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Abstract. Despite the enormous success that manual and automated
refactoring has enjoyed during the last decade, we know little about
the practice of refactoring. Understanding the refactoring practice is im-
portant for developers, refactoring tool builders, and researchers. Many
previous approaches to study refactorings are based on comparing code
snapshots, which is imprecise, incomplete, and does not allow answering
research questions that involve time or compare manual and automated
refactoring.

We present the first extended empirical study that considers both
manual and automated refactoring. This study is enabled by our al-
gorithm, which infers refactorings from continuous changes. We imple-
mented and applied this algorithm to the code evolution data collected
from 23 developers working in their natural environment for 1,520 hours.
Using a corpus of 5,371 refactorings, we reveal several new facts about
manual and automated refactorings. For example, more than half of the
refactorings were performed manually. The popularity of automated and
manual refactorings differs. More than one third of the refactorings per-
formed by developers are clustered in time. On average, 30% of the per-
formed refactorings do not reach the Version Control System.

1 Introduction

Refactoring [I0] is an important part of software development. Development
processes like eXtreme Programming [3] treat refactoring as a key practice.
Refactoring has revolutionized how programmers design software: it has enabled
programmers to continuously explore the design space of large codebases, while
preserving the existing behavior. Modern IDEs such as Eclipse, NetBeans, Intel-
liJ IDEA, or Visual Studio incorporate refactoring in their top menu and often
compete on the basis of refactoring support.

Several research projects 717,18 23H25,27,B81,33] made strides into under-
standing the practice of refactoring. This is important for developers, refactoring
tool builders, and researchers. Tool builders can improve the current generation
of tools or design new tools to match the practice, which will help developers to
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perform their daily tasks more effectively. Understanding the practice also helps
researchers by validating or refuting assumptions that were previously based on
folklore. It can also focus the research attention on the refactorings that are
popular in practice. Last, it can open new directions of research. For example, in
this study we discovered that more than one third of the refactorings performed
in practice are applied in a close time proximity to each other, thus forming a
cluster. This result motivates new research into refactoring composition.

The fundamental technical problem in understanding the practice is being
able to identify the refactorings that were applied by developers. There are a
few approaches. One is to bring developers in the lab and watch how they refac-
tor [24]. This has the advantage of observing all code changes, so it is precise.
But this approach studies the programmers in a confined environment, for a
short period of time, and thus, it is unrepresentative.

Another approach is to study the refactorings applied in the wild. The most
common way is to analyze two Version Control System (VCS) snapshots of the
code either manually [2,[7,21,22] or automatically [I],[4L6]15]19,29,32]. How-
ever, the snapshot-based analysis has several disadvantages. First, it is impre-
cise. Many times refactorings overlap with editing sessions, e.g., a method is both
renamed, and its method body is changed dramatically. Refactorings can also
overlap with other refactorings, e.g., a method is both renamed and its arguments
are reordered. The more overlap, the more noise. Our recent study [27] shows
that 46% of refactored program entities are also edited or further refactored in
the same commit. Second, it is incomplete. For example, if a method is renamed
more than once, a snapshot-based analysis would only infer the last refactoring.
Third, it is impossible to answer many empirical questions. For example, from
snapshots we cannot determine how long it takes developers to refactor, and we
cannot compare manual vs. automated refactorings.

Others [251[31] have studied the practice of automated refactorings recorded
by Eclipse [7,[16], but this approach does not take into account the refactorings
that are applied manually. Recent studies [24,25/[3T] have shown that program-
mers sometimes perform a refactoring manually, even when the IDE provides an
automated refactoring. Thus, this approach is insufficient.

We present the first empirical study that addresses these five serious limita-
tions. We study the refactoring practice in the wild, while employing a continuous
analysis. Such analysis tracks code changes as soon as they happen rather than
inferring them from VCS snapshots. We study synergistically the practice of
both manual and automated refactorings. We answer seven research questions:

RQ1: What Is the Proportion of Manual vs. Automated Refactorings?

RQ2: What Are the Most Popular Automated and Manual Refactorings?

RQ@3: How Often Does a Developer Perform Manual vs. Automated Refactor-
ings?

RQ4: How Much Time Do Developers Spend on Manual vs. Automated Refac-
torings?

RQ5: What is the Size of Manual vs. Automated Refactorings?

RQ6: How Many Refactorings Are Clustered?
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RQ7: How Many Refactorings Do Not Reach VCS?

Answering these empirical questions requires us to infer refactorings from con-
tinuous code changes. Recent tools [9[14] that were developed for such inference
were not designed for empirical studies. Therefore, we designed and implemented
our own refactoring inference algorithm that analyzes code changes continuously.
Currently, our algorithm infers ten kinds of refactorings performed either manu-
ally or automatically, but it can be easily extended to handle other refactorings
as well. The inferred ten kinds of refactorings were previously reported [31] as
the most popular among automated refactorings. Table [Il shows the inferred
refactorings, ranging from API-level refactorings (e.g., Rename Class), to par-
tially local (e.g., Extract Method), to completely local refactorings (e.g., Extract
Local Variable). We think the inferred refactorings are representative since they
are both popular and cover a wide range of common refactorings that operate
on different scope levels. In the following, when we refer to refactorings we mean
these ten refactoring kinds.

Table 1. Inferred refactorings. API-level refactorings operate on the elements of a
program’s API. Partially local refactorings operate on the elements of a method’s
body, but also affect the program’s API. Completely local refactorings affect elements
in the body of a single method only.

Scope Refactoring
Encapsulate Field
Rename Class
Rename Field
Rename Method
Convert Local Variable to Field
Partially local Extract Constant
Extract Method
Extract Local Variable
Completely local Inline Local Variable
Rename Local Variable

API-level

In our previous study [27], we continuously inferred Abstract Syntax Tree
(AST) node operations, i.e., add, delete, and update AST node from fine-grained
code edits (e.g., typing characters). In this study, we designed and implemented
an algorithm that infers refactorings from these AST node operations. First, our
algorithm infers high-level properties, e.g., replacing a variable reference with
an expression. Then, from combination of properties it infers refactorings. For
example, it infers that a local variable was inlined when it noticed that a variable
declaration is deleted, and all its references are replaced with the initialization
expression.

