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Abstract. Programmers often need to initialise circular structures of objects. Ini-
tialisation should be safe (so that programs can never suffer null pointer exceptions
or otherwise observe uninitialised values) and modular (so that each part of the
circular structure can be written and compiled separately). Unfortunately, existing
languages do not support modular circular initialisation: programmers in practical
languages resort to Tony Hoare’s “Billion Dollar Mistake”: initialising variables
with nulls, and then hoping to fix them up afterward. While recent research lan-
guages have offered some solutions, none fully support safe modular circular
initialisation.

We present placeholders, a straightforward extension to object-oriented lan-
guages that describes circular structures simply, directly, and modularly. In typed
languages, placeholders can be described by placeholder types that ensure place-
holders are used safely. We define an operational semantics for placeholders, a type
system for placeholder types, and prove soundness. Incorporating placeholders
into object-oriented languages should make programs simultaneously simpler to
write, and easier to write correctly.

1 Introduction

Imagine writing the top level of a simple web application, with a database access DBA
component, a Security component, an SMS component able to send SMS text messages
and finally a GUI component for user interaction. The security component needs to access
the database (to retrieve user authorisation records), while the database needs to access
the security component (to ensure users only access data they are authorised to view);
the GUI component needs access to the SMS component (to send messages) and the
SMS component needs access to the database to log received/sent messages; finally the
database needs to update the GUI component whenever a change happens (for example to
display received SMS messages). This system has a number of circular dependencies: the
database needs the security system, which needs the database, which needs the security
system; the GUI component needs the SMS component, which needs the database access,
which needs (to update) the GUI component; and on ad infinitum.

How can programs initialise such a structure? The obvious code is obviously wrong:
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Security s=new Security(dba);
DBA dba=new DBA(s,gui);
SMS sms=new SMS(s,dba);
GUI gui=new GUI(sms,dba,s);

attempting to initialise the security system with the database before the database itself
is constructed. In languages designed in the last twenty years or so, this “uninitialised
variable” error should be caught statically or dynamically; in older languages, this will
be caught as a null pointer exception (if we are lucky) or by initialising the security
system with the contents of the uninitialised dba variable (if we are not).

The traditional solution relies critically on Tony Hoare’s “Billion Dollar Mistake”:
null pointers [12]. We initialise the security system with a null pointer, instead of a
database, then initialise the database with the now-extant security subsystem, and then
use a setter method to link the database back to the security system:
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s Security s=new Security(null);
DBA dba=new DBA(s,null);
s.setDatabase(dba);
SMS sms=new SMS(s,dba);
GUI gui=new GUI(sms,dba,s);
sms.setGUI(gui);
dba.setGUI(gui);

More sophisticated versions of this approach may use dependency injection frameworks,
writing XML configuration files rather than code, decoupling configuration from the
code itself; or (monadic) option types rather than raw nulls, avoiding null pointer errors
at the cost of enforcing tests of every access to every potentially uninitialised variable
throughout the program.

1.1 Placeholders

We address this problem by introducing placeholders. A placeholder, as the name sug-
gests, is a proxy or a stand-in for an uninitialised, as yet nonexistent object. Placeholders
are created in placeholder declarations. A single placeholder declaration can declare
and initialise the entire GUI/Database/SMS system:
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Security s=new Security(dbadbadba),
DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss);

Placeholder declarations differ from the Java-style declarations shown earlier in two
ways. Syntactically, a series of initialisation clauses are separated with commas (,).
Programs can pass variables — placeholders, in fact — declared anywhere in the same
placeholder assignment statement as arguments to any constructors within the same
statement. In the code above, these placeholders are shown with a red background.

Semantically, placeholder declarations are evaluated in three phases (see Fig.1). First,
a placeholder is created and bound to each declared placeholder variable. Second, the
right-hand sides of each declaration (the initialisers) are run in turn, top to bottom,
creating the actual objects that will be used in the rest of the program. Third, all pointers
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to placeholders are redirected to point to the objects whose places they are holding. This
redirection includes all variable bindings, so at the end of the third phase, all the variables
are bound to the actual objects created in the second stage. At this point, execution of
the placeholder declaration is complete, and the program can continue.
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Fig. 1. Initialisation with placeholders

A key feature of placeholders and placeholder declarations is that they have minimal
impact on the rest of the program. Placeholders are lexically scoped, limited in extent
to the execution of the enclosing placeholder declaration. Placeholder declarations as a
whole have well defined imperative semantics — important if any of the initialisers have
side effects — as they are simply executed in the order in which they are written.

Placeholders are also flexible. For example, to avoid hard wiring classes into client
code, programmers and languages are adopting the object-algebra style, where a platform
object provides a single point of configuration [15,3]. Client code requests classes from
the platform object, and then instantiates those objects indirectly:
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Platform p = ...; // p is a factory aka object algebra

Security s=p.makeSecurity(dbadbadba),
DBA dba=p.makeDBA(ss,guiguigui),
SMS sms=p.makeSMS(ss,dbadbadba),
GUI gui=p.makeGUI(smssms,dbadbadba,ss);

This more complex creation style also works well with placeholders — the only dif-
ference is that placeholders are passed into factory methods [7], rather than directly
into constructors. Overall, placeholders support circular initialisation of independent,
encapsulated, modules, without any null pointers — the components to be created and
initialised need only to present a factory interface where placeholders may be passed
into some arguments. More than this: because placeholders can displace nulls for field
initialisation, a programming language with placeholders can do without traditional
Hoare-style null values entirely.

Unfortunately, placeholders are not by themselves a complete solution to the circular
initialisation problem. Placeholders can replace nulls, allowing programs to create
circular structures idiomatically. Placeholders are not accessible outside the lexical scope
of their placeholder declaration, but placeholders have to be accessible inside the scope of
their declarations, so that they can be used to configure other components. The problem
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is that placeholders are placeholders, not actual objects, indeed the object to which they
will refer may not have been created when the placeholder is used. Here’s a slightly
modified example, where the security system is configured last, and where it attempts to
retrieve the DBA component via the GUI component, rather than from the dba variable.
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DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss),
Security s=new Security(guiguigui.getDBA());

To a first approximation, this code could reasonably be expected to work: when the GUI
component is created, in phase 2 of the execution of the placeholder declaration, it will
have received the placeholder for the DBA component, so a getDBA accessor method
called on the DBA object should just return that placeholder. Indeed, a call on the DBA
object would do just that. Unfortunately, at phase 2, all references are to placeholders,
not to objects — note that the first three lines happily initialise the DBA, SMS, and GUI

components with s, which must be a placeholder for the security component as the
security component has not yet been created.

So what can we do when a method is requested on a placeholder — effectively a
nonexistent object — rather than the object that has yet to come into being? Well, in the
absence of time-travel, we treat this as a programmer error, and throw a PlaceholderEx-
ception. Placeholders, after all, are not objects, they are just placeholders for objects.
This rationale is also why we do not replace references to placeholders until all the
object are created and initialised: we wish to avoid partially initialised objects as much
as possible.

