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Abstract. Inefficient use of Java containers is an important source of run-time
inefficiencies in large applications. This paper presents an application-level dy-
namic optimization technique called CoCo, that exploits algorithmic advantages
of Java collections to improve performance. CoCo dynamically identifies opti-
mal Java collection objects and safely performs run-time collection replacement,
both using pure Java code. At the heart of this technique is a framework that ab-
stracts container elements to achieve efficiency and that concretizes abstractions
to achieve soundness. We have implemented part of the Java collection frame-
work as instances of this framework, and developed a static CoCo compiler to
generate Java code that performs optimizations. This work is the first step to-
wards achieving the ultimate goal of automatically optimizing away semantic
inefficiencies.

1 Introduction

Large-scale Java applications commonly suffer from severe performance problems. A
great deal of evidence [1,2,3,4,5] suggests that these problems are primarily caused by
run-time bloat [6]—excessive memory usage and computation to accomplish simple
tasks—often from inappropriate design/implementation choices (e.g., creating general
APIs to facilitate reuse, using general implementations without any specialization, etc.)
that exist throughout the program.

Container Inefficiencies. Previous studies [4,7,8,3,9,10] have found that an im-
portant source of run-time bloat is the inefficient use of container implementations.
Standard libraries of object-oriented languages such as Java and C# contain collection
frameworks that provide with users, for each abstract data type (such as List), many
different implementations (such as ArrayList and LinkedList), each of which
features a different design choice suitable for a specific execution scenario. However,
in real-world development, choosing the most appropriate container implementation is
challenging. As a result, developers tend to keep using the implementations that are
most general or well-known (e.g., HashSet for Set), regardless of whether or not
they fit the usage context. This is especially true in object-oriented programming, as
developers can easily write code without deeply understanding implementation details
of libraries, and the culture of object-orientation itself encourages generality and quick
reuse of library functions. Inappropriate choices of container implementations can lead
to significant performance degradation and scalability problems. More seriously, such
bottlenecks can never be detected and removed by an existing optimizing compiler that
is unaware of these different design principles and trade-offs.
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Run-Time Container Replacement to Achieve Efficiency. We propose a novel
container optimization technique, called CoCo, that is able to (1) determine at run time,
for each container instance (e.g., a LinkedList object) used in the program, whether
or not there exists another container implementation (e.g., ArrayList) that is more
suitable for the execution; and (2) automatically and safely switch to this new container
implementation (e.g., replace the old LinkedList object with a new ArrayList
object online) for increased efficiency. While there exists work (such as Chameleon [7]
and Brainy [9]) that could identify Java collection inefficiencies and report them to users
for offline inspection, none of these techniques can change implementations online. An
online approach outperforms an offline approach in the following two important as-
pects. First, a real-world execution is often made up of multiple phases, each with a
different environment processing different types of data. Much evidence shows [11,12]
that it is difficult to find a solution that is optimal for the entire execution. Our exper-
imental results also demonstrate that many containers in large applications experience
multiple switches during execution. This calls for novel techniques that can change im-
plementations immediately after they become suboptimal. Second, an offline approach
relies completely on the developer’s effort to fix the detected problems while an online
approach shifts this burden to the compiler and the run-time system.

Challenge 1: How to Guarantee Safety. Developing an online technique is sig-
nificantly more difficult and constitutes the main contribution of this paper. Switching
container implementations can easily cause inconsistency issues, leading to problematic
executions or even program crashes. To illustrate, consider again the previous example
where we replace a LinkedList object with an ArrayList object. Any subsequent
invocation of a LinkedList-specific method (e.g., getLast) or type comparison
(e.g., o instanceof LinkedList) can either cause the program to fail or change
the semantics arbitrarily.

CoCo uses a combination of manually-modified library code and automatically-
generated glue code (both are pure Java code) to perform optimizations. Unlike a tra-
ditional systems-level (blackbox) dynamic optimization technique that is completely
separated from the applications being optimized, CoCo (1) advocates a methodology
that can be used by library designers to create optimizable container classes, and (2)
provides a static compiler to generate glue code that performs run-time optimizations
on these optimizable container classes. All optimizations are performed at the appli-
cation level within the (manually modified and automatically generated) Java classes,
which encode human insight to direct optimizations.

CoCo stands for container combination—for each container object (whose type is
supported by CoCo) created in a Java program, we additionally create a group of other
container objects to which this particular object may be switched at run time. This
group, together with the original container, is referred to as a container combo hence-
forth. CoCo initially uses the original container object as the active container, leaving
this group of associated containers in the inactive state. All operations are performed
only on the active container object. Upon adding a new element, the concrete element
object is added only into the active container while CoCo creates an abstraction for
this element and adds the abstraction to all inactive containers. This abstraction is ac-
tually a placeholder from which we can find the concrete object(s) it corresponds to.
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Once a container switch occurs, an inactive container (e.g., a) that contains element ab-
stractions is activated (and the originally active container b becomes inactive). If later a
retrieval operation on a locates an abstraction, this abstraction is concretized by finding
its corresponding concrete element (from b) to guarantee the safety of the subsequent
execution. Section 4 discusses how to instantiate this framework to implement List,
Map, and Set combos.

Challenge 2: How to Reduce Run-Time Overhead. It is obvious to see that naively
creating container groups and performing abstraction-concretization operations can in-
troduce a great amount of overhead. As our ultimate goal is to improve performance, it
is equally important for CoCo to reduce overhead as well as ensuring safety. We employ
three important optimization techniques to tune CoCo’s performance: (1) drop inactive
containers once we observe no optimization is possible; (2) use sampling to reduce
profiling overhead; and (3) perform lazy creation of inactive containers.

Note that the performance benefit that CoCo may bring to a program results primarily
from the algorithmic advantage of the selected implementation over the source imple-
mentation in an execution environment that favors the former, instead of from other
factors such as a more compact design of the data structure or improved cache locality.
In fact, performing online container replacement can, in many cases, increase memory
space needed (as more objects are created) and/or hurt locality (as concrete elements
can be separated in different containers). In order to improve the overall performance,
we have to carefully select the container types to be optimized and evaluate various
container replacement decisions to find the appropriate configurations under which the
performance benefit outweighs the negative impact of the online replacement.

Section 2 gives an overview of how CoCo performs optimizations on containers and
Section 3 presents a formalism that shows the general methodology to perform sound
container replacement. Section 4 describes our implementations of the CoCo List,
Map, and Set. Section 5 discusses our optimization techniques. We have evaluated
CoCo on both a set of micro-benchmarks and a set of 5 real-world large-scale Java
applications from which container bloat has been found previously. Our experimental
results are reported in Section 7. Although we modify only a small portion of the Java
Collections Framework, our experimental results show that CoCo is useful in optimiz-
ing micro-benchmarks (e.g., the speedup can be as large as 74×). For the 5 large-scale,
real-world programs, CoCo is still effective—an average 14.6% running time reduction
has been observed. Large opportunities are possible if more (both Java and user-defined)
container classes can be modified to support CoCo optimizations.

The contributions of this work are:

– A general methodology to perform sound online container replacement for in-
creased execution efficiency;

– an instantiation of this methodology in the Java Collections Framework that offers
automated optimizations for 7 Set, Map, and List containers;

– three optimization techniques developed to reduce replacement overhead;

– an experimental evaluation of CoCo on both a set of micro-benchmarks and a set of
real-world benchmarks; the results suggest that CoCo is effective and may be used
in practice to optimize container usage.
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Fig. 1. An overview of the CoCo system

2 Overview

This section uses a List example to illustrate how CoCo performs container optimiza-
tions. The current version of CoCo focuses on Java built-in container classes, while the
CoCo methodology can be applied to optimize arbitrary user-defined containers.

