, (5.32)

where the 3 by 3 coefficient matrices
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A =

⎛
⎝
a11η

αT
0

a21η
βT
0

a31η
γT
0

⎞
⎠ and B =

⎛
⎝
a12η

αT
0

a22η
βT
0

a32η
γT
0

⎞
⎠ , (5.33)

and x30 and y30 are the projections of x3 and y3 onto the base, i.e.,

x30 = R3
0x3 = R3

0

⎛
⎝

1
0
0

⎞
⎠ and y30 = R3

0y3 = R3
0

⎛
⎝

0
1
0

⎞
⎠ .

It can further be seen from Figure 5.24 that

ηα0 = pt0 − pa0 , ηβ0 = pt0 − pb0, and ηγ0 = pt0 − pc0. (5.34)

Since pa0 , p
b
0 and pc0 are all constant vectors laying on the base plate, if the

position vector of the Top point referred to the base pt0 is given, and the
configuration of all the three revolute joints on the top disc is specified, then
both the matrices A and B in (5.32) and (5.33) are known. Therefore, the first
step of the decomposed I-K problems is to solve for the passive orientation R3

0

that is now sandwiched inside each of the two terms of the above homogeneous
equation (5.32).
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Fig. 5.25 Top revolute-joint configurations

Let us now discuss in more details the three typical cases of revolute joint
configuration design, as shown in Figure 5.25. In the first (leftmost) one,

the three unit vectors pα3 , p
β
3 and pγ3 form an equilateral triangle so that

each corner angle is 600. The second (middle) one is to form a right isosceles
triangle so that the left bottom corner angles is 450 and the right bottom
corner one is 900. The last one (rightmost) is to form a rectangle so that
each corner angle is 900. Thus, all the three configurations have their linear
combination coefficients given in the following table:
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R-Joint Unit Vector pα3 pβ3 pγ3

Configurations a11 a12 a21 a22 a31 a32

Equilateral � 1 0 − 1
2

√
3

2
− 1

2
−

√
3

2

Right Isosceles � 1 0 0 1 −
√
2

2
−

√
2

2

Rectangle � 1 0 0 1 0 −1

It can be seen that the rectangular configuration design will have the sim-
plest kinematic model, and the right isosceles triangle is the second simplest.
The equilateral triangle design is the most complex one for I-K solution in
comparison with the other two. Accordingly, the 3 by 3 matrices A and B in
(5.33) are given as follows:

1. For the equilateral triangle configuration:

A =

⎛
⎝

ηαT0

− 1
2η

βT
0

− 1
2η

γT
0

⎞
⎠ and B =

⎛
⎝

01×3√
3
2 η

βT
0

−
√
3
2 η

γT
0

⎞
⎠ ;

2. For the right isosceles triangle design:

A =

⎛
⎝

ηαT0

01×3

−
√
2
2 η

γT
0

⎞
⎠ and B =

⎛
⎝

01×3

ηβT0

−
√
2
2 η

γT
0

⎞
⎠ ;

3. For the rectangle configuration:

A =

⎛
⎝
ηαT0

01×3

01×3

⎞
⎠ and B =

⎛
⎝

01×3

ηβT0

−ηγT0

⎞
⎠ ,

where 01×3 is the 1 by 3 zero row vector.
In order to solve the homogeneous equation (5.32) for the orientation R3

0 of
the top mobile disc, let R3

0 be decomposed into two Euler angles of rotation:
first rotate about the y3-axis by ψ and then rotate about the new x3-axis by
φ. Namely,

R3
0 = R(y, ψ)R(x, φ) =

⎛
⎝

cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

⎞
⎠
⎛
⎝

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

⎞
⎠ .

(5.35)
Since R3

0 is a passive orientation and each of the three revolute joints
connecting to the top mobile disc is mechanically constrained by the orthog-
onality between the joint axis and the central axis of each leg for such a UPR
type parallel mechanism, the top disc has no chance to twist itself about the
z0-axis so that it suffices to define two successive rotations about the y0 and
x0-axis without a spin about the z0-axis for R

3
0.



5.4 Kinematic Modeling for Parallel-Chain Mechanisms 189

Substituting (5.35) into equation (5.32) yields

AR(y, ψ)R(x, φ)

⎛
⎝

1
0
0

⎞
⎠+BR(y, ψ)R(x, φ)

⎛
⎝

0
1
0

⎞
⎠ = 0.