We applied our inference algorithm on the real code evolution data from 23
developers, working in their natural environment for 1,520 hours. We found
that more than half of the refactorings were performed manually, and thus,
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the existing studies that focus on automated refactorings only might not be
generalizable since they consider less than half of the total picture. We also
found that the popularity of automated and manual refactorings differs. Our
results present a fuller picture about the popularity of refactorings in general,
which should help both researchers and tool builders to prioritize their work.
Our findings provide an additional evidence that developers underuse automated
refactoring tools, which raises the concern of the usability problems in these
tools. We discovered that more than one third of the refactorings performed by
developers are clustered. This result emphasizes the importance of researching
refactoring clusters in order to identify refactoring composition patterns. Finally,
we found that 30% of the performed refactorings do not reach the VCS. Thus,
using VCS snapshots alone to analyze refactorings might produce misleading
results.
This paper makes the following contributions:

1. We answered seven research questions about the practice of manual and
automated refactoring and discovered several new facts.

2. We designed and implemented an algorithm that employs continuous change
analysis to infer refactorings. Our inference algorithm and infrastructure
have been successfully evaluated by the ECOOP artifact evaluation com-
mittee and found to meet expectations. Our implementation is open source
and available at http://codingtracker.web.engr.illinois.edu.

3. We evaluated our algorithm on a large corpus of real world data.

2 Research Methodology

To answer our research questions, we employed the code evolution data that we
collected as part of our previous user study [27] on 23 participants. We recruited
10 professional programmers who worked on different projects in domains such as
marketing, banking, business process management, and database management.
We also recruited 13 Computer Science graduate students and senior under-
graduate summer interns who worked on a variety of research projects from six
research labs at the University of Illinois at Urbana-Champaign.

The participants of our study have different affiliations, programming expe-
rience, and used our tool, CopINGTRACKER [27], for different amounts of time.
Consequently, the total aggregated data is non-homogeneous. To see whether
this non-homogeneity affects our results, we divided our participants into seven
groups along the three above mentioned categories. Table 2] shows the detailed
statistics for each group as well as for the aggregated data. For every research
question, we first present the aggregated result, and then discuss any discrepan-
cies between the aggregated and the group results.

To collect code evolution data, we asked each participant to install the Con-
INGTRACKER plug-in in his/her Eclipse IDE. During the study, CODINGTRACKER
recorded a variety of evolution data at several levels ranging from individual
code edits up to the high-level events like automated refactoring invocations and
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Table 2. Size and usage time statistics of the aggregated and individual groups

Group
P i St i
Students Professionals <50>50 <5 5-10 > 10
Participants 23 13 10 13 10 5 11 6
Usage time, hours 1,520 1,048 471 367 1,152 269 775 458
Mean 66 81 47 28 115 54 70 76
STDEV 52 54 44 16 38 46 52 62

interactions with Version Control System (VCS). CobiNGTRACKER employed ex-
isting infrastructure [31] to regularly upload the collected data to our centralized
repository.

At the time when CopINGTRACKER recorded the data, we did not have a
refactoring inference algorithm. However, COoDINGTRACKER can accurately replay
all the code editing events, thus recreating an exact replica of the evolution
session that happened in reality. We replayed the coding sessions and this time,
we applied our newly developed refactoring inference algorithm.

We first applied our AST node operations inference algorithm [27] on the
collected raw data to represent code changes as add, delete, and update operations
on the underlying AST. These basic AST node operations serve as input to
our refactoring inference algorithm. Section E] presents more details about our
refactoring inference algorithm.

Next, we answer every research question by processing the output of the
algorithm with the question-specific analyzer. Note that our analyzers for RQ1
— RQ5 ignore trivial refactorings. We consider a refactoring trivial if it affects
a single line of code, e.g., renaming a variable with no uses.

3 Research Questions

RQ1: What Is the Proportion of Manual vs. Automated Refactorings?
Previous research on refactoring practice either predominantly focused on au-
tomated refactorings [23/25,[31] or did not discriminate manual and automated
refactorings [7l33]. Answering the question about the relative proportion of man-
ual and automated refactorings will allow us to estimate how representative au-
tomated refactorings are of the total number of refactorings, and consequently,
how general are the conclusions based on studying automated refactorings only.

For each of the ten refactoring kinds inferred by our algorithm, we counted
how many refactorings were applied using Eclipse automated refactoring tools
and how many of the inferred refactorings were applied manually. Fig. [I] shows
our aggregated results. The last column represents the combined result for all
the ten refactoring kinds.
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Fig. 1. Relative proportion of manual and automated refactorings

Overall, our participants performed around 11% more manual than automated
refactorings (2,820 vs. 2,551). Thus, research focusing on automated refactorings
considers less than half of the total picture. Moreover, half of the refactoring
kinds that we investigated, Convert Local Variable to Field, Extract Method,
Rename Field, Rename Local Variable, and Rename Method, are predominantly
performed manually. This observation undermines the generalizability of the
existing studies based on the automated execution of these popular refactorings.
Also, it raises concerns for tool builders about the underuse of the automated
refactoring tools, which could be a sign that these tools require a considerable
improvement.

We compared the number of manual and automated refactorings performed by
each group. Table [B] shows the total counts of manual and automated refactor-
ings as well as the relative fraction of manual over automated refactorings. The
results for the groups in the Affiliation and Usage time categories are consis-
tent with the results for the aggregated data. At the same time, the programming
experience of our participants has a greater impact on the ratio of the performed
manual and automated refactorings. In particular, developers with less than five
years of programming experience tend to perform 28% more manual than auto-
mated refactorings, while those with an average experience (5 — 10 years) perform
more automated than manual refactorings. This result reflects a common intuition
that novice developers are less familiar with the refactoring tools (e.g., in RQ3
we observed that novices do not perform three kinds of automated refactorings
at all), but start using them more often as their experience grows. Nevertheless,
developers with more than ten years of experience perform many more manual
than automated refactorings (49%). One of the reasons for this behavior could
be that more experienced developers learned to perform refactorings well before
the appearance of the refactoring tools. Also, experts might think that they are
faster without the refactoring tool. For example, we observed that such develop-
ers mostly perform manually Rename refactorings, which could be accomplished
quickly (but less reliably) using the Search €& Replace command.

