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Abstract. Hierarchical decomposition is a fundamental principle that encour-
ages the organization of program elements into nested scopes of access, instead of
treating all as “global.” This paper offers a foundational study of heap decompo-
sition inference, the problem of statically extracting the decomposition hierarchy
latent in the runtimes of object-oriented programs, henceforth revealing the com-
positional nature of the heap. The centerpiece of the paper is Cypress, a sound,
precise, and scalable constraint-based ownership type inference coupled with a
novel application of linear programming over integers. All constraints in Cy-
press are linear, and the precision of decomposition – placing objects to scopes
as non-global as possible – can be reduced to a linear programming problem.
Cypress has been implemented as an open-source tool that can decompose real-
world Java applications of more than 100K LOC and up to 6000 statically distinct
instantiations.

1 Introduction

The principle of hierarchical decomposition (HD) is a divide-and-conquer strategy to
compartmentalize program element accesses into potentially nested scopes. Language
support for HD over static program elements – such as lexical scoping – has a history
as long as programming language design itself. HD over program runtimes are a direc-
tion particularly successful through language design such as ownership type systems
[29,6,5,2,3,11].

This paper explores a program analysis approach to HD, addressing how the heap of
the standard Java-like object model can be decomposed into a hierarchy that reflects the
principle of HD. In other words, even though the heap of Java-like languages is a global
structure where every object may potentially be referred to by all others, few practical
programs take advantage of that potential. Instead, it is more natural to consider every
heap object to be implicitly associated with a scope – the same concept as in HD –
and view the heap as a compositional tree structure where each object serves as the
scope of access for its children on the tree. The goal of the inference is to compute a
static approximation of the transformation from a global heap to a compositional heap,
informing programmers of what their heap “could have been.”

Our concrete proposal is Cypress, a sound, precise, and scalable constraint-based
type inference. As a form of ownership inference [14,28,34,26,10,17], Cypress is dis-
tinct with the following features:
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– Linear constraints for scalability. Cypress constraints for computing the compo-
sitional heap are linear, a scalable solution outsourceable to mature linear solvers.

– Linear programming for precision. The precision of decomposition – placing ob-
jects to scopes as non-global as possible – is guided by a novel Cypress Principle 1,
which says a “tall and skinny” view of the compositional heap is favored, and this
preference can be reduced to a linear programming problem with a judicious setting
of the objective function.

– Heap-wide scope characterization. Cypress computes scopes for all heap objects
in an algorithm that does not require iteration over each object. The result of the
analysis is a tree including all (static) heap objects, organized in a way vividly
reflecting how the heap is decomposed according to the principle of HD.

– Fully automated static inference: Cypress is a sound type inference that does not
require programmer annotation or interactive user assistance.

Beyond the technical contribution of proposing a new ownership inference algorithm,
the paper is further aimed at gaining a fundamental understanding of HD as a principle.
It provides a unified framework where commonly discussed HD mechanisms – lexical
decomposition (lexical scoping), dynamic heap decomposition (dynamic ownership),
and static heap decomposition (static ownership) – are formally related, and the HD
principle is captured as an invariant independent of the mechanisms that realize it.

Overall, heap decomposition inference addresses a fundamental goal in program-
ming languages – promoting local reasoning – with a broad range of benefits in opti-
mizing, debugging, verifying, securing, and understanding programs. Thread locality –
a property crucial for optimizing multithreaded programs (e.g. [1,13]) – can be viewed
as decomposing heap objects into scopes defined by threads. Objects in the same scope
may signify the likelihood of co-use, and co-allocating them may lead to reduced cache
misses, a boon for performance [15] and energy efficiency [33]. Localizing the use of
objects can also aid bug localization [31] and analyze the impact of change [4]. Progress
in separation logic (e.g.[12]) demonstrates the usefulness of locality information in ver-
ification. In security, the scope of capabilities [9] – object references in object-oriented
programs – is crucial in constructing access control and authority isolation [27,23]. The
compositional view of the heap is also beneficial in reverse engineering [16].

This paper makes the following contributions:

– a unified framework to reason about HD and its properties (Sec. 2).
– a novel constraint-based type inference to abstract object access in the presence of

the compositional heap as linear constraints (Sec. 4).
– a novel application of linear programming to improve inference precision, guided

by the Cypress Principle (Sec. 5).
– a prototyped implementation that analyzes real-world programs (Sec. 6).

2 Hierarchical Decomposition

In this section, we define a unified framework for HD, with three common forms of HD
– lexical decomposition, dynamic heap decomposition, static heap decomposition –

1 A cypress – especially its subspecies known as Mediterranean Cypress – is a tree usually “tall
and skinny” in shape. It is a common image, such as in Vincent van Gogh’s Starry Night.
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Fig. 1. From Lexical Decomposition to Heap Decomposition

summarized in Fig. 1. Metavariables introduced in this section routinely use superscript
labels x, d, s to differentiate the three forms.

Throughout the paper, we say relation Rel : SetA × SetB is a rooted tree relation if
Rel is injective, surjective, irreflexive, acyclic, and contains one unique element elmtA
such that elmtA ∈ SetA and elmtA /∈ SetB and (elmtA, elmtB) ∈ Rel for some elmtB.
We further say elmtA is the root of Rel. The rooted tree relation intuitively corresponds
to the edge set of graph-theoretic rooted directed trees.

2.1 The Essence of Hierarchical Decomposition (though Lexical Decomposition)

Let us start with the most well-understood HD mechanism, block-based lexical scop-
ing. Given a program P , we abstract it as a 5-tuple 〈Ax;Bx; axG; ↪→x;�x〉 configuration
where

– Accessor/Scope set Ax: the set of code blocks (IDs) in P
– Accessee set Bx: the set of variables (names) in P
– Global scope axG: the code block that implicitly encloses the entire program
– Access relation ↪→x: Ax ∪{axG}×Bx: ax ↪→x bx says ax accesses bx. Concretely, it

is defined as code block ax immediately encloses the use of variable bx.
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– Scope relation �x: Ax ∪ {axG} × Ax ∪ Bx: a rooted tree relation with root axG and
ax �x cx says ax is the lexical scope of cx. Concretely, it is defined as block ax

immediately encloses cx definition, as a variable declaration or a nested block.

It is important to realize that for any program subject to lexical scoping, a latent invari-
ant must hold between ↪→x and �x. Indeed, this invariant is a concrete instance of a
more general invariant that epitomizes hierarchical decomposition:

Definition 1 (The Essence of Hierarchical Decomposition). HD mechanisms main-
tain the following invariant between the access relation ↪→� and scope relation ��:

ehd�(↪→�,��)
def
= a�1 �� b� ∧ a�2 ↪→� b� =⇒ a�1 ��

∗ a�2

where � is the identifier of the HD mechanism itself (such as x), and ��
∗ is the reflexive

and transitive closure of ��. The invariant can be interpreted in two equivalent ways:

Accessors from Inner Scopes. If a�1 is the scope of b�, then any access to b� must come
from an inner scope of a�1, i.e. a scope that can be reached from a� according to ��.