This means we have jumped out of the frying pan and into the fire. Rather than
having just one distinguished “null” pseudo-object that can be used to manage object
initialisation (and for many other purposes) we have created a vast number of place-
holder pseudo-objects, access to any one of which terminates program execution with
a PlaceholderException just as surely as a null terminates a program with a NullPoint-
erException.

1.2 Placeholder Types

To solve the problem of the PlaceholderExceptions (that replace NullPointerExceptions),
we provide a static type system with support for Placeholder Types. This type system
guarantees that references to (potential) placeholders may only be accessed once they
have been replaced with actual objects.

Placeholder types are a small addition to standard Java-like type systems. A reference
of placeholder type may refer either to objects or to placeholders of the underlying object
type — we will write C’ for the placeholder type corresponding to an object type C. The
types in the remainder of the system (we term them “object types” where it is necessary
to distinguish) are essentially standard Java types: they accept objects, but do not accept
placeholders; nor do they accept null pointers — indeed, there are no null values at
all in our formal system. A reference of object type always refers to an instance of the
declared type, never to a placeholder.

Because of the limited scope and lifetimes of the placeholders themselves, placeholder
types are required only in a very small part of most programs — the placeholder declara-
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tions, constructors, and factory methods used to create and initialise components. Within
the actual body of a placeholder declaration, the declared variables are all interpreted as
having placeholder types, while after the end of the placeholder declaration — but while
those variables are still in scope — the declared variables have object types. This follows
directly from the semantics of the placeholder declarations: in phase 1, placeholders are
bound to all the declared variables, while at the end of phase 3, all those placeholders
have been replaced by actual objects, so that variables that were holding placeholders
now refer to those actual objects.
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DBA dba=new DBA(ss,guiguigui),
SMS sms=new SMS(ss,dbadbadba),
GUI gui=new GUI(smssms,dbadbadba,ss),

// ‘‘guigui‘gui’’ has placeholder type ‘‘GUI’GUI’‘ ’’’ within
// placeholder declaration statement

Security s=new Security(guiguigui.getDBA());
// guiguigui.getDBA() here is a type error,
// cannot request methods on placeholders

gui.getDBA();
// after the end of the placeholder declaration
// gui has object type ‘‘GUI’’ --- it cannot be
// a placeholder, so method requests are permitted

To prevent PlaceholderExceptions from being raised when methods are requested from
placeholders (instead of objects) we forbid placeholder types in the receiver position (“be-
fore the dot”) of any method requests. This rule prevents calls like “guigui“g“ i.getDBA())”
within the body of the placeholder declaration itself (before the first semicolon “;”),
when “guigui“g“ i” has placeholder type “GUI’GUI’“ ’”. After the end of the placeholder declaration
— but within the block where the declared names are visible — “guigui“g“ i” has object type
“GUI” and may receive method requests.

To keep the overall system simple, we further restrict placeholder types. Placeholder
types may only appear as parameters or return values from methods, or parameters to
constructors: they may not appear as types of objects’ fields. The aim here is to ensure
that placeholders do not escape from the lexical context of their placeholder declarations,
so that all the objects created with those placeholders are fully initialised at the end
of their placeholder declaration. These restrictions are liberal enough to permit many
kinds of factory methods and object algebras. For example, here is code implementing
the makeSecurity method in the Platform object factory (object algebra) discussed
earlier:
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Security makeSecurity(DBA’DBA’’ dbadbadba) {
return new Security(dbadbadba);

}
}

Here the makeSecurity factory method takes a DBA’DBA’’ placeholder type and passes it
as an argument to the underlying constructor. This is permitted by the rules on the use
of placeholder types, while invoking a method on dbadbadba, or storing it into a field is not
permitted, as that could lead to a PlaceholderException, sooner or later.
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These rules are necessarily subtle, especially when objects are created that are ini-
tialised by placeholders. These partially initialised objects will only become fully ini-
tialised when those placeholders themselves become fully initialised. Partially initialised
objects do not have placeholder types — in particular, they may be returned as object
types — but they are treated as if they were placeholders until they are returned. Consider
the following version of the Platform class:
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class DifferentPlatform {
Security makeSecurity(DBA’DBA’’ dbadbadba) {
ExternalSecurity xxx = new ExternalSecurity(dbadbadba);
xxx.validate();
//x/x/x/ .validate here is a type error
//cannot request methods on partially initialised objects
if (/*high security needed*/)return highSecurity(x);
else return xxx;
//this is not a type error
//may return partially initialised objects

}
}

Here we create a new object, initialised with a placeholder, and store that in the local
variable x. This variable is not a placeholder type — we can return it as an object type
— even though it refers to a partially initialised object. We know this object is partially
initialised because its value comes from an expression that has a placeholder (dbadba(dba)
passed in as an actual argument. Within this method, we treat x as a placeholder, so
we can pass this partially initialised object as a placeholder typed argument to another
method (as Security highSecurity(Security’ s)), but we cannot call methods
upon it.

Partially initialised objects are safe because they are treated as if they were place-
holders until they are fully initialised. Partially initialised objects can only be passed
as placeholder typed arguments, and so they will be treated as full placeholders by any
methods into which they are passed. When partially initialised objects are returned from
methods (as object types) if that method was called with placeholder arguments, then
that returned value will also be treated as partially initialised.

Finally, in order to be able to actually initialise fields of objects, we have to treat
placeholder types in constructors slightly differently from elsewhere (of course, con-
structors already have special privileges in Java-like languages, notably to be able to
initialise final fields. The special case within constructors is that we can initialise a field
of object type T with an expression of placeholder type T’ — because of our restrictions
on placeholder types, any such placeholder must have been passed in as an argument to
that constructor.

cl
a

ss
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ec
l class Security {

DBA dbaComponent;
Security(DBA’DBA’’ dbadbadba) {this.dbaComponent=dba;}

}

To maintain soundness, we cannot read values back from fields in constructors, other-
wise we could attempt to request a method from a placeholder stored in a field with
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p ::= cd id program
cd ::= classC implementsC{ fd k md} class declaration
id ::= interfaceC extendsC{ mh;} interface declaration
fd ::= C f ; field declaration
k ::= C(C1’ f1, . . .,Cn’ fn){ this.f1=f1; . . .;this.fn=fn;} constructor
mh ::= T m(T x) method header
md ::= mh e method declaration
e ::= x | e.m(e) | newC(e) | e.f | e1.f =e2 | ι expressions

| xe1, . . .,xen;e place holder declaration
xe ::= T x = e variable initialisation
v ::= ι | x value
μ ::= ι �→ C (f1 = v1, . . . , fn = vn) memory
T ::= C | C’ type

Fig. 2. Syntax

an object type which ostensibly does not permit placeholders. On the other hand, since
placeholder types can refer to objects (of the appropriate type) as well as placeholders,
this constructor and the above object factory can always be called passing in actual
objects, rather than placeholders, if the programmer has them to hand.