It can be observed that for any one of the three different revolute joint design
configurations, the first row of B is always zero so that

ηαT0 R(y, ψ)R(x, φ)

⎛
⎝

1
0
0

⎞
⎠ = 0.

Since

R(x, φ)

⎛
⎝

1
0
0

⎞
⎠ =

⎛
⎝

1
0
0

⎞
⎠ ,

the above equation can be further reduced to

ηαT0

⎛
⎝

cosψ
0

− sinψ

⎞
⎠ = bα1 cosψ − bα3 sinψ = 0,

where ηαT0 = (bα1 bα2 bα3 ), and the same definitions for ηβT0 = (bβ1 bβ2 bβ3 )

and ηγT0 = (bγ1 bγ2 bγ3).
If both the rotation angles ψ and φ about y-axis and x-axis, respectively,

are limited within (−900, 900), then,

ψ = arctan

(
bα1
bα3

)
. (5.36)

After ψ is found, for the second and third cases of configuration, they have
the same second row:

ηβT0

⎛
⎝

sinψ sinφ
cosφ

cosψ sinφ

⎞
⎠ = bβ1 sinψ sinφ+ bβ2 cosφ+ bβ3 cosψ sinφ = 0.

Thus, the angle φ can also be solved as well,

φ = arctan

(
−bβ2

bβ1 sinψ + bβ3 cosψ

)
. (5.37)

Finally, substituting the two rotation angles into (5.35), we solve the passive
orientation of the top mobile disc in terms of the given position vector pt0.
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However, for the first equilateral triangle configuration case, two simulta-
neous equations from the last two rows can be found and are needed to solve
the second rotation angle φ, and they are

{
− 1

2 (b
β
1 cosψ − bβ3 sinψ) +

√
3
2 (bβ1 sinψ sinφ+ bβ2 cosφ+ bβ3 cosψ sinφ) = 0

− 1
2 (b

γ
1 cosψ − bγ3 sinψ)−

√
3
2 (bγ1 sinψ sinφ+ bγ2 cosφ+ bγ3 cosψ sinφ) = 0.

It can be further reduced to
(
β11 β12
γ11 γ12

)(
sinφ
cosφ

)
=

(
β13
γ13

)
, (5.38)

where β11 =
√
3
2 (bβ1 sinψ + bβ3 cosψ), β12 =

√
3
2 b

β
2 , γ11 = −

√
3
2 (bγ1 sinψ +

bγ3 cosψ), γ12 = −
√
3
2 b

γ
2 , β13 = 1

2 (b
β
1 cosψ − bβ3 sinψ) and γ13 = 1

2 (b
γ
1 cosψ −

bγ3 sinψ). Then, φ can be determined as long as the first 2 by 2 matrix is
nonsingular.

Once we finish the first step of the I-K problem for a 3+3 hybrid robot,
we progress to the second step: given p60 and R6

0, find all the six joint values,
including both the parallel-chain platform with three prismatic joints l1, l2
and l3 and the top serial-chain arm with three revolute joints θ4, θ5 and θ6.
Suppose that the top arm has a regular RRR configuration with some joint
offset along each revolute joint axis, as shown in Figure 5.26.

The D-H table for the top 3-joint arm can be easily deduced via the D-H
convention and is given below:

Joint Angle Joint Offset Twist Angle Link Length

θi di αi ai

θ4 d4 −900 0

θ5 d5 900 0

θ6 d6 0 0

Then, the one-step homogeneous transformation matrices are found as
follows:

A4
3 =

⎛
⎜⎝
c4 0 −s4 0
s4 0 c4 0
0 −1 0 d4
0 0 0 1

⎞
⎟⎠ , A5

4 =

⎛
⎜⎝
c5 0 s5 0
s5 0 −c5 0
0 1 0 d5
0 0 0 1

⎞
⎟⎠ ,

and

A6
5 =

⎛
⎜⎝
c6 −s6 0 0
s6 c6 0 0
0 0 1 d6
0 0 0 1

⎞
⎟⎠ .
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Fig. 5.26 Solve the I-K problem for a 3+3 hybrid robot

The total homogeneous transformation of the top arm can be calculated by
A6

3 = A4
3A

5
4A

6
5, i.e.,

A6
3 =

⎛
⎜⎝
c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5 d6c4s5 − d5s4
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5 d6s4s5 + d5c4
−s5c6 s5s6 c5 d6c5 + d4