Accessees in Outer Scopes. If a�2 accesses b�, then the scope of b� must be an outer
scope of a�2, i.e. a scope that can reach a�2 according to ��.

The Accessors from Inner Scopes interpretation demonstrates the key benefit of HD:
promoting local reasoning. In Sec. 4, the Accessees in Outer Scopes interpretation will
help us encode the essence of HD in a type inference algorithm. With this formulation,
the common notion of lexical scoping is:

Definition 2 (Lexical Decomposition). Configuration 〈Ax;Bx; axG; ↪→x;�x〉 conforms
to lexical decomposition iff ehdx(↪→x,�x).

Our goal is to use the familiar lexical decomposition to shed light on heap decom-
position. As it turns out, lexical decomposition and heap decomposition bear remark-
able similarity: they share the same ehd� invariant. For instance, the two interpretations
above resonate with deep ownership and owners-as-dominators [5] in ownership types.

2.2 Dynamic Heap Decomposition

The main difference between lexical decomposition and heap decomposition is that the
latter is concerned with the access relation and the scope relation among objects. Let us
first consider the case of dynamic heap decomposition, i.e., HD for the run-time state
at a program execution step. For our discussion here, we abstract the run-time state as a
configuration CFd in the form of a 4-tuple 〈Od; oG; ↪→d;�d〉 including:

– Object set (unified accessor/accessee/scope set) Od: the set of objects (IDs)
– Global scope oG: the implicit “global” object that encloses the bootstrapping code
– Access relation ↪→d: Od ∪ {oG}×Od, where o1 ↪→d o2 says o1 accesses o2. Under

concrete dynamic semantics with heaps and stacks, one possible ↪→d relation is the
object reference relation2, where o1 ↪→d o2 holds iff the heap store for object o1 or
any stack frame for any method invocation of o1 contains a reference to o2.

2 Defining the access relation as the reference relation is similar to the conventional capability
model [9]. There are alternative ways to define the access relation, such as the accessor reads
from and writes to a field of the accessee.
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– Scope relation �d: Od ∪ {oG} × Od, a rooted tree relation where o1 �d o2 says o1
is the dynamic object scope of o2, and oG is the root

To strictly mirror the definition we used for lexical decomposition, the 4-tuple above
is indeed a degenerate 5-tuple 〈Ad;Bd; oG; ↪→d;�d〉 where Ad = Bd = Od. In other
words, objects are both accessors and accessees in dynamic heap decomposition. With
this alignment, the essence of dynamic heap decomposition can be analogously defined:

Definition 3 (Dynamic Heap Decomposition). Configuration 〈Od; oG; ↪→d;�d〉 is a
dynamic heap decomposition iff ehdd(↪→d,�d).

Even though the invariant behind lexical decomposition and dynamic heap decomposi-
tion is in essence identical, there is often a difference on how the invariant is applied. In
the former, both ↪→x and �x are readily available during parsing, so ehdx is mostly used
to provide a boolean answer: does the program conform (to lexical decomposition)? In
dynamic heap decomposition however, only ↪→d is available in Java-like run-times, so
ehdd is more often applied to dynamic heap decomposition inference: given a run-time
state whose access relation is ↪→d, find a �d such that ehdd(↪→d,�d).

In plain words, dynamic heap decomposition inference is aimed at (figuratively) or-
ganizing the objects of a run-time state into a hierarchy that conforms to the principle
of HD, based on information of inter-object access at the run-time state. Just as lexical
decomposition, dynamic heap decomposition also promotes local reasoning: it attempts
to provide a scope to every object instead of assuming all as “global.” Existing work
on dynamic UML composition inference (e.g. [16]) and dynamic ownership inference
(e.g. [28]) are concrete instances in this category. In those contexts, the object that forms
the “dynamic object scope” of another is called a compositional object or an owner.

2.3 Static Heap Decomposition

The problem with dynamic heap decomposition is it only applies HD to one particular
runtime state of a program’s execution (or a finite combination of them). What is more
useful is to characterize how heap decomposition can be applied to all run-time states
of a program P . This goal is achieved by static heap decomposition, a conservative
approximation of dynamic heap decomposition for all run-time states.

Static heap decomposition (checking or inference) systems are constructed over a
program abstraction which we represent as configuration CFs, a tuple 〈Os;αG; ↪→s;�s〉
including:

– Abstract object set (unified accessor/accessee/scope set) Os: the set of static ap-
proximations of distinct run-time objects of the program

– Global scope αG: the approximation of the implicit “global” object that encloses
the bootstrapping code

– Access relation ↪→s: Os∪{αG}×Os, where α1 ↪→s α2 says α1 is the static approx-
imation of an object that accesses an object of which α2 is the static approximation.
We also informally say α1 statically accesses α2.

– Scope relation �s: Os ∪{αG}×Os, a rooted tree relation where α1 �s α2 says α1

is the static object scope of α2, and αG is the root
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1 c l a s s Main {
2 void main ( ) {
3 X@αX1 x ;
4 Z@αZ1 z ;
5 x = new X@αX2 ( ) ;
6 z = x . mdx ( ) ;
7 }
8 }
9 c l a s s X {

10 Z@αZ2 mdx ( ) {
11 Y@αY1 y1 ;
12 Y@αY2 y2 ;
13 Z@αZ3 z1 ;
14 Z@αZ4 z2 ;
15 y1 = new Y@αY3 ( ) ;

16 y2 = y1 ;
17 z1 = new Z@αZ5 ( ) ;
18 z2 = y2 . mdy ( z1 ) ;
19 re turn y2 . f d z ;
20 }
21 }
22 c l a s s Y {
23 Z@αZ6 f d z ;
24 Z@αZ7 mdy (Z@αZ8 z ) {
25 t h i s . f d z = z ;
26 re turn new Z@αZ9 ( ) ;
27 }
28 }
29 c l a s s Z { . . . }

(a) an example

αZ5

αG

αX2

αY3 αZ9

(b) access relation ↪→s

αZ5

αG

αX2

αY3 αZ9

(c) scope relation �s (HDT)

Legends:
abstract object static access relation static scope relation

Fig. 2. Static Heap Decomposition Inference

In the rest of the presentation, we call each object static approximation an abstract
object, or simply object when no confusion can arise. Due to the standard feature of
aliasing in object-oriented languages, static approximations may or may not represent
distinct run-time objects. We liberally use the term “abstract object” – and its repre-
senting metavariable α – to refer to both. For convenience, we also have α subsumes
αG.

Following the analogy of dynamic heap decomposition, it would be natural to pro-
vide the following definition:

Definition 4 (Static Heap Decomposition). Configuration 〈Os;αG; ↪→s;�s〉 is a static
heap decomposition iff ehds(↪→s,�s).
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Let us consider a Java program in Fig. 2(a) to gain some intuition. For convenience, we
directly associate each object type declaration with an abstract object ID. For instance,
expression new Y@αY3() at Line 15 is the Java expression new Y() with abstract
object αY3. In other words, we treat each program element associated with a type dec-
laration – a local variable, a method parameter, a return value, or an instantiated object
– as an abstract object. These abstract objects may or may not lead to “distinct approx-
imations” due to aliasing, but the ones associated with the new expressions indeed do,
i.e., Os = {αX2, αY3, αZ5, αZ9}. ↪→s can be concretely defined as the points-to infor-
mation, which in the example is illustrated in Fig. 2(b). One possible �s is illustrated in
Fig. 2(c). It can be easily seen that the two conform to static heap decomposition: every
accessor of an object is from inner scopes and every accessee of an object is within
outer scopes.