2.1 General Methodology

CoCo performs same-interface optimizations—given a container class that implements
interface I, CoCo looks for potentially switchable candidates only within the types that
implement I. Performance gains may be seen sometimes from switching implemen-
tations across different interfaces. For example, work from [7] shows that it can be
beneficial to switch from ArrayList to LinkedHashSet in certain cases. It would be
easy to extend CoCo to support multi-interface switches— the developer may need to
create a wrapper class that serves as an adapter between interfaces. This class imple-
ments APIs of the original interface using methods of the new interface. We leave the
detailed investigation of this approach to the future work.

From a set of all container classes that implement the same interface, we select those
among which the online replacement may result in large performance benefit (at least
large enough to offset the replacement overhead). In this paper, we focus on containers
that have clear algorithmic advantages (e.g., lower worst-case complexity) over oth-
ers in certain execution scenarios. For example, switching from a LinkedList to an
ArrayList upon experiencing many calls to method get(i) may reduce the com-
plexity of get from O(n) (where n is the size of this List) to O(1). This may have
much larger benefit than switching from ArrayList to SingletonList (upon ob-
serving there is always one single element)—in this case, no significant algorithmic
advantage can be exploited and the benefit resulting from space reduction may not be
sufficient to offset the overhead of creating and maintaining multiple containers.

Figure 1 gives an overview of the CoCo system. For the selected container classes,
we first modify them manually to add abstraction-concretization operations. The CoCo
static compiler then generates glue code that connects these modified classes, performs
run-time profiling, and makes replacement decisions. Next, both the generated glue
classes and the modified container classes are compiled into Java bytecode, which is
executed to enable optimizations. The entire container replacement task is achieved in
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1 package coco.util;

2 class LinkedList extends java.util.LinkedList 

3                                implements OptimizableList{
4     ListCombo combo;  // the combo object

5     LinkedList() { ... }   // the original constructor

// constructor for CoCo

6     LinkedList(ListCombo c) {  

7 this();

8            if(c == null) combo = new ListCombo(this);

9          else combo = c; 

10   }

11

12   void add(Object o) {

13     if(combo == null)  this.add$CoCo(o);      

14          else combo.add(o);  

15   }

16   // this used to be add(Object o)

17   void add$CoCo(Object o) {/* add obj o*/}

18

19   Object get(int i) {                      

20 if(combo == null)  return this.get$CoCo(i);

21 else                      return combo.get(i);

22   }

23   //this used to be get(int i) 

24  Object get$CoCo(int i) {  ... }

25}

26  Interface OptimizableList{
27     void add$CoCo(Object o);  Object get$CoCo(); …

28     void addAbstractElement(Object o, int containerID);

29     void replaceConcreteWithAbstract(Predicate p,

int containerID);

30 }

(a) CoCo-optimizable LinkedList (manually modified 

from java.util.LinkedList) and interface OptimizableList

1 package coco.util;

2 class ListCombo implements List {

3         OptimizableList active;  OptimizableList[] inactive;

4         ListCombo(OptimizableList l){

5 active = l;

6                createInactiveLists();

7          }

8          OptimizableList[]  createInactiveLists(){

9 inactive = new OptimizableList[...];

10 ...

11 inactive[i] = new ArrayList(this);

12        }            

13        void add(Object o) {

14 doProfiling(OPER_ADD);

15 active.add$CoCo(o);    

16         }

17        Object get(int i) { 

18 doProfling(OPER_GET);

19 return active.get$CoCo(i);

20        }

21        void doProfiling(int operation){

22 incCounter(operation);  

23 if(active instanceof LinkedList && 

24 NUM_GET > THRESHOLD) {

25 //Let’s switch to ArrayList

26 // i is the index of the ArrayList object in inactive

27 swap (active, inactive[i]);

28 } 

29 ...

30       }

31}

(b) Glue class ListCombo that does profiling and makes 

replacement decisions (automatically generated by the CoCo 

static compiler)

Fig. 2. Examples of a CoCo-optimizable LinkedList obtained by manually modifying
java.util.LinkedList and a combo class generated automatically by the CoCo static
compiler

these (manually modified and compiler generated) Java classes at the application level,
not in the run-time system.

2.2 Creating CoCo-optimizable Container Classes

Lines 1–25 in Figure 2 (a) show a skeleton of the CoCo-optimizable LinkedList, ob-
tained from modifying the original LinkedList class in the Java Collections Frame-
work. For ease of presentation, all examples shown in this section are simplified from
the real container classes that CoCo uses. In addition, these examples are created only to
illustrate how CoCo performs online container replacement, without considering how
much overhead the code could incur. We will discuss various overhead reduction tech-
niques in Section 5.

In order to be optimized by CoCo, the modified LinkedList must imple-
ment the CoCo-provided interface OptimizableList, whose skeleton is shown
in lines 26–30. This interface declares a set of X$CoCo methods, each of which
corresponds to a method X declared in interface List (where X can be get,
add, remove, etc.). It additionally declares two methods (addAbstractElement
and replaceConcrete-WithAbstract) that will be implemented to perform
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abstraction-concretization operations. An X$CoCo method has exactly the same sig-
nature as method X. For each X in the original version of LinkedList, we move
its entire body into X$CoCo, which, thus, becomes the method that implements the
functionality of X. Method X will be used to choose container implementations at run
time.

Container Combo. Each CoCo-optimizable container class has an associated
combo object of type ListCombo (line 4 in Figure 2 (a)), responsible for profiling
container operations and making replacement decisions. Figure 2 (b) shows a skele-
ton of the glue class ListCombo, which is generated automatically by the static CoCo
compiler, given a container interface (e.g., List) and a selected set of its implementing
classes to be optimized (e.g., ArrayList and LinkedList).
ListCombo also implements List, and thus, it contains all methods (X) declared

in List. Each X in ListCombo is implemented as a method dispatcher. To illustrate,
consider method add (line 13 in Figure 2 (b)). It first records that this is an ADD opera-
tion (line 14), and then invokes method add$CoCo on the currently active list active
(line 15). Note that method add$CoCo in different container implementations can be
invoked by simply updating the field active during execution.

Example. Consider again class LinkedList in Figure 2 (a). For each construc-
tor in the original version of LinkedList, we add a new constructor that has one
additional parameter of type ListCombo (line 6 in Figure 2 (a)). In a client program
that calls the original constructor (at line 5), our JVM will replace this call site with a
call to the new constructor and pass null as the argument. Upon receiving null, this
constructor creates a new ListCombo (line 8) that, in turn, creates a group of other
container objects (line 8-12 in Figure 2 (b)) to which this LinkedList object may be
switched at run time. The LinkedList object becomes the first active List in this
combo (line 5 in Figure 2 (b)). When an inactive container is created, the combo object
is also passed into its constructor (line 11 in Figure 2 (b)), and thus, this combo object
will be shared among all the candidate containers.

The combo is essentially a central method dispatcher—whenever method add (e.g.,
in LinkedList) is invoked from a client, it calls method add on the combo object
(line 14 in Figure 2 (a)), which, in turn, invokes method add$CoCo on the currently
active List object (line 15 in Figure 2 (b)). If, at a certain point during execution,
the profiling method (line 21-30 in Figure 2 (b)) observes that the active List is a
LinkedList and the total number of get(i) operations invoked is greater than a
threshold value (line 23), it changes the active container to ArrayList—the only
thing that needs to be done is to find the ArrayList object in the inactive container
array and make it active (line 27 in Figure 2 (b)). An illustration of the combo structure
can be found in Figure 3.

Preserving Semantics. From a client’s perspective, using this combination of con-
tainers has no influence on the behaviors of the original LinkedList. The client code
always interfaces with the LinkedList methods, although the actual “service” could
be provided by a different container object. This design guarantees type safety of the
forward execution—we make the modified LinkedList a subclass of the original
Java LinkedList (line 2 in Figure 2 (a)), and thus, no failure would result from
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LinkedList(...) ListCombo(...)

create combo

ArrayList(...)

create

HashArrayList(...)