0 0 0 1

⎞
⎟⎠ . (5.39)

If both the position vector p60 and the orientation R6
0 of frame #6 with respect

to the base are given, according to Figure 5.26, we can immediately see that

pt0 = p60 − d6z60 − d5y60 |θ6=0, (5.40)

where the last term is d5y
6
0 under the condition θ6 = 0, and y60 and z60 are

the second and third columns of the given orientation R6
0, respectively. Even

if the conditional term d5y
6
0 |θ6=0 is unknown, but we know the joint value

of θ6, we can determine
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R5
0R(z6, θ6) = R6

0 so that R5
0 = R6

0

⎛
⎝

c6 s6 0
−s6 c6 0
0 0 1

⎞
⎠ .

Then,
pt0 = p60 − d6z60 − d5y50 , (5.41)

and the conditional term is replaced by d5y
5
0 . In fact, for such an RRR type

arm, the z6-axis and z5-axis are aligned so that z60 = z50 , which is independent
of θ6.

Once pt0 is determined, we can follow the above procedure to find the
passive orientation R3

0. Through the rotation matrix R3
0, the three vectors p

a
3 ,

pb3 and pc3 laying on the mobile disc can be found directly by the projections
on frame #3. Therefore, the three prismatic joint vectors can be readily
determined as

li0 = pt0 − pa0 − d4z30 −R3
0p

i
3 for i = a, b, c, (5.42)

where z30 is the third column of R3
0. Clearly, the norm of each vector is the

joint value li = ‖li0‖.
Since p63 can be found from R3

0p
6
3 = p60 − pt0, comparing it with the last

column of the above A6
3 under d4 = 0, plus comparing R6

3 = R0
3R

6
0 = R3T

0 R6
0

with the upper left 3 by 3 block of A6
3, we can solve θ4 and θ5 under the pre-

specified θ6 at t = 0, as an initial tool spinning angle. It has to be recognized
that without knowing the initial value of the last spinning angle θ6, we cannot
solve such an I-K problem directly for the 3+3 hybrid robot due to the issue
of causality. In other words, if p60 and R5

0 are given, instead of R6
0, the I-K

problem can be completely resolved. We will apply all the above I-K compu-
tations to draw and further to animate such a 3+3 UPR+RRR type hybrid
robotic system in the equilateral triangle configuration into MATLABTM in
the next chapter.

In summary, the algorithm to solve for the I-K for such a 3+3 hybrid-chain
robot can be procedurized as follows:

Given p60 and R6
0 with a known θ6(0) at t = 0,

1. First, find pt0 through equation (5.41) with the previous value of θ6;
2. Then, calculate the matrices A and B via equation (5.33) along with (5.34)

at each sampling point;
3. Solve equation (5.32) to determine R3

0 by the solutions in (5.36) and (5.38)
via (5.35);

4. The vectors li0 for i = a, b, c of the three piston legs can be found by
equation (5.42);

5. Calculate R6
3 = R0

3R
6
0 = (R3

0)
TR6

0;
6. By comparing R6

3 with the symbolical form of A6
3 in equation (5.39), the

last three joint angles can be determined by
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θ4 = atan2(R6
3(2, 3), R

6
3(1, 3)),

θ5 = atan2(R6
3(1, 3)/ cos θ4, R

6
3(3, 3)),

θ6 = atan2(R6
3(3, 2), −R6

3(3, 1)).

Regarding the forward kinematics (F-K), the top RRR arm is straightfor-
ward because of the open serial-chain mechanism. However, the UPR type
3-leg parallel platform is as hard as that of the 6-leg Stewart platform. Since
in this 3-leg parallel robot, the axis of each top revolute joint is perpendicu-
lar to the central axis of each leg, i.e., each la0 ⊥ pα3 , we may interpret that
each li0 for i = a, b, c is similar to the height hi for corresponding i = 1, 2, 3
in Figure 5.21, and just make upside down. In other words, the top mobile
disc of the 3-leg system is treated as a bottom one of the Stewart platform,
while the base plate is treated as the top disc in Figure 5.21. Then, the angle
between la0 and pα3 becomes θ1, and the other two become θ2 and θ3.

