
JavaUI: Effects for Controlling UI Object Access

Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman

University of Washington
{csgordon,wmdietl,mernst,djg}@cs.washington.edu

Abstract. Most graphical user interface (GUI) libraries forbid accessing UI ele-
ments from threads other than the UI event loop thread. Violating this requirement
leads to a program crash or an inconsistent UI. Unfortunately, such errors are all
too common in GUI programs.

We present a polymorphic type and effect system that prevents non-UI threads
from accessing UI objects or invoking UI-thread-only methods. The type system
still permits non-UI threads to hold and pass references to UI objects. We imple-
mented this type system for Java and annotated 8 Java programs (over 140KLOC)
for the type system, including several of the most popular Eclipse plugins. We
confirmed bugs found by unsound prior work, found an additional bug and code
smells, and demonstrated that the annotation burden is low.

We also describe code patterns our effect system handles less gracefully or not
at all, which we believe offers lessons for those applying other effect systems to
existing code.

1 Introduction

Graphical user interfaces (GUIs) were one of the original motivations for object-oriented
programming [1], and their success has made them prevalent in modern applications.
However, they are an underappreciated source of bugs. A Google search for “SWT in-
valid thread access” — the exception produced when a developer violates multithread-
ing assumptions of the SWT GUI framework — produces over 150,000 results, includ-
ing bug reports and forum posts from confused developers and users. These bugs are
user-visible, and programs cannot recover from them. Typically, they terminate program
execution. Furthermore, these bugs require non-local reasoning to locate and fix, and
can require enough effort that some such bugs persist for years before being fixed [2].
Because these bugs are common, severe, and difficult to diagnose, it is worthwhile to
create specialized program analyses to find errors in GUI framework clients.

A typical user interface library (such as Java’s Swing, SWT, and AWT toolkits, as
well as toolkits for other languages) uses one UI thread running a polling event loop to
handle input events. The library assumes that all updates to UI elements run on the UI
thread. Any long-running operation on this thread would prevent the UI from respond-
ing to user input, and for this reason the UI library includes methods for running tasks
on background threads. A background thread runs independently from the UI thread,
and therefore it does not block UI interactions, but it is also restricted in its interactions
with the UI. The UI library also provides mechanisms for background threads to update
UI elements, primarily by executing a closure on the UI thread, synchronously or asyn-
chronously. For SWT, these correspond to the static methods syncExec and asyncExec

G. Castagna (Ed.): ECOOP 2013, LNCS 7920, pp. 179–204, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

180 C.S. Gordon et al.

respectively, in the Display class. Each accepts a Runnable instance whose run()
method will be executed (synchronously or asynchronously) on the UI thread. For exam-
ple, a method to update the text of a label from a background thread might look like this:

private final JLabel mylabel;
...
public void updateText(final String str) {

Display.syncExec(new Runnable {
public void run() { mylabel.setText(str); }

});
}

The separation between the UI and background threads gives several advantages to the
UI library implementor:

– Forced atomicity specifications: background threads must interact with the UI only
indirectly through the closure-passing mechanism, which implicitly specifies UI
transactions. Because all UI updates occur on one thread, each transaction executes
atomically with respect to other UI updates.

– Minimal synchronization:Assuming clients of the UI library never access UI objects
directly, no synchronization is necessary within the UI library when the UI thread
accesses UI elements. The only required synchronization in the UI library is on the
shared queue where background threads enqueue tasks to run on the UI thread.

– Simple dynamic enforcement: Any library method that is intended to run only on
the UI thread can contain an assertion that the current thread is the UI thread.

These advantages for the library implementor become sources of confusion and mis-
takes for client developers. Each method may be intended to run on the UI thread (and
may therefore access UI elements) or may be intended to run on another, background,
thread (and therefore must not access UI elements). Client developers must know at all
times which thread(s) a given block of code might execute on. In cases where a given
type or routine may be used sometimes for background thread work and sometimes
for UI work, maintaining this distinction becomes even more difficult. There are alter-
native designs for GUI frameworks that alleviate some of this confusion, but they are
undesirable for other reasons explained in Section 3.5.

The key insight of our work is that a simple type-and-effect system can be applied
to clients of UI frameworks to detect all UI thread-access errors statically. There is a
one-time burden of indicating which UI framework methods can be called only on the
UI thread, but this burden is tractable. Annotations in client code are kept small thanks
to a judicious use of default annotations and simple effect polymorphism.

We present a sound static polymorphic effect system for verifying the absence of
(and as a byproduct, finding) UI thread access errors. Specifically, we:

– Present a concise formal model of our effect system, λUI . (Section 2)
– Describe an implementation JavaUI for the Java programming language, including

effect-polymorphic types, that requires no source modifications to UI libraries or
clients beyond Java annotations for type qualifiers and effects. (Section 3)

– Evaluate JavaUI by annotating 8 UI programs and Eclipse plugins totalling over
140KLOC. Our experiments confirm bugs found by unsound previous work [2],

JavaUI: Effects for Controlling UI Object Access 181

find an additional bug, and verify the absence of such bugs in several large pro-
grams. (Section 4)

– Identify coding and design patterns that cause problems for our effect system and
probably for other effect systems as well, and discuss possible solutions. (Section
4.4)

Our experience identifying UI errors in large existing code bases is likely to prove
useful for designing other program analyses that may have nothing to do with UI code.
Applying a static type-and-effect system to a large existing code base requires a design
that balances expressiveness with low annotation burden. In particular, we found that
while effect polymorphism was important, only a limited form (one type-level variable
per class) is needed to verify almost all code. However, some programming idioms that
do occur in practice are likely to remain beyond the reach of existing static analyses.
Overall, we believe our work can pave the way for practical static analyses that enforce
heretofore unchecked usage requirements of modern object-oriented frameworks.

JavaUI and our annotated subject programs are publicly available at:
http://github.com/csgordon/javaui

2 Core Language λUI

The basis for our Java type system is λUI, a formal model for a multithreaded lambda
calculus with a distinguished UI thread. Figure 1 gives the syntax and static semantics
for the core language. The language includes two constructs for running an expression
on another thread: spawn{e} spawns a new non-UI thread that executes the expression
e, while asyncUI{e} enqueues e to be run (eventually) on the UI thread. There are also
two kinds of references: refsafe e creates a standard reference, while refui e creates a
reference that may be dereferenced only on the UI thread. Other constructs are mostly
standard (dereference, application, function abstraction, assignment, natural numbers,
and a unit element) though the lambda construct includes not only an argument and
body, but an effect bound ξ on the body’s behavior.

Effects ξ include ui for the effect of an expression that must run on the UI thread,
and safe for the effect of an expression that may execute on any thread. Types include
natural numbers, unit, the standard effectful function type, and reference types with an
additional parameter describing the effect of dereferencing that reference.

Figure 1 also gives the static typing rules for λUI . The form Γ � e : τ;ξ can be read
as: given a type environment Γ, the expression e evaluates to a value of type τ, causing
effects at most ξ. Most of the rules are fairly standard modulo the distinctions between
spawn{e} and asyncUI{e} and between refsafe e and refui e. The rules also assume a
least-upper-bound operator on effects (�) for combining multiple effects, and the rules
include T-SUBEFF for permitting safe bodies in ui functions. Richer subtyping/subef-
fecting, for example full subtyping on function types, would be straightforward to add.

The operational semantics in Figure 2 are mostly standard, with the exception that
the distinguished UI thread has a FIFO queue of expressions to execute. After reducing
its current expression to a value it dequeues the next expression if available. The expres-
sion reduction relation is labeled with the effect of a given action, and the background

http://github.com/csgordon/javaui

182 C.S. Gordon et al.

Expressions e ::= spawn{e} | asyncUI{e} | refξ e | !e | e e | (λξ(x : τ) e) | e← e | n | ()
Naturals n Variables x

Effects ξ ::= ui | safe Types τ ::= nat | τ ξ→ τ | refξ τ | unit

Γ � e : τ;ξ
T-NAT

Γ � n : nat;safe

T-UNIT

Γ � () : unit;safe

T-SUBEFF
Γ � e : τ;safe

Γ � e : τ;ui

T-SUBFUNEFF

Γ � e : τ1
safe→ τ2;ξ

Γ � e : τ1
ui→ τ2;ξ

T-SPAWN
Γ � e : τ;safe

Γ � spawn{e} : unit;safe

T-ASYNCUI
Γ � e : τ;ui

Γ � asyncUI{e} : unit;safe

T-REF
Γ � e : τ;ξ′

Γ � refξ e : ref ξ τ;ξ′

T-DEREF
Γ � e : ref ξ1 τ;ξ2

Γ � !e : τ;ξ1 �ξ2

T-ASSIGN
Γ � e1 : ref ξ τ;ξ1 Γ � e2 : τ;ξ2

Γ � e1← e2 : unit;ξ�ξ1�ξ2

T-LAMBDA
Γ,x : τ � e : τ′;ξ

Γ � (λξ(x : τ) e) : τ
ξ→ τ′;safe

T-APP

Γ � e1 : τ ξ→ τ′;ξ1 Γ � e2 : τ;ξ2

Γ � e1 e2 : τ′;(ξ�ξ1 �ξ2)

ξ1�ξ2 = {safe if ξ1 = ξ2 = safe, ui otherwise}

Fig. 1. λUI syntax for terms and types, and monomorphic type and effect system

threads get “stuck” if the next reduction would have the UI effect.1 Typing for runtime
program states is given in Figure 3.