RQ2: What Are the Most Popular Automated and Manual Refac-
torings? Prior studies [23,[31] identified the most popular automated refac-
torings to better understand how developers refactor their code. We provide a
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Table 3. Manual and automated refactorings performed by each group

Category Group Manual Automated Manual over Automated

Aggregated  All data 2820 2551 10.5%
Affiliation Students 1645 1516 8.5%
Professionals 1175 1035 13.5%

Usage time < 50 hours 485 471 3%
> 50 hours 2335 2080 12.3%

< 5 years 292 228 28%
Experience 5 — 10 years 1282 1459 -12.1%
> 10 years 1237 829 49.2%

more complete picture of the refactoring popularity by looking at both manual
and automated refactorings. Additionally, we would like to contrast how similar
or different are popularities of automated refactorings, manual refactorings, and
refactorings in general.

To measure the popularity of refactorings, we employ the same refactoring
counts that we used to answer the previous research question. Fig. Bl B and [
correspondingly show the popularity of automated, manual, and all refactorings
in the aggregated data. The Y axis represents refactoring counts. The X axis
shows refactorings ordered from the highest popularity rank at the left to the
lowest rank at the right.

Our results on popularity of automated refactorings mostly corroborate previ-
ous findings [31]. The only exceptions are the Inline Local Variable refactoring,
whose popularity has increased from the seventh to the third position, and the
Encapsulate Field refactoring, whose popularity has declined from the fifth to the
seventh position. Overall, our results show that the popularity of automated and
manual refactorings is quite different: the top five most popular automated and
manual refactorings have only three refactorings in common — Rename Local
Variable, Rename Method, and Extract Local Variable, and even these refac-
torings have different ranks. The most important observation though is that
the popularity of automated refactorings does not reflect well the popularity of
refactorings in general. In particular, the top five most popular refactorings and
automated refactorings share only three refactorings, out of which only one, Re-
name Method, has the same rank. Having a fuller picture about the popularity of
refactorings, researchers would be able to automate or infer the refactorings that
are popular when considering both automated and manual refactorings. Similarly,
tool builders should pay more attention to the support of the popular refactorings.
Finally, novice developers might decide what refactorings to learn first depending
on their relative popularity.

Refactoring popularity among different participant groups is mostly consistent
with the one observed in the aggregated data. In particular, for three groups
(Usage time > 50 hours, Experience 5 — 10 years, and Experience > 10 years),

! Note that we can not directly compare our results with the findings of Murphy et
al. [23] since their data represents the related refactoring kinds as a single category
(e.g., Rename, Extract, Inline, etc.).
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the top five most popular refactorings are the same as for the aggregated data,
while for the rest of the groups, four out of five most popular refactorings are
the same.

RQ3: How Often Does a Developer Perform Manual vs. Automated
Refactorings? In our previous study [31], we showed that developers may un-
deruse automated refactoring tools for a variety of reasons, one of the most
important being that developers are simply unaware of automated refactoring
tools. Answering this question will help us to better understand whether devel-
opers who are aware about an automated refactoring tool use the tool rather
than refactor manually.

In the following, we denote the quantity of automated tool usage as A. We
compute A as a ratio of automated refactorings to the total number of refactor-
ings of a particular kind performed by an individual participant. For each of the
ten inferred refactoring kinds, we counted the number of participants for a range
of values of A, from A = 0% (those who never use an automated refactoring tool)
up to A =100% (those who always use the automated refactoring tool).

Both for the aggregated data and for all groups, we observed that the fraction
of participants who always perform a refactoring manually is relatively high for
all the ten refactoring kinds (with a few exceptions). Also, in the aggregated
data, there are no participants who apply Convert Local Variable to Field, En-
capsulate Field, Extract Method, and Rename Field using the automated refac-
toring tools only. In groups, there are even more refactoring kinds that are never
applied using automated refactoring tools only. Overall, our results provide a
stronger quantitative support for the previously reported findings [25/31] that
the automated refactoring tools are underused.

To get a better insight into the practice of manual vs. automated refactoring
of our participants, we defined three properties:

— High full automation: The number of participants who always perform the
automated refactoring (A = 100%) is higher than the number of participants
who always perform this refactoring manually (A4 = 0%).

— High informed underuse: The number of participants who are aware
about the automated refactoring, but still apply it manually most of the
time (0% < A < 50%) is higher than the number of participants who apply
this refactoring automatically most of the time (50% < A < 100%).

— General informed underuse: The number of participants who apply the
automated refactoring only (A = 100%) is significantly lower than the num-
ber of participants who both apply the automated refactoring and refactor
manually (0% < A < 100%).

Table @] shows refactoring kinds that satisfy the above properties for each group
as well as for the aggregated data. For each group, we present only the difference
with the aggregated result, where “—” marks those refactoring kinds that are
present in the aggregated result, but are absent in the group result, and “+” is
used in the vice-versa scenario.