OtherList(...)

add(...)

add$CoCo(...)

add(...)
forward

add$CoCo(...)

add$CoCo(...)

add$CoCo(...)

runtime 

decision

initiator combo Associated containers

call edge runtime dispatch edge: select one to call

Fig. 3. Graphical illustration of a container combo

future operations that rely on the original type LinkedList, such as instanceof
and the invocation of LinkedList-specific methods (e.g., getLast).

While manual work is needed to turn a Java (or user-defined) container into a CoCo-
optimizable container, much of the original code can be reused and the user needs
to add only a few methods, such as X$CoCo. The entire class ListCombo (except
doProfiling) is generated automatically by the CoCo compiler. Furthermore, the
intended users of CoCo are library designers and implementers, and thus, no extra effort
is needed from the end developers. For method doProfiling that makes run-time re-
placement decisions, the condition code (e.g., lines 23-28) can be either generated from
a set of user-specified rules (such as those used by Chameleon [7]), or filled in by hu-
man experts manually. The current version of CoCo uses the latter approach, while it is
easy to develop a rule engine to translate user-defined rules into code predicates. If the
designer wishes to combine implementations with conflicting specifications (e.g., some
accept null values while others do not), she may need to explicitly insert checks in
the combo code to direct the dispatch. For example, a null value cannot be inserted
into a container that does not handle it.

2.3 Using Abstraction and Concretization to Ensure Safety

When an inactive container is activated, all container operations will be performed on
it. Key to providing soundness guarantee is, thus, to make sure that any container, if
becoming active, can provide service correctly. A natural idea is to move all elements
from one container to another upon a switch. However, significant run-time overhead
may result from regularly moving elements around containers. If the switch decision is
inappropriate and we need to switch back to the original container, moving all elements
back and forth can create a great amount of redundant work. To achieve efficiency,
we propose an on-demand approach—an element is moved from an inactive container
to an active container only when it is requested by the client. If the switch decision
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1 class LinkedList implements OptimizableList {
2         Entry first, last; 

3           ...    

4        void add$CoCo(Object o){
5 insert(o);

6 for(OptimizableList l : combo.inactiveLists()){ 

7 l.addAbstract(o, ID_LINKED_LIST);

8               }

9          }

10     Object get$CoCo(int i) {
11 Object o = findEntry(i);

12 if(o instanceof AbstractElement) {

13 AbstractElement ae = (AbstractElement)o;

14 Object[] concreteObjs = 

ae.concretize(ID_LINKED_LIST);

15 replaceAndExpand(i, concreteObjs);

16                   o = findEntry(i);

17 }

18 return o;

19         } 

20       void addAbstractElement
(Object o, int containerID){

21 AbstractElement ae = createAbstraction

(o, containerID);

22 insert(ae);

23         }

24       …

25 }

26 class AbstractElement{

27       ListCombo combo;  int targetContainerID;

28       Predicate p; 

29       Object[] concretize(int newContainerID) {

30 OptimizableList l = combo.getRuntimeList

(targetContainerID);

31 Object[] objs = new Object[p.size()];

32 for(Integer index : p.iterateAll())

33           {  objs[...] = l.get$CoCo(index);  }

34 l.replaceConcreteWithAbstract
(p, newContainerID);

35          return objs;

36       }  ...

37 }

Fig. 4. An abstraction-concretization example in LinkedList

is appropriate, the active container will remain active for a relatively long time and
concrete elements will be gradually moved to this container as more operations are
performed.

To do this, when an ADD operation is performed, it is insufficient to add the incom-
ing object only into the active container—we have to additionally record some infor-
mation of this element in all inactive containers, so that if any one of them becomes
active later and this element is requested by a client, the container would have a way
to find it and return it to the client. This information is referred to as the abstraction of
this concrete element (or sometimes abstract element). If an abstraction is found dur-
ing the retrieval of an element, this abstraction is concretized to provide the concrete
element(s) it represents. For different types of containers (e.g., Map, Set, List, etc.),
we may need to create different types of abstractions. Section 3 discusses a general
methodology to create abstractions.

Example. Figure 4 shows part of the modified LinkedList responsible for el-
ement abstraction and concretization. Highlighted methods are declared in interface
OptimizableList. After inserting a concrete element o into the list (line 5), method
add$CoCo adds an abstraction of o into all inactive lists (lines 6–8). Once an abstrac-
tion is found in a retrieval (lines 12–17), it is concretized to get an array of concrete
elements it represents (line 14), which are then inserted into the list to replace this ab-
straction.

Lines 26–36 of Figure 4 show class AbstractElement, which is the abstraction
that CoCo uses for List. Here an abstraction has three pieces of information (lines
27–28): the ID of the container object where the concrete element(s) represented by this
abstraction are located (i.e., targetContainerID), the combo object from which
this container object can be obtained (i.e., combo), and a predicate (i.e., p) that
specifies the exact locations of the concrete elements in their host container.

Predicate. A predicate is defined based on how elements are added into and re-
trieved from a container. For example, for List, elements are added and retrieved
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based on their indices, and thus, the predicate in each element abstraction is defined
over the domain of indices (integers), that is, each predicate represents a range of in-
dices (e.g., [0, 15]). When an abstraction is concretized (line 14 in Figure 4), all the
elements whose indices satisfy the predicate of the abstraction (lines 32–33) are re-
trieved from their host container in order to fulfill the client’s request. These concrete
elements are then moved into this active List to avoid future concretization operations
(line 15). In addition, we need to remove these concrete elements from their old host
container by creating an abstraction there to represent them (line 34). If CoCo switches
back to this (old) container later, the same (concretization) process will be performed
to retrieve the elements.

Fig. 5. A List combo in which both
containers have abstractions

Figure 5 shows an example List combo re-
sulting from the code shown in Figure 4. In
this combo, both the LinkedList (List 0) and
the ArrayList (List 1) have abstractions (i.e.,
placeholders) and concrete elements. For exam-
ple, the abstraction 〈1, [2, 3]〉 is the placeholder of
the No.2 and No.3 elements and it specifies that
these two elements are currently in List 1. Differ-

ent abstractions can be defined by creating different AbstractElement classes (in
Figure 4). Section 4 discusses the abstractions that CoCo currently uses for List, Map,
and Set, while the general methodology proposed in this paper can be applied to create
abstractions for all (Java built-in or user-defined) data structures in order to enable this
optimization.

Calls to methods that are specific to each container implementation (i.e., that are
not declared in the container Interface) cannot be forwarded to the combo object. For
example, if method getLast is invoked on a LinkedList object after the active
container in the combo becomes an ArrayList, this call cannot be performed on the
ArrayList becausegetLast does not exist in ArrayList. In this case, getLast
is still invoked on the LinkedList object, but we need to modify this method and
concretize an abstraction to bring the last concrete element back to the LinkedList
to fulfill the request (e.g., if the last element is not the LinkedList). It is subject to
the developer how the concretization should be performed.

3 Formal Descriptions

This section formalizes the notion of a container, and in that context, formally describes
CoCo’s core idea on run-time container replacement. Although CoCo currently supports
only a few Java built-in containers, this formal framework defines a methodology that
can be used to switch arbitrary container implementations. Any instantiation of this
framework is guaranteed to be sound.

Definition 1. (Container) A container Σ is a triple Σ = 〈X,≺, f〉, where X is a set
of concrete elements and ≺ is a partial order on X. ≺ is determined by a property
encoding function f (x) that maps each x ∈ X to an integer ix that encodes a certain
property of x. For any two elements x1, x2 ∈ X, x1 ≺ x2 iff. f (x1) < f (x2).
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Partial order ≺ determines how elements are stored in a container. x1 precedes x2 in
the underlying data structure of the container if x1 ≺ x2. The position of each element
depends on a certain property of this element used by the container, which is encoded
by function f . For example, for List, f maps each x to a unique index; for HashMap,
f is a hash function that maps each x to the index of the hash bucket where x should
be stored based on x’s hashcode; for TreeMap, f maps each x to the index of x in a
list of all elements in the map sorted by the results of their compareTo method. This
index determines when x will be reached in an in-order traversal of the binary search
tree used by TreeMap. If neither x1 ≺ x2 nor x2 ≺ x1, there is no constraint regarding
the positions of x1 and x2. For example, if the hash function (in a HashMap) maps
both x1 and x2 to the same bucket slot, the way they are stored is subject to the specific
implementation of HashMap.