1.3 Contributions

This paper makes two main contributions: first, placeholders and placeholder declara-
tions, and second, placeholder types. Placeholders support idiomatic, modular, circular
initialisations of complex object structures, while placeholder types ensure placeholders
are only used safely, and so will never cause a PlaceholderException.

The rest of this paper is structured as follows. Section 2 presents the FJ’language and
its formalisation and Section 3 gives the details of the type rules and states the main
soundness theorems. Section 4 demonstrates the expressiveness of FJ’by presenting
a selection of more complex examples, and then Section 5 discusses implementation
considerations for supporting placeholders in a Java-like setting. Section 6 overviews
related work and Section 7 concludes. The accompanying technical report presents the
proofs for our formal system and a more extensive discussion of placeholders [17].

2 Syntax and Semantics of FJ’

Syntax
The syntax of FJ’is shown in Figure 2. We assume countably infinite sets of variables x ,
object identifiers ι, class or interface names C , method names m , and field names f . As
in FJ [13] variables include the special variable this.

Classes and interfaces. A program p is a set of class and interface declarations. A
class declaration consists of a class name followed by the set of implemented interfaces,
the sequence of field declarations, a conventional constructor and the set of method
declarations. To keep the presentation focused on the problem of circular initialisation,
we do not consider class composition operators like the extends operator in Java.
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An interface declaration consists of an interface name followed by the sets of extended
interfaces and method headers. As one can see, for simplicity, we use interfaces to
provide subtyping, i.e. there is no subtype relation between classes. Field declarations
are as in FJ. To simplify the formalisation, constructors (k ) are standard conventional
FJ constructors, taking exactly one parameter for each field and only initialising fields.
Method declarations are composed of a method header and a body. The method header
is as in FJ. Since only fully initialised objects can be receivers, the implicit parameter
this is always of a fully initialised object type. As in FJ, method bodies are simply
expressions. We omit the return keyword in the formal definition but we insert it in the
appropriate places in the examples to aid readability.

Expressions. Expressions are variables, method or constructor calls, field access, field
update, object identifiers (within run time expressions), and finally, placeholder declara-
tions. Variables can be declared in method headers or inside expressions. An expression
is well-formed only if the same variable is not declared twice. Hence, we have no con-
cept of variable hiding. Placeholder declarations are a sequence of variable initialisation
clauses separated by comma (,) and an expression terminated by semicolon (;). Note
that the order of variable initialisations is relevant since it induces the order of execution
for the sub-expressions. The order is also relevant in sequences of field declarations and
parameter declarations.

Syntax for placeholders. In a closed expression an occurrence of x is a placeholder
only if it is inside a placeholder declaration declaring local variable x , and before the
semicolon. That is, any placeholder declaration with a variable initialisation clause
T x=... can contain the placeholder x inside its initialisation expressions, and (as usual)
the variable x inside its terminating expression.

Values and memory. Values are object identifiers ι or placeholders x . Note that values
do not include null and we have no default initialisation. Placeholders are replaced by
object identifiers when placeholder declarations are reduced. Thus final values are only
object identifiers.
A memory is a finite map from object identifiers to records annotated with a class name.
For example, a computation over the program “class C{C f;C(C’ f){this.f=f;}}”,
can produce the memory “ ι1 �→ C(f=y), ι2 �→ C(f=ι1), ι3 �→ C(f=ι3) ”, containing
three object identifiers for objects of class C: }

– ι1 refers to an object containing a single field named f pointing to the placeholder y,
– ι2 refers to an object containing a single field named f pointing to ι1. Thus, ι1 and ι2

denote two partially initialised objects: objects containing a placeholder or another
partially initialised object where a fully initialised object is expected.

– ι3 denotes an object containing a single field named f, referencing to ι3 itself. Thus
ι3 is a fully initialised object.

A memory is well-formed with respect to a program if the fields of the records are exactly
the fields declared inside the corresponding classes. (Note that a well formed memory
may not be well typed, see rule (MEM-OK)).
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μ1μ1 | e1 →μ2μ2 | e2
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) μ1μ1 | e1 →μ2μ2 | e2

μ1μ1 | E [e1]→μ2μ2 | E [e2]
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S
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μμ | ι.f →μμ | v
with

μ(ι).f = v
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μμ | ι.f =v →μ[ι.f = v ]μ[ι.f = v ] | v
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)

μμ | newC(v1, . . .,vn)→μ, ι �→ C (f1 = v1, . . . , fn = vn)μ, ι �→ C (f1ff = v1, . . . , fnff = vn) | ι
with

ι /∈ dom(μ)

p(C ) = classC implements _{ _ f1; . . .;_ fn;md}

(M
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)

μμ | ι.m(v1 . . . vn)→μμ | e[x1 = v1, . . .,xn = vn,this= ι]
with

μ(ι) = C(_)
p(C ).m = _m(_ x1, . . .,_xn) e
v1 . . . vn ∩ dom(var(e)) = ∅

(I
N

IT
)

μμ | T1 x1 = v1, . . .,Tn xn = vn;e→μ[x1 = v1 . . . xn = vn]μ[x1 = v1 . . . xnxx = vn] | e[x1 = v1 . . . xn = vn]
with

x1 . . . xn ∩ v1 . . . vn = ∅
Fig. 3. Reduction rules using memory

Types. are composed of a class name C and an optional quote (’ ) sign. We assign type
C’ (placeholder type) to placeholders and type C (object type) to objects of class C . C
is a subtype of C’.

Expressions of type C reduce to objects (either partially or fully initialised), while
expressions of type C’ can also reduce to placeholders. Fields can only be of object type
C , and field access is always guaranteed to return a fully initialised object.

Subtyping
Our subtyping is the normal Java subtyping, with the addition that a placeholder type is
a subtype of the corresponding object type. Formally:

– C1 ≤ C2 if p(C1) = classC1 implementsC , _{ _} and C ≤ C2

– C1 ≤ C2 if p(C1) = interfaceC1 extendsC , _{ _} and C ≤ C2

– T ≤ T
– C1

’ ≤ C2
’ and C1 ≤ C2

’ if C1 ≤ C2

Reduction
Reduction is defined in the conventional way as an arrow over pairs consisting of a memory
and an expression. The only novelty is rule (INIT). To improve readability we will mark
memory in greygrey. A pair μμ | e is well-formed only if all the placeholders contained in the
memory μ are bound by the local variables declared inside the expression e; that is, a
memory with placeholders without an associated expression is meaningless.
We omit the formal definition of the evaluation context, assuming a standard deterministic
left-to-right call-by-value reduction strategy.
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Figure 3 defines the reduction arrow. Rule (CTX) is standard, however note that alpha-
conversion can be needed to ensure the well-formedness of the resulting expression. Rule
(FACCESS) models conventional field access. It extracts the value of field f from object ι
using the notation μ(ι).f . Rule (CONSTRUCTOR) is the standard reduction for constructor
invocations, and rule (METH-INVK) models a conventional method call. We assume a
fixed program p and we use notation p(C ).m to extract the method declaration.