Our aggregated results show that only for two refactorings, Extract Con-

stant and Rename Class, the number of participants who always perform the
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Table 4. Manual vs. automated refactoring practice

Property
Category Group High High General
full automation informed underuse informed underuse
Aggregated Extract Constant Extract Method All
Rename Class Rename Local Variable
-Extract Constant +Conv. Loc. Var. to Field
Students -Rename Class +Extract Constant
.. +Rename Method
Affiliation +Rename Method -Rename Local Variable -Extract Constant
Professionals -Rename Class
-Rename Method
< 50 hours -Extract Constant -Extract Constant
Usage time — +Rename Method -Rename Class
> 50 hours -Rename Class +Rename Method -Extract Constant
-Extract Constant -Conv. Loc. Var. to Field
< 5 years -Rename Class -Extract Constant

-Inline Local Variable
-Extract Constant -Rename Local Variable -Extract Constant
5 — 10 years +Conv. Loc. Var. to Field
+Extract Constant
-Extract Constant +Encapsulate Field
+Rename Method

Experience

> 10 years

automated refactoring is higher than the number of participants who always
perform the refactoring manually. Another important observation is that for
two refactoring kinds, Extract Method and Rename Local Variable, the number
of participants who are aware of the automated refactoring, but still apply it
manually most of the time is higher than the number of participants who apply
this refactoring automatically most of the time. This shows that some automated
refactoring tools are underused even when developers are aware of them and ap-
ply them from time to time. Our results for groups show that students tend to
underuse more refactoring tools than professionals. Also, developers with more
than five years of experience underuse more refactoring tools that they are aware
of than those with less than five years of experience. At the same time, novice
developers do not use three refactoring tools at all, i.e., they always perform the
Convert Local Variable to Field, Extract Constant, and Inline Local Variable
refactorings manually. Thus, novice developers might underuse some refactoring
tools due to lack of awareness, an issue identified in a previous study [31].

The aggregated result shows that for each of the ten refactoring kinds, the
number of participants who apply the automated refactoring only is significantly
lower than the number of participants who both apply the automated refactoring
and refactor manually. The result across all groups shows that no less than
seven refactoring kinds satisfy this property. These results show that developers
underuse automated refactoring tools, some more so than the others, which could
be an indication of a varying degree of usability problems in these tools.

RQ4: How Much Time Do Developers Spend on Manual vs. Auto-
mated Refactorings? One of the major arguments in favor of performing a
refactoring automatically is that it takes less time than performing this refactor-
ing manually [30]. We would like to assess this time difference as well as compare
the average durations of different kinds of refactorings performed manually.
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To measure the duration of a manual refactoring, we consider all AST node
operations that contribute to it. Our algorithm marks AST node operations
that contribute to a particular inferred refactoring with a generated refactor-
ing’s ID, which allows us to track each refactoring individually. Note that a
developer might intersperse a refactoring with other code changes, e.g., another
refactoring, small bug fixes, etc. Therefore, to compute the duration of a manual
refactoring, we cannot subtract the timestamp of the first AST node operation
that contributes to it from the timestamp of the last contributing AST node
operation. Instead, we compute the duration of each contributing AST node
operation separately by subtracting the timestamp of the preceding AST node
operation (regardless of whether it contributes to the same refactoring or not)
from the timestamp of the contributing AST node operation. If the obtained
duration is greater than two minutes, we discard it, since it might indicate an
interruption in code editing, e.g., a developer might get distracted by a phone
call or take a break. Finally, we sum up all the durations of contributing AST
node operations to obtain the duration of the corresponding refactoring.

We get the durations of automated refactorings from CopinaSpEcTATOR [31].
CODINGSPECTATOR measures configuration time of a refactoring performed auto-
matically, which is the time that a developer spends in the refactoring’s dialog
box. Note that the measured time includes neither the time that the developer
might need to check the correctness of the performed automated refactoring nor
the time that it takes Eclipse to actually change the code, which could range
from a couple of milliseconds to several seconds, depending on the performed
refactoring kind and the underlying code.

Fig. [ shows our aggregated results. On average, manual refactorings take
longer than their automated counterparts with a high statistical significance
(p < 0.0001, using two-sided unpaired t-test) only for Extract Local Variable,
Extract Method, Inline Local Variable, and Rename Class since for the other
refactoring kinds our participants rarely used the configuration dialog boxes.
This observation is also statistically significant across all groups. Manual exe-
cution of the Convert Local Variable to Field refactoring takes longer than the
automated one with a sufficient statistical significance (p < 0.04) for the aggre-
gated data, while for most groups this observation is not statistically significant.
The most time consuming, both manually and automatically, is the Extract
Method refactoring, which probably could be explained by its complexity and
the high amount of code changes involved. All other refactorings are performed
manually on average in under 15 — 25 seconds. Some refactorings take longer
than others. A developer could take into account this difference when deciding
what automated refactoring tool to learn first.

Another observation is that the Rename Field refactoring is on average the
fastest manual refactoring. It takes less time than the arguably simpler Rename
Local Variable refactoring. One of the possible explanations is that developers
perform the Rename Field refactoring manually when it does not require many
changes, e.g., when there are few references to the renamed field, which is sup-
ported by our results for the following question.
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Fig. 5. Average duration of performing manual refactorings and configuring automated
refactorings. The black intervals represent the standard error of the mean (SEM). The
configuration time bar for the Encapsulate Field refactoring is missing since we do not
have data for it.

RQ5: What is the Size of Manual vs. Automated Refactorings? In an
earlier project [31], we noticed that developers mostly apply automated refac-
toring tools for small code changes. Therefore, we would like to compare the
average size of manual and automated refactorings to better understand this
behavior of developers.

To perform the comparison, we measured the size of manual and automated
refactorings as the number of the affected AST nodes. For manual refactorings,
we counted the number of AST node operations contributing to a particular
refactoring. For automated refactorings, we counted all AST node operations
that appear in between the start and the finish refactoring operations recorded
by CopIiNGTRACKER. Note that all operations in between the start and the fin-
ish refactoring operations represent the effects of the corresponding automated
refactoring on the underlying code [27].

Fig.[6lshows our aggregated results. On average, automated refactorings affect
more AST nodes than manual refactorings for four refactoring kinds, Convert
Local Variable to Field, Extract Method, Rename Field, and Rename Local Vari-
able, with a high statistical significance (p < 0.0001), and for three refactoring
kinds, Extract Local Variable, Inline Local Variable, and Rename Method, with
a sufficient statistical significance (p < 0.03). One of the reasons could be that
developers tend to perform smaller refactorings manually since such refactorings
have a smaller overhead. At the same time, this observation is not statistically
significant for all the above seven refactoring kinds in every group. In particu-
lar, it is statistically significant in five out of seven groups for three refactoring
kinds, Convert Local Variable to Field, Extract Method, and Rename Field, and
in fewer groups for the other four kinds of refactorings.