Definition 2. (CoCo-optimizable container) A CoCo-optimizable container Γ is a six-
tuple Γ = 〈X,A,≺, f , α, γ〉, where X is a set of concrete elements, A is a set of abstract
elements, ≺ is a partial order on X ∪ A, f is a property encoding function, α: X → A
is an abstraction function that maps each concrete element to an abstraction, and γ:
A → 2X is a concretization function that maps each abstract element to a subset of
concrete elements it represents. Partial order ≺ is redefined as follows:

(a) ∀x1, x2 ∈ X: x1 ≺ x2 ⇔ f (x1) < f (x2)
(b) ∀a1, a2 ∈ A: a1 ≺ a2 ⇔ maxx∈γ(a1)(f (x))

< miny∈γ(a2)(f (y))
(c) ∀a ∈ A, x ∈ X: a ≺ x⇔ maxy∈γ(a)(f (y)) < f (x)
(d) ∀a ∈ A, x ∈ X: x ≺ a ⇔ f (x) < miny∈γ(a)(f (y))

Each CoCo-optimizable container (such as the LinkedList shown in Figure 2 (a))
is a mixture of concrete and abstract elements. The (new) partial order ≺ is defined
on the union of these two groups of elements. The definition of ≺ does not change
when two concrete elements are compared (i.e., shown in condition (a)). An abstraction
a1 ≺ another abstraction a2 only when the “greatest” concrete element abstracted by
a1 ≺ the “smallest” concrete element abstracted by a2 (i.e., shown in (b)). (c) and (d)
show comparisons between an abstraction a and a concrete element x: a ≺ x only if
the “greatest” concrete element a abstracts ≺ x. The abstraction function α and the
concretization function γ are user-defined and are specific to each type of container
optimized by CoCo.

Here the concrete element set X and the abstract element set A are separated for ease
of presentation and formal development. In our implementation, they are stored together
in the underlying data structure (e.g., the data array for ArrayList, the bucket array
for HashMap, etc.) of a container that used to store only concrete elements. An ab-
stract element in a container is stored in the location where its corresponding concrete
element(s) would have been stored if they were in this container.

Definition 3. (Contiguous abstraction) An abstraction a ∈ A in a container object is
a contiguous abstraction iff. ∀x1, x2 ∈ γ(a): (�x ∈ X: x1 ≺ x ≺ x2) ∧ (∀a′ ∈ A :
a′ �= a ⇒ �y ∈ γ(a′) : x1 ≺ y ≺ x2).
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A contiguous abstraction represents a range of concrete elements that should be stored
contiguously in the container. No other concrete element either directly in the container
or abstracted by another abstraction can be put in the middle of them. Allowing only
contiguous abstractions in a container simplifies significantly the implementations of
the abstraction function α and the concretization function γ. This definition also implies
that different contiguous abstractions do not overlap.

Definition 4. (Well-formed container) A CoCo-optimizable container Γ = 〈X,A,≺
, f , α, γ〉 is a well-formed container, if (1) ∀a ∈ A: a is a contiguous abstraction and
(2) ∀x ∈ X: �a ∈ A: x ∈ γ(a).

Well-formedness has two important aspects: all abstractions are contiguous abstractions
and no abstraction abstracts a concrete element that exists in the container (i.e., an
abstraction abstracts only concrete elements located in other containers). It is easy to
see that a container with no abstraction is a well-formed container; so is a container
with one single abstraction that abstracts all elements.

Definition 5. (Well-formed container combo) A container combo C is an n-tuple C
= 〈Γ1, Γ2, . . . , Γn−1, i〉, where Γ1, . . . , Γn−1 are CoCo-optimizable containers and i ∈
[1, n -1] is the index of the active container.

A container combo is well-formed iff.

– ∀j ∈ [1, n - 1], Γj is well-formed; and
– ∀j, k ∈ [1, n - 1], j �= k: (|Xj |+

∑
a∈Aj

|γj(a)| = |Xk|+
∑

a∈Ak
|γk(a)|); and

– ∀j ∈ [1, n - 1]: ∀x ∈ Xj : ∀k ∈ [1, n - 1]: k �= j ⇒ ∃a ∈ Ak: x ∈ γ(a)

A well-formed container combo must first have all its containers well-formed. The last
two conditions concern the relationships between the containers in the combo: each
container must have the same number of elements if all abstractions are concretized;
and for any concrete element x in a container Γj , there must exist an abstraction in each
container Γk (k �= j) that abstracts x.

Definition 6. (ADD, GET, and SWITCH) An ADD(x) operation performed on a
container combo 〈Γ1, . . . , Γn−1, i〉 adds a concrete element x to set Xi of the active
container Γi, and appropriately updates abstract element set Aj in each inactive con-
tainer Γj to add x’s abstraction.

A GET operation first looks for the target element in Xi of the active container Γi.
If the element does not exist in Xi, it finds the abstraction a ∈ Ai, uses concretization
function γi to retrieve all elements γi(a), appropriately updates set Aj in each container
Γj , and returns the target element x ∈ γi(a).

A SWITCH operation causes a container combo 〈Γ1, . . . , Γn−1, i〉 to become
〈Γ1, . . . , Γn−1, j〉 (i �= j), without changing the internal state of each container.

These definitions specify the behaviors of the three most important container operations.
Section 4 discusses how these operations are performed for different types of containers
such as List, Map, and Set.
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Table 1. Containers currently supported by CoCo

Combo type Participating containers Condition Switch To
ArrayList #contains > X ∧ size > Y HashArrayList

java.util.List LinkedList #get > X ∧ size > Y ArrayList
HashArrayList #contains < X ∨ size < Y ArrayList
HashMap size < Y ArrayMap

java.util.Map ArrayMap size > Y HashMap
HashSet size < Y ArraySet

java.util.Set ArraySet size > Y HashSet

Definition 7. (Soundness of container switch) A SWITCH operation that causes a
container combo C to become C′ is a sound switch if any element added by an ADD
operation on C can be successfully retrieved by a corresponding GET operation on C′.

Lemma 1. (Well-formedness implies soundness) If the well-formedness of a con-
tainer combo C is preserved by each (ADD or GET) operation, any SWITCH operation
that occurs on C is sound.

Proof Sketch. If C is always well-formed during the execution, an element added
to C is either in the concrete element set Xi of the active container Γi, or in set Xj of
an inactive container Γj and appropriately abstracted by an abstraction a ∈ Ai. In the
former case, it can be found directly in Xi, while in the latter case, it can be found by
using γi to concretize abstraction a (as long as γi is sound). �

This section presents a methodology for creating sound container combos. Optimiza-
tions of any container implementations are guaranteed to be sound if they are instances
of this formal framework. The library designers are responsible for creating appropriate
optimizations for their containers and make them strictly follow the CoCo methodology.
The next section describes the 7 containers CoCo currently supports and our implemen-
tations of their combos. We will also demonstrate, for each type of combo, how our spe-
cific implementations of abstraction and concretization preserve its well-formedness.

4 Implementation

We have modified four Java built-in container classes and implemented another three
from scratch to instantiate the framework discussed in Section 3. Table 1 shows the con-
tainer combos, when switches are performed, and switch destinations. Note that a subset
of the switch conditions is adapted from the rules discovered and used in Chameleon [7].
Additional rules can be easily added by modifying the method doProfiling in each
combo class (shown in Figure 2 (b)). Among the seven containers, HashArrayList,
ArrayMap, and ArraySet are implemented by ourselves; the rest of them are mod-
ified from their original versions in the GNU classpath library 1.