We use the notation e[x1 = v1, . . . , xn = vn] for variable substitution, that is, we simul-
taneously replace all the occurrences of xi in e with vi. The last side condition ensures that
no placeholder inside the set of values v1 . . . vn is accidentally captured when injected
inside the expression e . Alpha-conversion can be used to satisfy this side condition. From
any expression it is possible to extract a map from placeholders to their declared type,
denoted by var(e). Formally:
var(ι) = ∅, var(x ) = ∅, var(e.m(e)) = var(e), var(e), and
var(T1 x1 = e1, . . . ,Tn xn = en;e0) = x1:T1, . . . , xn:Tn, var(e0), . . . , var(en).

Rule (INIT) reduces placeholder declarations. Just as e[x = v ] denotes simultaneous
replacement of variables with values, we use the analogous notation μ[x = v ] to denote
simultaneous replacement of placeholders with values. Formally: [x = v ] = ∅ and (μ, ι �→
C (f1 = v1, . . . , fn = vn))[x = v ] = μ[x = v ], ι �→ C (f1 = v1[x = v ], . . . , fn = vn[x = v ]).

Note how a normal variable declaration is just a special case of our placeholder decla-
ration, where only one local variable is declared, the placeholder is not used and, thus,
the placeholder replacement is an empty operation. Rule (INIT)’s side condition verifies
that meaningless terms like T x=x;x are stuck.

To understand the details of the semantics of placeholders, consider the following
example:

–
F

J’
–

class A{B myB;A(B’ myB){this.myB=myB;}}
class B{A myA;B(A’ myA){this.myA=myA;}}
...
A a=new A(b), B b=new B(a); a

We show how to evaluate that expression in the empty memory.
[0] ∅∅ A a=new A(b), B b=new B(a); a Starting point

[1] ι1 �→ A(myB=b)ι1 �→ A(myB=b) A a=ι1, B b=new B(a); a (CTX) + (CONSTRUCTOR)

[2]
ι1 �→ A(myB=b)
ι2 �→ B(myA=a)
ι1 �→ A(myB=b)
ι2 �→ B(myA=a) A a=ι1,B b=ι2; a (CTX) + (CONSTRUCTOR)

[3]
ι1 �→ A(myB=ι2)
ι2 �→ B(myA=ι1)
ι1 �→ A(myB=ι2)
ι2 �→ B(myA=ι1)

ι1 (INIT)

– We start in state [0], and in the first step an instance of class A is created.
– In state [1], the memory contains a partially initialised object of type A containing

placeholder b instead of a reference to an object of type B. The reference correspond-
ing to the placeholder b is still unknown. Placeholders are not objects, and thus there
is no reference in the memory pointing directly to a placeholder. You can now see
that values are object identifiers ι or placeholders x .

– In the second step the instance of class B is created. In state [2] ι1 and ι2 are partially
initialised objects. Note how placeholders inside the memory are bound by the local
variables declared inside the placeholder declaration.
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– The third step concludes the initialisation, and in state [3] ι1 and ι2 are fully initialised
objects. The placeholders are replaced by objects when placeholder declarations
are reduced. That is, when the control reaches the semicolon, all the placeholders
declared in that placeholder declaration are consumed; every occurrence of such a
placeholder in the memory is replaced with the corresponding value.

3 Type System of FJ’

Our definition of reduction introduces two stuck situations that are novel in FJ’: (1)
method call (or field access) over a placeholder receiver, and (2) declarations of the
form T x = x.

Our placeholder type system must prevent both these situations. For the first case,
while it is clear that we need to forbid method invocation or field access on placeholders,
there could be different strategies to ensure safety while manipulating partially initialised
instances (objects containing placeholders in their reachable object graph). We believe that
in this case the simplest solution is also the right one: to forbid any method invocation

or field access over partially initialised objects, as we do for placeholders.
The solution for the second case relies on the distinction of placeholder types and

object types: it is not possible to initialise a local variable or method parameter of object
type with an expression of placeholder type, while a constructor can initialise a field
with a placeholder.

Limitations over Parameters and Conventional Expression Typing Rules
We permit method parameters to have placeholder type — any factory method allowing
circular initialisation needs to have at least one parameter with placeholder type. To
ensure that a placeholder is never dereferenced, a method invocation must provide a fully
initialised object for any parameter of object type (including the receiver), while either
fully initialised objects or placeholders may be provided to parameters of placeholder
type.

In FJ’, any closed expression of type C is guaranteed to reduce to a fully initialised
object, while any expression using a placeholder could reduce to a partially initialised
object. We say that an expression using a placeholder depends on that placeholder. Local
variable declarations makes the reasoning a little bit more involved: any expression using
a variable that depends on a placeholder, also depends any other placeholders that their
placeholder declaration depends on. Consider the following code:

-
F

J’
-

class C{ C x; C(C’ x){this.x=x;} void m(){...} }
void example(C’ x){

//new C(x).m();//wrong: receiver depends from placeholder x

C y=new C(x);
//y.m();//wrong: receiver depends from placeholder x through variable y

C z=new C(z);
z.m();//correct

C z1=new C(z2), C z2=new C(x);
//z1.m();//wrong: z1 is declared together with z2, both depend on x
}
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Γ ;Σ � e : T
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Γ ;Σ � x : Γ (x)
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)

Γ ;Σ � ι : Σ(ι) (M
E

T
H

-I
N

V
K

-T
) objectTypes(Γ );Σ � e0 : C0

∀i ∈ 1..n such that Ti = Ci : objectTypes(Γ );Σ � ei : _ ≤ Ci

∀i ∈ 1..n such that Ti = Ci
’ : Γ ;Σ � ei : _ ≤ Ci

’

Γ ;Σ � e0.m(e1, . . .,en) : T

with
p(C0).m = T m(T1 x1, . . .,Tn xn) _

(N
E

W
-T

)

∀i = 1..n : Γ ;Σ � ei : _ ≤ Ci
’

Γ ;Σ � newC(e1 . . . en) : C

with
p(C ) = classC implements _{ C1 _; . . .;Cn _;md}

(F
A

C
C

E
S

S
-T

) objectTypes(Γ );Σ � e0 : C0

Γ ;Σ � e0.f : C1

with
p(C0)=classC0 implements _{ _C1 f ; _}

(F
U

P
D

A
T

E
-T

) Γ ;Σ � e0 : C0

objectTypes(Γ );Σ � e1 : C1

Γ ;Σ � e0.f =e1 : C1

with
p(C0)=classC0 implements _{ _C1 f ; _}

Fig. 4. Typing rules for expressions

FJ’constructors can be called using expressions of placeholder type as parameters, and
then initialise fields of object type. Consider the following code:

-
F

J’
-

class A { B myB; A(B’ myB){this.myB=myB;} }
class B { A myA; B(A’ myA){this.myA=myA;} }
...
A a = new A(b), B b = new B(a);

Observe that we invoked the constructors of A and B by passing placeholders that then
initialise fields of object type.