The type system in Figure 1 is sound with respect to the semantics we define in
Figure 2 (using the runtime and state typing from Figure 3) and is expressive enough
to demonstrate soundness of the effect-related subtyping in the source language JavaUI.
λUI models the ability to statically confine actions to a distinguished thread. Effect-
polymorphism is not modeled, but mostly orthogonal: it would require a handful of
additional checks at polymorphic instantiation, and an extended subeffecting relation
(safe � polyui � ui). Full proofs via syntactic type soundness [3] are available in our
technical report [4]. We state the additional notation, judgments, and main lemmas here:

– Σ for standard-style heap type.
– Σ � H for typing the heap H.
– Σ;Γ � e : τ;ξ as the expression typing judgment extended for heap typing.
– H,e→ξ H ′,e′,O for small-step expression reduction. The effect ξ is the runtime-

observed effect of the reduction; e.g., dereferencing a ui reference has the runtime
effect ui. O is an optional effect-expression pair for reductions that spawn new
threads; the effect indicates whether a new background thread is spawned or a new
UI task is enqueued for the UI thread.

– 〈Σ,τu,τ〉 for machine typing: the heap type, a vector of expression types for the UI
thread’s pending (and single active) expressions, and a vector of expression types
for background threads. The maximal effects for each expression are implicit; they
depend on which thread the expression is for: UI expressions may type with effect
ui, while background threads must type with the effect safe).

– 〈H,eu,e〉 for machine states: heap, pending UI expressions, and background threads,
as with machine state typing.

– 〈Σ,τu,τ〉 � 〈H,eu,e〉 for typing a machine state.

1 This requires labeling heap cells with the effect of dereferencing the cell. These labels are used
only for proving soundness and need not exist in an implementation.

JavaUI: Effects for Controlling UI Object Access 183

Expressions e ::= ... | � Values v ::= � | n | () | (λξ(x : τ) e)
Heaps H : Location ⇁ Effect∗Value Heap Type Σ : Location ⇁ Effect∗Type
Machine σ ::= 〈H ,e,e〉 Machine Type Ω ::= 〈Σ,τ,τ〉
Optional New Thread O : option (Expression∗Effect)

σ→ σ
E-UI1

H ,e→ui H ′,e′,−−
〈H ,e e,ebg〉 → 〈H ′,e′ e,ebg〉 E-UI2

H ,e→ui H ′,e′,(enew,safe)

〈H ,e e,ebg〉 → 〈H ′,e′ e,ebg enew〉

E-UI3
H ,e→ui H ′,e′,(enew,ui)

〈H ,e e,ebg〉 → 〈H ′,e′ e enew ,ebg〉 E-NEXTUI 〈H ,v e e,ebg〉 → 〈H ′,e e,ebg〉

E-DROPBG 〈H ,eui,ebg v e′bg〉 → 〈H ′,eui,ebg e′bg〉
E-BG1

H ,e→safe H ′,e′,−−
〈H ,eui,ebg e e′bg〉 → 〈H ′,eui,ebg e e′bg〉

E-BG2
H ,e→safe H ′,e′,(en,safe)

〈H ,eui,ebg e e′bg〉 → 〈H ′,eui,ebg e e′bg en〉
E-BG3

H ,e→safe H ′,e′,(en,ui)

〈H ,eui,ebg e e′bg〉 → 〈H ′,eui en,ebg e e′bg〉

H ,e→ξ H ,e,O
E-SPAWN

H ,spawn{e}→safe H ,(),(e,safe)

E-ASYNC

H ,asyncUI{e}→safe H ,(),(e,ui)

E-REF1
H ,e→ξ H ′,e′,O

H ,refξ′ e→ξ H ′,refξ′ e′,O

E-REF2
� �∈Dom(H)

H ,refξ′ v→safe H [� → (ξ′,v)],�,−−

E-DEREF1
H ,e→ξ H ′,e′,O

H , !e→ξ H ′, !e′ ,O

E-DEREF2
H(�) = (ξ,v)

H , !�→ξ H ,v,−−

E-APP1
H ,e1 →ξ H ′,e′1,O

H ,e1 e2 →ξ H ′,e′1 e2,O
E-APP2

H ,e→ξ H ′,e′,O
H ,v e→ξ H ′,v e′,O

E-APP3
H ,(λξ(x : τ) e) v→ξ H ,e[x/v],−−

E-ASSIGN1
H ,e1→ξ H ′,e′1,O

H ,e1← e2 →ξ H ′,e′1 ← e2,O
E-ASSIGN2

H ,e→ξ H ′,e′,O
H ,�← e→ξ H ′,�← e′,O

E-ASSIGN3
H(�) = (ξ,v′)

H ,�← v→ξ H [� → (ξ,v)],(),−− E-SUBEFFECT
H ,e→safe H ′,e′,O
H ,e→ui H ′,e′,O

Fig. 2. λUI runtime expression syntax and operational semantics

– 〈H,eu,e〉 → 〈H ′,e′u,e′〉 as machine reduction, nondeterministically selecting either
the first UI expression or an arbitrary background thread expression to reduce with
the heap.

We prove soundness using syntactic type soundness [3]. First, we prove single-threaded
type soundness. Contingent on that result, we prove soundness for all threads: all oper-
ations with the UI effect execute on the UI thread.

Lemma 1 (Expression Progress). If Σ � H and Σ;Γ � e : τ;ξ then either e is a value,
or there exists some H ′, e′, and O such that H,e→ξ H ′,e′,O.

Lemma 2 (Expression Preservation). If Σ;Γ � e : τ;ξ, Σ � H and H,e→ξ H ′,e′,O,
then there exists Σ′ ⊇ Σ such that Σ′ � H ′, Σ′;Γ � e′ : τ;ξ, and if O = (e′′,ξ′) then there
also exists τn such that Σ;Γ � e′′ : τn;ξ′.

Corollary 1 (Expression Type Soundness). If Σ;Γ � e : τ;ξ, and Σ � H, then e is a
value or there exists Σ′ ⊇ Σ, e′, H ′, and O such that Σ′ � H ′, and H,e→ H ′,e′,O, and
Σ′;Γ � e′ : τ;ξ and if O = (e′′,ξ′) then there exists τn such that Σ′; /0 � e′′ : τn;ξ′.

Lemma 3 (Machine Progress). If 〈Σ,τu,τ〉 � 〈H,eu,e〉 for non-empty eu, then either
eu = v :: [] and e = /0 or there exists H ′,eu

′,e′ such that 〈H,eu,e〉 → 〈H ′,eu
′,e′〉.

184 C.S. Gordon et al.

Σ;Γ � e : τ;ξ cont.

T-LOC
Σ(�) = (ξ,τ)

Σ;Γ � � : ref ξ τ;safe
Ω � σ

WF-STATE

Σ � H Σ; /0 � eu : τu;ui Σ; /0 � e : τ;safe

〈Σ,τu,τ〉 � 〈H ,eu,e〉

Σ �H

WF-HEAP
∀ξ,τ,� ∈Dom(H).Σ(�) = (ξ,τ)⇔∃v.H(�) = (ξ,v)∧Σ; /0 � v : τ;safe

Σ �H

Fig. 3. λUI program and runtime typing, beyond extending the source typing with the additional Σ

Lemma 4 (Machine Preservation). If 〈Σ,τu,τ〉 � 〈H,eu,e〉and 〈H,eu,e〉→ 〈H ′,eu
′,e′〉,

then there exists Σ′,τu
′,τ′ such that Σ′ ⊇ Σ and 〈Σ′,τu

′,τ′〉 � 〈H ′,eu
′,e′〉

Corollary 2 (Machine Type Soundness). If 〈Σ,τu,τ〉 � 〈H,eu,e〉 for non-empty eu,
then either eu = v :: [] and e = /0 or there exists Σ′,H ′,τu

′,eu
′,τ′,e′ such that Σ′ ⊇ Σ

and 〈Σ′,τu
′,τ′〉 � 〈H ′,eu

′,e′〉 and 〈H,eu,e〉 → 〈H ′,eu
′,e′〉.