These containers are selected because (1) they are all designed for general use, and
(2) each container has clear time efficiency in a certain usage scenario. Future work may

1 www.gnu.org/s/classpath/

www.gnu.org/s/classpath/
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Algorithm 1. List ADD that inserts object x at the index index into a combo
whose active container is i.

Input: List combo 〈Γ1, . . . , Γn−1, i〉, Index index , Element x
1 Suppose Lj is the underlying data structure in List Γj that stores Xj and Aj

2 foreach Γj , j ∈ [1, n− 1] do
3 newIndex ← recalculateIndex(Lj , index )
4 if j = i then
5 /* update the active List */
6 if Lj [newIndex ] is an abstract element a = 〈k, [indexm, indexn]〉 then
7 /* k is the ID of the List that contains the concrete element,
8 [indexm, indexn] is the predicate specifying a region*/
9 split this abstraction into a1 = 〈k, [indexm, index − 1]〉 and a2 =

〈k, [index + 1, indexn + 1]〉
10 replace a with [a1, x, a2] in Lj

11 foreach abstract element 〈t, [indexq, indexr ]〉 following a2 in Lj do
12 update predicate [indexq, indexr] to [index q + 1, indexr + 1]

13 else
14 /*This is a concrete element*/
15 insert x into Lj at the index newIndex

16 else
17 /*update an inactive List*/
18 /*Initially each inactive List has one abstraction 〈i, [0, 0]〉 */
19 if Lj [newIndex ] is an abstraction a = 〈k, [indexm, indexn]〉 then
20 if k = i then
21 update a to be 〈k, [indexm, indexn + 1]〉
22 else
23 create new abstraction a′ = 〈i, [index , index ]〉
24 split a into a1 = 〈k, [indexm, index − 1]〉 and a2 = 〈k, [index + 1, indexn + 1]〉
25 replace a with [a1, a

′, a2] in Lj

26 a← a2

27 else
28 /*Lj [newIndex ] is a concrete element*/
29 create new abstraction a′ = 〈i, [index , index ]〉
30 insert a′ into Lj at the index newIndex

31 a← a′

32 foreach abstract element 〈t, [indexq, indexr ]〉 following a in Lj do
33 update predicate [index q, indexr] to [index q + 1, indexr + 1]

34 return

35 Function recalculateIndex(L, index )
Input: data structure L, the original index given by the client index
Output: The new index in the presence of abstractions

36 count ← 0
37 foreach k ∈ [0, |L| − 1] do
38 if L[k] is an abstract element 〈t, [indexm, indexn]〉 then
39 if indexm ≤ index ≤ indexn then
40 return k

41 count ← count + (indexn − indexm + 1)

42 else
43 if count = index then
44 return k

45 count ← count + 1

46 return k
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Algorithm 2. List GET that retrieves an element at the index index from a combo
whose active container is i.

Input: List combo 〈Γ1, . . . , Γn−1, i〉, Index index
Output: Element x

1 newIndex ← recalculateIndex(Li, index )
2 if L[newIndex ] is an abstract element a = 〈k, [indexm, indexn]〉 then
3 newIndexm ← recalculateIndex(Lk , indexm)
4 newIndexn ← recalculateIndex(Lk , indexn)
5 /*Concretize this abstraction to get the range of elements it represents*/ Array r ← getElements(Lk ,

newIndexm, newIndexn)
6 replace a with r in Li

7 create abstraction a′ = 〈i, [indexm, indexn]〉
8 replace r with a′ in Lk

9 size ← indexn − indexm + 1
10 foreach Γj , j ∈ [1, n − 1] ∧ j 	= i ∧ j 	= k do
11 indexj ← recalculateIndex(Lj , index )
12 Lj [indexj ] must be an abstraction a′′ = 〈k, [indexp, indexq ]〉
13 if indexq − indexp + 1 = size then
14 Lj [indexj ]← 〈i, [indexp, indexq ]〉
15 else
16 split a′′ into a1 = 〈k, [indexp, indexm − 1]〉 and a2 = 〈k, [indexn + 1, indexq ]〉
17 create new abstraction aa = 〈i, [indexm, indexn]〉
18 replace a′′ with [a1, aa, a2] in Lj

19 newIndex ← recalculateIndex(Li, index )

20 return L[newIndex ]

investigate container replacement based on other performance metrics (such as space
efficiency and concurrency). In this section, we show only the ADD and GET operations
for each combo, while our implementation supports all operations of the containers
shown in Table 1. The implementations of the CoCo Map, List, and Set combos are
publicly available at www.ics.uci.edu/˜guoqingx/tools/coco.jar.

4.1 List Combo

The structure of the List combo has been shown in Figure 2. Here we discuss only
how abstractions and concretizations are performed. Algorithm 1 illustrates the ADD
operation of the List combo. As mentioned in Section 3, for each List in the combo,
concrete elements and abstract elements are stored together in its underlying data struc-
ture that used to contain only concrete elements. Suppose L is such a data structure (e.g.,
the data array for ArrayList, the linked structure for LinkedList, etc.). We use
L[k] to denote the k-th element in L, regardless of the type of L. Note that the sequence
of elements in L is determined by the partial order ≺ of the container, which is, in turn,
determined by the property encoding function f . For all List containers, f maps each
element to a unique index, which is used to determine the position of this element in L.

For List, each abstraction has the form 〈k, [m,n]〉, where k is the ID of the con-
tainer that has the concrete element and [m,n] is the predicate that specifies a range of
indices of the concrete elements represented by this abstraction. Note that CoCo cur-
rently allows only contiguous abstractions, and thus, a range is sufficient to represent
a predicate. Richer predicates can be used if the contiguousness requirement is relaxed

www.ics.uci.edu/~guoqingx/tools/coco.jar
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in the future. Figure 5 has illustrated a simple (well-formed) List combo where both
participating containers have abstractions.

Implementation of List ADD. Given an index index , we first compute a new index
newIndex that corresponds to index in the presence of abstractions (line 3 in Algo-
rithm 1). Function recalculateIndex is shown in lines 35–46. Next, we add this
incoming object x into the active container Γi (lines 4–15). If the element at newIndex
is an abstract element (line 6), this abstraction is split into two separate abstractions
(line 9) and then x is inserted between them (line 10). In addition, as the addition of x
increases the index of each existing element following x by 1, we need to update the
predicates in all the abstractions following a2 in L to make them reflect the new indices
(lines 11–12) (note that a2 itself has been updated by line 9). In our implementation,
abstractions in each L are indexed by a separate array, which allows quick update of the
predicates.

Abstractions in all the inactive Lists need to be updated in a similar manner (lines
16–33) to account for this new element. In each inactive List Γj (where j �= i), we first
find the element at the index newIndex . If it is an abstraction and the host container in
this abstraction happens to be the active List (line 20), we simply grow the range by 1
(line 21). Otherwise, we have to split this abstraction into two separate abstractions and
insert a new abstraction a′ (whose host container is the active container) between them
(lines 23–25). If Lj [newIndex ] is a concrete element, a new abstraction a′ is created and
inserted into Lj (lines 28-30). Eventually, the predicate in each abstraction following a
is updated with a new index range (lines 32–33).

It is clear that if no switch is performed on the combo, the active List has all
concrete elements and there is only one abstraction in each inactive List that abstracts
all of them.

Implementation of List GET. Shown in Algorithm 2 is the GET operation imple-
mented in CoCo. If the element at the index newIndex is a concrete element, it is
returned immediately (line 20). Otherwise, we retrieve all the concrete elements repre-
sented by the abstraction (lines 3–5) and bring them into the active container (line 6).
An abstraction is then created to replace them in their original host container Γk (lines
7–8). As the host container of these elements is changed from Γk to Γi, code at lines
9–18 updates their corresponding abstractions in other inactive containers (not Γk or
Γi) with the new host information. If the abstraction abstracts exactly the same range of
concrete elements (line 13), we simply change its host container from k to i (line 14);
otherwise, this abstraction needs to be split into two a1 and a2, and a new abstraction
aa is created to represent this range (line 17). aa is inserted between a1 and a2 in Lj .