Typically, a constructor for A produces a fully initialised instance of A when a fully
initialised instance of B is provided. FJ’extends this behaviour so that a partially initialised
object is returned instead of a fully initialised object when either a partially initialised or
a placeholder argument is supplied to a constructor call.

Figure 4 shows the rules for expressions that capture the discussed discipline. The
typing judgement for expressions uses the following environments:
Γ ::= x :T variable environment
Σ ::= ι:C memory environment
Variable environment Γ is a map from variable names to types. Memory environment Σ
is a map that for any location stores its class name C . A type judgement is of the form
Γ ;Σ � e : T , where Γ is needed to type expressions with free variables or placeholders,
and Σ is needed to type expressions with locations.

Rules (VAR-T) and (ADDR-T) are standard and straightforward. Rule (METH-INVK-T)
uses notation objectTypes(Γ ) to restrict the environment to the object types. Formally:
objectTypes(x :C ) = x :C and objectTypes(x :C’ ) = ∅. Every expression well typed in
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Γ ;Σ � e : T
(V

-D
E

C
-N

)

∀i = 1..n with Ti = Ci : objectTypes(Γ );Σ � ei : _ ≤ Ti

∀i = 1..n with Ti = Ci’ : Γ ;Σ � ei : _ ≤ Ti

Γ, x1:T1, . . . xn:Tn;Σ � e : T

Γ ;Σ � T1 x1 = e1, . . .,Tn xn = en;e : T

(V
-D

E
C

-C
) ∀i = 1..n : objectTypes(Γ ), x1:C1’ , . . . xn:Cn’ ;Σ � ei : _ ≤ Ci

Γ, x1:C1, . . . xn:Cn;Σ � e : T

Γ ;Σ � C1 x1 = e1, . . .,Cn xn = en;e : T

(V
-D

E
C

-O
)

∀i = 1..n : Γ, x1:C1’ , . . . xn:Cn’ ;Σ � ei : _ ≤ Ci

Γ, x1:C1, . . . xn:Cn;Σ � e : T
Γ, x1:C1’ , . . . xn:Cn’ ;Σ � e : _

Γ ;Σ � C1 x1 = e1, . . .,Cn xn = en;e : T

Fig. 5. Typing rules for placeholder declarations

objectTypes(Γ ) denotes a fully initialised object. Thus, rule (METH-INVK-T) requires
(premise one) the receiver and (premise two) all actual arguments to formal parameters
of object type to be fully initialised objects, and (premise three) permits actual arguments
to formal parameters of placeholder type to be placeholders or partially initialised objects
and well as fully initialised objects. Note how we use notation Γ ;Σ � e : T1 ≤ T2 as a
shortcut for Γ ;Σ � e : T1 and T1 ≤ T2. Note that the last (_) in the side condition of
(METH-INVK-T) could be either a method body or a semicolon, depending on C0 being a
class or an interface. Rule (NEW-T) is conventional but accepts arguments of placeholder
types. Rules (FACCESS-T) and (FUPDATE-T) ensure that fields can be accessed and
updated only using fully initialised objects.

Placeholder Declaration Typing Rules
Figure 5 contains metarules for placeholder declarations. We classify variable declarations
depending on what kind of variable is used in the initialisation expression:

– neutral (V-DEC-N) initialisation expressions e1 . . . en do not use the introduced
variables x1 . . . xn. This type of variable declaration is completely equivalent to
conventional Java, but when a local variable with object type is introduced, the
corresponding initialisation variable has to denote a fully initialised object. See
objectTypes(Γ ) in the first premise.

– closed (V-DEC-C) initialisation expressions e1 . . . en use variables x1 . . . xn with
placeholder typesC1

’ . . .Cn
’ and no other placeholder declared outside this specific

placeholder declaration. This result is obtained by the notation (objectTypes(Γ )).
At the end of the variable declaration clauses, the introduced variables denote fully
initialised objects, that is, the terminating expression can see the declared variables
as their object types C1 . . .Cn.
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For example, we can type check the following code:
-

F
J’

-
class C{C myC; C(C’ myC){this.myC=myC;}}
class User{

C makeC(){
C x= new C(x);
return x;

}}

Class User has a C makeC() method performing circular initialisation. The place-
holder x has type C’. new C(x) is of type C, thanks to (NEW-T) new C(x) can be
used to initialise variable C x.

– open (V-DEC-O) initialisation expressions e1 . . . en can see both introduced variables
x1 . . . xn with placeholder types C1

’ . . .Cn
’ and other placeholders from enclosing

placeholder declarations (thus no usage of objectTypes(Γ )). This rule is applied when
partially initialised variables are not guaranteed to become fully initialised, that is, the
terminating expression typing must take into account the possibility that introduced
variables will denote partially initialised objects until any enclosing placeholder
declarations complete phase 3 initialisation.
To ensure soundness we type the terminating expression twice: once in a context
where the declared variables have their object types C1 . . .Cn, and again in a context
where the declared variables have their placeholder types C1

’ . . .Cn
’ . In this way

the result of the expression can be an object type, but we guarantee that the resulting
value is never used as a receiver.
Consider the following example:

-
F

J’
-

class C{C myC; C(C’ myC){this.myC=myC;}}
class User{

C makeCPart(C’ y){
//typed with v-dec-o
C x= new C(y);
return x;}

C makeCAll(){
//typed with v-dec-c
C z=new C(this.makeCPart(z));
return z;}

Method C makeCPart(C’ y) takes a placeholder and returns a partially initialised
object. Variable y inside new C(y) is a placeholder declared outside the initialisation
of variable x. Rule (V-DEC-C) cannot be applied. Indeed (V-DECL-C) would apply
objectTypes(Γ ); in this way y would not be in scope in expression new C(y), thus
new C(y) would be not well typed. However, (V-DEC-O) can be applied smoothly.

As you can see, the point where an object is ensured to be fully initialised is a type
property, not a purely syntactical notion. This allow us to safely express initialisation
patterns where the work of Syme [20] would have signaled a (false positive) dynamic
error.

Memory Typing
(MEM-OK) in Figure 6 defines a well typed memory. Note how this judgement requires a
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(M
E

M
-O

K
) Γ � μ : ok

with
μ = ι1 �→ C1(v1) . . . ιn �→ Cn(vn)
∀ι �→ C (v1 . . . vk) ∈ μ :

p(C ) = classC implements _{ C1 f1; . . .Ck fk;md}
∀j ∈ 1..k : Γ (vk) ≤ Ck or μ(vk) = C ′

k(_) and C ′
k ≤ Ck

Fig. 6. Typing rule for memory

variable environment for the placeholders. The memory is well typed if for all the objects
in the memory, all fields contain either an object of the right type or a placeholder of the
right type. From a well typed memory we can extract the memory environment with the
following two notations:

– A memory environment typing all the objects in their corresponding object type:
Σμ(ι) = C iff μ(ι) = C (_)

– A memory environment typing all fully initialised objects using their corresponding
object type and all the partially initialised objects using the corresponding placeholder
type:
Σ’ μ(ι) = C iff μ(ι) = C (_) and reachPh(ι, μ) = ∅
Σ’ μ(ι) = C’ iff μ(ι) = C (_) and reachPh(ι, μ) �= ∅
Where reachPh(ι, μ) denotes the set of reachable placeholders.