3 JavaUI: Extending λUI to Java

JavaUI soundly prevents inappropriate access to UI objects by background threads.
JavaUI extends Java with type qualifier annotations and method effect annotations to
indicate which code should run on the UI thread and which code should not directly ac-
cess UI objects. From the Java developer’s perspective, JavaUI prevents invalid thread
access errors, which occur when a background thread calls UI-only methods (such as
JLabel.setText()) that may only be called from the UI thread. JavaUI handles the full
Java language, including sound handling of inheritance and effect-polymorphic types.
A major design goal for JavaUI was to avoid changes to UI library code. Specifically,
we did not modify the implementation or underlying Java type signature of any library.

We implemented our qualifier and effect system on top of the Checker Frame-
work [5,6], which is a framework for implementing Java 8 type annotation processors,
providing support for, among other things, AST and type manipulation, and specifying
library annotations separately from compiled libraries themselves. The JavaUI syntax is
expressed via Java 8’s type annotations. Type annotations are propagated to bytecode,
but have no runtime effect, thus maintaining binary API compatibility between JavaUI
and Java code (developers use the real UI libraries, not one-off versions coupled to
JavaUI). The implementation consists of two main components: a core checker for the
effect system, and a sizable annotation of some standard Java UI framework libraries.

3.1 JavaUI Basics

There are two method annotations that indicate whether or not code may access UI
objects (call methods on UI objects):

– @UIEffect annotates a method that may call methods of UI objects (directly or
indirectly), and must therefore run on the UI thread.

JavaUI: Effects for Controlling UI Object Access 185

Table 1. JavaUI annotations

Role Annotation Target Purpose

Effects

@SafeEffect Method Marks a method as safe to run on any thread
(default)

@UIEffect Method Marks a method as callable only on the UI
thread

@PolyUIEffect Method Marks a method whose effect is polymorphic
over the receiver type’s effect parameter

Defaults

@UIType Type Decl. Changes the default method effect for a type’s
methods to @UIEffect

@UIPackage Package Changes the default method effect for all meth-
ods in a package to @UIEffect

@SafeType Type Decl. Changes the default method effect for a
type’s methods to @SafeEffect (useful inside
a @UIPackage package)

Polymorphism
@PolyUIType Type Decl. Marks an effect-polymorphic type (which

takes exactly one effect parameter)

Instantiating
Polymorphism

@Safe Type Use Instantiates an effect-polymorphic type
with the @SafeEffect effect (also used for
monomorphic types, considered subtypes of
@Safe Object)

@UI Type Use Instantiates an effect-polymorphic type with
the @UIEffect effect

@PolyUI Type Use Instantiates an effect-polymorphic type with
the @PolyUIEffect effect (the effect parameter
of the enclosing type)

– @SafeEffect annotates a method that does not call methods of UI objects, and may
therefore run on any thread.

@UIEffect corresponds to λui from the λUI core language: it annotates a method as
having a (potentially) UI-effectful body. Similarly, @SafeEffect corresponds to λsafe.

The other annotations in Table 1 are all about changing the default effect
(@UIType, @SafeType, @UIPackage) or handling polymorphism (@PolyUIEffect,
@PolyUI, @Safe, @UI, @PolyUIType).

A @SafeEffect method (the default) is not permitted to call @UIEffect methods. Only
@UIEffect methods (which have the UI effect) are permitted to call other @UIEffect
methods. With few exceptions (e.g., syncExec(), which background threads may call
to enqueue an action to run on the UI thread), methods of UI elements are annotated
@UIEffect, and that is how improper calls to UI methods are prevented:

public @SafeEffect void doSomething(JLabel l) {
l.setText(...); // ERROR: setText() has the UI effect

}

The other method effect annotation @UIEffect annotates a method as able to call all
@UIEffect methods, and only other methods with the UI effect may call it.

186 C.S. Gordon et al.

public @UIEffect void doSomethingUI(JLabel l) {
l.setText(...); // OK: setText() and this method have UI effect

}
public @SafeEffect void doSomethingSafe(JLabel l) {

doSomethingUI(l); // ERROR: doSomethingUI() has the UI effect
}

The safe effect @SafeEffect is a subeffect of the UI effect @UIEffect. So a @SafeEffect
method may override a @UIEffect method, but a @UIEffect method cannot override a
@SafeEffect method:

public class Super { public @SafeEffect void doSomethingSafe(){ ... }}
public class Sub extends Super {

public @UIEffect void doSomethingSafe(){ ... }}
//ˆ ERROR: invalid effect override

Controlling Defaults. Especially for subclasses of UI elements, it could be tedious to
write @UIEffect on every method of a class. Three additional annotations locally change
the default method effect:

– @UIType: A class (or interface) declaration annotation that makes all methods of
that class, including constructors, default to the UI effect.

– @UIPackage: A package annotation that makes all types in that package behave
as if they were annotated @UIType. Subpackages must be separately annotated;
@UIPackage is not recursive.

– @SafeType: Like @UIType, but changes the default to @SafeEffect (useful inside
@UIPackage packages).

In all three cases, individual methods may be annotated @SafeEffect or @UIEffect .
This is how we have annotated SWT, Swing, and JFace: we annotated each package
@UIPackage, then annotated the few safe methods (such as repaint()) as @SafeEf-
fect.

3.2 Effect-Polymorphic Types

A single class may be used sometimes for UI-effectful work, and other times for work
safe to run on any thread. @SafeEffect and @UIEffect do not handle this common use
case. In particular, consider Java’s java.lang.Runnable interface:

public interface Runnable {
void run();

}

The Runnable interface is used to encapsulate both code that must run on the UI thread
(which is passed to the syncExec() and asyncExec() methods in UI libraries), and
also code that should not run on the UI thread, such as the code passed to various
general dispatch queues, including thread pools.

JavaUI provides three type qualifiers [5,6,7], each corresponding to instantiating an
effect-polymorphic type with a specific effect:

JavaUI: Effects for Controlling UI Object Access 187

– @Safe: A qualifier to instantiate a type with the @SafeEffect effect.
– @UI: A qualifier to instantiate a type with the @UIEffect effect.
– @PolyUI: A qualifier to instantiate a type with the @PolyUIEffect effect (when used

inside an effect-polymorphic class).

as well as a type declaration annotation @PolyUIType that annotates a class or interface
as effect-polymorphic.2

The final declaration for the Runnable interface is:

@PolyUIType public interface Runnable {
@PolyUIEffect void run();

}

This declares Runnable as being a class polymorphic over one effect, and the effect of
the run() method is that effect. Our type system implicitly adds a receiver qualifier of
@PolyUI so the body can be checked for any instantiation.

Given an instance of a Runnable, the effect of calling the run() method depends on
the qualifier of the Runnable. For example:

@Safe Runnable s = ...;
s.run(); // has the safe effect
@UI Runnable u = ...;
u.run(); // has the UI effect
@PolyUI Runnable p = ...;
p.run(); // has a polymorphic effect

Assuming the last line appears inside an effect-polymorphic type, its effect will be what-
ever effect the type is instantiated with. Note that the @Safe annotation on s is not
necessary: the default qualifier for any type use is @Safe if none is explicitly written.
Since most code does not interact with the UI, this means that most code requires no
explicit annotations.

Effect-Monomorphic Subtypes of Effect-Polymorphic Supertypes. Deriving a con-
crete subtype from an effect-polymorphic supertype is as simple as writing the appro-
priate qualifier on the supertype:

public class SafeRunnable implements @Safe Runnable {
@SafeEffect void run() {

// any effect other than safe causes a type error here
}

}

Again, note that @SafeEffect is the default effect for unannotated methods, so the use of
@SafeEffect here is not strictly necessary. Inside the body of run(), this will have type
@Safe SafeRunnable. In this case, the @Safe could be omitted from the implements
clause due to defaults, but a class that implements @UI Runnable would require the
explicit qualifier.

2 JavaUI uses different annotations for monomorphic effects (@SafeEffect) and for instantiating
polymorphic effects (@Safe) because of a parsing ambiguity in Java 8 where method annota-
tions and return type annotations occupy the same source locations.

188 C.S. Gordon et al.

It is also possible to derive from a polymorphic type without instantiating, by sim-
ply declaring a polymorphic type that derives from a polymorphic instantiation of the
supertype:

@PolyUIType public interface StoppableRunnable implements @PolyUI Runnable {
@PolyUIEffect void run();
@PolyUIEffect void stop();

}

Concrete or abstract classes may be effect-polymorphic. The body of an effect-
polymorphic method is limited to calling safe methods and other methods with their
same effect (e.g., other effect-polymorphic methods of the same instance, which will
have the same effect as the executing method).

It is not permitted to derive a polymorphic type from a non-polymorphic type (see
Section 3.4 for why). Therefore, Object is declared as effect-polymorphic.

