
1 Bdellovibrio and Like Organisms
Or Rotem . Zohar Pasternak . Edouard Jurkevitch
Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environmental

Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The BALOs’ Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
An e

http

E. R
# Sp
Attack Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Host Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Cell Cycle Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Energy Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Habitat and Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Direct Isolation of Bdellovibrio from Environmental

Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Specific Enrichment for Bdellovibrio . . . . . . . . . . . . . . . . . . . . . . . 13

Isolation and Cultivation of H-I Mutants . . . . . . . . . . . . . . . . . . 13

Growth Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Abstract

Bdellovibrio and like organisms (BALOs) are gram-negative,

obligate predators of other gram-negative bacteria. These

small bacteria interact with their prey as highly motile attack

phase cells, attaching to the outer membrane and consuming

the prey extracellularly (epibiotic predation) or penetrating

their periplasm (periplasmic predation). The former divides

in a binary fashion, while the latter grows as a polynucleotide

filament to finally split as progeny attack cells. High-resolution

microscopy, molecular genetics, genomics, and functional

genomics have been applied to study the cell cycle of BALOs,
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revealing functions required for predation and for cellular

organization. Until recently, Bdellovibrio bacteriovorus was the

only recognized species of BALOs. Culture-dependent and

culture-independent approaches have shown that these preda-

tors form diverse monophyletic groups, including the three

families Bdellovibrionaceae, Bacteriovoraceae, and Peridibac-

teraceae in the d-proteobacteria, and the genus Micavibrio in

the a-proteobacteria. Based on this detailed taxonomical knowl-

edge, it has become possible to track predator and prey interac-

tions in natural systems, providing first evaluations of the

impact of bacterial predation on community structure.

Introduction

Predation is an important factor affecting both the ecology and

evolution of organisms. While predatory interactions are com-

mon and the subject of numerous investigations in the animal

world, much less is known in the bacterial realm. A number of

reasons may explain the paucity of knowledge on predatory

bacteria: It is difficult and time consuming to search for preda-

tory interactions between bacteria in vivo by examining natural

samples; predatory bacteria vary in their prey range, and thus,

their isolation is limited by the number of possible prey that can

be experimentally manipulated – most potential prey in the

environment, as other bacteria, may not be amenable to culti-

vation and thus their predators remain unknown; until recently

(Pasternak et al. 2012) genome data could not be used to identify

novel predators.

That said, the field of predatory bacterial interactions has

had many significant contributions since serendipitous discov-

ery of the first obligate predatory bacterium Bdellovibrio by Stolp

and Petzold (1962). This was followed by numerous ground-

breaking researches on the physiology, ecology, taxonomy, inter-

actions with prey, and cell cycle of Bdellovibrio in the 1960s,

1970s, and into the 1980s, mainly by the groups of Conti,

Diedrich, Hespell, Rittenberg, Ruby, Shilo, Stolp and Starr,

Thomashow, Tudor, and Varon. More recently, the field

has greatly benefited from the introduction of modern molecu-

lar biology into microbial ecology and genetics brought by

the groups of Jurkevitch, Kadouri, Koval, Linscheid, Sockett,

Strauch, and Williams. Most, if not all, of these works were

performed on Bdellovibrio and like organisms (BALOs),

the ‘‘taxonomical progeny’’ of the original single Bdellovibrio

bacteriovorus taxon. These bacteria can be described as preda-

tors, parasites or symbionts (Starr 1975), or parasitoids, and the

consumed bacterium as prey or host. In this review, the terms

predator–prey and predator-host will be used interchangeably.
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. Fig. 1.1

Predatory strategies of Bdellovibrio and like organisms. Bdellovibrio exovorus (a) and Micavibrio aeruginosavorus (b) are epibiotic

predators. Bdellovibrio bacteriovorus (c) is a periplasmic predator
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The BALOs’ Life Cycle

The life cycle of BALOs is concomitant to its cell cycle and is

composed of two main and distinct phases, i.e., an attack phase

(AP) and a growth and division phase (GP). Further subdivision

of these stages depends upon the predatory strategy adopted:

BALOs are whether epibiotic or periplasmic predators. Epibiotic

predators like Bdellovibrio exovorus (> Fig. 1.1a) andMicavibrio

aeruginosavorus (> Fig. 1.1b) (Davidov et al. 2006b; Koval et al.

2012) attach onto the prey cell, digesting its content while

remaining extracellular to finally divide in a binary fashion.

Most of the knowledge being on periplasmic predators

(> Fig. 1.1c), the description of BALOs’ life cycle will center on

this particular predatory strategy (> Fig. 1.2), with an emphasis

on the physiological features of each stage.
Attack Phase

I. Motility and prey detection. Attack phase (AP) cells are small

(0.7–1.5 � 0.5 mm), mostly vibrioid, highly motile non-

replicative cells (> Fig. 1.2, stage 1). Cell shape is

maintained by the cytoskeleton protein MreB2 (Butan

et al. 2011; Fenton et al. 2010c;) with the coiled-coil-repeat

protein CcrP probably acting as an underlying scaffold

(Fenton et al. 2010a). The nucleus is tightly packed, and

electron-dense granules resembling acidocalcisomes,

enriched in phosphorus, calcium, and oxygen can be

found in the cytoplasm (Borgnia et al. 2008).
The AP cell is endowed with a single sheathed flagellum

composed of six different flagellin proteins (FliC1-6) that

propels it to velocities as high as 160 mm s�1 (Iida et al. 2009;

Lambert et al. 2006; Seidler and Starr 1968; Thomashow

and Rittenberg 1985). None of the flagellin genes appears

to be essential except for fliC3 which is required for

predation in suspension cultures (Lambert et al. 2006).

Likewise, three pairs of MotAB flagellar motor proteins

contribute unevenly to flagellar rotation, none being

essential (Morehouse et al. 2011). Flagellar motility is
crucial for encountering prey but is neither required for

prey penetration nor for slow surface-associated gliding

motility (15–20 mm h�1). Gliding appears to be advanta-

geous in predation of biofilms and in low-moisture

environments (Abram et al. 1974; Lambert et al. 2006,

2011; Medina et al. 2008).

Multiple methyl-accepting chemotaxis proteins (MCP)

sensevarious ligands,providingchemotacticcues towards inor-

ganic ions,organicacidsandaminoacids,andoxygen(LaMarre

et al. 1977; Sourjik and Wingreen 2012; Straley et al. 1979).