Both checking and inference systems can be constructed for static heap decomposi-
tion. A static heap decomposition checker answers whether ehds holds given a program
and its information on ↪→s and �s (explicitly or implicitly defined). A static heap de-
composition inference finds a �s that satisfies ehds given a program and its information
on ↪→s (explicitly or implicitly defined). Broadly construed, the typechecking process
of ownership type systems [29,6,5] is an instance of static heap decomposition checker.
In that context, �s is the relationship among ownership type parameters, whereas ↪→s

and ehds are implict in the typechecking rules. As another example, ownership infer-
ences based on points-to analyses [24,22] are instances of static heap decomposition
inference. They explicitly compute ↪→s and finds the �s that conforms to ehds.

Cypress is a static heap decomposition inference. To highlight the central role of
the �s relation in this context – it is the output of the inference – we reinstate it with
the following definition (note that �s by definition is a tree relation):

Definition 5 (Heap Decomposition Tree (HDT)). We call �s a heap decomposition
tree for P if configuration 〈Os;αG; ↪→s;�s〉 is a static heap decomposition for P for
some Os, αG, and ↪→s.

In the rest of the discussion, we will liberally interpret HDT in a graph-theoretic manner.
For instance, the nodes of an HDT �s are the union of the domain and the range of �s,
and the edges are the set interpretation of �s itself.

2.4 Challenges

Challenge I: Soundness. Is every static heap decomposition according to Def. 4 a
“good” one? At the beginning of Sec. 2.3, we explained a key motivation of constructing
static heap decomposition is to “characterize how heap decomposition can be applied
to all run-time states of a program.” Def. 4 unfortunately does not correspond with
the run-time states. For this latter goal, let us first introduce correspondence relation

CFd X−→ CFs, which says CFs is a static approximation for run-time configuration CFd

over abstraction mapping X . An abstraction mapping is a simple mapping from o’s
to α’s, where X (o) is the abstract object approximating o. A correspondence relation

〈Od; oG; ↪→d;�d〉 X−→ 〈Os;αG; ↪→s;�s〉 is well-formed iff
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– Od ⊆ dom(X )
– Os = ran(X )
– X (oG) = αG

– X (o) ↪→s X (o) for any o ↪→d o′

– X (o) �s X (o) for any o �d o′

where dom(X ) and ran(X ) operators compute the domain and range of X respectively.

Definition 6 (Soundness). Given a program P , its static heap decomposition CFs is
sound with respect to X iff there exists a CFd for any run-time state of P , such that

CFd X−→ CFs and CFd is a dynamic heap decomposition.

In practice, the ↪→s relation in CFs represents the points-to information, and the ↪→d

relation in CFd represents the reference relation at a particular run-time state. The two
are determined once the concrete abstractions of the program and the runtime are given.
Consequently, the soundness definition here mainly reveals the relationship between the
static scope relation in CFs and the dynamic scope relation in CFd. In other words, a
static scope relation �s in a sound static heap decomposition must serve as a “template”
for at least one dynamic scope relation �d at every run time state such that (1) �d is
indeed “instantiated” from �s (according to the last well-formedness condition of the
correspondence relation); and (2) �d offers hierarchical decomposition for the run-time
state (a condition of the soundness definition).

We are able to show Cypress is a sound static decomposition inference in that any
HDT (i.e. �s) it infers forms a sound static decomposition against a static semantics
with standard points-to abstraction for ↪→s and a dynamic semantics with standard def-
initions of X and ↪→d.

Challenge II: Efficient Heap-Wide Characterization. Cypress computes a surjective
relation �s over the abstract object set (Os in CFs) of a program. In other words, the
scope of every abstract object is determined. The output of Cypress is thus more ex-
pressive than decision procedures that answer “given objects α and α′, is α in the scope
of α′?” or “what is the scope of object α?” or “what objects does scope α′ include?”

It is possible to achieve heap-wide characterization by mechanical pairwise applica-
tions of the decision procedure “is α in the scope ofα′?” In contrast, Cypress computes
the entire �s relation through a single instance of linear programming.

Challenge III: Precision. First, a well-formed program – i.e. a well-typed program
according to Java typechecking – at least has one HDT:

Lemma 1 (HDT Existence). Given a well-formed program whose abstract object set
is Os, {(αG, α) | α ∈ Os} is an HDT.

In other words, this HDT is a trivial “egalitarian” tree where αG is the scope of all
abstract objects. The bad news is that this HDT is the least useful for characterizing
heap decomposition: it defaults to the “global heap” view.

HDTs may not be unique for a program. For example, Fig. 2(c) is an HDT for pro-
gram Fig. 2(a), but so is the egalitarian tree we just described. Now that multiple HDTs
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may exist, the more interesting question is the preference over them. If we take the
graph-theoretic view of the HDTs, observe the “egalitarian” tree above is the “short and
broad” whereas the tree in Fig. 2(c) is relatively “tall and skinny.” Indeed, the shorter
and broader a tree is, the closer it is to the default view of the global heap, and the less
it promotes local reasoning.

Cypress is designed with the Cypress Principle as guidance. Intuitively, it says
whenever a static heap decomposition inference algorithm is faced with a choice be-
tween constructing the HDT broader or taller, it should favor the latter. Formally, let us
define the depth of α – denoted as depth(α,�s) – as the length of the path from αG to
α when �s is interpreted graph-theoretically. Thus:

Definition 7 (Cypress Principle). Given P with two sound static heap decompositions
〈Os;αG; ↪→s;�s

1〉and 〈Os;αG; ↪→s;�s
2〉, and

∑

α∈Os

depth(α,�s
1) <

∑

α∈Os

depth(α,�s
2),

the Cypress Principle favors the latter.

The ideal is to find an optimal HDT whose aggregated depth (i.e. the sum of depth of
α’s in the abstract object set) is maximal. Indeed, this is strictly the opposite of the
egalitarian tree whose aggregated depth is the minimal. In Sec. 5, we shall see such an
optimal HDT can be effectively computed by Cypress through linear programming.

Challenge IV: Scalability. Def. 4 appears to indicate that to compute �s, one needs
full knowledge of ↪→s. This route is followed by some related work [24,22,26]. Cy-
press demonstrates a type inference approach can avoid the explicit computation of
↪→s, hence decoupling the scalability of our algorithm from that of points-to analyses.
In addition, Cypress yields linear constraints, further promoting scalability.