Qualifier Subtyping and Subeffecting. In addition to nominal subtyping (e.g., @Safe
SafeRunnable above is a subtype of @Safe Runnable), JavaUI also permits qualifier
subtyping, which reflects effect subtyping (“subeffecting”). For example, it may be use-
ful to pass a @Safe Runnable where a @UI Runnable is expected: any run() imple-
mentation with the safe effect is certainly safe to execute where a UI effect is allowed.
Similarly, a @Safe Runnable can be passed in place of a @PolyUI Runnable, which
can be passed in place of a @UI Runnable since both subtyping relations are sound for
any instantiation of @PolyUI.

Anonymous Inner Classes. Many programs use anonymous inner classes to pass “clo-
sures” to be run on the UI thread. Qualifiers can be written on the type name. Thus code
such as the following is valid (type-correct) JavaUI code:

asyncExec(new @UI Runnable() { public @UIEffect void run(){/* UI stuff */}});

If an effect-monomorphic supertype declares @UIEffect methods, no annotation is
needed on the anonymous inner class, and all overriding methods default to the effect
declared in the parent type, without additional annotation.

3.3 Annotating UI Libraries

To update UI elements, non-UI code uses special methods provided by the UI library
that run code on the UI thread: the Java equivalent of λUI’s asyncUI{e} construct. Real
UI libraries have both synchronous and asynchronous versions:

– For Swing, these special functions are methods of javax.swing.SwingUtilities:
• static void invokeAndWait(Runnable doRun);
• static void invokeLater(Runnable doRun);

– For SWT, these special functions are methods of the class
org.eclipse.swt.widgets.Display:
• static void syncExec(Runnable runnable);
• static void asyncExec(Runnable runnable);

JavaUI: Effects for Controlling UI Object Access 189

Other UI libraries have analogous functionality. We annotated each of these library
methods as @SafeEffect (safe to call on any thread) and accepting a @UI instance of the
Runnable interface (allowing UI-effectful code in the Runnable). This is comparable
to λUI’s T-ASYNCUI in Figure 1. Our library annotations use the Checker Framework’s
stub file support [6,5] for stating trusted annotations for code in pre-compiled JAR files.
We did not check the internals of GUI libraries, which would require dependent effects
(Section 3.4).

3.4 Limitations

There are a few theoretical limits to this effect system. In our evaluation (Section 4),
these did not cause problems.

One Effect Parameter Per Type. JavaUI cannot describe the moral equivalent of

class TwoEffectParams<E1 extends Effect, E2 extends Effect> {
@HasEffect(E1) public void m1() { ... }
@HasEffect(E2) public void m2() { ... }

}

In our evaluation on over 140,000 lines of code (Section 4), this was never an issue.
We found that effect-polymorphic types are typically limited to interfaces that are used
essentially as closures. They are used for either safe code or UI code, rarely a mix. This
restriction also gives us the benefit of allowing very simple qualifier annotations for
instantiated effect-polymorphic types. Supporting multiple parameters would require a
variable-arity qualifier for instantiating effects, and introduce naming of effect parame-
ters. (We have found one instance of a static method requiring multiple effect parame-
ters: BusyIndicator.showWhile(), discussed in Section 4.4.)

Polymorphic Types May not Extend Monomorphic Types. JavaUI does not permit, for
example, declaring a subtype PolyUIRunnable of UIRunnable that takes an effect pa-
rameter, because it further complicates subtyping. It is possible in theory to support
this, but we have not found it necessary. To do so, effect instantiations of the effect-
polymorphic subclass would instantiate only the new polymorphic methods of the sub-
class (polymorphic methods inherited from further up the hierarchy and instantiated by
a monomorphic supertype may not be incompatibly overridden). Subtyping would then
become more complex, as the qualifier of a reference could alternate almost arbitrarily
during subtyping depending on the path through the subtype hierarchy.

Splitting the class hierarchy. Because an effect-polymorphic type may not inherit from
a monomorphic type, this forces the inheritance hierarchy into three partitions: @UI
types, @Safe types, and @PolyUI types (Object is declared as @PolyUI, making the
root of the type hierarchy @UI Object). All may freely reference each other, but it does
impose some restrictions on code reuse. This was not an issue in our evaluation. Some
classes implement multiple interfaces that each dictate methods with different effects
(e.g., a listener for a UI event and a listener for background events, each handler having
a different effect; Eclipse’s UIJob interface has methods of both effects), but we found
no types implementing multiple polymorphic interfaces using different instantiations.

190 C.S. Gordon et al.

No effect-polymorphic field types. We do not allow effect-polymorphic (@PolyUI) fields.
This avoids reference subtyping problems. Solutions exist (e.g., variance annotations [8])
but we have not found them necessary. Note however that we do inherit Java’s unsound-
ness from covariant array subtyping, though we encountered no arrays of any effect-
polymorphic types (or any @UI elements) during evaluation.

Cannot check UI library internals. The effect system currently is not powerful enough
to check the internals of a UI library, mainly because it lacks the dependent effects
required to reason about the different effects in separate branches of dynamic thread
checks. This means for example the effect system cannot verify the internals of safe UI
methods like repaint(), which are typically implemented with code like:

if (runningOnUIThread()) { /*direct UI access*/ } else { /*use syncExec()*/ }

3.5 Alternatives

There are four possible approaches to handling UI threading errors: unchecked excep-
tions (the approach used by most GUI libraries), a sound static type and effect system, a
Java checked exception (a special case of effect systems), and making every UI method
internally call syncExec() if called from a background thread. The unchecked excep-
tion is undesirable for reasons described in the introduction: the resulting bugs are diffi-
cult to diagnose and fix. We propose a sound static type system independent from Java
checked exceptions, and most of this paper explores that option. This section focuses on
the two remaining options, and why our approach is different from existing concurrency
analyses.

Why not make the thread access exceptions checked? Java’s checked exceptions are
another sound static effect system that could prevent these bugs. But there are reasons to
use a separate effect system rather than simply making the thread access error exception
a checked (rather than the current unchecked) exception:

– Polymorphism: Certain types, such as Runnable, are used for both UI thread code
and non-UI code — such types are polymorphic over an effect. Java does not sup-
port types that are polymorphic over whether or not exceptions are thrown. We aim
to minimize changes to existing code and to avoid code duplication.

– Reducing annotation burden: For common source code structures, such as putting
most UI code in a separate package, a programmer can switch the default effect
for whole types or packages at a time. Java provides no way to indicate that all
methods in a type or package throw a certain checked exception. JavaUI provides
such shorthands.

– Backwards Compatibility: New checked exceptions breaks compilation for existing
code. This is also the reason we do not leverage Java’s generics support for our
effect-polymorphic types.

– Catching such exceptions would almost always be a bug.

JavaUI: Effects for Controlling UI Object Access 191

Why not have every UI method automatically use syncExec() if run on a background
thread? This solution masks atomicity errors on UI elements. A background thread may
call multiple UI methods — for example, to update a label and title bar together. Differ-
ent background threads could interleave non-deterministically in this approach, creating
inconsistencies in the user interface. Additionally, these atomicity bugs would hurt per-
formance by increasing contention on the shared queue of messages from background
threads due to the increased thread communication.

Why not use an existing concurrency analysis? Our effect system is different from
prior type and effect systems for concurrency. Our goal is to constrain some actions to
a specific distinguished thread, which is not a traditionally-studied concurrency safety
property (as opposed to data races, deadlocks, and atomicity or ordering violations). In
particular, this effect system permits most concurrency errors! This is by design, because
preventing better-known concurrency errors is neither necessary nor sufficient to elimi-
nate UI thread access errors, and allows the effect system design to focus on the exact
error of interest. Data races on model structures are not UI errors. Because UI libraries
dictate no synchronization other than the use of syncExec() and asyncExec() (and
equivalents in other frameworks), deadlocks are not UI errors. It is also possible for a
program to have a UI error without having any traditional concurrency bugs. JavaUI only
guarantees the UI library’s assumption that all UI widget updates run uninterrupted (by
other UI updates) in the same thread. In general, other static or dynamic concurrency
analyses would complement JavaUI’s benefits, but the systems would not interact.

4 Evaluation

We evaluated the effectiveness of our design on 8 programs with substantial user inter-
face components (Table 2). 4 of these programs were evaluated in prior work [2]. The
others were the first 4 UI-heavy Eclipse plugins we could get to compile out of the 50
most-installed3 (as of May 2012).

We wrote trusted annotations for major user interface libraries (Swing, SWT, and
an SWT extension called JFace), annotated the programs, and categorized the resulting
type-checking warnings. Where false warnings were issued due to the type system being
conservative, we describe whether there are natural extensions to the type system that
could handle those use cases.