Intuitively, one could think that developers perform small refactorings by hand
and large refactorings with a tool. On the contrary, our findings show that devel-
opers perform manually even large refactorings. In particular, Extract Method
is by far the largest refactoring performed both manually and automatically —
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the affected AST nodes. The black intervals represent the standard error of the mean
(SEM). The scale of the Y axis is logarithmic.

is more than two times larger than Encapsulate Field, which is the next largest
refactoring. At the same time, according to our result for RQ3, most of the devel-
opers predominantly perform the Extract Method refactoring manually in spite
of the significant amount of the required code changes. Thus, the size of a refac-
toring is not a decisive factor for choosing whether to perform it manually or with
a tool. This also serves as an additional indication that the developers might not
be satisfied with the existing automation of the Extract Method refactoring [24].

RQ6: How Many Refactorings Are Clustered? To better understand
and support refactoring activities of developers, Murphy-Hill et al. [25] identified
different refactoring patterns, in particular, root canal and floss refactorings. A
root canal refactoring represents a consecutive sequence of refactorings that are
performed as a separate task. Floss refactorings, on the contrary, are interspersed
with other coding activities of a developer. In general, grouping several refactor-
ings in a single cluster might be a sign of a higher level refactoring pattern, and
thus, it is important to know how many refactorings belong to such clusters.

To detect whether several refactorings belong to the same cluster, we compute
a ratio of the number of AST node operations that are part of these refactorings
to the number of AST node operations that happen in the same time window
as these refactorings, but do not belong to them (such operations could happen
either in between refactorings or could be interspersed with them). If this ratio
is higher than a particular threshold, T', we consider that the refactorings belong
to the same cluster. That is, rather than using a specific time window, we try to
get as large clusters as possible, adding refactorings to a cluster as long as the
ratio of refactoring to non-refactoring changes in the cluster does not fall below
a particular threshold. The minimum size of a cluster is three. Note that for the
clustering analysis we consider automated refactorings of all kinds and manual
refactorings of the ten kinds inferred by our tool.

Fig. [d shows the proportion of clustered and separate refactorings for aggre-
gated data for different values of T', which we vary from 1 to 10. 7' = 1 means that
the amount of non-refactoring changes does not exceed the amount of refactoring
changes in the same cluster. Fig.§shows the average size of gaps between separate
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refactorings (i.e., refactorings that do not belong to any cluster) expressed as the
number of AST node operations that happen in between two separate refactorings
or a separate refactoring and a cluster.
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Fig. 7. Proportion of clustered and separate refactorings for different values of the
threshold T
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Fig. 8. The average size of gaps between separate refactorings expressed as the number
of AST node operations. The X axis represents the values of the threshold T'.

Our aggregated results show that for T = 1, 45% of the refactorings are
clustered. When the threshold grows, the number of the clustered refactorings
goes down, but not much — even for T' = 10, 28% of refactorings are clustered.
The average gap between floss refactorings is not very sensitive to the value of
the threshold as well. Overall, developers tend to perform a significant fraction
of refactorings in clusters. This observation holds for all groups except for the
novice developers, where for T = 1 only 8% of the refactorings are clustered.
One of the reasons could be that novices tend to refactor sporadically, while
more experienced developers perform refactorings in chunks, probably compos-
ing them to accomplish high-level program transformations (e.g., refactor to a
design pattern). Our results emphasize the importance of researching refactoring
clusters in order to identify refactoring composition patterns.

RQ7: How Many Refactorings Do Not Reach VCS? Software evolution
researchers [0 (8 TTHI3,20L[34] use file-based Version Control Systems (VCSs),
e.g., Git, SVN, CVS, as a convenient way to access the code histories of different
applications. In our previous study [27], we showed that VCS snapshots provide
incomplete and imprecise evolution data. In particular, we showed that 37%
of code changes do not reach VCS. Since refactorings play an important role
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in software development, in this study, we would like to assess the amount of
refactorings that never make it to VCS, and thus, are missed by any analysis
based on VCS snapshots. Note that in our previous study [27] we looked at how
much automated refactorings are interspersed with other code changes in the
same commit in the aggregated data only, while in this study, we look at both
automated and manual refactorings, we distinguish ten refactoring kinds, we
distinguish different groups of participants, and we are able to count individual
refactorings that are completely missing in VCS (rather than just being partially
overlapped with some other changes).

We consider that a refactoring does not reach VCS if none of the AST node op-
erations that are part of this refactoring reach VCS. An AST node operation does
not reach VCS if there is another, later operation that affects the same node, up to
the moment the file containing this node is committed to VCS. These non-reaching
AST node operations and refactorings are essentially shadowed by other changes.
For example, if a program entity is renamed twice before the code is committed
to VCS, the first Rename refactoring is completely shadowed by the second one.

Fig.@lshows the ratio of reaching and shadowed refactorings for the aggregated
data. Since even a reaching refactoring might be partially shadowed, we also
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compute the ratio of reaching and shadowed AST node operations that are part
of reaching refactorings, which is shown in Fig. [0

Our aggregated results show that for all refactoring kinds except Inline Local
Variable, there is some fraction of refactorings that are shadowed. Overall, 30%
of refactorings are completely shadowed. The highest shadowing ratio is for the
Rename refactorings. In particular, 64% of the Rename Field refactorings do not
reach VCS. Thus, using VCS snapshots to analyze these refactoring kinds might
significantly skew the analysis results.

Although we did not expect to see any noticeable difference between manual
and automated refactorings, our results show that there are significantly more
shadowed manual than automated refactorings for each refactoring kind (except
Inline Local Variable, which does not have any shadowed refactorings at all).
Overall, 40% of manual and only 16% of automated refactorings are shadowed.
This interesting fact requires further research to understand why developers
underuse automated refactorings more in code editing scenarios whose changes
are unlikely to reach VCS.

Another observation is that even refactorings that reach VCS might be hard to
infer from VCS snapshots, since a noticeable fraction of AST node operations that
are part of them do not reach VCS. This is particularly characteristic to the Extract
refactorings, which have the highest ratio of shadowed AST node operations.