Under such an upside down comparison, the three universal joint points
A0, B0 and C0 for the 3-leg parallel robot in Figure 5.26 are imagined on the
three circles with their centers at A3, B3 and C3 and radii h1 = l1 = ‖la0‖,
h2 = l2 = ‖lb0‖ and h3 = l3 = ‖lc0‖. Hence, the similar question is asked:
where are the points A0 on Circle 1, B0 on Circle 2 and C0 on Circle 3 such
that the distance between each pair of the three points is equal to the real
distance for the corresponding A0B0, B0C0 and C0A0? This clearly shows
that the F-K problem for the UPR type 3-leg parallel robot is the same as
that for a 3-3 or 6-3 Stewart platform system, and we can also call the same
algorithm to recursively search and find the solution, but just need to make
an upside down imagination.

The original design by Delta was the URR-type on each of the three legs
[14]. Since both the 3-leg systems of URR-type and UPR-type are structured
with an orthogonality between the top revolute joint axis and the central
axis of the upper leg (thigh), they are interchangeable. We can stay with the
modeling and analysis of the UPR-type one, as we have just studied. Once
each prismatic joint vector li0 for i = a, b, c is determined by the I-K algorithm
of the UPR-type, to find an equivalent URR-type joint value that is the angle
around the knee point of each leg becomes straightforward.

If one wants to control a real URR-type platform in laboratory, it suffices
to find the equivalent angle of the revolute joint of each knee. This can be
directly converted from the resulting prismatic joint length li = ‖li0‖ by the
Law of Cosine, because all the upper and lower leg lengths a1 and a2 are
known, as shown in Figure 5.27. Namely,

cos∠Aa =
a21 + a22 − l21

2a1a2
.

However, if one wishes to graphically draw and simulate such a URR-
type parallel-chain system in MATLABTM , only solving and knowing the
revolute joint angle of each knee is far not enough. Often, you have to tell
MATLABTM the location and orientation of each link to be drawn, not just
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Fig. 5.27 Delta URR vs. UPR 3-leg parallel system

a size. Therefore, we need a more detailed study on the geometric relation
between the UPR-type and URR-type systems.

It can be clearly seen from Figure 5.27 that the triangle �A0AaA3 is
formed by the prismatic joint length l1 from the UPR-type one and the lower
leg length a1 and upper leg length a2 from the URR-type system. Because of
the orthogonality, the top revolute axis pα3 must be a normal unit vector to
the triangle. Thus, we may define a new coordinate system, called frame a,
whose xa0-axis is just the normalized la0 : l

a
0/‖la0‖ = la0/l1, and whose za0 -axis is

parallel to pα3 . Furthermore, let ya0 = za0 ×xa0 be the ya0 -axis of the new frame.
Therefore, the orientation of the new frame referred to the base can be fully
determined by

Ra
0 =

(
la0
l1

R3
0p

α
3 ×

la0
l1

R3
0p

α
3

)
.

After finding the orientation, we now shift its origin to the universal joint
point A0 from the base origin by the constant vector pa0 so that frame a can
further be determined completely by the following homogeneous transforma-
tion with respect to the base:

Ha
0 =

(
Ra

0 pa0
01×3 1

)
.
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This homogeneous transformation matrix Ha
0 will be useful in 3D drawing

for every link involved in the leg. Using the same method, Hb
0 and Hc

0 for the
other two legs at B0 and C0 can be found as well.

In fact, after the two different types of leg are put together in one modeling
picture, as shown in Figure 5.27, we can see that the URR-type leg is a two-
link planar arm sitting in the new frame Ha

0 with respect to the base. Its
tip point touches the point A3 so that the position vector p2a of this two-link
arm is just the prismatic joint vector la0 but referred to the new frame, i.e.,
p2a = (l1 0 0)T . Now, applying the D-H convention on the two-link arm, we
have the following D-H table:

Joint Angle Joint Offset Twist Angle Link Length

θi di αi ai

θa1 0 0 a1

θa2 0 0 a2

Its one-step homogeneous transformations are computed as

A1
a =

⎛
⎜⎝
c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1

⎞
⎟⎠ and A2

1 =

⎛
⎜⎝
c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

where ci = cos θai and si = sin θai for i = 1, 2. Multiplying them together
yields

A2
a = A1

aA
2
1 =

⎛
⎜⎝
c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

where c12 = cos(θa1 + θa2 ) and s12 = sin(θa1 + θa2 ) for short notation again.
By comparing the last column of A2

a with p2a, we have

⎛
⎝
a1c1 + a2c12
a1s1 + a2s12

0

⎞
⎠ =

⎛
⎝
l1
0
0

⎞
⎠

such that
a1c1 + a2c12 = l1 and a1s1 + a2s12 = 0.