4.1 Annotation Approach

Trusted Library Annotations. We conservatively annotated the UI libraries used by sub-
ject programs before annotating the programs themselves. Swing contains 1714 classes,
SWT contains 708 classes, and JFace 537 classes. We erred on the side of giving too
many methods the UI effect, and we adjusted our annotations later if we found them
to be overly conservative. We intermingled revisions to library annotations with subject
program annotation, guided by the compiler warnings (type errors). We examined the

3 http://marketplace.eclipse.org/metrics/installs/last30days

http://marketplace.eclipse.org/metrics/installs/last30days

192 C.S. Gordon et al.

Table 2. Subject programs. Pre-annotation LOC are calculated by sloccount [9]. UI LOC is the
LOC for the main top-level package containing most of the application’s UI code; other parts
of a project may have received some annotation (for example, one method in a model might be
executed asynchronously to trigger a UI update), and some projects were not well-separated at
the package level.

Program LOC UI LOC Classes Methods

EclipseRunner 3101 3101 48 354
HudsonEclipse 11077 11077 74 649
S3dropbox 2353 1732 42 224
SudokuSolver 3555 3555 10 62
Eclipse Color Theme 1513 1193 48 215
LogViewer 5627 5627 117 644
JVMMonitor 31147 17657 517 2766
Subclipse 83481 53907 539 4480

documentation, and in some cases the source, for every library method that caused a
warning. When appropriate, we annotated library methods as @SafeEffect, annotated
polymorphic types and effects for some interfaces, and changed some UI methods to
accept @UI instantiations of effect-polymorphic types. The annotated library surface is
quite large: we annotated 160 library packages as @UIPackage, as well as specifying
non-default effects for several dozen classes (8 effect-polymorphic).

Our results are sound up to the correctness of our library annotations and the type
checker itself. We can only claim the UI framework annotations to be as accurate as
our reading of documentation and source. A few dozen times we annotated “getter”
methods that returned a field value as safe when it was not perfectly clear they were
intended as safe. There are three primary sources of potential unsoundness in library
annotations:

1. Incorrectly annotating a method that does perform some UI effect as safe.
2. Incorrectly annotating a method that requires a safe variant of a polymorphic type

as accepting a UI variant.
3. Incorrectly annotating a callback method invoked by a library as @UIEffect .

To mitigate the first source, we began the process by annotating every UI-related pack-
age and subpackage we could find as @UIPackage. JavaUI mitigates the second by the
fact that unspecified polymorphic variants default to safe variants. We addressed the
third by reading the documentation on the several ways the UI frameworks start back-
ground threads, and annotating the relevant classes correctly early on.

Annotating Subject Programs. To annotate each subject program, we worked through
the files with the most warnings first. We frequently annotated a class @UIType if most
methods in the class produced warnings; otherwise we annotated individual methods
with warnings @UIEffect . For files with fewer warnings, we determined by manual
code inspection and perusing UI library documentation whether some methods came
from an interface with UI-effectful methods, annotating them @UIEffect if needed.

In an effort to make the final warning count more closely match the number of pos-
sible conceptual mistakes, when the body of a method that must be safe (due to its

JavaUI: Effects for Controlling UI Object Access 193

use or inheritance) contained one basic block calling multiple @UIEffect methods (e.g.
myJLabel.setText(myJLabel.getText()+"...")), we annotated the method body
@UIEffect, taking 1 warning over possibly multiple warnings about parts of the method
body. We believe this makes the final warning counts correspond better to conceptual
errors. Multiple UI method calls in a safe context likely reflects 1 missing asyncExec()
(a developer misunderstanding the calling context for a method) or 1 misunderstanding
on our part of the contexts in which a method is called, not multiple bugs or misun-
derstandings. If multiple separated (different control flow paths) basic blocks called
@UIEffect methods, we left the method annotation as @SafeEffect.

We made no effort during annotation to optimize annotation counts (the counts we
do have may include annotations that could be removed). We simply worked through
the projects as any developer might.

We identified several patterns in library uses that cause imprecision; we discuss those
in Section 4.4.

Distinguishing warnings that correspond to program bugs, incorrect (or inadequate)
annotations, tool bugs, or false positives requires understanding two things: the seman-
tics of JavaUI’s effect system, and the intended threading design of the program (which
code runs on which thread). The user has detected a program bug or a bad annotation
when JavaUI indicates that the program annotations are not consistent with the actual
program behavior. Finding the root cause may require the user to map the warning to a
call path from a safe method to a UI method. This is similar to other context- and flow-
sensitive static analyses, and when the user does not understand the program, iteratively
running JavaUI can help. The user can recognize a false positive by understanding what
is expressible in JavaUI. A reasonable rule of thumb is that if a warning could be sup-
pressed by conditioning an effect by a value or method call whose result depends on the
thread it runs on, it is likely a false positive. The user can recognize a tool bug in the
same way, by understanding JavaUI’s simple rules.

4.2 Study Results: Bugs and Annotations

Annotating these projects taught us a lot about interesting idioms adopted at scale, and
about the limitations of our current effect system. The annotation results appear in Table
3, including the final warning counts and classifications, and Table 4 gives the number
of each annotation used for each project. The first four projects each took under an hour4

to annotate, by the process described in Section 4.1. Eclipse Color Theme took only 8
minutes to annotate, and required only 4 annotations. The effort required for these five
projects was low even though we had never seen the code before starting annotation.
The other projects (LogViewer, JVMMonitor, and Subclipse) were substantially larger
and more complex, and they required substantially more effort to annotate.

Overall we found all known bugs in the subject programs (only the first four were
known to have UI threading related errors [2]), plus one new UI threading defect, and
one defect in unreachable (dead) code.

4 We lack precise timing information because each annotation was interleaved with fixing
JavaUI implementation bugs.

194 C.S. Gordon et al.

Table 3. JavaUI warnings (type errors). JavaUI finds all bugs found by Zhang’s technique [2],
plus one additional bug. The table indicates UI threading defects, non-exploitable code defects
found because of annotation, definite false positives, and a separate category for other reports,
which includes reports we could not definitively label as defects or false positives, as well as
other warnings such as poor interactions between plugins’ Java 1.4-style code and the 1.7-based
compiler and JDK we used.

Zhang et al. [2] Defects
Program Warnings Defects Time to Annotate Warnings UI Other False Pos. Other

EclipseRunner 6 1 <1hr 1 1 0 0 0
HudsonEclipse 3 3* <1hr 13** 3 0 2 0
S3dropbox 1 1 <1hr 2 2 0 0 0
SudokuSolver 2 2 <1hr 2 2 0 0 0
Eclipse Color Theme 0 0 8m 0 0 0 0 0
LogViewer 0 0 3h50m 1 0 0 1 0
JVMMonitor 7 0 6h45m 9 0 0 9 0
Subclipse 24 0 17h20m 19 0 1 13 5

*Zhang et al. report 1 bug, but its repair requires adding syncExec() in 3 locations, so we consider it 3 bugs.
**JavaUI found the same 3 bugs as Zhang et al.’s GUI Error Detector, each with 3–4 warnings due to compound statements.

Table 4. Annotation statistics for the 8 subject programs. @PolyUIEffect, @PolyUIType, and
@PolyUI were not used in the subject programs themselves — only in annotating the UI libraries.

Program @UIPackage @UIType @SafeType @UIEffect @SafeEffect @UI @Safe Anno/KLOC
EclipseRunner 0 26 0 2 5 0 0 10.6
HudsonEclipse 0 17 0 9 4 14 0 3.9
S3dropbox 0 30 0 4 2 14 0 21.2
SudokuSolver 0 2 0 18 1 9 0 8.4
Eclipse Color Theme 0 1 0 3 0 0 0 2.6
LogViewer 0 53 0 5 23 15 1 17.2
JVMMonitor 0 129 0 12 47 29 0 6.9
Subclipse 17 126 60 102 128 138 0 6.8

Table 3 includes the error counts for Zhang et al.’s unsound GUI Error Detector [2]
when run on the same program versions. We found all bugs they identified, as well as
1 new bug in S3dropbox. The S3dropbox developer has confirmed the bug, though he
does not plan to fix it because it does not crash the program (Swing does not check the
current thread in every UI method, allowing some races on UI objects). If a user drops
a file using drag-and-drop onto the UI, the interface sometimes forks a background
thread that then calls back into UI code. GUI Error Detector misses this bug because of
an unsoundness in WALA [10], which GUI Error Detector uses for call graph extraction.
For scalability, by default WALA does not analyze certain libraries, including Swing.
GUI Error Detector uses WALA’s default settings, so the drag-and-drop handler appears
(to the tool) to be unreachable. Call graph construction precision is also a bottleneck for
GUI Error Detector on large programs: Subclipse analysis required a less precise control
flow analysis to finish (0-CFA, others used 1-CFA).

The dead code defect we found was a UI-effectful implementation of a safe interface
in Subclipse. The type with the invalid override was never used at that interface type
(removing the implements clause fixes the warning) and the method was never called.
We consider this a defect, though it is not exploitable.