Our results for all groups are consistent with the aggregated results with a
few exceptions. In particular, the percentage of completely shadowed refactor-
ings for those participants who used our tool for less than 50 hours, is relatively
small — 12%, which could be attributed to the fact that such participants did
not have many opportunities to commit their code during the timespan of our
study. Another observation is that for novice developers, the fraction of com-
pletely shadowed automated refactorings is significantly higher than the fraction
of completely shadowed manual refactorings (38% vs. 10%). One of the reasons
could be that novices experiment more with automated refactoring tools while
learning them (e.g., they might perform an inappropriate automated refactor-
ing and then undo it). Also, novice developers might be less confident in their
refactoring capabilities and thus, try to see the outcome of an automated refac-
toring before deciding how (and whether) to refactor their code, which confirms
our previous finding [31]. On the contrary, for the developers with more than
ten years of programming experience, the amount of completely shadowed auto-
mated refactorings is very low — 2%, while the amount of completely shadowed
manual refactorings is much higher — 39%. Thus, the most experienced devel-
opers tend to perform automated refactorings in code editing scenarios whose
changes are likely to reach VCS.

4 Refactoring Inference Algorithm

4.1 Algorithm Overview

Inferring Migrated AST Nodes. Many kinds of refactorings that we would
like to infer rearrange elements in the refactored program. To correctly infer such



568 S. Negara et al.

refactorings, we need to track how AST nodes migrate in the program’s AST.
Fig. [ shows an example of the Extract Local Variable refactoring that results
in many-to-one migration of the extracted AST node. Fig. [[2 shows the effect
of this refactoring on the underlying AST. Note that the extracted AST node,
string literal "-", is deleted from two places in the old AST and inserted in a
single place in the new AST — as the initialization of the newly created local
variable.

public String wrap(int num) {
String dash = "-";
return dash + num + dash;

}

public String wrap(int num) {
return "-" + num + "-";

}

=

Extract Local Variable

Fig.11. An example of the Extract Local Variable refactoring that results in many-
to-one migration of the extracted AST node

AST of the old method body AST of the new method body

@ {String dash = “-";

return dash + num + dash;}

ReturnStatement

String dash = “-”; return dash + num + dash;

VariableDeclarationFragment InfixExpression

dash + num + dash
L v w w “n
SimpleName T '"—uMiEf?,‘,e,,mV"’\r //,/"/l SimpleName

num num

VariableDeclarationStatement

Fig.12. The effect of the Extract Local Variable refactoring presented in Fig. [[1] on
the underlying AST

Our refactoring inference algorithm infers migrate operations from a sequence
of basic AST node operations: add, delete, and update. The algorithm assigns a
unique ID to each inferred migrate operation and marks all basic AST node
operations that make part of the inferred operation with its ID.

Inferring refactorings. Our algorithm infers ten kinds of refactorings shown
in Table I To infer a particular kind of refactoring, our algorithm looks for
properties that are characteristic to it. A refactoring property is a high-level
semantic code change, e.g., addition or deletion of a variable declaration. Fig.
shows an example of the Inline Local Variable refactoring and its characteristic
properties.

Our algorithm identifies refactoring properties directly from the basic AST
node operations that represent the actions of a developer. A refactoring property
is described with its attributes, whose values are derived from the correspond-
ing AST node operation. Our algorithm identifies 15 attributes, e.g., entityName,
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entityNameNodeID, parentID, migrateID, migratedNode, enclosingClassNodeID, etc.
A property may contain one or more such attributes, e.g., Migrated To Us-
age property has attributes migratedNode, migrateID, and parentID, and Deleted
Entity Reference property has attributes entityName, entityNameNodeID, and
parentID. When the algorithm checks whether a property can be part of a par-
ticular refactoring, the property’s attributes are matched against attributes of
all other properties that already make part of this refactoring. As a basic rule,
two attributes match if either they have different names or they have the same
value.

Inline Local Variable

public int scale(int num) {
int factor = 5;
return factor *"naum;

public int scale(int num) {

.
- return_5 * num;
74

}

}

Deleted Variable Replaced Entity With Migratded From
Declaration Expression Variable Initialization

Fig.13. An example of the Inline Local Variable refactoring and its characteristic
properties

Our algorithm combines two or more closely related refactoring properties in
a single refactoring fragment. Such fragments allow to express high level proper-
ties that could not be derived from a single AST node operation. For example,
replacing a reference to an entity with an expression involves two AST node
operations: delete entity reference and add expression. Consequently, the corre-
sponding refactoring fragment, Replaced Entity With Expression, contains two
properties: Migrated To Usage and Deleted Entity Reference.

The algorithm considers that a refactoring is complete if all its required char-
acteristic properties are identified within a specific time window, which in our
study is five minutes. Some characteristic properties are optional, e.g., replacing
field references with getters and setters in the Encapsulate Field refactoring is
optional. Also, a refactoring might include several instances of the same charac-
teristic property. For example, an Inline Local Variable refactoring applied to a
variable that is used in multiple places includes several properties of migration
of the variable’s initialization expression to the former usage of the variable.

Putting It All Together. Fig. [[4 shows a high level overview of our refac-
toring inference algorithm. The algorithm takes as input the sequence of basic
AST node operations marked with migrate IDs, astNodeOperations. The output
of the algorithm is a sequence of the inferred refactorings, inferredRefactorings.