3 Abstract Syntax

We develop our inference over a small language whose abstract syntax is defined in
Fig. 3. The language is similar to Featherweight Java (FJ) [18], where notation • rep-
resents a sequence of •’s. The most noticeable difference here is expressions are A-
Normal, a form commonly used for specifying alias analyses over Java programs (e.g.,
[25]). In this form, (single) expressions include assignment x = y, field read x = y.fd,
field update x.fd = y, method invocation x = y.md(z) and object instantiation x =
new τ . The use of the A-normal form requires us to explicitly declare local variables
in the method definition (see M ). Such local variable declarations are represented by
a type environment Γ that maps variable names to types. Pre-defined variable this is
Java’s self reference. Pre-defined class name Object is the root class. A program P is
formed by a sequence of classes CL, followed by local variable declarations Γ , and the
bootstrapping expression e.

FJ function fields(X) computes the sequence of fields for class X, in the form of
F . FJ function mtype(md, X) computes the signature of method md for class X, in the
form of τ → τ ′ where τ and τ ′ are the argument/return types respectively. FJ-like
function mbody(md, X) computes the method body of md for class X, in the form of
x.y.Γ.e where x is the formal argument name, Γ is the local variable declarations,
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P ::= 〈CL;Γ ; e〉 program
CL ::= class X extends Y {F M } class
F ::= τ fd fields
M ::= τ md(τ x){Γ e} methods
e ::= s | s; e expression
s ::= x = y | x = y.fd | x.fd = y single expression

| x = y.md(z) | x = new τ
Γ ::= x 
→ τ type environment
X, Y, Z, U, V ∈ �� ∪ {Object} class name
x, y, z, u, v ∈ ��� ∪ {this} variable name
fd ∈ �� field name
md ∈ �� method name
τ type (see Sec. 4)

Fig. 3. Abstract Syntax

and e is the expression that constitutes the method body. For convenience, we have an
explicitly bound variable y to store the return value. For a method Y md(X x){Z z; z =
x; return z; } in Java syntax, the method body computed by mbody is x.u.(z 
→ τ).(z =
x; u = z) where τ is the type form in our system for Z. The definitions of fields(X),
mtype(md, X), mbody(md, X) are identical to their FJ counterparts, except that mbody
computes a 4-component method body as we just described. In addition, we reuse X <:
Y to denote X is a (nominal) subclass of Y. Relation <: is a partial order, whose definition
is identical to that of FJ. We defer the concrete definition of type τ to the next section.

4 Type Inference with Linear Constraints over Walk Indices

This section defines a constraint-based type inference to encode the essence of heap
decomposition: given a program P , every solution to the constraints generated for P
represents an HDT for P .

Walk Index on HDT. Recall the essence of HD is the invariant between the access
relation and the scope relation. Accessees in Outer Scopes says that every referred
object must belong to an outer scope (including the current one) of the referring object.
Fig. 4 illustrates 8 possible examples, where the access relation and the scope relation
overlay on each figure, and the root of the scope relation is at the top. It is not difficult
to observe that the first 6 examples conform to Accessees in Outer Scopes, but the last
2 do not.

Graph theoretically, a rooted tree such as the HDT enjoys very strong properties in
expressing the relative position of tree nodes. The relative position of α2 to α1 can
be expressed by the shortest path between them: first “going up” (i.e. root-bound) for
n1 edges (n1 ≥ 0) from α1, and then “going down” (i.e. leaf-bound) for n2 (n2 ≥ 0)
edges until reachingα2. In short, the relative position can be encoded by a pair of integer
values, n1 and n2. We say the walk index of α2 from the perspective of α1 is �n1�n2 , or
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Legends:
abstract object static access relation static scope relation

Fig. 4. Access, Scope, and Walk Index

informally say α1 can walk to α2 via �n1�n2 . Encoding “outer/inner scopes” as a pair
of integers was first investigated in a previous work by Liu and Smith [21], where the
integer pair in a type system design setting was called pedigrees. Broadly, the algorithm
introduced in this section can be viewed as a type inference of the type system in that
work, an extreme case where every type is inferred.

With the walk index encoding, the essence of HD can be succinctly captured as a
restriction on the walk index: the referring object must be able to walk to every of its
referred object via walk index �n1�n2 , where n2 ≤ 1. Fig. 4 also shows each walk
index of the accessee from the perspective of the accessor. The last two examples do
not satisfy the requirement of n2 ≤ 1, and they violate the principle of HD as well.

Types. In Java-like languages, every referred object is represented by an object ref-
erence held by the referring object, and such object reference should have a type in
a well-typed Java program. Recall our goal here is to guarantee every referred object
to have a walk index (from the perspective of the referring object) that satisfies some
restriction (n2 ≤ 1 above). Combining the two, we extend the Java type system by
building the walk index into the object type, as τ in Fig. 5. Metavariable ω represents a
form similar to the walk index we introduced earlier, except that it is associated with a
pair of type variables, p and q, which we call an up-step type variable and a down-step
type variable respectively. The type inference algorithm attempts to solve them with
integers (i.e. the n1 and n2 earlier). We put p and q into different syntatical categories,
so that the constraint solver (Sec. 5) will find non-negative solutions for p, whereas 0-1
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τ ::= X@α[ω] type
ω ::= �p�q walk index with type variables
p ∈ ���� up-step type variable (solution over {0, 1, . . .})
q ∈ 	��� down-step type variable (solution over {0, 1} )
α ∈ 
�� ∪ {αG} abstract object ID
K ::= κ constraint set
κ ::= θ = n | θ ≥ n linear constraint
θ ::= θ + t | θ − t linear expression
t ::= p | q type variable
n ∈ {0, 1, . . .} non-negative integer

Fig. 5. Types and Constraints

binary solutions for q. As we discussed earlier, the latter reflects the principle of HD.
When no confusion can arise, we also call ω a walk index.

Overall, a type takes the form of X@α[ω], where X is the Java nominal type. For the
purpose of presentation, we retain the abstract object ID α in the type. It was used in the
example of Fig. 2, where every distinct type declaration is associated with a distinct α.
We keep the same convention, except in the case of overriding, we follow the standard
FJ requirement of equating the signatures – and hence every component of the types –
of the overriding methods and overridden methods. For each program, we define PV
as the smallest mapping that includes (α, p) where X@α[�p�q] occurs in the program,
and QV as the smallest mapping that includes (α, q) where X@α[�p�q] occurs in the
program. We further require PV and QV be bijective. In other words, object references
with distinct IDs are associated with distinct up-step/down-step type variables.

Let us reiterate the relative nature of the walk index. By definition, it characterizes
the referred object from the perspective of the referring object. For instance, if a class
X has a field which is associated with type Y@α[ω], it says the walk index of any object
stored in that field is ω from the perspective of the X object with the field.

Inference Rules. The most critical constraint for achieving HD is that q variables must
be binary, which can be succinctly expressed by linear solvers. For a program, these q
variables are clearly dependent. We define a type inference to relate type variables (both
p and q variables) through linear constraints. Type inference rules are defined in Fig. 6,
where Γ  e\K says that expression e yields constraints K under typing environment
Γ . The definition of Γ is given in Fig. 3. Γ, Γ ′ is defined as the smallest Γ ′′ such that
Γ ′′(x) = Γ ′(x) if x ∈ dom(Γ ′) or Γ ′′(x) = Γ (x) if x /∈ dom(Γ ′) and x ∈ dom(Γ ).
Constraints are defined in Fig. 5. Note that all constraints are linear. We informally say
“ω fresh” to mean p and q are fresh type variables where ω =�p�q.