Although attraction towards prey bacteria is only noticeable

at high prey concentrations (Straley and Conti 1977), dele-

tion of mcp2 reduces predation, suggesting chemotaxis is

involved in prey detection (Lambert et al. 2003).
II. Attachment to prey. Attachment of BALO to prey (> Fig. 1.2,

stage 2) is affected by many factors such as the composition

and the pH of the medium, oxygen tension, and

temperature (Varon and Shilo 1968). At first attachment is

reversible – as seen when the predator encounters non-prey

cells (Shemesh et al. 2003) – but within minutes, it becomes

irreversible. The basis of prey recognition by BALOs is

still obscure. Core oligosaccharides of the prey’s lipopoly-

saccharide layer (LPS) are sensed by B. bacteriovorus, yet

when they are depleted, attachment stalls but is not

abolished. In contrast, attachment by Bacteriolyticum stolpii

is indifferent to prey LPS composition but is reduced in the

absence of particular porins (outer membrane proteins,

OMPs) such as OmpF and OmpC in E. coli (Schelling and

Conti 1986; Varon and Shilo 1969). BALOs synthesize

unique membrane lipid structures that greatly vary

between taxa: in B. bacteriovorus, the lipid A is completely

devoid of negatively charged groups and possesses

a-D-mannopyranose residues instead of phosphate groups;

B. stolpii contains sphingophospholipids with unique

2-amino-3-phosphonopropanate heads; and Peridibacter

starrii’s lipids include phosphatidylethanolamine structures

with an additional N-glutamyl residue (Muller et al. 2011;

Nguyen et al. 2008). The varied composition of lipids

implies that predator’s membrane fluidity and permeability



. Fig. 1.2

The life cycle of Bdellovibrio bacteriovorus. Eight stages are depicted. 1 free swimming, attack phase, 2 attachment to prey cell,

3 penetration of the prey periplasm, 4 establishment and initiation of growth, 5 filamentous growth and depletion of prey cytoplasm,

6 division to progeny cells, 7 lysis of ghost prey cell and release of progeny, 8 host-independent mutant
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are altered and, in turn, its interaction with the prey surface.

However, the ability of the different predators to use the same

prey (e.g., E. coli or pseudomonads) while bearing diverse

lipid structures in their outer membranes suggests that these

structures whether have no meaningful interaction with the

prey, interact with different components of the prey’s cell

wall, or interact with similar components of the prey

through different mechanisms.
Type IVa pili are present at the nonflagellated pole of AP

cells and are essential for prey attachment and penetration

of periplasmic and probably for attachment of B. exovorus

to its prey as well (Evans et al. 2007; Mahmoud and Koval

2010). Anchoring of the pilus onto the prey envelope

enables the invasion of the prey periplasm. This appendage

is kept during GP, when it is found adhering to the prey

cytoplasmic membrane. The machinery for its assembly

is expressed throughout the entire growth cycle, suggesting

that the pilus also plays a role during replication.

In addition, a type IVb Flp pilus promotes B. bacteriovorus

predation in biofilm (Medina et al. 2008).
III. Prey invasion and bdelloplast formation. Irreversible

attachment triggers local lysis of the prey envelope

(Abram et al. 1974). Penetration of the periplasm by

B. bacteriovorus is achieved by the predator squeezing

through a pore (Evans et al. 2007) (> Fig. 1.2, stage 3),

a process that may also involve the use of pili (Evans et al.

2007; Mahmoud and Koval 2010). The process is completed

within 5–20 min after attachment and is sensitive to strep-

tomycin (Varon and Shilo 1968), suggesting the production

of enzymes in the formation of the pore. All the while, the

prey peptidoglycan is modified, producing a bdelloplast.

At that stage, damage to the prey’s cytoplasmic membrane

leads to a rapid drop in prey respiration (Rittenberg and

Shilo, 1970).
Bdelloplast construction is brought about by the

activity of glycanase(s) and the solubilization of 10–15 % of

the cell wall’sN-acetylglucosamine (Thomashow 1978a). To

prevent premature prey cell lysis, N-deacetylase(s) controls

glycanase activity immediately after penetration

(Thomashow 1978b). Acylation of the prey peptidoglycan

by long-chain fatty acids (Thomashow 1978c) and solubili-

zation of 25 % of the LPS glucosamine by a lipopolysac-

charidase activity (Thomashow 1978a) increase bdelloplast

hydrophobicity, potentially stabilizing the outer membrane,

which now acts as an osmotic barrier (Cover 1984). The

growth chamber is further altered by the action of pepti-

dases that actively cleave Braun’s lipoprotein (Thomashow

1978b), the release of diaminopimelic acid (DAP) from the

peptidoglycan during penetration and latter during prey cell

lysis (Thomashow 1978a), and the re-incorporation of DAP

into the prey peptidoglycan during penetration and

bdelloplast stabilization (Araki 1988; Ruby 1984).

After predator invasion, a bdelloplast is immune to

superinfection. This was initially thought to result from

N-deacetylation of the peptidoglycan (Thomashow

1978c). However, (Tudor et al. 1990) observed that in

Bdellovibrio sp. strain W both glycanase and N-deacetylase

activities are lacking and the non-spherical bdelloplasts

generated are not superinfected. This and other data

suggested that peptidase and not glycanase activity enables

prey penetration and that bdelloplast rounding is a by-

product caused by host autolytic muramidases (Tudor

et al. 1990). However, (Lerner et al. 2012) showed that

a double mutation in two homologs of the PBP4 DD-

endo/carboxypeptidase that are mostly expressed during

invasion leads to non-spherical bdelloplasts. The mutants

were also slower to penetrate the prey, demonstrating that

peptidase activity is a non-exclusive enzymatic requirement
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for invasion; further, single mutants in each of the encoding