JavaUI: Effects for Controlling UI Object Access 195

In Table 3 the number of final warnings exceeding the number of bugs found does
not necessarily indicate false positives: our type system issues a warning for every type-
incorrect expression that could correspond to a thread access error. So a single line with
a composite UI expression (e.g., a UI method call with UI expressions as arguments) in a
non-UI context would (correctly) produce multiple compiler warnings. Each subexpres-
sion may have an individual work-around that does not require adding an (a)syncExec().
We consider a warning to be a false positive only if the target expression’s execution in
context would not improperly access UI elements from a non-UI thread.

Our sound type and effect system found no new UI threading errors in the larger
projects, but found several bugs in the smaller projects. There are good reasons to expect
this result. First, the first four projects were previously evaluated by Zhang et al. [2], so we
knew we should find bugs in those projects (Zhang selected several of those subjects by
finding SWT threading errors in bug databases). For the larger projects, we simply took
the most recent release version of each Eclipse plugin. Second, the larger Eclipse plugins
are all mature, heavily used projects, making it quite likely that any UI bugs would be
found and fixed quickly (each has at least 3,000 installs total; Subclipse was installed
23,855 times between 11/19 and 12/19 2012 alone). We believe JavaUI would have more
benefits when used from the beginning of a project, and the relative prevalence of UI
errors in the younger projects compared to the mature projects supports this theory.

After annotating these programs, we searched all four projects’ issue trackers for
threading-related issues. There were several bug reports for data races between models
and views, and issues with several UI methods that behave differently on the UI thread
than on other threads; the latter are not uncommon, because many JFace methods return
one result (often null) on non-UI threads, but a different result on the UI thread. The
latter could have been caught by our type system with custom library annotations for
those methods.

The one report we found of a UI threading error [11] is triggered when a background
thread calls into a native method, which then calls back into UI-effectful Java code.
The call occurs as a result of a logic error in Subversion itself, and the bug was marked
“WONTFIX” (the fix was a patch to Subversion). With a proper annotation on the native
methods, our effect system would have issued a warning.

Non-annotation Changes. We made minor changes to the code beyond simply adding
effect-related annotations (and the required import statements) for two reasons: when
naming an anonymous inner class as a new subtype would fix effect (type) errors,
and when converting Java 1.4-style code to use generics would remove warnings. The
Action interface is generally used as a closure for @UIEffect work, but HudsonEclipse
in one case made an anonymous inner class whose run() method was safe, stored it as
an Action (whose run() is @UIEffect), and called the run() of the safe subclass explic-
itly in several safe contexts. Rather than making Action (and several
supertypes) polymorphic, which seems to contradict the suggested uses in the doc-
umentation, we declared a subclass of Action that overrode run() as @SafeEffect,
and stored the anonymous inner class as an instance of that (removing 3 warnings). In
JVMMonitor, Java 1.4-style (no generics) use of Java Beans interacted poorly with the
Checker Framework’s promotion of an argument of type Class to Class<? extends
@Safe Object>, which was passed as an argument to a Java Bean method accepting

196 C.S. Gordon et al.

Client code listener (callback) implementations:

class SafePropertyChangeListener extends PropertyChangeListener() {
public void propertyChange(PropertyChangeEvent event) {

if (event.getProperty().equals("stuff")) {
// do @SafeEffect stuff

}}}
class UIPropertyChangeListener extends PropertyChangeListener() {

public void propertyChange(PropertyChangeEvent event) {
if (event.getProperty().equals("uistuff")) {

// Call @UIEffect methods directly
}}}

On UI thread:

store.addPropertyChangeListener(new UIPropertyChangeListener());

On a background thread:

store.addPropertyChangeListener(new BackgroundPropertyChangeListener());
// Next line executes UIPropertyChangeListener’s UI callback on BG thread
store.setValue("stuff", true);

Fig. 4. JFace global property store issues. Assume store is any expression that accesses a shared
static JFace PreferenceStore; in Eclipse plugins, there is one such store initialized for every
plugin. Listeners for property changes are registered with both possible effects, but all handlers
will run on any thread that updates any property, making UI thread errors possible. As long as
specific properties that actually cause @UIEffect methods to be called (in this case, uistuff) are
only updated from the UI thread, no errors will occur, but this pattern is fragile.

a Class<@Safe Object>. We added a generic method parameter T and changed the
argument to Class<T>, removing one warning. In Subclipse, we converted 3 Vector
fields to Vector<String>, due to a similar problem with Vector.copyInto, removing
3 warnings.

We allowed these changes because they were minor, and because we expect they
would be natural changes for a project interested in using our effect system to verify
the absence of UI threading errors. Most of the remaining false positives could be fixed
with more engineering work (e.g. splitting interfaces, splitting callback registration into
safe and UI-effectful, etc.) but we judged such changes to be too invasive to give a clear
picture of developer effort, and restricted ourselves to only these small changes.

4.3 False Positives and Other Reports

Our evaluation produced 30 false positives in over 140,000 lines of code (0.2 per 1000
lines of code). We consider this an acceptable false positive rate. The false positives fall
into 5 general categories, including limitations of our type system and what we consider
to be poor designs in the UI libraries and client programs.

Registering Callbacks of Both Effects. Four of the projects shared a common source of
false positives: HudsonEclipse (1 false positive), LogViewer (1), JVMMonitor (5), and

JavaUI: Effects for Controlling UI Object Access 197

Subclipse (1) each suffered imprecision from JFace’s global property store. The plugin
code adds a UI-effectful property change listener (a @UI instantiation of a polymorphic
interface) to JFace’s global property store. Listeners will fire on any thread that sets a
property, so in general the listeners must be safe. However, in some projects all calls
to setting properties are performed from within the UI thread, making this not a bug.
A potential solution for this class of false positives is to change the library annotations
for JFace’s preference store to permit @UI handlers, and to annotate the property set-
ters @UIEffect in a project-specific library annotation file used to override the global
file. (The global file would follow documentation as much as possible.) In other cases,
particular properties are only updated from the UI thread, and the UI-effectful handlers
are guarded by condition checks that only pass for those UI properties, as in Figure 4.

JVMMonitor created its own specific instance of this same problem: the other 4 of
its false positives are from a property store it creates for CPU model changes, where
some properties are only updated from UI code, and the handlers have UI effects but
run only for specific properties. We feel this property store design is faulty, which we
elaborate on in Section 4.4.

Subtyping Limitations. 5 other false positives (1 in HudsonEclipse and 4 in Subclipse)
are from a weakness in our subtyping relation. HudsonEclipse’s subtyping false pos-
itive occurs because a @UI instantiation of a polymorphic type is not a subtype of
@Safe Object. The subtyping false positives in Subclipse are from a combination of
that with the requirement that generic parameters are subtypes of the default Object
variant: the code uses a Java 1.4 style list, but List<T> is implicitly List<T extends
@Safe Object> which makes some types unusable as type parameters. These uses
would be enabled by making the upper bound on List (and Iterator) @UI Object,
but doing so would force many additional annotations where an object was pulled out
of a list or iterator as (implicitly safe) Object, so we opted for the lower annotation
burden. This would not be an issue in properly generic code.

Interface Abuse. One false positive in Subclipse is an instance of interface abuse:
subclassing a definitively safe supertype using @UIEffect overrides, then calling the
@UIEffect overrides directly, only from UI contexts. We could have fixed this type error
by making the entire hierarchy of the abusing class’s superclasses effect-polymorphic
(from documentation one superclass is clearly intended as safe), or by introducing a new
type and copying code from parent classes (which is poor design for its own reasons).

Lack of Dependent Types/Effects. Subclipse had 7 additional definite false positives,
most of which would require dependent effects (as in dependent types; an effect deter-
mined by a runtime result) to handle:

– 3 warnings resulting from lack of dependent effects (see Section 4.5).
– 3 warnings that were subject to some type of dynamic thread check, and would

therefore have executed only on the UI thread
– 1 instance where our type system could not express the proper effect (it would

require a combination of dependent effects with multiple method effect parameters
and explicit least-upper-bound-of-parameters effects)

198 C.S. Gordon et al.

Other Reports. The remaining 5 Subclipse reports are about unsafe effects, but we
cannot determine whether or not the application is using a safe interface as polymorphic
(at a @UI variant) or if the JFace interface, documented as unrelated to interfaces or
threads, should actually just allow UI effects.

4.4 Sources of Difficulty

Weak Documentation. The main source of difficulty in annotating all of our subject
programs was understanding the design of the UI libraries, with respect to which meth-
ods must only be called in the UI thread, or were polymorphic. Once we understood
the design, adding library annotations was easy. Remarkably, none of the UI libraries
clearly and consistently documents the thread safety of all UI methods. JavaUI’s anno-
tations are precise documentation, and are machine-checkable for client code.