The key to understanding this set of rules is the four definitions toward the bottom of
Fig. 6. The constraint computed by iC is used by (T-New). Combined, it says that the
down-step associated with an instantiation must be non-0. From Fig. 4, observe that a
walk index whose down-step is 0 means a reference to its object scope (or scope of the
scope, and so on). To have an object o instantiate an object o′ that represents its scope
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for all rules: Γ (x) = X@αx[ωx], Γ (y) = Y@αy[ωy], Γ (z) = Z@αz[ωz]

(T-New) Γ  x = new U@α[ω]\(ω ⇒ ωx) ∪ iC(ω)

(T-Assign) Γ  x = y\ωy ⇒ ωx

(T-Write)
U@αu[ωu] fd ∈ fields(X) ω fresh

Γ  x.fd = y\(ωy ⇒ ω) ∪ (ωx � ωu � ω)

(T-Read)
U@αu[ωu] fd ∈ fields(Y) ω fresh

Γ  x = y.fd\(ω ⇒ ωx) ∪ (ωy � ωu � ω)

(T-Msg)

mtype(md, Y) = τ → τ ′ τ = U@αu[ωu] τ ′ = V@αv[ωv]
ω, ω′, ω′′ fresh mbody(md, Yi) = ui.vi.Γi.ei for each Yi <: Y

[this 
→ Yi@αy[ω], ui 
→ τ, vi 
→ τ ′], Γi  ei\Ki

Kpm = (ωz ⇒ ω′) ∪ (ωy � ωu � ω′)
Krt = (ω′′ ⇒ ωx) ∪ (ωy � ωv � ω′′)

Γ  x = y.md(z))\Kpm ∪ Krt ∪ thisC(ω) ∪ K

(T-Cont)
Γ  s\K Γ  e\K′

Γ  s; e\K ∪ K′

iC(�p�q)
def
= {q = 1}

thisC(�p�q)
def
= {p = 0, q = 0}

�p1�q1⇒�p2�q2
def
= {p1 − q1 = p2 − q2, q2 ≥ q1}

(�p1�q1��p2�q2��p�q)
def
= {p = p1 + p2 − q1, q = q2, p2 ≥ q1}

Fig. 6. Inference Rules and Definitions

directly violates the basic requirement of HD, because references to o (hence access)
would exist outside its scope. The constraint computed by thisC is used in (T-Msg) for
typing this. Combined, it says that the walk index of this should be solved to �0�0. In
figurative terms, an object can walk to itself on the HDT with no steps.

Operator ω ⇒ ω′ constrains the data flow from the object with ω to the object with
ω′. Take (T-Assign) for example. The variables in ωy and ωx are related. Given the q
variables binary, the constraints of ωy ⇒ ωx allow for two cases: ωx and ωy are either
solved to identical walk indices, or when ωy is solved to �n�0, ωx can be solved to
�n+1�1. The latter is useful in cases of, say, assigning this to a variable defined in the
same method. As data flows appear in every expression form, ⇒ appears in every rule.
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Ternary operator ω � ω′ � ω′′ computes the constraints for walk index composi-
tion. Let us imagine we have three objects α, α′, α′′ where α can walk to α′ via walk
index ω, α′ can walk to α′′ via ω′, and α can walk to α′′ via ω′′. Operatorω � ω′ � ω′′

computes the necessary constraints to keep ω, ω′, and ω′′ consistent: after all, they are
all defined over one HDT. For example in (T-Read), α above is the object enclosing the
field read expression. α′ is the object represented by y, and α′′ is the object stored in
field fd of y. The same definition is needed for (T-Write) and (T-Msg). For the latter,
imagine one can view parameter passing as a write (to a stack variable) on the message
receiver, and value returning as a read (from a stack variable) on the message receiver.
Defining ω � ω′ � ω′′ is purely a graph-theoretic matter on encoding tree path com-
position, whiich we explain more in the Appendix.

Definition 8 (Whole-Program Constraints). We use �P � to denote the constraints
for program P . It is defined as K where Γ  e\K and P = 〈CL;Γ ; e〉.
Optimizations. We do not formalize several standard optimization techniques imple-
mented by our compiler. First, the formal system only requires α (and hence its as-
sociated p and q) be distinct for distinct type declarations in the source code. This is
known as a 0CFA formulation in polymorphic type inference, or context-insensitive
formulation in program analysis. Our compiler refines α as a pair including both the
context label and the program point (for the type declaration), and two α’s are distinct
when either their context labels or program points are different. Second, in (T-Msg), we
conservatively consider the method body of every subclass of the message receiver’s
declared class. In our implementation, a concrete class analysis is in place, so that only
the classes whose instances may flow into the message receiver are inspected.

5 Computing and Grooming Heap Decomposition Tree

We now study the solutions to linear constraints in �P �. We describe how these solu-
tions can be used to compute the scope relation (i.e. construct an HDT), its soundness,
and how the Cypress Principle can “groom” HDTs to a shape that reflects the principle
of HD with optimality. The notion of “grooming” is achieved by preferring an HDT
through linear programming. As we shall see, linear programming not only brings effi-
ciency, but also allows us to express HD-related goals as objective functions.

We first introduce some basic notations on constraint solving. We use placement
ζ : ���� ⇀ {0, 1, . . .} ∪ 	��� ⇀ {0, 1} to refer to the solution (sub-)vector of
a linear constraint set. Recall in Sec. 4, we discussed that the solution to the up-step
variable must be a non-negative integer, whereas the solution to the down-step variable
must be 0-1 binary. We use predicate ζ ↓ K to denote ζ is a solution to K, defined
as every κ ∈ K[ζ] is an arithmetic tautology, where K[ζ] is standard constraint set
substitution. Selection operator ζ ↑n computes the set of up-step variables mapped to n

in ζ. Formally, ζ ↑n def
= {p | p 
→ n ∈ ζ}.

5.1 From Linear Constraints to HDT

Intuitively, solving the constraints of a program P subsumes resolving all p and q vari-
ables associated with the new expressions in the program – such as αX2, αY3, αZ5, αZ9
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in Fig. 2(a) – to integers. With that, the relative position between the object instantiated
by a new expression and the object whose class lexically encloses the new expression
is known. Assuming all instantiation points are reachable from the bootstrapping code,
an HDT can be constructed with these relative positions. We formalize this intuition in
this section. From now on, since we are mainly concerned with instantiated points, we
consider the abstract object IDs associated with instantiated points belong to set �
��, a
subset of 
��. We define convenience function iA(P) to enumerate all α’s in program
P where α ∈ �
��. We further define iP(P) as {PV(α) | α ∈ iA(P)}.