Note that once an abstraction a is encountered during a retrieval, we concretize
the abstraction and move the entire range of concrete elements into the active con-
tainer (lines 5–8). This is conceptually similar to a cache line fill. An alternative is
to split a into three abstract elements 〈k, [indexm, index ]〉, 〈k, [index , index ]〉, and
〈k, [index + 1, indexn]〉, and then concretize only 〈k, [index , index ]〉 to get the exact
element requested. We have also implemented this approach for the general GET oper-
ation but found that it is much less effective than the one shown in Algorithm 2. It is
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primarily because elements in a contiguous region are often visited together (e.g., us-
ing an Iterator) and getting them one at a time can increase cache misses significantly,
especially for array-based containers.

However, we do use this alternative approach to implement methods that are specific
to each container implementation (i.e., that are not declared in the common Interface).
For example, method getLast (that is specific to LinkedList) needs to retrieve
only the last element. If this last element in the LinkedList is a concrete element, it
is directly returned; if it is an abstraction (〈k, [start , |L| − 1]〉), we first split it into two
abstractions (〈k, [start , |L| − 2]〉, 〈k, [|L| − 1, |L| − 1]〉), and concretize only (〈k, [|L| −
1, |L|−1]〉) that represents the last element. The insight here is that in most cases where
these implementation-specific methods are invoked, their containers are in the inactive
state. We should avoid bringing many concrete elements from an active container back
to an inactive one, which may lead to significant performance degradation.

Implementation of HashArrayList. Container HashArrayList is an ArrayList-
based data structure. It maintains an ArrayList and a HashMap internally, and
duplicates concrete elements between them. The HashMap contains only concrete el-
ements and is used to perform contains-related operations. Abstractions are only
allowed to be added into the ArrayList. When a HashArrayList is activated, all
concrete elements in the combo are added into its HashMap. Abstraction/concretiza-
tion operations are performed only between the “list” part of the HashArrayList
and other lists in the combo; its “map” part always contains concrete elements as long
as the HashArrayList is active.

Theorem 1. (List combo soundness) Any SWITCH operation performed on the List
combo (whose ADD and GET are shown in Algorithm 1 and Algorithm 2, respectively)
is a sound switch.

Proof Sketch. To prove this, it is important to show that each ADD and GET preserves
the well-formedness of the combo. This can be easily seen from Algorithm 1 and Al-
gorithm 2: (1) each element added to the active list (lines 4–15 in Algorithm 1) is well
abstracted in each inactive list (lines 17–33 in Algorithm 1); and (2) each concretization
replaces an abstract element in the active list with the concrete elements it represents
(lines 5–6 in Algorithm 2). These concrete elements (in their old host) are replaced
with a new abstract element (lines 7–8 in Algorithm 2). Abstractions corresponding to
these elements in all the other inactive lists are updated to point to their new locations
(lines 10–18 in Algorithm 2). Hence, well-formedness is preserved by both the element
addition and the concretization. �

4.2 Map and Set Combos

The general algorithms (in Algorithm 1 and Algorithm 2) used for List can be natu-
rally adapted to create Map and Set combos. For example, for a Map combo, when a
pair of objects is added into the HashMap object (which is active), we can create an
abstraction in the ArrayMap whose predicate records the bucket index of this pair in
the HashMap. However, unlike the List combo where all participating Lists have
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the same property encoding function f (thus we can easily merge adjacent abstractions
as they represent adjacent concrete elements), HashMap and ArrayMap have differ-
ent f . Elements in a HashMap are ordered based on their hashcodes while elements
in an ArrayMap are ordered simply based on indices. As such, adjacent abstractions
in the ArrayMap may represent concrete elements far away from each other in the
HashMap. These abstractions may not be easily merged and we may end up with a
great number of abstractions in each container, leading to increased space consumption
and concretization overhead.

We develop a simpler approach for both Map and Set combos—for each combo,
we maintain only one single abstraction in each inactive container that represents all
concrete elements; upon a container switch, this abstraction is immediately concretized
by moving the entire collection to the newly active container. We do not split abstrac-
tions because it may not be as beneficial for Map and Set as for List. Furthermore,
as ArraySet and ArrayMap are designed to hold a very small number of elements,
it is relatively inexpensive to perform MOVE ALL upon each switch (e.g., much less
costly than performing MOVE ALL for a List).

Theorem 2. (Map and Set combo soundness) Any SWITCH operation performed on
the Map/Set combo is a sound switch.

Proof Sketch. It is clear to see that the active container always has all the concrete
elements. Each ADD or GET operation only updates the active container, and hence,
the well-formedness of the combo is guaranteed. �

4.3 Discussion

Thread Safety. Our combo implementations (described in this section) are thread-
safe. Because the client code always interfaces with methods in the original container,
the concurrent behavior of the program is not influenced by any container switch. To
illustrate, consider a switch from a Hashtable (which is thread-safe) to a HashMap
(which is thread-unsafe). Because the client still invokes methods in Hashtable after
the switch and these methods are appropriately synchronized, the fact that the actual
service is provided by HashMap would not create any side effect. In addition, because
the list of all associated containers is created inside the original container, whether or
not these associated containers can be shared among threads depends on whether the
original container is shared. No replacement will change the sharing property of the
container (e.g., from being shared to thread-local or vice-versa). However, concurrent
containers (e.g., those in java.util.concurrent) often use non-blocking algo-
rithms (e.g., compare-and-swap). Forming a combo with both concurrent containers and
non-concurrent, thread-unsafe containers may cause concurrency issues, which should
not be allowed. Mixing only concurrent containers can be thread-safe as long as the
abstraction and concretization operations are appropriately synchronized.

Handling of Operations with Incompatible Specifications. In some cases, imple-
mentations of the same operation (e.g., a method declared in a Java interface) in differ-
ent containers may be incompatible, making it difficult for combo containers to provide
the same service to the client. For example, different Set implementations may iterate
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elements in different orders; unexpected program behaviors may result from switching
implementations and traversing elements in a different order. The easiest way to solve
the problem is to select only containers whose common methods have the same pre-
and post-conditions to form a combo. However, this approach can limit significantly
the optimization capabilities.

An alternative is to switch back to the original (user-chosen) container immediately
upon the invocation of a method that is incompatible with its corresponding method
in the original container. Concretizations are subsequently performed to bring neces-
sary elements back. While this approach preserves semantics, it may potentially cause
frequent container switches and element copies, leading to increased overhead. One
possible way to alleviate the problem is to disable CoCo optimizations if such incom-
patible methods are frequently invoked. For example, the entire combo can be dropped;
a detailed description of this optimization is described in Section 5. Note that such a
case may rarely happen in practice. If a method is declared in an interface, its behaviors
are often specified by the interface and all its implementations should strictly comply
to this specification. Even if an implementation may have a unique way to fulfill the
specification, this uniqueness should not be exploited by the client.

5 Optimizations

Naively profiling all container objects is expensive. This section describes three opti-
mizations to reduce the replacement overhead. We modify Jikes Research Virtual Ma-
chine (RVM) to replace each allocation site of the form java.util.X x = new
java.util.X (. . .) with a new allocation site of the form coco.util.X x = new
coco.util.X (. . ., null), where X is a container class in Table 1. The additional
argument null is used to notify the constructor that a new XCombo object needs to
be created (e.g., line 8 in Figure 2 (a)). Note that such program modification can also
be done by bytecode rewriting (e.g., through the load-time instrumentation framework
java.lang.instrument). Implementing it inside a JVM eliminates the need to
perform a separate program transformation phase.

5.1 Dropping Combos

A large part of the overhead comes from the method call forwarding and dispatch. For
example, for each element addition/retrieval, there are two additional calls made (e.g.,
LinkedList.get calls ListCombo.get, which then calls ArrayList.
get$CoCo). To reduce this overhead, we maintain a counter in each XCombo ob-
ject, which is incremented every time method doProfiling (e.g., line 21 in Figure 2
(b)) is executed but no switch occurs. It is reset to zero if the combo decides to perform
a switch. When this counter exceeds a pre-set threshold value, we no longer profile the
operations—the currently active container appears to be suitable for the execution.