Squaring both the two equations and adding them together will reach to the
same result from the Law of Cosine:

a21 + a22 + 2a1a2c2 = l21,

and the only difference is the definition between their angles: θa2 = ∠Aa−1800.
Since θa2 is defined from xa1 to xa2 according to the D-H convention, it is desired
to have θa2 < 0 in order to keep the knee Aa outward. Thus, θa2 should be
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in the range of −1800 < θa2 < 0 for such a URR-type system, and just use
− arccos(·) to solve the above equation for θa2 and set s2 = −√1− c22.

If we multiply c1 to the first equation and multiply s1 to the second one,
and then add them together, we obtain

a1 + a2c2 = l1c1.

If we now multiply s1 to the first equation and multiply c1 to the second one,
and then subtract them together, we have

−a2s2 = l1s1.

Thus, the angle θa1 can be determined by calling the 4-quadrant arc tangent
function atan2(·, ·):

θa1 = atan2(−a2s2, a1 + a2c2).

Once both two joint angles θa1 and θa2 are solved, the homogeneous trans-
formations A1

a and A2
a are well determined, and the first link of this two-link

arm is situated at the position and orientation given by Ha
0A

1
a with respect to

the base frame #0. Likewise, the second link has its position and orientation
referred to the base by Ha

0A
2
a. Therefore, we have not only solved the equiv-

alence between the UPR-type and URR-type 3-leg parallel-chain platforms
for their conversion, but also made every necessary transformation ready for
graphical drawing and simulation.

5.5 Computer Projects and Exercises of the Chapter

5.5.1 Two Computer Simulation Projects

1. A 3-joint RPR planar robot is sitting near a wall-floor corner, as shown in
Figure 5.28. If we only consider the x and y coordinates of the tip-point
w.r.t. the base as the output, this arm is a redundant robot with n = 3 >
m = 2. Let the robotic tip-point draw a circle that is centered at (1.2,
1.0) with a radius R = 0.6 in meters, starting at the point (1.8, 1.0). The
angular speed of the circular drawing is ω = 0.5 rad/sec. counterclockwise.
The total length of the sliding link is L2 = 1.8 m., see Figure 5.28, and its
back-end point B is desired to never collide with the vertical wall or the
floor at any time during the circle drawing. Develop a complete algorithm
for the redundant planar robot to draw the specified circle as a main task
and to avoid the collision as a subtask, and then program it into MatlabTM

to make a 2D animation.
2. A 3+3 hybrid robot with a rectangle configuration on the top mobile plate

has the following parameters:
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Fig. 5.28 A three-joint RPR planar robot arm

pa0 =

⎛
⎝

1.2
0
0

⎞
⎠ , pb0 =

⎛
⎝

0
0.8
0

⎞
⎠ , pc0 =

⎛
⎝

0
−0.8
0

⎞
⎠ ,

on the base plate with respect to the base frame;

pa3 =

⎛
⎝

0.6
0
0

⎞
⎠ , pb3 =

⎛
⎝

0
0.4
0

⎞
⎠ , pc3 =

⎛
⎝

0
−0.4
0

⎞
⎠ ,

on the top mobile plate referred to frame 3; and d4 = 0.6, d5 = 0.2 and
d6 = 0.4 all in meter for the last 3-revolute-joint serial-chain arm sitting
on the top plate, as depicted in Figure 5.29.

At the home position, θ6(h) = 0, and

p60(h) =

⎛
⎝

0.8
0.4
2.2

⎞
⎠ and R6

0(h) =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

The last tool frame 6 is required to travel linearly from the home to the
following destination:

p60(d) =

⎛
⎝
−1
−1
2

⎞
⎠ and R6

0 =

⎛
⎝

0 0 −1
0 1 0
1 0 0

⎞
⎠ ,

with a total number of sampling points N = 100 and the sampling interval
Δt = 0.01 sec.
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Fig. 5.29 A 3+3 hybrid robot in rectangle configuration

a. Following the procedure of the 3+3 hybrid-chain robot I-K solution,
find the passive orientation R3

0 of the top plate at the home position;
b. Determine the three prismatic joint vectors li0 for i = a, b, c at the home;
c. Determine θ4 and θ5 at the home position;
d. Write a MATLABTM program to finally plot all the 6 joint profiles

versus time from the joint lengths l1, l2, l3 to the revolute joint angles
θ4, θ5 and θ6 over the N = 100 sampling points.