For a program P , we define a simple instantiation relation – denoted as ↘P , or ↘
for short – where α ↘ α′ says the instantiation point of α′ is lexically enclosed by
methods of α. It is defined as the smallest relation over �
�� ∪ {αG}, s.t. (1) αG ↘
α for every α appearing in the bootstrapping code of P ; (2) α ↘ α′ for every α′

whose instantiation expression appears in methods of abstract object α. We next define
a relation that serves as a “candidate” HDT, as follows:

Definition 9 (Scope Candidate Relation). Given a program P and ζ ↓ �P �, a scope
candidate relation of program P with respect to ζ is a smallest relation �sc: iA(P) ∪
{αG} × iA(P) satisfying:

α ↘P α′ and ζ(PV(α′)) = n and α0 �sc α1 and α1 �sc α2 and
. . . , αn−1 �sc α =⇒ α0 �sc α′

Intuitively, the definition describes an algorithm to “construct” an HDT monotonically.
Using informal terms, if ζ resolves a particular walk index to �3�1, the definition here
attempts to “put” 3 + 1 elements into �sc, each of which (hopefully) represents an edge
in HDT.

Is a scope candidate relation a (static) scope relation? We first demonstrate:

Lemma 2 (�sc as Rooted Tree Relation). If �sc is a surjective scope candidate rela-
tion of program P with respect to ζ, then �sc is a rooted tree relation with root αG.

Here we are only interested in surjective scope candidate relations. Imagine a degen-
erate program where x = new X@α[�p�q] is the only expression in the bootstrapping
code. The solution to p is unbound (i.e. any non-negative integer). In this case, a sur-
jective scope candidate relation can only be constructed if ζ(p) is 0. One can view any
non-surjective scope candidate relation as the result of attempting to place objects out-
side the global scope αG. (As we shall see, this morbid case does not have relevance in
practice, because they can be avoided by judicious settings of objective functions.)

Lemma 3 (�sc Uniqueness). If �sc
1 and �sc

2 are both surjective scope candidate re-
lations of program P with respect to ζ, �sc

1 =�sc
2 .

We provide a conventional definition for ↪→s [8] where α ↪→s α′ is the standard points-
to abstraction. With Lem. 2, we are able to demonstrate:

Lemma 4 (�sc as Scope Relation/HDT). Given a program P and a surjective scope
candidate relation �sc of P with respect to ζ, configuration 〈iB(P);αG; ↪→s;�sc〉 is a
static heap decomposition where ↪→s is static access relation of P .
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Thus, a surjective scope candidate relation �sc is a bona fide scope relation, an HDT,
and is the only HDT according to Lem. 3. From now on, we denote this unique scope
candidate relation of program P w.r.t. ζ as HDT(P , ζ). It is undefined if the scope can-
didate relation is not surjective.

5.2 Soundness of Cypress

We define a conventional small-step operational semantics [8] where ↪→d is the standard
reference relation at run time – as summarized in Fig. 1 – and X is the predictable
mapping from objects and their abstract object IDs. With that, we can state the main
soundness theorem of Cypress:

Theorem 1 (Soundness). Given a programP and any ζ such that HDT(P , ζ) if defined,
HDT(P , ζ) is sound.

This important theorem tells us the HDT computed here – a data structure purely com-
puted statically – can characterize dynamic heap decomposition. Also note that we
never need to explicitly compute ↪→s – the points-to information is implicit in the lin-
ear constraints except for the sake of stating Lem. 4 and constructing the proof for the
theorem here – providing a solution to address Challenge IV.

5.3 Compositional Objects

In Java-like languages, evaluating the new expression yields a reference to the instan-
tiated object, say o. This implies the reference to o can at least be obtained by the
object o′ whose method lexically encloses the new expression. We call o′ the “scope
ground zero” of o, i.e. the scope of o must either be o′ or an outer scope of o′. Thus,
the problem of determining whether an object o has o′ as its scope can be converted as
determining whether �P � ∪ {p = 0} has solutions, where the instantiation expression
is new X@α[�p�q]. This is a standard problem for linear solvers, or if we phrase it in a
slightly different way, a linear programming problem to minimize p over constraint set
�P � and check whether the solution is 0.

Formally, we define objective function θ as a linear expression in the form of p1 +

p2 · · · + pk for some k ≥ 1, which can be abbreviated as
⊕

j=1..k

pj . We represent an

instance of linear programming to minimize an objective function θ over constraints K
as min

K
θ . If ζ is the solution of the linear programming instance, i.e. ζ ↓ K, then

min
K

θ is defined as the restriction of ζ to the domain formed by the variables that

appear in θ. Thus, the following set computes the compositional objects in program P ,
i.e. the object that has its “scope ground zero” as the scope:

{α | PV(α) ∈
⊎

p∈iP(P)

(min
� P �

p ↑0)}

This strategy however implies we need to apply linear programming |iP(P)| times,
clearly inefficient when the set of �P � is large. Cypress instead only performs linear
programming once, through:
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{α | PV(α) ∈ min
�P �

⊕

p∈ip(P)

p

�⏐⏐⏐⏐⏐

0

}

This form is clearly more efficient, but does it produce the same result as the former?
We answer it affirmatively, and the root reason is the compositionality of placements:

Lemma 5 (Local Placement Compositionality). min
�P �

pi = [pi 
→ 0] for i = 1, 2 iff

min
�P �

p1 + p2 = [p1 
→ 0, p2 
→ 0] for any P and p1, p2 ∈ iP(P).

In other words, the second strategy is an optimization of the first.

5.4 Cypress Grooming

The previous section is a primitive use of the Cypress Principle – it favors 0 solutions for
the up-step variables of objects, de facto placing the object further away from the root.
If an object indeed escapes from its scope ground zero, what should be its “minimal
escape”? The Cypress Principle guides linear programming for this task, and we term
the resulting preferred HDT a cypress.

One possible solution is to design a “minimizing all” approach through linear pro-
gramming, i.e. min

�P �

⊕

p∈ip(P)

p . This however may not yield the expected “tall and

skinny” cypress. As a counterexample, consider a simple scenario below, where the
graph in the center denotes a ↘ relation for a program P , and the label on each edge is
the walk index of the head from the perspective of the tail. Observe there might be two
different solutions of �P � but both satisfy p + p′ + p′′ = 2:

 2

instantiation 
    relation

     scope
    relation

αG

αX

αY

αZ

αG

αX αY αZ

αG

αX

αY

αZ

The Cypress Principle – grooming the tree tall and skinny – favors the left tree instead
of the right one, but this preference cannot be expressed here. The root of this problem
is that the walk index from αx to αy and that from αy to αz are dependent: a lesser
up-step value for an object closer to the root not only helps place itself further away
from the root on the HDT, but also helps place the objects it can reach through ↘.
Building on this insight, we minimize the sum of the up-steps for each object relative
to the root. For the example above, note that the (combined) up-steps for αx relative to
αG is p, and the combined up-steps for αy relative to αG is p + p′, and the combined
up-steps for αz relative to αG is p + p′ + p′′. Thus, the objective function to minimize
is (p) + (p + p′) + (p + p′ + p′′). Formally, let ΔP ,α denote a set {p1, . . . , pn} where
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αG ↘ α1, . . . , αn−1 ↘ αn and PV(αi) = pi for i = 1, . . . , n. We can now compute
the cypress as follows:

Definition 10 (Cypress). The cypress of program P , denoted as cypress(P ), is de-
fined as HDT(P , ζ), where

ζ = min
�P �

⊕

α∈iA(P)

⊕

p∈ΔP,α

p

It would not be difficult to show the scope candidate relation w.r.t. ζ is surjective, and
hence HDT(P , ζ) is defined. We next state an important theorem that says that the cy-
press we produce is a “tall and skinny” HDT whose aggregated depth is the greatest:

Theorem 2 (“Tall and Skinny”). Given program P and some ζ such that HDT(P , ζ)

is defined,
∑

α∈iA(P)

depth(α, HDT(P , ζ)) ≤
∑

α∈iA(P)

depth(α, cypress(P)).