genes and more so the double mutant were sensitive to

superinfection.
IV. Growth and division. The intraperiplasmic B. bacteriovorus

predator grows in a filamentous manner (> Fig. 1.2, stages 4

and 5) at the expanse of the prey cytoplasmic content. It

incorporates up to 70 % of the prey’s DNA material by

sequentially digesting it with dedicated enzymes (Rosson

and Rittenberg 1979). The predator also degrades 20–40 %

of the prey’s RNA ribonucleotides into the base and the

ribose-L-phosphate moieties. The sugar phosphate is then

used for energy production and for the biosynthesis of non-

nucleic acid cell material (Hespell and Odelson 1978). Yet,

BALOs encode the full complement of genes for purine and

pyrimidine metabolism (Pasternak et al. 2012; Rendulic

et al. 2004; Wang et al. 2011). In contrast, BALOs lack the

ability to synthesize and degrade various amino acids

and riboflavin, which should be acquired from the host

(Pasternak et al. 2012; Rendulic et al. 2004). Other prey

cell components were thought to be imported and utilized

as building blocks by the predator, such as lipopolysaccharide

moieties (Kuenen and Rittenberg 1975; Stein et al. 1992) and

OMPs (Diedrich et al. 1984). It was shown that in fact,

B. bacteriovorus synthesizes its own lipopolysaccharides

(Schwudke et al. 2003) and does not import OMPs (Barel

et al. 2005; Beck et al. 2004). Strikingly, and for hitherto

unknown reasons, most BALOs use the mevalonate path-

way instead of the common DOXP bacterial pathway

(Pasternak et al. 2012).
The cytoskeleton is affected during GP: the MreB

eukaryotic actin homologue MreB1 is essential, as hamper-

ing polymerization of the protein leads to arrested growth

early in bdelloplast formation (Fenton et al. 2010c). Local-

ization studies of MreB2-mTFP in AP cells showed it to be

intimately connected to the spiral-shaped nucleoid.

Also, the position of the nucleoid at approximately equal

distances from the cell poles suggested that a parallel pattern

of extensionwith cell length during cell division (Butan et al.

2011). Finally, the filament divides into progeny, the num-

ber of which is proportional to the size of the prey (Kessel

and Shilo 1976). The number of progeny varies, so that odd

and even numbers of Bdellovibrio are produced (Fenton

et al. 2010b): an average of 5.7 progeny per prey in E. coli

(Seidler and Starr 1969a) and up to 30 in Aquaspirillum

serpens (Stolp 1967) (> Fig 1.2, stage 6). Division exhibits

particular features as septation events occur synchronously

along the filamentous Bdellovibrio cell, even in doubly

infected prey (Fenton et al. 2010b). The resulting attack

phase cells escape from the bdelloplast through discrete

pores (> Fig. 1.2, stage 7). AP cells thenmature and increase

in length (Fenton et al. 2010b).

Marine BALOs were shown to produce stable

bdelloplasts under nutrient deprivation, synchronous infec-

tion of stationary phase prey, and final low concentration of

bdelloplasts. These structures remained viable for months,

in contrast to attack phase cells that died rapidly but were as
sensitive to environmental challenges (Sanchez Amat and

Torrella 1990). They lysed in the presence of yeast extract,

releasing AP cells.
V. Bdellocysts. A few Bdellovibrio strains have been reported to

enter a cyst-like stage under low-nutrient conditions and

multiplicity of infection per prey cell (Tudor and Conti

1977). Bdellocysts occur in an infected prey. The predatory

cell enlarges into a kidney-shaped cell enclosed by a struc-

tureless, amorphous outer layer. A finely particulate inner

layer surrounds the more particulate plasma membrane

of the predatory cell. Structures resembling storage

granules are present. Bdellocysts are more resistant than

vegetative cells to desiccation, high temperatures, and

sonication (Tudor and Conti 1977), and their germination

is favored by L-glutamate, K+, and NH4
+ (Tudor and

Conti 1978).
Host Independence

Soon after the discovery of Bdellovibrio bacteriovorus, sapro-

phytic variants capable of growing in the absence of prey were

isolated by plating concentrated suspensions of WT cells on

a standard complete medium (Stolp and Petzold 1962; Stolp

and Starr 1963). To date, all the periplasmatically growing

B. bacteriovorus strains and Bacteriovorax species tested are

able to generate saprophytic derivatives under laboratory

conditions (Baer et al. 2000, 2004; Schwudke et al. 2001; Seidler

and Starr 1969b). These variants, coined host-independent

(H-I), manifest the archetypical dimorphic life cycle and retain

a predatory potential (> Fig. 1.2, stage 8). They are,

hence, facultative predators. Yet, predation is less efficient than

in the parental strain (Cotter and Thomashow 1992a, b).

Additionally, sequential transfers on complete medium without

prey result in the loss of predatory ability (Roschanski et al.

2011; Varon and Seijffers 1975; Wurtzel et al. 2010). H-I

BALOs may also occur in the environment as such strains

were isolated on several occasions (Diedrich et al. 1970;

Doskina 1973; Hobley et al. 2012b). Unique characteristics of

H-I variants, in comparison to wild-type (WT) progenitors,

suggest that host independence might be a genuine stage of the

BALOs’ lifestyle. Unlike colorless WT cells, H-I isolates

produce a yellowish pigment, protective against photooxidative

damage (Friedberg 1977). H-I derivatives of B. bacteriovorus

utilize a broader variety of carbon sources (Ishiguro 1974),

synthesize different LPS structures (Schwudke et al. 2003),

and, perhaps most intriguingly, form tenacious biofilms

(Medina and Kadouri 2009).

H-I variants are isolated on a standard complete medium

where the vast majority of the isolates form small colonies

called ‘‘type I’’ (Seidler and Starr 1969b; Varon and Seijffers

1975). These colonies cannot be sub-cultured after initial devel-

opment unless a large inoculum is streaked to form tight and

small growing colonies or if the medium is supplemented with

an extract of prey cells (Gray and Ruby 1990). Under such

conditions, about 1 % of the isolates will forms large colonies
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that can be regrown in a density-independent manner on stan-

dard, un-supplemented medium, forming ‘‘type II’’ mutants

(Thomashow and Cotter 1992). ‘‘Type I’’ H-I mutants are cell-

extract dependent (they are saprophytic) and result from a single

mutation; ‘‘type II’’ H-I mutants do not require cell extract

(they are axenic) and result from an additional mutation, i.e.,

they are double mutants. Type I mutants arise at a frequency of

10�6 to 10�7 (Seidler and Starr 1969b; Varon and Seijffers 1975);

type II H-I mutants are selected from type I at a frequency of

10�2 to 10�3 (Thomashow and Cotter 1992). Strikingly, it has

been reported that H-I derivatives (type undefined) can

be obtained at a frequency of up to 10�2 (Dashiff and

Kadouri 2009). These data suggest that at least part of the

pathway leading to the axenic phenotype is mutation prone

and not based on single, random events. Genetic studies in

B. bacteriovorus addressed the genetic background for this

gradual acquisition of host independence, identifying the

genomic loci implicated in it (Cotter and Thomashow

1992a, b; Roschanski et al. 2011;Wurtzel et al. 2010). Deleterious

mutations in bd0108, a gene with no known function, lead to the

type I phenotype. Moreover, not all BALO forming H-I variants

contain bd0108 homologs in their genomes, and H-I mutants

with a WT bd0108 allele were isolated, thus indicating that other

gene products may underlie this phenotype (Lambert

et al. 2010a; Schwudke et al. 2001; Wurtzel et al. 2010). Type II

H-I mutants result from alterations in rhlB (bd3461) or pcnB

(bd3464). These two genes encode for distinct components of

the degradosome machinery, which is a multiprotein complex

involved in RNA turnover. A loss of function of each enables

progression from a type I to a type II H-I mutant (Roschanski

et al. 2011).