5.5.2 Exercise Problems

1. For a given 4-joint robot arm with an overhead beam and two revolute
joints plus one prismatic joint, as shown in Figure 5.30, answer the follow-
ing questions:

a. Determine a D-H parameter table for the robot;
b. Find a symbolical form of the homogeneous transformation A4

0 ;
c. Determine the Jacobian matrix J(0) by taking derivative of the symbol-

ical position vector p40 w.r.t. the robotic joint positions;
d. Find the singular point(s) without the 4th joint, i.e., to find the zero

points of the determinant of the first three columns of J(0);
e. If only the 3 d.o.f. of the robot tip-point position is considered in motion-

planning, find the minimum-norm solution of the joint velocities if the
tip point is moving along the positive direction of the y0-axis at a speed
of 1 m./sec. when d1 = 1 m., θ2 = −1200, θ3 = 600 and d4 = 1.5 m.
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Fig. 5.30 A 4-joint beam-hanging PRRP robot

f. Find a general solution of the 4-joint velocities to track the same tra-
jectory but adding a singularity avoidance subtask based on (d).

2. A 3-joint RRP planar robot is shown in Figure 5.31, where a1 = 1 m.

a. Find the 2D position vector pw0 of the wrist point w with respect to the
base, and determine the Jacobian matrix J(0) ;

b. Find all the singular points;
c. If the robot is motionless and the wrist point w is touching the inner

wall of the bowl at (0.8, 0) with a pressing force f = 12 N along the
z3 direction, find all the three joint torques/force in terms of the joint
positions θ1, θ2 and d3;

x0

y0 

a1 

z3 

w

0.40 
0.80.5 

Obstacle

0.4 

Bowl 

Fig. 5.31 An RRP 3-joint planar robot to touch a bowl
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Fig. 5.32 An RPR 3-joint planar robot

d. Find a joint velocity solution q̇ if point w is going to approach to the
bowl linearly from the initial point (1, 1) and avoiding any collision
with the obstacle.

3. A 3-joint RPR planar arm is shown in Figure 5.32, where a3 = 1 in meter.
A ceiling lamp is located at (0.4, 1.4) in meter that is referred to the base.

a. If the robotic tip position vector is defined by p30 =

(
x
y

)
, where x and y

are coordinates of the tip w.r.t. the base in 2D space, find the Jacobian
matrix J0 ;

Fig. 5.33 A planar mechanism
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b. If the tip point starts traveling from p30 = (0.8 0.4)T under θ1 + θ3 =
−900 at t = 0, determine the three joint positions θ1, d2 and θ3 ;

c. Does the elbow position touch the ceiling lamp at t = 0 ?

d. Is the joint velocity vector q̇ =

⎛
⎝
−√3
1.6
−1.5

⎞
⎠ a null solution at t = 0? Why?

e. If the arm tip point hangs down a weight of 2 Kg at t = 0, find each
joint torque/force;

f. If the arm’s tip point is to travel linearly from the above starting point
to the destination p30 = (1.4 0.7)T within T = 3 sec., and also to avoid
the elbow point hitting the ceiling lamp, find a complete differential
motion solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two Planar Parallel-Chain Systems 

A 3D Platform: All joints connected to both 
the top and base discs are ball-joint, and each 

prismatic joint can also be spinning. 

Fig. 5.34 Three parallel-chain systems



202 5 Redundant Robots and Hybrid-Chain Robotic Systems

4. A planar system has three legs, as shown in Figure 5.33, determine the
net d.o.f. m.

5. Determine the net d.o.f. for each of the mechanisms shown in Figure 5.34.
6. Implement the given F-K recursive algorithm for a 3-3 type Stewart plat-

form into MATLABTM , and then define your input set for the six prismatic
leg lengths l1 through l6 to run the program and determine the top disc
position p60 and orientation R6

0. You may also redefine a different set of pa-
rameters to extend the F-K algorithm to a new algorithm for a 6-3 Stewart
platform system, and then run the new program again.

7. Using all the parameters that you defined in the last problem for either
a 3-3 or a 6-3 type Stewart platform, and also based on the results after
running the F-K algorithm in MATLABTM , find the Jacobian matrix J0
for this closed parallel-chain system.
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