6 Implementation and Evaluation

A prototype implementation of Cypress has been built on top of the Polyglot frame-
work 2.4 [30]. The compiler supports inheritance, dynamic dispatch, super calls,
method/constructor overloading, static fields, static methods, multi-dimensional arrays,
inner classes, generics, reflection, autoboxing/unboxing, and enum types. The imple-
mentation of Java 1.5 features is modified from a Polyglot extension at UCLA3. We
choose an open-source linear solver lpsolve4 for constraint solving. Our compiler
produces the tree data of the cypress in XML, subsequently rendered by Prefuse5.

Cypress implements a (field-sensitive) k-object context-sensitive algorithm [25]. To
create a stress test for scalability, we choose an expensive form: k in our algorithm is
not fixed to a (usually small) constant. The entire chain of instantiation site labels is
preserved to represent distinct contexts, except that when recursion happens, we only
use the chain of labels between two occurrences of the reappearing label. This technique
was used in some compilers previously developed by us [19,7].

Our benchmarks are selected from diverse sources: puzzle (PU) [19] solves a
famous 4x4 sliding puzzle; montecarlo (MO) is from the JavaGrande suite [32];
jspider (JS)6 is an open-source web robot; messadmin (ME)7 is a Java HTTP ses-
sion monitor; lusearch (LU) is from DaCapo8 suites; cypress+polyglot (CY)
is our compiler itself. The last benchmark is a meta-circular effort to help us validate the
correctness of our implementation. We find this approach very useful for discovering
implementation bugs, as we are familiar with the minute details of our own software,
and whether the details of its cypress “makes sense” can be quickly examined.

3 http://www.cs.ucla.edu/˜todd/research/polyglot5.html
4 http://lpsolve.sourceforge.net/
5 http://prefuse.org/
6 http://j-spider.sourceforge.net/
7 http://messadmin.sourceforge.net/
8 http://dacapobench.org/

http://www.cs.ucla.edu/~todd/research/polyglot5.html
http://lpsolve.sourceforge.net/
http://prefuse.org/
http://j-spider.sourceforge.net/
http://messadmin.sourceforge.net/
http://dacapobench.org/
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name #LOC #RM #I #F #V #EQ GT(s) IT (s) FT (s)

PU 882 38+1000 314 42+37 572 765 0.49 0.69 0.45
MO 3,128 131+984 294 33+19 206 278 0.48 0.59 0.40
JS 13,986 1434+4329 1761 1557+173 35,134 54,598 45 28.79 24.65

ME 65,356 2144+1973 903 556+191 16,168 22,789 4 6.07 4.01
LU 112,649 6077+2958 1718 657+1086 38,842 72,731 65 39.37 34.84
CY 118,309 4935+14009 6406 4646+1398 107,172 120,185 470 205.98 188.98

Fig. 7. Benchmarking Results (#LOC: program LOC; #RM: the number of reachable meth-
ods (two parts: application methods + library methods); #I: the number of distinct instantiation
points; #F : the number of accessed fields (two parts: non-private fields + private fields); #V :
the number of type variables generated by Cypress; #EQ: the number of linear equations gen-
erated by Cypress; GT /IT /FT : time, see text for details)

All experiments are conducted on Intel Core Duo 2.53GHz with 4GB RAM, with
data reported in Fig. 7. All #RM, #I, and #F data are reported context-sensitively.
To see the effect of the stress test we created, note that cypress+polyglot reports
6406 instantiation points, significant among the state of the art of program analysis. In
comparison, the largest #I counts are 1261 in [24] and 4152 in [22]. We construct two
experiments for validation, one for generating cypresses and the other for finding com-
positional fields. (The first task subsumes the goal of finding compositional objects.)
The last three columns report the time (in seconds) for the two experiments. GT reports
the time used for all compilation steps other than constraint solving, shared by both ex-
periments. IT and FT are constraint solving time for the two experiments respectively.

Fig. 8. Distance to “ground zero” ( Red : com-

positional; Green : escape by 1 scope; colors
upwards: escape by 2/3/4 scopes)

Encapsulated Objects vs. Escaped Ob-
jects. Fig. 8 provides a normalized
distribution of the number of distinct in-
stantiation points escaping from “ground
zero,” computed via Def. 10. Across all
benchmarks, the vast majority of the ob-
jects (70%-80%) stay “encapsulated” or
“owned” within “ground zero.” More rig-
orously, this means any object in this
category is never accessed in any outer
scope (Def. 1) of the object whose meth-
ods or field initializers include the instan-
tiation expression of the former. When
objects do not fall into this category,
which we intuitively say they are “es-
caped,” it is rare that they escape by more
than one scope. This clearly does not re-
sult from the lack of scopes in the cy-

presses – the cypress heights for the benchmarks are 6, 6, 11, 10, 6, 10, respectively.
We believe it demonstrates the compositional nature of the heap.
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Fig. 9. (Partial) Cypress for PU Benchmark (Best View: Scale to 200%)

Cypress Graphs for Program Understanding. The cypresses of all benchmarks have
been rendered in a graphic tree form. Here we include a partial cypress of the smallest
benchmark in Fig. 9, showing only the subtree that focuses on application objects (i.e.
non-library objects). The cypress is rendered with the root on the left, with each edge
intuitively says the left-hand node is the scope of the object of right-hand node. More
rigorously, there is an edge with α on the left and α′ on the right iff α �s α′.

Each node on the cypress is labeled in the form of C#v, where C is the class name
of the represented object, and v is the abstract object ID to uniquely identify the object.
Observe that in a context-sensitive algorithm, it is insufficient to identify an object by
class names (or the instantiation program points for that matter). Not presented here,
the Cypress tool further accompanies the rendered cypress with a table to associate
each v with context labels – a chain of instantiation program points that ultimately lead
to the instantiation of the object represented by v.

The cypress offers a vivid representation of the heap decomposition structure la-
tent in object-oriented programs: how the heap is decomposed from the root, level by
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level, as we move from left to right. Observe that the PuzzleTaskQueue#var2796
object successfully encapsulates its internal linked list representation, an ob-
ject labeled ConcurrentLinkedQueue#var2810. As another example, a
Puzzle#var2709 object encapsulates the PuzzlePosition#var2729 object,
which in turn encapsulates the Block[]#var2778 array.

The cypresses of all benchmarks are online for review [8]. As the #I numbers sug-
gest, some of the trees are large.