The refactoring inference algorithm processes each basic AST node operation
from astNodeOperations (lines 4 — 45). First, the algorithm removes old pending
complete refactorings from pendingCompleteRefactorings and adds them to in-
ferredRefactorings (line 5). A complete refactoring is considered old if no more
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input: astNodeOperations // the sequence of basic AST node operations
output: inferredRefactorings

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

inferredRefactoringKinds = getAlllnferredRefactoringKinds();
inferredRefactorings = @; pendingCompleteRefactorings = ©@;
pendingIncompleteRefactorings = @; pendingRefactoringFragments = Q;
foreach (astNodeOperation € astNodeOperations) {
inferredRefactorings U= removeOldRefactorings(pendingCompleteRefactorings);
removeTimedOutRefactorings(pendingIncomplete Refactorings);
removeTimedOutRefactoringFragments(pendingRefactoringFragments);
newProperties = getProperties(astNodeOperation);
foreach (newProperty € newProperties) {
foreach (pendingRefactoringFragment € pendingRefactoringFragments) {
if (accepts(pendingRefactoringFragment, newProperty) {
addProperty (pendingRefactoringFragment, newProperty);
if (isComplete(pendingRefactoringFragment) {
remove(pendingRefactoringFragments, pendingRefactoringFragment);
newProperties U= pendingRefactoringFragment; break;

}
}
}

if (canBePartOfRefactoringFragment(newProperty) {
pendingRefactoringFragments U= createRefactoringFragment(newProperty);
}
foreach (pendingCompleteRefactoring € pendingCompleteRefactorings) {

if (accepts(pendingCompleteRefactoring, newProperty) {

addProperty (pendingCompleteRefactoring, newProperty);

continue foreach line9; // the property is consumed

}
}

foreach (pendingIncompleteRefactoring € pendingIncompleteRefactorings) {
if (accepts(pendingIncompleteRefactoring, newProperty) {

newRefactoring = clone(pendingIncompleteRefactoring);

addProperty (newRefactoring, newProperty);

if (isComplete(newRefactoring) {

pendingCompleteRefactorings U= newRefactoring;

continue foreach line9; // the property is consumed

} else pendingIncompleteRefactorings U= newRefactoring;

}
}

foreach (inferredRefactoringKind € inferredRefactoringKinds) {

if (isCharacteristicOf(inferredRefactoringKind, newProperty) {
newRefactoring = createRefactoring(inferredRefactoringKind, newProperty);
pendingIncompleteRefactorings U= newRefactoring;

}

}
}
}

inferredRefactorings U= pendingCompleteRefactorings;

Fig. 14. Overview of our refactoring inference algorithm
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properties were added to it within two minutes. Also, the algorithm removes
timed out pending incomplete refactorings from pendingIncompleteRefactorings
(line 6) as well as timed out pending refactoring fragments from pendingRefac-
toringFragments (line 7). An incomplete refactoring or a refactoring fragment
times out if it was created more than five minutes ago.

In the following step, the algorithm generates refactoring properties specific
to a particular AST node operation (line 8). The algorithm processes the gener-
ated properties one by one (lines 9 — 44). First, every new property is checked
against each pending refactoring fragment (lines 10 — 18). If there is a refactor-
ing fragment that accepts the new property and becomes complete, then this
refactoring fragment itself turns into a new property to be considered by the al-
gorithm (line 15). If the new property can be part of a new refactoring fragment,
the algorithm creates the fragment and adds it to pendingRefactoringFragments
(lines 19 — 21).

Next, the algorithm tries to add the new property to pending complete refactor-
ings (lines 22 —27). If the new property is added to a complete refactoring, the algo-
rithm proceeds to the next new property (line 25). Otherwise, the algorithm checks
whether this property can be added to pending incomplete refactorings (lines 28 —
37). If an incomplete refactoring accepts the property, it is added to a copy of this
incomplete refactoring (lines 30 — 31). If adding the new property makes the new
refactoring complete, it is added to pendingComplete Refactorings (line 33) and the
algorithm proceeds to the next new property (line 34). Otherwise, the new refac-
toring is added to pendingIncompleteRefactorings (line 35).

If the new property does not make any of the pending incomplete refactor-
ings complete, the algorithm creates new refactorings of the kinds that the new
property is characteristic of and adds these new refactorings to pendingIncom-
pleteRefactorings (lines 38 — 43).

Finally, after processing all AST node operations, the algorithm adds to in-
ferredRefactorings any of the remaining pending complete refactorings (line 46).

More details about our algorithm, including the full list of properties and
their component attributes as well as composition of refactorings and refactoring
fragments, can be found in our technical report [26].

4.2 Evaluation of Refactoring Inference Algorithm

Unlike the authors of the other two similar tools [9}[14], we report the accuracy
of our continuous refactoring inference algorithm on real world data. First, we
evaluated our algorithm on the automated refactorings performed by our partic-
ipants, which are recorded precisely by Eclipse. We considered 2,398 automated
refactorings of the nine out of the ten kinds that our algorithm infers (we disabled
the inference of the automated Encapsulate Field refactoring in our experiment
because the inferencer did not scale for one participant, who performed many
such refactorings one after another). A challenge of any inference tool is to estab-
lish the ground truth, and we are the first to use such a large ground truth. Our
algorithm correctly inferred 99.3% of these 2,398 refactorings. The uninferred
16 refactorings represent unlikely code editing scenarios, e.g., ten of them are
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the Extract Local Variable refactorings in which Eclipse re-writes huge chunks
of code in a single shot.

Also, we randomly sampled 16.5 hours of code development from our corpus
of 1,520 hours. Each sample is a 30-minute chunk of development activity, which
includes writing code, refactoring code, running tests, committing files, etc. To
establish the ground truth, the second author manually replayed each sample
and recorded any refactorings (of the ten kinds that we infer) that he observed.
He then compared this to the numbers reported by our inference algorithm. The
first and the second authors discussed any observed discrepancies and classified
them as either false positives or false negatives. Table [l shows the sampling
results for each kind of the refactoring that our algorithm infers. Overall, our
inference algorithm has a precision of 0.93 and a recall of 1.

Table 5. Sampling results

True False False
positives negatives positives
Convert Local Variable to Field 1 0 1

Encapsulate Field
Extract Constant
Extract Local Variable
Extract Method
Inline Local Variable
Rename Class
Rename Field
Rename Local Variable
Rename Method

Total 53

Refactoring
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5 Threats to Validity

5.1 Experimental Setup

We encountered difficulties in recruiting a larger group of experienced program-
mers due to issues such as privacy, confidentiality, and lack of trust in the relia-
bility of research tools. However, we managed to recruit 23 participants, which
we consider a sufficiently big group for our kind of study. Our dataset is not
publicly available due the non-disclosure agreement with our participants.