The identities of the prey molecules necessary for WT or

saprophytic growth are still not known. It has been shown that

prey extract is required for initiation of DNA synthesis in sapro-

phytic H-I mutants and in WT cells released from bdelloplasts. In

contrast, prey extract cannot promote de novo proliferation of

WT AP cells (Gray and Ruby 1990; Ruby and Rittenberg 1983;

Thomashow and Cotter 1992), suggesting that replication of WT

cells relies on two cues from the prey: one leading to a physiological

transition from AP to GP and another one activating DNA syn-

thesis (Gray and Ruby 1991). To date, the nature of the first cue is

not known. The second cue is soluble, heat stable, resistant to

RNase or DNase treatments, and fractionated over a wide range

of molecular masses (10 to >200 kDa) (Gray and Ruby 1990).

Saprophytic mutants overcome the need to sense the first cue;

axenic mutants surmount the requirement for the second cue as

well (Roschanski et al. 2011; Thomashow and Cotter 1992).
Cell Cycle Genetics

I. Phase transition. Each phase is characterized by different

gene and protein expression patterns and by characteristic

activities (Karunker et al. 2013; Lambert et al. 2010a;

McCann et al. 1998; Roschanski et al. 2011; Thomashow

and Cotter 1992) Work on H-I mutants and prematurely
released cells from bdelloplasts showed that the transition

between AP to GP necessitates sensing of two prey cues (Gray

and Ruby 1991; Roschanski et al. 2011; Thomashow and

Cotter 1992): the first being activated during attachment

(Thomashow and Cotter 1992), the second during growth

(Gray and Ruby 1990). Such programming is most likely

governed by distinct, master regulators whose modulations

afford a swift transition between the phases (Lambert et al.

2010a; McCann et al. 1998). In B. bacteriovorus FliA

(sigma 28) promoters are over represented upstream of AP-

specific genes. Flia by itself is overexpressed during AP. It is

thus reasonable to assume that FliA acts as an AP master

regulator (Karunker et al. 2013), been shown that RpoE-like

sigma factors in B. bacteriovorus are not essential but affect

predatory efficiency or regulate chaperonin levels (Lambert

et al. 2012). The heat shock response might be involved in

phase transition, as heat shock promotes axenic growth

(Gordon et al. 1993; Wang et al. 2011).

The prevalent secondmessenger molecule cyclic di-GMP

is implicated in lifestyle determination in many bacteria

(Mills et al. 2011) and BALOs are no exception. BALO

genomes encode for a plethora of cyclic di-GMP synthesizing

and degrading enzymes (diguanylate cyclases and phospho-

diesterases, respectively) as well as cyclic di-GMPand a single

cyclic di-GMP type I riboswitch (Karunker et al. 2013).

Cyclic di-GMP signaling has been shown to be essential in

determining WT and H-I phenotypes, as well as to affect

flagellar and glidingmotility in B. bacteriovorus (Hobley et al.

2012a). Such phenotypic differentiation is achieved by dif-

ferent sets of specific diguanylate cyclases (Hobley et al.

2012a) The cyclic di-GMP riboswitch is abnormally

expressed during AP and is down regulated during GP. Its

function is yet to be deciphered (Karunker et al. 2013).

II. Genetics, genomics, and post-genomics. High-throughput

transcriptome analyses were performed in the periplasmic

predator B. bacteriovorus and in the epibiotic predator

M. aeruginosavorus (Karunker et al. 2013; Lambert et al.

2010a; Wang et al. 2011). In all, global transcriptional

changes correlated with phase transition. Lambert et al.

2010a compared transcription profiles of AP, predatory

(i.e., 30 min post-prey infection) and host-independent

(H-I) B. bacteriovorus, and identified exclusively

overexpressed genes in each state. This enabled them to

confine subsets of genes (most of which unannotated) and

functions to the AP, the invasion phase and the GP. Motility

and taxis genes were overexpressed in the AP. Cell wall

metabolism, activation of transport systems, and early rep-

lication functions were expressed during the early stages of

predation. Macromolecule degradation, massive transport,

biosynthesis pathways, and DNA replication were expressed

in the H-I samples and inferred to be expressed in the GP.

Clearly, H-I mutants represented a transcriptional mosaic,

mixing profiles unique to the AP, to attachment and, prob-

ably, to the GP. These data thus support the hypothesis that

the mutations underlying the H-I phenotype essentially

lead to a cell cycle freed from regulatory constraints
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(Dori-Bachash et al. 2008; Roschanski et al. 2011;

Thomashow and Cotter 1992) Karunker et al. (2013) utilized

whole transcriptome sequencing to find large subset

of B. bacteriovorus genome exclusively expressed over

AP and GP. Here again, genes encoding for motility,

chemotaxis and cell surface proteins were upregulated in AP.

Genes overexpressed during GP are related to cell growth,

including ribosome biogenesis, cell division, DNA polymerase

and chromosome partitioning proteins, and energy

metabolism (Karunker et al. 2013). In the epibiotic

a-proteobacterium M. aeruginosavorus expression profiles

of AP and growth phase corresponded to those of the

periplasmic, d-proteobacterium B. bacteriovorus. Flagellar

and chemotaxis genes were upregulated in the AP, while

replication-associated genes and transport-related genes

were upregulated during attachment. Surprisingly, hydrolase

coding genes were found to be expressed constitutively

(Wang et al. 2011).
Transport

Secretion by BALOs relies on type I and type II (sec) systems

(not to be confounded with type I and type II H-I mutants) and

include the twin arginine targeting protein translocation (Tat)

system (Rendulic et al. 2004). Type III and type IV secretion

systems are absent. Protein secretion into the prey cytoplasm

is probably first accomplished via secretion into the prey

periplasm and then by retrotranslocation into the host

cytoplasm (Barabote et al. 2007). Another peculiar mechanism

is the embedding by B. bacteriovorus of predator OMPs onto

the prey cytoplasmic membrane, probably permeabilizing

it to small hydrophilic molecules (Barel et al. 2005;

Beck et al. 2004).