Compositional Fields. The problem of compositional fields is to determine whether a
field fd of an object α in program P always refers to objects that are never accessed
outside the scope formed by α. This is particularly relevant for private fields, as a
non-compositional private field may be counter-intuitive to programmers [22,24,35].

Cypress determines field compositionality as follows. First, observe that each field
is declared with a type, which is also associated with a walk index. Let us denote the set
of all the up-step variables of such walk indices as fp(P) for program P . If the object
stored in the field is local to the scope formed by α, the walk index from α to the stored
object must resolve to �0�1 or �0�0. Following a similar formulation as compositional
objects (Sec. 5.3), the set of all compositional fields for program P can be computed by
only one instance of linear programming:

{α | PV(α) ∈ min
�P �

⊕

p∈fp(P)

p

�⏐⏐⏐⏐⏐

0

}

(a) private fields (b) non-private fields

Fig. 10. Field Compositionality (Compositional? Red / Green : Yes/No)

We next show some experimental results on compositional fields. In Fig. 7, #F is
the number of accessed fields, divided by non-private ones and private ones. FT is
the time (in seconds) for finding all composition fields through linear programming.
Fig. 10 shows the normalized distribution of field compositionality. Benchmarks are
placed from left to right in the same order as in the table earlier. Fig. 10 (a) shows a
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phenomenon consistent with previous findings [24,22] – a private declaration does not
always guarantee compositionality. Our system reports a slightly higher percentage of
compositional fields (a difference of 5%-10% on average). Other than the possibility of
Cypress being a more precise algorithm, we speculate this may result from our precise
settings of context sensitivity thanks to the scalability of linear programming. We also
constructed experiments for non-private fields, with results in Fig. 10 (b). As expected,
the overall percentage of compositional fields has decreased, but interestingly, we found
a significant percentage of them are compositional. This might result from the fact that
the default modifier choice of Java is not private. Programmers uninterested in visibility
protection are in fact declaring non-private fields.

JATO Support. We have extended Cypress to support language features important
for multi-threaded programs – such as representing each thread as a node on the cy-
press, and differentiating read/write access to fields – and apply the extended tool to
assist JATO [20], a system for atomicity enforcement across the JNI boundary. In that
extension, any descendent object of the thread node on the cypress is guaranteed to be
thread-local according to Java-side analysis. If such an object crosses the boundaries
of JNI and its access on the C side falls into some simple patterns (such as only being
read/written), the object is statically guaranteed to be thread-local; no locks are needed
for their atomicity enforcement. This application of Cypress is a concrete example of
a well-established direction: reasoning about thread locality with ownership (e.g.[35]).

7 Related Work

The most advanced direction related to our work is ownership type inference, which
can be achieved either through dynamic analysis [28,34] or static analysis [10,26,17].
Dynamic approaches are sound only w.r.t. the (finite number of) executions the analysis
is performed over, but on the positive side, they can often offer insight into complex
structures of programs beyond ownership (an example would be a “butterfly” in [28]).
Dietl et. al. designed a tunable static analysis [10] for inferring the modifiers of Universe
Types (UT) [11]. One feature of their system is that the inference is reduced to an SAT
satisfiability problem, where practical solvers exist. The high-level vision – reducing a
non-standard problem into a standard problem – is shared by Cypress, as we reduce
our problem to linear programming. As an ownership type system, UT is known to have
some distinctive features: it does not conform to deep ownership, but considers a form
of interaction between immutability and ownership (known as owners-as-modifiers).
As a result, the inference built for UT differs with ours in the underlying invariant.
Milanova and Vitek designed dominator inference [26], a type inference for modifiers
of Ownership Types (OT) [29,6,5]. OT supports deep ownership, so OT inference is
closer in goal to Cypress. Their approach assumes a pre-computation of the points-to
set. Huang et. al. [17] designed a unified approach to infer modifiers for both UT and
OT. Their system allows the preference over different modifiers to be expressed through
a ranking, and an iterative inference is constructed to place priority on higher ranked
modifiers. None of the cited systems uses linear programming.
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Points-to analyses have been designed to address two related problems: UML com-
position inference [24] and field composition identification [22]. Explained in our termi-
nology, this line of work first assumes the pre-knowledge of ↪→s – points-to information
from standard points-to analyses – and then (re-)analyzes programs with two tasks: sat-
isfying ehds and guaranteeing soundness. Cypress demonstrates that a type inference
can be constructed for sound static heap decomposition with no need for full knowledge
of points-to information. In general, systems in this category may take a very different
approach from ours, but they share our goal of constructing a fully automated static
analysis.

Language designs for ownership support generally have some inference ability to
reduce annotation overhead (e.g.[2]), but the goal is not to analyze annotation-free pro-
grams. An inference based on Confined Types [14] analyzes unannotated Java code,
with a premise that Java packages serve as the scope for objects defined inside the pack-
age. Scope Types [3] is an ownership type system lightweight on annotation overhead
by design. Our previous work Pedigree Types [21] allows programmers to optionally
declare “pedigrees” as type modifiers, a language design incarnation of walk index.
Pedigree Types has the ability to infer some type modifiers elided by the programmer.
In that light, Cypress considers the extreme case where all pedigree modifiers are ig-
nored – a case Pedigree Types trivially (but unhelpfully) answers “it typechecks” – and
demonstrates how linear programming can help precisely recover them. Overall, the
route of language design and the route of program analysis for static heap decomposi-
tion are complementary.

8 Conclusion

This paper studies heap decomposition, and describes a static ownership type infer-
ence that can offer vivid insight into the dynamic nature of software: the compositional
view of the runtime heap. In the future, we plan to apply Cypress to two application
domains: thread locality for optimization and cache locality for energy efficiency.

Cypress has been implemented as an open-source tool and can be downloaded [8].
The technical report at the same website contains the operational semantics, the proofs,
and the cypress graphs of all benchmarks.
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Appendix: Walk Index Composition Constraints

In this section, we offer an explanation to the constraints used to capture walk index
composition, as defined by ω1 � ω2 � ω in Fig. 6. The relationship among ω1, ω2, ω
is the standard problem of tree path composition. Not to lose generality, there are only
two subcases, depending on the comparison between the ω1’s down-step (q1) and ω2’s
up-step (p2):

– (a) If q1 ≤ p2, then p = p1 + p2 − q1 and q = q2.
– (b) If q1 > p2, then p = p1 and q = q1 − p2 + q2.

For (b), observe that to satisfy q1 > p2, any solution ζ must have ζ(q1) = 1 and
ζ(p2) = 0. In this case, the only way to satisfy q = q1 − p2 + q2 is ζ(q2) = 0. In other
words, ω2 must be solved to �0�0, with the only satisfiable object reference being this.
Note that in Fig. 6, in all uses of ω1 � ω2 � ω, ω2 is a walk index associated with a
method formal parameter, a method formal return type, or a field declaration. Allowing
them to be inferred with a walk index �0�0 is hardly useful for HD inference. The
constraints defined for ω1 � ω2 � ω in Fig. 6 only considers (a). (Observe however,
this can still be passed as a method parameter, method return value, or stored in fields,
except that the walk index of the associated formal paramter, return type, or field type
would be solved to �1�1.)
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