AWT and Swing’s documentation was concise and unambiguous: all methods except
invokeAndWait and invokeLater must be called only from the UI thread. SWT claims
the same about syncExec() and asyncExec(). Confusingly, there are some exceptions
to this rule in SWT (classes Color, Font, and Image).

The prevailing wisdom about JFace is that most of JFace assumes it is running on the
UI thread. But clients call much of JFace directly from non-UI threads, and the JFace
documentation rarely specifies thread assumptions. Clients often interpret the lack of
documentation as license to call: there are many methods of UI elements that documen-
tation suggests are intended to be called only from the UI thread, but happen to be safe
(such as getter methods) and are therefore often called by clients from contexts that must
be safe.

Problematic Idioms. There are several idioms that cause problems for our type system.
Most could be handled with richer polymorphism or dependent effects, but we believe
most of these idioms are poor design. Rewriting the offending code is a better option,
and JavaUI’s type system encourages this better design.

The most common source of false positives was JFace’s global property store design.
JFace often shares global property sets among all threads, and listeners can be registered
for a callback in the event of a property changing. These listener callbacks will be
executed on whichever thread updates a property, thus all properties callbacks should be
@SafeEffect. However, some programs register @UIEffect callbacks, but avoid issues
by updating the global property store (for any property) only from the UI thread, or
updating the properties with UI-effectful handlers only from the UI thread. Two of these
safe approaches can be handled using custom library annotations for individual projects:
either callbacks can have the UI effect and properties may only be updated from the UI
thread, or callbacks must be safe and the properties may be updated by any thread.
The related case as seen with the CPU model change listeners in JVMMonitor could
be handled with some dependent effects, annotating the listener update code with the
properties whose handlers may have UI effects, and allowing updates to those properties
only from UI contexts. The shared property store design appears to us to be a very
error-prone design; we would prefer separate property stores or listener registrations
for handlers that run on or off the UI thread.

Another problematic idiom, seen only in Subclipse, is code that dynamically checks
which thread it is executing on, and optionally redirects a closure to the UI thread if

JavaUI: Effects for Controlling UI Object Access 199

necessary. Our design does not support these dynamic checks, which are typically found
only inside UI libraries themselves. In Subclipse, SWT’s Display.getCurrent()
is used; it returns null when executed off the UI thread, and otherwise returns a
valid Display object. The same method also sets a local boolean indicating whether
Display.getCurrent() returned null, so handling this code is not a simple matter of
specializing to a particular if-then-else construct.

An idiom responsible for both a number of false reports and for a number of
workarounds in our library annotations is to make ad-hoc polymorphic instances of a
particular type. By this we mean creating a subtype with a UI-effectful override of a safe
method, storing the reference at the (safe) supertype, but only allowing said values to
flow to and be used in UI contexts. This frequently occurred with a JDK or Eclipse inter-
face that appeared from documentation to be intended as safe, but some part of JFace or
a custom design by a plugin developer co-opted it and treated it as an effect-polymorphic
type. Similarly, developers sometimes implement a totally safe subclass of a UI-effectful
supertype (often as an anonymous inner class), store references as the supertype, and call
methods of said class in safe contexts (only allowing safe subtype instances to flow to
those call sites). Checking these uses in general would effectively require allowing every
type to take a separate effect parameter for each method. In our evaluation, we typically
annotated such classes as effect-polymorphic, annotated each method of those classes as
@PolyUIEffect, and added UI instances to the subject programs as necessary.5 This gen-
erally sufficed for UI variants of safe supertypes, unless the problematic class would then
inherit from multiple polymorphic types, which our system does not handle. The latter
case (safe variants of a UI interface) could be worked around by explicitly introducing a
named subtype that declares a safe override, and storing references as the safe subtype
(which we did once for HudsonEclipse). We speculate that these designs arise from the
designers of the relevant class hierarchies and interfaces not considering the option of
using type hierarchies to separate code that must run on the UI thread from code that
may run anywhere (including hijacking otherwise safe interfaces). The type hierarchy
splitting that fits these cases into our effect system generally seems less error-prone even
without our strict effect system checking, because such splitting already introduces some
type-based barriers to confusing the calling context of UI code.

A class of idioms that definitely indicates shortcomings of our current effect system
is methods requiring qualifier-dependent method effects: effects that depend on the qual-
ifier of one or more effect-polymorphic arguments. There are also some methods whose
proper types require a much richer type system. A good example of this is
org.eclipse.swt.custom.BusyIndicator.showWhile(), whose effect depends on:

– The variant of Runnable it receives (@UI or @Safe),
– The calling context (@UIEffect or @SafeEffect), and
– Whether the Display it receives is null

This method calls the passed Runnable on the current thread, displaying a busy cursor
on the passed Display if any, and no busy information otherwise. Because it is often used
for UI-effectful work, we annotated it @UIEffect, taking a @UI Runnable. A better, but
still conservative type would be

5 This is always sound: each instantiation is treated soundly, and @Safe instances may flow into
variables for @UI instances.

200 C.S. Gordon et al.

@PolyUIEffect
public static void showWhile(Display display, @PolyUI Runnable runnable);

Our type system cannot check calls to this presently because there is no receiver qual-
ifier to tie to the effect at the call site. Checking the method internals would require
richer types, including effect refinements based on the Display.

4.5 Potential Type System Extensions

Our experiences revealed several ways our type system could be extended to verify
more client code.

First, what would be simple polymorphism in the most natural core calculus to write
for the polymorphic effect system6 becomes lightweight dependent effects in the imple-
mentation. This happens in cases where a method takes a Runnable of some instantia-
tion and runs it in the current thread. The example we encountered in our evaluation is
the showWhile() method from the previous section, a good signature for which would
be

@EffectFromQualOf("runnable")
public static void showWhile(Display display, @PolyUI Runnable runnable);

The effect of this runner call will be whatever the effect of the Runnable’s run()
method is. If we could use the same annotation for both qualifiers and method ef-
fects, simply specifying the polymorphic qualifier would be sufficient, and the Checker
Framework’s existing support for polymorphism would handle this. Unfortunately, Java
8’s type annotation syntax leaves parsing ambiguities: if @UI applied to both types and
methods, there would be no way to disambiguate a use as a method effect annotation
from a use as a method return type annotation. Thus we must use different annotations.
So to support this type of qualifier-dependent effect, we would need lightweight depen-
dent effects, simply due to limitations of Java’s grammar.

A need for dependent effects comes from a pattern seen in Subclipse, where methods
either take a boolean argument (ProgressMonitorDialog.run() and
Activator.showErrorDialog()) or call a related method (Action.canRunAsJob())
indicating whether or not to fork another thread to execute a Runnable (otherwise the
effect of the runner is polymorphic as in the previous example). If the fork flag is true,
the provided Runnable must be a @Safe Runnable. So for example, the effect of the
main work method for the Action class should be (informally):

@EffectIfTrueElse(this.canRunAsJob(),@SafeEffect,@UIEffect)
indicating that the method must be safe if the method is required to run as a Job (a
background thread task), and otherwise will run on the UI thread. Checking this then
requires executing the canRunAsJob() method during type-checking, and ensuring that
this computation is independent of subtyping (that the canRunAsJob() implementation
is final when used). Other utility methods take a flag with opposite polarity, but the
required type system extension would be the same.

6 Recall that λUI is effect-monomorphic.

JavaUI: Effects for Controlling UI Object Access 201

5 Related Work

The most similar work to ours is an open source tool, CheckThread.7 It is a Java com-
piler plugin that aims to catch arbitrary concurrency bugs, and includes a @Thread-
Confined("threadName") annotation similar to our @UIEffect, but supporting
arbitrary thread confinement rather than being limited to one distinguished thread. It
appears to be an effect system, but the authors never describe it as such in the documen-
tation or code. They allow applying various annotations to whole types as a shorthand for
applying an annotation to all methods on a type (similar to our @SafeTypeand @UIType).
However, their system does not support polymorphism, and it is not clear from its doc-
umentation if it treats inheritance soundly (from source inspection, it appears not).

Another piece of closely related work is Zhang et al.’s GUI Error Detector [2], which
searches for the same errors as our type and effect system via a control flow analysis. Es-
sentially they extract a static call graph of a program from bytecode, and find any call path
that begins in non-UI code and reaches a UI method without being “interrupted” by a call
to syncExec() or asyncExec(). The false positive rate from the naı̈ve approach is too
high, so they couple this with several heuristics (some unsound, potentially removing cor-
rect warnings) to reduce the number of warnings. On four examples from their evaluation,
we find all of the bugs they located, plus one more (Section 4.2). They also annotated 19
subject program methods in their evaluation as trusted safe when they performed dynamic
thread checks; at least 3 of our false positives would disappear if we suppressed warnings
in such methods. Another interesting result of our work is empirical confirmation of the
GUI Error Detector’s unsound heuristics for filtering reports. GUI Error Detector found
most of the bugs our sound approach identified, and the missed bug was due to WALA’s
defaults for scalable call-graph generation, not due to unsound heuristics. Some idioms,
like the global property store design, cause false positives for both techniques.