In B. bacteriovorus the Tat system is essential for growth of

WT and of H-I strains. Some of the system’s components are

specifically expressed during particular phases of the cell cycle

and appear to promote the transfer of proteins to the prey

cytoplasm (Chang et al. 2011).

BALO genomes encode for unusually large

inventories of transport systems (Barabote et al. 2007). The

d-proteobacteria Bdellovibrionaceae and Bacteriovoracaceae

bear numerous uptake systems for amino acids and peptides;

in contrast, none is detected in the epibiotic a-proteobacteria
Micavibrio aeruginosavorus (Hobley et al. 2012b; Rendulic

et al. 2004; Wang et al. 2011). BALOs have few

sugar transporters and depend on noncarbohydrate metabolism

for carbon and energy. B. bacteriovorus has three sugar perme-

ases, enabling the import of ribose, glycosides, maltose, and

malto-oligosaccharides (Hespell et al. 1973). In contrast,

many efflux pumps are found (Barabote et al. 2007). The

phosphoenolpyruvate-dependent sugar transporting phospho-

transferase system (PTS) is absent. Nucleotide uptake is

a rare trait in bacteria, mostly found in obligate parasites.

B. bacteriovorus is able to take up nucleotides, possibly through

two different systems (Barabote et al. 2007; Ruby and
McCabe 1986; Ruby et al. 1985). The M. aeruginosavorus

genome lacks nucleotide transporter coding genes (Wang

et al. 2011).
Energy Metabolism

In culture, BALOs do not enter stationary phase, and they are

continuously using energy at high rates, whether for high-speed

swimming or for growth and replication. During both phases,

endogenous and substrate respiration rates, which are seven

times higher than in E. coli (Hespell et al. 1973), lead to the

saturation of the functional capacity of either the tricarboxylic

acid cycle or the electron-transport chain (Hespell et al. 1973;

Rittenberg and Shilo 1970). BALOs are incapable of fermenta-

tion and de facto are unable to use sugars (Seidler and

Starr 1969a). They obtain energy (ATP) from amino acids,

some organic acids (acetate and a-ketoglutarate), and

polyhydroxyalcanoates (PHA) (Hespell et al. 1973; Martinez

et al. 2012). ATP turnover in B. bacteriovorus during endogenous

respiration is five times higher than in E. coli but similar during

substrate respiration, while P/O ratios under both conditions are

similar to these of E. coli (Gadkari and Stolp 1976). The ability of

BALOs to recycle prey material renders them extremely energy

efficient: GP B. bacteriovorus displays a YATP (biomass formed

per ATP consumed) of 26, compared with 10.5 for bacteria

cultivated in rich medium (Rittenberg and Hespell 1975 ).

The high respiration rates result in rapid energy depletion and

a typically short half-life for BALOs, e.g., a 95% loss in viability of

a cell suspension of B. bacteriovorus in 20 h Hespell et al. 1973).

This is due, at least in part, to BALOs’ energetically costly

vigorous swimming which uses 20–40 % of the total available

energy (Hespell et al. 1974). B. bacteriovorus exhibits a peculiar

mode of oscillatory energy production in the absence of an

exogenous substrate, by degrading its own cellular materials

(Gadkari and Stolp 1975). This pattern fits the observed pattern

of varying intensity – in contrast to constant rate – of RNA

degradation under starvation (Hespell et al. 1974).

Survival is extended by using respirable substrates like amino

acids, some organic acids, and PHAs. Lately, it has been shown

that B. bacteriovorus is able to depolymerize PHA made by its

prey and to use it to produce ATP (Hespell et al. 1973; Martinez

et al. 2012).

Some BALOs are able to overcome harsh environmental

conditions by entering a cyst-like state or, as shown with marine

BALOs, to transform the bdelloplast into a dormant state

(see above).
Taxonomy

Bdellovibrio and like organisms form a polyphyletic taxon which

is so defined for ease: the term describes all known obligate

predatory bacteria, endowed with high motility, and having

a basically two-phase life cycle composed of a search phase

and of a growth and division phase. BALOs are found in the
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a-proteobacteria, where they form the genus Micavibrio and in

the d-proteobacteria where they form three families: the

Bdellovibrionaceae, the Bacteriovoracaceae, and the Peridibac-

teriaceae (> Fig. 1.3).

The Bdellovibrionaceae contains one species, Bdellovibrio,

and two defined species, B. bacteriovorus and B. exovorus.

B. bacteriovorus HD100T and B. exovorus JSST differ in % mol

G+C content (50 % and 41 %, respectively) and diverge by 7 %

(i.e., they are 93 % similar) in their 16S rRNA gene sequence

(Koval et al. 2012). Yet, the major difference between the two is

in their predatory strategy: B. bacteriovorus is a periplasmic

predator, i.e., it penetrates and settles in the periplasmic space

of its gram-negative prey, but B. exovorus is epibiotic, remaining

attached to the prey’s cell wall (for details see the section ‘‘>The

BALOs’ Life Cycle’’). The Bdellovibrionaceae was defined as

encompassing nine clusters (Davidov and Jurkevitch 2004).

The advent of large-scale sequencing of environmental samples

revealed that the Bdellovibrionaceae tree splits into two clusters:

one encompassing all the sequences from cultured strains as well

as sequences from uncultured bacteria and another cluster with-

out any cultured representative. This latter group may thus

represent organisms that are different from the ‘‘classic’’

Bdellovibrio, maybe due to their inability to use the organisms

used so far as prey to isolate the predators (Koval et al. 2012).

The Bacteriovoracaceae is composed of 10 phylogenetic

clusters based on 96.5 % gene similarity in the 16S rRNA gene

sequence of environmental isolates (Pineiro et al. 2007). These

clusters are robust, as shown by further analysis of the rpoB gene

that enables finer subdivisions but retains the same clusters

(Pineiro et al. 2008). The family encompasses nine clusters

of the saltwater Bacteriovorax, with the defined species

Bacteriovorax marinus and Bacteriovorax litoralis (Baer et al.