As for rule (V-DEC-O) a well typed expression has to be typed twice: first considering
fully initialised objects with object types, and second considering fully initialised object
with placeholder types.

Classes and Interfaces
In Figure 7 we present standard typing rules for classes, interfaces and methods.

For any well-typed program all classes and interfaces are valid. Rule (CLASS) validates
a class if all methods are valid and if the interfaces C are correctly implemented; that is,
for all methods of all the implemented interfaces, a method with an analogous header is
declared in the class. Note how methods are validated in the context of their class. Similarly,
rule (INTERFACE) validates an interface if the interfaces C are correctly implemented;
that is, for all the method headers of all the implemented interfaces, an analogous method
header is declared in the interface. Finally rule (METH-T) is straightforward.

3.1 Soundness

Now we can proceed with the statement of soundness:

Theorem 1 (Soundness). For all well typed programs p and for all expressions e under
p, if ∅; ∅;� e : T and ∅∅ | e ∗→μμ | e ′, then either e ′ is of form ι or μμ | e ′→__ | _

As usual, soundness can be derived from progress and subject reduction properties.
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� cd : ok � id : ok
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S
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)

∀i ∈ 1..n : C0 � md i : ok

� classC0 implementsC{ fd md1 . . .mdn} : ok
with

∀C ∈ C ,m such that p(C ).m = T m(T x);,
T m(T x) _ ∈ md1 . . .mdn
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)

� interfaceC0 extendsC{ mh1; . . .mhn;} : ok
with

∀C ∈ C ,m such that p(C ).m = T m(T x);,
T m(T x); ∈ mh1 . . .mhn

C � mh e : ok

(M
E
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H

-T
) this:C , x1:T1, . . . , xn:Tn; ∅ � e : _ ≤ T

C � T m(T1 x1, . . .,Tn xn) e : ok

Fig. 7. Typing rules for classes, interfaces and methods

Theorem 2 (Progress). For all well typed programs p and for all expressions e and
memory μ under p, if Γ � μ : ok, objectTypes(Γ );Σμ � e : C , Γ ;Σ’ μ � e : _ and
objectTypes(Γ ) = ∅, then either e is of form v , or μμ | e→__ | _

Theorem 3 (Subject Reduction). For all well typed programs p and for all expres-
sions e and memory μ under p, if Γ ;Σμ � e : T , Γ � μ : ok, Γ ;Σ’ μ � e : _ and
μμ | e→μ′μ′ | e ′ then Γ � μ′ : ok, Γ ;Σμ′ � e ′ : T , Γ ;Σ’ μ′ � e : _

and T ′ ≤ T .

The proofs can be found in the accompanying technical report [17].

4 Expressive Power

We show now some examples of what can be achieved with FJ’. Note that these examples
never use the field update operation. This allows all the examples work with immutable
data structures, and it would be easy to integrate placeholders with a type system offering
immutability [1,22].

Circular linked list
A clearly interesting example of expressive power is an arbitrarily sized, immutable,
circular list. Note how ListProducer can be a user class, and does not need to know
implementation details of the List. (Other approaches [19] would require the production
process to happen inside List class, encoded in the constructor.)
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class List{
final int e; final List next;
List(int e, List’ next){this.e=e; this.next=next;}
}

class ListProducer{
List’ mkAll(int e, int n, List’ head){
if(n==1) return new List(e, head);
return new List(e, this.mkAll(e+1, n-1, head));
}

List make(int e,int n){
List x = this.mkAll(e, n, x);
return x;
}

}
...
new ListProducer().make(100,10)

A circular list List has a field e containing a value and a field next containing a List.
Method mkAll takes three parameters: a value e, a length n and a list head. Method

mkAll creates a list of length n containing values starting from e as list elements, ending
with list head. Finally, method make takes a value e, a length n and creates a circular list
of length n. Method make performs the circular initialisation and returns a fully initialised
List. Note how make(100,10) can be directly used to make a circular list of numbers
100,101,...109.

Doubly linked list
We can convert the singly linked list example to implement an immutable doubly linked
list:

class List{
final int e; final List next; final List pred;
List(int e, List’ next,List’ pred){
this.e=e; this.next=next;this.pred=pred;
}

}
class ListProducer{
List’ mkAll(int e, int n, List’ pred){
if(n==1){

List x=new List(e, x, pred);
return x;
}

List x=new List(e, mkAll(e+1,n-1,x), pred);
return x;
}

List make(int e,int n){
List x = this.mkAll(e, n, x);
return x;
}

}
...
new ListProducer().make(100,10)
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Here, the produced list is a (non circular) doubly linked list, where termination is repre-
sented by having the same value for this and this.next or this.pred. If our List
was mutable, we could make it circular after creation. To the best of our knowledge, in the
type system presented in this paper, it is impossible to create an immutable doubly-linked
list: we would need either multiple return values for a method or support for fields with
placeholder types. A more complex version of FJ’, supporting placeholder fields, can be
found in an associated technical report [18].

Parser Combinators
As Gilad Bracha suggests [2], it is possible to leverage the recursive nature of parsers
in order to define classes that represent different typical operations in a BNF grammar.
With overloading support for operators (|) and (,) (as in C++ or Newspeak) it is possible
to obtain a syntax very near to conventional BNF. For example we could obtain the
following:

p
a

rs
er

co
m

b
in

a
to

r

Production operator|(Production left, Production right){
return new OrProduction(left,right);}

Production operator,(Production left, Production right){
return new SeqProduction(left,right);}

...
Production number= term(1,9)| term(1,9), number0,
Production number0= term(0,9) | term(0,9), number0,
Production e= number | e,term("*"),e | e,term("+"),e;

where term is a static method. Thanks to placeholders, we can use number0 and e

recursively.
The current implementation of parser combinators in Newspeak solves this problem

in a much more ad-hoc solution, using reflection [2]. Designed concurrently with our
placeholders, Newspeak 0.08 introduced “simultaneous slot definitions” that use futures:

“ A simultaneous slot declaration with a right hand side expression e initialises the
slot to the value of p computing: e, where p is the class Past‘Future. The result is a
future that will compute the expression e on demand. All these futures are resolved once
the last slot declaration in the simultaneous slot definition clause has been executed.
Past‘Future implements a pipelined promise so that any well founded mutual recursion
between simultaneous slots will resolve properly. ”
Futures in Newspeak are objects forwarding all messages to the result of the computation.
In this way, Newspeak can provide a similar expressive power to placeholders. Thanks
to the dynamic nature of Newspeak, there is no type guarantee of well formedness of
a circular initialisation using Newspeak futures. Newspeak requires an extra level of
indirection (even if transparent in most of the cases), and the execution order of the
different initialisation expression is “on demand” instead of sequential.