Our approach has several advantages over Zhang et al.’s approach. Most notably, our
technique is sound, while their heuristics may filter out true reports. Our type and effect
system is also modular and incremental (we naturally support separate compilation and
development) and can reason soundly about code (for example, subclasses) that may not
exist yet. The GUI Error Detector on the other hand must have access to all JAR files
that would be used by the running application in order to gather a complete call graph,
and must rerun its analysis from scratch on new versions. If JARs are unavailable, its
unsoundness increases. For performance reasons, their underlying call graph extraction
tool (WALA [10]) skips some well-known large libraries — including Swing, meaning
that GUI Error Detector misses all callbacks from Swing library code into application
code. This results in additional unsoundness, and is the reason GUI Error Detector did
not find the drag-and-drop bug in S3Dropbox. Our support for polymorphism is also
important: 14 of GUI Error Detector’s 24 false positives on Subclipse were because
Zhang et al.’s technique does not treat the Runnable interface effect-polymorphically.

Our system does have several disadvantages compared to Zhang et al.’s. Our type and
effect system requires manual code annotation, requiring many hours for some large
projects (though this effort is only required once, with only incremental changes to an-
notations as the program evolves). Because GUI Error Detector runs on Java bytecode,

7 http://checkthread.org/

http://checkthread.org/

202 C.S. Gordon et al.

it is possible to run the GUI Error Detector on binaries for which source is unavailable,
without writing a trusted stub file. It is also possible (though untested) that their ap-
proach can handle other JVM languages (such as Scala or Clojure) or multi-language
programs. Our type system produces only localized reports; Zhang et al. examine the
whole call graph, so a warning’s report includes a full potentially-erroneous call se-
quence. When annotating the sample programs in our evaluation, much of our time was
spent manually reconstructing this information.

Sutherland and Scherlis proposed the technique of thread coloring [12], which is in
some ways a generalization of our UI effect. They permit declaration of arbitrary thread
roles and enforcing that methods for certain roles execute only on the thread(s) holding
those roles. They use a complex combination of abstract interpretation, type inference,
and call-graph reconstruction to reduce annotation burden; the one subject they specify
annotation burden for is lower than ours, but they do not provide annotation counts
for other subjects. They do not describe their false positive rates. They do annotate
AWT and Swing applications successfully; we found AWT and Swing had relatively
consistent policies, and expect they would have had more difficulty with Eclipse’s SWT
and JFace libraries, which were the source of many of our false positives. Like Zhang
et al.’s technique, Sutherland’s implementation lacks role (effect) polymorphism, which
results in an unspecified number of false positives in their evaluation.

There is a long line of work on effect systems, ranging from basic designs [13]
to abstract effect systems designed for flexible instantiation [14,15]. Rytz et al. [15]
propose an effect-polymorphic function type for reasoning about effects, where for
functions of type T1

e⇒ T2 the effect of invoking it is the join of the concrete effect
e with the effect of the argument T1, implying that the function may call T1 (if the ar-
gument is itself a function). This is similar to what we would need to support qualifier-
dependent effects (e.g., showWhile in Section 4.5). Other effect systems are designed
to reason about more general safe concurrency properties [16,17], but we are the first to
build a polymorphic effect system for the issue of safe UI updates. Another approach
would be to encapsulate UI actions within a monad, since every effect system gives
rise to a monad [18]. Functional languages such as Haskell use monads to encapsulate
many effects, and in fact some Haskell UI libraries use a UI monad to package UI up-
dates safely (e.g., Phooey [19]). Another use of monads in functional languages is to
support software transactional memory [20,21], including a strong separation between
data accessed inside or outside a transaction. Viewing the closures run on the UI thread
as UI transactions, our type system enforces a weakly atomic [22] form of transactions,
where UI elements are guaranteed to be transaction-only but non-UI elements have no
atomicity guarantees.

6 Conclusion

In almost every UI framework, it is an error for a background thread to directly ac-
cess UI elements. This error is pervasive and severe in practice. We have developed an
approach — a type and effect system — for preventing these errors that is both theo-
retically sound and practical for real-world use. We have proven soundness for a core
calculus λUI. Our implementation, JavaUI, is both precise and effective: in 8 projects

JavaUI: Effects for Controlling UI Object Access 203

totalling over 140,000 LOC, JavaUI found all known bugs with only 30 spurious warn-
ings, for a modest effort of 7.4 annotations per 1000 LOC on average.

We have identified error-prone coding idioms that are common in practice and ex-
plained how to avoid them. We also identified application patterns that JavaUI cannot
type check that will probably be issues for other effect systems applied to existing code:
ad-hoc effect polymorphism, value-dependent effects, and data structures mixing call-
backs with different effects. These idioms suggest improvements to existing code (such
as segregating callbacks with different known effects) and profitable extensions to effect
systems.

Acknowledgements. We thank the anonymous referees for their helpful comments, and
Sai Zhang for helpful discussions and running GUI Error Detector on additional subject
programs for us. This work was funded in part by NSF grant CNS-0855252 and DARPA
contracts FA8750-12-C-0174 and FA8750-12-2-0107.

References

1. Ingalls, D.H.H.: The Smalltalk-76 Programming System: Design and Implementation. In:
POPL (1978)

2. Zhang, S., Lü, H., Ernst, M.D.: Finding Errors in Multithreaded GUI Applications. In: ISSTA
(2012)

3. Wright, A.K., Felleisen, M.: A Syntactic Approach to Type Soundness. Inf. Comput. 115(1),
38–94 (1994)

4. Gordon, C.S., Dietl, W.M., Ernst, M.D., Grossman, D.: JavaUI: Effects for Controlling UI
Object Access. Technical Report UW-CSE-13-04-01, University of Washington (2013)

5. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical Pluggable Types
for Java. In: ISSTA (2008)

6. Dietl, W., Dietzel, S., Ernst, M.D., Muşlu, K., Schiller, T.: Building and Using Pluggable
Type-Checkers. In: ICSE (2011)

7. Foster, J.S., Fähndrich, M., Aiken, A.: A Theory of Type Qualifiers. In: PLDI (1999)
8. Emir, B., Kennedy, A., Russo, C., Yu, D.: Variance and Generalized Constraints for C� Gener-

ics. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 279–303. Springer, Heidelberg
(2006)

9. Wheeler, D.A.: SLOCCount, http://www.dwheeler.com/sloccount/
10. WALA, http://wala.sourceforge.net
11. Subclipse Issue 889, http://subclipse.tigris.org/issues/show_bug.cgi?id=889
12. Sutherland, D.F., Scherlis, W.L.: Composable Thread Coloring. In: PPoPP (2010)
13. Lucassen, J.M., Gifford, D.K.: Polymorphic Effect Systems. In: POPL (1988)
14. Marino, D., Millstein, T.: A Generic Type-and-Effect System. In: TLDI (2009)
15. Rytz, L., Odersky, M., Haller, P.: Lightweight Polymorphic Effects. In: Noble, J. (ed.)

ECOOP 2012. LNCS, vol. 7313, pp. 258–282. Springer, Heidelberg (2012)
16. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,

J., Simmons, P., Sung, H., Vakilian, M.: A Type and Effect System for Deterministic Parallel
Java. In: OOPSLA (2009)

17. Kawaguchi, M., Rondon, P., Bakst, A., Jhala, R.: Deterministic Parallelism via Liquid Effects.
In: PLDI (2012)

18. Wadler, P.: The Marriage of Effects and Monads. In: ICFP (1998)
19. Phooey UI Framework, http://www.haskell.org/haskellwiki/Phooey

http://www.dwheeler.com/sloccount/
http://wala.sourceforge.net
http://subclipse.tigris.org/issues/show_bug.cgi?id=889
http://www.haskell.org/haskellwiki/Phooey

204 C.S. Gordon et al.

20. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: PODC (2003)

21. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transactions. In:
PPoPP (2005)

22. Blundell, C., Lewis, E., Martin, M.: Subtleties of Transactional Memory Atomicity Seman-
tics. Computer Architecture Letters 5(2) (2006)

	JavaUI: Effects for Controlling UI Object Access
	1 Introduction
	2 Core Language λUI
	3 JavaUI: Extending λUI to Java
	3.1 JavaUI Basics
	3.2 Effect-Polymorphic Types
	3.3 Annotating UI Libraries
	3.4 Limitations
	3.5 Alternatives

	4 Evaluation
	4.1 Annotation Approach
	4.2 Study Results: Bugs and Annotations
	4.3 False Positives and Other Reports
	4.4 Sources of Difficulty
	4.5 Potential Type System Extensions

	5 Related Work
	6 Conclusion
	References