2004), as well as one cluster of the freshwater/soil

Bacteriolyticum stolpii (Pineiro et al. 2008). The former has

a % mol G+C content of 37.7–38.3, and the latter of 41.8.

The Peridibacteriaceae were recently split as a monophyletic

offshoot of the family Bacteriovoracaceae based on a % mol

G+C content of 43.5 %, on its presence in freshwater and soil

but not in saline environments, and in marked differences in

16S rRNA gene sequence with both Bdellovibrionaceae and

Bacteriovoracaceae (Pineiro et al. 2008) (> Fig. 1.3).

Few, yet striking, relationships between phylogeny and

ecological parameters have been discovered: as mentioned

above, Bacteriovorax are found in salt waters, while Bdellovibrio,

Bacteriolyticum, and Peridibacter are freshwater and soil isolates.

More specifically, Bacteriovorax clusters are widely distributed,

but cluster V has been exclusively found in estuarine environ-

ments (Pineiro et al. 2007). Further, particular taxa appear to be

differentially associated with prey specificity: in prey spiking

experiments of natural water samples, it was shown that

Bacteriovorax cluster IX is a versatile predator, able to prey as

efficiently on various prey that other separate clusters specialize

on (Chen et al. 2011). It was further discovered that cluster IV,

consisting of predators that are predominantly isolated from

low-salt waters, is selected for by the addition of prey bacteria

originating from freshwater (Chen et al. 2012). In the
Bdellovibrionaceae, predators isolated using Agrobacterium

tumefaciens as prey, and originating from sources such as the

tomato rhizosphere and soils in Israel and soils in Germany and

India, formed discrete clusters, separated from clusters

containing isolates from many sources and using both various

enterobacteria and pseudomonads as prey (Davidov and

Jurkevitch 2004). These data strongly suggest that both prey

and environmental parameters shape BALO communities in

the environment.

Micavibrio is defined as two species: M. admirantus

(% mol G+C content 57.1 %), which only grows on Stenotro-

phomonas (Pseudomonas)maltophilia (Lambina et al. 1982), and

M. aeruginosavorus (% GC 54.7 M) which grows on various

enterobacteria and pseudomonads. Micavibrio forms a deep

branching clade in the a-proteobacteria, sister to the

Rhodospirillales (Davidov et al. 2006b; Wang et al. 2011). Very

few isolates and environmental sequences of Micavibrio are

available.
Habitat and Ecology

BALOs are widely distributed inmarine, freshwater, and terrestrial

ecosystems, including estuaries, seacoasts and oceans, rivers,

sewage, fish ponds, runoff of irrigation water, and man-made

water supplies (Davidov and Jurkevitch 2004; Framatico and

Cooke 1996; Fry and Staples 1976; Pineiro et al. 2007;

Schoeffield and Williams 1990; Snyder et al. 2002). BALOs

have been isolated from the gills of crabs, sediments, submerged

surfaces, soils, rice paddies, the rhizosphere of plants, and fish

ponds (Chu and Zhu 2009; Kelley et al. 1997; Uematsu 1980;

Williams et al. 1995) (Jurkevitch et al. 2000; Stolp and Starr

1963). They have been isolated from animal feces (Schwudke

et al. 2003) and detected as forming dominant populations in

the leech Hirudo verbana (Kikuchi et al. 2009). BALOs colonize

biofilms that form in aquatic habitats (Kelley et al. 1997), and

under lab conditions, they efficiently clear biofilms (Kadouri

and O’Toole 2005; Kadouri et al. 2007). As mentioned above

(see taxonomy section), salinity and, less so, prey range are

ecological factors that can be used to characterize BALO clades.

The abundance and diversity of BALO populations as

appraised by culture-based approaches appear to have been

largely underestimated. Indeed, first estimates of population

sizes using specific primers targeting the different BALO clades

have shown their abundance to be more than 2.5 orders of

magnitude higher than that detected by counting plaques (Van

Essche et al. 2009b; Zheng et al. 2008). A limited evaluation of

the relative abundance of BALOs, based on 16S rRNA gene

sequence distributions in a wide range of environments, showed

that the predators account in average for close to 0.2 % of

total bacteria (> Table 1.1). Similarly, culture-independent

technologies reveal that BALO diversity is much larger

than the one detected by the characterization of isolates

(Davidov et al. 2006a).

BALOs are able to consume the majority of gram-negative

cells present in natural water bodies (Rice et al. 1998). They were



. Fig. 1.3

All long (>1,200 bp), cultured rDNA 16S sequences of the order Bdellovibrionales were retrieved from the RDP-II database, and the 375

sequences were aligned using MUSCLE. The alignment was trimmed at both ends to eliminate artificial gaps and overhangs, resulting in

1,248 bp. Pairwise distances between the aligned sequences were calculated using MOTHUR (Schloss et al. 2009), with consequent

clustering which resulted in 38 operational taxonomic units (OTUs) at >97 % similarity between all sequences within each OTU.

A representative sequence was chosen for each OTU, either a type sequence or the non-type sequence which had the lowest average

pairwise distance to all the other members of the OTU. A phylogenetic tree containing the 38 representatives was inferred by the

Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei 1993) in MEGA5 (Tamura et al. 2011). Sequence names
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. Table 1.1

Relative abundance of Bdellovibrio and like organisms of the d-proteobacteria – families Bdellovibrionaceae, Bacteriovoracaceae, and

Peredibacteraceae – estimated by the distribution of 16S rRNA gene sequences in various environments. Metagenomic Sanger

sequences from environmental samples (obtained using general bacterial primers) were retrieved from the ENV division of GenBank on

August 2009. In silico recognition of the probes Bd529F, Bac676F, and Per676F (Davidov et al. 2006a) in the database was used to detect

sequences belonging to the genus Bdellovibrio, Bacteriovorax, and Peredibacter, respectively. Therefore, BALO percentages are probably

underestimated

Environment

Sequences (total, N) Sequences (BALO, %)Main Sub

Saline waters Open sea 11,512 0.64

Sediment 11,960 0.66

Coastal 7,829 0.09

Deep 2,949 0.12

Freshwaters Sediment 4,612 0.20

Wastewater 7,068 0.14

River 4,182 0.19

Lake 7,406 0.19

Aquifer 1,820 0.14

Wetlands 3,987 0.11

Oil – 1,707 0.21

Air – 3,938 0.11

Living host – 9,942 0.15

Terrestrial Rhizosphere 6,329 0.10

Rocks 3,833 0.17

Mines 5,476 0.12

Plants 3,500 0.11

Agricultural 16,333 0.09

Forests 7,346 0.10

Mangroves 3,446 0.11

Other soils 13,837 0.13

Thermal Hydrothermal 4,396 0.24

Geothermal 5,163 0.23

Total 148,571 –

Mean � standard deviation 6,460 � 3,890 0.19 � 0.15
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shown to move to spots of concentrated native aquatic bacteria

(Chauhan et al. 2009) and to respond to sudden increases or

‘‘spikes’’ in numbers of specific prey bacteria or consortia of

native microbial communities (Chauhan et al. 2009; Chen et al.