Our dataset is non-homogeneous. In particular, our participants have different
affiliations, programming experience, and used CODINGTRACKER for a various
amount of time. To address this limitation, we divided our participants in seven
groups along these three categories. We answered each research question for every
group as well as for the aggregated data and reported the observed insignificant
discrepancies.
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Our results are based on the code evolution data obtained from developers
who use Eclipse for Java programming. Nevertheless, we expect our results to
generalize to similar programming environments.

We infer only ten kinds of refactorings, which is a subset of the total number
of refactorings that a developer can apply. To address this limitation to some
extent, we inferred those refactoring kinds that are previously reported as being
the most popular among automated refactorings [31].

5.2 Refactoring Inference Algorithm

Our refactoring inference algorithm takes as input the basic AST node operations
that are inferred by another algorithm [27]. Thus, any inaccuracies in the AST
node operations inference algorithm could lead to imprecisions in the refactoring
inference algorithm. However, we compute the precision and recall for both these
algorithms applied together, and thus, account for any inaccuracies in the input
of the refactoring inference algorithm.

Although the recall of our refactoring inference algorithm is very high, the
precision is noticeably lower. Hence, some of our numbers might be skewed,
but we believe that the precision is high enough not to undermine our general
observations.

To measure the precision and recall of the refactoring inference algorithm, we
sampled around 1% of the total amount of data. Although this is a relatively
small fraction of the analyzed data, the sampling was random and involved
33 distinct 30-minute intervals of code development activities, thus a manual
analysis of 990 minutes of real code development.

6 Related Work

6.1 Empirical Studies of Refactoring Practice

The practice of refactoring plays a vital role in software evolution and is an
important area of research. Studies by Xing and Stroulia [33], and Dig and
Johnson [5] estimate that 70 — 80% of all code evolution can be expressed as
refactorings.

Murphy et al. [23] were the first to study the usage of automated refactoring
tools. Their study provided the first empirical ranking of the relative popularities
of different automated refactorings, demonstrating that some tools are used more
frequently than others. Subsequently, Murphy-Hill et al.’s [25] study on the use of
automated refactoring tools provided valuable insights into the use of automated
refactorings in the wild by analyzing data from multiple sources.

Due to the non-intrusive nature of CopINGTRACKER, we were able to deploy
our tool to more developers for longer periods of time, providing a more complete
picture of refactoring in the wild. We inferred and recorded an order of mag-
nitude more manual refactoring invocations compared to Murphy-Hill et al.’s
sampling-based approach. Murphy-Hill sampled 80 commits from 12 developers
for a total of 261 refactoring invocations whereas our tool recorded 1,520 hours
from 23 developers for a total of 5,371 refactoring invocations.
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Murphy-Hill et al.’s [25] study found that (i) refactoring tools are underused
and (ii) the kinds of refactorings performed manually are different from those
performed using tools. Our data (see RQ3) corroborates both these claims. Due
to the large differences in the data sets (261 from Murphy-Hill et al. vs. 5,371
from ours), it is infeasible to meaningfully compare the raw numbers for each
refactoring kind. Our work also builds upon their work by providing a more
detailed breakdown of the manual and automated usage of each refactoring tool
according to different participant’s behavior.

Vakilian et al. [30] observed that many advanced users tend to compose several
refactorings together to achieve different purposes. Our results about clustered
refactorings (see RQ6) provide additional empirical evidence of such practices.

6.2 Automated Inference of Refactorings

Traditionally, automated refactoring inference relies on comparing two differ-
ent versions of source code and describing the changes between versions of code
using higher-level characteristic properties. A refactoring is detected based on
how well it matches a set of characteristic properties. Our previous tool, Refac-
toringCrawler [0], used references of program entities (instantiations, method
calls, and type imports) as its set of characteristic properties. Weilgerber and
Diehl [32] used names, signature analysis, and clone detection as their set of char-
acteristic properties. More recently, Prete et al. [28] devised a template-based
approach that can infer up to 63 of the 72 refactorings cataloged by Fowler [10].
Their templates involve characteristic properties such as accesses, calls, inherited
fields, etc., that model code elements in Java. Their tool, Ref-Finder, infers the
widest variety of refactorings to date.

All these approaches rely exclusively on VCS snapshots to infer refactorings.
We have shown in RQ7 that many refactorings do not reach VCS. This compro-
mises the accuracy of inference algorithms that rely on snapshots. To address
such inadequacies, our inference algorithm leverages fine-grained edits. Similar
to existing approaches, our algorithm infers refactorings by matching a set of
characteristic properties for each refactoring. In contrast to existing approaches,
our properties are precise because they are constructed directly from the AST
operations that are recorded on each code edit.

In parallel with our tool, Ge et al. [I4] developed BeneFactor and Foster
et al. [9] developed WitchDoctor. Both these tools continuously monitor code
changes to detect and complete manual refactorings in real-time. Though con-
ceptually similar, our tools have different goals — we infer complete refactorings,
while BeneFactor and WitchDoctor focus on inferring and completing partial
refactorings in real time. Thus, their tools can afford to infer fewer kinds of refac-
torings and with much lower accuracy. Nonetheless, both highlight the potential
of using refactoring inference algorithms based on fine-grained code changes to
improve the IDE. We compare our tool with the most similar tool, WitchDoctor,
in more detail in our technical report [26].
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7 Conclusions

There are many ways to learn about the practice of refactoring, such as ob-
serving and reflecting on one’s own practice, observing and interviewing other
practitioners, and controlled experiments. But an important way is to analyze
the changes made to a program, since programmers’ beliefs about what they do
can be contradicted by the evidence. Thus, it is important to be able to ana-
lyze programs and determine the kind of changes that have been made. This is
traditionally done by looking at the difference between snapshots. In this paper,
we have shown that VCS snapshots lose information. A continuous analysis of
change lets us see that refactorings tend to be clustered, that programmers of-
ten change the name of an item several times within a short period of time and
perform more manual than automated refactorings.

Our algorithm for inferring change continuously can be used for purposes other
than understanding refactoring. We plan to use it as the base of a programming
environment that treats changes intelligently. Continuous analysis is better at
detecting refactorings than analysis of snapshots, and it ought to become the
standard for detecting refactorings.
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