5 Implications for Implementation

In this section we discuss some options that could be used to implement placeholders.
Smalltalk offers a method called “become:” that changes object references. After

“a become: b” all local variables and all object fields originally referring to the object
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denoted by a, now refer to the object that was denoted by b, and vice versa. An imple-
mentation of placeholders over a virtual machine offering a “become:” method is very
simple; for example, our initial placeholder declaration could be written as follows:

tr
a

n
sl

a
ti

o
n

w
it

h
b
e
c
o
m
e
:

//placeholders initialisation
Security sP=new Security(null);
DBA dbaP=new DBA(null,null);
SMS sms=new SMS(null,null);
GUI guiP=new GUI(null,null,null);
//real initialisation
Security s=new Security(dbaP);
DBA dba=new DBA(sP,guiP);
SMS sms=new SMS(sP,dbaP);
GUI gui=new GUI(smsP,dbaP,sP);
//placeholders replacement
sP.become(s); dbaP.become(dba);
smsP.become(sms); guiP.become(gui);

Is it possible to emulate “become:” on a platform that does not support it natively?
Of course, a general purpose “become:” comes with the prohibitive cost of the full
heap scan; however the restricted usage of “become:” in our case can be implemented
efficiently even in Java. The main idea is to produce a placeholder subclass (interface
Ph) of each class that could be used as a placeholder, and to make each class that can be
initialized using a placeholder implement the ReplacePh interface that defines a method
to replace placeholders stored in fields with the placeholders’ actual objects.

In this scheme, whenever an object is allocated using placeholders, we notify those
placeholders that the newly allocated object refers to them. When a placeholder declaration
completes initialisation, the introduced placeholders can be correctly and efficiently
replaced. In the detail, such translation would:

– generate interfaces ReplacePh, Ph and class PhAdd

-
J
a
v
a

-

interface ReplacePh{void replacePh(Ph ph, Object o);}
interface Ph{ List<ReplacePh> getList();}
class PhAdd{
public static<T> T add(T fresh, Object ... phs){

for (Object o:phs)
if(o instanceof Ph)

((Ph)o).getList().add((ReplacePh)fresh);
return fresh;
}}

ReplacePh represents an instance whose fields can contain a placeholder ph, that
can be replaced with o when the object is available;; Ph represents a placeholder,
and can provide the list of all the objects whose fields point to that placeholder;
PhAdd.add notifies placeholders in phs that the fresh object contains them in one
of its fields.

– map both placeholder types and object types to the corresponding simple Java type;
that is all the types of form C and C’ will be mapped to C .
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– generate for all the classes and interfaces a “placeholder” class, extending the original
one and the Ph interface, providing a no arguments constructor and a list of Objects
containing all the objects whose fields refer to this “placeholder object”,

– makes every class originally present in FJ’implement ReplacePh. For example

–
F

J’
–

interface T1{...}
class C implements T1{
T1 x; T2 y; C(T1’ x,T2’ y){this.x=x; this.y=y;}
...}

would be translated into

-
J
a
v
a

-

interface T1{...}
class PhT1 implements T1,Ph{

List<ReplacePh> list=new ArrayList<ReplacePh>();
List<ReplacePh> getList(){return this.list;}
.../*any method of T1 throws Error*/}

class C implements T1,ReplacePh{
T1 x; T2 y; C(T1 x,T2 y){this.x=x; this.y=y;}
void replacePh(Ph ph, Object o){
if(this.x==ph)this.x=(T1)o;
if(this.y==ph)this.y=(T2)o;
}

...}
class PhC extends C implements Ph{
List<ReplacePh> list=new ArrayList<ReplacePh>();
List<ReplacePh> getList(){return this.list;}
.../*any method of C throws Error*/}

– translate placeholder declarations into the three phase initialisation, so that:

–
F

J’
– T1 x= new C().m(x,y),

T2 y= new D().m(x,y);
new K().m(x,y);

would be translated into

-
J
a
v
a

-

//(1)initialise dummy placeholder objects
T1 _x= new PhT1();
T2 _y= new PhT2();
//(2) run normal initialisation code, using placeholder
T1 x= new C().m(_x,_y),
T2 y= new D().m(_x,_y);
//(3) replace placeholders with the correct value
for(ReplacePh o:_x.getList()) o.replacePh(_x,x);
for(ReplacePh o:_y.getList()) o.replacePh(_y,y);
new K().m(x,y);

– finally, for any constructor parameter that is statically a placeholder, we use static
method PhAdd.add to insert the newly created object into the placeholder list; for
example
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–
F

J’
– class C implements T1{

T1 m(T1’ x,T2’ y){ return new C(x,y);}
...}

would be translated into

-
J
a
v
a

-

class C implements T1,ReplacePh{
T1 m(T1 x,T2 y){ return PhAdd.add(new C(x,y),x,y);}
...}

6 Related Work

Not embracing any sort of laziness
Many approaches in the area of circular initialisation do not support any form of laziness,
and thus cannot support the initialisation example from our introduction in the obvious
way. The construction process of one entity is interleaved with the initialisation process
of other entities and they rely on explicit mutation to create circular object graphs.

Hardhat Constructors [8,21] restrict constructors to avoid the leak of partially initialised
objects out of the constructor scope. Similar techniques can be employed by FJ’to extend
our calculus with more expressive constructors. OIGJ [23] and others [9,10] allow the
creation of immutable object graphs by using the concept of “commitment points” (where
the mutable object graph can be promoted to immutable). These approaches offer no
guarantee against null pointer exceptions.

As Manuel Fahndrich, Songtao Xia, and Don Syme have astutely observed [5,20],
recursive bindings in a functional language like OCaml [14] serve a purpose very similar
to placeholders:

O
C

a
m

l type t = A of t * t | B of t * t
let rec x = A( x, y )

and y = B( y, x )

Here, two variables (x and y) are circularly initialised using the let rec recursive binding
expression. OCaml imposes heavy restrictions [5]: “ the right-hand side of recursive
value definitions to be constructors or tuples, and all occurrences of the defined names
must appear only as constructor or tuple arguments. ”
These restrictions rule out any form of laziness, and makes it impossible to express any
variations of the Factory pattern [7] as method calls are prohibited in such initialisation
expressions. However, thanks to these restrictions, the following implementation for such
recursive bindings is possible: first allocate memory for the values being constructed —
once all the bindings are established, the constructed values can be initialised normally.