2011, 2012).

BALOs are considered as obligate aerobes but they

are commonly found in sediments (Williams 1988).

Recently, Monnappa et al. (2013) showed that B. bacteriovorus

successfully preyed under complete anoxic conditions as long as
Fig. 1.3 (continued) are comprised of GenBank accession number, s

The bootstrap consensus tree inferred from 200 replicates is taken to

corresponding to partitions reproduced in less than 50 % bootstrap r

the associated taxa clustered together in the bootstrap test (200 rep

with branch lengths measured in the number of nucleotide substitut
nitrate was supplemented. Nitrite reductase and nitrite

oxide reductase but not bona fide nitrate reductase genes

are found in B. bacteriovorus (Rendulic et al. 2004).

In Micavibrio, M. aeruginosavorus EPB but not strain ARL-13

encodes for a nitrate reductase complex (Pasternak et al. 2012).

Prey acquisition of resistance to BALO predation was shown

by Varon (1979), using a chemostat containing B. bacteriovorus

with its prey Photobacterium leiognathi (Varon 1979).

Also, Gallet et al. (2007, 2009) demonstrated that predation
pecies name, strain (if available), and (T) (if a type sequence).

represent the evolutionary history of the taxa analyzed. Branches

eplicates are collapsed. The percentage of replicate trees in which

licates) is shown next to the branches. The tree is drawn to scale,

ions per site
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pressure can lead to the selection of resistant prey but that the

type of resistance (moderate or extreme) depended upon the

ecological conditions under which selection occurred. In addi-

tion to such genetic resistance, it appears that prey may also

exhibit transient plastic responses in prey populations thereby

eradication preventing eradiction. However, resistance falters as

prey populations expend (Shemesh and Jurkevitch 2004).

Defense mechanisms may be triggered in predatory cultures:

Lambert et al. (2010b) reported a futile transcriptional ‘‘scream’’

of genes as a response to predation-induced osmotic stress in

E. coli cultures, 15 min postinfection with B. bacteriovorus.
Applications

The BALOs’ characteristic lifestyle makes them attractive

candidates for a number of applications: BALOs have been

proposed as living alternatives to chemical antibiotics(Sockett

and Lambert 2004), as agents for improving water quality in

aquaculture (Qi et al. 2009), as a means to control dental plaque

bacteria (Dashiff and Kadouri 2011; Van Essche et al. 2009a),

and as treatment of Salmonella-induced dysbiosis in

chickens (Atterbury et al. 2011). This follows older attempts

made to use BALOs in animal models: Nakamura (1972)

effectively treated Shigella flexneri-induced keratoconjunctivitis

in rabbit with Bdellovibrio, but BALO use against pathogens

in the intestinal tract of rabbits was unsuccessful (Westergaard

and Kramer 1977). Very few studies explored the potential of

BALOs against phytopathogens: BALOs efficiently eradicated

Xanthomonas oryzae from rice paddy field water and caused

a rapid decline in populations of Pectobacterium carotovorum

subp. carotovorum in soil (Uematsu 1980). BALO isolates

from the rhizosphere of soybean were used to control bacterial

blight caused by Pseudomonas glycinea (Scherff 1973).

Reduction in disease severity and systemic symptoms was

significant.

BALOs can also be employed as theoretical models for

understanding the evolution of the eukaryotic cell (Davidov

and Jurkevitch 2009; Guerrero et al. 1986); they also are

convenient empirical models for testing hypotheses pertaining

to ecological and evolutionary theories (Gallet et al. 2007, 2009;

Wilkinson 2007).
Isolation

BALOs are isolated as bacteriophages are, using a prey as ‘‘bait.’’

The sample, or serial dilutions of it, is mixed with a potential

prey bacterium in melted soft agar and poured onto an agar

plate containing a diluted growth medium. The bacterial

predator forms lytic, transparent plaques that have to be differ-

entiated from those formed by protozoa or bacteriophages.

A drawback is that only BALOs able to prey on the proposed

bacterium can be retrieved. As BALOs vary in host range, no

single bacterial species can potentially support the growth of all
isolates. However, Vibrio parahaemolyticus was shown to be an

effective host for the retrieval of Bacteriovoracaceae frommarine

environments (Pineiro et al. 2008). Another limitation of the

method stems from the presence of much higher levels of non-

predatory bacteria in the sample that can grow on the plate and

blur the detection of plaques.
Direct Isolation of Bdellovibrio from
Environmental Samples

The most common approach is based on the use of one or more

filtration steps with or without differential centrifugation of the

sample analyzed.

Based on Stolp (1981), a water sample or 50-g soil in 500 mL

in sterile buffer is shaken vigorously for 1 h and then centrifuged

for 5 min at 2,000 g to remove gross particles. The supernatant is

passed through a series of membrane filters of decreasing pore

size (3.0, 1.2, 0.8, and 0.45 mm). Filtrates from the last two steps

are serially diluted, and 100-mL aliquots are mixed with approx-

imately 109 cells of the prey bacterium in molten soft top

low-nutrient or buffer agar. The mixture is poured onto

a low-nutrient or buffer agar plate and incubated at 28–32 �C.
Rapidly developing lytic regions visible after 24 h are the result

of bacteriophage multiplication. These plaques are usually small

and do not grow further. They should be marked to

differentiate them from the slower-growing BALOs. Plaques

becoming visible within 2–3 days and showing further expan-

sion for a few more days are potentially BALOs (> Fig. 1.4).

Small and highly motile BALO cells can be detected by exami-

nation of crushed plaque material in wet mounts with a phase

contrast microscope.