At this point, there are two situations that might occur. First, no replacement has ever
been performed on the combo. The active container is the original container created by
the client. In this case, the combo object notifies the active container to drop the combo
(and all inactive containers) by setting the field combo to null. The container goes



CoCo: Sound and Adaptive Replacement of Java Collections 19

back to normal and all operations afterwards will be performed directly on it. In the
second case, switches have occurred and the currently active container is not the original
(user-chosen) container. In this case, we cannot remove the combo because this current
container does not directly communicate with the client. However, we can stop profiling
the container operations to reduce overhead. Specifically, method doProfiling is no
longer invoked for the future container operations.

While dropping combos is an important technique to reduce overhead, it may po-
tentially lead to inappropriate switch decisions. For example, the usage of a container
may change dramatically after its combo is dropped and the profiling is disabled, leav-
ing the program with a suboptimal implementation. However, we have not found this
problem affects the current implementations of the CoCo combos. In fact, many (long-
lived) containers in a real-world program have strictly monotonic behaviors—they are
more heavily used in a later stage of the execution (e.g., workload run) than in an ear-
lier stage (e.g., warmup), making CoCo switch containers from an implementation that
favors fewer elements/operations to another that favors more elements/operations.

5.2 Sampling

Invoking method doProfiling for each container operation can be quite expensive.
A sampling-based profiling approach is employed to reduce this run-time cost. In addi-
tion, we do not profile a container until the first non-ADD operation is performed. This
allows the container to have a start-up phase where it gets populated and stabilized; oth-
erwise, the many ADD operations in the beginning may prevent CoCo from observing
its real usage pattern and making appropriate switch decisions.

5.3 Lazy Creation of Inactive Containers

In the example shown in Figure 2, inactive containers are created immediately after the
active container is created. However, if the combo never switches the container, it is
completely redundant to create, initialize, and garbage collect these inactive containers.
To make the implementation more efficient, we employ a lazy approach that does not
allocate and initialize inactive containers until the first switch is about to be performed.
This approach is sound, because, in any combo, each inactive container must have one
single abstraction (that abstracts all existing concrete elements) before the first switch.
We do not need to create and maintain this abstraction every time an element is added
before a switch occurs.

6 Limitations

While the CoCo methodology is general enough to be applied to a variety of container
implementations, it has the following three limitations. First, it improves application
running time at the cost of introducing space overhead. While this overhead is relatively
small (e.g., the detailed statistics are reported in Section 7) and acceptable for most
applications (on machines with large memory space), the technique may not be suitable
for optimizing memory-constrained programs.
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The second limitation is that this technique does not preserve asymptotic complexity
of the user-chosen containers. The containers used by CoCo at run time may have a
different worst-case complexity than those intended to be used by the user and may thus
perform worse in a later execution state when the CoCo profiling is disabled. However,
as discussed earlier in this section, we found that the usage scenarios of most long-lived
containers are quite consistent during the execution, which reduces the chance for CoCo
to make inappropriate decisions. An approach similar to dynamic feedback [13] may
be employed in the future work to run a program in a mixed profiling and production
mode—the execution alternates between the profiling run and the production run so that
profiling is periodically enabled to collect the most updated information.

Finally, although the framework presented in Section 3 provides soundness guaran-
tee for combo implementations that comply with the CoCo methodology, there is no
automated enforcement of this compliance. Library designers have to manually ensure
that their combos are well-formed, implementations in each combo do not have conflict-
ing specifications, and the replacement rules are appropriately placed. It is interesting
to develop tool support, in the future, that can check the combo well-formedness to help
developers write reliable optimizations.

7 Empirical Evaluation

We have evaluated CoCo on both a set of micro-benchmarks and a set of large-scale,
real-world applications. All experiments are executed on a quad-core machine with an
Intel Xeon E5620 2.40GHz processor, running Linux 2.6.18.

7.1 Micro-benchmarks

We have designed several micro-benchmarks (whose execution is dominated by con-
tainer operations) in order to gain a deep understanding of what achieves efficiency and
what incurs overhead. In fact, many of optimization techniques presented in Section 5
are motivated by our observations on the executions of these micro-benchmarks.

LinkedList → ArrayList. This simple program creates 10 LinkedList objects.
For each of them, 1000 elements are added and then 40,000 ADD/GET/REMOVE op-
erations are performed. The original program finishes in 127.1 seconds. Using CoCo,
its running time ranges from 35.2 to 38.8 seconds, depending on the threshold value X
used to switch the List. Here X is the percentage of GET among all operations ex-
ecuted on each LinkedList. For this program, we have tried six different X (i.e.,
0, 10%, . . ., 50%) and found that the larger X is, the longer the running time is.
ArrayList outperforms LinkedList in all kinds of operations (not just get(i)).
Hence, we set X = 0 when we run experiments with large, real-world programs—
LinkedList is immediately switched to ArrayList after the first 1/Y operations
are performed on it (Y is the sampling rate).

ArrayList → HashArrayList. We find that this switch is highly beneficial for pro-
grams with a large number of contains operations. We write a program that creates
100 ArrayList objects and populates each of them with 10,000 Integers. For each
ArrayList, we generate 4,000 random Integers and test if this List contains these
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Table 2. CoCo run-time statistics. Reported in section (a) and (b) is the run-time information of
each program executed without and with CoCo, respectively; each section includes running time
(T) in seconds, GC time (GC) in seconds, and peak memory consumption (S) in Megabytes; α in
section (b) shows the standard deviation of the collected running times.

Bench (a) Regular execution (b) CoCo execution
T1(s) GC1(s) S1(Mb) T2(s) α (s) GC2(s) S2(Mb)

bloat 53.8 4.5 91.5 51.4(96%) 1.4 (2.7%) 5.9(131%) 165.2(181%)
chart 17.6 4.9 188.2 16.2(91%) 0.8 (4.9%) 7.4(151%) 228.2(121%)
fop 2.5 0.3 49.2 2.1(84%) 0.06 (2.9%) 0.4(133%) 50.1(102%)
lusearch 4.7 1.4 28.6 3.1(66%) 0.07 (2.2%) 1.4(100%) 28.6(100%)
avrora 23.6 1.5 62.6 20.8(89%) 1.1 (5.3%) 2.1(140%) 66.4(106%)
GeoMean 85.4% 3.4% 129.8% 118.8%

numbers. If an Integer is in the list, it is removed. This usage scenario of ArrayList
is common in static analysis tools that make heavy use of worklist-based algorithms.
The original running time is 149 seconds, while CoCo reduces it to 2.2 seconds (i.e.,
74× speedup).

Set and Map Optimizations. The goal here is to investigate the borderline be-
tween HashSet (HashMap) and ArraySet (ArrayMap) (i.e., what is the appropri-
ate size threshold under which ArraySet/ArrayMap would outperform HashSet/
HashMap). We write a few programs that make heavy use of Sets and Maps, and use
different size threshold values to tune the performance. It appears that, for Set, this
line is somewhere between 5 and 8—in general, we observed, in this test, that switch-
ing from HashSet to ArraySet when the number of elements it contains is smaller
than 5 is always beneficial. For Map, this line is lower—clear running time reduction
can only be seen when we set this threshold to 2. This may be because HashMap op-
erations are less expensive than those of HashSet, as HashSet maintains an internal
HashMap and delegates all work to it. Based on these observations, we use 5 and 2 as
size threshold values for switching Map and Set when running large benchmarks.

Note that even if small programs are used to tune the parameters, the usage of con-
tainers in these programs is real and each container has a large number of elements. In
addition, it is much easier to see the impact of the parameter adjustment on performance
in such container-centric programs than real-world programs whose performance can
often be influenced by many complicated factors.