Delayed Types [5] lift those limitations, but still are unable to provide good support
for factory methods: indeed Delayed Types require factory methods to expose fields in
their type annotations. In personal communication, Fahndrich agrees that this would
break encapsulation for private fields and is in general not feasible in case of interfaces
as return types. Moreover, both Delayed Types [5] and Masked types [16] require an
explicit two step initialisation, where the values are created and the circular references
are fixed explicitly afterward; that is, these two works try to verify code similar to the
following:
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-J
a
v
a

- class C{ C myC; C(C myC){this.myC=myC;} }
... C c=new C(null);

c.myC=c;

This kind of code is hard to maintain: when a modification to the internal implementation
is needed, all the code that initialises new instances can be broken. Delayed Types and
Masked Types [5,16] ensure the absence of NullPointerExceptions in this kind of
code.

Freedom Before Commitment [19] proposes another approach, where constructors
trigger the construction process of their sub-components:

-J
a
v
a

-

class A{ B myB; A() { myB=new B(this);}}
class B{ A myA; B(A x){ myA=x;}}//here x.myB==null

The code inside the constructor of B cannot freely manipulate the parameter x, indeed if
the control flow starts from the expression new A(), the field x.myB is still null when
variable x is visible. In [19] the absence of NullPointerExceptions is proved. This
avoids an explicit two step initialisation, but leverages a sequence of recursive constructor
calls where one of them triggers the initialisation of the other components.

To conclude, these works [5,16,19] focus on statically preventing null pointer excep-
tions, supporting safe initialisation in OO languages as they are at the moment. Our goal
is to change the language semantics to support the intuitive idea that the client code
is responsible for knowing the dependencies between the different components in the
system, so that factory methods can receive correct parameters.

From the type system point of view we share many similarities to Summers and
Müller’s Freedom Before Commitment. This system has partially initialised objects
(called free), like FJ’, although we do not need to expose an explicit partially initialised
object type. Unlike FJ’, Freedom Before Commitment relies on constructors, and does
not support factory methods. Summers and Müller have conducted an extensive study of
applicability of their approach, and they do consider factories instead of constructors.
Replacing constructors with factory/creation methods is suggested by Fowler [6] and is
empirically shown to be a good methodology [4].

Uses some form of laziness
Languages with lazy semantics, like Haskell, can use laziness/thunks to encode place-
holders, thus reaching an expressive power similar to FJ’; but without the static guarantees
offered by our type system (this style of programming is often called tying the knot in the
Haskell community). In FJ’, dereferencing a placeholder is a dynamic error similar to a
NullPointerException (a stuck state in the formal model) while in Haskell, accessing
a thunk performs the associated computation on demand.
FJ’and Haskell also differentiate when placeholders are replaced or thunks evaluated:

– In Haskell a thunk is evaluated when its value is needed and, as soon as the computa-
tion ends, all the occurrences of the thunk are replaced with the corresponding value.
That is, the lifetime of a thunk is unbounded, and in some cases it is possible for a
thunk to not be evaluated at all, saving computation time.
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– In FJ’initialisation expressions are executed in the conventional top down, left to
right order; placeholders introduced in a placeholder declaration are replaced as soon
as the semicolon is reached. The lifetime of a placeholder is lexically bounded: when
the initialisation is concluded the placeholder is replaced. Placeholders retain the
simplicity and predictability of the call by value semantics.

Both in Haskell and in FJ’a term like T x = x; is meaningless; those degenerate cases
are not so uncommon as one can suppose. In Haskell, a non trivially degenerate case is
the following:

–
H

a
sk

el
l

– data L = Lnil | Lcons Int L
head :: L->Int
head Lnil=0
head (Lcons n a) = n
main=(let x=x in putStr(show(head x)))

Here type L denotes a list of integers, with the two conventional type constructors. The
function head returns the head of the list, or 0 for the empty list. It is clear that the
definition of the main makes no sense: we call it a non well-guarded definition.

In order to explain the importance of this problem, we now show an example where
a non well-guarded expression emerges from an apparently benign code. Indeed in the
general case is very difficult to spot non well-guarded definitions.
Consider the following two functions f1 and f2:

H
a

sk
el

l

f1 :: L -> L
f1 a= (LCons 42 a)

f2 :: L -> L
f2 a= a

Function main1 correctly initialises an infinite list containing only the number 42, and
shows 42. However, function main2 is a non well-guarded definition:

H
a

sk
el

l

main1=(let x=(f1 x) in putStr(show(head x)))
main2=(let x=(f2 x) in putStr(show(head x)))

Since the only difference is the occurrence of f2 instead of f1, you can see that in Haskell,
without knowing the code of f1 and f2, it is impossible to predict whether some code
is well-guarded or not. In fact, executing main1 in Haskell results in printing 42 while
executing main2 results in an infinite loop.

In the following example we show the code of the last example rephrased in FJ’;
encoding functions as methods on classes. User1 is verified by our type system, while
User2 is ill-typed. Note how classes User1 and User2 differ only in the implementation
of method f. User1.main produces an infinite list composed by a single cell with value
42, while User2.main is ill typed.

–
F

J’
–

class List{ int e; List next; }
class User1 {
List f(List’ x){ return new List(42,x);}
List main(){ List x=f(x); return x; } } //safe

class User2{
List f(List’ x){ return x; }
List main(){ List x=f(x); return x; } } //unsafe
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The significance of this problem is highlighted in a proposal by Syme [20]. He uses a
disciplined form of laziness in order to design a language which is very similar in spirit
to our approach, with roughly as much power but an additional requirement for dynamic
checks in order to avoid non well-guarded cases to be evaluated in the context of data
recursion, i.e. circular initialisation.

7 Conclusion

“I call it my billion-dollar mistake. It was the invention of the null reference”

Tony Hoare, “Null References: The Billion Dollar Mistake” [12]

Today, writing correct and maintainable code involving circular initialisation is very
difficult: most practical solutions rely on null values — Tony Hoare’s “Billion Dollar
Mistake”. This is an important problem since many software architectures and natural
phenomena involve circular dependencies. As in the “chicken and egg” paradox, circular
dependencies are hard for humans to understand and to reason about. This has hampered
the development of effective techniques for supporting safe circular initialisation in
software engineering, and their support in programming languages.

There have been many proposals to solve the problem of circular data structure initial-
isation [19,14,5,16]. In our opinion FJ’offers a simpler type system compared to these
approaches; moreover it allows simpler and cleaner programming patterns to be used. We
can obtain such simplicity because we attack the problem from two different angles: first
we define a new concept — placeholders — with intuitive semantics, and then we develop
a type system to ensure placeholders are used safely. We hope this gives placeholders a
good chance of adoption by real language implementations.

We conclude with another well known quote by Hoare:

“There are two ways of constructing a software design: One way is to make it
so simple that there are obviously no deficiencies, and the other is to make it so
complicated that there are no obvious deficiencies. The first method is far more
difficult.”

Tony Hoare, “The Emperor’s Old Clothes” [11]

We have tried our best to follow the first way, and the result looks pretty simple to us.
Whether is it simple enough to fix the billion dollar mistake, only time will tell.
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