Media. DNA: (diluted nutrient agar (Seidler and Starr

1969b)); 0.08 % Difco Nutrient Broth is supplemented with

CaCl2 · 2H2O, 2 mM, and MgCl2 · 6H2O, 3 mM after autoclav-

ing, and pH is adjusted to 7.2 with 0.1 N NaOH.

Bottom agar: 1.2–1.5 %. Top agar: 0.6 %.

Plating: Aliquots of 4-mL molten top agar are kept at 42 �C
in a water bath prior to mixing with prey and sample

suspensions.

Marine BALOs require salts to grow. Therefore, the

medium used for isolating marine strains should contain at

least 25 % sea water or appropriate salts (Marbach and

Shilo 1978). A common method used to isolate marine BALOs

is that of (Schoeffield and Williams 1990): 5 mL of the sample

is added to 3.3 mL of molten top agar having 0.7 mL of the

prey suspension for a final agar concentration of 0.65 %.

The mixture is then poured onto large Petri dishes and

incubated at 25 �C.
Media. Polypeptone (Pp 20) medium (Williams et al. 1982):

Filtered ocean water, 1 L; Polypeptone, 1 g; agar, 15 g for bottom

agar and 6.5 g for top agar; pH 7.7–7.8.

Synthetic marine salt solution (Marbach and Shilo 1978):

NaCl, 500 mM; KCl, 10 mM; MgSO4, 25 mM; MgCl2, 25 mM;

CaCl2, 10 mM.
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Lytic plaques of Bdellovibrio bacteriovorus growing on a lawn of

Pseudomonas corrugata prey cells
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Specific Enrichment for Bdellovibrio

Stolp (1968) devised a method yielding large numbers

of BALOs, thereby greatly facilitating the isolation of predators

on a specific host bacterium whenever quantification

is not needed. This approach has been applied to

obtain BALOs lytic to Rhizobium and Agrobacterium

(Parker and Grove 1970), Legionella (Richardson 1990), and

Azospirillum brasilense from 2-year-stored air-dried soils

(Germida 1987).

Based on Stolp, modified by Ruby (1991): One-hundred

milliliter aliquots of a dense suspension of the prospective prey

bacterium (1010 cells mL�1) are prepared in DNmedium or HM

buffer in Erlenmeyer flasks. The sample (soil, 100 mg; sewage,

0.5 mL; river water, 1 mL) is added and the flasks are incubated

on a rotary shaker. The suspension is examined daily over

2–4 days for lysis (reduction in optical density) and for the

presence of small, highly motile presumptive BALO cells or

bdelloplasts by phase contrast microscopy. If no BALOs

are apparent, the incubation can be prolonged or a 1-ml aliquot

can be transferred into a fresh suspension of substrate

bacterium. When BALOs are detected, the enrichment culture

is centrifuged for 5 min at 2,000 g (250 g) (Germida 1987)and

the supernatant filtered through a 0.45-mm membrane. Serial

dilutions are plated on the prospective prey bacterium to obtain

plaques. Developing plaques are checked microscopically for

small, highly motile cells.

HM buffer: Hydroxyethyl piperazine-N0-2-ethanesulfonic
acid, 25 mM adjusted to pH 7.6 with NaOH

and supplemented with CaCl2 · 2H2O, 1 mM and MgCl2 ·

6H2O, 1 mM.
Isolation and Cultivation of H-I Mutants

H-I BALOs are isolated by introducing WTattack phase cells in

a rich medium such as PYE (g L�1-peptone, 10; yeast extract, 3;

MgCl2, 3 mM; CaCl2, 2 mM; pH 7.4–7.6) without prey, selecting

for growing isolates. A drawback of this approach is the spurious

growth of residual prey cells in the medium. To overcome this

shortcoming, lytic suspensions are filtered through a 0.45 mm
membrane, efficiently separating BALO cells from prey

bacteria but resulting in low recovery rates (Shilo and Bruff

1965). An efficient approach utilizes streptomycin-resistant

(Smr) host-dependent isolates. After cultivation with a

streptomycin-sensitive prey, a lytic suspension containing Smr

AP cells is inoculated onto a complete medium amended with

streptomycin, allowing the growth of H-I mutants but

restricting that of the Sm-sensitive prey (Seidler and

Starr 1969b). Recently, Dashiff and Kadouri (2009) used prey

auxotrophic to diaminopimelic acid (DAP) that could not

grow in a complete medium devoid of DAP. They obtained

H-I mutants without filtration or selection for antibiotic resis-

tance at a very high frequency (up to 10�2) (Dashiff and

Kadouri 2009).

Mutants can grow as a suspension or form yellowish

colonies on a solid medium. Saprophytic (type I) H-I mutants

are essentially cultured with buffered heat-killed prey bacteria

(109 CFU mL�1, MgCl2, 3 mM; CaCl2, 2 mM, HEPES

or DNB, pH 7.4–7.6) or on PYE medium amended with cell

extract (usually derived from prey bacteria, 0.3 mg mL�1

protein). Both media are suitable for liquid as well as for

agar-based growth. Type I H-I mutants cultivated on heat-killed

prey have to be laid over a semisolid medium using

the double-layer agar plating (Schwudke et al. 2001).

Colonies are then surrounded by clear halos (Roschanski

et al. 2011).
Growth Requirements

With axenic mutants at hand, the minimal nutritional require-

ments of BALOs can be addressed. Ishiguro (1974) successfully

developed a chemically defined medium for axenic B.

bacteriovorus consisting of (g L�1): Na2HPO4, 7; KH2PO4, 3;

NaCl, 0.5; MgSO4, 0.2; NH4Cl. Mutants were capable of assim-

ilating ammonium and required no additional vitamins. Various

amino acids, organic acids, and glycerol – but no sugars – were

utilized to different efficiencies.
Conclusions

The field of predatory interactions between bacteria,

as represented by studies of the Bdellovibrio and like organisms,

has been revived in the past decade by the interest

of new research groups and the introduction of modern

molecular biology, genetics, and genomics technologies.
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These have enable to gain a much more detailed understanding

of the taxonomy and phylogeny of this diverse group, to

appreciate the intricate molecular mechanisms at play during

the cell cycle of these fascinating bacteria as well as of

their genomic particularities. Based on these significant

advances, novel applications of predatory bacteria in medicine,

agriculture, and environmental sciences may now become a

reality.
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