7.2 Performance on Large Benchmarks

Our large-scale benchmark set contains five real-world applications: bloat, chart, fop,
lusearch, and avrora. These applications are chosen because container bloat has been
previously found in them (e.g., reported in [7] and [3]). The sampling rate is 1/50, mean-
ing that the method doProfiling is invoked once per 50 container operations. We
have tried several different sampling rates and 1/50 appears to lead to the best perfor-
mance. The generational Immix [14] garbage collector is used for our experiments.

For each program, we run it 10 times with a maximum 1GB heap (each with two iter-
ations) using the large workload. The median steady-state performance and the standard
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Table 3. Statistics of containers and their run-time switches

Bench (a) CoCo containers (b) #Switches
#AL #LL #HM #HS LL → AL AL ↔ HL HM ↔ AM HS ↔ AS

bloat 3322.4K 1158.0K 67.0K 370.7K 108 76/0 645/81 13860/241
chart 25.7K 0 14.5K 0 0 96/0 204/0 2/0
fop 87.4K 0 93 0 0 10/0 17/0 0/0
lusearch 374 0 259 128 0 0/0 101/0 0/0
avrora 50 414.3K 787 14 0 0/0 22/0 4/0

deviation of the running times (α) are reported in Table 2. In addition to the execution
information, section (b) in Table 2 also includes ratios between the numbers in each
column of section (b) and those in its corresponding column of section (a). Percentages
shown in parentheses are either overheads (if > 100%) or improvements (if < 100%).
Overall, CoCo reduces program running time by 14.6%, at the cost of introducing a
18.8% overhead in memory space. For all applications, the running time benefit gained
from using suitable algorithms can successfully offset the overhead caused by creating
(and garbage collecting) extra objects and making extra calls. It is worth investigat-
ing, in the future work, how to further reduce the overhead. For example, using object
inlining (that inlines the combo and other inactive container objects) may reduce the
number of extra objects created, leading to lower GC overhead and smaller space con-
sumption. Note that our optimization techniques (discussed in Section 5) are effective:
without them, the average performance improvement for these 5 applications is 6.34%.
Due to space limitations, the detailed performance comparison (with and without these
optimizations) is omitted.

Table 3 shows, for each program, the number of instances of each container type (i.e.,
ArrayList, LinkedList, HashMap, and HashSet) that CoCo attempts to opti-
mize (section (a)) and the number of container switches that CoCo actually performs
(section (b)). All kinds of switches except LL → AL are bi-directional. Each column
for a bi-directional switch X ↔ Y reports pairs of numbers a/b: a in each pair is the
number of switches from X to Y and b is the number of switches from Y to X. Note
that switches in both directions have occurred during the execution of bloat. In addi-
tion, we find that more than half of LinkedLists in bloat continue to be switched
to HashArrayLists after becoming ArrayLists. This observation shows that for
many data structure objects, there do not exist single optimal solutions throughout the
execution. Optimal implementations change as the execution progresses and, therefore,
an online adaptive system is highly necessary for removing container inefficiencies.

Despite the many container objects that CoCo attempts to optimize (e.g., shown in
section (a) of Table 2), there is only a small number of them for which optimizations
are actually possible. Our combo dropping technique appears to be effective—when no
optimization opportunity can be found, the overhead incurred by CoCo is negligible.
The current version of CoCo focuses only on Java built-in containers, leading to a fairly
limited pool of candidates that can form combos. Larger performance gains may be
achieved if the technique can be employed to optimize user-defined, application-specific
data structures. Another interesting future direction is to optimize only a selected subset
of containers that are highly likely to be inefficiently used. This can be done by focusing
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Fig. 6. Breakdown of the benefits from each type of container switch

on allocation sites. We may profile only a few instances (samples) of each allocation site
and then use this information as feedback to guide the optimization of other instances
created by the same allocation site.

7.3 Breakdown of the Benefits

To further understand the performance improvement that each type of switches con-
tributes, an additional experiment is conducted: each application is run four times and
for each time, only one type of switches (from Table 2) is enabled. The breakdown of the
benefits is reported in Figure 6. In general, the effectiveness of each kind of replacement
is application-specific and depends on the container usage in the application. However,
it is clear that the switch from ArrayList to HashArrayList plays an important
role in improving performance. In fact, we find an even larger benefit in fop (17.3%)
when all the other types of switches are disabled. This is because HashArrayList
has a clear algorithmic advantage for performing membership tests (e.g., contains)
over other lists.

8 Related Work

Container Optimizations. Despite the body of work on container optimizations, CoCo
is the first technique that can safely and automatically remove container inefficiencies.

Early work on the SETL framework [15,16,17] and recent work on data representa-
tion synthesis [18] attempt to generate appropriate data structure implementations from
high-level abstractions at compile time. Our work addresses a different problem, which
is to develop a system for Java that can safely switch implementations at run time. Re-
cent attention has been paid to the container bloat problem [7,3,9]. Our previous work
[3] proposes a static analysis to identify container inefficiencies. Work that is closest
to our proposal is Chameleon [7] and Brainy [9]. Both of them can profile programs to
make recommendations on appropriate container implementations that should be used.
Recent work from [10] develops memory compaction techniques to reduce the foot-
print of Java collection objects. Our proposal differs from this category of research in



24 G. Xu

two major aspects. First, the problem that these tools address is orthogonal to the prob-
lem that we propose to solve. Both Chameleon and Brainy try to understand precisely
what container implementation is suitable for what execution scenario (i.e., when to
switch implementations), and then identify inconsistency between users’ choices and
the actual execution scenarios to help developers perform manual tuning. Our work
goes far beyond and attempts to develop techniques that can automatically and safely
switch implementations (i.e., how to switch implementations).

The C# standard library contains a collection class called HybridDictionary
(www.dotnetperls.com/hybriddictionary) that implements a linked list
and a hash table, switching over to the second from the first when the number of
elements increases past a certain threshold. While this optimization is similar to our
ArrayList→ HashArrayList optimization, CoCo is a much more general tech-
nique that can be used to optimize a variety of containers.

Software Bloat Analysis. Software bloat analysis [19,4,20,1,21,22,3,2,23,24] at-
tempts to identify and remove performance problems due to run-time inefficiencies in
the code execution and the use of memory. Mitchell et al. [5] propose a manual ap-
proach that detects bloat by structuring behavior according to the flow of information,
and their later work [4] introduces a way to find data structures that consume excessive
amounts of memory. Our work takes further step in performing online optimization
of inappropriately-used data structures. Shankar et al. [22] attempt to improve perfor-
mance by making aggressive method inlining decisions based on the identification of
regions that make extensive use of temporary objects. Our previous work [1,2] detects
memory bloat by profiling copy chains and copy graphs, and by measuring costs and
benefits of object-oriented data structures, respectively. Recent work [25] encodes run-
time data structures to identify those that can be reused for improved efficiency.

All these existing techniques detect bloat and provide diagnostic report by profil-
ing semantic information of the program execution. In this paper, we use one type of
such information (i.e., container semantics) to find and remove problems automatically.
Future work may identify additional semantic bloat patterns that can be exploited to
perform similar semantics-aware optimizations.

9 Conclusions and Future Work

This paper proposes an application-level optimization technique, called CoCo, that
can safely and adaptively switch container implementations. At the core of this tech-
nique is an abstraction-concretization methodology that can be used to create optimiz-
able containers among which container replacement is guaranteed to be safe. While
this work focuses on Java containers, the methodology can also be employed to op-
timize general user-defined data structures. Although the current implementation of
CoCo suffers from a number of limitations, this work is the first step towards achieving
the goal of automating a range of semantic optimizations for object-oriented applica-
tions, and our experimental results already show its promise. Future work may address
these limitations and consider to extend the CoCo methodology to optimize languages
like Scala, where some data structures seemingly expose their internal implementation
through pattern matching. It is also interesting to investigate the possibility of offloading

www.dotnetperls.com/hybriddictionary
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expensive operations to idle cores (in a multicores architecture) to improve the replace-
ment efficiency.
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